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Deep neural networks and partial differential

equations

Abstract

The study of physical systems, modeled by partial differential equations (PDEs),

represents a cornerstone of scientific research. These equations, describing the re-

lation between some function and its partial derivatives across variables, are vital

for modeling diverse phenomena, for e.g. fluid dynamics and heat transfer, with ap-

plications in various domains such as climate science and astronomy. In the recent

years, data has become readily available, explaining partly the rise of data-driven

methods and more particularly Deep Learning (DL) methods. They excel in training

complex models on a large amount of data, while being computationally effective

at inference. However, for physical systems, even with apparently large amount of

data, data is often scarce compared to the complexity of the problems, which is a

challenge for DL methods. More importantly, the problems faced when applying DL

methods to physical systems are very different from the usual DL problems, with

physical problems potentially being be ill-posed, chaotic or very sensitive to initial

conditions. In addition to these main challenges, practitioners in numerical analysis

or the industry seek theoretical or experimental guarantees of convergence, which

DL methods can lack of.

In this thesis, we tackle some of these challenges through three distinct approaches.

In the first part of this work, we apply concepts from numerical analysis into DL

frameworks, offering two perspectives: (i) the incorporation of multigrid numerical

schemes into a Multi-Scale DL architecture, the Multipole Graph Neural Opera-

tor, demonstrating its efficacy in solving steady-state Darcy flow and 1D viscous

unsteady Burgers’ equations (ii) the adaptation of implicit numerical schemes into

neural networks, ensuring forecasting stability for dynamical systems via some con-

straints on the weights of the neural network, leading to improved long-term fore-

casting results for two transport PDEs. In the second part of this work, we design

a hybrid model to address the friction law design in Shallow-Water equations. This

implies learning the friction law from observations through a numerical solver. The

experiments focus on a vast analysis of the robustness and convergence for a sta-

tionary case and confirm the efficacy on the dynamic case. In the third part of this

work, we explore continuous methods through two works based on Implicit Neural

Representations (INRs): (i) INFINITY is a INR based method that can be applied

to static PDE problems. It is tested on the RANS equations for surrogate modeling

of airfoils. INFINITY can accurately infer physical fields throughout the volume

and surface, leading to a correct prediction of the drag and lift coefficients, which

are crucial for airfoil design. (ii) TimeFlow is a general framework using INRs to

impute and forecast time series. By its continuous nature, TimeFlow can handle

missing data, irregular sampling and unaligned observations from multiple sensors

while having similar performances to state-of-the-art algorithms and being able to

generalize to unseen samples and time windows.
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Réseaux de neurones profonds et équations aux

dérivées partielles

Résumé

L’étude des systèmes physiques, modélisés par des équations aux dérivées par-

tielles, représente une pierre angulaire de la recherche scientifique. Ces équations, qui

décrivent la relation entre une fonction et ses dérivées partielles à travers différentes

variables, sont essentielles pour modéliser divers phénomènes avec des applications

en climatologie ou astronomie par exemple. La récente accessibilité en masse des

données a favorisé l’essor des méthodes basées sur les données et plus particulièrement

des méthodes d’apprentissage profond (Deep Learning, DL), qui peuvent apprendre

des modèles complexes en utilisant des grandes quantités de données. Cependant,

pour les systèmes physiques, même avec une quantité apparemment importante de

données, les données sont souvent rares par rapport à la complexité des problèmes,

ce qui constitue un défi pour ces méthodes d’apprentissage profond. De plus, ces

problèmes posent des défis particuliers aux algorithmes de DL, en pouvant être mal

posés, chaotiques ou très sensibles aux conditions initiales. En plus de ces défis, des

garanties théoriques ou expérimentales de convergence sont recherchées, ce que les

méthodes DL peuvent ne pas avoir.

Dans cette thèse, nous nous attaquons à certains de ces défis par trois approches

distinctes. Dans la première partie de ce travail, nous appliquons des concepts

de l’analyse numérique au DL, en offrant deux perspectives : (i) l’incorporation de

schémas numériques multi-grilles dans une architecture DL multi-échelle, démontrant

son efficacité dans la résolution de la loi de Darcy et des équations de Burgers 1D

visqueuses et non stationnaires. (ii) l’adaptation de schémas numériques implicites

dans des réseaux de neurones profonds, garantissant la stabilité des prévisions pour

les systèmes dynamiques par le biais de certaines contraintes sur les poids du réseau,

conduisant à de meilleurs résultats de prévision à long terme pour deux équations

de transport. Dans la deuxième partie de ce travail, nous concevons un modèle

hybride pour aborder la conception de la loi de frottement dans les équations de

Saint-Venant. Cela implique l’apprentissage de la loi de frottement à partir des ob-

servations à travers un schéma numérique. Les expériences consistent en une vaste

analyse de la robustesse et de la convergence pour un cas stationnaire et confirment

l’efficacité sur un cas dynamique. Dans la troisième partie de ce travail, nous ex-

plorons les méthodes continues à travers deux travaux basés sur les représentations

neuronales implicites (Implicit Neural Representations, INR) : (i) INFINITY est une

méthode fondée sur les INRs qui peut être appliquée aux problèmes statiques. Elle

est testée sur les équations de RANS pour la modélisation de profils aérodynamiques,

et conduit à une prédiction correcte des champs physiques et des coefficients de

trâınée et de portance. (ii) TimeFlow est un algorithme général qui utilise les INR

pour imputer et prévoir des séries temporelles. De par sa nature continue, TimeFlow

peut gérer les données manquantes, l’échantillonnage irrégulier et les observations

non alignées provenant de capteurs multiples.
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et d’évaluer mon travail de recherche scientifique de ces trois dernières années. Je
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m’ont soutenu durant ces trois années de thèse. Sans être exaustif, j’ai une pensée
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Symbols

Domain Symbol Name Description

Neural θ weights of a neural network

network W , b weights and bias of a linear layer

K kernel

z latent space of neural network

ν a probablistic measure

Ω domain

hw hyper-network

B sample batch

L loss

N (x) domain of neighbours of x

t time

Numerical scheme (∆t, ∆x) time and space discretization step

λpf (M) Perron–Frobenius eigenvalue

Shallow u water speed

water h water height

equation b topology

g gravitational constant

Kf friction law

Sf laws of friction family Sf = Kf (h, u)|u|
Cf friction coefficient

(α, β) coefficients of the friction law

Qe input water flow

hs water height on the right of the domain

RANS d(x) distance function

equation n(x) = (nx(x), ny(x)) normal vectors of the mesh nodes on the airfoil surface

(Vx, Vy) inlet velocity values

(vx, vy) velocities

p pressure

νt turbulent kinematic viscosity

∂Ωi boundary conditions

Si surface mesh

Xi mesh
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Chapter 1

Introduction

1.1 Context

Modeling and studying physical systems is one of the largest area of research in

science, that has been developed over centuries. More precisely, physical systems

can often be modeled by partial differential equations (PDEs). PDEs are equations

containing a function and its partial derivative across several of its variables. They

can model systems such as fluids with the Navier-Stokes equation or heat exchange

with the Heat equation. They are ubiquitous, and crucial for many domains, such

as climate science or astronomy. They are our object of research.

1.1.1 Increasing amount of data and data-driven methods

Over the last decades, with the increasing amount of sensors, data has become

highly available. This can be seen across different fields, from baseball to economic

forecasting (Lohr, 2012). However, data is not always of good quality and often

needs to be processed. For the study of physical systems, data can come from two

sources:

• Real-world data, such as satellite images of phenomena.

• Simulation data, which comes from numerically simulating some phenomenon.

Both sources have their challenges and limitations. Problems with real-world data

can sometimes be ill-posed, not all the information that is required to solve the

problem is available. This is illustrated with the NEMO engine simulations (Madec

et al., 2017). Indeed, when trying to predict the sea-surface temperatures (SST)

on some regions of the ocean, such as in De Bézenac et al. (2019) and shown in

Figure 1.1, the influence of the outside regions makes it impossible to forecast when

the horizon is not small. In addition to this issue, real-world data is often scarce

compared to the complexity of the problem. Indeed, even huge datasets can be too

1
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Figure 1.1: Sub regions of the SST dataset used in De Bézenac et al. (2019).

small. This can be seen on the HadSST4 dataset (Kennedy et al., 2019), which

is composed of monthly grids from quality-controlled in situ SST measurements.

Despite the size of the dataset, with monthly grids of 1296 points from 1850 to

2018, this dataset is particularly challenging because there are missing values and

the resolution is coarse, hence features like western boundary currents and eddies

are not resolved.

On the other hand, numerical simulations give good quality data, but they are still

simulations, and often can not be used directly for real-world problems. This is

illustrated for a greenhouse control system (Kim et al., 2017), where the physical

simulations are not enough to accurately control the system, and need to be comple-

mented by a data model. There is still an in-between, with high-fidelity simulations

on complex problems, such as the AirfRANS dataset (Bonnet et al., 2022), which

simulates an airfoil design optimization problem.

The global increase in amount of data has led to the development and success of

data-driven methods. Among these methods, Deep Learning (DL) methods have

been applied successfully to many problems, from diagnosis in healthcare to conver-

sational agents with GPT-3. The idea behind DL is to learn highly non-linear map-

pings from lots of data, using architectures with many parameters (up to hundreds

of billion). They can be applied to many different tasks, with mainly classification,

regression and generation. One of their strengths is the small computation time

at inference, using parallel computing with Graphics Processing Units (GPUs). In

addition, they can handle unstructured data.

1.1.2 Model-based methods and their challenges

On the contrary to plain data-driven methods, model-based methods use prior

knowledge to provide models, instead of the pure data knowledge. Modeling physi-
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cal systems forms the foundation of physics, paving the way for some of humanity’s

greatest discoveries, ranging from our understanding of gravity to the development of

general relativity. These models are defined by PDEs, as explained earlier. However,

these PDEs are often intractable analytically, hence the development of numerical

analysis, which aims to numerically solve these equations to predict physical sys-

tems. Numerical solvers are derived with theoretical properties in order to offer

some guarantee on the accuracy of the proposed numerical solution. This will be

further detailed in 2.1.2.

These schemes can be generic or tailored for specific problems, and they can quickly

become very complex. This is illustrated for geotechnical problems, where experts

design successful numerical solvers, but which need to be carefully crafted (Schweiger

et al., 2019). Hence expert knowledge is required to use them in real-world applica-

tions, which is quite restrictive. Additionally, they are very costly computationally.

Indeed, the whole scheme needs to be run again for a new simulation, the previous

computations cannot be used again. For instance, to compute the trajectory of a

tennis ball, a new costly simulation needs to be run for each shot, which can be pro-

hibitive for real-world applications. Some solutions have been developed to mitigate

this issue, but the core of the problem still is the incapacity to add existing data to

these models.

Another issue with these models is that they often do not totally represent the true

system. Indeed, the model is based on some assumptions to offer a general view and

comprehension of the system. But these assumptions and simplifications also limit

the accuracy of the model in various cases. For instance, the Helmholtz equation is

a simplification of the wave equation by removing the time dependency, hence its

applications are restricted, but its analysis is simpler.

1.1.3 Challenges in applying data-driven methods to model-

based problems

A first and widely explored way of adding data to a physical model is data as-

similation. It consists in correcting the solution given by a numerical solver with

some observations. More precisely, the scheme outputs a first guess at some update

time, and this guess is then updated to reduce the error between this first guess

and some observations. This procedure is repeated until the final time is reached.

It has been initially developed for weather prediction, and has been successfully

applied in large-scale weather forecasting systems such as the European Centre for

Medium-Range Weather Forecasts (ECMWF; Derber and Bouttier (1999)) or in

temperature, dust, and ice retrievals for the Martian atmosphere with the Mars

Climate Sounder (Montabone et al., 2014). However, they are restricted to some

specific applications, since they are not part of a model, they can only correct it.

Moreover, they are still computationally very costly, since simulations need to be
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run for each new trajectory. To conclude on data assimilation, it is a very useful

set of tools, that are used for real-world applications, but can only correct physical

simulations and need to be used with complex numerical solvers, hence an expensive

cost and an expert knowledge needed.

These limitations opened the way for the application of DL methods to these prob-

lems. Indeed, being very efficient at inference time and able to learn highly-non

linear mappings from data, they are a natural fit. However, as explained earlier,

data is often scarce, which is a challenge for these methods. More importantly, the

complexity and challenges of the problems are different than other areas where DL

has been applied, problems can be ill-posed, chaotic or very sensitive to initial con-

ditions. In addition to these main challenges, practitioners in numerical analysis or

the industry seek theoretical or experimental guarantees of convergence, which DL

methods can lack of. This is in this exciting context that this thesis has been writ-

ten, where recent research try to overcome these challenges in order to successfully

apply DL methods to dynamical systems.

1.2 Contributions of the thesis

In this thesis, we aim at addressing some of the challenges presented previously

through different angles:

(i) Incorporating numerical analysis ideas and theoretical guarantees into DL

frameworks.

(ii) Designing a hybrid approach combining numerical solvers and DL to provide

a model using both data and prior knowledge.

(iii) Designing continuous models to predict dynamical systems.

The first angle of incorporating numerical analysis ideas into DL frameworks is di-

vided into two parts. The first work tackles incorporating different variations of

multigrid numerical schemes into a multi-scale DL architecture, namely a Multipole

Graph Neural Operator. The method shows interesting results on two families of

PDEs, the steady-state of Darcy flow and the 1D viscous unsteady Burgers’ equation.

The second work tackles adapting implicit numerical schemes into a neural network

in order to ensure a forecasting stability when predicting dynamical systems. This

leads us to introduce hard constraints on the network. Our experimental results

then validate our stability property, and show improved results at long-term fore-

casting for two transports PDEs. These two works, detailed in Chapter 3, led to the

two following publications in International Conference on Learning Representations

(ICLR) workshops (Migus et al., 2022, 2023).
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Migus, L., Yin, Y., Mazari, J. A., and Gallinari, P. (2022, November). Multi-

Scale Physical Representations for Approximating PDE Solutions with Graph

Neural Operators. In Topological, Algebraic and Geometric Learning Work-

shops 2022 (pp. 332-340). PMLR.

Migus, L., Salomon, J., and Gallinari, P. (2023, May). Stability of implicit

neural networks for long-term forecasting in dynamical systems. In ICLR 2023

Workshop on Physics for Machine Learning.

The second angle is designing a hybrid model that tackles the Shallow-Water

equations. These equations contain a friction law but there is no consensus on the

formulation of this law. This parametrized law is then often optimized without too

much theoretical justifications. In this work, we aim at replacing this friction law

with a data-driven model integrated in the equations and thus interacting with a

numerical solver. This leads to the design of a hybrid model that can learn from

observations to reproduce an effective friction law. This work, detailed in Chapter 4,

is a collaboration with Emmanuel Audusse and will soon be submitted to a journal.

Migus, L., Salomon, J., Audusse E. and Gallinari, P. . Learning a friction law

for the Shallow Water equations through observations. Soon to be submitted

to a computational physics oriented journal.

The third and final angle of this thesis is the design of continuous methods and is

divided into two works using a very similar method. The first work tackles an airfoil

optimization problem modeled by the Reynolds-averaged Navier-Stokes equations.

Based on a new family of DL methods called Implicit Neural Representations (INRs),

this work consists in designing an efficient surrogate model which is then showed to

accurately infer physical fields throughout the volume and surface. This leads to a

correct prediction of the drag and lift coefficients while adhering to the equations,

which is crucial for airfoil optimization. The second work tackles time series mod-

eling. Based on INRs as well, this work tackles imputation and forecasting of time

series. Using the continuous formulation of INRs and some additional properties,

the method designed in this work can handle missing data, irregular sampling and

unaligned observations from multiple sensors. Moreover, the experimental results

show state-of-the-art performances while being able to generalize to unseen samples

and time windows. These two works, detailed in Chapter 5, led to one publication in

a International Conference on Machine Learning (ICML) workshop (Serrano et al.,

2023b) and one article under review in ICLR 2024 (Naour et al., 2023).
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Serrano, L., Migus, L., Yin, Y., Mazari, J. A., and Gallinari, P. (2023). IN-

FINITY: Neural Field Modeling for Reynolds-Averaged Navier-Stokes Equa-

tions. In ICML 2023 workshop on the synergy of scientific and machine learn-

ing modeling.

Naour, E. L., Serrano, L., Migus, L., Yin, Y., Agoua, G., Baskiotis, N.,

Gallinari, P., and Guigue, V. (2023). Time Series Continuous Modeling for

Imputation and Forecasting with Implicit Neural Representations. Under re-

view at ICLR 2024.

1.3 Structure of the thesis

This thesis is organized as follows. In Chapter 2, the main notions of numerical

analysis and DL are presented, before a dive into the DL methods for dynamical

systems. In Chapter 3, the contributions on integrating notions of numerical analysis

in DL methods are presented. In Chapter 4, the contribution on hybrid modeling

for the Shallow-Water equations is detailed, while in Chapter 5, the contributions on

INRs for the airfoil optimization problem and time series modeling are presented.



Chapter 2

Background and Related Work

In order to fully understand the content of this thesis, some background and discus-

sion on recent related work is needed. This chapter first reviews the main notions

of numerical analysis used in this thesis, before presenting the basics of DL. Finally,

a related work of the links between DL and numerical analysis is detailed.

2.1 Numerical analysis

Numerical analysis is the mathematical field that study numerical algorithms to

solve continuous problems. It includes designing efficient new algorithms, but also

proving and guaranteeing some theoretical properties about these algorithms. In this

thesis, a lot of inspiration is taken from this field. Before presenting the numerical

schemes themselves, some basics on continuous problems need to be detailed.

2.1.1 Partial differential equations

As explained in Section 1.1.2, physical phenomena are often modeled by differential

equations. They are usually continuous, which is the topic of this thesis. This

section first presents ordinary differential equations (ODEs), before defining partial

differential equations (PDEs) and hyperbolic PDEs.

ODE An ODE, as defined in Definition 2.1.1, is an equation involving derivatives

of functions depending on a single variable, which is often the time. They can model

many physical phenomena. As a common thread, Lotka–Volterra (LV) equations

are used throughout this paragraph to illustrate the concept of an ODE. These

equations can model the dynamics of a biological system of prey and predators,

which is illustrated in Figure 2.1. The state of the system is the number of preys

and predators at a given time t. The population of prey and predators starts from

an initial population of these two, which is the initial state, and then it evolves

in time accordingly to how many prey are available for predators and how many

7
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Figure 2.1: Example of a LV equations solution.

predators are eating preys. This is a dynamical system modeled by an ODE, which

is defined in Example 2.1.1.

Definition 2.1.1 (First-order ordinary differential equation). Considering u : R −→
Rp and f : R −→ Rp, where f is continuous on an open set D of Rp+1, a first order

ODE is defined by:

∀t ∈ I ⊂ R,
du

dt
= f(t, u(t)), (2.1)

where t is the time variable and u the state variable.

Remark 2.1.1 (Linear ODE). If ∀t ∈ I ⊂ R, f(t, u(t)) = A(t)u(t) + b(t), where

A(t) and b(t) are continuous functions, Equation (2.1) is a linear ODE, and if,

furthermore, b(t) = 0, it is a linear homogeneous ODE.

Example 2.1.1 (Lotka-Voleterra ODE). The LV equations are defined by:

du1
dt

= au1 − bu1u2,

du2
dt

= cu1u2 − du2,
(2.2)

where u1 and u2 are the population density of the prey and the predator respectively,

a and d the maximum growth rate of the prey and the predator, b the effect of the

predators on the preys growth rate and c the effect of the preys on the predators

growth rate. This model boils down to a few biological hypothesis that are tran-

scribed mathematically. For instance, the food supply of the predator population

depends entirely on the size of the prey population, which is modeled by the variable

u2 depending only on u1 and u2, not some other preys. It is possible to add other hy-

pothesis to the LV equations, which leads to the generalized LV system of equations,

which can model more complex phenomena.
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Once an equation is defined, predicting the phenomena behind the equation is

equivalent to finding a solution, which is defined in Definition 2.1.2. For instance,

once the LV equations are defined, the goal is to predict the populations, as shown

in Figure 2.1.

Definition 2.1.2 (Solution of an ODE). A solution of an ODE is defined by a pair

(J, u), with J ⊂ R and u a function differentiable on J with values in Rp, such that

Equation (2.1) is satisfied and ∀t ∈ J, (t, u(t)) ∈ D.

Example 2.1.2 (Lotka-Voleterra solution). The solutions of LV equations are pe-

riodic but cannot be analytically expressed. However, around the equilibrium point

ueq1 = d/c and ueq2 = a/b, the equation can be linearized, and the solution around

this point is then a simple harmonic motion. This is illustrated in Figure 2.1. This

trajectory is coherent with the biological model; when the number of preys increases,

the number of predators increases, then because predators eat the preys the number of

preys decreases and in consequence so the number of predators. In this closed-system

with these assumptions, this motion never stops.

There can be an infinity of solution to an ODE. However, in most cases, the goal

is more precise than finding a solution to an ODE, it is to find the solution to an

ODE with additional constraints. For instance, for the Lotka-Volterra equations,

the goal is to find how the populations will evolve in time given the population

sizes at a initial time. Without the initial population sizes, the problem does not

correspond to the underlying biological problem. This leads to the notion of initial

value problem (IVP), defined in Definition 2.1.3.

Definition 2.1.3 (IVP). Considering (t, η) ∈ D, solving the IVP associated to

Equation (2.1) and initial condition:

u(t0) = η (2.3)

consists in finding a solution (J, u) of Equation (2.1), such that t0 ∈ J and u satisfies

Equation (2.3).

In some cases, existence and/or uniqueness can be guaranteed, with the Peano

existence theorem and the Cauchy-Lipschitz theorem. These theorems can be ap-

plied in most cases and can be found in Peano and Peano (1990); Legendre (2018).

Remark 2.1.2 (System of ODE). An ODE of order k is written as:

dku

dtk
(t) = f(t, u(t),

du

dt
(t), ...,

dk−1u

dtk−1
(t)) (2.4)

However, we only focused on first-order ODEs in this section. This is due to the

fact that higher orders ODEs can be written down as first-order ODEs. Indeed, by

defining y := (u, du
dt
, ..., d

k−1u
dtk−1 ), Equation (2.4) can be written as dy

dt
(t) = F (t, y(t)),

with F := (y2, y3, ..., yk, f(t, y1, ..., yk)).
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Figure 2.2: Example of a 1D wave equation solution with boundary conditions.

PDE PDEs are a more general family of equations, that include ODEs. They

include spatial derivatives in addition to time derivatives, instead of only time deriva-

tives for an ODE, and are defined in Definition 2.1.4. An example of a phenomenon

described by a PDE is the propagation of waves in space. As can be seen in Fig-

ure 2.2, wave propagation seems pretty simple. The applications covered by such a

type of equation are various, ranging from telecommunications, oceanography and

seismology. Among them, music is an interesting example. Indeed, understanding

how a string vibrate allows us to understand how different notes emerge from differ-

ent pulsations of the wave. This gave rise to a consensus on the vibration which gives

the A note, with a frequency of 440 Hz. However, putting this physical behavior

into an equation is more complex, as presented in Example 2.1.3.

Definition 2.1.4 (Partial differential equations). Considering x ∈ Rd and t > 0, a

PDE is defined by:

∂u

∂t
(t, x) +

d∑
j=1

(Aj(u)
∂u

∂xj
)(t, x) = 0, (2.5)

where u : Rd+1 −→ Rp is an unknown function and Aj : Rp −→ Rp, 1 ≤ j ≤ d, is a

known smooth function.

Example 2.1.3 (Wave equation). The 1D wave equation is defined by:

∂2u

∂t2
= c2

∂2u

∂x2
, (2.6)

where c is a fixed non-negative real coefficient.
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As previously done for ODEs, problems of interest often involve some initial

state. For PDEs, this state has a spatial component. This leads to Definition 2.1.5.

Definition 2.1.5 (IBVP). Considering t > 0 and u0 : Rd −→ Rp, solving the ini-

tial boundary value problem (IBVP) associated with Equation (2.5) and the initial

condition:

∀x ∈ Rd, u(0, x) = u0(x) (2.7)

consists in finding a solution (J, u) of Equation (2.5), such that u0 ∈ J and u satisfies

Equation (2.7).

In addition to this initial state, some spatial constraints can be added. In the

wave propagation example, the wave is stopped at x = 0 and x = 1. In the case of

a guitar for instance, the string stops at the nut and at the bridge. Without these

spatial conditions, the wave would go on forever, which is not suitable to study

acoustic. As seen in this example, these constraints are usually crucial to model the

right phenomenon. They can be defined in multiple ways. Given the spatial domain

Ω, let ∂Ω be the boundary. A boundary condition is then a condition on u imposed

on the boundary ∂Ω. A IVBP with a boundary condition is called a boundary value

problem (BVP). There are two main types of boundary conditions which are often

used, namely, the Dirichlet boundary condition and the Neumann boundary condi-

tion. The former consists in specifying the value of u along the boundary, i.e., for a

given f : Rd −→ Rp, ∀x ∈ ∂Ω, u(t, x) = f(x). On the other hand, Neumann boundary

condition consists in specifying the value of the derivative of u along the boundary,

i.e., for a given f : Rd −→ Rp and with n the unit normal to ∂Ω, ∂u(t,x)
∂n

= f(x).

This thesis tends to focus more precisely on hyperbolic PDEs, defined in Defini-

tion 2.1.6, and can be found in the first two chapters, with the Advection, Burgers’

and Shallow Water equations. These are a subgroup of PDEs that arise mainly in

fluid mechanics, when there is some transport phenomenon. They describe systems

in which information spreads at finite velocity, and solutions can be discontinuous.

A classic instance of an hyperbolic PDE is the wave propagation equation.

Definition 2.1.6 (Hyperbolic PDE). Equation (2.5) is hyperbolic on an set U ∈ Rp

if and only if the matrix A(u, α) :=
∑d

j=1 αjAj(u) only possesses real eigenvalues

and is diagonalizable ∀u ∈ U and α ∈ Rd. Furthermore, if, in addition to these con-

ditions, the eigenvalues of A(u, α) are distinct, Equation (2.5) is strictly hyperbolic.

In addition to finding the solution of a IBVP, characterizing this solution is a

main topic of research. Among this characterizations, the stability of the solution

is of great interest and is used in various related works applying numerical analysis

concepts to neural networks as presented in Section 2.3.1.2. Stability is defined

for an ODE in Definition 2.1.7. For a PDE, its definition depends on the type of

equation considered. It follows the same principle as for the ODE, which is to bound

the evolution of the solution by the initial value. Since this stability is harder to
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define and frequently harder to prove, the Lyapunov stability is often considered.

This stability is the stability near a point of equilibrium xe, i.e. u(xe) = 0. For

an ODE, it is defined in Definition 2.1.8. For a PDE, it can defined as well, since

the equation around a point of equilibrium can be linearized. More details can

be found in Beck (2012). The idea of this stability is that, if the equation has a

point of equilibrium, if the solution is close to it, then it must remain close to it.

There are other definitions of this stability which enforces the solution to converge to

this equilibrium (asymptotically stable) and control its convergence (exponentially

stable).

Definition 2.1.7. (Stability of the solution of a IVP) A solution of a IVP, as

defined in Definition 2.1.3, is stable if and only if, there exists M ∈ R such that:

∥u(t)− ũ(t)∥ ≤M∥u(0)− ũ(0)∥,

with u and ũ being two trajectories with different initial conditions.

Definition 2.1.8 (Lyapunov stability of a IVP). For a IVP, as defined in Defini-

tion 2.1.3, Lyapunov stability is defined by:

∀ϵ,∃δ, if ∥x(0)− xe∥ ≤ δ, then, ∥x(t)− xe∥ ≤ ϵ.

2.1.2 Numerical schemes

In order to predict dynamical systems, deriving analytical solutions of PDEs is often

not possible. To overcome this challenge, numerical analysis focuses on numerically

solving PDEs with algorithms called schemes. The prediction with these schemes

can be particularly difficult as illustrated in the Lorenz system of equations, pre-

sented in Example 2.1.4, where the solution can be chaotic and never periodic. This

equation was originally derived to model atmospheric convection, and is a well-

known example of an intractable chaotic system. As shown in Figure 2.3, which is

obtained with a numerical scheme, they can compute good approximations of solu-

tions in difficult cases that cannot be found analytically. However, by introducing

numerical errors, which may be truncation or discretization errors, the solution ob-

tained with a numerical schemes can be poor if small difference in initial conditions

lead to big difference at long horizons and the discretization size is not chosen to be

small enough. In this section we detail the main designs of schemes for ODEs then

PDEs before diving into the desired theoretical properties of schemes.
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Figure 2.3: Example of a Lorenz system numerically obtained solution from a given
angle.

Example 2.1.4 (Lorenz system). The Lorenz system of equations is defined by:

du1
dt

= σ(u2 − u1),

du2
dt

= u1(r − u3)− u2,

du3
dt

= u1u2 − u3.

With u(0) = (−8, 8, r−1), σ = 10, r = 28 and b = 8/3, the solution of the associated

IVP is chaotic and never periodic.

Numerical schemes for ODEs To compute an approximation of the solution

of Equation (2.1), the interval [t0, T ], where t0 is the initial time and T the final time

of the solution, must be sub-divided into smaller intervals. Each interval is denoted

by [tn, tn+1], with n ∈ [0, N ], N being the number of sub-divisions. The step for a

given interval is defined by hn := tn+1−tn. The aim is to offer a good approximation

un of u(tn). The most simple and well-known method is Euler method, defined by

un+1 = un + hf(tn, un), with h being fixed. More generally, Runge-Kutta (RK)

methods are a well-known class of numerical schemes including Euler scheme and
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are used in Chapter 3 and Chapter 4. A RK scheme with s stages is defined by:

k1n = f(tn, un)

k2n = f(tn + c2h, un + ha2,1k
1
n)

k3n = f(tn + c3h, un + h(a3,1k
1
n + a3,2k

2
n))

...

ksn = f(tn + csh, un + h(as,1k
1
n + ...+ as,s−1k

s−1
n ))

un+1 = un + h(b1k
1
n + ...+ bsk

s
n)

(2.8)

with ci, ai,j and bj being fixed coefficients.

Among this class, another widely used scheme is RK4, defined by c = (0, 1/2, 1/2, 1),

a0, = (1/2, 0, 0), a1, = (1/2, 0), a3, = (1) and b = (1/6, 2/6, 2/6, 1/6). An important

property of numerical schemes is their order, it gives an indication on the convergence

rate of the method and is properly defined in Definition 2.1.9.

Definition 2.1.9 (Order of a scheme for an ODE). Equation (2.8) is of order p if,

for each IVP problem, u1 − u(t0 + h) = O(hp+1), for h −→ 0.

u1 − u(t0 + h) is called the local error of the method.

It can then be proven that Euler method has an order of 1 and RK4 an order of

4. The greater the order, the quicker the convergence, which is very desirable. There

exists also methods of order 5, with DOPRI5. However, the higher the order the

higher the computational cost, so there is a trade-off between cost and convergence

rate.

In order to solve real-world problems, methods with fixed step size are usually

inefficient. Indeed, some local phenomena can occur, which require more points

around those times. With a fixed step size, there is hard trade-off:

(i) The step is chosen to be very small. Then the scheme can capture these high-

frequency phenomena but the computational cost is high and when these high-

frequency phenomena do not occur, there is no need for such a fine resolution

time grid.

(ii) The step is not chosen to be very small. The computational cost is not pro-

hibitive but then the high-frequencies phenomena are not captured by the

scheme, leading to poor results.

Then, a natural solution is to adapt the step size so that the error is the same

everywhere. That is what almost all realistic schemes do. We do not detail these

schemes nor the algorithm selection for the step sizes since it is out of the scope of

this thesis. Some adaptive step schemes are used, especially in Chapter 4, but are

not a main part of the different works presented here. For more details on adaptive

schemes, see Hairer and Abdulle (2001).
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In order to compute better approximations, another natural idea is to use more

than one previous step to predict the next one. RK methods are one-step method,

but multi-steps methods are also quite popular, with the main ones being Adams

methods. In a general form, they are written as un+1 = un + h
∑k−1

j=0 γj∆
jfn, where

∆fn = fn−fn−1, fn := f(tn) and γj :=
1
j!

∫ 1

0

∏j−1
i=0 (i+s)ds. For k = 1, it corresponds

to Euler method, and for k = 2, the derivation leads to un+1 = un+h(
3
2
fn− 1

2
fn−1).

As powerful as they are, these methods, and RK methods as well, can exhibit

stability issues. A common notion used to study numerical schemes for ODEs is the

A-stability, as defined in Definition 2.1.10. It consists in studying the stability of

the scheme on the test equation, defined by:

du

dt
= λu

u(0) = 1,
(2.9)

where λ ∈ C.

Definition 2.1.10 (A-stability). A numerical scheme is said to be A-stable or ab-

solutely stable if and only if its solution un to Equation (2.9) is bounded where the

equation is bounded, i.e. if it respects {z ∈ C;Re(z) ≤ 0} ⊆ S, where z := hλ,

h ∈ R and S := {z ∈ C; (un)n≥0 is bounded }.

The restriction Re(z) ≤ 0 is due to Equation (2.9) not being bounded otherwise.

A-stability is an interesting characterization of schemes, especially due to the fact

that non-linear problems are usually solved by linearizing around a point of equilib-

rium. This stability is used in related works applying numerical analysis concepts

to neural networks as presented in Section 2.3.1.2. However, this stability does not

correspond to the stability of the true problem, because the scheme is used on a

different equation than the test equation. Stability of schemes is defined later in

Definition 2.1.16.

A study of previously described schemes leads to the conclusion that none of them

is A-stable (Hairer and Abdulle, 2001). For instance, Euler explicit is not A-stable

because its stability set S is a disk of center -1 and radius 1. This inspires the

design of implicit schemes, which are A-stable. An implicit scheme is a scheme

that implies to solve an equation G(un+1, un, ..., un−k) = 0 at each step. Similarly

to explicit Adams methods, implicit Adams methods are constructed by approxi-

mating an integral. Among them, the most used implicit scheme is implicit Euler

scheme, defined by un+1 = un + hf(tn+1, un+1). Solving G(un+1, un, ..., un−k) = 0

is usually not possible analytically and is done numerically, by writing it down as

a minimization problem or a root-finding problem. Guaranteeing the A-stability

property hence leads to a higher computational cost, the one of solving an equation

at each time step.

In addition to A-stability, another common studied stability is the zero-stability, as
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defined for one-step schemes in Definition 2.1.11. It consists in characterizing the

accumulation of perturbations for the discretization size going to 0, when solving a

IVP and is used in some related works presented in Section 2.3.1.2.

Definition 2.1.11 (Zero-stability). Given a one-step scheme un+1 := un+hnϕf (un),

where ϕf is a continuous function that defines the scheme, the perturbed scheme

associated is upertn+1 := upertn + hn(ϕf (u
pert
n ) + ϵn), with ϵn the perturbations. The

initialization of the IVPs associated to the schemes are u0 and upert0 . The one-step

scheme is said to be zero-stable if and only if there exists C, independent of the

discretization, such that:

∀N ∈ N∗ max
0≤n≤N

|un − upertn | ≤ C(|u0 − upert0 |+ max
0≤i≤N−1

|ϵi|)

Numerical schemes for PDEs In a more general form, numerical schemes are

used to solve PDEs as well. Finite difference method schemes are used and studied

in some form in every chapter of this thesis, and have been already presented for

the ODE case, RK and Adams methods being finite difference methods.

Definition 2.1.12 (Numerical scheme). A numerical scheme is a numerical method

approximating u by discretizing the domain of interest. One of the most commonly

used families of schemes is the finite difference method which approximates u with

un+1
j = H(Un+1, Un, ..., Un−k) ≈ u(tn+1, xj), where Un := (unj−k, ..., u

n
j+k) and H is a

continuous function.

If there is no dependency of H on Un+1, the scheme is then explicit. From

Definition 2.1.12, the definition of numerical schemes for ODEs can be retrieved, by

removing the dependency on space. Schemes for PDEs are harder to design because

they need a spatial and a time discretization step. As will be seen later, some trade-

offs need to be made between the two.

Numerical schemes are designed to converge on the problems they are applied to. In

order to guarantee convergence, there are certain cases where two other properties

are enough. These two properties are consistency and stability.

Consistency Consistency is a notion that depends on the local truncation error of

the method, defined in Definition 2.1.13. This error is obtained by inserting the true

solution of the considered equation in the scheme. This supposes that the solution

of the equation is known, so this is intended as an analysis tool to study numerical

schemes. Consistency then consists in the error of the scheme being asymptotically

null when the true solution is inserted in the scheme, as defined in Definition 2.1.14.

∆t corresponds to the fixed time step and ∆x to the fixed space step.

Definition 2.1.13 (Local truncation error). The local truncation error ϵn+1
j of a

method is defined by ϵn+1
j := u(tn+1, xj)− un+1

j , where un+1
j is computed with Un :=

(u(tn, xj−k), ..., u(tn, xj+k)).
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Definition 2.1.14 (Consistency). A numerical scheme is consistent if and only if

lim∆t,∆x→0
ϵn+1
j

∆t
= 0.

The order of a scheme, defined in Definition 2.1.9 for an ODE, is linked with the

notion of consistency. Indeed, the order of a scheme is the convergence rate of the

scheme. This link is clearly seen in Definition 2.1.15, which defines the order of a

scheme for a PDE.

Definition 2.1.15 (Order of a scheme for a PDE). A scheme is said to be of order

p in time and q in space, p, q ∈ N∗, if:

ϵn+1
j

∆t
= O(∆tp) +O(∆xq), for ∆t,∆x −→ 0 (2.10)

Furthermore, if ∆t and ∆x are linearly dependent, i.e. ∃k,∆t = k∆x, a scheme is

said to be of order p if:

ϵn+1
j

∆t
= O(∆tp), for ∆t −→ 0 (2.11)

Stability In addition to consistency, stability is another property of great im-

portance and is a foundational part of Chapter 3. A-stability has already been

defined in Definition 2.1.10 for numerical schemes for ODEs. This is a special case

of stability. In a general way, the stability of a scheme means that the error is not

amplified during time iterations, as defined in Definition 2.1.16. This notion is close

to the stability of a dynamical system, defined in Definition 2.1.7. The stability

of a system is a property of the system to study, but the stability of the scheme

is a condition for the scheme to better solve the system. Hence, when numerically

designing numerical methods to solve PDEs, the stability of a scheme is of great

practical interest.

Definition 2.1.16 (Stability). A numerical scheme solution (un)n∈N of dimension

M is stable in norm Lp if there exists for a time T , C(T ) independent of the time

discretization step ∆t such that:

∀ u0 ∈ RM , n ≥ 0; n∆t ≤ T, ∥un∥p ≤ C(T )∥u0∥p .

Convergence Stability of a scheme is ensuring that the scheme does not amplify

errors by bounding its evolution by a value depending on the initial value. The

ultimate goal in the design of a scheme is then to guarantee its convergence.

Definition 2.1.17 (Convergence). Given the global error E∆(tn, xj) := u(tn, xj)−
unj defined over a grid discretized with a step ∆, a scheme is said to be conver-

gent if and only if, ∀tn ∈ R, xj ∈ RM , E∆(tn, xj) −−−→
∆−→0

0 and ∀u0 ∈ RM , xj ∈
RM , u(0, xj) −−−→

∆−→0
u0.
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Convergence is a property often impossible to prove. However, in some cases,

stability and consistency can lead to convergence, as stated in Theorem 2.1.1.

Theorem 2.1.1 (Lax equivalence theorem). A necessary and sufficient condition

for the convergence of an approximation to the solution of a well-posed linear problem

problem by a consistent finite-difference method is that the method is stable. A proof

can be found in Tekriwal et al. (2021).

In order to avoid convergence problems, it is important to carefully select the

space and the time discretization. This is illustrated by the Courant–Friedrichs–Lewy

(CFL) condition. This is a necessary condition for the convergence of a scheme. It

arises from a Von Neumann analysis, which is a stability study using Fourier series.

The Fourier series is performed on the error of the scheme. Studying the norm of

this error can naturally lead to a Fourier analysis to bound this error. The CFL

condition constrains the time step and the space step. For instance, the CFL con-

dition for a linear equation ∂u
∂t
(t, x) = −a∂u

∂x
(t, x), with a ∈ R and using a 3-step

method, is |a|∆t
∆x
≤ 1. In this thesis, the CFL condition is applied in a PDE solving

scheme in Chapter 4.

PDEs can exhibit particular behaviors that impact the design of numerical schemes.

Among these behaviors, one of the most encountered is the multi-scale property.

This happens when the PDE exhibits phenomena that occurs at different scales. For

instance, when modeling an airfoil with Reynolds-Averaged Navier-Stokes equations,

some high-frequency turbulence occurs around the surface of the airfoil, contrasting

with the low-frequency phenomenon of the airplane moving. This is particularly

challenging to predict since the scheme must capture both phenomena, and can be

very costly since a very fine mesh is needed to capture high-frequency phenomena. A

family of methods designed for these problems is called multigrid methods. They use

a hierarchy of grids in order to reduce the computational cost. Among these meth-

ods, three are particularly studied and are applied to neural network architectures

in Chapter 3:

• V-cycle: It typically starts at the coarsest grid level and proceeds towards

finer grids. After reaching the finest grid, the process reverses, and corrections

are propagated back to the coarser grids.

• F-cycle: Similar to the V-cycle, it starts at the coarsest grid level and proceeds

to finer grids. However, it differs in that it performs additional V-cycles at

each grid level before proceeding to the next finer level. This increased level of

correction can lead to more accurate solutions but requires more computational

resources.

• W-cycle: It is an extension of the V-cycle. Like the V-cycle, it starts at the

coarsest grid and works its way to the finest grid. At each level, it performs
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Figure 2.4: Example of an V-, F- and W-cycles numerical schemes for different
levels. Taken from Cordazzo et al. (2007).

multiple V-cycles (typically two or more) before proceeding to the next finer

level.

These schemes are illustrated in Figure 2.4. More details on this topic can be

found in John (2013).

2.2 Deep Learning

Machine learning is the field of solving problems by designing algorithms that use

data to learn highly non-linear mappings. Inside this field, DL is the study of

algorithms with many layers, a layer being a block of parameters of the method.

These algorithms are used to solve various types of problems, but in this thesis we

focus on supervised learning, as defined in Definition 2.2.1.

Definition 2.2.1 (Supervised learning). Supervised learning consists in learning a

parametrized mapping f : X × Θ −→ Y from a finite training set composed of input

values X ∈ X and output values Y ∈ Y, where X is the input space, Y is the output

space and Θ is the parameter space. For simplicity of notation, fθ(x) := f(x, θ).

What is called learning is the update of the weights θ according to an optimization

problem using the training set. A classic optimization problem is to find θ∗ such that

θ∗ := argminθ∈Θ∥fθ(X)− Y ∥2. This learning contrasts with unsupervised learning,

where no output values are available to train the model.

The goal of DL algorithms is to generalize to unseen data, this is a fitting prob-

lem, not an interpolation problem. That is why the data is usually split into a

training set Xtr, Ytr and a test set Xts, Yts. The training set is then also split into

a training set and a validation set. The latter is used to verify at each step of the
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Figure 2.5: Example of a MLP with 4 layers.

training if the network is over-fitted. The test set is not used during the training

and is crucial to see if the network has been properly trained, since the best θ on

the training set is almost never the best one on the test set. The span of application

of DL methods is huge, with one of the first breakthrough being the classification

of images with residual networks (He et al., 2016). However, in this thesis, we focus

on regression problems, which imply to predict one or several continuous variables

Y from a set of input variables X. In this section, we first present two common DL

architectures that are used in this thesis, before describing the training process of

DL methods.

2.2.1 Common architectures

Many DL architectures have been developed and each one is designed for a specific

problem. The design of DL architectures is one of the main areas of research in

the community and is a challenging task. Different categories of architectures can

be distinguished. Inside each of these categories, a lot of different choices must be

made. These choices are often crucial for the algorithms to perform well. These

are not thoroughly discussed here, as they depend on the problem at hand and

hence are discussed within each work. In this section, we describe two main widely

used architectures, multilayer perceptron (MLP) and convolutional neural network

(CNN).

MLP A MLP, or feedforward articifial neural network, is a network consisting

of several layers fully connected by weights and a non-linear activation function.

An illustration of a MLP is shown in Figure 2.5. A MLP can be written as fθ =

σl ◦Ll ◦ ... ◦σ1 ◦L1, where σi is a local element-wise activation function and Li is an

affine transformation x 7→ Wix+ bi. An activation function is a non-linear function.

This architecture is inspired by biological neural networks, where many neurons are
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connected by synapses to each other. The information is then transmitted by firing

some neurons. This leads to the construction of the affine transformation which links

all the neurons by the weightsW and the activation function which forces the neuron

to be fired or not. This inspired the popular choice of the ReLU activation function,

defined by ReLU(x) := max(0, x), which forces the network to let the information

pass or not. This function is null for negative values, which led to the design of the

Leaky ReLU function. This function is defined by LeakyReLU(x) = max(0, x) +

λmin(0, x), where λ is a hyper-parameter to tune. Another common choice for the

activation function is the hyperbolic tangent tanh. The design of activation functions

is an active field of research, even though ReLU and tanh functions remain very

popular, in part due to their simplicity and their proven efficiency. This architecture

is used in Chapter 3 and Chapter 5.

CNN CNN architectures were firstly designed for vision problems, for e.g. image

classification. They include biases that favors their application to some problems.

One well-known bias is the shift-equivariance, i.e., a shift of the input to a con-

volutional layer produces a shift in the output feature maps by the same amount.

The global idea of a CNN is to apply convolutional filters to input images, which

activates certain features from the images. Different variations and improvements

were added to the original idea, but a vanilla 1D CNN, with an input X of size

(Cin, Ls) and a kernel K of size Kk, can be defined by:

CNN := avgpool ◦ σ ◦ conv ◦ ... ◦ σ ◦ conv

∀j ∈ [|1, Cout|], conv(X,K)j := (B)j +

Cin−1∑
k=0

(K)j,k ⋆ Xk,
(2.12)

where ⋆ is the cross-correlation, B is a bias vector of size Cout, with (Cout, Ls)

being the size of the output of a convolutional layer and avgpool being an average

over all dimensions in order to output a single value. Given the problem, this last

layer can be changed and a lot of different options other than an average pooling are

available. Similarly, a normalization is usually added in order to improve the training

stability. There are different types of normalization as well, layer normalization,

weight normalization and batch normalization being the main ones. In addition to

this layer, a padding layer can be added. Indeed, depending on the size of the image

and the kernel, this image may need to be augmented by zeros in order to apply the

kernel to it.

In order to avoid training issues, an important development in DL algorithms, and

especially CNNs, is the residual neural network (ResNet, He et al. (2016)). It consists

in adding a skip connection to the regular layer, for e.g. for a CNN, CNNres :=

avgpool ◦ σ ◦ (conv + L) ◦ ... ◦ σ ◦ (conv + L), with L a linear layer. Usually skip

connections are implemented every few layers and not every layer. This architecture
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is used in Chapter 4.

GNN A graph neural network is a DL architectures which takes as input a

graph. This makes this architecture very interesting when tackling problems with

complex geometries. An example of graph that can be used for representing meshes

encountered in PDEs applications is an euclidean graph whose nodes are the points

in a domain Ω and whose edges have a length equal to the euclidean distance between

those points. An adjacency matrix is a matrix containing values of 1 when two

nodes are neighbors and values of 0 of when two nodes are not neighbors. It can

be constructed from the edges lengths, with for instance all the points being within

a sphere of radius r and a center the point x considered. A GNN then consists in

updating the graph with some functions. A common architecture is the Message

Passing Neural Network. A passage from one layer to another consists in:

hu = ϕ(xu,
⊕
v∈Nu

ψ(xu,xv, eu,v)),

where xu is the node to update, (xv)v∈Nu , are the neighboring nodes of u, eu,v
the edges from u to v,

⊕
a permutation invariant aggregation operator that can

accept an arbitrary number of inputs, for e.g. element-wise sum, and ϕ and ψ are

two functions, referred respectively as the update and message functions. The idea

of this architecture is to update the values of the nodes using information from

neighboring nodes. Many other architectures of GNN exist, for more details see

Bronstein et al. (2021). An important properties of many GNN architectures is

the permutation equivariance, i.e. for the node-wise function F, the graph X and

the adjacency matrix A, F(PX,PAP⊤) = PF(X,A) for any permutation matrix

P. However, a drawback of these methods is their sensitivity to the neighbors, for

instance they may not be efficient if trained on a dense neighborhood and tested on

a sparse one. This strong dependence to the sampling can limit their applicability

and generalization capacities in some problems, especially with complex PDE, where

the sampling can vary a lot between examples with different geometries. This type

of architecture is used in various related work which solve PDEs as presented in

Section 2.3.2 and is a implemented as a baseline in Chapter 5.

2.2.2 Training

In order to update the weights of the neural network, gradient descent types al-

gorithms are used. First a loss L must be chosen for the optimization problem.

For regression problems, due to its smoothness, a mean squared error (MSE) loss is

often used, MSE(x, y) := ∥x− y∥2. Then, back-propagation is used to compute the

gradients of the weights. It consists in a backward pass of the loss in order to adjust

the parameters. More details on this topic can be found in Rumelhart et al. (1986).
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A gradient descent, dθ
dt

= −lr∇θL(fθ, Xtr, Ytr), with lr the learning rate, can then

be applied to train the model. When the dataset is large, which is almost always

the case, stochastic gradient descent (SGD) is performed. It consists in dividing the

data into batches and doing the updates on these batches and not the entire training

set. More advanced methods are used in practice, with the most popular one being

Adam (Kingma and Ba, 2014).

In addition to this main framework of training, many different techniques are used

to improve the training of neural networks. Among these numerous techniques, we

mainly use three in this thesis:

• Scheduling : It consists in adapting the learning rate to the training process.

Usually, at the beginning of the training, it is beneficial to explore more the

parameter space, which means having a high learning rate lr. However, when

the network improves during training, it becomes more interesting to reduce

the variance of the SGD by having a lower lr. Many different scheduling are

used, the linear scheduling being very popular. It consists in updating lr by

γlr every nsteps steps.

• Weight decay : It consists in changing the loss by adding λ∥θ∥2, with λ a hyper-

parameter usually chosen to be very small. Indeed, the goal is to stabilize the

training, not to change the optimization objective.

• Initialization: Choosing a good initialization of the parameters is a crucial

area of research in DL. Many different methods have been developped. A

widely used one is Xavier initialization (Glorot and Bengio, 2010), which for

the uniform scheme and a linear layer, consists in drawing the weightsW of the

layer from U(−a, a), where a := gain
√

6
fin+fout

, fin and fout being respectively

the number of inputs and outputs and gain a hyper-parameter, and the biases

are set to 0.

2.3 Deep Learning and Numerical Analysis

The study of DL and numerical analysis is a vast and developing field of research.

Many links have been found between the two domains. In this section, we will

outline two main directions:

(i) Applying numerical analysis ideas to DL approaches.

(ii) Using DL methods to solve PDEs.

2.3.1 Numerical schemes for Deep Learning

Numerical analysis is a vast field with many different results. Applying ideas from

this field to DL has been done in various ways. In this thesis, we focus on integrating
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numerical schemes into DL methods, which became popular with the Neural ODE

framework (Chen et al., 2018). However, even if not discussed here, many other

ideas have been applied to DL, such as SDE-Net (Kong et al., 2020), which provides

uncertainty quantification based on a stochastic differential equation, or Hamiltonian

neural networks (Greydanus et al., 2019) which leverage Hamiltonian mechanics to

add biases to solve physical systems and be reversible in time.

2.3.1.1 Neural ODE

The first links between numerical schemes and neural networks have been outlined

with the ResNet architecture, presented in Section 2.2. Indeed going from layer

to the next of a convolutional ResNet can be written as xn+1 = conv(xn, Kn) +

Wnxn + bn, which is an Euler explicit scheme formula solving dx
dt

= f(t, x(t)) with

f(t, x(t)) := conv(x(t), K(t))+b(t)+W (t)x(t)−x(t), with initial condition x0 being

the input of the neural network. The most popular work using this link is Neural

ODE (Chen et al., 2018), which then provides numerous architectures based on

the fact that other schemes can be used to solve the underlying PDE of a resid-

ual network. This leads to the formulation of the network NeuralODE(z(t0)) :=

ODESolve(z(t0), f, t0, t1, θ). This formulation entails a flexible architecture, espe-

cially by using adaptive steps schemes and higher order schemes such as RK4. How-

ever, this work has its limitations. Indeed, it was shown that this initial architecture

could not learn simple functions and that the flow induced by the initial formulation

was not simple. To overcome this challenge, the solution is to augment the space

on which the ODE is solved (Dupont et al., 2019). Still with this improvement and

with many follow-up works, the framework remains hard to use and not always very

efficient. In the same spirit, Deep Equilibrium (DEQ) models are more effective

(Bai et al., 2019). They imply to solve a fixed-point equation to obtain the network,

i.e., DEQ(x) = fθ(DEQ(x), x). This formulation is easier to use, is more memory

efficient than Neural ODE, and has become quite popular.

2.3.1.2 Stability

Given the established links between numerical schemes and neural networks, many

concepts can be applied to neural network architectures. Among these concepts,

stability is of great interest and is a focus of this thesis and especially of Chapter 3.

Stability is presented through three angles in this section; robustness, which consists

in controlling the Lipschitz constant of the network, continuous stability, which

consists in applying the stability of a differential equation to neural networks, and

numerical schemes stability.

Robustness Robustness analysis is closely associated with the examination of

a network’s Lipschitz constant, primarily in the context of adversarial examples.
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It was first shown that minor additive perturbations to input data could result in

significant output perturbations at the final network layer, presenting challenges

in managing adversarial scenarios (Szegedy et al., 2013). This observation bears

similarities to stability definitions in schemes and differential equations, although

the Lipschitz constant was chosen as the primary approach. Robustness analysis has

then become wider than the study of Lipschitz constant, with a range of adversarial

attacks to overcome, and its evaluation is a topic of research (Carlini and Wagner,

2017; Hendrycks and Dietterich, 2019). We focus only on the Lipschitz constant in

this section, being the main link between robustness analysis and numerical analysis.

Studying the Lipschitz constant Lk of each layer k leads to the following equations:

L :=
K∏
k=1

Lk

∥fθ(x)− fθ(x+ r)∥ ≤ L∥r∥,

with fθ the whole network.

A high Lipschitz constant implies that the network’s output can lead to significant

perturbations, highlighting the need to control this constant for robustness. How-

ever, estimating the Lipschitz constant can be challenging, and various research

efforts (Bartlett et al., 2017; Balan et al., 2018; Weng et al., 2018; Scaman and Vir-

maux, 2018; Zou et al., 2019; Latorre et al., 2020; Jordan and Dimakis, 2020; Kim

et al., 2021) have aimed to provide upper bounds. Notably, Fazlyab et al. (2019);

Drenkow et al. (2021) offer a comprehensive review of the literature.

Beyond estimation, controlling this bound is essential, as demonstrated in more re-

cent work (Bungert et al., 2021), which integrates the constraint into training and

addresses the global Lipschitz constant, departing from per-layer considerations. In

the same spirit, Gouk et al. (2021) enforce the Lipschitz constraint with a con-

strained optimization problem, while Pauli et al. (2021) vary the training procedure

and Leino et al. (2021) uses an efficient architecture. However, controlling the Lip-

schitz constant can harm the expressiveness of the network (Zhang et al., 2022a).

These concepts find application in analyzing the stability, particularly in terms of

robustness, of recurrent networks, as evidenced in studies such as Miller and Hardt

(2018); Bonassi et al. (2020). They apply these principles to diverse problems solved

using recurrent networks, like language modeling and slot-filling, focusing on LSTM

and GRU networks, delving into Input-to-State Stability and Incremental Input-to-

State Stability properties, which ultimately impose constraints on network weights.

Robustness analysis has also been applied to ResNet architectures, with for e.g.

invertible ResNets (Behrmann et al., 2019). This field, born from the challenges

posed by adversarial examples, has significantly improved the robustness of neural

networks. However, it’s worth noting that the Lipschitz constant, although valuable,
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offers a worst-case perspective on stability and doesn’t exploit the interpretation of

neural networks as dynamic systems, it is a functional approach.

Other successful approaches have tackled robustness without using the Lipschitz

constant, mainly through different training strategies (Zheng et al., 2016; Raj et al.,

2020). Not using explicit Lipschitz constants, Zhang et al. (2022b) bounds the for-

ward and backward processes, which is close to the Lipschitz analysis as well as the

stability definition. This work is motivated by stabilizing the network and compete

with methods such as batch normalization.

Continuous stability Though robustness analysis has seen many applications in

adversarial contexts, works exploiting the link between neural networks and dynam-

ical systems have tried to provide more theoretically grounded robust architectures.

This is in fact where the first links between the two notions were developed, before

the Neural ODE framework.

The first concept applied to neural networks was continuous stability, i.e. the stabil-

ity of the solution of a PDE as defined and described in Section 2.1.1. It is still what

is most studied in the literature. For instance, foundational works by Haber and

Ruthotto, such as Haber and Ruthotto (2017); Chang et al. (2018, 2019), establish

the importance of continuous stability by employing a key condition based on the

eigenvalues of the Jacobian matrix J(t) of the differential equations solved within

neural networks: maxi=1,...,nRe(λi(J(t))) ≤ 0,∀t ∈ [0, T ]. This condition is also

applied in generative modeling scenarios (Kaltenbach and Koutsourelakis, 2021).

Haber and Ruthotto continue to emphasize such stability concepts in Ruthotto and

Haber (2019), employing directly the definition of stability of PDEs.

Beyond these foundational papers in deep learning and numerical analysis, numerous

other studies delve into continuous stability. For instance, Rothauge et al. (2019)

examines the continuous problem but employs linearization techniques for in-depth

analysis, particularly concerning ResNets.

Meanwhile, Manek and Kolter (2020); Lawrence et al. (2021) introduce network

models that leverage Lyapunov theory to ensure stability, thereby enabling the

learning of stable dynamics. In a similar vein, Massaroli et al. (2020); Matusik

et al. (2020) also focus on Lyapunov theory, emphasizing asymptotic stability as

described in Section 2.1.1, with the taking a more mathematical perspective.

Other works, such as Ciccone et al. (2018); Güler et al. (2019), explore the concept

of asymptotic stability around an equilibrium point, employing cascades of unrolled

nonlinear blocks to study the underlying continuous equations of each block.

In the realm of discrete equations, Mamakoukas et al. (2020) investigates model

stability, especially in control-oriented applications like physical robot control. Sim-

ilarly, Tuor et al. (2020) studies discrete equations, resulting in weight constraints

that differ from those obtained in continuous studies, offering optimization strate-

gies during training.
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Furthermore, Revay and Manchester (2020) introduces a contraction study, which

consists in the model predicting two close trajectories when given two close tra-

jectories. They examine the true model stability rather than stability around an

equilibrium. The model then is stable in the sense that it contracts the input, and

is also convex, which helps for the optimization under constraints to ensure this

stability. This line of work is then closely related to numerical analysis but applied

to applied to RNNs, using an input-output stability.

Lastly, in Zhang and Schaeffer (2020), a comprehensive study is conducted starting

with the continuous equation analysis, before delving into discrete stability. While

this work provides extensive insights into stability, it focuses primarily on ResNets

and may not prioritize practical performance improvements.

Stability of schemes Applying stability of schemes to neural networks has also

been a subject of exploration, with various approaches. The most common one

is A-stability, which assesses stability on the test equation, as defined in Defini-

tion 2.1.10. This concept, although not always explicitly stated, is employed in

Haber and Ruthotto (2017); Chang et al. (2018, 2019), as they refer to this stability

in their analyses. A similar rationale for choosing implicit methods can be observed

in Reshniak and Webster (2021), which aligns with the A-stability principle. In

a similar vein, Li et al. (2020a) utilizes C-stability, which ensures that the input

remains bounded by a constant C less than 1 along with a perturbation δ, focusing

on defense against adversarial attacks.

In Chen et al. (2022), zero-stability, as defined in Definition 2.1.11, is applied to

residual networks. It is shown that applying this stability allows for better gen-

eralization and robustness than applying A-stability for instance. Similarly, zero-

stability is used to provide a stability of neural networks for forecasting dynamical

systems with graph neural networks (Brandstetter et al., 2022).

In Kim et al. (2020), strong stability preserving high order Runge–Kutta schemes

are applied to neural network architectures. These schemes, which are applied to

PDEs, consist in preserving the stability of Euler schemes on some problems and

designing higher order method from this scheme, hence ensuring stability and high

order.

Stability of schemes has also been studied for the discovery of differential equations

(Keller and Du, 2021; Du et al., 2022). This is quite a different problem, but the

approach is a classic numerical analysis approach, proving consistency and stability

before proving convergence of the proposed method.

However, similar to continuous stability, the most precise on applying numerical

scheme stability to neural network is Zhang and Schaeffer (2020). It rigorously

proves stability for ResNet type architectures, as expressed in Definition 2.1.16, es-

tablishing bounds on coefficients. Despite this rigorous analysis, the study remains

somewhat confined to the architectures they develop, potentially limiting its broader
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applications. Moreover, as mentioned earlier, it doesn’t extensively explore the prac-

tical implementation of these bounds.

In addition to this work, some recent general work has been done on applying nu-

merical schemes concept to DL (Alt et al., 2023). They present a lot of different

contributions. Notably, they apply stability in norm to design a stable CNN ar-

chitecture. They also translate variants of explicit schemes, implicit schemes and

multi-grid scheme to neural network concepts.

2.3.2 Solving PDEs with neural networks

On the other hand of the works applying numerical analysis concepts to neural net-

works, a main area of research is predicting dynamical systems with neural networks.

This field is diverse and has become very popular.

2.3.2.1 Incorporating prior knowledge in DL algorithms

The first foundational works apply neural network to PDEs using prior knowledge.

This is still a blooming field, since solving PDEs is a very complex problem, and

in order to be used in real-world applications, often need some combination with

numerical analysis tools to be efficient.

The main idea of using prior knowledge is to incorporate a neural network inside a

numerical scheme to take advantage of the properties of both fields, i.e. robustness

of schemes and capacity to learn from data. In this line of work, the study of a neu-

ral network inside a warping scheme to predict sea surface temperatures has been a

foundational work and helped popularize these ideas (De Bézenac et al., 2019). Fol-

lowing similar ideas, (Thuerey et al., 2021) has developed various methods around

the use of differentiable numerical simulations for deep learning; error correction

(Um et al., 2020), PDE control (Holl et al., 2020) or inverse problems (Holl et al.,

2021). Similarly, graph neural networks (GNNs) were used in combination with a

coarse numerical solver to increase the simulation speed (Belbute-Peres et al., 2020).

We follow this global line of work in Chapter 4 by combining neural networks and

numerical schemes to provide a friction law learned from data for the Shallow Water

equations.

On the other hand, prior knowledge can be added during training to constrain

the network to respect this knowledge. This led to two closely related works, DGM

(Sirignano and Spiliopoulos, 2018) and PINNs (Raissi et al., 2019), which add bound-

ary conditions and other constraints in the loss, thus changing the optimization

problem. This line of work is very popular, due to the simplicity of its formulation

and its broad range of applications, even though the training of these methods is

very instable (Krishnapriyan et al., 2021).

In addition to these works, using neural network inside numerical analysis dimension

reduction techniques such as Proper orthogonal decomposition (POD) or Dynamic
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Mode Decomposition (DMD) is a popular trend, especially inside the fluid mechanics

community (Kutz et al., 2016; Brunton et al., 2020).

2.3.2.2 Learning directly the PDE

While incorporating prior knowledge within DL frameworks is an interesting area

of research, which allows for better accuracy, it still faces lots of challenges. For

methods combining schemes and neural networks, the challenges posed by numerical

simulations remain (computational cost, need of expert knowledge, etc...), while

for methods incorporating knowledge in the optimization problems, it was shown

that these methods are not very efficient on various problems (Krishnapriyan et al.,

2021). Thus, designing methods that can directly solve PDEs is a thriving field.

This section presents various methods that attempt this challenging task, focusing

on methods that are used in this thesis.

2.3.2.3 GNNs

Among the various DL algorithms, GNNs are a natural fit for PDE applications

and are implemented as a baseline in Chapter 5. Indeed, these methods take a

graph as input, which is the same format as meshes for numerical simulations. This

explains their popularity when it comes to replacing traditional numerical solver

by neural network solvers. The first successful method using these algorithms is

MeshGraphNet (Pfaff et al., 2021). It is trained to pass messages on a mesh graph

and can adapt the mesh discretization during the forward pass. It is tested on

various physical system dynamics, including aerodynamics, structural mechanics,

and clot and is shown to be 1-2 orders of magnitude faster than the simulation it is

trained on. However, as promising this work is, the experiments were not conducted

on real-world dataset and the generalization capacities are restricted. Inspired by

zero-stability and using GNNs as a core method, Brandstetter et al. (2022) designed

an efficient method for predicting dynamical systems, with various techniques.

2.3.2.4 Operators: DeepONet, GNO, FNO

The methods presented so far learn a function whose domain is a real coordinate

space. However, when solving PDEs, the operations at stake are operators, i.e. func-

tions whose domains are function spaces. This is then natural to design methods

that learn operators to solve PDEs. The first one is DeepONet (Lu et al., 2019).

The arguments of using such a framework are based on the universal approximation

theorem for operator (Chen and Chen, 1995), which is similar to the universal ap-

proximation theorem for neural networks (Leshno et al., 1993). DeepONet is then a

DL algorithm that takes as input the values of the input function u at different fixed

sensors s1, ..., sm, which are the same for each input function in this framework, and
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the points x on which to evaluate the operator. DeepONet is divided into two parts,

a network which takes the input function values as input and a network which takes

the coordinate on which to evaluate the operator. The results of these networks is

then multiplied to predict the output. This method is tested on different datasets,

namely a simple 1D dynamics with 2 cases, a pendulum with an external force and

a diffusion-reaction system with a source term. One drawback of DeepONet is the

need to have a fixed set of tensors.

This led to the design of other operators, which are implemented in Chapter 3.

Among them, Graph Kernel Network (GNO, Anandkumar et al. (2020)) and Mul-

tipole Graph Neural Operator (MGNO, Li et al. (2020c)) leverage GNNs to learn

operators. The following iterative transformation is applied:

vt+1(x) = σ
(
Wvt(x) + b(x) +

∫
Ω

Kϕ(x, x
′)vt(x

′)dν(x′)
)

∀x ∈ Ω, (2.13)

where θ = {W, b, ϕ} are parameters, σ a nonlinear Lipschitz activation function and

Kϕ is called a kernel. In GNO and MGNO, the kernel is obtained with a Monte Carlo

estimation 1
|N (x)|

∑
x′∈N (x)Kϕ(x, x

′)vt(x
′). In GNO, the kernel is then implemented

as a message passing graph neural network, withN (x) the total number of neighbors

of x. In MGNO, the kernel is implemented as a multi-scale kernel:

K ≈ K1,1 +K1,2K2,2K2,1 +K1,2K2,3K3,3K3,2K2,1 + · · · ,

where Kl,l′ is the kernel from scale l to l′, the finest scale is 1.

Following GNO and MGNO, a very popular operator leveraging the Fourier trans-

form has been designed and is called Fourier Neural Operator (FNO, Li et al.

(2020b)). It uses the same iterative transformation defined in Equation (2.13).

The kernel is however implemented differently, instead of using a neural network to

compute the kernel, the whole integral is computed using a transformation:∫
Ω

Kϕ(x, x
′)vt(x

′)dν(x′)
)
= F−1(RϕFvt)(x) ∀x ∈ Ω,

with F the Fourier transform, F−1 its inverse and Rϕ a linear transform on the

lower Fourier modes and a cut of the higher modes. In practice, when possible, the

Fourier transform is computed with the Fast Fourier Transform (FFT). FNO has

become very popular, leading to many follow-up works (Tran et al., 2021; Kovachki

et al., 2021a; Li et al., 2022). A comparison between DeepONet led to the conclusion

that both methods show similar results on simple settings, but DeepONet seems to

perform better on more complex tasks (Lu et al., 2022). Also the properties of

both methods are different, notably FNO does not need a fixed set of sensors, which

makes FNO less sensible to the discretization.
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2.3.2.5 INRs

In addition to neural operator, a new approach has been recently developed with

continuous DL algorithms, which are the basis of Chapter 5. These are called Im-

plicit Neural Representations (INRs) and have shown great results in various image

related problems (Park et al., 2019; Mildenhall et al., 2021; Dupont et al., 2022a).

Most popular methods for image related problems use the image as a discretized

fixed grid, which is quite convenient if the images are each the same size and have

the same channels (for instance RGB). This approach has proven to be highly ef-

ficient, however, it cannot handle different grids, hence limiting its applicability in

various contexts, especially 3D shape reconstruction. Hence, a continuous approach,

or INR, is natural solution to this problem. A INR is then a parameterized con-

tinuous function fθ that maps coordinates of dimension m to their corresponding

function values, a vector of dimension d, i.e., fθ : Rm → Rd. The INR is usually

implemented by a MLP with modified inputs and a specific activation function to

efficiently represent high frequency details in the data, as empirically demonstrated

for images in Sitzmann et al. (2020b); Tancik et al. (2020a).

Since these methods are continuous approaches, they are particularly suited for

PDEs applications. Hence, following their increase in popularity in image related

problems, they have been applied to various dynamical problems. MAgNet (Boussif

et al., 2022) uses a INR to encode the geometry into a graph embedding and a GNN

to forecast the dynamics. Having the INR for the encoding makes this approach

more robust to the mesh, on the contrary to plain GNNs which are very sensitive to

the discretization. This architecture showed interesting results on super-resolution

tasks, i.e. generalizing on finer meshes than encountered during training. In a sim-

ilar spirit, DINo (Yin et al., 2023) leverages INRs for PDE dynamics forecasting

and investigate the generalization capacities of this approach compared to previous

approaches. Their approach consists in encoding a frame with a network to produce

a latent code which modifies the weights of the INR. This code is then propagated

with a Neural ODE to produce a code correspond to the frame at a given time T ,

which is then decoded by modulating the INR to produce the final frame. This mod-

ulation is done to be able to encode different frames with the same INR. The training

then consists in learning the modulation and the weights of the INR to reproduce

an input image, before learning the parameters of the Neural ODE to propagate

the latent code and predict the frame at time T . The generalization abilities of this

architecture are very interesting for practitioners, namely the ability to extrapolate

at arbitrary spatial and temporal locations, to learn from sparse irregular grids or

manifolds and to generalize to new grids or resolution. In order to tackles as well

static problems and offer an alternative in various problems to previous neural op-

erators, CORAL (Serrano et al., 2023a) leverages an architecture using modulated

INRs, with one representing the input function of an operator and the other the
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output function of an operator. For forecasting tasks, the code is forecast with a

neural network, that can be a Neural ODE. This flexible approach is not constrained

by the mesh and can be applied to various problem domains, including PDE solving,

spatio-temporal forecasting, and inverse problems like geometric design. INRs are a

very interesting class of models with applications in PDEs prediction, which further

confirms the possibility of solving directly PDEs with neural networks.



Chapter 3

Numerical schemes for Deep

Learning

In this chapter, we study how to use numerical schemes to improve DL architectures.

We aim at using the theories and ideas developed in numerical analysis, which have

been developed for over a century. There are many potential applications for such

concepts, the main idea being to add theoretical guarantees or intuitions to improve

inductive biases of neural networks when solving dynamical systems.

First, we take inspiration from multi-grid methods to offer new options of archi-

tectures for Multipole Graph Neural Operators (MGNOs) (Li et al., 2020c). This

leads to the comparison of three different models and a novel view on the MGNO

architecture. We present competitive results on the two datasets used in the original

paper. This work led to a publication at Proceedings of Topological, Algebraic, and

Geometric Learning Workshops 2022.

Migus, L., Yin, Y., Mazari, J. A., and Gallinari, P. (2022, November). Multi-

Scale Physical Representations for Approximating PDE Solutions with Graph

Neural Operators. In Topological, Algebraic and Geometric Learning Work-

shops 2022 (pp. 332-340). PMLR.

Next, inspired by Chen et al. (2018); Zhang and Schaeffer (2020), which es-

tablished connections between numerical schemes and residual neural networks, we

design a neural network based on implicit numerical schemes. By incorporating theo-

retically grounded constraints, our architecture possesses an auto-regressive stability

property. This property proves to be highly advantageous for forecasting dynami-

cal systems, as it addresses the common issue of divergence over time that is often

encountered in DL frameworks, as highlighted in our study. This work led to a

publication at ICLR 2023 Workshop on Physics for Machine Learning.

33
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Migus, L., Salomon, J., and Gallinari, P. (2023, May). Stability of implicit

neural networks for long-term forecasting in dynamical systems. In ICLR 2023

Workshop on Physics for Machine Learning.
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3.1 Multi-scale Physical Representations for Ap-

proximating PDE Solutions with Graph Neu-

ral Operators

Representing physical signals at different scales is a challenging problem in engi-

neering. Several multi-scale modeling tools have been developed to describe phys-

ical systems governed by Partial Differential Equations (PDEs). These tools are

at the crossroad of principled physical models and numerical schemes. Recently,

data-driven models have been introduced to speed-up the approximation of PDE

solutions compared to numerical solvers. They can be trained to represent the

continuous PDE function with a discretized mesh. Among these recent data-driven

methods, neural integral operators are a class that learn a mapping between function

spaces. These functions are discretized on graphs (meshes) which are appropriate for

modeling interactions in physical phenomena. In this work, we study three multi-

resolution schemes with integral kernel operators that can be approximated with

Message Passing Graph Neural Networks (MPGNNs). To validate our study, we

make extensive MPGNNs experiments with well-chosen metrics considering steady

and unsteady PDEs.
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3.1.1 Introduction and motivation

Principled modeling of physical phenomena gives rigorous and interpretable mathe-

matical models, e.g. Differential Equations (DEs). However, solving these equations

analytically is impossible in most practical cases. To circumvent that, one could seek

for an approximated solution through numerical analysis. When the phenomenon

involves information and energy exchange in different ranges, methods with multi-

scale modeling, e.g. multi-grid (multi-resolution) methods, are proposed for solving

DEs. Said otherwise, multi-scale modeling consists in solving problems that have

important features at different scales in time and space. An example of such prob-

lems is the Navier-Stokes equations, which can model an airfoil. In this instance,

turbulence occurs around the airfoil, at high frequency, contrasting with the move-

ment of the airfoil, which produces low-frequency phenomena. In order to solve

these problems with adapted multi-scale schemes, interactions at different scales

are modeled with a pyramidal discretization (Bergot and Duruflé, 2013; O’Malley

et al., 2018). With the multi-scale modeling, the solvers converge more quickly than

single-scale methods (Lie et al., 2017; Passieux et al., 2010).

In Deep Learning (DL), many methods have been proposed for approximating

PDE solutions on a regular grid at a single scale (Um et al., 2020; Thuerey et al.,

2020). However, in real world applications, the domain of PDEs is often discretized

on meshes (represented by Euclidean graphs where vertices are points in an Eu-

clidean domain and the edges with the distance between those points), where the

nodes and the edges represent respectively the physical states and their interaction.

In this case, we use Graph Neural Networks (GNNs) instead of more classical deep

learning architectures such as MLPs, e.g. Pfaff et al. (2021); Xu et al. (2021).

For regular grids, some methods use U-net (Ronneberger et al., 2015), e.g. Wan-

del et al. (2021), to enable long-range interactions. Recently, Multipole Graph Neu-

ral Operator (MGNO, Li et al., 2020c) introduces a new graph-based method, which

learns an operator mapping between two function spaces by a MPGNN with a mul-

tilevel graph, therefore offering a natural modeling of PDEs with a GNN as well as

good performances with the multilevel graph. Li et al. (2020c) focuses on reducing

computation cost of long-range correlation, inspired by fast multipole methods.

In this work, we explore new ways to extend the multi-scale modeling capacity

with neural networks. We would like to shed light on different numerical schemes

and understand the reason for the choice of multi-scale schemes from the lens of

DL. We observe in practice that the multi-scale DL models share a similar structure

with some of the numerical schemes . For example, both are composed of a straight-

through downscaling and upscaling process, U-net shares a very similar structure

with V-cycle schemes in multi-scale numerical analysis (Jaysaval et al., 2016). We

then draw inspiration from discretized multi-resolution schemes (Jaysaval et al.,

2016) such as W-cycle and F-cycle to propose new architectures.
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We propose new multi-scale DL architectures, based on the original MGNO, for

learning representation of multi-scale physical signals by approximating the func-

tional spaces of PDEs. They are tested with steady and unsteady physical systems.

This opens perspectives to rethink the architecture design for multi-scale problems

and help practitioners using U-net to include these numerical schemes variants in

their study. To the best of our knowledge, this is the first work to explore new

architecture designs for multi-scale problems within the Machine Learning (ML)

community.

We organize our paper as follows: in subsection 2, we describe formally Graph

Neural Operators and the multi-resolution schemes. In subsection 3, we present our

evaluation protocol and ablation study. Finally, in subsection 4, we conclude with

some remarks and perspectives opened by our work.

3.1.2 Neural Operator and its graph instantiations

Neural Operator (Kovachki et al., 2021b) aims at learning a map from a

function defined over a domain (typically Euclidean space) to another with param-

eterized models, especially neural networks (NNs). The objective is to learn a map

Gθ : a ∈ F 7→ u ∈ F ′, where F ,F ′ are two function spaces. At each position in the

domain x ∈ Ω, the following iterative transformation is applied:

vt+1(x) = σ
(
Wvt(x) + b(x) +

∫
Ω

Kϕ(x, x
′)vt(x

′)dν(x′)
)

∀x ∈ Ω

where θ = {W, b, ϕ} are parameters. The parameters W, b are local affine transfor-

mation of vt(x) at each location x. The parameterized kernel Kϕ integrates vt(x
′)

over all x′ ∈ Ω, with x′ ∼ ν and ν is a (probabilistic) measure over Ω. The func-

tion σ is a nonlinear Lipschitz activation function. The iteration starts from t = 0

with the input function a = v0, the solution is the function at final iteration T , i.e.

u = vT .

GNO and MGNO (Anandkumar et al., 2020). Given that integrating over

the whole domain Ω is intractable, one possible simplification is to integrate only

in a subdomain around x, i.e. s(x) ⊂ Ω. By limiting this subdomain to some i.i.d.

sampled neighbors x′ ∈ N (x) ⊂ s(x), we obtain:∫
Ω

Kϕ(x, x
′)vt(x

′)dν(x′) ≈
∫
s(x)

Kϕ(x, x
′)vt(x

′)dν(x′) ≈ 1

|N (x)|
∑

x′∈N (x)

Kϕ(x, x
′)vt(x

′)

which can be implemented with a message passing graph neural network, called

GNO. The graph is constructed by connecting the point at position x to its neighbors

x′ such that ∀x′ ∈ N (x), ∥x−x′∥ ≤ r. Here |N (x)| stands for the total number of the
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Figure 3.1: Illustration of MGNOs with different schemes: (a) the original V-MGNO,
(b) F-MGNO, and (c) W-MGNO. → (red) are downscale kernels, → (black) are in-
scale kernels, → (purple) are upscale kernels. 99K are skip connections. See Figure
3.2 for an example of the iterative process.

Figure 3.2: Example of an iterative process with V-cycle multi-resolution architec-
ture. Similar process is applied for F-cycle and W-cycle.

neighbors of x. However, when modeling long-range interactions is necessary, a large

s(x) should be considered in GNO, which comes with an expensive computational

cost. To overcome this problem, MGNO considers the following multi-scale kernel

matrix decomposition of the graph kernel:

K ≈ K1,1 +K1,2K2,2K2,1 +K1,2K2,3K3,3K3,2K2,1 + · · ·

where Kl,l′ is the kernel from scale l to l′, the finest scale is 1. To implement

this multi-scale kernel, several architectural designs are proposed in the following

subsection.

Multi-scale kernel implementations. We present in this subsection, three

architectures for multi-scale kernel implementation: V-MGNO, F-MGNO, and W-

MGNO. The V-MGNO architecture is proposed in the original paper (Li et al.,

2020c), whereas F-MGNO, and W-MGNO are inspired by multi-resolution methods

(Jaysaval et al., 2016). The V-, F-, and W-MGNO are iterative processes and have

in common three types of kernels as shown in Figure 3.1: downscale, intrascale, and

upscale kernels. The input information is propagated in the multi-scale graph by a

cascade of downscale contraction, intrascale transformation, and upscale expansion.

The downscale kernels reduce the number of points of the graph on the contrary to

upscale which increases it. Intrascale kernels keep the same dimension and propagate

the information to kernels with the same size. The overall architectures as presented
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in Figure 3.1 combines these kernels to allow propagation of information at different

scales. The implementation then mainly consists of deciding the number of points

in the graph at each scale.

Metrics. The goal here is to empirically study the performances of these multi-

resolution architectures and their learning stability. We define the following charac-

teristics to compare these multi-scale architectures:

• Number of scales : indicates the number of scales from the finest to the coars-

est one. The choice of the finest and the coarsest scales depends on the dis-

cretization scheme, and also on the cutoff energy, as well as the computational

budget.

• Intra-cycle Kernel Sharing : indicates whether the kernels are shared inside

each iteration. This is because F- and W-MGNO may have several kernels

for the same downsampling or upsampling action, e.g. between the coarsest

two scales, W-MGNO (shown in Figure 3.1) need to several downscaling (red

arrows) or upscaling (purple arrows).

• Iteration Kernel Sharing : indicates if the kernels are shared across all iter-

ations. This allows to study the stability and the complexity of optimizing

iterative processes w.r.t. a given multi-scale architecture.

3.1.3 Experiments

We evaluate the performance of our multi-resolution schemes F-MGNO and W-

MGNO on two families of PDEs, namely 2D steady-state of Darcy flow and 1D

viscous unsteady Burgers’ equation.

Datasets. Darcy flow. We construct our first dataset with the following 2-D

steady-state PDE {
−∇ · (a(x)∇u(x)) = f(x), x ∈ (0, 1)2

u(x) = 0, x ∈ ∂(0, 1)2

where a is a random piecewise constant function parameterizing the PDE, and f a

function. In the experiments, we approximate the mapping (a,∇a) 7→ u.

Burgers’ equation. In the second dataset, we consider the following 1-D viscous

unsteady PDE{
∂tu(x, t) + ∂x(u

2(x, t)/2) = ν∂xxu(x, t), x ∈ (0, 2π), t ∈ (0, 1]

u(x, 0) = u0(x), x ∈ (0, 2π)
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with periodic boundary conditions. In the experiments, we approximate the map-

ping from the initial condition u0 to the solution at time t = 1, i.e. u0 7→ u(·, 1).
For both datasets, 100 trajectories were generated for train and 100 others for

validation and test.

Pipelines Graph nodes are uniformly sampled over the domain with different

sample number at each scale. Graph edges in each scale are calculated to all points

in the same scale within a given distance. For multi-scale models, edges between

scales are also calculated likewise. Input node features are values of the input

function v0(x) and their position x. Each model predicts u(x). To avoid divergence

in training, we use the orthogonal initialization across all models. A number of

scales of 1 to 4 is tested. The different levels are taken to be respectively 1600, 400,

100 and 25 points for each scale.

Baseline methods. We compare our proposed F-MGNO and W-MGNO w.r.t.

GNO and the original V-MGNO. To study to what extent the kernel construction

from operator learning standpoint is helpful, proposed architectures are also com-

pared with MLP and GCN (Kipf and Welling, 2017). Methods are categorized into

single-scale (MLP, GCN, GNO) and multi-scale (V-, F-, W-MGNO). Single scales

method do not offer any levels with different resolutions.

On learning stability. During training, we found out that the multi-scale

architectures with Kaiming initialization (He et al., 2015) used in the original paper

may lead to divergence in training. This is caused by extremely large loss and

gradient at the beginning of the training. One possible explanation is that, as the

input is transformed through many kernels, an improper initialization will amplify

the norm of features along all the forward steps. We therefore chose orthogonal

initialization to better control the norm of the output.

We did a broad hyperparameter search to tune the model. This showed that the

initialization was crucial in MGNO architectures, with a main importance for the

learning rate and even more for the initialization gain of the orthogonal initialization.

Results. We show our results in Table 3.1 for Darcy flow and Burgers’ equation.

For all variants of MGNO, we report the results of the best architectures for each

model. More detailed results are shown in Table 3.2 and Table 3.3.

We found that multi-scales methods outperform single-scale ones in both train-

ing and test error. For both datasets, multi-scale methods achieve a decrease of

80-90% training error compared to the single-scale baselines. This suggests that a

better modeling of long-range interaction improves the expressiveness of the neural

network. The same improvement tendency was also observed at test time. All vari-
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Table 3.1: Results of our best settings compared to baselines on Darcy flow and
Burgers’ equation. We calculate the means and standard deviations for each model
based on 4 runs with different seeds. All multi-scale models results are achieved
with 4 scales.

Model
Intra-cycle
Kernel Sharing

Iteration
Kernel Sharing

Train Error
(×10−2)

Test Error
(×10−2)

D
a
rc
y
fl
o
w

Sing
le-sc

ale
MLP N/A N/A 11.90±0.20 12.02±0.40
GCN N/A N/A 11.87±0.15 11.88±0.19
GNO N/A N/A 6.45±0.21 7.13±0.15

Multi-
scale

V-MGNO N/A ✗ 2.69±0.18 5.68±0.30
F-MGNO (Ours) ✗ ✗ 2.76±0.15 5.80±0.32
W-MGNO (Ours) ✗ ✗ 2.23±0.11 5.91±0.28

B
u
rg
e
rs
’

Sing
le-sc

ale
MLP N/A N/A 41.89±0.40 42.07±0.11
GCN N/A N/A 27.88±1.46 31.00±1.22
GNO N/A N/A 15.30±0.17 53.14±0.86

Multi-
scale

V-MGNO N/A ✓ 4.25±0.10 25.76±0.39
F-MGNO (Ours) ✓ ✓ 3.19±0.05 25.20±0.20
W-MGNO (Ours) ✗ ✓ 3.47±0.07 24.91±0.37

ants of MGNO reduce the test error by 10-50%. This improvement is less significant

than at training time as it may be limited by number of training data samples.

Among the multi-scale models, for both PDEs, more complex F-/W-MGNO

performs slightly better in training, i.e. 2.69 with V-MGNO down to 2.23 (-17%)

with W-MGNO for Darcy flow, and 4.25 with V-MGNO down to 3.19 (-25%) with

F-MGNO for Burgers’. However, we did not perceive a significant difference in test

error.

Ablation studies. We conducted large-scale ablation studies with results in

Tables 3.2 and 3.3. We analyze the influence of different metrics on impacts of

architectural metrics on prediction errors:

• The impact of number of scales : We observe that the more the scales, the lower

the training error. This shows an increasing tendency in model expressiveness

w.r.t. scales.

• The impact of kernel sharing : We observe that sharing parameters may help

improving training. However, no major differences in test are noticed when

evaluating generalization to test samples.

Note that for some scales different variants of MGNO are the same. For 2-scale

models, V-, F-, and W-MGNO are equivalent. For 3-scale models, F- and W-MGNO

are equivalent.
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Table 3.2: Ablation studies for Burgers’ equation.

Method Scales
Intra-cycle
Sharing

Iteration
Kernel Sharing

Train Error
(×10−2)

Test Error
(×10−2)

Time (s)
/epoch

N. params
(M)

MLP 1 N/A N/A 41.89±0.40 42.07±0.11 2.8 0.017
GCN 1 N/A N/A 27.88±1.46 31.00±1.22 1.9 0.025
GNO 1 N/A N/A 15.30±0.17 53.14±0.86 27.1 1.10

V/F/W-MGNO 2 N/A ✗ 7.21±0.61 25.63±0.53 73.1 10.91
V/F/W-MGNO 2 N/A ✓ 6.35±0.17 25.67±0.46 66.5 2.74

V-MGNO 3 N/A ✗ 4.76±0.24 27.22±1.19 77.5 14.13
V-MGNO 3 N/A ✓ 4.22±0.14 26.65±0.49 62.8 3.54
F/W-MGNO 3 ✗ ✓ 4.59±0.16 26.64±1.38 77.3 4.89
F/W-MGNO 3 ✓ ✓ 4.02±0.15 25.29±0.86 85.8 3.54

V-MGNO 4 N/A ✗ 4.67±0.16 26.19±0.26 70.1 15.75
V-MGNO 4 N/A ✓ 4.25±0.10 25.76±0.39 74.8 3.95
F-MGNO 4 ✗ ✓ 3.59±0.09 25.45±0.63 89.5 6.39
F-MGNO 4 ✓ ✓ 3.19±0.05 25.20±0.20 77.5 3.95
W-MGNO 4 ✗ ✓ 3.47±0.07 24.91±0.37 100.4 7.06
W-MGNO 4 ✓ ✓ 3.10±0.03 25.61±0.31 77.7 3.95

Table 3.3: Ablation studies for Darcy flow.

Method Scales
Intra-cycle

Kernel Sharing

Iteration

Kernel Sharing

Train Error

(×10−2)

Test Error

(×10−2)

Time

/epoch (s)

N. params

(M)

MLP 1 N/A N/A 11.90±0.20 12.02±0.40 2.0 0.02

GCN 1 N/A N/A 11.87±0.15 11.88±0.19 34.3 0.03

GNO 1 N/A N/A 6.45±0.21 7.13±0.15 13.1 0.03

V/F/W-MGNO 2 N/A ✗ 4.76±0.35 6.67±0.43 25.8 11.0

V/F/W-MGNO 2 N/A ✓ 4.88±0.40 6.59±0.24 25.9 2.74

V-MGNO 3 N/A ✗ 3.63±0.21 5.77±0.12 28.0 14.1

V-MGNO 3 N/A ✓ 3.24±0.22 6.11±0.32 27.8 3.55

F/W-MGNO 3 ✗ ✗ 3.03±0.22 5.94±0.38 33.0 19.5

F/W-MGNO 3 ✓ ✗ 2.63±0.19 6.41±0.24 33.5 14.1

F/W-MGNO 3 ✗ ✓ 2.47±0.15 5.76±0.25 34.5 4.90

F/W-MGNO 3 ✓ ✓ 2.26±0.13 5.87±0.23 34.6 3.55

V-MGNO 4 N/A ✗ 2.69±0.18 5.68±0.30 28.3 15.8

V-MGNO 4 N/A ✓ 2.02±0.11 5.96±0.22 28.3 3.95

F-MGNO 4 ✗ ✗ 2.76±0.15 5.80±0.32 39.2 25.5

F-MGNO 4 ✓ ✗ 1.88±0.12 5.84±0.18 37.1 15.8

F-MGNO 4 ✗ ✓ 1.78±0.05 6.14±0.32 36.5 6.39

F-MGNO 4 ✓ ✓ 1.60±0.13 6.18±0.31 36.9 3.95

W-MGNO 4 ✗ ✗ 2.23±0.11 5.91±0.28 40.9 28.2

W-MGNO 4 ✓ ✗ 1.68±0.13 6.17±0.28 39.2 15.8

W-MGNO 4 ✗ ✓ 1.85±0.08 6.07±0.33 39.1 7.07

W-MGNO 4 ✓ ✓ 1.57±0.10 6.29±0.27 40.5 3.95

Discussion. To conclude, we confirm with our experiments that multi-scale

methods are important for better modeling physical signals, by efficiently model-

ing long-range interactions in the spatial domain. Some improvements in training

were observed with F- and W-MGNO, which may indicate an increase in model
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expressiveness with F- and W-cycle schemes . However, compared to the V-MGNO

implementation, the evidence is not strong enough to support this claim. We sug-

gest further investigation with other graph-based approaches to better understand

more complex cycles. In order to better generalize to unseen data, more constraints

could be added to control train and test trade-off.

3.1.4 Conclusion

In this work, we empirically studied the challenging task of representing physical

signals at different scales from DL perspective. To do so, we developed two novel

multi-scale architectures inspired by discretized multi-resolution schemes (Jaysaval

et al., 2016) and a neural integral operator, which is motivated by multipole theory

(Li et al., 2020c). To the best of our knowledge, this is the first work that proposes to

study and design multi-scale DL architectures from a numerical scheme standpoint.

We proposed two MPGNNs to approximate this neural integral operator and we

implemented it via F-cycle and W-cycle schemes. The latter are iterative processes

and hence are challenging to optimize. We defined a set of metrics to evaluate the

learning stability of these iterative processes and their performances. We validated

our work on two types of PDEs discretized on graphs.

We argue that this work could open perspectives to study novel multi-scale neu-

ral architectures, beyond U-net, and V-F-W-cycle schemes, suitable for multi-scale

or scarce data. One may consider a further study of discretized multi-resolution

schemes including the properties of their architectures and optimization procedures.

This could help to design more interpretable and efficient architectures. Moreover,

we think that studying multi-scale neural architectures from a discretized multi-

resolution scheme standpoint could help to get insights about the capabilities of

multi-scale neural architectures to reproduce some properties of discretized multi-

resolution schemes.
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3.2 Stability of implicit neural networks for long-

term forecasting in dynamical systems

Forecasting physical signals in long time range is a challenging task in Partial Differ-

ential Equations (PDEs) research. To circumvent limitations of traditional solvers,

many different Deep Learning methods have been proposed. They are based on auto-

regressive methods and exhibit stability issues. Drawing inspiration from the sta-

bility property of implicit numerical schemes, we introduce a stable auto-regressive

implicit neural network. We develop a theory based on the stability definition of

numerical schemes to ensure the stability in forecasting of this network. It leads us

to introduce hard constraints on its weights and propagate the dynamics in a latent

space. Our experimental results validate our stability property, and show improved

results at long-term forecasting for two transports PDEs.

3.2.1 Introduction and motivation

Numerical simulations are one of the main tools to study systems described by

PDEs, which are essential for many applications including, e.g., fluid dynamics

and climate science. However, solving these systems and even more using them

to predict long term phenomenon remains a complex challenge, mainly due to the

accumulation of errors over time. In an attempt to overcome the limitations of

traditional solvers and to exploit the available data, many different deep learning

methods have been proposed. For the task of forecasting spatio-temporal dynamics,

Ayed et al. (2019) used a standard residual network with convolutions and Sorteberg

et al. (2019); Lino et al. (2020); Fotiadis et al. (2020) used Long short-term memory

(LSTM) and Convolutional neural network (CNN) for the wave equation. In Wiewel

et al. (2019); Kim et al. (2019a), good performances are obtained by unrolling the

dynamics within the latent spaces of neural networks. More recently, Brandstetter

et al. (2022) used graph neural networks with several tricks and showed improved

results for forecasting PDEs solutions. Importantly, these methods all solve the

PDE iteratively, meaning that they are auto-regressive, the output of the model is

used as the input for the next time step. Another line of recent methods that have

greatly improved the learning of PDE dynamics are Neural Operators (Li et al.,

2020b). These methods can be used as operators or as auto-regressive methods to

forecast. However, when used as operators, they do not generalize well beyond the

training horizon. Crucially, these auto-regressive methods tend to accumulate errors

over time with no possible control, and respond quite poorly in case of change in

the distribution of the data. This leads to stability problems, especially over long

periods of time beyond the training horizon.

In the numerical analysis community, the stability issue has been well studied

and is usually dealt with implicit schemes. By definition, they imply to solve an
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equation to go from a time step to the next one but they are generally more stable

than explicit schemes. This can be seen on the test equation dy
dt

= λy, where Euler

implicit schemes are always stable while Euler explicit schemes are not. Interpreting

residual neural networks as numerical schemes, one can apply such schemes and gain

theoretical insights on the properties of neural networks. This has already been done

in various forms in Haber and Ruthotto (2017); Chen et al. (2018), but not applied

to forecasting. Moreover, these works use either the stability of the underlying

continuous equation or the stability of the numerical scheme on the test equation

and its derivatives, which is not the stability of the numerical scheme on the studied

equation. More details on this topic can be found in Section 2.1. Since a network

is discrete, the latter is the most relevant. More precisely, We therefore use the

stability in norm of schemes, as defined in Definition 3.2.1. In DL, this definition

has been applied to image classification problems (Zhang and Schaeffer, 2020). To

the best of our knowledge, this work is the first attempt to forecast PDEs with

neural networks using stability as studied in the numerical analysis community.

Using implicit schemes in DL has already been done in different contexts. The

earliest line of works tackles image problems, with Haber et al. (2019) designing

semi-implicit ResNets and Li et al. (2020a); Shen et al. (2020); Reshniak and Web-

ster (2021) designing different implicit ResNets. The second line of works focuses

on dynamical problems. In this way, Nonnenmacher and Greenberg (2021) designed

linear implicit layers, which learn and solve linear systems, and Horie and Mitsume

(2022) used an implicit scheme as part of graph neural network solvers to improve

forecasting generalization with different boundary conditions. While tackling dif-

ferent types of problems, none of these methods guarantees the forecast stability.

For our analysis, we restrict ourselves to ResNet-type networks, i.e., networks with

residual connections. Indeed, we use the connection between ResNet networks and

numerical schemes to develop our architecture. We introduce hard constraints on

the weights of the network and unroll the dynamics within the latent space of our

network. Hence, by modifying the classic implicit ResNet architecture, our method

can forecast dynamical system at long range without diverging. We apply these the-

oretical constraints in our architecture to two 1D transport problems: the Advection

equation and Burgers’ equation.

To better investigate networks stability, we perform our experiments under the

following challenging setting: during the training phase, we exclusively provide the

network with data at time t = 0 to predict the solution at a short time t = ∆t.

We subsequently evaluate its performance in forecasting over a much longer horizon

at time t = N · ∆t, where N ≫ 1. Note that our setting is harder that the

conventional setting presented for e.g. in Brandstetter et al. (2022).Indeed, we only

use the evolution of the solution between two time steps for training, instead of

using the solution at many time steps.
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3.2.2 Method

To guarantee structural forecasting stability, we take inspiration from implicit schemes.

We focus our study on an implicit ResNet with a ReLU activation function. In our

approach, an equation is solved at each layer, namely zn+1 := zn +Rn(zn+1) with z

in RM and n in N and Rn(z) = ReLU(Wnz + bn) where Wn is a upper triangular

matrix. The latter constraint is motivated below.

Implicit ResNet stability analysis

To study the stability of our proposed architecture, we first need to ensure that

it is well-defined, by solving z = zn + Rn(z). In order to do so, we first define

the Perron–Frobenius eigenvalue, before stating the root existence, which uses this

eigenvalue. Let A be a non-negative square matrix, i.e. with non-negative entries.

Theorem 3.2.1 (Perron–Frobenius theorem). A admits a real eigenvalue that is

larger than the modulus of any other eigenvalue.

This non negative eigenvalue is called the Perron–Frobenius eigenvalue and is

denoted λpf (A).

Theorem 3.2.2 (Root existence). Given n ∈ N and that ReLU is non-expansive,

if λpf (|Wn|) < 1, then x defined as x = xn +Rn(x) exists.

The proof is available in theorem 2.2 of El Ghaoui et al. (2019). They show that

the solution can be obtained using a fixed-point iteration. However they do not offer

any analytical solution.

We can now study the stability of our proposed architecture. The recursion defining

(zn)n∈N reads as an implicit Euler scheme with a step size of 1. As described in

the introduction, an implicit scheme is usually more stable than an explicit one.

We first recall the definition of the stability in norm Lp for schemes, as found in

Section 10.4.2 of Legendre (2018). This property ensures that our architecture has

an auto-regressive stability.

Definition 3.2.1 (Stability in norm). A numerical scheme solution (zn)n∈N of di-

mension M is stable in norm Lp if there exists for a time T , C(T ) independent of

the time discretization step ∆t such that:

∀ z0 ∈ RM , n ≥ 0; n∆t ≤ T, ∥zn∥p ≤ C(T )∥z0∥p .

This general definition of stability with respect to the norm ensures that a scheme

does not amplify errors. This definition is equivalent to several others in the numer-

ical analysis community.

Suppose that the spectrum of Wn is contained in [−1, 0) for every integer n, we can

assert that (zn)n∈N is well-defined, using theorem 3.2.2. The proof of the stability
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of our Implicit ResNet network is then by induction on the dimension and is given

below.

Theorem 3.2.3 (Stability theorem). If the elements of the diagonal of Wn are in

[−1, 0) for every integer n, then (zn)n∈N is stable in norm Lp.

In order to prove Theorem 3.2.3, we first define the variables used, before proving

a lemma about the expression of an auxiliary sequence v
(m)
n . We then proceed to

the full proof.

Definitions and notation Let (α
(m1,m2)
n )m1,m2∈∈[1:M ]2 be the strict upper values

ofWn and (b
(m)
n )m∈[1:M ] the values of bn. We suppose that (α

(m1,m2)
n )n∈N and (b

(m)
n )n∈N

are bounded. Let Q := maxm1∈[|0,M−1|],m2∈[|m1+1,m|](maxn∈N(|α(m1,m2)
n )|)) and B :=

maxn∈N,m∈[|1,M |](b
(m)
n ). Let (−λ(m)

n )m∈[1:M ] be the values of the diagonal of Wn, and

P := minn∈N,m∈J1,MK(λ
(m)
n )), with P being finite and positive by hypothesis.

Given an integer n and zn ∈ RM , we denote by z
(m)
n the nth iteration of the mth

dimension of the sequence (zn). For m in [|1,M |], let Sm := maxj∈[|1,m|], k∈N(z
(j)
k )

and S0 = 0.

Definition 3.2.2. We define, given n ∈ N and m ∈ [|0,M − 1|], v(m)
n by the

recursion:

v
(m)
n+1 :=

v
(m)
n +

∑m−1
j=1 α

((m−1), j)
n z

(j)
n+1 + b

(m)
n

1 + λ
(m)
n+1

. (3.1)

Lemma 3.2.1 (Explicit expression of v
(m)
n ). Given integer n and m in [|1,M |], an

explicit expression of v
(m)
n is given by:

v(m)
n = z

(m)
0

n∏
k=1

1

1 + λ
(m)
k

+
n∑
k=1

(
n∏
l=k

1

1 + λ
(m)
l

m−1∑
j=1

α
((m−1), j)
k−1 z

(j)
k )+

n∑
k=1

(
n∏
l=k

1

1 + λ
(m)
l

b
(m)
k−1).

Proof. In order to obtain an explicit expression of v
(m)
n , we write out all the terms

of v
(m)
n . Let i be an integer in [0, n]. We then multiply each term by

∏i+1
k=2

1

1+λ
(m)
k

:

i+1∏
k=2

1

1 + λ
(m)
k

(v
(m)
n+1−i−

1

1 + λ
(m)
n+1−i

z
(m)
n−i) = (

∑m−1
j=1 α

((m−1), j)
n−i z

(j)
n+1−i + b

(m)
n−i

1 + λ
(m)
n+1−i

)
i+1∏
k=2

1

1 + λ
(m)
k

.

(3.2)

We thus obtain a telescoping sum by summing Equation 3.2 for every i in [0, n].

Proof of theorem 3.2.3

Proof. Hereafter, we prove that, for m in [|1,M |], (z(m)
n )n∈N is bounded. The proof

is by induction on m.
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For the base case m = 1, let n be an integer. We will show that (z
(1)
n )n∈N is

bounded.

It is easily seen that:

z
(1)
n+1 =

{
z
(1)
n , if − λ(1)n+1z

(1)
n + b

(1)
n ≤ 0

1

1+λ
(1)
n+1

(z
(1)
n + b

(1)
n ) , else.

Let u
(1)
n := z

(1)
0 and v

(1)
n+1 := v

[1)
n +b

(1)
n

(1+λ
(1)
n+1)

. We then have min(u
(1)
n , v

(1)
n ) ≤ z

(1)
n ≤

max(u
(1)
n , v

(1)
n ).

Using lemma 3.2.1, v
(1)
n may be written as:

vn+1 = z
(1)
0

n+1∏
k=1

1

(1 + λ
(1)
k )

+
n+1∑
k=1

(
n+1∏
l=k

1

(1 + λ
(1)
l )

b
(1)
k−1). (3.3)

We can then bound the second term of the right-hand side of Equation 3.3:

|
n+1∑
k=1

(
n+1∏
l=k

1

(1 + λ
(1)
l )

b
(1)
k−1)| ≤ B

n+1∑
k=1

(
1

(1 + P )n+1−k

≤ B
(1 + P )n+1 − (1 + P )

P (1 + P )n+1
. (3.4)

Combining Equation 3.3 and Equation 3.4, we can assert that v
(1)
n is bounded.

Since min(z
(1)
0 , v

(1)
n ) ≤ z

(1)
n ≤ max(z

(1)
0 , v

(1)
n ), we can conclude that (z

(1)
n )n∈N is

bounded.

Suppose ∀ j ∈ [|0,m|], (z(j)n )n∈N bounded, we will now prove that (z
(m+1)
n )n∈N is

bounded.

We first solve Equation 3.5 to find an expression of z
(m+1)
n+1 .

Z = z(m+1)
n +max(0,−λ(m+1)

n+1 Z +
m∑
j=1

α(m, j)
n z

(j)
n+1 + b(m+1)

n ). (3.5)

Summarizing, we obtain:

z
(m+1)
n+1 =

 z
(m+1)
n , if − λ(m+1)

n+1 z
(m+1)
n +

∑m
j=1 α

(m, j)
n z

(j)
n+1 + b

(m+1)
n ≤ 0

z
(m+1)
n +

∑m
j=1 α

(m, j)
n z

(j)
n+1+b

(m+1)
n

(1+λ
(m+1)
n+1 )

, else.

Let u
(m+1)
n := z

(m+1)
0 and v

(m+1)
n+1 :=

v
(m+1)
n +

∑m
j=1 α

(m, j)
n z

(j)
n+1+b

(m+1)
n

(1+λ
(m+1)
n+1 )

. We then have that

min(u(m+1)
n , v(m+1)

n ) ≤ z(m+1)
n ≤ max(u(m+1)

n , v(m+1)
n ).
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Using lemma 3.2.1, v
(m+1)
n may be written as:

v
(m+1)
n+1 = z

(m+1)
0

n+1∏
k=1

1

1 + λ
(m+1)
k

+
n+1∑
k=1

(
n+1∏
l=k

1

1 + λ
(m+1)
l

m∑
j=1

α
(m, j)
k−1 z

(j)
k )+

n+1∑
k=1

(
n+1∏
l=k

1

1 + λ
(m+1)
l

b
(m+1)
k−1 ).

It is easily seen that the first and third terms of v
(m+1)
n are bounded. We still wish

to bound the second term of v
(m+1)
n . Using the induction hypothesis, Sm is finite.

We can then bound the second term of v
(m+1)
n :

|
n+1∑
k=1

(
n+1∏
l=k

1

1 + λ
(m+1)
l

m∑
j=1

α
(m, j)
k−1 z

(j)
k )| ≤ |

n+1∑
k=1

(
1

(1 + P )n+1−k

m∑
j=1

α
(m, j)
k−1 z

(j)
k )|

≤ |
n+1∑
k=1

1

(1 + P )n+1−kmQSm|

≤ mQSm
1

(1 + P )n+1

n+1∑
k=1

((1 + P )k

≤ mQSm
(1 + P )n+2 − (1 + P )

P (1 + P )n+1
. (3.6)

Since Equation 3.6 shows that the second term of v
(m+1)
n is bounded, v

(m+1)
n is

bounded, hence we can conclude that z
(m+1)
n is bounded.

Since both the base case and the induction step have been proved to be true, by

mathematical induction for every m in [|1,M |], (z(m)
n )n∈N is bounded. Hence zn =

(z
(1)
n , ..., z

(M)
n ) is bounded.

Implementation

To validate practically our theoretical results, we choose a setting that highlights

stability issues. We then test our implementation of an implicit ResNet. In order

to respect the assumptions of theorem 3.2.3, we forecast the dynamics in the latent

space, as detailed below.

Setting We first learn the trajectory at a given small time step ∆t. We only

give data at t = 0 to predict data at t = ∆t during the training phase. We then

forecast in long-term, at N · ∆t with N ≫ 1. This very restricted setting allows

us to see how the network will react in forecasting with changes in the distribution

and error accumulation. Usually neural network forecasting methods use data from

t = 0 to T = L ·∆t for the training which allows to use different tricks to stabilize

the network, such as predicting multiple time steps at the same time. However, in

this work, we want to analyze how the network behaves without any trick that can
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slow down divergence. Indeed, the tricks used in the other settings do not actually

guarantee stability of the network. The training is performed with a mean-squared

error (MSE) loss.

Implicit neural network architecture To implement a neural network from

Theorem 3.2.3, we use the encode-process-decode architecture with residual blocks;

x∆t = fdec◦fKres◦...◦f 1
res◦fenc(x0), with fkres(z) = fk−1

res (z)+ReLU(Wk−1·fkres(z)+bk−1),

fdec(z) = Wdec · z + bdec and fenc(x) = Wenc · x + benc. The encoder and decoder

are linear, and the encoder projects the data onto a smaller dimension M . The full

architecture is illustrated in Figure 3.3. The specificity of our architecture is that

the residual blocks are connected with an implicit Euler scheme iteration. To do

so, we use a differentiable root-finding algorithm (Kasim and Vinko, 2020). More

precisely, we use the first Broyden method (van de Rotten and Lunel, 2005) to solve

the root-finding problem. It is a quasi-Newton method. This helped getting better

results compared to other algorithms.

...

Figure 3.3: Implicit neural network architecture with K residual blocks.

Latent space forecasting As in Wiewel et al. (2019); Kim et al. (2019a), the

forecast can be done within the latent space of the network; xN ·∆t = fdec ◦ fKblocks ◦
... ◦ fKblocks ◦ fenc(x0), with fKblocks = fKres ◦ ... ◦ f 1

res. To predict at time N · ∆t
from time t = 0, we apply N times the composition of the K residual blocks. It

is illustrated in Figure 3.5, as Figure 3.4 illustrates the traditional approach. This

propagation allows our network to respect the assumptions of theorem 3.2.3 and

thus be stable.

Tr ained neur al  networ k ... Tr ained neur al  networ k

Figure 3.4: Traditional auto-regressive forecasting.

3.2.3 Experiments

We evaluate the performance of our method on the Advection equation and Burgers’

equation.
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Encoder K r esiduals blocks of  the t r ained networ k

K r esiduals blocks of  the t r ained networ kDecoder

...

Figure 3.5: Latent-space auto-regressive forecasting.

Datasets Advection equation. We construct our first dataset with the following

1-D linear PDE, {
∂tu(x, t) = −1

4
∂xu(x, t), x ∈ (0, 2π), t ∈ R+

u(x, 0) = f0(x), x ∈ (0, 2π)

Burgers’ equation. For the second dataset, we consider the following 1-D non-

linear PDE,{
∂tu(x, t) + ∂x(u

2(x, t)/2) = ∂xxu(x, t), x ∈ (0, 2π), t ∈ (0, 1]

u(x, 0) = u0(x), x ∈ (0, 2π)

Both equations have periodic boundary conditions. We approximate the map-

ping from the initial condition f0 to the solution at a given discretization time ∆t,

i.e. u0 7→ u(·,∆t). We then forecast to longer time ranges. The time step ∆t is set to

1 for the Advection equation with a grid of 100 points and 0.0005 for Burgers’ equa-

tion with a grid of 128 points. Initial conditions in space correspond to a Gaussian

where the amplitude and the mean are changed to produce different trajectories.

Baseline methods We compare our Implicit ResNet with respect to an Explicit

ResNet with ReLU activation function and a Fourier Neural Operator (FNO) (Li

et al., 2020b). We have also implemented two Explicit ResNet, with a tanh activation

function and with batch normalization. We design the Explicit ResNet in the same

way as our implicit version, with K layers of residual blocks that are linked by

zn+1 = zn+Rn(zn). Traditional methods forecast by using the output of the network

at time t to predict the dynamics at time t +∆t. Consequently, to predict at time

N · ∆t from time t = 0, the baseline networks are iteratively applied N times, as

illustrated in Figure 3.4.

Results Prediction errors are reported in Table 3.4 for the Advection equation

and Burgers’ equation. We also show the error according to the forecast time in

Figure 3.6.

We find that the baseline methods diverge with the forecast horizon. They reach

a MSE of more than 108 for the Advection equation and go to infinity for Burgers’
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equation, respectively at time 400 and 0.15. Moreover, we see in Figure 3.6 that

divergence in time is convex, so the increase in error is accelerating over time. We

also find that our proposed Implicit ResNet presents better results by several orders

of magnitude for both datasets. Moreover, we can see in Figure 3.6 that its curve

in time is reaching a stable plateau, as expected from our theorem 3.2.3.

As for the training, traditional deep learning methods manage to learn very well

the dynamics at t = ∆t, with an MSE of two orders of magnitude better than our

Implicit ResNet. However, the latter still manages to learn well the dynamics with

a MSE of 10−2 for the Advection equation and 10−3 for Burgers’ equation. This

difference in training can mainly be explained by the longer training time of the

Implicit ResNet, which made us take a smaller number of epochs for this network

(1250 against 2500).

Table 3.4: Results of our approach compared to baselines on the Advection equation
and Burgers’ equation. We calculate the means and standard deviations of MSE for
each model based on 5 runs with different seeds. The mid-range time is 40 for the
Advection equation and 0.075 for Burgers’ and the long range time is respectively
400 and 0.15. Recall that ∆tadv = 1 and ∆tbur = 0.0005. The train error is evaluated
on trajectories at time ∆t seen during training, and test error on trajectories at time
∆t not seen during training. The forecast errors are computed on trajectories at
time T given in the description for trajectories not seen during training.

Model
Train Error
(×10−4)

Test Error
(×10−4)

Forecast error at mid-range
Tadv = 40 ·∆tadv
Tbur = 150 ·∆tbur

Forecast error at long-range
Tadv = 400 ·∆tadv
Tbur = 300 ·∆tbur

A
dv
ec
ti
on

Explicit Res Net 0.03 ± 0.01 0.09 ± 0.07 0.25 ± 0.33 4.7 · 1031 ± 1.0 · 1032
FNO 0.04 ± 0.01 0.1 ± 0.08 0.03 ± 0.04 4.7 · 108 ± 1.0 · 109
Implicit ResNet (Ours) 14.0 ± 9.0 25.0 ± 27.0 27.4 ± 24.0 27.5 ± 24.2

B
ur
ge
rs
’ Explicit Res Net 0.17 ± 0.03 0.90 ± 0.38 2.77 · 1019 ± 6.2 · 1019 +∞

FNO 0.02 ± 0.002 0.03 ± 0.006 5.31 · 1010 ± 11.2 · 1010 +∞
Implicit ResNet (Ours) 4.90 ± 0.64 7.91 ± 0.30 0.67 ± 0.43 0.66 ± 0.44

Figure 3.6: Forecast error for different neural network architectures for the Advection
equation (left) and Burger’s equation (right).
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Discussion Figure 3.6 demonstrates the main benefits of our constrained implicit

neural network. Our network is stable whereas the other methods diverge in time.

This is of great interest, since our method does not suffer from error accumulation

producing infinite errors. However, although being stable and far better than the

baselines, it does not manage to forecast accurately the long-term dynamics. This

is further confirmed by Table A.3, which shows high relative errors. Said otherwise,

when stability is guaranteed, convergence is not. However, some kind of consistency

is achieved, since the error at short-term times is low. We can also note that con-

straining the weights makes our network harder to train, but guarantees structural

forecasting stability.

3.2.4 Conclusion

In this work, we studied the challenging task of long-term forecasting in dynamical

systems. To do so, we developed a theoretical framework to analyze the stability

of deep learning methods for forecasting dynamical systems. We then designed

a constrained implicit neural network out of this framework. To the best of our

knowledge, this is the first work that proposes to study deep learning architectures

for forecasting dynamical systems from a numerical schema standpoint. We showed

improved results with respect to deep learning baselines for two transport PDEs.

This work opens new perspectives to study neural networks forecasting stabil-

ity from a numerical schema standpoint, thus offering more robust architectures.

However, this analysis still needs improvements. Even though it ensures forecasting

stability of our proposed network, it does not guarantee good convergence prop-

erties. We believe that developing this line of research could help overcome these

challenges, and provide more robust architectures for forecasting dynamical systems

in long time range.



Chapter 4

Deep Learning and differentiable

solvers

This chapter is a study of the use of DL methods inside differentiable solvers applied

to the Shallow Water equations. These equations contain a friction law but there

is no consensus on the formulation of this law. This parametrized law is then

often optimized without too much theoretical justifications (Delestre, 2010). In this

work, we aim to replace this friction law with a data-driven model integrated in the

equations and thus interacting with a numerical solver. This leads to the design of a

hybrid model that can learn from observations to reproduce an effective friction law.

This work is a collaboration with Emmanuel Audusse and will soon be submitted

to a journal.

Migus, L., Salomon, J., Audusse E. and Gallinari, P. . Learning a friction law

for the Shallow Water equations through observations. Soon to be submitted

to a computational physics oriented journal.
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4.1 Introduction

The study of PDEs is crucial to better model physical phenomena. They can be

applied to lots of different domains, such as fluid dynamics or climate science. Their

analytical formula can however contain terms that need to be adapted to a context.

This challenge is usually tackled by using optimization techniques to provide pa-

rameter estimation. In some case, these parameters are not thoroughly motivated

by physics, hence the estimation is purely data-driven. In addition, the solutions of

PDEs are almost always obtained using numerical schema, which leads to numerical

errors. These two problems lead to poor generalization to experimental data and

new frameworks. Using a more efficient data-driven method is then a sensible line

of research. Given the recent improvements of data-driven methods in the Deep

Learning (DL) community, we present in this paper a solution to these problems

using DL.

In this way, we focus on a modeling problem related to the Shallow Water equations.

These equations represent various physical systems, from a dam breaking to water

moving in a river, by modeling the water height and speed. One main challenge

of these equations is the design of the friction law. A few general forms have been

accepted in the community, but none of them gives raise to a consensus (Delestre,

2010). This is mainly due to the fact that in this model, the speed is supposed

constant with respect to the height. However, the friction is localized in the bottom

of shallow waters. Then, the modeling of the friction law is inherently non-physical.

This is a similar problem as turbulence modeling in the Navier-Stokes equation,

where several different models are used and discussed (Sagaut et al., 2013). So the

Shallow Water equations are a natural application to use recent data-driven meth-

ods, by guessing a friction law purely from observations without parametric prior.

In order to design a purely data driven law, without supposing prior knowledge of

the underlying friction law, a function can only be inferred through observations.

Indeed, the friction law depends on the water height and speed, allowing for its

reconstruction by observing these two variables. This requires learning through a

numerical scheme, which offers an estimation of the observations based on the fric-

tion law. Consequently, the learned law needs to be adjusted accordingly through

the scheme. This framework allows to tackle different settings and can be easily

applied to experimental data, by correcting discretization errors in the model, given

a reasonably performing differentiable scheme. In what follows, we show the differ-

ent generalization properties of our method on a ODE case of the Shallow Water

equations, before focusing on the more complex dynamic PDE case.

This article is organized as follows. In Section 4.2, we present the related work, with

a paragraph on the Shallow Water equations friction laws and another one on hy-

brid differentiable physics for deep learning. It notably describes (Yin et al., 2021),

which is our main reference for this method. In Section 4.3, we define more pre-
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cisely the Shallow Water equations and the cases that we will study. In particular,

we derive the stationary ODE case. In Section 4.4, we describe the neural network

architecture we used as well as the different numerical schemes and the training

procedure. In Section 4.5, we show the training of our method on the ODE case

and compare it by directly training on the friction law. This gives a perspective

on what can be achieved with our method, considering that the latter case does

not correspond to experimental setting. This highlights the improvements obtained

when learning directly a given friction law, along with strong overall results for our

approach. In Section 4.6, we study the robustness of our approach with respect to

noise, to friction laws, to the considered numerical scheme and its discretization and

to the initial guess. In Section 4.7, we show that our method is still efficient on a

complex dynamical setting.

4.2 Related work

Friction law choices for the Shallow Water equations The Shallow Water

equations are described in Section 4.3.1 and defined by Equation (4.1). Various

empirical friction laws exist in the literature, mostly derived from the experimental

analysis of flows in pipes and open channels (Flamant, 1891). Among all these laws,

two main families of classical laws are often considered in hydrology, namely, the

laws of Manning and Strickler and the laws of Darcy-Weisbach and Chézy. The

laws of the Manning and Strickler family can be written as Sf (h, u) :=
Cf |u|u
h4/3

, where

Cf is the coefficient of friction. It can be written in several ways. By Cf := n2,

Manning’s law of friction (Hervouet, 2003; Smith et al., 2007) is obtained, where n

is the Manning coefficient. There are tables that reference values for n as a func-

tion of soil (see among others the site of the software FishXing version 31). Most

of these tables have been developed from the work done in French (1985). With

Cf := 1
K2 , Strickler’s law of friction (Viollet et al., 2003; Hervouet, 2003) is ob-

tained, where K is the Strickler coefficient. The Darcy-Weisbach and Chézy family

laws can be written as Sf (h, u) :=
Cf |u|u
h

. Here again Cf can be written in several

ways. With Cf := 1
C2 , the law of Chézy (Hervouet, 2003; Smith et al., 2007) is

obtained, where C is the Chézy coefficient. With Cf := f
8g
, the Darcy-Weisbach

law (Viollet et al., 2003; Chanson, 2006; Smith et al., 2007) is obtained, where f is

the Darcy-Weisbach coefficient. In some hydrological models, these coefficients are

replaced by non constant terms. In Fiedler and Ramirez (2000); Dunkerley (2002);

Raff and Ramı́rez (2005), we find a Darcy-Weisbach friction law with the coefficient

f = K0

Re
= νK0

|Qe| , where ν is the kinematic viscosity, K0 depends on the nature of

the soil, and Re :=
|Qe|
ν

is the Reynolds number (which is interpreted as the ratio

between inertial and viscous forces). In this case a linear friction law in u is found;

Sf = νK0u
8gh2

. In Lawrence (1997); Smith et al. (2007), friction coefficients depend on
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the size of the soil micro-rugosities.

Manning’s and Darcy-Weisbach’s laws with constant friction coefficients are widely

used in hydrology. All these friction laws can be written in the following general

form Sf = Kf (h, u)|u|. In the rest of this work, we will try to model Kf . This

section is highly inspired by Delestre (2010).

As we can see, there is no consensus for the modeling of the friction law in the

Shallow Water equations. That is what motivated our use of deep neural networks

to model the friction law from the data-driven paradigm.

In addition to the research on the friction law formulation, many computational

tools have been proposed to evaluate Manning’s coefficient n, which is of crucial im-

portance for river flood prediction for instance. This can be particularly challenging

since, in real-world experiments, n appear to be space dependent, so that significant

computational efforts are required to get an accurate estimation. This problem is of-

ten tackled in terms of an optimization problem in the literature, see Agresta et al.

(2021); Ayvaz (2013); Askar and Al-Jumaily (2008); Birgin and Mart́ınez (2022);

Ding et al. (2004); Ding and Wang (2005); Marcus et al. (1992). These works try

to provide or apply efficient optimization algorithms to this problem. A challenge

of using data-driven techniques is that the optimization must be linked with the

simulation. This line of research explored the use of optimization algorithms to pro-

vide an accurate estimation of n in real-world applications, resulting in a parametric

friction law with a space dependent parameter.

Hybrid differentiable physics for deep learning Several lines of work in the

deep learning community explore combining numerical schemes and neural network.

In this way, Chen et al. (2018) paved the way by explicitly showing links between

common deep neural architectures and numerical solvers. However, this work and

the related papers focused on improving neural network architectures and training

for a variety of tasks. More specifically applied to physics problems, (Thuerey

et al., 2021) has developed a lot of methods around the use of differentiable physics

simulations for deep learning; error correction (Um et al., 2020), PDE control (Holl

et al., 2020) or inverse problems (Holl et al., 2021). (Belbute-Peres et al., 2020) used

similar ideas of a neural network combined with a differentiable simulator. They

trained a graph neural network to predict on a finer mesh from a coarse resolution

given by the simulator, which improves the computational time. In this paper, we

follow the approach proposed by APHYNITY (Yin et al., 2021). In this framework,

data-driven models offset incomplete physical dynamics. The basic idea is to learn

the error between a simple physics model and reality. The learning problem is

formulated such that the physical model explains as much as possible the data, while

the data-driven component only describes information that cannot be captured by

the physical model. This paradigm is different from the one considered in this paper.

Indeed, instead of minimizing a data-driven component, we aim here at completing
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a Shallow Water model by a learned friction law which is a plain part of the model.

However, the paradigm of APHYNITY is closely related to ours in its formulation.

Indeed, given a model dXt

dt
= F (Xt), the APHYNITY approach decomposes F into

Fa + Fp ≈ F , where Fp encodes the incomplete physical knowledge and Fa is the

data-driven augmentation term complementing Fp. Fa is a parametric function with

only a few parameters, whereas Fp has a free form and many parameters to optimize.

Their optimization problem is then formulated as min
Fp∈F√,Fa∈F

∥Fa∥ subject to ∀X ∈

D, ∀t, F (Xt) = (Fp+Fa)(Xt). This is a joint constrained optimization, which is quite

complex to perform. In practice, the condition on F is ensured by using a solver,

hence this condition depends on the solver and the discretization. Our problem on

the other hand is formulated similarly, but for a PDE, namely

gh∂xb− ∂t(hu)− ∂x(hu2 +
gh2

2
) = uhKf (h, |u|)

∂th+ ∂x(hu) = 0.

In this case, X = (h, hu), Fp = (−∂x(hu),−∂x(hu2 + gh2/2) − gh∂xb) and Fa =

(0, Khu). On the contrary to APHYNITY, the optimization problem is formulated

as ∀X ∈ D,∀t min
Fa∈F
∥(Fp + Fa)(Xt)− F (Xt)∥. In practice, similarly to APHYNITY,

the optimization is performed on a sequence obtained with a numerical solver, thus

being sensible to the scheme and the discretization. Our problem is an unconstrained

problem with only one variable to optimize, since Fp is fixed in our case. Indeed, all

terms in Fp are known, for instance the gravity g. An extension of APHYNITY could

be implemented for modified Shallow Water equations where there is a parameter

in front of the pressure term to take into account that the vertical profile of speed

is not constant. However, this is not assumed in this work.

4.3 Problem

This work focuses on the Shallow Water equations. These equations can represent

water moving in a river, a swimming pool or a dam breaking for instance. We will

study a few different scenarios.

4.3.1 Shallow Water equations

Introduced in Saint-Venant et al. (1871), the ShallowWater equations can be written

as:

∂th+ ∂x(hu) = 0

∂t(hu) + ∂x(hu
2 +

gh2

2
) = −gh∂xb− uhKf (h, |u|)

(4.1)
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where u is the water speed, h the water height, b the topography, g the gravitational

constant and Kf the friction law. An example of friction that we will take for our

experiments is:

Kf (h, u) =
Cf ∗ |u|α

hβ
. (4.2)

As detailed in Section 4.2, the choice of the friction Kf is usually motivated by

numerical experiments. Depending on the problems, some values of Cf , α and β are

fixed. Since this choice is not entirely motivated by physics, we would like to have

a pure data-driven choice of Kf . Hence, we design a neural network KNN to help

in better approximating solutions of the Shallow Water equations. The resulting

system reads:

∂th+ ∂x(hu) = 0 (4.3)

∂t(hu) + ∂x(hu
2 +

gh2

2
) = −gh∂xb− uhKNN(h, u). (4.4)

In this work, unless stated, we will use the Manning and Strickler family of laws,

i.e. β = 4
3
and α = 1. We will also set Cf to 0.2, which is equivalent to a Manning

coefficient n of 0.04. The positivity of the output of the neural network can be easily

guaranteed by changing KNN(h, u) into |KNN(h, u)|.

4.3.2 Case of study

In order to learn the friction, we consider different settings. Each setting is chosen

to ensure that our framework is flexible, from a more simple stationary setting to a

harder dynamic setting.

4.3.2.1 River

Description As a first setting, we choose a river setting controlled by an upstream

water flow and a downstream water height. Such experiments aim at studying sta-

tionary configurations, which are obtained after some transient states. Real data

can then be obtained by extracting quantitative data from flows pictures. It follows

that to get close to this setting, we derive a new set of equations.

This stationary regime is described by an ODE. This regime is derived from Equa-

tion (4.1) by setting the derivative in time to 0. As can be seen in Equation (4.5),

the flow is then constant and equal to the upstream flow Qe. This is ensured only

if the regime does not change. For a flat topography, the resulting system reads:

d

dx
(
Q2
e

h
+
gh2

2
) = −QeKf (h,Qe)

h(xfinal) = hs,

(4.5)
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So that:

d

dx
h(x)(−Q

2
e

h2
+ gh) = −QeKf (h,Qe) (4.6)

d

dx
h(x) = −QeKf (h,Qe)

h2

gh3 −Q2
e

. (4.7)

We consider a stable subsonic fluid. This property holds if Qe ≤
√
ghh, otherwise

the denominator is null at some point, which induces two zones, a supersonic one and

a subsonic one. The passage from one zone to another implies different phenomena

than the phenomenon considered with the ODE. Since d
dx
h(x) ≤ 0, h increases from

right to left, so that Qe ≤
√
ghehe is a sufficient condition. The term Qe =

√
ghshs

is called the Froude line. Also, since Qe = uh, we have:

Kf (h,Qe) =
CfQe

h7/3
. (4.8)

Representative data sampling for the river case of study In order to have

representative data, we sample the data in a particular manner. For each chosen Qe,

which is randomly sampled between 0.5 and 2, we first choose the downstream water

height hs := hf+δ, where hf corresponds to the Froude limit, whereQe−
√
ghshs = 0

and δ = 0.25. At the end of the corresponding simulation, for each Qe, we then

choose the new downstream water height hs to be equal to the upstream water height

he of the previous simulation. We repeat this operation only once, i.e. Nrepet := 2.

This algorithm is described in Algorithm 1. This allows us to have representative

data for each couple of Qe and hs. We also choose a logarithmic scale for x to ensure

a better distribution along the hs axis. A density plot of the data is represented

in Figure 4.1a. A comparison with taking random values of Qe and hs can be seen

in Figure 4.1. This confirms that the sampling is more representative with the

described algorithm. Figure 4.2 shows the true friction induced by this sampling for

this case of study.

The setting we consider is as follows:

River setting

1. Fluvial boundary conditions with varying input flow between 0.5 and 2.

2. Fluvial boundary conditions with varying output height chosen accordingly to

Qe.

3. Flat topography.
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Algorithm 1: Representative data sampling

for i = 1, Ntraj do
Qe ∼ U(Qe−, Qe+) ;

hs = [Qe
2/3

√
g

+ δ] ;

for j = 2, Nrepet do
h = Solver(x, x0 = hs,Qe,Kf ) ;
hs = [hs, h[−1]] ;

end

end

(a) Histogram of the values of Qe and h for
a random data creation.

(b) Histogram of the values of Qe and h for
a more representative data creation.

Figure 4.1: Discrete histogram of values for random creation and more representative
creation.

Figure 4.2: True friction for the stationary case.
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4.3.2.2 Closed swimming pool

In this second setting, a closed swimming pool with sinusoidal initial conditions is

considered. The property of interest in this case is the unsteadiness. This setting is

close to a damped pendulum equation if the water height does not vary much. By

increasing the oscillations of h, the range of values of h is higher, then the friction law

is more complex, due to its exponential dependency on the water height. This leads

to the design of three different settings: small variations one, medium variations and

large variations. In the small variations setting, the friction is almost linear with h,

hence being close to a damped pendulum equation. On the contrary, the medium

variations setting showcases a greater influence of the water height, making it a

typical use case. The large variations settings is intended to be more challenging,

with great variations of the water height. The density plots and friction laws from

these setting are shown for 5 trajectories in Figures 4.3, 4.4 and 4.5b. The three

settings are detailed below:

Small variations setting

1. Periodic boundary conditions

2. Flat topography

3. Sinusoidal initial conditions, with little variation in the conditioning (variance

of 0.001 for the mean and 0.05 in the amplitude).

(a) True friction. (b) Histogram of the values of Qe and h.

Figure 4.3: Small variations PDE setting true friction and density.

Medium variations setting

1. Periodic boundary conditions.
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2. Flat topography.

3. Sinusoidal initial conditions, with medium variation in the conditioning (vari-

ance of 0.01 for the mean and 0.2 in the amplitude).

(a) True friction. (b) Histogram of the values of Qe and h.

Figure 4.4: Medium variations PDE setting true friction and density.

Large variations setting

1. Periodic boundary conditions.

2. Flat topography.

3. Sinusoidal initial conditions, with medium variation in the conditioning (vari-

ance of 0.4 for the mean and 0.8 in the amplitude).

(a) True friction. (b) Histogram of the values of Qe and h.

Figure 4.5: large variations PDE setting true friction and density.
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4.4 Method

This section describes the method used in this article. It first describe the neural

network architecture, before delving into the different numerical schemes used and

finally illustrating the training process.

4.4.1 Neural Network

The neural network used in this work is a well-known deep learning architecture,

namely a convolutional neural network (CNN) LeCun et al. (1989). More precisely,

this network is a ResNet He et al. (2016) type architecture and consists of successive

blocks of CNN with a residual connection. We consider an input I is of size (Cin, Ls),

an output of size (Cout, Ls) and a kernel K of size Kk. The kernel is applied channel

per channel. Cin is the number of channels of our input and Cout of the output. In

our case, we have NC := Cin = Cout, except for the first layer, where Cin = 1. The

term Ls is the length of the sequence. In order for the output sequence to have the

same length as the input, the kernel needs to receive a different input. Padding is

used to solve this problem. This technique consists in adding p zeros on the left and

on the right of the sequence. The integer p is chosen accordingly to Kk. We denote

by pa the corresponding operation, then Ipa = pa(I). A single convolution between

K and I is defined by ∀j ∈ [|1, Cout|], conv(I,K)j := (B)j+
∑Cin−1

k=0 (K)j,k⋆I
pa
k , where

⋆ is the cross-correlation and B is a bias vector of size Cout. The kernel K is learned

during the backward pass, and is different for each convolution in the architecture.

We also define weight normalization as wnorm(v) := g v
∥v∥ , with g ∈ RLs being

learned. The norm is computed independently per output channel. We then have a

residual block:

ResBlock(I) := σ ◦ [(wnorm ◦ conv)3(I) + wnorm(WI +B)] (4.9)

with σ an activation function and W a linear layer of size (Cout, Cin) and B a vector

of size (Cout, Ls). The last layer avgpool is an average over the channel and the

sequence length dimensions. Moreover, the first input is transformed to be of size

(1, Ls) with a linear layer W1 and a bias B1, of size (Ls, 1) and (1, Ls). The whole

network is then:

Network(I) = avgpool ◦ResBlockDepth(W1I +B1). (4.10)

Figure 4.6 illustrates the architecture presented here. A few parameters can be

tuned in this model:

• The sequence length Ls, which is 2 for the input, since we have h and Qe. Ls
is set to 10 for the other convolutions.
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• The number of channels NC , which is set to 64 for the ODE case.

• The kernel size Kk, which is set to 3. The padding p is set accordingly to 1 to

obtain a stable Ls through the depth of the network.

• The depth of the network Depth.

• The activation function σ. A Leaky Rectified Linear Unit (LeakyReLU) is

chosen and can be written as σ(x) = max(0, x) + ϵmin(0, x), with ϵ = 10−2.

(a) Residual block illustration. (b) Whole network illustration.

Figure 4.6: CNN network architecture illustration.

4.4.2 Numerical schemes

In order to back-propagate the gradients through the neural network, the numerical

scheme needs to be differentiable. For the river setting, the problem is encoded as

an ODE, all the classical numerical schemes can be used, from an explicit Euler

scheme to a Runge-Kutta of order 5 of Dormand-Prince-Shampine scheme. We will

study the influence of the choice of the solver for the ODE case in section 4.6.1.3,

with Chen (2018) for the implementation. The swimming pool example is more

complex and encoded by a PDE. In this case, we use a specific numerical scheme,

which is differentiable in the domain we use it. The scheme is a Rusanov scheme

(Bouchut, 2004), and is not differentiable only when the water height is null, which
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is not interesting to study and does not occur in our experiments. Unless specified,

we use grids of size 100.

4.4.3 Training

As explained above, the loss is back-propagated through the differentiable solver and

then through the network. Training and inference are illustrated in Figure 4.7. In the

PDE case, the combination of time and space discretization increases significantly

the computational cost. We therefore constraint the number of back-propagation in

time to remain under a given limit.

Training a neural network is learning a mapping from the data without over-fitting it,

so that the network can generalize to new cases. In order to achieve this, the training

process is inherently stochastic with the use of Adam optimization algorithm, which

is an extension to stochastic gradient descent. Tuning the learning rate lr can reduce

this influence, but obtaining a null error on the training set is not the goal. There

is a trade-off between exploring the parameter space and reducing the variance of

the results.

The training is performed with a linear scheduler, which improves the performances.

The idea behind a scheduler is to reduce the learning rate lr as the training is

improving. A linear scheduler decreases this rate linearly by γ a given number

of steps, which is chosen to be 8 for the ODE case. For the ODE case, we set

the number of epochs to 1200 and the batch size is 64. For the PDE case, we

cannot parallelize the examples, since the scheme has not a fixed temporal step.

As a consequence, the batch size is 1. This can also cause alignment issue when

comparing to ground truth. The ground truth reference solution must be created

with the same temporal steps as the network solution. Another problem occurring

for spatio-temporal schemes during training is the propagation through different

time steps. In order to solve this challenge, the whole scheme is run again at time

step and the loss is back-propagated, hence there is no problem of alignment and the

network is updated regularly. Indeed, if the propagation is done without restarting

the scheme, then the network is not consistent due to the error accumulation of the

network. In our case, this is limited since the network improves at each re-run of

the scheme.

For the initialization of the network, we use a uniform Xavier initialization Glorot

and Bengio (2010), with a gain set to 4. For the ODE case of study, we performed

a broad grid search as can be seen in Table 4.1.

In DL, the data is usually split into two sets, the training set and the test set. The

training set is used to update the weights of the neural network. It is usually split

into a training set and a validation set. The latter is used to verify at each step

of the training if the network is over-fitting. The test set is distinct from the train

set and not used during the training, only to test if the network can generalize to
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Table 4.1: Hyper-parameter grid search table for the river case of study.

Network NC Network Depth Optimizer γ Optimizer lr
32 1 0.2 0.0005
64 3 0.4 0.005
128 0.8 0.05

trajectories not seen during training. Different losses can be used for the training

phase. We will use the mean-squared error (MSE), which is defined by:

MSE(x, y) = ∥x− y∥2.

For testing, we will usually use the mean absolute error (MAE), defined as:

MAE(x, y) = ∥x− y∥1. (4.11)

Differentiable 
solver 

temporal step

Differentiable 
solver 

temporal step

Differentiable 
solver 

temporal step

Differentiable 
solver 

temporal step

Differentiable 
solver 

temporal step

Differentiable 
solver 

temporal step

: Backward

: Forward

(a) Training through a temporal differentiable solver.

Differentiable 
solver 

temporal step

Differentiable 
solver 

temporal step

Differentiable 
solver 

temporal step

(b) Inference through a temporal differentiable solver.

Figure 4.7: Training and inference through a temporal differentiable solver. The
ODE case corresponds to stopping at the first time step.
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4.5 Learning the friction through a scheme vs learn-

ing the friction directly

In order to learn the friction law, we suppose that it is not known, so that Equa-

tion (4.1) is not algebraically closed. However, to make a precise analysis of our

method, we consider in this work synthetic data, i.e., data generated by numerical

simulation where the friction law is fixed. In this framework, we can compare learn-

ing directly the friction and learning it through a scheme, i.e. through observations.

In the direct learning, the training simply consists in learning a known function,

and the in the non-direct learning, it is more complicated since the results depend

on the choice of the numerical solver and the discretization and their impact on the

precision of the results. This comparison sets a reference with the direct learning

and thus allows for the study of the loss induced by learning through a scheme.

Moreover, learning directly helps developing ideas to improve the non-direct learn-

ing. However, as explained earlier, this baseline does not solve the problem at hand,

since it assumes a known friction law. This section will be restricted to the study

of the river case.

4.5.1 Learning directly

In this first part, the friction is learned directly with a neural network, with the

same points that the network trained with observations will get. The friction law

is learned very accurately, as can be seen in Figures 4.8 and 4.11. The network

obtains a MAE, metric defined in Equation (4.11), around 1e−4 and a visually

coherent friction law. Moreover, as can be seen in Figure 4.8b, the relative error is

less than 2% everywhere and less not on the boundaries.

(a) Learned friction. (b) Relative MAE on friction.

Figure 4.8: Friction laws of the model and the neural network by learning directly.
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4.5.2 Learning through a scheme

In this more challenging setting, computed with a RK4 scheme with 100 points,

learning through a scheme yields also very good performances. The friction law

is learned quite accurately, as can be seen in Figures 4.9 and 4.11. The network

obtains a MAE error around 5e−4 and a visually coherent friction law. Moreover,

as can be seen in Figure 4.9b, the relative error is less than 10% everywhere and less

not on the boundaries. Since the network has been given only the observations, the

information on which it should fairly be tested is the reconstruction of trajectories

of the water height. This can be seen on Figure 4.10.

(a) Learned friction. (b) Relative MAE on friction.

Figure 4.9: Friction laws of the model and the neural network by learning through
a scheme.

(a) Trajectory 1. (b) Trajectory 2.

Figure 4.10: Two trajectories of water height states predicted by the solver with
the neural network trained through it. They correspond to two different initial
conditions. The network solution is plotted in red and the true solution in blue.
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4.5.3 Discussion

As can be seen in Figure 4.11 and in Table 4.2, learning directly the friction law

leads to better results. More precisely, for the test set, i.e., new trajectories, as

presented in Table 4.2, the MAE error on the friction is more than two times lower

for the direct learning, and the MAE on the height is four times lower for the direct

learning. This is to be expected, since by learning through a numerical scheme, the

neural network needs to interact with the scheme. However, the results obtained

by learning through the schemes are very good and the friction law proposed by

the network is coherent qualitatively. Additionally, as can be seen in Figure 4.11,

the training of non direct learning leads to better results for the water height on

the training set. This is to be expected since the optimization target is the water

height, as is the friction for the direct learning. However, for the test set, the direct

learning leads to better errors on both, since guessing the right friction is crucial for

accurately predicting water height in general settings. Hence, the non-direct learning

leads to better results on the training set, i.e. trajectories seen during training, but

worse results on the test, the network is over-fitting. Before diving deeper into the

robustness of this type of learning, we have found that learning through observations

on the water height and flow allows us to reconstruct accurately the friction law.

Figure 4.11: Training friction and water height losses for direct and non direct
learning.
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Table 4.2: Results of our approach against learning directly for different settings at
test time.

Direct learning
Friction MAE

(×10−4)

Friction RMSE

(×10−3)

Height MAE

(×10−4)

Height RMSE

(×10−2)

✓ 1.71 0.30 2.22 0.40

✗ 5.45 1.55 7.95 1.44

4.6 Analysis of the ODE setting

In Section 4.5, it was shown that the network could be effectively trained to learn an

accurate friction law through the observations. We then want to test how robust this

training is, and what are the influences of the different choices made. A first part

is dedicated to the robustness study. It uses the same global setting as Section 4.5

and varies different elements. The first test is the robustness of the training to

noise in the measurements of the observations. Then, the influence of learning

different friction laws is analyzed, which is crucial to see if the network can be used

in various settings. Furthermore, different numerical schemes are tested, in order

to understand how the properties of different schemes affect the training. Finally,

different initial guesses of the friction laws are used to see if the network can gain

from some incomplete domain knowledge. This first part is a complete study of the

robustness of the proposed approach, in the case of the river study. The second part

is a convergence analysis. We suppose that a high fidelity true solution is available.

Then, different discretization grid sizes and schemes are tested. This a realistic

setting of the river case.

4.6.1 Robustness

This section is a preliminary study to test the robustness of our approach, which

includes noise injection, variation of laws to retrieve, variation of schemes and tests

of different initial guesses.

4.6.1.1 Learning with noise in the observations

When measurements of physical values are done, there is always a uncertainty on

the values being recorded physically. It is important that models to be deployed are

somewhat robust to this uncertainty. This can be modeled by noise. In this section,

a Gaussian noise with a given standard deviation σ is added to the measurements of

the water height. The flow Qe is assumed not to be perturbed by noise. In practice,

we train a neural network with noisy data with a varying noise level, and we then

test it on a test set with no noise.
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(a) Water height MAE vs noise. (b) Friction MAE vs noise.

Figure 4.12: Noise study. The results are obtained on a test set with no noise, i.e.
the law is learned with noisy data and the results presented here are the test on
data with no noise.

In Figure 4.12, it is shown that the model error increases with the noise. The

learning with noise produces less accurate friction laws when the data is more noisy.

This is expected, since when the noise increases, it gets harder for the model to

differentiate noise from the original data. However, this increase in the error is still

reasonable, up to a certain level of noise, where the noise is unrealistically high

anyway (more than 50% of the value). It is interesting to note that the increase

in error is exponential when the noise increases. The MAE on the water height is

exponential with a factor of 0.38 and the MAE on the friction is exponential with a

factor of 0.29, as illustrated by the linear regression on the log-log plot in Figure 4.12.

In Figures 4.13 and 4.14, it is shown that the model still maintain good qualitative

results for the friction law with two levels of noise. Indeed, the relative errors are

below 5% almost everywhere, and the worst errors around the top left and bottom

right edges is still less than 10%. The relative error in the friction learned with more

noise in Figure 4.14a is brighter than the one with less noise in Figure 4.13a, which

indicates a higher error when the data is more noisy, which confirms the quantitative

analysis from Figure 4.12.
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(a) Learned friction. (b) Relative MSE on friction.

Figure 4.13: Friction laws of the model and the neural network with noise of 0.0125.

(a) Learned friction. (b) Relative MSE on friction.

Figure 4.14: Friction laws of the model and the neural network with noise of 0.04.

In Figure 4.15, two trajectories associated with these levels are represented. The

left plots show the different trajectories and showcase the complexity of the task,

with noisy trajectories that are nothing close to the original noiseless ones, with

many peaks. This highlights that the observations produced by the combination

of the neural network and the numerical scheme are very good, since they are very

close to the true one. The error map on the right side of Figure 4.15 also shows

that with a higher noise, errors are more propagated through the trajectory leading

to higher errors at the end of the trajectory (which corresponds to x = −2.0, going
from x = 2). With a lower noise, the error accumulation is less pronounced and not

always monotone as in Trajectory 1. The case of trajectory 1 might be explained by

the fact that around x = 0 and x = −1 the values of h encountered have been seen

during training, leading to a lower error. The loss in accuracy for the water height

when the noise increases can then be highly attributed to error accumulation due to
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a less precise learned friction law. In addition to these results, Table B.1 shows the

precise results about the increase of error with the noise, by presenting the MAE of

the friction and the relative height MAE for a few different levels of noise.

(a) Trajectory 1. (b) Trajectory 1 error.

(c) Trajectory 2. (d) Trajectory 2 error.

Figure 4.15: Examples of trajectories with noise of 0.0125 and 0.04. On the left side,
the trajectory is plotted in blue and two example trajectories associated to the two
levels of noise are in grey and orange, with the band around being the noise level.
In green and red are the network trajectory solution trained with these noise. On
the right, the errors between the true trajectory and the trajectories learned with
noise are shown.

4.6.1.2 Testing different friction laws

As can be seen in Table 4.3, lots of choices for Cf are possible depending on the

considered cases. In the overall work presented here, the value of Cf is fixed to 0.2.

However, in order to test if the proposed method can be used in various cases, it

is important to study if different models can be learned. Hence, in order to test

the robustness of our approach, models with different Cf and β are learned. The

coefficients Cf and β are presented in Section 4.3.
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Table 4.3: Manning roughness coefficients for different land use classes. Table taken
from Van der Sande et al. (2003). As defined in Section 4.2, the Manning coefficient
n is the square root of the friction coefficient Cf , i.e., Cf := n2.

Land use classes Manning roughness coefficient Cf

Residential building 0.200 0.447

Private/public garden 0.100 0.317

Grass in built-up area 0.259 0.509

Pavement/other urban area 0.050 0.224

Waterside 0.050 0.224

Sand deposit area 0.120 0.346

Road 0.013 0.114

Railroad 0.033 0.182

Industrial company/agency 0.200 0.447

Pasture 0.259 0.509

Winter wheat 0.127 0.356

Nursery 0.200 0.447

Fallow 0.120 0.346

Natural vegetation 0.100 0.317

Deciduous forest land 0.200 0.447

Mixed forest land 0.200 0.447

Water 0.030 0.173

Table 4.4: Height and friction errors for different friction laws. We have chosen
different β and Cf . Friction MAE and relative MAE are expressed with factor
×10−3 and height with factor ×10−4.

β
MAE Relative MAE MAE Relative MAE

Friction Height Friction Height Friction Height Friction Height

Cf = 0.1 Cf = 0.2

1/2 0.20 0.22 1.10 0.29 0.29 0.16 0.91 0.21

2/3 0.27 0.32 1.43 0.42 0.34 0.18 0.96 0.24

1 0.34 0.24 1.56 0.34 0.45 0.21 1.14 0.28

4/3 0.41 0.26 1.73 0.40 0.63 0.32 1.40 0.42

2 0.46 0.23 1.56 0.32 1.29 0.46 2.48 0.62

Cf = 0.3 Cf = 0.5

1/2 0.84 0.43 1.81 0.54 1.34 0.58 2.04 0.63

2/3 1.07 0.57 2.23 0.70 1.57 0.65 2.32 0.73

1 1.56 0.74 2.94 0.92 1.94 0.78 2.66 0.85

4/3 2.10 0.85 3.78 1.08 2.56 0.88 3.28 0.99

2 1.80 0.51 2.81 0.64 3.32 1.16 3.72 1.23
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In Table 4.4, the errors for the different friction laws are shown. When β in-

creases, the training gets harder. This is due to the fact that β influences the law

exponentially, hence when β increases the amplitude of the law varies a lot more,

and it is harder to capture. The influence of Cf on the law is linear, but we can see

that it changes the results a lot. When Cf increases, the amplitude increases, and

it is harder to capture the law. A difference of more than an order of magnitude

between the best and the worst cases for the MAE can be observed in Table 4.4.

However, for all the different laws, the relative error on the friction is less than 0.5

%, namely 0.378%, and the difference between the best and worst case in relative

MAE is about four times. The water height error follows the same trends as the

friction. However, the difference between the best and worst cases is less important

for the MAE, around 5 times, but similar for the relative MAE, four times. We

can quantitatively conclude that our approach handles different use cases with great

accuracy.

(a) β of 1/2. (b) β of 1.

(c) β of 4/3. (d) β of 2.

Figure 4.16: Friction laws guessed by the neural network for different friction law
with changing β for Cf = 0.3.
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(a) Trajectory 1. (b) Trajectory 2.

Figure 4.17: Examples of true trajectories with different β for Cf = 0.3.

Qualitatively, Figure 4.16 shows different friction laws. The values taken by the

water height change between the laws, a higher β reduces the range of values. More-

over, the friction decreases with a higher β for higher water heights. In Figure 4.17,

different trajectories with these laws are shown. This helps representing the physical

phenomena. As expected, when β increases, the rise of the height is firstly slowed,

due to more friction added, before being accelerated for higher values of the height,

when friction is reduced for h ≥ 1. This can be seen in the second trajectory of

Figure 4.17 when around x = −1.75 the trajectories cross. Moreover, Figure 4.18

confirms the quantitative results, with a higher error when β is higher, as is seen the

color code being brighter for higher β. In addition, the models struggles to capture

the edges, when values are either low or high, with a bright zone, especially for high

values of h and low value of Qe. The neural network has globally a constant error

throughout the domain, and this does not change for different friction laws. Overall,

the qualitative analysis also validates the robustness of the proposed approach, as

well as as showing that laws with a higher range of values and more variations are

harder to capture.
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(a) β of 1/2. (b) β of 1.

(c) β of 4/3. (d) β of 2.

Figure 4.18: Relative friction absolute error for different friction laws with changing
β for Cf = 0.3.

4.6.1.3 Learning with different schemes

In order to perform simulations required by our approach, a scheme needs to be

chosen. It is then crucial to understand the influence of this scheme on the results.

Since synthetic data is used in this work, the scheme with which the data is created

can also be changed. So we test a comparison changing the true scheme, i.e. the

scheme which created the data, and the network scheme, i.e. the scheme with which

the neural network learns. A point of interest of these experiments is to study if the

neural network can correct the errors due to the scheme.

The different schemes used in this study are

• Euler. A first-order fixed-step method.

• Midpoint. A second-order fixed-step method.
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• Bosh3. A third-order method with adaptive-step. More precisely, the Bo-

gacki–Shampine method.

• RK4. A fourth-order scheme with fixed-step. More precisely, a fourth-order

Runge-Kutta with 3/8 rule.

• Dopri5. A fifth-order method with adaptive-step. More precisely, a Dor-

mand–Prince method of fifth-order.

In Table 4.5 and Table 4.6, it is shown that using a first order scheme does not lead

to excellent results if the data was created with more complex schemes and vice-

versa. Indeed, the errors on the friction using an Euler scheme with another scheme

are almost an order of magnitude higher compared to other schemes. The other

schemes have similar results between each other. However, the midpoint method,

which is a second-order method, is slightly less efficient with the other methods than

the other higher order methods when predicting the friction. Another interesting

aspect of the results on the friction is that Table 4.5 is symmetric, using a given

numerical scheme as the true scheme or the network scheme is equivalent. Moreover,

the diagonal presents the lower values, since the settings are similar and the network

does not have to compensate for a different scheme when learning the friction law

However, the results on the water height are slightly different. Indeed, using an Eu-

ler scheme with another scheme leads to results with performances twice lower, and

using a Midpoint scheme is similar to the other schemes. These results, presented

in Table 4.6, could have been expected to be all constant since the optimization is

performed with the water height as a target. The experiments show that learning

that the errors induced by an Euler scheme need to be compensated highly in the

friction law learned, hence a high error in friction, and cannot be entirely compen-

sated when predicting the water height.

We can conclude from this part, that using a first-order method makes it harder for

the network to learn properly data generated from higher-order schemes. However,

the network has learned to adapt to other high-order schemes and update the fric-

tion law to correct for the errors induced by using different schemes, hence leading

to a less physical law but closest to the data and more applicable in practical cases.

Table 4.5: Friction error for different schemes. Results in MAE (10−3). True solution
scheme by column and network scheme by column

hhhhhhhhhhhhhhhhhhhhNetwork scheme

True scheme
Euler Midpoint Bosh3 RK4 Dopri5

Euler 0.62 3.89 3.86 3.98 3.84

Midpoint 4.04 0.63 0.80 0.79 0.74

Bosh3 3.99 0.78 0.64 0.61 0.57

RK4 3.84 0.79 0.66 0.61 0.61

Dopri5 3.73 0.80 0.67 0.61 0.62
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Table 4.6: Water height error for different schemes. Results in MAE (10−4). True
solution scheme by column and network scheme by column

hhhhhhhhhhhhhhhhhhhhNetwork scheme

True scheme
Euler Midpoint Bosh3 RK4 Dopri5

Euler 0.31 0.56 0.83 0.80 0.80

Midpoint 0.95 0.27 0.42 0.41 0.35

Bosh3 0.50 0.32 0.32 0.30 0.43

Rk4 0.68 0.34 0.40 0.33 0.28

Dopri5 0.51 0.40 0.30 0.26 0.30

4.6.1.4 Is is better to learn with an initial guess of the friction?

As detailed in Section 4.2, there is no consensus on the friction law. However,

common laws still emerge and good priors can be known on some cases. In such a

context, it is natural to try to incorporate these priors in our approach. In order

to do so, the neural network is added to a guessed friction law. The sum of the

two then aims to reproduce the true friction law. This section is then closer to

the APHINITY framework(Yin et al., 2021), the goal being to complete a physical

model with strong priors with a data-driven method. In order to test the influence of

the prior, the general form of the friction presented in Equation (4.2) is chosen and

Cf and β are varied for the initial friction guess. The network learns a correction

between the guessed law and the true one. The true friction law is computed with

Cf = 0.2, β = 4
3
and α = 1, as stated in Section 4.3.

The different MAE and relative MAE results for different initial guesses for the

friction and the water height are presented in Table 4.7. In order to better interpret

if a prior is good, Table 4.8 details the L1, L2 and L∞ norms between the true law

and the initial guesses. The results are not always as expected. First, the case with

no prior is sometimes better than guesses with better priors, as is illustrated for

the guess with Cf = 0.3 and β = 4/3, where the guess is twice better in L1 norm

than no guess, but the MAE on the friction and height is around three times higher.

Second, one may expect that the final error is highly correlated to the distance

between laws. Such a result is observed in some cases, e.g., for Cf = 0.1. When

β increases, the laws get closer to the true one, and so are the combination of the

neural network and the prior. However, this correlation is not always true, as is

the case for Cf = 0.3. The priors are worse when β increases, but the overall guess

is not always worse. This can be seen for the guess with Cf = 0.2 as well, where

the guess with β = 2/3 is better than with β = 1, but the errors on the friction

and height are slightly worse In addition to these findings, guessing with the right

laws leads to a very low reconstruction error, as expected. A null error could have

been expected, however, as explained in Section 4.4.3, the network is trained in a

stochastic manner and through a numerical scheme, thus numerical residuals have
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an influence on the results.

Table 4.7: Height and friction errors for different guessed friction laws. We have cho-
sen different β and Cf for the guess. Friction MAE and relative MAE are expressed
with factor ×10−3 and height with factor ×10−4. The true friction coefficients are
0.2 for Cf and 4/3 for β, they are underlined in the table.

β
MAE Relative MAE MAE Relative MAE

Friction Height Friction Height Friction Height Friction Height

Cf = 0.1 Cf = 0.2

1/2 0.47 0.19 1.11 0.27 0.57 0.27 1.35 0.37

2/3 0.41 0.16 0.95 0.21 0.43 0.20 1.16 0.25

1 0.38 0.21 0.93 0.27 0.46 0.24 1.16 0.31

4/3 0.29 0.12 0.70 0.16 0.01 0.01 0.03 0.02

Cf = 0.3 Cf = 0

1/2 0.60 0.35 1.60 0.40 0.63 0.32 1.40 0.42

2/3 0.44 0.27 1.14 0.33

1 0.77 0.60 2.22 0.73

4/3 1.51 0.97 4.9 1.23

Table 4.8: Difference in norm between different friction laws. L2 corresponds to the
L2 norm difference between the initial guess and the true law, and L∞ corresponds
to the infinity norm difference between the two. It is expressed with a factor ×10−2

for the L2 norm and with ×10−1 for the L∞ and L1 norms. The true reference
friction law parameters are highlight by being underlined.

β L1 L2 L∞ L1 L2 L∞

Cf = 0.1 Cf = 0.2

1/2 1.66 3.43 5.12 0.50 0.51 3.11

2/3 1.63 3.27 4.89 0.41 0.35 2.64

1 1.58 2.93 4.37 0.21 0.10 1.49

4/3 1.51 2.57 3.85 0 0 0

Cf = 0.3 Cf = 0

1/2 1.11 1.52 1.99 3.02 10.3 7.69

2/3 1.15 1.53 2.02

1 1.31 1.80 2.81

4/3 1.51 2.57 3.85

4.6.2 Convergence

Schemes solve problems on a specific grid. The size of the grid is of great impor-

tance, since it determines the extent of high-frequency information accessible to the

network and the number of points encountered during training. In this section, we

study the impact of the grid size. In order to do so, we explore three different sce-

narios. The first scenario involves varying the number of observed trajectories for a
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given discretization. The second scenario consists in altering the spatial discretiza-

tion while ensuring that the network receives the same points for each discretization,

eliminating the influence of data point quantity. The third scenario combines the

previous settings and makes varying only the discretization, in the sense that both

discretization and number of points considered in the training change. These cases

allow us to fully understand the different choices and influences.

The Figure 4.20b shows the convergence of the RK4 scheme for the ODE. It con-

sists in plotting the difference in norm L1 between the values discretized on a given

grid and a grid twice as big. This helps us deciding which discretization to choose

to have a solution that should be almost independent of the choice of the scheme.

Indeed, when increasing the discretization grid, numerical diffusion should be re-

duced. Hence, we choose a grid of 216 to test our network against. The solution is

sub-sampled to match the different discretization sizes. This procedure should avoid

any bias of the choice of scheme to create the synthetic high-fidelity solution. Note

that the curve presented in Figure 4.20b follows a line of slope -4, which is expected

since RK4 is a scheme of order 4 and thus is supposed to convergence asymptoti-

cally as h4 until the computer limit. The convergence of the Euler and Midpoint

schemes is also presented in the Appendix in Figure B.2 and both schemes follow a

convergence of their respective order 1 and 2.

In Table 4.9, it is shown that increasing the number of trajectories considered dur-

ing the training helps the network better learn. However from 16 trajectories, the

improvement is marginal. This suggests that the network does not need a lot of

trajectories to have good performances. It is also important to note that with 16

trajectories of 128 points, the network still observes a lot of points.

The errors when tested on different schemes and with different discretization sizes

are presented in Table 4.10 and Table 4.11. In Table 4.10, the influence of the num-

ber of points seen during training is removed. However, as observed in Table 4.9,

this influence is quickly marginal, hence both tables end up having similar results.

The main finding, as illustrated in Figure 4.20a, is that the error is reduced by an

order of 2 when the grid size is twice larger, thus showing a convergence of order 1

no matter what the scheme is. By increasing the discretization size, the scheme pro-

duces results closer to the true solution, and thus the network has to adapt less the

friction law to correct the diffusion. This is illustrated in Figure 4.19, where diffusion

can be observed, and is reduced as the discretization size increases. Additionally,

Euler scheme is slightly less efficient than the other ones when the discretization in-

creases, especially for predicting the water height. For instance, for a discretization

size of 512, the error on the water height is more than twice the error of the other

schemes, but the friction error is just slightly higher than for the other schemes.

This can explained by the order of Euler scheme, which need larger grids to obtain

similar performances than higher order schemes. Midpoint and RK4 schemes have

very similar results.
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In addition to the neural network approach, we tested the regular numerical analysis

approach for the third scenario. Cf , β and α are tuned according to the data using

a gradient descent type algorithm. The training curves for a grid of size 512 and

RK4 scheme can be found in Figure B.3. The results are shown in Table 4.12. They

show the same patterns as Table 4.11, where the error is reduced by an order of

2 when the grid is size is increased by 2 and Euler scheme performs less efficiently

than the other two. This is not expected since the convergence rate could have

followed the order of the schemes. One possible explanation is that the tolerance is

not enough to be in an asymptotic regime and hence the convergence can be of a dif-

ferent order of the scheme. Moreover, our neural network approach outperforms the

traditional numerical analysis, especially for small grids. When the discretization

size increases, diffusion is reduced and the predicting a law with the same analytical

form as the underlying true law becomes better than not putting any prior on the

learned parameters. However, even for a grid of size 512, the neural network obtains

better results than the traditional approach. This was not possible due to the com-

putational cost, but by increasing even more the grid size, the traditional approach

would probably finish by outperforming our DL approach. We can hence conclude

from Table 4.12 that, since only three parameters can be adjusted, the fixed form

traditional approach struggles to correct the various sources of errors that comes

from the use of a different schemes, the diffusion induced by the discretization and

the number of training samples.

This section highlights the convergence of our method on a realistic case with a high-

fidelity solution, but also its weaknesses when there are not enough data points or

the discretization size is too small. It manages to adapt the friction law to correct for

diffusion, but not to a very efficient extent, even if it still better than the traditional

numerical analysis approach.
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Table 4.9: Height and friction MAE for different numbers of trajectories seen during
training of three schemes. The number of points seen during training changes for
each case and the discretization is set to 128 points. Friction MAE is expressed with
factor ×10−3 and height with factor ×10−4.

Scheme \Traj 2 4 8

Friction Height Friction Height Friction Height

Euler 105.18 172.50 42.06 54.74 25.68 22.78

Midpoint 106.12 175.42 42.16 58.11 25.23 23.48

RK4 106.04 175.20 42.24 58.34 25.91 24.41

16 32 64

Euler 13.58 8.63 13.17 6.64 12.57 5.53

Midpoint 13.03 9.20 10.40 6.07 10.16 5.27

RK4 13.11 9.24 10.47 5.89 10.19 5.19

128 256 512

Euler 12.55 5.20 12.21 4.40 11.65 1.68

Midpoint 9.67 4.64 9.59 3.91 9.37 2.23

RK4 9.78 4.61 9.60 3.77 9.41 2.10

Table 4.10: Height and friction MAE for different discretization sizes of three
schemes. The number of points seen during training is the same for each case
and the discretization change. Friction MAE is expressed with factor ×10−3 and
height with factor ×10−4. 500 trajectories are used for training. The test can be
done on the grid size seen during training, which is 16, or the whole grid, which
would thus test the extrapolation capabilities of the network. The height 16 column
corresponds to testing with 16 points and the others correspond to testing on the
whole grid.

Scheme \Disc
16 32

Friction Height Height 16 Friction Height Height 16

Euler 82.63 37.32 37.32 41.07 19.76 21.09

Midpoint 58.24 7.83 7.83 30.10 7.08 7.42

RK4 60.61 1.07 1.07 30.65 3.92 3.98

64 128

Euler 20.43 10.86 11.22 9.95 5.76 5.62

Midpoint 14.76 3.79 3.91 7.95 3.23 3.23

RK4 15.15 3.37 3.35 7.44 2.55 2.54

256 512

Euler 4.98 2.93 2.55 2.64 1.63 1.55

Midpoint 3.78 1.26 1.21 2.20 0.73 0.77

RK4 3.79 1.22 1.16 2.16 0.72 0.77
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Table 4.11: Height and friction MAE for different discretization of three schemes.
The number of points seen during training and the discretization change. Friction
MAE is expressed with factor ×10−3 and height with factor ×10−4. 500 trajectories
are used for training.

Scheme \Disc
16 32 64

Friction Height Friction Height Friction Height

Euler 82.63 37.32 43.93 19.21 23.01 10.56

Midpoint 58.24 7.83 32.45 3.58 17.49 2.88

RK4 60.61 1.07 33.33 2.24 18.16 3.25

128 256 512

Euler 11.57 5.56 5.92 3.10 3.07 1.68

Midpoint 9.01 1.81 4.60 1.52 2.53 0.61

RK4 8.92 1.49 4.78 0.97 2.50 0.63

(a) Trajectory 1.

(b) Trajectory 2.

Figure 4.19: Examples of trajectories with different discretization sizes with network
trained with these sizes.
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(a) Friction MAE against the discretization grid sizes for the
last two scenarios, i.e. learning with 16 points per trajectory
and learning with all the points in the trajectory.

(b) Convergence of the RK4 scheme (without any neural net-
work) for the river case.

Figure 4.20: Study of the impact of discretization on the training of the neural
network and study of the convergence of the RK4 scheme.
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Table 4.12: Height and friction MAE for different discretization of three schemes
with 3 parameters estimation. The parameter estimation is done using Adam, no
neural network has been used for this table. The number of points seen during
training and the discretization change. Friction MAE is expressed with factor ×10−3

and height with factor ×10−4. 500 trajectories are used for training.

Scheme \Disc
16 32 64

Friction Height Friction Height Friction Height

Euler 97.03 68.77 50.27 32.98 25.61 15.87

Midpoint 71.61 49.33 38.72 25.51 20.51 13.24

RK4 76.71 94.48 39.53 25.42 20.70 12.89

128 256 512

Euler 12.99 7.86 6.39 3.80 3.21 1.90

Midpoint 10.29 6.51 5.25 3.32 2.55 1.59

RK4 10.36 6.45 5.25 3.29 2.55 1.58

4.7 PDE experiments

The previous sections showed experimental results for the ODE stationary case. In

this section, we investigate the more complex time-dependent PDE case, as detailed

in Section 4.3. This is a more challenging study, since there are both a spatial and a

time component to deal with. The training is then harder than the stationary case,

and is explained in Section 4.4.3 and illustrated in Figure 4.7. This study focuses

on three settings, a small variations, a medium variations and a large variations

setting. They highlight different cases of the friction law. This section details the

experimental results for each setting.

4.7.1 Small variations setting

As can be seen in Figure 4.21, the friction law learned has a small MAE error over

domain, but is not very convincing. Since the variations of the law are small and the

influence of the height almost negligible, the neural network gives an almost constant

law. However, as can be seen in Figure 4.22 and Figure 4.23, the combination of

the network and the scheme manages to reconstruct accurately the trajectories for

the water height and flow. The quantitative results presented in Table 4.13 further

confirms the good results, with an overall small error for the friction and for the

water height and flow. An additional explanation for the friction loss is that the

distribution of the values taken during training, presented in Figure 4.3b, is highly

concentrated in the center of the figure, hence the network manages to accurately

predict the friction in this domain. It still struggles to have the right value in the

center precisely, where it should be null (for a null water flow). This can be explained

by two factors:
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(i) When the friction is null, it has no influence on the water height and flow, hence

it is not important to predict it accurately to have the same error tolerance

on h and u as for other values of the friction.

(ii) The domain of the friction where the friction is null is an extrema of the friction

function, which is always harder to predict.

A further study of the loss with the time is shown in Figure 4.24. This illustrates

several phenomena. The first one is that the error over time of the water height

and flow increases, which is expected since the scheme accumulates error over time.

The second one is that the friction error is high at the beginning of the trajectory.

This is also expected since the values taken at the beginning are the values least

seen during the training. The last one is the big peak around 0.3s. This peak can

be explained by the fact that the water flow changes direction around 0.3s, which

leads to a null friction, hence worst results on the friction and the water height and

better results on the flow (which is null). This is illustrated as well in Figure 4.22

and Figure 4.23, where the water flow changes convexity and sign from 0.2s to 0.5s,

with the values around 0.3s getting closer to 0. Similarly, the water height peaks

change, the highest peak becomes the lower one and vice-versa.

(a) Neural network friction. (b) MAE on the friction.

Figure 4.21: Friction law and error of the neural network for the small variations
PDE setting.
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(a) Trajectory 1 (b) Trajectory 2

Figure 4.22: Snapshots of the water height with time for the small variations setting.

(a) Trajectory 1 (b) Trajectory 2

Figure 4.23: Snapshots of the water flow with time for the small variations setting.
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Figure 4.24: Water height, flow and friction MAE over time averaged for 25 trajec-
tories.

4.7.2 Medium variations setting

The results of the medium variation setting are slightly different than the ones of the

small variations setting. Indeed, since the variations are bigger, the friction law has

a higher range of values and the water height a bigger influence, where previsouly it

was almost null. As explained in Section 4.3, this makes the medium variation case

a more practical one. The network then gives an interesting friction law, reflecting

this higher range. This can be seen in Figure 4.25, which also presents the error

plot over the domain. It illustrates the same phenomena as the one considered in

Section 4.7.1. For values around a null water flow, where the friction should be

null, the network struggles to give a null value of the friction. However, as shown

qualitatively in Figure 4.26 and Figure 4.27 and further confirmed quantitatively

in Table 4.13, the network and the scheme manage to reconstruct accurately the

different trajectories. Figure 4.28 illustrates the same phenomena as Figure 4.24.

The only difference is that the peak is smaller, due to the higher friction.
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(a) Neural network friction. (b) MAE on the friction.

Figure 4.25: Friction law and error of the neural network for the medium variations
PDE setting.

(a) Trajectory 1 (b) Trajectory 2

Figure 4.26: Snapshots of the water height with time for the medium variations
setting.
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(a) Trajectory 1 (b) Trajectory 2

Figure 4.27: Snapshots of the water flow with time for the medium variations setting.

Figure 4.28: Water height, flow and friction MAE over time averaged for 25 trajec-
tories.

4.7.3 Large variations setting

In this setting, we test the limit of our method by considering a very challenging

case. In Table 4.13, it is shown that the network managed to learn similarly well the

friction law, but since the variations are higher, a similar error on the friction with

the other settings leads to a higher error in height and flow prediction. When data

is sparse and the values should be null, the network struggles, which is illustrated in

Figure 4.29, where the line u = 0 should lead to a null value of the friction. Instead

of this, values for h > 1 are almost null, because they add up to most of the values

seen, but values for h < 1, and especially low values of h lead to the highest error

on the plot. This emphasis the need to be cautious for the friction law given by the

network around the initial conditions.
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(a) Neural network friction. (b) MAE on the friction.

Figure 4.29: Friction law and error of the neural network for the large variations
PDE setting.

4.7.4 Discussion

As seen in the previous sections and in Table 4.13, the neural network provides

friction laws with small errors, but which are not always qualitatively satisfying.

However, the results on the water flow and height are both qualitatively and quan-

titatively interesting. Note that only 5 trajectories, with the same initial conditions

for each setting, are used to produce this table, hence the variance on the results

can be large. Interestingly, the error on the friction for the small variations setting

is higher than for the other higher variations setting. This can be explained by

the fact that to have similar or better results on the water height and flow in this

setting, the error on the friction does not need to be smaller. For medium and large

variations settings, the relative error on the friction is similar, but the error on the

water height and flow is one order of magnitude higher. This is due to small errors

on the friction leading to high errors on the water height and flow.

To conclude on this section, the results show that our approach can be used for hard

PDE time-dependent problems, and manages to give a friction law that accurately

reconstructs various trajectories, which is the main goal of this project. Further

studies are presented in B.2 to give a more detailed view on the results.

Table 4.13: Results of our approach against learning directly for different settings
at test time. Since the friction can be null, relative error is computed as ∥KNN −
Kf∥2/∥Kf∥2.

Setting
Relative

friction MAE

Friction MAE

(×10−2)

Height MAE

(×10−5)

Flow MAE

(×10−4)

Small variations 0.88 0.57 0.48 0.16

Medium variations 0.16 0.40 0.56 0.18

Large variations 0.07 0.43 4.28 1.38



Chapter 5

INR architectures for dynamical

systems

In this chapter, we study how to apply implicit neural representation (INR) methods

to dynamical systems. These novel algorithms presented in Section 2.3 are a natural

fit for these systems given their continuous nature.

First, we design INFINITY, a INR based method that can be applied to static PDE

problems. It is tested on the challenging RANS equations for surrogate modeling

using the realistic AirfRANS dataset (Bonnet et al., 2022), which models airfoils.

We show that INFINITY can accurately infer physical fields throughout the volume

and surface, leading to a correct prediction of the drag and lift coefficients, which are

crucial for airfoil design. This work led to a publication at the ICML 2023 workshop

on the synergy of scientific and machine learning modeling.

Serrano, L., Migus, L., Yin, Y., Mazari, J. A., and Gallinari, P. (2023). IN-

FINITY: Neural Field Modeling for Reynolds-Averaged Navier-Stokes Equa-

tions. In ICML 2023 workshop on the synergy of scientific and machine learn-

ing modeling.

Next, we design TimeFlow, a general framework using INRs to impute and fore-

cast time series. By its continuous nature, TimeFlow can handle missing data,

irregular sampling and unaligned observations from multiple sensors while having

similar performances to state-of-the-art algorithms and being able to generalize to

unseen samples and time windows. The experiments have been conducted on three

extensive time series datasets, namely the Electricity, Solar and Traffic datasets.

This work led to a submission at ICLR 2024, where it is currently under review.

93
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Naour, E. L., Serrano, L., Migus, L., Yin, Y., Agoua, G., Baskiotis, N.,

Gallinari, P., and Guigue, V. (2023). Time Series Continuous Modeling for

Imputation and Forecasting with Implicit Neural Representations. Under re-

view at ICLR 2024.
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5.1 Neural Field Modeling for Reynolds-Averaged

Navier-Stokes Equations

For numerical design, the development of efficient and accurate surrogate models is

paramount. They allow us to approximate complex physical phenomena, thereby

reducing the computational burden of direct numerical simulations. We propose IN-

FINITY, a deep learning model that utilizes implicit neural representations (INRs)

to address this challenge. Our framework encodes geometric information and physi-

cal fields into compact representations and learns a mapping between them to infer

the physical fields. We use an airfoil design optimization problem as an example task

and we evaluate our approach on the challenging AirfRANS dataset, which closely

resembles real-world industrial use-cases. The experimental results demonstrate that

our framework achieves state-of-the-art performance by accurately inferring physical

fields throughout the volume and surface. Additionally we demonstrate its applica-

bility in contexts such as design exploration and shape optimization: our model can

correctly predict drag and lift coefficients while adhering to the equations.

5.1.1 Introduction and motivation

Numerical simulations are essential for analyzing systems governed by partial dif-

ferential equations (PDEs) in fields like fluid dynamics and climate science. These
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simulations involve discretizing the domain and solving the equations using methods

such as finite differences, finite elements, or finite volumes (Reddy, 2019; Grossmann

et al., 2007; Eymard et al., 2000). Since direct numerical simulation (DNS) can be

computationally expensive or intractable, it is crucial to develop computationally

efficient yet accurate surrogate models to accelerate the design process. Surrogate

modeling for industrial applications, however, poses several challenges. The meshes

used in these applications are extensive, consisting of hundreds of thousands of cells,

and they also exhibit unstructured data and involve multi-scale phenomena. A typi-

cal example is the design of airfoils which will be our application focus, although the

ideas can be easily implemented for other design tasks. In this domain, a new costly

simulation must be run for each mesh during the optimization process, leading to

time-consuming processes. Additionally, the design process focuses on finding the

optimal shape for an airfoil that minimizes the force required for flight. Experts

typically maximize the lift-over-drag ratio by solving equations across the entire

mesh, with particular emphasis on the surface where various multi-scale phenomena

occur.

Recently, deep learning methods have emerged as promising approaches for con-

structing surrogate models. However, the progress in this field was initially hindered

by the lack of evaluation datasets representative of real-world data. The machine

learning community has begun to address this issue by developing benchmarks. In

this work, we utilize the a recent AirfRANS dataset Bonnet et al. (2022), which aims

to replicate real-world industrial scenarios. This comprehensive benchmark provides

an evaluation framework to assess the capabilities of deep learning (DL) in modeling

the two-dimensional incompressible steady-state Reynolds-Averaged Navier-Stokes

(RANS) equations for airfoils. Additionally, this 2D dataset encompasses a wide

range of airfoil shapes derived from NASA’s early works (Cummings et al., 2015),

various turbulence effects characterized by Reynolds numbers and different angles

of attack.

The Navier-Stokes equations are widely used in fluid dynamics, and as a re-

sult, numerous neural network surrogates have been proposed for their modeling in

different contexts. Initial attempts all relied on grid-based approaches such as con-

volutional Neural Networks (CNNs) (Um et al., 2020; Thuerey et al., 2020; Mohan

et al., 2020; Wandel et al., 2020; Obiols-Sales et al., 2020; Gupta et al., 2021; Wang

et al., 2020). CNNs face challenges when dealing with the irregular meshes used in

computational fluid dynamics (CFD). Graph Neural Networks (GNNs) have shown

promise Pfaff et al. (2021) but they have limitations in terms of receptive field size

and information propagation across distant nodes, especially for large meshes. Addi-

tionally, GNNs struggle when the mesh is too dense and cannot fit into the memory

of GPUs, necessitating sub-sampling. This limitation restricts their application in

contexts where large meshes with multi-scale phenomena are prevalent. Further-

more, the evaluation of the models has primarily focused on traditional machine
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Figure 5.1: The inference of INFINITY proceeds in three steps. 1. We encode the
distance function d and the normal components nx, ny into the latent representa-
tions zd and zn. 2. We process these codes along with the inlet velocities Vx, Vy
to obtain the predicted output codes ẑvx , ẑvy , ẑp, ẑνt corresponding respectively to
velocity, pressure and viscosity. 3. The processed codes are decoded with the mod-
ulated INRs, which can be queried directly at any mesh position x ∈ X .

learning scores, such as global error over the entire domain (a.k.a. volume), rather

than more design-oriented scores, including local error in the surface area surround-

ing the airfoil (a.k.a. surface) and errors in the aerodynamic forces of interest, such

as drag and lift.

Leveraging recent advances in implicit neural representations (INRs) (Sitzmann

et al., 2020a; Mildenhall et al., 2021), which have shown successful applications in

physics problems (Yin et al., 2023), we introduce INFINITY, a model that utilizes

coordinate-based networks to encode geometric information and physical fields into

concise representations. INFINITY establishes a mapping between variables repre-

senting the problem’s geometry and the corresponding physical fields, within this

representation space. It possesses several unique features: (i) it is robust to varying

mesh sampling, allowing for adaptability to different geometries, (ii) it effectively

captures multi-scale phenomena, resulting in state-of-the-art scores for both vol-

ume and surface evaluations, (iii) as a continuous surrogate model, it can be used

to accelerate the evaluation of different meshes during the design process, leading

to significant speed-up. Importantly, we verified that INFINITY’s field predictions

accurately produce the correct lift and drag forces clearly outperforming all the

baselines.

5.1.2 Method

5.1.2.1 Problem setting

We aim at proposing a surrogate model for airfoil design optimization in scenarios

where the amount of available training data is limited (ntr ≤ 1000). Each airfoil is

associated with a domain Ωi, which is linked to a specific geometry. Consequently,
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different meshes Xi are generated within each domain. The characterization of an

airfoil involves defining boundary conditions on ∂Ωi corresponding to the airfoil

surface, which are discretized into a surface mesh Si.
The geometric inputs for our model include the following information:

• Node positions x represent the coordinates of each node within the airfoil’s

domain.

• Distance function d(x) provides the distance from each node to the surface of

the airfoil.

• Normal vectors of the mesh nodes on the airfoil surface n(x) = (nx(x), ny(x))

specify the direction perpendicular to the airfoil surface at each node.

In addition to the geometric inputs, we also have access to the inlet velocity values Vx
and Vy, denoting the horizontal and vertical components of the velocity, respectively.

It is worth noting that, on average, a mesh consists of approximately 200,000 nodes,

providing a detailed representation of the airfoil’s geometry.

The primary objective of the design optimization process is to maximize the lift-

over-drag coefficient ratio, which serves as the key performance metric. To achieve

this, we place significant emphasis on evaluating the relative errors in both the drag

and lift coefficients, as well as assessing the Spearman correlation between predicted

and actual values.

Rather than directly predicting the drag and lift values, our approach focuses

on inferring various fluid fields associated with the airfoil’s geometry. This includes

calculating the velocities (vx, vy), pressure p, and turbulent kinematic viscosity νt
on the mesh nodes, following the experimental protocol proposed in Bonnet et al.

(2022). Therefore the inputs of our surrogate model are (Vx, Vy, d|Xi
, nx|Si

, ny|Si
)ntr
i=1,

and the outputs are (vx|Xi
, vy|Xi

, p|Xi
, νt|Xi

)ntr
i=1. The output physical fields provide

valuable insights into the underlying behavior of the fluid and its interaction with

the airfoil’s geometry. The drag and lift coefficients are calculated based on the

predictions of the trained model while respecting the form of the RANS equations.

This approach enables us to obtain a comprehensive understanding of the underlying

fluid behavior and its relationship with the airfoil’s geometry, thereby ultimately

enhancing the accuracy of drag and lift estimation.

5.1.2.2 Model

We present INFINITY: Implicit Neural Fields for INterpretIng geomeTry and infer-

ring phYsics.

Modulated INR In our model, we will treat each geometric input (d or n) or

physical output function (v, p, or ν) separately and each will be modeled by an INR.
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Let us then consider a generic function u, which will represent either an input geo-

metric field or an output physical field defined over a domain Ω or at its boundary

∂Ω. Let us denote ui the function corresponding to a specific airfoil example. ui will

be represented by an INR fθu,ϕui with two sets of parameters: parameters θu shared

by all the ui, and modulation parameters ϕui specific to each individual function ui.

In our airfoil example, ϕui enables the INR to handle different geometries. Overall,

this decomposition allows the modulated INR to capture both shared characteristics

among the example’s functions ui and the unique properties of each one. INFINITY

leverages latent representations inferred from the modulation spaces of the INRs.

These latent representations, denoted as zui , are compact codes that encode infor-

mation from the INRs’ parameters. They serve as inputs to a hypernetwork hu,

with weights wu, which computes the modulation parameters ϕui = hu(zui).

In this work we use Fourier Features (Tancik et al., 2020b) as an INR backbone

and apply shift modulation (Perez et al., 2018): fθ,ϕui (x) = WL

(
χL−1 ◦ χL−2 ◦ · · · ◦

χ0(x)
)
+ bL, with χj(ηj) = σ

(
Wjηj + bj + (ϕui

)j
)
. We note η0 = x and (ηj)j≥1 the

hidden activations throughout the network. Hence, the parameters θ = (Wj, bj)
L
j=0

are shared between all examples and the modulation ϕui = ((ϕui
)j)

L−1
j=0 is specific to

a single example. We compute the modulation parameters ϕui = ((ϕui
)j)

L−1
j=0 from

z with a linear hypernetwork.

With the learned shared parameters (θu, wu), the modulated INR enables two

processes: decoding and encoding (see Figure 5.1). Decoding refers to mapping a

given code zui to the corresponding INR function fθu,ϕui , where ϕui = hu(zui), while

encoding involves generating a code zui given a function ui, providing a compact

representation of the function within the modulation space of the INR.

To obtain the compact code zui for reconstructing the original field ui using

the INR, an inverse problem is solved through a procedure called auto-decoding.

The objective is to compress the necessary information into zui such that the re-

constructed value ũi(x) = fθu,ϕui (x) approximates the original value ui(x) for all

x ∈ Xi. The approximate solution to this inverse problem is computed iteratively

through a gradient descent optimization process:

z(0)ui
= 0,

z(k+1)
ui

= z(k)ui
− α∇

z
(k)
ui

Lµi(fθu,ϕ(k)ui

, ui),

with ϕ(k)
ui

= hu(z
(k)
ui

) for 0 ≤ k ≤ K − 1.

(5.1)

where α is the inner loop learning rate,K the number of inner steps, and Lµi(ui, ũi) =
Ex∼µi [(ui(x)− ũi(x))2] where µi is a measure defined through the observation grid

Xi µi(·) =
∑

x∈Xi
δx(·), with δx(·) the Dirac measure.

As indicated before, we treat each input and output function independently:

there are two input functions denoted as (d, n) and four output functions denoted

as (vx, vy, p, νt). Each ui ∈ {d, n, vx, vy, p, νt} is represented by a modulated INR
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fθu,ϕui , where ui stands for a field specific to an airfoil example. INFINITY then

learns a mapping between the latent representations of the geometric input fields

and the latent representations of the physics output fields.

Inference As illustrated in Figure 5.1, INFINITY follows a three-step procedure:

encode, process, and decode.

• Encode: Given the geometric input functions di, ni and the corresponding INR

learned parameters, respectively θd, wd and θn, wn, functions di, ni are encoded

into the latent codes zdi , zni
according to Equation (5.1). Since we can query

the INRs anywhere within the domain, we can hence freely encode functions

without mesh constraints. This lets us freely encode inputs with different

geometries.

• Process: Once we obtain zdi and zni
, we can infer the latent output codes(

ẑvxi
, ẑvyi

, ẑpi , ẑνti
)
= gψ

((
zdi , zni

, Vxi, Vyi
))

. We consider here that gψ is im-

plemented through an MLP with parameters ψ.

• Decode: We decode each processed output code
(
ẑvxi

, ẑvyi
, ẑpi , ẑνti

)
with their

associated hypernetwork and modulated INR. We make use of the INRs to

freely query a physical field at any point within its spatial domain. These

components generate the final output functions by mapping the latent codes

back to the output space.

INFINITY GraphSAGE MLP Graph U-Net PointNet

Volume

vx 0.06 ± 0.01 0.83 ± 0.01 0.95 ± 0.06 1.52 ± 0.34 3.50 ± 1.04
vy 0.06 ± 0.01 0.99 ± 0.05 0.98 ± 0.17 2.03 ± 0.39 3.64 ± 1.26
p 0.25 ± 0.01 0.66 ± 0.05 0.74 ± 0.13 0.66 ± 0.08 1.15 ± 0.23
νt 1.32 ± 0.08 1.60 ± 0.21 1.90 ± 0.10 1.46 ± 0.14 2.92 ± 0.48

Surface p|S 0.07 ± 0.01 0.66 ± 0.10 1.13 ± 0.14 0.39 ± 0.07 0.93 ± 0.26

Relative error
CD 0.366 ± 0.023 4.050 ± 0.704 4.289 ± 0.679 10.385 ± 1.895 14.637 ± 3.668
CL 0.081 ± 0.007 0.517 ± 0.162 0.767 ± 0.108 0.489 ± 0.105 0.742 ± 0.186

Spearman correlation
ρD 0.578 ± 0.050 -0.303 ± 0.124 -0.117 ± 0.256 -0.138 ± 0.258 -0.022 ± 0.097
ρL 0.997 ± 0.001 0.965 ± 0.011 0.913 ± 0.018 0.967 ± 0.019 0.938 ± 0.023

Inference time (µs) 98 ± 70 20.9 ± 2.3 13.3 ± 0.2 357.8 ± 36.9 33.9 ± 3.5

Table 5.1: Test results on AirfRANS. Mean squared error (MSE) on normalized
fields expressed with factor (×10−2) for the volume and (×10−1) for the surface.
Relative errors CD, CL on the drag and lift and Spearman correlations ρD, ρL on the
drag and lift. The results from the baselines are taken from Bonnet et al. (2022).
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5.1.2.3 Training

We implement a two-step training procedure that first learns the modulated INR

parameters θu and ϕui for all input and output functions, before training the map

gψ. During the training of the INRs we force the auto-decoding process to take

only a few gradient steps to encode the geometric functions or physical fields. This

enhances the INR capability to encode new geometrical inputs in a few steps at test

time, and also reduces the space size of the target output codes. This regularization

prevents the different INRs to memorize the training sets into the individual codes.

In order to obtain a network that is capable of quickly encoding new geometrical and

physical inputs, we employ a second-order meta-learning training algorithm based

on CAVIA (Zintgraf et al., 2019b). Compared to a first-order scheme such as Reptile

(Nichol et al., 2018a), the outer loop back-propagates the gradient through the K

inner steps, consuming more memory. Indeed, we need to compute gradients of

gradients but this yields higher reconstruction results with the modulated INR. We

experimentally found that using 3 inner-steps for training, or testing, was sufficient

to obtain very low reconstruction errors for the geometric or physical fields. Using

more inner-steps would result in a higher computation cost with only a marginal

gain in reconstruction capacity. We outline the training pipeline of a modulated

INR in Algorithm 2.

Algorithm 2: Modulated INR training

while no convergence do
Sample a batch B of data (ui)i∈B;
Set codes to zero zui ← 0 for i in B;
for i ∈ B and step ∈ {1, ..., Ku} do

ϕui = hu(zui);
zui ← zui − αa∇zui

LXi
(fθu,ϕui , ui);

end
for i in B: do

ϕui = hu(zui);
end
θu ← θu − η 1

|B|
∑

i∈B∇θuLXi
(fθu,ϕui , ui);

wu ← wu − η 1
|B|

∑
i∈B∇wuLXi

(fθu,ϕui , ui);

end

Once the different INRs have been fitted, we encode the functions into the input

codes zdi , zni
and target codes zvxi

, zvyi
, zpi , zνti . The training of gψ is performed in

the small dimensional z-code space, and is supervised through the MSE loss with

the target codes.
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5.1.3 Experiments

Baselines We use the same baselines as Bonnet et al. (2022); GraphSAGE

(Hamilton et al., 2017), a PointNet (Charles et al., 2017), a Graph U-Net (Gao

and Ji, 2019) and a MLP. Those baselines have been initially chosen as they process

in different ways the inputs. The results are given for the setup “full data regime”

of AirfRANS, using 800 samples for training and 200 for testing.

Results In Table 5.1, the INFINITY model demonstrates superior inference ca-

pabilities on the volume and surface compared to the baselines. Indeed, It achieves

significantly lower error values on the volume velocity and pressure fields, while ex-

hibiting an order-of-magnitude lower MSE on the surface pressure. This substantial

gain in prediction power translates to order of magnitude lower relative errors on

the drag and lift forces, accompanied by high positive Spearman correlations. These

results indicate a strong alignment between INFINITY’s predictions and the true

drag and lift forces. Consequently, INFINITY emerges as the only model capable

of predicting accurately physical fields on the volume and surface while maintaining

coherent and accurate drag and lift estimations. On the downside, the INFINITY

model has a longer inference time compared to GraphSAGE and PointNet. How-

ever, this increased inference time is still within an acceptable range, considering its

superior performance and that a numerical solver needs approximately 20 minutes

to complete a simulation. Furthermore, it is counterbalanced by the ability to query

the full mesh directly, in stark contrast to graph-based methods that necessitate

sub-sampling to process the inputs.

5.1.4 Conclusion

We introduce INFINITY, a model that utilizes coordinate-based networks to encode

geometric information and physical fields into compact representations. INFINITY

establishes a mapping between geometry and physical fields within a reduced rep-

resentation space. We validated our model on AirfRANS, a challenging dataset for

the Reynolds-Averaged Navier-Stokes equation, where it significantly outperforms

previous baselines across all relevant performance metrics. At post-processing stage,

the predicted fields yield accurate lift and drag forces. This validates INFINITY’s

potential as a surrogate design model, where it could be plugged in any design

optimization or exploration loop.
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5.2 Time Series Continuous Modeling for Impu-

tation and Forecasting with Implicit Neural

Representations

We introduce a novel modeling approach for time series imputation and forecast-

ing, tailored to address the challenges often encountered in real-world data, such

as irregular samples, missing data, or unaligned measurements from multiple sen-

sors. Our method relies on a continuous-time-dependent model of the series’ evo-

lution dynamics. It leverages adaptations of conditional, implicit neural represen-

tations for sequential data. A modulation mechanism, driven by a meta-learning

algorithm, allows adaptation to unseen samples and extrapolation beyond observed

time-windows for long-term predictions. The model provides a highly flexible and

unified framework for imputation and forecasting tasks across a wide range of chal-

lenging scenarios. It achieves state-of-the-art performance on classical benchmarks

and outperforms alternative time-continuous models.

5.2.1 Introduction

Time series analysis and modeling are ubiquitous in a wide range of fields, including

industry, medicine, and climate science. The variety, heterogeneity and increas-

ing number of deployed sensors, raise new challenges when dealing with real-world

problems for which current methods often fail. For example, data are frequently

irregularly sampled, contain missing values, or are unaligned when collected from

distributed sensors (Schulz and Stattegger, 1997; Clark and Bjørnstad, 2004). Re-

cent advancements in deep learning have significantly improved state-of-the-art per-

formance in both data imputation (Cao et al., 2018; Du et al., 2023) and forecasting

tasks (Zeng et al., 2022; Nie et al., 2022). Many state-of-the-art models, such as

transformers, have been primarily designed for dense and regular grids (Wu et al.,

2021; Nie et al., 2022; Du et al., 2023). They struggle to handle irregular data and

often suffer from significant performance degradation (Chen et al., 2001; Kim et al.,

2019b).

Our objective is to explore alternatives to SOTA transformers able to handle,

in a unified framework, imputation and forecasting tasks for irregularly, arbitrarily

sampled, and unaligned time series sources. Time-dependent continuous models

(Rasmussen and Williams, 2006; Garnelo et al., 2018; Rubanova et al., 2019) offer

such an alternative. However, until now, their performance has lagged significantly

behind that of models designed for regular discrete grids. A few years ago, implicit

neural representations (INRs) emerged as a powerful tool for representing images as

continuous functions of spatial coordinates (Sitzmann et al., 2020b; Tancik et al.,

2020a) with recent new applications such as image generation (Dupont et al., 2022b)
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or even modeling dynamical systems (Yin et al., 2023).

In this work, we leverage the potential of conditional INR models within a meta-

learning approach to introduce TimeFlow: a unified framework designed for mod-

eling continuous time series and addressing imputation and forecasting tasks with

irregular and unaligned observations. Our key contributions are the following:

• We propose a novel framework that excels in modeling time series as contin-

uous functions of time, accepting arbitrary time step inputs, thus enabling

the handling of irregular and unaligned time series for both imputation and

forecasting tasks. This is one of the very first attempts to adapt INRs that

enables efficient handling of both imputation and forecasting tasks within a

unified framework. The methodology which leverages the synergy between the

model components, evidenced in the context of this application, is a pioneering

contribution to the field.

• We conducted an extensive comparison with state-of-the-art continuous and

discrete models. It demonstrates that our approach outperforms continuous

and discrete SOTA deep learning approaches for imputation. As for long-term

forecasting, it outperforms existing continuous models both on regular and

irregular samples. It is on par with SOTA discrete models on regularly sampled

time series while allowing for a much greater flexibility for irregular samplings,

allowing to cope with situations where discrete models fail. Furthermore, we

prove that our method effortlessly handles previously unseen time series and

new time windows, making it well-suited for real-world applications.

5.2.2 Related work

Discrete methods for time series imputation and forecasting. Recently,

Deep Learning (DL) methods have been widely used for both time series imputation

and forecasting. For imputation, BRITS (Cao et al., 2018) uses a bidirectional

recurrent neural network (RNN). Alternative frameworks were later explored, e.g.,

GAN-based (Luo et al., 2018, 2019; Liu et al., 2019), VAE-based (Fortuin et al.,

2020), diffusion-based (Tashiro et al., 2021), matrix factorization-based (TIDER,

Liu et al., 2023) and transformer-based (SAITS, Du et al., 2023) approaches. These

methods cannot handle irregular time series. In situations involving multiple sensors,

such as those placed at different locations, incorporating new sensors necessitates

retraining the entire model, thereby limiting their usability. For forecasting, most

recent DL SOTA models are based on transformers. Initial approaches apply plain

transformers directly to the series, each token being a series element (Zhou et al.,

2021; Liu et al., 2022; Wu et al., 2021; Zhou et al., 2022). These transformers may

underperform linear models as shown in (Zeng et al., 2022). PatchTST (Nie et al.,
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2022) significantly improved transformers SOTA performance by considering sub-

series as tokens of the series. However, all these models cannot handle properly

irregularly sampled look-back windows.

Continuous methods for time series. Gaussian Processes (Rasmussen and

Williams, 2006) have been a popular family of methods for modeling time series as

continuous functions. They require choosing an appropriate kernel (Corani et al.,

2021) and may suffer limitations in large dimensions settings. Neural Processes

(NPs) (Garnelo et al., 2018; Kim et al., 2019b) parameterize Gaussian processes

through an encoder-decoder architecture leading to more computationally efficient

implementations. NPs have been used to model simple signals for imputation and

forecasting tasks, but struggle with more complex signals. Bilos et al. (2023) param-

eterizes a Gaussian Process through a diffusion model, but the model has difficulty

adapting to a large number of timestamps. Other approaches such as Brouwer et al.

(2019) and Rubanova et al. (2019) model time series continuously with latent ordi-

nary differential equations. mTAN (Shukla and Marlin, 2021) a transformer model

uses an attention mechanism to impute irregular time series. While these approaches

have shown significant progress in continuous modeling for time series, they are less

efficient than the aforementioned discrete models for regular time series and lack

extrapolation capability when dealing with complex dynamics.

Implicit neural representations. The recent development of implicit neural

representations (INRs) has led to impressive results in computer vision (Sitzmann

et al., 2020b; Tancik et al., 2020a; Fathony et al., 2021; Mildenhall et al., 2021). INRs

can represent data as a continuous function, which can be queried at any coordinate.

While they have been applied in other fields such as physics (Yin et al., 2023) and

meteorology (Huang and Hoefler, 2023), there has been limited research on INRs for

time series analysis. Prior works (Fons et al., 2022; Jeong and Shin, 2022) focused

on time series generation for data augmentation and on time series encoding for

reconstruction but are limited by their fixed grid input requirement. DeepTime

(Woo et al., 2022) is the closest work to our contribution. DeepTime learns a set of

basis INR functions from a training set of multiple time series and combines them

using a Ridge regressor. This regressor allows it to adapt to new time series. It has

been designed for forecasting only. The original version cannot handle imputation

properly and was adapted to do so for our comparisons. In our experiments, we will

demonstrate that TimeFlow significantly outperforms DeepTime in imputation and

also in forecasting tasks when dealing with missing values in the look-back window.

TimeFlow also shows a slight advantage over DeepTime in forecasting regularly

sampled series.
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Figure 5.2: Overview of TimeFlow architecture. Forward pass to approximate the
time series x(j). σ stands for the ReLU activation function.

5.2.3 The TimeFlow framework

In this section, we present TimeFlow, a modulated-INR architecture that can be

used to reconstruct, impute and forecast time series.

5.2.3.1 Problem setting

We aim to develop a unified framework for time series imputation and forecasting

that reduces dependency on a fixed sampling scheme for time series. We introduce

the following notations for both tasks. During training, in the imputation setting,

we have access to time series in an observation set denoted as Tin, which is a subset

of the complete time series observation set T . In the forecasting setting, we observe

time series within a limited past time grid, referred to as the ’look-back window’

and denoted as Tin (a subset of T ), as well as a future grid, the ’horizon’, denoted as

Tout (also a subset of T ). At test time, in both cases, and given an observed subset

T ∗
in included in a possibly new temporal window T ∗, our objective is to infer the

time series values within T ∗.

5.2.3.2 Key components

Our framework is articulated around three key components. (i) INR-based time–

continuous functions: a time series x is represented by a time-continuous function
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f : t ∈ R+ → f(t) ∈ Rd that can be queried at any time t. For that, we employ

implicit neural representations (INRs), which are neural networks capable of learn-

ing a parameterized continuous function fθ from discrete data by minimizing the

reconstruction loss between observed data and network’s outputs. (ii) Conditional

INRs with modulations: An INR can represent only one function, whether it’s

an image or a time series. To effectively represent a collection of time series (x(j))j
using INRs, we improve their encoding by incorporating per-sample modulations,

which we denote as ψ(j). These modulations condition the parameters θ of the INRs.

We use the notation fθ,ψ(j) to refer to the conditioned INR with the modulations

ψ(j). (iii) Optimization-based encoding: the conditioning modulation param-

eters ψ(j) are calculated as a function of codes z(j) that represent the individual

sample series. We acquire these codes z(j) through a meta-learning optimization

process using an auto-decoding strategy. Notably, auto-decoding has been found

to be more efficient for this purpose than set encoders (Kim et al., 2019b). In the

following sections, we will elaborate on each component of our method. Given that

the choices made for each component and the methodology developed to enhance

their synergy are essential aspects, we provide a discussion of the various choices

involved in section 5.2.3.4.

INR-based time-continuous functions. We implement our INR with Fourier

features and a feed-forward network (FFN) with ReLU activations, i.e. for a time

coordinate t ∈ T , the output of the INR fθ is given by fθ(t) = FFN(γ(t)). The

Fourier Features γ(·) are a frequency embedding of the time coordinates used to

capture high-frequencies (Tancik et al., 2020a; Mildenhall et al., 2021). In our

case, we chose γ(t) := (sin(πt), cos(πt), · · · , sin(2N−1πt), cos(2N−1πt)), with N the

number of fixed frequencies. For an INR with L layers, the output is computed as

follows: (i) we get the frequency embedding ϕ0 = γ(t), (ii) we update the hidden

states according to ϕl = ReLU(θlϕl−1 + bl) for l = 1, . . . , L, (iii) we project onto the

output space fθ(t) = θL+1ϕL + bL+1.

Conditional INRs with modulations. As indicated, sample conditioning of

the INR is performed through modulations of its parameters. In order to adapt

rapidly the model to new samples, the conditioning should rely only on a small

number of the INR parameters. This is achieved by modifying only the biases of

the INR through the introduction of an additional bias term ψ
(j)
l for each layer l,

also known as shift modulation. To further limit the versatility of the condition-

ing, we generate the instance modulations ψ(j) from compact codes z(j) through a

linear hypernetwork h with parameters w, i.e., ψ(j) = hw(z
(j)). Consequently, the

approximation of a time series x(j), denoted globally as fθ,hw(z(j)), will depend on

shared parameters θ and w that are common among all the INRs involved in mod-

eling the series family and on the code z(j) specific to series x(j). The output of the
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l-th layer of the modulated INR is given by ϕl = ReLU(θlϕl−1 + bl + ψ
(j)
l ), where

ψ
(j)
l = Wlz

(j), and w := (Wl)
L
l=1 are the parameters of the hypernetwork hw. This

design enables gathering information across samples into the common parameters of

the INR and hypernetwork, while the codes contain only specific information about

their respective time-series samples. The architecture is illustrated in fig. 5.2.

Algorithm 3: TimeFlow Training

while no convergence do

Sample batch B of data (x(j))j∈B;

Set codes to zero z(j) ← 0,∀j ∈ B ;

// inner loop for encoding:

for j ∈ B and step ∈ {1, ..., K} do
z(j)← z(j) − α∇z(j)LT (j)

in
(fθ,hw(z(j)), x

(j));

end

// outer loop step:

[θ, w]←
[θ, w]− η∇[θ,w]

1
|B|

∑
j∈B[LT (j)

in
(fθ,hw(z(j)), x

(j)) + λLT (j)
out

(fθ,hw(z(j)), x
(j))] ;

end

Optimization-based encoding. We condition the INR using the data from

Tin, and learn the shared INR and hypernetwork parameters θ and w using Tin
for both imputation and forecasting, and Tout for forecasting only. We achieve the

conditioning on Tin by optimizing the codes z(j) through gradient descent. The joint

optimization of the codes and common parameters is challenging. In TimeFlow, it

is achieved through a meta-learning approach, adapted from Dupont et al. (2022b)

and Zintgraf et al. (2019a). The objective is to learn shared parameters so that

the code z(j) can be adapted in just a few gradient steps for a new series x(j). For

training, we perform parameter optimization at two levels: the inner-loop and the

outer-loop. The inner-loop adapts the code z(j) to condition the network on the

set T (j)
in , while the outer-loop updates the common parameters using T (j)

in and also

T (j)
out for forecasting. We present our training optimization in Algorithm 3. At each

training epoch and for each batch of data B composed of time series x(j) sampled

from the training set, we first update individually the codes z(j) in the inner loop,

before updating the common parameters in the outer loop using a loss over the

whole batch. We introduce a parameter λ to weight the importance of the loss over

Tout w.r.t. the loss over Tin for the outer-loop. In practice, when Tout exists, i.e.
for forecasting, we set λ = 1 and λ = 0 otherwise. We use an MSE loss over the

observations grid LT (xt, x̃t) := Et∼T [(xt − x̃t)
2]. We denote α and η the learning

rates of the inner- and outer-loop. Using K = 3 steps for training and testing is

sufficient for our experiments thanks to the use of second-order meta-learning as

explained in section 5.2.3.4.
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Algorithm 4: TimeFlow Inference with trained θ, w

For the j-th series (x(j)), set code to zero z∗(j) ← 0;

for step ∈ {1, ..., K} do
z∗(j) ← z∗(j) − α∇z∗(j)LT ∗(j)

in
(fθ,hw(z∗(j)), xt) ;

end

Query fθ,hw(z∗(j))(t) for any t ∈ T ∗(j) ;

5.2.3.3 TimeFlow inference

During the inference process, we aim to infer the time series value for each timestamp

in the dense grid T ∗(j) based on the partial observation grid T ∗(j)
in ⊂ T ∗(j). We can

encounter two scenarios: (i) One where we observe the same time window as during

training (T ∗(j) = T (j)) as in the imputation setting in section 5.2.4.1. (ii) One,

where we are dealing with a newly observed time window (T ∗(j) ̸= T (j)), as in the

forecasting setting in section 5.2.4.2. At inference, the parameters θ and w are kept

fixed to their final training values. We optimize the individual parameters z∗(j)

based on the newly observed grid T ∗(j)
in using the K inner-steps of the meta-learning

algorithm as described in algorithm 4. We are then in position to query fθ,hw(z∗(j))(t)

for any given timestamp t ∈ T ∗(j).

5.2.3.4 Discussion on implementation choices

As indicated before, adapting the components and enhancing their synergy for the

tasks of imputation and forecasting is not trivial and require careful choices. We

conducted several ablation studies to provide a comprehensive examination of key

implementation choices of our framework. Our findings indicate that: • An FFN

with Fourier Features outperformed other popular INRs for the tasks considered in

this study (Appendix C.1.1.2). • TimeFlow with a set encoder for learning the com-

pact conditioning codes z in place of the auto-decoding strategy used here, proved

much less effective on complex datasets (Appendix C.1.1.5, Table C.5). • Replacing

the 2nd-order optimization for a 1st-order one, such as REPTILE, led to unsta-

ble training (Appendix C.1.1.5, Table C.4). • Complexifying the modulation by

introducing scaling parameters in addition to shift parameters did not provide per-

formance gains (Appendix C.1.1.6). • Using 3 inner steps for training and inference

struck a favorable balance between reconstruction capabilities and computational

efficiency (Appendix C.1.1.4). • A latent code z dimension of 128 was optimal for

our tasks (Appendix C.1.1.3).
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5.2.4 Experiments

We conducted a comprehensive evaluation of our TimeFlow framework across three

different tasks, comparing its performance to state-of-the-art continuous and discrete

baseline methods. In Section 5.2.4.1, we assess TimeFlow’s capabilities to impute

sparsely observed time series under various sampling rates. Section 5.2.4.2 focuses

on long-term forecasting, where we evaluate TimeFlow over standard long-term

forecasting horizons. In Section 5.2.4.3, we tackle a challenging task forecasting

with incomplete look-back windows, thus combining the challenges of imputation

and forecasting. This demonstrates TimeFlow’s versatility and performance.

Datasets. Our approach is well-suited for handling a large number of homoge-

neous phenomena measured over time. We tested our framework on three extensive

multivariate datasets where a single phenomenon is measured at multiple locations

over time. They are commonly used in time series imputation and long-term fore-

casting literature. The Electricity dataset comprises hourly electricity load curves

of 321 customers in Portugal, spanning the years 2012 to 2014. The Traffic dataset

is composed of hourly road occupancy rates from 862 locations in San Francisco

during 2015 and 2016. Lastly, the Solar dataset contains measurements of solar

power production from 137 photovoltaic plants in Alabama, recorded at 10-minute

intervals in 2006. Additionally, we have created an hourly version, SolarH, for the

sake of consistency in the forecasting section. These datasets exhibit diversity in

various characteristics: • They exhibit diverse temporal frequencies, including daily

and weekly seasonality observed in the Traffic and Electricity datasets, while the

Solar dataset possesses only daily frequency. • There is individual variability across

data samples and more pronounced trends in the Electricity dataset compared to

the Traffic and Solar datasets.

5.2.4.1 Imputation

We consider the classical imputation setting where n time series are partially ob-

served over a given time window. Using our approach, we can predict for each time

series the value at any timestamp t in that time window based on partial observa-

tions.

Setting. For a time series x(j), we denote the set of observed points as T (j)
in and

the ground truth set of points as T (j). The observed time grids may be irregularly

spaced and may differ across the different time series (T (j1)
in ̸= T (j2)

in ,∀j1 ̸= j2).

The model is trained for each x(j) following algorithm 3. Then, we aim to infer

for any unobserved t ∈ T (j) the missing value x
(j)
t conditioned on T (j)

in according

to algorithm 4. For this imputation task, the TimeFlow training and inference

procedures are detailed in section 5.2.3 and illustrated in fig. 5.3. For comparison
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Training

Inference

Figure 5.3: Training and inference procedures of TimeFlow for imputation. (i) Dur-
ing training, for each time series x(j), our observations (red dots •) are restricted to

the sparsely sampled grid, denoted as T (j)
in . (ii) During inference, our objective is to

infer the values over the dense grids T (j), on the unobserved data points (such as
the blue dots • on the figure).

with the SOTA imputation baselines, we assume that the ground truth time grid is

the same for each sample. The subsampling rate τ is define as the rate of observed

values.

Baselines. We compare TimeFlow with various baselines, including discrete im-

putation methods, such as CSDI (Tashiro et al., 2021), SAITS (Du et al., 2023),

BRITS (Cao et al., 2018), and TIDER (Liu et al., 2023), and continuous ones, such

as Neural Process (NP, Garnelo et al., 2018), mTAN (Shukla and Marlin, 2021), and

DeepTime with slight adjustments (Woo et al., 2022) (details cf. appendix C.1.3.3).

For each dataset, we divide the series into five independent periods (each time win-

dow consists of 2000 timestamps for Electricity and Traffic, and 10,000 timestamps

for Solar), perform imputation on each time window and average the performance

to obtain robust results. We evaluate the quality of the models for different sub-

sampling rates, ranging from the easiest τ = 0.5 to the most difficult τ = 0.05.

Results. We show in table 5.2 that TimeFlow outperforms both discrete and

continuous models across almost all τs for the given datasets. The relative im-

provements of TimeFlow over baselines are significant, ranging from 15% to 50%.

Especially for the lowest sampling rate τ = 0.05, TimeFlow outperforms all dis-

crete baselines, demonstrating the advantages of continuous modeling. Addition-

ally, it achieves lower imputation errors compared to continuous models in all but

one cases. Qualitatively, we see on example series in fig. 5.4 that our model shows

significant imputation capabilities, with on a subsampling rate at τ = 0.1 on the

Electricity dataset. It captures well different frequencies and amplitudes in a chal-
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Table 5.2: Mean MAE imputation results on the missing grid only. Each time series
is divided into 5 time windows onto which imputation is performed, and the perfor-
mances are averaged over the 5 windows. In the table, τ stands for the subsampling
rate, i.e. the proportion of observed points considered for each time window. Bold
results are best, underlined results are second best. TimeFlow improvement repre-
sents the overall percentage improvement achieved by TimeFlow compared to the
specific method being considered.

Continuous methods Discrete methods

τ TimeFlow DeepTime mTAN Neural Process CSDI SAITS BRITS TIDER

0.05 0.324 ± 0.013 0.379 ± 0.037 0.575 ± 0.039 0.357 ± 0.015 0.462 ± 0.021 0.384 ± 0.019 0.329 ± 0.015 0.427 ± 0.010
0.10 0.250 ± 0.010 0.333 ± 0.034 0.412 ± 0.047 0.417 ± 0.057 0.398 ± 0.072 0.308 ± 0.011 0.287 ± 0.015 0.399 ± 0.009

Electricity 0.20 0.225 ± 0.008 0.244 ± 0.013 0.342 ± 0.014 0.320 ± 0.017 0.341 ± 0.068 0.261 ± 0.008 0.245 ± 0.011 0.391 ± 0.010
0.30 0.212 ± 0.007 0.240 ± 0.014 0.335 ± 0.015 0.300 ± 0.022 0.277 ± 0.059 0.236 ± 0.008 0.221 ± 0.008 0.384 ± 0.009
0.50 0.194 ± 0.007 0.227 ± 0.012 0.340 ± 0.022 0.297 ± 0.016 0.168 ± 0.003 0.209 ± 0.008 0.193 ± 0.008 0.386 ± 0.009

0.05 0.095 ± 0.015 0.190 ± 0.020 0.241 ± 0.102 0.115 ± 0.015 0.374 ± 0.033 0.142 ± 0.016 0.165 ± 0.014 0.291 ± 0.009
0.10 0.083 ± 0.015 0.159 ± 0.013 0.251 ± 0.081 0.114 ± 0.014 0.375 ± 0.038 0.124 ± 0.018 0.132 ± 0.015 0.276 ± 0.010

Solar 0.20 0.072 ± 0.015 0.149 ± 0.020 0.314 ± 0.035 0.109 ± 0.016 0.217 ± 0.023 0.108 ± 0.014 0.109 ± 0.012 0.270 ± 0.010
0.30 0.061 ± 0.012 0.135 ± 0.014 0.338 ± 0.05 0.108 ± 0.016 0.156 ± 0.002 0.100 ± 0.015 0.098 ± 0.012 0.266 ± 0.010
0.50 0.054 ± 0.013 0.098 ± 0.013 0.315 ± 0.080 0.107 ± 0.015 0.079 ± 0.011 0.094 ± 0.013 0.088 ± 0.013 0.262 ± 0.009

0.05 0.283 ± 0.016 0.246 ± 0.010 0.406 ± 0.074 0.318 ± 0.014 0.337 ± 0.045 0.293 ± 0.007 0.261 ± 0.010 0.363 ± 0.007
0.10 0.211 ± 0.012 0.214 ± 0.007 0.319 ± 0.025 0.288 ± 0.018 0.288 ± 0.017 0.237 ± 0.006 0.245 ± 0.009 0.362 ± 0.006

Traffic 0.20 0.168 ± 0.006 0.216 ± 0.006 0.270 ± 0.012 0.271 ± 0.011 0.269 ± 0.017 0.197 ± 0.005 0.224 ± 0.008 0.361 ± 0.006
0.30 0.151 ± 0.007 0.172 ± 0.008 0.251 ± 0.006 0.259 ± 0.012 0.240 ± 0.037 0.180 ± 0.006 0.197 ± 0.007 0.355 ± 0.006
0.50 0.139 ± 0.007 0.171 ± 0.005 0.278 ± 0.040 0.240 ± 0.021 0.144 ± 0.022 0.160 ± 0.008 0.161 ± 0.060 0.354 ± 0.007

TimeFlow improvement / 20.5 % 49.1 % 30.5 % 38.9 % 16.9 % 14.7 % 50.9 %

lenging case (sample 35), although it underestimates the amplitude of some peaks.

In a more challenging scenario (sample 25), where the series exhibit additional trend

changes and frequency variations within the data, TimeFlow correctly imputes most

timestamps, outperforming BRITS, which is the best-performing method for the

Electricity dataset.

Imputation on previously unseen time series. In more practical scenarios,

such as cases involving the installation of new sensors, we often encounter new

time series originating from the same underlying phenomenon. In such instances, it

becomes crucial to make inferences for these previously unseen time series. Thanks

to efficient adaptation in latent space, our model can easily be applied to these

new time series (as shown in appendix C.1.3.2, table C.9), contrasting with SOTA

methods like SAITS and BRITS, which require full model retraining on the whole

set of time series.

5.2.4.2 Forecasting

In this section, we are interested in the conventional long-term forecasting scenario.

It consists in predicting the phenomenon in a specific future period, the horizon,

based on the history of a limited past period, the look-back window. The forecaster

is trained on a set of n observed time series for a given time window (train period)
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Figure 5.4: Electricity dataset. TimeFlow imputation (blue line) and BRITS impu-
tation (gray line) with 10% of known point (red points) on the eight first days of
samples 35 (top) and 25 (bottom).

and tested on new time windows.

Setting For a given time series x(j), T (j)
in denotes the look-back window and

T (j)
out the horizon of H points. During training, at each epoch, we train fθ,hw(z(j))

following algorithm 3 with randomly drawn pairs of look-back window and horizon

(T (j)
in ∪ T

(j)
out )j∈B within the observed train period. Then, for a new time window

T ∗(j), given a look-back window T ∗(j)
in we forecast future values any t ∈ T ∗(j), the

horizon interval, following algorithm 4. We illustrate the training and inference of

TimeFlow for the forecasting task in fig. 5.5.

Baselines. To evaluate the quality of our model in long-term forecasting, we

compare it to the discrete baselines PatchTST (Nie et al., 2022), DLinear (Zeng

et al., 2022), AutoFormer (Wu et al., 2021), and Informer (Zhou et al., 2021). We

also include continuous baselines DeepTime and Neural Process (NP). In table 5.3,

we present the forecasting results for standard horizons in long-term forecasting:

H ∈ {96, 192, 336, 720}. The look-back window length is fixed to 512.

Results. The results in table 5.3 show that our approach ranks in the top

two across all datasets and horizons and is the overall best continuous method.

TimeFlow’s performance is comparable to the current SOTA model PatchTST, with

only 2% relative difference. Moreover, TimeFlow shows consistent results across

the three datasets, whereas the other best discrete and continuous baselines, i.e.

PatchTST and DeepTime, performance drops for some datasets. We also note that,

despite the great performance of the SOTA PatchTST, other transformer-based

baselines (discrete methods in table 5.3) perform poorly. We provide a detailed

insight on these results in appendix C.1.4.1. Overall, although this evaluation setting

favors discrete methods because the time series are observed at evenly distributed
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Training

Inference

Figure 5.5: Training and inference procedure of TimeFlow for forecasting. (i) Dur-
ing training (top-figure), for each time series x(j), we observe some look-back win-
dow/horizon drawing pairs in the trained period. TimeFlow is trained with algo-
rithm 3 to predict all observed timestamps in this drawing pairs while being con-
ditioned by the observed look-back window. (ii) Once TimeFlow is optimized, the
objective during inference (bottom-figure) is to infer the horizon over new time win-
dows (blue dots •) while being conditioned by the newly observed look-back window
(red dots •).

time steps, TimeFlow consistently performs as well as PatchTST and outperforms

all the other methods, whether discrete or continuous. It is the first time that a

continuous model has achieved the same level of performance as discrete methods

within their specific setting.

Forecasting on previously unseen time series. TimeFlow considers that

the series observed at different locations are independent, similar to PatchTST, NP,

and DeepTime. This allows it to generalize to previously unseen time series from

the same phenomenon. Note that this is not the case for most discrete methods.

We show in appendix C.1.4.4, table C.14 that TimeFlow is able to generalize to

previously unseen time series with no significant performance drop.

5.2.4.3 Challenging task: Forecast while imputing incomplete look-back

windows

In real-world scenarios, it is common to encounter missing or irregularly sampled

series when making predictions on new time windows (Cinar et al., 2018; Tang

et al., 2020). Continuous methods can handle these cases, as they are designed to

accommodate irregular sampling within the look-back window. In this section, we

formulate a task to simulate these real-world scenarios. It’s worth noting that this

task is often encountered in practice but is rarely considered in the DL literature.
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Table 5.3: Mean MAE forecast results averaged over different time windows. Each
time, the model is trained on one time window and tested on the others (there
are 2 windows for SolarH and 5 for Electricity and Traffic). H stands for the
horizon. Bold results are best, and underlined results are second best. TimeFlow
improvement represents the overall percentage improvement achieved by TimeFlow
compared to the specific method being considered.

Continuous methods Discrete methods

H TimeFlow DeepTime Neural Process Patch-TST DLinear AutoFormer Informer

Electricity

96 0.228 ± 0.028 0.244 ± 0.026 0.392 ± 0.045 0.221 ± 0.023 0.241 ± 0.030 0.546 ± 0.277 0.603 ± 0.255
192 0.238 ± 0.020 0.252 ± 0.019 0.401 ± 0.046 0.229 ± 0.020 0.252 ± 0.025 0.500 ± 0.190 0.690 ± 0.291
336 0.270 ± 0.031 0.284 ± 0.034 0.434 ± 0.076 0.251 ± 0.027 0.288 ± 0.038 0.523 ± 0.188 0.736 ± 0.271
720 0.316 ± 0.055 0.359 ± 0.051 0.607 ± 0.150 0.297 ± 0.039 0.365 ± 0.059 0.631 ± 0.237 0.746 ± 0.265

SolarH

96 0.190 ± 0.013 0.190 ± 0.020 0.221 ± 0.048 0.262 ± 0.070 0.208 ± 0.014 0.245 ± 0.045 0.248 ± 0.022
192 0.202 ± 0.020 0.204 ± 0.028 0.244 ± 0.048 0.253 ± 0.051 0.217 ± 0.022 0.333 ± 0.107 0.270 ± 0.031
336 0.209 ± 0.017 0.199 ± 0.026 0.240 ± 0.006 0.259 ± 0.071 0.217 ± 0.026 0.334 ± 0.079 0.328 ± 0.048
720 0.218 ± 0.041 0.229 ± 0.024 0.403 ± 0.147 0.267 ± 0.064 0.249 ± 0.034 0.351 ± 0.055 0.337 ± 0.037

Traffic

96 0.217 ± 0.032 0.228 ± 0.032 0.283 ± 0.027 0.203 ± 0.037 0.228 ± 0.033 0.319 ± 0.059 0.372 ± 0.078
192 0.212 ± 0.028 0.220 ± 0.022 0.292 ± 0.024 0.197 ± 0.030 0.221 ± 0.023 0.368 ± 0.057 0.511 ± 0.247
336 0.238 ± 0.034 0.245 ± 0.038 0.305 ± 0.039 0.222 ± 0.039 0.250 ± 0.040 0.434 ± 0.061 0.561 ± 0.263
720 0.279 ± 0.050 0.290 ± 0.052 0.339 ± 0.038 0.269 ± 0.057 0.300 ± 0.057 0.462 ± 0.062 0.638 ± 0.067

TimeFlow improvement / 4.30 % 32.2 % -2.14 % 14.31 % 47.57 % 54.83 %

Setting and baselines. This scenario is similar to the forecast setting in sec-

tion 5.2.4.2 and illustrated in fig. 5.5. The difference is that during inference, the

look-back window is subsampled at a rate τ smaller than the one used for the training

phase. This simulates a situation with missing observations in the look back win-

dow. Consequently, two distinct tasks emerge during the inference phase: imputing

missing points within the sparsely observed look-back window, and forecasting over

the horizon with this degraded context. In table 5.4, we compare to the two other

continuous baselines, DeepTime and NP on Electricity and Traffic for different τs

and horizons.

Results. In table 5.4, the results show that TimeFlow consistently outperforms

other methods in imputation and forecasting for every scenarios. When compar-

ing with the complete look-back windows observations scenario from table 5.3, one

observes that at a 0.5 sampling rate, TimeFlow presents only a slight reduction

in performance, whereas other baseline methods experience more significant drops.

For instance, when we compare forecast results between a complete window and a

τ = 0.5 subsampled window for Electricity with a forecasting horizon of H = 96,

TimeFlow’s error increases by a mere 4.6% (from 0.228 to 0.239). In contrast, Deep-

Time’s error grows by over 10% (from 0.244 to 0.270), and NP experiences a rise of

around 25% (from 0.392 to 0.486). For lower sampling rates, TimeFlow still deliv-

ers correct predictions. Qualitatively, we see on the series example in fig. 5.6 that

despite observing only 10% of the look-back window, the model can correctly infer

both the complete look-back window and the horizon. Both quantitative and qual-
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Table 5.4: MAE results for forecasting with missing values in the look-back win-
dow. τ stands for the percentage of observed values in the look-back window. Best
results are in bold. TimeFlow improvement represents the overall percentage im-
provement (for each task) achieved by TimeFlow compared to the specific method
being considered.

TimeFlow DeepTime Neural Process

H τ Imputation error Forecast error Imputation error Forecast error Imputation error Forecast error

Electricity

96
0.5 0.151 ± 0.003 0.239 ± 0.013 0.209 ± 0.004 0.270 ± 0.019 0.460 ± 0.048 0.486 ± 0.078
0.2 0.208 ± 0.006 0.260 ± 0.015 0.249 ± 0.006 0.296 ± 0.023 0.644 ± 0.079 0.650 ± 0.095
0.1 0.272 ± 0.006 0.295 ± 0.016 0.284 ± 0.007 0.324 ± 0.026 0.740 ± 0.083 0.737 ± 0.106

192
0.5 0.149 ± 0.004 0.235 ± 0.011 0.204 ± 0.004 0.265 ± 0.018 0.461 ± 0.045 0.498 ± 0.070
0.2 0.209 ± 0.006 0.257 ± 0.013 0.244 ± 0.007 0.290 ± 0.023 0.601 ± 0.075 0.626 ± 0.101
0.1 0.274 ± 0.010 0.289 ± 0.016 0.282 ± 0.007 0.315 ± 0.025 0.461 ± 0.045 0.724 ± 0.090

Traffic

96
0.5 0.180 ± 0.016 0.219 ± 0.026 0.272 ± 0.028 0.243 ± 0.030 0.436 ± 0.025 0.444 ± 0.047
0.2 0.239 ± 0.019 0.243 ± 0.027 0.335 ± 0.026 0.293 ± 0.027 0.596 ± 0.049 0.597 ± 0.075
0.1 0.312 ± 0.020 0.290 ± 0.027 0.385 ± 0.025 0.344 ± 0.027 0.734 ± 0.102 0.731 ± 0.132

192
0.5 0.176 ± 0.014 0.217 ± 0.017 0.241 ± 0.027 0.234 ± 0.021 0.477 ± 0.042 0.476 ± 0.043
0.2 0.233 ± 0.017 0.236 ± 0.021 0.286 ± 0.027 0.276 ± 0.020 0.685 ± 0.109 0.678 ± 0.108
0.1 0.304 ± 0.019 0.277 ± 0.021 0.331 ± 0.025 0.324 ± 0.021 0.888 ± 0.178 0.877 ± 0.174

TimeFlow improvement / / 22.7 % 12.0 % 62.3 % 59.4 %

itative results show the robustness and efficiency of TimeFlow on this particularly

challenging setting.
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Figure 5.6: Traffic dataset, sample 95. In this figure, TimeFlow simultaneously
imputes and forecasts at horizon 96 with a 10% partially observed look-back window
of length 512.

5.2.4.4 Conclusion and Discussion

We have introduced a unified framework for continuous time series modeling leverag-

ing conditional INR and meta-learning. Our experiments have demonstrated supe-

rior performance compared to other continuous methods, and better or comparable

results to SOTA discrete methods. One of the standout features of our framework

is its inherent continuity and the ability to modulate the INR parameters. This

unique flexibility lets TimeFlow effectively tackle a wide array of challenges, in-

cluding forecasting in the presence of missing values, accommodating irregular time

steps, and extending the trained model’s applicability to previously unseen time
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series and new time windows. Our empirical results have shown TimeFlow’s effec-

tiveness in handling homogeneous multivariate time series. As a logical next step,

extending TimeFlow’s capabilities to address heterogeneous multivariate phenomena

represents a promising direction for future research.



Chapter 6

Conclusion

6.1 Conclusion

In this thesis, we have addressed several challenges at the intersection of numerical

analysis and deep learning. This research was conducted through three angles ad-

dressing various challenges, from the design of a friction law in the Shallow Water

equations to the forecasting of time series.

The first angle focused on incorporating numerical analysis concepts into deep learn-

ing frameworks, showing promising results. By incorporating multigrid numerical

schemes into a multi-scale deep learning architecture, namely the Multipole Graph

Neural Operator, this work demonstrated its efficacy in solving static PDE problems.

Notably, it successfully tackled steady-state Darcy flow and the 1D viscous unsteady

Burgers’ equation, highlighting the potential of numerical integration within deep

learning for solving partial differential equations. Furthermore, the integration of

implicit numerical schemes into neural networks, with added constraints, led to a

stable neural network in forecasting. This work showed improved long-term fore-

casting in two transport PDEs. This innovative approach represents a significant

step towards incorporating the strengths of numerical analysis into deep learning

algorithms.

The second angle of this thesis centered on designing a hybrid model to address the

friction law design in Shallow-Water equations, which is a current challenge among

the numerical analysis community. This hybrid model consists of a data-driven

friction law integrated into a numerical scheme, thus learning the friction from the

observations, namely the water height and flow. This framework is robust to vari-

ous cases, as shown in the experiments. Indeed, by learning through a solver, when

confronted with more realistic data, the DL component manages to compensate for

diffusion or discretization errors. Moreover, this approach was shown to be effective

on the complex PDE dynamic case as well. This approach illustrates the benefits

of combining the strengths of DL by learning from data and numerical analysis by

modeling accurately physical systems.

117
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The third and final angle revolved around the development of continuous model-

ing, with two distinct applications demonstrating the versatility of this approach.

The first application addressed airfoil optimization, a critical concern in aerospace

engineering. Leveraging Implicit Neural Representations (INRs), we designed an

efficient surrogate model for the prediction of physical fields throughout airfoil vol-

umes and surfaces. The ability to predict drag and lift coefficients while adhering to

the governing equations offers great potential for optimizing aerodynamic designs.

In the second application, the focus shifted to time series modeling, with INRs be-

ing employed to handle missing data, irregular sampling, and unaligned observations

from multiple sensors. The method demonstrated state-of-the-art performance and

generalization abilities, showcasing its adaptability to a wide range of time-series

data problems.

In summary, this thesis contributed to the field of numerical analsys and deep learn-

ing, showing links in various directions between the two domains. It highlighted the

possibilities and advantages of applying numerical analysis concepts into deep learn-

ing frameworks, hybrid modeling and continuous modeling. This research has pro-

vided solutions to diverse challenges across various domains, from solving dynamic

PDEs to optimizing aerodynamic designs and handling time series data. These

findings not only contribute to the advancement of scientific knowledge but also

have practical implications for industries ranging from aerospace to environmental

science. The promising results from this work opens the way for future works and

further explorations, some of them being highlighted in the upcoming Section 6.2.

6.2 Perspectives

Following the works presented in this thesis, many directions can be taken to improve

upon this work. This sections presents a few directions.

Improving convergence performances in forecasting dynamical systems.

As shown in Section 3.2, we designed a method to ensure stability when forecasting

dynamical systems. However, as the experiments illustrate, the method does not

manage to converge to the solution, hence this solution is not yet very useful. We

believe, given the good performances of FNO, that an implicit scheme inspired FNO,

with constraints on its weights, could lead to better results. Some experiments

have been conducted in this direction but due to a lack of time were not finished.

These experiments led to better results but the theoretical results of stability in

forecasting could not yet be guaranteed. Designing such a structural stable network

in forecasting with good performances would be of great interest of the community

in addition to the existing literature.
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Hybrid modeling for the Shallow Water equations. In addition to the

vast amount of experiments performed for the friction design in the Shallow Water

equations, other extensions are possible. A main extension is to learn a friction law

dependent on space. Indeed, in many practical applications, the friction depends

on the space, for instance in the case of a river, the bottom of a river can change

and thus change the friction. In order to learn such a friction law with a neural

network, space must be added as an input. However, with the special nature of this

input relative to the function, it must be treated differently than the water height

and flow. First experiments were made using a network that modifies this input

before concatenating it to the height and flow. This is an exciting direction for this

research and could enhance its applicability in practical cases.

Another direction, which is more complex, is to study regime changes for the ODE

case. Indeed, in the current experiments, the regime (subsonic or supersonic) is the

same across the domain. However, the regime can be different across the domain,

for instance subsonic on the left side and supersonic on the right side. This implies

adding constraints on the ODE in order to be able to study this phenomenon. This

change of regime leads to discontinuity for the ODE case and hence must be very

challenging for the network to handle. A solution to circumvent this issue is to study

a regime change in the PDE case at long-term, hence being close to the ODE case,

which is the stationary state of the PDE. With this approach, it would possible

to study this complex regime change, given that the PDE discretization must be

precise in order to capture this phenomenon. Studying this is of great theoretical

and practical interest and very challenging.

Changing the problem setting is also an interesting direction. It could be assumed

that a prior on the law is learned and is incorporated directly into the neural net-

work. This would implemented by adding guessed Cf , α and β as input of the neural

network. Then, in order to improve the training, a continuation method/curriculum

learning approach could be implemented. This could consist in training for param-

eters that correspond to easier laws and then increasing the parameters to tackle

harder laws, as has been done in Krishnapriyan et al. (2021).

Continuous modeling for surrogate modeling Continuous modeling for sur-

rogate modeling is very promising as shown with INFINITY in a challenging setting.

In order to extend this work, the first direction would be to apply this approach on

more datasets to test its robustness. A second direction that is in progress is to

add a diffusion model as an encoder. This would allow to produce a probability dis-

tribution on the results in addition to the already existing continuity property and

would be of great interest for practitioners. A third direction is to add priors into

the model. Indeed, different settings of the AirfRANS dataset are designed to test

the generalization properties of the approaches with respect to the angle of attack,

the Reynolds number and scarcity of data. DL approaches and INFINITY would
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benefit greatly from prior information such as constraining the network to respect

the boundary conditions. Many implementations can follow this intuition, but we

have not found yet any that would keep the efficiency of INFINITY.

Continuous modeling for time series TimeFlow has shown promising abil-

ities to impute and forecast time series where a single phenomenon is measured

at multiple locations over time. It would be interesting to extend this research to

time series with multiple phenomena measured at multiple locations over time. A

few experiments have been performed to test our framework in these settings, but

the results were not really convincing, nor the data. We have tested this extension

by having a latent code that modulates several INRs, each fitting a phenomenon.

Other ideas can be extended in this direction, an interesting one would be to design

a network that can really take advantage of the potential links between the several

time series phenomena occurring at the same time. Another direction in this work

is to study other tasks, in addition to imputation and forecasting. Some prelimi-

nary studies have been conducted on classification problems. An idea that we did

not manage to successfully implement was to use the latent codes for classification.

These codes could be very powerful since they are a compact representation of the

time series. However, as such, they were not constrained enough to produce inter-

esting performances for downstream tasks. We have tried to add some biases in the

loss to constrain this space, for e.g. codes that represent time series that are close

should be close, but none of them proved efficient. This direction is interesting and

promising, the goal being to find a good way to constrain the latent space of the

modulated INR.
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B. O’Malley, J. Kópházi, M. Eaton, V. Badalassi, P. Warner, and A. Copestake.

Pyramid finite elements for discontinuous and continuous discretizations of the

neutron diffusion equation with applications to reactor physics. Progress in

Nuclear Energy, 105:175–184, 2018. ISSN 0149-1970. doi: https://doi.org/10.

https://openreview.net/forum?id=IaXBtMNFaa


Bibliography 133

1016/j.pnucene.2017.12.006. URL https://www.sciencedirect.com/science/

article/pii/S0149197017303062.

J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf: Learn-

ing continuous signed distance functions for shape representation. In Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition, pages

165–174, 2019.
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networks using lipschitz bounds. IEEE Control Systems Letters, 6:121–126, 2021.

G. Peano and G. Peano. Démonstration de l’intégrabilité des équations différentielles
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Appendix A

Appendix of Chapter 3

A.1 Stability of implicit neural networks for long-

term forecasting in dynamical systems

A.1.1 Details on the implementation

Our implicit neural network is using Rectified linear unit (ReLU) activation func-

tions, as can be seen in Figure 3.3.

Definition A.1.1 (ReLU). A rectified linear unit (ReLU) function is defined component-

wise to a vector by ∀ x ∈ R,ReLU(x) = max(0, x).

It is one of the most common activation functions used in Deep Learning.

In order to constrain our network, we use upper triangular weights Wn. At

each training epoch, we constrain the diagonal values to be between -1 and 0 after

gradient descent. We choose a minimal value of 0.01, to ensure that the theorem

hypothesis are respected. For values below -1, we set them to -1 and for values

above 0.01, we set them to 0.01.

A.1.2 Details on experiments

Baseline Methods

In addition to an Explicit ResNet with ReLU activation function and a FNO, we

have two variants for the explicit ResNet method.

• an explicit ResNet tanh, with Rn(x) = tanh(Wnx+ bn)

• an explicit ResNet BN, with a ReLU activation function, and batch normal-

ization at each hidden layer, to control the norm inside the network.
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On training

The training details for each architecture on both equations are presented in the

appendix in Table A.1. For the Advection equation, 350 examples were generated

for train, 150 other ones for validation/test and 50 for forecasting tests. For Burgers’

equation, 120 examples were generated for train, 30 other ones for validation/test

and 50 for forecasting tests. Our experiments led to a few main training remarks.

Initialization The networks are not really sensitive to the initialization. The

only pitfall is to initialize with high values. Then the network doesn’t manage to

converge as well as it could have. We initialize all networks with Xavier initialization

with a gain of 1.

Learning rate scheduling We used learning rate scheduling. It improves per-

formance by a factor of 100. It is crucial to use it for our problems, and to choose

carefully its parameter. We found that a linear scheduling with carefully chosen

decay and step size works well. A special attention needs to be placed on the initial

learning rate as well.

FNO architecture For the FNO network, we chose 12 modes a width of 32 for

the Advection equation and 16 modes and a width of 64 for Burgers’ equation, as

was done in the original article.

Training parameters

The training remarks detailed previously in section A.1.2 led to the choices showed

in Table A.1.

Table A.1: Hyper-parameter choice for each architecture on the Advection equation
and Burgers’ equation.

Model Xavier gain Initial learning rate Decay Step size Epochs

A
dv
ec
ti
on

Explicit Res Net 1 0.05 0.95 10 2500

Explicit Res Net BN 1 0.05 0.98 10 2500

Explicit Res Tanh 1 0.05 0.95 10 2500

FNO 1 0.005 0.98 10 2500

Implicit ResNet (Ours) 1 0.01 0.9 10 1250

B
ur
ge
rs
’

Explicit Res Net 1 0.05 0.95 10 2500

Explicit Res Net BN 1 0.05 0.98 10 2500

Explicit Res Tanh 1 0.05 0.95 10 2500

FNO 1 0.005 0.96 10 2500

Implicit ResNet (Ours) 1 0.01 0.98 10 1250
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Ablation study

In order to better investigate this task, we conducted experiments with additional

architectures. The results are shown in Table A.2.

Table A.2: Ablation study for the Advection equation and Burgers’ equation.

Model
Train Error

(×10−4)

Test Error

(×10−4)

Forecast error at mid-range

Tadv = 40 ·∆tadv
Tbur = 150 ·∆tbur

Forecast error at long-range

Tadv = 400 ·∆tadv
Tbur = 300 ·∆tbur

A
dv
ec
ti
on

Explicit Res Net 0.03 ± 0.01 0.09 ± 0.07 0.25 ± 0.33 4.7 · 1031 ± 1.0 · 1032
Explicit Res Net BN 1.01 ± 0.32 317 ± 20 1.2 · 1024 ± 2.8 · 1024 +∞
Explicit Res Tanh 0.98 ± 0.1 14.0 ± 4.0 31.7 ± 70.5 +∞
FNO 0.04 ± 0.01 0.1 ± 0.08 0.03 ± 0.04 4.7 · 108 ± 1.0 · 109
Implicit ResNet (Ours) 14.0 ± 9.0 25.0 ± 27.0 27.4 ± 24 27.5 ± 24.2

B
ur
ge
rs
’

Explicit Res Net 0.17 ± 0.03 0.90 ± 0.38 2.77 · 1019 ± 6.2 · 1019 +∞
Explicit Res Net BN 0.51 ± 0.13 51.63 ± 34.89 +∞ +∞
Explicit Res Tanh 0.84 ± 0.22 44.67 ± 11.58 +∞ +∞
FNO 0.02 ± 0.002 0.03 ± 0.006 5.31 · 1010 ± 11.2 · 1010 +∞
Implicit ResNet (Ours) 4.90 ± 0.64 7.91 ± 0.30 0.67 ± 0.43 0.66 ± 0.44

Table A.3: Results of our approach compared to baselines on the Advection equation
and Burgers’ equation. We calculate the means and standard deviations of relative
error for each model based on 5 runs with different seeds. The mid-range time is
40 for the Advection equation and 0.075 for Burgers’ and the long range time is
respectively 400 and 0.15. Recall that ∆tadv = 1 and ∆tbur = 0.0005. All relative
errors are in percentages.

Model Test relative Error
Relative error at mid-range
Tadv = 40 ·∆tadv
Tbur = 150 ·∆tbur

Relative error at long-range
Tadv = 400 ·∆tadv
Tbur = 300 ·∆tbur

A
dv
ec
ti
on

Explicit Res Net 0.5 ± 0.009 106.5 ± 66.0 +∞
FNO 1.1 ± 0.1 34.5 ± 19.0 7.2 · 105 ± 1.6 · 106
Implicit ResNet (Ours) 10.7 ± 4.2 1026.8 ± 346.7 1037.1 ± 347.9

B
ur
ge
rs
’ Explicit Res Net 2.9 ± 0.3 6.9 · 1010 ± 1.5 · 1011 +∞

FNO 0.6 ± 0.004 3.6 · 106 ± 8.0 · 106 +∞
Implicit ResNet (Ours) 10.7 ± 0.3 277.7 ± 102.6 340.0 ± 129.9
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Appendix of Chapter 2

B.1 ODE analysis

B.1.1 Noise study

Table B.1: Friction errors for different noise standard deviations σ.

Noise σ
Relative Friction MAE

(×10−3)

Relative Height MAE

(×10−4)

0 0.61 0.28

0.0125 2.30 1.48

0.025 2.66 1.48

0.05 4.90 5.63

0.1 4.10 2.78

0.2 6.16 5.57

0.4 7.36 6.18
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B.1.2 Different friction laws study

(a) β of 1/2. (b) β 1.

(c) β 4/3. (d) β 2.

Figure B.1: Relative height absolute error for different friction laws with changing
β for a coefficient of 0.3.

B.1.3 Convergence

As can be seen in Figure 4.20b andFigure B.2, the convergence of numerical schemes

on the ODE case are coherent with the order of the schemes, a convergence of order

1 for Euler, of order 2 for midpoint and of order 4 for RK4.
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(a) Convergence of Euler scheme (without any neural network) for the
river case.

(b) Convergence of Midpoint scheme (without any neural network) for
the river case.

Figure B.2: Convergence of Euler and Midpoint schemes with the size of the grid.

The study of the traditional friction law learning, initialized with the underlying

true parameters, leads to the results in Table B.2 and with a random initialization
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in Table 4.12. A further study is available in Figure B.3 and Figure B.4, where

the evolution of the parameters during the optimization is shown. With the true

initial guesses, it is interesting to see the departure from the true values to adapt

the friction to the numerical diffusion of the scheme. This illustrates that in cases

where there is diffusion, as are more practical applications, the traditional approach

does not have enough parameters to adapt the friction law.

Table B.2: Height and friction MAE for different discretization of three schemes with
3 parameters estimation using true values of the parameters for the initialization.
The parameter estimation is done using Adam, no neural network has been used for
this table. The number of points seen during training and the discretization change.
Friction MAE is expressed with factor ×10−3 and height with factor ×10−4. 500
trajectories are used for training.

Scheme \Disc
16 32 64

Friction Height Friction Height Friction Height

Euler 96.99 68.79 50.18 32.97 25.43 15.72

Midpoint 68.48 52.19 38.64 25.59 20.06 12.82

RK4 39.64 25.65 20.29 12.50

128 256 512

Euler 12.74 7.65 6.37 3.78 3.18 1.88

Midpoint 10.17 6.40 5.11 3.18 2.56 1.59

RK4 10.22 6.31 5.12 3.17 2.56 1.59
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(a) α evolution during training. (b) β evolution during training.

(c) Cf evolution during training. (d) Loss evolution during training.

Figure B.3: Parameter evolution and training loss during the training of the nu-
merical analysis approach for a grid of size 512 and RK4 scheme using high-fidelity
solutions as a training set.
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(a) α evolution during training. (b) β evolution during training.

(c) Cf evolution during training. (d) Loss evolution during training.

Figure B.4: Parameter evolution and training loss during the training of the nu-
merical analysis approach for a grid of size 512 and RK4 scheme using high-fidelity
solutions as a training set and true values of the parameters for the initialization.

B.2 Swimming pool analysis

As can be seen in Figure B.5a and Figure B.5b, the energy is overall decreasing

with time, which is to be expected and is a hard constraint of the Shallow Water

equations. However, it is not monotone, which can be explained by the grid being

not fine enough to guarantee monotony.

A view of the friction law for the PDE settings at h = 1 shows that the network

struggles to capture the true value of the friction around u = 0, but capture it very

accurately with higher water flows. This can be explained by the fact that when

the water flow u is close to zero, the influence of the friction on the observations is

negligible, thus the network does not need to learn it very accurately to reproduce

the observations, namely the water height h and the water flow u.



148 Appendix B. Appendix of Chapter 2

(a) Small variations energy for 2 trajectories
(b) Medium variations energy for 2 trajecto-
ries

Figure B.5: Energy plots for two trajectories for the small and medium variations
setting.
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(a) Small variations squared water height
and water flow for several trajectories for the
small variations setting

(b) Medium variations squared water height
and water flow for several trajectories for the
medium variations setting

(c) Large variations squared water height and
water flow for several trajectories for the
medium variations setting

Figure B.6: Squared water height and water flow plots for several trajectories for
the small and medium variations setting.
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Figure B.7: Water height, flow and friction MAE over time averaged for 25 trajec-
tories for the large variations PDE setting.
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(a) View of the friction for h = 1 for the small
variations setting

(b) View of the friction for h = 1 for the
medium variations setting

(c) View of the friction for h = 1 for the large
variations setting

(d) View of the friction for h = 1.2 for the
large variations setting

Figure B.8: View of the friction for h = 1 for the three PDE setting.
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Appendix of Chapter 5

C.1 Time Series Continuous Modeling for Impu-

tation and Forecasting with Implicit Neural

Representations

Reproductiblity statement

Our work is entirely reproducible, and all the references to the information in order

to reproduce it are in this section.

Code. The code for all our experiments is available at this link.

Data. A subset of the processed data is available with the code in this link. The

dataset description, processing and normalization are presented in appendix C.1.2.

Model. The model and the training details are presented in section 5.2.3 and

the hyperparameter selection is available in appendix C.1.1.1.

GPU. We used NVIDIA TITAN RTX 24Go single GPU to conduct all the ex-

periments for our method, which is coded in PyTorch (Python 3.9.2).
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C.1.1 Architecture details and ablation studies

C.1.1.1 Architecture details

For all imputation and forecasting experiments we choose the following hyperpa-

rameters :

• z dimension: 128

• Number of layers: 5

• Hidden layers dimension: 256

• γ(t) ∈ R2×64

• z code learning rate (α in algorithm 3): 10−2

• Hypernetwork and INR learning rate: 5× 10−4

• Number of steps in inner loop: K = 3

• Number of epochs: 4× 104

• Batch size: 64

It is worth noting that the hyperparameters mentioned above remain consistent

across all experiments conducted in the paper. We chose to maintain a fixed set of

hyperparameters for our model, while other imputation and forecasting approaches

commonly fine-tune hyperparameters based on a validation dataset. The obtained

results exhibit high robustness across various settings, suggesting that the selected

hyperparameters are already effective in achieving reliable outcomes.

C.1.1.2 Fourier features vs SIREN on imputation task

Baseline The SIREN network differs from the Fourier features network because

it does not explicitly incorporate frequencies as input. Instead, it is a multi-layer

perceptron network that utilizes sine activation functions. An adjustable parameter,

denoted ω0, is multiplied with the input matrices of the preceding layers to capture

a broader range of frequencies. For this comparison, we adopt the same hyperpa-

rameters described in appendix C.1.1.1, selecting ω0 = 30 to align with Sitzmann

et al. (2020b). Furthermore, we set the learning rate of both the hypernetwork and

the INR to 5× 10−5 to enhance training stability. In Table C.1, we compare the im-

putation results obtained by the Fourier features network and the SIREN network,

specifically focusing on the first time window from the Electricity, Traffic and Solar

datasets.
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Table C.1: MAE imputation errors on the first time window of each dataset. Best
results are bold.

τ TimeFlow TimeFlow w SIREN

Electricity

0.05 0.323 0.466

0.10 0.252 0.350

0.20 0.224 0.242

0.30 0.211 0.222

0.50 0.194 0.209

Solar

0.05 0.105 0.114

0.10 0.083 0.094

0.20 0.065 0.079

0.30 0.061 0.072

0.50 0.056 0.066

Traffic

0.05 0.292 0.333

0.10 0.220 0.252

0.20 0.168 0.191

0.30 0.152 0.163

0.50 0.141 0.154

Results According to the results presented in table C.1, the Fourier features

network outperforms the SIREN network in the imputation task on these datasets.

Notably, the performance gap between the two network architectures are more pro-

nounced at low sampling rates. This disparity can be attributed to the SIREN

network’s difficulty in accurately capturing high frequencies when the time series

is sparsely observed. We hypothesize that the MLP with ReLU activations cor-

rectly learns the different frequencies of time series with multi-temporal patterns by

switching on or off the Fourier embedding frequencies.

C.1.1.3 Influence of the latent code dimension

The dimension of the latent code z is a crucial parameter in our architecture. If

it is too small, it underfits the timeseries. Consequently, this adversely affects the

performance of both the imputation and forecasting tasks. On the other hand, if the

dimension of z is too large, it can lead to overfitting, hindering the model’s ability

to generalize to new data points.

Baselines To investigate the impact of z dimensionality on the performance of

TimeFlow, we conducted experiments on the Electricity dataset, specifically focusing

on the imputation task. We varied the sizes of z within {32, 64, 128, 256}. The other
hyperparameters are set as presented in appendix C.1.1.1. The obtained results for

each z dimension are summarized in table C.2.

Results The results presented in table C.2 highlight the importance of the z-

dimension, as it significantly impacts the results. We found that a dimension of 128
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Table C.2: MAE imputation errors on the first time window of Electricity dataset.
Best results are bold.

τ dim(z) = 32 dim(z) = 64 dim(z) = 128 dim(z) = 256

Electricity

0.05 0.370 0.364 0.323 0.354
0.10 0.302 0.301 0.252 0.283
0.20 0.269 0.265 0.224 0.247
0.30 0.242 0.245 0.211 0.238
0.50 0.224 0.240 0.194 0.217

was a suitable compromise for all our experiments.

C.1.1.4 Influence of the number of gradient steps

As can be seen in table C.3, using three gradient steps at inference yield an inference

of less than 0.2 seconds. The latter can still be reduced by doing only one step at the

cost of an increase in the forecasting error. As observed in table C.3, increasing the

number of gradient steps above 3 steps during inference does not improve forecasting

performance.

Table C.3: Inference time (in seconds) and MAE on the forecasting task on the
Electricity dataset for a horizon of length 720, a look-back window of length 512,
and a varying number of adaptation gradient steps. The statistics are computed
over 10 runs using an NVIDIA TITAN RTX GPU.

Gradient descent steps 1 3 10 50 500 5000

Inference time (s) 0.109 ± 0.003 0.176 ± 0.009 0.427 ± 0.031 3.547 ± 0.135 17.722 ± 0.536 189.487 ± 8.060
MAE 0.351 ± 0.038 0.303 ± 0.041 0.300 ± 0.040 0.299 ± 0.039 0.302 ± 0.038 0.308 ± 0.037

C.1.1.5 TimeFlow variants with other meta-learning techniques

Baselines Before converging to the current architecture and optimization of

TimeFlow, we explored different options to condition the INR with the observa-

tions. The first one was inspired by the neural process architecture, which uses a set

encoder to transform a set of observations (ti, xti)i∈I into a latent code z by applying

a pooling layer after a feed forward network. We observed that this encoder in com-

bination with the modulated fourier features network was able to achieve relatively

good results on the forecasting task but suffered of underfitting on more complex

datasets such as Electricity.

This led us to consider auto-decoding methods instead, i.e. encoder-less archi-

tectures for conditioning the weights of the coordinate-based network. We trained

TimeFlow with the REPTILE algorithm (Nichol et al., 2018b), which is a first-order

meta-learning technique that adapts the code in a few steps of gradient descent. In
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contrast with a second-order method, we observed that REPTILE was less costly

to train but struggled to escape sub optimal minima, which led to unstable training

and underfitting.

From an implementation point of view, the only difference between second order

and first order, is that in the latter the code is detached from the computation graph

before taking the outer-loop parameter update. When the code is not detached,

it remains a function of the common parameters z = z(θ, w), which means that

the computation graph for the outer-loop also includes the inner-loop updates to

the codes. Therefore the outer-loop gradient update involves a gradient through a

gradient and requires an additional backward pass through the INR to compute the

Hessian. Please refer to Finn et al. (2017) for more technical details.

Table C.4: Comparison of second-order and first-order (REPTILE) meta learning
for TimeFlow on the imputation task. Mean MAE results on the missing grid over
five different time windows. τ stands for the subsampling rate. Bold results are
best.

τ TimeFlow TimeFlow w REPTILE

0.05 0.324 ± 0.013 0.363 ± 0.062

0.10 0.250 ± 0.010 0.343 ± 0.036

Electricity 0.20 0.225 ± 0.008 0.312 ± 0.043

0.30 0.212 ± 0.007 0.308 ± 0.035

0.50 0.194 ± 0.007 0.305 ± 0.046

0.05 0.095 ± 0.015 0.125 ± 0.025

0.10 0.083 ± 0.015 0.123 ± 0.032

Solar 0.20 0.072 ± 0.015 0.108 ± 0.021

0.30 0.061 ± 0.012 0.105 ± 0.027

0.50 0.054 ± 0.013 0.102 ± 0.021

0.05 0.283 ± 0.016 0.304 ± 0.026

0.10 0.211 ± 0.012 0.264 ± 0.009

Traffic 0.20 0.168 ± 0.006 0.242 ± 0.019

0.30 0.151 ± 0.007 0.218 ± 0.020

0.50 0.139 ± 0.007 0.216 ± 0.017

Results In Table C.4, we show the performance of first-order TimeFlow on the

imputation task. In low sampling regimes the difference with TimeFlow is less

perceptive, but its performance plateaus when the number of points increases. This

is not surprising. Indeed, as though the task is actually simpler when τ increases,

the optimization is made more difficult with the increased number of observations.

We provide the performance of TimeFlow with a set encoder on the Forecasting task

in Table C.5. We observed that this version failed to generalize well for complex

datasets.
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Table C.5: Comparison of optimization-based and set-encoder-based meta learning
for TimeFlow on the forecasting task. Mean MAE forecast results over different
time windows. H stands for the horizon. Bold results are best.

H TimeFlow TimeFlow w set encoder

96 0.228 ± 0.026 0.362 ± 0.032

192 0.238 ± 0.020 0.360 ± 0.028

Electricity 336 0.270 ± 0.031 0.382 ± 0.038

720 0.316 ± 0.055 0.431 ± 0.059

96 0.190 ± 0.013 0.251 ± 0.071

192 0.202 ± 0.020 0.239 ± 0.058

SolarH 336 0.209 ± 0.017 0.235 ± 0.040

720 0.218 ± 0.048 0.231 ± 0.032

96 0.217 ± 0.036 0.276 ± 0.031

192 0.212 ± 0.028 0.281 ± 0.034

Traffic 336 0.238 ± 0.034 0.297 ± 0.042

720 0.279 ± 0.050 0.333 ± 0.048

C.1.1.6 Influence of the modulation

In TimeFlow, we apply shift modulations to the parameters of the INR, i.e. for each

layer l we only modify the biases of the network with an extra bias term ϕ
(j)
l . We

generate these bias terms with a linear hypernetwork that maps the code z(j) to the

modulations. The output of the l-th layer of the modulated INR is thus given by

ϕl+1 = ReLU(θlϕl−1 + bl + ψ
(j)
l ), where ψ

(j)
l = Wlz

(j) and (Wl)
L
l=1 are parameters

of the hypernetwork. However, another common modulation is the combination of

the scale and shift modulation, which leads to the output of the l-th layer of the

modulated INR being given by ϕl+1 = ReLU((Slz
(j)) ◦ (θlϕl−1 + bl) + ψ

(j)
l ), where

ψ
(j)
l = Wlz

(j), and (Wl)
L
l=1 and (Sl)

L
l=1 are parameters of the hypernetwork and ◦ is

the Hadamard product.

In table C.6, we conduct additional experiments on the Electricity dataset in the

forecasting setting with different time horizons. In these experiments, we compare

two scenarios: one where the INR is modulated only by a shift factor and the other

where the INR is modulated by both a shift and a scale factor. We kept the archi-

tecture and hyperparameters consistent with those described in Appendix C.1.1.1.

The experiments shown in table C.6 indicate that the INR is longer to train with

shift and scale modulations due to the increased number of parameters involved.

Furthermore, we observe that the shift and scale modulated INR performed simi-

larly or even worse than the INR with only shift modulation. These two drawbacks,

namely an increased computational time and similar or worse performances, moti-

vate modulating the INR only by a shift factor.
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Table C.6: Ablation on modulations for the forecasting task on Electricity dataset
for different horizons. Models are trained on a given time window and tested on four
new time windows. Models are trained on a single NVIDIA TITAN RTX GPU.

96 192 336 720

MAE Training time MAE Training time MAE Training time MAE Training time

Shift 0.233 ± 0.014 2h30 0.245 ± 0.016 2h31 0.264 ± 0.020 2h33 0.303 ± 0.041 2h46

Shift and scale 0.257 ± 0.019 3h29 0.263 ± 0.014 3h32 0.268 ± 0.025 3h45 0.308 ± 0.037 4h14

C.1.1.7 Discussion on other hyperparameters

While the dimension of z is indeed a crucial hyperparameter, it is important to note

that other hyperparameters also play a significant role in the performance of the

INR. For example, the number of layers in the FFN directly affects the ability of the

model to fit the time series. In our experiments, we have observed that using five

or more layers yields good performance, and including additional layers can lead to

slight improvements in the generalization settings.

Similarly, the number of frequencies used in the frequency embedding is another

important hyperparameter. Using too few frequencies can limit the network’s abil-

ity to capture patterns, while using too many frequencies can hinder its ability to

generalize accurately.

The choice of learning rate is critical for achieving stable convergence during

training. Therefore, in practice, we use a low learning rate combined with a cosine

annealing scheduler to ensure stable and effective training.

C.1.2 Datasets and normalization

For the complete datasets, Electricity dataset is available here, Traffic dataset here

and Solar data set here.

Datasets information table C.7 provides a concise overview of the main infor-

mation about the datasets used for forecasting and imputation tasks.

Table C.7: Summary of datasets information

Dataset name Number of samples Number of time steps Sampling frequency Location Years

Electricity 321 26 304 hourly Portugal 2012− 2014

Traffic 862 17 544 hourly San Francisco bay 2015− 2016

Solar 137 52 560 10 minutes Alabama 2006

SolarH 137 8 760 hourly Alabama 2006

https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
https://pems.dot.ca.gov/
https://zenodo.org/record/3889974
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z-normalization To preprocess each dataset, we apply the widely used z-normalization

technique per-sample j on the entire series: x
(j)
norm = x(j)−mean(x(j))

std(x(j))
.

C.1.3 Imputation experiments

C.1.3.1 Models complexity

We can see in table C.8 that our method has fewer parameters than SOTA imputa-

tion methods, 10 times less than BRITS and 20 times less than SAITS. It is mainly

due to their modelisation of interaction between samples. SAITS, which is based

on transformers has the highest number of parameters when mTAN has the lowest

number of parameters.

Table C.8: Number of parameters for each DL methods on the imputation task on
the Electricity dataset.

TimeFlow DeepTime NeuralProcess mTAN SAITS BRITS TIDER

Number of parameters 602k 1315k 248k 113k 11 137k 6 220k 1 034k

C.1.3.2 Imputation for previously unseen time series

Setting In this section we analyze in details the imputations results for previously

unseen time series described in section 5.2.4.1. Specifically, TimeFlow is trained on

a given set of time series within a defined time window and then used for inference

on new time series. We train TimeFlow on 50 % of the samples and consider the

remaining 50 % as the new time series.

We compare in table C.9 observed grid fit scores and missing grid inference scores

for time series known at training and time series unknown at training.

Results The results presented in table C.9 indicate that the inference MAE for

missing grids shows consistency between known and new samples, regardless of the

data or sampling rate. However, it is worth noting that there is a slight drop in

performance compared to the results in table table 5.2. This decrease is because in

table C.9, the shared architecture is trained on only half the samples, affecting its

overall performance.

C.1.3.3 Details on DeepTime adaptation for imputation

As DeepTime was proposed to address the forecasting task with a deeptime-index

model, the authors did not tackle the task of imputation and left it out for future

work. Given the success of this method and the motivation of our work, we wanted
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Table C.9: TimeFlow MAE imputation errors results for imputation previsouly
unseen time series.

Known time series New time series

τ Fit Inference Fit Inference

Electricity

0.05 0.060 ± 0.010 0.402 ± 0.021 0.142 ± 0.083 0.413 ± 0.026
0.10 0.046 ± 0.006 0.302 ± 0.010 0.144 ± 0.098 0.309 ± 0.016
0.20 0.067 ± 0.015 0.285 ± 0.014 0.154 ± 0.089 0.291 ± 0.022
0.30 0.093 ± 0.022 0.266 ± 0.010 0.163 ± 0.073 0.271 ± 0.017
0.50 0.108 ± 0.012 0.236 ± 0.010 0.167 ± 0.061 0.245 ± 0.017

Solar

0.05 0.014 ± 0.002 0.104 ± 0.015 0.050 ± 0.037 0.109 ± 0.016
0.10 0.017 ± 0.002 0.092 ± 0.015 0.052 ± 0.036 0.099 ± 0.017
0.20 0.028 ± 0.008 0.078 ± 0.014 0.058 ± 0.031 0.089 ± 0.017
0.30 0.038 ± 0.009 0.072 ± 0.013 0.063 ± 0.028 0.084 ± 0.018
0.50 0.045 ± 0.011 0.066 ± 0.013 0.067 ± 0.025 0.080 ± 0.019

Traffic

0.05 0.044 ± 0.003 0.291 ± 0.013 094 ± 0.051 0.291 ± 0.012
0.10 0.033 ± 0.001 0.209 ± 0.010 0.093 ± 0.060 0.216 ± 0.012
0.20 0.037 ± 0.006 0.175 ± 0.008 0.095 ± 0.058 0.186 ± 0.013
0.30 0.048 ± 0.005 0.164 ± 0.006 0.098 ± 0.051 0.175 ± 0.013
0.50 0.068 ± 0.004 0.159 ± 0.007 0.110 ± 0.042 0.169 ± 0.012

to explore its capabilities to impute time series with several subsampling rates.

Following our current framework, we first tried to train the model in a self-supervised

way, i.e. trying to reconstruct observations x(j) ∈ T (j) after the INR has been

conditioned with the Ridge Regressor on the same set of observations, but discovered

failure cases for τ ≤ 0.20. To be faithful to the original supervised training of

DeepTime, we therefore randomly mask out 50% of the observations that we use as

context for the Ridge Regressor and try to infer the other 50% (the targets) to train

the INR.

We provide a qualitative comparison of the model’s performance with these two

different training procedures in Figure C.1. We can notice that the model that results

from the self-supervised training perfectly fits the observations but completely misses

the important patterns of the series. On the other hand, when DeepTime is trained

to infer target values based on observations, it is able to capture the general trends.

We think that in the small subsampling regime (τ ≤ 0.20), the Ridge Regressor

easily fits very well all the observations which hinders the training of the INR’s

basis.

C.1.4 Forecasting experiments

C.1.4.1 Distinction between adjacent time windows and new time win-

dows during inference

In section 5.2.4.2, we presented the forecasting results for periods outside the training

period. These periods can be classified into two types: adjacent to or disjoint from

the training period. fig. C.2 illustrates these distinct test periods for the Electricity



C.1. Time Series Continuous Modeling for Imputation and Forecasting with
Implicit Neural Representations 161

0.00 0.02 0.04 0.06 0.08 0.10
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Individual 11 : MAE self-supervised : 0.730 MAE supervised : 0.404

0.00 0.02 0.04 0.06 0.08 0.10

2

1

0

1

2
Individual 29 : MAE self-supervised : 0.850 MAE supervised : 0.442

Ground Truth Deeptime self-supervised Deeptime supervised Observed points

Figure C.1: Electricity dataset. Self supervised DeepTime imputation (blue line)
and supervised DeepTime imputation (black line) with 5% of known point (red
points) on the eight first days of samples 11 (top) and 29 (bottom).

dataset. The same principle applies to the Traffic and SolarH datasets, with one

notable difference: the number of test periods is smaller in these datasets compared

to Electricity dataset due to the fewer time steps available.

In table 5.3, we presented the results indistinctly for the two types of test periods:

adjacent to and disjoint from the training window. Here, we aim at differentiating

the results for these two types of window and emphasize their significant impact on

Informer and AutoFormer results. Specifically, table C.10 showcases the results for

the test periods adjacent to the training window. In contrast, table C.11 displays

the results for the test periods disjointed from the training window

Train period test horizon = 

test look-back window =

Test period n°1 Test period n°2 Test period n°3 Test period n°4 Test period n°5

Adjacent time
window

New time
windows

Figure C.2: Distinction between adjacent time windows and new time windows
during inference for the Electricity dataset

Results TimeFlow, PatchTST, DLinear and DeepTime maintain consistent fore-

casting results whether tested on the period adjacent to the training period or on

a disjoint period. However, AutoFormer and Informer show a significant drop in
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performance when tested on new disjoint periods.

Table C.10: Mean MAE forecast results for adjacent time windows. H stands for
the horizon. Bold results are best, underline results are second best.

Continuous methods Discrete methods

H TimeFlow DeepTime Neural Process Patch-TST DLinear AutoFormer Informer

Electricity

96 0.218 ± 0.017 0.240 ± 0.027 0.392 ± 0.045 0.214 ± 0.020 0.236 ± 0.035 0.310 ± 0.031 0.293 ± 0.0184

192 0.238 ± 0.012 0.251 ± 0.023 0.401 ± 0.046 0.225 ± 0.017 0.248 ± 0.032 0.322 ± 0.046 0.336 ± 0.032

336 0.265 ± 0.036 0.290 ± 0.034 0.434 ± 0.075 0.242 ± 0.024 0.284 ± 0.043 0.330 ± 0.019 0.405 ± 0.044

720 0.318 ± 0.073 0.356 ± 0.060 0.605 ± 0.149 0.291 ± 0.040 0.370 ± 0.086 0.456 ± 0.052 0.489 ± 0.072

SolarH

96 0.172 ± 0.017 0.197 ± 0.002 0.221 ± 0.048 0.232 ± 0.008 0.204 ± 0.002 0.261 ± 0.053 0.273 ± 0.023

192 0.198 ± 0.010 0.202 ± 0.014 0.244 ± 0.048 0.231 ± 0.027 0.211 ± 0.012 0.312 ± 0.085 0.256 ± 0.026

336 0.207 ± 0.019 0.200 ± 0.012 0.241 ± 0.005 0.254 ± 0.048 0.212 ± 0.019 0.341 ± 0.107 0.287 ± 0.006

720 0.215 ± 0.016 0.240 ± 0.011 0.403 ± 0.147 0.271 ± 0.036 0.246 ± 0.015 0.368 ± 0.006 0.341 ± 0.049

Traffic

96 0.216 ± 0.033 0.229 ± 0.032 0.283 ± 0.028 0.201 ± 0.031 0.225 ± 0.034 0.299 ± 0.080 0.324 ± 0.113

192 0.208 ± 0.021 0.220 ± 0.020 0.292 ± 0.023 0.195 ± 0.024 0.215 ± 0.022 0.320 ± 0.036 0.321 ± 0.052

336 0.237 ± 0.040 0.247 ± 0.033 0.305 ± 0.039 0.220 ± 0.036 0.244 ± 0.035 0.450 ± 0.127 0.394 ± 0.066

720 0.266 ± 0.048 0.290 ± 0.045 0.339 ± 0.037 0.268 ± 0.050 0.290 ± 0.047 0.630 ± 0.043 0.441 ± 0.055

Table C.11: Mean MAE forecast results for new time windows. H stands for the
horizon. Bold results are best, underline results are second best.

Continuous methods Discrete methods

H TimeFlow DeepTime Neural Process Patch-TST DLinear AutoFormer Informer

Electricity

96 0.230 ± 0.012 0.245 ± 0.026 0.392 ± 0.045 0.222 ± 0.023 0.240 ± 0.025 0.606 ± 0.281 0.605 ± 0.227

192 0.246 ± 0.025 0.252 ± 0.018 0.401 ± 0.046 0.231 ± 0.020 0.257 ± 0.027 0.545 ± 0.186 0.776 ± 0.257

336 0.271 ± 0.029 0.285 ± 0.034 0.434 ± 0.076 0.253 ± 0.027 0.298 ± 0.051 0.571 ± 0.181 0.823 ± 0.241

720 0.316 ± 0.051 0.359 ± 0.048 0.607 ± 0.15 0.299 ± 0.038 0.373 ± 0.075 0.674 ± 0.245 0.811 ± 0.257

SolarH

96 0.208 ± 0.005 0.206 ± 0.026 0.221 ± 0.048 0.293 ± 0.089 0.212 ± 0.019 0.228 ± 0.027 0.234 ± 0.011

192 0.206 ± 0.012 0.207 ± 0.037 0.244 ± 0.048 0.274 ± 0.060 0.223 ± 0.029 0.356 ± 0.122 0.280 ± 0.033

336 0.211 ± 0.005 0.199 ± 0.035 0.240 ± 0.006 0.264 ± 0.088 0.223 ± 0.032 0.327 ± 0.029 0.366 ± 0.039

720 0.222 ± 0.020 0.217 ± 0.028 0.403 ± 0.147 0.262 ± 0.083 0.251 ± 0.047 0.335 ± 0.075 0.333 ± 0.012

Traffic

96 0.218 ± 0.042 0.229 ± 0.032 0.283, 0.0275 0.204 ± 0.039 0.229 ± 0.032 0.326 ± 0.049 0.388 ± 0.055

192 0.213 ± 0.028 0.220 ± 0.023 0.292, 0.0236 0.198 ± 0.031 0.223 ± 0.023 0.575 ± 0.254 0.381 ± 0.049

336 0.239 ± 0.035 0.244 ± 0.040 0.305, 0.0392 0.223 ± 0.040 0.252 ± 0.042 0.598 ± 0.286 0.448 ± 0.055

720 0.280 ± 0.047 0.290 ± 0.055 0.339, 0.0375 0.270 ± 0.059 0.304 ± 0.061 0.641 ± 0.072 0.468 ± 0.064
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C.1.4.2 Plots comparison: TimeFlow vs PatchTST

table 5.3 demonstrates the similar forecasting performance of TimeFlow and PatchTST

across all horizons. To visually represent their predictions, the figures below show-

case the forecasted outcomes of these methods for two samples (24 and 38) and two

horizons (96 and 192) on the Electricity, SolarH, and Traffic datasets.
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Figure C.3: Qualitative comparisons of TimeFlow vs PatchTST on the Electricity
dataset for new time windows
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Figure C.4: Qualitative comparisons of TimeFlow vs PatchTST on the SolarH
dataset for new time windows.
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Figure C.5: Qualitative comparisons of TimeFlow vs PatchTST on the Traffic
dataset for new time windows.

Results The visual analysis of the figures above reveals that the predictions of

TimeFlow and PatchTST are remarkably similar. For instance, when examining

sample 24 and horizon 192 of the Traffic dataset, both forecasters exhibit similar

error patterns. The only noticeable distinction emerges in the SolarH dataset, where

PatchTST tends to overestimate certain peaks.

C.1.4.3 Models complexity

In this section, we present the parameter counts and the inference time for the main

forecasting baselines. Except for TimeFlow and DeepTime, the number of param-

eters varies with the number of samples, the look-back window, and the horizon.

Thus, we report the number of parameters for two specific configurations, including

a fixed dataset, a fixed look-back window, and a fixed horizon. In table C.12, we

see that for PatchTST and DLinear, the larger the horizon, the more the number

of parameters increases. In table C.13, it is shown that all methods’ computational

time increases with the horizon, which is expected. Moreover, TimeFlow is slower

than the baselines that use forward computations only. Still, on the Electricity

dataset, for example, the method can infer for 321 samples a horizon of 720 values

with a look-back window of 512 timestamps in less than 0.2s, which does not look

prohibitive for many real-world usages. This is mainly due to the small number of

gradient steps at inference.
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Table C.12: The number of parameters for main baselines on the forecasting task
on the Electricity dataset for horizons 96 and 720. The look-back window size is
512.

TimeFlow DeepTime Neural Process Patch-TST DLinear

96 602k 1 315k 480k 1 194k 98k

720 602k 1 315k 480k 6 306k 739k

Table C.13: Inference time (in seconds) for the forecasting task on the Electricity
dataset with horizons 96 and 720 and a look-back window of length 512. The
statistics are computed over 10 runs using an NVIDIA TITAN RTX GPU.

TimeFlow Patch-TST DLinear DeepTime AutoFormer Informer

96 0.147 ± 0.007 0.016 ± 0.002 0.007 ± 0.003 0.006 ± 0.002 0.027 ± 0.001 0.0191 ± 0.002

720 0.176 ± 0.009 0.020 ± 0.001 0.009 ± 0.001 0.010 ± 0.002 0.034± 0.001 0.0251 ± 0.002

C.1.4.4 Forecasting for previsouly unseen time series

Setting and baseline. As mentioned in section 5.2.4.2, most forecasters explic-

itly model the dependencies between samples, which limits their ability to gener-

alize to new time series without retraining the entire model. However, TimeFlow,

PatchTST, and DeepTime have the advantage of being reusable for new samples. In

table C.14, we present the results of TimeFlow and PatchTST for new periods, con-

sidering both known samples and new samples. We train TimeFlow and PatchTST

on 50 % of the samples and consider the remaining 50 % as the new time series.
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Table C.14: MAE results over horizon for the forecasting task in the context of
generalization to new time series.

H Known time series New time series

TimeFlow MAE error PatchTST MAE error TimeFlow MAE error PatchTST MAE error

Electricity

96 0.228 ± 0.023 0.211 ± 0.007 0.241 ± 0.023 0.224 ± 0.020

192 0.244 ± 0.022 0.225 ± 0.014 0.254 ± 0.024 0.238 ± 0.024

336 0.269 ± 0.036 0.267 ± 0.019 0.277 ± 0.033 0.285 ±0.005

720 0.331 ± 0.058 0.310 ± 0.026 0.333 ± 0.059 0.331 ± 0.045

Traffic

96 0.226 ± 0.035 0.208 ± 0.036 0.222 ± 0.031 0.203 ± 0.037

192 0.217 ± 0.028 0.202 ± 0.029 0.215 ± 0.026 0.199 ± 0.030

336 0.242 ± 0.036 0.228± 0.041 0.240 ± 0.031 0.224± 0.036

720 0.283 ± 0.053 0.275 ± 0.059 0.283 ± 0.049 0.272± 0.055

SolarH

96 0.237 ± 0.077 0.256 ± 0.055 0.236 ± 0.081 0.256 ± 0.062

192 0.238 ± 0.051 0.251 ± 0.239 0.239 ± 0.058 0.250 ± 0.050

336 0.220 ± 0.027 0.255 ± 0.663 0.220 ± 0.034 0.255 ± 0.066

720 0.240 ± 0.039 0.267 ± 0.062 0.240 ± 0.042 0.267± 0.063

Results table C.14 demonstrates the good adaptability of both methods to new

samples, as the difference in MAE between known and new samples is marginal.

C.1.4.5 Influence of the look-back window for forecasting

In fig. C.6, it is shown that both excessively short and overly long look-back windows

can harm TimeFlow forecasting performance. More precisely, the performances

increases with the look-back window size up to a certain size, where the performances

then drop slowly.
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Figure C.6: MAE forecast error per look-back windows length for the Electricity
dataset (horizon window length is 336). The model is trained on a given time
window and tested on four new time windows.
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C.1.4.6 Influence of the horizon length for forecasting

In fig. C.7, it is shown that the performances decrease with the length of the horizon.

This is to be expected, since the longer the horizon, the harder the task.
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Figure C.7: MAE forecast error per horizons length for the Electricity dataset (look-
back window length is 512). The model is trained on a given time window and tested
on four new time windows.
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Deep neural networks and partial differential

equations

Abstract

The study of physical systems, modeled by partial differential equations (PDEs),

represents a cornerstone of scientific research. These equations, describing the re-

lation between some function and its partial derivatives across variables, are vital

for modeling diverse phenomena, for e.g. fluid dynamics and heat transfer, with ap-

plications in various domains such as climate science and astronomy. In the recent

years, data has become readily available, explaining partly the rise of data-driven

methods and more particularly Deep Learning (DL) methods. They excel in training

complex models on a large amount of data, while being computationally effective

at inference. However, for physical systems, even with apparently large amount of

data, data is often scarce compared to the complexity of the problems, which is a

challenge for DL methods. More importantly, the problems faced when applying DL

methods to physical systems are very different from the usual DL problems, with

physical problems potentially being be ill-posed, chaotic or very sensitive to initial

conditions. In addition to these main challenges, practitioners in numerical analysis

or the industry seek theoretical or experimental guarantees of convergence, which

DL methods can lack of.

In this thesis, we tackle some of these challenges through three distinct approaches.

In the first part of this work, we apply concepts from numerical analysis into DL

frameworks, offering two perspectives: (i) the incorporation of multigrid numerical

schemes into a Multi-Scale DL architecture, the Multipole Graph Neural Opera-

tor, demonstrating its efficacy in solving steady-state Darcy flow and 1D viscous

unsteady Burgers’ equations (ii) the adaptation of implicit numerical schemes into

neural networks, ensuring forecasting stability for dynamical systems via some con-

straints on the weights of the neural network, leading to improved long-term fore-

casting results for two transport PDEs. In the second part of this work, we design

a hybrid model to address the friction law design in Shallow-Water equations. This

implies learning the friction law from observations through a numerical solver. The

experiments focus on a vast analysis of the robustness and convergence for a sta-

tionary case and confirm the efficacy on the dynamic case. In the third part of this

work, we explore continuous methods through two works based on Implicit Neural

Representations (INRs): (i) INFINITY is a INR based method that can be applied

to static PDE problems. It is tested on the RANS equations for surrogate modeling

of airfoils. INFINITY can accurately infer physical fields throughout the volume

and surface, leading to a correct prediction of the drag and lift coefficients, which

are crucial for airfoil design. (ii) TimeFlow is a general framework using INRs to

impute and forecast time series. By its continuous nature, TimeFlow can handle

missing data, irregular sampling and unaligned observations from multiple sensors

while having similar performances to state-of-the-art algorithms and being able to

generalize to unseen samples and time windows.
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