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Abstract

Automatic emotion recognition (AER) from text, or audio recordings of natural
human-human or human-machine interactions, is a technology that can have an
impact in areas as diverse as education, health and entertainment. Although existing
AER systems can work well in specific scenarios, they are not yet robust enough to
deal with different environments, speakers and microphones (i.e. in the wild). In
this thesis, several contributions have been made to advance the research on AER
in the wild.

State-of-the-art AER systems use data-driven machine learning methods to
recognise emotion from numerical representations of acoustic signals or text. One
contribution of this thesis is to investigate the fusion of speech representations and
their corresponding textual transcriptions for AER on both acted and in-the-wild
data. In addition, as human transcriptions are not always available, existing Au-
tomatic Speech Recognition (ASR) systems are further explored within the same
paradigm. The results show that the use of fused acoustic-textual representations
can achieve better AER performance for acted and in-the-wild data than using the
representation of each modality alone. The acoustic-textual representations were
further fused with speaker representations, resulting in additional improvement in
AER performance for acted data.

Moreover, as emotion is a subjective concept with no universal definition, it is
annotated and used in various ways across different AER systems. To address this
issue, this thesis proposes a method for training a model on different datasets with
different emotion annotations. The proposed method is composed of one model
that is trained across multiple datasets, which computes the generic latent emotion
representation, and several specific models, which can map the emotion represen-
tation to the set of emotion labels specific to each dataset. The results suggest
that the proposed method can produce emotion representations that can relate the
same or similar emotion labels across different datasets with different annotation
schemes. Finally, by combining the proposed method with joint acoustic-textual
representations, it was shown that this method can leverage acted data to improve
the performance of AER in the wild.
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Résumé

La reconnaissance automatique des émotions (RAE) à partir de textes ou
d’enregistrements audio d’interactions naturelles entre humains ou entre humains
et machines est une technologie qui peut avoir un impact dans des domaines aussi
divers que l’éducation, la santé et le divertissement. Bien que les systèmes de RAE
existants puissent fonctionner correctement dans des scénarios spécifiques, ils ne
sont pas encore assez robustes pour être utilisés de manière fiable pour des enreg-
istrements d’environnements, de locuteurs et de microphones différents (c.-à-d. les
données naturelles). Dans cette thèse, plusieurs contributions ont été faites pour
avancer la recherche sur la RAE pour les données naturelles.

Les systèmes de RAE les plus récents utilisent des méthodes d’apprentissage
automatique basées sur les données pour prédire les annotations numériques des
émotions à partir des représentations numériques des signaux acoustiques ou du
texte. L’une des contributions de cette thèse est d’étudier la fusion des représen-
tations vocales et de leurs transcriptions textuelles correspondantes pour la RAE
sur des données actées et naturelles. En outre, comme les transcriptions humaines
ne sont pas toujours disponibles, les systèmes de reconnaissance automatique de la
parole (RAP) existants sont explorés dans le même paradigme. Les résultats mon-
trent que l’utilisation de représentations acoustiques et textuelles fusionnées permet
d’obtenir de meilleures performances en matière de reconnaissance automatique
d’émotion pour des expressions actées et naturelles, comparé à l’utilisation séparée
de chaque modalité. Les représentations acoustiques et textuelles ont également
été fusionnées avec les représentations du locuteur, ce qui a permis d’améliorer les
performances en RAE pour des expressions actées.

En outre, l’émotion étant un concept subjectif sans définition universelle, elle est
annotée et utilisée de diverses manières dans les différents systèmes de RAE. Pour
résoudre ce problème, cette thèse propose une méthode d’entraînement d’un mod-
èle sur différents ensembles de données avec différentes annotations d’émotions.
La méthode proposée est composée d’un modèle partagé entre plusieurs ensem-
bles de données, qui calcule la représentation latente générique de l’émotion, et
de plusieurs modèles spécifiques, qui peuvent faire correspondre la représentation
de l’émotion à l’ensemble des étiquettes d’émotion spécifiques à chaque ensem-
ble de données. Les résultats suggèrent que la méthode proposée peut produire
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des représentations d’émotions qui peuvent relier des étiquettes d’émotions iden-
tiques ou similaires dans différents ensembles de données avec différents schémas
d’annotation. Enfin, en combinant la méthode proposée avec des représentations
acoustiques et textuelles conjointes, il a été démontré que cette méthode peut ex-
ploiter les expressions émotionnelles actées pour améliorer les performances de la
RAE effectuées sur des expressions naturelles.
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Chapter 1

Introduction

From pixabay.com

Emotion and reason have long been thought of as two independent rival parts
in human brain. It is not until many years ago that the correlation between the two
was made clear thanks to a brain lesion (Damasio, 1994). Recent psychological
findings suggest that it is not only the case that reasoning is needed for an emo-
tional response, but in fact, emotion is also needed for reasoning and filtering all the
constant sensory information that our brains receive every second of our lives. It is
emotion that shapes our perception of the world, decides which information should
stay in memory and eventually what decision we would take in different events and
situations (Brosch et al., 2013). Enabling machines to perceive human emotion,
can be a revolutionising technology, effecting many different domains ranging from
education and health, to entertainment. In what follows, some of the use-cases of

1
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Automatic Emotion Recognition (AER) in different domains are introduced.
In education, AER can be used to provide a better learning experience for stu-

dents. For example, prediction of the learners’ engagement, which relies on the
analysis of emotions (Monkaresi et al., 2016), can be used to keep the students en-
gaged by automatically changing the contents during an online course. Similarly,
in entertainment, AER can be used to create more immersive experiences for users,
by estimating each user’s engagement. For example, to keep each user entertained,
AER can predict cognitive engagement or boredom from the user’s vocal expres-
sions to create a personalised experience that keeps a user engaged. AER has also
been used in serious games to stimulate cognitive functions. For instance, children
with autism spectrum conditions, can play a game to learn emotion recognition in
an entertaining and motivating way, resulting in an improvement in their ability to
adapt socially (Fridenson-Hayo et al., 2017). The use of AER is not limited to se-
rious games, which are used as entertainment tools with health benefits, but can
also be used as a technology solely in the health and well-being domain. For ex-
ample, AER can be used to remotely monitor the emotions of at-risk patients. This
provides the psychologists with crucial feed-backs, and automatic assessment of
cognitive disorders of the patients (Low et al., 2020). The remote monitoring of
patients’ emotions can further be used to inform doctors when the patients need
help. The remote evaluation of the emotions, can also be used in customer service.
Namely, the estimation of frustration or satisfaction (Macary et al., 2020), can be
used to improve the quality of customer services, by allowing agents to identify rel-
evant strategies to avoid customer’s frustrations. The data of customers’ emotions
(supposing that they are gathered ethically), can also further help companies for
marketing purposes.

The above examples can only shed some light on the vast possibilities that AER
can bring to technology in various fields, and thus to society at large. In order
to bring such technological use-cases into existence, AER needs to perform well
on data collected in the wild1, which has several characteristics, namely different
speakers having natural interactions, using different microphones and in different
environments (Kossaifi et al., 2021). However, AER research to date has mainly fo-
cused on acted expressions of emotions, recorded in laboratory environments. Nev-
ertheless, this paradigm is gradually shifting towards exploiting in-the-wild data.
This paradigm shift is mainly due to novel deep learning techniques, such as deep
representations, which can provide us with acoustic and textual representations that
are more suitable for in-the-wild emotional expressions (see Section 2.2). The novel
methods of deep learning, together with the vast technological possibilities of AER,

1Here the term “in the wild” in the context of AER refers to emotional expressions that are the
result of natural interactions between humans, or humans and a machine, recorded in a variety of
environments, such as in a classroom, in public, or at home, and by using various microphones. in-
the-wild data is in contrast to acted (or induced) emotional expressions, which are usually collected
in controlled laboratory environments (This is further explained in Section 3.1).
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have attracted the interest of the industry in recent years. For example, Atos, a
digital services company based in France and the industrial partner of this CIFRE
thesis1, is interested in developing AER technology for virtual assistant applica-
tions that work with acoustic and textual input. Based on such a target application,
the focus of this thesis is mainly on acoustic and textual modalities, from differ-
ent speakers, with data captured in the wild. Given the technological possibilities
of AER and the scope of this thesis, the next section introduces the reader to the
relevant state of the art and its shortcomings.

1.1 Automatic emotion recognition
Human emotion, which is mostly studied in psychology, is often seen as an evo-
lutionary response to internal or external (to the brain) stimuli that would result in
a subjective state of mind, which can then be expressed through verbal and non-
verbal communication channels (see Section 2.1.1). AER can then be defined as the
automatic process of predicting human emotion from different modalities such as
acoustic signals or text2. To accomplish this task, state-of-the-art AER uses super-
vised machine learning techniques to predict numerical representations of emotion,
from their corresponding numerical acoustic or textual representations (see Section
2.2). However, as emotion is a concept for which several psychological theories
coexist, the numerical representations of emotion are defined in various subjective
ways from one machine learning method to another. This subjectivity in the rep-
resentation of emotions can occur at different levels, including the psychological
model used to describe the emotion, the selection of a set of emotions for a method,
and the subjectivity involved in human annotation (see Section 2.1.2). In Section
1.1.1, the problem of varied emotion annotation will be discussed in more detail,
followed by the state-of-the-art solutions to this problem and its current challenges.
Moreover, as the use of acoustic and textual modalities for AER also falls within the

1The industrial agreements for training through research or CIFRE (Conventions industrielles
de formation par la recherche) is a mechanism that allows companies registered under French law
to recruit a doctoral student whose research project is carried out in collaboration with a public
laboratory (in this case, the University of Grenoble Alpes), where the French ministry of research
would pay an annual subsidy to the company (in this case, Atos).

2It is hypothesised here that AER aims to predict an emotional state being experienced by a user,
which leads to an emotional expression. And that the emotional expression can be used to predict
an affective state from acoustic signals or text. Although these hypotheses may not be true in all
circumstances, one cannot predict an affective state from its expressions in speech or text if the two
are not correlated. Moreover, “utilitarian emotions” (such as anger, fear, happiness, and sadness),
which are the target of this study, are often considered to be highly associated with “response syn-
chronisation”, which corresponds to the response of an appraised emotion appropriate to an event
(Scherer, 2005). It should also be noted that the AER should not be used in violation of the privacy
of any individual.
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scope of this thesis (see the paragraph above), Section 1.1.2 presents the state-of-
the-art AER from acoustic and textual representations and its current shortcomings.

1.1.1 Varied emotion annotations for machine learning
In order to build a machine learning model for AER, it is first necessary to define
emotion as a numerical target space (see Section 2.1.2). However, emotion is a
rather ambiguous concept with various coexisting theories in psychology (see Sec-
tion 2.1.1), which makes it difficult to define as a numerical target. In other similar
tasks, such as Automatic Speech Recognition (ASR)1, it is generally accepted that
only the linguistic part that can be written is the objective of the ASR task. This
makes speech transcriptions more or less standardised for most spoken languages,
whereas emotion has no universally accepted definition, despite having been stud-
ied in psychology for more than two centuries (see Section 2.1.1). Although the
definition of emotion is not standardised, most AER research today follows specific
psychological theories, namely the works of Ekman (1992) and Russell (1980). Ac-
cording to Ekman, emotions are considered to be independent states of mind, and
different independent categories should be used to define them. In particular, Ek-
man argued that there are six ’basic’ categories of emotion –fear, anger, happiness,
sadness, disgust and surprise– that can be distinguished for all humans from fa-
cial expressions. On the other hand, Russel and studies such as (Scherer, 2009),
view emotion not as independent mental states, but as the continuous response
of several interconnected subsystems in the brain, forming multiple perpendicu-
lar axes2 of emotion dimensions such as arousal –activation– and valence –intrinsic
pleasantness–3 (see Section 2.1.2).

The aforementioned views of emotion are used in state-of-the-art AER systems
to annotate emotional expressions for training machine learning models. However,
as there is no consensus on what should be considered as an emotion annotation, dif-
ferent datasets consider different schemes for annotating emotion. For example, the
CaFE dataset (Gournay et al., 2018) includes seven emotion labels (Following Ek-

1ASR is a technology that can convert spoken language to written text. To train machine learning
models for ASR, the targets are usually phonemes, letters, or words, which are standardised for most
spoken languages.

2In theory, the dimensional axes of emotion are considered to be perpendicular, suggesting the
independence of each axis from the others. However, several studies have shown that there is a sta-
tistical correlation between different emotional dimensions. For example, arousal tends to increase
with positive or negative valence, forming a V-shaped relationship of arousal as a function of valence
(Kuppens et al., 2013, 2017).

3Here, the term valence refers specifically to the notion of intrinsic pleasantness, i.e. how pleas-
ant an event is appraised by an individual, regardless of the individual’s affective state of mind prior
to the appraisal process (see Section 2.1.1 for the appraisal process). Although intrinsic pleasantness
is a more specific term than valence, which is a broad term with multiple definitions, in this thesis
the term valence is used due to its current popularity in the field of affective computing.
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man’s six emotions, plus one to include “neutral” expressions) for each expression,
whereas the RECOLA (Ringeval et al., 2013) dataset considers arousal and valence
dimensions (Following Russel’s theory of affect), providing continuous emotion an-
notations for each dimension. Most AER research today focuses on training specific
machine learning models for each dataset. However, as each dataset uses a limited
range of emotional expressions and a handful of human annotators who subjectively
perceive the emotional annotations, training specific machine learning models for
specific datasets results in AER models that only cover a specific range of emo-
tional expressions and annotations. Therefore, it is important to exploit multiple
datasets for training AER models, to generalise across a wide range of emotional
expressions.

In order to exploit multiple datasets with varied annotation schemes, AER
research either unifies different annotations to standardise them across different
datasets, or considers a holistic view of emotion annotations, where all annotations
are treated as they were originally intended for each dataset. Unifying different
emotion annotations typically involves either mapping labels to a common subset of
emotion categories, or ignoring a subset of emotion labels. However, the expression
and perception of the same emotion category can vary between people, causing the
same emotion annotation to refer to different emotional expressions across datasets.
Using the same target to model different emotional expressions, would then lead
to training problems when using machine learning methods, such as catastrophic
information loss (Zhang et al., 2017b; Zhu and Sato, 2020). On the other hand, the
holistic view of emotion annotations is typically achieved by Multi-Task Learning
(MTL), which can consider different classifiers for different tasks, while sharing a
main model across tasks. For example, by considering different emotion annota-
tions of different datasets as different tasks, MTL can provide different views of
annotating the same emotional expression. The use of MTL has been shown to im-
prove the accuracy of AER from the acoustic signals in several works (Zhang et al.,
2017b, 2022). Furthermore, using MTL with the original annotations of each used
dataset, has been shown to significantly outperform using the unified view of differ-
ent labels, even when the unified emotions refer to the same or similar psychological
phenomenon (da Silva et al., 2020). However, MTL has not yet been evaluated for
deep acoustic and textual representations, and is often considered as part of a holis-
tic view of paralinguistic features, as opposed to being studied specifically in the
context of MTL to holistically account for different emotion annotations.

1.1.2 Deep acoustic and textual representations
The previous section discussed the problem of having various emotion annotations.
Since training machine learning models requires both the annotations and the repre-
sentations of the data, this section explores recent methods for representing acoustic
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signals and text for AER. In what follows, the reader is first introduced to deep rep-
resentation learning and how it has dominated the AER’s state of the art in recent
years. This is followed by a discussion of how the current state of the art in AER at-
tempts to jointly represent acoustic signals and text, and making the representations
more aware of “verbal” and “speaker” idiosyncrasies.

Deep pre-trained representations of data

Before explaining how deep representations have come to dominate the state of the
art in AER, we first need to understand how deep learning models work. Deep
learning models usually refer to complex neural network models that can capture
complex patterns in data through a series of interconnected layers (see Section 2.2.2
for more information). Each layer involved in a deep learning model applies a
transformation to its input, in order to achieve a higher level of abstraction for a
particular task compared to the previous layer (LeCun et al., 2015; Alisamir and
Ringeval, 2021). Subsequently, as we analyse different layers from input to output,
each layer provides us with a more abstract representation that is less sensitive to
local changes in the input data (Bengio et al., 2013) (see Figure 2.4). This means
that deep learning models can learn to represent acoustic and text data at different
levels, from the input data to the prediction of emotion. Through this process, deep
learning models can extract more sophisticated representations of acoustic signals
and text than traditional features (Naseem et al., 2021), while also jointly modelling
emotion (see Section 2.2.1 for traditional methods). This approach is usually re-
ferred to as end-to-end learning, and has been shown to better predict arousal and
valence dimensions from raw acoustic signals than using traditional feature extrac-
tion methods (Trigeorgis et al., 2016). However, learning deep representations in a
supervised manner is not an ideal approach for AER, because the emotion annota-
tions are subjective, and follow different emotion annotation schemes (see Section
1.1.1). Furthermore, there is a much wider range of possible emotion expressions
than what is available in existing datasets. This discrepancy can lead to the inability
to generalise representations to capture a wide range of emotions. Additionally, the
lack of available emotion labels and the potential for incorrect annotations could
lead to inaccurate representations being formed.

On the other hand, effective deep representations for AER can be trained using
only unlabelled data –unsupervised learning– (see Section 2.2.3). A famous exam-
ple of unsupervised learning is auto-encoders, which first encode an acoustic signal
or text into a dense abstract representation, and then decode the dense representa-
tion back to the original acoustic signal or text. Another example is Self-Supervised
Learning (SSL), where instead of reproducing a given signal or text, a neural net-
work is trained to predict randomly masked elements of the data. SSL has been
shown to provide representations that are able to predict emotion annotations better
than traditional feature engineering techniques by using less complex models (Latif
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et al., 2020; Liu et al., 2021; Nandan and Vepa, 2020; Atmaja et al., 2022; Evain
et al., 2021b). This can show that SSL can learn acoustic signal representation
that are more useful for AER across different emotional expressions than traditional
feature extraction methods (Alisamir and Ringeval, 2021).

Joint representations of acoustic signals and text

The application of self-supervised deep representations for AER is not limited to
acoustic signals, but can also be extended to textual data. In addition, recent re-
search has focused on joint acoustic-textual representations to address how emotion
is conveyed by both what is said –verbal communication– and how something is
said –non-verbal communication–1. For example, the prosodic information of the
uttered phrase “I am fine” might reveal that the speaker is angry, even though the
verbal information contains no indication of this. On the other hand, the phrase “I
am angry” contains direct verbal information about the speaker’s emotional state.

Moreover, It can be argued that acoustic signals contain both verbal and non-
verbal communication, so one does not need to use textual representations. While
this is theoretically true, in practice the verbal information in the textual represen-
tations is more informative in smaller dimensions than the acoustic representations.
This is because the acoustic representations contain not only the verbal information,
but also other information related to the speaker’s tone, gender, ambient noise and
even the characteristics of the microphone. Therefore, the use of both acoustic and
textual representations provides a more holistic view of both verbal and non-verbal
communication. This method has been evaluated in Li and Lee (2019); Siriward-
hana et al. (2020); Ho et al. (2020), where human transcriptions of speech signals
were used to jointly represent acoustic and textual modalities, demonstrating an im-
provement in the performance of AER compared to using acoustic representations
alone.

Although joint acoustic-textual representations have proven successful, in a re-
alistic application we usually do not have access to the human transcriptions of a
speech signal. Nevertheless, recent advances in ASR technologies have made it
possible to obtain reliable automatic transcriptions that are comparable to human
transcriptions in most circumstances (Kim et al., 2019). This has led affective com-
puting research to focus on integrating ASR transcriptions with acoustic representa-
tions (Atmaja et al., 2022). The main trend observed in recent studies is to use ASR
to provide us with transcriptions first, and then to use the joint acoustic-textual rep-
resentations for AER, achieving comparable results to using human transcriptions
for joint acoustic-textual representations (Heusser et al., 2019; Yoon et al., 2019;

1Visual cues can also be part of non-verbal communication. However, since in this thesis the
focus is on acoustic and textual modalities, only the non-verbal communication from speech is con-
sidered.
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Wu et al., 2021; Peng et al., 2021). Although the aforementioned studies have in-
vestigated joint representations of acoustic signals and ASR-based transcriptions,
they have all focused only on acted emotional expressions, and thus the effect of
such joint representations for emotional expressions captured in the wild has not
yet been explored. Also, the use of joint acoustic-textual representations used for
acted data to improve the performance of AER in the wild, has not yet been studied.

The previous paragraphs have discussed current research trends in adding ver-
bal awareness to deep acoustic representations. Since different individuals express
emotions in different ways, the next paragraph shifts the discussion to why and how
current research attempts to personalise acoustic representations.

Personalised representations

Different people express emotions in different ways, depending on each individ-
ual’s assessment of a particular situation, which depends on their psychobiological
background (Sander et al., 2005; Scherer, 2009) (see Section 2.1.1). This means
that a better understanding of each user’s characteristics can provide insight into an
individual’s emotional state, and thus can be used to improve current AER models1.
Therefore, taking the characteristics of different speakers into account, has attracted
the interest of AER research, especially research on AER from speech.

There are different lines of research investigating personalisation of acoustic sig-
nals, from assignment of different personalised classifiers (Rudovic et al., 2018), to
forcing disentanglement of speaker and emotion characteristics (Peri et al., 2021).
However, the main line of research on this topic focuses on improving AER sys-
tems by exploiting the speaker-related representations, that are achieved by training
speaker recognition models (Xi et al., 2019; Moine et al., 2021; Peng et al., 2021).
For example, a recent study shows that the use of both verbal and speaker informa-
tion to improve AER from the acoustic signals can outperform models that do not
consider the verbal and speaker information (Ta et al., 2022). Despite recent ad-
vances made on this topic, a comparison between the effectiveness of the different
modalities, and the use of ASR transcriptions, seems to be lacking from the state of
the art.

1.2 The aims of the thesis
In order to advance the research on AER, the aim of this thesis is to address the
aforementioned shortcomings in the state of the art. Namely the following2:

1Based on the assumption that AER targets the affective state of mind, and that the emotional
expressions can be used to predict the affective state of mind.

2Admittedly, other issues such as limited computational resources, privacy and bias are also
among the existing challenges for AER (Lee et al., 2021), which are not addressed in this thesis.



1.2. THE AIMS OF THE THESIS 9

1. The state of the art shows promising results with ASR transcriptions for joint
acoustic-textual representations and speaker-aware deep acoustic representa-
tions (See Section 1.1.2). Thus, in Chapter 4 the related research is advanced
by investigating the use of such representations for acted and in-the-wild emo-
tional expressions, where the text is transcribed either by humans or by an
ASR system.

2. The state of the art shows the effectiveness of using MTL to train machine
learning models on multiple corpora with different sets of emotion categories
(See Section 1.1.1). On the other hand, deep pre-trained representations have
been shown to generalise well across different emotional expressions (See
Section 1.1.2). Therefore, this thesis in Chapter 5 proposes a method that
uses deep acoustic and textual representations with MTL to predict a latent
emotion representation that can recognise the same or similar emotion cate-
gories across different datasets.

In the following, the research questions and contributions of this thesis in rela-
tion to the aims described above are elaborated in more detail.

1.2.1 On the use of deep acoustic and textual representations
The use of deep pre-trained acoustic and textual representations has been shown
to achieve unprecedented state-of-the-art performance (see Section 1.1.2). Despite
their success, these models have yet to be fully explored and applied to AER, espe-
cially for emotional expressions in the wild. In order to advance the existing state
of the art in AER regarding deep pre-trained acoustic and textual representations,
the research questions and contributions related to this thesis are as follows:

• Question 1: What is the effect of different amounts and types of acoustic
signals used to train deep representations, on the performance of such repre-
sentations for the AER task?

– Contribution 1: An exhaustive evaluation of AER performance on mul-
tiple datasets using different pre-trained deep acoustic representations
trained with different types and amounts of data (see Section 4.1).

• Question 2: How can automatic transcriptions from an existing ASR model
be exploited to improve the performance of AER models from speech signals,
for both acted and in-the-wild emotional expressions?

– Contribution 2: The exploitation of an ASR model to extract transcrip-
tions for later use in joint acoustic-textual representations, and the evalu-
ation of this method on AER performance for both acted and in-the-wild
emotional expressions (see Section 4.3).
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• Question 3: Given that speaker recognition models can provide us with latent
speaker representations, how can we improve the performance of deep acous-
tic and textual representations for AER, by fusing them with such speaker
representations?

– Contribution 3: Investigation of the effect of fusing speaker represen-
tations with acoustic, textual, and joint acoustic-textual representations
on AER, where the text may be a human transcription or generated by
an ASR (see Section 4.4).

1.2.2 Generalisation beyond emotion schemes
Most current AER research focuses on experimenting with specific datasets. How-
ever, each dataset covers a specific range of emotional expressions with subjective
and inconsistent annotations. To train machine learning models to understand a
wide range of emotional expressions, the research points to multi-corpus training
through MTL. On the other hand, deep representation learning methods, especially
SSL, have been shown to effectively model a wide range of acoustic signals and
texts in an unsupervised manner. Therefore, this thesis proposes a method that uses
pre-trained self-supervised representations with MTL to predict a latent emotion
representation that can generalise beyond specific emotion schemes used for each
dataset. The research questions and contributions related to this topic are presented
below (the numbering continues from the previous section to count all the research
questions in the thesis):

• Question 4: How effective is the latent emotion representation, computed
by using the MTL-based method using deep representations, in recognising
the same or similar emotions across different corpora that might use different
emotion annotation schemes?

– Contribution 4: Evaluation of the proposed multi-corpus training
method in within-corpus and cross-corpus settings on acted datasets, and
by using deep pre-trained acoustic representations (see Section 5.1).

• Question 5: By using the proposed multi-corpus training method, can acted
emotional expressions be useful in improving in-the-wild AER from acoustic
signals and text?

– Contribution 5: Evaluation of the performance of acoustic and textual
representations in the proposed MTL-based method for acted and in-
the-wild emotional expressions (see Section 5.2).
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Figure 1.1: Overview of the thesis. The envisioned application of the thesis is
shown at the top, where the user can interact with a machine through speech or text,
based on which the AER model predicts the user’s emotion. Below the application,
the proposed method, is shown in more detail, where the input representations are
used to train a machine learning model to predict an emotion representation, which
is then used to predict a specific emotion annotation. At the bottom, the topics
discussed in each chapter are clarified, with dashed lines connecting different parts
of the proposed method to the topic of each chapter.

1.3 Thesis overview
The rest of this thesis is divided into four chapters, which are explained below. A
visual overview of the structure of the thesis is also shown in Figure 1.1.

Chapter 2 provides the state of the art in AER from acoustic signals and text.
The chapter begins by discussing how emotion is viewed in psychology and how it
is used to define emotion annotations for machine learning. It then reviews several
state-of-the-art AER methods, followed by a case study to quantitatively compare
them.

Based on the study of the state of the art, chapter 3 then describes the method-
ology of the experiments in the following chapters, namely the representations,
datasets, training methods, loss functions and metrics used to achieve the goals
of the thesis, as well as the technical description of the implementation of the ex-
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periments.
Later in chapter 4, pre-trained deep representations of acoustic signals and text,

which have shown the best performances in the literature, are used for AER with
both acted and in-the-wild emotional expressions. In addition, this chapter experi-
ments with the use of personalised pre-trained joint acoustic-textual representations,
where the text is either human transcriptions or generated by an ASR.

Then, in chapter 5, the proposed method using the pre-trained deep represen-
tations with MTL is explored. Also, the effectiveness of using acted emotional
expressions for AER with in-the-wild data is experimented.

Finally, chapter 6 concludes the thesis and discusses possible future directions.



Chapter 2

Emotion recognition from acoustic
signals and text

This chapter provides a comprehensive overview of the current state of the art
in Automatic Emotion Recognition (AER). It begins by discussing the theoretical
underpinnings of emotion in psychology and how they serve as a basis for the cre-
ation of numerical emotion targets. It then examines the various machine learning
techniques for predicting emotion targets. Particular emphasis is placed on Deep
Neural Network (DNN)s and exploring the deep acoustic and textual representa-
tions that have recently dominated the state of the art in AER. A case study is then
conducted to quantitatively compare different existing methods for AER. The chap-
ter concludes with a brief summary of the state of the art and its shortcomings.

13
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2.1 Theoretical background of emotion
This section first briefly introduces the reader to the different views of emotion in
psychology. It then explains how some of the psychological models of affect are
used to define a numerical emotion space. Then, it is explained how a numerical
space of emotion is used to annotate emotional expressions, in order to automati-
cally supervise the training of an AER model (see Section 2.2). The reader is also
introduced to the advantages and disadvantages of the different annotation schemes.

2.1.1 Emotion in psychology
The scientific study of emotion can go back to 19th century when emotion was first
seen as certain mental states, which cause certain body expressions, to later on,
viewing the bodily activity as the cause of emotion and not the result of it (Gendron
and Feldman Barrett, 2009). Today, several strands of thought coexist in psychol-
ogy, ranging from the strand that “emotions are universal” (Ekman et al., 1987) to
the strand that “emotion cannot be detected at all” (Barrett, 2017). For example,
Ekman argued that people can universally recognise six different emotions –fear,
anger, happiness, sadness, disgust and surprise– from facial expressions (Ekman,
1992) (see Section 1.1.1). Many experiments have also shown that people around
the world can match such emotion categories to different muscle movements per-
formed by actors, who are not actually feeling those emotions. This has led to
the argument that what was objectively detected in these experiments was the facial
muscle movements, not the emotion itself, because the actors were not actually feel-
ing the detected emotions. This argument goes on to explain that emotion cannot be
objectively detected because it is a concept created by human agreement and does
not have an existence outside the mind (Barrett, 2017).

Nevertheless, in recent years, emotion has been seen mostly as a complex hu-
man reactionary response to an event. For example, the American Psychological
Association (APA) defines emotion as:

A complex reaction pattern, involving experiential, behavioral, and physiologi-
cal elements, by which an individual attempts to deal with a personally significant
matter or event1.

This is in line with the recently popular theory of “appraisal”, which argues that
humans are hardwired to continuously evaluate stimuli in their environment, and
that the interactions between cognitive functions involved in appraisal mechanisms
trigger observable expressions of affect. Emotion is therefore seen as an adaptive
response to an event, produced as a result of the synchronisation of multiple sub-
systems, and is considered central to the well-being of the individual (Sander et al.,
2005).

1https://dictionary.apa.org/emotion

https://dictionary.apa.org/emotion
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Emotion caused by our constant subjective appraisal of what we see as impor-
tant events (which depends on the psychobiology and culture of each individual),
would lead to certain motor expressions that can be observed in the voice, face and
body. An emotional experience can then be verbalised in abstract terms by asso-
ciating words such as happiness or anger (Scherer, 2009). We can also accurately
identify other people’s emotional expressions by observing them in social interac-
tions. For example, we can visually distinguish between smiling, crying or frown-
ing, which are associated with different emotions (Gross, 2020). Similarly, when
listening to someone, we can detect an expression of intrinsic pleasantness by ob-
serving an increase in low-frequency energy, and unpleasantness by detecting more
high-frequency energy (Scherer, 2009). The existence of such correlations between
measurable sensory inputs and the concept of emotion has inspired researchers to
build machines that can automatically recognise emotions. Next, we discuss how
different views of emotion in psychology are used to annotate emotional expressions
for training data-driven machine learning models.

2.1.2 Emotion annotations
To build machines capable of recognising emotions, we first need to define a nu-
merical space of affect. This numerical space is then used to annotate a recorded
expression of emotion, which is later used to train a machine learning model in a su-
pervised manner. However, as discussed earlier, emotion does not have a universally
agreed definition and is not standardised for AER (see Section 1.1.1). Therefore,
different emotional expressions are annotated rather subjectively, following differ-
ent theories of affect. Nevertheless, there are two main ways in which affect models
are used to annotate emotional expressions in the AER literature: 1) discrete classes
of emotion following Ekman’s basic emotions –anger, disgust, fear, happiness, sad-
ness and surprise– (Ekman, 1992), and 2) continuous dimensions of emotion such
as arousal (or activation) and valence (or intrinsic pleasantness), based on Russell’s
circumplex model of affect (Russell, 1980). In what follows, how these two main
models of affect are used to annotate emotional expressions are explained in more
detail.

Annotations based on categorical model of affect

Ekman suggested that emotions should be seen as distinct, independent states of
mind, and that distinct categories should be used to define them. His argument
was that, from an evolutionary perspective, different emotions have different func-
tionalities and are inherently different (Ekman, 1992), which also means that emo-
tions cannot be described as dimensions (which was contrary to what Russell had
proposed). Assuming that emotions are distinct categories for machine learning,
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Figure 2.1: Russell’s circumplex model of affect. According to this model, the
intensity of an emotion (arousal) and its intrinsic pleasantness (valence) form a
two-dimensional space for affect. Moreover, different categories of emotion can
be identified in this two-dimensional space, depending on the arousal and valence
values associated with an emotional expression.

The figure is from Siirtola et al. (2023)

implies that the output of an AER system, has to discriminate between a set of cat-
egories (i.e. a classification task). However, the set of categories used for AER
systems can vary from one corpus to the other. For example, the CaFE corpus
(Gournay et al., 2018) considers the six basic categories of Ekman –fear, anger,
happiness, sadness, disgust and surprise–, plus one extra category for “neutral” ex-
pressions, whereas the GEMEP corpus (Bänziger et al., 2012) considers 12 “core”
emotions –anger, despair, worry, irritation, fear, sadness, amusement, joy, pride, in-
terest, pleasure, and relief–. Categorical annotations are a common practice in the
creation of corpora for AER, mainly because they are often reliable, since the anno-
tators are forced to choose from a limited set of categories. For example, Cohen’s
Kappa coefficients, a method for calculating inter-annotator agreement for cate-
gories, is calculated to be over 0.87 for four emotion categories –happy, relaxed,
sad and angry– in the DEAP corpus, which is considered an excellent score (Juremi
et al., 2017). On the other hand, considering only a limited list of categories for
emotion cannot exhaustively represent people’s varied emotions (Picard, 2003), as
emotional expressions in the wild are much more nuanced than can be explained
with only a limited set of categories. This has led many of the researchers in AER
to follow Russell’s dimensional view of emotion, which considers a much larger
target space of affect, rather than focusing on a limited set of emotion categories.
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Figure 2.2: An example of continuous annotations of arousal dimension, performed
by three French Female (FF1-3) annotators and three French Male (FM1-3) anno-
tators on the audiovisual recording of the subject P13 from the RECOLA dataset
(Ringeval et al., 2013). As can be seen in the figure, the continuous annotations do
not agree with each other in time, and in value.

The figure is from diuf.unifr.ch/main/diva/recola

Annotations based on dimensional model of affect

Russell’s circumplex model of affect, in its simplest form, considers a two-
dimensional space for emotion, which are spanned by the basis vectors of arousal
(or activation) and valence (or intrinsic pleasantness). According to this theory
of affect, arousal refers to the perceived intensity of an event, ranging from calm
to very excited. On the other hand, valence refers to the intrinsic pleasantness of a
stimulus, ranging from negative to positive (Kensinger and Schacter, 2006; Costanzi
et al., 2019). This two-dimensional arousal-valence space of emotion is illustrated
in Figure 2.1. As can be seen in this figure, defining a two-dimensional space for
affect can encompass different categories of emotion, depending on where an emo-
tion label lands on the two-dimensional space. For example, happiness is associated
with high arousal and high valence, whereas anger is associated with high arousal
but low valence. Because the two-dimensional space of affect encompasses differ-
ent categories of emotion, Russell’s model provides a more comprehensive view of
emotion than the Ekman’s categorical model of affect. Hence, in recent years, many
studies have started using the dimensional model of affect to annotate emotional ex-
pressions for AER (Ringeval et al., 2019; Kossaifi et al., 2021; AlBadawy and Kim,
2018; Khorram et al., 2021). However, there are several practical problems associ-
ated with dimensional annotation of emotion, which are discussed below.

The fact that arousal and valence are considered perpendicular to each other
in Russell’s circumplex model of affect, suggests that arousal and valence are as-
sumed completely independent from each other. It has also been shown that the two
dimensions are mostly processed by different parts of the brain (Lewis et al., 2006).

https://diuf.unifr.ch/main/diva/recola/annemo.html
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Figure 2.3: A visual example of the conceptual theories of affect involved in build-
ing an emotion recognition system. Based on the appraisal theory of affect, an
event (here a boxer being punched in the face) first triggers a series of subjective
appraisal processes involving attention, memory and reasoning that take place in
the boxer’s mind, triggering an expression of emotion. A microphone can then be
used to record the emotional expression, along with any existing unwanted sounds,
such as ambient noise. The recorded expression can then be used for annotation,
following a specific annotation scheme. The emotion annotations are then used to
train a machine learning model in a supervised manner.

However, multiple studies found out that in practice, when people are annotating
emotional expressions according to this theory, there exists a correlation among the
two axis of arousal, and valence (Nicolaou et al., 2011; Pantic et al., 2007; Nicolaou
et al., 2012), with arousal forming a V-shaped curve as a function of valence (Kup-
pens et al., 2013, 2017). The reason of this, is not completely known, and might
be related to how the annotators perceived the emotional expressions in terms of
arousal and valence, rather than how these dimensions are actually processed in the
brain.

Moreover, the dimensional annotations of emotion are typically done in a time-
continuous format to capture the nuances of emotional experience as emotion may
not be static, but rather evolve over time. The time-continuous annotations are of-
ten done in a continuous format, resulting in different annotations having different
times and values, based on the judgement and time it takes for each annotator to
process and act on an observed expression of emotion. An example of continuous
dimensional annotations of the RECOLA dataset (Ringeval et al., 2013) is given in
Figure 2.2. The continuous traces seen in this figure are registered by the annotators
who watch a video (without pausing), and move the computer mouse to the left or
right to continuously indicate a low or high value of the arousal or valence dimen-
sion. This process inherently introduces noise and delay into the annotations, which
would require an additional step of dynamic modelling to mitigate (Khorram et al.,
2021; Alisamir et al., 2022b).

Although this problem is not theoretically intrinsic to the dimensional model



2.2. AUTOMATIC EMOTION RECOGNITION METHODS 19

of affect, in practice it is often the dimensional annotations that are evaluated with
continuous values, rather than the emotion categories. This may be because by
choosing the categorical emotion labels, we try to simplify the task and have more
reliable labels for AER, whereas with the dimensional model the focus is more on
having fine-grained details of emotional expressions.

A visual summary of what has been discussed in this section, from how emotion
is viewed in psychology to how emotion is annotated for machine learning, is pro-
vided in Figure 2.3. Knowing how to annotate emotions for machine learning, the
next section introduces the reader to state-of-the-art machine learning techniques
for AER.

2.2 Automatic emotion recognition methods
The previous section discussed how emotion is a complex and contextual human
concept. On the other hand, various state-of-the-art modeling techniques have dif-
ferent and often limited capabilities in different modeling tasks. Therefore, the
state-of-the-art AER traditionally relies on several stages of data transformation to
model the signal at different levels, from acoustic signals or text to emotion. At each
stage, we expect an increase in the level of data abstraction, from the raw waveform
or text to the emotion labels or dimensions. A visual summary of the most common
techniques used at different stages is shown in Figure 2.4. The different models
shown in the figure are explained further in this section. It should be noted that
while traditional methods were designed to process each stage separately, with the
advent of deep neural networks, the boundary between different stages is no longer
clear. Nevertheless, in this thesis, the "feature extraction" and "emotion modelling"
stages are considered separate in order to follow the traditional AER methodology.
Therefore, in the following, traditional feature engineering methods as well as sta-
tistical modeling approaches are explored. Artificial Neural Network (ANN)s are
then explained in more detail, followed by deep acoustic and textual representations,
which have achieved significantly better results than traditional features. As this the-
sis investigates the personalised deep acoustic-textual representations (see Section
1.2.1), the state-of-the-art methods regarding both joint acoustic-textual represen-
tations and personalised representations are also discussed. Moreover, this thesis
also investigates MTL for generalisation beyond emotion annotation schemes (see
Section 1.2.2). Therefore, in Section 2.2.7, the work related to MTL for AER is
further discussed. Finally, a quantitative performance comparison of the discussed
methods is performed through a case study on the RECOLA dataset.
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Figure 2.4: The modelling stages involved in emotion recognition from acoustic
speech signals and text, based on current state-of-the-art methods. LLD: low level
descriptors (expert-knowledge feature extractors like speech spectrograms); CNN:
convolutional neural network; Attention: attention based neural network; Statistics:
statistical summarisation approaches; RNN: recurrent neural network; FCNN: fully
connected neural network; SVM: support vector machine.

2.2.1 Traditional feature extraction methods
In this thesis, the representations of both acoustic signals and text are investigated
(see Section 1.2.1). Since this subsection discusses traditional feature extraction
methods for both modalities, the reader is first introduced to traditional feature ex-
traction methods for acoustic signals, and then traditional textual representations
are covered.

Traditional acoustic representations

Over the last few decades, scientists studying the acoustic properties of speech have
sought to create more descriptive representations of the acoustics that could be more
easily exploited for various speech-related tasks, such as AER. Subsequently, sev-
eral feature extraction techniques based on the scientific study of how speech is
phonated, articulated and perceived were proposed, which are still widely used to-
day. An example of such feature extraction techniques is Mel-scale Filter Bank
(MFB), which is the result of expert knowledge design based on the human auditory
system. MFBs exploit the short-term energy coefficients of the signal’s frequency,
similar to the perceptual characteristics of the human ear. Another famous fea-
ture extraction techniques is Mel-Frequency Cepstral Coefficients (MFCC), which
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is based on MFB, with the additional step of applying a deconvolution to preserve
the variability of the original speech signal. It is worth noting that MFB-based fea-
ture extraction techniques are still one of the most common choices as the input of
state-of-the-art AER from acoustic signals (Latif et al., 2020) (cf. section 2.2.8).
However, MFBs are the result of studying the acoustic properties of speech in gen-
eral and without considering its relation to emotion.

As was discussed earlier in section 2.1.1, there are correlations between mea-
surable sensory inputs, such as acoustic signals and different emotions. For ex-
ample, an increase in low-frequency energy, is often associated with pleasantness,
while more high-frequency energy is usually attributed to unpleasantness. The re-
sult of studying such correlations was Geneva Minimalistic Acoustic Parameter Set
(GeMAPS), which contains a reduced set of acoustic and prosodic features, chosen
to be more informative about affective physiological changes in speech production
(Eyben et al., 2015).

The traditional methods mentioned above, such as MFB and GeMAPS, are con-
sidered to be rather Low Level Descriptors (LLD)s of acoustic signals, as they only
describe speech at the signal level. Moreover, LLDs usually process an acoustic
signal with frames that range from 20ms to 40ms, where the statistical properties
of the signal are considered to be stationary. On the other hand, emotion is a com-
plex and contextual human concept that depends on a speaker in a specific envi-
ronment, and with highly variable durations ranging from a few seconds to several
hours (Brans and Verduyn, 2014), and is thus difficult to model using only LLDs of
acoustic signals. Therefore, in order to more accurately predict different emotions,
LLDs are usually accompanied by statistical or machine learning models to take
into account different lengths of emotional expressions, different environments, and
different speakers (see Figure 2.4).

One of the most common statistical modeling of LLDs involves clustering ap-
proaches such as Bag of Audio Words (BoAW), Gaussian Mixture Model (GMM)s,
and Fisher Vector (FV)s. For example, BoAW is a method that can cluster different
audio features into a dictionary, whose distributions are then used to extract more
contextual features, and has been shown to predict emotion dimensions better than
LLDs (Schmitt et al., 2016; Ringeval et al., 2018a). Similarly, GMMs, which can
cluster data into different Gaussian distributions with unknown parameters, can also
be used as a statistical summary of LLDs. GMMs are clustering methods that can
incorporate information about the covariance structure of the data as well as the
centers of the latent Gaussians. In addition, FV can be used to predict the like-
lihood of a probabilistic model, such as GMM, to provide contextual features for
AER (Gosztolya, 2020).

So far, only the traditional methods of processing acoustic signals have been
discussed. However, one of the aims of this thesis is also to investigate textual
representations (see Section 1.2.1). Therefore, the following is a brief summary of
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the traditional methods of representing text for machine learning purposes.

Traditional textual representations

The first step in processing a given text is to segment it into subunits, called tokens,
which are encoded numerically so that a machine can process them. The subunits
of a text, can be words, sub-words, or characters, while keeping the order of them.
Then, depending on the task and the language, different pre-processes may be in-
volved, such as removing punctuation, removing frequent words, or replacing each
word by its root (i.e. stemming). Then, different methods can be used to compute
a series of feature vectors from the pre-processed tokens. One popular approach is
Vector Space Model (VSM), which represents a given sub-unit of text (a symbol) by
a point in an N-dimensional space (a numerical vector) (Liang et al., 2017). The fol-
lowing is a discussion of various traditional approaches to numerical representation
of text.

The simplest approach to numerically represent text, is to have a dictionary of
all the tokens, and assign each token with a unique number. For example, we can
assign a numerical id to each word used in a language. After assigning a unique
number to each token, usually a one-hot vector is created. For instance, the one-
hot vector of each word has the length of the vocabulary, and the value of one at
the index corresponding to the position of the word in the vocabulary, and all other
elements are zero. Although this approach results in numerically representing any
given text, it would not encode any syntactic or semantic information of the text,
to help solve a specific task. In order to include syntactic or semantic information,
traditional methods for extracting features from text usually apply filtering, statis-
tical, and mapping techniques (Liang et al., 2017). For example, one can simply
filter out the words that are not repeated often in a text, in order to reduce the size of
the vocabulary, and thus the dimension of the one-hot vectors (Singh et al., 2013).
One can also compute the mutual information between a numerical word represen-
tation and its label for a classification task (Paninski, 2003), in order to select only
the representations with high information gain for a target task. Different statistical
modeling approaches have also been investigated in order to gain more contextual
information, by putting similar textual subunits closer to each other in the repre-
sentation space (Huang, 2008; Aggarwal and Zhai, 2012). A famous example of
a statistical measure used for text processing is the Term Frequency-Inverse Docu-
ment Frequency (TF-IDF), which encodes the statistical saliency of each word, by
reflecting how often a word is used in a document –Term Frequency (TF)– and how
rare it is in a given set of documents –Inverse Document Frequency (IDF)–. The
mentioned filtering and statistical approaches still do not encode any semantic in-
formation of a given text. On the other hand, mapping methods involve approaches
that map a high dimensional one-hot vector into a lower dimensional latent seman-
tic space (Liang et al., 2017). One example of such approach is Latent Semantic
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Analysis (LSA) (Evangelopoulos, 2013), which analyses the relationships of differ-
ent terms within different documents to compute the existing similarity among the
terms and the documents. This approach has also proved to be effective in classify-
ing different emotions from text (Wang and Zheng, 2013).

As discussed in this section, statistical modelling methods have been effectively
applied to AER on top of traditional acoustic and textual representations. These
methods are often accompanied by machine learning models, such as Support Vec-
tor Machine (SVM)1 (Schmitt et al., 2016; Ringeval et al., 2018a) and later with
DNNs (Jianqiang et al., 2018; Ezz-Eldin et al., 2021) to achieve high performances
in AER (see Section 2.2.2). In fact, the fast growing advances made for DNNs,
has completely changed the way of processing acoustic signals, as well as, textual
data, by improving the performance in affective computing by a large margin (Evain
et al., 2021b; Latif et al., 2020; Alisamir and Ringeval, 2021; Siriwardhana et al.,
2020). The quick rise of DNNs to state-of-the-art results in many domains, includ-
ing affective computing, has not stopped at effectively mapping acoustic or textual
features to emotion (Trigeorgis et al., 2016). But it has continued to completely
replace all the steps involved in a traditional AER methodology, making traditional
feature extraction techniques and statistical modelling increasingly rare. In what
follows, DNNs are explained in more detail.

2.2.2 Deep neural networks
ANN is a type of machine learning technique, which is loosely based on the concept
of biological neural networks in the human brain. Each artificial neuron, similar to
the synapses and axons of a biological neuron, can be connected to other neurons to
send or receive information. Artificial neurons are usually put together as groups,
which are called neural layers. Multiple layers of ANN can then be cascaded to-
gether in different ways to model more complex tasks, in which case they are re-
ferred to as DNNs (Liu et al., 2017). This fact, in theory, gives DNNs universal
approximator abilities, which means that with enough layers, DNNs can represent
any function with high precision (Goodfellow et al., 2016). DNN can do this be-
cause they consist of multiple layers, and each layer is able to transform its input
to a higher level of abstraction, which is more important for prediction or discrim-
inative tasks (LeCun et al., 2015). The higher level of abstraction achieved by the
layers further from the input is also considered to be less sensitive to local changes
in the input (Bengio et al., 2013). The following is a brief description of the most

1SVM is a machine learning model that learns to draw a hyperplane to separate the data into
different classes. Unlike DNNs, which are randomly initialised and trained to find a local minimum
solution, SVMs use a convex optimisation technique that ensures a unique global minimum solution.
However, this also means that, unlike DNNs, SVMs are not well suited to training on large amounts
of data, as all training points need to be stored and computed together.
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common layers used in neural networks today in most domains, including affective
computing.

Fully connected feed-forward layers

The most basic form of artificial neural layers are fully connected feed-forward lay-
ers, where all neurons in the first layer are connected to all neurons in the next layer
(sometimes referred to as dense or linear layers). To describe how fully connected
layers work through mathematical notations, we can consider the input of each layer
to be a numerical vector, that is transformed to a different vector, through a matrix
multiplication, and usually followed by a non-linear function. This process can be
written as followed:

y “ hpWx` bq (2.1)

where x is the input vector, W is the weight matrix, b is the “bias” vector, which
is there to off-set the linear matrix multiplication, and hp.q is usually a non-linear
function such as tangent hyperbolic or sigmoid, and y is the output vector. The
weight, and bias elements here are trainable through the backpropagation process,
by different algorithms, such as Stochastic Gradient Descent (SGD) (Ruder, 2016).
In what follows, the training of an ANN is explained in more details.

Training neural networks

Backpropagation with SGD-based algorithms first calculates the gradient of a given
loss function with respect to each of the weights in a neural network. It then uses
the chain rule of calculus to iteratively compute the gradients of each layer in the
network. The gradients can then be used to update the weights of the network to
minimise a given loss function. This process for each layer can be described as
follows:

W “ W ´ η
BL

BW
(2.2)

where L is the loss function, BL

BW is the derivative of the loss with respect to
a weight matrix W, and η is the learning rate, which lets us control how fast or
slow the weights are updated for each iteration. Through back-propagation, a fully
connected layer can theoretically be iteratively trained to recognise the spatial struc-
ture of data. In practice, however, training fully connected layers can suffer from
the curse of dimensionality because they inherently have a large number of train-
able parameters. The curse of dimensionality occurs when the volume of space
increases relative to the amount of data available, causing the data to become sparse
in that space. This makes it more difficult for backpropagation to train a fully con-
nected layer, as there would not be enough data in the search space from which to
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approximate a function. This has led to the introduction of convolutional layers,
which suffer less from the curse of dimensionality, because they limit the number
of trainable parameters by orders of magnitude compared to fully connected neural
networks through sharing a sliding weight (Abend, 2022). The convolutional layers
are described in more details below.

Convolutional layers

Convolutional layers are another type of neural layers that are commonly used in
DNN architectures. Unlike fully connected layers (see above), where the value of
each input neuron has an independent weight to be transformed to its output, the
input neurons in a convolutional layer share a sliding set of weights. This mimics
the mathematical operation of convolution, and to calculate the output value of each
neuron n, one can write as follows:

yrns “
N

ÿ

k“0

wˆ xrn´ ks (2.3)

where x and y are the input and output vectors (i.e. layers), N is the total number
of elements (i.e. neurons) in the input vector x (i.e. input layer), and w is a shared
trainable weight vector, which has the same size as the input vector xrn ´ ks. The
formula above is only for one trainable weight vector w, however, it is common
practice to use multiple set of weights to better model the structure of data. In this
way, convolutional layers can model the temporal structure of an acoustic signal by
sharing the parameters across the temporal dimension. This process is similar to
traditional filters used in signal processing, which is why convolutional weights are
often referred to as filters. However, unlike traditional filters, which are designed
by experts, convolutional filters are designed by learning from the data (Palaz et al.,
2015). In addition, convolutional filters can be combined with fully connected and
recurrent layers (see below) to perform a specific task, such as AER or ASR from
acoustic signals, using only raw speech. This technique, also known as end-to-end
learning, has been shown to outperform traditional feature extraction techniques
using the same fully connected and recurrent layers for continuous prediction of
arousal and valence dimensions (Trigeorgis et al., 2016) (see Section 2.2.3).

The fully connected and convolutional layers are among the most commonly
used algorithms and are known to be particularly effective in computer vision tasks
due to their ability to detect different features in images. However, for sequential
tasks such as natural language or speech processing, this is often not enough, as
sequential data depends on the relationship of each part of the sequence to the next.
This has led to the idea of recurrent layers, where the neurons are assumed to be in
a sequence. Recurrent layers are described in more detail below.
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Recurrent layers

Recurrent layers are neural layers that are known for their ability to process se-
quences of data. This is possible because each neuron in an output vector of a
recurrent layer influences the computation of subsequent neurons in the same out-
put vector. In its simplest form, recurrent layers can be described mathematically
as follows (Goodfellow et al., 2016):

an “ W1yn´1 `W2xn ` b1

yn “ hpanq
(2.4)

where xn, and yn are input and output vectors at step n. W1 and W2 are trainable
weight matrices. b1 and b2 are trainable bias vectors, and h(.) is the activation
function, which is usually considered to be a non linear function such as tangent
hyperbolic. Also, an is an auxiliary notation to better understand the equation. Note
that in the first step (n “ 0), yn´1 cannot be calculated from xn´1 (as x´1 does not
exist), and is usually initialised randomly, or to all zeros.

Recurrent layers differ from other types of neural layers in that they are con-
sidered to have a “memory” component, as they use previous inputs to inform the
current output (see equation above). This makes recurrent layers in theory effec-
tive methods for modeling long-term dependencies of sequential data, such as au-
dio, video and text. In practice, however, training the basic recurrent layers with
backpropagation would run into the problem of either vanishing or exploding gra-
dients. The vanishing gradients problem in recurrent layers means that the gradient
information becomes too small, when they are propagated from the end of a se-
quence to its beginning. On the other hand, exploding gradients problem happens
when instead of decaying, gradient information grow exponentially during back-
propagation. To alleviate these problems, special recurrent layer architectures have
been introduced, namely Long Short Term Memory (LSTM) cells (Hochreiter and
Schmidhuber, 1997), and more recently a simplified version called Gated Recurrent
Unit (GRU) (Cho et al., 2014).

LSTMs and GRUs are both recurrent layers that are capable of capturing com-
plex, long-term dependencies in a sequence. They can solve the vanishing and
exploding gradients problem of recurrent layers, by using a series of “gates” to reg-
ulate the flow of information into and out of each cell. The gates act as a kind of
filter, allowing the network to retain only relevant information. This helps the net-
work to focus on the most important data and ignore unnecessary details related to
each task, thereby preventing the gradients from vanishing or exploding. This has
made LSTMs and GRUs popular choices for DNN models for emotion recognition,
especially from acoustic signals (He et al., 2015; Chao et al., 2015; Weninger et al.,
2016; Trigeorgis et al., 2016; Le et al., 2017; Evain et al., 2021b; Alisamir et al.,
2022c) .
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Figure 2.5: A visual representation of a Gated Recurrent Unit (GRU). This figure
depicts a middle step of a GRU in computing the hidden state Ht, given the previous
hidden state Ht´1. Also, σ and tanh refer to the mathematical functions of sigmoid,
and tangent hyperbolic respectively.

The figure is from d2l.ai

While both LSTMs and GRUs share the same basic architecture, they differ
slightly in the number of gates they use. While LSTMs use an input, an output and
a forget gate to store and discard information, GRUs only use an update gate and a
reset gate. This makes GRUs a simplified version of LSTMs, allowing them to be
trained slightly faster, easier and sometimes with slightly better performance than
LSTMs (see Section 2.2.8). Thus, many of the experiments in this thesis are per-
formed with GRUs, and in what follows, the inner workings of them are explained
in more detail.

Figure 2.5 shows the architecture of a GRU, which calculates the following:

rt “ σpWir xt ` bir `Whrht´1 ` bhrq

zt “ σpWizxt ` biz `Whzht´1 ` bhzq

h̃t “ TanhpWinxt ` bin ` rt d pWhnht´1 ` bhnqq

ht “ p1´ ztq d h̃t ` zt d hpt´1q

(2.5)

where xt is the input at time t, ht and hpt´1q are the hidden states at times t and t´ 1.
rt, zt are the reset, and update gates respectively, and h̃t computes the candidate
hidden state. Various W and b tensors are trainable weights and biases similar to
what was defined for a linear layer (see “Fully connected feed-forward layers” in
this section). σ represents the sigmoid function and d is used for the Hadamard

https://d2l.ai/chapter_recurrent-modern/gru.html#fig-gru-3
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Figure 2.6: Depiction of Multi-Head Attention (MHA), and scaled dot-product at-
tention. In the figure above, Q, K, and V refer to query, key, and value in attention
mechanism. Also, “MatMul” calculates dot-product between two different vectors,
and “Linear” refers to a fully connect layer. Moreover, “Masking” is related to
encoder-decoder architectures for training a DNN in a self-supervised manner (see
Section 2.2.3 and section 2.2.4 to know more about self-supervised learning for
acoustic and textual representation respectively).

The figure is from Vaswani et al. (2017a)

product 1.
Although LSTMs and GRUs have proved capable of modelling the context of

sequential data, they are time-consuming to compute, because each value in a se-
quence must be computed in turn. Moreover, in practice many different neural
layers use parallel computing to run faster on modern computers, which is not pos-
sible for recurrent layers, due to their inherent sequential nature (Vaswani et al.,
2017a). In addition, the recurrence and non-linearity used in recurrent layers makes
them difficult to interpret. Although these problems do not directly affect the per-
formance of these models, they have partly led many studies to use the more recent
attention mechanisms to model long-term dependencies in sequential data instead
of recurrent layers.

Attention mechanism

The attention mechanism can be thought of as a machine learning method that can
focus on the most important parts of the input. This is achieved by learning the
weight of the input components and assigning greater importance to certain parts of

1https://pytorch.org/docs/stable/generated/torch.nn.GRU.html

https://pytorch.org/docs/stable/generated/torch.nn.GRU.html
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the input. This allows the attention mechanism to focus on the relevant information
and ignore the irrelevant parts, which can significantly improve the accuracy of
sequential tasks (Vaswani et al., 2017a). It has also shown capable of achieving
state-of-the-art results in affective computing (Vazquez-Rodriguez, 2021; Wagner
et al., 2022). Knowing the effectiveness of the attention mechanism in the state of
the art, what follows is a more detailed explanation of how it works.

Although the attention mechanism can be defined in different ways (Chaudhari
et al., 2021), it is usually implemented as dot-product attention following the work
of Vaswani et al. (2017a), and it can be mathematically written as follows:

ApQ,Kq “ QKT (2.6)

where A is the attention vector, calculated by the dot-product of Q and K vectors.
Traditionally, the attention concept comes from retrieval systems, where a query
(Q) is first compared to a set of keys (K), which are associated with a set of values
(V). This way, the attention mechanism can map a query and a set of key-value
pairs to an output, which can be computed as a weighted sum of the values. In order
to compute the weighted sum of the values, a softmax function can be used on the
attention vector A, in order to make the values describe a probability distribution.
Furthermore, it is often assumed that Q and K vectors have dk dimensions, and that
they have a random distribution with zero mean and dk variance. Thus, a common
practice to divide them by dk, in order for them to have zero mean and unit variance
(this is known as “scaling”). Thus, a scaled dot-product attention can be calculated
as follows:

ApQ,K,Vq “ so f tmaxp
QKT

?
dk
qV (2.7)

Moreover, in order to allow the attention mechanism to learn more complex
representations of the data, multiple scaled dot-product attentions can also be used.
This approach is called Multi-Head Attention (MHA), and is depicted in Figure 2.6.

Furthermore, to better model sequential data, Vaswani et al. (2017b) proposes
the idea of positional encoding, which encodes the position of each item in a se-
quence. This is a necessary step for modelling sequential data when using only the
attention mechanism, as this mechanism does not inherently consider the order of a
sequence. The positional encoding may be defined as follows:

PEppos,2iq “ sinp
pos

100002i{dseq
q

PEppos,2i`1q “ cosp
pos

100002i{dseq
q

(2.8)

where pos is the position, i is the dimension, and dseq is the dimension of the input
sequence. The idea is to encode the position of each element in a sequence on a
circle to keep the numerical values of the encoding between ´1 and 1. This idea
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Figure 2.7: A simplified depiction of the most common neural layers used in most
domains today, including affective computing.

helps in practice to have a better positional encoding than just assigning incremental
integers. This is specially important as the positional encodings would get summed
with the input sequence1. Also, the value 10000 in the formula is chosen rather
arbitrarily, and it can be any high value to ensure the uniqueness of the embeddings.

This section gave a brief introduction to DNNs. The focus was on the neural
layers and methods used in the experiments within this thesis. Furthermore, a sim-
plified visual summary of the most common neural layers is shown in Figure 2.7.
In recent years, DNNs composed of the aforementioned neural layers have domi-
nated the state of the art in the field of AER from acoustic signals and text. This is
achieved in particular by deep representation learning techniques used for acoustic
signals and text using only unlabelled data. The following section explains how
deep representations of acoustic signals work and how they have come to promi-
nence.

2.2.3 Deep acoustic representations
Over the last decades, Low Level Descriptors (LLDs) of the acoustic signal, built
by studying the acoustic properties of speech, have been used exhaustively for AER
(see Section 2.2.1). However, the usage of the LLDs as the first step in acoustic
processing, is fading away year by year, being replaced by deep representations.
Although “hand-crafted” LLDs are more explainable because they are designed ac-
cording to the human view of speech perception, it also makes them limited to
human knowledge. On the other hand, deep representations learn to adapt to an ob-
jective function, optimising for the best representation that fits a given data distribu-
tion. This has led to deep representations being much more effective than traditional

1The choice of summation over the more intuitive concatenation seems to be avoiding using
extra trainable parameters.
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“hand-crafted” feature sets, in many tasks, including AER from acoustic signals
(Ringeval et al., 2018b; Latif et al., 2020; Evain et al., 2021a). To train such ef-
fective deep representations for AER, there are different methods, among which we
can name supervised learning –namely, end-to-end and transfer learning– and unsu-
pervised learning –namely, (traditional) auto-encoders, variational and adversarial
auto-encoders, and self-supervised learning–. In the following, the aforementioned
representation learning techniques are explained in more detail.

End-to-end learning

End-to-end learning refers to the type of deep learning method that learns different
representations of data at different levels of abstraction, from input to output. This is
achieved in particular through the use of convolutional layers, which can be trained
on a given set of data to model its structure. It has also been shown that acous-
tic representations learnt in an end-to-end manner, can achieve better performance
than using hand-crafted representations to predict arousal and valence dimensions
of emotion (Trigeorgis et al., 2016) (see Section 2.2.2). Interestingly, analysis of the
convolutional layers trained in an end-to-end manner, has shown that some layers
learn a smooth spectral envelope in the average frequency response over time, which
is similar to traditional features such as MFCCs (Palaz et al., 2015). In addition, the
data-driven convolutional filters have been shown to learn fundamental frequency
correlates of emotion, as well as other related prosodic features that were not previ-
ously apparent to researchers studying the acoustic properties associated with emo-
tion (Bertero and Fung, 2017). This is largely due to the properties of DNNs, which
allow multiple convolutional layers to be cascaded and trained together on large
amounts of data, resulting in complex and contextualised representations suitable
for specific tasks.

End-to-end learning has enabled the feature extraction and task modelling stages
to be merged for the first time in the history of speech processing and other related
domains. However, this has come at the cost of requiring more and more labelled
data, in order to increase the ability of the deep representations trained in an end-
to-end manner to generalise well across different contexts. This problem is com-
pounded for AER, since emotion annotations are also subjective and expensive to
collect (see Section 2.1.2). Moreover, a labeled dataset gathered for a specific tasks,
represents only a specific distribution of emotional expressions (Tagliasacchi et al.,
2019). As a result, the performance of end-to-end trained convolutional layers may
not be as good for data in the wild, where there is a wide variety of emotional ex-
pressions. For example, Deschamps-Berger et al. (2021) shows that using acted
emotional expressions to train convolutional layers in an end-to-end manner has
limited application for using such deep convolutional representations for AER in
the wild.

Therefore, representations based on end-to-end learning have limited generali-
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sation capabilities for tasks with small amounts of labelled data, such as AER. This
has led to the exploration of deep convolutional layers trained for other similar tasks
where large amounts of labelled data are available (e.g. ASR). This paradigm in
deep learning is usually called transfer learning, because we would like to transfer
the data structure captured by deep representations for one task to another. Transfer
learning and its applications in AER are explained in more detail below.

Transfer learning

Transfer learning usually refers to a machine learning paradigm that allows the
knowledge gained from solving one task to be applied to a different but related task.
For the task of AER from acoustic signals, transfer learning is usually related to first
training the convolutional filters to model the acoustic signals for a task related to
AER, then evaluating the effectiveness of such filters for the task of AER. For ex-
ample, Tits et al. (2018) shows that convolutional layers trained on ASR can learn
more effective representations of acoustic signals for predicting arousal and valence
dimensions than “hand-crafted” GeMAPS feature sets. Moreover, since the spectro-
gram of an acoustic signal can be represented as an image, the convolutional filters
trained for snore sound classification from spectrograms, or even for classification
of different objects from images, have been successfully used for AER, outperform-
ing “hand-crafted” features (Amiriparian et al., 2017; Ringeval et al., 2018b, 2019).
Describing acoustic signals as the probability of classifying different objects in an
image may seem absurd, but the regularity of certain patterns in a spectrogram can
be similar to the regularity of different objects in images. Nevertheless, research
has shown that representations learned for a similar task with a similar distribution
are more effective for transfer learning (Zhang et al., 2017a; Triantafyllopoulos and
Schuller, 2021). This point brings us to the caveats of transfer learning, which is
that it is not always easy to predict how much of knowledge gained in a task, such
as object classification in computer vision, can be transferred to recognising emo-
tion from the acoustic signals. Furthermore, acoustic signal representations learnt
for similar tasks to AER, such as ASR, may not be able to detect specific patterns
of emotional expressions. This is because ASR’s objective is to transcribe speech,
and thus representations trained for ASR have learnt to abstract acoustic signals in a
way to only contain verbal information. However, abstracting only verbal informa-
tion is not sufficient for AER, as emotional expressions are conveyed through both
verbal and non-verbal communication (see 1.1.2).

On the other hand, training deep representations in an end-to-end learning fash-
ion for AER is not straightforward due to the lack of diverse emotionally labelled
data. And as discussed earlier, data-driven deep learning models require large
amounts of diverse data to generalise well across different contexts (see Section
1.1.1). On the other hand, today there is an abundance of unlabelled recordings of
emotional expressions from a variety of speakers available online and under Cre-
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ative Commons licence, which can be used to abstract representations of acoustic
signals in an unsupervised manner. Thus, in recent years, the focus of research has
shifted dramatically from training models with supervised approaches to exploiting
unsupervised representation learning techniques. These techniques are described
below.

Unsupervised learning

Unsupervised learning refers to a type of machine learning strategy that can train
a deep learning model without the need for labelled data. Instead of using la-
belled data, it uses various techniques to find patterns and insights from unlabelled
data. The goal is usually to provide a deep representation of the data by captur-
ing its structure through different methods. Below, the reader is first introduced to
auto-encoders, which form the basis of many of the unsupervised learning meth-
ods used today. It then explores a line of research that focuses on the use of both
auto-encoders and end-to-end learning (i.e. semi-supervised learning) to provide
deep acoustic representations. The reader is then introduced to the latest state-of-
the-art unsupervised learning approaches, such as adversarial and variational auto-
encoders, as well as self-supervised representation learning.

Auto-encoders

Auto-encoders are one of the most famous ANN architectures for unsupervised
learning of representations. Auto-encoders used for acoustic signals, first encode
the acoustics into an abstract representation, and then decode the representation
back to the original acoustic signal. The encoder and the decoder are separated
neural networks that are trained together in a tandem to reconstruct an input signal,
while learning to map such signal to an intermediate representation, which densi-
fies the information relevant for reproducing the signal, by the decoder (see Figure
2.8). As a result, huge amounts of unlabelled data can be used to obtain a dense
abstract representation of a wide range of acoustic signals, which would then re-
quire less complex models to predict emotion labels than using traditional features.
Moreover, the fact that auto-encoders can be trained on a data distribution without
the need for labels, means that one can train effective deep representations for a tar-
get data distribution. For example, Deng et al. (2014) shows that auto-encoders can
adapt to a target domain in this way, and achieve good performance in cross-domain
AER with acoustic signals. Their method involves training auto-encoders with feed-
forward layers on statistical features of acoustic signals. However, with the advent
of recurrent layers and then attention mechanism, various studies have been carried
out to train more contextual auto-encoders for AER from acoustic signals.

As recurrent layers are particularly effective in modelling the context of acoustic
signals, they have been investigated in an auto-encoder paradigm and have been
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Figure 2.8: A simplified depiction of an auto-encoder neural network. The encoder
and the decoder are trained together to reproduce the input in the output. This
process forms a dense representation as the output of the encoder, which can then
be used to model emotional expressions from different modalities, such as text or
acoustic signals.

shown to produce good results both within and across corpus AER (Neumann and
Vu, 2019). In another study, the use of convolutional layers first to model low-
level changes in the signal, followed by recurrent layers to model the context, has
shown further improvements for AER in cross-corpus settings (Dissanayake et al.,
2020). In addition, attention-based auto-encoders have also been investigated and
have shown good performance for speech translation, sound event detection and
AER from speech (Zhang et al., 2020b). However, studies in this area are rather
limited, and no fair comparison of different methods using attention and recurrent
layers for auto-encoders used in AER has been found.

As there is no supervision involved in the training of auto-encoders, the repre-
sentations are not learned to be effective in modelling a specific task. This has led to
some studies that first use auto-encoders for large amounts of unlabelled data, and
then try to make them more effective for a specific task with supervised end-to-end
learning (i.e. semi-supervised learning). For example, Huang et al. (2014) proposed
a method where they first trained dense representations with auto-encoders on large
amounts of unlabelled data, and then extracted the salient features for AER from
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Figure 2.9: A simplified depiction of a VAE. Similar to traditional auto-encoders,
the encoder and the decoder of VAEs are trained together to reproduce the input in
the output. However, unlike traditional auto-encoders, VAEs add a regularisation
term to ensure the latent representation follows a probabilistic distribution, which
in most works is a Gaussian distribution.

speech in an end-to-end manner. Using auto-encoders as an auxiliary task to re-
construct intermediate acoustic representations while training an end-to-end AER
model has also proven effective in learning good acoustic representations for AER
(Parthasarathy and Busso, 2018; Deng et al., 2017).

The semi-supervised learning methods mentioned above were aimed at mod-
elling the data distributions more efficiently than traditional auto-encoders by also
shaping the representations through supervised training. However, semi-supervised
learning still requires task-specific annotations. On the other hand, in recent years,
another type of auto-encoder has been introduced, called Variational Auto-Encoder
(VAE), which is similar to traditional auto-encoders in that it does not require la-
belled data, but can model the data distribution better than traditional auto-encoders.
In the next paragraph, VAEs and its application for AER from acoustic signals are
explained in more detail.
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Figure 2.10: A simplified depiction of an AAE. Similar to traditional auto-encoders,
the encoder and the decoder of AAEs are trained together to reproduce the input in
the output. However, unlike traditional auto-encoders, AAEs also train a discrimi-
nator model in an extra step, for each time the auto-encoder is updated to distinguish
the latent representation from another sample randomly generated from an arbitrary
distribution.

Variational and Adversarial Auto-Encoders

VAEs aim to enrich the dense representations achieved by traditional auto-encoders
by also encoding the distribution of the unlabelled data used to train such models.
More specifically, compared to traditional auto-encoders, VAEs also add a regulari-
sation term in the loss function to ensure that the representations are in an arbitrary
probabilistic distribution (see Figure 2.9). The arbitrary distribution is usually con-
sidered to be Gaussian, as it has been shown to be useful for unsupervised and semi-
supervised training strategies (Kingma et al., 2014; Dilokthanakul et al., 2016). The
Gaussian distribution objective in VAEs allows different inputs to be represented by
their variations in the latent representation space, and this is why this approach is
known as VAE. An example of the application of VAEs for AER is the work of
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Latif et al. (2018), where VAEs were used with recurrent layers to learn deep rep-
resentations, which at the time were able to achieve state-of-the-art results for both
categorical and dimensional AER.

The ability of VAEs to model the data distribution in the dense latent space also
allows them to capture the statistical uncertainty among input samples. This ability
of VAEs is used not only to have a good dense representation provided by the en-
coder, but also allows VAEs to generate new data samples with the decoder. Thus,
VAEs are also can also be used as generative models. Another famous generative
model is Generative Adversarial Networks (GAN), which consists of a discrim-
inative and a generative model instead of an encoder and a decoder. GANs are
trained in such a way that the discriminative model tries to distinguish the gen-
erated samples from real data. And by training the generative and discriminative
models alternately for each training epoch, GANs learn to generate more realistic
samples that resemble the training data. In affective computing, GANs have also
been used to generate data for underrepresented emotional expressions, resulting in
state-of-the-art AER performance (Chatziagapi et al., 2019).

By analysing GANs, the researchers realised that the adversary process, which
focuses on discriminating between different patterns, can also provide good pattern
encoding. This has led to the introduction of Adversarial Auto-Encoder (AAE),
which add the adversary process of GANs to traditional auto-encoders. More specif-
ically, AAEs use the same structure as traditional auto-encoders, with an additional
training step alternately at each training epoch, where a discriminator model is also
trained to distinguish between the real dense representation and a false representa-
tion sample, generated randomly from an arbitrary distribution (see Figure 2.10).
For AER from acoustic signals, it means that the discriminatory process of AAEs
enables them to obtain low-dimensional representations of acoustic signals, which
can have the same discriminative power across different emotion categories as tradi-
tional higher-dimensional representation spaces (Sahu et al., 2018). In other words,
the adversarial process in AAEs can capture the underlying patterns associated with
different emotional expressions in a lower-dimensional space compared to tradi-
tional auto-encoders, i.e. a more abstract acoustic representation.

Both VAEs and AAEs provide better representation learning approaches than
traditional auto-encoders because they also model the data distribution. As men-
tioned above, the modelling of the data distribution is achieved in VAEs by adding
a regularisation term to the loss function of traditional auto-encoders, and in AAEs
by an extra step of training for another discriminator model. These forms of reg-
ularisation are usually referred to as “explicit” regularisation, because they impose
explicit constraints on the training, as opposed to the training constraint being an
implicit result of the properties of an ANN architecture (i.e. implicit regularisation)
(Hernández-García and König, 2018). Although additional explicit regularisation
terms in the loss function can provide effective representations, it also adds com-
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plexity to the training of the model. For example, VAEs require a further step to
find optimal coefficients for different terms used in the loss function, and AAEs
often have difficulty converging as a result of using multiple loss functions to alter-
natively train the same model1 Salimans et al. (2016). On the other hand, the recent
advent of Self-Supervised Learning (SSL) methods allows the data structure to be
modelled through one loss function with no additional regularisation term. This
is achieved by SSL methods predicting adjacent input samples, rather than recon-
structing the input signal, which is what traditional auto-encoders, VAEs and AAEs
do 2. Moreover, the representations in SSL are not taken from a prior distribution,
similar to VAEs. This fact, combined with the ability of SSLs to model the data
structure in an unsupervised way, has made SSLs the mainstream representation
learning technique in recent years. In the following, SSLs are explained in more
detail.

Self-Supervised Learning

SSL is a type of unsupervised learning where DNN models are trained on a pre-
text task, such as predicting or recognising masked elements in the data, typically
used to provide effective contextual representations of the data. Various SSL meth-
ods have been introduced in the past years that rely on various models, training
strategies and inputs to learn the representation of data (see Table 2.1). One of the
popular SSL training strategies for acoustic signals is Contrastive Predictive Cod-
ing (CPC), which distinguishes the representation of a masked frame of an acous-
tic signal from the representation of another frame, usually randomly chosen from
other audio frames in the same acoustic signal (Oord et al., 2018). For example,
Wav2Vec2 architecture (Baevski et al., 2020) is a recently introduced DNN based
on attention mechanism that can be trained for large amounts of data and uses CPC
as its training loss (see Figure 2.11). For AER from acoustic signals, Evain et al.
(2021a) have shown that Wav2Vec2 is capable of learning representations that can
later be used with simple feed-forward layers to predict different emotion dimen-
sions, which was not possible with traditional features such as MFBs. This shows
that Wav2Vec2 can provide us with higher-level representations of acoustic signals
than signal-level features like MFBs (Alisamir and Ringeval, 2021).

1The problem of adversarial training of a generator and a discriminator model is usually dis-
cussed in the context of game theory. Thus, the problem is seen as finding a "Nash equilibrium"
where each "player" would learn the equilibrium strategy. However, as ANN weights are randomly
initialised and often solve a non-convex task, training often fails to converge in many cases.

2Here, SSL methods are compared to VAEs and AAEs. It should be noted, however, that SSL is
mostly considered a training strategy for DNNs, while VAEs and AAEs are specific architectures of
DNNs and a specific way of training that comes with that structure. Therefore, SSL and the various
auto-encoders presented here are not exact substitutes for each other, and can even be combined
(Kim et al., 2020b; Gatopoulos and Tomczak, 2021)
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Table 2.1: Some of the most cited papers on training self-supervised representations
of speech signals from 2018 to 2020.

Reference Task and Approach Loss Model Input

Oord et al. (2018)
Introducing Contrastive Predictive
Coding (CPC)

InfoNCE CNN-GRU Raw

Chung and Glass
(2018)

Speech2Vec: CBoW and Skip-gram MSE LSTM MFCC

Tagliasacchi et al.
(2019)

CBoW and Skip-gram, temporal gap MSE CNN MFCC

Schneider et al.
(2019)

wav2vec: Binary classification task
for identifying the true log-mel filter-
bank features using CPC loss

InfoNCE CNN MFB

Chung et al.
(2019)

Introducing a novel autoregressive
approach called APC, which pre-
dicts future log-mel spectrograms and
show better performance compared to
CPC

L1 LSTM MFB

Baevski et al.
(2019)

vq-wav2vec: Learning discrete repre-
sentations of speech using Gumbel-
Softmax and K-means. This allows
for using NLP algorithms like BERT
on top of the discrete representations.

Contrastive-
MSE,
Gumbel-
Softmax

CNN MFB

Quitry et al.
(2019)

Prediction of the phase of a STFT of
an audio signal from its magnitude

Cosine loss CNN STFT

Jiang et al. (2019)
Reconstructing masked input L1 Transformer MFB

Pascual et al.
(2019)

PASE: Jointly solving different self-
supervised tasks

L1, MSE,
binary
cross-
entropy

SincNet, CNN MFB, Raw,
Prosody,
LPS, LIM,
GIM, SPC

Song et al. (2020)
Speech-xlnet: Predicting next frame Huber loss Transformer MFB

Chung and Glass
(2020)

A novel model using APC approach
and showing better performance on
ASR, speech translation and speaker
identification compared to CPC and
PASE

L1 GRU-Transformer MFB

Ling et al. (2020)
DeCoAR: APC L1 B-LSTM MFB

Baevski et al.
(2020)

wav2vec 2.0: Masking the quantised
latent raw speech input using both a
loss consisting of contrastive and di-
versity losses

Contrastive
and diver-
sity

CNN-Transformer Raw

Chung et al.
(2020)

Prediction of vector quantised log-
mel spectrograms (VQAPC), show-
ing better performance than APC
without quantisation for phoneme
speaker classification

Gumbel-
Softmax

GRU MFB

Wang et al. (2020)
MPC L1 B-LSTM MFB

Liu et al. (2020)
Mockingjay: Reconstructing masked
frames

L1 Transformer MFB

As mentioned above, the CPC loss function used in models such as Wav2Vec2
is computed on the latent representations of audio frames, not on the audio frames
themselves. This is because acoustic signals are inherently continuous and therefore
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Figure 2.11: The Wav2vec2 architecture that can learn contextual acoustic repre-
sentations. This model uses Convolutional Neural Networks (CNNs) to predict the
latent representations, and then transformers, which are models consisting of multi-
head attention and feed-forward layers, to predict the masked representations. For
training, this model uses contrastive loss to train the model in a self-supervised
manner to predict the masked quantised latent acoustic representations based on the
context.

The figure is taken from Baevski et al. (2020)

cannot be used in a binary classification function such as CPC. This has led to the
introduction of Autoregressive Predictive Coding (APC), which solves a regression
task by minimising an L1 loss. A DNN model trained with APC can thus learn
to predict masked audio frames as they are, rather than discriminating correlates
of the latent representations of the signal (Chung et al., 2019). Self-supervised
representations based on APC have also shown state-of-the-art results for AER from
speech (Zhang et al., 2021), even outperforming representations trained with CPC
(Chung and Glass, 2020).

The deep acoustic representations discussed above have completely changed
machine learning paradigms in many domains, including AER, replacing traditional
feature extraction steps with the computation of pre-trained deep representations
(see Figure 2.12). Such paradigm shift has its origin in the text processing domain,
where deep textual representations have completely overtaken the state of the art.
Deep textual representations are discussed below.
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Figure 2.12: Common speech representations used for affective computing. Tra-
ditional features such as MFB and GeMAPS can compute the low-level descrip-
tions of the signal, then rudimentary statistical methods such as BoAW and FV can
be used to model the signal more contextually. Novel techniques all involve deep
learning methods to train different combinations of deep neural layers to compute
deep representations of the acoustic signals.

2.2.4 Deep textual representations
Any given text is first tokenised and numerically encoded in order to be represented
for machines. Earlier in this chapter, “Traditional textual representations” were
discussed in Section 2.2.1. It was discussed that the simplest approaches assign in-
dependent one-hot vectors to each token (e.g. word), which would not encode any
semantic or syntactic information. Statistical approaches such as TF-IDF were then
introduced, which could encode the statistical saliency of each token in different
documents. However, TF-IDF is a rather rudimentary statistical measure and does
not take any semantics into account. Later on, relational mapping methods such
as LSA were introduced, which can encode semantic similarities between different
words but suffer from a “syntactic blindness” problem (Suleman and Korkontzelos,
2021). On the other hand, the advent of data-driven DNNs has led to the modelling
of a language using such techniques, and mostly abandoning the aforementioned
traditional techniques. In what follows, a brief description of such methods is pro-
vided to the reader.

In order to model the semantic similarity using the context in which the word
was placed, word embedding methods have been introduced. Word embedding can
embed the knowledge conveyed by different words into low dimensional vectors.
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Figure 2.13: The Continuous Bag-Of-Words (CBOW) and skip-gram model archi-
tectures used to learn word2vec embeddings. The CBOW model learns to predict
the representation of a word from the its neighbours. On the other hand, the skip-
gram model uses the representation of a word to predict its neighbours.

The figure is from Mikolov et al. (2013)

One of the most famous word embedding methods is word2vec (Mikolov et al.,
2013), where a DNN model is trained to produce deep representations of each
word. To produce such word representations, word2vec uses two different model
architectures: 1) Continuous Bag-Of-Words (CBOW), and 2) continuous skip-gram
(see Figure). In both cases, a window slides over the entire corpus, taking a set
of adjacent words as input. In CBOW, the model is trained to predict the repre-
sentation of a word from the representations of its neighbours. skip-gram follows
the opposite strategy to CBOW, where the model learns to predict the representa-
tions of a word’s neighbours from the representation of that word. word2vec has
shown good performance for many text-based tasks, such as document categori-
sation (Lilleberg et al., 2015) and predicting arousal and valence dimensions of
emotion (Povolny et al., 2016). However, it has been shown that word2vec does not
always outperform traditional TF-IDF measures (Cahyani and Patasik, 2021). One
of the shortcomings of word2vec is that it is trained on the “local context” of each
word and does not have a “global” description of the occurrences of each word,
similar to TF-IDF or LSA. This has led to the introduction of Global Vectors for
Word Representation (GloVe), an unsupervised method for learning global word-
word co-occurrence matrices (Pennington et al., 2014). GloVe has also been used
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Figure 2.14: The overview of the BERT model, which uses transformers to predict
masked tokens. Each embedding (“E”) is computed as the sum of the token em-
beddings, its positional embedding within a sentence, and its sentence positional
embedding across a set of sentences. Also, “[SEP]” is used as a separator token,
and “[CLS]” is a special token intended for sentence level classification tasks.

The figure is from Devlin et al. (2019)

for AER from text. For example, Krishna and Patil (2020) and Xu et al. (2019)
trained LSTM and attention-based DNNs on Glove word embeddings and achieved
state-of-the-art emotion recognition from text.

Word embedding methods such as word2vec and GloVe are considered static
representations of text because they represent each word with a fixed vector, re-
gardless of the context (e.g. sentence or paragraph) in which the word occurs. This
is a problem because a word can have different meanings depending on its context.
For example, the word “right” in the phrase “this is right” means “correct”, but the
same word in “keep right” means the right side (as opposed to the left). In order to
represent each word or token contextually, several techniques have been proposed
in recent years. For example, Embeddings from Language Model (ELMo) is an
architecture that uses bidirectional LSTMs to learn the language model to account
for the syntax, semantics, and also the variation of each word in different contexts
(Peters et al., 2018).

The advent of attention-based architectures, such as transformers (Vaswani
et al., 2017b), which are models consisting of multi-head attention and feed-forward
layers, has further allowed the training of more accurate and complex language
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models that can better capture the context and thus have a better "understanding"
of each input sentence as a whole. For example, Bidirectional Encoder Representa-
tions from Transformers (BERT) (Devlin et al., 2019) uses transformers to further
improve the representation of a word by taking into account its context more effec-
tively (see Figure 2.14). It has been shown that using BERT’s representations can
achieve state-of-the-art results in several Natural Language Processing (NLP) tasks
(Devlin et al., 2019) as well as in sentiment analysis (Sun et al., 2019) and AER
(Yang et al., 2019). The good performance of BERT is mainly attributed to the
use of the attention mechanism and training the model with huge amounts of data
using SSL (see “Self-Supervised Learning” in Section 2.2.3). Later, a robustly opti-
mised BERT pre-training approach (RoBERTa) was introduced, which, by training
on more textual data and dynamically masking different sentences during training
(BERT only does the masking once in pre-processing), proved to be more robust
and outperformed traditional BERT pre-training for several downstream tasks, in-
cluding AER (Liu et al., 2019; Siriwardhana et al., 2020).

So far, this section has explored the superior performance of deep representa-
tions pre-trained with SSL techniques for both acoustic and textual data for AER.
On the other hand, we know that emotion can be conveyed by both verbal and
non-verbal information (see “Joint Representations of Acoustic Signals and Text”
in section 1.1.2). This has recently led to a new line of research investigating joint
acoustic-textual representations for AER. In the following, current techniques for
producing such representations are explored in more details.

2.2.5 Joint representations of acoustics and text
In recent years, many researchers have investigated joint acoustic-textual represen-
tations to improve the state of the art in AER. However, the joint learning of acoustic
and textual representations is not straightforward because text and acoustic signals
are inherently different. For example, textual representations are computed on the
basis of tokens (i.e. subunits of text), whereas acoustic signals are continuous in
time and are usually first broken down into stationary parts (typically around 25 ms).
This rather technical difference means that the length of textual representations and
acoustic signals are not the same, making it difficult to fuse acoustic and textual
information at the signal level.

The state-of-the-art solution to this problem is to align representations of an
acoustic signal and its corresponding transcription in a shared latent space. For ex-
ample, Denisov and Vu (2020) first uses two separate ANN models to compute the
latent space of an acoustic representation and its transcription separately. A loss
function is then defined to reduce the distance between the textual and acoustic rep-
resentations. In this way, the latent spaces of the acoustic and textual representations
computed by the ANN models learn to be close to each other. Another example is
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the work of Huang and Epps (2017), where the LLDs of acoustic signals are trained
to represent the probabilities of uttered phonemes. They show that this idea can
introduce “phonetic awareness” into acoustic representations, leading to a signifi-
cant improvement in the performance of continuous dimensional emotion prediction
compared to just using LLDs. This shows that even a phonetic level of knowledge
about acoustic signals can help us to obtain verbal-aware representations, which in
turn increase the accuracy of AER1.

Different lengths of the acoustic signals and text are not the only challenge asso-
ciated with making joint acoustic-textual representations. Another challenge is that
textual tokens are inherently discrete both in time and value, while acoustic signals
are inherently continuous in both aspects. The discreteness of text in particular im-
plies that textual representations of a word is always unique, whereas acoustic rep-
resentations of an uttered word can be different as acoustic signals are also affected
by speakers, microphones and environments (Chung and Glass, 2018). Moreover,
representing acoustic signals in terms of their corresponding verbal message would
remove the non-verbal information needed for AER. This has led to different meth-
ods of predicting a joint representation of acoustic signals and their corresponding
transcriptions, instead of aligning them to each other.

The joint acoustic-textual representations are usually achieved by concatenating
the latent space of such representations. For example, in Kim et al. (2020a), acous-
tic and textual latent representations are first trained using AAEs and then concate-
nated to each other to predict different categories of emotion. In another work,
self-supervised representations of acoustic signals and text are first concatenated to
each other and then a fully connected layer is used to map the joint representation to
different emotion categories, yielding better results than using each modality alone
(Siriwardhana et al., 2020; Macary et al., 2021).

The joint acoustic-textual deep representations have been shown to be able to
improve the performance of AER from acoustic signals alone. In practice, how-
ever, we do not always have access to textual transcriptions to compute the joint
acoustic-textual deep representations. On the other hand, recent advances in ASR
technologies have shown capable of producing reliable transcriptions in most cir-
cumstances (Kim et al., 2019). This has led to multiple recent studies on joint
acoustic-textual representations for AER, where the textual transcriptions are ac-
quired by an ASR (Heusser et al., 2019; Yoon et al., 2019; Wu et al., 2021; Peng
et al., 2021). Such studies show that although the use of ASR is not as powerful as
the use of human transcriptions when training AER on joint acoustic-textual repre-
sentations, it still outperforms the use of acoustic representations alone. Moreover,

1The “phonetic-aware” acoustic representations also divide the acoustic space based on
phonemes, as opposed to dividing the time domain into fixed segments, which is traditionally done
to ensure stationarity. In a later study, this type of partitioning based on phonemes was shown to be
a stronger contributor to the good results of predicting the Valence dimension of emotion than using
the phonetic information (Huang and Epps, 2020)
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these studies mainly focus on the use of acted emotional expressions and mostly
pre-transcribed scenarios. Therefore, the effect of joint acoustic-textual represen-
tations with ASR transcriptions for emotional expressions in the wild has not yet
been explored. Another recently emerging area that still needs to be explored is the
integration of speaker information into joint acoustic-textual representations, which
is discussed below.

2.2.6 Integration of speaker information
As also mentioned earlier, speaker information can be used in various ways to fur-
ther improve the accuracy of AER models (see “Personalised representations” in
section 1.1.2). For example, Rudovic et al. (2018) uses behavioural assessment
scores of children with autism to better predict their emotional state. This is done
by assigning a personalised classifier to each individual’s data, while sharing a main
model for all data. However, this approach is not popular in DNNs because each
personal classifier would have fewer training examples, and the similarities be-
tween different individuals are ignored. Rather than assigning personal classifiers to
achieve a more generalised AER model across different speakers, Peri et al. (2021)
attempt to disentangle latent emotion and speaker representations. This is achieved
by using a Multi-Task Learning (MTL) paradigm (see section 1.1.1), where one task
is assigned to AER and the other to speaker recognition. The model is then trained
using an adversarial training strategy, where an auxiliary loss function is set to dis-
courage similarities between the emotion and speaker latent representations. How-
ever, this approach may also not be the best solution for “speaker-awareness”, as
it inherently considers emotional and speaker representations independent of each
other, which does not fit well with the fact that emotional expressions depend on
psychological idiosyncrasies (see section 2.1.1).

Given the shortcomings of the aforementioned works, the main line of research
in this area focuses on representing the speaker by a “speaker style” vector, where
it can be used to make acoustic representations “speaker-aware”. For example, the
latent speaker representations computed from pre-trained speaker recognition mod-
els have been used for AER showing a better performance than traditional LLD’s
(Assunção et al., 2020; Pappagari et al., 2020). Joint training of a model for both
speaker recognition and AER was also investigated and outperformed using a pre-
trained speaker recognition model to compute speaker representations (Moine et al.,
2021). A more recent study shows that state-of-the-art AER can further be im-
proved by exploiting speaker information into acoustic representations, which are
computed by further training an ASR model to categorise emotions (Ta et al., 2022).
Their work shows that AER from acoustic signals is effected by both speaker and
verbal information. Although the use of speaker representations and text repre-
sentations separately has been shown to improve the performance of AER from
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acoustic signals, the investigation of a joint representation of acoustic signals, text
and speakers seems to be missing from the state of the art.

Moreover, state-of-the-art Automatic Emotion Recognition (AER) techniques
use the acoustic or textual representations with supervised data-driven machine
learning methods to predict emotion annotations of a given dataset. However, each
dataset represents a limited range of the vast possibilities of all the emotional ex-
pressions that can be observed in the wild. Therefore, it is important to use multiple
datasets to train AER models in order to generalise across a wide range of emo-
tional expressions. However, as numerical representations of emotion are defined
in different subjective ways from one dataset to another, it is challenging to consider
multiple datasets to train AER models. To address this challenge, state of the art
often exploits MTL in order to consider different classifiers for different annotation
schemes of each dataset, while sharing a main model across all used datasets (see
Section 1.1.1). This is discussed further below.

2.2.7 Multi-task learning across various emotion annotations
MTL refers to any machine learning paradigm in which we attempt to train a com-
mon model for multiple tasks, in order to exploit the related information between
different tasks, and thus improve the generalisation of the common model across all
the tasks (Caruana, 1998). This is further elaborated below with concrete examples
of how MTL has been used for AER.

MTL for AER from acoustic signals initially began as a means of exploiting
different emotion annotations for a given dataset in order to improve overall recog-
nition performance. For example, using arousal and valence dimensions as an aux-
iliary task to predict emotion labels has shown improvements compared to using
only emotion categories as targets (Xia and Liu, 2015; Kim et al., 2017). Moreover,
Akhtar et al. (2019) uses a GRU-based system with MTL to predict multiple emo-
tion categories in addition to a sentiment dimension, by taking advantage of other
modalities such as video and text in addition to audio, achieving state-of-the-art
performance at the time. However, these works only focused on MTL of different
emotion annotations for the same dataset. As there are usually several domain mis-
matches between different datasets, several studies have evaluated the performance
of MTL for cross-corpus emotion prediction, where the model is trained on one cor-
pus and tested on another. In particular, (Parthasarathy and Busso, 2017) focused on
comparing MTL on arousal, valence, and dominance emotion dimensions in cross-
corpus settings with Single-Task Learning (STL), where the target is only one task,
and showed that MTL can provide models with better generalisability across differ-
ent datasets when there is a correlation between the emotion dimensions across the
datasets.

Zhang et al. (2017b) was the first work that investigated training on multiple
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datasets at the same time in an MTL framework for AER from acoustic signals.
They used different set of emotion labels from nine different corpora, as they were
originally defined, and significantly improved AER performance over STL. They
deliberately did not map different emotion categories from different corpora into
the same subspace, as this has been shown to result in a loss of information, even
when the unified emotions refer to similar affective state of mind (da Silva et al.,
2020). In a later work, Zhang et al. (2022), other paralinguistic tasks were con-
sidered in addition to emotion, including 18 different classification and regression
tasks. A task relatedness matrix was also introduced in order for the model to ben-
efit more efficiently from related tasks. They also showed that their MTL approach
significantly improved performance over several different tasks compared to STL.
However, the focus of their study was not specific to AER from acoustic signals or
to find a representation of emotion that generalises well across different annotation
schemes, but rather to exploit a holistic view of different language-related tasks.
Furthermore, a recent study on six different corpora showed that multi-corpus train-
ing can improve the performance of cross-corpus AER, as this approach is better
suited to deal with incongruent conditions (Braunschweiler et al., 2021).

The mentioned works above mostly focused on using one language and specifi-
cally English, because using multiple corpora with different languages and cultures
to train a model has shown to reduce AER performance, as emotions may be ex-
pressed differently depending on the language and culture (Ringeval et al., 2019).
For example, the work of Lee (2019) has investigated multilingual MTL on gender,
emotion and language tasks for two different Japanese and English datasets, and
reported that multilingual models did not perform better than monolingual mod-
els. Furthermore, some emotion dimensions, such as valence, are more sensitive to
language (Neumann et al., 2018), especially when only the audio modality is used
(Ringeval et al., 2019). Despite the reported drop in performance in some studies, it
has been shown in many others that using multiple corpora with different languages
can still not only achieve reasonable performance, but can also be beneficial in deal-
ing with rare events that occur frequently in real life Zhang et al. (2017b); Neumann
et al. (2018); Zhang et al. (2022); Ringeval et al. (2019). Thus, we can benefit from
using multiple emotion corpora, even if they contain emotional expressions from
different languages.

The shared model in the MTL paradigm is hypothesised to learn a latent emo-
tion representation that is more general than the numerical representation of each
dataset’s emotion annotation. The idea of a generic latent emotion representation,
which is also called “emotion embedding” is further investigated in Zhu and Sato
(2020), where an emotion encoder based on convolutional and recurrent layers are
used to compute the emotion embedding. Two corpus-dependent classifiers are
then used to map the emotion embeddings to corpus-specific emotion labels. They
further show that by using an adversarial process to remove corpus-specific non-
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emotional information, they can obtain an emotion embedding that contains cross-
corpus emotional information. However, their results were only obtained on two
acted datasets that had almost exactly the same set of emotion labels. Also in other
similar works, the use of MTL for AER has mainly focused on acoustic signals
and acted emotional expressions, and further research on both acoustic signals and
text in the context of MTL for both acted and in-the-wild emotional expressions is
lacking in the state of the art. Furthermore, the use of MTL with deep pre-trained
acoustic and textual representations could also be considered in order to advance
the state of the art in this area, due to the superior performance of deep acoustic and
textual representations mentioned in Section 2.2.3 and Section 2.2.4 respectively.

So far this section has introduced different representations and AER models
for predicting emotions. In the following, the different methods are quantitatively
compared to each other, in a case study in order to better choose the experimental
methodology of this thesis.

2.2.8 Performance comparison of methods
There are several studies that have attempted to quantitatively compare different
methods for AER. For example, Wani et al. (2021) analyses different approaches
and concludes that although deep learning methods represent a turning point in
AER research, current algorithms are still not robust enough for use in today’s
Human-Computer Interaction (HCI). In another paper, Atmaja et al. (2022) exam-
ines different techniques for the joint acoustic-textual representation, showing no
significant difference between different levels of merging information between the
two modalities, as well as the effectiveness of BERT-based models for AER, iden-
tifying the room for research in bimodal multi-corpus AER, which is studied in this
thesis (see Section 5.2). In another paper, Wang et al. (2022) systematically reviews
multi-modal AER with a focus on physiological signals, then provides a taxon-
omy of current trends, and concludes that more datasets, as well as more research
on deep pre-trained representation methods, are needed in affective computing. Al-
though deep representations have shown the best performance for multimodal AER,
a comparison between different methods is difficult by studying recent works. This
is because different papers use different methods on different datasets, so differ-
ent methods cannot be compared in a fair way (Zhao et al., 2021). In a similar
study, Sharma and Dhall (2021) compares different labelled datasets, showing that
the choice of data can significantly affect the performance of AER models, and
thus comparing different techniques across different datasets may not be fair. In
our recent work (Alisamir and Ringeval, 2021), we have also tried to quantitatively
compare different acoustic representations and their fusion with linguistic informa-
tion by analysing different results on recent challenges over several years. However,
we could not draw any firm conclusions based on the results, as the challenges have
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Figure 2.15: A quantitative comparison of the methods used for the RECOLA
dataset, over the years 2016 to 2022. The results here are the average of the arousal
and valence dimensions of emotion, based on the gold standards of the test sets.

different tasks, metrics, models and datasets.
To avoid the aforementioned problems, here we conduct a study on the results

of the RECOLA dataset (Ringeval et al., 2013), which is a dataset for predicting
arousal and valence dimensions of emotion (see Table 3.1 for a statistical summary
of the various datasets used here). RECOLA contains 27 spontaneous and natu-
ralistic recordings from french-speaking subjects that each are 5 minutes long and
annotated with a sampling rate of 25Hz. This dataset divides the 27 subjects into 3
equal groups of training, development and test sets. There are six annotations done
by french speakers. Also, a gold-standard rating as a consensus emotion was cal-
culated from the annotations, which is not publicly available for the test set. Thus,
researchers had to submit their predictions of the test set, which are all computed
using the same metric of Concordance Correlation Coefficient (CCC) (see "Con-
cordance Correlation Coefficient" in Section 3.4). Moreover, this dataset has been
worked on for several years by different researchers across the world using different
models and features, in order to obtain a comprehensive view of the trends in AER.
The unified evaluation for the test set, together with the existence of several works
over the past years, means that RECOLA has the potential for a statistical study
over several years to find the impact of different representations and models on a
unified metric and dataset. Therefore, this case study is carried out on the RECOLA
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Figure 2.16: A performance comparison of the average results for each acoustic
representation across different studies using different models to predict the arousal
and valence dimensions of the RECOLA dataset, between the years 2016 and 2022.

dataset and the results are presented in the following paragraph. However, it should
be noted that although the focus here is on representations and models, other details
such as model parameters or training strategy may also affect the results. It should
also be noted that since this is a case study on the RECOLA dataset, the effec-
tiveness of the different methods cannot necessarily be extended to other datasets.
Nevertheless, the results of this study can still be used as a starting point to define
the experimental methodology for this thesis.

Figure 2.15, shows a summary of the different methods used for RECOLA, over
the years 2016 to 2022. As can be seen, all methods involve machine learning
techniques, in particular ANNs and SVMs. Moreover, the best results are obtained
with Wav2vec2 representations, followed by a GRU (Evain et al., 2021a,a). Sim-
ilar state-of-the-art results have been achieved previously, notably for the valence
dimension by using MFBs with LSTMs (AlBadawy and Kim, 2018), and more re-
cently for the arousal dimension by using raw input with CNN-LSTM modelling, in
an end-to-end manner (Prabhu et al., 2022). As Wav2vec2 representations also con-
tain convolutional and attention layers, we can see that all the best results involve
convolutional layers, either learned through end-to-end or transfer learning, to effec-
tively model the acoustic signals at the signal level. Similarly, recurrent layers used
to model context and emotion are responsible for the best reported results. To fur-
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Figure 2.17: A performance comparison of the average results for each machine
learning model across different studies using different acoustic representations to
predict the arousal and valence dimensions of the RECOLA dataset, between the
years 2016 and 2022.

ther compare the results, they are statistically summarised across different acoustic
representations and models in Figure 2.16 and Figure 2.17 respectively. The sum-
mary of features shows that traditional MFB features are still able to achieve state-
of-the-art results for both arousal and valence dimensions of emotion for RECOLA
dataset, however deep representations seem to challenge the status quo on different
datasets as seen in other work (see section 2.2.3). Figure 2.17 further shows the
effectiveness of convolutional layers and recurrent units, especially GRU. However,
it should be noted that the convolutional layers, which perform best in the figure,
are often used for early stages of modelling the acoustic signal and are then accom-
panied by recurrent layers in most studies. And regarding the recurrent layers, the
better performance of GRUs compared to LSTMs may be due to the fact that GRUs
have a smaller number of parameters, which can be an advantage when training a
relatively small amount of annotated data, as is the case for the RECOLA dataset
(see “Training neural networks” in section 2.2.2). Other studies have also shown
that GRUs can be trained faster than LSTMs when dealing with small amounts of
labelled data, due to the smaller number of parameters, and can achieve compara-
ble or even better results than LSTMs (Khandelwal et al., 2016; Rana, 2016; Yang
et al., 2020). Since most of the experiments in this thesis are performed on rather
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small annotated datasets (see Table 3.1), GRU models are the preferred choice. Fur-
ther details of the experimental methodology and resources used in this thesis are
explained in Chapter 3.
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2.3 Summary
AER from acoustic signals and text has been an area of study for the past decades.
Although emotion has no standard definition in psychology, AER usually targets
either categorical view of emotion such as –fear, anger, happiness, sadness, dis-
gust, and surprise– based on the work of Ekman (1992), or arousal and valence
dimensions based on Russell (1980). In order to predict categorical or dimensional
emotion annotations, traditional AER methods involve several stages of data trans-
formation to model the acoustic signal or text at different levels. These stages are
1) low-level feature extraction, which involves signal-level modelling techniques
like MFBs 2) statistical approaches to achieve more contextual modelling, which
involves methods such as BoAW for acoustic signals and TF-IDF for text, and 3)
mapping the statistical features onto numerical representations of an emotion an-
notation by using different statistical and later machine learning methods such as
SVMs. However, the advent of DNNs has seriously challenged this paradigm, and
made traditional low-level feature extraction methods and statistical modelling tech-
niques less popular in recent years. This is largely due to the ability of DNNs to
approximate complex functions using only data (data-driven), as opposed to tradi-
tional techniques which are mostly “knowledge-driven”. Moreover, as deep neural
layers can be cascaded together, they can be trained to effectively replace all of the
aforementioned data transformation stages, blurring the boundaries between each
stage. Furthermore, the use of DNNs pre-trained on large amounts of unlabelled
data, such as Wav2vec2 model for acoustic signals and BERT for text, has domi-
nated best performances in many domains, including AER. Such pre-trained models
are particularly effective for AER because they are trained in an unsupervised man-
ner and are not formed by subjective and often noisy emotion annotations. More-
over, the use of joint acoustic-textual representations, where the text can be either
human transcriptions or produced by an ASR, has been shown to be more effective
than using either acoustic or textual modality alone. Recent studies also suggest
that this improvement can be further enhanced by exploiting speaker information.
However, no study could be found on the use of deep pre-trained acoustic-textual
representations augmented with speaker information. The use of acoustic-textual
representations for emotional expressions in the wild also seems to be a gap in the
state of the art.



Chapter 3

Experimental methodology and
resources

Figure 3.1: Overview of experimental methodology and resources. The datasets
and representations are presented in Section 3.1 and Section 3.2 respectively. Also,
the training strategy and optimisation of the different models used in this thesis
are discussed in Section 3.3. The loss functions and metrics used to evaluate the
model’s predictions for training and testing the model are then described in Section
3.4.

At the time of writing this thesis, the best state-of-the-art performances for AER
from acoustic signals and text, as well as other related domains, is attributed to the
use of large DNN models, which are pre-trained on large amounts of data to extract
high-level abstractions from the data (see Chapter 2). In addition, fusing acoustic
and textual representations for AER to take advantage of both verbal and non-verbal
communication has been shown to be more effective than using the representation of
each modality alone (see Section 2.2.5). Recent studies have also shown that the use
of speaker information can further improve the performance of AER from acoustic
signals (see Section 2.2.6). Therefore, in Chapter 4 of this thesis, one of the main
goals is to investigate the use of joint acoustic-textual representations for acted and
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in-the-wild emotional expressions, and how joint acoustic-textual representations
can be further fused with speaker information (see Section 1.2.1).

Most AER research today uses the aforementioned acoustic and textual repre-
sentations to train models for different datasets separately, resulting in a trained
model that is specific to its trained data distribution. And because each dataset cov-
ers a specific range of emotional expressions, the trained model for one dataset often
cannot generalise to unseen emotional expressions. However, training a model on
multiple datasets for AER to increase the generalisation ability of the trained model
is challenging, because each dataset uses a specific set of emotional annotations
(see Section 1.1.1). To generalise beyond the specific emotion schemes used for
each dataset, in Chapter 5, this thesis investigates using MTL and joint acoustic-
textual representations (see Section 1.2.2).

To achieve the aforementioned goals, the methodology used in the thesis in-
volves training different ANN models for multiple datasets (see Section 3.1) and
with deep representations of acoustic signals and text (see Section 3.1). Then, the
optimisation method to train AER models based on the deep representations and
different datasets is explained in Section 3.3, followed by the loss functions and
metrics used to train and evaluate different models used in different experiments
in Section 3.4. The details of the technical implementation of the experiments are
also given in Section 3.5. Finally, a brief summary of this chapter is given in Sec-
tion 3.6. Also, in Figure 3.1 the overview of the experimental methodology and
resources used in this thesis is depicted.

3.1 Datasets
Different datasets typically use three types of contexts, in which an emotional ex-
pression is observed and collected (Kossaifi et al., 2021). These are 1) Acted emo-
tional expressions, where a person, when prompted, attempts to utter a phrase that
conveys a particular emotion, 2) Induced expressions, where different people’s ex-
pressions are responses to a controlled setting, which is designed to elicit a par-
ticular emotion, and 3) Natural expressions, where different people express their
emotions in natural interactions with other people or a machine. When natural
expressions are captured from different speakers, microphones, and in different en-
vironments, they are usually referred to as emotional expressions in the wild.

One of the main goals of this thesis is to evaluate different deep pre-trained
representations over a wide range of acted and in-the-wild emotional expressions,
annotated with different annotation schemes (see section 1.2). Therefore, the list
of datasets used in this thesis vary in terms of emotional context, recording envi-
ronment, speakers and emotion annotations (see Table 3.1). In what follows, each
dataset is explained in more detail.



3.1. DATASETS 57

Table 3.1: Summary of the data used in this thesis. Note that only the size of the
annotated or labelled utterances are given as duration in the table below, and not the
entire available recording files. Also, the emotional annotations here represent the
annotations used in this thesis and do not represent all the annotations provided by
the dataset.

Dataset Language Condition Number of
utterances

Number of
speakers

Duration
(hh:mm:ss) Emotion annotation

AlloSat French In the wild,
Call-center 29,704 308 20:59:27

Dimensional:
Frustration-satisfaction

CMU-
MOSEI English

In the wild,
youtube
videos

23,259 1000 49:07:58
Categorical: Negative,
positive

CaFE French Acted, con-
trolled env. 936 12 01:09:16

Categorical: Anger, dis-
gust, fear, joy, neutral,
sadness, surprise

EmoDB German Acted, con-
trolled env. 535 10 00:24:47

Categorical: Anger, anx-
iety, boredom, disgust,
happiness, neutral, sad-
ness

GEMEP Pseudo-
french

Acted, con-
trolled env. 1080 10 00:43:20

Categorical: Anger, de-
spair, fear, fun, inter-
est, irritation, joy, plea-
sure, pride, relief, sad-
ness, worry

IEMOCAP English Acted, con-
trolled env. 5531 10 06:59:20

Categorical: Anger,
happiness (includ-
ing excited), neutral,
sadness

RAVDESS English Acted, con-
trolled env. 1440 24 01:28:48

Categorical: Anger,
calmness, disgust, fear,
happiness, neutral,
sadness, surprise

RECOLA French
Induced,
controlled
env.

1578 27 00:58:16
Dimensional: Arousal,
valence

3.1.1 AlloSat
AlloSat is a recent corpus containing 37 h of continuous real-life call center record-
ings in French (Macary et al., 2020). It contains 29,704 utterances (21 h) in total,
which is divided into 20,785 utterances (15 h) as training partition, 4272 utterances
(3 h) for development and 4643 utterances (3 h) as the test partition. In total, this
dataset contains 308 speakers, of whom 191 are women and 117 are men. The an-
notation of this dataset is done by three annotators to describe a time-continuous
dimension of emotion, which ranges from frustration to satisfaction, with a sam-
pling rate of 4 Hz. The annotations are made for each audio file, which consists of
several utterances of variable length, ranging from 32 seconds to 41 minutes. The
three annotations for each audio file are then averaged to define a gold-standard
frustration/satisfaction dimension.
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3.1.2 CMU-MOSEI
The CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI)
is currently the largest labelled dataset for AER (Zadeh et al., 2018). It contains 49
hours of emotion and sentiment annotation for 23,259 utterances, of which 18,542
utterances (38 h) are allocated for training, 1377 (3 h) for development and 3340
(8 h) for testing. The recordings are selected from 1000 online YouTube speakers,
balanced by gender, and across a range of topics purposefully selected to cover a
wide range of different emotional expressions. The annotations consist of Ekman’s
six basic emotion categories –anger, disgust, fear, happiness, sadness, surprise–
(and a neutral expression indicating the absence of the six basic emotions), as well
as a sentiment dimension. The sentiment dimension is annotated within the range
of r´3,`3s, representing a range from unpleasant to pleasant emotions, similar to
the valence dimension.

3.1.3 CaFE
The Canadian French Emotional (CaFE) dataset contains 12 actors (six male, and
six female) reading six different French phrases expressing the basic emotions of
anger, disgust, happiness, neutral, fear, surprise and sadness (Gournay et al., 2018).
The CaFE dataset is in total about an hour long, with 936 utterances. As there was
no standard partitioning allocated for this dataset, here to have both male and female
speakers in all partitions, actors 9 (male) and 10 (female) are used for development
(156 utterances, 12 minutes), the utterances of actors 11 (male) and 12 (female)
are used for testing (156 utterances, 13 minutes), and the rest for training (624
utterances, 44 minutes).

3.1.4 EmoDB
The Berlin Database of Emotional speech (EmoDB), is the smallest dataset used in
this thesis, by containing about half an hour of 535 acted German utterances (ten
actors, five male, and five female), expressing happy, angry, anxious, fearful, bored,
disgusted, sadness, and neutral emotions (Burkhardt et al., 2005). Due to the lack of
a standard partitioning and in order to be gender balanced, the utterances of actors
11 (male) and 13 (female) are used for development (116 utterances, 5 minutes), 15
(male) and 16 (female) for testing (127 utterances, 6 minutes), and the rest is used
as training set (292 utterances, 13 minutes).

3.1.5 GEMEP
The GEneva Multimodal Emotion Portrayals (GEMEP), is the only dataset used
in this thesis that is deliberately designed to contain no verbal information, using
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real French syllables in an order that does not produce meaningful words (Bänziger
et al., 2012). The GEMEP corpus is based on ten actors who have expressed 18 dif-
ferent emotional states. However, to follow other works like Bänziger et al. (2012);
Xu et al. (2018), only 12 core emotions of anger, despair, worry, irritation, fear,
sadness, amusement, joy, pride, interest, pleasure and relief are used here, spanning
1080 utterances, 43 minutes in duration. As there is no standard partitioning for
GEMEP, and to be gender balanced, actors 5 (male) and 9 (female) are used for
development (216 utterances, 9 minutes), 8 (male) and 10 (female) for testing (216
utterances, 8 minutes) and the rest for training (648 utterances, 26 minutes).

3.1.6 IEMOCAP
The Interactive Emotional Dyadic Motion Capture (IEMOCAP), is another acted
dataset, containing about 12 hours of scripted and improvised audiovisual record-
ings (Busso et al., 2008). It contains 5531 utterances (7h) of expressed emotions,
annotated by several people (varying between 5 and 7) for both categories and di-
mensions. To follow the state of the art (Siriwardhana et al., 2020), here also only
the expressions labelled as anger, happiness (+ excited), sadness and neutral are
included. The “excited” labelled utterances are also merged with the “happiness”
labelled utterances to better balance the number of examples across the different
categories. As no standard partitioning is found for this dataset, here, unless oth-
erwise stated, the first three sessions are used as training data (3259 utterances, 4
hours), the fourth session as development set (1031 utterances, 1 hour), and the fifth
session for testing (1241 utterances, 2 hours). As each session has one male and one
female speaker, this results in gender balanced training-development-test partitions.

3.1.7 RAVDESS
The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)
contains both singing and normal speech utterances (Livingstone and Russo, 2018).
The normal speech utterances is recorded by 24 professional actors who try to ex-
press different phrases while conveying eight categories of emotion: anger, calm,
disgust, fear, happiness, neutral, sadness and surprise. Only the 1440 normal speech
utterances (1h29m) are used here, with the utterances of actors 19, 20 and 21 (two
males, one female) used for development (180 utterances, 12 minutes), actors 22,
23 and 24 (two females, one male) for testing (180 utterances, 11 minutes) and the
rest (nine males, nine females) for training (1080 utterances, 1h6m).
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3.1.8 RECOLA
REmote COLlaborative and Affective interactions (RECOLA) is a well-known cor-
pus (Ringeval et al., 2013) to benchmark different models for predicting arousal and
valence emotion dimensions from acoustic signals (Valstar et al., 2016; Ringeval
et al., 2018a) (see section 2.2.8). It originally contains 46 audiovisual recordings of
spontaneous interactions between French-speaking subjects solving a collaborative
task under remote conditions. The recordings were made under noiseless conditions
with the same recording equipment. Moreover, six people provided the annotations
at a sampling rate of 25 Hz for both arousal and valence dimensions. The dataset
provides a gold-standard calculated as the consensus between the annotations (by
averaging them), which is used as the target for training AER models. Later, and
due to the AVEC challenge (Valstar et al., 2016), a smaller version of this dataset
with 27 subjects was popularised. Since most of the state-of-the-art results are
based on this subset of the dataset, most of the experiments in this thesis are also
performed on this shorter version of the dataset, in order to allow fair comparisons
of the results with the state of the art. On the shorter version with 27 files, 9 files of 5
minutes each are assigned as training, development and test sets. As the recordings
contain many silent parts without any utterances, we also provide statistics only for
the utterances in this dataset, in order to be coherent with other datasets described
above. There are 575 utterances (20 minutes) in the training set, 474 utterances in
the development set (17 minutes) and 529 utterances (20 minutes) in the test set.

3.2 Representations
The review of the state of the art in chapter 2 shows that the use of deep pre-trained
representations of acoustic signals and text has recently become popular. In par-
ticular, DNNs pre-trained on large amounts of unlabelled data in a self-supervised
manner, such as the Wav2vec2 model for acoustic signals and BERT-based mod-
els for text, have dominated the state of the art in many domains, including AER.
Therefore, Wav2vec2 and BERT architectures are used for the studies in this thesis.
Also, as the state of the art suggests that traditional MFB features are still capable
of achieving comparable performance to newer Wav2vec2 representations, they are
also used as a baseline in some of the experiments in this thesis. In addition, a
more recent “general-purpose” DNN model trained in an end-to-end fashion, called
Whisper, has also become popular (Radford et al., 2022). Whisper is trained on
various tasks such as language identification, phrase-level timestamps, multilingual
speech transcription, and to-English speech translation. As such tasks are relatively
close to AER from acoustic signals, this model is also used as a representation for
transfer learning. Moreover, Whisper has not yet been tested for AER from acoustic
signals, so a comparison of this model with Wav2vec2 and MFB representations can



3.2. REPRESENTATIONS 61

Table 3.2: Summary of different acoustic and textual representations used in this
thesis.

Representation Language Training data
MFB - Not trained with data (knowledge-driven design)
W2V2-En large English 960 hours of read speech
W2V2-Fr-1k base French 1k hours of read speech
W2V2-Fr-1k large French 1k hours of read speech
W2V2-Fr-2.7k base French 2.7k hours of read speech
W2V2-Fr-3k base French 3k hours of read, spontaneous, emotional speech
W2V2-Fr-3k large French 3k hours of read, spontaneous, emotional speech
W2V2-Fr-7k base French 7k hours of read, spontaneous, emotional speech
W2V2-Fr-7k large French 7k hours of read, spontaneous, emotional speech
W2V2-XLSR-53 large Multi-lingual 56k hours of read speech
W2V2-XLSR-56 large Multi-lingual 56k hours of read speech (fine-tuned for ASR)
Whisper Multi-lingual 680k hours of mixed speech (web-crawled)
RoBERTa English 160GB of text (books, stories, news, social media)

also be considered a novel contribution of this thesis. Furthermore, as BERT-based
models, in particular RoBERTa, have shown state-of-the-art performance for AER,
they are used as textual representations in this thesis. The MFB, Wav2vec2, Whis-
per, and RoBERTa models are described in more details below, and a summary of
them is provided in Table 3.2.

3.2.1 Mel-scale filter bank
As one of the oldest traditional acoustic feature extraction techniques, MFBs have
been used for the last decades and are still able to achieve state-of-the-art per-
formance (see Section 2.2.3). MFB features are the result of first taking the Fast
Fourier Transform (FFT) of the signal, an optimised algorithm for computing the
Discrete Fourier Transform (DFT) of the signal, which is typically computed using
a 25 ms window shifted forward in time every 10 ms. The choice of 25 ms is to have
a window large enough to extract useful acoustic information, but small enough
that the statistical properties of the acoustic signal do not change with time (i.e. the
signal is considered stationary). The power spectrum of the frequencies |FFT |2{N
(where N is the number of FFT points used) is then computed for each FFT in a
25 ms window. The power spectrums are then mapped to the mel scale, which is a
non-linear perceptual scale based on the human auditory system. This process is in
practice done with filter banks (hence the name mel-scale filter banks), which par-
tition the frequencies into several bins, where each bin uses overlapping triangular
filters that corresponds to the Mel Scale. Unless otherwise stated, in this thesis, the
number of mel scale filters for each window is 80 to include a large enough detail
of the frequencies. Moreover, in this thesis, the MFBs are also standardised using
the mean and variance obtained on the training partition of each data set, in order

https://speechbrain.readthedocs.io/en/latest/API/speechbrain.lobes.features.html##speechbrain.lobes.features.Fbank
https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec/README.md
https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-base
https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-large
https://huggingface.co/LeBenchmark/wav2vec2-FR-2.6K-base
https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-base
https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-large
https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-base
https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large
https://huggingface.co/facebook/wav2vec2-large-xlsr-53
https://huggingface.co/voidful/wav2vec2-xlsr-multilingual-56
https://huggingface.co/openai/whisper-large
https://huggingface.co/roberta-large
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to have zero mean and unit variance on that partition. The standardisation is a com-
mon practice in signal processing when using signal-level features because it helps
to transform the features from different sources to become statistically similar.

However, with the introduction of a normalisation layer for DNNs (Ba et al.,
2016), the deep representations no longer need an extra standardisation step. This
is because the normalisation layer can be trained over a wide range of data from
different sources to learn more effective normalisation of the deep representations.
The deep representations used in this thesis are presented below.

3.2.2 Wav2vec2
One of the recently popular self-supervised representation learning architectures for
acoustic signals is Wav2vec2 (Baevski et al., 2020). Wav2vec2 uses convolutional
and transformer layers (multi-head attention + feed-forward layers) with raw acous-
tic signals as input. It should be noted that Wav2vec2 is not a single model, but a
model architecture, which means that one can have different Wav2vec2 models de-
pending on the data used to train it. The Wav2vec2 models used in this thesis are
trained on English (Baevski et al., 2020), French (Evain et al., 2021a) and multilin-
gual data (Conneau et al., 2021), depending on the language of the dataset used and
the specificity of each experiment (see Table 3.2). Wav2vec2 models, once trained,
would be able to extract more high-level representations than traditional features
such as MFBs, meaning that they would be less affected by the low-level changes
in the signal that are uncorrelated with high-level tasks such as AER (see Section
2.2.3).

3.2.3 Whisper
Whisper is a transformer-based model that is trained in a MTL framework for lan-
guage identification, phrase-level timestamps, multilingual speech transcription,
and speech translation from multiple languages to English. Unlike Wav2vec2,
which uses raw acoustic signals as input, Whisper uses MFBs as input. In addition,
Whisper is trained on 30-second audio files, rather than on speech utterances of
variable length as in Wav2vec2 training. Furthermore, unlike Wav2vec2, Whisper
is not trained for representation learning per se, but in an end-to-end manner using
an encoder-decoder architecture, where the encoder provides the dense representa-
tion and the decoder is used to solve the different tasks mentioned above. Thus,
in this thesis, the encoder part is used to extract deep representations that can be
used for AER. Furthermore, since Whisper is partly trained for multilingual speech
transcription, it is hypothesised that its representations can provide us with useful
“verbal-aware” acoustic representations. As the study of “verbal-aware” acoustic
representations is one of the aims of this thesis (see Section 1.2), the use of Whisper
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for AER is of interest in this thesis.

3.2.4 RoBERTa
Transformer-based deep representations of text, have recently become popular
thanks to BERT models (Devlin et al., 2019), achieving state-of-the-art AER from
text (see Section 2.2.4). This is because BERT can provide us with an effective
representation of each word in its specific context. Moreover, BERT is pre-trained
in a self-supervised manner to provide effective textual representations without the
use of labelled data. More recently, RoBERTa (Liu et al., 2019) has introduced
a more optimised pre-training approach, where the masking of frames necessary
for self-supervised learning is done dynamically during training. The masking of
frames for BERT models was previously done only in the pre-training phase. In
addition, the tokenisation in BERT was previously done at the subword level, and
RoBERTa takes this approach a step further by using Byte Pair Encoding (BPE),
where the most frequent subword pairs are replaced by different tokens in order to
use a smaller number of tokens for training. The optimised pre-training approach
of RoBERTa, together with the use of 10 times larger amounts of unlabelled text
data (contents of English Wikipedia and books) for training, resulted in this model
significantly outperforming BERT for AER from text (Siriwardhana et al., 2020;
Adoma et al., 2020). Given the impressive results of this model in the state of the
art, in this thesis RoBERTa is used to extract deep representations of text.

This section has introduced the reader to the representations used in this thesis,
in order to train different AER models. The following section discusses the ANN
models used in this thesis and how they are trained.

3.3 Training the models
The ANN models used in this thesis mostly use GRU or linear (fully connected)
layers. The reason for choosing GRU is that it can effectively model sequential
data, such as acoustic signals and text, and compared to similar neural layers like
LSTMs, it has been shown to be faster to train and often with better results for rather
small datasets (see Section 2.2.8). The linear layers are also used here as they are
often needed as the last layer of an ANN, in order to transform the latent representa-
tions so that they have the same size as the target –emotion classes or dimensions–
that are to be predicted. Moreover, in some experiments linear layers are used as
the main AER model on top of deep pre-trained representations such as Wav2vec2
or RoBERTa presented in Section 3.2, to show that such deep representations can
achieve good results without sequential layers such as GRU, as they are already
contextual representations. It should also be noted that, unless otherwise stated, the
deep pre-trained representations are used exclusively for feature extraction (their
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weights are “frozen” and cannot be trained further). However, in some experiments
the deep pre-trained representations are allowed to be further trained alongside the
GRU and linear layers as part of the AER models, in which case the deep represen-
tations are usually referred to as “fine-tuned” as opposed to “pre-trained”.

To train the ANN models described above, the Adam optimiser (Kingma and Ba,
2015) is used in this thesis. Adam is a SGD-based optimisation method for updating
the weights of neural layers based on a given loss function (see “Training neural
networks” in section 2.2.2). Put simply, Adam expands SGD by using a weighted
average of the gradients to converge faster, and also decays the gradients during
training so that convergence moves towards the global minimum in the early stages
of training, and then slows down the oscillations as it approaches it. Although it is
still debated whether SGD generalises better in the long run than Adam, it has been
shown that Adam can have comparable or better results than SGD while converging
faster (Zhang et al., 2020a; Zhou et al., 2020). Therefore, in this thesis, the training
of the ANN models is done with the Adam optimiser.

Furthermore, the batch size is considered to be one to avoid memory problems
caused by having an extra dimension to the neural weights during training. Instead,
in most experiments, Gradient Accumulation (GA) (Hermans et al., 2017) is used,
where the gradients of several forward passes are used to update the weights of the
used model in the backward pass. Thus, having a higher GA is similar to having
a higher batch size during training, in the sense that several training examples are
considered for each weight update, without causing memory problems associated
with high batch sizes.

This section has explained the training strategy of the different ANN models
used in this thesis. As mentioned above, the Adam optimiser used here is based
on SGD, which updates the weights of an ANN model to minimise a given loss
function. The loss functions used in the various experiments are explained below,
as well as the metrics used to evaluate the trained models.

3.4 Loss functions and metrics
The AER models used in this thesis aim at either time-continuous prediction of
arousal and valence emotion dimensions, or categorisation of different emotion
labels at the utterance level. The loss function and metric used for the time-
continuous prediction of emotion dimensions is the Concordance Correlation Coef-
ficient (CCC). On the other hand, the loss function and metric used for the categori-
sation of different emotion labels is cross entropy and Unweighted Average Recall
(UAR) respectively. These measures are explained in more detail below.
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3.4.1 Concordance correlation coefficient
CCC is an agreement measure used to compute the similarity between two vectors1.
Given ŷ and y as the ground-truth (or gold-standard) and the prediction of a model
respectively, CCC can be computed as follows (Li, 1989):

CCCpŷ, yq “
2ρσŷσy

σ2
ŷ ` σ2

y ` pµŷ ´ µyq
2

(3.1)

where µŷ and µy are the means of the vectors ŷ and y respectively, and their
variances are defined as σŷ and σy. ρ is the (Pearson’s) correlation coefficient,
which can be written as follows:

ρ “
σŷy

σŷσy
(3.2)

where σŷy is the covariance of ŷ and y vectors, which is mathematically written
as Erpŷ ´ µŷqpy ´ µyqs, where E is expectation. Therefore, as can be seen from the
CCCpŷ, yq formula above, the CCC measure takes into account both the covariance
and the difference of the means of ŷ and y vectors. Furthermore, this difference of
the means of the vectors ŷ and y is similar to another famous measure called Mean
Square Error (MSE). MSE is mathematically described as follows:

MS E “
1
n

n
ÿ

i“1

pŷi ´ yiq
2 (3.3)

where n is the total number of elements in the vectors ŷ and y. Also, in some
cases, instead of MSE, Mean Absolute Error (MAE) is used, which uses the absolute
difference |ŷi ´ yi| instead of pŷi ´ yiq

2. The formula of MSE shows that it does not
take into account the correlation between the two vectors, and on the other hand
correlation alone does not account for the differences between the vectors ŷ and y
(neither point-wise like in MSE nor averaged like in CCC). Taking into account both
the difference of the vectors and their correlation makes CCC a superior measure to
other commonly used methods such as MSE and correlation2. This has led to CCC
being widely used to measure the performance of state-of-the-art AER models for
predicting continuous dimensional emotion (see Section 2.2.8). It can also be used
as a loss function to train ANN models to be optimised for CCC. This loss function
can be written as follows:

LCCCpŷ, yq “ 1´CCCpŷ, yq (3.4)

1The term vector is used here to refer to a list of values as defined in Goodfellow et al. (2016).
2For more information on the the comparison between MSE or Pearson’s correlation and CCC

measures as a metric and a loss function, the reader is referred to the work of Pandit and Schuller
(2019), where this has been extensively studied.
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where ŷ and y can be the predictions of the model and the gold-standard tar-
get respectively. In other words, the LCCC loss function aims to bring the time-
continuous prediction of the arousal and valence emotion dimensions closer to its
gold-standard target. Although LCCC is a useful loss function when working with
datasets annotated for time-continuous emotion dimensions, not all datasets are an-
notated in this way (see Section 3.1). Below is a description of the loss function
used for datasets with utterance-level emotion labels.

3.4.2 Cross entropy
To solve a classification task (e.g. emotion label recognition), the problem is usually
seen as increasing the mutual information between the set of predicted and target
probabilities for the same set of events (e.g. acoustic or textual data). In informa-
tion theory, how much information there is in a random variable (here y) is usually
calculated using the notion of entropy, which is defined as follows:

Epyq “ ´
ÿ

yPY

ppyq log ppyq (3.5)

where Σ is the sum over all possible values of y, denoted by Y, and ppyq is the
probability of the event y. In classification tasks, however, we are mostly interested
in measuring the difference between the entropy of the model’s predictions ŷ and
the target y. This is often done by taking the “cross-entropy” between the target
probabilities ppyq and the probabilities of a model’s predictions ppŷq as follows:

CrossEntropypŷ, yq “ ´
C

ÿ

i“1

ppyiq logpppŷiqq (3.6)

where C is the number of classes, i.e. the number of elements in ŷ and y vectors.
For example, suppose we have a model that classifies an acoustic signal into nega-
tive (i “ 1) or positive (i “ 2) sentiment classes. In this case, when i “ 1, ppŷ1q

describes the probability of the acoustic signal to be classified as negative, based on
the model. Moreover, the ppŷiq is usually calculated by Softmax, which is described
as follows:

S o f tmaxpŷiq “
eŷi

řC
j“1 eŷ j

(3.7)

Interestingly, part of the reason why the use of cross-entropy loss is common for
classification tasks, is that using Softmax to obtain prediction probabilities gives us
a simple equation ( BL

Bppŷiq
“ ppyiq ´ ppŷiq) when calculating the derivatives of the

loss function for backpropagation (see “Training neural networks” in section 2.2.2).
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Although cross entropy can also be used as a metric, in many cases the goal
is not to evaluate how accurately a model can predict a probability distribution.
The ultimate goal in many classification tasks is to automatically assign an accurate
label to a given datum. Therefore, metrics such as accuracy or Unweighted Average
Recall (UAR) are usually used to evaluate models built for classification. These
metrics are described below.

3.4.3 Unweighted average recall
One of the most common metrics used to evaluate classification models is accuracy,
which can be calculated following the formula below:

Accuracy “ Nc{N (3.8)

where Nc is the number of instances correctly classified by the model over the to-
tal number of instances denoted as N. Although accuracy is a simple but effective
metric in most cases, it has a limitation. Namely, accuracy does not give a good in-
dication of a model’s performance if the number of instances is not balanced across
different classes. For example, if a model predicts all testing samples as class one
in a binary classification task, and the test instances are 95 % class one, then the
accuracy of that model would be 95 %. However, the high accuracy of the model
is misleading because we know that the model does not actually work and predicts
everything as class one. In order to account for unbalanced class labels, the use of
UAR has been proposed, which first calculates the accuracy within each class and
then takes the average of the accuracies obtained for all classes. This can be written
mathematically as (Eyben, 2015):

UAR “
1
k

k
ÿ

i“1

N i
c

N i (3.9)

where k is the total number of classes, N i
c and N i are the number of correctly

identified instances and the total number of instances for class i respectively. Fur-
thermore, if the number of instances across different classes is balanced, then UAR
is the same as accuracy. In this thesis, the number of instances across different
classes is not always balanced for all the datasets used in different experiments.
Therefore, UAR is used here as the metric to evaluate the models for classification
tasks.

3.4.4 Word error rate
In the experiments of Section 4.3, Section 4.4.2, and Section 5.2, an ASR is used to
obtain automatic transcriptions for the IEMOCAP and CMU-MOSEI datasets. To
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evaluate the performance of automatic transcriptions, they are compared with hu-
man transcriptions using the Word Error Rate (WER) metric, which can be written
mathematically as follows:

WER “
S ` D` I

N
(3.10)

Where S , D, and I are the number of substitutions, deletions, and insertions
respectively. And N is the number of words in the human transcriptions.

So far, this section has explained the different metrics used to measure the per-
formance of different models. However, in order to compare the performance of
two different models, certain statistical tests are required. The statistical signifi-
cance tests used in this thesis are explained below.

3.4.5 Statistical significance
In this thesis, a two-tailed p-test is used to calculate the statistical significance be-
tween two values across different experiments. A two-tailed p-test, also known as a
two-tailed hypothesis test, is a statistical method used to determine whether there is
a significant difference between an observed sample statistic and a population pa-
rameter. It is called “two-tailed” because it considers differences in both directions
from the expected value, rather than just one direction.

It is also assumed here that the results of different experiments, whether using
UAR or CCC, are the mean values in a normal distribution with a standard deviation
of one. Then, to calculate the z-value, which represents the difference between the
calculated metrics across different experiments, we can write:

z “
v1 ´ v2
a

2{n
(3.11)

where n is the number of the population (here utterances). Then, assuming that
the z-value follows a standard normal distribution, we can calculate its cumulative
distribution function (CDF) according to the equation below:

1
2π

e´x2{2 (3.12)

Then, to calculate the deviations from the z-value of zero in both directions
(i.e., in both tails of the distribution), we calculate the area under the curve of the
normal distribution of z. In this way, we can account for the possibility of observing
extreme results in both tails of the distribution. Thus, to calculate the area under the
curve we can write:

Φpzq “
1

2π

ż z

´8

e´x2{2dx (3.13)



3.5. THE TECHNICAL PIPELINE OF THE EXPERIMENTS 69

and since the standard normal distribution is symmetric and the total area under it
is one, to calculate the p-value we can write:

Φp´zq “ 1´ Φpzq (3.14)

p “ 2.Φp´|z|q (3.15)

Then, if the p-value is above 0.05, we assume that the null hypothesis is true
and the difference between the two values, which can be the results of different
experiments, is not significant. However, if the p-value is less than 0.05, we assume
that the null hypothesis is false and there is a significant difference between the
results of different experiments.

Furthermore, in the experiments where CCC was used as the evaluation metric,
the Fisher r-to-z transformation is first used, before calculating the z and p values.
The reason behind this is that algorithms that compute correlation coefficients, like
CCC, are not directly commutable from separate individual values, which means
that it is not possible to directly add or subtract the different averages of correla-
tion values across different experiments. The Fisher r-to-z transformation is thus
commonly used to assess the significance of the difference between two correlation
coefficients, and can be written as follows:

zr “
1
2

lnp
1` ρ

1´ ρ
q “ artanhpρq (3.16)

where ρ is the correlation coefficient (in this case it is CCC) and artanh is the
inverse hyperbolic tangent function. Therefore, it is argued that the Fisher transfor-
mation approximates a variance-stabilising transformation for ρ, when ρ follows a
normal distribution. Thus, with the Fisher transformation, the variance of r grows
faster as ρ gets closer to 1. Then, zr in the equation above can be calculated for two
different ρ values across different experiments, and then the two zr can be used in
the equation 3.11 to calculate the z-value, which can then be used in the equation
3.15 to calculate the two-tailed p-value.

3.5 The technical pipeline of the experiments
Figure 3.2 depicts the technical pipeline used to carry out the experiments in this
thesis. In the figure, the “experiment parameters” indicates the datasets, feature
extraction method, model, optimiser, the loss function, and metrics to use. Then,
the following steps are performed:

1. The video/audio files of all the datasets are converted to mono wav files with
PCM signed 16-bit little-endian format and 16 KHz sampling rate using “ffm-
peg”. This is done to have a coherent audio format across different datasets,
which is particularly important for the MTL experiments in Chapter 5.
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Figure 3.2: Overview of the technical pipeline for running experiments.

2. The paths associated with each converted wav file, the human transcriptions
(if available), off-the-shelf ASR’s transcriptions, and the emotion annotations
for each file are stored in a static file (usually as a “.json” file). Similar to
the first step above, this step helps to have a coherent audio loading paradigm
when using multiple datasets.

3. The information about the input data and the targets, the used optimiser, the
loss function, the model and hyper-parameters, are used to train the mod-
els dynamically after extracting features for each batch of training instances.
Dynamic training here means that for each batch of audio files, they are first
loaded into memory, and then features are extracted based on the representa-
tions mentioned in Section 3.2. Then, the model is trained based on the ex-
tracted acoustic or textual features. This is a common technical trick to save
memory, as opposed to extracting features for all the files first, which would
simply not be possible if we have limited memory, large amounts of data, and
are using large pre-trained models such as Wav2vec2 for feature extraction.
In the Figure 3.2, this process is encapsulated in the object “Experimenter”.
Again, this is a common practice in the implementation of the experiments
for deep learning. For example, SpeechBrain1 toolkit (Ravanelli et al., 2021),
defines a “Brain” object which is responsible for the same processes as the
“Experimenter” method, Keras2 toolkit achieves the same objective with their
“Model” object, and Huggingface3 toolkit implements the same idea within
their “Trainer” object (see Section 3.3 for training the models).

4. Once training is complete, the trained model is evaluated using a metric and
the test partition of each dataset (see Section 3.1 for partitioning information,
and Section 3.4 for metrics).

Lastly, all the experiments in this thesis were carried out using Pytorch4 (Paszke
1https://speechbrain.github.io
2https://keras.io
3https://huggingface.co/
4https://pytorch.org

https://speechbrain.github.io
https://keras.io
https://huggingface.co/
https://pytorch.org
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et al., 2019), and by using the “Brain” object of the SpeechBrain toolkit as the
“Experimenter”, with random seeds manually set to zero. The computer’s operating
system was Debian GNU/Linux 10, and the GPU used to train the models was an
NVIDIA Quadro RTX 6000 with 23 gigabytes of memory, CUDA version 11.3.
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3.6 Summary
The review of the state of the art in the previous chapter showed that deep pre-
trained representations of acoustic signals and text are significantly more perfor-
mant than traditional techniques for AER. The aim of this thesis is to extend the
related state of the art on using deep pre-trained acoustic and textual representations
for a wide range of emotional expressions, whether acted or in the wild. Therefore,
several deep pre-trained representations are used in different experiments of this
thesis, as well as a wide range of datasets. Namely, the pre-trained deep represen-
tations used here are Wav2vec2, and Whisper for acoustic signals and RoBERTa
for text, chosen particularly for their superior performance in the state of the art.
Also, the datasets used in this thesis are AlloSat, CMU-MOSEI, CaFE, EmoDB,
GEMEP, IEMOCAP, RAVDESS, and RECOLA, which vary in terms of recording
environment, speakers, emotion annotations, and the context in which the emotional
expressions are collected (acted, induced, and natural). Furthermore, in various ex-
periments throughout this thesis, the Adam optimiser is chosen to train the ANN
models for different loss functions because it converges faster and can achieve com-
parable or better results than the basic SGD algorithm. The loss functions and
metrics used to train and evaluate the models vary depending on the task. For time-
continuous prediction of emotion dimensions such as arousal and valence, 1´CCC
is used as the loss function and CCC as the metric, because it can measure both the
covariance of predictions and targets and the distance between their means. And
to categorise emotion labels such as happiness, anger, sadness and neutral, cross
entropy is used as the loss function and UAR as the evaluation metric. The choice
of UAR over the more common accuracy metric is because accuracy does not give
a good indication of a model’s performance if the test data is not balanced. Lastly,
all the experiments are performed using Pytorch and the SpeechBrain toolkit.



Chapter 4

On the use of deep acoustic and
textual representations

Deep pre-trained representations have recently dominated state-of-the-art
benchmarks in many areas of study, including AER (see Section 2.2). In partic-
ular, deep pre-trained acoustic representations have been shown to outperform tra-
ditional feature extraction methods for a wide range of speech-based tasks, such as
ASR, AER, and speaker recognition (Latif et al., 2020). The good performance of
deep representations is usually attributed to the fact that such methods are trained
on large amounts of data to brute-force an approximation of an effective acoustic fil-
ter, rather than being hand-crafted from our limited acoustic knowledge. However,
the fact that deep representations are trained in a data-driven fashion, rather than
designed, makes them difficult to interpret, study and control. Nevertheless, it is
clear that the functionalities of deep representations are influenced by their training
data. Therefore, as part of this thesis, in Evain et al. (2021b) we studied the effect of
different training data for deep acoustic representations on several tasks, including
AER from speech signals, which is brought to the reader in Section 4.1.
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Moreover, emotion from speech signals is conveyed both by how something is
said, which can be observed from changes in the acoustic signals, and by what is
said, which is the verbal message present in the transcription (see “Joint representa-
tions of acoustic signals and text” in Section 1.1.2). This has prompted a recent line
of research to consider both acoustic and textual modalities of the same speech sig-
nal for AER. Also, the state of the art for AER shows that using joint deep acoustic-
textual representations has better performance than using each modality alone (see
Section 2.2.5). To this end, in Section 4.2, deep pre-trained acoustic and textual
representations are used both separately and jointly in different AER experiments,
for both acted and in-the-wild emotional expressions. Although these experiments
do not advance the state of the art, they serve as a first step for the other experi-
ments in this thesis, such as the use of ASR transcriptions for joint acoustic-textual
representations, which is discussed below.

Since human transcriptions are not always available for a given speech signal,
off-the-shelf ASR models are often exploited to provide us with automatic tran-
scriptions, so that they can later be used to compute joint acoustic-textual repre-
sentations. This paradigm has been shown in several studies to provide better per-
formance than using acoustic signals alone for the recognition of acted emotional
expressions (Heusser et al., 2019; Yoon et al., 2019; Wu et al., 2021; Peng et al.,
2021). However, the use of ASR transcriptions for joint deep acoustic-textual rep-
resentations has not yet been studied for recognition of emotional expressions in
the wild. Therefore, in order to advance the state of the art, Section 4.3 investigates
the effect of using ASR transcriptions in the context of joint acoustic-textual repre-
sentations for the recognition of emotional expressions in the wild, as well as acted
emotional expressions.

It was mentioned above that emotion is conveyed from speech signals both by
how something is said and by what is said, which has led to the aforementioned
studies on the use of transcriptions to improve the state-of-the-art AER. In addition,
recent studies suggest that different speakers can vary greatly in how they express
the same or similar emotional expressions (see Section 2.2.6). For example, Pappa-
gari et al. (2020) has shown that the latent representations of a pre-trained speaker
recognition model (i.e. speaker representations) can be used (as input features)
to train AER models and achieve better performance than using LLDs of acous-
tic signals. Furthermore, Ta et al. (2022) showed that fusing pre-trained speaker
representations with acoustic representations extracted from pre-trained ASR mod-
els can lead to better AER performance compared to using acoustic representations
alone. To extend these studies, and to combine them with recent trends discussed
above, Section 4.4 investigates the integration of deep speaker representations for
joint acoustic-textual-speaker representations (where the text is human or ASR tran-
scriptions) for the recognition of acted emotional expressions1.

1We focused on acted emotions in order to more clearly study the interplay of the proposed
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4.1 The effect of training data for deep acoustic rep-
resentations

Self-supervised learning techniques, especially acoustic Wav2vec2 representations,
have been shown to achieve state-of-the-art performance in speech-related domains
such as ASR, and AER (see “Self-Supervised Learning” in Section 2.2.3). How-
ever, most state-of-the-art studies focus only on different architectures of deep rep-
resentation learning models (see the models in Table 2.1) and their performance on
downstream tasks. As a result, this trend of studies ignores the large effect of the
training data in shaping the behaviour of the trained deep representations. There-
fore, to advance the state of the art, in the studies published in Evain et al. (2021a)
and Evain et al. (2021b), we evaluated the effect of different training data on the
Wav2vec2 representations1. Moreover, the focus of these studies was on French
data, since English and multilingual deep representations have been the subject of
various state-of-the-art studies. This section presents the study of the performance
of the French Wav2vec2 models (see Table 3.2) on AER, published as part of this
thesis in Evain et al. (2021b). In what follows, the training of the French Wav2vec2
models are explained in more details.

4.1.1 Training self-supervised representation of French speech
Wav2vec2, first introduced in Baevski et al. (2020) as a framework for self-
supervised representation learning from acoustic signals, provides two architec-
tures, base and large. Wav2vec2-base models use 12 transformer blocks with 8
heads each, while the larger Wav2vec2-large models have twice the number of
transformer blocks and heads. In Evain et al. (2021a), we trained four Wav2vec2-
large, and three Wav2vec2-base models using different amounts of training
data, ranging from 1000 (1 k) hours of read speech to 7 k hours of read, spon-
taneous, and acted emotional speech (see Table 3.2). This choice was made in
order to study the effect of read, spontaneous and emotional speech on a series of
speech-based tasks. The training of Wav2vec2 models were then performed until
the loss on the development set no longer decreased significantly, which was 200k
epochs for the W2V2-Fr-1K-base and W2V2-Fr-1K-large models, and 500k epochs
for the rest. Figure 4.1 shows a visual summary of the type of speech used to train
the W2V2-Fr-1k, W2V2-Fr-2.7k, W2V2-Fr-3k and W2V2-Fr-7k models. It should
be noted that using the Wav2vec2 base or large architecture does not change the

model as a first step, before moving on to using data recorded in the wild, which would be more
difficult to analyse.

1This study was a collaborative effort with more than a dozen researchers. My contribution to
this study was explicitly to process the data for training different Wav2vec2 models and to evaluate
their performance for the downstream emotion recognition task.
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Figure 4.1: The number of hours per speech type used to train Wav2vec2 models
for French speech.

data used for training the Wav2vec2 models.
The trained Wav2vec2 models were then used as speech representations, and

were evaluated on a series of speech-related tasks, namely ASR, AER, natural
speech understanding, and speech translation. In what follows, the AER exper-
iments performed on the W2V2-Fr representations (with frozen weights) are ex-
plained in further detail.

4.1.2 Experiments on prediction of continuous emotion annota-
tions

To explain the experiments used here to evaluate the W2V2-Fr representations, we
first present the datasets and representations used here, and then the method used to
evaluate the AER performance of the representations on the used datasets.

Datasets and representations

To evaluate the performance of the W2V2-Fr representations for AER of French
speech, here two French datasets of RECOLA (Ringeval et al., 2013) and AlloSat
(Macary et al., 2020) datasets were used. The RECOLA dataset has been used for
years to benchmark the arousal and valence dimensions of emotion in spontaneous
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Table 4.1: Statistics related to the training, development and test partitions of the
AlloSat and RECOLA datasets.

Dataset Number of utterances Duration
Train Dev Test Train Dev Test

AlloSat 20,785 4272 4643 15 hours 3 hours 3 hours
RECOLA 575 474 529 45 minutes 45 minutes 45 minutes

French speech (see Section 2.2.8). However, all RECOLA speakers are recorded
with the same microphone and in the same noiseless environment. Therefore, a
more recent dataset, AlloSat was also used, which consists of real-life call center
conversations in French, and thus can be exploited for AER in the wild. Moreover,
the AlloSat dataset targets one emotion dimension ranging from frustration to
satisfaction (see Section 3.1 for more information on the RECOLA and AlloSat
datasets). A summary of the RECOLA and AlloSat datasets is also provided in
Table 4.1.

The RECOLA, and AlloSat datasets used for the experiments on W2V2-Fr rep-
resentations contain long conversational audio files. However, the W2V2-Fr repre-
sentations are trained on single utterances, lasting from one to 30 seconds. There-
fore, in order to be in consistent with the training strategy of the Wav2vec2 repre-
sentations, and to avoid memory issues related to loading long audio files, the long
audio files of the RECOLA and AlloSat datasets are chunked into 30 seconds files
for training and development. For testing however, the emotion predictions for all
the audio files were concatenated before computing the CCC (see Section 3.4.1) to
make the results comparable to the state of the art.

Moreover, MFB features were also used here, since they are still widely used
in state-of-the-art AER models (see Section 2.2.8). In addition to using the MFB
features as a baseline, two other Wav2vec2 representations were evaluated, one
trained only on English –W2V2-En large– and the other trained on speech signals
from 53 languages, including French –W2V2-XLSR-53 large– (see Table 3.2). The
reason behind using representations not explicitly trained for French is to see how
much a language other than French used to train Wav2vec2 representations can play
a role in the performance of such representations for the AER on French speech.
The method used to evaluate the AER performance of the Wav2vec2 representations
is explained below.

Method

In order to better evaluate the performance of different Wav2vec2 representations,
a number of AER models of different complexity have been considered. Namely,
a simple Linear-Tanh (LT) model consisting only of a linear (feed-forward) layer
followed by a tangent hyperbolic function, and two one-layer GRU models, one
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Figure 4.2: The pipeline of the method employed to evaluate continuous emotion
prediction on the RECOLA and AlloSat datasets.

with 32 nodes and the other with 64 nodes, which are both followed by Linear-
Tanh layers (GLT-32 and GLT-64). The GLT models were chosen because GRU
has demonstrated its ability to achieve state-of-the-art performance for AER, due
to its ability to effectively model sequential data, especially when having a small
number of labelled examples (see Section 2.2.8). And the LT model was chosen
mainly for its simplicity and inability to model data contextually, due to its time-
linear nature. Therefore, by also using traditional signal-level MFB features as a
baseline, the LT model would then quantitatively indicate at what point Wav2vec2
representations are more contextual than the MFB features.

To further illustrate the pipeline of the method used here, it is shown in Fig-
ure 4.2. As can be seen from the figure, the emotion predictions of the different
models used here (see below) would have the same sampling rate as their input fea-
tures. And the sampling rates of the different features, which were 100 Hz for MFB
and 50 Hz for the Wav2vec2 representations, differ from the sampling rates of the
annotations: arousal and valence annotations from the RECOLA dataset are anno-
tated at a rate of 25 Hz, and frustration-satisfaction annotations from the AlloSat
dataset are annotated at a rate of 4 Hz. This means that the sampling rate of the
emotion predictions and their targets are different, which creates a problem for both
training and evaluation of the models. To overcome this problem, during training,
the annotations are resampled to match the sampling rate of the features (to allow
backpropagation), while during testing, the output of the models is resampled to
match the target annotation (to avoid altering the targets for a fair evaluation). More
specifically, this is achieved by the “interpolation” part of the method depicted in
Figure 4.2.

Regarding the training details of the method, the LT and GLT models were
trained by Adam with 250 as the maximum number of epochs, with an early stop-



4.1. THE EFFECT OF TRAINING DATA FOR DEEP ACOUSTIC REPRESENTATIONS 79

ping of 15 epochs, i.e. stopping the training if no improvement over the develop-
ment set was observed (see Section 3.3). The loss (and evaluation metric) used
here was the Concordance Correlation Coefficient (CCC) between the model pre-
dictions and the human annotations, as it provides a good measure for evaluating
the agreement between time-continuous traces (see Section 3.4.1). The results of
these experiments are presented below.

4.1.3 Results
The results of the experiments described above are shown in Figure 4.3. At first
glance, there is a large variation in the results of the Wav2vec2 architectures
trained on different training sets, showing the effect of different training data on the
Wav2vec2 representations used for AER. For example, the GLT-64 model trained
to predict the arousal dimension of emotion has the best performance (CCC= .741)
with the W2V2-Fr-2.7k base representation and the worst performance (CCC=

.078) with the W2V2-Fr-7k large. Also, the results for the prediction of the sat-
isfaction dimension of the dataset corpus seem to be more stable than the prediction
of the arousal or valence dimension of the RECOLA dataset, which is not surprising
since the AlloSat dataset contains about 30 times more utterances than the RECOLA
dataset for training, and more than eight time testing utterances (see Table 4.1).

Moreover, it is observed that the larger amount of data used to train the
Wav2vec2 representations does not necessarily lead to their better perfor-
mance in predicting emotion dimensions on the RECOLA and AlloSat corpora.
For example, the best performance for arousal and valence on the RECOLA dataset
is achieved when the representations are trained on 1k or 2.7k read speech (see
3.2). This is interesting because the RECOLA dataset used for AER contains spon-
taneous conversations, which is different from the read speech used to train the
W2V2-Fr-1k representations and the radio broadcasts for the W2V2-Fr-2.7k repre-
sentations. This may be because the “read speech” used to train the representations
were actually readings from audio books, which are not devoid of emotional expres-
sions, nor are radio broadcasts. Nonetheless, it is not easy to pinpoint the reason for
the behaviour of deep representations, as they are slowly shaped by large amounts
of data, making their behaviour difficult to interpret.

Another noteworthy result is that, on average, Wav2vec2 representations per-
form better than traditional MFB features for the LT model. However, for the more
complex GLT model, the advantage of using Wav2vec2 representations over MFB
features is less clear. This shows that the self-supervised representations require
less complex models to achieve better results than traditional MFB features.
Furthermore, the LT models are time-linear, meaning that they provide a one-to-one
correspondence of features to predictions in time. Therefore, the better performance
of Wav2vec2 representations with time-linear models, compared to MFB features,
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Figure 4.3: The results of arousal and valence prediction for the RECOLA dataset
and frustration-satisfaction prediction for the AlloSat dataset. Here, the perfor-
mance of different Wav2vec2 representations trained on different datasets is eval-
uated for the AER task. The AER models used here are LT: Linear-Tanh, GLT:
GRU-Linear-Tanh, where the GRU is a layer with either 32 or 64 nodes.
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further shows that Wav2vec2 representations are better at modelling acoustic con-
text than MFB features. Nevertheless, for the GLT models, comparing the average
of the W2V2-Fr representations with the MFB features shows that MFB features are
still able to achieve comparable performance to deep representations for predicting
emotion dimensions, when trained with contextual models that are sufficiently com-
plex for a given task.

Furthermore, the XLSR and W2V2-Fr representations trained on multilingual or
French speech can, on average, perform better than the W2V2-En representations
trained only on English speech. This shows that the language of the utterances
used to train the Wav2vec2 representations plays a role in their ability to pre-
dict dimensional emotions. This is not surprising as we know that the emotional
expressions are language-dependent, because it is through language that the con-
textual meaning of the bodily sensations of the world is conceptualised (Lindquist
et al., 2015).

Finally, the results of this section are compared with the state of the art. For
the prediction of the frustration-satisfaction dimension of the AlloSat dataset, the
best result is achieved by using the GLT-64 model and the W2V2-Fr-3k base rep-
resentation (CCC=.740). This is similar to the state-of-the-art results. In Macary
et al. (2021), bidirectional LSTM models are used with Wav2vec representations,
achieving a CCC of .730. In a later paper (Tahon et al., 2021), the wav2vec rep-
resentations were found to be more performant when computed on segments of
250 ms rather than the whole conversation, using recurrent models such as LSTM
or GRU, achieving a CCC of .806.

For the arousal dimension of the RECOLA database, the best result was
obtained using the W2V2-Fr-2.7k base representation and the GLT-64 model
(CCC=.744). As far as we know, this result is among the best arousal results ever
achieved on the RECOLA test set, being statistically1 on-par with the performance
obtained in the work of Zhang et al. (2016), who achieved a CCC of .732 using
MFCCs with LSTMs. This suggests that effective prediction of arousal from acous-
tic signals does not require representations as complex as deep pre-trained repre-
sentations, which is consistent with the results of this study. Also for the valence
dimension, the best result here was obtained using the W2V2-Fr-1k large represen-
tation and the GLT-32 model (CCC=.564), which is also statistically2 on-par with
the performance obtained in the work of AlBadawy and Kim (2018), who achieved
a CCC of .555 with MFBs and LSTMs.

The experiments and results of this section are summarised and further dis-
cussed in what follows.

1A two-tailed statistical test using the Fisher r-to-z transform, and a degree of freedom cor-
responding to the number of tested utterances (df=529), provides the following results: z=0.43,
p=0.6672.

2The same statistical test as used for arousal provides the following results for valence: z=0.21,
p=0.8337.
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4.1.4 Discussion
In this section, the effect of training data on deep representations for the AER task
was investigated. A series of experiments were then specifically designed to inves-
tigate the effect of both the amount of training data and the type of data (read versus
spontaneous speech) on pre-training deep representations. The deep pre-trained
representations were then exploited to predict time-continuous emotional dimen-
sions on the RECOLA (arousal and valence dimensions) and AlloSat (frustration-
satisfaction dimension) corpora. The performance of the deep representations was
also compared with the performance of the traditional features (MFBs) for the same
tasks.

The results of these experiments showed that pre-training deep representations
with more data does not necessarily lead to better AER performance of such repre-
sentations. However, the type of data could play a role, as for the task of AER from
French speech, deep representations pre-trained on French speech performed better
on average than deep representations pre-trained on English speech. Also, Com-
pared to MFB features, deep representations can be used with less complex models
to achieve good AER performance. Moreover, by using deep representations trained
for French speech, this study could achieve the best reported performance for pre-
dicting the arousal and valence dimensions of the RECOLA dataset.

It should be noted, however, that the experiments carried out in this section are
subject to certain limitations. For example, this study could not further determine
the cause of the better AER performance of the deep representations pre-trained on
read speech compared to deep representations pre-trained on spontaneous speech.
Furthermore, the deep representations are trained on isolated utterances, whereas
the experiments performed here aim at predicting dimensional emotions over time
on long conversations lasting several minutes. This is because the state of the art for
training deep representations tends to be training on isolated utterances, whereas the
state of the art for predicting dimensional emotions tends to be training AER models
and evaluating them in a time-continuous format. As this discrepancy could be a
problem for a fair evaluation of the pre-trained deep representations for AER, all
the following experiments in this thesis target utterance-level emotion classification
tasks. Since recent state-of-the-art research also suggest that joint acoustic-textual
representations can perform better than acoustic representations alone for AER, the
next section describes the experiments conducted in this thesis on joint acoustic-
textual representations for utterance-level emotion classification.

4.2 Joint representation of acoustic signals and text
State-of-the-art research in AER suggests that by jointly using representations of
speech signals and their transcriptions, one can achieve better performance than by
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using only speech or textual representations (see Section 2.2.5). The better per-
formance of using both acoustic and textual modalities, rather than either alone, is
often attributed to the incorporation of more information related to both verbal and
non-verbal communication (see “Joint representations of acoustic signals and text”
in Section 1.1.2). In order to investigate this phenomenon further, this section at-
tempts to reproduce results comparable to the state of the art, before advancing it in
the next Section 4.3 by exploring the use of ASR transcriptions, and in Section 4.4
by exploring the use of speaker representations.

This section first studies the effect of different hyper-parameters on pre-trained
deep acoustic and textual representations separately for acted AER using the IEMO-
CAP dataset (see Section 4.2.1). Then, several AER model architectures are pro-
posed and evaluated in order to obtain an effective joint acoustic-textual represen-
tations (see Section 4.2.2). IEMOCAP was chosen here because it is the most com-
monly used dataset for joint acoustic-textual representations (Li and Lee, 2019;
Siriwardhana et al., 2020; Zhang and Xue, 2021), and thus the results in this paper
could be compared with state-of-the-art results. Furthermore, in order to evalu-
ate the performance of the proposed joint acoustic-textual representations for AER
on in-the-wild emotional expressions, the CMU-MOSEI dataset is used in Section
4.2.3.

4.2.1 Deep representations of acoustic signals and text
This subsection presents a series of preliminary experiments aimed at analysing the
effectiveness of deep acoustic and textual representations for AER across different
model complexities and training conditions. This is the first step to see how differ-
ent AER models can perform with such representations, before experimenting with
joint acoustic-textual representations in Section 4.2.2. The experiments designed
for this purpose are described further below in “Dataset and representations” and
“Method”, followed by the “Results”.

Dataset and representations

To study and compare the performance of acoustic and textual representations for
AER, the IEMOCAP dataset was chosen as it provides speech signals, their corre-
sponding human transcriptions and emotion annotations (see Section 3.1.6). More-
over, the IEMOCAP dataset has also been the target of several state-of-the-art stud-
ies on joint acoustic-textual representations for AER. To be consistent with these
studies, only the expressions labelled anger, happiness (+excited), sadness and
neutral are included here, with sessions 1 to 3 as the training set, session 4 as the
development set and session 5 as the test set. A brief summary of the number of ut-
terances and their duration for this partitioning of the IEMOCAP dataset is provided
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Table 4.2: Statistics related to the training, development and test partitions of the
IEMOCAP dataset, which contains acted emotional expressions.

Dataset Number of utterances Duration in hours:minutes
Train Dev Test Train Dev Test

IEMOCAP 3259 1031 1241 4:11 1:16 1:33

in Table 4.2. Since IEMOCAP contains English utterances, for textual representa-
tion, the RoBERTa model is used here, which is pre-trained on English text (see
Section 3.2) and has shown state-of-the-art results for AER from text (Siriward-
hana et al., 2020). For acoustic representations, both the traditional MFB features
and the W2V2-XLSR-56 are used (see Table 3.2). The choice of the multilingual
Wav2Vec2 (“W2V2-XLSR-56”) was made to be consistent with the experiments
carried out later in in the chapter 5, which use datasets containing speech with dif-
ferent languages. Also, in our preliminary experiments, the W2V2-XLSR-56 model
obtained better AER results than the W2V2-XLSR-53 or the W2V2-En model. It
should also be noted that the pre-trained W2V2-XLSR-56 and RoBERTa models
used here are frozen, meaning that they are used as acoustic and textual represen-
tations, and are not further trained with the AER models.

Method

To explore the effect of different model complexities and different training hyper-
parameters, we experimented with the combination of the following ranges of pos-
sibilities:

• Model-[number of layers x number of nodes]: GRU-1x641, GRU-2x128,
GRU-4x256

• Learning Rate (LR): 0.001, 0.0001

• Gradient Accumulation (GA): 1, 10, 100

The experiments here use GRU models of varying complexity because GRUs
have been shown to achieve state-of-the-art (or comparable) performance for AER,
whether using the MFB or Wav2vec2 representations (see Section 4.1 and Section
2.2.8). This was mainly because of the ability of GRUs to effectively model se-
quential data (see “Recurrent layers” in Section 2.2.2). The acoustic and textual
representations here are fed into the GRU model similarly to the previous experi-
ment (see Figure 4.2). However, since the goal in this experiment is not continuous

1We started by increasing the model complexity of GRU-1x64 rather than less complex models,
as the results of the previous experiments in Section 4.1 showed that GRU-1x64 was mostly more
performant for AER than GRU-1x32 or a linear (fully connected) classifier.
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Figure 4.4: The pipeline of the method used to evaluate the deep representations for
classifying emotion labels.

emotion prediction, but utterance-level emotion classification, the last output of the
model is followed by a linear layer and then a Softmax layer to provide the proba-
bilities of different emotion labels –happy, angry, sad and neutral for IEMOCAP–
(see Figure 4.4). The use of attention layers instead of GRUs was also investigated,
but they used more memory and did not perform as well as GRUs in our preliminary
experiments (further experiments on GRUs with attention layers for AER are also
done in Section 4.2.2). The GRU models were trained using the Adam optimiser,
where the loss function was cross-entropy, which is a common choice for classifi-
cation tasks (see Section 3.4.2 for more details). maximum number of epochs was
chosen to be 250, and an early stopping of 15 epochs was applied if no improvement
over the development set was observed. Also, we could not use more than one batch
size due to memory constraints. However, instead of using different batch sizes, we
used different GAs, which has a similar effect to varying batch sizes, but saves more
memory (see Section 3.3). The results of these experiments are discussed below.

Results

The results of the experiments on the performance of acoustic and textual represen-
tations for AER are shown in Figure 4.5.

At first glance, the results show that the textual representations –RoBERTa–
achieve consistently better results than the acoustic representations –XLSR-56 and
MFB– across all the different setups. This suggests that the verbal message of
the IEMOCAP corpus is a more efficient channel for predicting emotion cate-
gories, which may be due to the scripted nature of more than half of the dialogues
in this dataset. In addition, upon further investigation, it was realised that there were
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Figure 4.5: The results for emotion recognition on the IEMOCAP dataset, for dif-
ferent representations, models, and hyper-parameters. From left to right, the com-
plexity of the model, and then hyper-parameters increases.

helpful tags in the transcriptions, such as a “[LAUGHTER]” tag, which may have
played a role in aiding the AER from the transcriptions for the IEMOCAP dataset.
Comparison of the two acoustic representations also shows that while XLSR-56 out-
performs MFB in most cases, this is not always the case and MFB can perform as
well or better, when having a high LR, a low GA, or a more complex model. This
is in line with the results of the experiments done on the AlloSat and RECOLA
datasets in Section 4.1.

Moreover, previous observations of the state of the art also suggest that, regard-
less of the modality used, a more complex architecture is not necessarily always
more effective, and that how a model is trained may play a more important role than
the model architecture (Evain et al., 2021b; Liu et al., 2019). Therefore, in order
to study the effect of training hyper-parameters, LRs and GAs are the subject of
this study. The averages of the results for LR-0.001 compared to LR-0.0001 show
that a lower learning rate during training can be more effective for acoustic repre-
sentations, but not for textual ones. This, together with the aforementioned results
that textual representations can outperform acoustic ones, may suggest that textual
representations are better correlates of emotion for the IEMOCAP dataset, and can
therefore be exploited by training a model with a higher learning rate. Beside the
learning rate, the study of the other hyper-parameter here, i.e. the GAs, shows
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Figure 4.6: The emotion recognition results on the IEMOCAP dataset, averaged for
different hyper-parameters.

that although GA-1 is not as effective for the IEMOCAP dataset as having higher
GAs, there does not seem to be much difference between having 10 (GA-10) or 100
(GA-100) utterances influencing the weight update of the model for each training
iteration.

The best results here for W2V2-XLSR and RoBERTa respectively are 59% and
65% in terms of UAR with GRU-4x246 and GRU-1x64 (on fixed train-dev-test par-
titions). These results are comparable or better than the state-of-the-art results on
the IEMOCAP dataset. For example, in Li and Lee (2019), LLDs for audio and
GloVe for text are used with LSTMs to achieve 57 % and 67 % UAR respectively
(using 5-fold cross-validation). Also in Ho et al. (2020), MFCC and BERT repre-
sentations are used with GRUs to achieve 57 % and 67 % UAR respectively (using
10-fold cross-validation). A more recent work (Cai et al., 2021) shows that by fine-
tuning Wav2vec2 representations, and also training them for both AER and ASR at
the same time, one can achieve 78 % accuracy (UAR not reported) by using 10-fold
cross-validation.

The above results suggest that for IEMOCAP, the use of both acoustic signals
and their transcriptions can be beneficial for AER. Therefore, the use of both acous-
tic and textual modalities can be expected to more efficiently capture both types
of verbal and non-verbal communication. Therefore, by using acoustic and textual
modalities, one can expect to more efficiently capture both types of verbal and non-



4.2. JOINT REPRESENTATION OF ACOUSTIC SIGNALS AND TEXT 88

verbal communication. The following presents the experiments conducted in this
thesis to obtain an efficient joint acoustic-textual representation.

4.2.2 Joint acoustic-textual representations
Acoustic and textual information can be fused at the input, decision or model level.
Input-level fusion refers to techniques where the representations of different modal-
ities can be concatenated at the signal level. Input-level fusion is technically difficult
to implement for acoustic and textual representations because the representations of
acoustic signals are based on audio frames, whereas the textual representations are
based on tokens (see Section 2.2.5). On the other hand, decision-level fusion refers
to training different models for different modalities in complete isolation from each
other, but the final decision is made based on the decisions of each isolated model.
In this way, the information from the acoustic and textual modalities may not re-
ally be used in a complementary way and therefore may not be in line with the
aim of this section. Finally, model-level fusion refers to techniques where the rep-
resentations of different modalities are concatenated in a latent space, which may
be technically easier to implement than signal-level fusion, while also allowing the
fusion of acoustic and textual information before producing the output. In addition,
a comparison of the different fusion strategies (at input, model, or decision level),
for acoustic and textual modalities in the state of the art, has shown no significant
difference in performance for AER (Atmaja et al., 2022). Nevertheless, the model
level fusion strategy is chosen here, because it allows the integration of differ-
ent sources of information in the latent space, where they may be inherently
different at the signal-level. In the following, the experiments carried out with the
model-level fusion of acoustic and textual representations are explained in detail.

Experiments

Figure 4.7 depicts the AER model used here, which fuses acoustic and textual repre-
sentations at the model-level. The acoustic and textual representations used here are
pre-trained (frozen) W2V2-XLSR-56 and RoBERTa representations, similar to
previous experiments in Section 4.2.1. In addition, the use of attention mechanism
was also explored (see Figure 2.6), in order to further investigate whether there are
emotionally salient parts, either in the sequence of data unrolled in time (Sequen-
tial Attention in Figure 4.7), or across different modalities for different utterances
(Modality Attention in Figure 4.7).

The training strategy used here is similar to the previous hyper-parameters ex-
periments on the IEMOCAP dataset, which was discussed in Section 4.2.1. There-
fore, based on the hyper-parameters experiments, here the GRU-1x64 model is used
because it could achieve comparable results to state of the art (see Figure 4.6), while
being the simplest architecture with a faster training convergence compared to using
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Figure 4.7: The joint acoustic-textual AER model. The Sequential Attention is
applied to the sequence of outputs of the GRU model for acoustic and textual repre-
sentations in order to find salient parts of the sequence. On the other hand, Modality
Attention is applied to the latent representation of each modality in order to put more
focus on an acoustic or textual modality, depending on a given input utterance.

more layers. In fact, GRU-1x64 was more than four times faster than GRU-4x256
for both training and inference. Furthermore, the LR and GA were chosen to be
0.0001 and 100 respectively, which gave the best results. The maximum number of
epochs was also chosen as 50, because in the previous experiment with the same
model (GRU-1x64) and dataset (IEMOCAP), convergence was achieved in less
than 50 epochs. The results of these experiments are discussed below.

Figure 4.8: Emotion recognition performance comparison of different strategies for
joint representation of acoustics and text, as well as, using the representation of each
modality alone, on the IEMOCAP dataset.
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Results

The results presented in Figure 4.8 show that by using both acoustic and textual
representations, an AER system can better distinguish acted emotional expres-
sions from the IEMOCAP dataset than by using the representation of each
modality alone, which is in line with other studies (Li and Lee, 2019; Ho et al.,
2020; Siriwardhana et al., 2020). Also, the use of dot-product attention, either for
the textual and acoustic sequences, or on the latent joint representation space does
not further improve the results. Although it is difficult to pinpoint the reason without
further experiments, but this may be because the GRU is already sufficient to model
the context of the data, and thus the use of attention vectors complicates the train-
ing process by adding extra trainable parameters (see “Training neural networks”
in Section 2.2.2). Nevertheless, both the Wav2Vec2 and RoBERTa representations
use attention-based models (via transformers) to achieve state-of-the-art deep rep-
resentations of acoustics and text. However, the use of attention layers at the
back-end (for the emotion classification task), where there may not be enough
training data, does not seem to be beneficial. This is in line with some of the
previous studies, such as Lieskovská et al. (2021), which show that the benefits of
using the attention mechanism is not always clear and it is not an essential element
for achieving state-of-the-art results for AER.

Furthermore, the results obtained here are comparable with the state-of-the-art
results on joint acoustic-textual representations (see Table 4.3). For example, in Li
and Lee (2019), LLDs are used as acoustic features and GloVe as textual represen-
tations with LSTM models for AER on IEMOCAP. However, for the joint repre-
sentations, they also apply attention with “personal embeddings” obtained through
a “Linguistic Inquiry Word Count (LIWC)”, which consists of 64 semantic word
categories correlated with what often concerns individuals, as well as spoken pat-
terns. This further demonstrates the effectiveness of using personal embeddings,
which are further explored in Section 4.4 of this thesis. In another similar work,
(Ho et al., 2020), a multi-head attention mechanism is used with GRUs, and has
been shown to achieve better performance than the method proposed here. This is
despite the fact that the use of each modality alone in the work of Ho et al. (2020)
does not yield better performance than the proposed method here. This may be
because here the hyper-parameters were optimised for each modality rather than
the joint acoustic-textual representations. In more recent work, Siriwardhana et al.
(2020) shows that by jointly fine-tuning1 the pre-trained deep representations of
Wav2vec2 and RoBERTa, state-of-the-art performance can be achieved on a given
dataset. This is because the fine-tuning process further adapts the deep represen-
tations to the specific dataset being evaluated. However, fine-tuning deep repre-

1Fine-tuning here refers to the continued training of deep representations, such as Wav2vec2 or
RoBERTa, alongside the AER model.
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Table 4.3: Emotion recognition performance on the IEMOCAP dataset, based on
acoustic, textual or joint acoustic-textual representations using various methods
based on this work and the state of the art.

Method Audio Text Joint
LLD & GloVe + LSTM + personal attention (Li and Lee, 2019) 57.1% 67.1% 70.3%
MFCC & BERT + GRU + multi-head attention (Ho et al., 2020) 55.9% 67.2% 73.2%
VQ-Wav2Vec & RoBERTa + Linear (Siriwardhana et al., 2020) - - 75.5%

W2V2-XLSR-56 & RoBERTa + GRU (this work) 58.7% 68.4% 71.7%

sentations may come at the cost of reduced performance compared to using only
pre-trained deep representations in a cross-corpus setting (see Section 5.1).

So far, the experiments in this section have only been based on the IEMOCAP
dataset, which contains acted emotional expressions recorded in a laboratory en-
vironment. Since one of the main goals of this thesis is to study the effect of dif-
ferent deep pre-trained representations on emotional expressions in the wild, the
following experiments are presented on the CMU-MOSEI dataset, which contains
Youtube videos recorded with different speakers, microphones, and in different en-
vironments (see Section 3.1).

4.2.3 Joint representations for emotion recognition in the wild
The aim here is to see the effect of joint acoustic-textual representations for emo-
tional expressions in the wild. The experiments and results are explained below.

Experiments

The experiments conducted here are similar to the previous experiments on the
IEMOCAP dataset, with the base architecture and without the use of any atten-
tion layer. But here the experiments are on the CMU-MOSEI dataset (see Section
3.1.2). A statistical summary of this dataset is provided in Table 4.4. Similar to
previous experiments, pre-trained (frozen) W2V2-XLSR-56 and RoBERTa rep-
resentations are used as acoustic and textual representations for the experiments
in this subsection. Three experiments are performed here, consisting in the use of
joint acoustic-textual representations, acoustic representations alone, and textual
representations alone. In order to compare our results with the state of the art, the
sentiment dimension is used1, which is considered as a continuous number ranging

1The experiments carried out here for the CMU-MOSEI dataset are only with the sentiment
dimension and not with the emotion categories, because sentiment annotations seemed to be more
reliable, as our preliminary experiments with the emotion categories showed rather low results (40 %
for seven classes with RoBERTa and chance level with W2V2-XLSR-56) and were therefore not
considered reliable for further studies.
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Table 4.4: Statistics related to the training, development and test partitions of the
CMU-MOSEI datasets, which contains in-the-wild emotional expressions.

Dataset Number of utterances Duration in hours
Train Dev Test Train Dev Test

CMU-MOSEI 18,542 1377 3340 38 3 8

from -3 to +3. The sentiment values are then used in two forms: 1) to classify the
sentiment value for less than zero or equal and greater than zero in a two-category
classification paradigm, and 2) to predict continuously in a regression paradigm by
simply removing the Softmax layer at the end and using MSE as the loss function,
to follow other works, such as Siriwardhana et al. (2020); Sun et al. (2020). All the
other parameters are the same as the previous experiment (see Section 4.2.2). The
results of the experiments are discussed below.

Results

The results of this study, alongside the state of the art, is presented in Table 4.5.
The results of the experiments here, together with the experiments from (Sun
et al., 2020), suggest that the acoustic representations (whether LLDs or W2V2-
XLSR-56) can not work well for classification of the low and high sentiment
values for expressions in the wild. The ineffectiveness of acoustic representa-
tions for AER in the wild and not acted emotion recognition, may be because the
acoustic representations used here (W2V2-XLSR-56) are trained for read speech
in no-noise environments, and fail to work well on different noisy environments
and spontaneous speech existing in the CMU-MOSEI dataset. Nevertheless, the
W2V2-XLSR-56 representations seem to work much better compared to LLDs for
continuous prediction of the sentiment dimension.

On the other hand, the textual representations of BERT and RoBERTa seem
to be able to provide effective representations for sentiment classification in the
wild. The better performance of textual representations such as RoBERTa com-
pared to acoustic representations such as W2V2-XLSR-56 may be due to the fact
that textual representations are not affected by the environmental noise that affects
a recorded audio or the way a sentence is uttered. Moreover, as the aim here is
sentiment, which can be related to valence, since both are usually annotated on a
scale from negative to positive. Thus, it can be argued that the sentiment dimension
is easier to predict from text than from speech, since arousal is usually attributed
to vocal parameters, whereas valence is often influenced by linguistic information
(Goudbeek and Scherer, 2010). For example, in Triantafyllopoulos et al. (2023),
it is shown on two acted datasets of IEMOCAP and MSP-Podcast that the arousal
dimension achieves significantly higher CCC using acoustic rather than textual fea-
tures, and vice versa, the valence dimension achieves higher CCC using textual
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Table 4.5: Emotion recognition performance on the CMU-MOSEI dataset, compar-
ing the use of acoustic, textual and joint acoustic-textual representations. The best
results for each column are shown in bold. The Mean Absolute Error (MAE) is
the result of predicting the sentiment dimension continuously (from -3 to +3), and
the UAR/Accuracy is the result of classifying low (below zero) and high (equal or
above zero) sentiment values.

Method MAE UAR / Accuracy
LLD of audio + LSTM (Sun et al., 2020) 1.430 45.1% (Accuracy)

BERT + LSTM (Sun et al., 2020) 0.897 80.8% (Accuracy)
LLD of audio & BERT + LSTM (Sun et al., 2020) 0.909 80.6% (Accuracy)

W2V2-VQ & RoBERTa + Linear (Siriwardhana et al., 2020) 0.577 88.3% (Accuracy)
W2V2-XLSR-56 + GRU (this work) 0.680 57.3% (UAR)

RoBERTa + GRU (this work) 0.531 72.3% (UAR)
W2V2-XLSR-56 & RoBERTa + GRU (this work) 0.542 72.2% (UAR)

rather than acoustic features.
Furthermore, despite the previous results obtained in section 4.2.2, the use of

joint acoustic-textual representations does not perform better for AER in the
wild than the use of textual representations. This may be because acoustic rep-
resentations here are not nearly as useful as textual representations for classifying
low and high sentiments in the wild, and therefore using acoustic representations in
addition to textual representations may increase the complexity of training a model
rather than provide additional useful information (see “Training neural networks”
in Section 2.2.2).

In this section, several experiments were conducted and analysed to show the
effectiveness of joint acoustic-textual representations for acted emotion recognition
on the IEMOCAP corpus and AER in the wild on the CMU-MOSEI corpus. The
results showed that although joint acoustic-textual representations can perform sig-
nificantly better than either modality alone for acted emotional expressions, this
better performance of joint acoustic-textual representations does not necessarily ex-
tend to predicting emotional expressions in the wild. These findings are discussed
further below.

4.2.4 Discussion
The experiments in this section started by analysing different model complexi-
ties and training hyper-parameters for training AER models for acoustic or textual
modalities alone. The results showed that even a simple model (here GRU-1x64)
can be effectively trained for AER on deep pre-trained acoustic (W2V2-XLSR) and
textual (RoBERTa) representations. Next, a method was proposed to fuse the acous-
tic and textual representations at the model level using the dot-product attention
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mechanism applied to either the sequence or latent representation of the two modali-
ties. However, the results showed that simply concatenating the acoustic and textual
representations at the model level is effective for AER on acted emotional expres-
sions using the IEMOCAP dataset. It was also shown that the joint acoustic-textual
representations obtained in this way can perform better than using either acoustic
or textual modalities alone. The performance of the joint acoustic-textual represen-
tations was then further evaluated on the CMU-MOSEI dataset, which consists of
emotional expressions in the wild. The results showed that the joint acoustic-textual
representations did not perform better than just using the textual representations for
continuous prediction of the sentiment dimension or for detecting low and high
sentiment values. This was mainly because the acoustic representations could not
effectively predict the sentiment dimension. This may be because the W2V2-XLSR
acoustic representations used here were trained on read speech in noiseless environ-
ments, which is different from the recordings in the CMU-MOSEI dataset.

However, it should be noted that the study of AER in the wild is limited here
to predicting the sentiment dimension and detecting low and high sentiment values
from the CMU-MOSEI dataset. Although the CMU-MOSEI dataset also provides
emotion categories (see Section 3.1.2), the results of our preliminary experiments
on the emotion categories were too small to draw any conclusions and were there-
fore not considered in this thesis. The work of Sun et al. (2020) for the classification
of the seven basic emotions of the CMU-MOSEI dataset also showed very low ac-
curacies of 16.2%, 35.9%, 35.08% for acoustic (LLDs), textual (BERT) and acous-
tic+textual representations respectively. Nevertheless, these results on the emotion
categories are also in line with the results on the sentiment dimension of the CMU-
MOSEI dataset, which might suggest that the AER from acoustic representations
is not yet ready to be used on emotional expressions observed in the wild. On the
other hand, textual representations have been shown to be capable of reasonable
performance for AER in the wild. Therefore, the state of the art in recent years has
been to first try to obtain textual transcriptions of a speech signal by exploiting an
ASR system, and then to try to use AER models trained on textual representations.
This is further explored in the next section of this chapter.

4.3 Exploiting automatic speech recognition
Joint acoustic-textual representations have been shown to be more effective than us-
ing acoustic representations alone for AER of acoustic signals, both for acted emo-
tional expressions and for recordings made in the wild. As shown in the previous
section (see Section 4.2), the effectiveness of joint acoustic-textual representations
is mainly due to the use of textual representations, especially for noisy acoustic
signals in the wild, where the verbal message may be a more effective source of
information for AER. However, as human transcriptions are not always available,
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ASR models are often used to provide us with transcriptions. These transcriptions
can later be used to obtain the joint acoustic-textual representations according to
the model presented in Section 4.2.2 (see the model in Figure 4.7). The use of joint
acoustic-textual representations, where the text is extracted from ASR models, has
been shown to perform better than using only the acoustic representations for AER
on acted data (Heusser et al., 2019; Yoon et al., 2019; Wu et al., 2021; Peng et al.,
2021). However, the state of the art has not yet explored the effectiveness of this
method for emotional expression in the wild. Therefore, in this section, several
experiments are conducted to investigate the effect of using ASR transcriptions for
joint acoustic-textual representations on AER for both acted and in-the-wild emo-
tional expressions. These experiments are described in more detail below, followed
by the results and a brief discussion.

4.3.1 Experiments
The experiments in this section use the two IEMOCAP and CMU-MOSEI
datasets from the experiments in section 4.2.2 and section 4.2.3, with the same
GRU-1x64 model and the same training strategy of LR=0.0001 and GA=100. The
only difference from the previous experiments is that Google’s ASR1 is used to
transcribe the utterances for the IEMOCAP and CMU-MOSEI datasets, because
the goal here is to evaluate the effectiveness of ASR transcriptions, instead of using
human transcriptions. Also, Google’s ASR was chosen because it provides reli-
able transcriptions in many languages and is easy to use. Experiments will then be
carried out on ASR-based textual representations and joint acoustic-textual repre-
sentations based on ASR transcriptions.

4.3.2 Results
First, the Word Error Rate (WER) of Google’s ASR with respect to human tran-
scriptions was calculated by counting the number of substitutions, deletions and
insertions over the total number of words per phrase (see Section 3.4.4). The results
are shown in Figure 4.9. As can be seen from the figure, the WERs are quite high
for the CMU-MOSEI dataset, but even higher for the IEMOCAP dataset, which
may make the use of it for AER on the IEMOCAP dataset rather ineffective.

The results of the AER experiments are shown in Figure 4.10. For the IEMO-
CAP dataset, we can observe a large drop in performance by using the ASR tran-
scriptions compared to using the human transcriptions. This was mainly because
the ASR transcriptions did not pick up on all the words in many cases, which might

1Here the SpeechRecognition python wrapper was used (https://pypi.org/project/
SpeechRecognition), which uses the Google Cloud speech-to-sext APIs (https://cloud.
google.com/speech-to-text).

https://pypi.org/project/SpeechRecognition
https://pypi.org/project/SpeechRecognition
https://cloud.google.com/speech-to-text
https://cloud.google.com/speech-to-text
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Figure 4.9: The WER of Google’s ASR with respect to human transcriptions, cal-
culated for the IEMOCAP and CMU-MOSEI datasets.

have been associated with certain emotions. For example, an utterance labelled as
“anger” with the human transcription of “Adders don’t snap, they sting.’ was auto-
matically transcribed as “snappy today”, which loses it’s meaning. Moreover, the
IEMOCAP transcriptions contain “[LAUGHTER]” tags, which can further help the
AER from text, especially for recognition of “happy” expressions. Despite the poor
performance of the ASR transcriptions compared to the human transcriptions, using
the ASR transcriptions to provide us with the joint acoustic-textual representations
still performs better than using only the acoustic representations. This suggests that
even a hint of the verbal message, in this case around one word out of five, can
help the AER from acoustic signals.

On the other hand, the AER results for the CMU-MOSEI dataset show little dif-
ference between using the ASR transcriptions or the human transcriptions as input
to RoBERTa. This is despite the fact that there is a 51 % WER for the ASR tran-
scriptions, with respect to the human transcriptions1. This result suggests that using
ASR to obtain textual representations can be effective for AER in the wild, even
if only half of the uttered words are detected. Moreover, using only ASR-based
RoBERTa representations shows a significant improvement (below 0.0001 using
p-value test) over W2V2-XLSR-56 representations. Also, the use of joint W2V2-

1Methodologically, only Youtube videos with manual transcriptions provided by the uploader
were collected for the CMU-MOSEI dataset (Zadeh et al., 2018).
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Figure 4.10: The comparison of using ASR transcriptions versus human transcrip-
tions on the performance of AER from joint acoustic-textual representations on the
IEMOCAP and CMU-MOSEI corpora.

RoBERTa representations does not significantly improve the AER results compared
to the use of RoBERTa representations alone, which is consistent with previous re-
sults obtained in Section 4.2.3. The results of this section are summarised and
discussed below.

4.3.3 Discussion
The aim of this section was to evaluate the effectiveness of using ASR models to
provide us with transcriptions that can later be used in a joint acoustic-textual rep-
resentation to improve AER from acoustic representations. The experiments con-
ducted here, on the IEMOCAP and CMU-MOSEI datasets, have shown that this
method can improve the performance of AER from acoustic representations for
both acted and in-the-wild emotional expressions, demonstrating the importance of
considering the verbal message alongside the acoustic changes of the signal. How-
ever, this improvement in performance for in-the-wild emotional expressions was
shown to be mainly due to the use of the verbal message, as the W2V2-XLSR-
56 acoustic representations and LLDs were experimentally evaluated as not being
robust enough to be used reliably for in-the-wild emotional expressions.

The experiments so far in this chapter have shown that the joint acoustic-textual
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representations can achieve better AER performance than the acoustic representa-
tions alone. Furthermore, since different people express the same emotion in dif-
ferent ways, recent studies have shown that incorporating speaker information into
acoustic representations can also improve AER performance (Pappagari et al., 2020;
Assunção et al., 2020; Ta et al., 2022). Therefore, in the next section, the effect of
integrating speaker representations into joint acoustic-textual representations will
be investigated.

4.4 Speaker-aware deep representations
One of the main aims of this thesis is to study the effect of speaker-aware joint
acoustic-textual representations on AER, where the text can be either human tran-
scription or generated by an ASR (see Section 1.2.1). Recent related state of the art
has shown that the use of pre-trained speaker representations, which can be latent
representations from a speaker recognition model, can be used in a model-level fu-
sion strategy (see Section 4.2.2) to improve the performance of AER from acoustic
signals compared to using only the acoustic representations (Ta et al., 2022). Since
a model-level fusion strategy can also be effective for fusing both acoustic and tex-
tual representations (see Section 4.2), this section advances the state of the art by
investigating the effectiveness of a model-level fusion strategy for acoustic, textual,
and speaker representations (see Figure 4.11). To achieve this goal, this section first
studies the effectiveness of model-level fusion of speaker representations based on
self-supervised representations in Section 4.4.1, and then evaluates this method for
joint acoustic-textual representations in Section 4.4.2.

4.4.1 Speaker-aware acoustic representations
In what follows, the dataset and representations are first explained, followed by the
method and results.

Dataset and representation

Here, the IEMOCAP dataset is used for the experiments, since the related state of
the art has also focused on this dataset, and also to be consistent with the previous
experiments in Section 4.3. However, the partitioning of the IEMOCAP dataset
used here differs from the partitioning used in the previous experiments. This is be-
cause in the previous experiments the task was speaker-independent emotion recog-
nition, whereas here the goal is speaker recognition, which is not possible with
speaker-independent partitioning. Therefore, here all IEMOCAP utterances are
randomly assigned, considering a 70 %-15 %-15 % distribution for training,
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Table 4.6: Statistics related to the training, development and test partitions of the
IEMOCAP dataset used for the speaker-aware acoustic representations experiments.
Sessions 1-5 of the IEMOCAP dataset are randomly assigned, taking into account
a 70 %-15 %-15 % distribution for training, development and test partitions, and
ensuring that the same speaker appears in all partitions.

Dataset Target Number of utterances Duration in hours:minutes
Train Dev Test Train Dev Test

IEMOCAP Speaker 3871 830 830 4:56 0:57 1:06

development and test partitions, with all speakers involved in all partitions. A
statistical summary of this partitioning is given in Table 4.6.

Regarding the representation employed in this subsection, only acoustic W2V2-
XLSR-56 is used (following previous sections), since the focus of the study here
is on the training strategy and not on different modalities. This study is further
extended for both acoustic (W2V2-XLSR-56) and textual (RoBERTa) modalities in
Section 4.4.2.

Method

The proposed method for speaker-aware emotion recognition is shown in Figure
4.11. The speaker and emotion recognition models are the same model (GRU-
1x64) used in Section 4.2, which has already been shown to be able to effectively
categorise different emotions. In this subsection, different strategies for training the
speaker and emotion recognition models are investigated.

Furthermore, to train the model shown in Figure 4.11, three different training
strategies are investigated:

1. Separate training: Here we first train the speaker recognition model, and
then use the last vector in the output sequence of the trained GRUs to provide
us with speaker representation vectors. The speaker representations are then
concatenated with the acoustic and textual latent representations to train the
AER model.

2. Separate training with fine-tuning: Here, the same separate training strat-
egy as above is applied, but with the difference that we allow the W2V2-
XLSR-56 weights for the speaker recognition model to be updated (i.e. “fine-
tuned”) in order to further adapt the W2V2-XLSR-56 model to the speakers
of the IEMOCAP dataset and thus obtain a more pertinent learnt speaker rep-
resentation.

3. Joint training: Here the speaker and emotion recognition models are trained
jointly in a stepwise fashion, i.e. for each training iteration there are two
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Figure 4.11: The proposed model for speaker-aware emotion recognition based on
joint acoustic-textual representations. The speaker recognition model can be trained
separately or together with the emotion recognition model.

steps: 1) a forward pass to compute the loss and gradients for the speaker
model based on the input and update its weights when it has reached the
GA cap (here 100 iterations), and 2) a forward pass to compute the loss and
gradients for the emotion model based on the input and update its weights
when it has reached the GA cap. The joint training strategy when having
multiple tasks is a common practice in deep learning, and it has shown to
obtain state-of-the-art results in similar works such as Moine et al. (2021); Ta
et al. (2022).

All the experiments in this subsection are performed on the IEMOCAP cor-
pus with W2V2-XLSR-56 representations, the GRU-1x64 model, LR of 0.0001
and GA of 100, similar to the experiments in Section 4.3. In the following, the
results of the different training strategies for speaker-aware acoustic representations
are presented.

Results

The results of the experiments described above are shown in Figure 4.12. The re-
sults show that the use of speaker representations can improve the performance
of AER from acoustic representations, for both separate and joint training
strategies. This demonstrates the effectiveness of integrating speaker information
for AER from acoustic signals. The joint training strategy also performs better
than training the speaker and emotion recognition models separately, because in
joint training the speaker recognition model also learns to produce more relevant la-
tent representations for emotion recognition. It should be noted that although joint
training achieves the best performance, it cannot be used in speaker-independent
emotion recognition paradigms, where the speakers are assumed to be different for
different partitions. Furthermore, the results show that the separate training with
fine-tuning of the W2V2-XLSR-56 weights for the speaker recognition model does
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Figure 4.12: Performance comparison of different strategies for the proposed
speaker-aware emotion recognition model. This model is trained using three dif-
ferent strategies: 1) separate training, where a speaker recognition model is trained
separately to provide speaker representations (SpkRep), 2) separate training with
fine-tuning, where the W2V2-XLSR-56 weights for the speaker recognition model
are fine-tuned during training, and 3) joint training of the speaker and emotion
recognition models.

not seem to be effective. This may be due to the fact that the number of instances for
the IEMOCAP dataset is too small to further train the large number of parameters
used in the Wav2vec2 architecture, which would result in a lower generalisability
of the speaker representations when fine-tuning the pre-trained W2V2-XLSR-56
model for the speaker recognition task on the IEMOCAP dataset (This is further
studied in Section 5.1).

Here, different training strategies have been evaluated for speaker-aware AER
from acoustic representations; in the following, these experiments are further ex-
tended to include textual representations, either from human or ASR-based tran-
scriptions.

4.4.2 Speaker-aware joint acoustic-textual representations
The aim of this section is to evaluate the effectiveness of using speaker information
to improve the performance of AER from joint acoustic-textual representations. In
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section 4.4.1 it was discussed that speaker information can be obtained from the la-
tent representations of a speaker recognition model, which can be further fused with
acoustic representations to better recognise different emotion categories compared
to using acoustic representations alone (see Figure 4.11). Following the method
proposed in 4.4.1, and according to the aforementioned aim of this section, several
experiments are carried out to first compare the effectiveness of acoustic, textual
and joint acoustic-textual representations in a speaker recognition model. Then, the
latent speaker representations of the speaker recognition models are fused with the
representations of different modalities, which are then called speaker-aware repre-
sentations. Further experiments are then conducted to evaluate the performance of
the speaker-aware acoustic, textual and joint acoustic-textual representations for the
AER task. The dataset, representations, the method, and the results are presented
below.

Dataset and representations

Despite the previous experiments in Section 4.4.1, in this subsection the IEMO-
CAP dataset is partitioned differently for the speaker and emotion recognition
models. This is because training a speaker recognition model requires the same
speakers to be present in different partitions. On the other hand, the goal here is to
train speaker-independent emotion recognition models, which requires the speakers
to be unique for each partition. Given these criteria, the partitioning of the IEMO-
CAP dataset for speaker and emotion recognition models is defined as follows (see
Table 4.7 for a statistical summary):

• Regarding the partitioning of the speaker recognition models, sessions
one to four of the IEMOCAP dataset are randomly assigned to training, de-
velopment and test partitions with 70 %-15 %-15 % distributions for each par-
tition respectively, leaving the speakers of session five of the IEMOCAP
dataset completely unseen by the speaker recognition model. Session five
of the IEMOCAP dataset was intentionally omitted so that the latent speaker
representations would not be influenced by the speakers of this session, as
this session is considered as the test set for the AER models.

• Regarding the partitioning of the emotion recognition models, sessions
one to three are considered as the training set, session four as the develop-
ment set, and session five as the test. This is consistent with the partitioning
used for experiments in Section 4.2 and Section 4.3, which enables further
comparisons of the effectiveness of fusing speaker representations for AER
from joint acoustic-textual representations.

Also, the main acoustic and textual representations used here are W2V2-XLSR-
56 and RoBERTa, following the previous experiments. In addition to the W2V2-
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Table 4.7: Statistics related to the training, development and test partitions of the
IEMOCAP dataset used for the speaker-aware joint acoustic-textual representations
experiments.

Dataset Target Number of utterances Duration in hours:minutes
Train Dev Test Train Dev Test

IEMOCAP Speaker 3003 643 644 3:48 0:51 0:48
IEMOCAP Emotion 3259 1031 1241 4:11 1:16 1:33

XLSR-56 representations, the encoder representations of the Whisper model (see
Section 3.2.3) are also used as acoustic representations. As the Whisper model is
partly trained on ASR, where the speaker tags were often found in the transcriptions,
it was therefore indirectly trained to recognise different speakers (Radford et al.,
2022). Since Whisper has been trained to predict both spoken words and speaker
identities, it is hypothesised here that the corresponding representations should be
aware of both the verbal content and the speaker peculiarities, and therefore its
performance should be on a par with the speaker-aware joint W2V2-RoBERTa rep-
resentations.

Figure 4.13: The results for the speaker recognition model based on the eight speak-
ers from sessions one to four of the IEMOCAP dataset. The model uses GRU-
1x64 with W2V2-XLSR-56, RoBERTa, and Whisper representations. Also, the
RoBERTa representations are computed based on either human or ASR transcrip-
tions.
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Figure 4.14: The results for the emotion recognition model based on W2V2-XLSR-
56, RoBERTa and Whisper representations as baseline and their fusion with their
respective speaker representations.

Method

The experiments conducted here are based on the separate training strategy of the
method proposed in the Section 4.4.1 (see Figure 4.11). This method is used as
described in the previous experiments, with a GRU-1x64 model, which is trained
with LR of 0.0001, and GA of 100. The results of the experiments in this subsection
are presented below.

Results

The results of the speaker recognition model for the W2V2-XLSR-56, RoBERTa
and Whisper representations are depicted in Figure 4.13. The results show that
the Whisper representations can distinguish different speakers with a signifi-
cant superior performance compared to W2V2-XLSR-56, RoBERTa and joint
W2V2-RoBERTa representations. This may be because the Whisper encoders
have been indirectly trained for the task of speaker identification and are therefore
able to provide representations that can better distinguish between different speak-
ers (see the “Experiments” section above). Moreover, a comparison between the
W2V2-XLSR-56 and RoBERTa representations shows that deep acoustic represen-
tations are marginally (but not significantly) more effective for speaker recogni-
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tion. This may be due to the fact that acoustic representations contain correlates
of speaker pitch, whereas the use of RoBERTa representations in a speaker recog-
nition model can only correlate the use of specific words and phrases to different
speakers. This explanation is further supported by comparing the results of the
RoBERTa representations for human and ASR transcriptions, where the RoBERTa
representations of ASR transcriptions achieve chance-level accuracy for the speaker
recognition task on the IEMOCAP dataset. This is not surprising as the WER of the
automatic transcriptions, with respect to human transcriptions, was very high for the
IEMOCAP dataset (see Figure 4.9). Furthermore, the ineffectiveness of using tran-
scriptions may be due to the fact that more than 50% of the utterances in the IEMO-
CAP dataset are scripted, where the choice of words might not correlate with the
speakers (actors) who utter them. Nevertheless, the results further show that using
joint acoustic-textual representations achieves better performance for speaker
recognition than using each modality alone, which is concordant with the previ-
ous experiments performed for the AER task in section 4.2.2 and section 4.3.

The results of the AER model for the W2V2-XLSR-56, RoBERTa and Whisper
representations are shown in Figure 4.14. The results show that the W2V2-XLSR-
56 representations fused with the speaker representations can achieve a marginal im-
provement (p value of .075 in a z score test) in the performance of the AER model
compared to using only the W2V2-XLSR-56 representations. This improvement
might demonstrate the effectiveness of fusing speaker information with acoustic
representations for AER from acoustic signals. Furthermore, the training set of the
speaker recognition model contained only eight speakers, which can mean that even
a small number of speakers can help to generalise different speaker styles, which
can be further exploited to “personalise” AER models by the proposed model. On
the other hand, fusing speaker representations with the RoBERTa representations
for the human transcriptions does not significantly improve the AER performance.
Moreover, using ASR transcriptions in this paradigm significantly reduces the AER
performance when using speaker representations that are trained on the RoBERTa
representations of the ASR transcriptions. This may be because there is little cor-
relation between different speakers and textual representations in the IEMOCAP
dataset (see the paragraph above).

The results also show that joint W2V2-RoBERTa representations achieve better
performance than W2V2-XLSR-56 representation alone (when using human tran-
scriptions), with and without fusion with speaker representations. This shows that
the acoustic representations can be made “verbal-aware” and “speaker-aware” by
simply fusing textual and speaker representations at the model level, resulting in
better performance for AER. However, as can be seen from the results of the joint
W2V2-RoBERTa representations from ASR transcriptions, this method relies heav-
ily on the performance of the ASR model. Furthermore, by comparing the results
of the speaker and emotion recognition models found in Figure 4.13 and Figure
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4.14, one can see a correlation between the performance of the speaker recognition
and the emotion recognition models. This suggests that the effectiveness of the
speaker representations used in the AER model depends on the accuracy of
the speaker recognition model that provides the speaker representations.

Moreover, the results for AER on the IEMOCAP dataset show that the Whisper
representations are as effective as using speaker-aware joint W2V2-RoBERTa
representations. This may be because the Whisper representations are trained di-
rectly for ASR and indirectly for speaker recognition (see “Experiments” above),
which means that such representations already contain speaker and verbal in-
formation and do not need to be fused with such information in an extra step.
This hypothesis is further supported by the results of the Whisper representations
fused with speaker representations, which show no improvement over using only
the Whisper representations for the AER task.

The experiments and results presented in this section are briefly summarised and
further discussed below.

4.4.3 Discussion
The aim of this section was to investigate the effectiveness of speaker awareness for
deep pre-trained representations of acoustic signals and text. To achieve this goal,
a method was proposed in which speaker representations trained from a speaker
recognition model are fused at the model level with acoustic and textual represen-
tations. Several experiments were then carried out on the IEMOCAP dataset to
evaluate this method. The results showed that although speaker recognition models
perform better from acoustic signals than from text, the use of both modalities still
outperforms the use of either modality alone for the speaker recognition task. The
latent speaker representations from the pre-trained speaker recognition model can
then be fused with acoustic and textual representations to provide speaker informa-
tion. The results of this method for the AER task show that the fusion of speaker rep-
resentations with acoustic-textual representations can perform marginally (but not
significantly) better than the joint acoustic-textual representations without speaker
representations, but only when the text is human transcriptions. The use of ASR
transcriptions instead of human transcriptions was shown to be less effective in this
method due to the lack of accuracy of the automatic transcriptions. These results
suggest that for an effective speaker-aware AER model, in the absence of human
transcriptions and an accurate ASR model, it is better to use only speaker represen-
tations computed from acoustic signals, rather than automatic transcriptions. More-
over, the results suggest that the use of deep acoustic representations already trained
on speaker and verbal information, such as the Whisper representations, would not
need to be further fused with speaker or text representations to achieve comparable
results to speaker-aware W2V2-RoBERTa representations for the AER task.
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It should be noted that the study presented in this section has some limitations.
One such limitation is that the method used here was only evaluated on the acted
IEMOCAP dataset and not on emotional expressions in the wild. This is mainly
because the CMU-MOSEI dataset, which was used in previous experiments to rep-
resent data in the wild, could not be used here as this dataset does not provide
speaker IDs. Furthermore, the IEMOCAP dataset uses only 10 speakers, eight of
which were used to train the speaker recognition model and the other two speakers
were used to test the speaker representations for the AER model. The evaluation
of the “speaker awareness” method with only two speakers can also be seen as a
limitation of this study.
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4.5 Summary
Recent advances in DNNs have shown that deep pre-trained representations, and
in particular Wav2vec2 and RoBERTa representations, can achieve state-of-the-art
performance in a wide range of speech and text tasks, including emotion recognition
(see Chapter 2). As such deep representations are formed incrementally on large
amounts of data, the relationship between their training data and their performance
for a downstream task such as emotion recognition is difficult to understand and
control. To this end, in Section 4.1, several Wav2vec2 models were pre-trained on
different amounts and types of speech, and their performance for dimensional emo-
tion recognition was analysed on the RECOLA and AlloSat datasets. The results
showed that the type of data plays a more important role than the amount of data.
In particular, Wav2vec2 representations pre-trained on French data perform better
on French emotion prediction tasks than Wav2vec2 representations pre-trained on
English data. However, pre-training the deep representations on more data does not
necessarily lead to better performance for AER. Moreover, compared to traditional
MFB features, such deep representations rely on less complex models to achieve
good AER performance.

Furthermore, as emotions are conveyed by both verbal and non-verbal com-
munication, the joint acoustic-textual representation of acoustic and textual rep-
resentations has been shown to be more effective than using each modality alone
(see section 2.2.5). Therefore, in section 4.2, several methods for fusing acoustic
(W2V2-XLSR-56) and textual (RoBERTa) representations were investigated on the
IEMOCAP (for acted expressions) and CMU-MOSEI (for in-the-wild expressions)
datasets. The results showed that simply concatenating latent representations of pre-
trained acoustic and textual representations achieved better AER performance for
acted and in-the-wild emotional expressions than using the representation of each
modality alone. These results are consistent with those observed in similar studies
such as Siriwardhana et al. (2020).

However, joint acoustic-textual representations often rely on human transcrip-
tions of acoustic signals, which are not always available in a realistic application of
AER models. Therefore, several studies have investigated the use of ASR transcrip-
tions to provide joint acoustic-textual representations for AER on acted emotional
expressions (Heusser et al., 2019; Yoon et al., 2019; Wu et al., 2021; Peng et al.,
2021). These studies have shown that although the joint acoustic-textual represen-
tations based on ASR transcriptions are not as effective as human transcriptions
for AER, they still perform better than relying on acoustic representations alone.
To advance the aforementioned state-of-the-art studies, in Section 4.3, this method
is further evaluated here for emotional expressions in the wild, by exploiting the
CMU-MOSEI dataset. The results show that this method is also effective for emo-
tional expressions in the wild, but mainly due to the use of textual representations,
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as the acoustic representations, whether W2V2-XLSR-56 or traditional LLDs, were
not shown to be robust enough to be used reliably for emotional expressions in the
wild.

The use of verbal messages from textual representations is not the only source
of information that can improve the performance of AER from acoustic represen-
tations. The use of speaker representations has also been shown to be effective for
AER (Pappagari et al., 2020), as it provides information about the style of dif-
ferent speakers. Therefore, in section 4.4, several experiments were performed
on the acted IEMOCAP dataset to investigate the effectiveness of fusing speaker
representations into joint acoustic-textual representations on acted AER, by using
W2V2-XLSR-56 and RoBERTa representations. The results showed that speaker-
aware acoustic-textual representations can achieve marginally better AER perfor-
mance than acoustic-textual representations without speaker representation. How-
ever, it was also shown that using ASR transcriptions to compute speaker-aware
acoustic-textual representations does not lead to significantly better results than us-
ing speaker-aware acoustic representations, and therefore the accuracy of the ASR
model is a limiting factor in this paradigm. Furthermore, it was shown that deep
acoustic representations such as Whisper, which have been pre-trained directly for
ASR and indirectly for speaker recognition, can contain both verbal and speaker
information and do not need to be fused with textual and speaker representations
to achieve comparable performance to speaker-aware joint W2V2-RoBERTa repre-
sentations for acted AER.



Chapter 5

Generalisation beyond emotion
schemes

From pixabay.com

AER aims to predict the numerical representation of an affective state of mind,
from a numerical representation of a given acoustic or textual emotional expres-
sion (see Section 1.1). In particular, the use of deep pre-trained representations of
acoustic signals and text, such as Wav2Vec2 or RoBERTa, have shown great perfor-
mances in AER in Chapter 4 for acted and in-the-wild emotional expressions. The
better performance of deep representations over traditional hand-crafted features is
usually attributed to the fact that deep representations are trained on large amounts
of data, in order to form a data-driven feature extraction that can effectively model
different variations in the acoustic signals or text, rather than designing feature ex-
traction methods based on our limited acoustic or textual knowledge (see Section
2.2.3).
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Furthermore, the state-of-the-art Automatic Emotion Recognition (AER) mod-
els usually use supervised data-driven machine learning methods to map the deep
representations of acoustic signals or text to specific emotion annotations defined
for each specific dataset. This is because numerical representations of emotion
are defined and annotated in different subjective ways from one dataset to another,
and thus it is challenging to consider multiple datasets to train AER models (see
Section 1.1.1). For example, the RECOLA dataset is annotated based on arousal
and valence dimensions of emotion according to six specific annotators, while the
EmoDB’s labels are related to an actor’s perception of a set of emotion labels –
anger, anxiety, boredom, disgust, happiness, neutral, and sadness– (see Section
3.1). Also, the emotional expressions in each dataset represent a limited range of
the vast possibilities of all the emotional expressions that can be observed in the
wild. Therefore, it is important to exploit multiple datasets in order to generalise
across a wide range of emotional expressions. Although self-supervised representa-
tions have been shown to generalise well across datasets, there do not appear to be
sufficiently large datasets of emotional expressions to train a self-supervised repre-
sentation to generalise across emotional expressions without using diverse emotion
annotations (see Section 4.1). But how can a supervised machine learning model be
trained to generalise across different emotion annotations from different datasets?

To address the challenge of generalisation across different emotion annotation
schemes, MTL is often used in the state of the art to consider different classifiers
for different annotation schemes of each dataset, while sharing a main model across
all used datasets (see Section 2.2.7). For example, in Xia and Liu (2015); Kim et al.
(2017), MTL paradigms have been successfully used by assigning different classi-
fiers for different emotion dimensions and showing superior performance of AER
from acoustic signals than using each emotion dimension as the target alone. Also,
in Zhang et al. (2017b) different classifiers are assigned to the set of emotion labels
of multiple emotion datasets in order to better represent emotional expressions from
acoustic features across the used datasets. However, they considered that all the
tasks are defined for arousal and valence, which requires all the used datasets to fol-
low the same annotation scheme. Later in Zhu and Sato (2020), a MTL paradigm is
used to first compute a latent emotion representation (called “emotion embedding”)
from acoustic signals via a common model, which can then be mapped to different
sets of emotion labels by separate classifiers. However, their work is limited as they
only used two small acted datasets to evaluate their method. The aforementioned
studies on MTL for AER show that this area of research has not yet been explored
for acted and in-the-wild AER from deep acoustic and textual representations.

Therefore, to advance the state of the art, this chapter proposes and evaluates
a method based on MTL and deep representations of acoustic and textual data that
can go beyond different emotion schemes, by relating similar emotions across dif-
ferent corpora. In Section 5.1, the proposed method, which uses MTL for AER
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Figure 5.1: The proposed stepwise multi-corpus emotion recognition model for
CaFE, EmoDB, GEMEP, and RAVDESS datasets. The acoustic and the emotion
modelling steps are shared for all the utterances of all datasets. However, each
set of emotion categories of each corpus, use a specific classifier to predict the
probabilities of the emotion classes, based on the emotion embedding.

from deep acoustic representations, is further explained, and several experiments
are performed to evaluate the proposed method for multiple acted datasets. Then,
in Section 5.2, this method is further evaluated for AER in the wild, and how acted
emotional expressions can further improve the AER performance from both acous-
tic and textual representations. Finally, the chapter is summarised in Section 5.3.

5.1 Multi-corpus acted emotion recognition from
acoustic signals

In this section, a method integrating MTL with state-of-the-art deep acoustic rep-
resentations (Wav2vec2 and Whisper) is proposed and evaluated1. This method is
described in Section 5.1.1. The datasets used to evaluate this method are presented
in Section 5.1.2, followed by the experimental setup explained in Section 5.1.3.
The method is then evaluated for both within-corpus and cross-corpus settings in
Section 5.1.4 and Section 5.1.5, respectively.

5.1.1 Method
Figure 5.1 shows the proposed method. The following describes the different parts
of this model and how they work together:

1The work presented in this section is published in (Alisamir et al., 2022c)
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1. Emotion datasets: The proposed method is based on the use of multiple
emotion datasets with different sets of emotion labels, which can be predicted
by classifiers dedicated to the labels of each dataset. For example, the exper-
iments in this section use four acted datasets from CaFE, EmoDB, GEMEP
and RAVDESS, and as can be seen from the Figure 5.1, each dataset uses a
different set of emotion labels (see Section 5.1.2).

2. Acoustic modelling: For an utterance from a given dataset, the model first
computes the acoustic embedding by using different acoustic representations
such as MFB, Wav2vec2, or Whisper (see Section 3.2). For the Wav2vec2
representation, the W2V2-XLSR-56 is used here as the acoustic modelling
step, because it can achieve state-of-the-art results (see the results of different
experiments in Chapter 4), and it is trained on 56 different languages, which
is important since the datasets mentioned above also use various languages of
English, French, and German.

3. Emotion modelling: Given an acoustic embedding, the emotion modelling
step calculates the emotion embedding. Here GRU is used for emotion mod-
elling, because it has been shown to be able to effectively model acoustic data
for AER (see Section 2.2.8). Since GRUs learn to model sequential data in a
recurrent manner, each item in a sequence produces a corresponding output,
which is also influenced by the outputs of the previous items in the sequence.
Therefore, the last output of the GRU is used here to represent the emotion
embedding, because it contains information about the entire input utterance.
It should be noted that the GRU used for emotion modelling is shared for all
the datasets, regardless of their emotion annotation schemes. The hypothesis
is that, by sharing the emotion model during the training, it can learn to rep-
resent an “understanding” of the underlying perceivable emotion across the
different corpora.

4. Classifiers: Each corpus uses a specific classifier to map the emotion embed-
ding to the specific way it defines emotion categories. Here, the classifiers
consist of a linear (fully connected) layer followed by a log-softmax func-
tion to estimate the class probabilities associated with each dataset’s set of
emotions.

The training strategy used to train the different models involved in the proposed
method is described below.

Training strategy

The GRU and linear models mentioned above are trained using the Adam optimiser
(see Section 3.3), where the loss function is cross-entropy (see Section 3.4.2). The
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training is performed for each utterance of each dataset independently, in a stepwise
manner. This means that during training, for each utterance, the acoustic and then
the emotion embedding is computed, then only the appropriate classifier assigned
to the dataset of the input utterance is used to compute the set of emotion probabil-
ities. Then the cross-entropy loss, which is commonly used for classification tasks,
is calculated and its resulting gradients are sent backwards through the associated
classifier as well as the shared emotion model (here the GRU). In this way, the
emotion model would continue to be trained regardless of which corpus the input
utterance belongs to, but the classifiers would only be optimised according to which
corpus the input utterance belongs to. It should be noted that the stepwise training
strategy used here is slightly different from common MTL paradigms, where the
loss function consists of multiple terms, where each term refers to the loss function
computed for the sample of each task. Because this common MTL training strategy
uses multiple samples for each training iteration, it consumes more memory than
the stepwise training strategy, which is why the stepwise training strategy is used
here.

Unless otherwise stated, the Wav2Vec2 representations used here are considered
“frozen” during the training of the AER models, which means that their weights do
not change and are used only as pre-trained models. However, in some fine tuning
experiments with the Wav2Vec2 representations, the loss is also sent back through
the Wav2Vec2 model. Thus, based on the gradients calculated for each training
iteration, the weights of the Wav2Vec2 model can be updated alongside the weights
of the emotion model and the classifiers. In this way, the Wav2Vec2 representations
are influenced by the utterances used during training. The process of fine-tuning has
recently become popular as it allows the pre-trained representations to be adapted
to a specific task with a specific data distribution. In what follows, the datasets used
to evaluate this method are presented.

5.1.2 Datasets
The experiments in this section use four acted datasets from CaFE, EmoDB,
GEMEP and RAVDESS, which are described in detail in Section 3.1. In this sec-
tion, we focus only on acoustic expressions of emotion in order to study the inter-
play of the proposed method more clearly, before moving on to use data recorded
in the wild and using textual transcriptions in Section 5.2, which would make the
method more difficult to analyse in detail, as expressions in the wild contain more
subtle emotions as well as environmental noise.

Table 5.1 presents the generic statistics related to the training, development and
test partitions of the datasets used here. As can be seen from this table, different
datasets contain different amounts of data. Preliminary experiments have shown that
the amount of data for each corpus has a direct correlation with the influence that
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Table 5.1: Statistics related to the training, development and test partitions of the
acted datasets of CaFE, EmoDB, GEMEP, and RAVDESS, which are used for
multi-task learning experiments from deep acoustic representations.

Dataset Number of utterances Duration in minutes
Train Dev Test Train Dev Test

CaFE 624 156 156 44 12 13
EmoDB 292 116 127 13 5 6
GEMEP 648 216 216 26 9 8

RAVDESS 1080 180 180 66 12 11

Table 5.2: Details of the mappings of the original emotion targets of each corpus
to negative, neutral, and positive classes, as were used here in the cross-corpus
evaluations.

Corpus Negative emotions Neutral emotions Positive emotions
CaFE anger, disgust, fear, sadness neutral, surprise joy

EmoDB anger, anxiety, boredom,
disgust, sadness neutral happiness

GEMEP anger, despair, fear,
irritation, sadness, worry - fun, interest, joy,

pleasure, pride, relief
RAVDESS anger, disgust, fear, sadness neutral, surprise calmness, happiness

corpus has on the weights of the shared GRU model after training. For instance, it
was found that the trained model performed better on the RAVDESS dataset, which
contains more data than other datasets used during training. To solve this problem,
the utterances of the underrepresented corpora are randomly selected and dupli-
cated for the training and development partitions in order to equalise the number of
training utterances for all datasets.

Furthermore, to evaluate the proposed method in cross-corpus settings (see Sec-
tion 5.1.5) in a coherent way, the output predictions of each utterance is mapped to
either a negative, neutral or positive class, instead of using the original predictions
of each dataset, which depend on the specific set of emotion labels for each dataset.
The mapping between the original emotion targets of each dataset, and the negative,
neutral or positive classes are presented in Table 5.2. Further details of the training
and experimental setup is presented below.

5.1.3 Experimental setup
In order to define the setup of the proposed method (see Figure 5.1), different pos-
sible models and hyper-parameters were evaluated. Specifically, a grid search was
performed over the different possible setups with different ranges of complexity, as
follows:

• Emotion model: GRU, Transformer (8 heads)
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• Classifiers: GRU, Linear

• Hyper-parameter of the GRU and Transformer models: 1 layer with 64 nodes,
2 layers with 128 nodes, 4 layers with 256 nodes

• Learning rate: 0.01, 0.001, 0.0001

After training each possible setup for 50 epochs on two datasets of GEMEP
and RAVDESS independently (without the MTL), and by using the W2V2-XLSR-
56 acoustic representations, the best performing setup was found to be the GRU
model using 1 layer with 64 nodes, and learning rate of 0.0001. The linear layers
for the emotion model were not investigated as previous experiments in Section
4.1 clearly show superior performance of GRUs compared with linear layers. On
the contrary, for the classifiers, no improvements were observed when using GRUs
instead of linear layers, which may be because a simple GRU with 1 layer and 64
nodes is sufficient for modelling emotion for the GEMEP and RAVDESS datasets.
Therefore, the proposed method described in Section 5.1.1 uses the GRU model
using 1 layer with 64 nodes, and linear (fully-connected) classifiers (see Figure
5.1).

The experiments defined in this section will then train the proposed method
both separately for each dataset (single-corpus) and by using all four datasets –
CaFE, EmoDB, GEMEP, and RADVESS– presented above (multi-corpus). In ad-
dition, the fine-tuning of the W2V2-XLSR-56 is also investigated here, in order to
further investigate the effect of fine-tuning the acoustic representations within the
MTL context. These experiments are designed to show whether the use of multiple
datasets, even small ones, can help to achieve a more generalised emotion embed-
ding than training a model for each dataset alone. To evaluate this hypothesis, the
trained models for single-corpus and multi-corpus (using MTL) methods are evalu-
ated for within-corpus and cross-corpus settings. The within-corpus results involve
training and testing each dataset with its own classifier, while the cross-corpus re-
sults involve training the classifier of each dataset for the same dataset, but testing
it with the classifier of another dataset. The within-corpus and cross-corpus results
are presented and analysed in Section 5.1.4 and Section 5.1.5 respectively.

5.1.4 Within-corpus results
Figure 5.2 presents the results of the within-corpus evaluation of the proposed multi-
corpus (using MTL) versus single-corpus training strategies.

Regarding the results of W2V2-XLSR-56 with frozen weights (no fine-tuning),
we can see that a weakly significant1 UAR is observed for the EmoDB dataset, but
for the other datasets the results are either the same or comparable. As the EmoDB

1P-value of .052 using the Z-score statistical measure
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Figure 5.2: The results of the within-corpus evaluation for multi-corpus versus
single-corpus training methods, by using Whisper, and W2V2-XLSR-56 with and
without Fine-Tuning (FT).

dataset contains the least number of training examples, this result suggests that the
proposed MTL method with multi-corpus training is especially helpful for very
small datasets, even if the additional datasets used do not share the same emotion
annotation scheme. Also, this finding is in line with previous studies such as Zhang
et al. (2017b, 2022); Zhu and Sato (2020), which have shown that multi-corpus
training can improve performance on a specific corpus, but not necessarily for all
datasets involved.

Contrary to the results of the experiments for W2V2-XLSR-56 without fine-
tuning, the results of the experiments with fine-tuning show that training and testing
on a single corpus produces better or comparable results to the multi-corpus train-
ing strategy. This could be because with fine-tuning, the W2V2-XLSR-56 learn
to predict more corpus-specific acoustic representations, rather than learning more
generic representations that could be beneficial in cross-corpus settings. This is
further explored in Section 5.1.5, where the cross-corpus results are analysed.

Moreover, the results by using the Whisper representations only show a big
improvement for the EmoDB dataset, which is the smallest dataset used here, com-
pared to the W2V2-XLSR-56 representations, but this improvement does not extend
to other datasets. This may be due to the fact that the Whisper model was trained
for more than ten times data compared to the W2V2-XLSR-56 model (see Table
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Table 5.3: Results of the within-corpus experiments for CaFE, EmoDB, GEMEP
and RAVDESS datasets. In order to fairly compare the results of this study with the
state of the art, the reported result of this work (last row) is based on the Leave One
Speaker Out (LOSO) cross validation.

Method Evaluation
Metric CaFE EmoDB GEMEP RAVDESS

Subspace learning and
extreme learning Xu et al.

(2018)

UAR
(Random

Partitioning)
- - 43.3 %

Prosodic and spectral
features + SVM

El Seknedy and Fawzi
(2021)

Accuracy
(10 fold
Cross-

Validation)

70.6 % 86.0 % - 70.6 %

MFCC/GTCC features
with echo state network

Ibrahim et al. (2021)

UAR
(LOSO)

- 86.8 % - 73.1 %

W2V2-XLSR-56+FT
(single corpus training)

UAR
(LOSO)

77.2 % 90.5 % 55.8 % 82.2 %

3.2), and thus it might be able to generalise better, when exploited in a supervised
model that is trained on smaller amounts of data. Also, the Whisper model is mainly
trained for ASR-related tasks, such as speech transcription and translation, whereas
the datasets used here have no correlation between the uttered phrases and the emo-
tion, because in the CaFE, EmoDB, GEMEP and RAVDESS datasets different ac-
tors utter a fixed number of phrases in different ways to express different emotions.
Furthermore, because the best results here, on average, were achieved with fine-
tuned W2V2-XLSR-56 representations with single-corpus training, in what follows,
this paradigm is compared to the state of the art.

In the experiments performed here, the CaFE, EmoDB, GEMEP and RADVESS
datasets were divided into training, development and test sets. However, as these
datasets are rather small, state-of-the-art works usually use Leave One Speaker Out
(LOSO) cross-validation to compare different methods. In LOSO cross-validation,
the model is trained on all but one of the speakers involved, on which it is tested.
This process is repeated until all the speakers have been tested, and then the av-
erage results for all the speakers is reported. As the state of the art uses LOSO
cross-validation, the best within-corpus method here, which is the W2V2-XLSR-56
representation with single-corpus training, is also evaluated by using LOSO cross-
validation. The results are presented in Table 5.3. The results show that the pro-
posed method can achieve better performance than the state of the art for all the
datasets, which seems to be mainly due to the use of highly contextualised W2V2-
XLSR-56 representations compared to other techniques. It should be noted that the
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Figure 5.3: Emotion embeddings of different correctly classified utterances of the
test partitions of the studied corpora. Only emotions that were used at least in
two different corpora are shown. On the left: emotion embeddings of the baseline
model with W2V2-XLSR-56 weights frozen during the training; clusters of similar
emotions across different datasets can be identified in this space. On the right:
emotion embeddings of the baseline model with fine-tuning of the W2V2-XLSR-
56 weights during the training; clusters of emotion are now specific to each dataset
and similar expressions are located in different parts of the emotion space.

results in the rest of this section are based on the partitioning of the Table 5.1 in
order to keep the results of the different experiments in this section comparable.

To further investigate the generalisability of the emotion embeddings and the
effect of fine-tuning the deep acoustic representations on them, the emotion em-
beddings are visualised in Figure 5.3. Here, UMAP (McInnes et al., 2018) is used
to reduce the dimensions of the emotion embeddings and display them in a two-
dimensional space. From the figure, we can see that for the multi-corpus training
paradigm (without fine-tuning), the emotion embeddings of utterances from differ-
ent corpora are mostly placed closer to each other in the embedding space when
they represent the same or similar emotions. For example, different utterances rep-
resenting anger are placed closer together in the upper part of the figure. We can
also observe that utterances labelled as Happiness and Joy are close to utterances
labelled as Anger. This may be because both happiness and anger are associated
with high arousal according to Russell’s theory of core affect (see Figure 2.1). Fur-
thermore, we can observe that utterances labelled as anxiety in EmoDB are placed
close to utterances labelled as fear from the other corpora in the emotion embedding
space. The relationship between anxiety and fear has been studied in psychology,
where anxiety is seen as a more general case of cue-specific fears (Lang et al., 2000).
These observations suggest that the proposed multi-corpus method, without
fine-tuning acoustic representations, can in most cases provide a sense of the
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underlying emotion across different corpora.
However, as the acoustic representations are fine-tuned, this generalisation in

the emotion embedding space seems to disappear, and instead different utterances
from the same corpus tend to be closer together in this space. This may suggest
that as acoustic representations are fine-tuned, acoustic embeddings become more
corpus-specific, which may lead to emotion embeddings becoming more corpus-
dependent. This may mean that fine-tuning the W2V2-XLSR-56 representa-
tions makes the multi-corpus training method less focused on capturing the
underlying emotion across corpora. To investigate this further, the models trained
with the single-corpus and multi-corpus strategies are also evaluated in cross-corpus
settings below.

5.1.5 Cross-corpus results
One way to study the generalisation of emotion embeddings across corpora is to
take an utterance from one corpus as input to the proposed MTL-based method, and
observe the output of the classifier dedicated to another corpus. However, since dif-
ferent corpora have different sets of emotion labels, the cross-corpus results cannot
be quantified in the same way as in the within-corpus evaluation above. Therefore,
here the output predictions of each utterance are mapped to either a negative, neutral
or positive class (see Table 5.2), after the training is complete by using the origi-
nal labels for each dataset. In this way, all the outputs of all the classifiers are
mapped to the three classes –negative, neutral and positive– in order to quan-
tify the cross-corpus results and make them useful for different comparisons. For
example, if an utterance labelled irritation in the GEMEP dataset is predicted as
disgust by the CaFE classifier, then this prediction is counted as correct, as both are
considered negative emotions. The results of this evaluation are shown in Figure
5.4.

The results in Figure 5.4 for multi-corpus training, show that although the
W2V2-XLSR-56 representation with fine-tuning achieves the best performance for
within-corpus evaluation over three negative, neutral and positive classes in Fig-
ure 5.4, it has one of the worst performances for cross-corpus evaluation. On
the other hand, the W2V2-XLSR-56 representation without fine-tuning achieves
the best results for cross-corpus evaluation. This result suggests that the multi-
corpus training with the W2V2-XLSR-56 representation without fine-tuning
can be effectively used to compute generalisable emotion embeddings, which
is consistent with the observation of emotion embeddings for the W2V2-XLSR-56
representation without fine-tuning in Figure 5.3.

From Figure 5.4, it can also be seen that in the case of single-corpus training,
fine-tuning the Wav2vec2 representations can slightly improve the performance of
the model in the cross-corpus evaluation, while in the case of multi-corpus train-
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Figure 5.4: The results of the multi-corpus training method for cross-corpus evalua-
tions, where emotion label predictions (after the training is complete) are mapped to
three classes of negative, neutral and positive. The results are presented for W2V2-
XLSR-56 representations with and without Fine-Tuning (FT), plus the Whisper rep-
resentations.

ing, fine-tuning seems to worsen the results. This may be due to the fact that the
datasets used here are similar in terms of being acted clean data. Thus, fine-tuning
the W2V2-XLSR-56 with single-corpus training may help to generalise to other
similar corpora. However, in multi-corpus training, since all the datasets are trained
together, the model seems to learn to distinguish the data from different datasets in
order to improve performance on a given utterance, which may only come from one
of the four datasets used in this section.

To further investigate why fine-tuning deep acoustic representations for multi-
corpus training does not generalise emotion embedding across different corpora, we
can also analyse a specific confusion matrix where the input utterance and its classi-
fier differ. For example, Figure 5.5 shows confusion matrices where the utterances
of the CaFE dataset are predicted by the GEMEP classifier, for frozen, and fine-
tuned W2V2-XLSR-56 representations (See all the confusion matrices in Appendix
A). For the fine-tuned representations, the predictions do not look accurate, as “sad-
ness” utterances in CaFE are classified as “joy” in GEMEP. On the other hand, the
cross-corpus predictions for W2V2-XLSR-56 representations without fine-tuning
seem to be mostly correct. For example, the four common emotions between the



5.1. MULTI-CORPUS ACTED EMOTION RECOGNITION FROM ACOUSTIC SIGNALS 122

Figure 5.5: Confusion matrices of the predictions of the GEMEP classifier from
the CaFE utterances. Here, the original target label for each utterance is based on
the set of emotion labels of the CaFE dataset, while the prediction of the model is
based on the set of emotion labels of the GEMEP dataset. The confusion matrix
of the proposed multi-corpus method without fine-tuning of the W2V2-XLSR-56
representations is shown on the left, while the confusion matrix of the same method
with fine-tuning of the W2V2-XLSR-56 representations is shown on the right.

two datasets –anger, fear, happiness, and sadness– are mostly predicted correctly.
Interesting results are also observed when analysing emotion labels that differ be-
tween the two datasets. For example, disgust utterances from the CaFE dataset are
mainly labelled as irritation, suggesting that the proposed method is able to gen-
eralise to some extent across different emotion labels in different corpora, even
if they use different labelling schemes, and without being explicitly trained to
do so. These results are also consistent with what we observed by visualising the
emotion embeddings in Figure 5.3.

The proposed methodology and related findings of this section are discussed
further in the discussion section below.

5.1.6 Discussion
The aim of this section was to compute a generic emotion embedding that could
demonstrate the generalisation of emotion concepts across different corpora with
different sets of emotion labels. To achieve this goal, a method has been proposed
that uses deep acoustic representations, GRUs, and linear classifiers dedicated to
each corpus. The proposed method was trained following a MTL paradigm to learn
a generalised emotion embedding across four small acted datasets –CaFE, EmoDB,
GEMEP, and RAVDESS–, where each dataset uses different sets of emotion la-
bels. The results were then evaluated quantitatively in both within-corpus and cross-
corpus settings, as well as by visualising the emotion embeddings and examining
cross-corpus emotion recognition confusion matrices. The results suggest that this
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method, by using W2V2-XLSR-56 as acoustic representations (without any fine-
tuning), is able to effectively produce an emotion embedding that is generalised
across different datasets, and thus can improve cross-corpus emotion recognition
where the emotion labels may be different.

However, the study in this section has certain limitations. All the datasets used
to evaluate the method were rather small acted datasets, where actors were hired to
convey different emotions by saying the same sentences in different ways. This is
not realistic, as the words chosen in a natural emotional expression are often corre-
lated with specific emotions (Lindquist et al., 2015). Therefore, in the next section,
the effect of both acoustic changes in the speech signal and the verbal message on
emotional expressions in the wild is investigated.

5.2 Exploiting acted data for emotion recognition in
the wild

In the previous section, it was shown that the proposed method, by using MTL, can
achieve emotion embeddings that can generalise the representation of the same or
similar emotional expressions across different acted datasets, which may use differ-
ent sets of emotion labels. However, the experiments in the previous section only
focused on analysing MTL in order to generalise the prediction of acted emotional
expressions from acoustic representations. In this section, the proposed MTL-based
method is further analysed to see if the use of both acted and in-the-wild emotional
expressions, can help the generalisation ability of the trained model for AER in the
wild.

In addition, the experiments in Section 4.2 have shown the benefits of using
transcriptions of a speech signal to improve the performance of AER for both acted
and in-the-wild emotional expressions. Furthermore, it has been shown that this
improvement is also effective when the transcriptions are automatically extracted
using an effective ASR system (see Section 4.3). Therefore, the experiments in this
section also focus on the use of deep acoustic and textual representations, where
the text is either human or ASR transcriptions, for both acted and in-the-wild AER.
These experiments are described in more detail below.

5.2.1 Experiments
The experiments in this section, combine the proposed MTL method of Section 5.1
with the joint acoustic-textual representations explored in Section 4.2 and Section
4.3, in order to focus on using MTL to predict emotional labels across acted and in-
the-wild emotion datasets, using deep acoustic and textual representations. Figure
5.6 depicts the method used for experimentation in this section. To stay consistent
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Figure 5.6: The proposed multi-corpus model used to recognise different emotion
categories for IEMOCAP and CMU-MOSEI datasets from acoustic and textual rep-
resentations. The acoustic, textual, and the emotion modelling steps are shared for
all the utterances of all datasets. However, each set of emotion categories of each
corpus, use a specific classifier to predict the probabilities of the emotion classes,
based on the emotion embedding.

with the previous experiments in Section 4.3, the same datasets of CMU-MOSEI
(in-the-wild) and IEMOCAP (acted, controlled environment) are investigated here
(see Table 5.4 for a statistical summary of the datasets). The four acted datasets
–CaFE, EmoDB, GEMEP, and RADVESS– used for the experiments in Section 5.1
are not used here because the verbal message for these datasets is not correlated
with emotion by design, whereas the study in this Section focuses partly on the use
of textual representations for AER. Nonetheless, to define the setup of the MTL-
based method used here, this section follows the setup and training in Section 5.1.
This means that a GRU-1x64 model is used for emotion modelling and linear classi-
fiers are assigned to each dataset and trained following the proposed stepwise MTL
strategy with LR=0.0001 and GA=100. In addition, the deep acoustic and textual
representations used in this section are W2V2-XLSR-56 and RoBERTa (see Section
3.1), so the results of this section are comparable to the results of Section 4.3, where
the GRU-1x64 model is used for the same acoustic and textual representations in a
single-corpus setting. The results of this section are presented below.

5.2.2 Results
The results of the experiments in this section are shown in Figure 5.7. It should
be noted that for single-corpus training, the IEMOCAP and CMU-MOSEI results
in the figure are from Section 4.3, where it was shown that the ASR transcriptions
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Table 5.4: Statistics related to the training, development and test partitions of the
acted datasets of IEMOCAP, and CMU-MOSEI, which are used for multi-corpus
experiments from deep acoustic and textual representations.

Dataset Number of utterances Duration in hours
Train Dev Test Train Dev Test

CMU-MOSEI 18,542 1377 3340 38 3 8
IEMOCAP 3259 1031 1241 4 1 2

can be used to significantly improve the performance of AER from acoustic signals.
The multi-corpus training experiments in this section also show that existing ASR
methods can be used to improve current AER from speech waves, even if the
ASR transcriptions are not accurate (see Figure 4.9 for WERs related to the
ASR).

The results further show that the transcriptions of the acted IEMOCAP dataset
appear to be particularly helpful in improving the AER performance for the human
or ASR transcriptions of in-the-wild spoken emotional expressions of the CMU-
MOSEI dataset. The improvement in AER results for the CMU-MOSEI dataset,
when trained with IEMOCAP data using the MTL paradigm, seems to be mainly
due to the use of transcriptions. This finding suggests that transcriptions of acted
emotional expressions can be helpful in improving AER of in-the-wild emo-
tional expressions.

On the other hand, considering only the results for the acoustic representations
–W2V2-XLSR-56–, the IEMOCAP results show a small improvement from single-
corpus to multi-corpus training, while this is not the case for the CMU-MOSEI
dataset. This finding is consistent with the results of Section 5.1.4, where the pro-
posed MTL paradigm improved the performance of the smallest dataset –EmoDB–
in multi-corpus training. However, as discussed in the paragraph above, multi-
corpus training for transcriptions can improve the results for the CMU-MOSEI
dataset compared to single-corpus training, but not for the IEMOCAP dataset. This
result means that while multi-corpus training helps the smallest dataset for acoustic
representations, this trend does not extend to textual representations. This can be
explained by the fact that text only contains the verbal message, which is the same
in all datasets, and thus by using a smaller (and mostly scripted) dataset, one may be
able to improve the recognition of different emotions from textual representations,
even when extracted with an ASR system applied to acoustic signals captured in
the wild. The same argument cannot be made for acoustic representations, as the
acoustic signals of each word vary depending on the speaker, the ambient noise,
and even the microphone used. Moreover, the deep acoustic representations used
here –W2V2-XLSR-56– do not prove to be robust enough for in-the-wild AER, ei-
ther within single-corpus or multi-corpus training paradigms. The experiments and
results of this section are discussed further below.
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Figure 5.7: The results for using joint deep representations of acoustics and text, in a
multi-corpus training paradigm, where both IEMOCAP and CMU-MOSEI corpora
were used to train a shared emotion recognition model, with different classifiers
exclusive to each corpus.

5.2.3 Discussion
This section has investigated the use of both acoustic and textual representations
for multi-corpus training on acted and in-the-wild datasets with different sets of
emotion labels. The MTL method introduced in Section 5.1.1 was then used to
experiment with CMU-MOSEI (in the wild) and IEMOCAP (acted) datasets for
AER from W2V2-XLSR-56 and RoBERTa representations. The results showed
that by using the MTL method, the transcriptions of the IEMOCAP dataset can
help to improve the AER performance of the CMU-MOSEI dataset from textual
representations.

However, the study of in-the-wild emotional expressions in this section is lim-
ited to the prediction of positive and negative sentiments of the CMU-MOSEI
dataset. Although positive and negative sentiments correspond somehow to the
valence dimension of emotion, they do not adequately represent the full range of
emotional expression in the wild. For example, the arousal dimension can further be
studied for in-the-wild emotional expressions. However, annotations for the arousal
dimension did not exist for the CMU-MOSEI dataset, which brings us to another
limitation of this work, which is using only one dataset with emotional expressions
in the wild. Other in-the-wild datasets such as Aff-wild (Kollias and Zafeiriou,
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2018) or SEWA (Kossaifi et al., 2021), which contain both arousal and valence an-
notations, can be further added in the MTL paradigm to obtain more conclusive
results. Moreover, the study here only focused on within-corpus experiments; to
evaluate the effectiveness of the proposed method in a more realistic scenario, it
is important to consider cross-corpus settings, where unseen datasets are used to
evaluate a trained model.
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5.3 Summary
Current state-of-the-art AER methods use data-driven machine learning models to
map the acoustic or textual representations of data to numerical representations of
emotion. However, because emotion is a subjective concept for which there is no
agreed definition, the representation of emotion varies between different datasets.
On the other hand, it is important to train AER models on multiple datasets, since
each dataset represents a limited range of emotional expressions that can be ob-
served in the wild. In order to use multiple datasets with different emotion anno-
tation schemes, this section proposes an MTL-based method that predicts a gener-
alised emotion embedding, which can then be mapped to different sets of emotions
based on each dataset (see Section 5.1.1). To compute the emotion embeddings,
the proposed method uses a shared GRU model, which is trained alongside linear
(fully connected) classifiers that are each dedicated to the utterances of each dataset
involved.

This method was first evaluated on four small acted datasets –CaFE, EmoDB,
GEMEP, and RAVDESS– in within-corpus, and cross-corpus settings for AER from
deep acoustic representations –W2V2-XLSR-56– (see Section 5.1). The within-
corpus results showed that this method is especially effective for improving the AER
performance of small datasets. On the other hand, the cross-corpus results suggest
that this method can effectively compute emotion embeddings that can generalise
beyond different emotion labels in different corpora.

The proposed MTL-based method was then further evaluated for in-the-wild
emotional expressions and also with deep textual representations –RoBERTa–, in
addition to deep acoustic representations –W2V2-XLSR-56– (see Section 5.2). In-
stead of the four acted datasets, the CMU-MOSEI (in the wild) and IEMOCAP
(acted) datasets were then used to investigate whether acted emotional expressions,
when used in a MTL paradigm, were useful for AER in the wild. The results showed
that by using deep acoustic representations, no improvement is observed for the
CMU-MOSEI dataset when trained in a multi-corpus setting with the IEMOCAP
data compared to when trained alone (single-corpus training). This was attributed
to the fact that W2V2-XLSR-56 representations were not robust enough to gener-
alise across different speakers, environments or microphones. On the other hand,
the use of deep textual representations of the acted IEMOCAP dataset helped to
significantly improve the performance of AER for the in-the-wild CMU-MOSEI
dataset. This finding suggests that although deep acoustic representations may not
yet be robust enough to be used for in-the-wild emotional expressions, whether
trained with single-corpus or multi-corpus training strategies, the transcriptions of
speech signals may significantly benefit from the proposed multi-corpus training
method to provide a better in-the-wild AER than using the speech signals alone.



Chapter 6

Conclusion

Figure 6.1: Overview of the contributions of this thesis. The intended application
of the thesis is shown at the top, and the used method is shown in the middle. At the
bottom, the contributions (C-1 to C-5) of the experimental chapters (4 and 5) to the
proposed method are shown, with dashed lines indicating the relationship between
different contributions.

In this thesis, several studies have been conducted to advance current research
on machine learning of emotional expressions in the wild from acoustic signals
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and text. Since AER aims to predict emotion annotations from acoustic or textual
representations, this thesis has aimed to advance the state of the art in two areas:

1. The use of deep acoustic and textual representations (see Chapter 4)

2. Generalisation beyond emotion schemes (see Chapter 5)

An overview of the main contributions of this thesis to these two areas is pre-
sented in Figure 6.1. The remainder of this chapter summarises the research ques-
tions (denoted as Q-1 to Q-5 in the left margin), contributions (C-1 to C-5) and
limitations (L-1 to L-5) related to the aims of this thesis in more details (see Sec-
tion 1.2). Furthermore, some future research directions that can be pursued from
some of the limitations of this study are also presented (denoted as F-1 to F-3 in the
left margin). At the end, final concluding remarks, and envisioned applications and
studies beyond this thesis are discussed in Section 6.2

6.1 Contributions, limitations, and future studies
The aim of AER can be defined as the automatic recognition of human emotions
from different modalities, such as an acoustic signal or text (see Section 1.1). Cur-
rent state-of-the-art AER methods use data-driven machine learning techniques to
map the numerical acoustic or textual representations to numerical emotion repre-
sentations. Recent advances in DNNs have put the spotlight on the deep pre-trained
acoustic and textual representations, such as Wav2vec2 and RoBERTa, which have
dominated state-of-the-art AER performances in recent years (see Section 2.2). This
is because such representations can be trained on large amounts of data to brute-
force an approximation of an effective feature extraction method, which in most
cases can work better than traditional “hand-crafted” features. However, because
deep representations are data-driven, rather than engineered from human knowledge
of acoustic signals or text, they are difficult to interpret, study and control. This has
raised our first research question, which was as follows (see Section 1.2.1):

What is the effect of different amounts and types of acoustic signals used to trainQ-1
deep representations, on the performance of such representations for the AER task?

To answer the question above, in Section 4.1, several Wav2vec2 models wereC-1
first trained using different types –professional, read, spontaneous, telephonic, and
acted– and amounts –1k, 3k, and 7k hours– of French speech. The performance
of the pre-trained French Wav2vec2 models, along with two other Wav2vec2 mod-
els trained for English and multilingual speech, was then evaluated on two French
datasets, AlloSat (telephonic, in the wild) and RECOLA (spontaneous, in-the-lab),
to continuously predict the frustration-satisfaction and arousal/valence dimensions
of emotion, respectively. The findings showed that using more amounts of data
(after 3k hours) to train deep representations does not necessarily lead to improved



6.1. CONTRIBUTIONS, LIMITATIONS, AND FUTURE STUDIES 131

performance of such representations on the downstream task of AER. However,
the language of the data used to train the models, regardless of the type of speech,
seemed to play an important role, as deep representations pre-trained on French
speech were better at predicting French emotional expressions than deep represen-
tations pre-trained on English speech.

This study, however, had certain limitations. For example, the use of purelyL-1
emotional and spontaneous speech to train deep representations and their perfor-
mance for AER was not fully investigated. Also, only one self-supervised architec-
ture, Wav2vec2, was used for deep representation learning in this thesis, whereas
several others do exist. Moreover, the Wav2vec2 representations were trained on
isolated utterances, but then they were used to predict continuous dimensional an-
notations over long conversations. This discrepency between the pre-training and
evaluation of the Wav2vec2 representations might have effected the results and thus
findings of this study. This, in turn, has motivated the rest of this study to focus only
on the recognition of emotion labels per utterance.

The state of the art on AER from speech signals has further shown that using hu-
man transcriptions of a speech signal can further improve the performance of AER
for both acted and in-the-wild emotional expressions (see Section 2.2.5). However,
the human transcriptions are not always available, while the existing ASR methods
have recently become robust enough to be reliably applied to in-the-wild data. This
has inspired several studies, such as Heusser et al. (2019); Yoon et al. (2019); Wu
et al. (2021); Peng et al. (2021), which show that ASR transcriptions can be used to
improve AER performance on acted data. However, this paradigm has not been fur-
ther investigated for emotional expressions in the wild. Thus, the second research
question of this thesis is as follows:

How can automatic transcriptions from an existing ASR model be exploited toQ-2
improve the performance of AER models from speech signals, for both acted and
in-the-wild emotional expressions?

To answer the above question, in Section 4.3, Google’s ASR was first used toC-2
extract automatic transcriptions of speech signals from two datasets, IEMOCAP
(acted) and CMU-MOSEI (in the wild). Then, deep acoustic (W2V2-XLSR-56)
and textual (RoBERTa) representations of both human and automatic transcriptions
were used in both isolated and joint ways for the AER task. The results showed that
joint acoustic-textual representations yielded better performance than either acous-
tic or textual representations alone for both acted and in-the-wild emotional expres-
sions, regardless of whether the text was human or automatically transcribed. This
better performance for in-the-wild emotional expressions was mainly due to the use
of textual representations, as acoustic W2V2-XLSR-56 representations were shown
to be ineffective for in-the-wild AER.

The limitation of this study may be the use of only one in-the-wild dataset –L-2
CMU-MOSEI– to study the effect of automatic transcriptions for in-the-wild AER.
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Moreover, only positive and negative sentiment values were used for this study. The
negative-positive scale has shown to be more influenced by the linguistic informa-
tion, rather than acoustic changes of a speech signal (Goudbeek and Scherer, 2010).
This might have been the reason why acoustic representations used in this study
could not perform well to recognise sentiment polarities.

Furthermore, several studies have shown that the valence dimension is detectedF-1
more accurately from text, whereas the detection of the arousal dimension is more
accurate using acoustic signals (Schuller et al., 2020; Triantafyllopoulos et al.,
2023). For example, in Triantafyllopoulos et al. (2023), for the scripted utterances
of the IEMOCAP dataset, textual features could predict arousal/valence with a CCC
of .444/.757, whereas acoustic features predicted arousal/valence with a CCC of
.661/.333. Furthermore, the concept of predicting the valence dimension is similar
to predicting sentiment via text, for which many datasets already exist. Therefore, a
future study could involve using textual datasets to predict sentiment, while training
another model on a separate set of audio datasets to predict the arousal dimension.

Nevertheless, state-of-the-art AER models and the studies in Chapter 4 have
shown that both verbal and non-verbal information can be useful for predicting both
arousal and valence dimensions, or different emotion categories. In other words,
emotion can be conveyed by both what is said and how it is said. Recent stud-
ies further suggest that how a sentence is uttered, and the words that make up that
sentence, can be greatly influenced by who the speaker is (see Section 2.2.6). In
particular, latent speaker representations computed from speaker recognition mod-
els have been shown to perform better for AER than traditional acoustic representa-
tions. However, the fusion of speaker representations with deep acoustic and textual
representations, which has recently been achieved in state-of-the-art performances
(see C-2 above), has not yet been explored. This has raised another question in this
thesis, which is as follows:

Given that speaker recognition models can provide us with latent speaker rep-Q-3
resentations, how can we improve the performance of deep acoustic and textual
representations for AER, by fusing them with such speaker representations?

The question above was investigated in Section 4.4 by first training speakerC-3
recognition models from acoustic –W2V2-XLSR-56–, textual –RoBERTa–, and
joint acoustic-textual representations (see C2 above). Then, the latent speaker
embeddings was fused with latent acoustic, textual, or joint acoustic-textual la-
tent representations to form speaker-aware representations for AER on the IEMO-
CAP dataset. The results showed that the fusion of speaker representations with
joint acoustic-textual –W2V2-RoBERTa– representations achieves the best results
among the aforementioned scenarios, although it was marginally better than joint
acoustic-textual representations without the speaker representations. In addition,
whisper representations pre-trained directly for speech recognition and indirectly
for speaker recognition were also investigated and showed similar results to the
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speaker-aware joint W2V2-RoBERTa representations. These results indicated that
by integrating both linguistic and speaker information into acoustic representations,
one could expect better results for AER than by relying on acoustic information
alone. It was further shown that by using deep representations such as Whisper,
which have been pre-trained directly for ASR and indirectly for speaker recognition,
one might not need to further fuse textual and speaker representations to achieve
comparable performance to speaker-aware joint W2V2-RoBERTa representations
for acted AER.

The limitations of this study were that the evaluation was performed on onlyL-3
one acted dataset (IEMOCAP), the speaker recognition models were trained on only
eight speakers, and the speaker-aware representations for the AER task were evalu-
ated on only two speakers.

Therefore, a future direction may be to consider in-the-wild emotional expres-F-2
sions with more speakers for speaker-aware acoustic and textual representations.

Furthermore, the research questions above (Q1 to Q3) focus only on how to
achieve more effective representations of acoustic signals or text in order to pre-
dict specific emotion annotations, based on each dataset used separately. However,
as each dataset covers a limited range of emotional expressions, it is important to
use multiple datasets to train AER models in order to obtain generalised models.
Training machine learning models for different emotion datasets can be challeng-
ing, because numerical representations of emotion are defined in various subjective
manners across different datasets (see Section 1.1.1). To overcome this challenge,
current state of the art uses MTL to train multi-corpus AER models by using tra-
ditional acoustic features. In particular, MTL can be used to first provide us with
a latent emotion representation that is shared across corpora. On the other hand,
deep pre-trained representations such as Wav2vec2 have recently been shown to be
more performant for AER than traditional acoustic features. However, MTL-based
multi-corpus training has not been investigated for acted or in-the-wild AER from
acoustic representations or text. This motivated the next research question:

How effective is the latent emotion representation, computed by using the MTL-Q-4
based method using deep representations, in recognising the same or similar emo-
tions across different corpora that might use different emotion annotation schemes?

To answer the above question, in Section 5.1, an MTL-based method was pro-C-4
posed that uses deep acoustic representations, a shared GRU model for all datasets,
and linear classifiers dedicated to each dataset. The proposed method was then eval-
uated using four acted datasets from CaFE, EmoDB, GEMEP and RAVDESS, all
of which use different sets of emotion labels. The results suggested that the pro-
posed method could produce a latent emotion representation that could improve the
performance of AER across datasets with different sets of emotion labels. Further-
more, fine-tuning the deep representations while training the shared GRU model
further showed that each fine-tuned model learns high specificity of each dataset, at
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the cost of lower generalisation across the datasets.
However, in the experiments mentioned above, all the datasets used to evaluateL-4

the proposed method were rather small acted datasets. Also, only the effective-
ness of deep acoustic representations was studied. In order to further investigate
this method for in-the-wild emotional expressions, and both acoustic and textual
modalities, the next research question was as follows:

By using the proposed multi-corpus training method, can acted emotional ex-Q-5
pressions be useful in improving in-the-wild AER from acoustic signals and text?

The above question was investigated in Section 5.2 by evaluating the methodC-5
mentioned in C-4 (proposed in Section 5.1) on the IEMOCAP (acted) and CMU-
MOSEI (in the wild) datasets, and for deep acoustic –W2V2-XLSR-56– and tex-
tual –RoBERTa– representations. The results suggested that by using the proposed
MTL-based method, the AER performance of the CMU-MOSEI dataset could be
improved when using textual or joint acoustic-textual representations, but not with
acoustic representations alone. This was due to the fact that the W2V2-XLSR-56
acoustic representations used in this study did not perform well for AER on the
CMU-MOSEI dataset, either in multi-corpus or single-corpus training strategies.

Similar to what was said above for L2, this study also suffers from using onlyL-5
one in-the-wild dataset –CMU-MOSEI– with negative and positive sentiments as
emotion targets. Moreover, in this study, the proposed MTL-based method was
only evaluated for within-corpus settings.

Therefore, cross-corpus analysis of multi-corpus training for different in-the-F-3
wild datasets can be considered for a future research direction. Also, as the above
study only exploited datasets with per-utterance emotion labels, multi-corpus train-
ing for datasets with continuous dimensional annotations may also be a future re-
search direction.

In summary, this thesis has made several contributions to solving some of the
existing challenges in AER from acoustic signals and text for emotional expressions
in the wild. The results of the experiments carried out during this thesis have sug-
gested that current ASR technologies, combined with deep textual representations,
can be particularly effective. Furthermore, even if annotated in a different and sub-
jective way, acted data can be used with the MTL-based method proposed in this
thesis, in order to achieve good performance for AER in the wild. In addition, this
section suggested several other works as future research directions. Beyond this
thesis and the future works discussed above, what is underway after the writing of
this thesis is discussed below.

6.2 Beyond this thesis
This thesis has focused on developing AER in the wild from acoustic signals and
text. Although there are still some limitations to this technology, it can be applied
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to many domains, including education, entertainment, marketing, and health (see
Chapter 1). One of the applications of this thesis is in AI-enhanced digital therapy,
within the THERADIA project (Tarpin-Bernard et al., 2021). THERADIA consists
of the development of an empathic virtual therapeutic assistant that acts as an inter-
face between the patient and the patient’s therapist or carer. The virtual interactive
assistant is specifically targeted at people suffering from cognitive disorders such
as Alzheimer’s disease, dyslexia and stroke. The effectiveness of interactive thera-
pies can be improved by allowing patients to go beyond their limited face-to-face
therapy sessions by pursuing them at home while being accompanied by an em-
pathic virtual assistant. The empathic assistant will not only monitor the patient’s
emotions, but will also be able to respond to them.

The technological building blocks for implementing an AER system for an ap-
plication such as THERADIA have also been developed during this thesis. And an
interactive demo has also been put online, which is publicly available for everyone
and is completely open source (see Appendix C). Furthermore, the use of the video
modality and the wide range of emotional annotations, collected for the THERA-
DIA project according to the appraisal theory (see section 2.1.1), are among the
next steps beyond this thesis.



Appendix A

Supplementary results

This appendix presents all the confusion matrices related to the cross-corpus evalu-
ation of the multi-corpus training method of section 5.1, without (frozen) and with
fine-tuning (FT) of the W2V2-XLSR-56 representations.

Confusion matrices of the predictions of the CaFE classifier from the CaFE utter-
ances.
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Confusion matrices of the predictions of the CaFE classifier from the EmoDB ut-
terances.

Confusion matrices of the predictions of the CaFE classifier from the GEMEP ut-
terances.
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Confusion matrices of the predictions of the CaFE classifier from the RAVDESS
utterances.

Confusion matrices of the predictions of the EmoDB classifier from the CaFE ut-
terances.
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Confusion matrices of the predictions of the EmoDB classifier from the EmoDB
utterances.

Confusion matrices of the predictions of the EmoDB classifier from the GEMEP
utterances.
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Confusion matrices of the predictions of the EmoDB classifier from the RAVDESS
utterances.

Confusion matrices of the predictions of the GEMEP classifier from the CaFE ut-
terances.
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Confusion matrices of the predictions of the GEMEP classifier from the EmoDB
utterances.

Confusion matrices of the predictions of the GEMEP classifier from the GEMEP
utterances.
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Confusion matrices of the predictions of the GEMEP classifier from the RAVDESS
utterances.

Confusion matrices of the predictions of the RAVDESS classifier from the CaFE
utterances.
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Confusion matrices of the predictions of the RAVDESS classifier from the EmoDB
utterances.

Confusion matrices of the predictions of the RAVDESS classifier from the GEMEP
utterances.
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Confusion matrices of the predictions of the RAVDESS classifier from the
RAVDESS utterances.
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des enregistrements de parole en français. In JEP 2022. Île de Noirmoutier,
France.

Several other related studies were also carried out during this thesis, which are
not included in the main text, including the following two arXiv1 papers:

• Alisamir, S., Ringeval, F., and Portet, F. (2022). Cross-domain Voice
Activity Detection with Self-Supervised Representations. arXiv preprint
arXiv:2209.11061.

• Alisamir, S., Ringeval, F., and Portet, F. (2022). Dynamic Time-Alignment
of Dimensional Annotations of Emotion using Recurrent Neural Networks.
arXiv preprint arXiv:2209.10223.

1https://arxiv.org/



Appendix C

Demo

Figure C.1: The interface of the real-time emotion recognition demo built during
this thesis. Based on a given text input or a spoken utterance, the demo can analyse
and display the detected emotion in real time.
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Figure C.2: The pipeline of the real-time emotion recognition demo built during
this thesis.

During this thesis, a real-time1 emotion recognition demo was also built to both
present different trained models and to understand all the technical aspects and prob-
lems that can arise from theory to application. This demo is available on the Github2

for anyone to try out. Figure C.1 shows the interface of this demo. The top part of
the interface is where the user can interact and the bottom part is where the results
of the analysis are displayed. At the very top, the user can enter a text as input and
click on the button “Analyse text” to run the sentiment prediction model, which will
display the results on a range from zero to one.

In addition, the user can also activate a Voice Activity Detection (VAD) trained
during this thesis Alisamir et al. (2022a) by clicking on the button “VAD not active”
to activate the VAD. Then, the microphone should be activated by clicking on the
button “Start listening”. The VAD will then automatically detect if each time a
phrase is spoken, and the detected segment is passed to the emotion recognition
model to make predictions based on the acoustic signal and the transcription3. For
example, if the model selected is “S -> IEMOCAP, ASR -> Allociné”, which means
that the model trained on the IEMOCAP dataset based on speech is used and the
text predictions are based on a model trained on the Allociné dataset. The model
trained on the IEMOCAP dataset can predict the arousal and valence dimensions
of emotion (on a scale from zero to one), and therefore the results presented in the
Analysis section will be in the same format.

To better understand how the demo works, Figure C.2 shows its pipeline. The
VAD first detects a speech segment from a constant active audio stream input. Then
the Google’s ASR transcribes the speech segment. The speech segment and the
transcription are then used to extract acoustic and textual representations respec-
tively, which are then used in the AER model to predict emotion. It should be noted
that depending on the representation, the dataset and the model trained on it, which
can be selected in the interface, the predicted emotion may have a different value
and format.

1By “real-time”, we mean roughly around 100ms up to ten seconds, following Eyben (2015).
2https://github.com/SinaAlisamir/Real-time-Emotion-Recognition-from-Speech-and-Text
3The transcriptions are obtained automatically by exploiting Google’s ASR model



Appendix D

Résumé de thèse

D.1 Introduction
L’émotion et la raison ont longtemps été considérées comme deux parties indépen-
dantes et rivales du cerveau humain. Ce n’est que récemment que la corrélation
entre les deux a été clairement établie grâce à une lésion cérébrale (Damasio, 1994).
Des découvertes psychologiques récentes suggèrent que ce n’est pas seulement le
raisonnement qui est nécessaire pour obtenir une réponse émotionnelle, mais que
l’émotion est également nécessaire pour raisonner et filtrer toutes les informations
sensorielles constantes que notre cerveau reçoit à chaque seconde de notre vie. Per-
mettre aux machines de percevoir les émotions humaines peut être une technologie
révolutionnaire, ayant un impact sur de nombreux domaines différents, allant de
l’éducation et de la santé au divertissement.

Pour que les différents cas d’utilisation technologique de la reconnaissance au-
tomatique des émotions (RAE) puissent voir le jour, il faut qu’elle soit performante
sur les données naturelles1, qui présentent plusieurs caractéristiques, à savoir que
différents locuteurs ont des interactions naturelles, utilisent différents microphones
et se trouvent dans différents environnements (Kossaifi et al., 2021). Cependant, à
ce jour, la recherche sur la RAE s’est principalement concentrée sur les expres-
sions actées des émotions, enregistrées dans des environnements de laboratoire.
Néanmoins, ce paradigme évolue progressivement vers l’exploitation de données
recueillies dans la nature. Ce changement de paradigme est principalement dû
à de nouvelles techniques d’apprentissage profond, telles que les représentations
profondes, qui peuvent nous fournir des représentations acoustiques et textuelles

1Ici, le terme “naturel” dans le contexte de la RAE fait référence aux expressions émotionnelles
qui sont le résultat d’interactions naturelles entre des humains, ou des humains et une machine,
enregistrées dans une variété d’environnements, tels que dans une salle de classe, en public, ou à la
maison, et en utilisant différents microphones. Les données naturelles s’opposent aux expressions
émotionnelles actées (ou induites), qui sont généralement recueillies dans des environnements de
laboratoire contrôlés.
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mieux adaptées aux expressions émotionnelles naturelles. Les nouvelles méthodes
d’apprentissage profond, ainsi que les vastes possibilités technologiques de la RAE,
ont suscité l’intérêt de l’industrie ces dernières années. Par exemple, Atos, une en-
treprise de services numériques basée en France et le partenaire industriel de cette
thèse CIFRE1, est intéressée par le développement de la technologie RAE pour les
applications d’assistants virtuels qui fonctionnent avec des entrées acoustiques et
textuelles. En se basant sur une telle application cible, cette thèse se concentre
principalement sur les modalités acoustiques et textuelles, provenant de différents
locuteurs, avec des données naturelles. Les objectifs de cette thèse sont donc les
suivants :

1. L’état de l’art a montré des résultats prometteurs avec les transcriptions RAP2

pour les représentations acoustiques-textuelles conjointes et les représenta-
tions acoustiques profondes tenant compte du locuteur. Ainsi, dans cette thèse
(voir la section D.4), la recherche connexe est avancée en étudiant l’utilisation
de représentations profondes pour les expressions émotionnelles actées et na-
turelles, lorsque le texte est transcrit soit par des humains, soit par un système
RAP.

2. L’état de l’art a montré l’efficacité de l’utilisation de la MTL3 pour former
des modèles d’apprentissage automatique sur plusieurs corpus avec différents
ensembles de catégories d’émotions. D’autre part, il a été démontré que les
représentations profondes pré-entraînées se généralisent bien à travers dif-
férentes expressions émotionnelles. Par conséquent, dans la section D.5,
cette thèse propose une méthode qui utilise des représentations acoustiques
et textuelles profondes avec MTL pour prédire une représentation latente de
l’émotion qui peut reconnaître les mêmes catégories d’émotion ou des caté-
gories similaires dans différents ensembles de données.

Dans ce qui suit, la section D.2 présente l’état de l’art de la RAE à partir de
signaux acoustiques et de textes. La section commence par discuter de la façon
dont l’émotion est perçue en psychologie et comment elle est utilisée pour définir les
annotations d’émotion pour l’apprentissage automatique. Il passe ensuite en revue
plusieurs méthodes RAE de pointe, suivies d’une étude de cas pour les comparer
quantitativement.

1CIFRE (Conventions Industrielles de Formation par la REcherche) est un mécanisme qui per-
met aux entreprises de droit français de recruter un doctorant dont le projet de recherche est mené en
collaboration avec un laboratoire public (dans ce cas, l’Université de Grenoble Alpes), le ministère
français de la recherche versant une subvention annuelle à l’entreprise (dans ce cas, Atos).

2RAP: Reconnaissance Automatique des Émotions
3Multi-Task Learning (MTL): l’Apprentissage multitâche
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Basé sur l’étude de l’état de l’art, la section D.3 décrit ensuite la méthodologie
des expériences dans cette thèse, à savoir les représentations, les ensembles de don-
nées, les méthodes d’apprentissage, les fonctions de perte et les métriques utilisées
pour atteindre les objectifs de la thèse.

Puis dans la section D.4, des représentations profondes pré-entraînées de sig-
naux acoustiques et de texte, qui ont montré les meilleures performances dans
la littérature, sont utilisées pour RAE avec des expressions émotionnelles actées
et naturelles. En outre, cette section expérimente l’utilisation de représentations
acoustiques-textuelles conjointes pré-entraînées personnalisées, lorsque le texte est
soit une transcription humaine, soit généré par un RAP.

Ensuite, dans la section D.5, la méthode proposée utilisant les représenta-
tions profondes pré-entraînées avec MTL est explorée. L’efficacité de l’utilisation
d’expressions émotionnelles actées pour RAE avec des données naturelles est égale-
ment expérimentée.

Enfin, la section D.6 conclut la thèse.

D.2 l’État de l’art
La RAE à partir de signaux acoustiques et de textes a été un domaine d’étude au
cours des dernières décennies. Bien que l’émotion n’ait pas de définition standard
en psychologie, la RAE cible généralement une vision catégorielle de l’émotion
telle que la peur, la colère, le bonheur, la tristesse, le dégoût et la surprise, basée sur
les travaux d’Ekman, ou les dimensions d’éveil et de valence (plaisir intrinsèque),
basées sur les travaux de Russell. Afin de prédire les annotations catégorielles ou
dimensionnelles des émotions, les méthodes traditionnelles de la RAE impliquent
plusieurs étapes de transformation des données pour modéliser le signal acoustique
ou le texte à différents niveaux. Ces étapes sont 1) l’extraction de caractéristiques
de bas niveau, qui implique des techniques de modélisation au niveau du signal
comme les MFB 2) des approches statistiques pour parvenir à une modélisation
contextuelle, qui implique des méthodes comme BoAW pour les signaux acous-
tiques et TF-IDF pour le texte, et 3) la mise en correspondance des caractéristiques
statistiques avec des représentations numériques d’une annotation d’émotion, en
utilisant différentes méthodes statistiques, et plus tard des méthodes d’apprentissage
automatique comme les SVM. Cependant, l’avènement des DNN a remis en ques-
tion ce paradigme et a devenu populaires au cours des dernières années. Cela est
dû en grande partie à la capacité des réseaux neuronaux profonds à approximer des
fonctions complexes en utilisant uniquement des données (axées sur les données),
par opposition aux techniques traditionnelles qui sont principalement "fondées sur
la connaissance humaine". En outre, comme les couches neuronales profondes peu-
vent être montées en cascade, elles peuvent être formées pour remplacer efficace-
ment toutes les étapes de transformation des données susmentionnées, en brouil-
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lant les frontières entre chaque étape. En outre, l’utilisation de DNNs préformés
sur de grandes quantités de données non étiquetées, tels que le modèle Wav2vec2
pour les signaux acoustiques et BERT pour le texte, a dominé les meilleures per-
formances dans de nombreux domaines, y compris la RAE. Ces modèles préfor-
més sont particulièrement efficaces pour la RAE car ils sont formés de manière
non supervisée et ne sont pas formés par des annotations d’émotions subjectives,
qui sont souvent bruyantes. En outre, l’utilisation de représentations acoustiques
et textuelles conjointes, où le texte peut être soit des transcriptions humaines, soit
produit par un RAP, s’est avérée plus efficace que l’utilisation d’une modalité acous-
tique ou textuelle seule. Des études récentes suggèrent également que cette amélio-
ration peut être renforcée par l’exploitation des informations relatives au locuteur.
Cependant, aucune étude n’a pu être trouvée sur l’utilisation de représentations
acoustiques-textuelles profondes pré-entraînées augmentées d’informations sur le
locuteur. L’utilisation de représentations acoustiques-textuelles pour les expressions
émotionnelles naturelles semble également constituer une lacune dans l’état actuel
de la RAE.

D.3 Méthodologie expérimentale et ressources
La revue de l’état de l’art a montré que les représentations profondes pré-entraînées
des signaux acoustiques et du texte sont significativement plus performantes que
les techniques traditionnelles pour la RAE. L’objectif de cette thèse est d’étendre
l’état de l’art relatif à l’utilisation de représentations acoustiques et textuelles pro-
fondes pré-entraînées pour une large gamme d’expressions émotionnelles, qu’elles
soient actées ou naturelles. Par conséquent, plusieurs représentations profondes
pré-entraînées sont utilisées dans différentes expériences de cette thèse, ainsi que
dans un large éventail d’ensembles de données. Les représentations profondes pré-
entraînées utilisées ici sont Wav2vec2, et Whisper pour les signaux acoustiques et
RoBERTa pour le texte, choisies en particulier pour leurs performances supérieures
à l’état de l’art. Les ensembles de données utilisés dans cette thèse sont AlloSat,
CMU-MOSEI, CaFE, EmoDB, GEMEP, IEMOCAP, RAVDESS et RECOLA, qui
varient en termes d’environnement d’enregistrement, de locuteurs, d’annotations
d’émotions et de contexte dans lequel les expressions émotionnelles sont collectées
(actées, induites et naturelles). En outre, dans les différentes expériences menées
tout au long de cette thèse, l’optimiseur Adam est choisi pour entraîner les modèles
neuronaux pour différentes fonctions de perte, car il converge plus rapidement et
peut obtenir des résultats comparables ou supérieurs à ceux de l’algorithme SGD1

de base. Les fonctions de perte et les mesures utilisées pour former et évaluer les
modèles varient en fonction de la tâche. Pour la prédiction continue dans le temps

1Stochastic Gradient Descent (SGD): Descente stochastique de gradient
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de dimensions émotionnelles telles que l’excitation et la valence, 1´CCC est utilisé
comme fonction de perte et CCC1 comme métrique, parce qu’il peut mesurer à la
fois la covariance des prédictions et des cibles et la distance entre leurs moyennes.
Et pour catégoriser les étiquettes d’émotion telles que la joie, la colère, la tristesse
et la neutralité, l’entropie croisée est utilisée comme fonction de perte et l’UAR2

comme mesure d’évaluation. Le choix de l’UAR par rapport à la mesure de préci-
sion plus courante s’explique par le fait que la précision ne donne pas une bonne
indication des performances d’un modèle si les données de test ne sont pas équili-
brées. Enfin, toutes les expériences ont été réalisées à l’aide de Pytorch et de la
boîte à outils SpeechBrain.

D.4 Représentations profondes pour la prédiction
des émotions

Les avancées récentes dans le domaine des DNN ont montré que les représenta-
tions profondes pré-entraînées, et en particulier les représentations Wav2vec2 et
RoBERTa, peuvent atteindre des performances de pointe dans un large éventail de
tâches vocales et textuelles, y compris la reconnaissance des émotions. Comme
ces représentations profondes sont formées de manière incrémentale sur de grandes
quantités de données, la relation entre leurs données d’entraînement et leur perfor-
mance pour une tâche telle que la reconnaissance des émotions est difficile à com-
prendre et à contrôler. À cette fin, dans cette thèse, plusieurs modèles Wav2vec2
ont été pré-entraînés sur différentes quantités et différents types de discours, et leurs
performances dans reconnaissance dimensionnelle des émotions ont été analysées
sur les ensembles de données RECOLA et AlloSat. Les résultats ont montré que le
type de données joue un rôle plus important que la quantité de données. En partic-
ulier, les représentations Wav2vec2 pré-entraînées sur des données françaises sont
plus performantes dans les tâches de prédiction des émotions en français que les
représentations Wav2vec2 pré-entraînées sur des données anglaises. Cependant, le
pré-entraînement des représentations profondes sur un plus grand nombre de don-
nées ne conduit pas nécessairement à une meilleure performance pour la RAE. De
plus, par rapport aux caractéristiques MFB traditionnelles, ces représentations pro-
fondes s’appuient sur des modèles moins complexes pour obtenir de bonnes perfor-
mances dans la RAE.

En outre, les émotions étant transmises à la fois par la communication verbale et
non verbale, il a été démontré que la représentation conjointe acoustique-textuelle
des représentations acoustiques et textuelles était plus efficace que l’utilisation de
chaque modalité seule. Par conséquent, dans cette thèse, plusieurs méthodes de

1CCC: Concordance Coefficient de Corrélation
2Unweighted Average Recall (UAR): Moyenne non pondérée du rappel
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fusion des représentations acoustiques (W2V2-XLSR-56) et textuelles (RoBERTa)
ont été étudiées sur les ensembles de données IEMOCAP (pour les expressions
agies) et CMU-MOSEI (pour les expressions naturelles). Les résultats ont montré
que la simple concaténation des vecteurs latents des représentations acoustiques et
textuelles pré-entraînées, permettait d’obtenir de meilleures performances pour les
expressions émotionnelles actées et naturelles, que l’utilisation de la représentation
de chaque modalité seule. Ces résultats sont cohérents avec ceux observés dans des
études similaires telles que Siriwardhana et al. (2020).

Cependant, les représentations acoustiques-textuelles conjointes reposent sou-
vent sur des transcriptions humaines des signaux acoustiques, qui ne sont pas tou-
jours disponibles dans une application réaliste des modèles de la RAE. Par con-
séquent, plusieurs études ont examiné l’utilisation des transcriptions ASR pour
fournir des représentations acoustiques-textuelles conjointes pour la RAE sur les
expressions émotionnelles actées (Heusser et al., 2019; Yoon et al., 2019; Wu et al.,
2021; Peng et al., 2021). Ces études ont montré que même si les représentations
acoustiques-textuelles conjointes basées sur les transcriptions RAP ne sont pas aussi
efficaces que les transcriptions humaines pour la RAE, elles sont toujours plus
performantes que les représentations acoustiques seules. Afin de faire progresser
les études de pointe susmentionnées, cette méthode est évaluée dans cette thèse
pour les expressions émotionnelles naturelles, en exploitant l’ensemble de données
CMU-MOSEI. Les résultats montrent que cette méthode est également efficace pour
les expressions émotionnelles naturelles, mais principalement grâce à l’utilisation
de représentations textuelles, car les représentations acoustiques, qu’il s’agisse de
W2V2-XLSR-56 ou de LLD traditionnels, ne se sont pas révélées suffisamment
robustes pour être utilisées de manière fiable pour les expressions émotionnelles
naturelles.

L’utilisation de messages verbaux provenant de représentations textuelles n’est
pas la seule source d’information susceptible d’améliorer les performances de la
RAE à partir de représentations acoustiques. L’utilisation des représentations du
locuteur s’est également avérée efficace pour la RAE, car elle fournit des infor-
mations sur le style des différents locuteurs. Par conséquent, dans cette thèse,
plusieurs expériences ont été réalisées sur l’ensemble de données IEMOCAP afin
d’étudier l’efficacité de la fusion des représentations du locuteur dans les représen-
tations acoustiques-textuelles conjointes sur la RAE, en utilisant les représentations
W2V2-XLSR-56 et RoBERTa. Les résultats ont montré que les représentations
acoustiques-textuelles tenant compte du locuteur peuvent atteindre de meilleures
performances dans la RAE que les représentations acoustiques-textuelles sans
représentation du locuteur. Cependant, il a également été démontré que l’utilisation
de transcriptions RAP pour calculer des représentations acoustiques-textuelles ten-
ant compte du locuteur ne conduit pas à des résultats significativement meilleurs
que l’utilisation de représentations acoustiques tenant compte du locuteur, et donc
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la précision du modèle RAP est un facteur limitant dans ce paradigme. En plus, il
a été démontré que les représentations acoustiques profondes telles que Whisper,
qui ont été pré-entraînées directement pour la RAP et indirectement pour la recon-
naissance du locuteur, peuvent contenir à la fois des informations verbales et des
informations sur le locuteur et n’ont pas besoin d’être fusionnées avec des représen-
tations textuelles et des représentations du locuteur pour atteindre des performances
comparables aux représentations conjointes W2V2-RoBERTa tenant compte du lo-
cuteur pour la RAE actée.

D.5 Généralisation au-delà des schémas
d’annotation des émotions

Les méthodes actuelles de la RAE utilisent des modèles d’apprentissage automa-
tique pilotés par les données pour mettre en correspondance les représentations
acoustiques ou textuelles des données avec des représentations numériques de
l’émotion. Cependant, l’émotion étant un concept subjectif pour lequel il n’existe
pas de définition commune, la représentation de l’émotion varie entre les différents
ensembles de données. D’autre part, il est important d’entraîner les modèles de
la RAE sur plusieurs ensembles de données, car chaque ensemble de données
représente une gamme limitée d’expressions émotionnelles qui peuvent être ob-
servées naturellement. Afin d’utiliser plusieurs ensembles de données avec dif-
férents schémas d’annotation des émotions, cette thèse propose une méthode basée
sur MTL qui prédit une intégration d’émotions généralisée, qui peut ensuite être
mise en correspondance avec différents ensembles d’émotions basés sur chaque en-
semble de données. Pour calculer l’intégration des émotions, la méthode proposée
utilise un modèle GRU partagé, qui est entraîné avec des classificateurs linéaires,
qui sont chacun dédiés aux énoncés de chaque ensemble de données concerné.

Cette méthode a d’abord été évaluée sur quatre petits ensembles de données ac-
tées –CaFE, EmoDB, GEMEP, et RAVDESS– dans des paramètres intra-corpus, et
inter-corpus pour la RAE à partir de représentations acoustiques profondes –W2V2-
XLSR-56–. Les résultats à l’intérieur du corpus ont montré que cette méthode est
particulièrement efficace pour améliorer les performances de la RAE pour les petits
ensembles de données. D’autre part, les résultats inter-corpus suggèrent que cette
méthode peut calculer efficacement les représentations d’émotions qui peuvent se
généraliser au-delà des différentes étiquettes d’émotions dans différents corpus.

La méthode proposée, basée sur le MTL, a ensuite été évaluée pour les ex-
pressions émotionnelles in-the-wild et également avec des représentations textuelles
profondes –RoBERTa–, en plus des représentations acoustiques profondes –W2V2-
XLSR-56–. A la place des quatre ensembles de données actées, les ensembles de
données CMU-MOSEI (naturelles) et IEMOCAP (actées) ont ensuite été utilisés
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pour étudier si les expressions émotionnelles actées, lorsqu’elles sont utilisées dans
un paradigme MTL, sont utiles pour la RAE naturelle. Les résultats ont montré
qu’en utilisant des représentations acoustiques profondes, aucune amélioration n’est
observée pour l’ensemble de données CMU-MOSEI lorsqu’il est entraîné dans un
contexte multicorpus avec les données IEMOCAP par rapport à l’entraînement avec
un seul corpus. Cela a été attribué au fait que les représentations W2V2-XLSR-56
n’étaient pas suffisamment robustes pour se généraliser à travers différents locu-
teurs, environnements ou microphones. En revanche, l’utilisation de représentations
textuelles profondes de l’ensemble de données IEMOCAP a permis d’améliorer
de manière significative les performances de la RAE pour l’ensemble de données
CMU-MOSEI. Ce résultat suggère que, bien que les représentations acoustiques
profondes ne soient pas encore suffisamment robustes pour être utilisées pour les
expressions émotionnelles naturelles, les transcriptions des signaux vocaux peuvent
bénéficier de manière significative de la méthode de formation à plusieurs corpus
proposée pour fournir une meilleure RAE naturelle qu’en utilisant les signaux vo-
caux seuls.

D.6 Conclusion
Dans cette thèse, plusieurs études ont été menées pour faire avancer la recherche
actuelle sur l’apprentissage automatique des expressions émotionnelles naturelles à
partir de signaux acoustiques et de textes. Plus spécifiquement, deux objectifs prin-
cipaux ont été étudiés : 1) l’utilisation de représentations profondes pour la RAE
et 2) la généralisation des modèles de la RAE au-delà des schémas d’annotations
des émotions. Ces études ont donné lieu à cinq contributions principales qui sont
énumérées ci-dessous :

1. Plusieurs modèles Wav2vec2 ont d’abord été entraînés en utilisant différents
types et quantités de parole française. Les modèles pré-entraînés ont ensuite
été utilisés comme représentations acoustiques pour la RAE et évalués sur
deux jeux de données français, AlloSat (téléphonique, naturel) et RECOLA
(spontané, en laboratoire). Les résultats ont montré que l’utilisation d’une
plus grande quantité de données (après 3k heures) pour entraîner les représen-
tations profondes ne conduit pas nécessairement à une amélioration de la per-
formance de ces représentations pour la RAE. Cependant, la langue des don-
nées utilisées pour entraîner les modèles, indépendamment du type de dis-
cours, semble jouer un rôle important, puisque les représentations profondes
pré-entraînées sur le discours français étaient plus performantes pour prédire
les expressions émotionnelles françaises que les représentations profondes
pré-entraînées sur le discours anglais.
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2. Les représentations profondes acoustiques (W2V2-XLSR-56) et textuelles
(RoBERTa) des transcriptions humaines et automatiques ont été utilisées de
manière isolée et conjointe pour la RAE. Les résultats ont montré que les
représentations acoustiques et textuelles conjointes offraient de meilleures
performances que les représentations acoustiques ou textuelles seules pour
les expressions émotionnelles jouées et naturelles, que le texte soit humain ou
transcrit automatiquement. Cette meilleure performance pour les expressions
émotionnelles naturelles est principalement due à l’utilisation de représen-
tations textuelles, les représentations acoustiques s’étant révélées inefficaces
pour la RAE naturel.

3. Les modèles de reconnaissance du locuteur ont été entraînés pour obtenir des
vecteurs latents du locuteur. Ensuite, les vecteurs de locuteurs ont été con-
caténés avec des représentations latentes acoustiques-textuelles pour former
des représentations conscientes du locuteur pour la RAE sur l’ensemble de
données IEMOCAP. Les résultats ont montré que la fusion des vecteurs de
locuteurs avec les représentations acoustiques-textuelles conjointes –W2V2-
RoBERTa– donne les meilleurs résultats parmi les scénarios testés, bien
qu’elle soit marginalement meilleure que les représentations acoustiques et
textuelles conjointes sans les représentations du locuteur. Il a également été
démontré qu’en utilisant des représentations profondes telles que Whisper,
qui ont été pré-entraînées directement pour RAP et indirectement pour la re-
connaissance du locuteur, il n’est peut-être pas nécessaire de fusionner da-
vantage les représentations textuelles et les représentations du locuteur, pour
obtenir des performances comparables aux représentations conjointes W2V2-
RoBERTa tenant compte du locuteur pour la RAE actée.

4. Une méthode basée sur MTL a été proposée qui utilise des représentations
acoustiques profondes, un modèle GRU partagé pour tous les ensembles de
données, et des classificateurs linéaires dédiés à chaque ensemble de don-
nées. La méthode proposée a ensuite été évaluée à l’aide de quatre ensembles
de données actées provenant de CaFE, EmoDB, GEMEP et RAVDESS, qui
utilisent tous différents ensembles d’étiquettes d’émotions. Les résultats sug-
gèrent que la méthode proposée peut produire une représentation latente des
émotions qui peut améliorer les performances de RAE dans les ensembles de
données avec différents ensembles d’étiquettes d’émotions.

5. La méthode basée sur la MTL expliquée ci-dessus a été évaluée plus avant,
sur les ensembles de données IEMOCAP (actées) et CMU-MOSEI (na-
turelles), et pour les représentations acoustiques profondes –W2V2-XLSR-
56– et textuelles –RoBERTa–. Les résultats suggèrent qu’en utilisant la
méthode proposée basée sur MTL, la performance RAE de l’ensemble de
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données CMU-MOSEI peut être améliorée en utilisant des représentations
textuelles ou des représentations acoustiques-textuelles conjointes, mais pas
avec des représentations acoustiques seules. Cela suggère que les représen-
tations acoustiques profondes ne sont pas encore assez robustes pour la re-
connaissance naturelle des émotions, alors que l’utilisation d’un RAP pour
obtenir un aperçu des mots prononcés peut améliorer la performance RAE
naturelle.
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