Hybrid systems are one of the most common mathematical models for Cyber-Physical Systems (CPSs). They combine discrete dynamics represented by state machines or finite automata with continuous behaviors represented by differential equations. The measurement of continuous behaviors is performed by sensors. When these sensors have a continuous access to these measurements, this kind of models is called Event-Triggered models. The properties of such models are easier to prove, while their implementation are difficult in practice. Therefore, it is preferable to introduce a more concrete kind of models, called Time-Triggered models, where the sensors take periodic measurements. Contrary to Event-Triggered models, Time-Triggered models are much easier to implement, but much more difficult to verify. Based on the differential refinement logic (dRL), a dynamic logic for refinement relations on hybrid systems, it is possible to prove that a Time-Triggered model refines an Event-Triggered model. However, being done by hand, this proof is error-prone since no prover is available to support this logic. To overcome this limit, we proposes a new correct-by-construction approach to prove this refinement, based on Event-B to take advantage of its well-defined refinement process and its support tools. We use the Rodin platform to develop Event-B models and its associated provers (automatic and interactive) to ensure their correctness. The obtained Event-B models are generic and can be then instantiated to model and prove any specific CPS. The proposed approach is illustrated by two frequently used CPS case studies. Moreover, this approach implements an interface between the differential equation solver SageMath (System for Algebra and Geometry Experimentation) and the Rodin tool to deal with the resolution of ordinary differential equations in Event-B. The proposed approach was successfully applied on a frequently used cyber-physical system case study. We used our approach on various problems taken from control theory, including the stop sign, the water tank, thermostat.
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Résumé

Les systèmes hybrides sont l'un des modèles mathématiques les plus courants pour la modélisation des systèmes cyber-physiques (SCP). Ils combinent des dynamiques discrètes représentées par des machines à états ou des automates finis avec des comportements continus représentés par des équations différentielles. Les comportements continus des systèmes cyber-physiques sont collectés à l'aide des capteurs. Lorsque ces capteurs ont un accès continu à ces mesures, ce type de modèles est appelé modèles déclenchés par événements Event-Triggered. Les propriétés de tels modèles sont plus faciles à prouver, tandis que leur mise en oeuvre est difficile en pratique. Par conséquence, il est préférable d'introduire un type de modèles plus concrets, appelés modèles déclenchés par le temps Time-Triggered, où les capteurs prennent des mesures périodiques. Contrairement aux modèles Event-Triggered, les modèles Time-Triggered sont beaucoup plus faciles à mettre en oeuvre, mais beaucoup plus difficiles à vérifier. En utilisant dRL, une logique dynamique de raffinement pour les systèmes hybrides, il est possible de prouver qu'un modèle Event-Triggered, les modèles Time-Triggered raffine un modèle Event-Triggered. Cependant, étant faites à la main, les preuves dans dRL sont sujette aux erreurs puisqu'aucun outil n'est disponible pour supporter cette logique. Pour surmonter cette limite, nous proposons une nouvelle approche pour prouver ce raffinement, basée sur Event-B pour tirer parti de son processus de raffinement bien défini et de ses outils de support. Nous utilisons la plateforme Rodin pour développer des modèles Event-B et ses outils de preuves associés (automatiques et interactifs) pour assurer l'exactitude de ces modèles. Les modèles Event-B obtenus sont génériques et peuvent ensuite être instanciés pour modéliser et prouver n'importe quel système cyber-physique. L'approche proposée est illustrée par deux études de cas fréquemment utilisées. De plus, cette approche implémente une interface entre le solveur d'équations différentielles SageMath (System for Algebra and Geometry Experimentation) et l'outil Rodin pour traiter la résolution des équations différentielles ordinaires dans Event-B. L'approche proposée a été également appliquée avec succès sur une étude de cas de système cyber-physique fréquemment utilisé. Nous avons utilisé notre approche sur divers problèmes issus de la théorie du contrôle, notamment le panneau d'arrêt, le réservoir d'eau, le thermostat. v

Introduction

Context: Recent progress in the industrial sector has allowed the development of a new production model based on digital network architectures to give birth to a fourth industrial revolution ("industry 4.0" or "industry of the future"). Cyber-physical systems (CPSs) [2] are one of the main technologies in this industry and form the basis of future technologies. The domain of these systems has rapidly become a source of innovation with applications in many sectors: health, transport, smart grid, etc. This type of systems allows the discrete virtual world and the continuous physical world to be connected via a network of sensors and actuators.

A common mathematical model for CPSs is that of hybrid systems that combine discrete behavior represented by state machines or finite automata with continuous behavior described by differential equations. In hybrid systems, the measurement of continuous behaviors is performed by sensors. Ideally, sensors have a continuous access to these measurements, this can be captured by an abstract model of CPSs, called Event-Triggered system by Kopetz [3]. However, implementing such models is difficult in practice. Therefore, it is preferable to introduce a more concrete model, called Time-Triggered system [3] in, where the sensors take periodic measurements. Platzer et al. [4,5] use Event and Time-Triggered models to design and verify hybrid systems. They have proved that a Time-Triggered model is a refinement of an Event-Triggered model, by using an extension of differential dynamic logic (dL), called differential refinement logic (dRL).

Challenges: The continuous behavior of hybrid systems is often described by ordinary differential equations (ODEs) that involve an unknown function depending on a single variable. There are two types of methods for solving ordinary differential equations: analytical (symbolic) methods and numerical methods. Analytical methods use a set of theorems to obtain an exact solution for a given differential equation. For example, the computer algebra SageMath (System for Algebra and Geometry Experimentation) [6] provides a predefined function that uses analytical methods to find analytical solutions for ODEs. However most differential equations cannot be solved exactly. Therefore, we must rely on numerical methods to obtain approximate solutions or use approximation techniques to transform an equation into an equivalent equation with an exact solution. For example, linearization techniques can be used to transform a nonlinear differential equation into a linear differential equation and then apply analytical methods for linear differential equations. The obtained solution is thus an approximate solution for the original one.

The interaction between the software part and the physical world makes the verification of hybrid systems an intellectual challenge. The development of techniques and tools to effectively design hybrid systems has drawn the attention of many researchers. Traditional approaches are based on simulation tools like Matlab/Simulink [7] or Stateflow [8] which are however time-consuming and produce results tainted with uncertainty, this is why hybrid systems with critical safety properties involve the use of formal methods. For this purpose, several formal approaches have been proposed. These approaches can be grouped into two CHAPTER 1. INTRODUCTION categories: model-checking-based approaches and proof-based approaches.

• Model-checking-based approaches use hybrid automata to model hybrid systems and algorithmic analysis methods to prove their safety properties. They are based on the calculation of the set of reachable states for hybrid automata. These approaches suffer from the classical problems related to state space explosion and boundedness of considered variables.

• Proof-based approaches use deductive verification to prove the safety properties of hybrid systems. One of the strong points of these approaches is that they support large hybrid system specifications of any kinds, such as linear hybrid systems, non linear hybrid systems, etc. However, they require significant effort and a high expertise during the modeling and proof phases.

The definition of generic approaches, like that presented in this thesis using the Event-B formal method, for modeling and verifying hybrid systems may promote the use of proofbased approaches for industrial applications. The use of Event-B and its Rodin platform, a tool for Event-B project development, permits us to assist the developers in editing, checking but also proving correctness using the automatic and interactive provers included in the platform. In addition, interfacing a computer algebra system such as SageMath with an interactive theorem prover permits to deal with the resolution of ordinary differential equations when modeling hybrid system using a discrete formal method.

Contributions: In this thesis, we are interested in modeling and verifying the safety properties of a cyber-physical system. Our objective, as a part of the DISCONT project [START_REF] Thomas A Henzinger | Hytech: A model checker for hybrid systems[END_REF], is to develop formal approaches for modeling and verifying hybrid systems that combine discrete and continuous worlds. For this purpose, we have developed an approach to model and prove Event-Triggered systems and Time-Triggered systems in Event-B by taking advantage of its well-defined refinement process and its automatic/interactive provers used to verify the correctness of the models.

Since Event-B is designed for modeling discrete systems, it does not support the resolution of ordinary differential equations. To deal with this limit, we interface the Rodin tool with a differential equation solver, SageMath in our case, using the notion of plug-in. The main contributions of the present thesis are as follows:

• a generic formal proved approach for designing correct cyber-physical systems by considering any number of safety properties. This approach consists in defining three generic models in Event-B starting with an abstract model of cyber-physical systems and then using the refinement strategy to introduce more concrete details. These models are verified under Rodin using a set of theories introduced in [10]. This generic approach models and proves the relationship between Event-Triggered and Time-Triggered systems in Event-B. We reuse the approach proposed by Dupond et al. in [10] that defines a set of theories needed to model continuous aspects of CPSs in Event-B.

• a set of instantiation rules that are defined to systematically build the model of a specific application. These rules make it possible to deal with more complex safety properties (a conjunction of atomic ones) and make the approach more general. Moreover, we provide a set of generic invariants which have been identified from the case studies to prove the safety properties. They just need to be instantiated for proving any specific application.

• an extension of the generic approach to interface Event-B with the differential equation solver SageMath. A new generic model is defined. It refines the Time-Triggered model by introducing a function to model calls to the solver. A tool has been implemented as a new Rodin plug-in. This plug-in permits to call SageMath during the proof phase.

• a set of case studies to validate our approach. They have been chosen so that they represent different kinds of CPSs: hybrid systems with one or several continous variables, one or several safety properties, a non linear hybrid system.

Organisation of the Manuscript: The thesis is organised as follows:

Chapter 2: presents the context of the thesis by providing definitions of the main elements used in the development of our approach. In particular, it describes the mathematical model of cyber-physical systems, that of hybrid systems which specify both continuous and discrete dynamics of CPSs, the formal method Event-B used to model and prove our approach. In addition, the chapter presents the computer algebra system SageMath for the resolution of differential equations.

Chapter 3: presents the state of art of the most relevant formal approaches for cyberphysical systems modeling: model checking-based approaches, proof-based approaches.

It also presents some approaches that integrate formal methods with computer algebra systems. In addition, the chapter discusses the main advantages and limitations of each approach which allows us to express the requirements needed to develop our approach. This chapter presents the main aspects relevant to modeling cyber-physical systems, presented in Section 2.1. The most common model for cyber-physical systems, that of hybrid systems, is presented in Section 2.2. Then, Section 2.3 presents ordinary differential equations used to specify the continuous part of hybrid systems. In Sections 2.4 and 2.5, we describe two well known approaches for modelling hybrid systems, hybrid automata which are a specific type of state machines used to model hybrid systems, and hybrid programs that represent the programming language for hybrid systems. The main notions of the Event-B formal method are described in Section 2.6. Last, Section 2.7 presents the computer algebra systems used to find analytical and numerical solutions of ordinary differential equations.

Cyber-Physical Systems (CPSs)

The context of this thesis is the domain of cyber-physical systems (CPSs) that integrate computation, networking, and physical processing. This type of system connects the discrete virtual world and the continuous physical world via a network of sensors and actuators. One of the most common architectures in cyber-physical systems is a separate software controller that represents the discrete part and controls the physical part through a loop with sensors and actuators as depicted by Figure 2.1. The term cyber-physical system first appeared in the mid-2000s, and the original definitions of these systems were provided by Edward A. Lee [2] as part of a collaboration with the National Science Foundation (NSF): CHAPTER 2. CONTEXT "Cyber-Physical Systems (CPS) are integrations of computation with physical processes. Embedded computers and networks monitor and control the physical processes, usually with feedback loops where physical processes affect computations and vice versa. In the physical world, the passage of time is inexorable and concurrency is intrinsic. Neither of these properties is present in today's computing and networking abstractions". In other words, CPSs use computation and embedded communications to interact with physical processes to create new system functions.

Cyber-physical systems can be viewed as embedded systems. An embedded system is a combination of computer hardware and software that performs a specific task within the device in which it is integrated. In contrast to traditional embedded systems, which typically rely only on homogeneous communication structures, cyber-physical systems typically do not interact with individual devices, but rather interacting discrete systems with physical inputs and outputs. Cyber-physical systems are designed as a network of steering elements.

In addition, cyber-physical systems can communicate with other systems and exchange data with remote systems using Internet communication technology, a fundamental building block of the Internet of Things. The concept of cyber-physical systems therefore expands the definition of the Internet of Things, as networked devices which not only communicate with each other, but are also autonomous entities and must communicate and control each other.

The domain of cyber physical systems has emerged as an active domain of research in recent years that attracts the attention of many researchers which has given rise to a new category of system called Cyber-physical systems of systems (CPSoS) [11]. CPSoS involve a distributed and net-worked computing elements and human users that controlled a large physical elements. Therefore, the modeling and the verification of such complex systems requires the evolution of techniques and tools designed for standard CPSs such as presented in [12]. A cyber physical system consists of many heterogeneous subsystems that interact to perform different functions of the system. The main components of a cyber physical system are the controller and the physical part. A cyber physical system may consist of a controller and a physical part, a single controller controlling a single plant, or a controller and multiple plants, a single controller controlling multiple plants, or multiple controllers and multiple plants. This thesis covers cyber physical case studies involving one controller and one plant as depicted by Figure 2.1, but this does not prevent the developed model from being used to cover other architectures.

Hybrid Systems

Hybrid systems [13] are frequently used to model CPS. They are dynamic systems that combine both flow described by ordinary differential equations and jumps described by state machines or automata. In general, the states of a hybrid system are defined by the values of continuous variables and discrete modes of the controller. States can change continuously according to the physical state or discretely according to the controller state. Continuous flow is allowed as long as the invariants hold, but discrete transitions can occur when CHAPTER 2. CONTEXT certain jump conditions are met. Formal modeling, verification, and overall design of hybrid systems are significant challenges. The development of techniques and tools for effectively designing and verifying hybrid systems has attracted the attention of many researchers [14]. Traditional approaches are based on simulation tools such as Matlab/Simulink and Stateflow, which are time consuming and yield results that are susceptible to uncertainty. To overcome these limitations, several formal approaches for hybrid system modeling have been proposed, we can quote: Hybrid Automata (Sec. 2.4) and Hybrid Programs (Sec. 2.5). We can also mention the approaches that combine formal design and verification of hybrid systems: Hybrid CSP, Hybrid Hoare Logic (Sec. 3.2.4) and Hybrid Event-B (Sec. 3.3.5).

An example of hybrid systems is that of a bouncing ball, a well-known hybrid system for controlling the motion of a rubber ball, as shown in Figure 2.2. This system consists in dropping a ball from a predefined height H. The ball undergoes elastic deformation, hits the ground, loses energy, bounces into the air and starts falling again. The continuous behavior of this system is modeled by the current position of the ball x and its current velocity v. This continuous behavior evolves according to two linear ordinary differential equations, dx dt = v(t) and dv dt = -g, where g is the acceleration due to gravity. This system can be described by two different behaviors: falling and bouncing. The ball continues to fall as long as its current position x is greater than or equal to 0 (x ≥ 0). A bounce state is achieved when the ball hits the ground (x = 0). In either state, the safety property, 0 ≤ x(t) ≤ H, of the system must be satisfied to allow the ball never bounces higher than the initial height H.

Figure 2.2: The Bouncing Ball

The Event-Time-Triggered Approach Besides the proposed formal approaches, Kopetz [3] introduces an approach that we have found interesting because it considers a CPS at different levels of abstraction that allows to deal with the complexity of such systems. The proposed approach consists in specifying an abstract model, Event-Triggered model, in which the controller interrupts the physical part when certain events occur. Then defining a more concrete model, Time-Triggered model, in which the controller interrupts periodically the physical part [3]. The Event-Triggered model represents an ideal behavior in which time is continuous and the sensors have continuous access to continuous measurements. The Time-Triggered model represents more specific behaviors where sensors take periodic measurements. Therefore, the controller of a Time-Triggered system must make choices that should be safe until the next sensors update. This makes proofs for these types of systems more complex compared to those of Event-Triggered systems.

Ordinary Differential Equations (ODEs)

The evolution of physical systems is often described by ordinary differential equations (ODEs) [START_REF] Ince | Ordinary differential equations[END_REF]. An ordinary differential equation of order n is the relationship between a single independent variable x ∈ IR, an unknown function y, and its derivative at a point CHAPTER 2. CONTEXT x. The most common form of the ODEs that describes the evolution of hybrid systems is: a n (x)y n (x) + .... + a 2 (x)y ′′ (x) + a 1 (x)y ′ (x) + a 0 (x)y(x) = b(x). We distinguish two types of ordinary differential equations: linear and nonlinear ODEs. Linear ordinary differential equations are a special case of ODEs in which the unknown function and its derivative occur only in first order and do not multiply with each other. A linear ordinary differential equation is written in the following form (where y represents the dependent variable and x represents the independent variable):

a n (x)y n + .... + a 2 (x)y ′′ + a 1 (x)y ′ + a 0 (x)y = b(x)

The theory of solving linear equations is very well developed because linear equations are simple enough to be solved. However, most physical systems are represented by nonlinear ordinary differential equations, which cannot usually be solved exactly, and are approximated by linear differential equations. There are two ways to solve ODEs: analytical (symbolic) methods and numerical methods. Analytical techniques use a set of theorems to obtain exact solutions (in the form of integrals) of certain differential equations. There are many computer algebra systems for solving ODEs, such as SageMath [6]. These solvers cover a wide range of mathematics, including algebra, calculus, number theory, formal linear algebra, and more. However, most differential equations cannot be solved exactly. Therefore, we must resort to numerical techniques to obtain approximate solutions, or use approximation techniques to convert the equations to another type of equivalent equations. For example, linearization techniques convert nonlinear ordinary differential equations to linear ordinary differential equations and apply linear differential equation analysis techniques to them.

A theorem can be used to prove whether a first-order ordinary differential equation, an ODE that only uses the first derivative y ′ , has a solution, and whether its solution is unique. Note that any n th -order ordinary differential equation can be transformed into a system of n first-order ODEs. The two main theorems are Peano's existence theorem and the Cauchy-Lipschitz (Picard-Lindelöf) theorem. Both assume the existence of initial conditions. An ordinary differential equation with initial conditions is called a Cauchy problem. Cauchy problem is made up of a first order ordinary differential equation for which we are looking for a solution satisfying given initial conditions.

Hybrid Automata

Hybrid automata are widely used as models for hybrid systems. They associate each discrete state with an ordinary differential equation that describes the evolution of a set of continuous variables over time, and an invariant that imposes additional properties on these continuous variables. The state of an automaton can change instantaneously by discrete transitions (mode changes) consisting of discrete steps, or by continuous activity (continuous variable changes without mode changes). In this thesis, we use a simple state transition system to represent hybrid automata such as used by Platzer in [16] to just have a graphic representation of hybrid programs described in the next section.

Figure 2.3 shows the hybrid automaton associated with the Bouncing Ball case study. The initial conditions are represented by the constants xinit and vinit. The states of the automaton are associated with differential equations describing the expansion of the ball state variables x and v. The expression, 0 ≤ x(t), specifies the local invariant, which is the condition for the controller to react correctly at the right time.

As shown in Figure 2.3, the system can be in one of the following discrete states:

• Init state: initial values for position and velocity are represented by the constants xinit and vinit respectively. These constants should be chosen such that xinit ≥ 0 and vinit ≥ 0.

• Falling state: in this state, the ball falls with velocity v. This happens according to the positive weight g, dv dt = -g. As soon as the formula x(t) ≥ 0 is no longer satisfied, • Bouncing state: in this state, the ball position is 0. Therefore, the controller updates the ball velocity by -c × v to allow it to bounce again, where c represents the damping coefficient (0 ≤ c < 1).

Discrete dynamics are represented as transitions between states in a hybrid automaton. For example, if the expression x(t) ≥ 0 is true, the ball can fall with dx dt = v (Falling state). If this formula is no longer valid i.e when x = 0, the ball must enter the Bouncing state if it is not already in it.

Hybrid Programs (HPs)

Hybrid Programs (HPs) [16] stand for programming languages for hybrid systems. They describe both discrete and continuous behavior of the hybrid system using sequential composition (;), non-deterministic choice (∪), non-deterministic repetition ( * ), discrete assignments (:=), continuous evolution ( ′ ). Most hybrid programs are defined using the notation, (ctrl; plant) * , where ctrl denotes the execution of the controller (discrete evolution), followed by the physical part plant (continuous evolution). This sequence is non-deterministically repeated, this is indicated by the star ( * ).

Formal Definition

A hybrid program is defined by the following grammar: where α, β are HPs, x a variable, θ is a term that may contain x, and F is a formula. • α ∪ β: non-deterministic choice of α or β.

• α * : non-deterministic iterations, repeating α n ≥ 0 iterations.

• x := θ: discrete assignment (jump) of the value of the term θ to the variable x.

• x := * : non-deterministic assignment to an arbitrary real number to x.

• ?F : checks if the expression F is valid in the current state, abort if not. 4). The control part uses the operator ? to update the velocity v when the ball hits the ground. The physical part uses the ODEs (x ′ = v, v ′ = -g) to describe the continuous evolution of the system. In fact, hybrid programs model the notion of transitions between discrete states of a hybrid system by adding constraints to the system evolution space specified by the expression x ≤ 0. Finally, equation (2.1.5) expresses the safety requirements of the system. This indicates that the ball position x never bounces higher than its initial height.

CHAPTER 2. CONTEXT

Example of Hybrid Programs

Model 2.1: Bouncing Ball Hybrid Program init → [(ctrlV ; plantV ) * ](req) (2.1.1) init ≡ g > 0 ∧ x ≥ 0 ∧ H ≥ 0 ∧ c ≥ 0 ∧ x < H (2.1.2) ctrl ≡? (x = 0)(v := -c × v) (2.1.3) plant ≡ (x ′ = v, v ′ = -g & x ≥ 0) (2.1.4) req ≡ 0 ≤ x ≤ H (2.1.5) Model 2.

The Event-B Method

This thesis is aimed at modeling and verifying hybrid systems using the formal Event-B method and the Rodin platform. This method emerged as a further development of the classical B-method [START_REF]The B-book: assigning programs to meanings[END_REF]. Introduced by J. Raymond Abrial [START_REF]Modeling in Event-B: System and Software Engineering[END_REF], Event-B is a formal way to describe discrete systems in terms of events. The Event-B model brings with it a series of proof obligations (POs) aimed at verifying its correctness. Even if verifying specifications in Event-B, i.e. discharging the POs, is often hard, such a difficulty and complexity may depend on how the specification was built. In fact, in general, several solutions can be considered to model the same system. In this case, one criterion for choosing a particular solution is to minimize the complexity of the generated models.

Event-B is supported by the open-source and free Rodin platform, an Eclipse-based IDE, that allows modeling and verifying Event-B systems. Rodin makes it possible to create contexts, machines, generate proof obligations corresponding to properties, prove these proof obligations automatically or interactively, etc. It can also be coupled with tools for animating models such as ProB [START_REF] Abrial | Rodin: an open toolset for modelling and reasoning in event-b[END_REF], which can be very useful to check if the specification produces the intended behaviors. New features can be added in Rodin as Eclipse plugins. For example, the Theory plug-in [START_REF] Maamria | Rewriting and well-definedness within a proof system[END_REF] is a Rodin extension that permits users to define their own new data types and operators.

Refinement

The key feature of Event-B to master system complexity consists in using abstract modeling to represent the abstract behavior of a given system and refinement to introduce details and demonstrate compliance between the abstract and the concrete models. The refinement of a formal model allows us to enrich this model step by step, using an incremental approach. Refinement is the foundation of the correction-by-construction paradigm.

There are two types of refinement in Event-B: horizontal refinement and vertical refinement. Horizontal refinement, also known as superposition, can be used to subsequently add complexity to the model. Such a refinement process makes it possible to add step by CHAPTER 2. CONTEXT step requirements from the specifications of the system to be modeled. Vertical refinement, also known as data refinement, makes it possible to refine a model resulting from a horizontal refinement process. Indeed, it allows a step-by-step implementation of the specification resulting from a horizontal refinement process. This type of refinement does not add functionality to the model, such as horizontal refinement, but it does refine the model to become closer to an executable model.

Modeling

The basic element of the development accomplished in the Event-B method is the model. The Event-B model consists of several components, Context and Machine. It can include a set of contexts and represents a purely mathematical structure consisting of sets, constants, axioms and theorems. An unparameterized model is composed only with machines. An Event-B model is parameterized by contexts if it is composed with both, contexts and machines. An Event-B context represents the static part of the Event-B model. Machine Event-B represents the dynamic behavior of the system. It can have access to one or more contexts.

Context Event-B

An Event-B context defines the mathematical structure associated with a system. Context can include support sets, constants, axioms, and theorems (see Figure 2.4). These elements are enclosed in clauses as shown in the list below. • CARRIER SETS Clause: specifies a user-defined type. It describes a set of abstract and enumerated types.

• CONSTANTS Clause: represents the constants used in the model to set parameters for development.

• AXIOMS Clause: specifies types and restrictions of constants and carrier sets.

• THEOREMS Clause: describes the properties expected to be derived from the axioms.

Machine Event-B

An Event-B machine specifies the dynamic behavior of the modeled system. A machine models a system using state variables and a sequence of events that update those variables. It consists primarily of a set of modeling elements that mainly define state variables, invariants and events (see Figure 2.5).

• REFINES Clause: declares the machine refined by the described machine. • SEES Clause: declares the contexts seen by the machine being described. This clause permits to get access to elements defined in the contexts during the modeling and the proof phase.

• VARIABLES Clause: declares variables for the modeled system. New variables can be introduced using the refinement strategy in order to enrich the modeled system.

• INVARIANT Clause: describes the properties of the state variables defined in the VARIABLES clause and the properties of the system being modeled. These properties shall be preserved by the initialisation and events.

• INITIALISATION Clause: allows giving initial values to the variables of the corresponding clause. They define the initial states of the underlying treated system.

EVENTS Clause

The EVENTS clause defines all the events that may occur in a given model. The structure of an Event-B event is shown by Figure 2.6. An Event-B event is triggered when the properties specified in the WHERE clause evaluate to true. Any event in Event-B models a discrete transition and can be defined by a before-after predicate denoted BAP (v, v ′ ), where v and v ′ respectively denote the value of the variables before and after the execution of the actions associated with the event. • ANY Clause: lists the parameters of the event.

• WHERE Clause: contains the various event guards. These guards are necessary conditions to trigger the event. This clause specifies also the types of the parameters.

• WITH Clause: when a parameter in an abstract event disappears in the concrete version of that event, it is essential to define a witness on the existence of this parameter.

• THEN Clause: describes the list of actions of the event.

Each event is made up of one or more so-called substitution actions. Event-B offers two kinds of substitution actions:

• Deterministic action: is expressed using the operator :=. It is made of a variable identifier var, followed by :=, followed by an expression exp.

var := exp

• Non-deterministic action: is expressed using the operator : | and a before-after predicate which specifies the corresponding value just before the action takes place. It is made of a variable identifier var, followed by : |, followed by a before-after predicate characterized by the symbol ′ , var ′ .

var : |var ′

A special case of non-deterministic actions is expressed using the symbol :∈. It is made of a variable identifier var, followed by :∈, followed by a set expression S.

var :∈ S ≡ var : |var ′ ∈ S

Example

We illustrate the use of the elements presented in this section on a simple example. The goal is to model the discrete states of the behavior of a car. We model the evolution of the discrete state of the car which is represented by the evolution of its acceleration a. Figure 2.7 gives the context for this development. The system can be into three states: Accelerating, Braking and Stopped. These states are modeled using an abstract carrier set named ST AT E. The context Car_Ctx contains all the parameters of the modeled system and their properties such as the maximum of braking A and the maximum limit of braking B that must be positive. Car_Ctx defines also the constant ai that represents the initial value of the acceleration of the car and which must be defined between -B and A.

CONTEXT Car_Ctx STATES STATE CONSTANTS A c c e l e r a t i n g , Braking , Stopped , A, B, a i AXIOMS axm1 : p a r t i t i o n (STATE { A c c e l e r a t i n g } , { Braking } , { Stopped } ) axm2 : A ∈ IN axm3 : B ∈ IN axm4 : ai ∈ Z ∧ ai ≤ A ∧ ai ≥ -B END Figure 2.7: Context Car_Ctx
The Car_M machine (see Figure 2.8) sees the context Car_Ctx and uses its constants and axioms. It defines two variables, variable a representing the acceleration of the car and variable state representing the current state of the system. The value assigned to the variable a must be defined in the interval [-B, A] given by the invariant inv3. Initially, the value of a is ai that is defined in [-B, A]. The value of a is updated according to the current value of the variable state, so three events are defined: Accelerate, Brake and Stop. 

CHAPTER 2. CONTEXT MACHINE Car_M SEES Car_Ctx VARIABLES a , s t a t e INVARIANTS i n v 1 : a ∈ Z i n v 2 : s t a t e ∈ STATE i n v 3 : a ≤ A ∧ a ≥ -B EVENTS INITIALISATION THEN a c

Proof obligations

To ensure the correctness of an Event-B machine, a set of proof obligations (POs) are generated. These POs fall into two categories:

• event feasibility: for each event, of the form (ANY X WHERE G THEN Act END), we have to prove that there does exist at least a value for X that verifies G:

∀S, C. (A ∧ Inv ⇒ ∃ X.G).
• event correctness: we have to establish that the invariant Inv is fulfilled after the initialisation INITIALISATION and that each event, of the form (ANY X WHERE G THEN Act END), re-establishes the invariant:

[INITIALISATION ] Inv ∀(S, C, V, X). (A ∧ G ∧ Inv ⇒ [Act]Inv )
The expression [Act]Inv denotes the actions Act applied as a substitution to the formula Inv ; it denotes the weakest constraint on the before state such that the execution of Act leads to an after state satisfying Inv.

Computer Algebra Systems (CASs)

A computer algebra system (CAS) [START_REF] Noro | Risa/asir -a computer algebra system[END_REF] is a mathematical software that provides the ability to manipulate mathematical formulas in a manner similar to the traditional manual calculation of mathematicians and scientists. A key part of this system is the manipulation of mathematical formulas in symbolic form. It can handle literal expressions and use symbolic arithmetic where possible to perform exact calculations. Symbolic or formal calculus consists in making a computer algebra system perform exact mathematical calculations (expansion, transformation, simplification of expressions). It is typical of algebra that symbols in formulas are not necessarily replaced by specific numerical values, but are retained in the process of calculation. They are many tools that support formal calculations such as: M athematica [START_REF] Wolfram | The Mathematica book, 5th edn. wolfram media[END_REF] , SageMath [6], M aple [START_REF] Tech | [END_REF], M atlab [START_REF] Bischof | Automatic differentiation for matlab programs[END_REF] etc.
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SageMath (System for Algebra and Geometry Experimentation) [6] is a free computer algebra system that combines the functionalities of many free programs into a common Python based interface. Its main goal is to create a free and open source alternative to Magma [START_REF] Bosma | The magma algebra system I: the user language[END_REF], Maple [START_REF] Heck | Introduction to MAPLE[END_REF], Mathematica [START_REF] Wolfram | The Mathematica book, 5th edn. wolfram media[END_REF] and Matlab [START_REF] Bischof | Automatic differentiation for matlab programs[END_REF]. As such, it uses several existing open source libraries from other projects. It has two modes of use: notebook mode and command line mode. SageMath covers a wide range of mathematics, including algebra, calculus, number theory, cryptography, numerical calculus, commutative algebra, group theory, graph theory, and formal linear algebra.

Analytical Solutions in SageMath

To find the symbolic solution of a given ordinary differential equation, SageMath provides a function called desolve(). It computes general solutions to ordinary first-or second-order differential equations via Maxima, which is a system for the manipulation of symbolic and numerical expressions, including differentiation, integration, Taylor series, Laplace transforms, ODEs, systems of linear equations, polynomials, sets, lists, vectors, matrices and tensors. desolve() is defined by: desolve(de, dvar, ics, ivar, show_method)

• de: represents a differential equation.

• dvar: represents the unknown function (dependent variable).

• ics: represents an optional argument used to specify initial conditions. For linear equations, specify the list [x0, y0].

• ivar: represents an optional argument that specifies the independent variable.

• show_method: is an optional argument, by default set to False. Otherwise, SageMath will ask for the solution method to be used.

Numerical Solutions in SageMath

SageMath includes several functions that allow finding approximate solutions for first-order ODEs using numerical methods such as the Runge-Kutta methods, including the wellknown method called the Euler Method, represented in SageMath by the euler_method () function. It provides also the 4th order Runge-Kutta method represented in SageMath by the desolve_rk4 () function. In our development, we decided to implement the result of desolve_rk4 in Event-B, since it is more complete and easier to use than the euler_method () function.

Function desolve_rk4 numerically solves first-order ordinary differential equations using the 4th order Runge-Kutta numerical method. The method is based on the principle of iteration. It uses the first guess of the solution to compute the second, etc. For example, using the value of the continuous variable y at time t0, at time t1 calculate the next value of such. The signature of desolve_rk4 is:

desolve_rk4(equation, variable, ics, [options : ivar, end -points, step, output])

• equation: this argument is either the right-hand side of the equation or the complete symbolic equation. For example, consider the first-order ordinary differential equation y ′ = ycos(x) + ysin(x), where y is the dependent variable and x is the independent variable. In this case the argument equation is either y * cos(x) + y * sin(x) or the full symbolic equation dif f (y, x, 1) == y * cos(x) + y * sin(x) where dif f will be used to CHAPTER 2. CONTEXT represent the left-hand side of an ordinary differential equation in SageMath and takes as parameters the unknown function y, the independent variable x, and the order of the ordinary differential equation 1.

• variable: this argument represents the dependent variable y. The dependent variable y should be defined as the symbolic equation dif f (y, t) == ycos(x)+ysin(x), otherwise var( ′ y ′ ).

• ics: this argument is given as a list of the initial conditions for the independent variable x and the dependent variable y, in the order ics = • ivar: this argument represents the independent variable of a given ODE. It is an optional argument that takes N one as a default value.

• end_points: this argument represents the lower and upper bounds for the interval over which the numerical values of the dependent variable y are calculated. It is an optional argument that takes as a default value, end_points = ics[0] + 10. For example, if ics[0] = 30, desolve_rk4 returns the values of y between 30 and 40.

Otherwise, this argument can take the following values:

val: integrate between min(ics[0], val) and max(ics[0], val), where ics[0] represents the initial value of the independent variable x at time 0. For example, if we set val = 20 and ics[0] = 5, desolve_rk4 will return y values between 5 and 20.

- 

Conclusion

In this chapter, we introduced the concepts of cyber-physical systems and hybrid systems, different kinds of differential equations used to model the continuous behavior of cyberphysical systems, and the Event-B formal method. Then we presented two classical formal models for hybrid systems, namely hybrid automata and hybrid programs. To verify that an hybrid system satisfies its properties, the relevant differential equations need to be solved, computer algebra system such as SageMath can then be used. The next chapter is devoted to the presentation of formal approaches used to verify the correctness of hybrid systems.
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Hybrid systems are often safety critical systems. A fundamental step in the design of these systems is their modeling and verification. Today, rigorous development methodologies based on mathematical and logical foundations are mature enough to support the development of hybrid systems. Formal approaches for modeling and verifying hybrid systems can be divided into two categories: model checking-based approaches and proof-based approaches.

This chapter presents the current state of formal approaches that have been developed for the design and verification of hybrid systems. Section 3.1 gives an overview of some model checking-based approaches. Proof-based approaches to specifying and verifying the continuous part of CPSs using differential equations are described in Section 3.2. Section 3.3 focuses on the Event-B-based approaches. Section 3.4 presents an approach to integrate theorem provers with computer algebra systems to prove the safety properties of CPSs. Finally, Section 3.5 describes issues that can arise when using each approach.

Model Checking-Based Approaches

Model checking-based approaches, also known as algorithmic approaches, require constructing a finite transitions system through a discrete abstraction such as a hybrid automaton. These approaches are based on computing a set of reachable states to automatically verify that the system satisfies a set of expected properties. Depending on the nature of the hybrid system to be dealt with, various approaches have been proposed. For linear hybrid systems, the reachability determination is decidable, then tools such HyT ech [START_REF] Henzinger | HYTECH: A model checker for hybrid systems[END_REF], P HaV er [START_REF] Frehse | Phaver: Algorithmic verification of hybrid systems past hytech[END_REF], d/dt [START_REF] Asarin | The d/dt tool for verification of hybrid systems[END_REF] or SpaceEx [START_REF] Frehse | Spaceex: Scalable verification of hybrid systems[END_REF] are used. Since the reachability of nonlinear systems cannot be determined, tools such as F low * [START_REF] Chen | Flow*: An analyzer for non-linear hybrid systems[END_REF] or iSAT [START_REF] Fränzle | Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure[END_REF] dReal/dReach [START_REF] Kong | dreach: δ-reachability analysis for hybrid systems[END_REF] use bounded model checking for reachability analysis to prove safety properties on these systems.

Hytech

HyTech [START_REF] Henzinger | HYTECH: A model checker for hybrid systems[END_REF] is an automatic and symbolic model checker for hybrid linear automata [START_REF] Wong-Toi | The synthesis of controllers for linear hybrid automata[END_REF]. Hytech is the first model checker to implement reachability analysis for hybrid linear automata. A key feature of HyTech is its ability to perform parametric analysis, i.e. to determine the values of the design parameters that will allow the hybrid linear state machine to meet the timing requirements. Hybrid systems in Hytech are specified as a collection of discrete and continuous component automata, and timing requirements are verified by symbolic model checking. If the verification fails, HyTech will generate a diagnostic error trace.

SpaceEx

The SpaceEx [START_REF] Frehse | Spaceex: Scalable verification of hybrid systems[END_REF] platform implements the reachability and safety verification algorithms for linear hybrid systems. It is a successor to PHAVer [START_REF] Frehse | Phaver: Algorithmic verification of hybrid systems past hytech[END_REF] for computing reachable states set of continuous and hybrid systems. This solves the main problem of PHAVer, which abstracts linear continuous dynamics by a constant domain associated with the derivative, and poses a scalability problem due to the large number of domains required. SpaceEx enhances tools for verifying existing hybrid systems and consists of three components: a command line program, a powerful analysis kernel, a configuration file that defines initial conditions, and other options. Among the accessibility computation algorithms implemented in this platform, we can mention scalable reachability algorithms. SpaceEx combines a polyhedral representation with a continuous set of support functions to compute an over-approximation of the states reachable by the system. CHAPTER 3. STATE OF ART

FLOW *

F LOW * [START_REF] Chen | Flow*: An analyzer for non-linear hybrid systems[END_REF] is a verification tool for nonlinear hybrid systems. It focuses on reachabilitybased verification of hybrid automata. Reachability problems cannot be determined in a hybrid automata, so the tool computes an over-approximation of the reachable states set. Approximation theorems are presented as a finite set of Taylor models [START_REF] Chen | Taylor model flowpipe construction for non-linear hybrid systems[END_REF]. These models support functional operations such as addition, multiplication, division and derivation.

dReach/dReal

dReach [START_REF] Kong | dreach: δ-reachability analysis for hybrid systems[END_REF] is a tool for verifying the safety of hybrid systems with nonlinear continuous dynamics. It can handle general hybrid systems containing nonlinear differential equations. This tool is based on its SMT solver dReal [START_REF] Bosma | The magma algebra system I: the user language[END_REF] for nonlinear theory on real numbers. dReal handles problems involving a wide range of real nonlinear functions such as polynomials, exponentials, etc.

Discussion

An hybrid model checker depends on the type of the hybrid automaton it handles, its dynamics, and the properties of its guards and invariants. Most model checking-based approaches are either limited to verifiable properties or to simplified classes of systems. Unfortunately, the problem of model checking is computationally very difficult. Moreover, as already mentioned, model checking-based approaches suffer from classical problems related to state-space explosion of the variables considered. Unfortunately, this problem is computationally very difficult. In fact, this problem cannot be solved even with a simple property or system.

Proof-Based Approaches

This section introduces proof-based approaches that can handle differential equations in hybrid systems modeling such as dL and its extension dRL, first order differential logics supported by the theorem prover KeYmaera [START_REF] Platzer | Keymaera: A hybrid theorem prover for hybrid systems (system description)[END_REF] and its successor KeYmaera X [START_REF] Fulton | Keymaera X: an axiomatic tactical theorem prover for hybrid systems[END_REF].

Differential Dynamic Logic dL

This section describes the real-domain (IR) first-order differential dynamic logic, introduced by A. Platzer, to express safety and liveness properties of hybrid systems, and its related proof calculus used to determine their exactness. dL formulas are built using logical symbols of first-order logic and the modalities [ ] (box modality) and (diamond modality) [START_REF] Platzer | Differential dynamic logic for hybrid systems[END_REF] according to the following grammar (where α is a hybrid program (HP); φ, ψ, θ 1 and θ 2 are formulas and x is a variable):

[α]φ | ⟨α⟩φ | φ ::= θ 1 ∼ θ 2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | φ ↔ ψ | ∀xφ | ∃xφ • [α]φ: is true if after each run of HP α, formula φ holds.
• ⟨α⟩φ: is true if φ is true after at least one run of HP α.

• φ ::= θ 1 ∼ θ 2 : is true iff θ 1 ∼ θ 2 is true with ∼ ∈ {=, >, ≥, <, ≤}.
• ¬φ: is true if φ is false.

• φ ∧ ψ: is true if both φ and ψ are true.
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• φ ∨ ψ: is true if φ is true or ψ is true.

• φ → ψ: is true if φ is false or ψ is true.

• φ ↔ ψ: is true if φ and ψ are both true or both false.

• ∀xφ: is true if φ is true for all values of variable x.

• ∃xφ: is true if φ is true for some values of variable x.

To prove the safety of hybrid systems, dL provides a proof calculus supported by two formal verification tools, KeYmaera and its successor KeYmaera X. The main advantage of dL is its ability to handle differential equations with non-polynomial solutions. When a system of differential equations does not have a polynomial solution, many mechanisms of differential induction (induction of differential equations) are available, such as differential invariants and differential cuts. On the other hand, if the solution is polynomial, it can be easily replaced with a discrete assignment at any point once the time variable is introduced. Finally, in order to establish a safety property for a system, safeReq, a formula expressing safety relative to initial conditions needs to be proved, init → [(ctrl; plant) * ](safeReq) that means: if the initial conditions (init) hold, then, after each run of the hybrid program, safeReq remains true.

KeYmaera is an automated/interactive formal verification tool for hybrid systems that supports dL and its associated proof calculus. KeYmaera is a combination of deductive, real algebraic and computational algebraic proof techniques. To automate the verification process, KeYmaera implements an auto-proof strategy that symbolically decomposes hybrid system specifications using dL proof rules defined in a rule base. KeYmaera interacts with several solvers such as Mathematica and Orbital, a Java math library. KeYmaera uses both tools to obtain symbolic solutions of differential equations that can be used to treat continuous dynamics. In addition, KeYmaera provides a set of proof rules for handling differential induction mechanisms, allowing differential equations with non-polynomial solutions to be treated. The most interesting mechanism is the differential invariant, which provides induction of differential equations. The main advantage of such invariants is the ability to prove properties of differential equations without solving the equations. To prove the safety properties of hybrid systems using KeYmaera, we must define a KeYmaera file which specifies both, the model of the hybrid system and the correctness property to verify. KeYmaera files are defined by the following syntax:

• α ::= α; β: the symbol ; specifies a sequential composition of the hybrid programs α and β. It executes all the instructions of α and then executes the program β.

• x := t: the symbol := specifies a discrete assignment that assigns the value of term t to x.

• x := * : assigns non-deterministically any real to x.

• ?H: the symbol ? checks if the formula H is true or not.

• α + +β: represents a non-deterministic choice between the hyprid programs α and β.

• α * : it non-deterministically repeats the hybrid program α.

• {x ′ = t, y ′ = s, H}: specifies the differential equations that describe the continuous behaviors of the state variables x and y, with evolution domain constraint H which needs to be true during the evolution.

KeYmaera X is the successor to the KeYmaera tool and also supports differential dynamic logic and hybrid programs. The most important feature of KeYmaera X is the ability to allow users to specify custom proof search techniques as tactics using its proof programming language called Bellerophon. A tactic is a program that combines a set of proof rules to define a proof discovery strategy.

Differential Refinement Logic dRL

dRL [5] is a generalized refinement computation of dL. dRL extends dL by introducing hyprid programs refinement operator (≤). In addition to the dL expressions, dRL defines expressions of the form α ≤ β, read α refines β, with α and β denoting HPs. According to [5], the expression α ≤ β is true in state s if and only if all states reachable from s by following transitions from α are also reachable from state s by following transitions from β.

• Proof rules to handle the refinement of differential equations:

Γ ⊢ ∀x(H 1 → H 2 ), ∆ Γ ⊢ (x ′ = θ & H 1 ) ≤ (x ′ = θ & H 2 ), ∆ (DR)
this proof rule shows that if two differential equations differ only in their evolution domain, then a refinement relationship can be only satisfied if the evolution domain of the smaller program is subset of the evolution domain of the larger program. 

:= plantV ; (plantV ′ = f_evol(ctrlV ), t ′ = 1& evt_trig(plantV ) ∧ dom_evol(plantV )) (3.1.3) ∪ (plantV ′ = f_evol(ctrlV ), t ′ = 1 & ∼ evt_trig(plantV ) ∧dom_evol(plantV )) (3.1.4)
Where:

• ctrlV : the control variable (acceleration in the case of a car).

• plantV : the state variable of the system (position and velocity in the case of a car).

• plantV ′ : represents the evolution of plantV over time d(plantV )/dt. Mention that in dL, the notation variable ′ denotes a derivative while, in Event-B, it is used to denote the new value of variable after triggering the event that updates it.

• safe(plantV ): defines the system safety envelope. It is calculated from the safety requirement that the system must satisfy.

• plantV ′ = f_evol(ctrlV ): defines the ordinary differential equation that describes the continuous evolution of the system.

• evt_trig(plantV ): the predicate that defines the boundary of the safety envelope.

When the system becomes closed to this boundary, the controller triggers the evade mode. It must define a closed domain.

• ∼ evt_trig(plantV ): topological closure of the complement of evt_trig.

• dom_evol(plantV ): defines the evolution domain of the system. It is a set of constraints on the state variable. For example, the evolution domain of the Bouncing Ball case study is x ≥ 0 which denotes that the car is not allowed to back down.

• plantV 0 : represents the initial value of plantV .

When the formula safe is satisfied, the system can evolve continuously according to the formula (3.1.3) until it reaches the boundary of the domain evt_trig(plantV ). In that case, the controller must then switch to the evade mode by affecting a deterministic value evade_value to the control variable (ctrlV ), it will behave according to the formula (3.1.4).

Note that the variables t and plantV 0 have no effect on the state of this model; they will be used in the second model. To prove the safety of this model, dRL provides the following proof obligation where ζ is the context of the system that may contain any property needed to facilitate the proof:

evt_trig(plantV ) ∧ ζ ⊢ [event](evt_trig(plantV ) ∧ ζ)
This proof obligation states that Model 3. 

:= plantV ; (plantV ′ = f_evol(ctrlV ), t ′ = 1 & t ≤ ϵ ∧ dom_evol(plantV )) (3.2.3) 
where ϵ: maximum time between two sensor updates. t: allows to know if the duration ϵ is reached or not.

Model 3.2 represents the generic model associated to a Time-Triggered system. The controller of such system reacts at least every ϵ seconds, where the formulas (3.1.3) and (3.1.4) are replaced by the formula (3.2.3). Formula safe is also replaced by formula safe ϵ , which depends on both the current choice of ctrlV and the time duration ϵ, in addition to the current state plantV , in order to guarantee that the controller will make a choice that will be safe for up to ϵ time. To prove that Model 3.2 satisfies a safety property φ, dRL has introduced the following proof obligation ([≤]) where ∆ denotes a set of formulas like invariant properties.

ζ ⊢ [event * ]φ, ∆ ζ ⊢ (time * ≤ event * ), ∆ ζ ⊢ [time * ]φ, ∆ [≤]
This proof obligation consists of two sub-proof obligations: the first one proves that Model 3.1 satisfies the system safety property φ, and the second one aims at verifying that Model 3.2 refines Model 3.1.

Time-Triggered Model Refines Event-Triggered Model

To prove that a Time-Triggered system refines an Event-Triggered system, dRL provides three proof obligations:

• PO1_dRL : evt_trig(plantV ) ∧ ζ ∧ safe ϵ (plantV, ctrlV ) ⊢ safe(plantV ) CHAPTER 3. STATE OF ART
where: ctrlV : represents a non-deterministic choice of the control variable. This proof obligation expresses that the safety envelope of Model 3.2 implies that of Model 3.1, which means that the discrete controller refines the continuous one.

• PO2_dRL: evt_trig( plantV 0 ) ∧ ζ ∧ safe ϵ ( plantV 0 , ctrlV ) ∧ 0 ≤ t ≤ ϵ ∧ dom_evol( plantV ) ∧ plantV = S plantV 0 , ctrlV (t) ⊢ evt_trig( plantV )
where: plantV 0 : set of physical state variables values at instant t = 0. plantV : set of physical state variables values at instant t. S plantV 0 , ctrlV (t): solutions of the ordinary differential equation associated with plantV 0 , given ctrlV . This proof obligation expresses that the non-deterministic choice of ctrlV := * expressed by ctrlV guarantees that the system will not cross the boundary of evt_trig(plantV ) within time ϵ.

• PO3_dRL: evt_trig( plantV 0 ) ∧ ζ ∧ 0 ≤ t ≤ ϵ ∧ dom_evol( plantV ) ∧ plantV = S plantV 0 ,evade_value (t) ⊢ evt_trig( plantV )
This proof obligation is similar to the previous one for the evade mode: ctrlV := evade_value.

It is worth noting that such proof obligations are achieved on the instantiated models since they cannot be discharged on the generic ones without having concrete expressions for the different formulae. The major limitation of dRL is that it is not supported by any prover, thus these proof obligations are manually discharged. This limitation represents a strong restriction on its application to more complex hybrid systems since a such proof activity is very tedious and error-prone.

Parallelism and Modular Proof in Differential Dynamic Logic

Refinement allows building hybrid systems gradually by starting with an abstract system easy to understand and verify until we get the concrete system. This development approach simplifies the challenge of large-scale verification of hybrid systems. There is another method called the component-based method that simplifies the complexity of hybrid systems. Basically, the hybrid system is disassembled into parts (components) to easily check the safety, and these components are assembled using the assembly mechanism to form the entire system. Among the approaches proposed to support this method, we can cite the one presented in [START_REF] Lunel | Parallel composition and modular verification of computer controlled systems in differential dynamic logic[END_REF]. It is based on differential dynamic logic and defines parallel composition operator • for building a system from its parts. This operator is the first composition operator in differential dynamic logic that is modular, commutative and associative.

The author of [START_REF] Lunel | Parallel composition and modular verification of computer controlled systems in differential dynamic logic[END_REF] introduces two parallel composition operators. The first is called the parallel continuous compositing operator and is denoted by • c . This is defined as the purely continuous behavior of the component, i.e. ODEs to construct. As a reminder, the continuous part of a hybrid system is represented by an ordinary differential equation of the form y ′ = θ y & dom_evol y where y is a vector of state variables (y 1 , ......, y n ), presented in the previous sections by the variable plantV , and θ x is a vector (θ 1 , ......, θ n ) of terms of real arithmetic, presented in the previous sections by the term f _evol(ctrlV ). The second operator is used to compose behaviors that combine both continuous and discrete parts. To facilitate the proof process, the approach extends the proof system of dL in order to be able to decompose the proof of the global system. In Event-B, we can decompose a complex system into multiple sub-systems but there is no mechanism to recompose these sub-systems. Composing sub-systems in Event-B can be an interesting subject of research for future work.

Hybrid CSP and Hybrid Chi

The formal language Hybrid Communicating Sequential Processes (HCSP) [START_REF] Zhou | A formal description of hybrid systems[END_REF][START_REF] Jifeng | From CSP to hybrid systems[END_REF] is an extension of Communicating Sequential Processes (CSP) [START_REF] Hoare | Communicating sequential processes[END_REF] that allows modeling the sequential dynamics of hybrid systems. With support for continuous variables and differential equations, HCSP can be used to model real-time and continuous behaviors in message-based communications. The approach developed in [START_REF] Liu | A calculus for hybrid CSP[END_REF] verifies the safety of HCSP processes by using differential invariants to reason about differential equations and using logic to handle communication, parallelism interruptions, timing, etc. Moreover, Hybrid Hoare Logic [START_REF] Zou | Verifying simulink diagrams via a hybrid hoare logic prover[END_REF] is supported by an interactive theorem prover based on Isabelle/HOL that allows verification of HCSP models. A set of refinement rules is defined to refine the HCSP abstract specification to lower-level implementations. The work presented in [START_REF] Van Beek | Syntax and consistent equation semantics of hybrid chi[END_REF] proposes another hybrid extension of CSP, a new formal language called Hybrid Chi. It integrates the concepts of dynamics and control theory with those of computer science, especially those of process algebra and hybrid automata. The HCSP approach differs from Hybrid Chi in that it does not share common variables essential for modular specification of continuous and hybrid systems. With Hybrid CSP and Hybrid Chi, formal methods can be applied to continuous processes.

Modeling and Verifying Hybrid Systems with Isabelle/HOL

The authors of [START_REF] Foster | Differential hoare logics and refinement calculi for hybrid systems with isabelle/hol[END_REF] present a new proof-based approach that introduces a new differential Hoare logic dH and a new differential refinement calculus dR using the higher-order logic proof assistant Isabelle/HOL. Using this approach, a complex property, like ordinary differential equation liveness or program correctness, should be modeled using dH, broken down into (simpler) step-by-step refinements using dR and proved in Isabelle. The differential Hoare Logics dH implements the differential dynamic logic in Isabelle by simply adding a single Hoare-style axiom. The approach uses the Kleene algebras [START_REF] Armstrong | Building program construction and verification tools from algebraic principles[END_REF] with tests and the Morgan-style approach [START_REF] Morgan | Programming from Specifications[END_REF] to derive rules for verification condition generation and refinement laws of dR. The authors have developed new methods and Isabelle components [START_REF] Munive | Verification components for hybrid systems, Arch. Formal Proofs[END_REF] to support the modeling and the verification of hybrid programs using dR and dH in Isabelle/HOL. dR and dH are implemented in Isabelle/HOL, a proof assistant that combines a high level of automation with a unique big and coherent library of theorems about differential equations. Furthermore, Isabelle/HOL brings the advantage of generality, i.e the proof completed for a given hybrid system could be reused in a longer proof for a complex system.

Modeling and Verifying Hybrid Systems with Coq and Coquelicot

The authors of [START_REF] Boldo | Trusting computations: A mechanized proof from partial differential equations to actual program[END_REF] present a new approach for modeling and verifying hybrid systems using the interactive theorem prover Coq and its library Coquelicot for real analysis [START_REF] Boldo | Coquelicot: A user-friendly library of real analysis for coq[END_REF]. The Coq system is based on recursive calculus that combines both higher-order logic and a richly typed functional programming language. Programs can be extracted from proofs into external programming languages such as OCaml or Haskell. The approach of [START_REF] Boldo | Trusting computations: A mechanized proof from partial differential equations to actual program[END_REF] proposes to encode in the C programming language a discrete representation of a continuous differential equation that describes the behavior of a 1D sound wave system. This C program has two different sets of annotations. The first one relates to continuous definitions (derivation, approximation by Taylor series, etc.) and the second one relates to discrete aspects of the program (loop invariants, pre-conditions and post-conditions of the used functions, etc.). Frama-C is used to extract these annotations and projects them into Jessie [START_REF] Marché | Jessie: an intermediate language for java and C verification[END_REF] or Why [START_REF] Filliâtre | The why/krakatoa/caduceus platform for deductive program verification[END_REF] CHAPTER 3. STATE OF ART that generates proof obligations. These POs are discharged automatically or interactively using the SMT solver or interactively using Coquelicot.

Discussion

In this section, we presented the differential refinement logic dRL that extends the differential logic dL in order to define a relation of refinement between hybrid programs. The proof obligations in dRL are difficult to discharge since there is no tool that supports this logic. Moreover, performing proofs using KeYmaeraX, the automatic theorem prover for dL, requires us to guess the relevant invariants which is not always possible. For this purpose, the approach introduced in [START_REF] Lunel | Parallel composition and modular verification of computer controlled systems in differential dynamic logic[END_REF] proposes to replace the refinement strategy designed for dL by a method called the component-based that also simplifies the complexity of hybrid systems. Unlike dRL, developing hybrid systems with Event-B permits to deal with the complexity of the system by incrementally introducing the properties. Moreover, Event-B permits to have a good view on the proof activity and its different steps that helps us to have a better understanding of the system.

We have also presented three proof-based methods for modeling and verifying hybrid systems. The approaches presented in Section 3.2.4 are commonly used for modeling and verifying distributed hybrid systems. The main limitation of these approaches is that they represent higher-order logic without providing a means of checking this logic, making them difficult to use. The approach introduced in [START_REF] Foster | Differential hoare logics and refinement calculi for hybrid systems with isabelle/hol[END_REF] proposes to model and verify hybrid systems using Isabelle/HOL. Compared to the level of automation in Isabelle/HOL, more automatic proofs can be discharged in KeYmaera X. Moreover, KeYmaera X proofs can be reused in Isabelle/HOL proofs [START_REF] Bohrer | Formally verified differential dynamic logic[END_REF]. Last, the approach described in [START_REF] Boldo | Trusting computations: A mechanized proof from partial differential equations to actual program[END_REF] proposes to use Coq and its library Coquelicot to model and verify the continuous behaviors of hybrid systems. The approaches [START_REF] Foster | Differential hoare logics and refinement calculi for hybrid systems with isabelle/hol[END_REF][START_REF] Boldo | Trusting computations: A mechanized proof from partial differential equations to actual program[END_REF] use two well known theorem provers, Isabelle/HOL and Coq. In our work, we are interested by proof-based approaches that use the formal method Event-B and its refinement strategy in order to bridge the gap between modeling and implementing cyber-physical systems.

Event-B Based Approaches

In this section, we focus on existing proof-based approaches, based on Event-B, that enable modeling and verification of hybrid systems.

A Formal Approach for Correct-by-Construction System Substitution

The approach presented by G. Babin et al in [START_REF] Babin | A formal approach for correct-by-construction system substitution[END_REF] allows formal modeling and verification of hybrid systems using discrete Event-B, Rodin tools and theory plugins. This approach relies on proof, refinement, and discretization of continuous functions to manage the evolution of discrete controllers. This development includes three levels. The first level defines an abstract model of the controller, the second level introduces a continuous controller, and the third level builds a discrete controller. This approach is illustrated by developing a stability controller. It is a simple stability controller for a generic plant model characterized by a single continuous function f that models its behavior. Control actions with this system are simple. This consists in shutting down the system when it exceeds the limits m and M representing the minimum/maximum values of the continuous variable. The goal of this development is to show how a controller featuring a simple state transition system and a physics plant featuring a continuous function can be formally integrated into a single formal Event-B development that incrementally encodes a hybrid automaton.

Replacing the control part (generic system) with the control part of the selected case study, the Water Tank case study, yields the following system specifications: if the water level is kept rising until it reaches M , the system enters an operating state in which the water level can rise or fall, but the limits m and M must not be exceeded. Exceeding these limits will cause the system to enter a shutdown state and reduce the water level to zero. Developing a stability controller with this approach consists of three steps. The first step is to define the behavior of the system controller at an abstract level. After modeling the system at an abstract level with three discrete states, the second step is to introduce a continuous controller by defining a continuous function f : IR + → IR + that specifies the behavior of the plant. The final step is to implement the discrete controller. It is therefore essential to define the correct discretization of time that preserves the continuous behavior introduced in the second step. This step also introduces a margin z that allows the controller to anticipate the next observable behavior before the spurious behavior occurs. The control strategy for the last two steps is to check the values obtained from the control system after a control step called dt. That is, the controller must examine future values of f before deciding whether to keep the system in the same discrete state or change. For this purpose, the approach uses the notion of the variable now which models the current time as in the approaches [START_REF] Su | Formalizing hybrid systems with event-b and the rodin platform[END_REF][START_REF] Butler | Modelling and refining hybrid systems in event-b and rodin[END_REF].

A Correct-by-Construction Design of Hybrid Systems in Event-B

The approach introduced by G. Dupont et al. in [10], uses the plug-in Theory of Event-B in order to handle continuous aspects of CPSs. It defines a theory named DiffEq that provides several abstract operators to model differential equations and their relevant properties. The approach presents a framework for modeling and verifying hybrid systems. This framework consists of two main patterns: the generic pattern, designed for modeling hybrid systems described with ODEs that admit exact solutions, can be applied to three types of CPSs architectures (single-controller-to-single-plant, single-controller-to-many-plants, many-controllers-to-many-plants), the approximated pattern can be applied to prove the refinement relation between an ordinary differential equation system and an approximately equivalent one.

The Generic Pattern

The behavior of CPSs is specified by the following three Event-B models: System model, State System model and Controlled System model.

• System model is used to describe the continuous evolution of the time t and the generic continuous measurement, represented by the variable plantV , using some operators of the DiffEq theory. plantV is specified as a function (plantV ∈ IR + → S) where IR + represents time and S is a constant defined in the associated context as follows: IR n with n representing the number of continuous variables of the system. For example, in case of the Bouncing Ball case study, we have two continuous variables x and v, so S is equal to IR × IR. The progression of the time t is modeled by an event named Progress (see Figure 3.1), which states that the new value of t will become greater than its previous value. An Event-B event expresses the transformation applied to the state under the form of a predicate, called the before-after predicate, that links the value of the state before the event is triggered, and its value after it has been triggered1 . In such a predicate, noted : |, x ′ denotes the after-value of the variable x [START_REF]Modeling in Event-B: System and Software Engineering[END_REF].

The behavior of plantV is specified by the event Behave (see Figure 3 In Event-B, events may be triggered only when all their guards are satisfied. Therefore, the event Progress is triggered continuously to update the time t and once the guards of the event Behave are satisfied, the event can be triggered to update the continuous variables until the new value of t. In the action act1, t denote the current value of variable t before the execution of the event Behave. of the discrete part represented by the controller. This evolution is specified by an event that updates the value of a variable modeling the possible states of the controller. Then, the interaction between the plant and the controller is modeled in the Controlled System model that refines the State System model.

EVENT Behave ANY e WHERE grd1 : e ∈ DE(S) grd2 : Solvable([t, ∞[, e) THEN a c t 1 : plantV : |plantV ′ ∈ IR + → S ∧ AppendSolutionBAP (e, IR + , [0, t[, [t, ∞[, plantV, plantV ′ ) END
To get the concrete model corresponding to a hybrid system using this approach, the Theory plug-in [START_REF] Maamria | Rewriting and well-definedness within a proof system[END_REF] is used to define all the concrete ODEs that describe the continuous behavior of the modeled system, and the properties on these ODEs are specified using the DiffEq operator lipschitzContinuous to ensure that they admit solutions.

The Approximation Pattern

In [START_REF] Dupont | An event-b based generic framework for hybrid systems formal modelling[END_REF], G. x ∈ E is approximately equals to y ∈ E according to an approximation factor δ ∈ IR + iff d(x, y) ≤ δ, where d is the distance of the space metric (E, d).

• δ-membership (∈ δ ). Let S ⊆ E and y ∈ E. y belongs to S up to δ, denoted y ∈ δ S, iff ∃x ∈ S, d(x, y) ≤ δ.

To illustrate the application of this pattern, the authors use the Inverted Pendulum. To model this case study, three steps are identified. The first step consists in defining a theory that holds every important concepts needed to model this kind of system: differential equations (both non-linear and linearised) and adequate controls for the systems, as well as various physical and mathematical properties that will help in establishing the correctness of the system. The second step consists in modeling the abstract model of the case study, which features the nonlinear differential equation. The final step consists in using the approximation refinement to model the concrete model of the case study, which features the linear differential equation

Modeling and Refining Hybrid Systems in Event-B

The authors of [START_REF] Su | Formalizing hybrid systems with event-b and the rodin platform[END_REF] present a new approach to model an hybrid system with Event-B supported by the Rodin toolset. They start by modeling the discrete part of the hybrid system and then introduce the development of the continuous part using refinement strategy. The continuous part is represented by a variable named x and its evolution over time is described by a continuous function x_c(t). The discrete part is modeled using two discrete events U P and DN . For example, in the case of a Water Tank, DN represents the valve and U P the pump. The U P event is activated when x_c(t) is equal to the abstract value represented by 0 in the generic model, and the DN event is activated when x_c(t) is equal to the abstract value represented by 1. The time in Event-B must be explicitly modeled, so the author uses the event CLICK to introduce the progression of time. This updates a discrete variable named now to represent the current time. This is very similar to what we propose. The CLICK event is fired each time a normal DN or U P events is performed. The control strategy chosen by the approach should ensure that x_c(t) is always defined on the interval [0, 1]. To complement this approach, the author suggests adding the use of MATLAB to verify the system by examining analytical solutions of differential equations associated with continuous functions.

The authors of [START_REF] Butler | Modelling and refining hybrid systems in event-b and rodin[END_REF] propose an approach to model hybrid systems using Event-B. This approach, supported by the Rodin toolset and Theory plugin, introduces new concepts to Event-B: real, continuous and monotonic functions. The authors start by modeling the continuous part and then introduce the discrete part. Similar to [START_REF] Su | Formalizing hybrid systems with event-b and the rodin platform[END_REF], the evolution of the continuous part is described by a continuous function over real intervals and the progression of time is described by the variable now and the Click event. Preserving the properties of the continuous functions is the key for ensuring the correctness of refined machines. Additionally, the authors use a monotonic continuous function to ensure that "nothing bad" happens between two executions of the Click event. The main limitation of these approaches [START_REF] Su | Formalizing hybrid systems with event-b and the rodin platform[END_REF][START_REF] Butler | Modelling and refining hybrid systems in event-b and rodin[END_REF] is that they use continuous functions instead of using differential equations that are more representative of the continuous parts of hybrid systems. Moreover, these approaches treat only Event-Triggered systems which restrict their use.

A Refinement Strategy for Hybrid System Design

The approach proposed in [START_REF] Cheng | A refinement strategy for hybrid system design with safety constraints[END_REF] is inspired by the work of [START_REF] Su | Formalizing hybrid systems with event-b and the rodin platform[END_REF] to integrate traditional refinement in hybrid system modeling. The approach is based on a series of refinement steps, each step aims to modularly introduce a specific kind of implementation detail. They start by a generic specification for hybrid systems then they refine this specification to introduce the safety property of a specific hybrid system. The third step of refinement consists in introducing the period of control using the variable now such as in [START_REF] Butler | Modelling and refining hybrid systems in event-b and rodin[END_REF]. The period of control is used to introduce the notion of cycles. Each cycle is an interval between now and now + σ, where σ is a constant to model periodic cycle. The control part is introduced in the fifth step of refinement. In order to concretize the control part, the authors develop a discrete control refinement toolkit, which contains a list of domain-specific refinement steps. The final step of refinement aims to bridge the gap between the Event-B models and the implementation. Such as [START_REF] Su | Formalizing hybrid systems with event-b and the rodin platform[END_REF][START_REF] Butler | Modelling and refining hybrid systems in event-b and rodin[END_REF], the approach provides a generic pattern to only treat Event-Triggered systems. Moreover, the approach directly uses analytical solutions to model the evolution of the continuous part without expressing the differential equations that describe the continuous behaviors of hybrid systems.

Hybrid Event-B

The approach presented in [START_REF] Banach | Core hybrid event-b I: single hybrid event-b machines[END_REF] proposes a formal method, called Hybrid Event-B, to add continuous aspects to Event-B. It defines two kinds of events: mode events and pliant events. mode events represent the discrete Event-B events. pliant events allow the description of continuous behaviors with continuous functions and differential equations. Variables are also partitioned into two categories: mode variables, which represent the traditional discrete Event-B variables; pliant variables which can evolve both continuously and via discrete events. Time is modeled as a fixed left-closed right-open interval T ⊆ IR. To deal with discrete events, T is partitioned into a sequence of intervals,

T = ([t 0 , t 1 [∪[t1, t2[∪....).
The structure of a Hybrid Event-B machine is described as follows: after the machine name is the T IM E declaration, which names a read-only variable used to denote real time (if needed). Next comes a CLOCK variable clk, which increases at the same rate as time during every pliant event and which can be updated in mode events. Then come the P LIAN T and V ARIABLES declarations. Next come the IN V ARIAN T S. Then come the EV EN T S, starting with the IN IT IALISAT ION which is a discrete event. Then come the remaining mode events and pliant events. Pliant events need new syntax, pliant variables can be assigned values either via the solution of a DE, or directly by being assigned the value of a time dependent expression, or indeed by being assigned a value consistent with some time dependent predicate.

Hybrid Event-B treats the Zeno behavior, where the time interval continually gets smaller and smaller, by adding a constant δ Zeno , such that for all i, t i+1 -t i ≥ δ Zeno . The correctness of Hybrid Event-B models is ensured using a set of customized proof obligations patterns, defined in a way similar to classical Event-B. These Hybrid Event-B POs patterns allow deriving a number of proof obligations from any given Hybrid Event-B model. The major limitation of this approach is that it is not supported by any tool. However, the approach was successfully applied on many concrete examples and it was even used in the development of the approach introduced in [START_REF] Buga | An event-b-based approach to hybrid systems engineering and its application to a hemodialysis machine case study[END_REF] which proposes a conceptual model for hybrid systems engineering composed of a structural and a behavioral part. Moreover, it represents a source of inspiration for several approaches based on discrete Event-B including ours.

Discussion

The major limitation of the approaches described in [START_REF] Su | Formalizing hybrid systems with event-b and the rodin platform[END_REF][START_REF] Butler | Modelling and refining hybrid systems in event-b and rodin[END_REF] is the use of continuous functions to model the evolution of continuous parts, whereas, in practice, continuous behaviors are defined using differential equations. In our work, we propose to deal with this limitation by the use of a theory developed to treat differential equations in Event-B. The approach presented in [START_REF] Cheng | A refinement strategy for hybrid system design with safety constraints[END_REF] does not express differential equations in Event-B, it directly uses analytical solutions to model the evolution of the continuous part, which decreases the readability and the maintainability of the approach. Moreover, models specified by these approaches are at a level of abstraction comparable to that of Time-Triggered models. We think that it is easier to specify systems at a higher level of abstraction and then introduce step by step different kinds of functionalities and properties. On the other hand, Hybrid CHAPTER 3. STATE OF ART Event-B supports differential equations and provides multiple concepts to treat continuous aspects of hybrid systems. However, it is not possible to use the Rodin platform to specify and prove Hybrid Event-B models. Indeed, in Hybrid Event-B, proof obligations must be generated and discharged manually, which makes it difficult to apply on critical systems.

Interfacing Theorem Provers With Computer Algebra Systems

The integration of theorem provers and computer algebra systems is of interest to many researchers. There are many ways to ensure this integration. The following methods are the most common:

• Theorem provers built on the top of computer algebra systems: approaches in this category develop new theorem provers that encapsulate existing computer algebra systems. For example, the approach described in [START_REF] Windsteiger | Theorema 2.0: A system for mathematical theory exploration[END_REF] proposes a new theorem prover named Theorema 2.0, based on the computer algebra system Mathematica.

• Embedding a computer algebra system in proof assistants : this category is represented by the work presented in [START_REF] Kaliszyk | Certified computer algebra on top of an interactive theorem prover[END_REF]. This approach represents an architecture that guarantees the results provided by the computer algebra system.

• Bridge or ad-hoc information exchange solutions: approaches in this category are based on building an interface between theorem provers and computer algebra systems and verifying the calculus generated by the computer algebra system.

Our focus is on what we call bridges or ad-hoc information exchange solutions. Approaches in this category are based on building an interface between theorem provers and computer algebra systems. Some approaches use the output of the theorem prover without checking its correctness, and others use it independently of how computer algebra systems obtained it. Among the approaches that have been developed for calling computer algebra systems from a theorem prover is the one that proposes an extensible ad-hoc interface for linking the Lean theorem prover with the computer algebra system Mathematica [START_REF] Lewis | An extensible ad hoc interface between lean and mathematica[END_REF]. The results returned by Mathematica are examined separately in Lean by defining a set of tactics for each type of Mathematica expressions. We can also cite the approach that links the theorem prover Isabelle [START_REF] Nipkow | Isabelle/HOL: a proof assistant for higher-order logic[END_REF] and the computer algebra system Maple [START_REF] Tech | [END_REF] by specifying the syntax of Maple in Isabelle and providing a prototype implementation of an interface designed by making modifications on Isabelle without modifying Maple [START_REF] Ballarin | Theorems and algorithms: An interface between isabelle and maple[END_REF].

An Extensible Ad-Hoc Interface between Lean and Mathematica

In this section, we describe the approach presented in [START_REF] Lewis | An extensible ad hoc interface between lean and mathematica[END_REF] that proposes an extensible ad-hoc interface to link the theorem prover Lean with the computer algebra system Mathematica. The authors of this approach separate the steps of communication between the theorem prover/the computer algebra system, and the verification of simplifications made by the computer algebra system. Therefore, the results returned by Mathematica are verified separately in Lean by defining a set of tactics for each type of simplification.

Lean theorem prover is a new open source theorem prover and programming language developed by Microsoft Research in 2013. Lean can be accessed through a web browser, a JavaScript version of Lean, or installed on a user computer. Lean users can use a custom metaprogramming language to create functions that automatically prove some theorems.

Lean is also based on the calculus of inductive construction (CIC). This is an extension of the lambda calculus with dependent types and an inductive definition. For example, the natural numbers are defined in Lean by:

inductive nat : T ype |zero : nat |succ : nat → nat
We can then define the function add that represents the addition operation on natural numbers in Lean. For example, the expression x+x is written in Lean language: add xx.

def inition add : nat → nat → nat |nzero := n |n(succm) := succ(addnm)
Calling Mathematica from Lean this approach expresses Mathematica expressions in Lean syntax and vice versa. It consists of the following steps (see Figure 3.3):

• Step 1: converts a particular Lean expression e, created using a grammar called expr that was designed especially in Lean to ensure the communication between Lean and Mathematica, into Mathematica syntax by using Lean functions.

• Step 2: converts the expression obtained in Step 1 to a Lean expression in Mathematica syntax using Mathematica functions.

• Step 3: interprets the result of Step 2 into the Mathematica representation.

• Step 4: uses Mathematica functions to solve mathematical problems needed to prove the safety properties of the modeled system.

•

Step 5: converts the Mathematica expression e to a Mathematica expression in mmexpr syntax f . mmexpr is also a grammar developed by Lean for communication between Lean and Mathematica.

• Step 6: converts the result of the previous step into a Lean expression using the grammar expr. 

An Interface between Isabelle and Maple

This section presents the approach introduced in [START_REF] Ballarin | Theorems and algorithms: An interface between isabelle and maple[END_REF] that provides a bridge between Isabelle theorem prover and the computer algebra system Maple by specifying Maple syntax in Isabelle and providing a prototype implementation of the interface designed with modifications to Isabelle without modifying Maple.

CHAPTER 3. STATE OF ART

Isabelle theorem prover is a generic theorem prover for interactive theorem proving that supports a variety of logics such as the higher-order logic (HOL) implemented in Isabelle as Isabelle/HOL. Isabelle is based on the notion of theory, a named collection of types, functions, and theorems, much like a module in a programming language. A theory is built in Isabelle as follows (where T 1 ...T n are existing theories):

theory T imports T 1 ...T n begin declarations, definitions, and proofs end

Isabelle usually applies a proof method called simplification in order to prove theorems. Simplifications mean using equations lef t = right from left to right (only) as long as possible. The tool that allows performing simplifications in Isabelle is called the simplif ier. This latter uses a set of simplification rules, known as a simpset and declared as theorems using an attribute named simp.

Calling Maple from Isabelle is done thanks to a prototype implementation of an interface that enables Isabelle to communicate with a chosen computer algebra system, Maple for example. This prototype consists of a computer algebra system, a theorem prover, and a common evaluator (bridge) that evaluates expressions sent by Isabelle to be proceed by Maple as well as the results sent by Maple to Isabelle. The interface is developed by specifying the concrete syntax of Maple and extending the simplifier of Isabelle by adding new simplification rules called evaluation rules that make selected operations of Maple available and control the access to Maple. These new simplification rules are presented in Isabelle as data structures which contain a list of premises, a term pattern, and the name of a function which enables to call Maple.

Discussion

The approaches introduced in [START_REF] Lewis | An extensible ad hoc interface between lean and mathematica[END_REF][START_REF] Ballarin | Theorems and algorithms: An interface between isabelle and maple[END_REF] cannot be reused since they do not deal with differential equations. In [START_REF] Immler | Verified reachability analysis of continuous systems[END_REF] the authors develop an algorithm that implements the Runge-Kutta methods for solving numerically ODEs with respect to the existing formalization of ODEs in Isabelle/HOL. However, the approach does not provide any mechanism to find exact solutions of ODEs. Moreover, all these approaches do not use any refinement technique, whereas one of the key elements of our approach is to take advantage of the Event-B method for designing and verifying CPS models in a stepwise manner.

Conclusion

In this chapter, we presented a state of art of the most relevant formal approaches for modelling and verifying hybrid systems. As stated before, these approaches can be grouped into two categories: model checking-based approaches and proof-based approaches. Model checking-based approaches are based on the calculation of the set of reachable states and use hybrid automata and algorithmic analysis methods to model and prove hybrid systems. As already mentioned, these approaches suffer from classical problems related to state-space explosion of the variables considered that is hard to solve. In the other hand, proof-based approaches use formal methods such as Event-B to model hybrid systems and use deductive verification to prove their safety properties.

The Event-B based approaches use the Event-Triggered model which is more difficult to implement. This motivates us to introduce a generic Time-Triggered model that refines the generic Event-Triggered model. The major limitation in using Event-B is it does not treat the resolution of ODEs. As stated before, the approach introduced in [10] defines the theory DiffEq that provides several abstract operators to model ODEs and their relevant properties. To solve concrete ODEs, the approach consists in using the approximation concept during the refinement process. We have chosen a different approach by coupling Event-B with a differential equation solver inspired by the approaches presented in Section 3.4.

Chapter 4

Case Studies This chapter describes three cyber-physical case studies, the Stop Sign, the Water Tank and the Smart Heating systems, used to illustrate our approach. While remaining simple, these case studies are didactic and quite representative of linear hybrid systems that admit exact solutions. The continuous behavior of the Stop Sign case study is represented by two state variables while the continuous behavior of both case studies, Water Tank and Smart Heating, is represented by a single state variable. Moreover, the Stop Sign case study is represented by two different modes of control that require a single safety envelope. In the other hand, the Water Tank and Smart Heating case studies are both composed of two modes and when their controllers enter one of these two modes the other one is considered as an evade mode which requires the use of two safety envelops. This diversity will allow us to properly illustrate the use of our generic approaches. This chapter also describes a nonlinear case study, the Inverted Pendulum, an example of cyber-physical systems described with nonlinear differential equations.

The Stop Sign Case Study

The Stop Sign control system, is inspired from that described in [16] with some simplifications. It has the objective to stop a car before a stop signal SP as depicted by Figure 4.1. The control strategy is to adjust the velocity of the car by accelerating or braking. The continuous behavior of this system is modeled by the position and the velocity of the car specified respectively by the state variables p and v, as well as its acceleration a. This continuous CHAPTER 4. CASE STUDIES behavior evolves according to two linear ODEs, dp dt =v(t) and dv dt =a. The system can be in one of the three discrete states: Accelerating, Braking and Stopped. The system can enter state Accelerating when the car is very far from the stop signal SP. In that case, the car is allowed to accelerate by assigning the maximum limit of acceleration A to a. State Braking is entered when the car is very close to the stop signal SP. In that case, the controller must decrease the car velocity by assigning the maximum limit of braking -B to a. The state Stopped is entered when the car is stopped i.e v=0 (consequently a=0 ) presumably right before signal SP. In all states, the system safety property, p(t) ≤ SP, must be fulfilled. So contrary to [16], we did not consider states where such property is not verified since they are not reachable. When this invariant is no longer satisfied, the system must leave the current state. The discrete behavior is represented by the transitions between the states which can be triggered automatically as soon as the state local invariant is not satisfied. A transition can be labeled by a set of constraints and a set of assignments to update the values of the variables of the system. The states of the automaton of Figure 4.2 are associated with the ODEs that describe the evolution of the car state variables p and v. The formula, p(t)≤ p_max, denotes the local invariant, which is the condition to guarantee that the controller will react exactly at the right moment, by braking to allow the car to stop before the signal SP. Therefore the constant p_max must satisfy the following constraints:

Modeling the Stop Sign Using Hybrid Automata

• p_max ≤ SP.

• According to [16], when the car brakes with (a=-B ), the next car position is calculated as follows: the position evolution p(∆ t) is expressed by:

p(∆t) = - 1 2 × B × (∆t) 2 + v × ∆t
The speed evolution v (∆ t) is expressed by:

v(∆t) = -B × ∆t + v
The car stops when its speed is zero, that is:

v (∆ t)=0 ⇒ ∆ t= v B . Thus: p(∆t) = - 1 2 × ( v B ) 2 + v × v B = 1 2 × v B
To guarantee that the car will not exceed SP, p_max must satisfy the following constraint p_max ≤ SP -v 2 2B . The discrete dynamic is represented as transitions between the states of the hybrid automaton. For example, when the formula p(t) ≤ p_max is true, the car is nondeterministically allowed accelerating with dv dt = A (Accelerating state), or braking with dv dt = -B (Braking state). While when the formula p(t) ≤ p_max is no longer true, the car must brake, and move to the state Braking if it is not already in it. As depicted by Figure 4.2, the system can be in one of the following discrete states:

• Init state: the initial values of the position and velocity are respectively represented by the constants pinit and vinit. These constants must be chosen such that pinit < p_max.

• Accelerating state: in this state, the car is allowed to accelerate with a velocity A.

As long as the formula p(t) ≤ p_max is true, the car can either accelerate or brake. Once this formula is no longer satisfied, the car must switch to the Braking state.

• Braking state: in this state, the car must decelerate with a deceleration equal to -B until it stops before the signal SP . If the current values of the position and velocity satisfy p(t) ≤ p_max, the car is then allowed to switch to the Accelerating state, transition from Braking to Accelerating states.

• Stopped state: the car stopped (v = 0). If the car is far enough from SP , the system can enter again in the state Accelerating which is represented by the transition from the Stopped to Accelerating states.

Modeling the Stop Sign Using Hybrid Programs

The authors of [16] have chosen the Stop Sign case study to illustrate the use of the differential dynamic logic dL and the use of the platform KeYmaera to model and prove linear hybrid systems. They started with a simple system, represented by the hybrid CHAPTER 4. CASE STUDIES program Model 4.1, in which the car starts at some non negative velocity v ≥ 0 and accelerates at a constant rate denoted A > 0 (the maximum acceleration) along a straight lane. Then, they introduce some complexity to this model in order to model the interaction between the physical and discrete parts. This approach inspired us to instantiate our generic models (see Chapter 6). The continuous behavior of Model 4.1 is very simple. It is represented by the derivative of the position p which is the velocity v, dp dt = v(t), and the derivative of the velocity which is the maximum acceleration, dv dt = A. The safety property is specified by the formula v ≥ 0 which states that the car should never travels backward in space.

Model 4.1: A Sample Stop Sign Case Study

init → [plant](req) init ≡ v ≥ 0 ∧ A > 0 plant ≡ p ′ = v, v ′ = A req ≡ v ≥ 0
The previous model specifies the physical part of the Stop Sign case study. Model 4.2 introduces the control part represented by the discrete controller, ctrl, whose objective is to adjust the velocity by accelerating by A or braking by -B, and still never drive backward. For this purpose, Model 4.2 introduces the variable a that models the controlled variable, the acceleration. The controller assigns a value to a according to the discrete state of the system: Accelerating state a = A, Braking state a = -B and Stopped state a = 0. To model the interaction between the physical part and the continuous part, the derivative of the velocity is now the variable a. This model also introduces the evolution domain v ≥ 0 that restricts the continuous evolution of the system to stay within that domain.

Model 4.2: Safety Property of a Hybrid Car Model

init → [(ctrl; plant) * ](req) init ≡ v ≥ 0 ∧ A > 0 ∧ B > 0 ctrl ≡ a := A ∪ a := 0 ∪ a := -B plant ≡ p ′ = v, v ′ = a & v ≥ 0 req ≡ v ≥ 0
To add some complexity to the system, they model a stop sign assistant by introducing the controller part. For this purpose, Model 4.3 introduces the safety envelope

saf e = p + v 2 2B < SP (p + v 2 2B < SP ≡ p < p_max).
The controller of such system interrupts the physical part when certain events occur, which is specified by an Event-Triggered model. The choice of the acceleration in the Accelerating state is done in a deterministic way by assigning A to the acceleration a. The continuous part is composed of a non-deterministic choice between two differential equations specified by the formula plant. The difference between this two formulas is in their evolution domains. In fact, hybrid programs model the notion of transitions between discrete states of a hybrid system by adding a constraint to the system evolution domain. In the case of the Stop Sign case study, this constraint is represented by the domain p + v 2 2B ≤ SP which includes the domain of the formula saf e. Therefore, when the car is rolling inside this domain, the controller can non-deterministically choice between the Accelerating state or the Braking state. Once the car is in the limit of the domain of the formula saf e, i.e p + v 2 2B = SP , the controller must execute to force it to move to the Braking state that is the reason why the formula p + v 2 2B ≥ SP is added to the system evolution domain in the second formula of plant. 

init → [(ctrl; plant) * ](req) init ≡ v ≥ 0 ∧ A > 0 ∧ B > 0 ∧ saf e saf e ≡ p + v 2 2B < SP ctrl ≡ (?saf e; a := A) ∪ (?v = 0; a := 0) ∪ (a := -B) plant ≡ p ′ = v, v ′ = a & p + v 2 2B ≤ SP ∧ v ≥ 0 ∪ p ′ = v, v ′ = a & p + v 2 2B ≥ SP ∧ v ≥ 0 req ≡ p ≤ SP
init → [(ctrlV ; plantV ) * ](req) init ≡ v ≥ 0 ∧ A > 0 ∧ B > 0 ∧ p + v 2 2B ≤ SP ∧ ϵ > 0 saf e ϵ ≡ p + v 2 2B + ( A B + 1)( A 2 ϵ 2 + ϵv) ≤ SP ctrl ≡ (a := -B) ∪ (a := A; ?saf e ϵ ) plant ≡ t := 0; p 0 = p; (p ′ = v, v ′ = a, t ′ = 1 & t ≤ ϵ ∧ v ≥ 0) req ≡ p ≤ SP
The Event-Triggered model is easier to prove using KeYmaera but it is more difficult to implement. When proving the system safety properties in the Event-Triggered model and the refinement relation between the corresponding Time-Triggered and Event-Triggered models, we can admit that the Time-Triggered model satisfies the safety property of the system. The program Model 4.5 represents the content of the KeYmaera file associated with Stop Sign case study, where the clause ProgramVariables specifies the system parameters that are defined as real numbers which are represented by the symbol R and the clause Problem models the initial, the physical and the discrete parts of the system as well as the safety property. 

\programVariables { R p, v, a, A, B, SP ; } \problem { v ≥ 0 ∧ A > 0 ∧ B > 0 ∧ p + (v × v)/(2 × B) < SP -> \ [ (((?p + (v × v)/(2 × B) < SP ; a := A) + +(?v = 0; a := 0) + +(a := -B)); {p ′ = v, v ′ = a, p + (v × v)/(2 × B) ≤ SP, v ≥ 0} + + {p ′ = v, v ′ = a, p + (v × v)/(2 × B) ≥ SP, v ≥ 0} ) * \](p ≤ SP ) }

The Water Tank Case Study

The second case study deals with a water tank, also known as a heat pump water heater, whose objective is to maintain the water level between a high level V_high and a low level V_low with 0 < V_low < V_high. The system includes a water tank, a water pump to fill the tank and a water level sensor to get the level of the water in the tank as depicted by which are defined to guarantee that the controller will react exactly when the water level is too close to the two limits V_high and V_low. The system can be in one of the following three discrete states:

• Init state: represents the initial state. It is characterized by a constant level of the water denoted V0, which must be chosen between V_low and V_high to guarantee that the system is safe initially: V_low < V0 < V_high.

• Filling state: in this state, the pump is activated to fill the water tank by f_in as long as the formula safeFill is satisfied. Once this formula is no longer satisfied, the system must move to state Emptying.

• Emptying state: in this state, the pump is disabled to empty the water tank by -f_out.

Once the formula safeEmp is no longer satisfied, the system must move to state Filling.

Modeling the Water Tank Using Hybrid Programs

To describe an hybrid system using hybrid programs notation we can either translate the associated hybrid automaton or start by an abstract hybrid program and then enrich this model step by step, using an incremental approach as described in the previous section 4.1.2. To model the Water Tank case study using hybrid programs notation, we start with an abstract water tank where we describe the continuous part of the Water Tank case study (see Model 4.6 ):

Model 4.6: Abstract Water Tank init → [plant](req) init ≡ V ol ≥ 0 ∧ f _in > 0 plant ≡ V ol ′ = f _in req ≡ V ol ≥ 0
We add some complexity to Model 4.6 by modeling the interaction between the control and the physical parts and by introducing the system safety envelops. We also introduce the emptying state by assigning the value -f _out to the controlled variable ctrlV . The physical part evolves according to the discrete state represented by the controlled variable ctrlV as depicted by the Model 4.7 which represents the Event-Triggered model associated with the Water Tank case study. 

* ](req) init ≡ V ol ≥ 0 ∧ f _in > 0 ∧ f _out > 0 ∧ V _low < V ol < V _high saf eF ill ≡ V ol < V _high saf eEmp ≡ V ol > V _low ctrl ≡ (?saf eF ill; ctrlV := f _in) ∪ (?saf eEmp; ctrlV := -f _out) plant ≡ V ol ′ = ctrlV & V ol ≤ V _high ∧ V ol ≥ 0 ∪ V ol ′ = ctrlV & V ol ≥ V _low ∧ V ol ≥ 0 req ≡ V _low ≤ V ol ≤ V _high
In the associated Time-Triggered system represented by Model 4.8, we replaced respectively the safety envelopes Saf eF ill and Saf eEmp by Saf eEpsilonF ill and Saf eEpsilonEmp to take into account the control period ϵ.

Model 4.8: Time-Triggered Water Tank Model init → [(ctrl; plant) * ](req) init ≡ V ol ≥ 0 ∧ f _in > 0 ∧ f _out > 0 ∧ V _low ≤ V ol ≤ V _high ∧ ϵ > 0 saf eEpsilonF ill ≡ V ol + (ctrlV × ϵ) ≤ V _high saf eEpsilonEmp ≡ V ol + (ctrlV × ϵ) ≥ V _low ctrl ≡ (?saf eEpsilonF ill; ctrlV := f _in) ∪ (?saf eEpsilonEmp; ctrlV := -f _out) plant ≡ t = 0; V 0 = V ol; V ol ′ = ctrlV, t ′ = 1 & t ≤ ϵ ∧ V ol ≥ 0 req ≡ V _low ≤ V ol ≤ V _high

The Smart Heating Case Study

The Smart Heating case study deals with a heater equipped with a thermostat controller whose objective is to maintain the temperature between a high level T_max and a low level T_min, with 0 < T_min < T_max. The heater is switched "off" if the temperature is too close to T_max and it is switched "on" if the temperature is too close to T_min.

The continuous behavior of this system is represented by the temperature T that evolves according to the flowing linear ODEs, where temp denoting the flow of the temperature:

• when the mode of the heating system is "on", the value of temperature follows:

dT dt = temp; • when the mode of the heating system is "off", the value of temperature follows: • Init state: represents the initial state. It is characterized by the initial temperature degree denoted T 0, which must be chosen between T_min and T_max (T_min < T 0 < T_max) to guarantee that the system is safe initially.

dT dt = -temp.

Modeling the Smart Heating Using Hybrid Automata

• State On: in this state, the heater is switched "on" as long as the formula, T < T _max, is satisfied. Once this formula is no longer satisfied, the system must move to the state Off.

• State Off : the heater is switched "off" as long as the formula, T > T _min, is satisfied. Once this formula is no longer satisfied, the system must move to the state On.

The Smart Heating case study is a bit similar to the Water Tank case study. Contrary to the Stop Sign case study which describes a system with two modes of control, normal mode and evade mode, the Smart Heating and the Water tank case studies both describe a system with two normal modes and when the system is in one of the normal modes the second one represents the evade mode.

Modeling the Smart Heating Using Hybrid Programs

Model 4.9 describes the hybrid program associated with the Smart Heating system. The control part is modeled as a non-deterministic choice (∪): if the safety envelope saf eOn is satisfied (resp. saf eOf f ), we assign temp or (resp. -temp) to the controlled variable ctrlV . The physical part is modeled using the ordinary differential equation, T ′ = ctrlV , and the formula T ≤ T _max ∧ T ≥ T _min, which specifies the event trigger of this model. For example, if the controller assigns temp to ctrlV , the generic ordinary differential equation is replaced by T ′ = temp as longer as the formula event trigger is satisfied. Once the event trigger is no longer satisfied, the controller must update the value of ctrlV . Model 4.9: The Event-Triggered Model of the Smart Heating System

init → [(ctrl; plant) * ](req) init ≡ T ≥ 0 ∧ temp > 0 ∧ T _min < T < T _max saf eOn ≡ T < T _max saf eOf f ≡ T > T _min ctrl ≡ (?saf eOn; ctrlV := temp) ∪ (?saf eOf f ; ctrlV := -temp) plant ≡ T ′ = ctrlV & T ≤ T _max ∧ T ≥ 0 ∪ T ′ = ctrlV &T ≥ T _min ∧ T ≥ 0 req ≡ T _min ≤ T ≤ T _max
Model 4.10 represents the Time-Triggered model associated with the Smart Heating system where we replaced the safety envelops saf eOn and saf eOf f respectively by saf eEpsilonOn and saf eEpsilonOf f to take into account the period of control ϵ, so saf eEpsilonOn = T + (ctrlV × epsilon) < T _max land saf eEpsilonOf f = T + (ctrlV × epsilon) > T _min. Moreover, we replaced the formula event trigger by the formula t ≤ epsilon to specify that the controller must react at least every epsilon time. 

* ](req) init ≡ T ≥ 0 ∧ temp > 0 ∧ T ≤ T _max ∧ T ≥ T _min ∧ ϵ > 0 saf eEpsilonOn ≡ T + (ctrlV × epsilon) ≤ T _max saf eEpsilonOf f ≡ T + (ctrlV × epsilon) ≥ T _min ctrl ≡ (?saf eEpsilonOn; ctrlV := temp) ∪ (?saf eEpsilonOf f ; ctrlV := -temp) plant ≡ t = 0; T 0 = T ; T ′ = ctrlV, t ′ = 1 & t ≤ epsilon ∧ T ≥ 0 req ≡ T _min ≤ T ≤ T _max

The Inverted Pendulum Case Study

In this section, we describe a nonlinear case study, the Inverted Pendulum, which will be used in Section 8 to demonstrate how we can use linearization methods to obtain a linear model of this case study. In contrast to the previous section, which suggested modeling linear case studies, the purpose of this section is to present the properties of the Inverted Pendulum and show how to linearize it in Section 8. Note that in this thesis we are only interested in modeling linear systems. For nonlinear systems, it is recommended to use linearization techniques whenever possible to apply approaches for modeling and verifying linear systems. The Inverted Pendulum is a well-known case study in dynamics and control theory that consists of a pendulum of mass M attached to the top of a rigid rod of length l, that is itself attached to a moving cart and which can move in two directions. A simple application of the inverted pendulum in real life is the balancing of a broom on the palm of the hand, as long as possible. The Inverted Pendulum controller has for objective to stabilise the rod in its vertical position. The control strategy is to balance the inverted pendulum by applying a force F to the cart in a way to make it vertical again. The system is subject to standard G-force, of intensity g. In [START_REF] Dupont | An event-b based generic framework for hybrid systems formal modelling[END_REF], instead of attaching the rod to a cart, G. ). In that case, the force F is replaced by a torque u, the rotational equivalent of linear force, provided by the motor. The main difference between a torque and a force is that a torque results from a circular or rotational movement and the force results from a rectilinear movement. Therefore, the controller of this system has for objective to stabilise the rod in its vertical position by controlling the motor and its torque u. The continuous behavior of this system is modeled by the angle between the rod and the vertical axis, denoted θ, that permits to identify the position of the pendulum, and the angular velocity θ = dθ dt that allows to identify the velocity of the pendulum. These state variables are represented in [START_REF] Dupont | An event-b based generic framework for hybrid systems formal modelling[END_REF] by the state vector η = [θ θ] T . , taking into account the controlled variable u. This equation is calculated using the kinetic energy and the potential energy of gravity as follows: the kinetic energy of this system is:

E c = ml 2 θ2 2
, and the potential energy of gravity is: E p = mgl(1 + cos θ). In the absence of the force F applied to the system, it is possible to write the conservation of mechanical energy, E = E c + E p . This mechanical energy is constant during the movement. By deriving this expression over time, we obtain, where θg l sin(θ) = u cos(θ) [START_REF] Dupont | An event-b based generic framework for hybrid systems formal modelling[END_REF]:

f N onLin ((θ, θ), u) = ( θ, u * cos(θ) + g l )

Conclusion

In this chapter, we presented the case studies that we have chosen to illustrate the feasibility of the approaches developed during my thesis. The Stop Sign, the Water Tank and the Smart Heating case studies are linear hybrid systems that admit exact solutions, polynomial ordinary differential solutions. As stated before, there are two main types of hybrid systems, linear hybrid systems and nonlinear hybrid systems. Most linear hybrid systems admit exact solutions which makes their verification easier than nonlinear systems that must use approximation methods. The Inverted Pendulum system is a representative case study whose continuous behavior is described by a nonlinear differential equation. For this case study, we do not provide a hybrid automaton nor a hybrid program and so far we have not yet modeled a nonlinear system following our generic approach. However, in Section 8, we will use this case study to demonstrate how we can use linearization methods to obtain a linear model and then apply our generic approach.

Chapter 5

Modeling and Proving Hybrid Systems in Event-B The main goal of this thesis is to propose a correct-by-construction approach for modeling and verifying hybrid systems using the Event-B formal method and the platform Rodin. The proposed approach, described in this chapter, aims at providing generic templates for modeling Event and Time-Triggered systems in Event-B and verifying the relation of refinement between these two models using the platform Rodin.

Section 5.1 describes the structure of the generic models. Section 5.2 presents the Event-B theories reused to model the generic models. Section 5.3 introduces the abstract model that specifies the continuous behavior of hybrid systems in Event-B. Section 5.4 describes the modeling of Event and TimeTriggered systems in Event-B. Section 5.5 describes the main proof obligations generated by the platform Rodin to prove the correctness of our models. Finally, Section 5.6 concludes the chapter with a discussion on the different elements of the approach. 

Structure of the Generic Models

One of the objectives of the DISCONT project [START_REF] Thomas A Henzinger | Hytech: A model checker for hybrid systems[END_REF] is to elaborate correct-by-construction approaches, based on Event-B, to specify and verify hybrid systems. In the context of this project, we propose to represent Event and Time-Triggered templates, described in [3] and presented in Section 2.2, using the event-based paradigm of Event-B, in order to develop a generic template for modeling Time-Triggered systems in Event-B by providing a link with a possible abstract Event-Triggered system.

To model an hybrid system, our approach consists of three models as depicted by Figure 5.1, ContSystem model that specifies the continuous behavior of the system, EventTriggered model that specifies the interactions between the discrete and the continuous parts of the system, and TimeTriggered model that specifies the discrete behavior of the discrete part of the system. The whole models are available in Appendices A. 

Preliminary for Modeling the Generic Models

This section presents the elements that we reuse for defining our generic approach.

Theories for Modeling Real Numbers in Event-B

The theory Real is defined in the standard library of theories available to download at https: //sourceforge.net/projects/rodin-b-sharp/files/Theory_StdLib/StandardTheory0. 1.zip/download. It is written by Abrial and Butler, and provides: 1 datatype REAL, 13 operators: plus (+), minus (-), mult (×), leq (≤), gtr (>) etc, 24 axioms that define the semantics of the operators, 18 interactive rewrite rules for use in proofs. To treat continuous functions and ordinary differential equations in Event-B. The theory Reals introduced in [10] extends the theory Real by adding the operators needed to treat continuous behaviors of hybrid systems in Event-B.

Theories for Modeling Differential Equations in Event-B

To treat continuous aspects of cyber-physical systems, G. Dupont et al introduce in [10] a theory named DiffEq that provides several abstract operators to model differential equations, continuous functions and their relevant properties. In the context of this thesis, we use the following operators of the theory DiffEq:

• Operator bind(specV1, specV2): links the generic variables with the specific ones.

When replacing an abstract variable abstV with specific variables, specV 1 and specV 2, we use this operator as follows: abstV = bind(specV 1, specV 2).

• Operator ode(func, Var0, t0): represents the constructor for differential equations in Event-B. f unc specifies the right part of a given differential equation eq (f unc(ctrlV ) = eq) which depends on the controlled measurement ctrlV , the continuous time t and the continuous variables V ar with initial condition V ar(t0) = V ar0.

• Operator Solvable(D,eq): states that a given ordinary differential equation eq admits solutions on domain D.

• Operator SolutionOf(f,eq): models the fact that the function f is a solution of equation eq.

• Operator AppendSolutionBAP(eq,DR,B,etap): updates the values of the continuous variables on the domain DR by calculating their new values using the differential equation eq on a specific time interval B. Consequently, the previous values are overridden by those of the function etap.

Model ContSystem

Model ContSystem represents the abstract model of our approach. It is inspired by the abstract model of [10] that aims at modeling the continuous part of hybrid systems in Event-B. Model ContSystem is composed of Context ContSystem_Ctx and Machine ContSystem_M.

Context ContSystem_Ctx

Context ContSystem_Ctx (see Figure 5.2) defines four constants1 .

• Constant S is defined as S = IR n , with n representing the number of continuous variables of the system.

• Constant TIME to specify that the values of the continuous time are chosen in IR + .

• Constant sigma is defined in IR + to avoid the Zeno problem in Event-B [START_REF] Banach | Core hybrid event-b I: single hybrid event-b machines[END_REF] as explained in the next section.

• Constant plantVInit is defined in S to represent the initial values of the continuous variables.

CONTEXT ContSystem_Ctx CONSTANTS S , T IM E , sigma , plantV Init AXIOMS axm1 : S = IR n axm2 : 

T IM E = IR + axm3 : sigma ∈ IR + ∧ sigma > 0 axm4 : plantV Init ∈ S END

Machine ContSystem_M

Machine ContSystem_M contains two variables and two events (see Appendices A.2). Variable t represents the continuous evolution of time and Variable plantV represents the continuous evolution of the state variables. Event Progress models the progression of time (see Figure 5.3). We have adapted that defined in Section 3.3.2 to deal with the Zeno problem as the time progression can approach zero. To avoid this, we use the constant sigma by adding in the event Progress the following constraint: t ′ -t ≥ sigma to guarantee that time progression is always greater than sigma where t (resp. t ′ ) represents the time before (resp. after) the execution of the event.

EVENT P r o g r e s s THEN a c t 1 : The evolution of the continuous part is modeled using Event Plant (see Figure 5.4) that modifies Event Behave (Section 3.3.2) to allow the verification of safety properties in EventTriggered level. Event Plant uses the operator AppendSolutionBAP adapted to update the value of plantV (plantV ◁ -plant1 ) between the last time and the new value of t where the generic differential equation e belongs to DE(S), the set of differential equations built on S. In other words, AppendSolutionBAP calculates the evolution of the physical part from the last instant until the current one t. Formally, AppendSolutionBAP is redefined by:

t : | t ′ ∈ T IM E ∧ t < t ′ ∧ t ′ -t ≥ sigma END
AppendSolutionBAP (e, ([0, t] -dom(plantV )), ([0, t] -dom(plantV )), plant1)
Let us remark that we adopt the same approach as in [10] to model time progression and physical behavior by two distinct events. This makes the solution more generic and adapted for systems with several physical parts, each with a specific behavior. In that case, each part is associated with its own Plant event and time progression is modeled in a separate event.

Event and TimeTriggered Models

As stated before, one of our objectives is to define a generic pattern for modeling Time-Triggered systems in Event-B by providing a link with an Event-Triggered generic model and use the Event-B refinement and its associated provers to demonstrate the compliance between both models. 

Generic EventTriggered Model

The generic EventTriggered model is composed of a Context named EventTriggered_Ctx which introduces the system safety envelope Safe calculated from the safety requirement that the system must satisfy, and a Machine named EventTriggered_M which added the discrete behavior of the system represented by the controlled variable ctrlV . It corresponds to the EventTriggered model introduced by Kopetz, also specified with dRL, Model 3.1 defined in Section 3.2.2.1. The semantics of this model is that the physical part evolves in parallel with the time and both are interrupted as soon as the safety envelope, represented by the formula safe, becomes false (represented by the expression evt_trig that defines the boundary of the safety envelope). As in Event-B it is not possible to state that two events are executed in parallel or to interrupt the execution of an event, we proceed as follows.

The controller is executed at first to choose an adequate value of ctrlV that satisfies formula safe, then time progresses until a given value denoted by t 1 for which evt_trig is true with respect to the value ctrlV. Finally, plant is executed to make the physical part evolve until the current value of time t 1 .

Context EventTriggered_Ctx

At this level, we express the properties desired for the system. To do this, EventTrig-gered_Ctx, depicted by Figure 5.5, extends ContSystem_Ctx to represent these properties. It defines a set named EXEC to represent the different states of a hybrid system, time progression, discrete and continuous parts (axm3). Moreover, EventTriggered_Ctx defines a set of constants and axioms:

• safe represents the safety envelope for the modeled system (see axm1). As in dRL, the formula saf e depends on the current physical state variable as well as the controlled variable since it may contain some limits on how this latter may be set. The domain of this formula must be included in that of evt_trig formula. Moreover, saf e must be initially satisfied.

• evt_trig specifies the boundaries of the safety envelope saf e (see axm2).

• f_evol is used to describe how the physical state variable plantV evolves according to the discrete state of the system (see axm4).

• f_evol_plant is used to model the evolution of the state variable plantV . We must define this type of function for each discrete state of the system. Thanks to the notion of the controlled variable, we have defined a single evolution function indexed on this variable (see axm5 and axm6).

• evade_value is defined as a subset of IR to represent the evade values of the modeled system (see axm7). 

f _evol ∈ IR → S axm5 : f _evol_plantV ∈ (IR → (T IM E × S → S)) axm6 : ∀ ctrlV • ctrlV ∈ IR ⇒ (f _evol_plantV (ctrlV ) = (λ t → plantV • t ∈ T IM E ∧ plantV ∈ S | f _evol(ctrlV ))) axm7 : evade_value ⊆ IR ∧ evade_value ̸ = ∅ END

Machine EventTriggered_M

Machine EventTriggered_M refines Machine ContSystem_M by adding two new variables:

• ctrlV represents the controlled variable and belongs to IR. The current value of this variable corresponds to the current controller state.

• exec is a flag used to model the alternation between the control and the physical parts as represented in the high-level structure of hybrid programs, (ctrl ;plant) * . Therefore, exec can take two values ctrl and plant. In Event-B, time must be explicitly handled.

To be sure that this explicit time will progress between the control and the plant parts, we add a third value to exec, prg, in order to give the turn to the event Progress. Therefore, our model follows the following structure: init; (ctrl; prg; plant) * , where init represents the INITIALISATION event.

The INVARIANTS part defines four predicates (see Figure 5.6). Invariants inv1 and inv2 specify respectively the types of the variables ctrlV and exec. Since the time progresses between the control and the plant parts, Invariants inv3 and inv4 are defined to guarantee that the physical part updates the continuous variables between 0 and the last progression of time. The INITIALISATION event (see Figure 5.7) specifies the initial values of each continuous and discrete variables. At t = 0, the system gives the turn to the controller to update the value of the controlled variable ctrlV depending on the value of plantV which is initialized to plantV Init. To make time evolve according to the formula evt_trig such that the physical part does not go beyond the boundaries of the safety envelope, we refine the event Progress (see Figure 5.8) by adding guards to specify that: (1) it is the turn of the event Progress to execute (grd1 ); (2)when the system is in a normal mode(ctrlV / ∈ evade_values), the value of t 1 must satisfy the formula evt_trig (grd3 ). The parts added by refinement are written in blue. grd1 : exec = prg grd2 :

INVARIANTS i n v 1 : ctrlV ∈ IR i n v 2 : exec ∈ EXEC i n v 3 : exec ̸ = plant ⇒ dom(plantV ) = [0, t] i n v 4 : exec = plant ⇒ t ̸ ∈ dom(plantV )
t 1 ∈ T IM E ∧ t < t 1 ∧ t 1 -t ≥ sigma grd3 : ctrlV / ∈ evade_value ⇒ evt_trig(plantV (t), t 1 -t, ctrlV ) = T RU E THEN a c t 1 : t := t 1 act2 : exec := plant END Figure 5.8: EventTriggered Progress.
To model the evolution of the physical part, we refine the Plant of the ContSystem_M machine by replacing the abstract differential equation e with that defined for a function denoted f_evol_plantV (see Figure 5.9). Function f_evol_plantV describes the evolution of the state variable plantV according to the system discrete state. Regarding the evolution of the control part, two new events are added: Ctrl_normal and Ctrl_evade (see Figure 5 • Ctrl_normal event represents the normal mode. It is triggered when it is the turn of the controller (exec = ctrl ) and when it exists a value nrml_value of ctrlV, different from the system evade values, for which the formula safe is true; it then gives the turn to the event Progress. the control variable ctrlV and gives the turn to the event Progress. The evade value must be chosen in the set of the system evade values.

Generic TimeTriggered Model

This model refines the previous model to get a system corresponding to the TimeTriggered model of Kopetz, also specified with dRL (Model 3.2 defined in Section 3.2.2.1). As mentioned earlier, the sensors of a TimeTriggered model take periodic measurements of physical state variables and its controller executes each time those sensor updates are taken. TimeTriggered model is composed of the context TimeTriggered_Ctx and the machine TimeTriggered_M.

Context TimeTriggered_Ctx

Context TimeTriggered_Ctx depicted by Figure 5.11 extends context EventTriggered_Ctx by adding two new constants:

• epsilon: specifies a symbolic duration. It models the longest time between TimeTriggered sensor updates.

• saf eEpsilon: guarantees that the controller will make a choice that will be safe for up to epsilon time.

Machine TimeTriggered_Ctx

The main difference between the Event and TimeTriggered models is in the modeling of the progression of time. The longest time between TimeTriggered sensor updates is bounded by the symbolic duration epsilon. Therefore, the controller can execute at least every epsilon time. For this purpose, we refine the event Progress_event by adding the formula t ′ -t ≤ epsilon (see Figure 5.12). This formula states that the time cannot progress by more than epsilon time units. Since the controller of a TimeTriggered model must make a choice that will be safe for up to epsilon time, we define a new safety envelope named safeEpsilon (safe ϵ (plantV, ctrlV ) in dRL) in the context TimeTriggered_Ctx. Then, in the event Ctrl_normal_time that refines Ctrl_normal, we add a guard to ensure that safeEpsilon is true when a non evade value is chosen for ctrlV (see grd4 of Figure 5 Let us remark that contrary to the models described in [5], we kept the guards related to the formula evt_trig (guard grd3 of the event Progress_time) and saf e (guard grd3 of the event Ctrl_normal_time). Removing them does not enable us to discharge the associated POs since it is not possible to establish, on the generic models, that they are induced by the invariant and the other guards. However it is generally not a good practice to leave proof obligation undischarged because this makes the correctness of the Event-B development questionable. In Chapter 8, on specific case studies, we show how such guards are removed, which give rise to refinement proof obligations to discharge.

Modeling the Safety Properties

The main goal of the discrete part represented by the controller is to ensure the safety properties of a specific hybrid system. To model these safety properties in Event-B, a constant function prop ∈ IR n → BOOL is defined in the context EventTriggered_Ctx, where n denotes the number of variables occurring in the property. Then an invariant is added in the machine EventTriggered_M, where plantV will be replaced by the specific continuous variable x that permits to cover all the moments from the beginning until the current time and prop(plantV(x)) is replaced by the specific safety property. This formula expresses that the safety property of the system shall be satisfied in the time interval [0, t] which denotes the domain of plantV.

inv5 : ∀x • x ∈ dom(plantV ) ⇒ prop(plantV (x)) = T RU E
To discharge the PO generated for this invariant, we added the following guard to the event Plant that states that the new values of plantV , that is plant1, verify the property:

grd6 : ∀xx • xx ∈ dom(plant1) ⇒ prop(plant1(xx)) = T RU E.
This guard will be removed on a specific case to generate a proof obligation that aims at proving that this guard is actually satisfied. We give more details in Chapter 8.

Correctness of the Generic Models

Table 5.1 gives the statistics of the proof obligations generated to ensure the correctness of the generic models of our approach. It is noticeable that 45% of them were automatically discharged. The remaining proof obligations are discharged using the automatic/interactive provers of the Rodin platform (Version 3.5.0) and the theories developed in [10]. The platform Rodin automatically generates proof obligations for properties that need to be proven on a given Event-B machine or context. Each proof obligation has a name that identifies where it was generated and also its goal. Some of these proof obligations must be manually discharged using theories and hypotheses defined in the associated machines and contexts. The theory Reals does not handle all the properties of real numbers. For this purpose, we define a context named Theorems (see Figure 5.14) that contains all the properties and theorems needed to discharge the proof obligations generated by the Rodin platform to prove our generic and specific models.

• Axiom 1: specifies that the addition preserves the order of real numbers:

a ≤ b ∧ c ≤ d ⇒ a + c ≤ b + d.
• Axiom 2: specifies that the operator mult (×) preserves the order of real numbers:

0 ≤ a ∧ 0 ≤ b ∧ 0 ≤ c ∧ 0 ≤ d ∧ a ≤ b ∧ c ≤ d ⇒ a × c ≤ b × d.
• Axiom 3: let a, b and c be real numbers, if a ≤ b ∧ b ≤ c then a ≤ c.

• Axiom 4: encodes the following property defined using the operators minus (-) and mult (×):

(a 2 ) -(b 2 ) = (a + b) × (a -b).
• Axiom 5: specifies the following property defined for the operator minus: -a = 0 -a.

• Axiom 6: specifies the following property defined for the operators divide, times and plus: a = 1 2 × a + 1 2 × a

• Axiom 7: specifies the following property defined for the operator inverse

1 a×b = 1 a × 1 b . CONTEXT Theorems AXIOMS axm1 : ∀ a, b, c, d • a ≤ b ∧ c ≤ d ⇒ a + c ≤ b + d axm2 : ∀ a, b, c, d • 0 ≤ a ∧ 0 ≤ b ∧ 0 ≤ c ∧ 0 ≤ d ∧ a ≤ b ∧ c ≤ d ⇒ a × c ≤ b × d axm3 : ∀ a, b, c • a ≤ b ∧ b ≤ c ⇒ a ≤ c axm4 : ∀ a, b • a ∈ IR ∧ b ∈ IR ⇒ (a 2 -b 2 ) = (a + b) × (a -b) axm5 : ∀ a • a ∈ IR ⇒ -a = 0 -a axm6 : ∀a • a ∈ IR ⇒ a = 1 2 × a + 1 2 × a axm7 : ∀a, b • a ∈ IR ∧ b ∈ IR ∧ a × b ∈ IR * ⇒ 1 a×b = 1 a × 1 b END Figure 5
.14: Theorems.

To prove the compliance between TimeTriggered_M and EventTriggered_M machines, Rodin has generated a set of proof obligations that we have discharged in the TimeTrig-gered_M machine. In these generic models, as we have kept the guard related to the formula safe and evt_trig in the events Progress, Ctrl_normal and Ctrl_normal_time, the refinement proofs are rather simple and related mainly to the type checking of the different variables and the feasibility of the events Progress and Progress_time since we have to exhibit a value of t 1 that verifies the stated conditions (see grd2 of Figure 5.8). In the following we describe the most relevant proof obligations generated for each generic model:

• ContSystem Model: P O1 is also generated for the event P rogress to prove that the action which updates the value of t by t ′ is feasible. P O2 is generated for the event P lant to verify that the action which updates the value of plantV using the parameter plant1 verifies the type of plantV .

PO1: ∃ t ′ • t ′ ∈ T IM E ∧ t < t ′ ∧ t ′ -t ≥ sigma PO2: plantV ◁ -plant1 ∈ [0, t] → S
• EventTriggered Model: PO3 is a well-definedness proof obligation generated for the event Progress due to adding the guard grd3 which guarantees that the new value of t satisfies the formula evt_trig. This PO is discharged using the properties of the theory Reals and the invariants defined in the EventTriggered_M machine. PO4 is generated for the event Plant to prove that it satisfies the following invariant:

exec ̸ = plant ⇒ dom(plantV ) = [0, t].
This PO is discharged by adding as hypothesis the definition of plantV , plantV ∈ [0, t] → RReal. PO5 is also a well-definedness proof obligation generated for the event Ctrl_normal to prove that it satisfies the safety envelope represented by the formula saf e.

PO3: ctrlV ̸ ∈ evade_value =⇒ t ∈ dom(plantV ) ∧ plantV ∈ IR → S ∧plantV (t) → (t1 -t) → ctrlV ∈ dom(evt_trig)∧ evt_trig ∈ S × T IM E × IR → BOOL PO4: ctrl ̸ = plant ⇒ dom(plantV ◁ -plant1) = [0, t] CHAPTER 5. MODELING AND PROVING HYBRID SYSTEMS IN EVENT-B PO5: nrml_value ̸ ∈ evade_value =⇒ t ∈ dom(plantV ) ∧ plantV ∈ IR → IR × IR ∧ plantV (t) → nrml_value ∈ dom(saf e) ∧ saf e ∈ S × IR → BOOL
• TimeTriggered Model: PO6 is a Well-definedness proof obligation generated for the event Ctrl_normal_time for replacing formula saf e by saf eEpsilon.

PO6: nrml_value ̸ ∈ evade_value =⇒ t ∈ dom(plantV ) ∧ plantV ∈ IR → S ∧ plantV (t) → nrml_value ∈ dom(saf eEpsilon) ∧ saf eEpsilon ∈ IR × IR → BOOL

Conclusion

In this chapter, we have presented a proof-based approach that uses the formal method Event-B and its refinement technique to specify and prove the refinement between Event and TimeTriggered systems. We have defined two generic templates for these systems that represent hybrid systems as hybrid programs, Event and TimeTriggered models described in Section 5.4. We have also introduced a more abstract level, the ContSystem model, that specifies the continuous aspects of hybrid systems, adapted from the approach of [10]. This permits to cope with the proof complexity by decomposing the proof obligations, such that in the abstract model we only deal with the proof obligations related to the continuous aspects of the system and in the refined model we will have the proof obligations related to the safety properties of the controlled system.

In [1], we presented our first attempt to formalize the generic structure. However, the formal models have proved to be not suitable to deal with systems with complex properties. Moreover, the approach is abstract and did not consider the resolution of ODEs. Consequently, it cannot be instantiated for the verification of a specific application. This approach also consists on three generic models: System, Event and TimeTriggered models. It reuses the abstract model System presented in Section 3.3.2. The progression of time, the physical part are described respectively in [1] by the following events: Progress (see Section 3.3.2), Plant (see Figure 5.15).

• Event Progress is defined as in the Section 3.3.2. It models the progression of time in Event-B. The major limit of this event is that it does not specify that the time must not evolve beyond a value that makes the physical part cross the boundary of the safety property. For this purpose, we added the guard that uses the evt_trig formula to check if in the new period of control the system remains safe (Figure 5.8)

• Event Plant represents the evolution of the continuous part represented by the state variable plantV . It refines the event Behave (see Section 3.3.2) by replacing the abstract differential equation e by that defined for a function denoted f_evol_plantV in order to model the specific ODE. The function f_evol_plantV describes the evolution of the state variable plantV according to the system discrete state. The major limit of this event is that it assigns the new values of the continuous variables without checking if they satisfy the safety properties of the modeled system.

The generic approach proposed in this thesis extends and improves [1] with the following contributions:

• The new model introduced is more faithful to the Event and TimeTriggered patterns on which it is based; this facilitates the proof of any safety property.

• To model the alternation between the progression of time, the control and the physical parts, the approach of [1] The controlled part followed by the physical part followed by the progression of time.

In the new model, we let the time progresses before executing the physical part, as if they are executed in parallel, which facilities the prove of the safety properties.

• The approach of [1] remains abstract regarding the prove of safety properties. We fixed that by calculating the new values of the continuous variables between 0 and the current time t. Additionally, we define the generic parameter plant1 which is used to check that these new values satisfy the safety properties.

In comparison to the approach of dRL, Event-B refinement is based on the execution traces starting from the initial state, that is, to prove that a concrete Event-B machine refines an abstract one, we have to establish that the set of execution traces of the concrete one is included in that corresponding to the abstract one. However, the refinement of dRL is based on reachable states, that is, a hybrid program α refines another hybrid program β (α ≤ β), iff the set of reachable states from a state s following the transitions of α is included in the set of reachable states from the same state s following some transitions of β. Contrary to dRL, Event-B refinement can be used to introduce and prove new properties, which is different from typical usage in dRL.

Both Event-B and dRL refinements allow preserving the safety properties of the abstract model. This is ensured in dRL through combining refinement relations and modalities. Despite the several features of dRL's refinement, computing reachable states for non linear systems requires solving non-linear real arithmetic problems which is difficult in general. Since, dRL refinement is based on reachable states it does not preserve the safety properties on the traces and it is weaker than the Event-B refinement. Moreover, dRL is not supported by any prover, therefore proving manually the correctness of systems is error-prone in the case of complex systems especially for systems with more than two modes. Through using Event-B, we have succeed to overcome this limitation since its support tools aid in discharging proof obligations either automatically or interactively by guiding the prover in applying the adequate deductive/rewriting rules.

The major limitation in using Event-B to model and verify hybrid systems is the absence of support for the continuous aspects of CPSs, such as continuous time and differential equations. To overcame this limitation the approach proposed in [10] defines an Event-B theory that includes different kinds of differential equations. This is why we have adapted the abstract model of this approach, so that it becomes possible to reason on hybrid programs in Event-B. To solve concrete ODEs, the approach of [10] consists in using the approximation concept during the refinement process. We have chosen a different approach by coupling Event-B with a differential equation solver in order to solve ODEs using Rodin (see Chapter 7).

Chapter 6

Instantiating the Generic Approach In the previous chapter, we presented a generic correct-by-construction approach for modeling hybrid systems using the formal method Event-B and its supported tool Rodin. The generic approach consists of three generic models. To design specific systems following the generic approach, two strategies can be applied to instantiate the generic models. For each strategy, we present a set of instantiation rules defined to systematically build the models of any specific application. Section 6.1 describes the first strategy that consists in starting by an abstract model of the specific system obtained by refining the abstract generic ContSystem model. Section 6.2 describes the second one that consists in directly instantiating by refinement the EventTriggered model. Last, Section 6.3 discusses the main advantages and limitations of each strategy as well as the main differences between both strategies.

Instantiation from the ContSystem Level

The instantiation starts by refining the abstract generic ContSystem model. The obtained model is then refined to design a specific EventTriggered model that instantiates the generic EventTriggered model. Last, the specific EventTriggered model is refined to obtain a specific TimeTriggered model that instantiates the generic TimeTriggered model as depicted by Figure 6.1. 

Instantiating the Generic ContSystem Model

The generic ContSystem model is refined by instantiating the generic parameters following a set of rules defined below. The specific ContSystem model is composed of two elements, a SpecificContSystem_Ctx context and a SpecificContSystem_M machine. SpecificContSys-tem_Ctx given in Figure 6.2 extends the ContSystem_Ctx context given in Figure 5.2. It is instantiated following the set of rules Rule_CS_Ctx_i below:

• Rule_CS_Ctx_1 : instantiates the constant S defined in the context ContSystem_Ctx.

This constant depends on the number of continuous variables of the system to be modeled. It must be instantiated in the specific ContSystem model by replacing n in axm1 of Figure 5.2 by the number of specific continuous variables.

• Rule_CS_Ctx_2 : instantiates the constant plantV Init defined in the generic Con-tSystem by replacing its value by the specific initial value of the continuous variable denoted specP lantV init i (see axm2 of Figure 6.2). If the modeled system is composed of two or more continuous state variables, it is necessary to add n constants defined in IR or IR + depending on the characteristics of the corresponding continuous variable, where n represents the number of continuous variables to be treated (see axm1 of Figure 6.2).

• Rule_CS_Ctx_3 : defines all the constants and properties needed to model and prove the modeled hybrid system. It defines l constants cst 1 ,...,cst l in the CONSTANTS clause and their properties in the AXIOMS clause (see axm3 of Figure 6.2).

• Rule_CS_Ctx_4 : defines the ordinary differential equations of the modeled system using the function f _evol_plantV (see axm4 and axm5 of Figure 6.2). It defines n differential equations eq i , where n denotes the number of specific continuous variables specP lantV init i . f _evol_plantV binds each continuous measurement, y i , with its associated differential equation, eq i , using a lambda expression, see axm5. It depends on the controlled measurement of the modeled system which is specified by x. A differential equation eq i must be expressed in terms of t, y i and x.

The specific context SpecificContSystem_Ctx associated with the Smart Heating case study is represented by the context Specific_Heater_Ctx depicted by Figure 6.3. The continuous behavior of this case study is represented by a single continuous variable T denoting the measured temperature. Therefore, rule Rule_CS_Ctx_1 instantiates S in the associated generic ContSystem_Ctx of Figure 5.2 by IR and Rule_CS_Ctx_2 defines a single initial continuous constant denoted T 0 (see axm1 and axm2 of Figure 6.3). Rule_CS_Ctx_3 defines two constants, the maximum value of the temperature T_max and the minimum value T_min as well as their properties specified by the axiom axm3 of Figure Machine SpecificContSystem_M refines the generic machine ContSystem_M, presented in A.2, by applying the set of rules Rule_CS_M_i defined below:

f _evol_plantV ∈ IR → (T IM E × S → S) axm5 : ∀ x • x ∈ IR =⇒ (f _evol_plantV (x) = (λ t → (y 1 → .... → y n ) • t ∈ T IM E ∧ (y 1 → .... → y n ) ∈ S | (eq 1 , ..., eq n ))) END
CONTEXT Specific_Heater_Ctx EXTENDS ContSystem_Ctx CONSTANTS T 0 , T _max , T _min , f _evol_plantV AXIOMS axm1 : T 0 ∈ IR + axm2 : T 0 = plantV Init axm3 : T 0 < T _max ∧ T 0 > T _min ∧ T _max ∈ IR∧ T _max > T _min ∧ T _min ∈ IR ∧ T _min > 0 axm4 : f _evol_plantV ∈ IR → (T IM E × IR → IR) axm5 : ∀x • x ∈ IR =⇒ (f _evol_plantV (x) = (λt → T • t ∈ T IM E ∧ T ∈ IR | x)) END
• Rule_CS_M_1 : instantiates the generic continuous variable plantV by defining n invariants used to define the specific continuous variables as follows: specP lantV i ∈ [0, t] → IR + or specP lantV i ∈ [0, t] → IR depending on the nature of the continuous variable to be measured. This rule also adds an invariant used to link plantV to the specific continuous variables using the operator bind of DiffEq (see inv1 and inv2 of Figure 6.4).

• Rule_CS_M_2 : assigns the initial value specP lantV init i to the specific continuous variable specP lantV i (see act2 of Figure 6.5).

• Rule_CS_M_3 : refines the generic event P lant of Figure 5.15 by replacing the generic continuous variable plantV by the specific ones. In addition, the generic parameter plant1 is replaced by the specific ones by adding a witness (see WITH clause of Figure 6.5).

Machine Specific_Heater_M refines the generic ContSystem_M machine by applying the three rules defined above. Rule_CS_M_1 is applied by defining the invariants inv1 and inv2 described in Figure 6.6. inv1 specifies the definition of the temperature T , and inv2 replaces the generic variable plantV by T . Rule_CS_M_2 is applied by initialising the value of T at the instant t = 0 by T 0 in act2 of Figure 6 

Instantiating the Generic EventTriggered Model

The specific EventTriggered model refines the specific ContSystem model and instantiates the generic EventTriggered model. It consists of a specific context, SpecificEventTrig-gered_Ctx1 depicted by Figure 6.8, and a specific machine SpecificEventTriggered_M1. Context SpecificEventTriggered_Ctx1 extends the context SpecificContSystem_Ctx and instantiates the generic context EventTriggered_Ctx of Figure 5.5 by following the rules Rule_ET1_Ctx_i described below:

• Rule_ET1_Ctx_1 : defines the constant set EXEC and its elements, prg, plant and ctrl, that are used to describe the alternation between the control and the physical parts as well as the progression of time (see axm1 of Figure 6.8).

• Rule_ET1_Ctx_2 : instantiates the system safety envelopes by defining k constant formulas, saf e 1 , ..., saf e k . For each safety envelop saf e i , two axioms are defined. The first axiom specifies the type of the formula (see axm2 of Figure 6.8). The second one, called Saf eF orm i , specifies the property to be modeled. This latter depends on the continuous measurements y 1 , ..., y n and the controlled measurement x (see axm4 of Figure 6.8).

• Rule_ET1_Ctx_3 : instantiates formula evt_trig i by defining k constant formulas, evt_trig 1 , ..., evt_trig k . Two axioms are defined for each event trigger property (see axioms axm3 and axm5 of Figure 6.8). These formulas depend on the continuous measurements y 1 , ..., y n and the controlled measurement x as well as the duration between two periods of control.

• Rule_ET1_Ctx_4 : instantiates the concrete values of the controlled measurement by defining k constants in IR (see axm6 of Figure 6.8). These constants will be used as values of the controlled variable ctrlV .

• Rule_ET1_Ctx_5 : instantiates evade values by those associated with the specific case study (see axm7 of Figure 6.8).

• Rule_ET1_Ctx_6 : defines a constant, called prop, used to specify the system safety property (see axm8 of Figure 6.8). prop is instantiated by defining the specific P ropF orm (see axm9 of Figure 6.8).

The specific EventTriggered model associated with the Smart Heating system is represented by the Event_Heater_Ctx context depicted by Figure 6.9 and the Event_Heater_M machine. Event_Heater_Ctx extends the Specific_Heater_Ctx context and instantiates the generic EventTriggered_Ctx. The instantiation starts by defining the set EXEC and its elements following Rule_ET1_Ctx_1. As described in Section 4. need to be defined (Rule_ET1_Ctx_2 ), see axm2, axm4, axm6 and axm8 of Figure 6.9. For each safety envelop, we define an event trigger formula (Rule_ET1_Ctx_3 ), see axm3, axm5, axm7 and axm9 of Figure 6.9. The continuous evolution of the Smart Heating case study is described by two constants, temp and -temp, that represent the values val i of the controlled variable ctrlV (Rule_ET1_Ctx_4 ). Rule_ET1_Ctx_5 instantiates the set of evade values (axioms axm11 and axm12 of Figure 6.9). Last Rule_ET1_Ctx_6 instantiates the safety property, T _min ≤ T ≤ T _max, using the constant prop (see axm13 and axm14 of Figure 6.9). • Rule_ET1_M_2 : instantiates the invariants inv3 and inv4 of Figure 5.6 by replacing the generic continuous variable plantV by the specific ones, specP lantV 1 , ..., specP lantV n . These invariants are required to prove the specific proof obligations. This rule also adds the system safety property as an invariant using the constant prop (see inv5 of Figure 6.10). • Rule_ET1_M_3 : instantiates for each sub-formula safe i , a set of evade values evade_value i for the controlled variable ctrlV and a formula evt_trig i for its boundary. Thus the generic event Progress is instantiated as depicted in Figure 6.11, where grd3 states that time progresses without crossing the boundaries of the event trigger evt_trig i of any safety envelope. • Rule_ET1_M_4 : instantiates the event Plant by replacing the generic ordinary differential equation e by the specific ones using the function f _evol_plantV (see grd3 of Figure 6.12). It replaces the generic ODE e by its specific value in the guards grd4 and grd5 of Figure 6.12. This rule also adds the safety property specified using the involved parameters specP lant1 i (see grd6 of Figure 6.12).

i=1..k evt_trig i ∈ (S × T IM E) × IR → BOOL axm4 : i=1..k saf e i = (λ(y 1 → .... → y n ) → x• (y 1 → .... → y n ) ∈ S ∧ x ∈ IR | bool(Saf eF orm i )) axm5 : i=1..k evt_trig i = (λ(y 1 → .... → y n ) → t1 → x •(y 1 → .... → y n ) ∈ S ∧ t1 ∈ T IM E ∧ x ∈ IR | bool(T rigF orm i )) axm6 : i=1..z val i ∈ IR axm7 : i=1..k evade_value i ⊆ IR axm8 : prop ∈ IR n → BOOL axm9 : prop = (λ(y 1 → .... → y n ) • (y 1 → .... → y n ) ∈ IR n | bool(P ropF orm)) END

CONTEXT

evt_trig 1 ∈ (IR × T IM E) × IR → BOOL axm4 : saf e 2 ∈ (IR × IR) → BOOL axm5 : evt_trig 2 ∈ (IR × T IM E) × IR → BOOL axm6 : saf e 1 = (λT → x • T ∈ IR ∧ x ∈ IR| bool(T < T _max)) axm7 : evt_trig 1 = (λ T → t1 → x • T ∈ IR ∧ t1 ∈ T IM E ∧ x ∈ IR | bool(T + x × t1 ≤ T _max)) axm8 : saf e 2 = (λ T → x • T ∈ IR ∧ x ∈ IR| bool(T > T _min)) axm9 : evt_trig 2 = (λT → t1 → x • T ∈ IR ∧ t1 ∈ T IM E ∧ x ∈ IR | bool(T + x × t1 ≥ T _min)) axm10 : temp ∈ IR ∧ temp > 0 axm11 : evade_value 1 ⊆ IR ∧ evade_value 1 = {-temp} axm12 : evade_value 2 ⊆ IR ∧ evade_value 2 = {temp} axm13 : prop ∈ IR → BOOL axm14 : prop = (λT • T ∈ IR | bool(T ≤ T _max ∧ T ≥ T _min)) END
INVARIANTS i n v 1 : ctrlV ∈ setV al i n v 2 : exec ∈ EXEC i n v 3 : i=1..n exec ̸ = plant =⇒ dom(SpecP lantV i ) = [0, t] i n v 4 : i=1..n exec = plant =⇒ t / ∈ dom(specP lantV i ) i n v 5 : ∀w • w ∈ dom(bind(
• Rule_ET1_M_5 : instantiates the generic event Ctrl_normal depicted by Figure 5.10 in Figure 6. 13, where grd3 checks that the chosen normal value makes all the sub-formulas safe i satisfied. Machine Event_Heater_M represents the specific EventTriggered model associated with the Smart Heating system. Figure 6.15 shows the definition of the variables ctrlV and exec as stated by Rule_ET1_M_1. The invariants inv3 and inv4 are instantiated by replacing the generic variable, SpecP lantV i , by the specific one T (Rule_ET1_M_2 ). The safety property is defined using the formula prop specified in the Event_Heater_Ctx by instantiating inv5 of Figure 6.10. Figure 6.16 depicts the specific event Progress associated with the Smart Heating case study. For each event trigger formula, evt_trig 1 and evt_trig 2 , grd3 of Figure 6.11 is instantiated by replacing SpecP lantV i by T (Rule_ET1_M_3 ). EVENT P r o g r e s s REFINES P r o g r e s s ANY t 1 WHERE grd1 : exec = prg grd2 : The continuous part of the Smart Heating system is described by the event Plant depicted by Figure 6.17. Event Plant replaces the generic ordinary differential equation e by that associated with the Smart Heating system, dT dt = ctrlV . It also adds the safety property specified by the guard grd6 of Figure 6.7. In Figure 6.18, we instantiate the guards, grd3 and grd4, to check that the values temp and -temp respectively satisfy the safety envelop formulas saf e 1 and saf e 2 defined for this case study (Rule_ET1_M_5 ). Since the discrete behavior of the Smart Heating system is described by two evade modes, two events Ctrl_evade_1 and Ctrl_evade_2 are respectively defined as depicted by Figures 6.19 and 6.20. Event Ctrl_evade_1 is linked to the safety property saf e 1 and event Ctrl_evade_1 is linked to saf e 2 (Rule_ET1_M_6 ).

MACHINE Event_Heater_M REFINES Specific_Heater_M SEES Event_Heater_Ctx VARIABLES t , T , ctrlV , exec INVARIANTS i n v 1 : ctrlV ∈ {temp, -temp} i n v 2 : exec ∈ EXEC i n v 3 : exec ̸ = plant =⇒ dom(T ) = [0, t] i n v 4 : exec = plant =⇒ t / ∈ dom(T ) i n v 5 : ∀w • w ∈ dom(T ) =⇒ prop(T (w)) = T RU E
t 1 ∈ T IM E ∧ (t < t 1 ) ∧ (t 1 -t) ≥ sigma grd3 : ctrlV / ∈ evade_value 1 =⇒ evt_trig 1 (T (t) → (t 1 -t) → ctrlV ) = T RU E grd4 : ctrlV / ∈ evade_value 2 =⇒ evt_trig 2 (T (t) → (t 1 -t) → ctrlV ) = T RU E THEN a c

Instantiating the Generic TimeTriggered Model

The specific TimeTriggered model instantiates the generic TimeTriggered model (see Section 5.4.2) by defining a specific SpecificTimeTriggered_Ctx1 context and a specific SpecificTimeTriggered_M1 machine. SpecificTimeTriggered_Ctx1 context depicted by • Rule_TT_Ctx_1 : defines the control period epsilon and its related properties as specified by axm1 of Figure 6.21.

• Rule_TT_Ctx_2 : specifies for each sub-formula saf e i defined in the specific Speci-ficEventTriggered_Ctx1 context, a formula saf eEpsilon i by taking into account the control period epsilon; Saf eEpsf ormi represents the formula to be modeled (see axm2 and axm3 of Figure 6.21).

CONTEXT S p e c i f i c T i m e T r i g g e r e d _ C t x 1 EXTENDS S p e c i f i c E v e n t T r i g g e r e d _ C t x 1

CONSTANTS epsilon , saf eEpsilon 1 , . . . , saf eEpsilon k AXIOMS axm1 : The specific EventTriggered model associated with the Smart Heating system is refined to obtain a specific TimeTriggered model composed of a specific context, Time_Heater_ctx, and a specific machine, Time_Heater_M. Figure 6.22 depicts the different elements of Time_Heater_ctx. Acoording to Rule_TT_Ctx_2, two safety envelops taking into account the control period epsilon are defined (see axm4 and axm5). The specific SpecificTimeTriggered_M1 machine refines the specific SpecificEventTrig-gered_M1 machine following the rules Rule_TT_M_i defined below:

epsilon ∈ T IM E ∧ sigma ≤ epsilon ∧ 0 < epsilon axm2 : i=1..k saf eEpsilon i ∈ (S × IR) → BOOL axm3 : i=1..k saf eEpsilon i = (λ(y 1 , ..., y n ) → ctrlV • (y 1 , ..., y n ) ∈ S ∧ ctrlV ∈ IR | Saf eEpsf orm i ) END
CONTEXT Time_Heater_Ctx EXTENDS Event_Heater_Ctx CONSTANTS epsilon , saf eEpsilon 1 , saf eEpsilon 2 AXIOMS axm1 : epsilon ∈ T IM E ∧ sigma ≤ epsilon ∧ 0 < epsilon axm2 : saf eEpsilon 1 ∈ (IR × IR) → BOOL axm3 : saf eEpsilon 2 ∈ (IR × IR) → BOOL axm4 : saf eEpsilon 1 = (λ T → ctrlV • T ∈ IR ∧ ctrlV ∈ IR | bool(T + ctrlV × epsilon ≤ T _max)) axm5 : saf eEpsilon 2 = (λ T → ctrlV • T ∈ IR ∧ ctrlV ∈ IR | bool(T + ctrlV × epsilon ≥ T _min)) END
• Rule_TT_M_1 : instantiates the invariants inv1 and inv3 of Figure 6.23 by replacing the generic continuous variables plantV by the specific ones specP lantV i . Moreover, the invariant inv2 of Figure 6.23 is specified for each sub-formula saf eEpsilon i .

• Rule_TT_M_2 : adds the following property to the event Progress of Figure 6.11, (t 1 -t) ≤ epsilon, to guarantee that the controller reacts at least every epsilon time. Moreover, it removes the guard grd3 of the event Progress (see Figure 6.24) to give rise to refinement proof obligations between the generic and the specific models. • Rule_TT_M_3 : refines the event Plant described in Figure 6.12 by adding the parameters lastT ime and epsilon1 as well as their properties specified by the guards grd2, grd3 and grd4 of Figure 6.25. Moreover, for each continuous parameter specP lant1 i , a solution of the differential equation that describes its behavior is defined (see Sol i in grd5 of Figure 6.25). Guard grd6 of Figure 6.25 is defined to ensure that the specific parameters specP lant1 i represents a solution of the ode(f _evol_plantV (ctrlV ), specP lant1 i , t) using the operator solutionOf defined in [10].

INVARIANTS i n v 1 : ∃ t1 • t1 ∈ T IM E ∧ i=1..n dom(specP lantV i ) = [0, t1] ∧ (t -t1) ≤ epsilon ∧(exec ̸ = plant =⇒ t1 = t) ∧ (exec = plant =⇒ t > t1)∧ ( i=1..k ctrlV / ∈ evade_value i ∧ exec = plant =⇒ saf eEpsilon i ((specP lantV 1 (t1), ..., specP lantV n (t1)) → ctrlV ) = T RU E) i n v 2 : i=1..k ctrlV / ∈ evade_value i ∧ exec = prg =⇒ saf eEpsilon i ( (specP lantV 1 (t), ..., specP lantV n (t) → ctrlV ) = T RU E i n v 3 : ∀t1, t2 • t1 ∈ T IM E ∧ t2 ∈ T IM E ∧ dom(specP lantV i ) = [0, t1]∧ dom(specP lantV i ) = [0, t2] =⇒ t1 = t2
EVENT Pl an t REFINES P la nt ANY specP lant1 1 , . . . , specP lant1 n , lastT ime , epsilon1 WHERE grd1 : exec = plant grd2 :

lastT ime ∈ T IM E ∧ i=1..n dom(specP lantV i ) = [0, lastT ime] grd3 : t > lastT ime ∧ i=1..n lastT ime ∈ dom(specP lantV i ) grd4 : epsilon1 = (t -lastT ime) grd5 : i=1..n specP lant1 i = (λ t1 • t1 ∈ T IM E ∧ t1 > lastT ime ∧ t1 ≤ t | Sol i ) grd6 : solutionOf ([0, t] -dom(plantV ), ([0, t] -dom(plantV ))
◁V 1, ode(f _evol_plantV (ctrlV ), (specP lant1 1 (t), ..., specP lant1 n (t)), t)) . . . THEN a c t 1 : specP lantV i := specP lantV i ◁ -specP lant1 i a c t 2 : exec := ctrl END Figure 6.25: SpecificTimeTriggered_M1 Plant.

• Rule_TT_M_4 : replaces each formula saf e i by the associated formula saf eEpsilon i in the events Ctrl_normal (see Figure 6.13) and Ctrl_evade (see Figure 6.14).

Figure 6.26 depicts the INVARIANTS part of the Time_Heater_M machine. The invariants specified in Figure 6.23 are instantiated by replacing specP lantV i by T , the saf eEpsilon i formulas by, saf eEpsilon 1 and saf eEpsilon 2 , and the evade_value i by, evade_value 1 and evade_value 2 (Rule_TT_M_1 ). The solution obtained from solving the differential equation that describes the continuous behavior of the Smart Heating system is: ctrlV × epsilon1 + T (lastT ime). This solution is added in the event Plant (see Figure 6.27), (Rule_TT_M_3 ). The events Ctrl_normal, Ctrl_evade_1 and Ctrl_evade_2 are refined by replacing the formulas saf e 1 and saf e 2 respectively by formula saf eEpsilon 1 and saf eEpsilon 2 (see Figures 6.28,6.29 and 6.30). 

INVARIANTS i n v 1 : ∃t1 • t1 ∈ T IM E ∧ dom(T ) = [0, t1] ∧ (t -t1) ≤ epsilon∧ (exec ̸ = plant =⇒ t1 = t) ∧ (exec = plant =⇒ t > t1)∧ (ctrlV / ∈ evade_value 1 ∧ exec = plant =⇒ saf eEpsilon 1 (T (t1) → ctrlV ) = T RU E) ∧(ctrlV / ∈ evade_value 2 ∧ exec = plant =⇒ saf eEpsilon 2 (T (t1) → ctrlV ) = T RU E) i n v 2 : ctrlV / ∈ evade_value 1 ∧ exec = prg =⇒ saf eEpsilon 1 (T (t) → ctrlV ) = T RU E i n v 3 : ctrlV / ∈ evade_value 2 ∧ exec = prg =⇒ saf eEpsilon 2 (T (t) → ctrlV ) = T RU E i n v 4 : ∀ t1, t2 • t1 ∈ T IM E ∧ t2 ∈ T IM E ∧ dom(T ) = [0, t1] ∧ dom(T ) = [0, t2] =⇒ t1 = t2

Instantiation from the EventTriggered Level

The instantiation starts by directly refining the generic EventTriggered model. The obtained model is composed of a specific context named, SpecificEventTriggered_Ctx2, and a specific machine named, SpecificEventTriggered_M2. This model is then refined in order to design a specific TimeTriggered model that instantiates the generic TimeTriggered model as depicted by Figure 6.31. The specific TimeTriggered model is also composed of a specific context called, SpecificTimeTriggered_Ctx2, and a specific machine called, SpecificTimeTriggered_M2, obtained following the same rules defined in Section 6.1.3. 

Instantiating the Generic EventTriggered Context

The specific context SpecificEventTriggered_Ctx2 depicted by Figure 6.32 extends the generic EventTriggered_Ctx by applying the following rules:

• Rule_ET2_Ctx_1 : defines all the constant parameters of the modeled system and their related properties as well as the initial values of the continuous variables by applying the rules Rule_CS_Ctx_1, Rule_CS_Ctx_2 and Rule_CS_Ctx_3 (see axm1, axm2 and axm3 of Figure 6.32).

• Rule_ET2_Ctx_2 : instantiates the safety envelop of the modeled system as well as the event trigger formula defined in the generic EventTriggered_Ctx. If the system is composed of multiple safety envelops and event trigger formulas, these formulas should be declared in the CONSTANTS clause and their definitions should be added in the AXIOMS clause (see axm4, axm5, ... and axm9 of Figure 6.32). This rule also defines the set of evade values and set of possible values of the controlled variable val i (see axm11 and axm12 of Figure 6.32). Moreover, it instantiates the safety property using the constant prop defined in the generic EventTriggered_Ctx (see axm13 of Figure 6.32) .

• Rule_ET2_Ctx_3 : defines the differential equations of the modeled system by instantiating the function f _evol_plantV , where ode is defined in S and built using the right parts of the specific ODEs (see axm10 of Figure 6.32). Event_Heater_Ctx2 redefines all the constants and properties defined in the context Specific_Heater_Ctx described in Figure 6.3 and context SpecificEventTriggered_Ctx1 described in Figure 6.8. Moreover, context SpecificEventTriggered_Ctx1 extends the generic context EventTriggered_Ctx.

) → x • (y 1 , ..., y n ) ∈ S ∧ x ∈ IR | Saf ef orm) axm5 : evt_trig = (λ(y 1 , ..., y n ) → t1 → x • (y 1 , ..., y n ) ∈ S∧ t1 ∈ T IM E ∧ x ∈ IR | T rigf orm) axm6 : i=1..k saf e i ∈ (S × IR) → BOOL axm7 : i=1..k evt_trig i ∈ (S × T IM E) × IR → BOOL axm8 : i=1..k saf e i = (λ (y 1 , ..., y n ) → x • (y 1 , ..., y n ) ∈ S ∧ x ∈ IR | Saf ef orm i ) axm9 : i=1..k evt_trig i = (λ(y 1 , ..., y n ) → t1 → x •(y 1 , ..., y n ) ∈ S ∧ t1 ∈ T IM E ∧ x ∈ IR | T rigf orm i axm10 : ∀x • x ∈ IR =⇒ (f _evol_plantV (x) = (λt → (y 1 , ..., y n ) •t ∈ T IM E ∧ (y 1 , ..., y n ) ∈ S | ode) axm11 : i=1..k evade_value i ⊆ IR axm12 : i=1..z val i ∈ IR axm13 : prop = (λ(y 1 → .... → y n ) • (y1 → .... → yn) ∈ IR n | bool(P ropF orm)) END

Instantiating the Generic EventTriggered Machine

The specific SpecificEventTriggered_M2 machine directly refines the generic EventTrig-gered_M machine by instantiating the following two rules: Moreover, it instantiates inv3 for each specific continuous variable and adds the invariants inv4 and inv5. Moreover, it defines the system safety property using the formula prop (see inv6 of Figure 6.34).

CONTEXT Event_Heater_Ctx2 EXTENDS EventTriggered_Ctx CONSTANTS T 0 , T _max , T _min , saf e 2 , evt_trig 2 , evade_value 2 , temp AXIOMS axm1 : T 0 = plantV Init axm2 : T 0 ∈ RRealP lus axm3 : T 0 < T _max ∧ T 0 > T _min ∧ T _max ∈ IR∧ T _max > T _min ∧ T _min ∈ IR ∧ T _min > 0 axm4 : saf e = (λT → x • T ∈ IR ∧ x ∈ IR| bool(T < T _max)) axm5 : evt_trig = (λ T → t1 → x • T ∈ IR ∧t1 ∈ T IM E ∧ x ∈ IR | bool(T + x × t1 ≤ T _max)) axm6 : saf e 2 ∈ (IR × IR) → BOOL axm7 : evt_trig 2 ∈ (IR × T IM E) × IR → BOOL axm8 : saf e 2 = (λ T → x • T ∈ IR ∧ x ∈ IR| bool(T > T _min)) axm9 : evt_trig 2 = (λT → t1 → x • T ∈ IR ∧t1 ∈ T IM E ∧ x ∈ IR | bool(T + x × t1 ≥ T _min)) axm10 : ∀x • x ∈ IR =⇒ (f _evol_plantV (x) = (λt → T • t ∈ T IM E ∧ T ∈ IR | x)) axm11 : evade_value = {-temp} axm12 : evade_value 2 ⊆ IR ∧ evade_value 2 = {temp} axm13 : temp ∈ IR ∧ temp > 0 axm14 : prop = (λ T • T ∈ IR | bool(T ≤ T _max ∧ T ≥ T _min)) . END
• Rule_ET2_M_2 : events Progress, Plant, Ctrl_normal and Ctrl_evade are instantiated following the same instructions described respectively by rules Rule_ET1_M_3, Rule_ET1_M_4, Rule_ET1_M_5 and Rule_ET1_M_6. The only difference is in the event Plant. In this second strategy the generic ODE e was already replaced using the function f _evol_plantV in the generic EventTriggered_M described in 5.4.1.

The continuous variable plantV is replaced by the specific ones. Moreover, the events Ctrl_normal and Ctrl_evade are refined by replacing the continuous parameters by the specific ones. 

INVARIANTS i n v 1 : ctrlV ∈ setV al i n v 2 : i=1..n specP lantV i ∈ [0, t] → RReal i n v 3 : plantV = bind(specP lantV 1 , bind(specP lantV 2 , bind(...))) i n v 4 : i=1..n exec ̸ = plant =⇒ dom(specP lantV i ) = [0, t] i n v 5 : exec = plant =⇒ t / ∈ dom(plantV ) i n v 6 : ∀w • w ∈ dom(bind(specP

Discussion

The approach depicted by Figure 6.1 allows building the model step by step starting by specifying the continuous aspects of the system. Therefore, to instantiate by refinement the abstract model ContSystem, we define the continuous variables of the system and model the continuous evolution by refining the event Plant. This permits to cope with the proof complexity by decomposing the proof obligations, such that in the abstract model we only deal with the proof obligations related to the continuous aspects of the system and in the refined model we will have the proof obligations related to the safety properties of the controlled system. In the approach depicted by Figure 6.31, instantiating by refinement the EventTriggered model requires introducing both the continuous and discrete aspects of the system. Therefore, in addition to the continuous variables and their ODEs, we need to define the controller discrete states as well as the safety properties of the system, this generates more POs that are also more complex to discharge. Figure 6.35 summarizes the main differences between the two strategies. Note that the POs generated to prove the correctness of the Specific TimeTriggered model are similar to those generated for the Generic TimeTriggered model. In that case, it suffices to apply the same proof scripts used to prove the generic ones. This applies for the Specific EventTriggered model that instantiates the Generic EventTriggered model, its POs are similar to those already discharged in the generic model. Therefore, the instantiation of the generic models should allow reusing the already discharged proofs. Since the instantiation of POs is not yet supported by Rodin, we have to prove POs already discharged in the generic model. The reuse of proofs by instantiation is the subject of the ANR project, EBRP [START_REF] Thomas A Henzinger | Hytech: A model checker for hybrid systems[END_REF], whose objective is to develop an extension of Rodin to support such a concept.

Conclusion

In this chapter, we define a set of rules that are used to apply our generic models on specific case studies. Two approaches for instantiating the generic approach were defined. The first approach refines the abstract model ContSystem and then instantiates the generic Event and Time-Triggered models. The second one proposes to directly refine the generic EventTriggered model and then instantiate the generic TimeTriggered model. We have also considered the strategy that consists in starting by refining the TimeTriggered model but the proofs were more complex since it is more difficult to prove safety properties on TimeTriggered models than on EventTriggered models, as previously explained.

Chapter 7

Interfacing EVENT-B with SAGEMATH Event-B is a formal method designed for modeling and proving the correctness of discrete systems. It does not support the resolution of ordinary differential equations for proving the correctness of hybrid systems. To deal with this limitation, we interface the Rodin tool with the differential equation solver, SageMath (System for Algebra and Geometry Experimentation) [6].

Section 7.1 introduces a correct-by-construction approach, using Event-B and its refinement strategy, for solving linear ordinary diffential equations. Section 7.2 describes the development process of a plugin that permits to call SageMath from Rodin. Hybrid systems whose behavior is described by nonlinear ordinary equations are treated in Section 7.3. Last, Section 7.4 concludes the chapter with a discussion on the proposed approaches.

Solving Linear ODEs in Event-B

In this section, we introduce a correct-by-construction approach to deal with the resolution of linear ODEs in Event-B. The approach follows the development schema depicted in The proposed approach defines a new set named P ROP in the context EventTrig-gered_Ctx. This set allows linking the safety property with the formulas needed to model the different behaviors of the modeled system. We make the assumption that the safety property is in conjunctive normal form ( i=1..n p i ) and that, for each sub-formula p i , event_trig i , saf e i , saf eEpsilon i and a set of evade values evade_values i for ctrlV are specified.

PROP = i=1..n {p i }
Instead of modelling the controller part with two events, Ctrl_normal and Ctrl_evade as presented in Chapter 5, the controller is modeled by a single event Ctrl. This event checks, for each property p i , that the safety envelop is true if the chosen value value does not belong to the set of evade values of p i (see grd3 in to prove the safety properties of hybrid systems in a TimeTriggered system, which was not possible with the generic approach previously introduced. Moreover, this function serves to establish the link between our Event-B models and the differential equations solver SageMath.

Context Desolve_Ctx

f _evol ∈ IR → S axm5 : f _evol_plantV ∈ (IR → (T IM E × S → S)) axm6 : ∀ ctrlV • ctrlV ∈ IR =⇒ (f _evol_plantV (ctrlV ) = (λ t → plantV •t ∈ T IM E ∧ plantV ∈ S | f _evol(ctrlV ))) axm7 : prop_evade_values ∈ P ROP → P 1(IR) END
B_desolve ∈ (IN × IR × (TIME → IR) × TIME × (TIME × IR)) → (IR → IR)
• the first and the second parameters denote the order and the right term of the considered ODE.

• the third parameter denotes the unknown function, represented by a continuous variable.

• the independent variable, represented by a discrete variable, is typed by T IM E.

• the last parameter denotes the initial values of both the independent variable and the unknown function.

As stated before, the main objective of the TimeTriggeredDesolve model is to prove the safety properties in a TimeTriggered model. Therefore, instead of defining these properties in the EventTriggered model as described in 5.4.3, we define the constant prop, used to model the safety properties of a given system, in the Desolve_Ctx context, see axm2 in 7.4. 

Machine TimeTriggered_desolve_M

Machine TimeTriggered_desolve_M refines the machine TimeTriggered_M by using the function B_desolve in the Plant event to specify the generic solution of the generic continuous variable plantV . Event Plant of the TimeTriggered model is refined to calculate the value of plant1 during the period from lastT ime to t using the function B_desolve, which is specified by grd3 in Figure 7.5. This guard is used to link the abstract event to its refinement. It strengthens the guards grd6 and grd7 that aim at modeling the ordinary differential equation solution using the operators of the theory DiffEq. The parameters dvar, ivar and ics of the predefined function desolve of SageMath are represented respectively by the dependent variable plantV , the independent variable t and the initial values of plantV and t. The parameter lastT ime is introduced to represent the last progression of time at which plantV has been calculated. The solution of a given ordinary differential equation is calculated from lastT ime to t in order not to overwrite the old values of the continuous variable plantV . Note that, in the case of a system with two or more continuous variables, we replace the generic parameter plant1 by n parameters using the operator bind, where n represents the number of the continuous variables. For each parameter a function B_desolve is defined to obtain the exact solution of the associated continuous variable. correctness of the events that specify the progression of time and those that specify the progression of the physical and the discrete parts and also the POs that verify the type of the variables. The POs related to the guards feasibility and well-definedness have been interactively discharged under Rodin. Comparing tables 5.1 and 7.2, we observe that the number of the POs generated has been reduced due to the use of the constant P ROP which allows defining a single event to describe the discrete part. Therefore, the POs related to the event Ctrl_evade have been removed and added to those of the event Ctrl.

EVENT Plant_time_desolve REFINES Plant_time ANY plant1 , lastT ime WHERE grd1 : exec = plant grd2 : lastT ime ∈ T IM E ∧ dom(plantV ) = [0, lastT ime] grd3 : plant1 = B_desolve(1 → ctrlV → plantV → t → (lastT ime → plantV (lastT ime))) grd4 : plant1 ∈ [0, t] -dom(plantV ) → S grd5 : ode(f _evol_plantV (ctrlV ), plant1(t), t) ∈ DE(S) grd6 : Solvable([0, t] -dom(plantV ), ode(f _evol_plantV (ctrlV ), plant1(t), t)) grd7 : AppendSolutionBAP (ode(f _evol_plantV (ctrlV ), plant1(t), t), [0, t] -dom(plantV ), [0, t] -dom(plantV ), plant1) grd8 : ∀xx • xx ∈ dom(plant1) ⇒ prop(plant1(xx)) = T RU E THEN a c t 1 : plantV := plantV ◁ -plant1 a c t 2 : exec := prg END

Correctness of the specification

To prove the correctness of the TimeTriggeredDesolve model, Rodin has generated five proof obligations, three of them were automatically discharged. The remaining proof obligation P O1 is a well-definedness proof obligation which aims at proving that the guard grd3 of 7.5, added to model the solution of the generic ODEs using the function B_desolve, is well defined. This guard assigns to the parameter plant1 the solution of the generic ordinary differential equation obtained using the function B_desolve. For this purpose, to discharge this proof obligation, we must prove that the set of the results returned by B_desolve is equal to the set of definition of plant1. This proof obligation was discharged using some rewriting rules, the properties of the Reals theory and some invariants defined in refined machines. P O2 is generated to prove that the event P lant_time_desolve preserves the system safety property, specified using the constant prop. This proof obligation was discharged by replacing the value of plant1 by the result returned by B_desolve.

PO1: lastT ime ∈ dom(plantV ) ∧ plantV ∈ IR → IR ∧ 1 → ctrlV → plantV → t → (lastT ime → plantV (lastT ime)) ∈ dom(B_desolve) ∧ B_desolve ∈ IN × IR ×P (IR × IR) × IR × (IR ×IR) → P (IR × IR) PO2: ∀x • x ∈ dom(plantV ◁ -plant1) =⇒ prop((plantV ◁ -plant1)(x)) = T RU E

Instantiating the Generic TimeTriggeredDesolve Model

To design specific systems following the generic approach, we instantiate the generic TimeTriggeredDesolve model by replacing the generic continuous variable plantV by that or those associated with the specific system. The function B_desolve is then instantiated by the specific parameters of the modeled case study. The specific safety property is expressed as an invariant, in the specific instantiated machine, by the following formula, ∀ x • x ∈ dom(plantV ) ⇒ saf etyP roperty, where plantV denotes the continuous variables of the system and saf etyP roperty is the specific safety property. This formula expresses that the safety property of the system shall be satisfied in the time interval [0, t] which denotes the domain of plantV . Moreover, the instantiation consists in valuing the set PROP and the different constants as follows:

prop_X = i=1..n {p i → X i }
where X ∈ {event_trig, saf e, saf eEpsilon, evade_values}.

A tool for supporting the approach

In order to implement our approach, we built a new Rodin plug-in, called SageMath plug-in, that interfaces the Rodin platform with the computer algebra system SageMath to calculate the solutions of ODEs. Solving ODEs is needed in two steps of the proof activity: for proving the safety property and for proving the satisfiability of a guard removed in a refinement. In other words, during the proof of a PO, SageMath needs to be called on each term B_desolve(...) in order to replace it by the solution of the corresponding ODE.

The general process

The general process is composed of three main steps: (1) calling SageMath from Rodin, (2) solving ordinary differential equations and (3) using the result returned in Rodin (see Figure 7.6). In the first step, an input field that allows calling SageMath from Rodin appears when the current PO contains the terms B_desolve. The second step consists in calling a predefined script generated systematically from the function B_desolve(...). The last step consists in translating the result of SageMath into the specific Event-B language using the theory of reals. This result is added as an hypothesis to prove the current PO. More details on these steps are provided in the next subsections. 

Calling SageMath from Rodin (Step1)

To call SageMath from Rodin, a button called sagemath has been added in the proof window using an Eclipse plug-in. The button is made available on a hypothesis/goal when this later contains the call to a function B_desolve(...). To develop a Rodin plug-in, Eclipse provides a set of Java interfaces. These interfaces are intended to be implemented according to the goal of the plug-in. To implement the SageMath plug-in using Eclipse IDE, the following Java classes have been defined: SageTacticProvider, SageApplication and SageTactic. Appendix E illustrates the description of the different stages that constitute the main scenario of use of the SageMath plug-in. Figure 7.7 shows the sequence diagram associated with this development. For a Rodin PO containing a call to the B_desolve(...) function, the getPossibleApplications method implemented in the SageTacticProvider Java class creates a new instance of the Java class SageApplication which displays the sagemath button to the user using the method getHyperlinkLabel(). When the sagemath button is clicked by the user, the getTactic() method implemented in the SageApplication Java class creates a new instance of the Java class SageTactic that opens the platform SageMath using an instance of the ProcessBuilder Java class. The three following subsections give more details for the Java classes that have been developed. 

SageTacticProvider Class

This Java class implements the method getPossibleApplications to check the presence of B_desolve in each proof obligation and returns an instance of the SageApplication class. Function getPossibleApplications uses two main predicates as depicted by Figure 7.8, pred, a local variable, and hyp, a parameter of the function. pred takes as value hyp if this latter is not null or the current proof obligation otherwise. If the tag, the left and right parts of the formula pred, are equal to those of the predicate that contains B_desolve, we return the list of tactic that can be applied as a list of instances of SageApplication or null otherwise. This is repeated for each node of the proof tree. 

SageTactic Class

This Java class implements the apply() method that creates a process for calling SageMath. Function apply() contains all the instructions that will be applied when calling SageMath. The process for calling SageMath is created using the predefined Java class Process and provides the path of the executable file of SageMath to the predefined Java class ProcessBuilder as depicted by Figure 7.9. The Java class ProcessBuilder can be used to CHAPTER 7. INTERFACING EVENT-B WITH SAGEMATH call external applications thanks to the start() method and the Java class Process can be used to create new system processes. Figure 7.9: Calling SageMath Using ProcessBuilder.

SageApplication Class

This Java class establishes the link between the checking of the presence of the function B_desolve in the current proof obligation and the call to SageMath. It implements in particular two methods of the abstract interface IPositionApplication:

• getHyperlinkLabel(): allows to display the button sage in the proof window.

• getTactic(): allows to create an instance of the class SageTactic to execute the apply() method.

Solving ODEs in SageMath (Step1' and Step2)

A SageMath script is systematically generated from the Event-B function B_desolve, with all the parameters necessary to execute the SageMath predefined function desolve,

Step 1' in Figure 7.6. According to the structure and the nature of the differential equation to be solved, a specific SageMath script is defined. In such a script, the differential equation must be expressed depending on the controlled variable ctrlV that links the continuous and the discrete parts of a given hybrid system. A script is executed in SageMath using the following command: load( ′ scriptN ame.sage ′ ). Figure 7.10 represents the script that solves a differential equation of type T ′ = ctrlV . This script is generated from the formula B_desolve(1 → ctrlV → T → t → (lastT ime → T (lastT ime)))(x), where:

• Line 1 is generated using the second parameter of B_desolve and it specifies the right part of an ordinary differential equation.

• Line 2 is generated using the forth parameter of B_desolve and it specifies the definition of the independent variable t.

• Line 3 is generated using the third parameter of B_desolve and it specifies the definition of the continuous variable represented by T . The definition of this variable must always be after the definition of the independent variable.

• Line 4 is generated using the first part of the parameter lastT ime → T (lastT ime) and it represents the last progression of time from which we calculate the values of the continuous variable.

• Line 5 represents the call to the SageMath predefined function desolve. The first parameter of this function is generated using the first, second and third parameters of B_desolve. The second, third and forth parameters are generated respectively using the third, forth and last parameters of B_desolve.
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• Lines 6 -8 generate a text file, named "sageresult.txt", which store the result of the differential equation specified by sol in Line 5. To solve an equation of the form T ′ = ctrlV * t + c, another script is defined. Line 5 is replaced by two lines: the first line is to introduce the constant c: c = var( ′ c ′ ) and the second one to replace formula dif f (T, t, 1) == ctrlV by formula dif f (T, t, 1) == ctrlV * t + c.

1: ctrlV = var( ′ ctrlV ′ ) 2: t = var( ′ t ′ ) 3: T = f unction( ′ T ′ )(t) 4: lastT ime = var( ′ lastT ime ′ ) 5: sol = desolve(dif f (T, t, 1) == ctrlV, dvar = T, ivar = t, ics = [lastT ime, T (lastT ime)]) 6: o = open( ′ sageresult.txt ′ , ′ w ′ ) 7: o.write(str(sol)) 8: o.close()

Using SageMath Results in Rodin (Step3)

To discharge a proof obligation that includes a call to the function B_desolve() by using the result returned by SageMath, the call must be replaced by its solution sol returned by SageMath and written in the text file sageresult.txt. For this purpose, the predicate (B_desolve() = sol ′ ) is added as an additional hypothesis for the current PO. where sol ′ is a rewritten of sol according to the syntax of the theory of reals used in the project. Basically, the theory of reals adopts a prefix style by defining a keyword for each operator on the reals like plus for addition, times for multiplication, etc. So for instance, the formula ctrlV × lastT ime + T (lastT ime) is rewrittten into plus(times(ctrlV → lastT ime) → T (lastT ime)).

Solving Nonlinear ODEs in Event-B

There are two types of methods for solving ODEs: analytical methods and numerical methods. Analytical methods use a set of theorems to obtain an exact solution for a given ordinary differential equation. For example, the computer algebra SageMath provides the predefined function, desolve(), that uses analytical methods to find analytical solutions for ODEs. However most differential equations cannot be solved exactly. Therefore, we must rely on numerical methods to obtain approximate solutions or use approximation techniques to transform an equation into an equivalent equation with an exact solution. For example, we can use linearization techniques to transform a nonlinear differential equation into a linear differential equation and then apply analytical methods for linear differential equations. The obtained solution is thus an approximate solution for the original one.

The Generic Approach

Figure 7.11 represents our proposed approach for modelling and verifying safety properties of nonlinear differential equations in Event-B. The approach consists of two sub-approaches depending of the order of the ODE: if the given differential equation is a first order ODE, then we use the numerical function desolve_rk4() defined in SageMath to find approximate solutions for ODEs. This method can only be applied to solve first order ODEs. Otherwise, we linearize (if it is possible) the differential equation and use the approach that model the function desolve() in Event-B. For verifying nonLinear systems in Event-B, we propose to prove their safety properties per time interval, i.e for a given interval [t1, t2] we prove that its associated plantV (t1) and plantV (t2), obtained using the function desolve_rk4, preserve the system safety properties, assuming the monotony of the values returned by desolve_rk4 (∀ t • t ∈ [t1, t2] ⇒ (plantV (t1) ≤ plantV (t) ≤ plantV (t2)) ∨ (plantV (t2) ≤ plantV (t) ≤ plantV (t1)). For this purpose, we define an Event-B function, named B_desolve_rk4, that models approximate resolutions in Event-B. This function is defined in the context Desolverk4 (see Figure 7.13) that extends the generic context TimeTriggered_Ctx. This context defines also the constant prop that specifies the system safety properties and that must be true for the initial value of the continuous variable plant0 at the instant t 0 (axm3). 

B_desolve_rk4 ∈ IR × (T IM E → IR) × T IM E× (T IM E × IR) × (T IM E × T IM E) → (IR → IR)
• the first parameter, element of IR, represents the right term of the ordinary differential equation.

• the second parameter specifies the unknown function, represented by the continuous variable (plantV ), is typed by T IM E → IR.

• the third parameter is used to specify independent variable, represented by the discrete variable (time t), is typed by T IM E.

• the fourth parameter represents the initial values of both the independent variable t and the unknown function plantV .

• the last parameter is used to specify the interval denoted [t1, t2] for which we calculate the values of plantV .

CONTEXT D e s o l v e r k 4 The associated machine TimeTriggered_desolverk4_M refines the generic machine TimeTriggered_M by adding the guard grd6 (see Figure 7.14) to the generic event Plant_time. grd6 specifies that the new value of plantV is equal to the result of the Event-B function B_desolve_rk4. This function takes as parameters the right term of the differential equation that depends on the controlled variable ctrlV , the continuous variable plantV , the independent variable t, the initial conditions of t and plantV and the interval [t1, t2]. The initial conditions are represented by the couple lastT ime and plantV (lastT ime) and the interval [t1, t2] is equal to [lastT ime, t], so desolve_rk4 will return the values of plantV between lastT ime and max(lastT ime, t) = t, where t represents the current instant of control. grd8 specifies that the values returned by desolve_rk4 must be monotonous. 

EXTENDS TimeTriggered_Ctx CONSTANTS B_desolve_rk4 , prop AXIOMS axm1 : B_desolve_rk4 ∈ IR × (T IM E → IR) × T IM E × (T IM E × IR) × (T IM E × T IM E) → (IR → IR) axm2 : prop ∈ IR → BOOL axm3 : prop(plantV Init) = T RU E END
EVENT Plant_time_desolverk4 REFINES Plant_time ANY plant1 , lastT ime WHERE grd6 : plant1 = B_desolve_rk4(f _evol( ctrlV ) → plantV → t → (lastT ime → plantV (lastT ime)) → (lastT ime → t)) grd7 : ∀ xx • xx ∈ dom(plant1) ⇒ prop(plant1(xx)) = T RU E grd8 : ∀ tt • tt ∈ [lastT ime, t] ⇒ (plant1(tt) → plant1(lastT ime) ∈ geq ∧ plant1(tt) → plant1(t) ∈ leq) ∧ (plant1(tt) → plant1(lastT ime) ∈ leq ∨ plant1(tt) → plant1(t) ∈ geq) THEN a c t 1 : plantV := plantV ◁ -plant1 a c t 2 : exec := ctrl END

Choosing the Interval [t1, t2]

In mathematics, an autonomous system or autonomous differential equation is a system of ODEs which does not explicitly depend on the independent variable. When the variable is time, they are also called time-invariant systems. Many laws in physics, where the independent variable is usually assumed to be time, are expressed as autonomous systems. The solutions to the autonomous equation are monotonic functions. In particular, the first order autonomous equations cannot have periodic solutions. This guarantees that between two TimeTriggered sensors updates the function plantV is monotone as long as the controller has not yet updated the controlled variable ctrlV . The longest time between these updates is bounded by the symbolic duration epsilon. For example in the case of the Smart Heating system, the ordinary differential equation is expressed using the controlled variable T ′ = ctrlV with ctrlV ∈ {temp, -temp}. If the controller choose to increase the temperature between the instant t1 and the instant t2 i.e T ′ = temp, then the values of T in [t1, t2] are represented by monotonic function (the same for T ′ = -temp). In that case, to prove the system safety property in [t1, t2] we just need to prove that T (t2) satisfies the safety property t ≤ T max (t ≥ T min ).

To specify TimeTriggered sensors updates in Event-B, we calculate the new values of plantV using B_desolverk4 in the interval [lastT ime, t]. The controllers of such system must be triggered when the normal mode specified by the normal values, declared as a parameter of the event Ctrl_desolverk4 (see Figure 7.15), satisfy the safety envelope within the period t to t+epsilon. t represents the current instant of control and t+epsilon represents the next period of control (see grd5). Moreover, the results returned by B_desolverk4 for the evade values including the normal values must satisfy the safety envelope between t and t + 2 * epsilon in order to guarantee that the physical system does not exceed the safety property within two periods of control (grd6). 

EVENT C t r l _ d e s o l v e r k 4 REFINES C t r l ANY value WHERE grd5 : ∀ x, tt • x ∈ P ROP ∧ tt ∈ [t, t + epsilon] ⇒ (value ̸ ∈ prop_evade_values(x) ⇒ (prop_saf eEpsilon(x))(B_desolve_rk4(f _evol(value) → plantV → t → (t → plantV (t)) → (t → (t + epsilon)))(tt) → value) = T RU E) grd6 : ∀ x, tt • x ∈ P ROP ∧ tt ∈ [t, t + 2 × epsilon] ⇒ (prop_saf eEpsilon(x)) (B_desolve_rk4(f _evol(value) → plantV → t → (t → B_desolve_rk4(f _evol(value) → plantV → t → (t → plantV (t)) → (t → (t + epsilon)))(t)) → (t → (t + 2 × epsilon))))(tt) → value) = T RU E) THEN a c t 1 : ctrlV := value a c t 2 : exec := prg END

Discussion

In this section, we presented a generic approach for modeling nonlinear hybrid systems using the predefined function desolve_rk4. The solutions returned by desolve_rk4 are approximated solutions, they do not represent the exact behavior of the continuous variables of hybrid systems. Therefore, the proof of safety properties of nonlinear systems is more complicated to that of linear hybrid systems. Table 7.2 gives the statistics of the proof obligations generated to ensure the correctness of the Nonlinear generic models of our approach. As stated before, the modifications brought on the Event-and Time-Triggered models reduced the number of proof obligations compared to table 5.1. For the nonlinear hybrid systems, the proof of the safety property is achieved by assuming the monotonicity of the function returned by desolve_rk4 on the interval [lastT ime, t]. For that purpose, we have to prove the following property on the returned function to state that it is increasing or decreasing:

∀tt • tt ∈ [lastT ime, t] ⇒ (plant1(tt) ≥ plant1(lastT ime)∧ plant1(tt) ≤ plant1(t)) ∨ (plant1(tt) ≤ plant1(lastT ime) ∧ plant1(tt) ≥ plant1(t))
Having this property verified, the proof of a safety property comes down to prove it for the lower and/or the upper bounds.

Conclusion

This chapter has presented a proof-based approach that combines the Event-B formal method with the differential equation solver SageMath by modeling and implementing the call to the solver. The approach is supported by a tool, built as a Rodin plugin, that establishes the link between Rodin and SageMath. Our approach can be compared to the approach of the differential refinement logic dRL that requires mastering the syntax of other tools to validate the proof phase. For example it requires mastering the syntax of KeYmaera and KeYmaera X, that interface the theorem prover Mathematica, to prove the safety property of an Event-Triggered systems. Unlike dRL, our proposed approach uses end-to-end the formal method Event-B to take advantage of its supported tools and its refinement strategy, always by coupling Rodin and SageMath. To cope with the complexity of the system, the Event-B specification consists of three generic models: EventTriggered, TimeTriggered and TimeTriggeredDesolve that introduces the function B_desolve to model the call to a differential equations solver. The proposed approach extends the generic approach introduced in the previous chapter by adding a new generic set that permits to reduce the number of proof obligations. To model hybrid systems of which the continuous part is described by nonlinear ordinary differential equations, we introduce a new generic model that refines the Time-Triggered model by defining a new predefined function of SageMath, desolve_rk4, that returns approximated solutions of first order ODEs. So far, we have been unable to find a first-order nonlinear case study to which the generic approach can be applied. To prove the feasibility of our general approach, we plan as a future work to add some complex properties to the linear case studies used in this work and then use the B_desolve_rk4 function to find approximate solutions. This chapter describes the application of our generic approaches for modeling the Stop Sign, the Water Tank and the Smart Heating case studies presented in Chapter 4. The rules described in Chapter 6 are used to demonstrate how a system specified with two continuous variables and a single safety property is instantiated, the case of the Stop Sign system. They are also used to describe how a system specified with two safety envelops, two set of evade values, two event trigger formulas is instantiated, the case of the Water Tank and Smart Heating systems. Section 8.1 describes the modeling of the Stop Sign case study, for which we chose to directly model the controlled system by refining the EventTriggered model. For the Water Tank case study, we chose to start with an abstract model that refines the generic ContSystem model which is described in Section 8.2. Then, Section 8.3 discusses the proof activity resulting from the application of our generic approach on specific case studies. Section 8.4 describes the instantiation of the Smart Heating case study which starts by refining the generic TimeTriggeredDesolve model to illustrate the use of the function B_desolve on a 

CONTEXT Car_Event_Ctx EXTENDS EventTriggered_Ctx CONSTANTS SP , pinit , vinit , A , B AXIOMS axm1 : pinit ∈ IR + ∧ vinit ∈ IR + axm2 : (pinit, vinit) = plantV Init axm3 : pinit ≤ SP ∧ SP ∈ IR ∧ 0 < SP ∧ pinit + vinit×vinit 2×B ≤ SP axm4 : saf e = (λ(p → v) → ctrlV • (p → v) ∈ (IR × IR) ∧ ctrlV ∈ IR | bool(p + v 2 /2B < SP )) axm5 : evt_trig = (λ(p → v) → (t1 → ctrlV ) • (p → v) ∈ (IR × IR)∧ t1 ∈ T IM E ∧ ctrlV ∈ IR | bool(p + 1/2 × ctrlV × t1 2 + v × t1 + v 2 /2B ≤ SP )) axm6 : ∀ ctrlV • ctrlV ∈ IR =⇒ (f _evol_plantV (ctrlV ) = (λ t → (p → v) • t ∈ T IM E ∧ (p → v) ∈ (IR × IR) | (v → ctrlV ))) axm7 : evade_value = {-B, 0} axm8 : A ∈ IR ∧ 0 < A axm9 : B ∈ IR ∧ 0 < B axm10 : prop = (λ p.p ∈ IR | bool(p ≤ SP )) . END
INVARIANTS i n v 1 : ctrlV ∈ {0,-B,A} i n v 2 : p ∈ [0, t] → IR ∧ v ∈ [0, t] → IR + ∧ dom(v) = dom(p) i n v 3 : plantV = bind(p, v) i n v 4 : exec ̸ = plant =⇒ dom(p) = [0, t] ∧ dom(v) = [0, t] i n v 5 : exec = plant =⇒ t ̸ ∈ dom(plantV ) i n v 6 : ∀x • x ∈ dom(p) =⇒ prop(p(x)) = T RU E Figure 8.3: Stop Sign EventTriggered INVARIANTS.
The transitions between states of the hybrid automaton of Figure 4.2 are represented in our approach by the event Plant_event_car (Figure 8.4) which describes the evolution of the physical part represented by the state variables p and v. This event is obtained following Rule_ET2_M_2. It refines the Plant event of the generic model (Figure 5.9) by exhibiting a witness that replaces the evolution of the generic state parameter plant1 by that of the parameters p1 and v1. These parameters represent respectively the evolution of the position and the velocity from the last moment until the current time t. Then the values of the functions p and v are overridden by those of the parameters p1 and v1 in act1 and act2.

Rule_ET2_M_2 also instantiates the events Ctrl_normal and Ctrl_evade. The Stop Sign case study has three discrete states, Accelerating state which corresponds to the normal mode, Braking and Stopped states which correspond to the evade mode. The transition from Braking to Accelerating states is modeled using the event Ctrl_Acceleration_car (Figure 8.5) which refines the generic Ctrl_normal event by replacing plantV by p and v and the nrml_value by A in the formula saf e. The transition from Accelerating to Braking or Stopped states is modeled by the event Ctrl_Deceleration_car (Figure 8.6) that replaces the value of evade_val by -B if v(t) > 0 or by 0 if v(t) = 0.

As it is easier to prove the safety property at this level, we express it as an invariant inv6 of Figure 8.3, where we specified prop(p(x)) in the context Car_Event_Ctx (see axm10). To be sure that this invariant will be preserved by the event Plant_event_car, we added the guard grd6 (see Figure 8.4) to ensure that the new value of the position p1 verifies the system safety property. This guard is necessary at this level because we do not consider the solution of the system ODEs yet. It will be removed in the TimeTriggered model and refinement proofs (GRD type) will be generated to ensure that the actual value of p1 does satisfy it (Section 8.1.3).

EVENT Plant_event_car REFINES P la nt ANY p1 , v1 WHERE grd1 : exec = plant grd2 : p1 ∈ [0, t] -dom(p) → IR ∧ v1 ∈ [0, t] -dom(p) → IR + grd3 : ode(f _evol_plantV (ctrlV ), (p1(t), v1(t)), t) ∈ DE(IR × IR) grd4 : Solvable([0, t] -dom(bind(p, v)), ode(f _evol_plantV (ctrlV ), bind(p1, v1)(t), t)) grd5 : AppendSolutionBAP (ode(f _evol_plantV (ctrlV ), (bind(p1, v1))(t), t), [0, t] -dom(bind(p, v)), [0, t] -dom(bind(p, v)), bind(p1, v1)) grd6 : ∀xx • xx ∈ dom(p1) =⇒ prop(p1(xx)) = T RU E WITH plant1 : plant1 = bind(p1, v1) THEN a c t 1 : p := p ◁ -p1 a c t 2 : v := v ◁ -v1 a c t 3 : exec := ctrl END

Stop Sign TimeTriggered Model

We refine the Car_Event model to produce the Car_Time model. Machine Car_Time_M sees the context Car_Time_Ctx (Figure 8.7) which is an instantiation of TimeTriggered_Ctx context. Context Car_Time_Ctx is obtained following the two rules, Rule_TT_Ctx_1 and Rule_TT_Ctx_2, represented in Section 6.1.3. It defines the formula saf eEpsilon, axm2 -axm3, as the longest position of the car after an acceleration phase of epsilon unit of time followed by a braking phase until it stops2 :

CONTEXT Car_Time_Ctx EXTENDS Car_Event_Ctx CONSTANTS e p s i l o n , s a f e E p s i l o n AXIOMS axm1 : epsilon ∈ T IM E ∧ sigma ≤ epsilon ∧ 0 < epsilon axm2 : saf eEpsilon ∈ (IR × IR) × IR → BOOL axm3 : saf eEpsilon = λ(p → v) → ctrlV • (p → v) ∈ (IR × IR) ∧ ctrlV ∈ IR | p+ (A × epsilon 2 /2 + v × epsilon) + v 2 /2B + (A 2 × epsilon 2 /2B) + (A × v × epsilon/B) < SP END Figure 8.7: Context Car_Time_Ctx.
Machine Car_Time_M is an instantiation of the generic machine TimeTriggered_M. The instantiation is done following the set of rules Rule_TT_M_i described in Section 6.1.3. The INVARIANTS clause (Figure 8.8) defines the properties needed to ensure that during a control period epsilon the system remains safe as described by Rule_TT_M_1. inv1, inv2 and inv3 (Figure 6.23) are instantiated by replacing the generic parameters by those associated with the Stop Sign case study. Moreover, we added two invariants, inv4 and inv5, which are specific to the Stop Sign case study. inv4 is a bit special. It ensures that the safety property is satisfied between two control periods i.e the evolution of the physical part represented by p(t1) and v(t1) must preserve this safety property. inv5 is defined to guarantee that the car is stopped when the acceleration is equal to zero. Following Rule_TT_M_2, we refine the event Progress associated with the machine Car_Event_M to add the control period epsilon, such as t1 -t ≤ epsilon (see Figure 8.9), and remove the following guard: ctrlV / ∈ evade_value =⇒ evt_trig((bind(p, v)(t), (t1t), ctrlV ) = T RU E. Removing such a guard gives rise to a proof obligation to ensure that it is satisfied, see Section 8.1.3. This proof obligation corresponds to POs PO2_dRL and PO3_dRL of dRL.

INVARIANTS inv1 : ∃ t1 • t1 ∈ T IM E ∧ dom(p) = [0, t1] ∧ t -t1 ≤ epsilon ∧ (exec ̸ = plant =⇒ t1 = t)∧ (exec = plant =⇒ t > t1) ∧ (ctrlV / ∈ evade_value ∧ exec = plant =⇒ saf eEpsilon((p(t1) → v(t1)) → A) = T RU E) inv2 : ∀ t1 • (t1 ∈ T IM E ∧ dom(p) = [0, t1] =⇒ p(t1) + v(t1)×v(t1) 2B ≤ SP ) inv3 : ctrlV / ∈ evade_value ∧ exec = prg =⇒ saf eEpsilon((p(t) → v(t)) → A) = T RU E inv4 : ∀ t1 • t1 ∈ T IM E ∧ dom(p) = [0, t1] ∧ ctrlV = 0 ∧ exec ̸ = ctrl =⇒ v(t1) = 0 inv5 : ∀t1, t2 • t1 ∈ T IM E ∧ t2 ∈ T IM E ∧ dom(p) = [0, t1] ∧ dom(p) = [0, t2] =⇒ t1 = t2
The continuous part is modeled by the event Plant_time_car (see Figure 8.10). Plant_time_car refines the event Plant_event_car to calculate the values of p1 and v1 during the period from lastT ime to t where lastT ime denotes the last moment at which p and v have been calculated with dom(p) = [0, lastT ime] ( Rule_TT_M_3 ). The parameter epsilon1 is defined to represent the maximum duration of the car movement until its stop. In the evade mode (ctrlV = -B), the car is allowed to move forward during a period epsilon1 equal to the maximum of v(lastT ime) B (the moment at which its speed becomes null) and (t -lastT ime). Otherwise, this period is equal to (t -lastT ime). As stated before, the guard grd6 of the P lant_event_car has been removed, instead a proof obligation is generated to ensure that it is induced by the actual values of p1 and v1, see Section 8.1.3. The actual values of p1 and v1 are calculated by guards grd6 and grd7 that specify the results of solving the ODEs, dp dt = v(t) and dv dt = ctrlV taking in consideration the period of control epsilon1. The result of solving dv dt = ctrlV is v(t) = ctrlV × epsilon1 + v(lastT ime). Substituting v by this value in dp dt = v gives p(t) = 1 2 × ctrlV × epsilon1 2 + v(lastT ime) × epsilon1 + p(lastT ime). Guard grd10 instantiates the grd6 defined in Figure 6.25 by replacing the generic parameters by the specific ones.

EVENT Plant_time_car REFINES Plant_event_car ANY p1 , v1 , lastT ime , epsilon1 WHERE grd1 : exec = plant grd2 : We refine the event Ctrl_Acceleration_car to instantiate the event Ctrl_normal_time (Figure 5.13) by replacing the formula saf e((p(t), v(t)), A) by the formula Saf eEpsilon (Rule_TT_M_4 ). Let us remark, that the guard related to the satisfaction of saf e has been removed to give rise to a proof obligation that verifies that saf eEpsilon induces Saf e. Event Ctrl_Deceleration_car remains as defined in machine Car_Event_M. Table 8.1 gives the statistics of the POs generated for modeling the Stop Sign case study. All the POs are discharged using the automatic/interactive provers of the Rodin platform and the theories of [10]. It is noticeable that 34% of them were automatically discharged. The POs that are independent from any specific case study are simply discharged by replying the same proof script defined in the proof of the generic models. These POs are related to the correctness of the event Progress, i.e feasibility of the event, and also the type of the variables. Moreover, the POs related to the guards feasibility and well-definedness are much easier to discharge than those related to ensure the system safety property and also that concerning the preservation of formula saf e that we detail hereafter.

lastT ime ∈ T IM E ∧ dom(p) = [0, lastT ime] grd3 : lastT ime ∈ dom(p) ∧ lastT ime ∈ dom(v) grd4 : ctrlV = -B =⇒ (t -lastT ime ≤ v(lastT ime) B =⇒ epsilon1 = t -lastT ime) ∧ (t -lastT ime > v(lastT ime) B =⇒ epsilon1 = v(lastT ime) B ) grd5 : ctrlV ∈ {0, A} =⇒ epsilon1 = t -lastT ime grd6 : p1 = (λt1 • t1 ∈ T IM E ∧ t1 > lastT ime ∧ t1 ≤ t|(p(lastT ime) +( 1 2 × (ctrlV × (epsilon1 2 )))) + (v(lastT ime) * epsilon1)) grd7 : v1 = (λt1 • t1 ∈ T IM E ∧ t1 > lastT ime ∧ t1 ≤ t |(ctrlV * epsilon1) + v(lastT ime)) grd8 : ode(f _evol_plantV (ctrlV ), (p1(t) → v1(t)), t) ∈ DE(IR × IR) grd9 : Solvable([0, t] -dom(bind(p, v)), ode(f _evol_plantV (ctrlV ), bind(p1, v1)(t), t)) grd10 : solutionOf ([0, t] -dom(bind(p, v)), ([0, t] -dom(bind(p, v))) ◁ bind(p1,

Correctness of the Specification

Proof of the safety property: Recall that the safety property has been expressed as an invariant in the Car_Event_M machine: ∀x • x ∈ dom(p) =⇒ prop(p(x)) = T RU E, where prop(p(x)) = p(x) ≤ SP . This invariant generates the following proof obligation for the event P lant_event_car that updates the value of the variable p:

∀x • x ∈ dom(p ◁ -p1) =⇒ (p ◁ -p1)(x) ≤ SP
Since at this level the ordinary differential equation has not been resolved yet, the concrete value of p1 is not known. For this purpose, we added the guard grd6 in the event P lant_event_car. This guard states that the concrete value of p1 should be such that the future position of the car is always before the stop signal SP . Thus at this level, the safety property is proved under the guard grd6. This guard is removed by refinement in the Car_Time_M machine and gives thus rise to a proof obligation that verifies the concrete value of p1, obtained after the resolution of the ordinary differential equations (grd6 and grd7 of the event P lant_time_car), does satisfy grd6 of P lant_event_car. In that way, we definitely proved the safety property as we establish that the guard grd6 of the event P lant_event_car is true. To prove this, we added the following invariants in Car_Time_M machine:

• When the variable ctrlV is updated to be equal to A, then saf eEpsilon is verified, where t 1 is such that dom(p) = [0, t 1 ]. exec = plant ∧ ctrlV ̸ = evade_value =⇒ saf eEpsilon((p(t 1 ), v(t 1 )), A) = T RU E • According to [16], at any moment t 1 , the position of the car permits to brake before SP . In fact v(t 1 ) 2 /2B denotes the maximum distance that the car can cover when it enters into the braking phase. Indeed, when the car brakes at the instant t 1 , it continues to move forwards during (V (t 1 )/B) units of time. So, the car will cover a distance equal to

(-1/2 × B × (V (t 1 )/B) 2 + V (t 1 ) × (V (t 1 )/B) = v(t 1 ) 2 /2B ∀t 1 .t 1 ∈ IR + ∧ dom(p) = [0, t 1 ] =⇒ p(t 1 ) + v(t 1 ) 2 /2B ≤ SP
Preservation of the predicate saf e by refinement The generic modeling of the event Ctrl_normal_time (Figure 5.13) contains a guard to check that saf e is fulfilled, grd3 of this event, in addition to its dual guard related to saf eEpsilon. As stated before, for a specific application, grd3 is skipped which gives rise to a refinement proof obligation to ensure that the removed guard can be induced from that of the event Ctrl_normal_time.

In other words, this means that the guard of the event Ctrl_normal_time must be stronger than that of the event Ctrl_normal_event. This refinement proof obligation corresponds to PO1_dRL of dRL. ... ∧ saf eEpsilon(plantV (t), ctrlV ) = T RU E =⇒ safe(plantV (t), nrml_value) = T RU E Let us note that such proof obligations have been interactively discharged under Rodin thanks to different provers like SMT and AtelierB provers but also the inference rules described in the theory that implements reals. The use of these inference rules made the proof activity longer since they are not automatically applied even on simple examples like the transitivity rule. For instance, the formula a ≤ c under the hypotheses a ≤ b ∧ b ≤ c, with a, b, c denoting real expressions, cannot be discharged automatically and requires the intervention of the user that must explicitly apply the transitivity rules included in the theory of reals. To speed up the proof activity, it would be interesting to develop an automatic prover around the theory of reals whose objective is to automatically apply the existing inference rules to produce new hypotheses. For the above example, hypothesis a ≤ c should be automatically inferred by applying the transitivity inference rule. The development of such a prover is one of the objectives of the EBRP project [START_REF] Thomas A Henzinger | Hytech: A model checker for hybrid systems[END_REF].

Preservation of evt_trig by refinement Recall that the generic modeling of the event P rogress, in the timed model, contains a guard to ensure that time progresses without going beyond the safety envelope boundaries evt_trig. This guard is omitted by instantiation in the TimeTriggered model and the following proof obligation is generated instead it corresponds to PO2_dRL and PO3_dRL of dRL:

exec = prg =⇒ evt_trig((bind(p, v))(t), t 1 -t, ctrlV )
To prove the above PO, we have added and proved the following invariant that states that before making the time progress, if the normal mode is chosen, then the system is safe:

ctrlV / ∈ evade_value ∧ exec = prg =⇒ saf eEpsilon((p(t) → v(t)) → ctrlV ) = T RU E
Let us remark that expressions of evt_trig and saf eEpsilon are very similar: saf eEpsilon depends on epsilon while evt_trig depends on (t 1 -t). By rewriting (evt_trig = E 1 ≤ SP ) and (saf eEpsilon = E 2 < SP ), it suffices to prove that E 1 ≤ E 2 with the hypothesis that (t 1 -t ≤ epsilon).

Rule_ET1_Ctx_4 and Rule_ET1_Ctx_5, we define the following constants saf eEmp, evt_trigEmp, saf eF ill, evt_trigF ill, evade_valueF ill and evade_valueEmp (axioms axm6 -9 and axm12 -13). Last axm14 -15 are used to specify the Water Tank safety property by defining the constant prop.

Since the Tank_Event model instantiates the EventTriggered model, the INVARIANTS clause must include the system safety property specified using the constant prop. Moreover, we instantiate the invariants specified in Figure 6.10 by replacing the generic parameters by the specific ones and by following Rule_ET1_M_2. In the Tank_Event model, we refine the Progress event by adding the following guards ( Rule_ET1_M_3 ):

evt_trigF ill(V ol(t) → (t 1 -t) → ctrlV ) = T RU E evt_trigEmp(V ol(t) → (t 1 -t) → ctrlV ) = T RU E.
Following the rules, Rule_ET1_M_5 and Rule_ET1_M_6, we define three control events Ctrl_normal (Figure 8.16), Ctrl_emptying (Figure 8.17) and Ctrl_filling (Figure 8.18). Event Ctrl_normal represents the normal mode and is triggered when the safety envelopes saf eEmp and saf eF ill, associated to these properties, are satisfied which means that the system does not change its discrete state (Filling or Emptying) when the current water level evolves between V _high and V _low. Note that, as we only have two values f _in and -f _out, we rewrite the condition nCtrlV / ∈ {-f _out} (resp. nCtrlV / ∈ {f _in}) of grd3 (resp. grd4) into nCtrlV = f _in (resp. nCtrlV = -f _out). The evade mode is refined by two events Ctrl_emptying and Ctrl_filling. Ctrl_emptying and Ctrl_filling can be triggered respectively when saf eEmp and saf eF ill are verified. The continuous part is represented by the event Plant_event_tank (Figure 8.19) that refines the event Water_behave. It introduces the evolution of the water level using the continuous function f_evol_V(ctrlV) (Rule_ET1_M_4 ). Moreover, it specifies the safety property of the Water Tank case study V _low ≤ V ol(t) ≤ V _high (see grd6), so the continuous part will be triggered iff the formula prop(V ol1(xx 

)) ≡ V ol1(xx) ≤ V _high ∧ V ol1(xx) ≥ V _low is satisfied. EVENT C t
AppendSolutionBAP (ode(f _evol_V (ctrlV ), V ol1(t), t), [0, t] -dom(V ol), [0, t] -dom(V ol), V ol1) grd6 : ∀xx • xx ∈ dom(V ol1) =⇒ prop(V ol1(xx)) = T RU E WITH e : e = ode(f _evol_V (ctrlV ), V ol1(t), t) THEN a c t 1 : V ol := V ol ◁ -V ol1 a c t 2 : exec := prg END

Water Tank TimeTriggered Model

The Tank_Time model is obtained by refining the Tank_Event model. The static part of this model is represented by the context Tank_Time_Ctx (Figure 8.20). Context Tank_Time_Ctx extends the context Tank_Event_Ctx and instantiates the generic context TimeTriggered_Ctx (Rule_TT_Ctx_1 and Rule_TT_Ctx_2 ). It adds the definition of the control period epsilon, see axm1, as well as the system safety properties where saf eEpsilonEmp and saf eEpsilonF ill are defined in axm4 and axm5. 8.21) defines all the properties needed to preserve the system safety property during the control period epsilon (Rule_TT_M_1 ), see inv1. For each safety envelope saf eEpsilonF ill and saf eEpsilonEmp, it defines a set of properties that must be preserved during the progression of time, see inv2 -inv3. The continuous part of the Tank_Time model is described by the event Plant_time_tank (Figure 8.22). Event Plant_time_tank refines the event Plant_event_tank by adding the parameters lastT ime and epsilon1 (Rule_TT_M_3 ). The parameter epsilon1 represents the maximum duration of the water level until the next discrete state change. This period is equal to t -lastT ime, see grd4. As stated before, to prove the safety property of a hybrid system we must obtain the solutions of its differential equations. The result of solving the ordinary differential equation that describes the continuous evolution of the water level V ol is represented by the grd5: V ol1 = (ctrlV × epsilon1) + V ol(lastT ime). The discrete part of this model is represented by three events, (Figures 8. 23, 8.24 and 8.25), that replace the safety envelops saf eF ill and saf eEmp respectively by saf eEpsilonF ill and saf eEpsilonEmp to take into account the duration epsilon in the evolution of V ol ( Rule_TT_M_4 ).

CONTEXT Tank_Time_Ctx EXTENDS Tank_Event_Ctx CONSTANTS epsilon , saf eEpsilonF ill , saf eEpsilonEmp AXIOMS axm1 : epsilon ∈ T IM E ∧ 0 < epsilon ∧sigma ≤ epsilon axm2 : saf eEpsilonF ill ∈ (IR × IR) → BOOL axm3 : saf eEpsilonEmp ∈ (IR × IR) → BOOL axm4 : saf eEpsilonEmp = (λ vol → ctrlV • vol ∈ IR ∧ ctrlV ∈ IR| bool(ctrlV × epsilon ≥ V _low)) axm5 : saf eEpsilonF ill = (λ vol → ctrlV • vol ∈ IR ∧ ctrlV ∈ IR| bool(ctrlV × epsilon ≤ V _high)) END
INVARIANTS i n v 1 : ∃ t1 • t1 ∈ T IM E ∧ dom(V ol) = [0, t1] ∧ t -t1 ≤ epsilon ∧ (exec ̸ = plant =⇒ t1 = t)∧ (exec = plant =⇒ t > t1) ∧ (ctrlV ̸ ∈ evade_valueF ill ∧ exec = plant =⇒ saf eEpsilonF ill(V ol(t1) → ctrlV ) = T RU E) ∧ (ctrlV ̸ ∈ evade_valueEmp ∧ exec = plant =⇒ saf eEpsilonEmp(V ol(t1) → ctrlV ) = T RU E) i n v 2 : ctrlV ̸ ∈ evade_valueF ill ∧ exec = prg =⇒ saf eEpsilonF ill(V ol(t) → ctrlV ) = T RU E i n v 3 : ctrlV ̸ ∈ evade_valueEmp ∧ exec = prg =⇒ saf eEpsilonEmp(V ol(t) → ctrlV ) = T RU E i n v 4 : ∀t1, t2 • t1 ∈ T IM E ∧ t2 ∈ T IM Edom(V ol) = [0, t1] ∧ dom(V ol) = [0, t2] =⇒ t1 = t2
EVENT Plant_time_tank REFINES Plant_event_tank ANY V ol1 , lastT ime , epsilon1 WHERE grd1 : exec = plant grd2 : lastT ime ∈ T IM E ∧ dom(V ol) = [0, lastT ime] grd3 : t > lastT ime ∧ lastT ime ∈ dom(V ol) grd4 : epsilon1 = t -lastT ime grd5 : V ol1 = (λt1 • t1 ∈ T IM E ∧ t1 > lastT ime ∧ t1 ≤ t | (ctrlV × epsilon1) + V ol(lastT ime)) grd6 : ode(f _evol_V (ctrlV ), V ol1(t), t) ∈ DE(IR) grd7 : Solvable([0, t] -dom(V ol), ode(f _evol_V (ctrlV ), V ol1(t), t)) grd8 : solutionOf ([0, t] -dom(V ol), ([0, t] -dom(V ol)) ◁ V ol1, ode(f _evol_V (ctrlV ), V ol1(t), t))
THEN a c t 1 : V ol := V ol ◁ -V ol1 a c t 2 : exec := ctrl END 

Correctness of the Specification

Table 8.3 gives the statistics of the POs generated for modeling the Water Tank case study following the strategy depicted by Figure 6.1. All the POs are discharged using the Rodin platform and the theories of [10]. It is noticeable that 42% of them were automatically discharged. Most interactive proof obligations are related to the proof of refinement between the three specific models. To prove the refinement relation between the generic model ContSystem and Abstract_Tank_M, the following proof obliagtion is generated. This PO checks the compliance between the guards of the event Plant after replacing the generic variable plantV by the specific one V ol.

V ol1 ∈ [0, t] -dom(plantV ) → IR∧ AppendSolutionBAP (e, [0, t] -dom(plantV ), [0, t] -dom(plantV ), V ol1)
Machine Tank_Time_M refines machine Tank_Event_M to introduce the control period epsilon, and replace the formulas saf eEmp and saf eF ill respectively by saf eEpsilonEmp and saf eEpsilonF ill. Consequently, Rodin has generated the following proof obligations to prove the compliance between these two models. The first two POs are generated in the event Ctrl_normal for removing guards grd3 and grd4 in Figure 8. 16. The third PO is generated for the event Ctrl_emtying and the last one is generated for the event Ctrl_filling for removing the guard grd2 of both events.

nCtrlV = f _in =⇒ saf eF ill(V ol(t) → f _in) = T RU E nCtrlV = -f _out =⇒ saf eEmp(V ol(t) → -f _out) = T RU E saf eEmp(V ol(t) → -f _out) = T RU E saf eF ill(V ol(t) → f _in) = T RU E
As stated in the generic TimeTriggered model, on specific case studies, the guards related to the formula evt_trig added in an EventTriggered model are removed, which give rise to the following refinement proof obligations that we have discharged using inference rules.

ctrlV

̸ ∈ evade_valueF ill =⇒ evt_trigF ill(V ol(t) → (t1 -t) → ctrlV ) = T RU E ctrlV ̸ ∈ evade_valueEmp =⇒ evt_trigEmp(V ol(t) → (t1 -t) → ctrlV ) = T RU E
The system safety property is expressed as an invariant in the Tank_Event_M :

∀ x • x ∈ dom(V ol) =⇒ V ol(x) ≤ V_high ∧ V ol(x) ≥ V_low.
Similarly to the Stop Sign case study, we use the invariant inv1 (Figure 8.21) to prove this safety property. This invariant states that before executing the Plant_time_tank event, saf eEpsilonF ill (resp. saf eEpsilonEmp) is satisfied if we are in the emptying (resp. filling) phase.

Discussion on the proof activity

From the different case studies that we have modeled and verified to prove the feasibility of our approach, the following conclusions can be drawn:

(1) Most generated POs are generic and do not depend on a specific case study.

(2) The POs that depend on the case study can be classified into four categories: (3) The complexity of the application-dependent proofs is proportionate to the number of the terms of the ordinary differential equation solution. In other words, the higher the degree of the ordinary differential equation, the higher the complexity of the proofs: the proofs of the Stop Sign case study took more than one week while 2 days were enough for the Water Tank case study. We think that the development of an inference engine for the theory that implements the reals would help speed up the proof activity. Such an inference rule would automate the application of some inference rules like reflexivity, transitivity, etc.

(4) To discharge some proofs, the following generic invariants have been defined:

(a) In the EventTriggered model: an invariant to state that if the next event to execute is different from the Plant event, every variable x i describing a physical element, such as the position and the velocity in the Stop Sign case study, should be defined until the current value of time t:

exec ̸ = plant =⇒ x i (dom(x i ) = [0, t]) (b)
In the EventTriggered model: an invariant to state that if the next event to execute is the Plant event, no variable x i describing a physical element is defined for the current value of time t:

exec = plant =⇒ x i (t / ∈ dom(x i ))
(c) In the machine corresponding to the TimeTriggered model of a specific application (in Car_T ime and T ank_T ime for instance): an invariant to state that if the next event to execute is the progress of the time(Progress_time), the system is safe if it is in a normal mode:

ctrlV / ∈ evade_values ∧ exec = prg =⇒ saf eEpsilon(plantV (t), ctrlV ) = T RU E

The Smart Heating System Models

This section illustrates the approach presented in chapter 7 on a frequently used cyberphysical case study, the Smart Heating system. For that purpose, we follow the schema depicted by Figure 8.26. The instantiation starts by refining the generic model TimeTrig-geredDesolve to obtain the machine Heater_M that sees the context Heater_Ctx. The whole models are available in Appendix D.

Context Heater_Ctx

The context Heater_Ctx (Figure 8.27) contains the following elements:

• axm1 -2: define the initial value of the temperature, T 0, the maximum and the minimum limits of the temperature, T _max and T _min, as well as the main properties of these constants.

• axm3 -5: valuate the set P ROP by defining two formulas p1 and p2.

• axm6: specifies the safety property of the Smart Heating system, T _min ≤ T ≤ T _max.

• axm7: specifies the safety envelops of the system, T ≤ T _max and T ≥ T _min, using the formulas p1 and p2.

• axm8: specifies the safety envelops taking into account the control period epsilon. • axm9: specifies the event trigger which guarantees that the physical part does not go beyond the boundaries of the safety envelope.

• axm10 -11: specify the evade values of the system using the flow temp. The evade value associated with the On state is -temp and that associated with the Of f state is temp.

Machine Heater_M

The interaction between the discrete and continuous parts of the Smart Heating case study are described by the Event-B machine Heater_M which refines the generic machine TimeTriggeredDesolve_M. The INVARIANTS clause (Figure 8.28) defines a set of properties that the system should satisfy. Invariant inv1 is defined to replace the generic continuous variable plantV by the specific one represented by the temperature level T . Invariant inv2 specifies the possible values of the variable ctrlV . The most interesting invariants are inv5, inv6 and inv7. inv5 specifies the system safety property using the formula prop. inv6 is defined to guarantee that the temperature T does not exceed the limits T _max and T _min during the evolution of the physical part. inv7 specifies the same property as the invariant inv6 but this time during the execution of the event P rogress.

The continuous part is represented by the discrete event Thermostat_plant (Figure 8.29) that refines the generic event Plant_time_desolve by replacing the generic parameter plant1 with the exact solution obtained using SageMath. For this purpose, we use the function B_desolve by valuating each of his parameter by the one associated with the Smart Heating case study. grd3 assigns the solution returned by the function B_desolve to the parameter plant1. B_desolve is used to obtain the values of the dependent variable T in the interval [lastT ime, t]. grd4 specifies the exact solution of the ordinary differential equation T ′ = ctrlV . As stated before, the exact solution in SageMath of differential equation for dependent variable is obtained using the predefined function desolve. This function is used in the script 7.10 presented in Section 7.2.3. This script returns the solution of in the language of SageMath. This solution is then translated in the Event-B language to be used in the proof phase. The discrete part is represented by the event Ctrl (Figure 8.30) that refines the generic event Ctrl by replacing the generic continuous variable plantV by T in grd3. Moreover, the event uses the formula prop_saf eEpsilon to check that the chosen value satisfies the safety envelop during the control period epsilon.

T ′ = ctrlV CONTEXT Heater_Ctx EXTENDS Desolve_Ctx CONSTANTS p1 , p2 , prop_val , T _max , T _min , T 0 , temp AXIOMS axm1 : T 0 ∈ IR + ∧ T 0 = plantV Init axm2 : T _max ∈ IR ∧ T _min ∈ IR ∧ T _max > T _min ∧ T _min > 0 ∧ T 0 ≥ T _min ∧ T 0 ≤ T _max axm3 : prop_val ∈ P ROP → P (IR × BOOL) axm4 : P ROP = {p1, p2} axm5 : prop_val = {p1 → (λ T • T ∈ IR | bool(T _min ≤ T )), p2 → (λ T • T ∈ IR| bool(T ≤ T _max))} axm6 : prop = (λ T • T ∈ IR |bool((prop_val(p1))(t) = T RU E ∧ (prop_val(p2))(t) = T RU E)) axm7 : prop_saf e = {p1 → (λ T → ctrlV • T ∈ IR ∧ ctrlV ∈ IR |bool(T < T _max)), p2 → (λT → ctrlV • T ∈ IR ∧ ctrlV ∈ IR |bool(T > T _min))} axm8 : prop_saf eEpsilon = {p1 → (λ T → ctrlV • T ∈ IR ∧ ctrlV ∈ IR | bool(T + (ctrlV × epsilon) ≤ T _max)), p2 → (λ T → ctrlV • T ∈ IR ∧ ctrlV ∈ IR | bool(T + (ctrlV × epsilon) ≥ T _min))} axm9 : prop_evt_trig = {p1 → (λ T → t1 → ctrlV • T ∈ IR ∧ t1 ∈ T IM E ∧ ctrlV ∈ IR | bool(T + (ctrlV × t1) ≤ T _max)), p2 → (λ T → t1 → ctrlV • T ∈ IR ∧ t1 ∈ T IM E ∧ctrlV ∈ IR | bool(T + (ctrlV × t1) ≥ T _min))} axm10 : temp ∈ IR ∧ temp > 0 axm11 : prop_evade_values = {p1 → {-temp}, p2 → {temp}} END Figure 8.27: CONTEXT Heater_Ctx. INVARIANTS i n v 1 : T = plantV ∧ ran(T ) ⊆ IR i n v 2 : ctrlV ∈ {temp, -temp} i n v 3 : exec ̸ = plant =⇒ dom(T ) = [0, t] i n v 4 : exec = plant =⇒ t ̸ ∈ dom(T ) i n v 5 : ∀x • x ∈ dom(T ) =⇒ prop(T (x)) = T RU E i n v 6 : ∃ t1 • t1 ∈ T IM E ∧ dom(T ) = [0, t1] ∧ t -t1 ≤ epsilon ∧ (exec ̸ = plant =⇒ t1 = t) ∧(exec = plant =⇒ t > t1) ∧ (∀x • x ∈ P ROP ∧ ctrlV ̸ ∈ prop_evade_values(x)∧ exec = plant =⇒ (prop_saf eEpsilon(x))(T (t1) → ctrlV ) = T RU E) i n v 7 : ∀x • x ∈ P ROP ∧ ctrlV ̸ ∈ prop_evade_values(x) ∧ exec = prg =⇒ (prop_saf eEpsilon(x))(T (t) → ctrlV ) = T RU E i n v 8 : ∀t1, t2 • t1 ∈ T IM E ∧ t2 ∈ T IM E ∧ dom(T ) = [0, t1] ∧ dom(T ) = [0, t2] =⇒ t1 = t2

Correctness of the specification

To ensure the correctness of the developed models, a set of proof obligations are produced. These proof obligations aim at verifying that the different refinements are correct and the safety properties are verified on the system. It is noticeable that 54% of them were automatically discharged. These POs include the correctness of the events that specify the progression of time and those that specify the progression of the physical and the discrete parts and also the POs that verify the type of the variables. The POs related to the guards feasibility and well-definedness have been interactively discharged under Rodin. Among these proof obligations, we can cite those related to the elimination of the guards during the refinement of events. These proof obligations are specified using the set P ROP . For example, Rodin has generated the following proof obligation due to removing the guard related to the formula evt_trig in the event P rogress:

EVENT Thermostat_plant REFINES Plant_time_desolve ANY lastT ime , plant1 WHERE grd1 : exec = plant grd2 : lastT ime ∈ T IM E ∧ dom(T ) = [0, lastT ime] grd3 : plant1 = B_desolve(1 → ctrlV → T → t → (lastT ime → T (lastT ime))) grd4 : B_desolve(1 → ctrlV → T → t → (lastT ime → T (lastT ime))) = (λ t1 • t1 ∈ T IM E ∧ t1 > lastT ime ∧ t1 ≤ t |T (lastT ime)+ (ctrlV × -lastT ime) + (ctrlV × t1)) grd5 : ode(f _evol_plantV (ctrlV ), plant1(t), t) ∈ DE(RReal) grd6 : Solvable([0, t] -dom(T ), ode(f _evol_plantV (ctrlV ), plant1(t), t)) grd7 : AppendSolutionBAP (ode(f _evol_plantV (ctrlV ), plant1(t), t), [0, t] -dom(T ), [0, t] -dom(T ),
∀ x • x ∈ P ROP =⇒ (ctrlV ̸ ∈ prop_evade_values(x) =⇒ prop_evt_trig(x)(plantV (t) → (t1 -t) → ctrlV ) = T RU E)
To discharge such proof obligations, we needed to add invariants that translate implicit properties on the system. These invariants specify that the system is safe if the controller has chosen a value for ctrlV that does not belong to the sets of evade values, see guard 

plant1 = B_desolve(1 → ctrlV → plantV → t → (lastT ime → plantV (lastT ime)))
The above proof obligation was generated in the event Thermostat_plant to prove the compliance between the generic model TimeTriggeredDesolve and the specific one. This PO was discharged by replacing B_desolve by the results of solving the associated ordinary differential equation using the interface between SageMath and Rodin.

Modeling NonLinear Case Studies

As stated before, in case of higher order nonlinear ODEs, we use approximation techniques to transform an equation into an equivalent equation of another type. We can use linearization techniques to transform a nonlinear differential equation into a linear differential equation and then apply our generic approach that model the predefined function desolve in Event-B.

For example, the Inverted Pendulum is a non linear hybrid system whose continuous behavior is described by a second order ordinary differential equation:

f N onLin ((θ, θ), u) = ( θ, u * cos(θ) + g l )
Therefore, the functions used by SageMath to obtain approximate solutions, such as desolve_rk4, can not be applied since they only treat first order differential equations.

In that case, we must use linearisation methods to linearise the differential equation of this case study and then apply our generic approach that models the function desolve in Event-B. Then we use the approach presented in [START_REF] Dupont | An event-b based generic framework for hybrid systems formal modelling[END_REF] which allows proving the refinement relation between a linear and a nonlinear systems. To linearise such a case study, we assume that the angle θ is small enough, so we can approximate sin(θ) and cos(θ) such that | sin(θ) -θ| = 0 ⇒ sin(θ) = θ and | cos(θ) -θ| = 1 ⇒ cos(θ) = 1. Assuming this condition holds, it is possible to approximate f N onLin to a simpler form, so-called linearised: v = θg l θ, with v is an adequate linear control command linked to the non linear controlled variable u after linearisation. u is replaced by v so that the values of the continuous variables obtained by solving the linear system are an approximation of those of the non-linear system. Therefore, f N onLin is replaced by:

f Lin ((θ, θ), v) = ( θ, v + g l θ)
The continuous measurements of this system are represented by the angle θ and the angular velocity θ represented in our approach by two partial functions defined as follows: θ ∈ [0, t] → IR and θ ∈ [0, t] → IR + . The discrete behavior is represented by the discrete variable v defined in the linearised system to replace the non linear controlled variable u. To model this system in Event-B, we must define a specific model that refines the TimeTriggeredDesolve model. The associated context specifies the definition of the main constants of the system such as the length l of the rigid rod and the intensity g. It also specifies the linearised differential equation using the function f _evol_plantV . The discrete part of this model is represented by a discrete event defined in the associated machine and which updates the value of v to stabilise the rod in its vertical position.

In the case of nonlinear system whose continuous part is described by a first order nonlinear, we directly refine the model TimeTriggeredDesolverk4. The instantiation on a specific case study is similar to that described for instantiating the TimeTriggeredDesolve model on the Smart Heating system. Let us remark that for the nonlinear ODE, the proof of the safety property is achieved by assuming the monotonicity of the function returned by desolve_rk4 on the interval [lastT ime, t]. For that purpose, we have to prove the following property on the returned function to state that it is increasing or decreasing:

∀ tt • tt ∈ [lastT ime, t] ⇒ (plant1(tt) ≥ plant1(lastT ime) ∧ plant1(tt) ≤ plant1(t)) ∨ (plant1(tt) ≤ plant1(lastT ime) ∧ plant1(tt) ≥ plant1(t))
Having this property as verified, the proof of a safety property comes down to prove it for the lower and/or the upper bounds. So far we have failed to find a nonlinear system whose continuous behavior is described by a first order nonlinear differential equation. Therefore, as future work we plane to introduce more complexity on the modeled case studies to use the function B_desolve_rk4 in order to get approximate solutions.

Conclusion

In this chapter, we have experimented our generic approach on three representative case studies, Stop Sign, Water Tank and Smart Heating systems. The Stop Sign case study is described by a single safety property which involves a single safety envelop, a single event trigger formula and a single evade mode. To model this case study, we chose to directly refine the generic EventTriggered model which already provides the definition of a single safety envelope, an event trigger formula and a set of evade values. While in the case of the Water Tank case study, the safety property is defined as a conjunction of two sub-formulas which requires the definition of two safety envelopes, two event trigger formulas and two set of evade values. For this purpose, we chose to introduce an abstract model of the Water Tank system by refining the generic ContSystem model. Therefore, each case study illustrating one strategy. The first strategy consists in refining directly the generic EventTriggered model. The second one consists in starting by instantiating by refinement the generic ContSystem model. All the proof obligations of the two specific models have been discharged using the Rodin platform and the theories of [10]. It is worth noting that the models and the instantiation rules being generic, a tool can be developed to automate the instantiation.

The approach that introduces the function B_desolve is applied on another linear case study, the Smart Heating system. Using the interface between SageMath and Rodin, we obtain exact solutions of ordinary differential equations which facilitates the proof of the safety properties of hybrid systems. We admit that the chosen case study is a simple hybrid system with a linear ODE but it served us well to describe the different steps for applying our generic approach. Using SageMath, we can deal with more complex ODEs by modeling the function desolve_rk4 which solves nonlinear ODEs in the case of first order ODEs or using the linearisation methods which is the case of the Inverted Pendulum. The strength of our approach comparing to other proof-based approaches is that it proves the safety properties of hybrid systems in the more concrete model of CPSs, TimeTriggered model, using Event-B and its supported tool Rodin. Without solving ODEs, our models were abstract and did not allow proving the safety properties of hybrid systems.

Chapter 9

Conclusion

Cyber-physical systems allow interactions with the physical world using a network of sensors and actuators. Cyber-physical systems are often represented by their common mathematical model of hybrid systems which combine continuous dynamics represented by differential equations with discrete dynamics. The interaction between the software part and the physical world makes the verification of cyber-physical systems an intellectual challenge. To address this challenge, several formal methods have been proposed which can be grouped into two categories: Model-checking based approaches and Proof-based approaches. Modelchecking based approaches use hybrid automata and algorithmic analysis methods to model and verify CPSs. An example of model-checker for CPSs is Hytech which is the first model checker that implements the reachability analysis for hybrid systems. The main limitation of these approaches is that the reachability is not decidable for non linear hybrid systems. Proof-based approaches use formal methods and deductive verification to model and verify CPSs. Their key feature is that they support the description of any category of hybrid systems.

We distinguish two main types of cyber-physical systems, Event-Triggered systems where sensors have a continuous access to the measurement of continuous behaviors, and Time-Triggered systems where sensors take periodic measurements of continuous behaviors. In an Event-Triggered model, the system evolves continuously until a particular event triggers the controller, while in a Time-Triggered model, the controller is periodically triggered to control the system. An Event-Triggered model is easy to verify and difficult (if not impossible) to implement whereas Time-Triggered model is difficult to verify and easy to implement.

Modeling the physical part of cyber-physical systems requires the manipulation of differential equations which are equations that involve a set of functions, as unknown variables, and their derivatives. In this thesis, we are interesting in modelling systems where the continuous behavior is described by ordinary differential equations (ODEs). An ODE is the relationship between a single independent variable x, an unknown function y, and its derivative at a point x. Methods to resolve ordinary differential equations fall into two categories : analytical (symbolic) methods and numerical methods. However, it is not always possible to obtain exact solutions of ordinary differential equations, thus the use of numerical methods or approximation techniques to obtain approximate solutions.

Contribution

In this thesis, we presented a correct-by-construction proof-based approach for modeling and verifying hybrid systems using the Event-B formal method and its refinement technique. The proposed approach is based on modeling and verifying the relationship between the Event and Time-Triggered systems using Event-B. It defines two generic models for these systems as described in dRL [5]. The generic Event-Triggered model describes the interaction between the physical and the discrete parts using a discrete variable exec that can take as value, prg which specifies the progression of time, ctrl which represents the discrete part and plant which represents the continuous part. The generic Time-Triggered model introduces the notion of control period represented by the constant epsilon, so the controller reacts at least every epsilon time. We have also introduced a more abstract level, the generic ContSystem model, that specifies the continuous aspects of hybrid systems, adapted from the approach introduced by Dupond et al [10]. This permits to cope with the proof complexity by decomposing the proof obligations, such that in the abstract model we only deal with the proof obligations related to the continuous aspects of the system and in the refined model we will have the proof obligations related to the safety properties of the controlled system. To instantiate these generic models, we have introduced two strategies: the first one consists in starting by instantiating by refinement the Generic ContSystem model. The second one consists in refining directly the Generic EventTriggered model. We have applied our approach to two case studies, each one illustrating one strategy. All the proof obligations of the generic models and the two specific models have been discharged using the Rodin platform and the theories introduced in [10]. It is worth noting that as the models and the instantiation rules are generic, a tool can be developed to automate the instantiation.

The generic approach is still at an abstract level regarding the solutions of differential equations. For this purpose, we extend the generic approach by making use of the SageMath solver. We propose a tool-supported approach which combines the Event-B formal method with the differential equation solver SageMath. This is achieved by implementing a plug-in to Rodin that permits to call SageMath. The interface between Event-B with the differential equation solver SageMath is done by modeling and implementing the call of two predefined functions regarding the type of ODE: B_desolve to obtain exact solutions and B_desolve_rk4 to obtain approximate solutions.

Future Work

To demonstrate the usability of our approach, we have tested it on three representative case studies, Stop Sign, Water Tank and Smart Heating. In the three case studies, the differential equations that represent the evolution of their physical parts are linear and can be easily solved. To handle more elaborated differential equations we plan to model other cyber-physical case studies.

Our approach is still at an abstract level. It does not take into account the delay between the sending of continuous measurements by the sensors and their processing by the controller as well as the delay between the sending of actions by the controller and their execution. For this purpose, we plan to define more specific models using the Event-B refinement to consider these delays. By doing that, we are getting closer to our goal of reducing the gap between a verified model of a cyber-Physical system and its implementation.

We admit that the chosen case studies are simple hybrid systems with linear ODEs but they served us well to describe the different steps for applying our generic approach. Using SageMath, we can deal with more complex ODEs as we showed by modeling the function desolve_rk4 which solves nonlinear ODEs. The strength of our approach comparing to other proof-based approaches is that it proves that the more concrete model of CPSs, TimeTriggered model, preserves the safety properties of hybrid systems using Event-B and its supported tool Rodin.

The work described in this thesis presents a first step that will facilitate the treatment of complex hybrid systems using Event-B. For this purpose, we plan to apply our approach on more complex case studies especially on nonlinear case studies that admit approximate solutions to prove the feasibility of our generic approach that models the function B_desolve_rk4.

We defined a set of theorems, generic axioms, and generic invariants identified from case studies to prove the safety properties of cyber-physical systems. In order to easily use these theorems, axioms and invariants during the proof stage, we plan to develop an Event-B theory using the theory plugin.

For a discrete system Event-B, we can use the animator ProB [START_REF] Abrial | Rodin: an open toolset for modelling and reasoning in event-b[END_REF], a B-method constraint solver and model checker, to ensure that the modeled system behaves as expected. As a future work, we propose to extend the reasoning of ProB to develop an animator that simulates the behavior of CPSs by using the solutions of ordinary differential equations obtained with the SageMath plugin.

The SageMath plugin is still in early development. There are some manual and interactive steps. For example, scripts must run manually in SageMath. In future work, we plan to automate these steps into a 100% automated tool. Les progrès récents dans le secteur industriel ont permis le développement d'un nouveau modèle de production basé sur les architectures numériques en réseau ou "usines connectées". Ce nouveau modèle de production a donné naissance à "l'industrie 4.0" ou "industrie du futur". Les systèmes cyberphysiques (SCPs) [1] sont l'une des principales technologies de cette industrie et forment donc la base des technologies du futur. Le domaine de ces systèmes est devenu rapidement une source d'innovation avec des applications dans tous les secteurs : santé, transport, smart grid, etc. Ces systèmes connectent le monde virtuel discret et le monde physique continu via un réseau de capteurs et d'actionneurs. Le modèle mathématique adapté aux SCPs est celui des systèmes hybrides qui combinent un comportement discret représenté par des machines à états (ou des automates finis) avec un comportement continu décrit par des équations différentielles. Dans les systèmes hybrides, les comportements continus sont mesurés par des capteurs. Idéalement, les capteurs ont un accès continu à ces mesures, ce qui correspond à un modèle abstrait de SCPs, appelé Event-Triggered system [2]. Cependant, la mise en oeuvre de tels modèles est difficile en pratique. Il est donc préférable d'introduire un modèle plus concret, appelé Time-Triggered system [2], où les capteurs prennent des mesures périodiques. Platzer et al. [3,4] 
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Motivations

Le comportement continu des systèmes hybrides est souvent décrit par des équations différentielles ordinaires (ODEs) qui impliquent une fonction inconnue dépendant d'une seule variable d'état. Il existe deux types de méthodes pour résoudre les équations différentielles ordinaires : les méthodes analytiques (symboliques) et les méthodes numériques. Les méthodes analytiques utilisent un ensemble de théorèmes pour obtenir une solution exacte pour une équation différentielle donnée. Par exemple, l'outil SageMath (System for Algebra and Geometry Experimentation) [6] fournit une fonction prédéfinie qui utilise des méthodes analytiques pour trouver des solutions pour les ODEs. Cependant, la plupart des équations différentielles ne peuvent pas être résolues de manière exacte. Il faut donc s'appuyer sur des méthodes numériques pour obtenir des solutions approchées ou utiliser des techniques d'approximation pour obtenir une équation équivalente avec une solution exacte pour laquelle des méthodes analytiques deviennent applicables. Par exemple, des techniques de linéarisation peu-1 vent être utilisées pour transformer une équation différentielle non linéaire en une équation différentielle linéaire.

L'interaction entre la partie discrète et la partie continue de systèmes cyber-physiques fait de la vérification des systèmes hybrides un défi. Le développement de techniques et d'outils pour vérifier des systèmes hybrides a attiré l'attention de nombreux chercheurs. Les approches traditionnelles sont basées sur des outils de simulation comme Matlab/Simulink [7] ou Stateflow [8] qui cependant produisent des résultats entachés d'incertitude. C'est pourquoi la conception et la vérification de systèmes hybrides avec des propriétés critiques de sûreté nécessitent l'utilisation de méthodes formelles. Pour cela, plusieurs approches formelles ont été proposées [START_REF] Thomas A Henzinger | Hytech: A model checker for hybrid systems[END_REF]10,11,12,4,13,14]. Ces approches peuvent être regroupées en deux catégories : les approches basées sur le model-checking et les approches basées sur les preuves formelles.

• Les approches basées sur le model-checking utilisent des automates hybrides pour modéliser des systèmes hybrides et des méthodes d'analyse algorithmique pour prouver leurs propriétés de sûreté. Ces approches sont basés sur le calcul de l'ensemble des états atteignables pour les automates hybrides. Ces approches souffrent des problèmes classiques liés à l'explosion de l'espace d'états.

• Les approches basées sur les preuves formelles utilisent la vérification déductive pour prouver les propriétés de sûreté des systèmes hybrides. L'un des points forts de ces approches est qu'elles restent applicables même pour des systèmes de grande taille et de n'importe quel type (linéaire ou non linéaire). Cependant, ces approches nécessitent des efforts importants et une grande expertise lors de la phase de preuve.

La définition d'approches génériques, comme celle présentée dans cette thèse utilisant la méthode formelle Event-B, pour la modélisation et la vérification de systèmes hybrides peut favoriser l'utilisation d'approches basées sur les preuves formelles pour le développement et la vérification de systèmes hybrides. L'utilisation de la méthode Event-B et de sa plateforme Rodin, outil de développement de projets Event-B, permet de vérifier l'exactitude des systèmes hybrides à l'aide des démonstrateurs automatiques et interactifs inclus dans la plateforme. De plus, l'intégration d'un système de calcul formel tel que SageMath avec un démonstrateur de théorème interactif permet de traiter la résolution d'équations différentielles ordinaires lors de la modélisation d'un système hybride.

Contribution

Notre objectif, dans le cadre du projet DISCONT [START_REF] Ince | Ordinary differential equations[END_REF], est de développer des approches formelles de modélisation et de vérification de systèmes hybrides. Dans ce contexte, nous avons développé une approche générique pour modéliser et prouver les systèmes Event et Time-Triggered en utilisant la méthode formelle Event-B. Le processus de raffinement de cette méthode permet de gérer la complexité des systèmes. Comme la méthode Event-B ne permet pas la résolution des équations différentielles ordinaires, nous proposons d'interfacer l'outil Rodin avec un solveur d'équations différentielles, Sage-Math dans notre cas, en utilisant la notion de plug-in. Les principaux apports de cette thèse sont les suivants :

• une approche générique formelle pour modéliser des systèmes cyber-physiques en considérant un nombre quelconque de propriétés de sûreté. Cette approche consiste à définir trois modèles génériques Event-B en commençant par un modèle abstrait de systèmes cyber-physiques puis en utilisant la stratégie de raffinement pour introduire des détails plus concrets. Ces modèles sont vérifiés sous Rodin à l'aide d'un ensemble de théories introduites dans [16]. Cette approche générique modélise et prouve la relation de raffinement entre les systèmes Event et Time-Triggered en Event-B.

• un ensemble de règles d'instanciation définies pour construire systématiquement le modèle d'un système hybride spécifique. De plus, nous fournissons un ensemble d'invariants génériques qui ont été identifiés à partir des études de cas pour prouver les propriétés de sûreté. Il suffit de les instancier pour prouver un cas d'étude spécifique.

• une extension de l'approche générique pour interfacer Event-B avec le solveur SageMath. Pour cela, un nouveau niveau de raffinement est défini. Il raffine le modèle Time-Triggered en introduisant une fonction pour modéliser les appels au solveur. Un outil a été implémenté comme un nouveau plug-in Rodin. Ce plug-in permet d'appeler SageMath pendant la phase de preuve.

• un ensemble d'études de cas pour valider notre approche. Ils ont été choisis de manière à représenter différents types de SCPs : des systèmes hybrides à une ou plusieurs variables continues, une ou plusieurs propriétés de sûreté et un système hybride non linéaire. 

Modèle EventTriggered

Le modèle générique EventTriggered inclut deux composants:

• un contexte nommé EventTriggered Ctx qui introduit l'enveloppe de sûreté du système, représentée par la formule safe et calculée à partir de l'exigence de sûreté que le système doit satisfaire.

• une machine nommée EventTriggered M qui introduit le comportement discret du système représenté par la variable contrôlée ctrlV .

La sémantique de ce modèle est que la partie physique évolue en parallèle avec le temps et que les deux s'interrompent dès que l'enveloppe de sûreté devient fausse. À ce niveau, on exprime les propriétés de sûreté du système. Pour ce faire, EventTriggered Ctx étend ContSystem Ctx pour représenter ces propriétés. La machine EventTriggered M raffine la machine ContSystem M en introduissant deux nouvelles variables :

• ctrlV représente la variable contrôlée. La valeur actuelle de cette variable correspond à l'état actuel du contrôleur.

• exec est utilisée pour modéliser l'alternance entre le contrôleur et la partie physique. Par conséquent, exec peut prendre deux valeurs ctrl et plant. Dans Event-B, le temps doit être explicitement géré. Pour être sûr que ce temps explicite progressera entre ctrl et plant, on ajoute une troisième valeur à exec, prg, afin de permettre à l'événement Progress de s'exécuter. Par conséquent, notre modèle suit la structure suivante : init; (ctrl; prg; plant) * , où init représente l'événement INITIALISATION.

Pour modéliser l'évolution de la partie physique, on raffine l'événement Plant de la machine Con-tSystem M en remplaçant l'équation différentielle abstraite par celle définie pour une fonction notée f evol plantV. La fonction f evol plantV décrit l'évolution de la variable d'état plantV en fonction de l'état discret du système. Concernant l'évolution de la partie contrôle, deux nouveaux événements sont ajoutés:

• Ctrl normal représente le mode normal. Il se déclenche lorsque c'est le tour du contrôleur à s'exécuter (exec = ctrl ) et s'il existe une valeur pour laquelle la formule safe est vraie. À l'issue de cette exécution, la main est donnée à l'événement Progress.

• Ctrl evade représente le mode evade. Lorsque l'enveloppe de sûreté saf e n'est plus satisfaite le système doit passer au mode evade. Dans ce cas, Ctrl evade affecte une valeur evade à la variable de contrôle ctrlV et donne également la main à l'événement Progress. La valeur evade doit être choisie dans l'ensemble des valeurs evades du système. Ces valeurs evades garantissent que le système satisfera toujours ses propriétés de sûreté. • epsilon : désigne la plus longue durée entre deux mises à jour des capteurs du TimeTriggered.

• saf eEpsilon : garantit que le système reste dans un état sûr pendant les prochaines epsilon unités de temps.

La principale différence entre les modèles Event et TimeTriggered réside dans la modélisation de la progression du temps. Le plus long laps de temps entre deux mises à jour des capteurs TimeTriggered est limité par la durée epsilon. Par conséquent, le contrôleur peut s'exécuter au moins chaque epsilon unités de temps. Pour cela, on raffine l'événement Progress en ajoutant le prédicat (t ′ -t ≤ epsilon). Ce prédicat exprime que le temps ne peut pas progresser de plus de epsilon unités. Puisque le contrôleur d'un modèle TimeTriggered doit faire un choix qui sera sûr jusqu'à epsilon temps, nous définissons une nouvelle enveloppe de sûreté nommée safeEpsilon dans le contexte TimeTriggered Ctx. Ensuite, dans l'événement Ctrl normal time qui raffine Ctrl normal, nous ajoutons une contrainte pour s'assurer que safeEpsilon est vrai.

Interfacer Rodin avec SageMath

Pour traiter la résolution des ODEs linéaires dans Event-B, nous proposons d'interfacer l'outil Rodin avec SageMath. L'approche suit le schéma de développement décrit par la Figure 2. Il étend l'approche générique en ajoutant, par raffinement, un nouveau modèle générique appelé TimeTrig-geredDesolve M qui introduit une fonction nommée B desolve pour modéliser des solutions exactes d'équations différentielles ordinaires dans Event-B. Dans le cas de systèmes non linéaires, si l'ODE est linéarisable, on applique le même raffinement en utilisant la fonction B desolve sur la forme linéaire de l'équation. Sinon, nous utilisons la fonction, B desolve rk4(), qui renvoie une solution approchée. 

Le processus général du plug-in SageMath

Pour établir une obligation de preuve contenant les termes B desolve ou B desolve rk4(), les étapes suivantes sont nécessaires : (1) appeler SageMath depuis Rodin, (2) résoudre l'équation différentielle et (3) utiliser le résultat renvoyé dans Rodin (voir Figure 3). Pour ce faire, un champ de saisie permettant d'appeler SageMath depuis Rodin apparaît lorsque l'obligation de preuve contient les termes B desolve ou B desolve rk4(). La deuxième étape consiste à appeler un script prédéfini généré systématiquement à partir des fonctions B desolve(...) ou B desolve rk4(). La dernière étape consiste à traduire le résultat de SageMath dans le langage spécifique Event-B. Ce résultat est ajouté comme hypothèse pour prouver l'obligation de preuve.

• Appeler SageMath depuis Rodin ( Étape 1): pour appeler SageMath depuis Rodin, un bouton appelé sage a été ajouté dans la fenêtre de preuve à l'aide d'un plug-in Eclipse. Pour développer un plug-in Rodin, Eclipse fournit un ensemble d'interfaces Java. Ces interfaces sont destinées à être implémentées en fonction de l'objectif du plug-in. Jusqu'à présent, nous avons validé notre approche sur des études de cas simples mais représentatives des systèmes hybrides. Dans nos futurs travaux, nous envisageons d'appliquer notre approche à des systèmes plus complexes dont le comportement continu serait décrit avec des équations non linéaires admettant des solutions approchées.

Le plugin SageMath est encore en phase de développement; certaines étapes sont encore manuelles et requièrent l'intervention de l'utilisateur. Par exemple, les scripts SageMath sont exécutés manuellement. Nous envisageons donc d'automatiser ces différentes étapes pour décharger l'utilisateur de toutes ces tâches et rendre l'interaction de Rodin avec SageMAth complètement automatique.
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 4 Figure 4.2 depicts the hybrid automaton associated with the Stop Sign case study. The continuous behavior is represented in the states by the ODEs that describe the evolution of the continuous variables. Each state is characterized by a local invariant.When this invariant is no longer satisfied, the system must leave the current state. The discrete behavior is represented by the transitions between the states which can be triggered automatically as soon as the state local invariant is not satisfied. A transition can be labeled by a set of constraints and a set of assignments to update the values of the variables of the system. The states of the automaton of Figure4.2 are associated with the ODEs that describe the evolution of the car state variables p and v. The formula, p(t)≤ p_max, denotes the local invariant, which is the condition to guarantee that the controller will react exactly at the right moment, by braking to allow the car to stop before the signal SP. Therefore the constant p_max must satisfy the following constraints:
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 43 is refined by Model 4.4 that follows the generic model of a Time-Triggered system. The physical part of this model began with the formula t := 0; p 0 := p which allows to reset the variable t to 0 after each execution of the controller in order to start a new control phase. Model 4.4: Time-Triggered Car Model
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 43 The control strategy is to activate the pump when the water level is too close to V_low and deactivate it when the water level is too close to V_high. The continuous behavior of the water tank over time is represented by the level of the water specified by the variable V ol that evolves according to the flowing linear ordinary differential equations, dV ol dt = -f _out or dV ol dt = f _in. The flow of the water can be either f_in when the pump is activated or -f_out otherwise.
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 4 Figure 4.4 depicts the hybrid automaton associated with the Water Tank case study. Two safety envelopes are defined, safeFill= Vol(t) < V_high and safeEmp= Vol(t) > V_low,which are defined to guarantee that the controller will react exactly when the water level is too close to the two limits V_high and V_low. The system can be in one of the following three discrete states:• Init state: represents the initial state. It is characterized by a constant level of the water denoted V0, which must be chosen between V_low and V_high to guarantee that the system is safe initially: V_low < V0 < V_high.
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 4 Figure 4.5 depicts the hybrid automaton associated with the Smart Heating case study. The formula, T_min ≤ T (t) ≤ T_max, denotes the local invariant. The discrete behavior of this system is described by the following three discrete states:
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 46 Figure 4.6: The Inverted Pendulum The associated ordinary differential equation is derived from the equation: θ = g l sin θ with θ = d θ dt , taking into account the controlled variable u. This equation is calculated using the kinetic energy and the potential energy of gravity as follows: the kinetic energy of
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 6 Figure 6.21 extends the specific SpecificEventTriggered_Ctx1 and instantiates the generic TimeTriggered_Ctx (see Figure 5.11) by applying the following two rules:
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Figure 6 .
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 71 It extends the approach introduced in Chapter 5 by adding by refinement a new generic model called TimeTriggeredDesolve_M which introduces a function named B_desolve to model exact solutions of ordinary differential equations in Event-B.
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 73 . TimeTriggeredDesolve model then refines the new generic model TimeTriggered which applies the same modifications defined in the new model EventTriggered. TimeTriggeredDesolve introduces the function B_desolve defined to model analytical solutions of ODEs in Event-B. It is composed of an Event-B context named Desolve_Ctx and a machine named TimeTriggered_desolve_M.
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 822823824825 Figure 8.22: Event Plant_time_tank.
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 a The proof of the safety property in the EventTriggered model; (b) The refinement of the event P rogress, in the TimeTriggered model, preserves the guard evt_trig; (c) The refinement of the event P lant_event in the TimeTriggered model preserves the guard grd6 related to the safety property; (d) The refinement of the events Ctrl_normal and Ctrl_evade, in the TimeTriggered model, preserves the guards related to the predicate saf e.
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 1830 Figure 8.29: Event Thermostat_plant.

a c t 2 :

 2 plantV := {Rzero → plantV Init} a c t 3 : ctrlV :∈ RReal a c t 4 : exec := ctrl END P r o g r e s s = REFINES P r o g r e s s ANY t1 WHERE grd1 : exec

c t 3 :

 3 exec := ctrl END C t r l _ A c c e l e r a t i o n _ c a r = REFINES Ctrl_normal WHERE grd1 : exec = ctrl grd2 : saf e((bind(p, v))(t) → A) = T RU E WITH nrml_value : nrml_value = A THEN a c t 1 : ctrlV := A a c t 2 : exec := prg END C t r l _ D e c e l e r a t i o n _ c a r = REFINES Ctrl_evade ANY evade_val WHERE grd1 : exec = ctrl grd2 : evade_val ∈ evade_value grd3 : v(t) → Rzero ∈ gt =⇒ evade_val = uminus(B) grd4 : v(t) = Rzero =⇒ evade_val = Rzero THEN a c t 1 : ctrlV := evade_val a c t 2 : exec := prg a c t 4 : ctrlV := Rzero a c t 5 : exec := ctrl END Progress_time = REFINES P r o g r e s s ANY t1 WHERE grd1 : exec= prg grd2 : t1 ∈ T IM E ∧ (t → t1 ∈ lt ∧ minus(t1 → t) → sigma ∈ geq) grd3 : minus(t1 → t) → epsilon ∈ leq THEN a c t 1 : t := t1 a c t 2 : exec := plant END Plant_time_car = REFINES Plant_event_car ANY p1 , v1 , lastT ime , epsilon1 WHERE grd1 : exec = plant grd2 : lastT ime ∈ T IM E ∧ dom(p) = Closed2Closed(Rzero, lastT ime) grd3 : lastT ime ∈ dom(p) ∧ lastT ime ∈ dom(v) grd4 : ctrlV = uminus(B) =⇒ (minus(t → lastT ime) → divide(v(lastT ime) → B) ∈ leq =⇒ epsilon1 = minus(t → lastT ime)) ∧ (minus(t → lastT ime) → divide(v(lastT ime) → B) ∈ gt =⇒ epsilon1 = divide(v(lastT ime) → B)) grd5 : ctrlV ∈ {Rzero, A} =⇒ epsilon1 = minus(t → lastT ime) grd6 : p1 = (λ t1 • t1 ∈ T IM E ∧ t1 → lastT ime ∈ gt ∧ t1 → t ∈ leq| plus(plus(p(lastT ime) → times(divide(Rone → Rtwo) → times(ctrlV → times(epsilon1 → epsilon1)))) → times(v(lastT ime) → epsilon1))) grd7 : v1 = (λ t1 • t1 ∈ T IM E ∧ t1 → lastT ime ∈ gt ∧ t1 → t ∈ leq| plus(times(ctrlV → epsilon1) → v(lastT ime))) grd8 : ode(f _evol_plantV (ctrlV ), (p1(t) → v1(t)), t) ∈ DE(RReal × RReal) grd9 : Solvable(Closed2Closed(Rzero, t)\dom(bind(p, v)), ode(f _evol_plantV (ctrlV ), bind(p1, v1)(t), t)) grd10 : solutionOf (Closed2Closed(Rzero, t)\dom(bind(p, v)), (Closed2Closed(Rzero, t)\dom(bind(p, v))) ◁ bind(p1, v1), ode(f _evol_plantV (ctrlV ), bind(p1, v1)(t), t)) THEN a c t 1 : p := p ◁ -p1 a c t 2 : v := v ◁ -v1 a c t 3 : exec := ctrl END C t r l _ A c c e l e r a t i o n _ c a r _ t i m e = REFINES C t r l _ A c c e l e r a t i o n _ c a r grd4 : Solvable(Closed2Closed(Rzero, t)\dom(V ol), ode(f _evol_V (ctrlV ), V ol1(t), t)) grd5 : AppendSolutionBAP (ode(f _evol_V (ctrlV ), V ol1(t), t), Closed2Closed(Rzero, t)\dom(V ol), Closed2Closed(Rzero, t)\dom(V ol), V ol1) grd6 : ∀xx • xx ∈ dom(V ol1) =⇒ prop(V ol1(xx)) = T RU E WITH e : e = ode(f _evol_V (ctrlV ), V ol1(t), t) THEN a c t 1 : V ol := V ol ◁ -V ol1 a c t 2 : exec := ctrl END Ctrl_normal = ANY nCtrlV WHERE grd1 : exec = ctrl grd2 : nCtrlV ∈ {f _in, uminus(f _out)} grd3 : nCtrlV = f _in =⇒ saf eF ill(V ol(t) → f _in) = T RU E grd4 : nCtrlV = uminus(f _out) =⇒ saf eEmp(V ol(t) → uminus(f _out)) = T RU E THEN a ct 1 : exec := prg a c t 2 : ctrlV := nCtrlV END Ctrl_emptying = WHERE grd1 : exec = ctrl grd2 : saf eEmp(V ol(t) → uminus(f _out)) = T RU E THEN a c t 1 : exec := prg a c t 2 : ctrlV := uminus(f _out) END C t r l _ f i l l i n g = WHERE grd1 : exec = ctrl grd2 : saf eF ill(V ol(t) → f _in) = T RU E THEN a c t 1 : exec := prg a c t 2 : ctrlV := f _in END END C.7 Context Tank_Time_Ctx a c t 3 : ctrlV :∈ RReal a c t 4 : exec := ctrl END Progress_time = REFINES P r o g r e s s ANY t1 WHERE grd1 : exec = prg grd2 :t1 ∈ T IM E ∧ (t → t1 ∈ lt ∧ minus(t1 → t) → sigma ∈ geq) grd3 : ∀ x • x ∈ P ROP =⇒ (ctrlV ̸ ∈ prop_evade_values(x) =⇒ (prop_evt_trig(x))(plantV (t) → minus(t1 → t) → ctrlV ) = T RU E grd4 : t1 ∈ T IM E ∧ (t → t1 ∈ lt) ∧ minus(t1 → t) → sigma ∈ geq ∧minus(t1 → t) → epsilon ∈ leq THEN a ct 1 : t := t1 a c t 2 : exec := plant END Plant_time = REFINES Pl an t ANY plant1 WHERE grd1 : exec = plant grd2 : plant1 ∈ Closed2Closed(Rzero, t)\dom(plantV ) → S grd3 : ode(f _evol_plantV (ctrlV ), plant1(t), t) ∈ DE(S) grd4 : Solvable(Closed2Closed(Rzero, t)\dom(plantV ), ode(f _evol_plantV (ctrlV ), plant1(t), t)) grd5 : AppendSolutionBAP (ode(f _evol_plantV (ctrlV ), plant1(t), t), Closed2Closed(Rzero, t)\dom(plantV ), Closed2Closed(Rzero, t)\dom(plantV ), plant1) THEN a c t 1 : plantV:= plantV ◁ -plant1 a c t 2 : exec := ctrl END C t r l = REFINES C t r l ANY value WHERE grd1 : exec = ctrl grd2 : value ∈ RReal grd3 : ∀ x • x ∈ P ROP =⇒ (value ̸ ∈ prop_evade_values(x) =⇒ (prop_saf e(x))(plantV (t) → value) = T RU E) grd4 : ∀ x • x ∈ P ROP =⇒ (value ̸ ∈ prop_evade_values(x) =⇒ (prop_saf eEpsilon(x))(plantV (t) → value) = T RU E) THEN THEN a c t 1 : t := t1 a c t 2 : exec := plant END Plant_time_desolve = REFINES Plant_time ANY plant1 , lastT ime WHERE grd1 : exec = plant grd2 : lastT ime ∈ T IM E ∧ dom(plantV ) = Closed2Closed(Rzero, lastT ime) grd3 : plant1 = B_desolve(1 → ctrlV → plantV → t → (lastT ime → plantV (lastT ime))) grd4 : plant1 ∈ Closed2Closed(Rzero, t)\dom(plantV ) → S grd5 : ode(f _evol_plantV (ctrlV ), plant1(t), t) ∈ DE(S) grd6 : Solvable(Closed2Closed(Rzero, t)\dom(plantV ), ode(f _evol_plantV (ctrlV ), plant1(t), t)) grd7 : AppendSolutionBAP (ode(f _evol_plantV (ctrlV ), plant1(t), t), Closed2Closed(Rzero, t)\dom(plantV ), Closed2Closed(Rzero, t)\dom(plantV ), plant1) grd8 : ∀ xx • xx ∈ dom(plant1) =⇒ prop(plant1(xx)) = T RU E THEN a c t 1 : plantV := plantV ◁ -plant1 a c t 2 : exec := ctrl END C t r l = REFINES C t r l ANY value WHERE grd1 : exec = ctrl grd2 : value ∈ RReal grd3 : ∀ x • x ∈ P ROP =⇒ (value ̸ ∈ prop_evade_values(x) =⇒ (prop_saf e(x))(plantV (t) → value) = T RU E) grd4 : ∀ x • x ∈ P ROP =⇒ (value ̸ ∈ prop_evade_values(x) =⇒ (prop_saf eEpsilon(x))(plantV (t) → value) = T RU E) THEN a ct 1 : ctrlV := value a c t 2 : exec := prg END END D.10 CONTEXT Heater_Ctx CONTEXT Heater_ctx EXTENDS Desolve_Ctx (prop_saf eEpsilon(x))(T (t) → ctrlV ) = T RU E i n v 8 : ∀ t1, t2 • t1 ∈ T IM E ∧ t2 ∈ T IM E∧ dom(T ) = Closed2Closed(Rzero, t1) ∧ dom(T ) = Closed2Closed(Rzero, t2) =⇒ t1 = t2 EVENTS INITIALISATION = THEN a c t 1 : t := Rzero a c t 2 : T := {Rzero → T 0} a c t 3 : ctrlV := temp a c t 4 : exec := ctrl END Progress_time = REFINES Progress_time ANY t1 WHERE grd1 : exec= prg grd2 : t1 ∈ T IM E ∧ t → t1 ∈ lt ∧ minus(t1 → t) → sigma ∈ geq ∧ minus(t1 → t) → epsilon ∈ leq THEN a c t 1 : t := t1 a c t 2 : exec := plant END Thermostat_plant = REFINES Plant_time_desolve ANY plant1 , lastT ime WHERE grd1 : exec = plant grd2 : lastT ime ∈ T IM E ∧ dom(T ) = Closed2Closed(Rzero, lastT ime) grd3 : plant1 = B_desolve(1 → ctrlV → T → t → (lastT ime → T (lastT ime))) grd4 : B_desolve(1 → ctrlV → T → t → (lastT ime → T (lastT ime))) = (λt1 • t1 ∈ T IM E ∧ t1 → lastT ime ∈ gt ∧ t1 → t ∈leq| plus(plus(times(ctrlV → uminus(lastT ime)) → times(ctrlV → t1)) → T (lastT ime))) grd4 : ode(f _evol_plantV (ctrlV ), plant1(t), t) ∈ DE(RReal) grd5 : Solvable(Closed2Closed(Rzero, t)\dom(T ), ode(f _evol_plantV (ctrlV ), plant1(t), t)) grd6 : AppendSolutionBAP (ode(f _evol_plantV (ctrlV ), plant1(t), t), Closed2Closed(Rzero, t)\dom(T ), Closed2Closed(Rzero, t)\dom(T ), plant1) THEN a c t 1 : T := T ◁ -plant1 a c t 2 : exec := ctrl END C t r l = REFINES C t r l Une Approche Correcte par Construction pour la Modélisation et la Vérification de systèmes cyber-physiques dans Event-B AFENDI MERYEM 1 Introduction

  utilisent les modèles Event et Time-Triggered pour concevoir et vérifier des systèmes hybrides. Ils ont prouvé qu'un modèle Time-Triggered est un raffinement d'un modèle Event-Triggered, en utilisant une extension de la logique dynamique différentielle (dL), appelée logique de raffinement différentiel (dRL). Introduite par J. Raymond Abrial [5], Event-B est une méthode formelle qui permet de décrire des systèmes discrets en utilisant des événements. Un modèle Event-B se compose de plusieurs composants de type, Context et Machine. Un contexte peut définir des ensembles abstraits et énumérés, des constantes, des axiomes et des théorèmes. Une machine Event-B spécifie le comportement dynamique du système modélisé. Une machine modélise un système à l'aide de variables d'état et d'événements qui mettent à jour ces variables. Un modèle Event-B s'accompagne d'une série d'obligations de preuve (OPs) visant à vérifier les propriétés de sûreté du système modélisé. Le point fort d'Event-B consiste à utiliser des modèles abstraits pour représenter le comportement abstrait d'un système donné et le raffinement pour introduire des détails et démontrer la conformité entre le modèle abstrait et le modèle concret. Le raffinement d'un modèle formel permet d'enrichir ce modèle pas à pas.

3. 1

 1 Approche générique pour la modélisation de systèmes hybridesPour modéliser un système hybride, notre approche se compose de trois modèles comme illustré par la Figure1. Le modèle ContSystem qui spécifie le comportement continu du système, le modèle EventTriggered qui spécifie les interactions entre la partie discrète et la partie continue du système, et le modèle TimeTriggered qui spécifie le comportement de la partie discrète du système.

Figure 1 :

 1 Figure 1: Structure de la spécification générique d'Event-B.

3. 1 . 1

 11 Modèle ContSystemLe modèle ContSystem représente le modèle abstrait de l'approche. Il s'inspire du modèle abstrait de[16] qui vise à modéliser la partie continue des systèmes hybrides en Event-B. Le modèle ContSystem est composé du contexte ContSystem Ctx et de la machine ContSystem M. La machine ContSystem M contient deux variables, t et plantV , et deux événements, P rogress et P lant. Les variables t et plantV représentent réspectivement l'évolution continue du temps et des variables d'état. L'événement Progress modélise la progression du temps. L'évolution de la partie continue est modélisée à l'aide de l'événement Plant sur lequel des propriétés de sûreté sont vérifiés au niveau EventTriggered.

3. 1 . 3

 13 Modèle TimeTriggered Le modèle TimeTriggered raffine le modèle précédent pour obtenir un système correspondant au modèle TimeTriggered de Kopetz. Comme mentionné précédemment, les capteurs d'un modèle TimeTriggered prennent des mesures périodiques des variables d'état physique et son contrôleur s'exécute à chaque mise à jour des capteurs. Le modèle TimeTriggered est composé du contexte TimeTriggered Ctx et de la machine TimeTriggered M. Le contexte TimeTriggered Ctx étend le contexte EventTriggered Ctx en ajoutant deux constantes :

Figure 2 :

 2 Figure 2: Spécification générique Event-B avec la fonction B desolve. Le contexte Desolve Ctx étend le contexte TimeTriggered Ctx en introduisant la fonction générique B desolve. L'introduction de cette fonction permet d'établir le lien entre nos modèles Event-B et le solveur d'équations différentielles SageMath. La machine TimeTriggered desolve M raffine la machine TimeTriggered M en utilisant la fonction B desolve dans l'événement Plant pour spécifier la solution générique de l'équation. L'événement Plant du modèle TimeTriggered est raffiné pour calculer, à l'aide de la fonction B desolve, les nouvelles valeurs de plantV depuis sa dernière mise à jour. Afin de mettre en oeuvre notre approche, nous avons developé un nouveau plug-in Rodin, appelé SageMath, qui interface la plateforme Rodin avec SageMath pour calculer les solutions des ODEs.

•

  Résolution d'ODE dans SageMath ( Étape 1' et Étape2): un script SageMath est systématiquement généré à partir des fonctions EventB B desolve ou B desolve rk4(). Dans ce script, l'équation

Figure 3 : 4 Conclusion

 34 Figure 3: Processus Général.

  

  

  

  

  

  

  

  

  

  1 describes a hybrid program represented by (2.1.1) and related to the Bouncing Ball case study. The initial conditions are formally given by equation (2.1.2): weight g, position x and initial energy level H must be positive at the initial state. A related hybrid program is specified by sequential assembly of the controller (2.1.3) and the physical part (2.1.

  Model 3.1 and Model 3.2, to design and prove Event-and Time-Triggered systems presented in Section 2.2. The control part of these two generic templates has only two modes: the normal mode is triggered when the system safety envelope, denoted by safe, is satisfied, otherwise the system enters into the evade mode. Note that the operator ∼ is used to designate the topological closure of the negation.

	3.2.2.1 Event and Time-Triggered Systems in dRL	
	dRL introduces two generic templates [5], Model 3.1 represents the generic model associated with a controller triggered by events:
	Event-Triggered Model	
	Model 3.1: Event-triggered Generic Model	
	event * ≡ (ctrl Ev ; plant Ev ) *	(3.1.1)
	ctrl Ev ≡ (ctrlV := evade_value) ∪ (ctrlV := * ; ?safe(plantV ))	(3.1.2)
	plant Ev ≡ t := 0; plantV 0	

  1 is safe if its associated hybrid program event always satisfies the loop invariant evt_trig(plantV ) and ζ.

	Time-Triggered Model	
	Model 3.2: Time-triggered Generic Model	
	time * ≡ (ctrl t ; plant t ) *	(3.2.1)
	ctrl t ≡ (ctrlV := evade_value)	
	∪ (ctrlV := * ; ?safe ϵ (plantV, ctrlV ))	(3.2.2)
	plant t ≡ t := 0; plantV 0	

  Variable plantV evolves according to e in the intervals [0, t[ and [t, ∞[, which is specified using the AppendSolutionBAP operator defined in DiffEq (see act1). This operator permits to update the plantV by calculating its new value on both intervals [0, t[ and [t, ∞[. Consequently, the previous values on [0, t[ are overridden.

	CHAPTER 3. STATE OF ART
	EVENT P r o g r e s s
	THEN
	a c t 1 : t : | t ′ ∈ IR + ∧ t < t ′
	END
	Figure 3.1: Event Progress
	in the interval [t, ∞[.
	.2). The clause
	AN Y e specifies that the parameter e must be chosen such that the guards grd1 and
	grd2 are verified. These guards respectively state that e belongs to DE(S), set of
	differential equations built on S i.e e must have values in S, and must have a solution

  Dupont et al. introduce a new Event-B pattern that encodes an approximate refinement operation for modeling and verifying hybrid systems described with ODEs that do not admit exact solutions. This pattern was developed to formalize commonly used approximation operations implemented by designers. It consists of an Event-B model that refines the generic model and encodes an approximate refinement operation. An example of such an approximation is linearization. Nonlinear ordinary differential equations are approximately refined by linear ordinary differential equations. The authors consider the

well-known Inverted Pendulum case study to illustrate the usage of this pattern. This problem is particularly important because it does not admit an exact solution and requires the use of linearization for proper implementation. To implement this pattern in Event-B, the authors developed an approximation theory. This theory defines a set of operators used to model approximations as a refinement: CHAPTER 3. STATE OF ART • Approximation Operator ≈ δ : allows modeling the approximate equality in Event-B.

  .10).

EVENT P la nt REFINES Pl a nt ANY p l a n t 1

WHERE grd1 : exec = plant grd2 : plant1 ∈ [0, t] -dom(plantV ) → S grd3 : ode(f _evol_plantV (ctrlV ), plant1(t), t) ∈ DE(S) grd4 : Solvable([0, t] -dom(plantV ), ode(f _evol_plantV (ctrlV ), plant1(t), t)) grd5 : AppendSolutionBAP (ode(f _evol_plantV (ctrlV ), plant1(t), t), [0, t] -dom(plantV ), [0, t] -dom(plantV ), plant1

) WITH e : e = ode(f _evol_plantV (ctrlV ), plant1(t), t) THEN a c t 1 : plantV := plantV ◁ -plant1 act2 : exec := ctrl END

  .13).

	EVENT Ctrl_normal_time
	REFINES Ctrl_normal
	ANY nrml_value
	WHERE
	grd1 : exec = ctrl
	grd2 : nrml_value ∈ IR
	grd3 : nrml_value /

∈ evades_value ⇒ saf e(plantV (t), nrml_value) = T RU E grd4 : nrml_value / ∈ evades_value ⇒ saf eEpsilon(plantV (t), nrml_value) = T RU E THEN a c t 1 : ctrlV := nrml_value a c t 2 : exec := prg END

Table 5 . 1 :
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	Generic_Models Total Automatic Interactive
	ContSystem_M	8	1	7
	EventTriggered_M	22	14	8
	TimeTriggered_M	4	1	3

  plantV : | plantV ′ ∈ (IR + → S) ∧ AppendSolutionBAP ( ode(f _evol_plantV (ctrlV ), plantV (t), t), IR + , [0, t[, [t, ∞[, plantV, plantV ′ ) a c t 2 : exec := prg END

	EVENT P la nt
	REFINES Behave
	WHERE
	grd1 : ode(f_evol_plantV(ctrlV ), plantV (t), t) ∈ DE(S)
	grd2 : Solvable([t, ∞[, ode(f_evol_plantV(ctrlV ), plantV (t), t))
	grd3 : exec = plant
	WITH e : e = ode(f_evol_plantV(ctrlV ), plantV (t), t)
	THEN
	a c t 1 :

followed the following structure: init; (ctrl; plant; prg) * .

  CONTEXT SpecificContSystem_Ctx EXTENDS ContSystem_Ctx CONSTANTS specP lantV init 1 , . . . , specP lantV init n , cst 1 , . . . , cst l ,

	f _evol_plantV
	AXIOMS	
	axm1 :	i=1..n specP lantV init i ∈ IR
	axm2 : (specP lantV init 1 , ..., specP lantV init n ) = plantV Init
	axm3 :	i=1..l prt i
	axm4 :	

  3, two safety envelops CONTEXT S p e c i f i c E v e n t T r i g g e r e d _ C t x 1 EXTENDS SpecificContSystem_Ctx SETS EXEC CONSTANTS ctrl , plant , prg , saf e 1 , . . . , saf e k , evt_trig 1 , . . . , evt_trig k , val 1 , . . . , val k , evade_value 1 , . . . , evade_value k , prop

	AXIOMS	
	axm1 : partition(EXEC, {ctrl}, {plant}, {prg})
	axm2 :	i=1..k saf e i ∈ (S × IR) → BOOL
	axm3 :	

  Event_Heater_Ctx EXTENDS Specific_Heater_Ctx SETS EXEC CONSTANTS ctrl , plant , prg , saf e 1 , evt_trig 1 , saf e 2 , evt_trig 2 , evade_value

1 , evade_value 2 , temp , prop AXIOMS axm1 : partition(EXEC, {ctrl}, {plant}, {prg}) axm2 : saf e 1 ∈ (IR × IR) → BOOL axm3 :

  Rule_ET1_M_6 : instantiates the event Ctrl_evade of Figure6.14. It produces n events: one for each sub-formula safe i . In event Ctrl_evade i grd3 checks that the value chosen for sub-formula safe i makes the other safety properties satisfied.

	EVENT Pl an t
	REFINES P la nt
	ANY specP lant1 1 , . . . , specP lant1 n
	WHERE	
	grd1 : exec = plant
	grd2 :	i=1..n specP lant1 i ∈ [0, t] -dom(specP lantV i ) → IR
	grd3 : ode(f _evol_plantV (ctrlV ), (specP lant1 1 (t), ..., specP lant1 n (t)), t) ∈ DE(S)
	grd4 : Solvable([0, t] -dom(bind(specP lantV 1 , bind(specP lantV 2 , bind(...)))),
	ode(f _evol_plantV (ctrlV ), (specP lant1 1 (t), ..., specP lant1 n (t)), t)
	grd5 : AppendSolutionBAP (ode(f _evol_plantV (ctrlV ),
	(specP lant1 1 (t), ..., specP lant1 n (t)), t),
	[0, t] -dom(bind(specP lantV 1 , bind(specP lantV 2 , bind(...)))),
	[0, t] -dom(bind(specP lantV 1 , bind(specP lantV 2 , bind(...)))),
	bind(specP lant1 1 , bind(specP lant1 2 , bind(...))))
	grd6 : ∀xx • xx ∈ dom(bind(specP lant1 1 , bind(specP lant1 2 , bind(...)))))
	=⇒ prop(specP lant1 EVENT Ctrl_normal
	ANY nrml_value
	WHERE	
	grd1 : exec = ctrl
	grd2 : nrml_value ∈ IR
	grd3 :	i=1..k nrml_value / ∈ evade ⇒
	saf e EVENT Ctrl_evade i
	ANY evade_val
	WHERE	
	grd1 : exec = ctrl
	grd2 : evade_val ∈ evade_value i
	grd3 :	j=1..k∧j̸ =i saf e

1 (xx), ..., specP lant1 n (xx)) = T RU E WITH e : e = ode(f _evol_plantV (ctrlV ), (specP lant1 1 (t), ..., specP lant1 n (t)), t) THEN a c t 1 : i=1..n specP lantV i := specP lantV i ◁ -specP lant1 i a c t 2 : exec := ctrl END

Figure 6.12: Instantiating the Event Plant. i (specP lantV 1 (t), ..., specP lantV n (t), nrml_value) = T RU E THEN a c t 1 : ctrlV := nrml_value a c t 2 : exec := prg END Figure 6.13: Instantiating the Event Ctrl_normal.

• j (specP lantV 1 (t), ..., specP lantV n (t), evade_val) = T RU E THEN a c t 1 : ctrlV := evade_val a c t 2 : exec := prg END

  Context Desolve_Ctx extends the context TimeTriggered_Ctx by introducing the generic function B_desolve which returns a function of type IR → IR that represents the solutions of a given continuous variable. Introducing this function in our generic approach allows us CONTEXT EventTriggered_Ctx EXTENDS ContSystem_Ctx SETS EXEC , P ROP CONSTANTS prop_saf e , prop_evt_trig , ctrl , plant , prg , f _evol ,

	f _evol_plantV , prop_evade_values
	AXIOMS
	axm1 : prop_saf e ∈ P ROP → ((S × IR) → BOOL)
	axm2 : prop_evt_trig ∈ P ROP → ((S × T IM E) × IR → BOOL)
	axm3 : partition(EXEC, {ctrl}, {plant}, {prg})
	axm4 :

Table 7 .

 7 2 gives the statistics of the POs generated for the correctness of our generic models. It is noticeable that 47% of them were automatically discharged. These POs include the

Table 7 . 1 :
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	Generic_Models	Total Automatic Interactive
	ContSystem_M	8	1	7
	EventTriggered_M	19	11	8
	TimeTriggered_M	2	1	1
	TimeTriggered_desolve_M	5	3	2

Table 7 . 2 :

 72 Rodin Proof Statistics for the Nonlinear Generic Models

	Generic_Models	Total Automatic Interactive
	ContSystem_M	8	1	7
	EventTriggered_M	19	11	8
	TimeTriggered_M	2	1	1
	TimeTriggered_desolverk4_M	7	3	4

Table 8 . 1 :

 81 Rodin proof statistics for the Stop Sign system

	Specific_Models Total Automatic Interactive
	Car_Event_M	44	17	27
	Car_Time_M	42	13	29

Table 8 . 2 :

 82 Rodin proof statistics for the Water Tank system

	Specific_Models Total Automatic Interactive
	Abstract_Tank_M	11	3	8
	Tank_Event_M	38	24	14
	Tank_Time_M	42	12	30

Table 8 . 3 :

 83 Rodin Proof Statistics for the Smart Heating System

	Specific_Models Total Automatic Interactive
	Heater_M	48	21	27

dRL preserves the safety properties of refined hybrid programs by showing that if α ≤ β and [β]φ, then the formula φ is true in all states reachable from s by following the transitions of α ([α]φ). There is a similar rule for diamond modalities (⟨ ⟩), which states that if α refines β, and there is at least one transition from α to a state s where φ is true, then ⟨β⟩φ is true. This is represented by the following two proof rules:Γ ⊢ [α]φ, ∆ Γ ⊢ β ≤ α, ∆ Γ ⊢ [β]φ, ∆ ([≤]) Γ ⊢ ⟨α⟩φ, ∆ Γ ⊢ β ≤ α, ∆ Γ ⊢ ⟨β⟩φ, ∆(⟨≤⟩)A proof calculus associated with a logical language such as dL or dRL is a set of syntactic transformations that are each proved sound. By combining many of these transformations on a complicated formula, we may simplify and break apart the formula until we are left with formulas that can be proved true using quantifier elimination, in which case we have a proof of our original complicated formula. The proof calculs for dRL is composed of three types of proof rules:• Proof rules based on the axioms of the KAT algebra[START_REF] Kozen | On hoare logic and kleene algebra with tests[END_REF].Γ ⊢ [α * ](α; γ) ≤ γ, ∆ Γ ⊢ [α * ]β ≤ γ, ∆ Γ ⊢ α * ; β ≤ γ, ∆ (loop l ) Γ ⊢ β ≤ γ, ∆ Γ ⊢ (γ; α) ≤ γ, ∆ Γ ⊢ β; α * ≤ γ, ∆ (loop r )these two proof rules are used to handle loops in a refinement proof. When we have α * ; β, we add a [α * ] to both the left and right premise, in contrast to loop r that does not require modalities in the premises.• Structural proof rules, which exploit the similarities between hybrid programs.Γ ⊢ α 1 ≤ α 2 , ∆ Γ ⊢ [α 1 ](β 1 ≤ β 2 ), ∆Γ ⊢ (α 1 ; β 1 ) ≤ (α 2 ; β 2 ), ∆ (; ) this proof rule is used to handle the refinement of sequential hybrid programs.

Substitution (t : |t ′ ∈ IR + ∧ t < t ′ ) can be rewritten into (ANY t1 WHERE t1 ∈ IR + ∧ t < t1 THEN t := t1 END

to simplify the reading of our models, we will use in the rest of the manuscript the usual mathematical symbols instead of using that of the theory of Reals. Therefore, instead of using RRealP lus we use IR +

bind(p, v) = p → v

During the acceleration phase: the position increases by (A×epsilon 2 /2+v×epsilon), the speed becomes equal to (A×epsilon+v). In the braking phase, the car stops in (t1 = (A×epsilon+v)/B) units of time. So, the final position of the car is equal to p + (A × epsilon 2 /2 + v × epsilon) + (-Bt1 2 + t1((A × epsilon + v)/B).
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CHAPTER 8. APPLICATION specific case study. Last, we describe briefly in Section 8.5 the modeling of the nonlinear case study, the Inverted Pendulum.

Stop Sign Models

The modeling of the Stop Sign case study follows the schema depicted by Figure 8.1, the whole models are available in Appendix B. 

Stop Sign EventTriggered Model

The instantiation starts by refining the generic EventTriggered model to obtain the specific Car_Event model represented by the Car_Event_M machine that sees the Car_Event_Ctx context depicted by Figure 8.2. Context Car_Event_Ctx is obtained following the set of rules Rule_ET2_Ctx_i defined in Section 6.2. As stated in Section 4.1, the continuous behavior of the Stop Sign case study is described by two state variables p and v. Following Rule_ET2_Ctx_1, the constant S is instantiated in the specific ContSystem_Ctx by IR×IR. The constant plantV Init is replaced by the constants pinit and vinit that respectively specify the initial position and the initial velocity, see axm1 -2. axm3 specifies the properties of the initial values pinit and vinit as well the stop sign constant SP . It also guarantees that the system is initially safe.

The Stop Sign case study is composed of a single safety envelop which guarantees that the car will never exceed the SP limit. This safety property is associated with an event trigger formula and a set of evade values instantiated following Rule_ET2_Ctx_2, see axioms axm4, axm5 and axm7. The value of evt_trig is defined by considering the distance traveled by the car during a time period of x (1/2 × ctrlV × x 2 + v × x) plus the distance traveled from the time the car must brake to stop just before SP (v 2 /2B). axm6 specifies the specific ODEs associated with the case study, dp dt = v and dv dt = ctrlV , using the function f_evol_plantV (Rule_ET2_Ctx_3 ), where ctrlV represents the discrete measurement and p and v represent the continuous measurements. axm8 and axm9 specify the properties of val_i, the maximum limit of acceleration A and the maximum limit of braking B, which are used to specify the normal and evade modes. Finally, the Stop Sign safety property, p ≤ SP , is specified in axm10 using the constant prop.

The specific machine Car_Event_M refines the generic machine EventTriggered_M by following the rules, Rule_ET2_M_1 and Rule_ET2_M_2 described in Section 6.2. We replace the generic state variable plantV by the physical state variables associated with the Stop Sign case study, p and v. This substitution is done using the operator bind of the

Water Tank Models

To model the Water Tank case study in Event-B, we proceed in three refinement steps (Figure 8.12). We start by refining the abstract generic ContSystem model to obtain the Abstract_Tank model. In the second step, we produce the Tank_Event model together 

Abstract Water Tank Model

To model the abstract Water Tank model in Event-B, we refine the generic abstract Con-tSystem model. Abstract_Tank model consists of an abstract context, Abstract_Tank_Ctx, and an abstract machine, Abstract_Tank_M. Context Abstract_Tank_Ctx (Figure 8.13) is obtained following the rules Rule_CS_Ctx_i (Section 6.1.1). It defines all the properties of the Water Tank case study such as the property 0 < V _low < V _high, see axm1 -axm3. axm4 -axm5 specify the ordinary differential equation that describes the evolution of the water level using the specific function f_evol_V. 

Water Tank EventTriggered Model

The procedure for modeling the Water Tank case study is similar to that described in Section 6.1.2 for modeling the Smart Heating system. Tank_Event model refines Abstract_Tank model by defining a more specific machine Tank_Event_M that refines the machine Abstract_Tank_M. Machine Tank_Event_M sees the context Tank_Event_Ctx (Figure 8.15) which adds new constants needed to model the interaction between the physical and the continuous parts of the Water Tank case study (Rule_ET1_Ctx_1 ). It also introduces the safety envelopes saf eF ill and saf eEmp (Rule_ET1_Ctx_2 ). As stated in Section 4.2, we express the safety property in a conjunctive normal form: (V _low ≤ V ol ∧ V ol ≤ V _high). For the safety property V_low ≤ Vol (resp. Vol ≤ V_high), the evade value is {f_in} (resp. {-f_out}). Following Rule_ET1_Ctx_3, Water Tank Models 

Appendix A

Generic Models

Smart Heating Models • Finally, the user calls SageMath and executes the command line load("script1.sage"). This allows the user to execute the statements defined in "script1.sage" script in order