
HAL Id: tel-04337049
https://theses.hal.science/tel-04337049

Submitted on 12 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A correct by construction approach for the modeling
and the verification of cyber-physical systems in Event-B

Meryem Afendi

To cite this version:
Meryem Afendi. A correct by construction approach for the modeling and the verification of cyber-
physical systems in Event-B. Modeling and Simulation. Université Paris-Est Créteil Val-de-Marne -
Paris 12, 2022. English. �NNT : 2022PA120050�. �tel-04337049�

https://theses.hal.science/tel-04337049
https://hal.archives-ouvertes.fr

A Correct by Construction Approach for the
Modeling and the Verification of

Cyber-Physical Systems in Event-B

par
Meryem Afendi

En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE PARIS-EST CRÉTEIL

Laboratoire d’Algorithmique Complexité et Logique
Université Paris Est Créteil, Créteil, France

Composition du Jury:
Président:

Nom du Président

Rapporteurs:
Richard Banach, Senior Lecturer, University of Manchester

Frédéric Mallet, Professeur, Université Côte d’Azur

Examinateurs:
Dominique Méry, Professeur, Université de Lorraine
Burkhart Wolff, Professeur, Université Paris-Saclay

Co-directrices:
Régine Laleau, Professeure, Université Paris-Est Créteil

Amel Mammar, Professeure, Télécom-Sud Paris

Summary

Hybrid systems are one of the most common mathematical models for Cyber-Physical
Systems (CPSs). They combine discrete dynamics represented by state machines or finite
automata with continuous behaviors represented by differential equations. The measurement
of continuous behaviors is performed by sensors. When these sensors have a continuous
access to these measurements, this kind of models is called Event-Triggered models. The
properties of such models are easier to prove, while their implementation are difficult in
practice. Therefore, it is preferable to introduce a more concrete kind of models, called
Time-Triggered models, where the sensors take periodic measurements. Contrary to Event-
Triggered models, Time-Triggered models are much easier to implement, but much more
difficult to verify. Based on the differential refinement logic (dRL), a dynamic logic for
refinement relations on hybrid systems, it is possible to prove that a Time-Triggered model
refines an Event-Triggered model. However, being done by hand, this proof is error-prone
since no prover is available to support this logic. To overcome this limit, we proposes a
new correct-by-construction approach to prove this refinement, based on Event-B to take
advantage of its well-defined refinement process and its support tools. We use the Rodin

platform to develop Event-B models and its associated provers (automatic and interactive)
to ensure their correctness. The obtained Event-B models are generic and can be then
instantiated to model and prove any specific CPS. The proposed approach is illustrated by
two frequently used CPS case studies. Moreover, this approach implements an interface
between the differential equation solver SageMath (System for Algebra and Geometry
Experimentation) and the Rodin tool to deal with the resolution of ordinary differential
equations in Event-B. The proposed approach was successfully applied on a frequently
used cyber-physical system case study. We used our approach on various problems taken
from control theory, including the stop sign, the water tank, thermostat.

iii

Résumé

Les systèmes hybrides sont l’un des modèles mathématiques les plus courants pour la
modélisation des systèmes cyber-physiques (SCP). Ils combinent des dynamiques discrètes
représentées par des machines à états ou des automates finis avec des comportements
continus représentés par des équations différentielles. Les comportements continus des
systèmes cyber-physiques sont collectés à l’aide des capteurs. Lorsque ces capteurs ont
un accès continu à ces mesures, ce type de modèles est appelé modèles déclenchés par
événements Event-Triggered. Les propriétés de tels modèles sont plus faciles à prouver,
tandis que leur mise en œuvre est difficile en pratique. Par conséquence, il est préférable
d’introduire un type de modèles plus concrets, appelés modèles déclenchés par le temps
Time-Triggered, où les capteurs prennent des mesures périodiques. Contrairement aux
modèles Event-Triggered, les modèles Time-Triggered sont beaucoup plus faciles à mettre
en œuvre, mais beaucoup plus difficiles à vérifier. En utilisant dRL, une logique dynamique
de raffinement pour les systèmes hybrides, il est possible de prouver qu’un modèle Event-
Triggered, les modèles Time-Triggered raffine un modèle Event-Triggered. Cependant, étant
faites à la main, les preuves dans dRL sont sujette aux erreurs puisqu’aucun outil n’est
disponible pour supporter cette logique. Pour surmonter cette limite, nous proposons
une nouvelle approche pour prouver ce raffinement, basée sur Event-B pour tirer parti
de son processus de raffinement bien défini et de ses outils de support. Nous utilisons
la plateforme Rodin pour développer des modèles Event-B et ses outils de preuves
associés (automatiques et interactifs) pour assurer l’exactitude de ces modèles. Les modèles
Event-B obtenus sont génériques et peuvent ensuite être instanciés pour modéliser et
prouver n’importe quel système cyber-physique. L’approche proposée est illustrée par deux
études de cas fréquemment utilisées. De plus, cette approche implémente une interface
entre le solveur d’équations différentielles SageMath (System for Algebra and Geometry
Experimentation) et l’outil Rodin pour traiter la résolution des équations différentielles
ordinaires dans Event-B. L’approche proposée a été également appliquée avec succès
sur une étude de cas de système cyber-physique fréquemment utilisé. Nous avons utilisé
notre approche sur divers problèmes issus de la théorie du contrôle, notamment le panneau
d’arrêt, le réservoir d’eau, le thermostat.

v

Acknowledgement

This work is supported by the DISCONT Project (https://discont.loria.fr) of the French
National Research Agency (ANR), Grant Number ANR-17-CE25-0005. Many thanks to
the members of this project for their great help in polishing my work and publishing it.

I would like to thank my supervisor Prof. Régine Laleau and Prof. Amel Mammar for
their consistent support and guidance during the running of this thesis. They continuously
provided encouragement and was always willing and enthusiastic to assist in any way she
could throughout the research project. Finally, many thanks to all participants that took
part in the study and enabled this research to be possible.

Finally, i would like to thank my parents, my brother, and my friends. It would have
been impossible to finish my studies without their unwavering support over the past few
years.

vii

Contents

Summary iii

Résumé v

Acknowledgement vii

1 Introduction 1

2 Context 5
2.1 Cyber-Physical Systems (CPSs) . 5
2.2 Hybrid Systems . 6
2.3 Ordinary Differential Equations (ODEs) . 7
2.4 Hybrid Automata . 8
2.5 Hybrid Programs (HPs) . 9
2.6 The Event-B Method . 10

2.6.1 Refinement . 10
2.6.2 Modeling . 11
2.6.3 Proof obligations . 14

2.7 Computer Algebra Systems (CASs) . 14
2.8 Conclusion . 16

3 State Of Art 17
3.1 Model Checking-Based Approaches . 18

3.1.1 Hytech . 18
3.1.2 SpaceEx . 18
3.1.3 FLOW∗ . 19
3.1.4 dReach/dReal . 19
3.1.5 Discussion . 19

3.2 Proof-Based Approaches . 19
3.2.1 Differential Dynamic Logic dL . 19
3.2.2 Differential Refinement Logic dRL 21
3.2.3 Parallelism and Modular Proof in Differential Dynamic Logic 24
3.2.4 Hybrid CSP and Hybrid Chi . 25

ix

CONTENTS

3.2.5 Modeling and Verifying Hybrid Systems with Isabelle/HOL 25
3.2.6 Modeling and Verifying Hybrid Systems with Coq and Coquelicot . 25
3.2.7 Discussion . 26

3.3 Event-B Based Approaches . 26
3.3.1 A Formal Approach for Correct-by-Construction System Substitution 26
3.3.2 A Correct-by-Construction Design of Hybrid Systems in Event-B . 27
3.3.3 Modeling and Refining Hybrid Systems in Event-B 29
3.3.4 A Refinement Strategy for Hybrid System Design 29
3.3.5 Hybrid Event-B . 30
3.3.6 Discussion . 30

3.4 Interfacing Theorem Provers With Computer Algebra Systems 31
3.4.1 An Extensible Ad-Hoc Interface between Lean and Mathematica . . 31
3.4.2 An Interface between Isabelle and Maple 32
3.4.3 Discussion . 33

3.5 Conclusion . 33

4 Case Studies 35
4.1 The Stop Sign Case Study . 35

4.1.1 Modeling the Stop Sign Using Hybrid Automata 36
4.1.2 Modeling the Stop Sign Using Hybrid Programs 37

4.2 The Water Tank Case Study . 40
4.2.1 Modeling the Water Tank Using Hybrid Automata 40
4.2.2 Modeling the Water Tank Using Hybrid Programs 41

4.3 The Smart Heating Case Study . 42
4.3.1 Modeling the Smart Heating Using Hybrid Automata 42
4.3.2 Modeling the Smart Heating Using Hybrid Programs 42

4.4 The Inverted Pendulum Case Study . 43
4.5 Conclusion . 44

5 Modeling and Proving Hybrid Systems in Event-B 45
5.1 Structure of the Generic Models . 46
5.2 Preliminary for Modeling the Generic Models 46

5.2.1 Theories for Modeling Real Numbers in Event-B 46
5.2.2 Theories for Modeling Differential Equations in Event-B 47

5.3 Model ContSystem . 47
5.3.1 Context ContSystem_Ctx . 47
5.3.2 Machine ContSystem_M . 48

5.4 Event and TimeTriggered Models . 48
5.4.1 Generic EventTriggered Model . 49
5.4.2 Generic TimeTriggered Model . 52
5.4.3 Modeling the Safety Properties . 54

x

CONTENTS

5.5 Correctness of the Generic Models . 54
5.6 Conclusion . 56

6 Instantiating the Generic Approach 59
6.1 Instantiation from the ContSystem Level 59

6.1.1 Instantiating the Generic ContSystem Model 60
6.1.2 Instantiating the Generic EventTriggered Model 63
6.1.3 Instantiating the Generic TimeTriggered Model 67

6.2 Instantiation from the EventTriggered Level 72
6.2.1 Instantiating the Generic EventTriggered Context 72
6.2.2 Instantiating the Generic EventTriggered Machine 73

6.3 Discussion . 75
6.4 Conclusion . 75

7 Interfacing EVENT-B with SAGEMATH 77
7.1 Solving Linear ODEs in Event-B . 78

7.1.1 Context Desolve_Ctx . 78
7.1.2 Machine TimeTriggered_desolve_M 80
7.1.3 Correctness of the specification . 80
7.1.4 Instantiating the Generic TimeTriggeredDesolve Model 81

7.2 A tool for supporting the approach . 82
7.2.1 The general process . 82
7.2.2 Calling SageMath from Rodin (Step1) 82
7.2.3 Solving ODEs in SageMath (Step1’ and Step2) 84
7.2.4 Using SageMath Results in Rodin (Step3) 85

7.3 Solving Nonlinear ODEs in Event-B . 85
7.3.1 The Generic Approach . 85
7.3.2 Choosing the Interval [t1, t2] . 88
7.3.3 Discussion . 88

7.4 Conclusion . 89

8 Application 91
8.1 Stop Sign Models . 92

8.1.1 Stop Sign EventTriggered Model . 92
8.1.2 Stop Sign TimeTriggered Model . 95
8.1.3 Correctness of the Specification . 97

8.2 Water Tank Models . 99
8.2.1 Abstract Water Tank Model . 99
8.2.2 Water Tank EventTriggered Model 100
8.2.3 Water Tank TimeTriggered Model 102
8.2.4 Correctness of the Specification . 104

8.3 Discussion on the proof activity . 105

xi

CONTENTS

8.4 The Smart Heating System Models . 106
8.4.1 Context Heater_Ctx . 106
8.4.2 Machine Heater_M . 107
8.4.3 Correctness of the specification . 108

8.5 Modeling NonLinear Case Studies . 110
8.6 Conclusion . 111

9 Conclusion 113
9.1 Contribution . 113
9.2 Future Work . 114

Appendices 125

A Generic Models 127
A.1 Context ContSystem_Ctx . 127
A.2 Machine ContSystem_M . 127
A.3 Context EventTriggered_Ctx . 128
A.4 Machine EventTriggered_M . 128
A.5 Context TimeTriggered_Ctx . 130
A.6 Machine TimeTriggered_M . 130

Appendices 133

B Stop Sign Models 135
B.1 Context ContSystem_Ctx . 135
B.2 Context Thoerems . 135
B.3 Machine ContSystem_M . 135
B.4 Context EventTriggered_Ctx . 136
B.5 Machine EventTriggered_M . 137
B.6 Context Car_Event_Ctx . 138
B.7 Machine Car_Event_M . 139
B.8 Context Car_Time_Ctx . 141
B.9 Machine Car_Time_M . 141

Appendices 145

C Water Tank Models 147
C.1 Context ContSystem_Ctx . 147
C.2 Machine ContSystem_M . 147
C.3 Context Abstract_Tank_Ctx . 148
C.4 Machine Abstract_Tank_M . 148
C.5 Context Tank_Event_Ctx . 149
C.6 Machine Tank_Event_M . 150

xii

CONTENTS

C.7 Context Tank_Time_Ctx . 151
C.8 Machine Tank_Time_M . 152

Appendices 155

D Smart Heating Models 157
D.1 Context ContSystem_Ctx . 157
D.2 Context Thoerems . 157
D.3 Machine ContSystem_M . 157
D.4 Context EventTriggered_Ctx . 158
D.5 Machine EventTriggered_M . 159
D.6 Context TimeTriggered_Ctx . 160
D.7 Machine TimeTriggered_M . 160
D.8 Context Desolve . 162
D.9 TimeTriggered_desolve_M . 162
D.10 CONTEXT Heater_Ctx . 163
D.11 Machine Heater_M . 164

Appendices 167

E User Manual for the Plugin SAGEMATH 169

xiii

CONTENTS

xiv

List of Figures

2.1 Cyber-Physical Systems Global Architecture. 6
2.2 The Bouncing Ball . 7
2.3 Hybrid Automaton of the Bouncing Ball System 9
2.4 Structure of an Event-B Context . 11
2.5 Structure of an Event-B Machine . 12
2.6 Structure of an Event-B EVENT . 12
2.7 Context Car_Ctx . 13
2.8 Machine Car_M . 14

3.1 Event Progress . 28
3.2 Event Behave . 28
3.3 Calling Mathematica from Lean . 32

4.1 The Stop Sign System. 36
4.2 Hybrid Automaton of the Stop Sign System. 37
4.3 The Water Tank System . 40
4.4 Hybrid automaton of the Water Tank System 40
4.5 Hybrid automaton of the Hybrid Smart Heating System 42
4.6 The Inverted Pendulum . 44

5.1 Structure of the Generic Event-B Specification. 46
5.2 Context ContSystem_Ctx. 48
5.3 Event Progress. 48
5.4 Abstract Event Plant. 49
5.5 Context EventTriggered_Ctx. 50
5.6 EventTriggered INVARIANTS. 50
5.7 EventTriggered INITIALISATION. 51
5.8 EventTriggered Progress. 51
5.9 EventTriggered Plant. 51
5.10 EventTriggered Ctrl_normal and Ctrl_evade. 52
5.11 Context TimeTriggered_Ctx. 53
5.12 Event Progress_time. 53

xv

LIST OF FIGURES

5.13 Event Ctrl_normal_time. 53
5.14 Theorems. 55
5.15 Event Plant [1]. 57

6.1 First Strategy: Instantiation from the ContSystem Level. 60
6.2 SpecificContSystem_Ctx. 61
6.3 Specific_Heater_Ctx. 61
6.4 Header of SpecificContSystem_M. 62
6.5 Specific Plant. 62
6.6 Header of Specific_Heater_M. 62
6.7 Specific Heater Plant. 63
6.8 SpecificEventTriggered_Ctx1. 64
6.9 Event_Heater_Ctx. 64
6.10 Instantiating the INVARIANTS Clause. 65
6.11 Instantiating the Event Progress. 65
6.12 Instantiating the Event Plant. 66
6.13 Instantiating the Event Ctrl_normal. 66
6.14 Instantiating the Event Ctrl_evade. 66
6.15 Header of Event_Heater_M. 67
6.16 Specific Heater Progress. 67
6.17 Specific Event_Heater Plant. 68
6.18 Specific Heater Ctrl_normal. 68
6.19 Specific Heater Ctrl_evade_1. 68
6.20 Specific Heater Ctrl_evade_2. 68
6.21 SpecificTimeTriggered_Ctx1. 69
6.22 Time_Heater_Ctx. 69
6.23 SpecificTimeTriggered_M1 INVARIANTS. 70
6.24 SpecificTimeTriggered_M1 Progress. 70
6.25 SpecificTimeTriggered_M1 Plant. 70
6.26 Time_Heater_M INVARIANTS. 71
6.27 Time_Heater_M Plant. 71
6.28 Time_Heater_M Ctrl_normal. 71
6.29 Time_Heater_M Ctrl_evade_1. 72
6.30 Time_Heater_M Ctrl_evade_2. 72
6.31 Second Strategy: Instantiation from the EventTriggered Level. 72
6.32 SpecificEventTriggered_Ctx2. 73
6.33 Event_Heater_Ctx2. 74
6.34 SpecificEventTriggered_M2 INVARIANTS. 74
6.35 Main Differences between the two Strategies. 75

7.1 Generic Event-B specification with the B_desolve function. 78

xvi

LIST OF FIGURES

7.2 CONTEXT EventTriggered_Ctx. 79
7.3 EventTriggered Ctrl. 79
7.4 Context Desolve_Ctx. 80
7.5 TimeTriggeredDesolve Plant. 80
7.6 The General Process. 82
7.7 The Sequence Diagram of the SageMath Plug-in. 83
7.8 Function getPossibleApplications. 83
7.9 Calling SageMath Using ProcessBuilder. 84
7.10 Script for an Ordinary Differential Equation of Type T ′ = ctrlV 85
7.11 Solving Nonlinear Differential Equations using Event-B. 86
7.12 Generic Event-B specification for Approximate Solutions. 86
7.13 CONTEXT Desolverk4. 87
7.14 Event Plant_time_desolverk4. 87
7.15 Event Ctrl_desolverk4. 88

8.1 Architecture of the Event-B model of the Stop Sign. 92
8.2 Context Car_Event_Ctx. 93
8.3 Stop Sign EventTriggered INVARIANTS. 93
8.4 Event Plant_event_car. 94
8.5 Event Ctrl_Acceleration_car. 94
8.6 Event Ctrl_Deceleration_car. 94
8.7 Context Car_Time_Ctx. 95
8.8 Stop Sign TimeTriggered Invariants. 95
8.9 Car Time Progress. 96
8.10 Event Plant_time_car. 96
8.11 Event Ctrl_Acceleration_car_time. 97
8.12 Architecture of the Event-B Model of the Water Tank. 99
8.13 Context Abstract_Tank_Ctx. 99
8.14 Event Water_behave. 100
8.15 Context Tank_Event_Ctx. 100
8.16 Event Ctrl_normal. 101
8.17 Event Ctrl_emptying. 101
8.18 Event Ctrl_filling. 102
8.19 Event Plant_event_tank. 102
8.20 Context Tank_Time_Ctx. 102
8.21 Tank_Time INVARIANTS. 103
8.22 Event Plant_time_tank. 103
8.23 Tank_Time Ctrl_normal. 104
8.24 Tank_Time Ctrl_emptying. 104
8.25 Tank_Time Ctrl_filling. 104
8.26 Architecture of the Event-B Model of the Smart Heating System. 107

xvii

LIST OF FIGURES

8.27 CONTEXT Heater_Ctx. 108
8.28 Heater_M INVARIANTS. 108
8.29 Event Thermostat_plant. 109
8.30 Thermostat Ctrl. 109

E.1 Using plugin SageMath: Step 1. 169
E.2 Using plugin SageMath: Step 2. 170
E.3 Using plugin SageMath: Step 3. 170
E.4 Using plugin SageMath: Step 4. 171
E.5 Using plugin SageMath: Step 5. 171
E.6 Using plugin SageMath: Step 6. 172
E.7 Using plugin SageMath: Step 7. 172
E.8 Using plugin SageMath: Step 8. 173

xviii

List of Tables

5.1 Rodin Proof Statistics for the Generic Models 54

7.1 Rodin Proof Statistics for the Generic Models 81
7.2 Rodin Proof Statistics for the Nonlinear Generic Models 89

8.1 Rodin proof statistics for the Stop Sign system 97
8.2 Rodin proof statistics for the Water Tank system 105
8.3 Rodin Proof Statistics for the Smart Heating System 109

xix

LIST OF TABLES

xx

Chapter 1

Introduction

Context: Recent progress in the industrial sector has allowed the development of a new
production model based on digital network architectures to give birth to a fourth industrial
revolution (“industry 4.0" or “industry of the future"). Cyber-physical systems (CPSs) [2]
are one of the main technologies in this industry and form the basis of future technologies.
The domain of these systems has rapidly become a source of innovation with applications
in many sectors: health, transport, smart grid, etc. This type of systems allows the discrete
virtual world and the continuous physical world to be connected via a network of sensors
and actuators.

A common mathematical model for CPSs is that of hybrid systems that combine
discrete behavior represented by state machines or finite automata with continuous behavior
described by differential equations. In hybrid systems, the measurement of continuous
behaviors is performed by sensors. Ideally, sensors have a continuous access to these
measurements, this can be captured by an abstract model of CPSs, called Event-Triggered
system by Kopetz [3]. However, implementing such models is difficult in practice. Therefore,
it is preferable to introduce a more concrete model, called Time-Triggered system [3]
in, where the sensors take periodic measurements. Platzer et al. [4, 5] use Event and
Time-Triggered models to design and verify hybrid systems. They have proved that a
Time-Triggered model is a refinement of an Event-Triggered model, by using an extension
of differential dynamic logic (dL), called differential refinement logic (dRL).

Challenges: The continuous behavior of hybrid systems is often described by ordinary
differential equations (ODEs) that involve an unknown function depending on a single
variable. There are two types of methods for solving ordinary differential equations:
analytical (symbolic) methods and numerical methods. Analytical methods use a set of
theorems to obtain an exact solution for a given differential equation. For example, the
computer algebra SageMath (System for Algebra and Geometry Experimentation) [6]
provides a predefined function that uses analytical methods to find analytical solutions
for ODEs. However most differential equations cannot be solved exactly. Therefore, we
must rely on numerical methods to obtain approximate solutions or use approximation
techniques to transform an equation into an equivalent equation with an exact solution. For
example, linearization techniques can be used to transform a nonlinear differential equation
into a linear differential equation and then apply analytical methods for linear differential
equations. The obtained solution is thus an approximate solution for the original one.

The interaction between the software part and the physical world makes the verification
of hybrid systems an intellectual challenge. The development of techniques and tools to
effectively design hybrid systems has drawn the attention of many researchers. Traditional
approaches are based on simulation tools like Matlab/Simulink [7] or Stateflow [8] which are
however time-consuming and produce results tainted with uncertainty, this is why hybrid
systems with critical safety properties involve the use of formal methods. For this purpose,
several formal approaches have been proposed. These approaches can be grouped into two

1

CHAPTER 1. INTRODUCTION

categories: model-checking-based approaches and proof-based approaches.

• Model-checking-based approaches use hybrid automata to model hybrid systems and
algorithmic analysis methods to prove their safety properties. They are based on
the calculation of the set of reachable states for hybrid automata. These approaches
suffer from the classical problems related to state space explosion and boundedness of
considered variables.

• Proof-based approaches use deductive verification to prove the safety properties of
hybrid systems. One of the strong points of these approaches is that they support
large hybrid system specifications of any kinds, such as linear hybrid systems, non
linear hybrid systems, etc. However, they require significant effort and a high expertise
during the modeling and proof phases.

The definition of generic approaches, like that presented in this thesis using the Event-B
formal method, for modeling and verifying hybrid systems may promote the use of proof-
based approaches for industrial applications. The use of Event-B and its Rodin platform,
a tool for Event-B project development, permits us to assist the developers in editing,
checking but also proving correctness using the automatic and interactive provers included in
the platform. In addition, interfacing a computer algebra system such as SageMath with
an interactive theorem prover permits to deal with the resolution of ordinary differential
equations when modeling hybrid system using a discrete formal method.

Contributions: In this thesis, we are interested in modeling and verifying the safety
properties of a cyber-physical system. Our objective, as a part of the DISCONT project [9],
is to develop formal approaches for modeling and verifying hybrid systems that combine
discrete and continuous worlds. For this purpose, we have developed an approach to model
and prove Event-Triggered systems and Time-Triggered systems in Event-B by taking
advantage of its well-defined refinement process and its automatic/interactive provers used
to verify the correctness of the models.

Since Event-B is designed for modeling discrete systems, it does not support the
resolution of ordinary differential equations. To deal with this limit, we interface the Rodin
tool with a differential equation solver, SageMath in our case, using the notion of plug-in.
The main contributions of the present thesis are as follows:

• a generic formal proved approach for designing correct cyber-physical systems by
considering any number of safety properties. This approach consists in defining three
generic models in Event-B starting with an abstract model of cyber-physical systems
and then using the refinement strategy to introduce more concrete details. These
models are verified under Rodin using a set of theories introduced in [10]. This
generic approach models and proves the relationship between Event-Triggered and
Time-Triggered systems in Event-B. We reuse the approach proposed by Dupond et
al. in [10] that defines a set of theories needed to model continuous aspects of CPSs
in Event-B.

• a set of instantiation rules that are defined to systematically build the model of a
specific application. These rules make it possible to deal with more complex safety
properties (a conjunction of atomic ones) and make the approach more general.
Moreover, we provide a set of generic invariants which have been identified from the
case studies to prove the safety properties. They just need to be instantiated for
proving any specific application.

• an extension of the generic approach to interface Event-B with the differential
equation solver SageMath. A new generic model is defined. It refines the Time-
Triggered model by introducing a function to model calls to the solver. A tool has
been implemented as a new Rodin plug-in. This plug-in permits to call SageMath
during the proof phase.

2

CHAPTER 1. INTRODUCTION

• a set of case studies to validate our approach. They have been chosen so that they
represent different kinds of CPSs: hybrid systems with one or several continous
variables, one or several safety properties, a non linear hybrid system.

Organisation of the Manuscript: The thesis is organised as follows:

Chapter 2: presents the context of the thesis by providing definitions of the main elements
used in the development of our approach. In particular, it describes the mathematical
model of cyber-physical systems, that of hybrid systems which specify both continuous
and discrete dynamics of CPSs, the formal method Event-B used to model and prove our
approach. In addition, the chapter presents the computer algebra system SageMath for
the resolution of differential equations.

Chapter 3: presents the state of art of the most relevant formal approaches for cyber-
physical systems modeling: model checking-based approaches, proof-based approaches.
It also presents some approaches that integrate formal methods with computer algebra
systems. In addition, the chapter discusses the main advantages and limitations of each
approach which allows us to express the requirements needed to develop our approach.

Chapter 4: presents the case studies we have chosen to illustrate our generic approach. It
describes their discrete and continuous behaviors using two different methods for modeling
cyber-physical systems. These case studies are linear and admit exact solutions. While
remaining simple, these case studies are didactic and quite representative of linear hybrid
systems that admit exact solutions. The chapter also presents a nonlinear case study.

Chapter 5: introduces our main contribution, a correct-by-construction approach for
modeling and verifying cyber-physical systems using Event-B. The approach proposes to
model and prove a Time-Triggered system in Event-B by providing a link with an Event-
Triggered system, as described by Kopetz. It uses the refinement strategy of Event-B to
model the relation between these two systems.

Chapter 6: presents a set of rules for instantiating the generic approach following two
different strategies. The first strategy consists in starting by an abstract model of the speci-
fication and then introducing more concrete details to instantiate Event and Time-Triggered
models. The second strategy consists in directly modeling an Event-Triggered model and
then introducing by refinement a Time-Triggered model.

Chapter 7: describes the interface between the differential equation solver SageMath and
the Rodin tool to deal with the resolution of ordinary differential equations in Event-B.
This is achieved by implementing a plugin to Rodin using the Eclipse platform which
permits to add new plugins by providing a set of interfaces and predefined JAVA classes.

Chapter 8: applies our approach on a set of chosen case studies. The application is
done by using the set of rules defined in Chapter 6. For each case study, we apply a different
strategy to show the main differences between both strategies.

Chapter 9: gives a summary of our contributions, and discusses future work related
to our work.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

Context

Contents
2.1 Cyber-Physical Systems (CPSs) 5

2.2 Hybrid Systems . 6

2.3 Ordinary Differential Equations (ODEs) 7

2.4 Hybrid Automata . 8

2.5 Hybrid Programs (HPs) . 9

2.6 The Event-B Method . 10

2.6.1 Refinement . 10

2.6.2 Modeling . 11

2.6.3 Proof obligations . 14

2.7 Computer Algebra Systems (CASs) 14

2.8 Conclusion . 16
This chapter presents the main aspects relevant to modeling cyber-physical systems,

presented in Section 2.1. The most common model for cyber-physical systems, that of
hybrid systems, is presented in Section 2.2. Then, Section 2.3 presents ordinary differential
equations used to specify the continuous part of hybrid systems. In Sections 2.4 and 2.5,
we describe two well known approaches for modelling hybrid systems, hybrid automata
which are a specific type of state machines used to model hybrid systems, and hybrid
programs that represent the programming language for hybrid systems. The main notions
of the Event-B formal method are described in Section 2.6. Last, Section 2.7 presents
the computer algebra systems used to find analytical and numerical solutions of ordinary
differential equations.

2.1 Cyber-Physical Systems (CPSs)

The context of this thesis is the domain of cyber-physical systems (CPSs) that integrate
computation, networking, and physical processing. This type of system connects the discrete
virtual world and the continuous physical world via a network of sensors and actuators.
One of the most common architectures in cyber-physical systems is a separate software
controller that represents the discrete part and controls the physical part through a loop
with sensors and actuators as depicted by Figure 2.1. The term cyber-physical system first
appeared in the mid-2000s, and the original definitions of these systems were provided by
Edward A. Lee [2] as part of a collaboration with the National Science Foundation (NSF):

5

CHAPTER 2. CONTEXT

“Cyber-Physical Systems (CPS) are integrations of computation with physical processes.
Embedded computers and networks monitor and control the physical processes, usually with
feedback loops where physical processes affect computations and vice versa. In the physical
world, the passage of time is inexorable and concurrency is intrinsic. Neither of these
properties is present in today’s computing and networking abstractions”. In other words,
CPSs use computation and embedded communications to interact with physical processes
to create new system functions.

Cyber-physical systems can be viewed as embedded systems. An embedded system is a
combination of computer hardware and software that performs a specific task within the
device in which it is integrated. In contrast to traditional embedded systems, which typically
rely only on homogeneous communication structures, cyber-physical systems typically do
not interact with individual devices, but rather interacting discrete systems with physical
inputs and outputs. Cyber-physical systems are designed as a network of steering elements.

In addition, cyber-physical systems can communicate with other systems and exchange
data with remote systems using Internet communication technology, a fundamental building
block of the Internet of Things. The concept of cyber-physical systems therefore expands
the definition of the Internet of Things, as networked devices which not only communicate
with each other, but are also autonomous entities and must communicate and control each
other.

The domain of cyber physical systems has emerged as an active domain of research in
recent years that attracts the attention of many researchers which has given rise to a new
category of system called Cyber-physical systems of systems (CPSoS) [11]. CPSoS involve
a distributed and net-worked computing elements and human users that controlled a large
physical elements. Therefore, the modeling and the verification of such complex systems
requires the evolution of techniques and tools designed for standard CPSs such as presented
in [12].

Figure 2.1: Cyber-Physical Systems Global Architecture.

A cyber physical system consists of many heterogeneous subsystems that interact to
perform different functions of the system. The main components of a cyber physical system
are the controller and the physical part. A cyber physical system may consist of a controller
and a physical part, a single controller controlling a single plant, or a controller and multiple
plants, a single controller controlling multiple plants, or multiple controllers and multiple
plants. This thesis covers cyber physical case studies involving one controller and one plant
as depicted by Figure 2.1, but this does not prevent the developed model from being used
to cover other architectures.

2.2 Hybrid Systems

Hybrid systems [13] are frequently used to model CPS. They are dynamic systems that
combine both flow described by ordinary differential equations and jumps described by state
machines or automata. In general, the states of a hybrid system are defined by the values of
continuous variables and discrete modes of the controller. States can change continuously
according to the physical state or discretely according to the controller state. Continuous
flow is allowed as long as the invariants hold, but discrete transitions can occur when

6

CHAPTER 2. CONTEXT

certain jump conditions are met. Formal modeling, verification, and overall design of hybrid
systems are significant challenges. The development of techniques and tools for effectively
designing and verifying hybrid systems has attracted the attention of many researchers [14].
Traditional approaches are based on simulation tools such as Matlab/Simulink and Stateflow,
which are time consuming and yield results that are susceptible to uncertainty. To overcome
these limitations, several formal approaches for hybrid system modeling have been proposed,
we can quote: Hybrid Automata (Sec. 2.4) and Hybrid Programs (Sec. 2.5). We can also
mention the approaches that combine formal design and verification of hybrid systems:
Hybrid CSP, Hybrid Hoare Logic (Sec. 3.2.4) and Hybrid Event-B (Sec. 3.3.5).

An example of hybrid systems is that of a bouncing ball, a well-known hybrid system
for controlling the motion of a rubber ball, as shown in Figure 2.2. This system consists
in dropping a ball from a predefined height H. The ball undergoes elastic deformation,
hits the ground, loses energy, bounces into the air and starts falling again. The continuous
behavior of this system is modeled by the current position of the ball x and its current
velocity v. This continuous behavior evolves according to two linear ordinary differential
equations, dx

dt = v(t) and dv
dt = −g, where g is the acceleration due to gravity. This system

can be described by two different behaviors: falling and bouncing. The ball continues to
fall as long as its current position x is greater than or equal to 0 (x ≥ 0). A bounce state
is achieved when the ball hits the ground (x = 0). In either state, the safety property,
0 ≤ x(t) ≤ H, of the system must be satisfied to allow the ball never bounces higher than
the initial height H.

Figure 2.2: The Bouncing Ball

The Event-Time-Triggered Approach Besides the proposed formal approaches,
Kopetz [3] introduces an approach that we have found interesting because it considers a CPS
at different levels of abstraction that allows to deal with the complexity of such systems.
The proposed approach consists in specifying an abstract model, Event-Triggered model, in
which the controller interrupts the physical part when certain events occur. Then defining a
more concrete model, Time-Triggered model, in which the controller interrupts periodically
the physical part [3]. The Event-Triggered model represents an ideal behavior in which
time is continuous and the sensors have continuous access to continuous measurements.
The Time-Triggered model represents more specific behaviors where sensors take periodic
measurements. Therefore, the controller of a Time-Triggered system must make choices
that should be safe until the next sensors update. This makes proofs for these types of
systems more complex compared to those of Event-Triggered systems.

2.3 Ordinary Differential Equations (ODEs)

The evolution of physical systems is often described by ordinary differential equations
(ODEs) [15]. An ordinary differential equation of order n is the relationship between a
single independent variable x ∈ IR, an unknown function y, and its derivative at a point

7

CHAPTER 2. CONTEXT

x. The most common form of the ODEs that describes the evolution of hybrid systems is:
an(x)y

n(x) ++ a2(x)y
′′(x) + a1(x)y

′(x) + a0(x)y(x) = b(x). We distinguish two types
of ordinary differential equations: linear and nonlinear ODEs. Linear ordinary differential
equations are a special case of ODEs in which the unknown function and its derivative
occur only in first order and do not multiply with each other. A linear ordinary differential
equation is written in the following form (where y represents the dependent variable and x
represents the independent variable):

an(x)y
n ++ a2(x)y

′′ + a1(x)y
′ + a0(x)y = b(x)

The theory of solving linear equations is very well developed because linear equations are
simple enough to be solved. However, most physical systems are represented by nonlinear
ordinary differential equations, which cannot usually be solved exactly, and are approximated
by linear differential equations. There are two ways to solve ODEs: analytical (symbolic)
methods and numerical methods. Analytical techniques use a set of theorems to obtain
exact solutions (in the form of integrals) of certain differential equations. There are many
computer algebra systems for solving ODEs, such as SageMath [6]. These solvers cover a
wide range of mathematics, including algebra, calculus, number theory, formal linear algebra,
and more. However, most differential equations cannot be solved exactly. Therefore, we
must resort to numerical techniques to obtain approximate solutions, or use approximation
techniques to convert the equations to another type of equivalent equations. For example,
linearization techniques convert nonlinear ordinary differential equations to linear ordinary
differential equations and apply linear differential equation analysis techniques to them.

A theorem can be used to prove whether a first-order ordinary differential equation,
an ODE that only uses the first derivative y′, has a solution, and whether its solution is
unique. Note that any nth-order ordinary differential equation can be transformed into
a system of n first-order ODEs. The two main theorems are Peano’s existence theorem
and the Cauchy-Lipschitz (Picard-Lindelöf) theorem. Both assume the existence of initial
conditions. An ordinary differential equation with initial conditions is called a Cauchy
problem. Cauchy problem is made up of a first order ordinary differential equation for
which we are looking for a solution satisfying given initial conditions.

2.4 Hybrid Automata

Hybrid automata are widely used as models for hybrid systems. They associate each
discrete state with an ordinary differential equation that describes the evolution of a set
of continuous variables over time, and an invariant that imposes additional properties on
these continuous variables. The state of an automaton can change instantaneously by
discrete transitions (mode changes) consisting of discrete steps, or by continuous activity
(continuous variable changes without mode changes). In this thesis, we use a simple state
transition system to represent hybrid automata such as used by Platzer in [16] to just have
a graphic representation of hybrid programs described in the next section.

Figure 2.3 shows the hybrid automaton associated with the Bouncing Ball case study.
The initial conditions are represented by the constants xinit and vinit. The states of the
automaton are associated with differential equations describing the expansion of the ball
state variables x and v. The expression, 0 ≤ x(t), specifies the local invariant, which is the
condition for the controller to react correctly at the right time.

As shown in Figure 2.3, the system can be in one of the following discrete states:

• Init state: initial values for position and velocity are represented by the constants
xinit and vinit respectively. These constants should be chosen such that xinit ≥ 0
and vinit ≥ 0.

• Falling state: in this state, the ball falls with velocity v. This happens according to
the positive weight g, dv

dt = −g. As soon as the formula x(t) ≥ 0 is no longer satisfied,

8

CHAPTER 2. CONTEXT

Figure 2.3: Hybrid Automaton of the Bouncing Ball System

the system should switch to the Bouncing state.

• Bouncing state: in this state, the ball position is 0. Therefore, the controller updates
the ball velocity by −c×v to allow it to bounce again, where c represents the damping
coefficient (0 ≤ c < 1).

Discrete dynamics are represented as transitions between states in a hybrid automaton. For
example, if the expression x(t) ≥ 0 is true, the ball can fall with dx

dt = v (Falling state). If
this formula is no longer valid i.e when x = 0, the ball must enter the Bouncing state if it
is not already in it.

2.5 Hybrid Programs (HPs)

Hybrid Programs (HPs) [16] stand for programming languages for hybrid systems. They
describe both discrete and continuous behavior of the hybrid system using sequential
composition (;), non-deterministic choice (∪), non-deterministic repetition (∗), discrete
assignments (:=), continuous evolution (′). Most hybrid programs are defined using
the notation, (ctrl; plant)∗, where ctrl denotes the execution of the controller (discrete
evolution), followed by the physical part plant (continuous evolution). This sequence is
non-deterministically repeated, this is indicated by the star (∗).

Formal Definition

A hybrid program is defined by the following grammar: where α, β are HPs, x a variable, θ
is a term that may contain x, and F is a formula.

α, β ::= α;β|α ∪ β|α∗|x := θ|x := ∗|?F

• α;β: sequential synthesis, first performs α then β afterwards.

• α ∪ β: non-deterministic choice of α or β.

• α∗: non-deterministic iterations, repeating α n ≥ 0 iterations.

• x := θ: discrete assignment (jump) of the value of the term θ to the variable x.

• x := ∗: non-deterministic assignment to an arbitrary real number to x.

• ?F : checks if the expression F is valid in the current state, abort if not.

9

CHAPTER 2. CONTEXT

Example of Hybrid Programs

Model 2.1: Bouncing Ball Hybrid Program

init→ [(ctrlV ; plantV)∗](req) (2.1.1)
init ≡ g > 0 ∧ x ≥ 0 ∧H ≥ 0 ∧ c ≥ 0 ∧ x < H (2.1.2)
ctrl ≡? (x = 0)(v := −c× v) (2.1.3)
plant ≡ (x′ = v, v′ = −g & x ≥ 0) (2.1.4)
req ≡ 0 ≤ x ≤ H (2.1.5)

Model 2.1 describes a hybrid program represented by (2.1.1) and related to the Bouncing
Ball case study. The initial conditions are formally given by equation (2.1.2): weight g,
position x and initial energy level H must be positive at the initial state. A related hybrid
program is specified by sequential assembly of the controller (2.1.3) and the physical part
(2.1.4). The control part uses the operator ? to update the velocity v when the ball hits
the ground. The physical part uses the ODEs (x′ = v, v′ = −g) to describe the continuous
evolution of the system. In fact, hybrid programs model the notion of transitions between
discrete states of a hybrid system by adding constraints to the system evolution space
specified by the expression x ≤ 0. Finally, equation (2.1.5) expresses the safety requirements
of the system. This indicates that the ball position x never bounces higher than its initial
height.

2.6 The Event-B Method

This thesis is aimed at modeling and verifying hybrid systems using the formal Event-B
method and the Rodin platform. This method emerged as a further development of the
classical B-method [17]. Introduced by J. Raymond Abrial [18], Event-B is a formal way
to describe discrete systems in terms of events. The Event-B model brings with it a series
of proof obligations (POs) aimed at verifying its correctness. Even if verifying specifications
in Event-B, i.e. discharging the POs, is often hard, such a difficulty and complexity may
depend on how the specification was built. In fact, in general, several solutions can be
considered to model the same system. In this case, one criterion for choosing a particular
solution is to minimize the complexity of the generated models.

Event-B is supported by the open-source and free Rodin platform, an Eclipse-based
IDE, that allows modeling and verifying Event-B systems. Rodin makes it possible to
create contexts, machines, generate proof obligations corresponding to properties, prove
these proof obligations automatically or interactively, etc. It can also be coupled with
tools for animating models such as ProB [19], which can be very useful to check if the
specification produces the intended behaviors. New features can be added in Rodin as
Eclipse plugins. For example, the Theory plug-in [20] is a Rodin extension that permits
users to define their own new data types and operators.

2.6.1 Refinement

The key feature of Event-B to master system complexity consists in using abstract modeling
to represent the abstract behavior of a given system and refinement to introduce details and
demonstrate compliance between the abstract and the concrete models. The refinement of
a formal model allows us to enrich this model step by step, using an incremental approach.
Refinement is the foundation of the correction-by-construction paradigm.

There are two types of refinement in Event-B: horizontal refinement and vertical
refinement. Horizontal refinement, also known as superposition, can be used to subsequently
add complexity to the model. Such a refinement process makes it possible to add step by

10

CHAPTER 2. CONTEXT

step requirements from the specifications of the system to be modeled. Vertical refinement,
also known as data refinement, makes it possible to refine a model resulting from a horizontal
refinement process. Indeed, it allows a step-by-step implementation of the specification
resulting from a horizontal refinement process. This type of refinement does not add
functionality to the model, such as horizontal refinement, but it does refine the model to
become closer to an executable model.

2.6.2 Modeling

The basic element of the development accomplished in the Event-B method is the model.
The Event-B model consists of several components, Context and Machine. It can include a
set of contexts and represents a purely mathematical structure consisting of sets, constants,
axioms and theorems. An unparameterized model is composed only with machines. An
Event-B model is parameterized by contexts if it is composed with both, contexts and
machines. An Event-B context represents the static part of the Event-B model. Machine
Event-B represents the dynamic behavior of the system. It can have access to one or more
contexts.

2.6.2.1 Context Event-B

An Event-B context defines the mathematical structure associated with a system. Context
can include support sets, constants, axioms, and theorems (see Figure 2.4). These elements
are enclosed in clauses as shown in the list below.

CONTEXT Ctx
EXTENDS Ctx1 , . . .
SETS S , . . .
CONSTANTS C, . . .
AXIOMS A, . . .
THEOREMS T, . . .
END

Figure 2.4: Structure of an Event-B Context

• EXTENDS Clause: declares the context(s) extended by the described context.

• CARRIER SETS Clause: specifies a user-defined type. It describes a set of
abstract and enumerated types.

• CONSTANTS Clause: represents the constants used in the model to set parameters
for development.

• AXIOMS Clause: specifies types and restrictions of constants and carrier sets.

• THEOREMS Clause: describes the properties expected to be derived from the
axioms.

2.6.2.2 Machine Event-B

An Event-B machine specifies the dynamic behavior of the modeled system. A machine
models a system using state variables and a sequence of events that update those variables.
It consists primarily of a set of modeling elements that mainly define state variables,
invariants and events (see Figure 2.5).

• REFINES Clause: declares the machine refined by the described machine.

11

CHAPTER 2. CONTEXT

MACHINE M
REFINES M1
SEES Ctx , . . .
VARIABLES v , . . .
INVARIANTS I (v)
EVENTS
INITIALISATION BAP(v , v ’) , . . .
. . .

END

Figure 2.5: Structure of an Event-B Machine

• SEES Clause: declares the contexts seen by the machine being described. This
clause permits to get access to elements defined in the contexts during the modeling
and the proof phase.

• VARIABLES Clause: declares variables for the modeled system. New variables can
be introduced using the refinement strategy in order to enrich the modeled system.

• INVARIANT Clause: describes the properties of the state variables defined in the
VARIABLES clause and the properties of the system being modeled. These properties
shall be preserved by the initialisation and events.

• INITIALISATION Clause: allows giving initial values to the variables of the
corresponding clause. They define the initial states of the underlying treated system.

EVENTS Clause

The EVENTS clause defines all the events that may occur in a given model. The structure
of an Event-B event is shown by Figure 2.6. An Event-B event is triggered when the
properties specified in the WHERE clause evaluate to true. Any event in Event-B models
a discrete transition and can be defined by a before-after predicate denoted BAP (v, v′),
where v and v′ respectively denote the value of the variables before and after the execution
of the actions associated with the event.

EVENT E
REFINES E1
ANY p , . . .
WHERE G(v , p) , . . .
WITH w , . .
THEN act , . .
END

Figure 2.6: Structure of an Event-B EVENT

• REFINES Clause: lists the abstract event (s) that the current event refines (if any).

• ANY Clause: lists the parameters of the event.

• WHERE Clause: contains the various event guards. These guards are necessary
conditions to trigger the event. This clause specifies also the types of the parameters.

• WITH Clause: when a parameter in an abstract event disappears in the concrete
version of that event, it is essential to define a witness on the existence of this
parameter.

12

CHAPTER 2. CONTEXT

• THEN Clause: describes the list of actions of the event.

Each event is made up of one or more so-called substitution actions. Event-B offers two
kinds of substitution actions:

• Deterministic action: is expressed using the operator :=. It is made of a variable
identifier var, followed by :=, followed by an expression exp.

var := exp

• Non-deterministic action: is expressed using the operator : | and a before-after
predicate which specifies the corresponding value just before the action takes place. It
is made of a variable identifier var, followed by : |, followed by a before-after predicate
characterized by the symbol ′, var′.

var : |var′

A special case of non-deterministic actions is expressed using the symbol :∈. It is
made of a variable identifier var, followed by :∈, followed by a set expression S.

var :∈ S ≡ var : |var′ ∈ S

2.6.2.3 Example

We illustrate the use of the elements presented in this section on a simple example. The
goal is to model the discrete states of the behavior of a car. We model the evolution of
the discrete state of the car which is represented by the evolution of its acceleration a.
Figure 2.7 gives the context for this development. The system can be into three states:
Accelerating, Braking and Stopped. These states are modeled using an abstract carrier set
named STATE. The context Car_Ctx contains all the parameters of the modeled system
and their properties such as the maximum of braking A and the maximum limit of braking
B that must be positive. Car_Ctx defines also the constant ai that represents the initial
value of the acceleration of the car and which must be defined between −B and A.

CONTEXT Car_Ctx
STATES STATE
CONSTANTS Acce l e ra t ing , Braking , Stopped , A, B, a i
AXIOMS
axm1 : p a r t i t i o n (STATE { Acce l e r a t i ng } ,{ Braking } ,{ Stopped })
axm2 : A ∈ IN
axm3 : B ∈ IN
axm4 : ai ∈ Z ∧ ai ≤ A ∧ ai ≥ −B
END

Figure 2.7: Context Car_Ctx

The Car_M machine (see Figure 2.8) sees the context Car_Ctx and uses its constants
and axioms. It defines two variables, variable a representing the acceleration of the car
and variable state representing the current state of the system. The value assigned to the
variable a must be defined in the interval [−B,A] given by the invariant inv3. Initially,
the value of a is ai that is defined in [−B,A]. The value of a is updated according to the
current value of the variable state, so three events are defined: Accelerate, Brake and Stop.

13

CHAPTER 2. CONTEXT

MACHINE Car_M
SEES Car_Ctx
VARIABLES a , s t a t e
INVARIANTS
inv1 : a ∈ Z
inv2 : s t a t e ∈ STATE
inv3 : a ≤ A ∧ a ≥ −B
EVENTS
INITIALISATION
THEN
act1 : a:= a i
act2 : s t a t e := Acce l e r a t i ng
END

Acce l e ra t e
WHERE
grd1 : s t a t e= Acce l e r a t i ng
THEN

act1 : a:= A
act2 : s t a t e := Braking
END
Brake
WHERE
grd1 : s t a t e= Braking
THEN
act1 : a:= −B
act2 : s t a t e := Stopped
END

Stop
WHERE
grd1 : s t a t e= Stopped
THEN
act1 : a :=0
act2 : s t a t e := Acce l e r a t i ng
END

Figure 2.8: Machine Car_M

2.6.3 Proof obligations

To ensure the correctness of an Event-B machine, a set of proof obligations (POs) are
generated. These POs fall into two categories:

• event feasibility: for each event, of the form (ANY X WHERE G THEN Act
END), we have to prove that there does exist at least a value for X that verifies G:
∀S,C. (A ∧ Inv ⇒ ∃ X.G).

• event correctness: we have to establish that the invariant Inv is fulfilled after the
initialisation INITIALISATION and that each event, of the form (ANY X WHERE
G THEN Act END), re-establishes the invariant:

[INITIALISATION] Inv
∀(S,C, V,X). (A ∧ G ∧ Inv ⇒ [Act]Inv)

The expression [Act]Inv denotes the actions Act applied as a substitution to the formula
Inv ; it denotes the weakest constraint on the before state such that the execution of Act
leads to an after state satisfying Inv.

2.7 Computer Algebra Systems (CASs)

A computer algebra system (CAS) [21] is a mathematical software that provides the
ability to manipulate mathematical formulas in a manner similar to the traditional manual
calculation of mathematicians and scientists. A key part of this system is the manipulation of
mathematical formulas in symbolic form. It can handle literal expressions and use symbolic
arithmetic where possible to perform exact calculations. Symbolic or formal calculus consists
in making a computer algebra system perform exact mathematical calculations (expansion,
transformation, simplification of expressions). It is typical of algebra that symbols in
formulas are not necessarily replaced by specific numerical values, but are retained in the
process of calculation. They are many tools that support formal calculations such as:
Mathematica [22] , SageMath [6], Maple [23], Matlab [24] etc.

14

CHAPTER 2. CONTEXT

SageMath (System for Algebra and Geometry Experimentation) [6] is a free computer
algebra system that combines the functionalities of many free programs into a common
Python based interface. Its main goal is to create a free and open source alternative to
Magma [25], Maple [26], Mathematica [22] and Matlab [24]. As such, it uses several existing
open source libraries from other projects. It has two modes of use: notebook mode and
command line mode. SageMath covers a wide range of mathematics, including algebra,
calculus, number theory, cryptography, numerical calculus, commutative algebra, group
theory, graph theory, and formal linear algebra.

Analytical Solutions in SageMath

To find the symbolic solution of a given ordinary differential equation, SageMath provides
a function called desolve(). It computes general solutions to ordinary first- or second-order
differential equations via Maxima, which is a system for the manipulation of symbolic
and numerical expressions, including differentiation, integration, Taylor series, Laplace
transforms, ODEs, systems of linear equations, polynomials, sets, lists, vectors, matrices
and tensors. desolve() is defined by:

desolve(de, dvar, ics, ivar, show_method)

• de: represents a differential equation.

• dvar: represents the unknown function (dependent variable).

• ics: represents an optional argument used to specify initial conditions. For linear
equations, specify the list [x0, y0].

• ivar: represents an optional argument that specifies the independent variable.

• show_method: is an optional argument, by default set to False. Otherwise, SageMath
will ask for the solution method to be used.

Numerical Solutions in SageMath

SageMath includes several functions that allow finding approximate solutions for first-order
ODEs using numerical methods such as the Runge-Kutta methods, including the well-
known method called the Euler Method, represented in SageMath by the euler_method()
function. It provides also the 4th order Runge-Kutta method represented in SageMath
by the desolve_rk4 () function. In our development, we decided to implement the result of
desolve_rk4 in Event-B, since it is more complete and easier to use than the euler_method()
function.

Function desolve_rk4 numerically solves first-order ordinary differential equations
using the 4th order Runge-Kutta numerical method. The method is based on the principle
of iteration. It uses the first guess of the solution to compute the second, etc. For example,
using the value of the continuous variable y at time t0, at time t1 calculate the next value
of such. The signature of desolve_rk4 is:

desolve_rk4(equation, variable, ics, [options : ivar, end− points, step, output])

• equation: this argument is either the right-hand side of the equation or the complete
symbolic equation. For example, consider the first-order ordinary differential equation
y′ = ycos(x) + ysin(x), where y is the dependent variable and x is the independent
variable. In this case the argument equation is either y ∗ cos(x)+ y ∗ sin(x) or the full
symbolic equation diff(y, x, 1) == y ∗ cos(x) + y ∗ sin(x) where diff will be used to

15

CHAPTER 2. CONTEXT

represent the left-hand side of an ordinary differential equation in SageMath and
takes as parameters the unknown function y, the independent variable x, and the
order of the ordinary differential equation 1.

• variable: this argument represents the dependent variable y. The dependent variable y
should be defined as the symbolic equation diff(y, t) == ycos(x)+ysin(x), otherwise
var(′y′).

• ics: this argument is given as a list of the initial conditions for the independent
variable x and the dependent variable y, in the order ics = [x0, y0]. If the equation
uses discrete variables a, b, their initial conditions are given in the order in which
they are declared in SageMath: [x0, y0, a0...b0] where a0 and b0 represent the initial
values of a and b.

• ivar: this argument represents the independent variable of a given ODE. It is an
optional argument that takes None as a default value.

• end_points: this argument represents the lower and upper bounds for the interval
over which the numerical values of the dependent variable y are calculated. It is
an optional argument that takes as a default value, end_points = ics[0] + 10. For
example, if ics[0] = 30, desolve_rk4 returns the values of y between 30 and 40.
Otherwise, this argument can take the following values:

– val: integrate between min(ics[0], val) and max(ics[0], val), where ics[0] repre-
sents the initial value of the independent variable x at time 0. For example, if we
set val = 20 and ics[0] = 5, desolve_rk4 will return y values between 5 and 20.

– [m,M]: integrate between min(ics[0],m) and max(ics[0],M). If we consider
m = 5 and M = 20 and ics[0] = 0, desolve_rk4 returns the values of y between
min(ics[0],m) = 0 and max(ics[0],M) = 20.

2.8 Conclusion

In this chapter, we introduced the concepts of cyber-physical systems and hybrid systems,
different kinds of differential equations used to model the continuous behavior of cyber-
physical systems, and the Event-B formal method. Then we presented two classical formal
models for hybrid systems, namely hybrid automata and hybrid programs. To verify that
an hybrid system satisfies its properties, the relevant differential equations need to be
solved, computer algebra system such as SageMath can then be used. The next chapter
is devoted to the presentation of formal approaches used to verify the correctness of hybrid
systems.

16

Chapter 3

State Of Art

Contents
3.1 Model Checking-Based Approaches 18

3.1.1 Hytech . 18

3.1.2 SpaceEx . 18

3.1.3 FLOW∗ . 19

3.1.4 dReach/dReal . 19

3.1.5 Discussion . 19

3.2 Proof-Based Approaches . 19

3.2.1 Differential Dynamic Logic dL 19

3.2.2 Differential Refinement Logic dRL 21

3.2.3 Parallelism and Modular Proof in Differential Dynamic Logic . . 24

3.2.4 Hybrid CSP and Hybrid Chi . 25

3.2.5 Modeling and Verifying Hybrid Systems with Isabelle/HOL . . . 25

3.2.6 Modeling and Verifying Hybrid Systems with Coq and Coquelicot 25

3.2.7 Discussion . 26

3.3 Event-B Based Approaches . 26

3.3.1 A Formal Approach for Correct-by-Construction System Substitution 26

3.3.2 A Correct-by-Construction Design of Hybrid Systems in Event-B 27

3.3.3 Modeling and Refining Hybrid Systems in Event-B 29

3.3.4 A Refinement Strategy for Hybrid System Design 29

3.3.5 Hybrid Event-B . 30

3.3.6 Discussion . 30

3.4 Interfacing Theorem Provers With Computer Algebra Systems 31

3.4.1 An Extensible Ad-Hoc Interface between Lean and Mathematica 31

3.4.2 An Interface between Isabelle and Maple 32

3.4.3 Discussion . 33

3.5 Conclusion . 33

17

CHAPTER 3. STATE OF ART

Hybrid systems are often safety critical systems. A fundamental step in the design of
these systems is their modeling and verification. Today, rigorous development methodologies
based on mathematical and logical foundations are mature enough to support the devel-
opment of hybrid systems. Formal approaches for modeling and verifying hybrid systems
can be divided into two categories: model checking-based approaches and proof-based
approaches.

This chapter presents the current state of formal approaches that have been developed
for the design and verification of hybrid systems. Section 3.1 gives an overview of some
model checking-based approaches. Proof-based approaches to specifying and verifying the
continuous part of CPSs using differential equations are described in Section 3.2. Section 3.3
focuses on the Event-B-based approaches. Section 3.4 presents an approach to integrate
theorem provers with computer algebra systems to prove the safety properties of CPSs.
Finally, Section 3.5 describes issues that can arise when using each approach.

3.1 Model Checking-Based Approaches

Model checking-based approaches, also known as algorithmic approaches, require construct-
ing a finite transitions system through a discrete abstraction such as a hybrid automaton.
These approaches are based on computing a set of reachable states to automatically verify
that the system satisfies a set of expected properties. Depending on the nature of the hybrid
system to be dealt with, various approaches have been proposed. For linear hybrid systems,
the reachability determination is decidable, then tools such HyTech [27], PHaV er [28],
d/dt [29] or SpaceEx [30] are used. Since the reachability of nonlinear systems cannot be
determined, tools such as Flow∗ [31] or iSAT [32] dReal/dReach [33] use bounded model
checking for reachability analysis to prove safety properties on these systems.

3.1.1 Hytech

HyTech [27] is an automatic and symbolic model checker for hybrid linear automata [34].
Hytech is the first model checker to implement reachability analysis for hybrid linear
automata. A key feature of HyTech is its ability to perform parametric analysis, i.e. to
determine the values of the design parameters that will allow the hybrid linear state machine
to meet the timing requirements. Hybrid systems in Hytech are specified as a collection
of discrete and continuous component automata, and timing requirements are verified by
symbolic model checking. If the verification fails, HyTech will generate a diagnostic error
trace.

3.1.2 SpaceEx

The SpaceEx [30] platform implements the reachability and safety verification algorithms for
linear hybrid systems. It is a successor to PHAVer [28] for computing reachable states set of
continuous and hybrid systems. This solves the main problem of PHAVer, which abstracts
linear continuous dynamics by a constant domain associated with the derivative, and poses
a scalability problem due to the large number of domains required. SpaceEx enhances
tools for verifying existing hybrid systems and consists of three components: a command
line program, a powerful analysis kernel, a configuration file that defines initial conditions,
and other options. Among the accessibility computation algorithms implemented in this
platform, we can mention scalable reachability algorithms. SpaceEx combines a polyhedral
representation with a continuous set of support functions to compute an over-approximation
of the states reachable by the system.

18

CHAPTER 3. STATE OF ART

3.1.3 FLOW∗

FLOW ∗ [31] is a verification tool for nonlinear hybrid systems. It focuses on reachability-
based verification of hybrid automata. Reachability problems cannot be determined in a
hybrid automata, so the tool computes an over-approximation of the reachable states set.
Approximation theorems are presented as a finite set of Taylor models [35]. These models
support functional operations such as addition, multiplication, division and derivation.

3.1.4 dReach/dReal

dReach [33] is a tool for verifying the safety of hybrid systems with nonlinear continuous
dynamics. It can handle general hybrid systems containing nonlinear differential equations.
This tool is based on its SMT solver dReal [25] for nonlinear theory on real numbers. dReal
handles problems involving a wide range of real nonlinear functions such as polynomials,
exponentials, etc.

3.1.5 Discussion

An hybrid model checker depends on the type of the hybrid automaton it handles, its
dynamics, and the properties of its guards and invariants. Most model checking-based
approaches are either limited to verifiable properties or to simplified classes of systems.
Unfortunately, the problem of model checking is computationally very difficult. Moreover,
as already mentioned, model checking-based approaches suffer from classical problems
related to state-space explosion of the variables considered. Unfortunately, this problem is
computationally very difficult. In fact, this problem cannot be solved even with a simple
property or system.

3.2 Proof-Based Approaches

This section introduces proof-based approaches that can handle differential equations in
hybrid systems modeling such as dL and its extension dRL, first order differential logics
supported by the theorem prover KeYmaera [36] and its successor KeYmaera X [37].

3.2.1 Differential Dynamic Logic dL

This section describes the real-domain (IR) first-order differential dynamic logic, introduced
by A. Platzer, to express safety and liveness properties of hybrid systems, and its related proof
calculus used to determine their exactness. dL formulas are built using logical symbols of
first-order logic and the modalities [] (box modality) and (diamond modality) [38] according
to the following grammar (where α is a hybrid program (HP); φ, ψ, θ1 and θ2 are formulas
and x is a variable):

[α]φ | ⟨α⟩φ | φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | φ↔ ψ | ∀xφ | ∃xφ

• [α]φ: is true if after each run of HP α, formula φ holds.

• ⟨α⟩φ: is true if φ is true after at least one run of HP α.

• φ ::= θ1 ∼ θ2: is true iff θ1 ∼ θ2 is true with ∼ ∈ {=, >,≥, <,≤}.

• ¬φ: is true if φ is false.

• φ ∧ ψ: is true if both φ and ψ are true.

19

CHAPTER 3. STATE OF ART

• φ ∨ ψ: is true if φ is true or ψ is true.

• φ→ ψ: is true if φ is false or ψ is true.

• φ↔ ψ: is true if φ and ψ are both true or both false.

• ∀xφ: is true if φ is true for all values of variable x.

• ∃xφ: is true if φ is true for some values of variable x.

To prove the safety of hybrid systems, dL provides a proof calculus supported by two
formal verification tools, KeYmaera and its successor KeYmaera X. The main advantage of
dL is its ability to handle differential equations with non-polynomial solutions. When a
system of differential equations does not have a polynomial solution, many mechanisms of
differential induction (induction of differential equations) are available, such as differential
invariants and differential cuts. On the other hand, if the solution is polynomial, it can be
easily replaced with a discrete assignment at any point once the time variable is introduced.
Finally, in order to establish a safety property for a system, safeReq, a formula expressing
safety relative to initial conditions needs to be proved, init → [(ctrl; plant)∗](safeReq) that
means: if the initial conditions (init) hold, then, after each run of the hybrid program,
safeReq remains true.

KeYmaera is an automated/interactive formal verification tool for hybrid systems that
supports dL and its associated proof calculus. KeYmaera is a combination of deductive,
real algebraic and computational algebraic proof techniques. To automate the verification
process, KeYmaera implements an auto-proof strategy that symbolically decomposes hybrid
system specifications using dL proof rules defined in a rule base. KeYmaera interacts with
several solvers such as Mathematica and Orbital, a Java math library. KeYmaera uses
both tools to obtain symbolic solutions of differential equations that can be used to treat
continuous dynamics. In addition, KeYmaera provides a set of proof rules for handling
differential induction mechanisms, allowing differential equations with non-polynomial
solutions to be treated. The most interesting mechanism is the differential invariant, which
provides induction of differential equations. The main advantage of such invariants is the
ability to prove properties of differential equations without solving the equations. To prove
the safety properties of hybrid systems using KeYmaera, we must define a KeYmaera file
which specifies both, the model of the hybrid system and the correctness property to verify.
KeYmaera files are defined by the following syntax:

• α ::= α;β: the symbol ; specifies a sequential composition of the hybrid programs α
and β. It executes all the instructions of α and then executes the program β.

• x := t: the symbol := specifies a discrete assignment that assigns the value of term t
to x.

• x := ∗: assigns non-deterministically any real to x.

• ?H: the symbol ? checks if the formula H is true or not.

• α++β: represents a non-deterministic choice between the hyprid programs α and β.

• α∗: it non-deterministically repeats the hybrid program α.

• {x′ = t, y′ = s,H}: specifies the differential equations that describe the continuous
behaviors of the state variables x and y, with evolution domain constraint H which
needs to be true during the evolution.

20

CHAPTER 3. STATE OF ART

KeYmaera X is the successor to the KeYmaera tool and also supports differential
dynamic logic and hybrid programs. The most important feature of KeYmaera X is the
ability to allow users to specify custom proof search techniques as tactics using its proof
programming language called Bellerophon. A tactic is a program that combines a set of
proof rules to define a proof discovery strategy.

3.2.2 Differential Refinement Logic dRL

dRL [5] is a generalized refinement computation of dL. dRL extends dL by introducing
hyprid programs refinement operator (≤). In addition to the dL expressions, dRL defines
expressions of the form α ≤ β, read α refines β, with α and β denoting HPs. According
to [5], the expression α ≤ β is true in state s if and only if all states reachable from s by
following transitions from α are also reachable from state s by following transitions from β.

dRL preserves the safety properties of refined hybrid programs by showing that if
α ≤ β and [β]φ, then the formula φ is true in all states reachable from s by following the
transitions of α ([α]φ). There is a similar rule for diamond modalities (⟨ ⟩), which states
that if α refines β, and there is at least one transition from α to a state s where φ is true,
then ⟨β⟩φ is true. This is represented by the following two proof rules:

Γ ⊢ [α]φ,∆ Γ ⊢ β ≤ α,∆

Γ ⊢ [β]φ,∆
([≤])

Γ ⊢ ⟨α⟩φ,∆ Γ ⊢ β ≤ α,∆

Γ ⊢ ⟨β⟩φ,∆
(⟨≤⟩)

A proof calculus associated with a logical language such as dL or dRL is a set of syntactic
transformations that are each proved sound. By combining many of these transformations
on a complicated formula, we may simplify and break apart the formula until we are left
with formulas that can be proved true using quantifier elimination, in which case we have a
proof of our original complicated formula. The proof calculs for dRL is composed of three
types of proof rules:

• Proof rules based on the axioms of the KAT algebra [39].

Γ ⊢ [α∗](α; γ) ≤ γ,∆ Γ ⊢ [α∗]β ≤ γ,∆

Γ ⊢ α∗;β ≤ γ,∆
(loopl)

Γ ⊢ β ≤ γ,∆ Γ ⊢ (γ;α) ≤ γ,∆

Γ ⊢ β;α∗ ≤ γ,∆
(loopr)

these two proof rules are used to handle loops in a refinement proof. When we have
α∗;β, we add a [α∗] to both the left and right premise, in contrast to loopr that does
not require modalities in the premises.

• Structural proof rules, which exploit the similarities between hybrid programs.

Γ ⊢ α1 ≤ α2,∆ Γ ⊢ [α1](β1 ≤ β2),∆

Γ ⊢ (α1;β1) ≤ (α2;β2),∆
(;)

this proof rule is used to handle the refinement of sequential hybrid programs.

21

CHAPTER 3. STATE OF ART

• Proof rules to handle the refinement of differential equations:

Γ ⊢ ∀x(H1 → H2),∆

Γ ⊢ (x′ = θ & H1) ≤ (x′ = θ & H2),∆
(DR)

this proof rule shows that if two differential equations differ only in their evolution
domain, then a refinement relationship can be only satisfied if the evolution domain
of the smaller program is subset of the evolution domain of the larger program.

3.2.2.1 Event and Time-Triggered Systems in dRL

dRL introduces two generic templates [5], Model 3.1 and Model 3.2, to design and prove
Event- and Time-Triggered systems presented in Section 2.2. The control part of these
two generic templates has only two modes: the normal mode is triggered when the system
safety envelope, denoted by safe, is satisfied, otherwise the system enters into the evade
mode. Note that the operator ∼ is used to designate the topological closure of the negation.
Model 3.1 represents the generic model associated with a controller triggered by events:

Event-Triggered Model

Model 3.1: Event-triggered Generic Model

event∗ ≡ (ctrlEv; plantEv)
∗ (3.1.1)

ctrlEv ≡ (ctrlV := evade_value) ∪ (ctrlV := ∗; ?safe(plantV)) (3.1.2)
plantEv ≡ t := 0; plantV0 := plantV ; (plantV ′ = f_evol(ctrlV),
t′ = 1& evt_trig(plantV) ∧ dom_evol(plantV)) (3.1.3)
∪ (plantV ′ = f_evol(ctrlV), t′ = 1 & ∼ evt_trig(plantV)

∧dom_evol(plantV)) (3.1.4)

Where:

• ctrlV : the control variable (acceleration in the case of a car).

• plantV : the state variable of the system (position and velocity in the case of a car).

• plantV ′: represents the evolution of plantV over time d(plantV)/dt. Mention that
in dL, the notation variable′ denotes a derivative while, in Event-B, it is used to
denote the new value of variable after triggering the event that updates it.

• safe(plantV): defines the system safety envelope. It is calculated from the safety
requirement that the system must satisfy.

• plantV ′ = f_evol(ctrlV): defines the ordinary differential equation that describes the
continuous evolution of the system.

• evt_trig(plantV): the predicate that defines the boundary of the safety envelope.
When the system becomes closed to this boundary, the controller triggers the evade
mode. It must define a closed domain.

• ∼ evt_trig(plantV): topological closure of the complement of evt_trig.

• dom_evol(plantV): defines the evolution domain of the system. It is a set of con-
straints on the state variable. For example, the evolution domain of the Bouncing
Ball case study is x ≥ 0 which denotes that the car is not allowed to back down.

22

CHAPTER 3. STATE OF ART

• plantV0: represents the initial value of plantV .

When the formula safe is satisfied, the system can evolve continuously according to the
formula (3.1.3) until it reaches the boundary of the domain evt_trig(plantV). In that
case, the controller must then switch to the evade mode by affecting a deterministic value
evade_value to the control variable (ctrlV), it will behave according to the formula (3.1.4).
Note that the variables t and plantV0 have no effect on the state of this model; they will be
used in the second model. To prove the safety of this model, dRL provides the following
proof obligation where ζ is the context of the system that may contain any property needed
to facilitate the proof:

evt_trig(plantV) ∧ ζ ⊢ [event](evt_trig(plantV) ∧ ζ)

This proof obligation states that Model 3.1 is safe if its associated hybrid program event
always satisfies the loop invariant evt_trig(plantV) and ζ.

Time-Triggered Model

Model 3.2: Time-triggered Generic Model

time∗ ≡ (ctrlt; plantt)
∗ (3.2.1)

ctrlt ≡ (ctrlV := evade_value)
∪ (ctrlV := ∗; ?safeϵ(plantV, ctrlV)) (3.2.2)

plantt ≡ t := 0; plantV0 := plantV ; (plantV ′ = f_evol(ctrlV),
t′ = 1 & t ≤ ϵ ∧ dom_evol(plantV)) (3.2.3)

where
ϵ: maximum time between two sensor updates.
t: allows to know if the duration ϵ is reached or not.

Model 3.2 represents the generic model associated to a Time-Triggered system. The
controller of such system reacts at least every ϵ seconds, where the formulas (3.1.3) and
(3.1.4) are replaced by the formula (3.2.3). Formula safe is also replaced by formula safeϵ,
which depends on both the current choice of ctrlV and the time duration ϵ, in addition to
the current state plantV , in order to guarantee that the controller will make a choice that
will be safe for up to ϵ time. To prove that Model 3.2 satisfies a safety property φ, dRL
has introduced the following proof obligation ([≤]) where ∆ denotes a set of formulas like
invariant properties.

ζ ⊢ [event∗]φ,∆ ζ ⊢ (time∗ ≤ event∗),∆

ζ ⊢ [time∗]φ,∆
[≤]

This proof obligation consists of two sub-proof obligations: the first one proves that Model
3.1 satisfies the system safety property φ, and the second one aims at verifying that Model
3.2 refines Model 3.1.

3.2.2.2 Time-Triggered Model Refines Event-Triggered Model

To prove that a Time-Triggered system refines an Event-Triggered system, dRL provides
three proof obligations:

• PO1_dRL : evt_trig(plantV) ∧ ζ ∧ safeϵ(plantV, ¯ctrlV) ⊢ safe(plantV)

23

CHAPTER 3. STATE OF ART

where: ¯ctrlV : represents a non-deterministic choice of the control variable. This proof
obligation expresses that the safety envelope of Model 3.2 implies that of Model 3.1,
which means that the discrete controller refines the continuous one.

• PO2_dRL: evt_trig(¯plantV0) ∧ ζ ∧ safeϵ(¯plantV0, ¯ctrlV) ∧ 0 ≤ t ≤ ϵ
∧ dom_evol(¯plantV) ∧ ¯plantV = S ¯plantV0, ¯ctrlV (t) ⊢ evt_trig(¯plantV)

where:
¯plantV0: set of physical state variables values at instant t = 0.
¯plantV : set of physical state variables values at instant t.

S ¯plantV0, ¯ctrlV (t): solutions of the ordinary differential equation associated with
plantV0, given ¯ctrlV .

This proof obligation expresses that the non-deterministic choice of ctrlV := ∗
expressed by ¯ctrlV guarantees that the system will not cross the boundary of
evt_trig(plantV) within time ϵ.

• PO3_dRL: evt_trig(¯plantV0) ∧ ζ ∧ 0 ≤ t ≤ ϵ ∧ dom_evol(¯plantV)
∧ ¯plantV = S ¯plantV0,evade_value(t) ⊢ evt_trig(¯plantV)

This proof obligation is similar to the previous one for the evade mode: ctrlV :=
evade_value.

It is worth noting that such proof obligations are achieved on the instantiated models
since they cannot be discharged on the generic ones without having concrete expressions
for the different formulae. The major limitation of dRL is that it is not supported by any
prover, thus these proof obligations are manually discharged. This limitation represents
a strong restriction on its application to more complex hybrid systems since a such proof
activity is very tedious and error-prone.

3.2.3 Parallelism and Modular Proof in Differential Dynamic Logic

Refinement allows building hybrid systems gradually by starting with an abstract system
easy to understand and verify until we get the concrete system. This development approach
simplifies the challenge of large-scale verification of hybrid systems. There is another
method called the component-based method that simplifies the complexity of hybrid
systems. Basically, the hybrid system is disassembled into parts (components) to easily
check the safety, and these components are assembled using the assembly mechanism to
form the entire system. Among the approaches proposed to support this method, we
can cite the one presented in [40]. It is based on differential dynamic logic and defines
parallel composition operator ◦ for building a system from its parts. This operator is the
first composition operator in differential dynamic logic that is modular, commutative and
associative.

The author of [40] introduces two parallel composition operators. The first is called
the parallel continuous compositing operator and is denoted by ◦c. This is defined as the
purely continuous behavior of the component, i.e. ODEs to construct. As a reminder, the
continuous part of a hybrid system is represented by an ordinary differential equation of the
form y′ = θy & dom_evoly where y is a vector of state variables (y1,, yn), presented in
the previous sections by the variable plantV , and θx is a vector (θ1,, θn) of terms of
real arithmetic, presented in the previous sections by the term f_evol(ctrlV). The second
operator is used to compose behaviors that combine both continuous and discrete parts.
To facilitate the proof process, the approach extends the proof system of dL in order to
be able to decompose the proof of the global system. In Event-B, we can decompose a

24

CHAPTER 3. STATE OF ART

complex system into multiple sub-systems but there is no mechanism to recompose these
sub-systems. Composing sub-systems in Event-B can be an interesting subject of research
for future work.

3.2.4 Hybrid CSP and Hybrid Chi

The formal language Hybrid Communicating Sequential Processes (HCSP) [41, 42] is an
extension of Communicating Sequential Processes (CSP) [43] that allows modeling the
sequential dynamics of hybrid systems. With support for continuous variables and differential
equations, HCSP can be used to model real-time and continuous behaviors in message-based
communications. The approach developed in [44] verifies the safety of HCSP processes
by using differential invariants to reason about differential equations and using logic to
handle communication, parallelism interruptions, timing, etc. Moreover, Hybrid Hoare
Logic [45] is supported by an interactive theorem prover based on Isabelle/HOL that allows
verification of HCSP models. A set of refinement rules is defined to refine the HCSP
abstract specification to lower-level implementations. The work presented in [46] proposes
another hybrid extension of CSP, a new formal language called Hybrid Chi. It integrates
the concepts of dynamics and control theory with those of computer science, especially
those of process algebra and hybrid automata. The HCSP approach differs from Hybrid Chi
in that it does not share common variables essential for modular specification of continuous
and hybrid systems. With Hybrid CSP and Hybrid Chi, formal methods can be applied to
continuous processes.

3.2.5 Modeling and Verifying Hybrid Systems with Isabelle/HOL

The authors of [47] present a new proof-based approach that introduces a new differential
Hoare logic dH and a new differential refinement calculus dR using the higher-order logic
proof assistant Isabelle/HOL. Using this approach, a complex property, like ordinary
differential equation liveness or program correctness, should be modeled using dH, broken
down into (simpler) step-by-step refinements using dR and proved in Isabelle. The differential
Hoare Logics dH implements the differential dynamic logic in Isabelle by simply adding
a single Hoare-style axiom. The approach uses the Kleene algebras [48] with tests and
the Morgan-style approach [49] to derive rules for verification condition generation and
refinement laws of dR. The authors have developed new methods and Isabelle components
[50] to support the modeling and the verification of hybrid programs using dR and dH
in Isabelle/HOL. dR and dH are implemented in Isabelle/HOL, a proof assistant that
combines a high level of automation with a unique big and coherent library of theorems
about differential equations. Furthermore, Isabelle/HOL brings the advantage of generality,
i.e the proof completed for a given hybrid system could be reused in a longer proof for a
complex system.

3.2.6 Modeling and Verifying Hybrid Systems with Coq and Coquelicot

The authors of [51] present a new approach for modeling and verifying hybrid systems
using the interactive theorem prover Coq and its library Coquelicot for real analysis [52].
The Coq system is based on recursive calculus that combines both higher-order logic and a
richly typed functional programming language. Programs can be extracted from proofs into
external programming languages such as OCaml or Haskell. The approach of [51] proposes to
encode in the C programming language a discrete representation of a continuous differential
equation that describes the behavior of a 1D sound wave system. This C program has two
different sets of annotations. The first one relates to continuous definitions (derivation,
approximation by Taylor series, etc.) and the second one relates to discrete aspects of the
program (loop invariants, pre-conditions and post-conditions of the used functions, etc.).
Frama-C is used to extract these annotations and projects them into Jessie [53] or Why [54]

25

CHAPTER 3. STATE OF ART

that generates proof obligations. These POs are discharged automatically or interactively
using the SMT solver or interactively using Coquelicot.

3.2.7 Discussion

In this section, we presented the differential refinement logic dRL that extends the differential
logic dL in order to define a relation of refinement between hybrid programs. The proof
obligations in dRL are difficult to discharge since there is no tool that supports this logic.
Moreover, performing proofs using KeYmaeraX, the automatic theorem prover for dL,
requires us to guess the relevant invariants which is not always possible. For this purpose,
the approach introduced in [40] proposes to replace the refinement strategy designed for
dL by a method called the component-based that also simplifies the complexity of hybrid
systems. Unlike dRL, developing hybrid systems with Event-B permits to deal with the
complexity of the system by incrementally introducing the properties. Moreover, Event-B
permits to have a good view on the proof activity and its different steps that helps us to
have a better understanding of the system.

We have also presented three proof-based methods for modeling and verifying hybrid
systems. The approaches presented in Section 3.2.4 are commonly used for modeling and
verifying distributed hybrid systems. The main limitation of these approaches is that they
represent higher-order logic without providing a means of checking this logic, making them
difficult to use. The approach introduced in [47] proposes to model and verify hybrid
systems using Isabelle/HOL. Compared to the level of automation in Isabelle/HOL, more
automatic proofs can be discharged in KeYmaera X. Moreover, KeYmaera X proofs can
be reused in Isabelle/HOL proofs [55]. Last, the approach described in [51] proposes to
use Coq and its library Coquelicot to model and verify the continuous behaviors of hybrid
systems. The approaches [47,51] use two well known theorem provers, Isabelle/HOL and
Coq. In our work, we are interested by proof-based approaches that use the formal method
Event-B and its refinement strategy in order to bridge the gap between modeling and
implementing cyber-physical systems.

3.3 Event-B Based Approaches

In this section, we focus on existing proof-based approaches, based on Event-B, that
enable modeling and verification of hybrid systems.

3.3.1 A Formal Approach for Correct-by-Construction System Substitu-
tion

The approach presented by G. Babin et al in [56] allows formal modeling and verification of
hybrid systems using discrete Event-B, Rodin tools and theory plugins. This approach
relies on proof, refinement, and discretization of continuous functions to manage the evolution
of discrete controllers. This development includes three levels. The first level defines an
abstract model of the controller, the second level introduces a continuous controller, and the
third level builds a discrete controller. This approach is illustrated by developing a stability
controller. It is a simple stability controller for a generic plant model characterized by a
single continuous function f that models its behavior. Control actions with this system are
simple. This consists in shutting down the system when it exceeds the limits m and M
representing the minimum/maximum values of the continuous variable. The goal of this
development is to show how a controller featuring a simple state transition system and a
physics plant featuring a continuous function can be formally integrated into a single formal
Event-B development that incrementally encodes a hybrid automaton.

Replacing the control part (generic system) with the control part of the selected case
study, the Water Tank case study, yields the following system specifications: if the water

26

CHAPTER 3. STATE OF ART

level is kept rising until it reaches M , the system enters an operating state in which the
water level can rise or fall, but the limits m and M must not be exceeded. Exceeding
these limits will cause the system to enter a shutdown state and reduce the water level to
zero. Developing a stability controller with this approach consists of three steps. The first
step is to define the behavior of the system controller at an abstract level. After modeling
the system at an abstract level with three discrete states, the second step is to introduce
a continuous controller by defining a continuous function f : IR+ → IR+ that specifies
the behavior of the plant. The final step is to implement the discrete controller. It is
therefore essential to define the correct discretization of time that preserves the continuous
behavior introduced in the second step. This step also introduces a margin z that allows the
controller to anticipate the next observable behavior before the spurious behavior occurs.
The control strategy for the last two steps is to check the values obtained from the control
system after a control step called dt. That is, the controller must examine future values of
f before deciding whether to keep the system in the same discrete state or change. For this
purpose, the approach uses the notion of the variable now which models the current time
as in the approaches [57,58].

3.3.2 A Correct-by-Construction Design of Hybrid Systems in Event-B

The approach introduced by G. Dupont et al. in [10], uses the plug-in Theory of Event-B in
order to handle continuous aspects of CPSs. It defines a theory named DiffEq that provides
several abstract operators to model differential equations and their relevant properties.
The approach presents a framework for modeling and verifying hybrid systems. This
framework consists of two main patterns: the generic pattern, designed for modeling hybrid
systems described with ODEs that admit exact solutions, can be applied to three types
of CPSs architectures (single-controller-to-single-plant, single-controller-to-many-plants,
many-controllers-to-many-plants), the approximated pattern can be applied to prove the
refinement relation between an ordinary differential equation system and an approximately
equivalent one.

3.3.2.1 The Generic Pattern

The behavior of CPSs is specified by the following three Event-B models: System model,
State System model and Controlled System model.

• System model is used to describe the continuous evolution of the time t and the
generic continuous measurement, represented by the variable plantV , using some
operators of the DiffEq theory. plantV is specified as a function (plantV ∈ IR+ → S)
where IR+ represents time and S is a constant defined in the associated context as
follows: IRn with n representing the number of continuous variables of the system. For
example, in case of the Bouncing Ball case study, we have two continuous variables x
and v, so S is equal to IR× IR. The progression of the time t is modeled by an event
named Progress (see Figure 3.1), which states that the new value of t will become
greater than its previous value. An Event-B event expresses the transformation
applied to the state under the form of a predicate, called the before-after predicate,
that links the value of the state before the event is triggered, and its value after it
has been triggered1. In such a predicate, noted : |, x′ denotes the after-value of the
variable x [18].
The behavior of plantV is specified by the event Behave (see Figure 3.2). The clause
ANY e specifies that the parameter e must be chosen such that the guards grd1 and
grd2 are verified. These guards respectively state that e belongs to DE(S), set of
differential equations built on S i.e e must have values in S, and must have a solution

1Substitution (t : |t′ ∈ IR+ ∧ t < t′) can be rewritten into (ANY t1 WHERE t1 ∈ IR+ ∧ t < t1 THEN
t := t1 END

27

CHAPTER 3. STATE OF ART

EVENT Progress
THEN

act1 : t : | t ′ ∈ IR+ ∧ t < t′

END

Figure 3.1: Event Progress

in the interval [t,∞[. Variable plantV evolves according to e in the intervals [0, t[and
[t,∞[, which is specified using the AppendSolutionBAP operator defined in DiffEq
(see act1). This operator permits to update the plantV by calculating its new value
on both intervals [0, t[and [t,∞[. Consequently, the previous values on [0, t[are
overridden. In Event-B, events may be triggered only when all their guards are
satisfied. Therefore, the event Progress is triggered continuously to update the time t
and once the guards of the event Behave are satisfied, the event can be triggered to
update the continuous variables until the new value of t. In the action act1, t denote
the current value of variable t before the execution of the event Behave.

EVENT Behave
ANY e
WHERE

grd1 : e ∈ DE(S)
grd2 : Solvable([t,∞[, e)

THEN
act1 : plantV : |plantV ′ ∈ IR+ → S ∧AppendSolutionBAP (e, IR+,
[0, t[, [t,∞[, plantV, plantV ′)

END

Figure 3.2: Event Behave

• State System model refines the abstract System model by introducing the evolution
of the discrete part represented by the controller. This evolution is specified by
an event that updates the value of a variable modeling the possible states of the
controller. Then, the interaction between the plant and the controller is modeled in
the Controlled System model that refines the State System model.

To get the concrete model corresponding to a hybrid system using this approach, the Theory
plug-in [20] is used to define all the concrete ODEs that describe the continuous behavior
of the modeled system, and the properties on these ODEs are specified using the DiffEq
operator lipschitzContinuous to ensure that they admit solutions.

3.3.2.2 The Approximation Pattern

In [59], G. Dupont et al. introduce a new Event-B pattern that encodes an approximate
refinement operation for modeling and verifying hybrid systems described with ODEs that
do not admit exact solutions. This pattern was developed to formalize commonly used
approximation operations implemented by designers. It consists of an Event-B model that
refines the generic model and encodes an approximate refinement operation. An example
of such an approximation is linearization. Nonlinear ordinary differential equations are
approximately refined by linear ordinary differential equations. The authors consider the
well-known Inverted Pendulum case study to illustrate the usage of this pattern. This
problem is particularly important because it does not admit an exact solution and requires
the use of linearization for proper implementation. To implement this pattern in Event-B,
the authors developed an approximation theory. This theory defines a set of operators used
to model approximations as a refinement:

28

CHAPTER 3. STATE OF ART

• Approximation Operator ≈δ: allows modeling the approximate equality in Event-B.
x ∈ E is approximately equals to y ∈ E according to an approximation factor δ ∈ IR+

iff d(x, y) ≤ δ, where d is the distance of the space metric (E, d).

• δ-membership (∈δ). Let S ⊆ E and y ∈ E. y belongs to S up to δ, denoted y ∈δ S,
iff ∃x ∈ S, d(x, y) ≤ δ.

To illustrate the application of this pattern, the authors use the Inverted Pendulum.
To model this case study, three steps are identified. The first step consists in defining a
theory that holds every important concepts needed to model this kind of system: differential
equations (both non-linear and linearised) and adequate controls for the systems, as well as
various physical and mathematical properties that will help in establishing the correctness
of the system. The second step consists in modeling the abstract model of the case study,
which features the nonlinear differential equation. The final step consists in using the
approximation refinement to model the concrete model of the case study, which features
the linear differential equation

3.3.3 Modeling and Refining Hybrid Systems in Event-B

The authors of [57] present a new approach to model an hybrid system with Event-B
supported by the Rodin toolset. They start by modeling the discrete part of the hybrid
system and then introduce the development of the continuous part using refinement strategy.
The continuous part is represented by a variable named x and its evolution over time is
described by a continuous function x_c(t). The discrete part is modeled using two discrete
events UP and DN . For example, in the case of a Water Tank, DN represents the valve
and UP the pump. The UP event is activated when x_c(t) is equal to the abstract value
represented by 0 in the generic model, and the DN event is activated when x_c(t) is equal
to the abstract value represented by 1. The time in Event-B must be explicitly modeled,
so the author uses the event CLICK to introduce the progression of time. This updates a
discrete variable named now to represent the current time. This is very similar to what we
propose. The CLICK event is fired each time a normal DN or UP events is performed.
The control strategy chosen by the approach should ensure that x_c(t) is always defined
on the interval [0, 1]. To complement this approach, the author suggests adding the use of
MATLAB to verify the system by examining analytical solutions of differential equations
associated with continuous functions.

The authors of [58] propose an approach to model hybrid systems using Event-B. This
approach, supported by the Rodin toolset and Theory plugin, introduces new concepts
to Event-B: real, continuous and monotonic functions. The authors start by modeling
the continuous part and then introduce the discrete part. Similar to [57], the evolution
of the continuous part is described by a continuous function over real intervals and the
progression of time is described by the variable now and the Click event. Preserving the
properties of the continuous functions is the key for ensuring the correctness of refined
machines. Additionally, the authors use a monotonic continuous function to ensure that
"nothing bad" happens between two executions of the Click event. The main limitation of
these approaches [57, 58] is that they use continuous functions instead of using differential
equations that are more representative of the continuous parts of hybrid systems. Moreover,
these approaches treat only Event-Triggered systems which restrict their use.

3.3.4 A Refinement Strategy for Hybrid System Design

The approach proposed in [60] is inspired by the work of [57] to integrate traditional
refinement in hybrid system modeling. The approach is based on a series of refinement steps,
each step aims to modularly introduce a specific kind of implementation detail. They start
by a generic specification for hybrid systems then they refine this specification to introduce
the safety property of a specific hybrid system. The third step of refinement consists in

29

CHAPTER 3. STATE OF ART

introducing the period of control using the variable now such as in [58]. The period of
control is used to introduce the notion of cycles. Each cycle is an interval between now and
now + σ, where σ is a constant to model periodic cycle. The control part is introduced in
the fifth step of refinement. In order to concretize the control part, the authors develop
a discrete control refinement toolkit, which contains a list of domain-specific refinement
steps. The final step of refinement aims to bridge the gap between the Event-B models
and the implementation. Such as [57,58], the approach provides a generic pattern to only
treat Event-Triggered systems. Moreover, the approach directly uses analytical solutions to
model the evolution of the continuous part without expressing the differential equations
that describe the continuous behaviors of hybrid systems.

3.3.5 Hybrid Event-B

The approach presented in [61] proposes a formal method, called Hybrid Event-B, to
add continuous aspects to Event-B. It defines two kinds of events: mode events and
pliant events. mode events represent the discrete Event-B events. pliant events allow the
description of continuous behaviors with continuous functions and differential equations.
Variables are also partitioned into two categories: mode variables, which represent the
traditional discrete Event-B variables; pliant variables which can evolve both continuously
and via discrete events. Time is modeled as a fixed left-closed right-open interval T ⊆
IR. To deal with discrete events, T is partitioned into a sequence of intervals, T =
([t0, t1[∪[t1, t2[∪....). The structure of a Hybrid Event-B machine is described as follows:
after the machine name is the TIME declaration, which names a read-only variable used to
denote real time (if needed). Next comes a CLOCK variable clk, which increases at the same
rate as time during every pliant event and which can be updated in mode events. Then
come the PLIANT and V ARIABLES declarations. Next come the INV ARIANTS.
Then come the EV ENTS, starting with the INITIALISATION which is a discrete
event. Then come the remaining mode events and pliant events. Pliant events need new
syntax, pliant variables can be assigned values either via the solution of a DE, or directly
by being assigned the value of a time dependent expression, or indeed by being assigned a
value consistent with some time dependent predicate.

Hybrid Event-B treats the Zeno behavior, where the time interval continually gets
smaller and smaller, by adding a constant δZeno, such that for all i, ti+1 − ti ≥ δZeno. The
correctness of Hybrid Event-B models is ensured using a set of customized proof obligations
patterns, defined in a way similar to classical Event-B. These Hybrid Event-B POs
patterns allow deriving a number of proof obligations from any given Hybrid Event-B
model. The major limitation of this approach is that it is not supported by any tool.
However, the approach was successfully applied on many concrete examples and it was even
used in the development of the approach introduced in [62] which proposes a conceptual
model for hybrid systems engineering composed of a structural and a behavioral part.
Moreover, it represents a source of inspiration for several approaches based on discrete
Event-B including ours.

3.3.6 Discussion

The major limitation of the approaches described in [57,58] is the use of continuous functions
to model the evolution of continuous parts, whereas, in practice, continuous behaviors are
defined using differential equations. In our work, we propose to deal with this limitation by
the use of a theory developed to treat differential equations in Event-B. The approach
presented in [60] does not express differential equations in Event-B, it directly uses
analytical solutions to model the evolution of the continuous part, which decreases the
readability and the maintainability of the approach. Moreover, models specified by these
approaches are at a level of abstraction comparable to that of Time-Triggered models. We
think that it is easier to specify systems at a higher level of abstraction and then introduce
step by step different kinds of functionalities and properties. On the other hand, Hybrid

30

CHAPTER 3. STATE OF ART

Event-B supports differential equations and provides multiple concepts to treat continuous
aspects of hybrid systems. However, it is not possible to use the Rodin platform to specify
and prove Hybrid Event-B models. Indeed, in Hybrid Event-B, proof obligations must
be generated and discharged manually, which makes it difficult to apply on critical systems.

3.4 Interfacing Theorem Provers With Computer Algebra
Systems

The integration of theorem provers and computer algebra systems is of interest to many
researchers. There are many ways to ensure this integration. The following methods are
the most common:

• Theorem provers built on the top of computer algebra systems: approaches in this
category develop new theorem provers that encapsulate existing computer algebra
systems. For example, the approach described in [63] proposes a new theorem prover
named Theorema 2.0, based on the computer algebra system Mathematica.

• Embedding a computer algebra system in proof assistants : this category is represented
by the work presented in [64]. This approach represents an architecture that guarantees
the results provided by the computer algebra system.

• Bridge or ad-hoc information exchange solutions: approaches in this category are
based on building an interface between theorem provers and computer algebra systems
and verifying the calculus generated by the computer algebra system.

Our focus is on what we call bridges or ad-hoc information exchange solutions. Approaches
in this category are based on building an interface between theorem provers and computer
algebra systems. Some approaches use the output of the theorem prover without checking
its correctness, and others use it independently of how computer algebra systems obtained
it. Among the approaches that have been developed for calling computer algebra systems
from a theorem prover is the one that proposes an extensible ad-hoc interface for linking
the Lean theorem prover with the computer algebra system Mathematica [65]. The results
returned by Mathematica are examined separately in Lean by defining a set of tactics for
each type of Mathematica expressions. We can also cite the approach that links the theorem
prover Isabelle [66] and the computer algebra system Maple [23] by specifying the syntax of
Maple in Isabelle and providing a prototype implementation of an interface designed by
making modifications on Isabelle without modifying Maple [67].

3.4.1 An Extensible Ad-Hoc Interface between Lean and Mathematica

In this section, we describe the approach presented in [65] that proposes an extensible ad-hoc
interface to link the theorem prover Lean with the computer algebra system Mathematica.
The authors of this approach separate the steps of communication between the theorem
prover/the computer algebra system, and the verification of simplifications made by the
computer algebra system. Therefore, the results returned by Mathematica are verified
separately in Lean by defining a set of tactics for each type of simplification.

Lean theorem prover is a new open source theorem prover and programming language
developed by Microsoft Research in 2013. Lean can be accessed through a web browser, a
JavaScript version of Lean, or installed on a user computer. Lean users can use a custom
metaprogramming language to create functions that automatically prove some theorems.
Lean is also based on the calculus of inductive construction (CIC). This is an extension of
the lambda calculus with dependent types and an inductive definition. For example, the
natural numbers are defined in Lean by:

31

CHAPTER 3. STATE OF ART

inductive nat : Type
|zero : nat
|succ : nat→ nat

We can then define the function add that represents the addition operation on natu-
ral numbers in Lean. For example, the expression x+x is written in Lean language: add xx.

definition add : nat→ nat→ nat
|nzero := n
|n(succm) := succ(addnm)

Calling Mathematica from Lean this approach expresses Mathematica expressions in
Lean syntax and vice versa. It consists of the following steps (see Figure 3.3):

• Step 1: converts a particular Lean expression e, created using a grammar called expr
that was designed especially in Lean to ensure the communication between Lean and
Mathematica, into Mathematica syntax by using Lean functions.

• Step 2: converts the expression obtained in Step 1 to a Lean expression in Mathe-
matica syntax using Mathematica functions.

• Step 3: interprets the result of Step 2 into the Mathematica representation.

• Step 4: uses Mathematica functions to solve mathematical problems needed to prove
the safety properties of the modeled system.

• Step 5: converts the Mathematica expression e to a Mathematica expression in
mmexpr syntax f . mmexpr is also a grammar developed by Lean for communication
between Lean and Mathematica.

• Step 6: converts the result of the previous step into a Lean expression using the
grammar expr.

Figure 3.3: Calling Mathematica from Lean

3.4.2 An Interface between Isabelle and Maple

This section presents the approach introduced in [67] that provides a bridge between
Isabelle theorem prover and the computer algebra system Maple by specifying Maple
syntax in Isabelle and providing a prototype implementation of the interface designed with
modifications to Isabelle without modifying Maple.

32

CHAPTER 3. STATE OF ART

Isabelle theorem prover is a generic theorem prover for interactive theorem proving
that supports a variety of logics such as the higher-order logic (HOL) implemented in
Isabelle as Isabelle/HOL. Isabelle is based on the notion of theory, a named collection of
types, functions, and theorems, much like a module in a programming language. A theory
is built in Isabelle as follows (where T1...Tn are existing theories):

theory T
imports T1...Tn
begin declarations, definitions, and proofs
end

Isabelle usually applies a proof method called simplification in order to prove theorems.
Simplifications mean using equations left = right from left to right (only) as long as
possible. The tool that allows performing simplifications in Isabelle is called the simplifier.
This latter uses a set of simplification rules, known as a simpset and declared as theorems
using an attribute named simp.

Calling Maple from Isabelle is done thanks to a prototype implementation of an
interface that enables Isabelle to communicate with a chosen computer algebra system,
Maple for example. This prototype consists of a computer algebra system, a theorem prover,
and a common evaluator (bridge) that evaluates expressions sent by Isabelle to be proceed
by Maple as well as the results sent by Maple to Isabelle. The interface is developed by
specifying the concrete syntax of Maple and extending the simplifier of Isabelle by adding
new simplification rules called evaluation rules that make selected operations of Maple
available and control the access to Maple. These new simplification rules are presented in
Isabelle as data structures which contain a list of premises, a term pattern, and the name
of a function which enables to call Maple.

3.4.3 Discussion

The approaches introduced in [65,67] cannot be reused since they do not deal with differential
equations. In [68] the authors develop an algorithm that implements the Runge-Kutta
methods for solving numerically ODEs with respect to the existing formalization of ODEs
in Isabelle/HOL. However, the approach does not provide any mechanism to find exact
solutions of ODEs. Moreover, all these approaches do not use any refinement technique,
whereas one of the key elements of our approach is to take advantage of the Event-B
method for designing and verifying CPS models in a stepwise manner.

3.5 Conclusion

In this chapter, we presented a state of art of the most relevant formal approaches for
modelling and verifying hybrid systems. As stated before, these approaches can be grouped
into two categories: model checking-based approaches and proof-based approaches. Model
checking-based approaches are based on the calculation of the set of reachable states
and use hybrid automata and algorithmic analysis methods to model and prove hybrid
systems. As already mentioned, these approaches suffer from classical problems related to
state-space explosion of the variables considered that is hard to solve. In the other hand,
proof-based approaches use formal methods such as Event-B to model hybrid systems
and use deductive verification to prove their safety properties.

The Event-B based approaches use the Event-Triggered model which is more difficult
to implement. This motivates us to introduce a generic Time-Triggered model that refines
the generic Event-Triggered model. The major limitation in using Event-B is it does not
treat the resolution of ODEs. As stated before, the approach introduced in [10] defines the
theory DiffEq that provides several abstract operators to model ODEs and their relevant

33

CHAPTER 3. STATE OF ART

properties. To solve concrete ODEs, the approach consists in using the approximation
concept during the refinement process. We have chosen a different approach by coupling
Event-B with a differential equation solver inspired by the approaches presented in Section
3.4.

34

Chapter 4

Case Studies

Contents
4.1 The Stop Sign Case Study . 35

4.1.1 Modeling the Stop Sign Using Hybrid Automata 36

4.1.2 Modeling the Stop Sign Using Hybrid Programs 37

4.2 The Water Tank Case Study . 40

4.2.1 Modeling the Water Tank Using Hybrid Automata 40

4.2.2 Modeling the Water Tank Using Hybrid Programs 41

4.3 The Smart Heating Case Study 42

4.3.1 Modeling the Smart Heating Using Hybrid Automata 42

4.3.2 Modeling the Smart Heating Using Hybrid Programs 42

4.4 The Inverted Pendulum Case Study 43

4.5 Conclusion . 44
This chapter describes three cyber-physical case studies, the Stop Sign, the Water Tank

and the Smart Heating systems, used to illustrate our approach. While remaining simple,
these case studies are didactic and quite representative of linear hybrid systems that admit
exact solutions. The continuous behavior of the Stop Sign case study is represented by
two state variables while the continuous behavior of both case studies, Water Tank and
Smart Heating, is represented by a single state variable. Moreover, the Stop Sign case
study is represented by two different modes of control that require a single safety envelope.
In the other hand, the Water Tank and Smart Heating case studies are both composed
of two modes and when their controllers enter one of these two modes the other one is
considered as an evade mode which requires the use of two safety envelops. This diversity
will allow us to properly illustrate the use of our generic approaches. This chapter also
describes a nonlinear case study, the Inverted Pendulum, an example of cyber-physical
systems described with nonlinear differential equations.

4.1 The Stop Sign Case Study

The Stop Sign control system, is inspired from that described in [16] with some simplifications.
It has the objective to stop a car before a stop signal SP as depicted by Figure 4.1. The
control strategy is to adjust the velocity of the car by accelerating or braking. The continuous
behavior of this system is modeled by the position and the velocity of the car specified
respectively by the state variables p and v, as well as its acceleration a. This continuous

35

CHAPTER 4. CASE STUDIES

behavior evolves according to two linear ODEs, dp
dt=v(t) and dv

dt=a. The system can be in
one of the three discrete states: Accelerating, Braking and Stopped. The system can enter
state Accelerating when the car is very far from the stop signal SP. In that case, the car is
allowed to accelerate by assigning the maximum limit of acceleration A to a. State Braking
is entered when the car is very close to the stop signal SP. In that case, the controller must
decrease the car velocity by assigning the maximum limit of braking -B to a. The state
Stopped is entered when the car is stopped i.e v=0 (consequently a=0) presumably right
before signal SP. In all states, the system safety property, p(t) ≤ SP, must be fulfilled. So
contrary to [16], we did not consider states where such property is not verified since they
are not reachable.

Figure 4.1: The Stop Sign System.

4.1.1 Modeling the Stop Sign Using Hybrid Automata

Figure 4.2 depicts the hybrid automaton associated with the Stop Sign case study. The
continuous behavior is represented in the states by the ODEs that describe the evolution
of the continuous variables. Each state is characterized by a local invariant. When this
invariant is no longer satisfied, the system must leave the current state. The discrete behavior
is represented by the transitions between the states which can be triggered automatically
as soon as the state local invariant is not satisfied. A transition can be labeled by a set of
constraints and a set of assignments to update the values of the variables of the system.
The states of the automaton of Figure 4.2 are associated with the ODEs that describe
the evolution of the car state variables p and v. The formula, p(t)≤ p_max, denotes the
local invariant, which is the condition to guarantee that the controller will react exactly at
the right moment, by braking to allow the car to stop before the signal SP. Therefore the
constant p_max must satisfy the following constraints:

• p_max ≤ SP.

• According to [16], when the car brakes with (a=-B), the next car position is calculated
as follows: the position evolution p(∆ t) is expressed by:

p(∆t) = −1

2
× B × (∆t)2 + v ×∆t

The speed evolution v(∆ t) is expressed by:

v(∆t) = −B ×∆t+ v

The car stops when its speed is zero, that is: v(∆ t)=0 ⇒ ∆ t= v
B . Thus:

p(∆t) = −1

2
× (

v

B
)2 + v × v

B
=

1

2
× v

B

2

36

CHAPTER 4. CASE STUDIES

To guarantee that the car will not exceed SP, p_max must satisfy the following
constraint p_max ≤ SP - v2

2B .

Figure 4.2: Hybrid Automaton of the Stop Sign System.

The discrete dynamic is represented as transitions between the states of the hybrid
automaton. For example, when the formula p(t) ≤ p_max is true, the car is non-
deterministically allowed accelerating with dv

dt = A (Accelerating state), or braking with
dv
dt = −B (Braking state). While when the formula p(t) ≤ p_max is no longer true, the
car must brake, and move to the state Braking if it is not already in it. As depicted by
Figure 4.2, the system can be in one of the following discrete states:

• Init state: the initial values of the position and velocity are respectively represented
by the constants pinit and vinit. These constants must be chosen such that pinit <
p_max.

• Accelerating state: in this state, the car is allowed to accelerate with a velocity A.
As long as the formula p(t) ≤ p_max is true, the car can either accelerate or brake.
Once this formula is no longer satisfied, the car must switch to the Braking state.

• Braking state: in this state, the car must decelerate with a deceleration equal to −B
until it stops before the signal SP . If the current values of the position and velocity
satisfy p(t) ≤ p_max, the car is then allowed to switch to the Accelerating state,
transition from Braking to Accelerating states.

• Stopped state: the car stopped (v = 0). If the car is far enough from SP , the system
can enter again in the state Accelerating which is represented by the transition from
the Stopped to Accelerating states.

4.1.2 Modeling the Stop Sign Using Hybrid Programs

The authors of [16] have chosen the Stop Sign case study to illustrate the use of the
differential dynamic logic dL and the use of the platform KeYmaera to model and prove
linear hybrid systems. They started with a simple system, represented by the hybrid

37

CHAPTER 4. CASE STUDIES

program Model 4.1, in which the car starts at some non negative velocity v ≥ 0 and
accelerates at a constant rate denoted A > 0 (the maximum acceleration) along a straight
lane. Then, they introduce some complexity to this model in order to model the interaction
between the physical and discrete parts. This approach inspired us to instantiate our generic
models (see Chapter 6).

The continuous behavior of Model 4.1 is very simple. It is represented by the derivative
of the position p which is the velocity v, dp

dt = v(t), and the derivative of the velocity which
is the maximum acceleration, dv

dt = A. The safety property is specified by the formula v ≥ 0
which states that the car should never travels backward in space.

Model 4.1: A Sample Stop Sign Case Study

init→ [plant](req)
init ≡ v ≥ 0 ∧A > 0
plant ≡ p′ = v, v′ = A

req ≡ v ≥ 0

The previous model specifies the physical part of the Stop Sign case study. Model 4.2
introduces the control part represented by the discrete controller, ctrl, whose objective is to
adjust the velocity by accelerating by A or braking by −B, and still never drive backward.
For this purpose, Model 4.2 introduces the variable a that models the controlled variable,
the acceleration. The controller assigns a value to a according to the discrete state of the
system: Accelerating state a = A, Braking state a = −B and Stopped state a = 0. To
model the interaction between the physical part and the continuous part, the derivative of
the velocity is now the variable a. This model also introduces the evolution domain v ≥ 0
that restricts the continuous evolution of the system to stay within that domain.

Model 4.2: Safety Property of a Hybrid Car Model

init→ [(ctrl; plant)∗](req)
init ≡ v ≥ 0 ∧A > 0 ∧B > 0

ctrl ≡ a := A ∪ a := 0 ∪ a := −B
plant ≡ p′ = v, v′ = a & v ≥ 0

req ≡ v ≥ 0

To add some complexity to the system, they model a stop sign assistant by introducing
the controller part. For this purpose, Model 4.3 introduces the safety envelope safe =

p+ v2

2B < SP (p+ v2

2B < SP ≡ p < p_max). The controller of such system interrupts the
physical part when certain events occur, which is specified by an Event-Triggered model.
The choice of the acceleration in the Accelerating state is done in a deterministic way by
assigning A to the acceleration a. The continuous part is composed of a non-deterministic
choice between two differential equations specified by the formula plant. The difference
between this two formulas is in their evolution domains. In fact, hybrid programs model
the notion of transitions between discrete states of a hybrid system by adding a constraint
to the system evolution domain. In the case of the Stop Sign case study, this constraint is
represented by the domain p+ v2

2B ≤ SP which includes the domain of the formula safe.
Therefore, when the car is rolling inside this domain, the controller can non-deterministically
choice between the Accelerating state or the Braking state. Once the car is in the limit of
the domain of the formula safe, i.e p+ v2

2B = SP , the controller must execute to force it to
move to the Braking state that is the reason why the formula p+ v2

2B ≥ SP is added to the
system evolution domain in the second formula of plant.

38

CHAPTER 4. CASE STUDIES

Model 4.3: Event-Triggered Car Model

init→ [(ctrl; plant)∗](req)
init ≡ v ≥ 0 ∧A > 0 ∧B > 0 ∧ safe

safe ≡ p+ v2

2B < SP
ctrl ≡ (?safe; a := A) ∪ (?v = 0; a := 0) ∪ (a := −B)

plant ≡ p′ = v, v′ = a & p+ v2

2B ≤ SP ∧ v ≥ 0

∪ p′ = v, v′ = a & p+ v2

2B ≥ SP ∧ v ≥ 0
req ≡ p ≤ SP

Model 4.3 is refined by Model 4.4 that follows the generic model of a Time-Triggered
system. The physical part of this model began with the formula t := 0; p0 := p which allows
to reset the variable t to 0 after each execution of the controller in order to start a new
control phase.

Model 4.4: Time-Triggered Car Model

init→ [(ctrlV ; plantV)∗](req)

init ≡ v ≥ 0 ∧A > 0 ∧B > 0 ∧ p+ v2

2B ≤ SP ∧ ϵ > 0

safeϵ ≡ p+ v2

2B + (AB + 1)(A2 ϵ
2 + ϵv) ≤ SP

ctrl ≡ (a := −B) ∪ (a := A; ?safeϵ)
plant ≡ t := 0; p0 = p; (p′ = v, v′ = a, t′ = 1 & t ≤ ϵ ∧ v ≥ 0)

req ≡ p ≤ SP

The Event-Triggered model is easier to prove using KeYmaera but it is more difficult to
implement. When proving the system safety properties in the Event-Triggered model and the
refinement relation between the corresponding Time-Triggered and Event-Triggered models,
we can admit that the Time-Triggered model satisfies the safety property of the system.
The program Model 4.5 represents the content of the KeYmaera file associated with Stop
Sign case study, where the clause ProgramVariables specifies the system parameters that are
defined as real numbers which are represented by the symbol R and the clause Problem mod-
els the initial, the physical and the discrete parts of the system as well as the safety property.

Model 4.5: KeYmaera Program for the Stop Sign Case Study

\programVariables {
R p, v, a,A,B, SP ;

}
\problem {
v ≥ 0 ∧A > 0 ∧B > 0 ∧ p+ (v × v)/(2×B) < SP− >
\ [
(((?p+ (v × v)/(2×B) < SP ; a := A) + +(?v = 0; a := 0) + +(a := −B));
{p′ = v, v′ = a, p+ (v × v)/(2×B) ≤ SP, v ≥ 0}++
{p′ = v, v′ = a, p+ (v × v)/(2×B) ≥ SP, v ≥ 0}
) ∗
\](p ≤ SP)

}

39

CHAPTER 4. CASE STUDIES

4.2 The Water Tank Case Study

The second case study deals with a water tank, also known as a heat pump water heater,
whose objective is to maintain the water level between a high level V_high and a low level
V_low with 0 < V_low < V_high. The system includes a water tank, a water pump to fill
the tank and a water level sensor to get the level of the water in the tank as depicted by
Figure 4.3. The control strategy is to activate the pump when the water level is too close
to V_low and deactivate it when the water level is too close to V_high. The continuous
behavior of the water tank over time is represented by the level of the water specified by
the variable V ol that evolves according to the flowing linear ordinary differential equations,
dV ol
dt = −f_out or dV ol

dt = f_in. The flow of the water can be either f_in when the pump
is activated or -f_out otherwise.

Figure 4.3: The Water Tank System

4.2.1 Modeling the Water Tank Using Hybrid Automata

Figure 4.4: Hybrid automaton of the Water Tank System

Figure 4.4 depicts the hybrid automaton associated with the Water Tank case study. Two
safety envelopes are defined, safeFill= Vol(t) < V_high and safeEmp= Vol(t) > V_low,
which are defined to guarantee that the controller will react exactly when the water level is
too close to the two limits V_high and V_low. The system can be in one of the following
three discrete states:

• Init state: represents the initial state. It is characterized by a constant level of the
water denoted V0, which must be chosen between V_low and V_high to guarantee
that the system is safe initially: V_low < V0 < V_high.

• Filling state: in this state, the pump is activated to fill the water tank by f_in as
long as the formula safeFill is satisfied. Once this formula is no longer satisfied, the
system must move to state Emptying.

• Emptying state: in this state, the pump is disabled to empty the water tank by -f_out.
Once the formula safeEmp is no longer satisfied, the system must move to state
Filling.

40

CHAPTER 4. CASE STUDIES

4.2.2 Modeling the Water Tank Using Hybrid Programs

To describe an hybrid system using hybrid programs notation we can either translate the
associated hybrid automaton or start by an abstract hybrid program and then enrich this
model step by step, using an incremental approach as described in the previous section
4.1.2. To model the Water Tank case study using hybrid programs notation, we start with
an abstract water tank where we describe the continuous part of the Water Tank case study
(see Model 4.6):

Model 4.6: Abstract Water Tank

init→ [plant](req)
init ≡ V ol ≥ 0 ∧ f_in > 0
plant ≡ V ol′ = f_in

req ≡ V ol ≥ 0

We add some complexity to Model 4.6 by modeling the interaction between the control
and the physical parts and by introducing the system safety envelops. We also introduce
the emptying state by assigning the value −f_out to the controlled variable ctrlV . The
physical part evolves according to the discrete state represented by the controlled variable
ctrlV as depicted by the Model 4.7 which represents the Event-Triggered model associated
with the Water Tank case study.

Model 4.7: Event-Triggered Water Tank Model

init→ [(ctrl; plant)∗](req)
init ≡ V ol ≥ 0 ∧ f_in > 0 ∧ f_out > 0 ∧ V_low < V ol < V_high

safeF ill ≡ V ol < V_high
safeEmp ≡ V ol > V_low

ctrl ≡ (?safeF ill; ctrlV := f_in) ∪ (?safeEmp; ctrlV := −f_out)
plant ≡ V ol′ = ctrlV & V ol ≤ V_high ∧ V ol ≥ 0

∪ V ol′ = ctrlV & V ol ≥ V_low ∧ V ol ≥ 0
req ≡ V_low ≤ V ol ≤ V_high

In the associated Time-Triggered system represented by Model 4.8, we replaced respectively
the safety envelopes SafeF ill and SafeEmp by SafeEpsilonF ill and SafeEpsilonEmp
to take into account the control period ϵ.

Model 4.8: Time-Triggered Water Tank Model

init→ [(ctrl; plant)∗](req)
init ≡ V ol ≥ 0 ∧ f_in > 0 ∧ f_out > 0 ∧ V_low ≤ V ol ≤ V_high ∧ ϵ > 0

safeEpsilonF ill ≡ V ol + (ctrlV × ϵ) ≤ V_high
safeEpsilonEmp ≡ V ol + (ctrlV × ϵ) ≥ V_low

ctrl ≡ (?safeEpsilonF ill; ctrlV := f_in) ∪ (?safeEpsilonEmp; ctrlV := −f_out)
plant ≡ t = 0;V 0 = V ol;V ol′ = ctrlV, t′ = 1 & t ≤ ϵ ∧ V ol ≥ 0

req ≡ V_low ≤ V ol ≤ V_high

41

CHAPTER 4. CASE STUDIES

4.3 The Smart Heating Case Study

The Smart Heating case study deals with a heater equipped with a thermostat controller
whose objective is to maintain the temperature between a high level T_max and a low
level T_min, with 0 < T_min < T_max. The heater is switched "off" if the temperature
is too close to T_max and it is switched "on" if the temperature is too close to T_min.
The continuous behavior of this system is represented by the temperature T that evolves
according to the flowing linear ODEs, where temp denoting the flow of the temperature:

• when the mode of the heating system is "on", the value of temperature follows:
dT
dt = temp;

• when the mode of the heating system is “off”, the value of temperature follows:
dT
dt = −temp.

4.3.1 Modeling the Smart Heating Using Hybrid Automata

Figure 4.5: Hybrid automaton of the Hybrid Smart Heating System

Figure 4.5 depicts the hybrid automaton associated with the Smart Heating case study.
The formula, T_min ≤ T (t) ≤ T_max, denotes the local invariant. The discrete behavior
of this system is described by the following three discrete states:

• Init state: represents the initial state. It is characterized by the initial temperature
degree denoted T0, which must be chosen between T_min and T_max (T_min <
T0 < T_max) to guarantee that the system is safe initially.

• State On: in this state, the heater is switched "on" as long as the formula, T < T_max,
is satisfied. Once this formula is no longer satisfied, the system must move to the
state Off.

• State Off : the heater is switched "off" as long as the formula, T > T_min, is satisfied.
Once this formula is no longer satisfied, the system must move to the state On.

The Smart Heating case study is a bit similar to the Water Tank case study. Contrary
to the Stop Sign case study which describes a system with two modes of control, normal
mode and evade mode, the Smart Heating and the Water tank case studies both describe a
system with two normal modes and when the system is in one of the normal modes the
second one represents the evade mode.

4.3.2 Modeling the Smart Heating Using Hybrid Programs

Model 4.9 describes the hybrid program associated with the Smart Heating system. The
control part is modeled as a non-deterministic choice (∪): if the safety envelope safeOn is
satisfied (resp. safeOff), we assign temp or (resp. −temp) to the controlled variable ctrlV .
The physical part is modeled using the ordinary differential equation, T ′ = ctrlV , and the
formula T ≤ T_max ∧ T ≥ T_min, which specifies the event trigger of this model. For

42

CHAPTER 4. CASE STUDIES

example, if the controller assigns temp to ctrlV , the generic ordinary differential equation
is replaced by T ′ = temp as longer as the formula event trigger is satisfied. Once the event
trigger is no longer satisfied, the controller must update the value of ctrlV .

Model 4.9: The Event-Triggered Model of the Smart Heating System

init→ [(ctrl; plant)∗](req)
init ≡ T ≥ 0 ∧ temp > 0 ∧ T_min < T < T_max

safeOn ≡ T < T_max
safeOff ≡ T > T_min

ctrl ≡ (?safeOn; ctrlV := temp) ∪ (?safeOff ; ctrlV := −temp)
plant ≡ T ′ = ctrlV & T ≤ T_max ∧ T ≥ 0

∪ T ′ = ctrlV &T ≥ T_min ∧ T ≥ 0
req ≡ T_min ≤ T ≤ T_max

Model 4.10 represents the Time-Triggered model associated with the Smart Heat-
ing system where we replaced the safety envelops safeOn and safeOff respectively
by safeEpsilonOn and safeEpsilonOff to take into account the period of control
ϵ, so safeEpsilonOn = T + (ctrlV × epsilon) < T_max land safeEpsilonOff =
T + (ctrlV × epsilon) > T_min. Moreover, we replaced the formula event trigger by
the formula t ≤ epsilon to specify that the controller must react at least every epsilon time.

Model 4.10: The Time-Triggered Model of the Smart Heating System

init→ [(ctrl; plant)∗](req)
init ≡ T ≥ 0 ∧ temp > 0 ∧ T ≤ T_max ∧ T ≥ T_min ∧ ϵ > 0

safeEpsilonOn ≡ T + (ctrlV × epsilon) ≤ T_max
safeEpsilonOff ≡ T + (ctrlV × epsilon) ≥ T_min

ctrl ≡ (?safeEpsilonOn; ctrlV := temp) ∪ (?safeEpsilonOff ; ctrlV := −temp)
plant ≡ t = 0;T0 = T ;T ′ = ctrlV, t′ = 1 & t ≤ epsilon ∧ T ≥ 0

req ≡ T_min ≤ T ≤ T_max

4.4 The Inverted Pendulum Case Study

In this section, we describe a nonlinear case study, the Inverted Pendulum, which will be
used in Section 8 to demonstrate how we can use linearization methods to obtain a linear
model of this case study. In contrast to the previous section, which suggested modeling
linear case studies, the purpose of this section is to present the properties of the Inverted
Pendulum and show how to linearize it in Section 8. Note that in this thesis we are only
interested in modeling linear systems. For nonlinear systems, it is recommended to use
linearization techniques whenever possible to apply approaches for modeling and verifying
linear systems. The Inverted Pendulum is a well-known case study in dynamics and control
theory that consists of a pendulum of mass M attached to the top of a rigid rod of length l,
that is itself attached to a moving cart and which can move in two directions. A simple
application of the inverted pendulum in real life is the balancing of a broom on the palm
of the hand, as long as possible. The Inverted Pendulum controller has for objective to
stabilise the rod in its vertical position. The control strategy is to balance the inverted
pendulum by applying a force F to the cart in a way to make it vertical again. The system
is subject to standard G-force, of intensity g. In [59], instead of attaching the rod to a cart,
G. Dupont et al. chose to model an inverted pendulum attached to a step motor (see Figure

43

CHAPTER 4. CASE STUDIES

4.6). In that case, the force F is replaced by a torque u, the rotational equivalent of linear
force, provided by the motor. The main difference between a torque and a force is that a
torque results from a circular or rotational movement and the force results from a rectilinear
movement. Therefore, the controller of this system has for objective to stabilise the rod in
its vertical position by controlling the motor and its torque u. The continuous behavior
of this system is modeled by the angle between the rod and the vertical axis, denoted θ,
that permits to identify the position of the pendulum, and the angular velocity θ̇ = dθ

dt that
allows to identify the velocity of the pendulum. These state variables are represented in [59]
by the state vector η = [θ θ̇]T .

Figure 4.6: The Inverted Pendulum

The associated ordinary differential equation is derived from the equation: θ̈ = g
l sin θ

with θ̈ =
dθ̇

dt
, taking into account the controlled variable u. This equation is calculated

using the kinetic energy and the potential energy of gravity as follows: the kinetic energy of

this system is: Ec =
ml2θ̇2

2
, and the potential energy of gravity is: Ep = mgl(1 + cos θ). In

the absence of the force F applied to the system, it is possible to write the conservation of
mechanical energy, E = Ec + Ep. This mechanical energy is constant during the movement.
By deriving this expression over time, we obtain, where θ̈ − g

l
sin(θ) = u cos(θ) [59]:

fNonLin((θ, θ̇), u) = (θ̇, u ∗ cos(θ) + g

l
)

4.5 Conclusion

In this chapter, we presented the case studies that we have chosen to illustrate the feasibility
of the approaches developed during my thesis. The Stop Sign, the Water Tank and the
Smart Heating case studies are linear hybrid systems that admit exact solutions, polynomial
ordinary differential solutions. As stated before, there are two main types of hybrid systems,
linear hybrid systems and nonlinear hybrid systems. Most linear hybrid systems admit
exact solutions which makes their verification easier than nonlinear systems that must use
approximation methods. The Inverted Pendulum system is a representative case study
whose continuous behavior is described by a nonlinear differential equation. For this case
study, we do not provide a hybrid automaton nor a hybrid program and so far we have not
yet modeled a nonlinear system following our generic approach. However, in Section 8, we
will use this case study to demonstrate how we can use linearization methods to obtain a
linear model and then apply our generic approach.

44

Chapter 5

Modeling and Proving Hybrid
Systems in Event-B

Contents
5.1 Structure of the Generic Models 46

5.2 Preliminary for Modeling the Generic Models 46

5.2.1 Theories for Modeling Real Numbers in Event-B 46

5.2.2 Theories for Modeling Differential Equations in Event-B 47

5.3 Model ContSystem . 47

5.3.1 Context ContSystem_Ctx . 47

5.3.2 Machine ContSystem_M . 48

5.4 Event and TimeTriggered Models 48

5.4.1 Generic EventTriggered Model 49

5.4.2 Generic TimeTriggered Model 52

5.4.3 Modeling the Safety Properties 54

5.5 Correctness of the Generic Models 54

5.6 Conclusion . 56

The main goal of this thesis is to propose a correct-by-construction approach for modeling
and verifying hybrid systems using the Event-B formal method and the platform Rodin.
The proposed approach, described in this chapter, aims at providing generic templates for
modeling Event and Time-Triggered systems in Event-B and verifying the relation of
refinement between these two models using the platform Rodin.

Section 5.1 describes the structure of the generic models. Section 5.2 presents the
Event-B theories reused to model the generic models. Section 5.3 introduces the abstract
model that specifies the continuous behavior of hybrid systems in Event-B. Section
5.4 describes the modeling of Event and TimeTriggered systems in Event-B. Section
5.5 describes the main proof obligations generated by the platform Rodin to prove the
correctness of our models. Finally, Section 5.6 concludes the chapter with a discussion on
the different elements of the approach.

45

CHAPTER 5. MODELING AND PROVING HYBRID SYSTEMS IN EVENT-B

5.1 Structure of the Generic Models

One of the objectives of the DISCONT project [9] is to elaborate correct-by-construction
approaches, based on Event-B, to specify and verify hybrid systems. In the context of this
project, we propose to represent Event and Time-Triggered templates, described in [3] and
presented in Section 2.2, using the event-based paradigm of Event-B, in order to develop
a generic template for modeling Time-Triggered systems in Event-B by providing a link
with a possible abstract Event-Triggered system.

To model an hybrid system, our approach consists of three models as depicted by Figure
5.1, ContSystem model that specifies the continuous behavior of the system, EventTriggered
model that specifies the interactions between the discrete and the continuous parts of the
system, and TimeTriggered model that specifies the discrete behavior of the discrete part
of the system. The whole models are available in Appendices A.

Figure 5.1: Structure of the Generic Event-B Specification.

5.2 Preliminary for Modeling the Generic Models

This section presents the elements that we reuse for defining our generic approach.

5.2.1 Theories for Modeling Real Numbers in Event-B

The theory Real is defined in the standard library of theories available to download at https:
//sourceforge.net/projects/rodin-b-sharp/files/Theory_StdLib/StandardTheory0.
1.zip/download. It is written by Abrial and Butler, and provides: 1 datatype REAL, 13
operators: plus (+), minus (−), mult (×), leq (≤), gtr (>) etc, 24 axioms that define the
semantics of the operators, 18 interactive rewrite rules for use in proofs. To treat continuous
functions and ordinary differential equations in Event-B. The theory Reals introduced
in [10] extends the theory Real by adding the operators needed to treat continuous behaviors
of hybrid systems in Event-B.

46

https://sourceforge.net/projects/rodin-b-sharp/files/Theory_StdLib/StandardTheory0.1.zip/download
https://sourceforge.net/projects/rodin-b-sharp/files/Theory_StdLib/StandardTheory0.1.zip/download
https://sourceforge.net/projects/rodin-b-sharp/files/Theory_StdLib/StandardTheory0.1.zip/download

CHAPTER 5. MODELING AND PROVING HYBRID SYSTEMS IN EVENT-B

5.2.2 Theories for Modeling Differential Equations in Event-B

To treat continuous aspects of cyber-physical systems, G. Dupont et al introduce in [10] a
theory named DiffEq that provides several abstract operators to model differential equations,
continuous functions and their relevant properties. In the context of this thesis, we use the
following operators of the theory DiffEq :

• Operator bind(specV1, specV2): links the generic variables with the specific ones.
When replacing an abstract variable abstV with specific variables, specV 1 and specV 2,
we use this operator as follows: abstV = bind(specV 1, specV 2).

• Operator ode(func, Var0, t0): represents the constructor for differential equations
in Event-B. func specifies the right part of a given differential equation eq
(func(ctrlV) = eq) which depends on the controlled measurement ctrlV , the continu-
ous time t and the continuous variables V ar with initial condition V ar(t0) = V ar0.

• Operator Solvable(D,eq): states that a given ordinary differential equation eq admits
solutions on domain D.

• Operator SolutionOf(f,eq): models the fact that the function f is a solution of equation
eq.

• Operator AppendSolutionBAP(eq,DR,B,etap): updates the values of the continuous
variables on the domain DR by calculating their new values using the differential
equation eq on a specific time interval B. Consequently, the previous values are
overridden by those of the function etap.

5.3 Model ContSystem

Model ContSystem represents the abstract model of our approach. It is inspired by the
abstract model of [10] that aims at modeling the continuous part of hybrid systems in
Event-B. Model ContSystem is composed of Context ContSystem_Ctx and Machine
ContSystem_M.

5.3.1 Context ContSystem_Ctx

Context ContSystem_Ctx (see Figure 5.2) defines four constants 1.

• Constant S is defined as S = IRn, with n representing the number of continuous
variables of the system.

• Constant TIME to specify that the values of the continuous time are chosen in IR+.

• Constant sigma is defined in IR+ to avoid the Zeno problem in Event-B [61] as
explained in the next section.

• Constant plantVInit is defined in S to represent the initial values of the continuous
variables.

1to simplify the reading of our models, we will use in the rest of the manuscript the usual mathematical
symbols instead of using that of the theory of Reals. Therefore, instead of using RRealP lus we use IR+

47

CHAPTER 5. MODELING AND PROVING HYBRID SYSTEMS IN EVENT-B

CONTEXT ContSystem_Ctx
CONSTANTS S , TIME , sigma , plantV Init
AXIOMS

axm1 : S = IRn

axm2 : TIME = IR+

axm3 : sigma ∈ IR+ ∧ sigma > 0
axm4 : plantV Init ∈ S

END

Figure 5.2: Context ContSystem_Ctx.

5.3.2 Machine ContSystem_M

Machine ContSystem_M contains two variables and two events (see Appendices A.2).
Variable t represents the continuous evolution of time and Variable plantV represents the
continuous evolution of the state variables. Event Progress models the progression of time
(see Figure 5.3). We have adapted that defined in Section 3.3.2 to deal with the Zeno
problem as the time progression can approach zero. To avoid this, we use the constant
sigma by adding in the event Progress the following constraint: t′ - t ≥ sigma to guarantee
that time progression is always greater than sigma where t (resp. t′) represents the time
before (resp. after) the execution of the event.

EVENT Progres s
THEN

act1 : t : | t′ ∈ TIME ∧ t < t′ ∧ t′ − t ≥ sigma
END

Figure 5.3: Event Progress.

The evolution of the continuous part is modeled using Event Plant (see Figure 5.4)
that modifies Event Behave (Section 3.3.2) to allow the verification of safety properties in
EventTriggered level. Event Plant uses the operator AppendSolutionBAP adapted to update
the value of plantV (plantV◁−plant1) between the last time and the new value of t where
the generic differential equation e belongs to DE(S), the set of differential equations built
on S. In other words, AppendSolutionBAP calculates the evolution of the physical part
from the last instant until the current one t. Formally, AppendSolutionBAP is redefined by:

AppendSolutionBAP (e, ([0, t]− dom(plantV)), ([0, t]− dom(plantV)), plant1)

Let us remark that we adopt the same approach as in [10] to model time progression and
physical behavior by two distinct events. This makes the solution more generic and adapted
for systems with several physical parts, each with a specific behavior. In that case, each
part is associated with its own Plant event and time progression is modeled in a separate
event.

5.4 Event and TimeTriggered Models

As stated before, one of our objectives is to define a generic pattern for modeling Time-
Triggered systems in Event-B by providing a link with an Event-Triggered generic model
and use the Event-B refinement and its associated provers to demonstrate the compliance
between both models.

48

CHAPTER 5. MODELING AND PROVING HYBRID SYSTEMS IN EVENT-B

EVENT Plant
ANY e , plant1
WHERE

grd1 : e ∈ DE(S)
grd2 : Solvable([0, t]− dom(plantV), e)
grd3 : plant1 ∈ [0, t]− dom(plantV) → S
∧AppendSolutionBAP (e, [0, t]− dom(plantV), [0, t]− dom(plantV), plant1)

THEN
act1 : plantV := plantV ◁− plant1

END

Figure 5.4: Abstract Event Plant.

5.4.1 Generic EventTriggered Model

The generic EventTriggered model is composed of a Context named EventTriggered_Ctx
which introduces the system safety envelope Safe calculated from the safety requirement
that the system must satisfy, and a Machine named EventTriggered_M which added the
discrete behavior of the system represented by the controlled variable ctrlV . It corresponds
to the EventTriggered model introduced by Kopetz, also specified with dRL, Model 3.1
defined in Section 3.2.2.1. The semantics of this model is that the physical part evolves in
parallel with the time and both are interrupted as soon as the safety envelope, represented
by the formula safe, becomes false (represented by the expression evt_trig that defines the
boundary of the safety envelope). As in Event-B it is not possible to state that two events
are executed in parallel or to interrupt the execution of an event, we proceed as follows.
The controller is executed at first to choose an adequate value of ctrlV that satisfies formula
safe, then time progresses until a given value denoted by t1 for which evt_trig is true with
respect to the value ctrlV. Finally, plant is executed to make the physical part evolve until
the current value of time t1.

5.4.1.1 Context EventTriggered_Ctx

At this level, we express the properties desired for the system. To do this, EventTrig-
gered_Ctx, depicted by Figure 5.5, extends ContSystem_Ctx to represent these properties.
It defines a set named EXEC to represent the different states of a hybrid system, time
progression, discrete and continuous parts (axm3). Moreover, EventTriggered_Ctx defines
a set of constants and axioms:

• safe represents the safety envelope for the modeled system (see axm1). As in dRL, the
formula safe depends on the current physical state variable as well as the controlled
variable since it may contain some limits on how this latter may be set. The domain
of this formula must be included in that of evt_trig formula. Moreover, safe must
be initially satisfied.

• evt_trig specifies the boundaries of the safety envelope safe (see axm2).

• f_evol is used to describe how the physical state variable plantV evolves according
to the discrete state of the system (see axm4).

• f_evol_plant is used to model the evolution of the state variable plantV . We must
define this type of function for each discrete state of the system. Thanks to the notion
of the controlled variable, we have defined a single evolution function indexed on this
variable (see axm5 and axm6).

• evade_value is defined as a subset of IR to represent the evade values of the modeled
system (see axm7).

49

CHAPTER 5. MODELING AND PROVING HYBRID SYSTEMS IN EVENT-B

CONTEXT EventTriggered_Ctx
EXTENDS ContSystem_Ctx
SETS EXEC
CONSTANTS safe , evt_trig , ctrl , plant , prg , f_evol , f_evol_plantV ,

evade_value
AXIOMS

axm1 : safe ∈ (S × IR) → BOOL
axm2 : evt_trig ∈ (S × TIME × IR) → BOOL
axm3 : partition(EXEC, {ctrl}, {plant}, {prg})
axm4 : f_evol ∈ IR → S
axm5 : f_evol_plantV ∈ (IR → (TIME × S → S))
axm6 : ∀ ctrlV · ctrlV ∈ IR ⇒ (f_evol_plantV (ctrlV) =

(λ t 7→ plantV · t ∈ TIME ∧ plantV ∈ S | f_evol(ctrlV)))
axm7 : evade_value ⊆ IR ∧ evade_value ̸= ∅

END

Figure 5.5: Context EventTriggered_Ctx.

5.4.1.2 Machine EventTriggered_M

Machine EventTriggered_M refines Machine ContSystem_M by adding two new variables:

• ctrlV represents the controlled variable and belongs to IR. The current value of this
variable corresponds to the current controller state.

• exec is a flag used to model the alternation between the control and the physical parts
as represented in the high-level structure of hybrid programs, (ctrl ;plant)∗. Therefore,
exec can take two values ctrl and plant. In Event-B, time must be explicitly handled.
To be sure that this explicit time will progress between the control and the plant
parts, we add a third value to exec, prg, in order to give the turn to the event Progress.
Therefore, our model follows the following structure: init; (ctrl; prg; plant)∗, where
init represents the INITIALISATION event.

The INVARIANTS part defines four predicates (see Figure 5.6). Invariants inv1 and
inv2 specify respectively the types of the variables ctrlV and exec. Since the time progresses
between the control and the plant parts, Invariants inv3 and inv4 are defined to guarantee
that the physical part updates the continuous variables between 0 and the last progression
of time. The INITIALISATION event (see Figure 5.7) specifies the initial values of each
continuous and discrete variables. At t = 0, the system gives the turn to the controller to
update the value of the controlled variable ctrlV depending on the value of plantV which
is initialized to plantV Init.

INVARIANTS
inv1 : ctrlV ∈ IR
inv2 : exec ∈ EXEC
inv3 : exec ̸= plant⇒ dom(plantV) = [0, t]
inv4 : exec = plant⇒ t ̸∈ dom(plantV)

Figure 5.6: EventTriggered INVARIANTS.

To make time evolve according to the formula evt_trig such that the physical part does
not go beyond the boundaries of the safety envelope, we refine the event Progress (see Figure
5.8) by adding guards to specify that: (1) it is the turn of the event Progress to execute
(grd1); (2)when the system is in a normal mode(ctrlV /∈ evade_values), the value of t1
must satisfy the formula evt_trig (grd3). The parts added by refinement are written in blue.

50

CHAPTER 5. MODELING AND PROVING HYBRID SYSTEMS IN EVENT-B

INITIALISATION :
THEN

act1 : t := 0
act2 : plantV := {0 7→ plantV Init}
act3 : ctrlV :∈ IR
act4 : exec := ctrl

END

Figure 5.7: EventTriggered INITIALISATION.

EVENT Progres s
REFINES Progres s
ANY t1
WHERE
grd1 : exec = prg
grd2 : t1 ∈ TIME ∧ t < t1 ∧ t1 − t ≥ sigma
grd3 : ctrlV /∈ evade_value ⇒ evt_trig(plantV (t), t1 − t, ctrlV) = TRUE

THEN
act1 : t := t1
act2 : exec := plant

END

Figure 5.8: EventTriggered Progress.

To model the evolution of the physical part, we refine the Plant of the ContSystem_M
machine by replacing the abstract differential equation e with that defined for a function
denoted f_evol_plantV (see Figure 5.9). Function f_evol_plantV describes the evolution
of the state variable plantV according to the system discrete state. Regarding the evolution
of the control part, two new events are added: Ctrl_normal and Ctrl_evade (see Figure
5.10).

EVENT Plant REFINES Plant
ANY plant1
WHERE
grd1 : exec = plant
grd2 : plant1 ∈ [0, t]− dom(plantV) → S
grd3 : ode(f_evol_plantV (ctrlV), plant1(t), t) ∈ DE(S)
grd4 : Solvable([0, t]− dom(plantV), ode(f_evol_plantV (ctrlV), plant1(t), t))
grd5 : AppendSolutionBAP (ode(f_evol_plantV (ctrlV), plant1(t), t),
[0, t]− dom(plantV), [0, t]− dom(plantV), plant1)

WITH e : e = ode(f_evol_plantV (ctrlV), plant1(t), t)
THEN

act1 : plantV := plantV◁− plant1
act2 : exec := ctrl

END

Figure 5.9: EventTriggered Plant.

• Ctrl_normal event represents the normal mode. It is triggered when it is the turn of
the controller (exec = ctrl) and when it exists a value nrml_value of ctrlV, different
from the system evade values, for which the formula safe is true; it then gives the
turn to the event Progress.

• Ctrl_evade event represents the evade mode. It assigns the parameter evade_val to

51

CHAPTER 5. MODELING AND PROVING HYBRID SYSTEMS IN EVENT-B

EVENT Ctrl_normal
ANY nrml_value
WHERE

grd1 : exec = ctrl
grd2 : nrml_value ∈ IR
grd3 : nrml_value /∈ evade_value⇒ safe(plantV (t), nrml_value) = TRUE

THEN
act1 : ctrlV := nrml_value
act2 : exec := prg

END

EVENT Ctrl_evade
ANY evade_val
WHERE

grd1 : exec = ctrl
grd2 : evade_val ∈ evade_value

THEN
act1 : ctrlV := evade_val
act2 : exec := prg

END

Figure 5.10: EventTriggered Ctrl_normal and Ctrl_evade.

the control variable ctrlV and gives the turn to the event Progress. The evade value
must be chosen in the set of the system evade values.

5.4.2 Generic TimeTriggered Model

This model refines the previous model to get a system corresponding to the TimeTriggered
model of Kopetz, also specified with dRL (Model 3.2 defined in Section 3.2.2.1). As
mentioned earlier, the sensors of a TimeTriggered model take periodic measurements of
physical state variables and its controller executes each time those sensor updates are taken.
TimeTriggered model is composed of the context TimeTriggered_Ctx and the machine
TimeTriggered_M.

5.4.2.1 Context TimeTriggered_Ctx

Context TimeTriggered_Ctx depicted by Figure 5.11 extends context EventTriggered_Ctx
by adding two new constants:

• epsilon: specifies a symbolic duration. It models the longest time between TimeTrig-
gered sensor updates.

• safeEpsilon: guarantees that the controller will make a choice that will be safe for
up to epsilon time.

5.4.2.2 Machine TimeTriggered_Ctx

The main difference between the Event and TimeTriggered models is in the modeling of the
progression of time. The longest time between TimeTriggered sensor updates is bounded by
the symbolic duration epsilon. Therefore, the controller can execute at least every epsilon
time. For this purpose, we refine the event Progress_event by adding the formula t′ − t ≤
epsilon (see Figure 5.12). This formula states that the time cannot progress by more than
epsilon time units.

52

CHAPTER 5. MODELING AND PROVING HYBRID SYSTEMS IN EVENT-B

CONTEXT TimeTriggered_Ctx
EXTENDS EventTriggered_Ctx
CONSTANTS epsilon , safeEpsilon
AXIOMS

axm1 : epsilon ∈ TIME ∧ sigma ≤ epsilon
axm2 : safeEpsilon ∈ (S × IR → BOOL)
axm3 : epsilon > 0

END

Figure 5.11: Context TimeTriggered_Ctx.

EVENT Progress_time
REFINES Progres s
ANY t1
WHERE

grd1 : exec = prg
grd2 : t1 ∈ TIME ∧ t < t1 ∧ t1 − t ≥ sigma ∧ t1 − t ≤ epsilon
grd3 : ctrlV /∈ evade_value⇒ evt_trig(plantV (t), t1 − t, ctrlV) = TRUE

THEN
act1 : t := t1
act2 : exec := plant

END

Figure 5.12: Event Progress_time.

Since the controller of a TimeTriggered model must make a choice that will be safe for up
to epsilon time, we define a new safety envelope named safeEpsilon (safeϵ(plantV, ctrlV)
in dRL) in the context TimeTriggered_Ctx. Then, in the event Ctrl_normal_time that
refines Ctrl_normal, we add a guard to ensure that safeEpsilon is true when a non evade
value is chosen for ctrlV (see grd4 of Figure 5.13).

EVENT Ctrl_normal_time
REFINES Ctrl_normal
ANY nrml_value
WHERE

grd1 : exec = ctrl
grd2 : nrml_value ∈ IR
grd3 : nrml_value /∈ evades_value⇒ safe(plantV (t), nrml_value) = TRUE
grd4 : nrml_value /∈ evades_value⇒ safeEpsilon(plantV (t), nrml_value) = TRUE

THEN
act1 : ctrlV := nrml_value
act2 : exec := prg

END

Figure 5.13: Event Ctrl_normal_time.

Let us remark that contrary to the models described in [5], we kept the guards related
to the formula evt_trig (guard grd3 of the event Progress_time) and safe (guard grd3
of the event Ctrl_normal_time). Removing them does not enable us to discharge the
associated POs since it is not possible to establish, on the generic models, that they are
induced by the invariant and the other guards. However it is generally not a good practice
to leave proof obligation undischarged because this makes the correctness of the Event-B
development questionable. In Chapter 8, on specific case studies, we show how such guards
are removed, which give rise to refinement proof obligations to discharge.

53

CHAPTER 5. MODELING AND PROVING HYBRID SYSTEMS IN EVENT-B

5.4.3 Modeling the Safety Properties

The main goal of the discrete part represented by the controller is to ensure the safety
properties of a specific hybrid system. To model these safety properties in Event-B, a
constant function prop ∈ IRn → BOOL is defined in the context EventTriggered_Ctx,
where n denotes the number of variables occurring in the property. Then an invariant is
added in the machine EventTriggered_M, where plantV will be replaced by the specific
continuous variable x that permits to cover all the moments from the beginning until the
current time and prop(plantV(x)) is replaced by the specific safety property. This formula
expresses that the safety property of the system shall be satisfied in the time interval [0, t]
which denotes the domain of plantV.

inv5 : ∀x · x ∈ dom(plantV) ⇒ prop(plantV (x)) = TRUE

To discharge the PO generated for this invariant, we added the following guard to the
event Plant that states that the new values of plantV , that is plant1, verify the property:

grd6 : ∀xx · xx ∈ dom(plant1) ⇒ prop(plant1(xx)) = TRUE.

This guard will be removed on a specific case to generate a proof obligation that aims
at proving that this guard is actually satisfied. We give more details in Chapter 8.

5.5 Correctness of the Generic Models

Table 5.1 gives the statistics of the proof obligations generated to ensure the correctness of
the generic models of our approach. It is noticeable that 45% of them were automatically
discharged. The remaining proof obligations are discharged using the automatic/interactive
provers of the Rodin platform (Version 3.5.0) and the theories developed in [10].

Table 5.1: Rodin Proof Statistics for the Generic Models

Generic_Models Total Automatic Interactive

ContSystem_M 8 1 7

EventTriggered_M 22 14 8

TimeTriggered_M 4 1 3

The platform Rodin automatically generates proof obligations for properties that need
to be proven on a given Event-B machine or context. Each proof obligation has a name
that identifies where it was generated and also its goal. Some of these proof obligations must
be manually discharged using theories and hypotheses defined in the associated machines
and contexts. The theory Reals does not handle all the properties of real numbers. For
this purpose, we define a context named Theorems (see Figure 5.14) that contains all the
properties and theorems needed to discharge the proof obligations generated by the Rodin
platform to prove our generic and specific models.

• Axiom 1: specifies that the addition preserves the order of real numbers: a ≤ b ∧ c ≤
d⇒ a+ c ≤ b+ d.

• Axiom 2: specifies that the operator mult (×) preserves the order of real numbers:
0 ≤ a ∧ 0 ≤ b ∧ 0 ≤ c ∧ 0 ≤ d ∧ a ≤ b ∧ c ≤ d⇒ a× c ≤ b× d.

• Axiom 3: let a, b and c be real numbers, if a ≤ b ∧ b ≤ c then a ≤ c.

54

CHAPTER 5. MODELING AND PROVING HYBRID SYSTEMS IN EVENT-B

• Axiom 4: encodes the following property defined using the operators minus (−) and
mult (×): (a2)− (b2) = (a+ b)× (a− b).

• Axiom 5: specifies the following property defined for the operator minus: −a = 0− a.

• Axiom 6: specifies the following property defined for the operators divide, times and
plus: a = 1

2 × a+ 1
2 × a

• Axiom 7: specifies the following property defined for the operator inverse 1
a×b = 1

a×
1
b .

CONTEXT Theorems
AXIOMS

axm1 : ∀ a, b, c, d · a ≤ b ∧ c ≤ d⇒ a+ c ≤ b+ d
axm2 : ∀ a, b, c, d · 0 ≤ a ∧ 0 ≤ b ∧ 0 ≤ c ∧ 0 ≤ d ∧ a ≤ b ∧ c ≤ d

⇒ a× c ≤ b× d
axm3 : ∀ a, b, c · a ≤ b ∧ b ≤ c⇒ a ≤ c
axm4 : ∀ a, b · a ∈ IR ∧ b ∈ IR ⇒ (a2 − b2) = (a+ b)× (a− b)
axm5 : ∀ a · a ∈ IR ⇒ −a = 0− a
axm6 : ∀a · a ∈ IR ⇒ a = 1

2 × a+ 1
2 × a

axm7 : ∀a, b · a ∈ IR ∧ b ∈ IR ∧ a× b ∈ IR∗ ⇒ 1
a×b = 1

a × 1
b

END

Figure 5.14: Theorems.

To prove the compliance between TimeTriggered_M and EventTriggered_M machines,
Rodin has generated a set of proof obligations that we have discharged in the TimeTrig-
gered_M machine. In these generic models, as we have kept the guard related to the
formula safe and evt_trig in the events Progress, Ctrl_normal and Ctrl_normal_time, the
refinement proofs are rather simple and related mainly to the type checking of the different
variables and the feasibility of the events Progress and Progress_time since we have to
exhibit a value of t1 that verifies the stated conditions (see grd2 of Figure 5.8). In the
following we describe the most relevant proof obligations generated for each generic model:

• ContSystem Model: PO1 is also generated for the event Progress to prove that the
action which updates the value of t by t′ is feasible. PO2 is generated for the event
Plant to verify that the action which updates the value of plantV using the parameter
plant1 verifies the type of plantV .

PO1: ∃ t′ · t′ ∈ TIME ∧ t < t′ ∧ t′ − t ≥ sigma

PO2: plantV ◁− plant1 ∈ [0, t] 7→ S

• EventTriggered Model: PO3 is a well-definedness proof obligation generated for the
event Progress due to adding the guard grd3 which guarantees that the new value
of t satisfies the formula evt_trig. This PO is discharged using the properties of the
theory Reals and the invariants defined in the EventTriggered_M machine. PO4
is generated for the event Plant to prove that it satisfies the following invariant:
exec ̸= plant⇒ dom(plantV) = [0, t]. This PO is discharged by adding as hypothesis
the definition of plantV , plantV ∈ [0, t] 7→ RReal. PO5 is also a well-definedness
proof obligation generated for the event Ctrl_normal to prove that it satisfies the
safety envelope represented by the formula safe.

PO3: ctrlV ̸∈ evade_value =⇒ t ∈ dom(plantV) ∧ plantV ∈ IR 7→ S

∧plantV (t) 7→ (t1− t) 7→ ctrlV ∈ dom(evt_trig)∧
evt_trig ∈ S × TIME × IR 7→ BOOL

PO4: ctrl ̸= plant⇒ dom(plantV ◁− plant1) = [0, t]

55

CHAPTER 5. MODELING AND PROVING HYBRID SYSTEMS IN EVENT-B

PO5: nrml_value ̸∈ evade_value =⇒ t ∈ dom(plantV) ∧
plantV ∈ IR 7→ IR× IR ∧ plantV (t) 7→
nrml_value ∈ dom(safe) ∧ safe ∈ S × IR 7→ BOOL

• TimeTriggered Model: PO6 is a Well-definedness proof obligation generated for the
event Ctrl_normal_time for replacing formula safe by safeEpsilon.

PO6: nrml_value ̸∈ evade_value =⇒ t ∈ dom(plantV) ∧
plantV ∈ IR 7→ S ∧ plantV (t) 7→ nrml_value ∈
dom(safeEpsilon) ∧ safeEpsilon ∈ IR× IR 7→ BOOL

5.6 Conclusion

In this chapter, we have presented a proof-based approach that uses the formal method
Event-B and its refinement technique to specify and prove the refinement between Event
and TimeTriggered systems. We have defined two generic templates for these systems that
represent hybrid systems as hybrid programs, Event and TimeTriggered models described
in Section 5.4. We have also introduced a more abstract level, the ContSystem model, that
specifies the continuous aspects of hybrid systems, adapted from the approach of [10]. This
permits to cope with the proof complexity by decomposing the proof obligations, such that
in the abstract model we only deal with the proof obligations related to the continuous
aspects of the system and in the refined model we will have the proof obligations related to
the safety properties of the controlled system.

In [1], we presented our first attempt to formalize the generic structure. However,
the formal models have proved to be not suitable to deal with systems with complex
properties. Moreover, the approach is abstract and did not consider the resolution of ODEs.
Consequently, it cannot be instantiated for the verification of a specific application. This
approach also consists on three generic models: System, Event and TimeTriggered models.
It reuses the abstract model System presented in Section 3.3.2. The progression of time,
the physical part are described respectively in [1] by the following events: Progress (see
Section 3.3.2), Plant (see Figure 5.15).

• Event Progress is defined as in the Section 3.3.2. It models the progression of time
in Event-B. The major limit of this event is that it does not specify that the time
must not evolve beyond a value that makes the physical part cross the boundary of
the safety property. For this purpose, we added the guard that uses the evt_trig
formula to check if in the new period of control the system remains safe (Figure 5.8)

• Event Plant represents the evolution of the continuous part represented by the
state variable plantV . It refines the event Behave (see Section 3.3.2) by replacing the
abstract differential equation e by that defined for a function denoted f_evol_plantV in
order to model the specific ODE. The function f_evol_plantV describes the evolution
of the state variable plantV according to the system discrete state. The major limit
of this event is that it assigns the new values of the continuous variables without
checking if they satisfy the safety properties of the modeled system.

The generic approach proposed in this thesis extends and improves [1] with the following
contributions:

• The new model introduced is more faithful to the Event and TimeTriggered patterns
on which it is based; this facilitates the proof of any safety property.

• To model the alternation between the progression of time, the control and the physical
parts, the approach of [1] followed the following structure: init; (ctrl; plant; prg)∗.

56

CHAPTER 5. MODELING AND PROVING HYBRID SYSTEMS IN EVENT-B

EVENT Plant
REFINES Behave
WHERE

grd1 : ode(f_evol_plantV(ctrlV), plantV (t), t) ∈ DE(S)
grd2 : Solvable([t,∞[, ode(f_evol_plantV(ctrlV), plantV (t), t))
grd3 : exec = plant

WITH e : e = ode(f_evol_plantV(ctrlV), plantV (t), t)
THEN

act1 : plantV : | plantV ′ ∈ (IR+ → S) ∧AppendSolutionBAP (
ode(f_evol_plantV (ctrlV), plantV (t), t), IR+, [0, t[, [t,∞[, plantV, plantV ′)

act2 : exec := prg
END

Figure 5.15: Event Plant [1].

The controlled part followed by the physical part followed by the progression of time.
In the new model, we let the time progresses before executing the physical part, as if
they are executed in parallel, which facilities the prove of the safety properties.

• The approach of [1] remains abstract regarding the prove of safety properties. We
fixed that by calculating the new values of the continuous variables between 0 and the
current time t. Additionally, we define the generic parameter plant1 which is used to
check that these new values satisfy the safety properties.

In comparison to the approach of dRL, Event-B refinement is based on the execution
traces starting from the initial state, that is, to prove that a concrete Event-B machine
refines an abstract one, we have to establish that the set of execution traces of the concrete
one is included in that corresponding to the abstract one. However, the refinement of dRL
is based on reachable states, that is, a hybrid program α refines another hybrid program
β (α ≤ β), iff the set of reachable states from a state s following the transitions of α is
included in the set of reachable states from the same state s following some transitions of β.
Contrary to dRL, Event-B refinement can be used to introduce and prove new properties,
which is different from typical usage in dRL.

Both Event-B and dRL refinements allow preserving the safety properties of the
abstract model. This is ensured in dRL through combining refinement relations and
modalities. Despite the several features of dRL’s refinement, computing reachable states
for non linear systems requires solving non-linear real arithmetic problems which is difficult
in general. Since, dRL refinement is based on reachable states it does not preserve the
safety properties on the traces and it is weaker than the Event-B refinement. Moreover,
dRL is not supported by any prover, therefore proving manually the correctness of systems
is error-prone in the case of complex systems especially for systems with more than two
modes. Through using Event-B, we have succeed to overcome this limitation since its
support tools aid in discharging proof obligations either automatically or interactively by
guiding the prover in applying the adequate deductive/rewriting rules.

The major limitation in using Event-B to model and verify hybrid systems is the
absence of support for the continuous aspects of CPSs, such as continuous time and
differential equations. To overcame this limitation the approach proposed in [10] defines
an Event-B theory that includes different kinds of differential equations. This is why we
have adapted the abstract model of this approach, so that it becomes possible to reason on
hybrid programs in Event-B. To solve concrete ODEs, the approach of [10] consists in
using the approximation concept during the refinement process. We have chosen a different
approach by coupling Event-B with a differential equation solver in order to solve ODEs
using Rodin (see Chapter 7).

57

CHAPTER 5. MODELING AND PROVING HYBRID SYSTEMS IN EVENT-B

58

Chapter 6

Instantiating the Generic Approach

Contents
6.1 Instantiation from the ContSystem Level 59

6.1.1 Instantiating the Generic ContSystem Model 60

6.1.2 Instantiating the Generic EventTriggered Model 63

6.1.3 Instantiating the Generic TimeTriggered Model 67

6.2 Instantiation from the EventTriggered Level 72

6.2.1 Instantiating the Generic EventTriggered Context 72

6.2.2 Instantiating the Generic EventTriggered Machine 73

6.3 Discussion . 75

6.4 Conclusion . 75

In the previous chapter, we presented a generic correct-by-construction approach for
modeling hybrid systems using the formal method Event-B and its supported tool Rodin.
The generic approach consists of three generic models. To design specific systems following
the generic approach, two strategies can be applied to instantiate the generic models. For
each strategy, we present a set of instantiation rules defined to systematically build the
models of any specific application.

Section 6.1 describes the first strategy that consists in starting by an abstract model of
the specific system obtained by refining the abstract generic ContSystem model. Section
6.2 describes the second one that consists in directly instantiating by refinement the
EventTriggered model. Last, Section 6.3 discusses the main advantages and limitations of
each strategy as well as the main differences between both strategies.

6.1 Instantiation from the ContSystem Level

The instantiation starts by refining the abstract generic ContSystem model. The obtained
model is then refined to design a specific EventTriggered model that instantiates the generic
EventTriggered model. Last, the specific EventTriggered model is refined to obtain a specific
TimeTriggered model that instantiates the generic TimeTriggered model as depicted by
Figure 6.1.

59

CHAPTER 6. INSTANTIATING THE GENERIC APPROACH

Figure 6.1: First Strategy: Instantiation from the ContSystem Level.

6.1.1 Instantiating the Generic ContSystem Model

The generic ContSystem model is refined by instantiating the generic parameters following
a set of rules defined below. The specific ContSystem model is composed of two elements, a
SpecificContSystem_Ctx context and a SpecificContSystem_M machine. SpecificContSys-
tem_Ctx given in Figure 6.2 extends the ContSystem_Ctx context given in Figure 5.2. It
is instantiated following the set of rules Rule_CS_Ctx_i below:

• Rule_CS_Ctx_1 : instantiates the constant S defined in the context ContSystem_Ctx.
This constant depends on the number of continuous variables of the system to be
modeled. It must be instantiated in the specific ContSystem model by replacing n in
axm1 of Figure 5.2 by the number of specific continuous variables.

• Rule_CS_Ctx_2 : instantiates the constant plantV Init defined in the generic Con-
tSystem by replacing its value by the specific initial value of the continuous variable
denoted specP lantV initi (see axm2 of Figure 6.2). If the modeled system is composed
of two or more continuous state variables, it is necessary to add n constants defined in
IR or IR+ depending on the characteristics of the corresponding continuous variable,
where n represents the number of continuous variables to be treated (see axm1 of
Figure 6.2).

• Rule_CS_Ctx_3 : defines all the constants and properties needed to model and prove
the modeled hybrid system. It defines l constants cst1,...,cstl in the CONSTANTS
clause and their properties in the AXIOMS clause (see axm3 of Figure 6.2).

• Rule_CS_Ctx_4 : defines the ordinary differential equations of the modeled system
using the function f_evol_plantV (see axm4 and axm5 of Figure 6.2). It defines n
differential equations eqi, where n denotes the number of specific continuous variables
specP lantV initi. f_evol_plantV binds each continuous measurement, yi, with its
associated differential equation, eqi, using a lambda expression, see axm5. It depends
on the controlled measurement of the modeled system which is specified by x. A
differential equation eqi must be expressed in terms of t, yi and x.

The specific context SpecificContSystem_Ctx associated with the Smart Heating case
study is represented by the context Specific_Heater_Ctx depicted by Figure 6.3. The
continuous behavior of this case study is represented by a single continuous variable T
denoting the measured temperature. Therefore, rule Rule_CS_Ctx_1 instantiates S
in the associated generic ContSystem_Ctx of Figure 5.2 by IR and Rule_CS_Ctx_2
defines a single initial continuous constant denoted T0 (see axm1 and axm2 of Figure 6.3).
Rule_CS_Ctx_3 defines two constants, the maximum value of the temperature T_max and
the minimum value T_min as well as their properties specified by the axiom axm3 of Figure

60

CHAPTER 6. INSTANTIATING THE GENERIC APPROACH

CONTEXT Specif icContSystem_Ctx EXTENDS ContSystem_Ctx
CONSTANTS specP lantV init1 , . . . , specP lantV initn , cst1 , . . . , cstl ,

f_evol_plantV
AXIOMS

axm1 :
∧

i=1..n specP lantV initi ∈ IR
axm2 : (specP lantV init1, ..., specP lantV initn) = plantV Init
axm3 :

∧
i=1..l prti

axm4 : f_evol_plantV ∈ IR → (TIME × S → S)
axm5 : ∀ x · x ∈ IR =⇒ (f_evol_plantV (x) = (λ t 7→ (y1 7→ 7→ yn) · t ∈ TIME
∧ (y1 7→ 7→ yn) ∈ S | (eq1, ..., eqn)))

END

Figure 6.2: SpecificContSystem_Ctx.

6.3. The differential equation of the Smart Heating case study is represented by a single
formula dT

dt = x, where x represents the controlled measurement. Rule Rule_CS_Ctx_4 is
then applied by replacing S by its specific value in axm4 and by instantiating the specific
continuous equation by x (see axm5 of Figure 6.3).

CONTEXT Specif ic_Heater_Ctx EXTENDS ContSystem_Ctx
CONSTANTS T0 , T_max , T_min , f_evol_plantV
AXIOMS

axm1 : T0 ∈ IR+

axm2 : T0 = plantV Init
axm3 : T0 < T_max ∧ T0 > T_min ∧ T_max ∈ IR∧
T_max > T_min ∧ T_min ∈ IR ∧ T_min > 0

axm4 : f_evol_plantV ∈ IR → (TIME × IR → IR)
axm5 : ∀x · x ∈ IR =⇒ (f_evol_plantV (x) = (λt 7→ T · t ∈ TIME ∧ T ∈ IR | x))

END

Figure 6.3: Specific_Heater_Ctx.

Machine SpecificContSystem_M refines the generic machine ContSystem_M, presented in
A.2, by applying the set of rules Rule_CS_M_i defined below:

• Rule_CS_M_1 : instantiates the generic continuous variable plantV by defining n
invariants used to define the specific continuous variables as follows: specP lantVi ∈
[0, t] 7→ IR+ or specP lantVi ∈ [0, t] 7→ IR depending on the nature of the continuous
variable to be measured. This rule also adds an invariant used to link plantV to the
specific continuous variables using the operator bind of DiffEq (see inv1 and inv2 of
Figure 6.4).

• Rule_CS_M_2 : assigns the initial value specP lantV initi to the specific continuous
variable specP lantVi (see act2 of Figure 6.5).

• Rule_CS_M_3 : refines the generic event Plant of Figure 5.15 by replacing the
generic continuous variable plantV by the specific ones. In addition, the generic
parameter plant1 is replaced by the specific ones by adding a witness (see WITH
clause of Figure 6.5).

Machine Specific_Heater_M refines the generic ContSystem_M machine by applying
the three rules defined above. Rule_CS_M_1 is applied by defining the invariants inv1
and inv2 described in Figure 6.6. inv1 specifies the definition of the temperature T , and
inv2 replaces the generic variable plantV by T . Rule_CS_M_2 is applied by initialising
the value of T at the instant t = 0 by T0 in act2 of Figure 6.6.

61

CHAPTER 6. INSTANTIATING THE GENERIC APPROACH

MACHINE SpecificContSystem_M
REFINES ContSystem_M
SEES Specif icContSystem_Ctx
VARIABLES t , specP lantV1 , . . . , specP lantVn
INVARIANTS

inv1 :
∧

i=1..n specP lantVi ∈ [0, t] 7→ IR
inv2 : plantV = bind(specP lantV1, bind(specP lantV2, bind(...)))

EVENTS
INITIALISATION
THEN

act1 : t := 0
act2 : specP lantVi := {0 7→ specP lantV initi}

END

Figure 6.4: Header of SpecificContSystem_M.

EVENT Plant
REFINES Plant
ANY e , specP lant11 , . . . , specP lant1n
WHERE

grd1 : e ∈ DE(S)
grd2 : Solvable([0, t]− dom(specP lantV), e)
grd3 :

∧
i=1..n specP lant1i ∈ [0, t]− dom(specP lantVi) → IR∧

AppendSolutionBAP (e, [0, t]− dom(specP lantVi),
[0, t]− dom(specP lantVi), specP lant1i)

WITH
plant1 : plant1 = bind(specP lant11, bind(specP lant12, bind(...)))

THEN
act1 : specP lantVi := specP lantVi ◁− specP lant1i

END

Figure 6.5: Specific Plant.

MACHINE Specific_Heater_M
REFINES ContSystem_M
SEES Specif ic_Heater_Ctx
VARIABLES t , T
INVARIANTS

inv1 : T ∈ [0, t] 7→ IR+

inv2 : T = plantV
EVENTS
INITIALISATION
THEN

act1 : t := 0
act2 : T := {0 7→ T0}

END

Figure 6.6: Header of Specific_Heater_M.

Event Plant is refined by applying rule Rule_CS_M_3 that replaces the generic
continuous variable plantV by T and the generic parameter plant1 by T1 defined in the
ANY clause of Figure 6.7.

62

CHAPTER 6. INSTANTIATING THE GENERIC APPROACH

EVENT Plant
REFINES Plant
ANY e , T1
WHERE

grd1 : e ∈ DE(IR)
grd2 : Solvable([0, t]− dom(T), e)
grd3 : T1 ∈ [0, t]− dom(T) → IR+∧
AppendSolutionBAP (e, [0, t]− dom(T), [0, t]− dom(T), T1)

WITH plant1 : plant1 = T1
THEN

act1 : T := T ◁− T1
END

Figure 6.7: Specific Heater Plant.

6.1.2 Instantiating the Generic EventTriggered Model

The specific EventTriggered model refines the specific ContSystem model and instantiates
the generic EventTriggered model. It consists of a specific context, SpecificEventTrig-
gered_Ctx1 depicted by Figure 6.8, and a specific machine SpecificEventTriggered_M1.
Context SpecificEventTriggered_Ctx1 extends the context SpecificContSystem_Ctx and
instantiates the generic context EventTriggered_Ctx of Figure 5.5 by following the rules
Rule_ET1_Ctx_i described below:

• Rule_ET1_Ctx_1 : defines the constant set EXEC and its elements, prg, plant and
ctrl, that are used to describe the alternation between the control and the physical
parts as well as the progression of time (see axm1 of Figure 6.8).

• Rule_ET1_Ctx_2 : instantiates the system safety envelopes by defining k constant
formulas, safe1, ..., safek. For each safety envelop safei, two axioms are defined.
The first axiom specifies the type of the formula (see axm2 of Figure 6.8). The second
one, called SafeFormi, specifies the property to be modeled. This latter depends on
the continuous measurements y1, ..., yn and the controlled measurement x (see axm4
of Figure 6.8).

• Rule_ET1_Ctx_3 : instantiates formula evt_trigi by defining k constant formulas,
evt_trig1, ..., evt_trigk. Two axioms are defined for each event trigger property (see
axioms axm3 and axm5 of Figure 6.8). These formulas depend on the continuous
measurements y1, ..., yn and the controlled measurement x as well as the duration
between two periods of control.

• Rule_ET1_Ctx_4 : instantiates the concrete values of the controlled measurement
by defining k constants in IR (see axm6 of Figure 6.8). These constants will be used
as values of the controlled variable ctrlV .

• Rule_ET1_Ctx_5 : instantiates evade values by those associated with the specific
case study (see axm7 of Figure 6.8).

• Rule_ET1_Ctx_6 : defines a constant, called prop, used to specify the system safety
property (see axm8 of Figure 6.8). prop is instantiated by defining the specific
PropForm (see axm9 of Figure 6.8).

The specific EventTriggered model associated with the Smart Heating system is repre-
sented by the Event_Heater_Ctx context depicted by Figure 6.9 and the Event_Heater_M
machine. Event_Heater_Ctx extends the Specific_Heater_Ctx context and instantiates
the generic EventTriggered_Ctx. The instantiation starts by defining the set EXEC and
its elements following Rule_ET1_Ctx_1. As described in Section 4.3, two safety envelops

63

CHAPTER 6. INSTANTIATING THE GENERIC APPROACH

CONTEXT Speci f icEventTriggered_Ctx1
EXTENDS Specif icContSystem_Ctx
SETS EXEC
CONSTANTS ctrl , plant , prg , safe1 , . . . , safek , evt_trig1 , . . . , evt_trigk

, val1 , . . . , valk , evade_value1 , . . . , evade_valuek , prop
AXIOMS

axm1 : partition(EXEC, {ctrl}, {plant}, {prg})
axm2 :

∧
i=1..k safei ∈ (S × IR) → BOOL

axm3 :
∧

i=1..k evt_trigi ∈ (S × TIME)× IR → BOOL
axm4 :

∧
i=1..k safei = (λ(y1 7→ 7→ yn) 7→ x·

(y1 7→ 7→ yn) ∈ S ∧ x ∈ IR | bool(SafeFormi))
axm5 :

∧
i=1..k evt_trigi = (λ(y1 7→ 7→ yn) 7→ t1 7→ x

·(y1 7→ 7→ yn) ∈ S ∧ t1 ∈ TIME ∧ x ∈ IR | bool(TrigFormi))
axm6 :

∧
i=1..z vali ∈ IR

axm7 :
∧

i=1..k evade_valuei ⊆ IR
axm8 : prop ∈ IRn → BOOL
axm9 : prop = (λ(y1 7→ 7→ yn) · (y1 7→ 7→ yn) ∈ IRn | bool(PropForm))

END

Figure 6.8: SpecificEventTriggered_Ctx1.

need to be defined (Rule_ET1_Ctx_2), see axm2, axm4, axm6 and axm8 of Figure 6.9.
For each safety envelop, we define an event trigger formula (Rule_ET1_Ctx_3), see axm3,
axm5, axm7 and axm9 of Figure 6.9. The continuous evolution of the Smart Heating case
study is described by two constants, temp and −temp, that represent the values vali of
the controlled variable ctrlV (Rule_ET1_Ctx_4). Rule_ET1_Ctx_5 instantiates the
set of evade values (axioms axm11 and axm12 of Figure 6.9). Last Rule_ET1_Ctx_6
instantiates the safety property, T_min ≤ T ≤ T_max, using the constant prop (see
axm13 and axm14 of Figure 6.9).

CONTEXT Event_Heater_Ctx
EXTENDS Specif ic_Heater_Ctx
SETS EXEC
CONSTANTS ctrl , plant , prg , safe1 , evt_trig1 , safe2 , evt_trig2 ,

evade_value1 , evade_value2 , temp , prop
AXIOMS

axm1 : partition(EXEC, {ctrl}, {plant}, {prg})
axm2 : safe1 ∈ (IR× IR) → BOOL
axm3 : evt_trig1 ∈ (IR× TIME)× IR → BOOL
axm4 : safe2 ∈ (IR× IR) → BOOL
axm5 : evt_trig2 ∈ (IR× TIME)× IR → BOOL
axm6 : safe1 = (λT 7→ x · T ∈ IR ∧ x ∈ IR| bool(T < T_max))
axm7 : evt_trig1 = (λ T 7→ t1 7→ x · T ∈ IR ∧ t1 ∈ TIME ∧ x ∈ IR |
bool(T + x× t1 ≤ T_max))

axm8 : safe2 = (λ T 7→ x · T ∈ IR ∧ x ∈ IR| bool(T > T_min))
axm9 : evt_trig2 = (λT 7→ t1 7→ x · T ∈ IR ∧ t1 ∈ TIME ∧ x ∈ IR |
bool(T + x× t1 ≥ T_min))

axm10 : temp ∈ IR ∧ temp > 0
axm11 : evade_value1 ⊆ IR ∧ evade_value1 = {−temp}
axm12 : evade_value2 ⊆ IR ∧ evade_value2 = {temp}
axm13 : prop ∈ IR → BOOL
axm14 : prop = (λT · T ∈ IR | bool(T ≤ T_max ∧ T ≥ T_min))

END

Figure 6.9: Event_Heater_Ctx.

64

CHAPTER 6. INSTANTIATING THE GENERIC APPROACH

Machine SpecificEventTriggered_M1 refines the SpecificContSystem_M machine by
instantiating the generic EventTriggered_M machine. The instantiation is done following
the rules Rule_ET1_M_i defined below:

• Rule_ET1_M_1 : defines the discrete variables ctrlV and exec with their typing in
the INVARIANTS clause, where setV al denoting the set of possible values of ctrlV
(see inv1 and inv2 of Figure 6.10).

• Rule_ET1_M_2 : instantiates the invariants inv3 and inv4 of Figure 5.6 by replac-
ing the generic continuous variable plantV by the specific ones, specP lantV1, ...,
specP lantVn. These invariants are required to prove the specific proof obligations.
This rule also adds the system safety property as an invariant using the constant prop
(see inv5 of Figure 6.10).

INVARIANTS
inv1 : ctrlV ∈ setV al
inv2 : exec ∈ EXEC
inv3 :

∧
i=1..n exec ̸= plant =⇒ dom(SpecP lantVi) = [0, t]

inv4 :
∧

i=1..n exec = plant =⇒ t /∈ dom(specP lantVi)
inv5 : ∀w · w ∈ dom(bind(specP lantV1, bind(specP lantV2,
bind(...))))) =⇒ prop(specP lantV1(w), ..., specP lantVn(w)) = TRUE

Figure 6.10: Instantiating the INVARIANTS Clause.

• Rule_ET1_M_3 : instantiates for each sub-formula safei, a set of evade values
evade_valuei for the controlled variable ctrlV and a formula evt_trig i for its boundary.
Thus the generic event Progress is instantiated as depicted in Figure 6.11, where
grd3 states that time progresses without crossing the boundaries of the event trigger
evt_trigi of any safety envelope.

EVENT Progres s
REFINES Progres s
ANY t1
WHERE

grd1 : exec = prg
grd2 : t1 ∈ TIME ∧ t < t1 ∧ t1 − t ≥ sigma
grd3 :

∧
i=1..k(ctrlV /∈ evade_valuei ⇒

evt_trigi(specP lantV1(t), ..., specP lantVn(t), t1 − t, ctrlV))
THEN

act1 : t := t1
act2 : exec := plant

END

Figure 6.11: Instantiating the Event Progress.

• Rule_ET1_M_4 : instantiates the event Plant by replacing the generic ordinary
differential equation e by the specific ones using the function f_evol_plantV (see
grd3 of Figure 6.12). It replaces the generic ODE e by its specific value in the guards
grd4 and grd5 of Figure 6.12. This rule also adds the safety property specified using
the involved parameters specP lant1i (see grd6 of Figure 6.12).

• Rule_ET1_M_5 : instantiates the generic event Ctrl_normal depicted by Figure
5.10 in Figure 6.13, where grd3 checks that the chosen normal value makes all the
sub-formulas safei satisfied.

65

CHAPTER 6. INSTANTIATING THE GENERIC APPROACH

EVENT Plant
REFINES Plant
ANY specP lant11 , . . . , specP lant1n
WHERE

grd1 : exec = plant
grd2 :

∧
i=1..n specP lant1i ∈ [0, t]− dom(specP lantVi) → IR

grd3 : ode(f_evol_plantV (ctrlV), (specP lant11(t), ..., specP lant1n(t)), t) ∈ DE(S)
grd4 : Solvable([0, t]− dom(bind(specP lantV1, bind(specP lantV2, bind(...)))),
ode(f_evol_plantV (ctrlV), (specP lant11(t), ..., specP lant1n(t)), t)

grd5 : AppendSolutionBAP (ode(f_evol_plantV (ctrlV),
(specP lant11(t), ..., specP lant1n(t)), t),
[0, t]− dom(bind(specP lantV1, bind(specP lantV2, bind(...)))),
[0, t]− dom(bind(specP lantV1, bind(specP lantV2, bind(...)))),
bind(specP lant11, bind(specP lant12, bind(...))))

grd6 : ∀xx · xx ∈ dom(bind(specP lant11, bind(specP lant12, bind(...)))))
=⇒ prop(specP lant11(xx), ..., specP lant1n(xx)) = TRUE

WITH e : e = ode(f_evol_plantV (ctrlV), (specP lant11(t), ..., specP lant1n(t)), t)
THEN

act1 :
∧

i=1..n specP lantVi := specP lantVi ◁− specP lant1i
act2 : exec := ctrl

END

Figure 6.12: Instantiating the Event Plant.

EVENT Ctrl_normal
ANY nrml_value
WHERE

grd1 : exec = ctrl
grd2 : nrml_value ∈ IR
grd3 :

∧
i=1..k nrml_value /∈ evade⇒

safei(specP lantV1(t), ..., specP lantVn(t), nrml_value) = TRUE
THEN

act1 : ctrlV := nrml_value
act2 : exec := prg

END

Figure 6.13: Instantiating the Event Ctrl_normal.

• Rule_ET1_M_6 : instantiates the event Ctrl_evade of Figure 6.14. It produces n
events: one for each sub-formula safei. In event Ctrl_evadei grd3 checks that the
value chosen for sub-formula safei makes the other safety properties satisfied.

EVENT Ctrl_evade i

ANY evade_val
WHERE

grd1 : exec = ctrl
grd2 : evade_val ∈ evade_valuei
grd3 :

∧
j=1..k∧j ̸=i safej(specP lantV1(t), ..., specP lantVn(t), evade_val) = TRUE

THEN
act1 : ctrlV := evade_val
act2 : exec := prg

END

Figure 6.14: Instantiating the Event Ctrl_evade.

66

CHAPTER 6. INSTANTIATING THE GENERIC APPROACH

Machine Event_Heater_M represents the specific EventTriggered model associated
with the Smart Heating system. Figure 6.15 shows the definition of the variables ctrlV
and exec as stated by Rule_ET1_M_1. The invariants inv3 and inv4 are instantiated by
replacing the generic variable, SpecP lantVi, by the specific one T (Rule_ET1_M_2). The
safety property is defined using the formula prop specified in the Event_Heater_Ctx by
instantiating inv5 of Figure 6.10. Figure 6.16 depicts the specific event Progress associated
with the Smart Heating case study. For each event trigger formula, evt_trig1 and evt_trig2,
grd3 of Figure 6.11 is instantiated by replacing SpecP lantVi by T (Rule_ET1_M_3).

MACHINE Event_Heater_M
REFINES Specific_Heater_M
SEES Event_Heater_Ctx
VARIABLES t , T , ctrlV , exec
INVARIANTS

inv1 : ctrlV ∈ {temp,−temp}
inv2 : exec ∈ EXEC
inv3 : exec ̸= plant =⇒ dom(T) = [0, t]
inv4 : exec = plant =⇒ t /∈ dom(T)
inv5 : ∀w · w ∈ dom(T) =⇒ prop(T (w)) = TRUE

Figure 6.15: Header of Event_Heater_M.

EVENT Progres s
REFINES Progres s
ANY t1
WHERE

grd1 : exec = prg
grd2 : t1 ∈ TIME ∧ (t < t1) ∧ (t1 − t) ≥ sigma
grd3 : ctrlV /∈ evade_value1 =⇒ evt_trig1(T (t) 7→ (t1 − t) 7→ ctrlV) = TRUE
grd4 : ctrlV /∈ evade_value2 =⇒ evt_trig2(T (t) 7→ (t1 − t) 7→ ctrlV) = TRUE

THEN
act1 : t := t1
act2 : exec := plant

END

Figure 6.16: Specific Heater Progress.

The continuous part of the Smart Heating system is described by the event Plant
depicted by Figure 6.17. Event Plant replaces the generic ordinary differential equation
e by that associated with the Smart Heating system, dT

dt = ctrlV . It also adds the safety
property specified by the guard grd6 of Figure 6.7. In Figure 6.18, we instantiate the guards,
grd3 and grd4, to check that the values temp and −temp respectively satisfy the safety
envelop formulas safe1 and safe2 defined for this case study (Rule_ET1_M_5). Since the
discrete behavior of the Smart Heating system is described by two evade modes, two events
Ctrl_evade_1 and Ctrl_evade_2 are respectively defined as depicted by Figures 6.19 and
6.20. Event Ctrl_evade_1 is linked to the safety property safe1 and event Ctrl_evade_1
is linked to safe2 (Rule_ET1_M_6).

6.1.3 Instantiating the Generic TimeTriggered Model

The specific TimeTriggered model instantiates the generic TimeTriggered model (see
Section 5.4.2) by defining a specific SpecificTimeTriggered_Ctx1 context and a specific
SpecificTimeTriggered_M1 machine. SpecificTimeTriggered_Ctx1 context depicted by

67

CHAPTER 6. INSTANTIATING THE GENERIC APPROACH

EVENT Plant
REFINES Plant
ANY T1
WHERE

grd1 : exec = plant
grd2 : T1 ∈ [0, t]− dom(T) → IR+

grd3 : ode(f_evol_plantV (ctrlV), T1(t), t) ∈ DE(IR)
grd4 : Solvable([0, t]− dom(T), ode(f_evol_plantV (ctrlV), T1(t), t))
grd5 : AppendSolutionBAP (ode(f_evol_plantV (ctrlV), T1(t), t),
[0, t]− dom(T), [0, t]− dom(T), T1)

grd6 : ∀xx · xx ∈ dom(T1) =⇒ prop(T1(xx)) = TRUE
WITH e : e = ode(f_evol_plantV (ctrlV), T1(t), t)
THEN

act1 : T := T ◁− T1
act2 : exec := ctrl

END

Figure 6.17: Specific Event_Heater Plant.

EVENT Ctrl_normal
ANY nCtrlV
WHERE

grd1 : exec = ctrl
grd2 : nCtrlV ∈ {temp,−temp}
grd3 : nCtrlV = temp =⇒ safe1(T (t) 7→ temp) = TRUE
grd4 : nCtrlV = −temp =⇒ safe2(T (t) 7→ −temp) = TRUE

THEN
act1 : exec := prg
act2 : ctrlV := nCtrlV

END

Figure 6.18: Specific Heater Ctrl_normal.

EVENT Ctrl_evade_1
WHERE

grd1 : exec = ctrl
grd2 : safe1(T (t) 7→ temp) = TRUE

THEN
act1 : exec := prg
act2 : ctrlV := temp

END

Figure 6.19: Specific Heater Ctrl_evade_1.

EVENT Ctrl_evade_2
WHERE

grd1 : exec = ctrl
grd2 : safe2(T (t) 7→ −temp) = TRUE

THEN
act1 : exec := prg
act2 : ctrlV := −temp

END

Figure 6.20: Specific Heater Ctrl_evade_2.

68

CHAPTER 6. INSTANTIATING THE GENERIC APPROACH

Figure 6.21 extends the specific SpecificEventTriggered_Ctx1 and instantiates the generic
TimeTriggered_Ctx (see Figure 5.11) by applying the following two rules:

• Rule_TT_Ctx_1 : defines the control period epsilon and its related properties as
specified by axm1 of Figure 6.21.

• Rule_TT_Ctx_2 : specifies for each sub-formula safei defined in the specific Speci-
ficEventTriggered_Ctx1 context, a formula safeEpsiloni by taking into account the
control period epsilon; SafeEpsformi represents the formula to be modeled (see
axm2 and axm3 of Figure 6.21).

CONTEXT Speci f icTimeTriggered_Ctx1
EXTENDS Speci f icEventTriggered_Ctx1
CONSTANTS epsilon , safeEpsilon1 , . . . , safeEpsilonk

AXIOMS
axm1 : epsilon ∈ TIME ∧ sigma ≤ epsilon ∧ 0 < epsilon
axm2 :

∧
i=1..k safeEpsiloni ∈ (S × IR) → BOOL

axm3 :
∧

i=1..k safeEpsiloni = (λ(y1, ..., yn) 7→ ctrlV ·
(y1, ..., yn) ∈ S ∧ ctrlV ∈ IR | SafeEpsformi)

END

Figure 6.21: SpecificTimeTriggered_Ctx1.

The specific EventTriggered model associated with the Smart Heating system is refined
to obtain a specific TimeTriggered model composed of a specific context, Time_Heater_ctx,
and a specific machine, Time_Heater_M. Figure 6.22 depicts the different elements of
Time_Heater_ctx. Acoording to Rule_TT_Ctx_2, two safety envelops taking into account
the control period epsilon are defined (see axm4 and axm5).

CONTEXT Time_Heater_Ctx
EXTENDS Event_Heater_Ctx
CONSTANTS epsilon , safeEpsilon1 , safeEpsilon2

AXIOMS
axm1 : epsilon ∈ TIME ∧ sigma ≤ epsilon ∧ 0 < epsilon
axm2 : safeEpsilon1 ∈ (IR× IR) → BOOL
axm3 : safeEpsilon2 ∈ (IR× IR) → BOOL
axm4 : safeEpsilon1 = (λ T 7→ ctrlV · T ∈ IR ∧ ctrlV ∈ IR |
bool(T + ctrlV × epsilon ≤ T_max))
axm5 : safeEpsilon2 = (λ T 7→ ctrlV ·
T ∈ IR ∧ ctrlV ∈ IR | bool(T + ctrlV × epsilon ≥ T_min))

END

Figure 6.22: Time_Heater_Ctx.

The specific SpecificTimeTriggered_M1 machine refines the specific SpecificEventTrig-
gered_M1 machine following the rules Rule_TT_M_i defined below:

• Rule_TT_M_1 : instantiates the invariants inv1 and inv3 of Figure 6.23 by replacing
the generic continuous variables plantV by the specific ones specP lantVi. Moreover,
the invariant inv2 of Figure 6.23 is specified for each sub-formula safeEpsiloni.

• Rule_TT_M_2 : adds the following property to the event Progress of Figure 6.11,
(t1 − t) ≤ epsilon, to guarantee that the controller reacts at least every epsilon time.
Moreover, it removes the guard grd3 of the event Progress (see Figure 6.24) to give
rise to refinement proof obligations between the generic and the specific models.

69

CHAPTER 6. INSTANTIATING THE GENERIC APPROACH

INVARIANTS
inv1 : ∃ t1 · t1 ∈ TIME ∧

∧
i=1..n dom(specP lantVi) = [0, t1] ∧ (t− t1) ≤ epsilon

∧(exec ̸= plant =⇒ t1 = t) ∧ (exec = plant =⇒ t > t1)∧
(
∧

i=1..k ctrlV /∈ evade_valuei∧
exec = plant =⇒ safeEpsiloni((specP lantV1(t1), ...,
specP lantVn(t1)) 7→ ctrlV) = TRUE)

inv2 :
∧

i=1..k ctrlV /∈ evade_valuei ∧ exec = prg =⇒ safeEpsiloni(
(specP lantV1(t), ..., specP lantVn(t) 7→ ctrlV) = TRUE

inv3 : ∀t1, t2 · t1 ∈ TIME ∧ t2 ∈ TIME ∧ dom(specP lantVi) = [0, t1]∧
dom(specP lantVi) = [0, t2] =⇒ t1 = t2

Figure 6.23: SpecificTimeTriggered_M1 INVARIANTS.

EVENT Progress REFINES Progress
ANY t1
WHERE

grd1 : exec = prg
grd2 : t1 ∈ TIME ∧ (t < t1) ∧ (t1 − t) ≥ sigma ∧ (t1 − t) ≤ epsilon

THEN
act1 : t := t1
act2 : exec := plant

END

Figure 6.24: SpecificTimeTriggered_M1 Progress.

• Rule_TT_M_3 : refines the event Plant described in Figure 6.12 by adding the
parameters lastT ime and epsilon1 as well as their properties specified by the guards
grd2, grd3 and grd4 of Figure 6.25. Moreover, for each continuous parameter
specP lant1i, a solution of the differential equation that describes its behavior is
defined (see Soli in grd5 of Figure 6.25). Guard grd6 of Figure 6.25 is defined
to ensure that the specific parameters specP lant1i represents a solution of the
ode(f_evol_plantV (ctrlV), specP lant1i, t) using the operator solutionOf defined
in [10].

EVENT Plant
REFINES Plant
ANY specP lant11 , . . . , specP lant1n , lastT ime , epsilon1
WHERE

grd1 : exec = plant
grd2 : lastT ime ∈ TIME ∧

∧
i=1..n dom(specP lantVi) = [0, lastT ime]

grd3 : t > lastT ime ∧
∧

i=1..n lastT ime ∈ dom(specP lantVi)
grd4 : epsilon1 = (t− lastT ime)
grd5 :

∧
i=1..n specP lant1i = (λ t1 · t1 ∈ TIME ∧ t1 > lastT ime ∧ t1 ≤ t | Soli)

grd6 : solutionOf([0, t]− dom(plantV), ([0, t]− dom(plantV))
◁V 1, ode(f_evol_plantV (ctrlV), (specP lant11(t), ..., specP lant1n(t)), t))
. . .

THEN
act1 : specP lantVi := specP lantVi ◁− specP lant1i
act2 : exec := ctrl

END

Figure 6.25: SpecificTimeTriggered_M1 Plant.

• Rule_TT_M_4 : replaces each formula safei by the associated formula safeEpsiloni
in the events Ctrl_normal (see Figure 6.13) and Ctrl_evade (see Figure 6.14).

70

CHAPTER 6. INSTANTIATING THE GENERIC APPROACH

Figure 6.26 depicts the INVARIANTS part of the Time_Heater_M machine. The
invariants specified in Figure 6.23 are instantiated by replacing specP lantVi by T , the
safeEpsiloni formulas by, safeEpsilon1 and safeEpsilon2, and the evade_valuei by,
evade_value1 and evade_value2 (Rule_TT_M_1). The solution obtained from solving
the differential equation that describes the continuous behavior of the Smart Heating system
is: ctrlV × epsilon1 + T (lastT ime). This solution is added in the event Plant (see Figure
6.27), (Rule_TT_M_3). The events Ctrl_normal, Ctrl_evade_1 and Ctrl_evade_2 are
refined by replacing the formulas safe1 and safe2 respectively by formula safeEpsilon1
and safeEpsilon2 (see Figures 6.28, 6.29 and 6.30).

INVARIANTS
inv1 : ∃t1 · t1 ∈ TIME ∧ dom(T) = [0, t1] ∧ (t− t1) ≤ epsilon∧
(exec ̸= plant =⇒ t1 = t) ∧ (exec = plant =⇒ t > t1)∧
(ctrlV /∈ evade_value1 ∧ exec = plant =⇒ safeEpsilon1(T (t1) 7→ ctrlV) = TRUE)
∧(ctrlV /∈ evade_value2 ∧ exec = plant =⇒ safeEpsilon2(T (t1) 7→ ctrlV) = TRUE)
inv2 : ctrlV /∈ evade_value1 ∧ exec = prg =⇒ safeEpsilon1(T (t) 7→ ctrlV) = TRUE
inv3 : ctrlV /∈ evade_value2 ∧ exec = prg =⇒ safeEpsilon2(T (t) 7→ ctrlV) = TRUE
inv4 : ∀ t1, t2 · t1 ∈ TIME ∧ t2 ∈ TIME ∧ dom(T) = [0, t1] ∧ dom(T) = [0, t2] =⇒ t1 = t2

Figure 6.26: Time_Heater_M INVARIANTS.

EVENT Plant REFINES Plant
ANY T1 , lastT ime , epsilon1
WHERE

grd1 : exec = plant
grd2 : lastT ime ∈ TIME ∧ dom(T) = [0, lastT ime]
grd3 : t > lastT ime ∧ lastT ime ∈ dom(T)
grd4 : epsilon1 = (t− lastT ime)
grd5 : T1 = (λ t1 · t1 ∈ TIME ∧ t1 > lastT ime ∧ t1 ≤ t | ctrlV × epsilon1 + T (lastT ime))
grd6 : ode(f_evol_plantV (ctrlV), T1(t), t) ∈ DE(IR)
grd7 : Solvable([0, t]− dom(V), ode(f_evol_plantV (ctrlV), T1(t), t))
grd8 :

solutionOf([0, t]− dom(T), ([0, t]− dom(T))◁ T1, ode(f_evol_plantV (ctrlV), T1(t), t))
THEN
act1 : T := T ◁− T1
act2 : exec := ctrl

END

Figure 6.27: Time_Heater_M Plant.

EVENT Ctrl_normal REFINES Ctrl_normal
ANY nCtrlV
WHERE

grd1 : exec = ctrl
grd2 : nCtrlV ∈ {temp,−temp}
grd3 : nCtrlV = temp =⇒ safeEpsilon1(T (t) 7→ temp) = TRUE
grd4 : nCtrlV = −temp =⇒ safeEpsilon2(T (t) 7→ −temp) = TRUE

THEN
act1 : exec := prg
act2 : ctrlV := nCtrlV

END

Figure 6.28: Time_Heater_M Ctrl_normal.

71

CHAPTER 6. INSTANTIATING THE GENERIC APPROACH

EVENT Ctrl_evade_1 REFINES Ctrl_evade_1
WHERE

grd1 : exec = ctrl
grd2 : safeEpsilon1(T (t) 7→ temp) = TRUE

THEN
act1 : exec := prg
act2 : ctrlV := temp

END

Figure 6.29: Time_Heater_M Ctrl_evade_1.

EVENT Ctrl_evade_2 REFINES Ctrl_evade_2
WHERE

grd1 : exec = ctrl
grd2 : safeEpsilon2(T (t) 7→ −temp) = TRUE

THEN
act1 : exec := prg
act2 : ctrlV := −temp

END

Figure 6.30: Time_Heater_M Ctrl_evade_2.

6.2 Instantiation from the EventTriggered Level

The instantiation starts by directly refining the generic EventTriggered model. The ob-
tained model is composed of a specific context named, SpecificEventTriggered_Ctx2, and
a specific machine named, SpecificEventTriggered_M2. This model is then refined in or-
der to design a specific TimeTriggered model that instantiates the generic TimeTriggered
model as depicted by Figure 6.31. The specific TimeTriggered model is also composed
of a specific context called, SpecificTimeTriggered_Ctx2, and a specific machine called,
SpecificTimeTriggered_M2, obtained following the same rules defined in Section 6.1.3.

Figure 6.31: Second Strategy: Instantiation from the EventTriggered Level.

6.2.1 Instantiating the Generic EventTriggered Context

The specific context SpecificEventTriggered_Ctx2 depicted by Figure 6.32 extends the
generic EventTriggered_Ctx by applying the following rules:

72

CHAPTER 6. INSTANTIATING THE GENERIC APPROACH

• Rule_ET2_Ctx_1 : defines all the constant parameters of the modeled system and
their related properties as well as the initial values of the continuous variables by
applying the rules Rule_CS_Ctx_1, Rule_CS_Ctx_2 and Rule_CS_Ctx_3 (see
axm1, axm2 and axm3 of Figure 6.32).

• Rule_ET2_Ctx_2 : instantiates the safety envelop of the modeled system as well as
the event trigger formula defined in the generic EventTriggered_Ctx. If the system
is composed of multiple safety envelops and event trigger formulas, these formulas
should be declared in the CONSTANTS clause and their definitions should be added
in the AXIOMS clause (see axm4, axm5, ... and axm9 of Figure 6.32). This rule also
defines the set of evade values and set of possible values of the controlled variable vali
(see axm11 and axm12 of Figure 6.32). Moreover, it instantiates the safety property
using the constant prop defined in the generic EventTriggered_Ctx (see axm13 of
Figure 6.32) .

• Rule_ET2_Ctx_3 : defines the differential equations of the modeled system by
instantiating the function f_evol_plantV , where ode is defined in S and built using
the right parts of the specific ODEs (see axm10 of Figure 6.32).

CONTEXT Speci f icEventTriggered_Ctx2
EXTENDS EventTriggered_Ctx
CONSTANTS Cst1 , . . . , Cstl , specP lantV init1 , . . . , specP lantV initn , safe1

, . . . , safek , evt_trig1 , . . . , evt_trigk , evade_value1 , . . . ,
evade_valuek , val1 , . . . , valk

AXIOMS
axm1 : (specP lantV init1, ..., specP lantV initn) = plantV init
axm2 :

∧
i=1..n specP lantV initi ∈ IR

axm3 :
∧

i=1..l prti
axm4 : safe = (λ (y1, ..., yn) 7→ x · (y1, ..., yn) ∈ S ∧ x ∈ IR | Safeform)
axm5 : evt_trig = (λ(y1, ..., yn) 7→ t1 7→ x · (y1, ..., yn) ∈ S∧
t1 ∈ TIME ∧ x ∈ IR | Trigform)

axm6 :
∧

i=1..k safei ∈ (S × IR) → BOOL
axm7 :

∧
i=1..k evt_trigi ∈ (S × TIME)× IR → BOOL

axm8 :
∧

i=1..k safei = (λ (y1, ..., yn) 7→ x · (y1, ..., yn) ∈ S ∧ x ∈ IR | Safeformi)
axm9 :

∧
i=1..k evt_trigi = (λ(y1, ..., yn) 7→ t1 7→ x

·(y1, ..., yn) ∈ S ∧ t1 ∈ TIME ∧ x ∈ IR | Trigformi

axm10 : ∀x · x ∈ IR =⇒ (f_evol_plantV (x) = (λt 7→ (y1, ..., yn)
·t ∈ TIME ∧ (y1, ..., yn) ∈ S | ode)

axm11 :
∧

i=1..k evade_valuei ⊆ IR
axm12 :

∧
i=1..z vali ∈ IR

axm13 : prop = (λ(y1 7→ 7→ yn) · (y1 7→ 7→ yn) ∈ IRn| bool(PropForm))
END

Figure 6.32: SpecificEventTriggered_Ctx2.

Figure 6.33 depicts the SpecificEventTriggered_Ctx2 associated with the Smart Heat-
ing case study (Rules Rule_ET2_Ctx_1, Rule_ET2_Ctx_2 and Rule_ET2_Ctx_3).
Event_Heater_Ctx2 redefines all the constants and properties defined in the context
Specific_Heater_Ctx described in Figure 6.3 and context SpecificEventTriggered_Ctx1
described in Figure 6.8. Moreover, context SpecificEventTriggered_Ctx1 extends the generic
context EventTriggered_Ctx.

6.2.2 Instantiating the Generic EventTriggered Machine

The specific SpecificEventTriggered_M2 machine directly refines the generic EventTrig-
gered_M machine by instantiating the following two rules:

73

CHAPTER 6. INSTANTIATING THE GENERIC APPROACH

CONTEXT Event_Heater_Ctx2
EXTENDS EventTriggered_Ctx
CONSTANTS T0 , T_max , T_min , safe2 , evt_trig2 , evade_value2 , temp
AXIOMS

axm1 : T0 = plantV Init
axm2 : T0 ∈ RRealP lus
axm3 : T0 < T_max ∧ T0 > T_min ∧ T_max ∈ IR∧
T_max > T_min ∧ T_min ∈ IR ∧ T_min > 0

axm4 : safe = (λT 7→ x · T ∈ IR ∧ x ∈ IR| bool(T < T_max))
axm5 : evt_trig = (λ T 7→ t1 7→ x · T ∈ IR
∧t1 ∈ TIME ∧ x ∈ IR | bool(T + x× t1 ≤ T_max))

axm6 : safe2 ∈ (IR× IR) → BOOL
axm7 : evt_trig2 ∈ (IR× TIME)× IR → BOOL
axm8 : safe2 = (λ T 7→ x · T ∈ IR ∧ x ∈ IR| bool(T > T_min))
axm9 : evt_trig2 = (λT 7→ t1 7→ x · T ∈ IR
∧t1 ∈ TIME ∧ x ∈ IR | bool(T + x× t1 ≥ T_min))

axm10 : ∀x · x ∈ IR =⇒ (f_evol_plantV (x) = (λt 7→ T · t ∈ TIME ∧ T ∈ IR | x))
axm11 : evade_value = {−temp}
axm12 : evade_value2 ⊆ IR ∧ evade_value2 = {temp}
axm13 : temp ∈ IR ∧ temp > 0
axm14 : prop = (λ T · T ∈ IR | bool(T ≤ T_max ∧ T ≥ T_min)) .

END

Figure 6.33: Event_Heater_Ctx2.

• Rule_ET2_M_1 : defines the INVARIANTS part of the SpecificEventTriggered_M2
machine. It specifies the possible values of ctrlV (see inv1 of Figure 6.34). It also
defines n specific continuous variables and replaces the generic continuous variable
plantV by these variables using the bind operator (see inv2 and inv3 of Figure 6.34).
Moreover, it instantiates inv3 for each specific continuous variable and adds the
invariants inv4 and inv5. Moreover, it defines the system safety property using the
formula prop (see inv6 of Figure 6.34).

• Rule_ET2_M_2 : events Progress, Plant, Ctrl_normal and Ctrl_evade are instanti-
ated following the same instructions described respectively by rules Rule_ET1_M_3,
Rule_ET1_M_4, Rule_ET1_M_5 and Rule_ET1_M_6. The only difference is in
the event Plant. In this second strategy the generic ODE e was already replaced using
the function f_evol_plantV in the generic EventTriggered_M described in 5.4.1.
The continuous variable plantV is replaced by the specific ones. Moreover, the events
Ctrl_normal and Ctrl_evade are refined by replacing the continuous parameters by
the specific ones.

INVARIANTS
inv1 : ctrlV ∈ setV al
inv2 :

∧
i=1..n specP lantVi ∈ [0, t] 7→ RReal

inv3 : plantV = bind(specP lantV1, bind(specP lantV2, bind(...)))
inv4 :

∧
i=1..n exec ̸= plant =⇒ dom(specP lantVi) = [0, t]

inv5 : exec = plant =⇒ t /∈ dom(plantV)
inv6 : ∀w · w ∈ dom(bind(specP lantV1,
bind(specP lantV2, bind(...))))) =⇒ prop(specP lantV1(w), ...,
specP lantVn(w)) = TRUE

Figure 6.34: SpecificEventTriggered_M2 INVARIANTS.

74

CHAPTER 6. INSTANTIATING THE GENERIC APPROACH

6.3 Discussion

The approach depicted by Figure 6.1 allows building the model step by step starting by
specifying the continuous aspects of the system. Therefore, to instantiate by refinement the
abstract model ContSystem, we define the continuous variables of the system and model
the continuous evolution by refining the event Plant. This permits to cope with the proof
complexity by decomposing the proof obligations, such that in the abstract model we only
deal with the proof obligations related to the continuous aspects of the system and in the
refined model we will have the proof obligations related to the safety properties of the
controlled system. In the approach depicted by Figure 6.31, instantiating by refinement
the EventTriggered model requires introducing both the continuous and discrete aspects of
the system. Therefore, in addition to the continuous variables and their ODEs, we need
to define the controller discrete states as well as the safety properties of the system, this
generates more POs that are also more complex to discharge.

Figure 6.35: Main Differences between the two Strategies.

Figure 6.35 summarizes the main differences between the two strategies. Note that the
POs generated to prove the correctness of the Specific TimeTriggered model are similar
to those generated for the Generic TimeTriggered model. In that case, it suffices to
apply the same proof scripts used to prove the generic ones. This applies for the Specific
EventTriggered model that instantiates the Generic EventTriggered model, its POs are
similar to those already discharged in the generic model. Therefore, the instantiation of the
generic models should allow reusing the already discharged proofs. Since the instantiation
of POs is not yet supported by Rodin, we have to prove POs already discharged in the
generic model. The reuse of proofs by instantiation is the subject of the ANR project,
EBRP [9], whose objective is to develop an extension of Rodin to support such a concept.

6.4 Conclusion

In this chapter, we define a set of rules that are used to apply our generic models on specific
case studies. Two approaches for instantiating the generic approach were defined. The
first approach refines the abstract model ContSystem and then instantiates the generic
Event and Time-Triggered models. The second one proposes to directly refine the generic
EventTriggered model and then instantiate the generic TimeTriggered model. We have
also considered the strategy that consists in starting by refining the TimeTriggered model
but the proofs were more complex since it is more difficult to prove safety properties on
TimeTriggered models than on EventTriggered models, as previously explained.

75

CHAPTER 6. INSTANTIATING THE GENERIC APPROACH

76

Chapter 7

Interfacing EVENT-B with
SAGEMATH

Contents
7.1 Solving Linear ODEs in Event-B 78

7.1.1 Context Desolve_Ctx . 78

7.1.2 Machine TimeTriggered_desolve_M 80

7.1.3 Correctness of the specification 80

7.1.4 Instantiating the Generic TimeTriggeredDesolve Model 81

7.2 A tool for supporting the approach 82

7.2.1 The general process . 82

7.2.2 Calling SageMath from Rodin (Step1) 82

7.2.3 Solving ODEs in SageMath (Step1’ and Step2) 84

7.2.4 Using SageMath Results in Rodin (Step3) 85

7.3 Solving Nonlinear ODEs in Event-B 85

7.3.1 The Generic Approach . 85

7.3.2 Choosing the Interval [t1, t2] . 88

7.3.3 Discussion . 88

7.4 Conclusion . 89

Event-B is a formal method designed for modeling and proving the correctness of
discrete systems. It does not support the resolution of ordinary differential equations for
proving the correctness of hybrid systems. To deal with this limitation, we interface the
Rodin tool with the differential equation solver, SageMath (System for Algebra and
Geometry Experimentation) [6].

Section 7.1 introduces a correct-by-construction approach, using Event-B and its
refinement strategy, for solving linear ordinary diffential equations. Section 7.2 describes
the development process of a plugin that permits to call SageMath from Rodin. Hybrid
systems whose behavior is described by nonlinear ordinary equations are treated in Section
7.3. Last, Section 7.4 concludes the chapter with a discussion on the proposed approaches.

77

CHAPTER 7. INTERFACING EVENT-B WITH SAGEMATH

7.1 Solving Linear ODEs in Event-B

In this section, we introduce a correct-by-construction approach to deal with the resolution
of linear ODEs in Event-B. The approach follows the development schema depicted in
Figure 7.1. It extends the approach introduced in Chapter 5 by adding by refinement a
new generic model called TimeTriggeredDesolve_M which introduces a function named
B_desolve to model exact solutions of ordinary differential equations in Event-B.

Figure 7.1: Generic Event-B specification with the B_desolve function.

The proposed approach defines a new set named PROP in the context EventTrig-
gered_Ctx. This set allows linking the safety property with the formulas needed to model
the different behaviors of the modeled system. We make the assumption that the safety
property is in conjunctive normal form (

∧
i=1..n pi) and that, for each sub-formula pi,

event_trigi, safei, safeEpsiloni and a set of evade values evade_valuesi for ctrlV are
specified.

PROP=
⋃

i=1..n{pi}

Instead of modelling the controller part with two events, Ctrl_normal and Ctrl_evade
as presented in Chapter 5, the controller is modeled by a single event Ctrl. This event
checks, for each property pi, that the safety envelop is true if the chosen value value does not
belong to the set of evade values of pi (see grd3 in Figure 7.3). TimeTriggeredDesolve model
then refines the new generic model TimeTriggered which applies the same modifications
defined in the new model EventTriggered. TimeTriggeredDesolve introduces the function
B_desolve defined to model analytical solutions of ODEs in Event-B. It is composed of an
Event-B context named Desolve_Ctx and a machine named TimeTriggered_desolve_M.

7.1.1 Context Desolve_Ctx

Context Desolve_Ctx extends the context TimeTriggered_Ctx by introducing the generic
function B_desolve which returns a function of type IR → IR that represents the solutions
of a given continuous variable. Introducing this function in our generic approach allows us

78

CHAPTER 7. INTERFACING EVENT-B WITH SAGEMATH

CONTEXT EventTriggered_Ctx
EXTENDS ContSystem_Ctx
SETS EXEC , PROP
CONSTANTS prop_safe , prop_evt_trig , ctrl , plant , prg , f_evol ,

f_evol_plantV , prop_evade_values
AXIOMS

axm1 : prop_safe ∈ PROP → ((S × IR) → BOOL)
axm2 : prop_evt_trig ∈ PROP → ((S × TIME)× IR → BOOL)
axm3 : partition(EXEC, {ctrl}, {plant}, {prg})
axm4 : f_evol ∈ IR → S
axm5 : f_evol_plantV ∈ (IR → (TIME × S → S))
axm6 : ∀ ctrlV · ctrlV ∈ IR =⇒ (f_evol_plantV (ctrlV) = (λ t 7→ plantV
·t ∈ TIME ∧ plantV ∈ S | f_evol(ctrlV)))

axm7 : prop_evade_values ∈ PROP → P1(IR)
END

Figure 7.2: CONTEXT EventTriggered_Ctx.

EVENT Ctr l
ANY value
WHERE

grd1 : exec = ctrl
grd2 : value ∈ IR
grd3 : ∀x · x ∈ PROP =⇒ (value ̸∈ prop_evade_values(x) =⇒

(prop_safe(x))(plantV (t), value) = TRUE)
THEN

act1 : ctrlV := value
act2 : exec := prg

END

Figure 7.3: EventTriggered Ctrl.

to prove the safety properties of hybrid systems in a TimeTriggered system, which was not
possible with the generic approach previously introduced. Moreover, this function serves
to establish the link between our Event-B models and the differential equations solver
SageMath.

B_desolve ∈ (IN× IR× (TIME → IR)× TIME× (TIME× IR)) → (IR → IR)

• the first and the second parameters denote the order and the right term of the
considered ODE.

• the third parameter denotes the unknown function, represented by a continuous
variable.

• the independent variable, represented by a discrete variable, is typed by TIME.

• the last parameter denotes the initial values of both the independent variable and the
unknown function.

As stated before, the main objective of the TimeTriggeredDesolve model is to prove the
safety properties in a TimeTriggered model. Therefore, instead of defining these properties
in the EventTriggered model as described in 5.4.3, we define the constant prop, used to
model the safety properties of a given system, in the Desolve_Ctx context, see axm2 in 7.4.

79

CHAPTER 7. INTERFACING EVENT-B WITH SAGEMATH

CONTEXT Desolve_Ctx
EXTENDS TimeTriggered_Ctx
CONSTANTS B_desolve , prop
AXIOMS

axm1 : B_desolve ∈ (IN× IR× (TIME → IR)× TIME× (TIME× IR)) → (IR → IR)
axm2 : prop ∈ S → BOOL
axm3 : prop(plantV Init) = TRUE

END

Figure 7.4: Context Desolve_Ctx.

7.1.2 Machine TimeTriggered_desolve_M

Machine TimeTriggered_desolve_M refines the machine TimeTriggered_M by using the
function B_desolve in the Plant event to specify the generic solution of the generic
continuous variable plantV . Event Plant of the TimeTriggered model is refined to calculate
the value of plant1 during the period from lastT ime to t using the function B_desolve,
which is specified by grd3 in Figure 7.5. This guard is used to link the abstract event to its
refinement. It strengthens the guards grd6 and grd7 that aim at modeling the ordinary
differential equation solution using the operators of the theory DiffEq. The parameters dvar,
ivar and ics of the predefined function desolve of SageMath are represented respectively
by the dependent variable plantV , the independent variable t and the initial values of
plantV and t. The parameter lastT ime is introduced to represent the last progression of
time at which plantV has been calculated. The solution of a given ordinary differential
equation is calculated from lastT ime to t in order not to overwrite the old values of the
continuous variable plantV . Note that, in the case of a system with two or more continuous
variables, we replace the generic parameter plant1 by n parameters using the operator bind,
where n represents the number of the continuous variables. For each parameter a function
B_desolve is defined to obtain the exact solution of the associated continuous variable.

EVENT Plant_time_desolve
REFINES Plant_time
ANY plant1 , lastT ime
WHERE

grd1 : exec = plant
grd2 : lastT ime ∈ TIME ∧ dom(plantV) = [0, lastT ime]
grd3 : plant1 = B_desolve(1 7→ ctrlV 7→ plantV 7→ t 7→ (lastT ime 7→ plantV (lastT ime)))
grd4 : plant1 ∈ [0, t]− dom(plantV) → S
grd5 : ode(f_evol_plantV (ctrlV), plant1(t), t) ∈ DE(S)
grd6 : Solvable([0, t]− dom(plantV), ode(f_evol_plantV (ctrlV), plant1(t), t))
grd7 : AppendSolutionBAP (ode(f_evol_plantV (ctrlV), plant1(t), t),
[0, t]− dom(plantV), [0, t]− dom(plantV), plant1)

grd8 : ∀xx · xx ∈ dom(plant1) ⇒ prop(plant1(xx)) = TRUE
THEN

act1 : plantV := plantV ◁− plant1
act2 : exec := prg

END

Figure 7.5: TimeTriggeredDesolve Plant.

7.1.3 Correctness of the specification

Table 7.2 gives the statistics of the POs generated for the correctness of our generic models.
It is noticeable that 47% of them were automatically discharged. These POs include the

80

CHAPTER 7. INTERFACING EVENT-B WITH SAGEMATH

Table 7.1: Rodin Proof Statistics for the Generic Models

Generic_Models Total Automatic Interactive

ContSystem_M 8 1 7

EventTriggered_M 19 11 8

TimeTriggered_M 2 1 1

TimeTriggered_desolve_M 5 3 2

correctness of the events that specify the progression of time and those that specify the
progression of the physical and the discrete parts and also the POs that verify the type
of the variables. The POs related to the guards feasibility and well-definedness have been
interactively discharged under Rodin. Comparing tables 5.1 and 7.2, we observe that the
number of the POs generated has been reduced due to the use of the constant PROP which
allows defining a single event to describe the discrete part. Therefore, the POs related to
the event Ctrl_evade have been removed and added to those of the event Ctrl.

To prove the correctness of the TimeTriggeredDesolve model, Rodin has generated
five proof obligations, three of them were automatically discharged. The remaining proof
obligation PO1 is a well-definedness proof obligation which aims at proving that the guard
grd3 of 7.5, added to model the solution of the generic ODEs using the function B_desolve,
is well defined. This guard assigns to the parameter plant1 the solution of the generic
ordinary differential equation obtained using the function B_desolve. For this purpose,
to discharge this proof obligation, we must prove that the set of the results returned by
B_desolve is equal to the set of definition of plant1. This proof obligation was discharged
using some rewriting rules, the properties of the Reals theory and some invariants de-
fined in refined machines. PO2 is generated to prove that the event Plant_time_desolve
preserves the system safety property, specified using the constant prop. This proof obli-
gation was discharged by replacing the value of plant1 by the result returned by B_desolve.

PO1: lastT ime ∈ dom(plantV) ∧ plantV ∈ IR 7→ IR ∧ 1 7→ ctrlV 7→ plantV 7→ t 7→
(lastT ime 7→ plantV (lastT ime)) ∈ dom(B_desolve) ∧B_desolve ∈ IN× IR

×P (IR× IR)× IR× (IR ×IR) 7→ P (IR× IR)

PO2: ∀x · x ∈ dom(plantV ◁− plant1) =⇒ prop((plantV ◁− plant1)(x)) = TRUE

7.1.4 Instantiating the Generic TimeTriggeredDesolve Model

To design specific systems following the generic approach, we instantiate the generic
TimeTriggeredDesolve model by replacing the generic continuous variable plantV by that
or those associated with the specific system. The function B_desolve is then instantiated
by the specific parameters of the modeled case study. The specific safety property is
expressed as an invariant, in the specific instantiated machine, by the following formula,
∀ x · x ∈ dom(plantV) ⇒ safetyProperty, where plantV denotes the continuous variables
of the system and safetyProperty is the specific safety property. This formula expresses
that the safety property of the system shall be satisfied in the time interval [0, t] which
denotes the domain of plantV . Moreover, the instantiation consists in valuing the set PROP
and the different constants as follows:

prop_X=
⋃

i=1..n{pi 7→ Xi}

where X ∈ {event_trig, safe, safeEpsilon, evade_values}.

81

CHAPTER 7. INTERFACING EVENT-B WITH SAGEMATH

7.2 A tool for supporting the approach

In order to implement our approach, we built a new Rodin plug-in, called SageMath
plug-in, that interfaces the Rodin platform with the computer algebra system SageMath
to calculate the solutions of ODEs. Solving ODEs is needed in two steps of the proof
activity: for proving the safety property and for proving the satisfiability of a guard removed
in a refinement. In other words, during the proof of a PO, SageMath needs to be called
on each term B_desolve(...) in order to replace it by the solution of the corresponding
ODE.

7.2.1 The general process

The general process is composed of three main steps: (1) calling SageMath from Rodin,
(2) solving ordinary differential equations and (3) using the result returned in Rodin (see
Figure 7.6). In the first step, an input field that allows calling SageMath from Rodin
appears when the current PO contains the terms B_desolve. The second step consists
in calling a predefined script generated systematically from the function B_desolve(...).
The last step consists in translating the result of SageMath into the specific Event-B
language using the theory of reals. This result is added as an hypothesis to prove the
current PO. More details on these steps are provided in the next subsections.

Figure 7.6: The General Process.

7.2.2 Calling SageMath from Rodin (Step1)

To call SageMath from Rodin, a button called sagemath has been added in the proof
window using an Eclipse plug-in. The button is made available on a hypothesis/goal when
this later contains the call to a function B_desolve(...). To develop a Rodin plug-in,
Eclipse provides a set of Java interfaces. These interfaces are intended to be implemented
according to the goal of the plug-in. To implement the SageMath plug-in using Eclipse
IDE, the following Java classes have been defined: SageTacticProvider, SageApplication and
SageTactic. Appendix E illustrates the description of the different stages that constitute
the main scenario of use of the SageMath plug-in. Figure 7.7 shows the sequence diagram
associated with this development. For a Rodin PO containing a call to the B_desolve(...)

82

CHAPTER 7. INTERFACING EVENT-B WITH SAGEMATH

function, the getPossibleApplications method implemented in the SageTacticProvider Java
class creates a new instance of the Java class SageApplication which displays the sagemath
button to the user using the method getHyperlinkLabel(). When the sagemath button is
clicked by the user, the getTactic() method implemented in the SageApplication Java class
creates a new instance of the Java class SageTactic that opens the platform SageMath
using an instance of the ProcessBuilder Java class. The three following subsections give
more details for the Java classes that have been developed.

Figure 7.7: The Sequence Diagram of the SageMath Plug-in.

7.2.2.1 SageTacticProvider Class

This Java class implements the method getPossibleApplications to check the presence of
B_desolve in each proof obligation and returns an instance of the SageApplication class.
Function getPossibleApplications uses two main predicates as depicted by Figure 7.8, pred,
a local variable, and hyp, a parameter of the function. pred takes as value hyp if this latter
is not null or the current proof obligation otherwise. If the tag, the left and right parts of
the formula pred, are equal to those of the predicate that contains B_desolve, we return the
list of tactic that can be applied as a list of instances of SageApplication or null otherwise.
This is repeated for each node of the proof tree.

Figure 7.8: Function getPossibleApplications.

7.2.2.2 SageTactic Class

This Java class implements the apply() method that creates a process for calling SageMath.
Function apply() contains all the instructions that will be applied when calling SageMath.
The process for calling SageMath is created using the predefined Java class Process
and provides the path of the executable file of SageMath to the predefined Java class
ProcessBuilder as depicted by Figure 7.9. The Java class ProcessBuilder can be used to

83

CHAPTER 7. INTERFACING EVENT-B WITH SAGEMATH

call external applications thanks to the start() method and the Java class Process can be
used to create new system processes.

Figure 7.9: Calling SageMath Using ProcessBuilder.

7.2.2.3 SageApplication Class

This Java class establishes the link between the checking of the presence of the function
B_desolve in the current proof obligation and the call to SageMath. It implements in
particular two methods of the abstract interface IPositionApplication:

• getHyperlinkLabel(): allows to display the button sage in the proof window.

• getTactic(): allows to create an instance of the class SageTactic to execute the apply()
method.

7.2.3 Solving ODEs in SageMath (Step1’ and Step2)

A SageMath script is systematically generated from the Event-B function B_desolve,
with all the parameters necessary to execute the SageMath predefined function desolve,
Step 1’ in Figure 7.6. According to the structure and the nature of the differential equation to
be solved, a specific SageMath script is defined. In such a script, the differential equation
must be expressed depending on the controlled variable ctrlV that links the continuous
and the discrete parts of a given hybrid system. A script is executed in SageMath using
the following command: load(′scriptName.sage′). Figure 7.10 represents the script that
solves a differential equation of type T ′ = ctrlV . This script is generated from the formula
B_desolve(1 7→ ctrlV 7→ T 7→ t 7→ (lastT ime 7→ T (lastT ime)))(x), where:

• Line 1 is generated using the second parameter of B_desolve and it specifies the right
part of an ordinary differential equation.

• Line 2 is generated using the forth parameter of B_desolve and it specifies the
definition of the independent variable t.

• Line 3 is generated using the third parameter of B_desolve and it specifies the
definition of the continuous variable represented by T . The definition of this variable
must always be after the definition of the independent variable.

• Line 4 is generated using the first part of the parameter lastT ime 7→ T (lastT ime)
and it represents the last progression of time from which we calculate the values of
the continuous variable.

• Line 5 represents the call to the SageMath predefined function desolve. The first
parameter of this function is generated using the first, second and third parameters of
B_desolve. The second, third and forth parameters are generated respectively using
the third, forth and last parameters of B_desolve.

84

CHAPTER 7. INTERFACING EVENT-B WITH SAGEMATH

• Lines 6− 8 generate a text file, named "sageresult.txt", which store the result of the
differential equation specified by sol in Line 5.

1: ctrlV = var(′ctrlV ′)
2: t = var(′t′)
3: T = function(′T ′)(t)
4: lastT ime = var(′lastT ime′)
5: sol = desolve(diff(T, t, 1) == ctrlV, dvar = T,

ivar = t, ics = [lastT ime, T (lastT ime)])
6: o = open(′sageresult.txt′,′w′)
7: o.write(str(sol))
8: o.close()

Figure 7.10: Script for an Ordinary Differential Equation of Type T ′ = ctrlV .

To solve an equation of the form T ′ = ctrlV ∗ t+ c, another script is defined. Line 5 is
replaced by two lines: the first line is to introduce the constant c: c = var(′c′) and the second
one to replace formula diff(T, t, 1) == ctrlV by formula diff(T, t, 1) == ctrlV ∗ t+ c.

7.2.4 Using SageMath Results in Rodin (Step3)

To discharge a proof obligation that includes a call to the function B_desolve() by using
the result returned by SageMath, the call must be replaced by its solution sol returned
by SageMath and written in the text file sageresult.txt. For this purpose, the predicate
(B_desolve() = sol′) is added as an additional hypothesis for the current PO. where sol′
is a rewritten of sol according to the syntax of the theory of reals used in the project.
Basically, the theory of reals adopts a prefix style by defining a keyword for each operator
on the reals like plus for addition, times for multiplication, etc. So for instance, the formula
ctrlV × lastT ime + T (lastT ime) is rewrittten into plus(times(ctrlV 7→ lastT ime) 7→
T (lastT ime)).

7.3 Solving Nonlinear ODEs in Event-B

There are two types of methods for solving ODEs: analytical methods and numerical
methods. Analytical methods use a set of theorems to obtain an exact solution for a given
ordinary differential equation. For example, the computer algebra SageMath provides the
predefined function, desolve(), that uses analytical methods to find analytical solutions
for ODEs. However most differential equations cannot be solved exactly. Therefore, we
must rely on numerical methods to obtain approximate solutions or use approximation
techniques to transform an equation into an equivalent equation with an exact solution. For
example, we can use linearization techniques to transform a nonlinear differential equation
into a linear differential equation and then apply analytical methods for linear differential
equations. The obtained solution is thus an approximate solution for the original one.

7.3.1 The Generic Approach

Figure 7.11 represents our proposed approach for modelling and verifying safety properties of
nonlinear differential equations in Event-B. The approach consists of two sub-approaches
depending of the order of the ODE: if the given differential equation is a first order ODE,
then we use the numerical function desolve_rk4() defined in SageMath to find approximate
solutions for ODEs. This method can only be applied to solve first order ODEs. Otherwise,

85

CHAPTER 7. INTERFACING EVENT-B WITH SAGEMATH

we linearize (if it is possible) the differential equation and use the approach that model the
function desolve() in Event-B.

Figure 7.11: Solving Nonlinear Differential Equations using Event-B.

For verifying nonLinear systems in Event-B, we propose to prove their safety properties
per time interval, i.e for a given interval [t1, t2] we prove that its associated plantV (t1)
and plantV (t2), obtained using the function desolve_rk4, preserve the system safety
properties, assuming the monotony of the values returned by desolve_rk4 (∀ t · t ∈ [t1, t2] ⇒
(plantV (t1) ≤ plantV (t) ≤ plantV (t2))∨ (plantV (t2) ≤ plantV (t) ≤ plantV (t1)). For this
purpose, we define an Event-B function, named B_desolve_rk4, that models approximate
resolutions in Event-B. This function is defined in the context Desolverk4 (see Figure
7.13) that extends the generic context TimeTriggered_Ctx. This context defines also the
constant prop that specifies the system safety properties and that must be true for the
initial value of the continuous variable plant0 at the instant t0 (axm3).

Figure 7.12: Generic Event-B specification for Approximate Solutions.

B_desolve_rk4 returns a function of type IR 7→ IR that represents the values of the
continuous variables specified in the generic models by plantV (see axm1).

B_desolve_rk4 ∈ IR× (TIME 7→ IR)× TIME×

86

CHAPTER 7. INTERFACING EVENT-B WITH SAGEMATH

(TIME × IR)× (TIME × TIME) → (IR 7→ IR)

• the first parameter, element of IR, represents the right term of the ordinary differential
equation.

• the second parameter specifies the unknown function, represented by the continuous
variable (plantV), is typed by TIME 7→ IR.

• the third parameter is used to specify independent variable, represented by the discrete
variable (time t), is typed by TIME.

• the fourth parameter represents the initial values of both the independent variable t
and the unknown function plantV .

• the last parameter is used to specify the interval denoted [t1, t2] for which we calculate
the values of plantV .

CONTEXT Desolverk4
EXTENDS TimeTriggered_Ctx
CONSTANTS B_desolve_rk4 , prop
AXIOMS

axm1 : B_desolve_rk4 ∈ IR× (TIME
7→ IR)× TIME × (TIME × IR)× (TIME × TIME) → (IR 7→ IR)

axm2 : prop ∈ IR → BOOL
axm3 : prop(plantV Init) = TRUE

END

Figure 7.13: CONTEXT Desolverk4.

The associated machine TimeTriggered_desolverk4_M refines the generic machine
TimeTriggered_M by adding the guard grd6 (see Figure 7.14) to the generic event
Plant_time. grd6 specifies that the new value of plantV is equal to the result of the
Event-B function B_desolve_rk4. This function takes as parameters the right term of the
differential equation that depends on the controlled variable ctrlV , the continuous variable
plantV , the independent variable t, the initial conditions of t and plantV and the interval
[t1, t2]. The initial conditions are represented by the couple lastT ime and plantV (lastT ime)
and the interval [t1, t2] is equal to [lastT ime, t], so desolve_rk4 will return the values of
plantV between lastT ime and max(lastT ime, t) = t, where t represents the current in-
stant of control. grd8 specifies that the values returned by desolve_rk4 must be monotonous.

EVENT Plant_time_desolverk4
REFINES Plant_time
ANY plant1 , lastT ime
WHERE

grd6 : plant1 = B_desolve_rk4(f_evol(
ctrlV) 7→ plantV 7→ t 7→ (lastT ime 7→ plantV (lastT ime)) 7→ (lastT ime 7→ t))

grd7 : ∀ xx · xx ∈ dom(plant1) ⇒ prop(plant1(xx)) = TRUE
grd8 : ∀ tt · tt ∈ [lastT ime, t] ⇒ (plant1(tt) 7→ plant1(lastT ime) ∈ geq ∧ plant1(tt) 7→
plant1(t) ∈ leq) ∧ (plant1(tt) 7→ plant1(lastT ime) ∈ leq ∨ plant1(tt) 7→ plant1(t) ∈ geq)

THEN
act1 : plantV := plantV ◁− plant1
act2 : exec := ctrl

END

Figure 7.14: Event Plant_time_desolverk4.

87

CHAPTER 7. INTERFACING EVENT-B WITH SAGEMATH

7.3.2 Choosing the Interval [t1, t2]

In mathematics, an autonomous system or autonomous differential equation is a system of
ODEs which does not explicitly depend on the independent variable. When the variable
is time, they are also called time-invariant systems. Many laws in physics, where the
independent variable is usually assumed to be time, are expressed as autonomous systems.
The solutions to the autonomous equation are monotonic functions. In particular, the
first order autonomous equations cannot have periodic solutions. This guarantees that
between two TimeTriggered sensors updates the function plantV is monotone as long as
the controller has not yet updated the controlled variable ctrlV . The longest time between
these updates is bounded by the symbolic duration epsilon. For example in the case of the
Smart Heating system, the ordinary differential equation is expressed using the controlled
variable T ′ = ctrlV with ctrlV ∈ {temp,−temp}. If the controller choose to increase the
temperature between the instant t1 and the instant t2 i.e T ′ = temp, then the values of T
in [t1, t2] are represented by monotonic function (the same for T ′ = −temp). In that case,
to prove the system safety property in [t1, t2] we just need to prove that T (t2) satisfies the
safety property t ≤ Tmax (t ≥ Tmin).

To specify TimeTriggered sensors updates in Event-B, we calculate the new values of
plantV using B_desolverk4 in the interval [lastT ime, t]. The controllers of such system
must be triggered when the normal mode specified by the normal values, declared as a
parameter of the event Ctrl_desolverk4 (see Figure 7.15), satisfy the safety envelope within
the period t to t+epsilon. t represents the current instant of control and t+epsilon represents
the next period of control (see grd5). Moreover, the results returned by B_desolverk4 for
the evade values including the normal values must satisfy the safety envelope between t and
t+ 2 ∗ epsilon in order to guarantee that the physical system does not exceed the safety
property within two periods of control (grd6).

EVENT Ctr l_deso lverk4
REFINES Ctr l
ANY value
WHERE

grd5 : ∀ x, tt · x ∈ PROP ∧ tt ∈ [t, t+ epsilon] ⇒ (value ̸∈ prop_evade_values(x) ⇒
(prop_safeEpsilon(x))(B_desolve_rk4(f_evol(value) 7→ plantV 7→ t 7→ (t 7→ plantV (t))
7→ (t 7→ (t+ epsilon)))(tt) 7→ value) = TRUE)

grd6 : ∀ x, tt · x ∈ PROP ∧ tt ∈ [t, t+ 2× epsilon] ⇒ (prop_safeEpsilon(x))
(B_desolve_rk4(f_evol(value) 7→ plantV 7→ t 7→
(t 7→ B_desolve_rk4(f_evol(value) 7→ plantV 7→ t 7→ (t 7→ plantV (t))
7→ (t 7→ (t+ epsilon)))(t)) 7→ (t 7→ (t+ 2× epsilon))))(tt) 7→ value) = TRUE)

THEN
act1 : ctrlV := value
act2 : exec := prg

END

Figure 7.15: Event Ctrl_desolverk4.

7.3.3 Discussion

In this section, we presented a generic approach for modeling nonlinear hybrid systems
using the predefined function desolve_rk4. The solutions returned by desolve_rk4 are
approximated solutions, they do not represent the exact behavior of the continuous variables
of hybrid systems. Therefore, the proof of safety properties of nonlinear systems is more
complicated to that of linear hybrid systems. Table 7.2 gives the statistics of the proof
obligations generated to ensure the correctness of the Nonlinear generic models of our
approach. As stated before, the modifications brought on the Event- and Time-Triggered
models reduced the number of proof obligations compared to table 5.1.

88

CHAPTER 7. INTERFACING EVENT-B WITH SAGEMATH

Table 7.2: Rodin Proof Statistics for the Nonlinear Generic Models

Generic_Models Total Automatic Interactive

ContSystem_M 8 1 7

EventTriggered_M 19 11 8

TimeTriggered_M 2 1 1

TimeTriggered_desolverk4_M 7 3 4

For the nonlinear hybrid systems, the proof of the safety property is achieved by assuming
the monotonicity of the function returned by desolve_rk4 on the interval [lastT ime, t]. For
that purpose, we have to prove the following property on the returned function to state
that it is increasing or decreasing:

∀tt · tt ∈ [lastT ime, t] ⇒ (plant1(tt) ≥ plant1(lastT ime)∧

plant1(tt) ≤ plant1(t)) ∨ (plant1(tt) ≤ plant1(lastT ime) ∧ plant1(tt) ≥ plant1(t))

Having this property verified, the proof of a safety property comes down to prove it for the
lower and/or the upper bounds.

7.4 Conclusion

This chapter has presented a proof-based approach that combines the Event-B formal
method with the differential equation solver SageMath by modeling and implementing
the call to the solver. The approach is supported by a tool, built as a Rodin plugin, that
establishes the link between Rodin and SageMath. Our approach can be compared to
the approach of the differential refinement logic dRL that requires mastering the syntax
of other tools to validate the proof phase. For example it requires mastering the syntax
of KeYmaera and KeYmaera X, that interface the theorem prover Mathematica, to prove
the safety property of an Event-Triggered systems. Unlike dRL, our proposed approach
uses end-to-end the formal method Event-B to take advantage of its supported tools
and its refinement strategy, always by coupling Rodin and SageMath. To cope with
the complexity of the system, the Event-B specification consists of three generic models:
EventTriggered, TimeTriggered and TimeTriggeredDesolve that introduces the function
B_desolve to model the call to a differential equations solver. The proposed approach
extends the generic approach introduced in the previous chapter by adding a new generic
set that permits to reduce the number of proof obligations. To model hybrid systems of
which the continuous part is described by nonlinear ordinary differential equations, we
introduce a new generic model that refines the Time-Triggered model by defining a new
predefined function of SageMath, desolve_rk4, that returns approximated solutions of
first order ODEs. So far, we have been unable to find a first-order nonlinear case study to
which the generic approach can be applied. To prove the feasibility of our general approach,
we plan as a future work to add some complex properties to the linear case studies used in
this work and then use the B_desolve_rk4 function to find approximate solutions.

89

CHAPTER 7. INTERFACING EVENT-B WITH SAGEMATH

90

Chapter 8

Application

Contents
8.1 Stop Sign Models . 92

8.1.1 Stop Sign EventTriggered Model 92

8.1.2 Stop Sign TimeTriggered Model 95

8.1.3 Correctness of the Specification 97

8.2 Water Tank Models . 99

8.2.1 Abstract Water Tank Model . 99

8.2.2 Water Tank EventTriggered Model 100

8.2.3 Water Tank TimeTriggered Model 102

8.2.4 Correctness of the Specification 104

8.3 Discussion on the proof activity 105

8.4 The Smart Heating System Models 106

8.4.1 Context Heater_Ctx . 106

8.4.2 Machine Heater_M . 107

8.4.3 Correctness of the specification 108

8.5 Modeling NonLinear Case Studies 110

8.6 Conclusion . 111

This chapter describes the application of our generic approaches for modeling the Stop
Sign, the Water Tank and the Smart Heating case studies presented in Chapter 4. The
rules described in Chapter 6 are used to demonstrate how a system specified with two
continuous variables and a single safety property is instantiated, the case of the Stop Sign
system. They are also used to describe how a system specified with two safety envelops,
two set of evade values, two event trigger formulas is instantiated, the case of the Water
Tank and Smart Heating systems.

Section 8.1 describes the modeling of the Stop Sign case study, for which we chose to
directly model the controlled system by refining the EventTriggered model. For the Water
Tank case study, we chose to start with an abstract model that refines the generic ContSystem
model which is described in Section 8.2. Then, Section 8.3 discusses the proof activity
resulting from the application of our generic approach on specific case studies. Section 8.4
describes the instantiation of the Smart Heating case study which starts by refining the
generic TimeTriggeredDesolve model to illustrate the use of the function B_desolve on a

91

CHAPTER 8. APPLICATION

specific case study. Last, we describe briefly in Section 8.5 the modeling of the nonlinear
case study, the Inverted Pendulum.

8.1 Stop Sign Models

The modeling of the Stop Sign case study follows the schema depicted by Figure 8.1, the
whole models are available in Appendix B.

Figure 8.1: Architecture of the Event-B model of the Stop Sign.

8.1.1 Stop Sign EventTriggered Model

The instantiation starts by refining the generic EventTriggered model to obtain the specific
Car_Event model represented by the Car_Event_M machine that sees the Car_Event_Ctx
context depicted by Figure 8.2. Context Car_Event_Ctx is obtained following the set of
rules Rule_ET2_Ctx_i defined in Section 6.2. As stated in Section 4.1, the continuous
behavior of the Stop Sign case study is described by two state variables p and v. Following
Rule_ET2_Ctx_1, the constant S is instantiated in the specific ContSystem_Ctx by IR×IR.
The constant plantV Init is replaced by the constants pinit and vinit that respectively
specify the initial position and the initial velocity, see axm1 − 2. axm3 specifies the
properties of the initial values pinit and vinit as well the stop sign constant SP . It also
guarantees that the system is initially safe.

The Stop Sign case study is composed of a single safety envelop which guarantees
that the car will never exceed the SP limit. This safety property is associated with an
event trigger formula and a set of evade values instantiated following Rule_ET2_Ctx_2,
see axioms axm4, axm5 and axm7. The value of evt_trig is defined by considering the
distance traveled by the car during a time period of x (1/2 × ctrlV × x2 + v × x) plus
the distance traveled from the time the car must brake to stop just before SP (v2/2B).
axm6 specifies the specific ODEs associated with the case study, dp

dt = v and dv
dt = ctrlV ,

using the function f_evol_plantV (Rule_ET2_Ctx_3), where ctrlV represents the discrete
measurement and p and v represent the continuous measurements. axm8 and axm9 specify
the properties of val_i, the maximum limit of acceleration A and the maximum limit of
braking B, which are used to specify the normal and evade modes. Finally, the Stop Sign
safety property, p ≤ SP , is specified in axm10 using the constant prop.

The specific machine Car_Event_M refines the generic machine EventTriggered_M by
following the rules, Rule_ET2_M_1 and Rule_ET2_M_2 described in Section 6.2. We
replace the generic state variable plantV by the physical state variables associated with
the Stop Sign case study, p and v. This substitution is done using the operator bind of the

92

CHAPTER 8. APPLICATION

CONTEXT Car_Event_Ctx
EXTENDS EventTriggered_Ctx
CONSTANTS SP , pinit , vinit , A , B
AXIOMS

axm1 : pinit ∈ IR+ ∧ vinit ∈ IR+

axm2 : (pinit, vinit) = plantV Init
axm3 : pinit ≤ SP ∧ SP ∈ IR ∧ 0 < SP ∧ pinit+ vinit×vinit

2×B ≤ SP

axm4 : safe = (λ(p 7→ v) 7→ ctrlV · (p 7→ v) ∈ (IR× IR) ∧ ctrlV ∈ IR | bool(p+ v2/2B < SP))
axm5 : evt_trig = (λ(p 7→ v) 7→ (t1 7→ ctrlV) · (p 7→ v) ∈ (IR× IR)∧
t1 ∈ TIME ∧ ctrlV ∈ IR | bool(p+ 1/2× ctrlV × t12 + v × t1 + v2/2B ≤ SP))

axm6 : ∀ ctrlV · ctrlV ∈ IR =⇒ (f_evol_plantV (ctrlV) =
(λ t 7→ (p 7→ v) · t ∈ TIME ∧ (p 7→ v) ∈ (IR× IR) | (v 7→ ctrlV)))

axm7 : evade_value = {−B, 0}
axm8 : A ∈ IR ∧ 0 < A
axm9 : B ∈ IR ∧ 0 < B
axm10 : prop = (λ p.p ∈ IR | bool(p ≤ SP)) .

END

Figure 8.2: Context Car_Event_Ctx.

DiffEq theory in the INVARIANTS clause, see inv3 1 in Figure 8.3. The INVARIANTS
clause also contains the possible values of the controlled variable ctrlV (inv1) the definition
of p and v (inv2) as well as the properties necessary to facilitate the proof phase and which
instantiate inv4 and inv5 of Figure 6.34.

INVARIANTS
inv1 : ctrlV ∈ {0,−B,A}
inv2 : p ∈ [0, t] 7→ IR ∧ v ∈ [0, t] 7→ IR+ ∧ dom(v) = dom(p)
inv3 : plantV = bind(p, v)
inv4 : exec ̸= plant =⇒ dom(p) = [0, t] ∧ dom(v) = [0, t]
inv5 : exec = plant =⇒ t ̸∈ dom(plantV)
inv6 : ∀x · x ∈ dom(p) =⇒ prop(p(x)) = TRUE

Figure 8.3: Stop Sign EventTriggered INVARIANTS.

The transitions between states of the hybrid automaton of Figure 4.2 are represented
in our approach by the event Plant_event_car (Figure 8.4) which describes the evolution
of the physical part represented by the state variables p and v. This event is obtained
following Rule_ET2_M_2. It refines the Plant event of the generic model (Figure 5.9) by
exhibiting a witness that replaces the evolution of the generic state parameter plant1 by
that of the parameters p1 and v1. These parameters represent respectively the evolution
of the position and the velocity from the last moment until the current time t. Then the
values of the functions p and v are overridden by those of the parameters p1 and v1 in act1
and act2.

Rule_ET2_M_2 also instantiates the events Ctrl_normal and Ctrl_evade. The Stop
Sign case study has three discrete states, Accelerating state which corresponds to the normal
mode, Braking and Stopped states which correspond to the evade mode. The transition from
Braking to Accelerating states is modeled using the event Ctrl_Acceleration_car (Figure
8.5) which refines the generic Ctrl_normal event by replacing plantV by p and v and the
nrml_value by A in the formula safe. The transition from Accelerating to Braking or
Stopped states is modeled by the event Ctrl_Deceleration_car (Figure 8.6) that replaces
the value of evade_val by −B if v(t) > 0 or by 0 if v(t) = 0.

As it is easier to prove the safety property at this level, we express it as an invariant inv6
of Figure 8.3, where we specified prop(p(x)) in the context Car_Event_Ctx (see axm10).

1bind(p, v) = p 7→ v

93

CHAPTER 8. APPLICATION

EVENT Plant_event_car REFINES Plant
ANY p1 , v1
WHERE

grd1 : exec = plant
grd2 : p1 ∈ [0, t]− dom(p) → IR ∧ v1 ∈ [0, t]− dom(p) → IR+

grd3 : ode(f_evol_plantV (ctrlV), (p1(t), v1(t)), t) ∈ DE(IR× IR)
grd4 : Solvable([0, t]− dom(bind(p, v)), ode(f_evol_plantV (ctrlV), bind(p1, v1)(t), t))
grd5 : AppendSolutionBAP (ode(f_evol_plantV (ctrlV),

(bind(p1, v1))(t), t), [0, t]− dom(bind(p, v)), [0, t]− dom(bind(p, v)), bind(p1, v1))
grd6 : ∀xx · xx ∈ dom(p1) =⇒ prop(p1(xx)) = TRUE

WITH plant1 : plant1 = bind(p1, v1)
THEN

act1 : p := p◁− p1
act2 : v := v ◁− v1
act3 : exec := ctrl

END

Figure 8.4: Event Plant_event_car.

EVENT Ctr l_Acce lerat ion_car REFINES Ctrl_normal
WHERE

grd1 : exec = ctrl
grd2 : safe(bind(p, v)(t), A) = TRUE

WITH nrml_value : nrml_value = A
THEN

act1 : ctrlV := A
act2 : exec := prg

END

Figure 8.5: Event Ctrl_Acceleration_car.

EVENT Ctr l_Dece lerat ion_car REFINES Ctrl_evade
ANY evade_val
WHERE

grd1 : exec = ctrl
grd2 : evade_val ∈ evade_value
grd3 : v(t) > 0 =⇒ evade_val = −B
grd4 : v(t) = 0 =⇒ evade_val = 0

THEN
act1 : ctrlV := evade_val
act2 : exec := prg

END

Figure 8.6: Event Ctrl_Deceleration_car.

To be sure that this invariant will be preserved by the event Plant_event_car, we added
the guard grd6 (see Figure 8.4) to ensure that the new value of the position p1 verifies the
system safety property. This guard is necessary at this level because we do not consider
the solution of the system ODEs yet. It will be removed in the TimeTriggered model and
refinement proofs (GRD type) will be generated to ensure that the actual value of p1 does
satisfy it (Section 8.1.3).

94

CHAPTER 8. APPLICATION

8.1.2 Stop Sign TimeTriggered Model

We refine the Car_Event model to produce the Car_Time model. Machine Car_Time_M
sees the context Car_Time_Ctx (Figure 8.7) which is an instantiation of TimeTriggered_Ctx
context. Context Car_Time_Ctx is obtained following the two rules, Rule_TT_Ctx_1
and Rule_TT_Ctx_2, represented in Section 6.1.3. It defines the formula safeEpsilon,
axm2− axm3, as the longest position of the car after an acceleration phase of epsilon unit
of time followed by a braking phase until it stops 2:

CONTEXT Car_Time_Ctx EXTENDS Car_Event_Ctx
CONSTANTS eps i l on , s a f eEp s i l on
AXIOMS

axm1 : epsilon ∈ TIME ∧ sigma ≤ epsilon ∧ 0 < epsilon
axm2 : safeEpsilon ∈ (IR× IR)× IR → BOOL
axm3 : safeEpsilon = λ(p 7→ v) 7→ ctrlV · (p 7→ v) ∈ (IR× IR) ∧ ctrlV ∈ IR | p+

(A× epsilon2/2 + v × epsilon) + v2/2B + (A2 × epsilon2/2B) + (A× v × epsilon/B) < SP
END

Figure 8.7: Context Car_Time_Ctx.

Machine Car_Time_M is an instantiation of the generic machine TimeTriggered_M.
The instantiation is done following the set of rules Rule_TT_M_i described in Section
6.1.3. The INVARIANTS clause (Figure 8.8) defines the properties needed to ensure that
during a control period epsilon the system remains safe as described by Rule_TT_M_1.
inv1, inv2 and inv3 (Figure 6.23) are instantiated by replacing the generic parameters by
those associated with the Stop Sign case study. Moreover, we added two invariants, inv4
and inv5, which are specific to the Stop Sign case study. inv4 is a bit special. It ensures
that the safety property is satisfied between two control periods i.e the evolution of the
physical part represented by p(t1) and v(t1) must preserve this safety property. inv5 is
defined to guarantee that the car is stopped when the acceleration is equal to zero.

INVARIANTS
inv1 : ∃ t1 · t1 ∈ TIME ∧ dom(p) = [0, t1] ∧ t− t1 ≤ epsilon ∧ (exec ̸= plant =⇒ t1 = t)∧
(exec = plant =⇒ t > t1) ∧ (ctrlV /∈ evade_value ∧ exec = plant
=⇒ safeEpsilon((p(t1) 7→ v(t1)) 7→ A) = TRUE)

inv2 : ∀ t1 · (t1 ∈ TIME ∧ dom(p) = [0, t1] =⇒ p(t1) + v(t1)×v(t1)
2B ≤ SP)

inv3 : ctrlV /∈ evade_value ∧ exec = prg =⇒ safeEpsilon((p(t) 7→ v(t)) 7→ A) = TRUE
inv4 : ∀ t1 · t1 ∈ TIME ∧ dom(p) = [0, t1] ∧ ctrlV = 0 ∧ exec ̸= ctrl =⇒ v(t1) = 0
inv5 : ∀t1, t2 · t1 ∈ TIME ∧ t2 ∈ TIME ∧ dom(p) = [0, t1] ∧ dom(p) = [0, t2] =⇒ t1 = t2

Figure 8.8: Stop Sign TimeTriggered Invariants.

Following Rule_TT_M_2, we refine the event Progress associated with the machine
Car_Event_M to add the control period epsilon, such as t1− t ≤ epsilon (see Figure 8.9),
and remove the following guard: ctrlV /∈ evade_value =⇒ evt_trig((bind(p, v)(t), (t1−
t), ctrlV) = TRUE. Removing such a guard gives rise to a proof obligation to ensure that
it is satisfied, see Section 8.1.3. This proof obligation corresponds to POs PO2_dRL and
PO3_dRL of dRL.

The continuous part is modeled by the event Plant_time_car (see Figure 8.10).
Plant_time_car refines the event Plant_event_car to calculate the values of p1 and
v1 during the period from lastT ime to t where lastT ime denotes the last moment at
which p and v have been calculated with dom(p) = [0, lastT ime] (Rule_TT_M_3). The
parameter epsilon1 is defined to represent the maximum duration of the car movement

2During the acceleration phase: the position increases by (A×epsilon2/2+v×epsilon), the speed becomes
equal to (A×epsilon+v). In the braking phase, the car stops in (t1 = (A×epsilon+v)/B) units of time. So,
the final position of the car is equal to p+(A×epsilon2/2+v×epsilon)+(−Bt1

2+ t1((A×epsilon+v)/B).

95

CHAPTER 8. APPLICATION

EVENT Progres s REFINES Progres s
ANY t1
WHERE

grd1 : exec = prg
grd2 : t1 ∈ TIME ∧ (t < t1 ∧ t1− t ≥ sigma)
grd3 : (t1− t) ≤ epsilon

THEN
act1 : t := t1
act2 : exec := plant

END

Figure 8.9: Car Time Progress.

until its stop. In the evade mode (ctrlV = −B), the car is allowed to move forward
during a period epsilon1 equal to the maximum of v(lastT ime)

B (the moment at which its
speed becomes null) and (t− lastT ime). Otherwise, this period is equal to (t− lastT ime).
As stated before, the guard grd6 of the Plant_event_car has been removed, instead
a proof obligation is generated to ensure that it is induced by the actual values of p1
and v1, see Section 8.1.3. The actual values of p1 and v1 are calculated by guards grd6
and grd7 that specify the results of solving the ODEs, dp

dt = v(t) and dv
dt = ctrlV tak-

ing in consideration the period of control epsilon1. The result of solving dv
dt = ctrlV

is v(t) = ctrlV × epsilon1 + v(lastT ime). Substituting v by this value in dp
dt = v gives

p(t) = 1
2 × ctrlV × epsilon12+ v(lastT ime)× epsilon1+p(lastT ime). Guard grd10 instan-

tiates the grd6 defined in Figure 6.25 by replacing the generic parameters by the specific
ones.

EVENT Plant_time_car REFINES Plant_event_car
ANY p1 , v1 , lastT ime , epsilon1
WHERE

grd1 : exec = plant
grd2 : lastT ime ∈ TIME ∧ dom(p) = [0, lastT ime]
grd3 : lastT ime ∈ dom(p) ∧ lastT ime ∈ dom(v)

grd4 : ctrlV = −B =⇒ (t− lastT ime ≤ v(lastT ime)
B

=⇒ epsilon1 = t− lastT ime) ∧ (t− lastT ime > v(lastT ime)
B =⇒ epsilon1 = v(lastT ime)

B)
grd5 : ctrlV ∈ {0, A} =⇒ epsilon1 = t− lastT ime
grd6 : p1 = (λt1 · t1 ∈ TIME ∧ t1 > lastT ime ∧ t1 ≤ t|(p(lastT ime)

+(12 × (ctrlV × (epsilon12)))) + (v(lastT ime) ∗ epsilon1))
grd7 : v1 = (λt1 · t1 ∈ TIME ∧ t1 > lastT ime ∧ t1 ≤ t |(ctrlV ∗ epsilon1) + v(lastT ime))
grd8 : ode(f_evol_plantV (ctrlV), (p1(t) 7→ v1(t)), t) ∈ DE(IR× IR)
grd9 : Solvable([0, t]− dom(bind(p, v)), ode(f_evol_plantV (ctrlV), bind(p1, v1)(t), t))
grd10 : solutionOf([0, t]− dom(bind(p, v)), ([0, t]− dom(bind(p, v)))◁ bind(p1, v1),
ode(f_evol_plantV (ctrlV), (p1(t), v1(t)), t))

THEN
act1 : p := p◁− p1 act2 : v := v ◁− v1

act3 : exec := ctrl
END

Figure 8.10: Event Plant_time_car.

We refine the event Ctrl_Acceleration_car to instantiate the event Ctrl_normal_time
(Figure 5.13) by replacing the formula safe((p(t), v(t)), A) by the formula SafeEpsilon
(Rule_TT_M_4). Let us remark, that the guard related to the satisfaction of safe has
been removed to give rise to a proof obligation that verifies that safeEpsilon induces Safe.
Event Ctrl_Deceleration_car remains as defined in machine Car_Event_M.

96

CHAPTER 8. APPLICATION

EVENT Ctrl_Acceleration_car_time
REFINES Ctr l_Acce lerat ion_car
WHERE

grd1 : exec = ctrl
grd2 : safeEpsilon(p(t), v(t), A) = TRUE

THEN
act1 : ctrlV := A
act2 : exec := prg

END

Figure 8.11: Event Ctrl_Acceleration_car_time.

8.1.3 Correctness of the Specification

Table 8.1: Rodin proof statistics for the Stop Sign system

Specific_Models Total Automatic Interactive

Car_Event_M 44 17 27

Car_Time_M 42 13 29

Table 8.1 gives the statistics of the POs generated for modeling the Stop Sign case study.
All the POs are discharged using the automatic/interactive provers of the Rodin platform
and the theories of [10]. It is noticeable that 34% of them were automatically discharged.
The POs that are independent from any specific case study are simply discharged by replying
the same proof script defined in the proof of the generic models. These POs are related
to the correctness of the event Progress, i.e feasibility of the event, and also the type of
the variables. Moreover, the POs related to the guards feasibility and well-definedness are
much easier to discharge than those related to ensure the system safety property and also
that concerning the preservation of formula safe that we detail hereafter.

Proof of the safety property: Recall that the safety property has been expressed as
an invariant in the Car_Event_M machine: ∀x · x ∈ dom(p) =⇒ prop(p(x)) = TRUE,
where prop(p(x)) = p(x) ≤ SP . This invariant generates the following proof obligation for
the event Plant_event_car that updates the value of the variable p:

∀x · x ∈ dom(p◁− p1) =⇒ (p◁− p1)(x) ≤ SP

Since at this level the ordinary differential equation has not been resolved yet, the concrete
value of p1 is not known. For this purpose, we added the guard grd6 in the event
Plant_event_car. This guard states that the concrete value of p1 should be such that
the future position of the car is always before the stop signal SP . Thus at this level, the
safety property is proved under the guard grd6. This guard is removed by refinement
in the Car_Time_M machine and gives thus rise to a proof obligation that verifies the
concrete value of p1, obtained after the resolution of the ordinary differential equations
(grd6 and grd7 of the event Plant_time_car), does satisfy grd6 of Plant_event_car. In
that way, we definitely proved the safety property as we establish that the guard grd6 of
the event Plant_event_car is true. To prove this, we added the following invariants in
Car_Time_M machine:

• When the variable ctrlV is updated to be equal to A, then safeEpsilon is verified,

97

CHAPTER 8. APPLICATION

where t1 is such that dom(p) = [0, t1].

exec = plant ∧ ctrlV ̸= evade_value =⇒ safeEpsilon((p(t1), v(t1)), A) = TRUE

• According to [16], at any moment t1, the position of the car permits to brake before
SP . In fact v(t1)2/2B denotes the maximum distance that the car can cover when
it enters into the braking phase. Indeed, when the car brakes at the instant t1, it
continues to move forwards during (V (t1)/B) units of time. So, the car will cover a
distance equal to (−1/2×B × (V (t1)/B)2 + V (t1)× (V (t1)/B) = v(t1)

2/2B

∀t1.t1 ∈ IR+ ∧ dom(p) = [0, t1] =⇒ p(t1) + v(t1)
2/2B ≤ SP

Preservation of the predicate safe by refinement The generic modeling of the event
Ctrl_normal_time (Figure 5.13) contains a guard to check that safe is fulfilled, grd3 of
this event, in addition to its dual guard related to safeEpsilon. As stated before, for a
specific application, grd3 is skipped which gives rise to a refinement proof obligation to
ensure that the removed guard can be induced from that of the event Ctrl_normal_time.
In other words, this means that the guard of the event Ctrl_normal_time must be stronger
than that of the event Ctrl_normal_event. This refinement proof obligation corresponds
to PO1_dRL of dRL.

... ∧ safeEpsilon(plantV (t), ctrlV) = TRUE
=⇒ safe(plantV (t), nrml_value) = TRUE

Let us note that such proof obligations have been interactively discharged under Rodin
thanks to different provers like SMT and AtelierB provers but also the inference rules
described in the theory that implements reals. The use of these inference rules made the
proof activity longer since they are not automatically applied even on simple examples like
the transitivity rule. For instance, the formula a ≤ c under the hypotheses a ≤ b ∧ b ≤ c,
with a, b, c denoting real expressions, cannot be discharged automatically and requires
the intervention of the user that must explicitly apply the transitivity rules included in
the theory of reals. To speed up the proof activity, it would be interesting to develop an
automatic prover around the theory of reals whose objective is to automatically apply the
existing inference rules to produce new hypotheses. For the above example, hypothesis
a ≤ c should be automatically inferred by applying the transitivity inference rule. The
development of such a prover is one of the objectives of the EBRP project [9].

Preservation of evt_trig by refinement Recall that the generic modeling of the event
Progress, in the timed model, contains a guard to ensure that time progresses without going
beyond the safety envelope boundaries evt_trig. This guard is omitted by instantiation
in the TimeTriggered model and the following proof obligation is generated instead it
corresponds to PO2_dRL and PO3_dRL of dRL:

exec = prg =⇒ evt_trig((bind(p, v))(t), t1 − t, ctrlV)

To prove the above PO, we have added and proved the following invariant that states that
before making the time progress, if the normal mode is chosen, then the system is safe:

ctrlV /∈ evade_value ∧ exec = prg =⇒ safeEpsilon((p(t) 7→ v(t)) 7→ ctrlV) = TRUE

Let us remark that expressions of evt_trig and safeEpsilon are very similar: safeEpsilon
depends on epsilon while evt_trig depends on (t1− t). By rewriting (evt_trig = E1 ≤ SP)
and (safeEpsilon = E2 < SP), it suffices to prove that E1 ≤ E2 with the hypothesis that
(t1 − t ≤ epsilon).

98

CHAPTER 8. APPLICATION

8.2 Water Tank Models

To model the Water Tank case study in Event-B, we proceed in three refinement steps
(Figure 8.12). We start by refining the abstract generic ContSystem model to obtain the
Abstract_Tank model. In the second step, we produce the Tank_Event model together
with the safety property by refining the Abstract_Tank model and instantiating the generic
EventTriggered model. The last step consists in instantiating the generic TimeTriggered
model and refining the Tank_Event model to obtain the Tank_Time model. the whole
models are available in Appendix C.

Figure 8.12: Architecture of the Event-B Model of the Water Tank.

8.2.1 Abstract Water Tank Model

To model the abstract Water Tank model in Event-B, we refine the generic abstract Con-
tSystem model. Abstract_Tank model consists of an abstract context, Abstract_Tank_Ctx,
and an abstract machine, Abstract_Tank_M. Context Abstract_Tank_Ctx (Figure 8.13) is
obtained following the rules Rule_CS_Ctx_i (Section 6.1.1). It defines all the properties of
the Water Tank case study such as the property 0 < V_low < V_high, see axm1− axm3.
axm4− axm5 specify the ordinary differential equation that describes the evolution of the
water level using the specific function f_evol_V.

CONTEXT Abstract_Tank_Ctx
EXTENDS ContSystem_Ctx
CONSTANTS V 0 , V_high ,V_low ,f_evol_V
AXIOMS

axm1 : V 0 ∈ IR+

axm2 : V 0 = plantV Init
axm3 : V_high ∈ IR ∧ V_low ∈ IR ∧ V 0 < V_high ∧ V 0 > V_low∧

V_high > V_low ∧ V_low > 0
axm4 : f_evol_V ∈ IR → (TIME × IR → IR)
axm5 :

∀ ctrlV · ctrlV ∈ IR =⇒ (f_evol_V (ctrlV) = (λ t 7→ vol · t ∈ TIME ∧ vol ∈ IR|ctrlV))
END

Figure 8.13: Context Abstract_Tank_Ctx.

The Abstract_Tank_M machine refines the ContSystem_M machine following the set
of rules Rule_CS_M_i (Section 6.1.1). It instantiates (renaming) the generic continuous
variable plantV and the generic continuous parameter plant1 respectively by the specific
continuous variable V ol and the specific parameter V ol1. Event Water_behave (Figure

99

CHAPTER 8. APPLICATION

8.14) describes the evolution of the physical part by assigning the specific parameter V ol1
to the specific continuous variable V ol, see act1.

EVENT Water_behave REFINES Plant
ANY e , V ol1
WHERE

grd1 : e ∈ DE(IR)
grd2 : Solvable([0, t]− dom(V ol), e)
grd3 : V ol1 ∈ [0, t]− dom(V ol) → IR+ ∧ AppendSolutionBAP (e,

[0, t]− dom(V ol), [0, t]− dom(V ol), V ol1)
WITH plant1 : plant1 = V ol1
THEN act1 : V ol := V ol ◁− V ol1
END

Figure 8.14: Event Water_behave.

8.2.2 Water Tank EventTriggered Model

The procedure for modeling the Water Tank case study is similar to that described in Section
6.1.2 for modeling the Smart Heating system. Tank_Event model refines Abstract_Tank
model by defining a more specific machine Tank_Event_M that refines the machine
Abstract_Tank_M. Machine Tank_Event_M sees the context Tank_Event_Ctx (Figure
8.15) which adds new constants needed to model the interaction between the physical and
the continuous parts of the Water Tank case study (Rule_ET1_Ctx_1). It also introduces
the safety envelopes safeF ill and safeEmp (Rule_ET1_Ctx_2).

CONTEXT Tank_Event_Ctx EXTENDS Abstract_Tank_Ctx
SETS EXEC
CONSTANTS ctrl , plant , prg , safeF ill , safeEmp , evt_TrigF ill , evt_TrigEmp ,

f_in , f_out ,evade_valueF ill ,evade_valueEmp , prop
AXIOMS

axm1 : partition(EXEC, {ctrl}, {plant}, {prg})
axm2 : safeF ill ∈ (IR× IR) → BOOL
axm3 : safeEmp ∈ (IR× IR) → BOOL
axm4 : evt_TrigF ill ∈ (IR× TIME)× IR → BOOL
axm5 : evt_TrigEmp ∈ (IR× TIME)× IR → BOOL
axm6 : safeF ill = (λ vol 7→ ctrlV · vol ∈ IR ∧ ctrlV ∈ IR | bool(vol < V_high))
axm7 : safeEmp = (λ vol 7→ ctrlV · vol ∈ IR ∧ ctrlV ∈ IR | bool(vol > V_low))
axm8 : evt_trigF ill = (λ vol 7→ t1 7→ ctrlV · vol ∈ IR ∧ t1 ∈ TIME∧
ctrlV ∈ IR | bool(vol + ctrlV × t1 ≤ V_high))

axm9 : evt_trigEmp = (λ vol 7→ t1 7→ ctrlV · vol ∈ IR ∧ t1 ∈ TIME∧
ctrlV ∈ IR | bool(vol + ctrlV × t1 ≥ V_low))

axm10 : f_in ∈ IR ∧ f_in > 0
axm11 : f_out ∈ IR ∧ f_out > 0
axm12 : evade_valueF ill ⊆ IR ∧ evade_valueF ill = {−f_out}
axm13 : evade_valueEmp ⊆ IR ∧ evade_valueEmp = {f_in}
axm14 : prop ∈ IR → BOOL
axm15 : prop = (λvol · vol ∈ IR|bool(vol ≤ V_high ∧ vol ≥ V_min))

END

Figure 8.15: Context Tank_Event_Ctx.

As stated in Section 4.2, we express the safety property in a conjunctive normal form:
(V_low ≤ V ol ∧ V ol ≤ V_high). For the safety property V_low ≤ Vol (resp. Vol
≤ V_high), the evade value is {f_in} (resp. {-f_out}). Following Rule_ET1_Ctx_3,

100

CHAPTER 8. APPLICATION

Rule_ET1_Ctx_4 and Rule_ET1_Ctx_5, we define the following constants safeEmp,
evt_trigEmp, safeF ill, evt_trigF ill, evade_valueF ill and evade_valueEmp (axioms
axm6− 9 and axm12− 13). Last axm14− 15 are used to specify the Water Tank safety
property by defining the constant prop.
Since the Tank_Event model instantiates the EventTriggered model, the INVARIANTS
clause must include the system safety property specified using the constant prop. Moreover,
we instantiate the invariants specified in Figure 6.10 by replacing the generic parameters by
the specific ones and by following Rule_ET1_M_2. In the Tank_Event model, we refine
the Progress event by adding the following guards (Rule_ET1_M_3):

evt_trigF ill(V ol(t) 7→ (t1 − t) 7→ ctrlV) = TRUE

evt_trigEmp(V ol(t) 7→ (t1 − t) 7→ ctrlV) = TRUE.

Following the rules, Rule_ET1_M_5 and Rule_ET1_M_6, we define three control
events Ctrl_normal (Figure 8.16), Ctrl_emptying (Figure 8.17) and Ctrl_filling (Figure
8.18). Event Ctrl_normal represents the normal mode and is triggered when the safety
envelopes safeEmp and safeF ill, associated to these properties, are satisfied which means
that the system does not change its discrete state (Filling or Emptying) when the current
water level evolves between V_high and V_low. Note that, as we only have two values f_in
and −f_out, we rewrite the condition nCtrlV /∈ {−f_out} (resp. nCtrlV /∈ {f_in}) of
grd3 (resp. grd4) into nCtrlV = f_in (resp. nCtrlV = −f_out). The evade mode is
refined by two events Ctrl_emptying and Ctrl_filling. Ctrl_emptying and Ctrl_filling can
be triggered respectively when safeEmp and safeF ill are verified.

EVENT Ctrl_normal
ANY nCtrlV
WHERE

grd1 : exec = ctrl
grd2 : nCtrlV ∈ {f_in,−f_out}
grd3 : nCtrlV = f_in =⇒ safeF ill(V ol(t), f_in) = TRUE
grd4 : nCtrlV = −f_out =⇒ safeEmp(V ol(t),−f_out) = TRUE

THEN
act1 : exec := prg
act2 : ctrlV := nCtrlV

END

Figure 8.16: Event Ctrl_normal.

EVENT Ctrl_emptying
WHERE

grd1 : exec = ctrl
grd2 : safeEmp(V ol(t),−f_out) = TRUE

THEN
act1 : exec := prg
act2 : ctrlV := −f_out

END

Figure 8.17: Event Ctrl_emptying.

The continuous part is represented by the event Plant_event_tank (Figure 8.19) that
refines the event Water_behave. It introduces the evolution of the water level using
the continuous function f_evol_V(ctrlV) (Rule_ET1_M_4). Moreover, it specifies the
safety property of the Water Tank case study V_low ≤ V ol(t) ≤ V_high (see grd6),
so the continuous part will be triggered iff the formula prop(V ol1(xx)) ≡ V ol1(xx) ≤
V_high ∧ V ol1(xx) ≥ V_low is satisfied.

101

CHAPTER 8. APPLICATION

EVENT C t r l_ f i l l i n g
WHERE

grd1 : exec = ctrl
grd2 : safeF ill(V ol(t), f_in) = TRUE

THEN
act1 : exec := prg
act2 : ctrlV := f_in

END

Figure 8.18: Event Ctrl_filling.

EVENT Plant_event_tank
REFINES Water_behave
ANY V ol1
WHERE

grd1 : exec = plant
grd2 : V ol1 ∈ [0, t]− dom(V ol) → IR+

grd3 : ode(f_evol_V (ctrlV), V ol1(t), t) ∈ DE(IR)
grd4 : Solvable([0, t]− dom(V ol), ode(f_evol_V (ctrlV), V ol1(t), t))
grd5 : AppendSolutionBAP (ode(f_evol_V (ctrlV), V ol1(t), t),
[0, t]− dom(V ol), [0, t]− dom(V ol), V ol1)

grd6 : ∀xx · xx ∈ dom(V ol1) =⇒ prop(V ol1(xx)) = TRUE
WITH e : e = ode(f_evol_V (ctrlV), V ol1(t), t)
THEN

act1 : V ol := V ol ◁− V ol1
act2 : exec := prg

END

Figure 8.19: Event Plant_event_tank.

8.2.3 Water Tank TimeTriggered Model

The Tank_Time model is obtained by refining the Tank_Event model. The static part
of this model is represented by the context Tank_Time_Ctx (Figure 8.20). Context
Tank_Time_Ctx extends the context Tank_Event_Ctx and instantiates the generic context
TimeTriggered_Ctx (Rule_TT_Ctx_1 and Rule_TT_Ctx_2). It adds the definition
of the control period epsilon, see axm1, as well as the system safety properties where
safeEpsilonEmp and safeEpsilonF ill are defined in axm4 and axm5.

CONTEXT Tank_Time_Ctx
EXTENDS Tank_Event_Ctx
CONSTANTS epsilon ,safeEpsilonF ill ,safeEpsilonEmp
AXIOMS

axm1 : epsilon ∈ TIME ∧ 0 < epsilon ∧sigma ≤ epsilon
axm2 : safeEpsilonF ill ∈ (IR× IR) → BOOL
axm3 : safeEpsilonEmp ∈ (IR× IR) → BOOL
axm4 : safeEpsilonEmp = (λ vol 7→ ctrlV · vol ∈ IR ∧ ctrlV ∈ IR|
bool(ctrlV × epsilon ≥ V_low))
axm5 : safeEpsilonF ill = (λ vol 7→ ctrlV · vol ∈ IR ∧ ctrlV ∈ IR|
bool(ctrlV × epsilon ≤ V_high))

END

Figure 8.20: Context Tank_Time_Ctx.

The dynamic part of the Tank_Time model is represented by the Tank_Time_M
machine which refines the Tank_Event_M machine. The Tank_Time INVARIANTS

102

CHAPTER 8. APPLICATION

clause (Figure 8.21) defines all the properties needed to preserve the system safety property
during the control period epsilon (Rule_TT_M_1), see inv1. For each safety envelope
safeEpsilonF ill and safeEpsilonEmp, it defines a set of properties that must be preserved
during the progression of time, see inv2− inv3.

INVARIANTS
inv1 : ∃ t1 · t1 ∈ TIME ∧ dom(V ol) = [0, t1] ∧ t− t1 ≤ epsilon ∧ (exec ̸= plant =⇒ t1 = t)∧

(exec = plant =⇒ t > t1) ∧ (ctrlV ̸∈ evade_valueF ill ∧ exec = plant =⇒
safeEpsilonF ill(V ol(t1) 7→ ctrlV) = TRUE) ∧ (ctrlV ̸∈ evade_valueEmp ∧ exec = plant
=⇒ safeEpsilonEmp(V ol(t1) 7→ ctrlV) = TRUE)

inv2 :
ctrlV ̸∈ evade_valueF ill ∧ exec = prg =⇒ safeEpsilonF ill(V ol(t) 7→ ctrlV) = TRUE

inv3 : ctrlV ̸∈ evade_valueEmp ∧ exec = prg =⇒
safeEpsilonEmp(V ol(t) 7→ ctrlV) = TRUE

inv4 : ∀t1, t2 · t1 ∈ TIME ∧ t2 ∈ TIMEdom(V ol) = [0, t1] ∧ dom(V ol) = [0, t2] =⇒ t1 = t2

Figure 8.21: Tank_Time INVARIANTS.

The continuous part of the Tank_Time model is described by the event Plant_time_tank
(Figure 8.22). Event Plant_time_tank refines the event Plant_event_tank by adding the
parameters lastT ime and epsilon1 (Rule_TT_M_3). The parameter epsilon1 represents
the maximum duration of the water level until the next discrete state change. This period
is equal to t − lastT ime, see grd4. As stated before, to prove the safety property of a
hybrid system we must obtain the solutions of its differential equations. The result of
solving the ordinary differential equation that describes the continuous evolution of the
water level V ol is represented by the grd5: V ol1 = (ctrlV × epsilon1) + V ol(lastT ime).
The discrete part of this model is represented by three events, (Figures 8.23, 8.24 and 8.25),
that replace the safety envelops safeF ill and safeEmp respectively by safeEpsilonF ill
and safeEpsilonEmp to take into account the duration epsilon in the evolution of V ol (
Rule_TT_M_4).

EVENT Plant_time_tank
REFINES Plant_event_tank
ANY V ol1 , lastT ime ,epsilon1
WHERE

grd1 : exec = plant
grd2 : lastT ime ∈ TIME ∧ dom(V ol) = [0, lastT ime]
grd3 : t > lastT ime ∧ lastT ime ∈ dom(V ol)
grd4 : epsilon1 = t− lastT ime
grd5 : V ol1 = (λt1 · t1 ∈ TIME ∧ t1 > lastT ime ∧ t1 ≤ t |
(ctrlV × epsilon1) + V ol(lastT ime))

grd6 : ode(f_evol_V (ctrlV), V ol1(t), t) ∈ DE(IR)
grd7 : Solvable([0, t]− dom(V ol), ode(f_evol_V (ctrlV), V ol1(t), t))
grd8 :

solutionOf([0, t]− dom(V ol), ([0, t]− dom(V ol))◁ V ol1, ode(f_evol_V (ctrlV), V ol1(t), t))

THEN
act1 : V ol := V ol ◁− V ol1
act2 : exec := ctrl

END

Figure 8.22: Event Plant_time_tank.

103

CHAPTER 8. APPLICATION

EVENT Ctrl_normal REFINES Ctrl_normal
ANY nCtrlV
WHERE

grd1 : exec = ctrl
grd2 : nCtrlV ∈ {f_in,−f_out)}
grd3 : nCtrlV = f_in =⇒ safeEpsilonF ill(V ol(t) 7→ f_in) = TRUE
grd4 : nCtrlV = −f_out =⇒ safeEpsilonEmp(V ol(t) 7→ −f_out) = TRUE

THEN
act1 : exec := prg
act2 : ctrlV := nCtrlV

END

Figure 8.23: Tank_Time Ctrl_normal.

EVENT Ctrl_emptying REFINES Ctrl_emptying
WHERE

grd1 : exec = ctrl
grd2 : safeEpsilonEmp(V ol(t) 7→ −f_out) = TRUE

THEN
act1 : exec := prg
act2 : ctrlV := −f_out

END

Figure 8.24: Tank_Time Ctrl_emptying.

EVENT C t r l_ f i l l i n g REFINES C t r l_ f i l l i n g
WHERE

grd1 : exec = ctrl
grd2 : safeEpsilonF ill(V ol(t) 7→ f_in) = TRUE

THEN
act1 : exec := prg
act2 : ctrlV := f_in

END

Figure 8.25: Tank_Time Ctrl_filling.

8.2.4 Correctness of the Specification

Table 8.3 gives the statistics of the POs generated for modeling the Water Tank case
study following the strategy depicted by Figure 6.1. All the POs are discharged using
the Rodin platform and the theories of [10]. It is noticeable that 42% of them were
automatically discharged. Most interactive proof obligations are related to the proof of
refinement between the three specific models. To prove the refinement relation between
the generic model ContSystem and Abstract_Tank_M, the following proof obliagtion is
generated. This PO checks the compliance between the guards of the event Plant after
replacing the generic variable plantV by the specific one V ol.

V ol1 ∈ [0, t]− dom(plantV) → IR∧

AppendSolutionBAP (e, [0, t]− dom(plantV), [0, t]− dom(plantV), V ol1)

Machine Tank_Time_M refines machine Tank_Event_M to introduce the control period
epsilon, and replace the formulas safeEmp and safeF ill respectively by safeEpsilonEmp
and safeEpsilonF ill. Consequently, Rodin has generated the following proof obligations
to prove the compliance between these two models. The first two POs are generated in the
event Ctrl_normal for removing guards grd3 and grd4 in Figure 8.16. The third PO is

104

CHAPTER 8. APPLICATION

Table 8.2: Rodin proof statistics for the Water Tank system

Specific_Models Total Automatic Interactive

Abstract_Tank_M 11 3 8

Tank_Event_M 38 24 14

Tank_Time_M 42 12 30

generated for the event Ctrl_emtying and the last one is generated for the event Ctrl_filling
for removing the guard grd2 of both events.

nCtrlV = f_in =⇒ safeF ill(V ol(t) 7→ f_in) = TRUE

nCtrlV = −f_out =⇒ safeEmp(V ol(t) 7→ −f_out) = TRUE

safeEmp(V ol(t) 7→ −f_out) = TRUE

safeF ill(V ol(t) 7→ f_in) = TRUE

As stated in the generic TimeTriggered model, on specific case studies, the guards
related to the formula evt_trig added in an EventTriggered model are removed, which give
rise to the following refinement proof obligations that we have discharged using inference
rules.

ctrlV ̸∈ evade_valueF ill =⇒

evt_trigF ill(V ol(t) 7→ (t1− t) 7→ ctrlV) = TRUE

ctrlV ̸∈ evade_valueEmp =⇒

evt_trigEmp(V ol(t) 7→ (t1− t) 7→ ctrlV) = TRUE

The system safety property is expressed as an invariant in the Tank_Event_M : ∀ x ·
x ∈ dom(V ol) =⇒ V ol(x) ≤ V_high ∧ V ol(x) ≥ V_low. Similarly to the Stop Sign
case study, we use the invariant inv1 (Figure 8.21) to prove this safety property. This
invariant states that before executing the Plant_time_tank event, safeEpsilonF ill (resp.
safeEpsilonEmp) is satisfied if we are in the emptying (resp. filling) phase.

8.3 Discussion on the proof activity

From the different case studies that we have modeled and verified to prove the feasibility of
our approach, the following conclusions can be drawn:

(1) Most generated POs are generic and do not depend on a specific case study.

(2) The POs that depend on the case study can be classified into four categories:

(a) The proof of the safety property in the EventTriggered model;
(b) The refinement of the event Progress, in the TimeTriggered model, preserves

the guard evt_trig;
(c) The refinement of the event Plant_event in the TimeTriggered model preserves

the guard grd6 related to the safety property;
(d) The refinement of the events Ctrl_normal and Ctrl_evade, in the TimeTrig-

gered model, preserves the guards related to the predicate safe.

(3) The complexity of the application-dependent proofs is proportionate to the number of
the terms of the ordinary differential equation solution. In other words, the higher the

105

CHAPTER 8. APPLICATION

degree of the ordinary differential equation, the higher the complexity of the proofs:
the proofs of the Stop Sign case study took more than one week while 2 days were
enough for the Water Tank case study. We think that the development of an inference
engine for the theory that implements the reals would help speed up the proof activity.
Such an inference rule would automate the application of some inference rules like
reflexivity, transitivity, etc.

(4) To discharge some proofs, the following generic invariants have been defined:

(a) In the EventTriggered model: an invariant to state that if the next event to
execute is different from the Plant event, every variable xi describing a physical
element, such as the position and the velocity in the Stop Sign case study, should
be defined until the current value of time t:

exec ̸= plant =⇒
∧

xi
(dom(xi) = [0, t])

(b) In the EventTriggered model: an invariant to state that if the next event to
execute is the Plant event, no variable xi describing a physical element is defined
for the current value of time t:

exec = plant =⇒
∧

xi
(t /∈ dom(xi))

(c) In the machine corresponding to the TimeTriggered model of a specific application
(in Car_Time and Tank_Time for instance): an invariant to state that if the
next event to execute is the progress of the time(Progress_time), the system is
safe if it is in a normal mode:

ctrlV /∈ evade_values ∧ exec = prg
=⇒

safeEpsilon(plantV (t), ctrlV) = TRUE

8.4 The Smart Heating System Models

This section illustrates the approach presented in chapter 7 on a frequently used cyber-
physical case study, the Smart Heating system. For that purpose, we follow the schema
depicted by Figure 8.26. The instantiation starts by refining the generic model TimeTrig-
geredDesolve to obtain the machine Heater_M that sees the context Heater_Ctx. The
whole models are available in Appendix D.

8.4.1 Context Heater_Ctx

The context Heater_Ctx (Figure 8.27) contains the following elements:

• axm1− 2: define the initial value of the temperature, T0, the maximum and the min-
imum limits of the temperature, T_max and T_min, as well as the main properties
of these constants.

• axm3− 5: valuate the set PROP by defining two formulas p1 and p2.

• axm6: specifies the safety property of the Smart Heating system, T_min ≤ T ≤
T_max.

• axm7: specifies the safety envelops of the system, T ≤ T_max and T ≥ T_min,
using the formulas p1 and p2.

• axm8: specifies the safety envelops taking into account the control period epsilon.

106

CHAPTER 8. APPLICATION

Figure 8.26: Architecture of the Event-B Model of the Smart Heating System.

• axm9: specifies the event trigger which guarantees that the physical part does not go
beyond the boundaries of the safety envelope.

• axm10− 11: specify the evade values of the system using the flow temp. The evade
value associated with the On state is −temp and that associated with the Off state
is temp.

8.4.2 Machine Heater_M

The interaction between the discrete and continuous parts of the Smart Heating case
study are described by the Event-B machine Heater_M which refines the generic machine
TimeTriggeredDesolve_M. The INVARIANTS clause (Figure 8.28) defines a set of properties
that the system should satisfy. Invariant inv1 is defined to replace the generic continuous
variable plantV by the specific one represented by the temperature level T . Invariant inv2
specifies the possible values of the variable ctrlV . The most interesting invariants are inv5,
inv6 and inv7. inv5 specifies the system safety property using the formula prop. inv6
is defined to guarantee that the temperature T does not exceed the limits T_max and
T_min during the evolution of the physical part. inv7 specifies the same property as the
invariant inv6 but this time during the execution of the event Progress.

The continuous part is represented by the discrete event Thermostat_plant (Figure
8.29) that refines the generic event Plant_time_desolve by replacing the generic parameter
plant1 with the exact solution obtained using SageMath. For this purpose, we use the
function B_desolve by valuating each of his parameter by the one associated with the Smart
Heating case study. grd3 assigns the solution returned by the function B_desolve to the
parameter plant1. B_desolve is used to obtain the values of the dependent variable T in the
interval [lastT ime, t]. grd4 specifies the exact solution of the ordinary differential equation
T ′ = ctrlV . As stated before, the exact solution in SageMath of differential equation for
dependent variable is obtained using the predefined function desolve. This function is used
in the script 7.10 presented in Section 7.2.3. This script returns the solution of T ′ = ctrlV

107

CHAPTER 8. APPLICATION

CONTEXT Heater_Ctx EXTENDS Desolve_Ctx
CONSTANTS p1 ,p2 ,prop_val ,T_max ,T_min ,T0 ,temp
AXIOMS
axm1 : T0 ∈ IR+ ∧ T0 = plantV Init
axm2 : T_max ∈ IR ∧ T_min ∈ IR ∧ T_max > T_min

∧ T_min > 0 ∧ T0 ≥ T_min ∧ T0 ≤ T_max
axm3 : prop_val ∈ PROP → P (IR×BOOL)
axm4 : PROP = {p1, p2}
axm5 : prop_val = {p1 7→ (λ T · T ∈ IR | bool(T_min ≤ T)),

p2 7→ (λ T · T ∈ IR| bool(T ≤ T_max))}
axm6 : prop = (λ T · T ∈ IR |bool((prop_val(p1))(t) = TRUE ∧ (prop_val(p2))(t) = TRUE))
axm7 : prop_safe = {p1 7→ (λ T 7→ ctrlV · T ∈ IR ∧ ctrlV ∈ IR

|bool(T < T_max)), p2 7→ (λT 7→ ctrlV · T ∈ IR ∧ ctrlV ∈ IR |bool(T > T_min))}
axm8 : prop_safeEpsilon = {p1 7→ (λ T 7→ ctrlV · T ∈ IR ∧ ctrlV ∈ IR |
bool(T + (ctrlV × epsilon) ≤ T_max)), p2 7→ (λ T 7→ ctrlV · T ∈ IR ∧ ctrlV ∈ IR |
bool(T + (ctrlV × epsilon) ≥ T_min))}

axm9 : prop_evt_trig = {p1 7→ (λ T 7→ t1 7→ ctrlV · T ∈ IR ∧ t1 ∈ TIME ∧ ctrlV ∈ IR |
bool(T + (ctrlV × t1) ≤ T_max)), p2 7→ (λ T 7→ t1 7→ ctrlV · T ∈ IR ∧ t1 ∈ TIME
∧ctrlV ∈ IR | bool(T + (ctrlV × t1) ≥ T_min))}

axm10 : temp ∈ IR ∧ temp > 0
axm11 : prop_evade_values = {p1 7→ {−temp}, p2 7→ {temp}}
END

Figure 8.27: CONTEXT Heater_Ctx.

INVARIANTS
inv1 : T = plantV ∧ ran(T) ⊆ IR
inv2 : ctrlV ∈ {temp,−temp}
inv3 : exec ̸= plant =⇒ dom(T) = [0, t]
inv4 : exec = plant =⇒ t ̸∈ dom(T)
inv5 : ∀x · x ∈ dom(T) =⇒ prop(T (x)) = TRUE
inv6 : ∃ t1 · t1 ∈ TIME ∧ dom(T) = [0, t1] ∧ t− t1 ≤ epsilon ∧ (exec ̸= plant =⇒ t1 = t)
∧(exec = plant =⇒ t > t1) ∧ (∀x · x ∈ PROP ∧ ctrlV ̸∈ prop_evade_values(x)∧
exec = plant =⇒ (prop_safeEpsilon(x))(T (t1) 7→ ctrlV) = TRUE)

inv7 : ∀x · x ∈ PROP ∧ ctrlV ̸∈ prop_evade_values(x) ∧ exec = prg =⇒
(prop_safeEpsilon(x))(T (t) 7→ ctrlV) = TRUE

inv8 : ∀t1, t2 · t1 ∈ TIME ∧ t2 ∈ TIME ∧ dom(T) = [0, t1] ∧ dom(T) = [0, t2] =⇒ t1 = t2

Figure 8.28: Heater_M INVARIANTS.

in the language of SageMath. This solution is then translated in the Event-B language
to be used in the proof phase. The discrete part is represented by the event Ctrl (Figure
8.30) that refines the generic event Ctrl by replacing the generic continuous variable plantV
by T in grd3. Moreover, the event uses the formula prop_safeEpsilon to check that the
chosen value satisfies the safety envelop during the control period epsilon.

8.4.3 Correctness of the specification

To ensure the correctness of the developed models, a set of proof obligations are
produced. These proof obligations aim at verifying that the different refinements are correct
and the safety properties are verified on the system. It is noticeable that 54% of them were
automatically discharged. These POs include the correctness of the events that specify the
progression of time and those that specify the progression of the physical and the discrete
parts and also the POs that verify the type of the variables. The POs related to the guards

108

CHAPTER 8. APPLICATION

EVENT Thermostat_plant REFINES Plant_time_desolve
ANY lastT ime , plant1
WHERE

grd1 : exec = plant
grd2 : lastT ime ∈ TIME ∧ dom(T) = [0, lastT ime]
grd3 : plant1 = B_desolve(1 7→ ctrlV 7→ T 7→ t 7→ (lastT ime 7→ T (lastT ime)))
grd4 : B_desolve(1 7→ ctrlV 7→ T 7→ t 7→ (lastT ime 7→ T (lastT ime))) =

(λ t1 · t1 ∈ TIME ∧ t1 > lastT ime ∧ t1 ≤ t |T (lastT ime)+
(ctrlV ×−lastT ime) + (ctrlV × t1))

grd5 : ode(f_evol_plantV (ctrlV), plant1(t), t) ∈ DE(RReal)
grd6 : Solvable([0, t]− dom(T), ode(f_evol_plantV (ctrlV), plant1(t), t))
grd7 : AppendSolutionBAP (ode(f_evol_plantV (ctrlV),
plant1(t), t), [0, t]− dom(T), [0, t]− dom(T), plant1)

THEN
act1 : T := T ◁− plant1
act2 : exec := ctrl

END

Figure 8.29: Event Thermostat_plant.

EVENT Ctr l
REFINES Ctr l
ANY value
WHERE

grd1 : exec = ctrl
grd2 : value ∈ {temp,−temp}
grd3 : ∀x · x ∈ PROP =⇒ (value ̸∈ prop_evade_values(x) =⇒
prop_safeEpsilon(x))(T (t) 7→ value) = TRUE)

THEN
act1 : ctrlV := value
act2 : exec := prg

END

Figure 8.30: Thermostat Ctrl.

feasibility and well-definedness have been interactively discharged under Rodin. Among
these proof obligations, we can cite those related to the elimination of the guards during
the refinement of events. These proof obligations are specified using the set PROP . For
example, Rodin has generated the following proof obligation due to removing the guard
related to the formula evt_trig in the event Progress:

∀ x · x ∈ PROP =⇒ (ctrlV ̸∈ prop_evade_values(x) =⇒

prop_evt_trig(x)(plantV (t) 7→ (t1− t) 7→ ctrlV) = TRUE)

To discharge such proof obligations, we needed to add invariants that translate implicit
properties on the system. These invariants specify that the system is safe if the controller
has chosen a value for ctrlV that does not belong to the sets of evade values, see guard

Table 8.3: Rodin Proof Statistics for the Smart Heating System

Specific_Models Total Automatic Interactive

Heater_M 48 21 27

109

CHAPTER 8. APPLICATION

grd6 and grd7 in Figure 8.28.

plant1 = B_desolve(1 7→ ctrlV 7→ plantV 7→ t 7→ (lastT ime 7→ plantV (lastT ime)))

The above proof obligation was generated in the event Thermostat_plant to prove the
compliance between the generic model TimeTriggeredDesolve and the specific one. This
PO was discharged by replacing B_desolve by the results of solving the associated ordinary
differential equation using the interface between SageMath and Rodin.

8.5 Modeling NonLinear Case Studies

As stated before, in case of higher order nonlinear ODEs, we use approximation techniques to
transform an equation into an equivalent equation of another type. We can use linearization
techniques to transform a nonlinear differential equation into a linear differential equation
and then apply our generic approach that model the predefined function desolve in Event-B.
For example, the Inverted Pendulum is a non linear hybrid system whose continuous behavior
is described by a second order ordinary differential equation:

fNonLin((θ, θ̇), u) = (θ̇, u ∗ cos(θ) + g

l
)

Therefore, the functions used by SageMath to obtain approximate solutions, such as
desolve_rk4, can not be applied since they only treat first order differential equations.
In that case, we must use linearisation methods to linearise the differential equation of
this case study and then apply our generic approach that models the function desolve in
Event-B. Then we use the approach presented in [59] which allows proving the refinement
relation between a linear and a nonlinear systems. To linearise such a case study, we
assume that the angle θ is small enough, so we can approximate sin(θ) and cos(θ) such
that | sin(θ) − θ| = 0 ⇒ sin(θ) = θ and | cos(θ) − θ| = 1 ⇒ cos(θ) = 1. Assuming this
condition holds, it is possible to approximate fNonLin to a simpler form, so-called linearised:
v = θ̈− g

l θ, with v is an adequate linear control command linked to the non linear controlled
variable u after linearisation. u is replaced by v so that the values of the continuous variables
obtained by solving the linear system are an approximation of those of the non-linear system.
Therefore, fNonLin is replaced by:

fLin((θ, θ̇), v) = (θ̇, v +
g

l
θ)

The continuous measurements of this system are represented by the angle θ and the
angular velocity θ̇ represented in our approach by two partial functions defined as follows:
θ ∈ [0, t] 7→ IR and θ̇ ∈ [0, t] 7→ IR+. The discrete behavior is represented by the discrete
variable v defined in the linearised system to replace the non linear controlled variable
u. To model this system in Event-B, we must define a specific model that refines the
TimeTriggeredDesolve model. The associated context specifies the definition of the main
constants of the system such as the length l of the rigid rod and the intensity g. It also
specifies the linearised differential equation using the function f_evol_plantV . The discrete
part of this model is represented by a discrete event defined in the associated machine and
which updates the value of v to stabilise the rod in its vertical position.

In the case of nonlinear system whose continuous part is described by a first order
nonlinear, we directly refine the model TimeTriggeredDesolverk4. The instantiation on a
specific case study is similar to that described for instantiating the TimeTriggeredDesolve
model on the Smart Heating system. Let us remark that for the nonlinear ODE, the proof
of the safety property is achieved by assuming the monotonicity of the function returned by
desolve_rk4 on the interval [lastT ime, t]. For that purpose, we have to prove the following
property on the returned function to state that it is increasing or decreasing:

110

CHAPTER 8. APPLICATION

∀ tt · tt ∈ [lastT ime, t]
⇒

(plant1(tt) ≥ plant1(lastT ime) ∧ plant1(tt) ≤ plant1(t))
∨

(plant1(tt) ≤ plant1(lastT ime) ∧ plant1(tt) ≥ plant1(t))

Having this property as verified, the proof of a safety property comes down to prove it for
the lower and/or the upper bounds. So far we have failed to find a nonlinear system whose
continuous behavior is described by a first order nonlinear differential equation. Therefore,
as future work we plane to introduce more complexity on the modeled case studies to use
the function B_desolve_rk4 in order to get approximate solutions.

8.6 Conclusion

In this chapter, we have experimented our generic approach on three representative case
studies, Stop Sign, Water Tank and Smart Heating systems. The Stop Sign case study
is described by a single safety property which involves a single safety envelop, a single
event trigger formula and a single evade mode. To model this case study, we chose to
directly refine the generic EventTriggered model which already provides the definition of
a single safety envelope, an event trigger formula and a set of evade values. While in
the case of the Water Tank case study, the safety property is defined as a conjunction of
two sub-formulas which requires the definition of two safety envelopes, two event trigger
formulas and two set of evade values. For this purpose, we chose to introduce an abstract
model of the Water Tank system by refining the generic ContSystem model. Therefore,
each case study illustrating one strategy. The first strategy consists in refining directly
the generic EventTriggered model. The second one consists in starting by instantiating
by refinement the generic ContSystem model. All the proof obligations of the two specific
models have been discharged using the Rodin platform and the theories of [10]. It is worth
noting that the models and the instantiation rules being generic, a tool can be developed to
automate the instantiation.

The approach that introduces the function B_desolve is applied on another linear case
study, the Smart Heating system. Using the interface between SageMath and Rodin,
we obtain exact solutions of ordinary differential equations which facilitates the proof of
the safety properties of hybrid systems. We admit that the chosen case study is a simple
hybrid system with a linear ODE but it served us well to describe the different steps for
applying our generic approach. Using SageMath, we can deal with more complex ODEs
by modeling the function desolve_rk4 which solves nonlinear ODEs in the case of first
order ODEs or using the linearisation methods which is the case of the Inverted Pendulum.
The strength of our approach comparing to other proof-based approaches is that it proves
the safety properties of hybrid systems in the more concrete model of CPSs, TimeTriggered
model, using Event-B and its supported tool Rodin. Without solving ODEs, our models
were abstract and did not allow proving the safety properties of hybrid systems.

111

CHAPTER 8. APPLICATION

112

Chapter 9

Conclusion

Cyber-physical systems allow interactions with the physical world using a network of sensors
and actuators. Cyber-physical systems are often represented by their common mathematical
model of hybrid systems which combine continuous dynamics represented by differential
equations with discrete dynamics. The interaction between the software part and the
physical world makes the verification of cyber-physical systems an intellectual challenge. To
address this challenge, several formal methods have been proposed which can be grouped
into two categories: Model-checking based approaches and Proof-based approaches. Model-
checking based approaches use hybrid automata and algorithmic analysis methods to model
and verify CPSs. An example of model-checker for CPSs is Hytech which is the first model
checker that implements the reachability analysis for hybrid systems. The main limitation
of these approaches is that the reachability is not decidable for non linear hybrid systems.
Proof-based approaches use formal methods and deductive verification to model and verify
CPSs. Their key feature is that they support the description of any category of hybrid
systems.

We distinguish two main types of cyber-physical systems, Event-Triggered systems
where sensors have a continuous access to the measurement of continuous behaviors, and
Time-Triggered systems where sensors take periodic measurements of continuous behaviors.
In an Event-Triggered model, the system evolves continuously until a particular event
triggers the controller, while in a Time-Triggered model, the controller is periodically
triggered to control the system. An Event-Triggered model is easy to verify and difficult (if
not impossible) to implement whereas Time-Triggered model is difficult to verify and easy
to implement.

Modeling the physical part of cyber-physical systems requires the manipulation of
differential equations which are equations that involve a set of functions, as unknown
variables, and their derivatives. In this thesis, we are interesting in modelling systems
where the continuous behavior is described by ordinary differential equations (ODEs). An
ODE is the relationship between a single independent variable x, an unknown function y,
and its derivative at a point x. Methods to resolve ordinary differential equations fall into
two categories : analytical (symbolic) methods and numerical methods. However, it is not
always possible to obtain exact solutions of ordinary differential equations, thus the use of
numerical methods or approximation techniques to obtain approximate solutions.

9.1 Contribution

In this thesis, we presented a correct-by-construction proof-based approach for modeling
and verifying hybrid systems using the Event-B formal method and its refinement technique.
The proposed approach is based on modeling and verifying the relationship between the
Event and Time-Triggered systems using Event-B. It defines two generic models for
these systems as described in dRL [5]. The generic Event-Triggered model describes the

113

CHAPTER 9. CONCLUSION

interaction between the physical and the discrete parts using a discrete variable exec that
can take as value, prg which specifies the progression of time, ctrl which represents the
discrete part and plant which represents the continuous part. The generic Time-Triggered
model introduces the notion of control period represented by the constant epsilon, so the
controller reacts at least every epsilon time. We have also introduced a more abstract level,
the generic ContSystem model, that specifies the continuous aspects of hybrid systems,
adapted from the approach introduced by Dupond et al [10]. This permits to cope with the
proof complexity by decomposing the proof obligations, such that in the abstract model we
only deal with the proof obligations related to the continuous aspects of the system and in
the refined model we will have the proof obligations related to the safety properties of the
controlled system. To instantiate these generic models, we have introduced two strategies:
the first one consists in starting by instantiating by refinement the Generic ContSystem
model. The second one consists in refining directly the Generic EventTriggered model. We
have applied our approach to two case studies, each one illustrating one strategy. All the
proof obligations of the generic models and the two specific models have been discharged
using the Rodin platform and the theories introduced in [10]. It is worth noting that as the
models and the instantiation rules are generic, a tool can be developed to automate the
instantiation.

The generic approach is still at an abstract level regarding the solutions of differen-
tial equations. For this purpose, we extend the generic approach by making use of the
SageMath solver. We propose a tool-supported approach which combines the Event-B
formal method with the differential equation solver SageMath. This is achieved by im-
plementing a plug-in to Rodin that permits to call SageMath. The interface between
Event-B with the differential equation solver SageMath is done by modeling and im-
plementing the call of two predefined functions regarding the type of ODE: B_desolve to
obtain exact solutions and B_desolve_rk4 to obtain approximate solutions.

9.2 Future Work

To demonstrate the usability of our approach, we have tested it on three representative
case studies, Stop Sign, Water Tank and Smart Heating. In the three case studies, the
differential equations that represent the evolution of their physical parts are linear and can
be easily solved. To handle more elaborated differential equations we plan to model other
cyber-physical case studies.

Our approach is still at an abstract level. It does not take into account the delay between
the sending of continuous measurements by the sensors and their processing by the controller
as well as the delay between the sending of actions by the controller and their execution.
For this purpose, we plan to define more specific models using the Event-B refinement to
consider these delays. By doing that, we are getting closer to our goal of reducing the gap
between a verified model of a cyber-Physical system and its implementation.

We admit that the chosen case studies are simple hybrid systems with linear ODEs but
they served us well to describe the different steps for applying our generic approach. Using
SageMath, we can deal with more complex ODEs as we showed by modeling the function
desolve_rk4 which solves nonlinear ODEs. The strength of our approach comparing to
other proof-based approaches is that it proves that the more concrete model of CPSs,
TimeTriggered model, preserves the safety properties of hybrid systems using Event-B
and its supported tool Rodin.

The work described in this thesis presents a first step that will facilitate the treatment
of complex hybrid systems using Event-B. For this purpose, we plan to apply our
approach on more complex case studies especially on nonlinear case studies that admit
approximate solutions to prove the feasibility of our generic approach that models the
function B_desolve_rk4.

We defined a set of theorems, generic axioms, and generic invariants identified from case
studies to prove the safety properties of cyber-physical systems. In order to easily use these

114

CHAPTER 9. CONCLUSION

theorems, axioms and invariants during the proof stage, we plan to develop an Event-B
theory using the theory plugin.

For a discrete system Event-B, we can use the animator ProB [19], a B-method
constraint solver and model checker, to ensure that the modeled system behaves as expected.
As a future work, we propose to extend the reasoning of ProB to develop an animator that
simulates the behavior of CPSs by using the solutions of ordinary differential equations
obtained with the SageMath plugin.

The SageMath plugin is still in early development. There are some manual and interactive
steps. For example, scripts must run manually in SageMath. In future work, we plan to
automate these steps into a 100% automated tool.

115

CHAPTER 9. CONCLUSION

116

Bibliography

[1] M. Afendi, R. Laleau, A. Mammar, Modelling hybrid programs with event-b, in:
A. Raschke, D. Méry, F. Houdek (Eds.), Rigorous State-Based Methods - 7th In-
ternational Conference, ABZ 2020, Ulm, Germany, May 27-29, 2020, Proceedings,
Vol. 12071 of Lecture Notes in Computer Science, Springer, 2020, pp. 139–154.
doi:10.1007/978-3-030-48077-6_10.
URL https://doi.org/10.1007/978-3-030-48077-6_10

[2] E. A. Lee, Cyber physical systems: Design challenges, in: 11th IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2008),
5-7 May 2008, Orlando, Florida, USA, IEEE Computer Society, 2008, pp. 363–369.
doi:10.1109/ISORC.2008.25.
URL https://doi.org/10.1109/ISORC.2008.25

[3] H. Kopetz, Event-triggered versus time-triggered real-time systems, in: A. I. Karshmer,
J. Nehmer (Eds.), Operating Systems of the 90s and Beyond, International Workshop,
Dagstuhl Castle, Germany, July 8-12, 1991, Proceedings, Vol. 563 of Lecture Notes in
Computer Science, Springer, 1991, pp. 87–101. doi:10.1007/BFb0024530.
URL https://doi.org/10.1007/BFb0024530

[4] A. Platzer, A complete uniform substitution calculus for differential dynamic logic, J.
Autom. Reason. 59 (2) (2017) 219–265. doi:10.1007/s10817-016-9385-1.
URL https://doi.org/10.1007/s10817-016-9385-1

[5] S. M. Loos, A. Platzer, Differential refinement logic, in: M. Grohe, E. Koskinen,
N. Shankar (Eds.), Proceedings of the 31st Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016, ACM, 2016, pp.
505–514. doi:10.1145/2933575.2934555.
URL https://doi.org/10.1145/2933575.2934555

[6] P. Zimmermann, A. Casamayou, N. Cohen, G. Connan, T. Dumont, L. Fousse,
F. Maltey, M. Meulien, M. Mezzarobba, C. Pernet, et al., Computational mathe-
matics with SageMath, SIAM, 2018.

[7] R. G. Sanfelice, D. A. Copp, P. Nanez, A toolbox for simulation of hybrid systems
in matlab/simulink: hybrid equations (hyeq) toolbox, in: C. Belta, F. Ivancic (Eds.),
Proceedings of the 16th international conference on Hybrid systems: computation
and control, HSCC 2013, April 8-11, 2013, Philadelphia, PA, USA, ACM, 2013, pp.
101–106. doi:10.1145/2461328.2461346.
URL https://doi.org/10.1145/2461328.2461346

[8] P. Zuliani, A. Platzer, E. M. Clarke, Bayesian statistical model checking with application
to simulink/stateflow verification, in: K. H. Johansson, W. Yi (Eds.), Proceedings
of the 13th ACM International Conference on Hybrid Systems: Computation and
Control, HSCC 2010, Stockholm, Sweden, April 12-15, 2010, ACM, 2010, pp. 243–252.
doi:10.1145/1755952.1755987.
URL https://doi.org/10.1145/1755952.1755987

117

https://doi.org/10.1007/978-3-030-48077-6_10
https://doi.org/10.1007/978-3-030-48077-6_10
https://doi.org/10.1007/978-3-030-48077-6_10
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1007/BFb0024530
https://doi.org/10.1007/BFb0024530
https://doi.org/10.1007/BFb0024530
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1145/2933575.2934555
https://doi.org/10.1145/2933575.2934555
https://doi.org/10.1145/2933575.2934555
https://doi.org/10.1145/2461328.2461346
https://doi.org/10.1145/2461328.2461346
https://doi.org/10.1145/2461328.2461346
https://doi.org/10.1145/2461328.2461346
https://doi.org/10.1145/1755952.1755987
https://doi.org/10.1145/1755952.1755987
https://doi.org/10.1145/1755952.1755987
https://doi.org/10.1145/1755952.1755987

BIBLIOGRAPHY

[9] EBRP ANR Project, https://www.irit.fr/EBRP/.

[10] G. Dupont, Y. A. Ameur, M. Pantel, N. K. Singh, Proof-based approach to hybrid
systems development: Dynamic logic and event-b, in: M. J. Butler, A. Raschke,
T. S. Hoang, K. Reichl (Eds.), Abstract State Machines, Alloy, B, TLA, VDM, and
Z - 6th International Conference, ABZ 2018, Southampton, UK, June 5-8, 2018,
Proceedings, Vol. 10817 of Lecture Notes in Computer Science, Springer, 2018, pp.
155–170. doi:10.1007/978-3-319-91271-4_11.
URL https://doi.org/10.1007/978-3-319-91271-4_11

[11] S. Engell, R. Paulen, M. A. Reniers, C. Sonntag, H. Thompson, Core research and
innovation areas in cyber-physical systems of systems - initial findings of the cpsos
project, in: C. Berger, M. R. Mousavi (Eds.), Cyber Physical Systems. Design, Mod-
eling, and Evaluation - 5th International Workshop, CyPhy 2015, Amsterdam, The
Netherlands, October 8, 2015, Proceedings, Vol. 9361 of Lecture Notes in Computer
Science, Springer, 2015, pp. 40–55. doi:10.1007/978-3-319-25141-7_4.
URL https://doi.org/10.1007/978-3-319-25141-7_4

[12] F. Mallet, E. Villar, F. Herrera, Marte for cps and cpsos, in: Cyber-Physical System
Design from an Architecture Analysis Viewpoint, Springer, 2017, pp. 81–108.

[13] J. Lunze, F. Lamnabhi-Lagarrigue, Handbook of hybrid systems control: theory, tools,
applications, Cambridge University Press, 2009.

[14] L. P. Carloni, R. Passerone, A. Pinto, A. L. Sangiovanni-Vincentelli, Languages and
tools for hybrid systems design, Found. Trends Electron. Des. Autom. 1 (1/2) (2006).
doi:10.1561/1000000001.
URL https://doi.org/10.1561/1000000001

[15] E. L. Ince, Ordinary differential equations, Courier Corporation, 1956.

[16] J. Quesel, S. Mitsch, S. M. Loos, N. Aréchiga, A. Platzer, How to model and prove
hybrid systems with keymaera: a tutorial on safety, Int. J. Softw. Tools Technol. Transf.
18 (1) (2016) 67–91. doi:10.1007/s10009-015-0367-0.
URL https://doi.org/10.1007/s10009-015-0367-0

[17] J.-R. Abrial, The B-book: assigning programs to meanings, Vol. 1, Cambridge university
press Cambridge, 1996.

[18] J.-R. Abrial, Modeling in Event-B: System and Software Engineering, Cambridge
University Press, 2010.

[19] J. Abrial, M. J. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, L. Voisin, Rodin: an
open toolset for modelling and reasoning in event-b, Int. J. Softw. Tools Technol.
Transf. 12 (6) (2010) 447–466. doi:10.1007/s10009-010-0145-y.
URL https://doi.org/10.1007/s10009-010-0145-y

[20] I. Maamria, M. J. Butler, Rewriting and well-definedness within a proof system, in:
E. Komendantskaya, A. Bove, M. Niqui (Eds.), Partiality and Recursion in Interactive
Theorem Provers, PAR@ITP 2010, Edinburgh, UK, July 15, 2010, Vol. 5 of EPiC
Series, EasyChair, 2010, pp. 55–71. doi:10.29007/b7wc.
URL https://doi.org/10.29007/b7wc

[21] M. Noro, T. Takeshima, Risa/asir - a computer algebra system, in: P. S. Wang
(Ed.), Proceedings of the 1992 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’92, Berkeley, CA, USA, July 27-29, 1992, ACM, 1992, pp.
387–396. doi:10.1145/143242.143362.
URL https://doi.org/10.1145/143242.143362

118

https://www.irit.fr/EBRP/
https://doi.org/10.1007/978-3-319-91271-4_11
https://doi.org/10.1007/978-3-319-91271-4_11
https://doi.org/10.1007/978-3-319-91271-4_11
https://doi.org/10.1007/978-3-319-91271-4_11
https://doi.org/10.1007/978-3-319-25141-7_4
https://doi.org/10.1007/978-3-319-25141-7_4
https://doi.org/10.1007/978-3-319-25141-7_4
https://doi.org/10.1007/978-3-319-25141-7_4
https://doi.org/10.1007/978-3-319-25141-7_4
https://doi.org/10.1561/1000000001
https://doi.org/10.1561/1000000001
https://doi.org/10.1561/1000000001
https://doi.org/10.1561/1000000001
https://doi.org/10.1007/s10009-015-0367-0
https://doi.org/10.1007/s10009-015-0367-0
https://doi.org/10.1007/s10009-015-0367-0
https://doi.org/10.1007/s10009-015-0367-0
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.29007/b7wc
https://doi.org/10.29007/b7wc
https://doi.org/10.29007/b7wc
https://doi.org/10.1145/143242.143362
https://doi.org/10.1145/143242.143362
https://doi.org/10.1145/143242.143362

BIBLIOGRAPHY

[22] S. Wolfram, The Mathematica book, 5th edn. wolfram media, champaign (2003).

[23] I. Tech, Introduction to maple (1993).

[24] C. Bischof, B. Lang, A. Vehreschild, Automatic differentiation for matlab programs,
in: PAMM: Proceedings in Applied Mathematics and Mechanics, Vol. 2, Wiley Online
Library, 2003, pp. 50–53.

[25] W. Bosma, J. J. Cannon, C. Playoust, The magma algebra system I: the user language,
J. Symb. Comput. 24 (3/4) (1997) 235–265.

[26] A. Heck, A. Heck, Introduction to MAPLE, Vol. 1993, Springer, 1993.

[27] T. A. Henzinger, P. Ho, H. Wong-Toi, HYTECH: A model checker for hybrid sys-
tems, Int. J. Softw. Tools Technol. Transf. 1 (1-2) (1997) 110–122. doi:10.1007/
s100090050008.
URL https://doi.org/10.1007/s100090050008

[28] G. Frehse, Phaver: Algorithmic verification of hybrid systems past hytech, in:
M. Morari, L. Thiele (Eds.), Hybrid Systems: Computation and Control, 8th In-
ternational Workshop, HSCC 2005, Zurich, Switzerland, March 9-11, 2005, Proceed-
ings, Vol. 3414 of Lecture Notes in Computer Science, Springer, 2005, pp. 258–273.
doi:10.1007/978-3-540-31954-2_17.
URL https://doi.org/10.1007/978-3-540-31954-2_17

[29] E. Asarin, T. Dang, O. Maler, The d/dt tool for verification of hybrid systems, in:
E. Brinksma, K. G. Larsen (Eds.), Computer Aided Verification, 14th International
Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings, Vol.
2404 of Lecture Notes in Computer Science, Springer, 2002, pp. 365–370. doi:10.
1007/3-540-45657-0_30.
URL https://doi.org/10.1007/3-540-45657-0_30

[30] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,
A. Girard, T. Dang, O. Maler, Spaceex: Scalable verification of hybrid systems, in:
G. Gopalakrishnan, S. Qadeer (Eds.), Computer Aided Verification - 23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, Vol. 6806
of Lecture Notes in Computer Science, Springer, 2011, pp. 379–395. doi:10.1007/
978-3-642-22110-1_30.
URL https://doi.org/10.1007/978-3-642-22110-1_30

[31] X. Chen, E. Ábrahám, S. Sankaranarayanan, Flow*: An analyzer for non-linear
hybrid systems, in: N. Sharygina, H. Veith (Eds.), Computer Aided Verification -
25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings, Vol. 8044 of Lecture Notes in Computer Science, Springer, 2013, pp.
258–263. doi:10.1007/978-3-642-39799-8_18.
URL https://doi.org/10.1007/978-3-642-39799-8_18

[32] M. Fränzle, C. Herde, T. Teige, S. Ratschan, T. Schubert, Efficient solving of large
non-linear arithmetic constraint systems with complex boolean structure, J. Satisf.
Boolean Model. Comput. 1 (3-4) (2007) 209–236. doi:10.3233/sat190012.
URL https://doi.org/10.3233/sat190012

[33] S. Kong, S. Gao, W. Chen, E. M. Clarke, dreach: δ-reachability analysis for hybrid
systems, in: C. Baier, C. Tinelli (Eds.), Tools and Algorithms for the Construction
and Analysis of Systems - 21st International Conference, TACAS 2015, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings, Vol. 9035 of Lecture Notes in Computer
Science, Springer, 2015, pp. 200–205. doi:10.1007/978-3-662-46681-0_15.
URL https://doi.org/10.1007/978-3-662-46681-0_15

119

https://doi.org/10.1007/s100090050008
https://doi.org/10.1007/s100090050008
https://doi.org/10.1007/s100090050008
https://doi.org/10.1007/s100090050008
https://doi.org/10.1007/s100090050008
https://doi.org/10.1007/978-3-540-31954-2_17
https://doi.org/10.1007/978-3-540-31954-2_17
https://doi.org/10.1007/978-3-540-31954-2_17
https://doi.org/10.1007/3-540-45657-0_30
https://doi.org/10.1007/3-540-45657-0_30
https://doi.org/10.1007/3-540-45657-0_30
https://doi.org/10.1007/3-540-45657-0_30
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/978-3-662-46681-0_15

BIBLIOGRAPHY

[34] H. Wong-Toi, The synthesis of controllers for linear hybrid automata, in: Proceedings of
the 36th IEEE Conference on Decision and Control, Vol. 5, IEEE, 1997, pp. 4607–4612.

[35] X. Chen, E. Ábrahám, S. Sankaranarayanan, Taylor model flowpipe construction
for non-linear hybrid systems, in: Proceedings of the 33rd IEEE Real-Time Systems
Symposium, RTSS 2012, San Juan, PR, USA, December 4-7, 2012, IEEE Computer
Society, 2012, pp. 183–192. doi:10.1109/RTSS.2012.70.
URL https://doi.org/10.1109/RTSS.2012.70

[36] A. Platzer, J. Quesel, Keymaera: A hybrid theorem prover for hybrid systems (system
description), in: A. Armando, P. Baumgartner, G. Dowek (Eds.), Automated Reasoning,
4th International Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15,
2008, Proceedings, Vol. 5195 of Lecture Notes in Computer Science, Springer, 2008,
pp. 171–178. doi:10.1007/978-3-540-71070-7_15.
URL https://doi.org/10.1007/978-3-540-71070-7_15

[37] N. Fulton, S. Mitsch, J. Quesel, M. Völp, A. Platzer, Keymaera X: an axiomatic tactical
theorem prover for hybrid systems, in: A. P. Felty, A. Middeldorp (Eds.), Automated
Deduction - CADE-25 - 25th International Conference on Automated Deduction, Berlin,
Germany, August 1-7, 2015, Proceedings, Vol. 9195 of Lecture Notes in Computer
Science, Springer, 2015, pp. 527–538. doi:10.1007/978-3-319-21401-6_36.
URL https://doi.org/10.1007/978-3-319-21401-6_36

[38] A. Platzer, Differential dynamic logic for hybrid systems, J. Autom. Reason. 41 (2)
(2008) 143–189. doi:10.1007/s10817-008-9103-8.
URL https://doi.org/10.1007/s10817-008-9103-8

[39] D. Kozen, On hoare logic and kleene algebra with tests, ACM Trans. Comput. Log.
1 (1) (2000) 60–76.

[40] S. Lunel, S. Mitsch, B. Boyer, J. Talpin, Parallel composition and modular verification
of computer controlled systems in differential dynamic logic, CoRR abs/1907.02881
(2019). arXiv:1907.02881.
URL http://arxiv.org/abs/1907.02881

[41] C. Zhou, J. Wang, A. P. Ravn, A formal description of hybrid systems, in: R. Alur,
T. A. Henzinger, E. D. Sontag (Eds.), Hybrid Systems III: Verification and Control,
Proceedings of the DIMACS/SYCON Workshop on Verification and Control of Hybrid
Systems, October 22-25, 1995, Ruttgers University, New Brunswick, NJ, USA, Vol.
1066 of Lecture Notes in Computer Science, Springer, 1995, pp. 511–530. doi:10.
1007/BFb0020972.
URL https://doi.org/10.1007/BFb0020972

[42] H. Jifeng, From CSP to hybrid systems, in: A classical mind: essays in honour of CAR
Hoare, 1994, pp. 171–189.

[43] C. A. R. Hoare, Communicating sequential processes, Commun. ACM 21 (8) (1978)
666–677. doi:10.1145/359576.359585.
URL https://doi.org/10.1145/359576.359585

[44] J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou, L. Zou, A calculus for hybrid CSP,
in: K. Ueda (Ed.), Programming Languages and Systems - 8th Asian Symposium,
APLAS 2010, Shanghai, China, November 28 - December 1, 2010. Proceedings, Vol.
6461 of Lecture Notes in Computer Science, Springer, 2010, pp. 1–15. doi:10.1007/
978-3-642-17164-2_1.
URL https://doi.org/10.1007/978-3-642-17164-2_1

120

https://doi.org/10.1109/RTSS.2012.70
https://doi.org/10.1109/RTSS.2012.70
https://doi.org/10.1109/RTSS.2012.70
https://doi.org/10.1109/RTSS.2012.70
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/s10817-008-9103-8
http://arxiv.org/abs/1907.02881
http://arxiv.org/abs/1907.02881
http://arxiv.org/abs/1907.02881
http://arxiv.org/abs/1907.02881
https://doi.org/10.1007/BFb0020972
https://doi.org/10.1007/BFb0020972
https://doi.org/10.1007/BFb0020972
https://doi.org/10.1007/BFb0020972
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1007/978-3-642-17164-2_1

BIBLIOGRAPHY

[45] L. Zou, N. Zhan, S. Wang, M. Fränzle, S. Qin, Verifying simulink diagrams via a hybrid
hoare logic prover, in: R. Ernst, O. Sokolsky (Eds.), Proceedings of the International
Conference on Embedded Software, EMSOFT 2013, Montreal, QC, Canada, September
29 - Oct. 4, 2013, IEEE, 2013, pp. 9:1–9:10. doi:10.1109/EMSOFT.2013.6658587.
URL https://doi.org/10.1109/EMSOFT.2013.6658587

[46] D. A. van Beek, K. L. Man, M. A. Reniers, J. E. Rooda, R. R. H. Schiffelers, Syntax
and consistent equation semantics of hybrid chi, J. Log. Algebraic Methods Program.
68 (1-2) (2006) 129–210. doi:10.1016/j.jlap.2005.10.005.
URL https://doi.org/10.1016/j.jlap.2005.10.005

[47] S. Foster, J. J. H. y Munive, G. Struth, Differential hoare logics and refinement calculi
for hybrid systems with isabelle/hol, in: U. Fahrenberg, P. Jipsen, M. Winter (Eds.),
Relational and Algebraic Methods in Computer Science - 18th International Conference,
RAMiCS 2020, Palaiseau, France, April 8-11, 2020, Proceedings [postponed], Vol.
12062 of Lecture Notes in Computer Science, Springer, 2020, pp. 169–186. doi:
10.1007/978-3-030-43520-2_11.
URL https://doi.org/10.1007/978-3-030-43520-2_11

[48] A. Armstrong, V. B. F. Gomes, G. Struth, Building program construction and verifica-
tion tools from algebraic principles, Formal Aspects Comput. 28 (2) (2016) 265–293.
doi:10.1007/s00165-015-0343-1.
URL https://doi.org/10.1007/s00165-015-0343-1

[49] C. Morgan, Programming from Specifications, Prentice-Hall, Inc., 1990.

[50] J. J. H. y Munive, Verification components for hybrid systems, Arch. Formal Proofs
2019 (2019).
URL https://www.isa-afp.org/entries/Hybrid_Systems_VCs.html

[51] S. Boldo, F. Clément, J. Filliâtre, M. Mayero, G. Melquiond, P. Weis, Trusting
computations: A mechanized proof from partial differential equations to actual program,
Comput. Math. Appl. 68 (3) (2014) 325–352. doi:10.1016/j.camwa.2014.06.004.
URL https://doi.org/10.1016/j.camwa.2014.06.004

[52] S. Boldo, C. Lelay, G. Melquiond, Coquelicot: A user-friendly library of real analysis
for coq, Math. Comput. Sci. 9 (1) (2015) 41–62. doi:10.1007/s11786-014-0181-1.
URL https://doi.org/10.1007/s11786-014-0181-1

[53] C. Marché, Jessie: an intermediate language for java and C verification, in: A. Stump,
H. Xi (Eds.), Proceedings of the ACM Workshop Programming Languages meets
Program Verification, PLPV 2007, Freiburg, Germany, October 5, 2007, ACM, 2007,
pp. 1–2. doi:10.1145/1292597.1292598.
URL https://doi.org/10.1145/1292597.1292598

[54] J. Filliâtre, C. Marché, The why/krakatoa/caduceus platform for deductive program
verification, in: W. Damm, H. Hermanns (Eds.), Computer Aided Verification, 19th
International Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings,
Vol. 4590 of Lecture Notes in Computer Science, Springer, 2007, pp. 173–177. doi:
10.1007/978-3-540-73368-3_21.
URL https://doi.org/10.1007/978-3-540-73368-3_21

[55] B. Bohrer, V. Rahli, I. Vukotic, M. Völp, A. Platzer, Formally verified differential
dynamic logic, in: Proceedings of the 6th ACM SIGPLAN Conference on Certified
Programs and Proofs, 2017, pp. 208–221.

[56] G. Babin, A formal approach for correct-by-construction system substitution, CoRR
abs/1404.7513 (2014). arXiv:1404.7513.
URL http://arxiv.org/abs/1404.7513

121

https://doi.org/10.1109/EMSOFT.2013.6658587
https://doi.org/10.1109/EMSOFT.2013.6658587
https://doi.org/10.1109/EMSOFT.2013.6658587
https://doi.org/10.1109/EMSOFT.2013.6658587
https://doi.org/10.1016/j.jlap.2005.10.005
https://doi.org/10.1016/j.jlap.2005.10.005
https://doi.org/10.1016/j.jlap.2005.10.005
https://doi.org/10.1016/j.jlap.2005.10.005
https://doi.org/10.1007/978-3-030-43520-2_11
https://doi.org/10.1007/978-3-030-43520-2_11
https://doi.org/10.1007/978-3-030-43520-2_11
https://doi.org/10.1007/978-3-030-43520-2_11
https://doi.org/10.1007/978-3-030-43520-2_11
https://doi.org/10.1007/s00165-015-0343-1
https://doi.org/10.1007/s00165-015-0343-1
https://doi.org/10.1007/s00165-015-0343-1
https://doi.org/10.1007/s00165-015-0343-1
https://www.isa-afp.org/entries/Hybrid_Systems_VCs.html
https://www.isa-afp.org/entries/Hybrid_Systems_VCs.html
https://doi.org/10.1016/j.camwa.2014.06.004
https://doi.org/10.1016/j.camwa.2014.06.004
https://doi.org/10.1016/j.camwa.2014.06.004
https://doi.org/10.1016/j.camwa.2014.06.004
https://doi.org/10.1007/s11786-014-0181-1
https://doi.org/10.1007/s11786-014-0181-1
https://doi.org/10.1007/s11786-014-0181-1
https://doi.org/10.1007/s11786-014-0181-1
https://doi.org/10.1145/1292597.1292598
https://doi.org/10.1145/1292597.1292598
https://doi.org/10.1145/1292597.1292598
https://doi.org/10.1007/978-3-540-73368-3_21
https://doi.org/10.1007/978-3-540-73368-3_21
https://doi.org/10.1007/978-3-540-73368-3_21
https://doi.org/10.1007/978-3-540-73368-3_21
https://doi.org/10.1007/978-3-540-73368-3_21
http://arxiv.org/abs/1404.7513
http://arxiv.org/abs/1404.7513
http://arxiv.org/abs/1404.7513

BIBLIOGRAPHY

[57] W. Su, J. Abrial, H. Zhu, Formalizing hybrid systems with event-b and the rodin
platform, Sci. Comput. Program. 94 (2014) 164–202. doi:10.1016/j.scico.2014.04.
015.
URL https://doi.org/10.1016/j.scico.2014.04.015

[58] M. J. Butler, J. Abrial, R. Banach, Modelling and refining hybrid systems in event-b
and rodin, in: L. Petre, E. Sekerinski (Eds.), From Action Systems to Distributed
Systems - The Refinement Approach, Chapman and Hall/CRC, 2016, pp. 29–42.
doi:10.1201/b20053-5.
URL https://doi.org/10.1201/b20053-5

[59] G. Dupont, Y. A. Ameur, M. Pantel, N. K. Singh, An event-b based generic framework
for hybrid systems formal modelling, in: B. Dongol, E. Troubitsyna (Eds.), Integrated
Formal Methods - 16th International Conference, IFM 2020, Lugano, Switzerland,
November 16-20, 2020, Proceedings, Vol. 12546 of Lecture Notes in Computer Science,
Springer, 2020, pp. 82–102. doi:10.1007/978-3-030-63461-2_5.
URL https://doi.org/10.1007/978-3-030-63461-2_5

[60] Z. Cheng, D. Méry, A refinement strategy for hybrid system design with safety
constraints, in: J. C. Attiogbé, S. B. Yahia (Eds.), Model and Data Engineering
- 10th International Conference, MEDI 2021, Tallinn, Estonia, June 21-23, 2021,
Proceedings, Vol. 12732 of Lecture Notes in Computer Science, Springer, 2021, pp.
3–17. doi:10.1007/978-3-030-78428-7_1.
URL https://doi.org/10.1007/978-3-030-78428-7_1

[61] R. Banach, M. J. Butler, S. Qin, N. Verma, H. Zhu, Core hybrid event-b I: single
hybrid event-b machines, Sci. Comput. Program. 105 (2015) 92–123. doi:10.1016/j.
scico.2015.02.003.
URL https://doi.org/10.1016/j.scico.2015.02.003

[62] A. Buga, A. Mashkoor, S. T. Nemes, K. Schewe, P. Songprasop, An event-b-based
approach to hybrid systems engineering and its application to a hemodialysis machine
case study, Comput. Lang. Syst. Struct. 54 (2018) 297–315. doi:10.1016/j.cl.2018.
07.004.
URL https://doi.org/10.1016/j.cl.2018.07.004

[63] W. Windsteiger, Theorema 2.0: A system for mathematical theory exploration, in:
ICMS, Vol. 8592 of Lecture Notes in Computer Science, Springer, 2014, pp. 49–52.

[64] C. Kaliszyk, F. Wiedijk, Certified computer algebra on top of an interactive theorem
prover, in: Calculemus/MKM, Vol. 4573 of Lecture Notes in Computer Science,
Springer, 2007, pp. 94–105.

[65] R. Y. Lewis, An extensible ad hoc interface between lean and mathematica, in:
C. Dubois, B. W. Paleo (Eds.), Proceedings of the Fifth Workshop on Proof eXchange
for Theorem Proving, PxTP 2017, Brasília, Brazil, 23-24 September 2017, Vol. 262 of
EPTCS, 2017, pp. 23–37. doi:10.4204/EPTCS.262.4.
URL https://doi.org/10.4204/EPTCS.262.4

[66] T. Nipkow, L. C. Paulson, M. Wenzel, Isabelle/HOL: a proof assistant for higher-order
logic, Vol. 2283, Springer Science & Business Media, 2002.

[67] C. Ballarin, K. Homann, J. Calmet, Theorems and algorithms: An interface between
isabelle and maple, in: A. H. M. Levelt (Ed.), Proceedings of the 1995 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’95, Montreal, Canada,
July 10-12, 1995, ACM, 1995, pp. 150–157. doi:10.1145/220346.220366.
URL https://doi.org/10.1145/220346.220366

122

https://doi.org/10.1016/j.scico.2014.04.015
https://doi.org/10.1016/j.scico.2014.04.015
https://doi.org/10.1016/j.scico.2014.04.015
https://doi.org/10.1016/j.scico.2014.04.015
https://doi.org/10.1016/j.scico.2014.04.015
https://doi.org/10.1201/b20053-5
https://doi.org/10.1201/b20053-5
https://doi.org/10.1201/b20053-5
https://doi.org/10.1201/b20053-5
https://doi.org/10.1007/978-3-030-63461-2_5
https://doi.org/10.1007/978-3-030-63461-2_5
https://doi.org/10.1007/978-3-030-63461-2_5
https://doi.org/10.1007/978-3-030-63461-2_5
https://doi.org/10.1007/978-3-030-78428-7_1
https://doi.org/10.1007/978-3-030-78428-7_1
https://doi.org/10.1007/978-3-030-78428-7_1
https://doi.org/10.1007/978-3-030-78428-7_1
https://doi.org/10.1016/j.scico.2015.02.003
https://doi.org/10.1016/j.scico.2015.02.003
https://doi.org/10.1016/j.scico.2015.02.003
https://doi.org/10.1016/j.scico.2015.02.003
https://doi.org/10.1016/j.scico.2015.02.003
https://doi.org/10.1016/j.cl.2018.07.004
https://doi.org/10.1016/j.cl.2018.07.004
https://doi.org/10.1016/j.cl.2018.07.004
https://doi.org/10.1016/j.cl.2018.07.004
https://doi.org/10.1016/j.cl.2018.07.004
https://doi.org/10.1016/j.cl.2018.07.004
https://doi.org/10.4204/EPTCS.262.4
https://doi.org/10.4204/EPTCS.262.4
https://doi.org/10.4204/EPTCS.262.4
https://doi.org/10.1145/220346.220366
https://doi.org/10.1145/220346.220366
https://doi.org/10.1145/220346.220366
https://doi.org/10.1145/220346.220366

BIBLIOGRAPHY

[68] F. Immler, Verified reachability analysis of continuous systems, in: C. Baier, C. Tinelli
(Eds.), Tools and Algorithms for the Construction and Analysis of Systems - 21st
International Conference, TACAS 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.
Proceedings, Vol. 9035 of Lecture Notes in Computer Science, Springer, 2015, pp.
37–51. doi:10.1007/978-3-662-46681-0_3.
URL https://doi.org/10.1007/978-3-662-46681-0_3

123

https://doi.org/10.1007/978-3-662-46681-0_3
https://doi.org/10.1007/978-3-662-46681-0_3
https://doi.org/10.1007/978-3-662-46681-0_3

BIBLIOGRAPHY

124

Appendices

125

Appendix A

Generic Models

A.1 Context ContSystem_Ctx

CONTEXT ContSystem_Ctx
CONSTANTS S , TIME , sigma , plantV Init

AXIOMS
axm1 : S = RRealn

axm2 : TIME = RRealP lus

axm3 : sigma ∈ RRealP lus ∧ sigma 7→ Rzero ∈ gt

axm4 : plantV Init ∈ S

END

A.2 Machine ContSystem_M

MACHINE ContSystem_M
SEES ContSystem_Ctx
VARIABLES t , plantV

INVARIANTS
inv1 : t ∈ TIME

inv2 : plantV ∈ Closed2Closed(Rzero, t) 7→ S

EVENTS
INITIALISATION =̂

THEN
act1 : t := Rzero

act2 : plantV := {Rzero 7→ plantV Init}
END

Progres s =̂

THEN
act1 : t : |t′ ∈ TIME ∧ (t 7→ t′ ∈ lt ∧minus(t′ 7→ t) 7→ sigma ∈ geq)

END

Plant =̂

127

APPENDIX A. GENERIC MODELS

ANY e , plant1

WHERE
grd1 : e ∈ DE(S)

grd2 : Solvable(Closed2Closed(Rzero, t)\dom(plantV), e)

grd3 : plant1 ∈ Closed2Closed(Rzero, t)\dom(plantV) → S∧
AppendSolutionBAP (e, Closed2Closed(Rzero, t)\dom(plantV),

Closed2Closed(Rzero, t)\dom(plantV), plant1)

THEN
act1 : plantV := plantV ◁− plant1

END

END

A.3 Context EventTriggered_Ctx

CONTEXT EventTriggered_Ctx
EXTENDS ContSystem_Ctx
SETS EXEC

CONSTANTS safe , evt_trig , ctrl , plant , prg , f_evol , f_evol_plantV , evade_value
AXIOMS

axm1 : safe ∈ (S ×RReal) → BOOL

axm2 : evt_trig ∈ S × TIME ×RReal → BOOL

axm3 : partition(EXEC, {ctrl}, {plant}, {prg})
axm4 : f_evol ∈ RReal → S

axm5 : f_evol_plantV ∈ (RReal → (TIME × S → S))

axm6 : ∀ ctrlV · ctrlV ∈ RReal =⇒ (f_evol_plantV (ctrlV) =

(λt 7→ plantV · t ∈ TIME ∧ plantV ∈ S|f_evol(ctrlV)))

axm7 : evade_value ⊆ RReal ∧ evade_value ̸= ∅
END

A.4 Machine EventTriggered_M

MACHINE EventTriggered_M
REFINES ContSystem_M
SEES EventTriggered_Ctx
VARIABLES t , plantV , ctrlV , exec

INVARIANTS
inv1 : ctrlV ∈ RReal

inv2 : exec ∈ EXEC

inv3 : exec ̸= plant =⇒ dom(plantV) = Closed2Closed(Rzero, t)

inv4 : exec = plant =⇒ t /∈ dom(plantV)

EVENTS
INITIALISATION =̂

THEN
act1 : t := Rzero

128

APPENDIX A. GENERIC MODELS

act2 : plantV := {Rzero 7→ plantV Init}
act3 : ctrlV :∈ RReal

act4 : exec := ctrl

END

Progres s =̂

REFINES Progress
ANY t1

WHERE
grd1 : exec = prg

grd2 : t1 ∈ TIME ∧ (t 7→ t1 ∈ lt ∧minus(t1 7→ t) 7→ sigma ∈ geq)

grd3 : ctrlV /∈ evade_value =⇒ evt_trig(plantV (t) 7→ minus(t1 7→ t) 7→ ctrlV) = TRUE

THEN
act1 : t := t1

act2 : exec := plant

END

Plant =̂

REFINES Plant
ANY plant1

WHERE
grd1 : exec = plant

grd2 : plant1 ∈ Closed2Closed(Rzero, t)\dom(plantV) → S

grd3 : ode(f_evol_plantV (ctrlV), plant1(t), t) ∈ DE(S)

grd4 : Solvable(Closed2Closed(Rzero, t)\dom(plantV),

ode(f_evol_plantV (ctrlV), plant1(t), t))

grd5 : AppendSolutionBAP (ode(f_evol_plantV (ctrlV), plant1(t), t),

Closed2Closed(Rzero, t)\dom(plantV),

Closed2Closed(Rzero, t)\dom(plantV), plant1)

WITH e : e = ode(f_evol_plantV (ctrlV), plant1(t), t)

THEN
act1 : plantV := plantV ◁− plant1

act2 : exec := ctrl

END

Ctrl_normal =̂

ANY nrml_value
WHERE

grd1 : exec = ctrl

grd2 : nrml_value ∈ RReal

grd3 : nrml_value /∈ evade_value =⇒ safe(plantV (t) 7→ nrml_value) = TRUE

THEN
act1 : ctrlV := nrml_value
act2 : exec := prg

END

129

APPENDIX A. GENERIC MODELS

Ctrl_evade =̂

ANY evade_val
WHERE

grd1 : exec = ctrl

grd2 : evade_val ∈ evade_value
THEN

act1 : ctrlV := evade_val
act2 : exec := prg

END

END

A.5 Context TimeTriggered_Ctx

CONTEXT TimeTriggered_Ctx
EXTENDS EventTriggered_Ctx
CONSTANTS epsilon , safeEpsilon

AXIOMS
axm1 : epsilon ∈ TIME ∧ sigma 7→ epsilon ∈ leq

axm2 : safeEpsilon ∈ (S ×RReal) → BOOL

axm3 : Rzero 7→ epsilon ∈ lt

END

A.6 Machine TimeTriggered_M

MACHINE TimeTriggered_M
REFINES EventTriggered_M
SEES TimeTriggered_Ctx
VARIABLES t , plantV , ctrlV , exec

EVENTS
INITIALISATION =̂

THEN
act1 : t := Rzero

act2 : plantV := {Rzero 7→ plantV Init}
act3 : ctrlV :∈ RReal

act4 : exec := ctrl

END

Progress_time =̂

REFINES Progres s
ANY t1

WHERE
grd1 : exec = prg

grd2 : t1 ∈ TIME ∧ (t 7→ t1 ∈ lt ∧minus(t1 7→ t) 7→ sigma ∈ geq∧
minus(t1 7→ t) 7→ epsilon ∈ leq)

130

APPENDIX A. GENERIC MODELS

grd3 : ctrlV /∈ evade_value =⇒ evt_trig(plantV (t) 7→ minus(t1 7→ t) 7→ ctrlV) = TRUE

THEN
act1 : t := t1

act2 : exec := plant

END

Plant =̂

REFINES Plant
ANY plant1

WHERE
grd1 : exec = plant

grd2 : plant1 ∈ Closed2Closed(Rzero, t)\dom(plantV) → S

grd3 : ode(f_evol_plantV (ctrlV), plant1(t), t) ∈ DE(S)

grd4 : Solvable(Closed2Closed(Rzero, t)\dom(plantV),

ode(f_evol_plantV (ctrlV), plant1(t), t))

grd5 : AppendSolutionBAP (ode(f_evol_plantV (ctrlV), plant1(t), t),

Closed2Closed(Rzero, t)\dom(plantV), Closed2Closed(Rzero, t)\dom(plantV), plant1)

THEN
act1 : plantV := plantV ◁− plant1

act2 : exec := ctrl

END

Ctrl_normal_time =̂

REFINES Ctrl_normal
ANY nrml_value
WHERE

grd1 : exec = ctrl

grd2 : nrml_value ∈ RReal

grd3 : nrml_value /∈ evade_value =⇒ safe(plantV (t) 7→ nrml_value) = TRUE

grd4 : nrml_value /∈ evade_value =⇒ safeEpsilon(plantV (t) 7→ nrml_value) = TRUE

THEN
act1 : ctrlV := nrml_value
act2 : exec := prg

END

Ctrl_evade =̂

REFINES Ctrl_evade
ANY evade_val
WHERE

grd1 : exec = ctrl

grd2 : evade_val ∈ evade_value
THEN

act1 : ctrlV := evade_val
act2 : exec := prg

END

131

APPENDIX A. GENERIC MODELS

END

132

Appendices

133

Appendix B

Stop Sign Models

B.1 Context ContSystem_Ctx

CONTEXT ContSystem_Ctx
CONSTANTS S , TIME , sigma , plantV Init

AXIOMS
axm1 : S = RReal ×RReal

axm2 : TIME = RRealP lus

axm3 : sigma ∈ RRealP lus ∧ sigma 7→ Rzero ∈ gt

axm4 : plantV Init ∈ S

END

B.2 Context Thoerems

CONTEXT Thoerems
AXIOMS

axm1 : ∀ a, b, c, d · a 7→ b ∈ leq ∧ c 7→ d ∈ leq =⇒ plus(a 7→ c) 7→ plus(b 7→ d) ∈ leq

axm2 : ∀ a, b, c, d ·Rzero 7→ a ∈ leq ∧Rzero 7→ b ∈ leq ∧Rzero 7→ c ∈ leq∧
Rzero 7→ d ∈ leq ∧ a 7→ b ∈ leq ∧ c 7→ d ∈ leq =⇒ times(a 7→ c) 7→ times(b 7→ d) ∈ leq

axm3 : ∀ a, b, c · a 7→ b ∈ leq ∧ b 7→ c ∈ leq =⇒ a 7→ c ∈ leq

axm4 : ∀ a, b · a ∈ RReal ∧ b ∈ RReal =⇒ minus(times(a 7→ a) 7→ times(b 7→ b)) =

times(plus(a 7→ b) 7→ minus(a 7→ b))

axm5 : ∀ a · a ∈ RReal =⇒ uminus(a) = minus(Rzero 7→ a)

axm6 : ∀ a · a ∈ RReal =⇒ a = plus(times(divide(Rone 7→ Rtwo) 7→ a)

7→ times(divide(Rone 7→ Rtwo) 7→ a))

axm7 : ∀ a, b · a ∈ RReal ∧ b ∈ RReal ∧ times(a 7→ b) ∈ RRealStar =⇒
inverse(times(a 7→ b)) = times(inverse(a) 7→ inverse(b))

END

B.3 Machine ContSystem_M

MACHINE ContSystem_M

135

APPENDIX B. STOP SIGN MODELS

SEES ContSystem_Ctx , Thoerems
VARIABLES t , plantV

INVARIANTS
inv1 : t ∈ TIME

inv2 : plantV ∈ Closed2Closed(Rzero, t) 7→ S

EVENTS
INITIALISATION =̂

THEN
act1 : t := Rzero

act2 : plantV := {Rzero 7→ plantV Init}
END

Progress =̂

THEN
act1 : t : |t′ ∈ TIME ∧ (t 7→ t′ ∈ lt ∧minus(t′ 7→ t) 7→ sigma ∈ geq)

END

Plant =̂

ANY e , plant1

WHERE
grd1 : e ∈ DE(S)

grd2 : Solvable(Closed2Closed(Rzero, t)\dom(plantV), e)

grd3 : plant1 ∈ Closed2Closed(Rzero, t)\dom(plantV) → S

∧AppendSolutionBAP (e, Closed2Closed(Rzero, t)\dom(plantV),

Closed2Closed(Rzero, t)\dom(plantV), plant1)

THEN
act1 : plantV := plantV ◁− plant1

END

END

B.4 Context EventTriggered_Ctx

CONTEXT EventTriggered_Ctx
EXTENDS ContSystem_Ctx
SETS EXEC
CONSTANTS safe , evt_trig , ctrl , plant , prg , f_evol , f_evol_plantV , evade_value
AXIOMS

axm1 : safe ∈ (S ×RReal) → BOOL

axm2 : evt_trig ∈ S × TIME ×RReal → BOOL

axm3 : partition(EXEC, {ctrl}, {plant}, {prg})
axm4 : f_evol ∈ RReal → S

axm5 : f_evol_plantV ∈ (RReal → (TIME × S → S))

axm6 : ∀ ctrlV · ctrlV ∈ RReal =⇒ (f_evol_plantV (ctrlV) =

(λ t 7→ plantV · t ∈ TIME ∧ plantV ∈ S|f_evol(ctrlV)))

136

APPENDIX B. STOP SIGN MODELS

axm7 : evade_value ⊆ RReal ∧ evade_value ̸= ∅
END

B.5 Machine EventTriggered_M

MACHINE EventTriggered_M
REFINES ContSystem_M
SEES EventTriggered_Ctx
VARIABLES t , plantV , ctrlV , exec

INVARIANTS
inv1 : ctrlV ∈ RReal

inv2 : exec ∈ EXEC

inv3 : exec ̸= plant =⇒ dom(plantV) = Closed2Closed(Rzero, t)

inv4 : exec = plant =⇒ t ̸∈ dom(plantV)

EVENTS
INITIALISATION =̂

THEN
act1 : t := Rzero

act2 : plantV := {Rzero 7→ plantV Init}
act3 : ctrlV :∈ RReal

act4 : exec := ctrl

END

Progres s =̂

REFINES Progress
ANY t1

WHERE
grd1 : exec = prg

grd2 : t1 ∈ TIME ∧ (t 7→ t1 ∈ lt ∧minus(t1 7→ t) 7→ sigma ∈ geq)

grd3 : ctrlV ̸∈ evade_value =⇒ evt_trig(plantV (t) 7→ minus(t1 7→ t) 7→ ctrlV) = TRUE

THEN
act1 : t := t1

act2 : exec := plant

END

Plant =̂

REFINES Plant
ANY plant1

WHERE
grd1 : exec = plant

grd2 : plant1 ∈ Closed2Closed(Rzero, t)\dom(plantV) → S

grd3 : ode(f_evol_plantV (ctrlV), plant1(t), t) ∈ DE(S)

grd4 : Solvable(Closed2Closed(Rzero, t)\dom(plantV),

ode(f_evol_plantV (ctrlV), plant1(t), t))

grd5 : AppendSolutionBAP (ode(f_evol_plantV (ctrlV), plant1(t), t),

137

APPENDIX B. STOP SIGN MODELS

Closed2Closed(Rzero, t)\dom(plantV), Closed2Closed(Rzero, t)\dom(plantV), plant1)

WITH e : e = ode(f_evol_plantV (ctrlV), plant1(t), t)

THEN
act1 : plantV := plantV ◁− plant1

act2 : exec := ctrl

END

Ctrl_normal =̂

ANY nrml_value
WHERE

grd1 : exec = ctrl

grd2 : nrml_value ∈ RReal

grd3 : nrml_value ̸∈ evade_value =⇒ safe(plantV (t) 7→ nrml_value) = TRUE

THEN
act1 : ctrlV := nrml_value
act2 : exec := prg

END

Ctrl_evade =̂

ANY evade_val
WHERE

grd1 : exec = ctrl

grd2 : evade_val ∈ evade_value
THEN

act1 : ctrlV := evade_val
act2 : exec := prg

END

END

B.6 Context Car_Event_Ctx

CONTEXT Car_Event_Ctx
EXTENDS EventTriggered_Ctx
CONSTANTS SP , pinit , vinit , A , B

AXIOMS
axm1 : (p in i t , v i n i t)= plantVIn i t
axm2 : pinit ∈ RRealP lus ∧ vinit ∈ RRealP lus

axm3 : pinit 7→ SP ∈ leq ∧ SP ∈ RReal ∧Rzero 7→ SP ∈ lt∧
plus(pinit 7→ divide(times(vinit 7→ vinit) 7→ times(Rtwo 7→ B))) 7→ SP ∈ leq

axm4 : safe = (λ (p 7→ v) 7→ ctrlV · (p 7→ v) ∈ (RReal ×RReal) ∧ ctrlV ∈ RReal|
bool((plus(p 7→ divide(times(v 7→ v) 7→ times(Rtwo 7→ B))) 7→ SP ∈ lt)))

axm5 : evt_trig = (λ (p 7→ v) 7→ t1 7→ ctrlV · (p 7→ v) ∈ (RReal ×RReal) ∧ t1 ∈ TIME∧
ctrlV ∈ RReal|bool((plus(plus(plus(p 7→ times(divide(Rone 7→ Rtwo) 7→
times(ctrlV 7→ times(t1 7→ t1)))) 7→ times(v 7→ t1)) 7→

138

APPENDIX B. STOP SIGN MODELS

divide(times(v 7→ v) 7→ times(Rtwo 7→ B))) 7→ SP ∈ leq)))

axm6 : ∀ ctrlV · ctrlV ∈ RReal =⇒ (f_evol_plantV (ctrlV) =

(λ t 7→ (p 7→ v) · t ∈ TIME ∧ (p 7→ v) ∈ (RReal ×RReal)|(v 7→ ctrlV)))

axm7 : evade_value = {uminus(B), Rzero}
axm8 : A ∈ RReal ∧Rzero 7→ A ∈ lt

axm9 : B ∈ RReal ∧Rzero 7→ B ∈ lt

axm10 : prop = (λp · p ∈ RReal|bool(p 7→ SP ∈ leq))

END

B.7 Machine Car_Event_M

MACHINE Car_Event_M
REFINES EventTriggered_M
SEES Car_Event_Ctx
VARIABLES t , ctrlV , exec , p , v

INVARIANTS
inv1 : ctrlV ∈ {Rzero, uminus(B), A}
inv2 : p ∈ Closed2Closed(Rzero, t) 7→ RReal ∧ v ∈ Closed2Closed(Rzero, t) 7→ RRealP lus

∧dom(v) = dom(p)

inv3 : plantV = bind(p, v)

inv4 : exec ̸= plant =⇒ dom(p) = Closed2Closed(Rzero, t)∧
dom(v) = Closed2Closed(Rzero, t)

inv5 : exec = plant =⇒ t ̸∈ dom(plantV)

inv6 : ∀ x · x ∈ dom(p) =⇒ prop(p(x)) = TRUE

EVENTS
INITIALISATION =̂

WITH plantV ′ : plantV ′ = bind(p′, v′)

THEN
act1 : t := Rzero

act2 : p := {Rzero 7→ pinit}
act3 : v := {Rzero 7→ vinit}
act4 : ctrlV :∈ RReal

act5 : exec := ctrl

END

Progres s =̂

REFINES Progress
ANY t1

WHERE
grd1 : exec = prg

grd2 : t1 ∈ TIME ∧ (t 7→ t1 ∈ lt ∧minus(t1 7→ t) 7→ sigma ∈ geq)

grd3 : ctrlV ̸∈ evade_value =⇒
evt_trig((bind(p, v))(t) 7→ minus(t1 7→ t) 7→ ctrlV) = TRUE

THEN
act1 : t := t1

139

APPENDIX B. STOP SIGN MODELS

act2 : exec := plant

END

Plant_event_car =̂

REFINES Plant
ANY p1 , v1
WHERE

grd1 : exec = plant

grd2 : p1 ∈ Closed2Closed(Rzero, t)\dom(p) → RReal∧
v1 ∈ Closed2Closed(Rzero, t)\dom(v) → RRealP lus

grd3 : ode(f_evol_plantV (ctrlV), (p1(t) 7→ v1(t)), t) ∈ DE(RReal ×RReal)

grd4 : Solvable(Closed2Closed(Rzero, t)\dom(bind(p, v)),

ode(f_evol_plantV (ctrlV), bind(p1, v1)(t), t))

grd5 : AppendSolutionBAP (ode(f_evol_plantV (ctrlV), (bind(p1, v1))(t), t),

Closed2Closed(Rzero, t)\dom(bind(p, v)),

Closed2Closed(Rzero, t)\dom(bind(p, v)), bind(p1, v1))

grd6 : ∀ xx · xx ∈ dom(p1) =⇒ prop(p1(xx)) = TRUE

WITH plant1 : plant1 = bind(p1, v1)

THEN
act1 : p := p◁− p1

act2 : v := v ◁− v1

act3 : exec := ctrl

END

Ctr l_Acce lerat ion_car =̂

REFINES Ctrl_normal
WHERE

grd1 : exec = ctrl

grd2 : safe((bind(p, v))(t) 7→ A) = TRUE

WITH nrml_value : nrml_value = A

THEN
act1 : ctrlV := A

act2 : exec := prg

END

Ctr l_Dece lerat ion_car =̂

REFINES Ctrl_evade
ANY evade_val
WHERE

grd1 : exec = ctrl

grd2 : evade_val ∈ evade_value
grd3 : v(t) 7→ Rzero ∈ gt =⇒ evade_val = uminus(B)

grd4 : v(t) = Rzero =⇒ evade_val = Rzero

THEN
act1 : ctrlV := evade_val
act2 : exec := prg

140

APPENDIX B. STOP SIGN MODELS

END

END

B.8 Context Car_Time_Ctx

CONTEXT Car_Time_Ctx
EXTENDS Car_Event_Ctx
CONSTANTS epsilon , safeEpsilon

AXIOMS
axm1 : epsilon ∈ TIME ∧ sigma 7→ epsilon ∈ leq ∧Rzero 7→ epsilon ∈ lt

axm2 : safeEpsilon ∈ ((RReal ×RReal)×RReal) → BOOL

axm3 : safeEpsilon = (λ (p 7→ v) 7→ ctrlV · (p 7→ v) ∈ (RReal ×RReal) ∧ ctrlV ∈ RReal|
bool(plus(plus(p 7→ plus(times(v 7→ epsilon) 7→ times(divide(Rone 7→ Rtwo) 7→
times(A 7→ times(epsilon 7→ epsilon))))) 7→ plus(plus(divide(times(v 7→ v) 7→
times(Rtwo 7→ B)) 7→ divide(times(times(A 7→ A) 7→ times(epsilon 7→ epsilon)) 7→
times(Rtwo 7→ B))) 7→ divide(times(A 7→ times(epsilon 7→ v)) 7→ B))) 7→ SP ∈ lt))

END

B.9 Machine Car_Time_M

MACHINE Car_Time_M
REFINES Car_Event_M
SEES Car_Time_Ctx , Thoerems
VARIABLES t , ctrlV , exec , p , v

INVARIANTS
inv1 : ∃ t1 · t1 ∈ TIME ∧ dom(p) = Closed2Closed(Rzero, t1)∧

minus(t 7→ t1) 7→ epsilon ∈ leq∧
(exec ̸= plant =⇒ t1 = t) ∧ (exec = plant =⇒ t 7→ t1 ∈ gt)∧
(ctrlV ̸∈ evade_value ∧ exec = plant =⇒
safeEpsilon((p(t1) 7→ v(t1)) 7→ A) = TRUE)

inv2 : ∀ t1 · (t1 ∈ TIME ∧ dom(p) = Closed2Closed(Rzero, t1) =⇒
plus(p(t1) 7→ divide(times(v(t1) 7→ v(t1)) 7→ times(Rtwo 7→ B))) 7→ SP ∈ leq)

inv3 : ctrlV ̸∈ evade_value ∧ exec = prg =⇒ safeEpsilon((p(t) 7→ v(t)) 7→ A) = TRUE

inv4 : ∀ t1 · t1 ∈ TIME ∧ dom(p) = Closed2Closed(Rzero, t1)∧
ctrlV = Rzero ∧ exec ̸= ctrl =⇒ v(t1) = Rzero

inv5 : ∀t1, t2 · t1 ∈ TIME ∧ t2 ∈ TIME∧
dom(p) = Closed2Closed(Rzero, t1) ∧ dom(p) = Closed2Closed(Rzero, t2) =⇒ t1 = t2

EVENTS
INITIALISATION =̂

THEN
act1 : t := Rzero

act2 : p := {Rzero 7→ pinit}
act3 : v := {Rzero 7→ vinit}

141

APPENDIX B. STOP SIGN MODELS

act4 : ctrlV := Rzero

act5 : exec := ctrl

END

Progress_time =̂

REFINES Progres s
ANY t1

WHERE
grd1 : exec = prg

grd2 : t1 ∈ TIME ∧ (t 7→ t1 ∈ lt ∧minus(t1 7→ t) 7→ sigma ∈ geq)

grd3 : minus(t1 7→ t) 7→ epsilon ∈ leq

THEN
act1 : t := t1

act2 : exec := plant

END

Plant_time_car =̂

REFINES Plant_event_car
ANY p1 , v1 , lastT ime , epsilon1

WHERE
grd1 : exec = plant

grd2 : lastT ime ∈ TIME ∧ dom(p) = Closed2Closed(Rzero, lastT ime)

grd3 : lastT ime ∈ dom(p) ∧ lastT ime ∈ dom(v)

grd4 : ctrlV = uminus(B) =⇒ (minus(t 7→ lastT ime) 7→ divide(v(lastT ime) 7→ B) ∈ leq

=⇒ epsilon1 = minus(t 7→ lastT ime)) ∧ (minus(t 7→ lastT ime) 7→
divide(v(lastT ime) 7→ B) ∈ gt =⇒ epsilon1 = divide(v(lastT ime) 7→ B))

grd5 : ctrlV ∈ {Rzero,A} =⇒ epsilon1 = minus(t 7→ lastT ime)

grd6 : p1 = (λ t1 · t1 ∈ TIME ∧ t1 7→ lastT ime ∈ gt ∧ t1 7→ t ∈ leq|
plus(plus(p(lastT ime) 7→ times(divide(Rone 7→ Rtwo) 7→ times(ctrlV 7→
times(epsilon1 7→ epsilon1)))) 7→ times(v(lastT ime) 7→ epsilon1)))

grd7 : v1 = (λ t1 · t1 ∈ TIME ∧ t1 7→ lastT ime ∈ gt ∧ t1 7→ t ∈ leq|
plus(times(ctrlV 7→ epsilon1) 7→ v(lastT ime)))

grd8 : ode(f_evol_plantV (ctrlV), (p1(t) 7→ v1(t)), t) ∈ DE(RReal ×RReal)

grd9 : Solvable(Closed2Closed(Rzero, t)\dom(bind(p, v)),

ode(f_evol_plantV (ctrlV), bind(p1, v1)(t), t))

grd10 : solutionOf(Closed2Closed(Rzero, t)\dom(bind(p, v)),

(Closed2Closed(Rzero, t)\dom(bind(p, v)))◁ bind(p1, v1),

ode(f_evol_plantV (ctrlV), bind(p1, v1)(t), t))

THEN
act1 : p := p◁− p1

act2 : v := v ◁− v1

act3 : exec := ctrl

END

Ctrl_Acceleration_car_time =̂

REFINES Ctr l_Acce lerat ion_car

142

APPENDIX B. STOP SIGN MODELS

WHERE
grd1 : exec = ctrl

grd2 : safeEpsilon((p(t) 7→ v(t)) 7→ A) = TRUE

THEN
act1 : ctrlV := A

act2 : exec := prg

END

Ctr l_Dece lerat ion_car =̂

REFINES Ctr l_Dece lerat ion_car
ANY evade_val
WHERE

grd1 : exec = ctrl

grd2 : evade_val ∈ evade_value
grd3 : v(t) 7→ Rzero ∈ gt =⇒ evade_val = uminus(B)

grd4 : v(t) = Rzero =⇒ evade_val = Rzero

THEN
act1 : ctrlV := evade_val
act2 : exec := prg

END

END

143

APPENDIX B. STOP SIGN MODELS

144

Appendices

145

Appendix C

Water Tank Models

C.1 Context ContSystem_Ctx

CONTEXT ContSystem_Ctx
CONSTANTS S , TIME , sigma , plantV Init

AXIOMS
axm1 : S = RReal

axm2 : TIME = RRealP lus

axm3 : sigma ∈ RRealP lus ∧ sigma 7→ Rzero ∈ gt

axm4 : plantV Init ∈ S

END

C.2 Machine ContSystem_M

MACHINE ContSystem_M
SEES ContSystem_Ctx
VARIABLES t , plantV

INVARIANTS
inv1 : t ∈ TIME

inv2 : plantV ∈ Closed2Closed(Rzero, t) 7→ S

EVENTS
INITIALISATION =̂

THEN
act1 : t := Rzero

act2 : plantV := {Rzero 7→ plantV Init}
END

Progres s =̂

THEN
act1 : t : |t′ ∈ TIME ∧ (t 7→ t′ ∈ lt ∧minus(t′ 7→ t) 7→ sigma ∈ geq)

END

Plant =̂

147

APPENDIX C. WATER TANK MODELS

ANY e , plant1

WHERE
grd1 : e ∈ DE(S)

grd2 : Solvable(Closed2Closed(Rzero, t)\dom(plantV), e)

grd3 : plant1 ∈ Closed2Closed(Rzero, t)\dom(plantV) → S∧
AppendSolutionBAP (e, Closed2Closed(Rzero, t)\dom(plantV),

Closed2Closed(Rzero, t)\dom(plantV), plant1)

THEN
act1 : plantV := plantV ◁− plant1

END

END

C.3 Context Abstract_Tank_Ctx

CONTEXT Abstract_Tank_Ctx
EXTENDS ContSystem_Ctx
CONSTANTS V 0 , V_high , V_low , f_evol_V
AXIOMS

axm1 : V 0 = plantV Init

axm2 : V 0 ∈ RRealP lus

axm3 V_high ∈ RReal ∧ V_low ∈ RReal ∧ V 0 7→ V_high ∈ lt∧
V 0 7→ V_low ∈ gt ∧ V_high 7→ V_low ∈ gt ∧ V_low 7→ Rzero ∈ gt

axm4 : f_evol_V ∈ RReal → (TIME ×RReal → RReal)

axm5 : ∀ ctrlV · ctrlV ∈ RReal =⇒
(f_evol_V (ctrlV) = (λ t 7→ V ol · t ∈ TIME ∧ V ol ∈ RReal|ctrlV))

END

C.4 Machine Abstract_Tank_M

MACHINE Abstract_Tank_M
REFINES ContSystem_M
SEES Abstract_Tank_Ctx
VARIABLES t , V ol

INVARIANTS
inv1 : V ol ∈ Closed2Closed(Rzero, t) 7→ RRealP lus

inv2 : V ol = plantV

EVENTS
INITIALISATION =̂

THEN
act1 : t := Rzero

act2 : V ol := {Rzero 7→ V 0}
END

Progress =̂

148

APPENDIX C. WATER TANK MODELS

REFINES Progress
THEN

act1 : t : |t′ ∈ TIME ∧ (t 7→ t′ ∈ lt ∧minus(t′ 7→ t) 7→ sigma ∈ geq)

END

Water_behave
REFINES Plant
ANY V ol1 , e

WHERE
grd1 : e ∈ DE(RReal)

grd2 : Solvable(Closed2Closed(Rzero, t)\dom(V ol), e)

grd3 : V ol1 ∈ Closed2Closed(Rzero, t)\dom(V ol) → RRealP lus∧
AppendSolutionBAP (e, Closed2Closed(Rzero, t)\dom(V ol),

Closed2Closed(Rzero, t)\dom(V ol), V ol1)

WITH plant1 : plant1 = V ol1

THEN
act1 : V ol := V ol ◁− V ol1

END

END

C.5 Context Tank_Event_Ctx

CONTEXT Tank_Event_Ctx
EXTENDS Abstract_Tank_Ctx
SETS EXEC
CONSTANTS ctrl , plant , prg , safeF ill , safeEmp , evt_trigF ill , evt_trigEmp , f_in

, f_out , evade_valueF ill , evade_valueEmp , prop

AXIOMS
axm1 : partition(EXEC, {ctrl}, {plant}, {prg})
axm2 : safeF ill ∈ (RReal ×RReal) → BOOL

axm3 : safeEmp ∈ (RReal ×RReal) → BOOL

axm4 : evt_trigF ill ∈ (RReal × TIME)×RReal → BOOL

axm5 : evt_trigEmp ∈ (RReal × TIME)×RReal → BOOL

axm6 : safeF ill = (λ vol 7→ ctrlV · vol ∈ RReal ∧ ctrlV ∈ RReal|bool(vol 7→ V_high ∈ lt))

axm7 : safeEmp = (λ vol 7→ ctrlV · vol ∈ RReal ∧ ctrlV ∈ RReal|bool(vol 7→ V_low ∈ gt))

axm8 : evt_trigF ill = (λ vol 7→ t1 7→ ctrlV · vol ∈ RReal ∧ t1 ∈ TIME ∧ ctrlV ∈ RReal|
bool(plus(vol 7→ times(ctrlV 7→ t1)) 7→ V_high ∈ leq))

axm9 : evt_trigEmp = (λ vol 7→ t1 7→ ctrlV · vol ∈ RReal ∧ t1 ∈ TIME ∧ ctrlV ∈ RReal|
bool(plus(vol 7→ times(ctrlV 7→ t1)) 7→ V_low ∈ geq))

axm10 : f_in ∈ RReal ∧ f_in 7→ Rzero ∈ gt

axm11 : f_out ∈ RReal ∧ f_out 7→ Rzero ∈ gt

axm12 : evade_valueF ill ⊆ RReal ∧ evade_valueF ill = {uminus(f_out)}
axm13 : evade_valueEmp ⊆ RReal ∧ evade_valueEmp = {f_in}
axm14 : prop ∈ RReal → BOOL

149

APPENDIX C. WATER TANK MODELS

axm15 : prop = (λvol · vol ∈ RReal|bool(vol 7→ V_high ∈ leq ∧ vol 7→ V_min ∈ geq))

END

C.6 Machine Tank_Event_M

MACHINE Tank_Event_M
REFINES Abstract_Tank_M
SEES Tank_Event_Ctx
VARIABLES t , V ol , ctrlV , exec

INVARIANTS
inv1 : ctrlV ∈ {f_in, uminus(f_out)}
inv2 : exec ∈ EXEC

inv3 : exec ̸= plant =⇒ dom(V ol) = Closed2Closed(Rzero, t)

inv4 : exec = plant =⇒ t ̸∈ dom(V ol)

inv5 : ∀ x · x ∈ dom(V ol) =⇒ V ol(x) 7→ V_high ∈ leq ∧ V ol(x) 7→ V_low ∈ geq

EVENTS
INITIALISATION =̂

THEN
act1 : t := Rzero

act2 : V ol := {Rzero 7→ V 0}
act3 : ctrlV := f_in
act4 : exec := ctrl

END

Progress =̂

REFINES Progres s
WHERE

grd1 : exec = prg

grd2 : t1 ∈ TIME ∧ (t 7→ t1 ∈ lt) ∧minus(t1 7→ t) 7→ sigma ∈ geq

grd3 : ctrlV ̸∈ evade_valueF ill =⇒
evt_trigF ill(V ol(t) 7→ minus(t1 7→ t) 7→ ctrlV) = TRUE

grd4 : ctrlV ̸∈ evade_valueEmp =⇒
evt_trigEmp(V ol(t) 7→ minus(t1 7→ t) 7→ ctrlV) = TRUE)

THEN
act1 : t := t1

act2 : exec := plant

END

Plant_event_tank =̂

REFINES Water_behave
ANY V ol1

WHERE
grd1 : exec = plant

grd2 : V ol1 ∈ Closed2Closed(Rzero, t)\dom(V ol) → RRealP lus

grd3 : ode(f_evol_V (ctrlV), V ol1(t), t) ∈ DE(RReal)

150

APPENDIX C. WATER TANK MODELS

grd4 : Solvable(Closed2Closed(Rzero, t)\dom(V ol), ode(f_evol_V (ctrlV), V ol1(t), t))

grd5 : AppendSolutionBAP (ode(f_evol_V (ctrlV), V ol1(t), t),

Closed2Closed(Rzero, t)\dom(V ol),

Closed2Closed(Rzero, t)\dom(V ol), V ol1)

grd6 : ∀xx · xx ∈ dom(V ol1) =⇒ prop(V ol1(xx)) = TRUE

WITH e : e = ode(f_evol_V (ctrlV), V ol1(t), t)

THEN
act1 : V ol := V ol ◁− V ol1

act2 : exec := ctrl

END

Ctrl_normal =̂

ANY nCtrlV

WHERE
grd1 : exec = ctrl

grd2 : nCtrlV ∈ {f_in, uminus(f_out)}
grd3 : nCtrlV = f_in =⇒ safeF ill(V ol(t) 7→ f_in) = TRUE

grd4 : nCtrlV = uminus(f_out) =⇒ safeEmp(V ol(t) 7→ uminus(f_out)) = TRUE

THEN
act1 : exec := prg

act2 : ctrlV := nCtrlV

END

Ctrl_emptying =̂

WHERE
grd1 : exec = ctrl

grd2 : safeEmp(V ol(t) 7→ uminus(f_out)) = TRUE

THEN
act1 : exec := prg

act2 : ctrlV := uminus(f_out)
END

C t r l_ f i l l i n g =̂

WHERE
grd1 : exec = ctrl

grd2 : safeF ill(V ol(t) 7→ f_in) = TRUE

THEN
act1 : exec := prg

act2 : ctrlV := f_in
END

END

C.7 Context Tank_Time_Ctx

151

APPENDIX C. WATER TANK MODELS

CONTEXT Tank_Time_Ctx
EXTENDS Tank_Event_Ctx
CONSTANTS epsilon , safeEpsilonF ill , safeEpsilonEmp

AXIOMS
axm1 : epsilon ∈ TIME ∧Rzero 7→ epsilon ∈ lt ∧ sigma 7→ epsilon ∈ leq

axm2 : safeEpsilonF ill ∈ (RReal ×RReal) → BOOL

axm2 : safeEpsilonEmp ∈ (RReal ×RReal) → BOOL

axm3 : safeEpsilonF ill = (λ vol 7→ ctrlV · vol ∈ RReal ∧ ctrlV ∈ RReal|
bool(plus(vol 7→ times(ctrlV 7→ epsilon)) 7→ V_high ∈ leq))

axm4 : safeEpsilonEmp = (λ vol 7→ ctrlV · vol ∈ RReal ∧ ctrlV ∈ RReal|
bool(plus(vol 7→ times(ctrlV 7→ epsilon)) 7→ V_low ∈ geq))

END

C.8 Machine Tank_Time_M

MACHINE Tank_Time_M
REFINES Tank_Event_M
SEES Tank_Time_Ctx , Theorems
VARIABLES t , V ol , ctrlV , exec

INVARIANTS
inv1 : ∃ t1 · t1 ∈ TIME ∧ dom(V ol) = Closed2Closed(Rzero, t1)∧

minus(t 7→ t1) 7→ epsilon ∈ leq∧
(exec ̸= plant =⇒ t1 = t) ∧ (exec = plant =⇒ t 7→ t1 ∈ gt)∧
(ctrlV ̸∈ evade_valueF ill ∧ exec = plant =⇒
safeEpsilonF ill(V ol(t1) 7→ ctrlV) = TRUE) ∧ (ctrlV ̸∈ evade_valueEmp∧
exec = plant =⇒ safeEpsilonEmp(V ol(t1) 7→ ctrlV) = TRUE)

inv2 :
ctrlV ̸∈ evade_valueF ill ∧ exec = prg =⇒ safeEpsilonF ill(V ol(t) 7→ ctrlV) = TRUE

inv3 : ctrlV ̸∈ evade_valueEmp ∧ exec = prg =⇒
safeEpsilonEmp(V ol(t) 7→ ctrlV) = TRUE

inv4 : ∀ t1, t2 · t1 ∈ TIME ∧ t2 ∈ TIME∧
dom(V ol) = Closed2Closed(Rzero, t1) ∧ dom(V ol) = Closed2Closed(Rzero, t2) =⇒ t1 = t2

EVENTS
INITIALISATION =̂

THEN
act1 : t := Rzero

act2 : V ol := {Rzero 7→ V 0}
act3 : ctrlV := f_in
act4 : exec := ctrl

END

Progrss_time =̂

REFINES Progres s
WHERE

152

APPENDIX C. WATER TANK MODELS

grd1 : exec = prg

grd2 : t1 ∈ TIME ∧ (t 7→ t1 ∈ lt) ∧ (minus(t1 7→ t) 7→ sigma ∈ geq)∧
(minus(t1 7→ t) 7→ epsilon ∈ leq)

THEN
act1 : t := t1

act2 : exec := plant

END

Plant_time_tank =̂

REFINES Plant_event_tank
ANY V ol1 , lastT ime , epsilon1

WHERE
grd1 : exec = plant

grd2 : lastT ime ∈ TIME ∧ dom(V ol) = Closed2Closed(Rzero, lastT ime)

grd3 : t 7→ lastT ime ∈ gt ∧ lastT ime ∈ dom(V ol)

grd4 : epsilon1 = minus(t 7→ lastT ime)

grd5 : V ol1 = (λ t1 · t1 ∈ TIME ∧ t1 7→ lastT ime ∈ gt ∧ t1 7→ t ∈ leq|
plus(times(ctrlV 7→ epsilon1) 7→ V ol(lastT ime)))

grd6 : ode(f_evol_V (ctrlV), V ol1(t), t) ∈ DE(RReal)

grd7 : Solvable(Closed2Closed(Rzero, t)\dom(V ol), ode(f_evol_V (ctrlV), V ol1(t), t))

grd8 : solutionOf(Closed2Closed(Rzero, t)\dom(V ol),

(Closed2Closed(Rzero, t)\dom(V ol))◁ V ol1, ode(f_evol_V (ctrlV), V ol1(t), t))

THEN
act1 : V ol := V ol ◁− V ol1

act2 : exec := ctrl

END

Ctrl_normal_time =̂

REFINES Ctrl_normal
ANY nCtrlV

WHERE
grd1 : exec = ctrl

grd2 : nCtrlV ∈ {f_in, uminus(f_out)}
grd3 : nCtrlV = f_in =⇒ safeEpsilonF ill(V ol(t) 7→ f_in) = TRUE

grd4 :
nCtrlV = uminus(f_out) =⇒ safeEpsilonEmp(V ol(t) 7→ uminus(f_out)) = TRUE

THEN
act1 : exec := prg

act2 : ctrlV := nCtrlV

END

Ctrl_emptying =̂

REFINES Ctrl_emptying
WHERE

grd1 : exec = ctrl

grd2 : safeEpsilonEmp(V ol(t) 7→ uminus(f_out)) = TRUE

153

APPENDIX C. WATER TANK MODELS

THEN
act1 : exec := prg

act2 : ctrlV := uminus(f_out)
END

C t r l_ f i l l i n g =̂

REFINES C t r l_ f i l l i n g
WHERE

grd1 : exec = ctrl

grd2 : safeEpsilonF ill(V ol(t) 7→ f_in) = TRUE

THEN
act1 : exec := prg

act2 : ctrlV := f_in
END

END

154

Appendices

155

Appendix D

Smart Heating Models

D.1 Context ContSystem_Ctx

CONTEXT ContSystem_Ctx
CONSTANTS S , TIME , sigma , plantV Init

AXIOMS
axm1 : S = RReal

axm2 : TIME = RRealP lus

axm3 : sigma ∈ RRealP lus ∧ sigma 7→ Rzero ∈ gt

axm4 : plantV Init ∈ RReal

END

D.2 Context Thoerems

CONTEXT Thoerems
AXIOMS

axm1 : ∀ a, b, c, d · a 7→ b ∈ leq ∧ c 7→ d ∈ leq =⇒ plus(a 7→ c) 7→ plus(b 7→ d) ∈ leq

axm2 : ∀ a, b, c, d ·Rzero 7→ a ∈ leq ∧Rzero 7→ b ∈ leq ∧Rzero 7→ c ∈ leq∧
Rzero 7→ d ∈ leq ∧ a 7→ b ∈ leq ∧ c 7→ d ∈ leq =⇒ times(a 7→ c) 7→ times(b 7→ d) ∈ leq

axm3 : ∀ a, b, c · a 7→ b ∈ leq ∧ b 7→ c ∈ leq =⇒ a 7→ c ∈ leq

axm4 : ∀ a, b · a ∈ RReal ∧ b ∈ RReal =⇒ minus(times(a 7→ a) 7→ times(b 7→ b)) =

times(plus(a 7→ b) 7→ minus(a 7→ b))

axm5 : ∀ a · a ∈ RReal =⇒ uminus(a) = minus(Rzero 7→ a)

axm6 : ∀ a · a ∈ RReal =⇒ a = plus(times(divide(Rone 7→ Rtwo) 7→ a)

7→ times(divide(Rone 7→ Rtwo) 7→ a))

axm7 : ∀ a, b · a ∈ RReal ∧ b ∈ RReal ∧ times(a 7→ b) ∈ RRealStar =⇒
inverse(times(a 7→ b)) = times(inverse(a) 7→ inverse(b))

END

D.3 Machine ContSystem_M

MACHINE ContSystem_M

157

APPENDIX D. SMART HEATING MODELS

SEES ContSystem_Ctx , Thoerems
VARIABLES t , plantV

INVARIANTS
inv1 : t ∈ TIME

inv2 : plantV ∈ Closed2Closed(Rzero, t) 7→ S

EVENTS
INITIALISATION =̂

THEN
act1 : t := Rzero

act2 : plantV := {Rzero 7→ plantV Init}
END

Progress =̂

THEN
act1 : t : |t′ ∈ TIME ∧ (t 7→ t′ ∈ lt ∧minus(t′ 7→ t) 7→ sigma ∈ geq)

END

Plant =̂

ANY e , plant1

WHERE
grd1 : e ∈ DE(S)

grd2 : Solvable(Closed2Closed(Rzero, t)\dom(plantV), e)

grd3 : plant1 ∈ Closed2Closed(Rzero, t)\dom(plantV) → S

∧AppendSolutionBAP (e, Closed2Closed(Rzero, t)\dom(plantV),

Closed2Closed(Rzero, t)\dom(plantV), plant1)

THEN
act1 : plantV := plantV ◁− plant1

END

END

D.4 Context EventTriggered_Ctx

CONTEXT EventTriggered_Ctx
EXTENDS ContSystem_Ctx
SETS EXEC, PROP
CONSTANTS prop_safe , prop_evt_trig , ctrl , plant , prg , f_evol , f_evol_plantV ,

prop_evade_values
AXIOMS

axm1 : prop_safe ∈ PROP → ((S ×RReal) → BOOL)

axm2 : prop_evt_trig ∈ PROP → (S × TIME ×RReal → BOOL)

axm3 : partition(EXEC, {ctrl}, {plant}, {prg})
axm4 : f_evol ∈ RReal → S

axm5 : f_evol_plantV ∈ (RReal → (TIME × S → S))

axm6 : ∀ ctrlV · ctrlV ∈ RReal =⇒ (f_evol_plantV (ctrlV) =

158

APPENDIX D. SMART HEATING MODELS

(λ t 7→ plantV · t ∈ TIME ∧ plantV ∈ S|f_evol(ctrlV)))

axm7 : prop_evade_values ∈ PROP → P1(RReal)

END

D.5 Machine EventTriggered_M

MACHINE EventTriggered_M
REFINES ContSystem_M
SEES EventTriggered_Ctx
VARIABLES t , plantV , ctrlV , exec

INVARIANTS
inv1 : ctrlV ∈ RReal

inv2 : exec ∈ EXEC

inv3 : exec ̸= plant =⇒ dom(plantV) = Closed2Closed(Rzero, t)

inv4 : exec = plant =⇒ t ̸∈ dom(plantV)

EVENTS
INITIALISATION =̂

THEN
act1 : t := Rzero

act2 : plantV := {Rzero 7→ plantV Init}
act3 : ctrlV :∈ RReal

act4 : exec := ctrl

END

Progres s =̂

REFINES Progress
ANY t1

WHERE
grd1 : exec = prg

grd2 : t1 ∈ TIME ∧ (t 7→ t1 ∈ lt ∧minus(t1 7→ t) 7→ sigma ∈ geq)

grd3 : ∀ x · x ∈ PROP =⇒ (ctrlV ̸∈ prop_evade_values(x) =⇒
(prop_evt_trig(x))(plantV (t) 7→ minus(t1 7→ t) 7→ ctrlV) = TRUE

THEN
act1 : t := t1

act2 : exec := plant

END

Plant =̂

REFINES Plant
ANY plant1

WHERE
grd1 : exec = plant

grd2 : plant1 ∈ Closed2Closed(Rzero, t)\dom(plantV) → S

grd3 : ode(f_evol_plantV (ctrlV), plant1(t), t) ∈ DE(S)

grd4 : Solvable(Closed2Closed(Rzero, t)\dom(plantV),

159

APPENDIX D. SMART HEATING MODELS

ode(f_evol_plantV (ctrlV), plant1(t), t))

grd5 : AppendSolutionBAP (ode(f_evol_plantV (ctrlV), plant1(t), t),

Closed2Closed(Rzero, t)\dom(plantV), Closed2Closed(Rzero, t)\dom(plantV), plant1)

WITH e : e = ode(f_evol_plantV (ctrlV), plant1(t), t)

THEN
act1 : plantV := plantV ◁− plant1

act2 : exec := ctrl

END

Ctr l =̂

ANY value

WHERE
grd1 : exec = ctrl

grd2 : value ∈ RReal

grd3 : ∀ x · x ∈ PROP =⇒ (value ̸∈ prop_evade_values(x) =⇒
(prop_safe(x))(plantV (t) 7→ value) = TRUE)

THEN
act1 : ctrlV := value

act2 : exec := prg

END

END

D.6 Context TimeTriggered_Ctx

CONTEXT TimeTriggered_Ctx
EXTENDS EventTriggered_Ctx
CONSTANTS epsilon , prop_safeEpsilon
AXIOMS

axm1 : epsilon ∈ TIME ∧ sigma 7→ epsilon ∈ leq

axm2 : prop_safeEpsilon ∈ PROP → ((S ×RReal) → BOOL)

axm3 : Rzero 7→ epsilon ∈ lt

END

D.7 Machine TimeTriggered_M

MACHINE TimeTriggered_M
REFINES EventTriggered_M
SEES TimeTriggered_Ctx , Theorems
VARIABLES t , plantV , ctrlV , exec

EVENTS
INITIALISATION =̂

THEN
act1 : t := Rzero

act2 : plantV := {Rzero 7→ plantV Init}

160

APPENDIX D. SMART HEATING MODELS

act3 : ctrlV :∈ RReal

act4 : exec := ctrl

END

Progress_time =̂

REFINES Progress
ANY t1

WHERE
grd1 : exec = prg

grd2 : t1 ∈ TIME ∧ (t 7→ t1 ∈ lt ∧minus(t1 7→ t) 7→ sigma ∈ geq)

grd3 : ∀ x · x ∈ PROP =⇒ (ctrlV ̸∈ prop_evade_values(x) =⇒
(prop_evt_trig(x))(plantV (t) 7→ minus(t1 7→ t) 7→ ctrlV) = TRUE

grd4 : t1 ∈ TIME ∧ (t 7→ t1 ∈ lt) ∧minus(t1 7→ t) 7→ sigma ∈ geq

∧minus(t1 7→ t) 7→ epsilon ∈ leq

THEN
act1 : t := t1

act2 : exec := plant

END

Plant_time =̂

REFINES Plant
ANY plant1

WHERE
grd1 : exec = plant

grd2 : plant1 ∈ Closed2Closed(Rzero, t)\dom(plantV) → S

grd3 : ode(f_evol_plantV (ctrlV), plant1(t), t) ∈ DE(S)

grd4 : Solvable(Closed2Closed(Rzero, t)\dom(plantV),

ode(f_evol_plantV (ctrlV), plant1(t), t))

grd5 : AppendSolutionBAP (ode(f_evol_plantV (ctrlV), plant1(t), t),

Closed2Closed(Rzero, t)\dom(plantV), Closed2Closed(Rzero, t)\dom(plantV), plant1)

THEN
act1 : plantV := plantV ◁− plant1

act2 : exec := ctrl

END

Ctr l =̂

REFINES Ctr l
ANY value

WHERE
grd1 : exec = ctrl

grd2 : value ∈ RReal

grd3 : ∀ x · x ∈ PROP =⇒ (value ̸∈ prop_evade_values(x) =⇒
(prop_safe(x))(plantV (t) 7→ value) = TRUE)

grd4 : ∀ x · x ∈ PROP =⇒ (value ̸∈ prop_evade_values(x) =⇒
(prop_safeEpsilon(x))(plantV (t) 7→ value) = TRUE)

THEN

161

APPENDIX D. SMART HEATING MODELS

act1 : ctrlV := value

act2 : exec := prg

END

END

D.8 Context Desolve

CONTEXT Desolve_Ctx
EXTENDS TimeTriggered_Ctx
CONSTANTS B_desolve , prop

AXIOMS
axm1 : B_desolve ∈ IN×RReal × (TIME 7→ RReal)× TIME × (TIME ×RReal)

→ (RReal 7→ RReal)

axm2 : prop ∈ S → BOOL

axm3 : prop(plantV Init) = TRUE

END

D.9 TimeTriggered_desolve_M

MACHINE TimeTriggered_desolve_M
REFINES TimeTriggered_M
SEES Desolve , Theorems
VARIABLES t , plantV , ctrlV , exec

INVARIANTS
inv1 : ∀ x · x ∈ dom(plantV) =⇒ prop(plantV (x)) = TRUE

EVENTS
INITIALISATION =̂

THEN
act1 : t := Rzero

act2 : plantV := {Rzero 7→ plantV Init}
act3 : ctrlV :∈ RReal

act4 : exec := ctrl

END

Progress_time =̂

REFINES Progress_time
ANY t1

WHERE
grd1 : exec = prg

grd2 : t1 ∈ TIME ∧ (t 7→ t1 ∈ lt ∧minus(t1 7→ t) 7→ sigma ∈ geq)

grd3 : ∀ x · x ∈ PROP =⇒ (ctrlV ̸∈ prop_evade_values(x) =⇒
(prop_evt_trig(x))(plantV (t) 7→ minus(t1 7→ t) 7→ ctrlV) = TRUE

grd4 : t1 ∈ TIME ∧ (t 7→ t1 ∈ lt) ∧minus(t1 7→ t) 7→ sigma ∈ geq

∧minus(t1 7→ t) 7→ epsilon ∈ leq

162

APPENDIX D. SMART HEATING MODELS

THEN
act1 : t := t1

act2 : exec := plant

END

Plant_time_desolve =̂

REFINES Plant_time
ANY plant1 , lastT ime

WHERE
grd1 : exec = plant

grd2 : lastT ime ∈ TIME ∧ dom(plantV) = Closed2Closed(Rzero, lastT ime)

grd3 : plant1 = B_desolve(1 7→ ctrlV 7→ plantV 7→ t 7→ (lastT ime 7→ plantV (lastT ime)))

grd4 : plant1 ∈ Closed2Closed(Rzero, t)\dom(plantV) → S

grd5 : ode(f_evol_plantV (ctrlV), plant1(t), t) ∈ DE(S)

grd6 : Solvable(Closed2Closed(Rzero, t)\dom(plantV),

ode(f_evol_plantV (ctrlV), plant1(t), t))

grd7 : AppendSolutionBAP (ode(f_evol_plantV (ctrlV), plant1(t), t),

Closed2Closed(Rzero, t)\dom(plantV), Closed2Closed(Rzero, t)\dom(plantV), plant1)

grd8 : ∀ xx · xx ∈ dom(plant1) =⇒ prop(plant1(xx)) = TRUE

THEN
act1 : plantV := plantV ◁− plant1

act2 : exec := ctrl

END

Ctr l =̂

REFINES Ctr l
ANY value

WHERE
grd1 : exec = ctrl

grd2 : value ∈ RReal

grd3 : ∀ x · x ∈ PROP =⇒ (value ̸∈ prop_evade_values(x) =⇒
(prop_safe(x))(plantV (t) 7→ value) = TRUE)

grd4 : ∀ x · x ∈ PROP =⇒ (value ̸∈ prop_evade_values(x) =⇒
(prop_safeEpsilon(x))(plantV (t) 7→ value) = TRUE)

THEN
act1 : ctrlV := value

act2 : exec := prg

END

END

D.10 CONTEXT Heater_Ctx

CONTEXT Heater_ctx
EXTENDS Desolve_Ctx

163

APPENDIX D. SMART HEATING MODELS

CONSTANTS p1 ,p2 ,prop_val ,T_max ,T_min ,T0 ,temp
AXIOMS

axm1 : T0 ∈ RRealP lus ∧ T0 = plantV Init

axm2 : T_max ∈ RReal ∧ T_min ∈ RReal ∧ T_max 7→ T_min ∈ gt∧
T_min 7→ Rzero ∈ gt ∧ T0 7→ T_max ∈ leq ∧ T0 7→ T_min ∈ geq

axm3 : prop_val ∈ PROP → P (RReal ×BOOL)

axm4 : PROP = {p1, p2}
axm5 : prop_val = {p1 7→ (λ T · T ∈ RReal | bool(T_min 7→ T ∈ leq)),

p2 7→ (λ T · T ∈ RReal | bool(T 7→ T_max ∈ leq))}
axm6 : prop = (λ T · T ∈ RReal | bool((prop_val(p1))(t) = TRUE∧

(prop_val(p2))(t) = TRUE))

axm7 : prop_safe = {
p1 7→ (λ T 7→ ctrlV · T ∈ RReal ∧ ctrlV ∈ RReal | bool(T 7→ T_max ∈ leq)),

p2 7→ (λ T 7→ ctrlV · T ∈ RReal ∧ ctrlV ∈ RReal | bool(T 7→ T_min ∈ geq))}
axm8 : prop_safeEpsilon = {

p1 7→ (λ T 7→ ctrlV · T ∈ RReal ∧ ctrlV ∈ RReal |
bool(plus(T 7→ times(ctrlV 7→ epsilon)) 7→ T_max ∈ leq)),

p2 7→ (λ T 7→ ctrlV · T ∈ RReal ∧ ctrlV ∈ RReal |
bool(plus(T 7→ times(ctrlV 7→ epsilon)) 7→ T_min ∈ geq))}

axm9 : prop_evt_trig = {
p1 7→ (λ T 7→ t1 7→ ctrlV · T ∈ RReal ∧ t1 ∈ TIME ∧ ctrlV ∈ RReal |
bool(plus(T 7→ times(ctrlV 7→ t1)) 7→ T_max ∈ leq)),

p2 7→ (λ T 7→ t1 7→ ctrlV · T ∈ RReal ∧ t1 ∈ TIME ∧ ctrlV ∈ RReal |
bool(plus(T 7→ times(ctrlV 7→ t1)) 7→ T_min ∈ geq))}

axm10 : temp ∈ RReal ∧ temp 7→ Rzero ∈ gt

axm11 : prop_evade_values = {p1 7→ {uminus(temp)}, p2 7→ {temp}}
END

D.11 Machine Heater_M

MACHINE Heater_M
REFINES TimeTriggered_desolve_M
SEES Heater_ctx , Theorems
VARIABLES t , T , ctrlV , exec

INVARIANTS
inv1 : T = plantV ∧ ran(T) ⊆ RReal

inv2 : ctrlV ∈ {temp, uminus(temp)}
inv3 : exec ̸= plant =⇒ dom(T) = Closed2Closed(Rzero, t)

inv4 : exec = plant =⇒ t ̸∈ dom(T)

inv5 : ∀x · x ∈ dom(T) =⇒ prop(T (x)) = TRUE

inv6 : ∃ t1 · t1 ∈ TIME ∧ dom(T) = Closed2Closed(Rzero, t1)∧
minus(t 7→ t1) 7→ epsilon ∈ leq ∧ (exec ̸= plant =⇒ t1 = t) ∧ (exec = plant =⇒
t 7→ t1 ∈ gt) ∧ (∀ x · x ∈ PROP ∧ ctrlV ̸∈ prop_evade_values(x) ∧ exec = plant =⇒
(prop_safeEpsilon(x))(T (t1) 7→ ctrlV) = TRUE)

inv7 : ∀ x · x ∈ PROP ∧ ctrlV ̸∈ prop_evade_values(x) ∧ exec = prg =⇒

164

APPENDIX D. SMART HEATING MODELS

(prop_safeEpsilon(x))(T (t) 7→ ctrlV) = TRUE

inv8 : ∀ t1, t2 · t1 ∈ TIME ∧ t2 ∈ TIME∧
dom(T) = Closed2Closed(Rzero, t1) ∧ dom(T) = Closed2Closed(Rzero, t2) =⇒ t1 = t2

EVENTS
INITIALISATION =̂

THEN
act1 : t := Rzero

act2 : T := {Rzero 7→ T0}
act3 : ctrlV := temp

act4 : exec := ctrl

END

Progress_time =̂

REFINES Progress_time
ANY t1

WHERE
grd1 : exec = prg

grd2 : t1 ∈ TIME ∧ t 7→ t1 ∈ lt ∧minus(t1 7→ t) 7→ sigma ∈ geq

∧ minus(t1 7→ t) 7→ epsilon ∈ leq

THEN
act1 : t := t1

act2 : exec := plant

END

Thermostat_plant =̂

REFINES Plant_time_desolve
ANY plant1 , lastT ime

WHERE
grd1 : exec = plant

grd2 : lastT ime ∈ TIME ∧ dom(T) = Closed2Closed(Rzero, lastT ime)

grd3 : plant1 = B_desolve(1 7→ ctrlV 7→ T 7→ t 7→ (lastT ime 7→ T (lastT ime)))

grd4 : B_desolve(1 7→ ctrlV 7→ T 7→ t 7→ (lastT ime 7→ T (lastT ime))) =

(λt1 · t1 ∈ TIME ∧ t1 7→ lastT ime ∈ gt ∧ t1 7→ t ∈ leq|
plus(plus(times(ctrlV 7→ uminus(lastT ime)) 7→ times(ctrlV 7→ t1)) 7→ T (lastT ime)))

grd4 : ode(f_evol_plantV (ctrlV), plant1(t), t) ∈ DE(RReal)

grd5 : Solvable(Closed2Closed(Rzero, t)\dom(T),

ode(f_evol_plantV (ctrlV), plant1(t), t))

grd6 : AppendSolutionBAP (ode(f_evol_plantV (ctrlV), plant1(t), t),

Closed2Closed(Rzero, t)\dom(T), Closed2Closed(Rzero, t)\dom(T), plant1)

THEN
act1 : T := T ◁− plant1

act2 : exec := ctrl

END

Ctr l =̂

REFINES Ctr l

165

APPENDIX D. SMART HEATING MODELS

ANY value

WHERE
grd1 : exec = ctrl

grd2 : value ∈ {temp, uminus(temp)}
grd3 : ∀ x · x ∈ PROP =⇒ (value ̸∈ prop_evade_values(x) =⇒

(prop_safeEpsilon(x))(T (t) 7→ value) = TRUE)

THEN
act1 : ctrlV := value

act2 : exec := prg

END

END

166

Appendices

167

Appendix E

User Manual for the Plugin
SAGEMATH

• To use the SageMath plugin, the user must launch the Eclipse platform and then open
the workspace containing our plugin project called "fr.upec.sageplugin" (see Figure
E.1). This project contains various classes that we used to define the functionality
provided by the plugin (see Figure E.2).

Figure E.1: Using plugin SageMath: Step 1.

• Then the user should launch Rodin from within eclipse, using Rodin as the target
platform. For this purpose, first open the "Run/Run configurations" menu (see
Figure E.3) and double click on "Eclipse Application" on the left to create a new
configuration and rename the configuration to "Rodin 3.5". On the "Main" tab, select
"Location" for the run-time workspace and select "org.rodin.platform.product" for
the "Run a product" option (see Figure E.4). In the "Plug-ins", for "Launch with"
option, choose "plug-ins selected below only". In the Plugins list, disable all test
plugins for the Target platform (see Figure E.5).

• The user can then run a version of Rodin with the SageMath plugin integrated and
upload the project containing the differential equations to be solved with SageMath,
remembering to open the project named "SimpleDEq" containing the theory needed
to prove our Event-B models (see Figure E.6).

• The user can finally open the proof obligations that contains the terms B_desolve in
order to call SageMath. This is done by clicking in the goal tab on the left-hand
side to get a button called SageMath (see Figure E.7).

169

APPENDIX E. USER MANUAL FOR THE PLUGIN SAGEMATH

Figure E.2: Using plugin SageMath: Step 2.

Figure E.3: Using plugin SageMath: Step 3.

The user can eventually open the proof obligations containing the terms, B_desolve
or B_desolve_rk4, and then invoke SageMath. To do this, click on the left side of
the goal tab to get a button called SageMath (see Figure E.7).

• Finally, the user calls SageMath and executes the command line load("script1.sage").
This allows the user to execute the statements defined in "script1.sage" script in order

170

APPENDIX E. USER MANUAL FOR THE PLUGIN SAGEMATH

Figure E.4: Using plugin SageMath: Step 4.

Figure E.5: Using plugin SageMath: Step 5.

to solve the ordinary differential equation determined by the function B_desolve in
the current proof obligation (see Figure E.8).

171

APPENDIX E. USER MANUAL FOR THE PLUGIN SAGEMATH

Figure E.6: Using plugin SageMath: Step 6.

Figure E.7: Using plugin SageMath: Step 7.

172

APPENDIX E. USER MANUAL FOR THE PLUGIN SAGEMATH

Figure E.8: Using plugin SageMath: Step 8.

173

Une Approche Correcte par Construction pour la Modélisation

et la Vérification de systèmes cyber-physiques dans Event-B

AFENDI MERYEM

1 Introduction

Les progrès récents dans le secteur industriel ont permis le développement d’un nouveau modèle de
production basé sur les architectures numériques en réseau ou ”usines connectées”. Ce nouveau modèle
de production a donné naissance à ”l’industrie 4.0” ou ”industrie du futur”. Les systèmes cyber-
physiques (SCPs) [1] sont l’une des principales technologies de cette industrie et forment donc la base
des technologies du futur. Le domaine de ces systèmes est devenu rapidement une source d’innovation
avec des applications dans tous les secteurs : santé, transport, smart grid, etc. Ces systèmes connectent
le monde virtuel discret et le monde physique continu via un réseau de capteurs et d’actionneurs.

Le modèle mathématique adapté aux SCPs est celui des systèmes hybrides qui combinent un com-
portement discret représenté par des machines à états (ou des automates finis) avec un comportement
continu décrit par des équations différentielles. Dans les systèmes hybrides, les comportements con-
tinus sont mesurés par des capteurs. Idéalement, les capteurs ont un accès continu à ces mesures, ce
qui correspond à un modèle abstrait de SCPs, appelé Event-Triggered system [2]. Cependant, la mise
en œuvre de tels modèles est difficile en pratique. Il est donc préférable d’introduire un modèle plus
concret, appelé Time-Triggered system [2], où les capteurs prennent des mesures périodiques. Platzer
et al. [3, 4] utilisent les modèles Event et Time-Triggered pour concevoir et vérifier des systèmes hy-
brides. Ils ont prouvé qu’un modèle Time-Triggered est un raffinement d’un modèle Event-Triggered,
en utilisant une extension de la logique dynamique différentielle (dL), appelée logique de raffinement
différentiel (dRL).

Introduite par J. Raymond Abrial [5], Event-B est une méthode formelle qui permet de décrire des
systèmes discrets en utilisant des événements. Un modèle Event-B se compose de plusieurs composants
de type, Context et Machine. Un contexte peut définir des ensembles abstraits et énumérés, des
constantes, des axiomes et des théorèmes. Une machine Event-B spécifie le comportement dynamique
du système modélisé. Une machine modélise un système à l’aide de variables d’état et d’événements
qui mettent à jour ces variables. Un modèle Event-B s’accompagne d’une série d’obligations de preuve
(OPs) visant à vérifier les propriétés de sûreté du système modélisé. Le point fort d’Event-B consiste
à utiliser des modèles abstraits pour représenter le comportement abstrait d’un système donné et le
raffinement pour introduire des détails et démontrer la conformité entre le modèle abstrait et le modèle
concret. Le raffinement d’un modèle formel permet d’enrichir ce modèle pas à pas.

2 Motivations

Le comportement continu des systèmes hybrides est souvent décrit par des équations différentielles
ordinaires (ODEs) qui impliquent une fonction inconnue dépendant d’une seule variable d’état. Il
existe deux types de méthodes pour résoudre les équations différentielles ordinaires : les méthodes an-
alytiques (symboliques) et les méthodes numériques. Les méthodes analytiques utilisent un ensemble
de théorèmes pour obtenir une solution exacte pour une équation différentielle donnée. Par exem-
ple, l’outil SageMath (System for Algebra and Geometry Experimentation) [6] fournit une fonction
prédéfinie qui utilise des méthodes analytiques pour trouver des solutions pour les ODEs. Cependant,
la plupart des équations différentielles ne peuvent pas être résolues de manière exacte. Il faut donc
s’appuyer sur des méthodes numériques pour obtenir des solutions approchées ou utiliser des tech-
niques d’approximation pour obtenir une équation équivalente avec une solution exacte pour laquelle
des méthodes analytiques deviennent applicables. Par exemple, des techniques de linéarisation peu-

1

vent être utilisées pour transformer une équation différentielle non linéaire en une équation différentielle
linéaire.

L’interaction entre la partie discrète et la partie continue de systèmes cyber-physiques fait de la
vérification des systèmes hybrides un défi. Le développement de techniques et d’outils pour vérifier
des systèmes hybrides a attiré l’attention de nombreux chercheurs. Les approches traditionnelles
sont basées sur des outils de simulation comme Matlab/Simulink [7] ou Stateflow [8] qui cependant
produisent des résultats entachés d’incertitude. C’est pourquoi la conception et la vérification de
systèmes hybrides avec des propriétés critiques de sûreté nécessitent l’utilisation de méthodes formelles.
Pour cela, plusieurs approches formelles ont été proposées [9, 10, 11, 12, 4, 13, 14]. Ces approches
peuvent être regroupées en deux catégories : les approches basées sur le model-checking et les approches
basées sur les preuves formelles.

• Les approches basées sur le model-checking utilisent des automates hybrides pour modéliser
des systèmes hybrides et des méthodes d’analyse algorithmique pour prouver leurs propriétés
de sûreté. Ces approches sont basés sur le calcul de l’ensemble des états atteignables pour
les automates hybrides. Ces approches souffrent des problèmes classiques liés à l’explosion de
l’espace d’états.

• Les approches basées sur les preuves formelles utilisent la vérification déductive pour prouver les
propriétés de sûreté des systèmes hybrides. L’un des points forts de ces approches est qu’elles
restent applicables même pour des systèmes de grande taille et de n’importe quel type (linéaire
ou non linéaire). Cependant, ces approches nécessitent des efforts importants et une grande
expertise lors de la phase de preuve.

La définition d’approches génériques, comme celle présentée dans cette thèse utilisant la méthode
formelle Event-B, pour la modélisation et la vérification de systèmes hybrides peut favoriser l’utilisation
d’approches basées sur les preuves formelles pour le développement et la vérification de systèmes
hybrides. L’utilisation de la méthode Event-B et de sa plateforme Rodin, outil de développement
de projets Event-B, permet de vérifier l’exactitude des systèmes hybrides à l’aide des démonstrateurs
automatiques et interactifs inclus dans la plateforme. De plus, l’intégration d’un système de calcul
formel tel que SageMath avec un démonstrateur de théorème interactif permet de traiter la résolution
d’équations différentielles ordinaires lors de la modélisation d’un système hybride.

3 Contribution

Notre objectif, dans le cadre du projet DISCONT [15], est de développer des approches formelles de
modélisation et de vérification de systèmes hybrides. Dans ce contexte, nous avons développé une
approche générique pour modéliser et prouver les systèmes Event et Time-Triggered en utilisant la
méthode formelle Event-B. Le processus de raffinement de cette méthode permet de gérer la complexité
des systèmes. Comme la méthode Event-B ne permet pas la résolution des équations différentielles
ordinaires, nous proposons d’interfacer l’outil Rodin avec un solveur d’équations différentielles, Sage-
Math dans notre cas, en utilisant la notion de plug-in. Les principaux apports de cette thèse sont les
suivants :

• une approche générique formelle pour modéliser des systèmes cyber-physiques en considérant
un nombre quelconque de propriétés de sûreté. Cette approche consiste à définir trois modèles
génériques Event-B en commençant par un modèle abstrait de systèmes cyber-physiques puis
en utilisant la stratégie de raffinement pour introduire des détails plus concrets. Ces modèles
sont vérifiés sous Rodin à l’aide d’un ensemble de théories introduites dans [16]. Cette approche
générique modélise et prouve la relation de raffinement entre les systèmes Event et Time-Triggered
en Event-B.

• un ensemble de règles d’instanciation définies pour construire systématiquement le modèle d’un
système hybride spécifique. De plus, nous fournissons un ensemble d’invariants génériques qui
ont été identifiés à partir des études de cas pour prouver les propriétés de sûreté. Il suffit de les
instancier pour prouver un cas d’étude spécifique.

2

• une extension de l’approche générique pour interfacer Event-B avec le solveur SageMath. Pour
cela, un nouveau niveau de raffinement est défini. Il raffine le modèle Time-Triggered en intro-
duisant une fonction pour modéliser les appels au solveur. Un outil a été implémenté comme un
nouveau plug-in Rodin. Ce plug-in permet d’appeler SageMath pendant la phase de preuve.

• un ensemble d’études de cas pour valider notre approche. Ils ont été choisis de manière à
représenter différents types de SCPs : des systèmes hybrides à une ou plusieurs variables contin-
ues, une ou plusieurs propriétés de sûreté et un système hybride non linéaire.

3.1 Approche générique pour la modélisation de systèmes hybrides

Pour modéliser un système hybride, notre approche se compose de trois modèles comme illustré par
la Figure 1. Le modèle ContSystem qui spécifie le comportement continu du système, le modèle
EventTriggered qui spécifie les interactions entre la partie discrète et la partie continue du système, et
le modèle TimeTriggered qui spécifie le comportement de la partie discrète du système.

Figure 1: Structure de la spécification générique d’Event-B.

3.1.1 Modèle ContSystem

Le modèle ContSystem représente le modèle abstrait de l’approche. Il s’inspire du modèle abstrait de
[16] qui vise à modéliser la partie continue des systèmes hybrides en Event-B. Le modèle ContSystem
est composé du contexte ContSystem Ctx et de la machine ContSystem M. La machine ContSystem M
contient deux variables, t et plantV , et deux événements, Progress et Plant. Les variables t et
plantV représentent réspectivement l’évolution continue du temps et des variables d’état. L’événement
Progress modélise la progression du temps. L’évolution de la partie continue est modélisée à l’aide de
l’événement Plant sur lequel des propriétés de sûreté sont vérifiés au niveau EventTriggered.

3.1.2 Modèle EventTriggered

Le modèle générique EventTriggered inclut deux composants:

• un contexte nommé EventTriggered Ctx qui introduit l’enveloppe de sûreté du système, représentée
par la formule safe et calculée à partir de l’exigence de sûreté que le système doit satisfaire.

• une machine nommée EventTriggered M qui introduit le comportement discret du système représenté
par la variable contrôlée ctrlV .

3

La sémantique de ce modèle est que la partie physique évolue en parallèle avec le temps et que les
deux s’interrompent dès que l’enveloppe de sûreté devient fausse. À ce niveau, on exprime les propriétés
de sûreté du système. Pour ce faire, EventTriggered Ctx étend ContSystem Ctx pour représenter ces
propriétés. La machine EventTriggered M raffine la machine ContSystem M en introduissant deux
nouvelles variables :

• ctrlV représente la variable contrôlée. La valeur actuelle de cette variable correspond à l’état
actuel du contrôleur.

• exec est utilisée pour modéliser l’alternance entre le contrôleur et la partie physique. Par
conséquent, exec peut prendre deux valeurs ctrl et plant. Dans Event-B, le temps doit être
explicitement géré. Pour être sûr que ce temps explicite progressera entre ctrl et plant, on ajoute
une troisième valeur à exec, prg, afin de permettre à l’événement Progress de s’exécuter. Par
conséquent, notre modèle suit la structure suivante : init; (ctrl; prg; plant)∗, où init représente
l’événement INITIALISATION.

Pour modéliser l’évolution de la partie physique, on raffine l’événement Plant de la machine Con-
tSystem M en remplaçant l’équation différentielle abstraite par celle définie pour une fonction notée
f evol plantV. La fonction f evol plantV décrit l’évolution de la variable d’état plantV en fonction
de l’état discret du système. Concernant l’évolution de la partie contrôle, deux nouveaux événements
sont ajoutés:

• Ctrl normal représente le mode normal. Il se déclenche lorsque c’est le tour du contrôleur à
s’exécuter (exec = ctrl) et s’il existe une valeur pour laquelle la formule safe est vraie. À l’issue
de cette exécution, la main est donnée à l’événement Progress.

• Ctrl evade représente le mode evade. Lorsque l’enveloppe de sûreté safe n’est plus satisfaite le
système doit passer au mode evade. Dans ce cas, Ctrl evade affecte une valeur evade à la variable
de contrôle ctrlV et donne également la main à l’événement Progress. La valeur evade doit être
choisie dans l’ensemble des valeurs evades du système. Ces valeurs evades garantissent que le
système satisfera toujours ses propriétés de sûreté.

3.1.3 Modèle TimeTriggered

Le modèle TimeTriggered raffine le modèle précédent pour obtenir un système correspondant au modèle
TimeTriggered de Kopetz. Comme mentionné précédemment, les capteurs d’un modèle TimeTriggered
prennent des mesures périodiques des variables d’état physique et son contrôleur s’exécute à chaque
mise à jour des capteurs. Le modèle TimeTriggered est composé du contexte TimeTriggered Ctx et
de la machine TimeTriggered M. Le contexte TimeTriggered Ctx étend le contexte EventTriggered Ctx
en ajoutant deux constantes :

• epsilon : désigne la plus longue durée entre deux mises à jour des capteurs du TimeTriggered.

• safeEpsilon : garantit que le système reste dans un état sûr pendant les prochaines epsilon
unités de temps.

La principale différence entre les modèles Event et TimeTriggered réside dans la modélisation de la
progression du temps. Le plus long laps de temps entre deux mises à jour des capteurs TimeTriggered
est limité par la durée epsilon. Par conséquent, le contrôleur peut s’exécuter au moins chaque epsilon
unités de temps. Pour cela, on raffine l’événement Progress en ajoutant le prédicat (t′−t ≤ epsilon). Ce
prédicat exprime que le temps ne peut pas progresser de plus de epsilon unités. Puisque le contrôleur
d’un modèle TimeTriggered doit faire un choix qui sera sûr jusqu’à epsilon temps, nous définissons une
nouvelle enveloppe de sûreté nommée safeEpsilon dans le contexte TimeTriggered Ctx. Ensuite, dans
l’événement Ctrl normal time qui raffine Ctrl normal, nous ajoutons une contrainte pour s’assurer que
safeEpsilon est vrai.

3.2 Interfacer Rodin avec SageMath

Pour traiter la résolution des ODEs linéaires dans Event-B, nous proposons d’interfacer l’outil Rodin
avec SageMath. L’approche suit le schéma de développement décrit par la Figure 2. Il étend

4

l’approche générique en ajoutant, par raffinement, un nouveau modèle générique appelé TimeTrig-
geredDesolve M qui introduit une fonction nommée B desolve pour modéliser des solutions exactes
d’équations différentielles ordinaires dans Event-B. Dans le cas de systèmes non linéaires, si l’ODE est
linéarisable, on applique le même raffinement en utilisant la fonction B desolve sur la forme linéaire
de l’équation. Sinon, nous utilisons la fonction, B desolve rk4(), qui renvoie une solution approchée.

Figure 2: Spécification générique Event-B avec la fonction B desolve.

Le contexte Desolve Ctx étend le contexte TimeTriggered Ctx en introduisant la fonction générique
B desolve. L’introduction de cette fonction permet d’établir le lien entre nos modèles Event-B et le
solveur d’équations différentielles SageMath. La machine TimeTriggered desolve M raffine la machine
TimeTriggered M en utilisant la fonction B desolve dans l’événement Plant pour spécifier la solution
générique de l’équation. L’événement Plant du modèle TimeTriggered est raffiné pour calculer, à
l’aide de la fonction B desolve, les nouvelles valeurs de plantV depuis sa dernière mise à jour. Afin de
mettre en œuvre notre approche, nous avons developé un nouveau plug-in Rodin, appelé SageMath,
qui interface la plateforme Rodin avec SageMath pour calculer les solutions des ODEs.

3.2.1 Le processus général du plug-in SageMath

Pour établir une obligation de preuve contenant les termes B desolve ou B desolve rk4(), les étapes
suivantes sont nécessaires : (1) appeler SageMath depuis Rodin, (2) résoudre l’équation différentielle et
(3) utiliser le résultat renvoyé dans Rodin (voir Figure 3). Pour ce faire, un champ de saisie permettant
d’appeler SageMath depuis Rodin apparâıt lorsque l’obligation de preuve contient les termes B desolve
ou B desolve rk4(). La deuxième étape consiste à appeler un script prédéfini généré systématiquement
à partir des fonctions B desolve(...) ou B desolve rk4(). La dernière étape consiste à traduire le
résultat de SageMath dans le langage spécifique Event-B. Ce résultat est ajouté comme hypothèse
pour prouver l’obligation de preuve.

• Appeler SageMath depuis Rodin (Étape 1): pour appeler SageMath depuis Rodin, un bouton
appelé sage a été ajouté dans la fenêtre de preuve à l’aide d’un plug-in Eclipse. Pour développer
un plug-in Rodin, Eclipse fournit un ensemble d’interfaces Java. Ces interfaces sont destinées à
être implémentées en fonction de l’objectif du plug-in.

• Résolution d’ODE dans SageMath (Étape 1’ et Étape2): un script SageMath est systématiquement
généré à partir des fonctions EventB B desolve ou B desolve rk4(). Dans ce script, l’équation

5

Figure 3: Processus Général.

différentielle doit être exprimée en fonction de la variable contrôlée ctrlV qui relie la partie
continue et la partie discrète d’un système hybride donné.

• Utilisation des résultats de SageMath dans Rodin (étape 3): à cette étape, la solution renvoyée
par SageMath est intégrée comme hypothèse supplémentaire à l’obligation de preuve.

4 Conclusion

Dans cette thèse, nous avons présenté une approche formelle orientée preuve pour modéliser et vérifier
des systèmes hybrides à l’aide de la méthode formelle Event-B. L’approche proposée est basée sur la
modélisation et la vérification de la relation de raffinement entre les systèmes Event et Time-Triggered
en utilisant Event-B. Le modèle générique Event-Triggered décrit l’interaction entre la partie physique
et la partie discrète tant dis que le modèle générique Time-Triggered introduit la notion de période de
contrôle pour représenter le comportement périodique du contrôleur. Nous avons également introduit
un niveau plus abstrait, le modèle générique ContSystem, qui spécifie les aspects continus des systèmes
hybrides.

Comme la méthode Event-B ne permet pas de résoudre les équations différentielles, nous proposons
une approche qui permet d’intégrer, dans une spécification Event-B, des appels au solveur d’équations
différentielles SageMath. Ceci est rendu possible en implémentant un plug-in à Rodin qui permet
d’appeler SageMath.

Jusqu’à présent, nous avons validé notre approche sur des études de cas simples mais représentatives
des systèmes hybrides. Dans nos futurs travaux, nous envisageons d’appliquer notre approche à des
systèmes plus complexes dont le comportement continu serait décrit avec des équations non linéaires
admettant des solutions approchées.

Le plugin SageMath est encore en phase de développement; certaines étapes sont encore manuelles
et requièrent l’intervention de l’utilisateur. Par exemple, les scripts SageMath sont exécutés manuelle-
ment. Nous envisageons donc d’automatiser ces différentes étapes pour décharger l’utilisateur de toutes
ces tâches et rendre l’interaction de Rodin avec SageMAth complètement automatique.

References

[1] Edward A Lee. Cyber-physical systems-are computing foundations adequate. In Position paper for
NSF workshop on cyber-physical systems: research motivation, techniques and roadmap, volume 2,
pages 1–9. Citeseer, 2006.

6

[2] Hermann Kopetz. Event-triggered versus time-triggered real-time systems. In Operating Systems
of the 90s and Beyond, pages 86–101. Springer, 1991.

[3] André Platzer. A Complete Uniform Substitution Calculus for Differential Dynamic Logic. J.
Autom. Reason., 59(2):219–265, 2017.

[4] Sarah M Loos and André Platzer. Differential refinement logic. In 2016 31st Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 1–10. IEEE, 2016.

[5] Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering. Cambridge Uni-
versity Press, 2010.

[6] Paul Zimmermann, Alexandre Casamayou, Nathann Cohen, Guillaume Connan, Thierry Dumont,
Laurent Fousse, François Maltey, Matthias Meulien, Marc Mezzarobba, Clément Pernet, et al.
Computational mathematics with SageMath. SIAM, 2018.

[7] Ricardo Sanfelice, David Copp, and Pablo Nanez. A toolbox for simulation of hybrid systems
in matlab/simulink: Hybrid equations (hyeq) toolbox. In Proceedings of the 16th international
conference on Hybrid systems: computation and control, pages 101–106, 2013.

[8] Paolo Zuliani, André Platzer, and Edmund M Clarke. Bayesian statistical model checking with
application to simulink/stateflow verification. In Proceedings of the 13th ACM international con-
ference on Hybrid systems: computation and control, pages 243–252, 2010.

[9] Thomas A Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. Hytech: A model checker for hybrid
systems. International Journal on Software Tools for Technology Transfer, 1(1-2):110–122, 1997.

[10] Goran Frehse. Phaver: Algorithmic verification of hybrid systems past hytech. In International
workshop on hybrid systems: computation and control, pages 258–273. Springer, 2005.

[11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel,
Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. Spaceex: Scalable verification
of hybrid systems. In International Conference on Computer Aided Verification, pages 379–395.
Springer, 2011.

[12] André Platzer. Differential dynamic logic for hybrid systems. Journal of Automated Reasoning,
41(2):143–189, 2008.

[13] Zhou Chaochen, Wang Ji, and Anders P Ravn. A formal description of hybrid systems. In
International Hybrid Systems Workshop, pages 511–530. Springer, 1995.

[14] Wen Su, Jean-Raymond Abrial, and Huibiao Zhu. Formalizing Hybrid Systems with Event-B and
the Rodin Platform. Science of Computer Programming, 94:164–202, 2014.

[15] DISCONT ANR Project. https://discont.loria.fr.

[16] Guillaume Dupont, Yamine Aı̈t-Ameur, Marc Pantel, and Neeraj Kumar Singh. Proof-Based
Approach to Hybrid Systems Development: Dynamic Logic and Event-B. In Michael Butler,
Alexander Raschke, Thai Son Hoang, and Klaus Reichl, editors, Abstract State Machines, Alloy,
B, TLA, VDM, and Z, pages 155–170, Cham, 2018. Springer International Publishing.

7

https://discont.loria.fr

	Summary
	Résumé
	Acknowledgement
	Introduction
	Context
	Cyber-Physical Systems (CPSs)
	Hybrid Systems
	Ordinary Differential Equations (ODEs)
	Hybrid Automata
	Hybrid Programs (HPs)
	The Event-B Method
	Refinement
	Modeling
	Proof obligations

	Computer Algebra Systems (CASs)
	Conclusion

	State Of Art
	Model Checking-Based Approaches
	Hytech
	SpaceEx
	FLOW*
	dReach/dReal
	Discussion

	Proof-Based Approaches
	Differential Dynamic Logic dL
	Differential Refinement Logic dRL
	Parallelism and Modular Proof in Differential Dynamic Logic
	Hybrid CSP and Hybrid Chi
	Modeling and Verifying Hybrid Systems with Isabelle/HOL
	Modeling and Verifying Hybrid Systems with Coq and Coquelicot
	Discussion

	Event-B Based Approaches
	A Formal Approach for Correct-by-Construction System Substitution
	A Correct-by-Construction Design of Hybrid Systems in Event-B
	Modeling and Refining Hybrid Systems in Event-B
	A Refinement Strategy for Hybrid System Design
	Hybrid Event-B
	Discussion

	Interfacing Theorem Provers With Computer Algebra Systems
	An Extensible Ad-Hoc Interface between Lean and Mathematica
	An Interface between Isabelle and Maple
	Discussion

	Conclusion

	Case Studies
	The Stop Sign Case Study
	Modeling the Stop Sign Using Hybrid Automata
	Modeling the Stop Sign Using Hybrid Programs

	The Water Tank Case Study
	Modeling the Water Tank Using Hybrid Automata
	Modeling the Water Tank Using Hybrid Programs

	The Smart Heating Case Study
	Modeling the Smart Heating Using Hybrid Automata
	Modeling the Smart Heating Using Hybrid Programs

	The Inverted Pendulum Case Study
	Conclusion

	Modeling and Proving Hybrid Systems in Event-B
	Structure of the Generic Models
	Preliminary for Modeling the Generic Models
	Theories for Modeling Real Numbers in Event-B
	Theories for Modeling Differential Equations in Event-B

	Model ContSystem
	Context ContSystem_Ctx
	Machine ContSystem_M

	Event and TimeTriggered Models
	Generic EventTriggered Model
	Generic TimeTriggered Model
	Modeling the Safety Properties

	Correctness of the Generic Models
	Conclusion

	Instantiating the Generic Approach
	Instantiation from the ContSystem Level
	Instantiating the Generic ContSystem Model
	Instantiating the Generic EventTriggered Model
	Instantiating the Generic TimeTriggered Model

	Instantiation from the EventTriggered Level
	Instantiating the Generic EventTriggered Context
	Instantiating the Generic EventTriggered Machine

	Discussion
	Conclusion

	Interfacing EVENT-B with SAGEMATH
	Solving Linear ODEs in Event-B
	Context Desolve_Ctx
	Machine TimeTriggered_desolve_M
	Correctness of the specification
	Instantiating the Generic TimeTriggeredDesolve Model

	A tool for supporting the approach
	The general process
	Calling SageMath from Rodin (Step1)
	Solving ODEs in SageMath (Step1' and Step2)
	Using SageMath Results in Rodin (Step3)

	Solving Nonlinear ODEs in Event-B
	The Generic Approach
	Choosing the Interval [t1,t2]
	Discussion

	Conclusion

	Application
	Stop Sign Models
	Stop Sign EventTriggered Model
	Stop Sign TimeTriggered Model
	Correctness of the Specification

	Water Tank Models
	Abstract Water Tank Model
	Water Tank EventTriggered Model
	Water Tank TimeTriggered Model
	Correctness of the Specification

	Discussion on the proof activity
	The Smart Heating System Models
	Context Heater_Ctx
	Machine Heater_M
	Correctness of the specification

	Modeling NonLinear Case Studies
	Conclusion

	Conclusion
	Contribution
	Future Work

	Appendices
	Generic Models
	Context ContSystem_Ctx
	Machine ContSystem_M
	Context EventTriggered_Ctx
	Machine EventTriggered_M
	Context TimeTriggered_Ctx
	Machine TimeTriggered_M

	Appendices
	Stop Sign Models
	Context ContSystem_Ctx
	Context Thoerems
	Machine ContSystem_M
	Context EventTriggered_Ctx
	Machine EventTriggered_M
	Context Car_Event_Ctx
	Machine Car_Event_M
	Context Car_Time_Ctx
	Machine Car_Time_M

	Appendices
	Water Tank Models
	Context ContSystem_Ctx
	Machine ContSystem_M
	Context Abstract_Tank_Ctx
	Machine Abstract_Tank_M
	Context Tank_Event_Ctx
	Machine Tank_Event_M
	Context Tank_Time_Ctx
	Machine Tank_Time_M

	Appendices
	Smart Heating Models
	Context ContSystem_Ctx
	Context Thoerems
	Machine ContSystem_M
	Context EventTriggered_Ctx
	Machine EventTriggered_M
	Context TimeTriggered_Ctx
	Machine TimeTriggered_M
	Context Desolve
	TimeTriggered_desolve_M
	CONTEXT Heater_Ctx
	Machine Heater_M

	Appendices
	User Manual for the Plugin SAGEMATH
	Introduction
	Motivations
	Contribution
	Approche générique pour la modélisation de systèmes hybrides
	Modèle ContSystem
	Modèle EventTriggered
	Modèle TimeTriggered

	Interfacer Rodin avec SageMath
	Le processus général du plug-in SageMath

	Conclusion

