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J’ai grandement bénéficié de sa rigueur d’analyse et de son attention portée à la
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Enfin, ces années au LKB auraient été bien mornes sans la présence de Federico,
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Introduction

The broad success of statistical mechanics, covering both classical and quantum
systems, low- and high-energy physics, should not obscure the fact that fundamental
questions of the field remain unanswered or lack a unified description. At the
core of these frontiers is the notion of ergodicity, which refers to the ability of a
classical system to dynamically explore its configuration space in a uniform way.
Classically, this property is a consequence of chaos, defined as the exponential
sensitivity to initial conditions. Ergodicity, extended to the quantum realm, is a
multifaceted concept that embraces two seemingly distant topics addressed in this
thesis: relaxation of isolated systems (Chapters 1-3) and transport in periodically
driven models (Chapters 4-5).

Isolated quantum systems A typical problem related to ergodicity is the re-
laxation of quantum systems that are not in contact with an environment. At late
times, ergodic systems are expected to reach some stationary state of maximal Von
Neumann entropy, where almost all the information about initial conditions is lost.
This statement is non-trivial, because it seems to contradict the structure of unitary
time evolution, that preserves the inner product between any two initial vectors. In
the past decades, the eigenstate thermalization hypothesis (ETH) [1, 2] has emerged
as the main paradigm to overcome this issue. The ETH is a conjecture on the ma-
trix elements of local observables for “generic” Hamiltonians. Loosely speaking, it
postulates that the eigenstates found within the bulk of the spectrum are thermal,
in the sense that they can be described by a Gibbs ensemble [3, 4]. Due to the
propagation of entanglement, it is consequently not possible to recover information
about the initial conditions without a global measurement [5], generally beyond the
reach of experiments. For a given small subregion that can be probed experimen-
tally, the entire system acts like a bath, and therefore an external reservoir is not
needed to define the intensive quantities (temperature, chemical potential, and so
on) that characterize the Gibbs ensembles. It is worth highlighting that the ETH
is believed to rely on random matrix theory (RMT) [6, 7], although this remains
largely unproven [8]. More precisely, isolated quantum systems with discrete spec-
tra are ergodic if their spectral properties (or their dynamical correlation functions)
can be described by those of an ensemble of identical and fictitious systems (random
matrices) that are equiprobable. These random matrices are generated by imposing
the independence of their random coefficients, under the constraint of the system’s
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symmetries.
In parallel, systems escaping ergodicity, even slightly, are also of general interest,

as they provide a way to protect information over time. A first class of such systems
is composed of integrable models [9–19], that possess an extensive set of conserved
quantities, preventing the loss of memory of the initial state. Importantly, the
lack of thermalization of these systems is not incompatible with the concept of
“equilibration” [20], in the sense that a relaxation towards a particular state is
still possible. Indeed, local observables of integrable models can relax towards
generalized Gibbs ensembles (GGE) [21, 22] that take into account the additional
conserved quantities due to integrability. The case of near-integrable quantum
models, as explored experimentally in the famous quantum Newton’s cradle [23],
provides an intermediate scenario where a long-lasting nonequilibrium state is first
reached, a regime named “prethermalization” that can be characterized by the
GGE, before the system eventually relaxes to the ordinary Gibbs ensemble, due to
the small non-integrable part of the Hamiltonian. Another illustration of deviations
from ergodicity is given by the many-body localized phase [5, 24, 25], which has
been described as an Anderson-like insulator in the presence of interactions and
strong disorder, and for which all the eigenstates are nonergodic. Finally, the study
of so-called quantum many-body scars [26–29], recently triggered by an experiment
on a chain of Rydberg atoms [30], represents a weak ergodicity breaking scenario.
In this case, only a few eigenstates of the Hamiltonian are nonergodic, so that initial
conditions chosen in the corresponding subspace can lead to nonthermal dynamics.

With regard to the relaxation of isolated quantum systems, ultracold atoms
experiments [31, 32] serve as both a means and an end. Thanks to this plat-
form, one-dimensional (1D) Hamiltonians, which had long been considered a purely
academic pursuit despite the abundance of theoretical works on integrability and
the wealth of numerical methods, could be probed experimentally [23, 33–35]. In
higher dimensions, a new generation of experiments has also appeared, exploring,
e.g., the relaxation dynamics of cold-atomic gases in the strong-interaction limit
[36, 37] or the emergence of universal scaling laws for quenches in the vicinity
of the condensation transition in three dimensions [38, 39]. Concomitantly, the-
oretical developments based on quantum kinetic approaches have been proposed
to describe the nonequilibrium evolution of three-dimensional (3D) quantum gases
toward thermalization [40–43]. In comparison, the case of two-dimensional (2D)
nonequilibrium Bose gases has so far received less attention, although more and
more accurate experiments of nonequilibrium physics have been performed with 2D
quantum gases [44–46]. One of the aims of this thesis (Chapters 1-3) is precisely to
fill this gap. Different from 3D Bose gases, only superfluid quasi-condensates with
quasi-long-range order exist for ultracold bosons in two dimensions, which requires
a special treatment of phase fluctuations [47–49]. 2D Bose gases also experience an
interaction-driven Kosterlitz-Thouless transition, around which the dynamics ex-
hibits specific temporal features [45, 50, 51], which will not be considered in this
thesis.
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Periodically driven problem As discussed in the previous case of autonomous
Hamiltonians, quantum ergodicity is often tied to the ETH’s validity, or to the onset
of thermalization in a nonequilibrium situation. However, in a generic periodically
driven problem, the energy is not conserved, and, consequently, neither the concept
of thermalization nor the standard formulation of the ETH is applicable. For suffi-
ciently simple periodically driven models, characterized by a discrete spectrum and
a time-periodic Hamiltonian (i.e., Floquet systems), quantum ergodicity hinges on
random matrix theory [52, 53]. On the other hand, for periodically driven interact-
ing Bose gases that are the focus of Chapters 4-5, (i) the spectrum of excitations
is continuous, (ii) the mean-field nonlinear self-interaction is typically aperiodic, so
that the relevance of RMT in this context is not established.

On the other hand, ergodicity in periodically driven systems can also be ap-
proached from the point of view of transport. This connection has been extensively
explored since the introduction of the celebrated standard map by Chirikov [54, 55],
a paradigmatic model of classical chaos, which displays diffusive behavior in mo-
mentum space. In other words, the momentum variance of the standard map grows
linearly in time, similarly to a random walk process [56]. The quantization of the
standard map, known as the “quantum kicked rotor”, has led to the discovery of
dynamical localization [57–59], a spectacular consequence of quantum interferences
that completely inhibit diffusion, resulting in a saturation of the momentum vari-
ance in time. From this perspective, transport properties can be used to distinguish
between ergodic (e.g., diffusive) or non-ergodic (e.g., localized) behaviors of period-
ically driven systems. More recently, Bose gases with periodically kicked repulsive
interactions, a system known as the Gross-Pitaevskii map, were shown to exhibit
strong ergodic features characterized by an exponential increase of the momentum
variance [60–62]. Even more surprisingly, in the case of attractive interactions, this
model was also demonstrated to support solitonic solutions [63] for which the mo-
mentum variance remains equal to its initial value, a strongly non-ergodic behavior.
A more thorough theoretical analysis of the Gross-Pitaevskii map is the second ob-
jective of this thesis. As was already mentioned, an important aspect of all these
1D models is their possible implementation in cold atoms setups [64, 65].

Outline of the thesis The goals of this thesis are (i) to develop the suitable
framework for describing the process of thermalization in a 2D isolated Bose gas with
weak repulsive interactions, (ii) to apply such framework to concrete experimental
protocols, and (iii) to explore the mechanisms of transport in a realistic driven 1D
Bose gas with kicked interactions.

In the first chapter, we give a concise overview of the existing research on 2D
isolated Bose gases, with emphasis on their nonequilibrium dynamics. To illustrate
this, we discuss a few quench experiments that serve as motivation for our work.
Then, in Chapter 2, we construct a general Keldysh field theory allowing us to
describe the nonequilibrium quench dynamics of uniform 2D Bose gases up to their
final thermalization. In particular, this approach naturally reveals the separation
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of time scales between fast coherent phenomena occurring at short times, such
as prethermalization, and slow relaxation mechanisms driving the gas to its final
thermal state. This formalism is then applied to a realistic quench scenario in the
first part of Chapter 3, where the time-dependence of concrete observables (the
spatial coherence function and the structure factor of the Bose gas) are computed.
In the second part of this chapter, we also devise a self-consistent extension of our
formalism in order to probe the deep infrared regime of 2D Bose gases where the
perturbative approach could be insufficient (Sec. 3.2). This leads us to propose
novel predictions for the phonon relaxation rates of 2D Bose gases.

In the second part of this thesis (Chapter 4), we discuss the case of a 1D Bose
gas subjected to a periodic sequence of infinitely short “kicks” of the interaction
strength, the so-called “Gross-Pitaevskii map” [62]. In this system, we recover and
extend existing results on the exponential spreading of wave packets. Starting from
these results, we then introduce in Chapter 5 a more realistic model where the
interaction kicks are of finite width. By means of both numerical and theoretical
arguments, we show that this apparently innocent modification significantly alters
the transport properties of the Gross-Pitaevskii map by turning the exponential
spreading into a sub-diffusive one, with a potentially substantial impact on experi-
ments. The main results and perspectives of the thesis are finally discussed in the
conclusion, and a few technical details are collected in five appendices.

Many of the results presented in this thesis have been published in the following
papers:

– C. Duval, D. Delande, and N. Cherroret, “Subdiffusion in wave packets with
periodically kicked interactions,” Phys. Rev. A, vol. 105, p. 033309, 2022.

– C. Duval and N. Cherroret, “Quantum kinetics of quenched two-dimensional
Bose superfluids,” Phys. Rev. A, vol. 107, p. 043305, 2023.



Chapter 1

Isolated two-dimensional Bose
gases: From equilibrium to
nonequilibrium

In this chapter, we introduce the physical system that will be studied in the next
two chapters, namely a uniform and isolated two-dimensional (2D) gas of bosons
with repulsive interactions, and review some of its equilibrium properties. In par-
ticular, we introduce the two-point spatial correlation function G1, and discuss how
it scales across the Berezinskii-Kosterlitz-Thouless (BKT) transition [66, 67]. We
also comment on the interest of using “hydrodynamic” variables to describe this
system, at least at temperatures well below the critical temperature.

Next, we move into the realm of nonequilibrium 2D gases. To illustrate their
physics, our goal is not to provide an exhaustive analysis but rather choose to
describe a few recent “quench” experiments. The first one, carried in Cheng Chin
group in 2013 [44], involves a 2D Bose superfluid exhibiting coherent oscillations
of its time-dependent structure factor following an interaction quench. The second
one, conducted within the group of Quentin Glorieux in Paris, investigates the
paraxial propagation of a laser through a cavityless, nonlinear medium consisting of
an atomic vapor heated to over T ∼ 400 K [68]. In this context, a phenomenon called
“pre-thermalization” was observed in the (time-dependent) coherence function G1.
Analogously to the Cheng Chin experiment, this “quantum fluids of light” platform
effectively allows to study nonequilibrium 2D Bose gases at the mean-field level,
despite the ten orders of magnitude in energy that separate the two setups.1 The
last experiment, finally, was performed in Jean Dalibard group in 2018 [69] and
explores the propagation of density waves in a plane of rubidium atoms cooled
down to the superfluid regime. By probing long enough times, this experiment
showed evidence for a mechanism of phonon relaxation, eventually responsible for
the thermalization of the Bose gas.

1Temperatures of the degenerate cesium gas used in Ref. [44] are of the order of ∼ 10 nK, to
be compared with the ∼ 400 K of the rubidium vapor of Ref. [68].
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At a theoretical level, an objective of this chapter is also to lay the foundations
of a nonequilibrium field theory that can deal with generic dynamical quantum
problems such as those mentioned above, and that will be detailed in the next
chapter. As a first step in this direction, in the last part of the chapter we dis-
cuss a couple of methods used to tackle nonequilibrium problems with quantum
gases. First, the “Fermi golden rule” (FGR), which can be combined with detailed
balance arguments to derive the quantum analogue of a Boltzmann equation for
superfluids. The FGR is a common way to implement perturbation theory to study
the relaxation of degenerate quantum gases towards Gibbs ensembles [70–76], even
though its scope is limited to small deviations from equilibrium; for some quantum
quenches, the initial state might not fulfill the required conditions for its applica-
tion. Alternatively, the direct use of Heisenberg equations of motion (cf. [77] and
references therein) can be used to probe the short-time dynamics of a weakly in-
teracting Bose gas. This technique can be employed far from equilibrium, but in
general it is not suitable for describing later times where divergences occur, unless
educated approximations are made [41].

1.1 2D Bose gases at equilibrium
1.1.1 Microscopic Hamiltonian
Our starting point is the many-body Hamiltonian of a uniform, low-temperature,
2D gas of bosons with repulsive contact interactions,

Ĥ =
∫
d2r

(
− 1

2mψ̂†∆rψ̂ + g

2 ψ̂
†ψ̂†ψ̂ψ̂

)
, (1.1)

where the field ψ̂ satisfies the bosonic canonical commutation rule [ψ̂(r), ψ̂†(r′)] =
δ(r − r′) and we have set ℏ = 1. In Eq. (1.1), we have taken the thermodynamic
limit, i.e., the number of particles and the size of the system are considered infinite,
while the density of the gas ρ remains finite. The repulsive interaction strength
g > 0 is linked to the 2D scattering length as by the relation [78–80]

g = 4π
m

1
log[1/(ρ0a2

s)]
, (1.2)

where ρ0 is the mean density of particles.2 Throughout this thesis, we consider
the dilute gas limit for which ρ0a

2
s ≪ 1. In this regime, the coupling constant g

is significantly smaller than 4π/m. Alternatively, in terms of the healing length
ξ ≡

√
1/4gρ0m, the dilute limit corresponds to ρ0ξ

2 ≫ 1.
In two dimensions, the Mermin-Wagner-Hohenberg theorem [83, 84] states the

impossibility of continuous symmetry breaking at finite temperature for short-range
2In all rigor, the coupling constant g in Eq. (1.1) refers to the bare interaction, whereas Eq. (1.2)

corresponds to the T -matrix renormalization of the interaction [81, 82].
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interactions. In the specific case of a 2D Bose gas, this entails the absence of Bose-
Einstein condensation for positive temperatures T > 0.3 Indeed, the phase fluctua-
tions of the field ψ̂ destroy long-range order [47], so that the two-point correlation
function G1(r) ≡ ⟨ψ̂†(0)ψ̂(r)⟩ always vanishes in the limit r → ∞. However, the
repulsive interactions tend to freeze the density fluctuations of the gas. Hence, a
state of “quasi long-range order” can arise at very low temperatures, referred to as
quasi-condensation [49], for which G1 decays algebraically [65]

G1(r) ∼
(
λ

|r|

) 1
ρ0λ2

, (1.3)

with λ =
√

2π/(mT ) the thermal de Broglie wavelength. Quasi-condensed Bose
gases are in general also superfluids (see Sec. 1.1.4).

The equilibrium law (1.3) is only valid at sufficiently small temperatures. On
the other hand, when the total energy of the system is large enough, the G1 function
decays exponentially:

G1(r) ∼ exp(−|r|/L). (1.4)
The two regimes characterized by Eqs. (1.3) and (1.4) are separated by a topological
phase transition, known as the Berezinskii-Kosterlitz-Thouless (BKT) transition
[66, 67, 85]. In the “normal” phase, where Eq. (1.4) applies, the phase coherence of
the gas is destroyed by the proliferation of topological excitations (isolated vortices).
We will not deal with the normal phase in this thesis nor the approach to the BKT
transition. Instead, we will focus on the low temperature limit where quantum
degeneracy is reached, i.e., ρ0λ

2 ≫ 1.

1.1.2 Hydrodynamic Hamiltonian
In dimension three, the properties of low-lying excitations can be understood from
Bogoliubov theory [65, 86], which consists in expanding the field operator ψ̂ around
the condensate wave function Ψc = √

ρce
iθc as ψ̂(r) = Ψc+δψ̂(r), treating δψ̂(r) as

a small perturbation. However, for two-dimensional Bose gases at low temperatures,
such an expansion is no longer adequate. Indeed, unlike the spatially homogeneous
condensate phase θc, the phase of the field ψ̂ is expected to display variations at the
scale of the de Broglie wavelength λ [as indicated by Eq. (1.3)], consistently with the
Mermin-Wagner-Hohenberg theorem.4 Instead, collective excitations of the Bose
gas are most conveniently described within a quantum hydrodynamic formalism,
where the field operator is expressed in the density-phase representation [49, 65]

ψ̂(r) = eiθ̂(r)
√
ρ̂(r), (1.5)

3Notable exceptions, distinct from the physical system described here, include finite-size sys-
tems and trapped configurations, for which condensation can occur [65]. It is also allowed at zero
temperature [47, 78].

4From a perturbation theory point of view, the use of the “Cartesian” coordinates of the
microscopic Hamiltonian (1.1) leads to the infrared divergence of the longitudinal propagator [87].
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with the commutation rule [ρ̂(r), θ̂(r′)] = iδ(r−r′). In a 2D Bose gas, density fluc-
tuations and phase gradients are expected to be small [47–49] (see below Sec. 1.1.3
for specific requirements). By writing ρ̂(r) = ρ0 + δρ̂(r), we can then expand the
Hamiltonian (1.1) with respect to δρ̂ and ∇rθ̂. This leads to [48, 88, 89]

Ĥ =
∫
dr
[
ρ0

2m(∇rθ̂)2 + g

2(δρ̂)2 + 1
8mρ0

(∇rδρ̂)2 + 1
2m(∇rθ̂)δρ̂(∇rθ̂)

]
, (1.6)

where we have redefined the energy scale Ĥ → Ĥ − gρ0/2 and we have dropped a
cubic term ∝ (∇rδρ̂)2δρ̂, negligible at low energy [48, 88].

1.1.3 Conditions of validity
Much like microscopic fields ψ̂(r), ψ̂†(r), the density-phase operators of the hydro-
dynamic language are plagued by ultraviolet divergences [49]. In all rigor, it is not
possible to find two operators ρ̂(r), θ̂(r), defined on the whole two-dimensional po-
sition space, which simultaneously satisfy Eq. (1.5) and the commutation relation
[ρ̂(r), θ̂(r′)] = iδ(r − r′). Mora and Castin showed in Ref. [49] that it was possible
to ignore this issue by discretizing space, provided the vacuum state of a r-centered
box can be neglected. Therefore, based on their findings, the continuous r-space
must be seen as a grid of characteristic scale ℓ, each unit cell containing a large num-
ber ρ0ℓ

2 ≫ 1 of physical particles. The resulting coarse-grain average amounts to
introducing an ultraviolet cutoff in momentum space at q ∼ 1/ℓ, which was already
discussed by Popov [47, 48]. Strictly speaking, integro-differential operators in Eq.
(1.6) should be replaced by their discrete counterpart, and the thermodynamic limit
should be carefully taken at the end of the calculations. In practice, because the
excitations we will typically consider have a phononic nature (cf. Chapter 3), a
reasonable choice for the size of the hydrodynamic cell is ℓ ∼ ξ. The hydrodynamic
treatment (1.5) can thus be considered valid as soon as ρ0ξ

2 ≫ 1 (dilute regime)
and ρ0λ

2 ≫ 1 (degenerate regime) [49].

1.1.4 Bogoliubov transformation
Let us now introduce the Bogoliubov theory based on the hydrodynamic Hamilto-
nian (1.6). The latter is the sum of a quadratic part Ĥ0 and a cubic interaction
term Ĥint. The quadratic part is non-diagonal, but can be diagonalized by means
of a Bogoliubov transformation [90]. To proceed, we first rewrite Eq. (1.6) in
momentum space, introducing the Fourier variables

θ̂q ≡ ρ0

∫
dre−iq·rθ̂(r), δρ̂q ≡

∫
dre−iq·rρ̂(r). (1.7)

Importantly, the above Fourier expansion of the phase θ̂(r) neglects vortices [91].
Indeed, the speed of the fluid is proportional to ∇rθ̂q ∝ q · θ̂q, and hence excitations
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orthogonal to q are not considered here, which is a fair approximation well below
the BKT transition. The quadratic part of the Hamiltonian becomes

Ĥ0 =
∫
q

[
q2

2mθ̂qθ̂−q +
(
gρ0

2 + q2

8m

)
δρ̂qδρ̂−q

]
, (1.8)

where we have introduced the short-hand notation
∫
q ≡

∫
d2q/[(2π)2ρ0]. To diago-

nalize Ĥ0, we introduce new operators âq and â†
q, defined through the Bogoliubov

transformation

δρ̂q = −
√
Eq

ϵq
(â†

q + â−q), (1.9)

θ̂q = i

2

√
ϵq
Eq

(â†
q − â−q), (1.10)

where Eq ≡ q2/(2m) and ϵq ≡
√
Eq (Eq + 2gρ0) is the well-known Bogoliubov

dispersion relation. Inserting this basis change into Eq. (1.8), we obtain

Ĥ0 =
∫
q
ϵq
(
â†
qâq + 1/2

)
, (1.11)

which describes a gas of free quasiparticles with energy dispersion ϵq. At momenta
|q| ≪ 1/ξ, the dispersion relation becomes phononic:

ϵq ≃ c|q|, (1.12)

where c =
√
gρ0/m is the speed of sound. This implies, in particular, that according

to Landau’s criterion for superfluidity minq ϵq/|q| > 0 [65], the gas of bosons (1.1)
is a superfluid. Unless stated otherwise, in the following we will mainly focus of the
low-energy regime where Eq. (1.12) holds.

In the next chapter, we will see that in a nonequilibrium context, the description
of thermalization in an isolated quantum gas requires to account for interactions
between the quasiparticles. These interactions are encoded in the cubic term of the
Hamiltonian (1.6). In terms of the Bogoliubov operators âq and â†

q, this term reads

Ĥint =
∫
p,q

Λp,q

(
âpâqâ

†
p+q + h.c.

)
, (1.13)

where, in the phononic regime |q| ≪ 1/ξ, the vertex function Λp,q is given by

Λp,q ≃ 3
4m

√
gρ0

2c
√

|p| |q| |p + q|. (1.14)

The cubic interaction (1.13) describes a three-phonon scattering process with mo-
mentum conservation, which includes the well-known Landau and Beliaev processes
[65, 88, 92–94]. Note that in two dimensions, such interaction process can also be
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resonant, i.e., there exists a range of p, q-values satisfying ϵp + ϵq = ϵp+q and mo-
mentum conservation [95, 96]. As will be shown in Sec. 2.2.3, when the excitation
spectrum is purely linear this property leads to a divergence of the self-energy, which
makes this process the dominant one for the dynamics. For this reason, when writ-
ing Eq. (1.13) we have dropped interaction terms of the type âpâqâ−p−q, which
cannot be resonant and are therefore subdominant.

1.2 2D Bose gases out of equilibrium
In recent years, considerable efforts have been devoted to understanding the out-of-
equilibrium dynamics of quantum gases. In practice, a possible protocol to initiate
such time evolution consists in performing a “quantum quench” [97–105], i.e., start-
ing from the system prepared in a thermal state, one abruptly changes a parameter
of the Hamiltonian. If the quench is weak enough, the short-time dynamics can be
understood from a coherent theory, where the Bogoliubov modes are assumed to be
non-interacting and therefore evolve as âq,t = âq,0e

−iϵqt. This description amounts
to approximating the Hamiltonian (1.6) by its quadratic part Ĥ0. In general, how-
ever, at later times, the quasiparticles interactions, characterized by Ĥint, cannot
be dismissed, prompting the need for more elaborate theoretical frameworks. To
illustrate these concepts in two dimensions, in this section we choose to present
three recent experiments of nonequilibrium physics with 2D Bose gases.

1.2.1 Structure factor oscillations in a 2D superfluid
In 2013, the authors of Ref. [44] cooled down cesium atoms to the degenerate
regime to produce a uniform, weakly interacting, 2D Bose superfluid. By means of
a Feshbach resonance [106], they engineered a quench of the interaction coupling
constant g [cf. Fig. 1.1(a)], and measured the subsequent evolution of the time-
dependent structure factor

Sq,τ ≡ ⟨δρ̂q,τδρ̂−q,τ ⟩, (1.15)
which is the Fourier transform of the spatial density-density correlator of the Bose
gas.5 It was observed that, at short times after the quench, the structure factor
oscillates with a period proportional to 1/(2ϵq), as illustrated in Fig. 1.1(c). This
phenomenon was interpreted as an interference between (non-interacting) quasi-
particles emitted at the quench, and correspondingly explained in terms of the
Bogoliubov theory mentioned in the previous section. The corresponding temporal
regime is dubbed prethermal, here in the sense that it precedes the full gas thermal-
ization expected at long times. We will describe this problem more quantitatively
in Sec. 1.3.2, as well as in the next chapter.

As a remark, such oscillations of Sq,τ , here observed in the frame of a cold-
atom experiment, turn out to be analogous to the famous Sakharov oscillations,

5We refer to Sec. 3.1.5 for additional details on Sq,τ , such as its explicit expression (3.13).
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(a)

(b)

(c)

Figure 1.1: (a) Schematic quench protocol used in Ref. [44]. A 2D ultracold Bose
gas is prepared in an equilibrium state with coupling constant gi. The interaction
strength is then abruptly switched on to a final value gf , driving the system out
of equilibrium. (b) The spatial density fluctuations δn ≡ |δρ̂| are imaged in situ
during the dynamics by an absorption technique described in Ref. [108]. (c) For a
fixed momentum of the order ∼ 1/ξ, the structure factor (1.15) exhibits temporal
oscillations. The plain lines are numerically adjusted to extract the period of the
oscillations.

a distinctive anisotropic pattern in the cosmic microwave background radiation,
which originates from the interference between acoustic waves emitted in the early
stages of the universe [107].

1.2.2 Interaction quench in a 2D fluid of light

The physics of 2D isolated Bose superfluids can also be addressed in optics using
“quantum fluids of light” in “propagating geometries”, see Fig. 1.2(a) for a sketch
of the experimental setup. This type of experimental platform, which has gained
popularity over the past decade [109], is based on the paraxial propagation of a
laser of central wavelength 2π/k0 through a lossless, nonlinear material of refractive
index n and Kerr susceptibility χ(3). In practice, such systems are realized using
photorefractive crystals [110, 111] or resonant hot atomic vapors [68, 112]. Indeed,
in the paraxial approximation the evolution of the electric field envelope6 ϕ of the

6The scalar electric field at time t in the space of coordinates (r, z) = (x, y, z) is given by
E(r, z, t) = Re

[
ϕ(r, z, t)eik0z−iωt

]
, where ω is the carrier frequency.
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(a)
L

(b)

G
1

Figure 1.2: (a) Schematic representation of a fluid-of-light experiment in the prop-
agating geometry, from Ref. [114]. L is the length of the cell along the z-axis and
represents the effective time. (b) Plot of the measured first-order spatial correlation
function G1(∆r) in a two-dimensional fluid of light, extracted from Ref. [68]. Thick
colored curves correspond to experimental data at initial “time” z = 0 (blue, input
state) and final “time” z = L (brown, output state). Thin color curves and light
colored data are raw experimental data, prior to various data processing stages.
The red arrow indicates the “light cone” boundary ∆r = cL, where c is the speed
of sound of the collective excitations. The black dotted line highlights the algebraic
decay of the G1 function inside the light cone (cf. discussion of Sec. 1.3.3).

laser obeys a Gross-Pitaevskii-like equation [113]:

i∂zϕ =
(

− 1
2k0

∆r − 3k0χ
(3)

8n2 |ϕ|2
)
ϕ, (1.16)

where r ≡ (x, y) denotes the transverse vector and z refers to the longitudinal
axis of the nonlinear medium represented in Fig. 1.2(a). By analogy with the
mean-field description of the 2D Bose gas, the direction z plays here the role of
time, −3k0χ

(3)/(8n2) is the effective coupling parameter g (which can be positive
or negative), while the beam wave number k0 serves as an analog of the particle’s
mass m. Therefore, the light beam entering the medium simulates an interaction
quench of a Bose gas from g = 0 to g > 0.

In the recent experiment [68], which involved a hot rubidium vapor, the authors
sent into the atomic cell a fluctuating beam (see Sec. 1.3.2 for details) and measured
the resulting spatial correlation function G1(∆r, z) at the exit of the atomic cell.
They observed an algebraic decay within a light cone [cf. Fig. 1.2(b)], confirming a
coherent theory previously developed in Ref. [113]. In the latter study, interactions
between quasiparticles are neglected and the collective excitations of the system
evolve harmonically, as in the Cheng Chin experiment. The dynamical behavior of
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the G1 function was thus also referred to as prethermalization. This terminology is
even more transparent here, since the algebraic decay of Fig. 1.2(b) resembles the
thermal law (1.3), albeit with a different exponent [113], cf. Sec. 1.3.2 below. In
fact, in both experiments, the emergence of a prethermalization regime is, in turn,
caused by the integrability of the underlying Bogoliubov Hamiltonian. Note that
the experiment [68] also put forward the existence of a nonequilibrium transition
from algebraic to exponential decay of the G1 function, analogously to Bose gases
at equilibrium. Such phenomenon was interpreted as a nonequilibrium precursor of
the BKT transition, expected to emerge at long enough time.

1.2.3 Sound propagation in a rubidium billiard

Figure 1.3: Experiment carried out in the “Rubidium group” at LKB (Collège de
France), extracted from Ref. [69]. (a) The experiment consists in first preparing an
inhomogeneous, boxed 2D superfluid with two flat components: the atomic density
n2D(x, y) above the dashed black line is three times lower than the density in the
rest of the box. (b) At initial time, external potentials are switched off and the
density dip propagates in the box with a velocity v close to the speed of sound
c =

√
gn2D/m given by Eq. (1.12). Here, the density dip is tracked by integrating

over x and subtracting the mean average density; the corresponding triangular fit
(black line) leads to v ≃ 0.94c [69]. The temperature of the gas relative to the
critical BKT temperature is T/Tc ≃ 0.37. For smaller temperatures, the ratio v/c
approaches one [see Fig. 3(a) of Ref. [69]].

In 2018, another type of experiment on a nonequilibrium Bose gas was conducted
in Jean Dalibard group at LKB [69] (see also [115]), where they confined a degen-
erate Bose gas of 87Rb atoms in a quasi-two-dimensional box with open boundary
conditions [116, 117]. While, in this setup, they were able to describe both sides
of the BKT transition, their nonequilibrium experimental protocol also allowed to



Chapter 1: Isolated 2D Bose gases: From equilibrium to nonequilibrium 22

explore the deep superfluid phase, where the temperature of the cloud is well below
the critical BKT temperature Tc (temperatures as low as T/Tc ≃ 0.2 were reached).

More precisely, by means of a repulsive potential, they created a subregion of
smaller density of particles [see Fig. 1.3(a)]. Once local equilibrium was established
within each subregion, the quench experiment consisted in switching off the external
potential. This allowed the system to relax into a state of uniform density, similarly
to the phenomenon encountered in a Joule expansion. For very small temperatures,
the density wave bounces several times off the walls, as demonstrated in Fig. 1.3 (b).
The resulting time oscillations of the excited modes amplitude Aq(t) in Fourier space
(cf. [69] for proper definitions of these modes) can again be understood from the
aforementioned coherent dynamics. Interestingly, at longer time scales it was also
observed that the envelop of Aq(t)/Aq(0) decays as e−Γqt/2, where Γq was shown to
be compatible with the 2D Landau damping rate first derived in Ref. [88]. This
relaxation mechanism results from the interactions between quasiparticles, encoded
in the Hamiltonian (1.13) and will be discussed at length in the next chapters.

1.3 Coherent dynamics
Under the dilute hypothesis ρ0ξ

2 ≫ 1, the Hamiltonian (1.6) can be approximated
by its integrable part Ĥ0 and diagonalized following the steps of Sec. 1.1.4. The
ensuing coherent dynamics is known exactly. In this section, we apply this method
to explain qualitatively some of the above experimental observations, in particular
the oscillations of the structure factor [Fig. 1.1(c)] and the behavior of the G1
function [Fig. 1.2(b)].

1.3.1 Harmonic evolution
The Bogoliubov modes arising from the diagonalization of Ĥ0 evolve harmonically,
i.e., as âq,t = âq,0e

−iϵqt. This evolution defines a coherent time scale τg ∼ 1/ϵq. In
other words, interactions between quasiparticles are neglected, although the quar-
tic term ψ̂†ψ̂†ψ̂ψ̂ describing interactions between physical particles is contained in
Ĥ0. At the core of the latter Hamiltonian’s integrability is the conservation of the
quasiparticle occupation numbers nq(t) = ⟨â†

q,tâq,t⟩, which are fixed by their initial
values nq(t = 0) ≡ n0

q. On the other hand, the expectation value of the destruction
of a pair of quasiparticles typically oscillates in time as:

⟨âq,tâ−q,t⟩ = ⟨âq,0â−q,0⟩e−2iϵqt ̸= 0. (1.17)

This is due to the creation of pairs of quasiparticles after the quench, cf. Ref. [118]
for an experimental characterization. A specific example of quench protocol will be
given in Sec. 3.1.1 of Chapter 3, as well as explicit expressions for, e.g., n0

q. The
oscillating exponential in Eq. (1.17) is the signature of interferences between the
counterpropagating quasiparticles. As will be demonstrated explicitly in Chapter 3,
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the above quadratic expectation values ⟨â†
q,tâq,t⟩ and ⟨âq,tâ−q,t⟩ are the building

blocks of the structure factor measured in the Cheng Chin experiment [44]. There-
fore, the oscillations presented in Fig. 1.1(c) directly emerge from Eq. (1.17). At
short enough times, the harmonic behavior of the density dip in Jean Dalibard
experiment has the same physical origin, despite the initial inhomogeneity of the
gas.

1.3.2 Prethermalization
A similar Bogoliubov approach was carried out by the authors of Ref. [113] to
compute the G1 function measured in the aforementioned fluid-of-light experi-
ment (Sec. 1.2.2), with the slight difference that, in this optical context, the dy-
namics is purely classical [i.e., governed by the nonlinear wave equation (1.16)].
This requires to adapt a little the formalism of Sec. 1.1.4 in the form of a classical-
statistical field theory. The precise connection between quantum classical field the-
ories will be addressed in Sec. 2.3.3; nevertheless, at this stage let us briefly mention
how to adapt the preceding arguments to fluids of light. In the optical experiment,
the quantum fields ψ̂, ψ̂† are replaced by their (commuting) classical counterparts
ϕ, ϕ∗. In this framework, the initial state designed in [68, 113] was the sum of a
uniform background and small spatial fluctuations modeled by a speckle field

ϕ(r, t = 0) ∝ √
ρ0 + ϵϕσ(r), (1.18)

up to a normalization constant. Here, ϵ ≪ 1 is the amplitude of the speckle field
ϕσ(r). The latter is a complex random variable with Gaussian correlations on the
scale σ ≫ ξ [113]. The quantum expectation value ⟨· · · ⟩ is here replaced by an
ensemble average over the random speckle field.

It was shown in Ref. [68, 113] that, after a few tens of the coherent time scale7

τg, the G1 function displays an algebraic decay for distances smaller than |∆r| = 2ct
[Fig. 1.2(b)]. Within the light cone, the prediction of Bogoliubov theory is

G1(σ ≪ |∆r| < 2ct, t/τg ≫ 1) ≃ ρ0e
ψ(1/2)α/2

(
4σ

|∆r|

)α
, (1.19)

where ψ(1/2) is the digamma function evaluated in 1/2 and

α = ϵ2σ2/2ξ2 (1.20)

is the power-law exponent. Interestingly, the law (1.19) takes the thermal form (1.3),
which also displays an algebraic decay in |∆r|, but with the exponent 1/(ρ0λ

2) ∼
mT/ρ0. Here, α depends on the initial conditions through ϵ and σ, which is rem-
iniscent of the underlying Hamiltonian’s integrability. Nevertheless, α is distinct

7From the estimate in Sec. 1.3.1, i.e., τg ∼ 1/ϵq, one obtains that τg ∼ 1/(gρ0) by using that
ϵq = c|q| and that the typical momentum is |q| ∼ 1/ξ.
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Figure 1.4: (a) Dynamical evolution of the two-point spatial correlation function
G1 for a fixed distance ∆r/σ = 10, with |∆r| ≡ ∆r. The solid curve is the
theoretical result given by Bogoliubov approach [cf. Eq. (2) of Ref. [113]]. In units
of the rescaled time, G1 exhibits a fast relaxation towards a “prethermal plateau”,
in the sense that it approaches the asymptotic value given by Eq. (1.19) (dotted
line). The discrepancy between the dotted and solid curves vanishes when ∆r/σ
increases. (b) Spreading of correlations, illustrated by the spacetime diagram of the
connected correlator (1.21). Information propagates at the speed of sound c, along
the light cone boundary given by t = ∆r/(2c)(dashed line). Outside of the light cone
(bottom right corner), the correlations are strongly suppressed, in agreement with
Lieb-Robinson bounds [120, 121]. In both subplots, the initial state is characterized
by ϵ = 0.07 and ξ/σ = 0.158.

from the thermal exponent given by Eq. (1.3) [68], indicating that the optical field
within the light cone is not described by a Gibbs ensemble. For all these reasons,
the fast equilibration process towards the above algebraic decay has been termed
prethermalization [33, 34, 119], i.e., it corresponds to the equilibration process of a
local observable taking place long before the true thermalization, when interactions
between quasiparticles can still be neglected. The local observable in question is
here given by the G1 function for a fixed spacing |∆r|. As shown in Fig. 1.4(a), it
rapidly reaches a long-lasting (prethermal) plateau, whose value is inferred from the
conserved quantities of the integrable part of the Hamiltonian, i.e., the occupation
numbers in the Bogoliubov basis.

1.3.3 Spreading of correlations
For larger distances |∆r| > 2ct, the two-point correlation function G1(∆r, t) =
⟨ϕ∗(0, t)ϕ(r, t)⟩ becomes independent of the spatial variable, as counterpropagating
quasiparticles separated by a distance |∆r| cannot travel faster than the speed of
sound c. By analogy with relativistic quantum theory, where information propaga-
tion is bounded by the speed of light, the spreading of correlations is more clearly
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represented in a spacetime diagram. For a better visualization of the “light cone”
(sound cone), we introduce the connected correlator

C(∆r, t) = ⟨ϕ∗(0, t)ϕ(r, t)⟩ − ⟨ϕ∗(0, t)⟩⟨ϕ(0, t)⟩, (1.21)

which can be equivalently rewritten as C(∆r, t) = g1(∆r, t)−g1(∆r → ∞, t). This
correlation function is represented in Fig. 1.4(b), obtained by solving the Bogoliubov
theory starting from the initial state (1.18) (see [113] for details). The connected
correlator C reveals a significant suppression of the correlations in the exterior
of the light cone, compatible with the long-known findings of Lieb and Robinson
[120, 121].

1.4 Thermalization
In the sound-wave experiment discussed in Sec. 1.2.3, we mentioned that a phe-
nomenon of damping was observed in the quasiparticle modes at long times. This
damping originates from collisions between quasiparticles, described by the Hamil-
tonian (1.13) and is, theorefore, beyond the scope of the Bogoliubov theory. In this
final section, we provide elementary considerations about the theoretical description
of these collisions, and the associated phenomenon of thermalization.

1.4.1 Quantum Boltzmann equation
The process of thermalization that establishes after the regime of coherent dynamics
is in general driven by interactions between quasiparticles [due to the term (1.13)
of the Hamiltonian], which makes the occupation number nq evolve as a function
of time. Here, we quickly explain how to study the relaxation rate ∂τnq under this
mechanism, which for weak interactions can be achieved in the simplest way by
using the Fermi’s golden rule, as done, for example, in Refs [93, 94]. A possible
decay process that can deplete nq is the absorption by a q-labeled phonon of another
excitation of momentum p to create a third quasiparticle of momentum p+q. This
mechanism is known as Landau damping. In Fock space, the matrix elements of
the creation and annihilation operators are ⟨nq − 1|âq|nq⟩ = ⟨nq|â†

q|nq − 1⟩ = √
nq,

so that the expectation value of the described scattering process is

|⟨nq − 1, np − 1, np+q + 1|âqâpâ
†
p+q|nq, np, np+q⟩|2 = nqnp(np+q + 1). (1.22)

Here, the +1 factor corresponds to spontaneous emission, while the cubic term
refers to stimulated emission. Alternatively, the state of occupation number nq can
gain quasiparticles from the hermitian conjugated process âp+qâ

†
pâ

†
q, with squared

matrix elements np+q(np + 1)(nq + 1). Therefore, the total decay rate given by
Fermi’s golden rule follows a detailed balance principle, where all processes scattered
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into the state q are counted with a positive sign, while processes scattered out are
subtracted:

∂τnq ∼
∫
p

Λ2
p,q δ(ϵp + ϵq − ϵq+p)

[
np+q(np + 1)(nq + 1) − nqnp(np+q + 1)

]
. (1.23)

In this formula, the Dirac δ imposes the conservation of energy. Furthermore,
it can be readily verified that the Bose equilibrium distribution nth

q = (eϵq/T −
1)−1 cancels out the right hand side of Eq. (1.23): this equation thus describes a
process of thermalization. The aim of the next chapter is precisely to give a more
systematic derivation of such kinetic equation, so that we will refrain here from
delving into a deeper analysis. However, let us provide a glimpse of what awaits us
in Sec (2.3.2). Upon injecting nq,τ = nth

q +δnq,τ and linearizing around δnq,τ , we find
an exponential relaxation towards equilibrium [cf. Eq. (2.77)]. The corresponding
inverse relaxation time, known as Landau damping rate, was first obtained in two
dimensions in Ref. [88]. This relaxation mechanism is precisely responsible for the
damping of the density oscillations observed in the experiment [69] and discussed
in Sec. 1.2.3.

Note that, at zero temperature, Landau damping becomes negligible, leading to
the emergence of an alternative relaxation mechanism. This mechanism involves
the disintegration of a phonon ϵq into two smaller quasiparticles, and is referred to
as Beliaev damping [65]. This process will be also discussed in the next chapter.

The arguments developed above give a simple physical interpretation of the
dynamics of the occupation number nq. The latter evolves in time similarly to
the one-particle distribution function of a classical gas governed by the Boltzmann
equation [122]. More precisely, it is controlled by a collision integral (1.23) that
enforces the detailed balance between scattering processes allowed by the conserva-
tion of energy. However, if the principle of detailed balance is a priori well suited
to describe the dynamics of distribution functions, it is not clear how it can be
generalized to observables such as, e.g., ⟨âq,tâ−q,t⟩.

1.4.2 Equation-of-motion theory
EOM theory covers a variety of techniques that apply to any observable [77, 123,
124]. The starting point of these approaches is the Heisenberg equation of motion

idtÔ = [Ô, Ĥ]. (1.24)

In general, the commutator in the right-hand side gives rise to operators that are
distinct from Ô. Thus, additional equations of motion must be derived to solve
Eq. (1.24), leading to an infinite hierarchy of coupled equations, equivalent to the full
many-body problem. In the Schrödinger picture, a closely related system of differen-
tial equations is known as the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY)
hierarchy [77] that tackles the dynamics of reduced density matrices.
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In principle, EOM theory can be employed in any basis, e.g., for microscopic
variables Ô ≡ ψ̂†, ψ̂, hydrodynamic ones Ô ≡ ρ̂, θ̂, etc. However, this approach is
most effective when implemented in a basis where the Hamiltonian is approximately
diagonal [125, 126] (assuming that such a basis exists). In the case of the 2D Bose
gas (1.1), the quasiparticles language (1.9) provides such weakly interacting frame-
work. In this basis, observables like the number operators nq are slowly varying
compared to the coherent time scale ∼ 1/ϵq, a property known as the separation of
time scales.

The full hierarchy resulting from Eq. (1.24), however, is plagued by the exponen-
tial complexity of the many-body problem. To obtain a closed differential system
that is numerically tractable, it is necessary to truncate the EOM hierarchy at a
given order. The first option is to neglect all terms of degree higher than a certain
rank (the so-called “hard cutoff” [127]). Such approximations are expected to pro-
vide good results for short times in the limit of low energies. However, they typically
lead to divergences at late times. The second type of truncation schemes consists
in using an educated Ansatz on the expectation value of high-order operator. For
instance, in some cases, Wick’s theorem can be applied, so that expectations values
of quartic operators are broken into a product of quadratic ones, etc; the added
difficulty is that the differential system then becomes nonlinear. Importantly, such
“factorized cutoff” allows to derive analytically Boltzmann-like equations such as
Eq. (1.23) [41, 128]. To achieve this, in addition to using the proper hierarchy trun-
cation, one must also average out fluctuations of the expectations values on small
time scales [41], which amounts, again, to assuming a separation of time scales
between microscopic scattering processes and macroscopic relaxation phenomena.

Conclusion
In this chapter, we have introduced 2D uniform Bose gases with weak contact in-
teractions. After quickly reviewing their equilibrium properties, we have discussed
several recent quench experiments. In these setups, the physics could be mostly ex-
plained in terms of independent quasiparticles (Bogoliubov theory), corresponding
to a coherent dynamics. In Sec. 1.4, we then discussed two techniques allowing to
go beyond the Bogoliubov approach by including quasiparticle interactions. These
methods lead to “kinetic equations”, i.e., integro-differential coupled equations that
resemble the classical Boltzmann equation. The first of these methods is based
on detailed balance arguments combined with the Fermi golden rule. The other
one, EOM theory, allows to microscopically derive the kinetic equation (1.23) by
relying on a separation of time scales between coherent phenomena (described by
free quasiparticles), and macroscopic processes like thermalization. However, EOM
theory, even when brought into a Boltzmann form, suffers from several limitations.
A first obstacle is that calculations quickly become difficult to follow, as there is no
diagrammatic representation. Second, the separation of time scales is not imple-
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mented in a transparent way, in the sense that it is stated as an Ansatz, instead of
emerging as the first order of a controlled expansion. Finally, it is inherently per-
turbative and cannot be extended beyond the weakly interacting (near integrable)
regime. In the next chapter, we will introduce the Keldysh formalism to overcome
these issues, while gaining other benefits in the process: clear connection between
quantum and classical-statistical field theories, possible extension to non-Gaussian
initial state, and others.



Chapter 2

Keldysh approach to
two-dimensional Bose superfluids

In this chapter, we introduce the Keldysh approach to nonequilibrium quantum sys-
tems, and use it to derive quantum kinetic equations describing two-dimensional,
dilute Bose superfluids. To explain the purpose of the Keldysh technique, we first
outline the limitations of Feynman path integrals, which are typically restricted to
the evolution of pure states in time, or to the computation of expectations values of
mixed states at equilibrium. The Feynman path integral is unable to combine the
above aspects simultaneously, i.e., it cannot describe the nonequilibrium dynamics
of a mixed state. This gap is filled by the Keldysh formalism, at the price of a
doubling of degrees of freedom. After these preliminary discussions, we construct
the nonequilibrium Keldysh action within the hydrodynamic formalism for 2D su-
perfluids. We then introduce the corresponding perturbation theory, and exploit it
to derive quantum kinetic equations for the phonon distribution of the superfluid.
The resolution of these equations for a specific quench protocol is postponed to the
next chapter. In the whole chapter, we set ℏ = 1.

2.1 Keldysh technique in a nutshell

2.1.1 Feynman path integral
Evolution of pure states Suppose we want to compute the dynamical evolution
of a pure state |ψ0⟩. In other words, we search for the solution of the Schrödinger
equation i∂t|ψ⟩ = ĥ|ψ⟩, with |ψ(t = 0)⟩ = |ψ0⟩. As an example, ĥ can here be the
Hamiltonian of a single particle in a two-dimensional potential v̂. The kinetic part
k̂ = p̂2/2m is diagonal in momentum space, while v̂ is more conveniently expressed
in position space as ⟨r′|v̂|r⟩ = v(r)δ(r − r′). Clearly, k̂ and v̂ do not commute.
Formally, one can integrate the Schrödinger equation as |ψ(t)⟩ = Ût,0|ψ0⟩, where
Ût,0 = e−iĥt is the forward evolution operator, i.e., it represents the unitary dynamics
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from the initial time to t.
At this stage, one could introduce the basis of energy eigenstates to express

the dynamics of ψ in terms of the spectral decomposition of ĥ. Instead of this
Hamiltonian approach, however, it is instructive to aim at a Lagrangian formulation
of the dynamics, as introduced by Feynman [129]. The idea is to use Trotter’s
formula to split Ût,0 into a time-ordered product of n evolution operators:

Ût,0 =
n∏
l=1

Ûlt/n,(l−1)t/n. (2.1)

The computation of the matrix elements of Û in, e.g., position space, is then facili-
tated by the insertion of n−1 resolutions of unity such as 1̂ =

∫
dr|r⟩⟨r|. Indeed, in

the position basis e−iv̂t/n is diagonal and can thus be expressed explicitly. Similarly,
n − 1 resolutions of unity in momentum basis allow to simplify terms like e−ik̂t/n.
Taking the limit n → ∞, the matrix elements of Û can then be represented as the
path integral [130]

⟨r′′|Ût,0|r′⟩ =
∫ r(t)=r′′

r(0)=r′
[dr(u)] exp[iS(r)], (2.2)

where S is the classical action, S(r) =
∫ t

0 du [m(∂ur)2/2 − v(r)]. Eq. (2.2) estab-
lishes a spectacular relation between the operatorial formalism, whose dynamics is
characterized by Ût,0, and a “classical” average over all possible trajectories r(u),
where 0 ≤ u ≤ t and the boundary conditions are fixed by the vectors r′, r′′. These
paths, weighted by eiS, appear in the measure of the integral (2.2) as

∫
[dr(u)] ≡ lim

n→∞

(
mn

2πit

)n ∫ n−1∏
l=1

drl, (2.3)

where rl ≡ r(lt/n). Finally, the solution of the problem is

|ψ(t)⟩ =
∫
dr′ dr′′ ⟨r′′|Ût,0|r′⟩ψ0(r′)|r′′⟩, (2.4)

where ψ0(r′) = ⟨r′|ψ0⟩ is the initial wave function of the particle in position repre-
sentation.

Equilibrium mixed states Assume we are now interested in the quantum aver-
age ⟨Ô⟩ = Tr(ρ̂Ô) of the canonical equilibrium density matrix ρ̂ = e−βĥ/Tr(e−βĥ),
where ĥ is the Hamiltonian introduced in the previous paragraph, and β is the
inverse temperature. The trace implies a summation over all possible states. For
instance, in the position representation:

⟨Ô⟩ = Z−1
∫
dr⟨r|e−βĥÔ|r⟩. (2.5)
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The denominator of this expression is the partition function of the system in ther-
mal equilibrium: Z =

∫
dr⟨r|e−βĥ|r⟩. Provided that the transformation t → −iβ

is performed, Z is formally equivalent to the sum over all states of the diagonal
amplitude ⟨r|e−iĥt|r⟩ computed in Eq. (2.2). As for the numerator of Eq. (2.5),
it can be brought into a field integral representation following the same method,
with the only difference that the matrix elements of Ô in position basis must be
computed explicitly. Therefore, the rotation to imaginary times establishes a direct
connection between Feynman path integrals and quantum expectation values at
thermal equilibrium. It is, indeed, the starting point of the Matsubara formalism
[90, 131].

To summarize the main insights of this section, the Feynman path integral allows
to propagate pure states in time, as Eq. (2.2) demonstrates. It also opens up a way
to compute equilibrium quantum averages like (2.5).

2.1.2 Closed time contour
We would like now to investigate the case of genuinely out-of-equilibrium quantum
evolutions where the initial density matrix ρ̂0 can be a mixed state. Such a dynamics
is governed by the von Neumann equation i∂tρ̂ = [Ĥ, ρ̂], where for Ĥ we now take
the microscopic Hamiltonian (1.1) that describes a gas of two-dimensional bosons
with contact interactions. Formal integration yields ρ̂(t) = Ût,0ρ̂0Û0,t, so that the
quantum expectation value of an operator Ô can be written as

⟨Ô⟩(t) = Tr(Û0,tÔÛt,0ρ̂0)/Tr(ρ̂0), (2.6)

implying that both the forward and backward evolution operators are involved
[compare, e.g., with Eq. (2.5)]. Pictorially, this expectation value is described by
the closed, real time contour C:

This representation is slightly inconvenient, because the contour depends on the
time t at which the observable is measured. However, it is easy to obtain a time-
independent contour, by introducing the identity Ût,+∞Û+∞,t = 1̂ at time t between
the two branches, i.e., by formally extending the contour to infinite times. The
equivalent contour
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is composed of two branches: The forward (+) branch, related to forward time
evolution, extends from the initial time, where the density matrix ρ̂0 is known, to a
distant future, and the backward (−) branch, related to backward time evolution,
expressed by Û0,+∞. At time t = 0, the two branches are glued together by the
trace operation. Furthermore, the contour is oriented (the direction is given by
the arrows on C). It means that, for instance, times on the (−) part of C are
considered to occur after times on the forward branch. Formally, we will resort to
the time-ordering operator T to sort time-dependent operators along this contour.

Finally, let us mention that, in this thesis, we restrict our attention to uncorre-
lated initial states, i.e. initial density matrices ρ̂0 that admit a Wick decomposition
[132]. Extension of the theory to non-Gaussian initial density matrices implies in-
clusion of additional vertices in the classical action, as explained in, e.g., Ref. [133].
However, it should be noted that, even for a Gaussian initial state ρ̂0, non-Gaussian
high-order correlations will in general build up for t > 0 [134]. In the following
framework these generic correlations will be properly accounted for, i.e., ρ̂(t > 0)
will not approximated by a Gaussian density matrix.

2.1.3 Coherent state representation
A remarkable feature of the Feynman path integral is that it allows to express
quantum mechanical averages (expectation values of operators in a given Hilbert
space) in terms of functional integrals over classical fields. This point of view is
conceptually appealing, because it bridges the gap between quantum and classical
physics.

The Keldysh field theory is based on the partition function

Z = Tr
(
ÛC ρ̂0

)
/Tr (ρ̂0) , (2.7)

where the evolution operator ÛC = T exp[−i
∫
C dt Ĥ(t)] is defined along the closed

time contour C. By construction, ÛC = 1̂ and therefore Z = 1, so that at first
sight it may seem strange to construct a path integral on this quantity. However,
as we will see, such a partition function does contain non-trivial information on the
dynamics of quadratic correlators. More generic observables can be obtained by
means of generating functionals [131, 135], which have a strong structural analogy
with the partition function, although we will not need this formalism in this thesis.

Feynman’s approach suggests to first discretize the Keldysh double contour C
in a finite number of time steps, using Trotter’s formula. Then, the trick is to
introduce, along C, as many resolutions of unity as needed, in the relevant eigenstate
basis of the quantum operators. For the simple single particle Hamiltonian discussed
in Sec. (2.1.1), these operators were r̂, p̂ and thus the position and momentum
eigenstates were employed. However, the Hamiltonian (1.1) is expressed in terms
of the second-quantized operator fields ψ̂, ψ̂†, whose eigenstates are the coherent
states ϕ, defined as ψ̂|ϕ⟩ = ϕ|ϕ⟩. Eq. (2.7) may then be written as a path integral
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in coherent-state representation [135]:

Z =
∫

[Dϕ] [Dϕ∗] eiS[ϕ,ϕ∗], (2.8)

with
S [ϕ, ϕ∗] =

∫
dr
∫
C
dt ϕ∗(i∂t + 1

2m∆r)ϕ− g

2

∫
dr
∫
C
dt |ϕ|4 (2.9)

the classical action along the Keldysh contour C, obtained from Ĥ, the quantum
microscopic Hamiltonian (1.1). In Eq. (2.8), ϕ and ϕ∗ are treated as independent
variables; an alternative choice would be Reϕ, Imϕ. The measure itself [Dϕ] [Dϕ∗]
is a generalization of Eq. (2.3) for coherent states on the closed time contour.
Finally, notice that restoring ℏ in the notations leads to Z =

∫
[Dϕ] [Dϕ∗] eiS[ϕ,ϕ∗]/ℏ.

In the semiclassical limit ℏ → 0, the partition function is thus dominated by the
paths that verify δS/δϕ∗ = 0. These paths minimizing the action are the solution
of the well-known Gross-Pitaevskii equation [65, 130].

2.1.4 Hydrodynamic formulation
As mentioned in Sec. 1.1.3, density-phase variables in the operator representation
are ill-defined. The path integral formulation of the interacting Hamiltonian (1.1)
is subject to the same issue. However, Popov justified the use of a hydrodynamic
formalism starting from the microscopic (Cartesian) Hamiltonian [47, 48]. His con-
clusion is equivalent to the result of Ref. [49]: The hydrodynamic variables emerge
from coarse-grained averaging over small spatial scales. In the following, we ignore
this problem and write the classical field ϕ in the polar basis as

ϕ(r) =
√
ρ(r)eiθ(r). (2.10)

Following the steps of Sec. 1.1.2, we now expand the action (2.9) in powers of the
density fluctuations δρ and of the phase gradient ∇rθ. The Bogoliubov transfor-
mation

θ(r) ≡
∫ idq

2(2π)2ρ0

√
ϵq
Eq

eiq·r(a∗
q − a−q), (2.11)

δρ(r) ≡ −
∫ dq

(2π)2

√
Eq

ϵq
eiq·r(a∗

q + a−q), (2.12)

then leads to the hydrodynamic action

S[a, a∗] = S0 + Sint = (2.13)∫
q,C
a∗
q,t(i∂t − ϵq)aq,t+

∫
p,q,C

Λp,q

(
ap,taq,ta

∗
p+q,t+c.c.

)
,

where the vertex function Λp,q is given by Eq. (1.14). The first term in this equa-
tion describes a gas of free quasiparticles, while the second term accounts for the
interactions between them at leading order.
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Finally, let us point out that the choice of basis has some important technical
consequences. Indeed, this choice conditions the number and types of diagrams to
be obtained within perturbation theory (see Sec. 2.2.3 below), making more difficult
the comparisons with other possible approaches. As an example, some authors [88]
chose to follow Popov [47, 48] by working directly with the density-phase variables.
Others [136, 137] integrated out one the two fields θ, δρ and proceeded with a simpler
effective action depending only either on the phase or the density fluctuations.
The action (2.13) represents yet another strategy, whose interest is to exploit the
perturbative expansion of the action in the quasiparticles basis. Of course, the
physical quantities themselves, such as the damping rates close to equilibrium (cf.
Sec. 2.3.2), are the same regardless of the basis choice.

2.1.5 Keldysh rotation
The time integrals over the forward and backward contours C+ and C− in Eq. (2.13)
are conveniently reduced to a single integral over t > 0 by introducing two sets of
fields a+, a

∗
+ and a−, a−, which are the restrictions of a, a∗ to the (±) branches of

C. One can then rewrite the partition function as

Z =
∫
D[a+, a

∗
+, a−, a

∗
−]eiS>[a+,a

∗
+]−iS>[a−,a

∗
−]. (2.14)

The notation S> =
∫
t>0 · · · emphasizes that the temporal integration of the action

is now done for t > 0, instead of S =
∫
t∈C · · · in Eq. (2.13). The minus sign in

the exponential comes from the reverse direction of time on the backward branch,
which reverses the bounds of the time integral. In the following, the slight abuse of
notation S> ≡ S is implied.

As illustrated by Eq. (2.14), the closed contour leads to a doubling of the degrees
of freedom. However, this representation of Z is still not completely satisfying,
partly because it contains a redundancy, which we will not address in this work
(see, e.g., Refs. [90, 135]). To overcome this problem, it is customary to introduce
the “classical” and “quantum” field variables α = (a+ + a−)/

√
2 and α̃ = (a+ −

a−)/
√

2. A rationale for this semantic choice will be given in Sec. 2.3.3. Under this
transformation, the quadratic action becomes

S0 =
∫
q,t>0

(
α∗
q,t α̃∗

q,t

)
[G0]−1

q,t,t

(
αq,t

α̃q,t

)
(2.15)

where
[G0]−1

q,t,t =
(

0 i∂t−ϵq−i0+

i∂t−ϵq+i0+ 2i0+(2nq,0+1)

)
, (2.16)

while the interaction part is expressed as

Sint = 1√
2

∫
p,q,t>0

Λp,q(2α∗
p+q,tα̃p,tαq,t+ α̃∗

p+q,tαp,tαq,t+ α̃∗
p+q,tα̃p,tα̃q,t+c.c.). (2.17)

The Keldysh actions (2.15) and (2.17) constitute the starting point of the nonequi-
librium perturbation theory that is presented in Sec. 2.2.
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2.1.6 From operators to fields
In this work, we consider a 2D Bose gas initially described by an equilibrium den-
sity matrix ρ̂0, and we wish to examine its subsequent dynamics following, e.g., a
quantum quench performed at t = 0. Specifically, we are interested in the time
evolution of the phonon normal and anomalous momentum distributions, defined
as

nq,t ≡ ⟨â†
q,tâq,t⟩ (2.18)

mq,t ≡ |⟨âq,tâ−q,t⟩|, (2.19)

where the quantum-mechanical averages are performed over the initial density ma-
trix: ⟨. . .⟩ = Tr(ρ̂0 . . .)/Tr(ρ̂0).

On the other hand, with the nonequilibrium action (2.15, 2.17), we have devel-
oped a functional integral formalism where the quantum operators are expressed
in the α, α̃ representation (or in the a, a∗ representation before the Keldysh rota-
tion). Because of the non-commutativity of the quantum operators â, â† on the
closed contour, however, the connection between quadratic correlators in the two
formalisms is a non-trivial question. As an example, the expectation values ⟨ât1 â

†
t2⟩

and ⟨â†
t2 ât1⟩ are in general different, whereas, in the coherent-state representation,

the corresponding fields at1 and a∗
t2 always commute. To avoid ambiguities, it is

customary to use the time-ordering operator T on the Keldysh contour. In practice,
TÂtB̂t′ = ÂtB̂t′ if t ≥ t′ and TÂtB̂t′ = B̂t′Ât otherwise. For convenience, we also
define the inverse time-ordering operator T̃ that performs the opposite operation,
which is useful on the backward branch. Note that this problem already arises in
the usual Feynman path integral, where ordering prescriptions are common [130].

Normal correlators Let us first deal with correlators involving a single complex
conjugation, such as ⟨αα∗⟩. To connect with correlators of quantum operators, it
is necessary to first go back to the forward a+ and backward a− fields:

⟨αq,tα
∗
q,t′⟩ = 1

2⟨(a+
q,t + a−

q,t)(a+ ∗
q,t′ + a− ∗

q,t′)⟩

= 1
2⟨a+

q,ta
+ ∗
q,t′ + a+

q,ta
− ∗
q,t′ + a−

q,ta
+ ∗
q,t′ + a−

q,ta
− ∗
q,t′⟩. (2.20)

In the right hand side of Eq. (2.20), the fields a±, a± ∗ are classical quantities that
always commute with each other. However, it is not the case for quantum operators.
Therefore, it is required to explicitly indicate the time ordering, as imposed by the
direction of the Keldysh contour. After close inspection, one finds the following
identification [135, 138]

⟨αq,tα
∗
q,t′⟩ = 1

2⟨Tâq,tâ†
q,t′ + {âq,t, â†

q,t′} + T̃âq,tâ†
q,t′⟩, (2.21)
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Clearly, here, no matter how t and t′ compare, the correlator has the following form:
⟨αq,tα

∗
q,t′⟩ = ⟨{âq,t, â†

q,t′}⟩. (2.22)

In particular, this yields ⟨αq,tα
∗
q,t⟩ = 2⟨â†

q,tâq,t⟩ + 1, which will be used extensively
in Sec. 2.2.

Similarly, for the quantum-classical normal correlator, we have

⟨αq,tα̃
∗
q,t′⟩ = 1

2⟨(a+
q,t + a−

q,t)(a+ ∗
q,t′ − a− ∗

q,t′)⟩ (2.23)

= 1
2⟨a+

q,ta
+ ∗
q,t′ − a+

q,ta
− ∗
q,t′ + a−

q,ta
+ ∗
q,t′ − a−

q,ta
− ∗
q,t′⟩. (2.24)

= 1
2⟨Tâq,tâ†

q,t′ + [âq,t, â†
q,t′ ] − T̃âq,tâ†

q,t′⟩. (2.25)

Hence,
⟨αq,tα̃

∗
q,t′⟩ = Θ(t− t′)⟨[âq,t, â†

q,t′ ]⟩. (2.26)

Anomalous correlators Let us now quickly mention how the previous results
(2.22, 2.26) generalize to the case of “anomalous” correlation functions such as ⟨αα⟩.
The same reasoning leads to

⟨αq,tα−q,t′⟩ = ⟨{âq,t, â−q,t′}⟩, (2.27)
and

⟨αq,tα̃−q,t′⟩ = 0. (2.28)

2.2 Pertubation theory
When the interaction term (1.13) in the Hamiltonian is neglected, the Heisenberg
equation of motion following from Eq. (1.11) leads to a purely harmonic evolution
of the Bogoliubov operators, âq,t = âq,0e

−iϵqt, so that
nq,t = nq,0, mq,t = mq,0. (2.29)

The normal and anomalous phonon momentum distributions thus remain stuck to
their initial value, as already mentioned in the previous chapter (Sec. 1.3.1). We
now wish to describe the time dependence of nq,t and mq,t pertained to the cubic
interaction (1.13), using the Keldysh formalism introduced above.

2.2.1 Quantum kinetic equation
To construct the perturbation theory, we introduce three fundamental correlators,
the retarded GR, advanced GA, and Keldysh GK Green’s functions:

GR
q,t,t′ ≡ −iΘ(t− t′)⟨[âq,t, â†

q,t′ ]⟩ = −i⟨αq,tα̃
∗
q,t′⟩, (2.30)

GA
q,t,t′ ≡ iΘ(t′ − t)⟨[âq,t, â†

q,t′ ]⟩ = −i⟨α̃q,tα
∗
q,t′⟩, (2.31)

GK
q,t,t′ ≡ −i⟨{âq,t, â†

q,t′}⟩ = −i⟨αq,tα
∗
q,t′⟩. (2.32)
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While GR and GA correspond to response functions to an external excitation, the
Keldysh Green’s function contains information on the system’s correlations. In par-
ticular, it gives access to the quasiparticle momentum distribution via the relation

iGK
q,t,t = 2nq,t + 1, (2.33)

deduced from Eq. (2.18). The description of the anomalous distribution mq,t re-
quires to introduce a corresponding anomalous Keldysh Green’s function and is
postponed to Sec. 2.2.4 for clarity.

In the absence of phonon interactions, the Green’s functions reduce to their
bare values G0,R, G0,A, G0,K and follow from Gaussian integrations on the quadratic
action (2.15). This allows us to identify the elements of the matrix kernel (2.16) as:

[G0]−1 =
(

0 [G0,A]−1

[G0,R]−1 −[G0,R]−1◦G0,K◦[G0,A]−1

)
(2.34)

and, correspondingly,

G0 =
(
G0,K G0,R

G0,A 0

)
. (2.35)

In Eq. (2.34), the symbol ◦ denotes a convolution in the time coordinates. In
momentum-time representation, the bare retarded, advanced and Keldysh Green’s
functions take the explicit expressions

G0,R
q,t,t′ = −iΘ(t− t′)e−iϵq(t−t′), (2.36)

G0,A
q,t,t′ = iΘ(t′ − t)e−iϵq(t−t′), (2.37)

G0,K
q,t,t′ = −i(2nq,0 + 1)e−iϵq(t−t′). (2.38)

In the presence of phonon interactions, one rewrites the dressed Green function
in the form

[G]−1
q,t,t′ =

(
0 [G0,A]−1−ΣA

[G0,R]−1−ΣR −ΣK

)
q,t,t′

. (2.39)

This structure generalizes Eq. (2.34) by including finite self-energies ΣR,A,K that
encapsulate the effect of interactions. The self-energies can be computed from
perturbation theory with the action (2.17), a task that will be undertaken in the
next section. Comparing Eq. (2.39) with the definition of G, of the same triangular
form as (2.35), we infer the following Dyson equations :

[GR]−1 = [G0,R]−1 − ΣR (2.40)
[GA]−1 = [G0,A]−1 − ΣA (2.41)
GK = GR ◦ ΣK ◦GA. (2.42)
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Within this formalism, the computation of response and correlation functions thus
essentially amounts to evaluating the self-energies ΣR,A,K at a certain level of ap-
proximation.

While retarded and advanced Green’s functions verify (GR)† = GA and (GA)† =
GR, the Keldysh Green’s function is anti-hermitian, (GK)† = −GK (with the her-
mitian conjugate obtained by taking the complex conjugate and reversing time
indices). This allows us to parametrize GK as

GK = GR ◦ F − F ◦GA, (2.43)

where the hermitian distribution function F will be related to the phonon momen-
tum distribution below. Combining Eqs. (2.42) and (2.43), we infer:

ΣK = F ◦ [GA]−1 − [GR]−1 ◦ F, (2.44)

which, by virtue of the Dyson equations (2.40) and (2.41), becomes

F ◦
[
G0,A

]−1
−
[
G0,R

]−1
◦F =ΣK−

(
ΣR◦F−F ◦ΣA

)
.

Direct evaluation of the left-hand side leads to the following quantum kinetic equa-
tion for the distribution function in real-time representation:

i(∂t + ∂t′)Fq,t,t′ =−ΣK
q,t,t′ +

(
ΣR◦F−F ◦ΣA

)
q,t,t′

. (2.45)

An evaluation of this evolution equation requires the knowledge of the Keldysh and
retarded self-energies, which will be both computed in Sec. 2.2.3. Before that, we
introduce an important assumption that will bring about a first simplification of
Eq. (2.45).

2.2.2 Separation of time scales and on-shell approximation
Two-time nonequilibrium functions such as Fq,t,t′ are most conveniently expressed
using the Wigner coordinates τ ≡ (t+ t′)/2 and ∆t ≡ t− t′. The Wigner transform
of a given two-time function Xt,t′ is defined as Xω,τ =

∫
d∆t ei∆tωXτ+∆t/2,τ−∆t/2. In

the present context, the central time τ is associated with the slow relaxation of the
phonons, while the time difference ∆t is related to their fast, coherent dynamics
[139], cf. Appendix A for additional details.

In the presence of interactions, Bogoliubov quasiparticles acquire a finite lifetime
τq ∼ −1/ImΣR

q . As long as interactions are weak, this lifetime is typically very long
compared to the coherent time scale 1/ϵq :

τq ∼ −1/ImΣR
q ≫ 1/ϵq. (2.46)

This condition, which we will verify a posteriori below, also implies that quasipar-
ticles remain well defined during of the out-of-equilibrium evolution. In the limit
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(2.46), it can be shown that the Wigner transform of a time convolution reduces
[at leading order in 1/(ϵqτq) ≪ 1] to the product of Wigner transforms: see Ap-
pendix A and Ref. [135] for more details. The Wigner transform of Eq. (2.45) thus
simplifies to

i∂τFq,ω,τ ≃−ΣK
q,ω,τ+2iFq,ω,τ Im(ΣR

q,ω,τ ). (2.47)
Within the separation of time scales (2.46), application of the Wigner transform

to Eq. (2.43) also yields:

iGK
q,ω,τ ≃ Fq,τ,ωAq,ω,τ , (2.48)

where

Aq,ω,τ ≡ −2 Im(GR
q,ω,τ ) =

−2 Im(ΣR
q,ω,τ )

|ω − ϵq − ΣR
q,ω,τ |2

. (2.49)

Aq,τ,ω is called the spectral function. It gives the probability density that a quasipar-
ticle with energy ω has the dispersion ϵq at a time τ after the start of the dynamics.
Under the condition (2.46) of well defined quasiparticles, the spectral function is
strongly peaked around ω = ϵq [with Aq,τ,ω → 2πδ(ω − ϵq) in the non-interacting
limit]. Integrating Eq. (2.48) over ω then leads to∫ dω

2π iG
K
q,ω,τ ≃ Fq,ϵq ,τ = 2nq,τ + 1, (2.50)

where we have used Eq. (2.33) in the last equality. This relation shows that as long
as the separation of time scales (2.46) holds, the phonon momentum distribution
coincides with the distribution function Fq,ω,τ evaluated at ω = ϵq, a property
known as the on-shell approximation. To evaluate nq,τ , it is thus sufficient to solve
the on-shell version of the kinetic equation (2.45). This is achieved by multiplying
the latter by the spectral function and integrating over ω, similarly to Eq. (2.50).
The kinetic equation simplifies to:

∂τFq,τ ≃ iΣK
q,τ+2Fq,τ Im(ΣR

q,τ ), (2.51)

where we have introduced the simpler notations Fq,τ ≡ Fq,ϵq ,τ and Σq,τ ≡ Σq,ϵq ,τ .
Together with Eq. (2.50), Eq. (2.51) constitutes a quantum kinetic equation for
the momentum distribution of the interacting phonons, which can be directly solved
once an approximation for the self-energies is provided.

2.2.3 One-loop approximation
We now evaluate the retarded and Keldysh self-energies ΣR

q,τ and ΣK
q,τ for a 2D,

weakly interacting Bose gas using perturbation theory. In practice, this is achieved
by comparing Dyson equations with the path integral expressions of the correspond-
ing dressed correlators.
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Retarded sector On the one hand, Dyson equation (2.40) defines the retarded
self-energy as

GR
q,t,t′ = G0,R

q,t,t′ +
∫
dt1dt2G

0,R
q,t,t1ΣR

q,t1,t2G
0,R
q,t2,t′

+ · · · , (2.52)

where G0,R
q,t,t1 and G0,R

q,t2,t′
are the “legs” of ΣR

q,t1,t2 . On the other hand, the dressed
retarded Green’s function is expressed as the functional integral

GR
q,t,t′ =−i⟨αq,tα̃

∗
q,t′⟩=−i

∫
D[α, α̃]αq,tα̃

∗
q,t′e

i(S0+Sint). (2.53)

For a dilute Bose gas, eiSint can be expanded at first order in the interaction param-
eter gρ0 (one-loop approximation, or Born approximation):

GR
q,t,t′ ≃−i

∫
D[α, α̃]αq,tα̃

∗
q,t′e

iS0(1 − S2
int/2!). (2.54)

In Eq. (2.54), the zeroth-order term in Sint is exactly G0,R
q,t,t′ . There is no linear term

in Sint, because the Gaussian average of a product of five fields vanish, according to
Wick’s theorem. As for the term proportional to

∫
D[α, α̃]αα̃S2

inte
iS0 , it is a non-zero

Gaussian integral that can be computed by means of Wick’s theorem. The corre-
sponding Wick contractions include products of four free Green functions (αα̃S2

int
contains eight fields). They are more easily enumerated through a diagrammatic
representation based on the pictorial convention

where dashed (solid) lines refer to a quantum α̃ (classical α) field variable. Arrows
are directed from a conjugated field variable to a non-conjugated one. The “allowed”
Wick contractions must verify the following rules:

– The selected diagrams should be connected (in “one piece”) and one-particle
irreducible (i.e., they cannot be split into two parts by “cutting” a single line),

– Momentum conservation should be enforced in all Wick pairings,

– The “legs” of the diagrams should be those indicated in Eq. (2.52), repre-
sented as

where colored arrows identify fields that do not originate from S2
int,
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– No diagrams should involve quantum-quantum field correlators; indeed, ⟨α̃α̃∗⟩0
vanishes due to the triangular structure of the matrix Green function [135],

– Diagrams involving anomalous correlators are neglected (“linear-resonance ap-
proximation”). This requirement is not obvious, since anomalous correlators
are in general nonzero in a nonequilibrium problem. For instance, the aver-
age of a quartic term α1α2α

∗
3α

∗
4 weighted by a free (Gaussian) factor eiS0 is,

without any particular constraints, given by

⟨α1α2α
∗
3α

∗
4⟩0 = ⟨α1α2⟩0⟨α∗

3α
∗
4⟩0 + ⟨α1α

∗
3⟩0⟨α2α

∗
4⟩0 + ⟨α1α

∗
4⟩0⟨α2α

∗
3⟩0, (2.55)

which does contain anomalous correlators [first term in Eq. (2.55)]. However,
in the context of nonequilibrium, 1D interacting Luttinger liquids, it was
shown that these anomalous contractions could still be excluded from the
diagrammatic expansion of ΣR [96]. To show this, the authors of Ref. [96]
exploited both the resonance condition (i.e., the simultaneous conservation of
energy and momentum [140]) as well as the linearity of the dispersion relation
(i.e., the purely phononic nature of the excitations). The same arguments also
apply in two dimensions, resulting in the same diagrammatic restriction. Note
that, for a 2D Bose gas, ϵp has a small cubic correction, but at low energy we
expect the corresponding diagrammatic corrections to be small. From now
on, we will thus neglect anomalous correlators in the expansion of the normal
self-energy, and proceed as if the scattering events were purely linear-resonant.

Lastly, it is worth noting that in dimension three, the Popov approximation
[135], an alternative theoretical framework, completely neglects anomalous
correlators. In fact, the normal self-energy in Popov approximation is iden-
tical to the one obtained in this section (except for dimensional specificities).
However, within our approach a nonzero anomalous self-energy also exists (see
Sec. 2.2.4), and thus goes beyond the more drastic Popov approximation.

The Gaussian integral
∫

D[α, α̃]αα̃S2
inte

iS0 includes three contributions that meet
these criteria, each appearing with multiplicity 8, represented by the one-loop dia-
grams in Fig. 2.1. The comparison with Eq. (2.40) thus results in:

ΣR
q,t1,t2 = 8 × i

2! × 1
2

∫
p

[
Λ2

p,qG
K
p+q,t1,t2G

0,A
p,t2,t1 (2.56)

+Λ2
p,q−pG

K
q−p,t1,t2G

0,R
p,t1,t2 + Λ2

p,qG
K
p,t2,t1G

0,R
p+q,t1,t2

]
.
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Figure 2.1: Wick-pairing procedure used to obtain the leading-order (one-loop) di-
agrams for the retarded self-energy ΣR [Eq. (2.56)]. The left and central columns
represent all the vertices of Sint at momenta p1,k1 and p2,k2 respectively. Cal-
culation of ΣR involves the Wick pairing of the two columns, with intermediate
momenta pi,ki to be integrated over. Shaded vertices cannot fulfill the condition
on the self-energy “legs” (green and red arrows), required by Eq. (2.52), and must
be discarded. The blue lines indicate the permitted diagram associations. The
resulting three possible diagrams are shown in the rightmost column; energy con-
servation reduces integration variables as

∫
p1,k1,p2,k2

≡
∫
p. Multiplicities (circled

numbers) arise from both coefficients in the action and other combinatorics factors,
including the global exchange of variables 1 ↔ 2. As an example, the multiplic-
ity of the diagram labeled b can be analyzed as follows: a factor of 2 comes from
the coefficient of α̃∗

p2,t2α
∗
k2,t2αp2+k2,t2 in the interacting action (to which corresponds

a circled multiplicity in the middle column), another factor of 2 comes from the
equivalent possibility of contracting α∗

k2,t2 with either αk1,t1 or αp1,t1 , and the last
factor of 2 comes from the global permutation of indices 1 and 2.
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In Eq. (2.56), we have made the substitution G0,K → GK , which amounts to a
self-consistent approximation on the Keldysh Green function. Furthermore, one
can check that ΣR

q,t1,t2 ∝ θ(t1 − t2), which expresses causality. In the Wigner repre-
sentation, this reads:

ΣR
q,ω,τ = 2i

∫
p,ν

{
Λ2

p,q−pG
K
p,ν,τG

0,R
q−p,ω−ν (2.57)

+ Λ2
p,q

[
GK

p,νG
0,R
p+q,ω+ν +GK

p+q,ν+ω,τG
0,A
p,ν

] }
.

Next, we use that G0,R
p,ν = −iπδ(ν − ϵp), G0,A

p,ν = iπδ(ν − ϵp) and that similarly
GK

p,τ,ν ≃ −2iπFp,ν,τδ(ν − ϵp) [cf Eqs. (2.36, 2.37, 2.38)]; we multiply Eq. (2.57)
by the spectral function Aq,ω,τ and integrate over ω and ν using that the latter is
peaked around ω ≃ ϵq. This yields the on-shell self-energy

ΣR
q,τ ≃ −2iπ

∫
p

[
Λ2

p,q (Fp,τ − Fp+q,τ ) δ(ϵq + ϵp − ϵp+q)

+ Λ2
p,q−pFp,τ δ(ϵq − ϵp − ϵq−p)

]
. (2.58)

For a purely phononic dispersion (1.12), the angular integration in Eq. (2.58) is
divergent, cf. Appendix B for details. In two and three dimensions, this divergence
is customarily regularized by taking into account the first nonlinear correction to the
Bogoliubov dispersion: ϵq ≃ c|q|+(cξ2/2)|q|3 [88, 93]. This is also the approach we
adopt here. Note, however, that in strongly interacting one-dimensional gases, it has
been proposed that the divergence should be instead resolved via a self-consistent
Born approximation [95, 96]. This alternative regularization will be investigated in
Sec. 3.2 of the next chapter.

Including the leading-order corrections to the linear dispersion and performing
the angular integrations in Eq. (2.58) as detailed in Appendix B, we finally obtain

ΣR
q,τ =− i

2

∫ ∞

0
dpKL

p,q(Fp,τ−Fp+q,τ )−i
∫ q

0
dpKB

p,qFq,τ (2.59)

where

KL
p,q = 3

√
3c

8πρ0
p(p+ q), KB

p,q = 3
√

3c
16πρ0

p(q − p). (2.60)

Keldysh sector We now come to the Keldysh self-energy ΣK , which is calculated
perturbatively from the Dyson equation (2.42). At the one-loop (Born) approxima-
tion, this is achieved by approximating the left-hand side by

GK
q,t,t′ ≃−i

∫
D[α]αq,tα

∗
q,t′e

iS0(1 − S2
int/2). (2.61)
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Evaluation of the Gaussian integral involves the six one-loop diagrams represented
in Fig. 2.2:

ΣK
q,t1,t2 = i

∫
p

[
2Λ2

p,q

(
GK

p+q,t1,t2G
K
p,t2,t1 +G0,A

p,t2,t1G
0,R
p+q,t1,t2 +G0,R

p,t2,t1G
0,A
p+q,t1,t2

)
+ Λ2

p,q−p

(
GK

q−p,t1,t2G
K
p,t1,t2 +G0,A

q−p,t1,t2G
0,A
p,t1,t2 +G0,R

q−p,t1,t2G
0,R
p,t1,t2

)]
. (2.62)

Figure 2.2: Diagrams contributing to the Keldysh self-energy ΣK [Eq. (2.62)]. The
six possible associations are represented in the rightmost column, following the same
rules used in Fig. 2.1.

To evaluate this expression, we proceed as for ΣR, namely, we move to Wigner
representation, multiply Eq. (2.62) by the spectral function and integrate over
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Wigner frequencies. This leads to the on-shell value

ΣK
q,τ = −2iπ

∫
p

[
2Λ2

p,q (Fp+qFp − 1) δ(ϵq + ϵp − ϵp+q)

+ Λ2
p,q−p (Fq−pFp + 1) δ(ϵq − ϵp − ϵq−p)

]
. (2.63)

By finally computing the angular integration using the regularization procedure
explained in Appendix B, we find:

ΣK
q,τ = −i

∫ ∞

0
dpKL

p,q (Fp+q,τFp,τ − 1) − i
∫ q

0
dpKB

p,q (Fq−p,τFp,τ + 1) . (2.64)

Eqs. (2.59) and (2.64) constitute the final expressions for the normal self-energies,
which once inserted in Eq. (2.51) provide a kinetic equation for the momentum
distribution nq,τ . Before coming to that point, however, we now discuss the pertur-
bation theory for the anomalous distribution.

2.2.4 Anomalous momentum distribution
In order to derive a quantum kinetic equation for the anomalous phonon distri-
bution mq,τ , one is naturally led to define a Keldysh Green’s function from the
anomalous anti-commutator ⟨{âq,t, â−q,t′}⟩, in analogy with Eq. (2.32). Such a def-
inition, however, gives rise to fast temporal oscillations at the scale of 1/ϵq, which
are incompatible with the requirement of time scales separation discussed in Sec.
2.2.2. This can already be seen at the level of the free-field theory, which yields
⟨{âq,t, â−q,t′}⟩ = 2⟨âq,0â−q,0⟩ exp(−2iϵqτ), where τ = (t + t′)/2. To get rid of these
fast variations, we move to the rotating time frame by employing the transforma-
tion αq,t → αq,t exp(iϵqt), following [96, 141]. In this rotating frame, we can now
safely define the anomalous Keldysh Green’s function as

iGK
q,t,t′ = ⟨{âq,t, â−q,t′}⟩ = ⟨αq,tα−q,t′⟩. (2.65)

From its definition (2.19), the anomalous momentum distribution follows from
2mq,t = iGK

q,t,t. It should be noted that the quantity ⟨{âq,t, â−q,t′}⟩ is a priori a
complex number, even after moving to the rotating time frame. However, in the
present work we always consider initial states such that iGK

q,t,t is real, cf., e.g., Eq.
(3.3). In the general case, one should define the anomalous Keldysh Green function
as a matrix in Nambu space to ensure the anti-hermiticity of GK , as presented in
Ref. [96]. Here, we have chosen to keep the theory as simple as possible, working
with scalars rather than matrices, and using calligraphic letters to refer to anoma-
lous Green’s functions.

In the presence of phonon interactions, GK acquires a finite (anomalous) self-
energy S K , defined through a Dyson equation similar to Eq. (2.42):

GK = GR ◦ S K ◦GA. (2.66)
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In the rotating frame, GK is also anti-hermitian, and can therefore be parameterized
in a similar manner as GK [see Eq. (2.43)]:

GK = GR ◦ F − F ◦GA. (2.67)

Combining the four relations (2.40), (2.41), (2.66) and (2.67) and making use of
the condition of time scales separation, as explained in Sec. 2.2.2, we infer the
anomalous version of the on-shell kinetic equation (2.51):

∂τFq,τ ≃ iS K
q,τ+2Fq,τ Im(ΣR

q,τ ). (2.68)

As compared to Eq. (2.51), the difference lies in the anomalous Keldysh self-energy
S K

q,τ , which can be computed by perturbation theory from Eq. (2.66). Similarly
to the normal correlator, this is done by approximating the left-hand side of Eq.
(2.66) by

GK
q,t,t′ ≃−i

∫
D[α]αq,tα−q,t′e

iS0(1 − S2
int/2). (2.69)

It should be noted that, unlike the calculation of ΣK , here the Wick decompo-
sition resulting from the Gaussian integral (2.53) takes into account only pairings
of anomalous correlators, which is a consequence of the linear-resonant character
of the interaction, see [96] for details. This leads to the two self-energy diagrams
displayed in Fig. 2.3, which explicitly read:

S K
q,t,t′ = i

∫
p
[2Λ2

p,q GK
p+q,t,t′G

K
p,t′,t+Λ2

p,q−p GK
p,t,t′G

K
q−p,t,t′ ]. (2.70)

We then proceed as in Sec. 2.2.3, i.e., we compute the Wigner transform of S K
q,t,t′ ,

multiply by the spectral function and integrate over Wigner frequencies. This even-
tually yields

S K
q,τ = −i

∫ ∞

0
dpKL

p,qFp+q,τFp,τ − i
∫ q

0
dpKB

p,qFq−p,τFp,τ . (2.71)

Once inserted in (2.68), this provides an explicit expression for the kinetic equation
for mq,τ .

2.3 Phonon quantum kinetics
2.3.1 Kinetic equations
Inserting the expressions (2.59) and (2.64) of the normal self-energies into Eq. (2.51)
and using Eq. (2.50), we obtain the final form of the kinetic equation for the phonon
momentum distribution nq,τ at the one-loop approximation:

∂τnq,τ = 2
∫ ∞

0
dpKL

p,q [np+q (np+nq+1)−npnq] +

2
∫ q

0
dpKB

p,q [npnq−p−nq (np+nq−p+1)] , (2.72)
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Figure 2.3: Diagrams contributing to the anomalous Keldysh self-energy S K [Eq.
(2.70)]. The two possible associations are represented in the rightmost column,
following the same rules used in Fig. 2.1.
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where for notation simplicity we have dropped the τ indices in the collision inte-
grals, and we recall that the kernels KL

p,q and KB
p,q are given by Eq. (2.60). The

only quantity conserved during the time evolution pertained to Eq. (2.72) is the
(phononic) energy: ∂τ

∫
q c|q|nq,τ = 0 for all τ . The kinetic equation includes two

collision integrals, which correspond to the well-known Beliaev (B) and Landau
(L) three-particle scattering processes. The Beliaev process describes the splitting
q → (p, q− p) of the probe phonon of momentum q into two phonons of momenta p
and q − p, while the Landau process describes the recombination (q, p) → p + q of
the probe phonon with another one, each process coming together with its reversed
version. Both Landau and Beliaev processes yield a relaxation of the momentum
distribution toward a thermal equilibrium at long time:

nq,τ→∞ ≡ nth
q = 1

exp(ϵq/T ) − 1 , (2.73)

a solution which cancels both collision integrals in Eq. (2.72). In the present
nonequilibrium scenario, the temperature T characterizes the effective thermal equi-
librium reached by the phonon gas at late times. In practice, this temperature is
determined from the law of energy conservation mentioned above. A concrete ex-
ample of this will be given in Sec. 3.1. Finally, note that Eq. (2.72) is equivalent to
the Fermi Golden Rule combined with the detailed balance principle, cf. Eq. (1.23).

The kinetic equation for the anomalous phonon distribution is similarly derived,
by inserting Eq. (2.59) and (2.71) into Eq. (2.68):

∂τmq,τ = 2
∫ ∞

0
dpKL

p,q (np+qmq+mpmp+q − npmq) +

2
∫ q

0
dpKB

p,q [mpmq−p−mq (np+nq−p+1)] . (2.74)

Notice that the dynamics of the anomalous distribution is coupled to the evolution
of nq. Furthermore, unlike nq the anomalous distribution vanishes at long time:

mq,τ→∞ = 0, (2.75)

a result expected for a quantum gas at thermal equilibrium. At any finite time,
however, mq is in general nonzero and may significantly impact the intermediate-
time dynamics of physical observables.

2.3.2 Near-equilibrium solutions
Before examining the consequences of the phonon relaxation on a concrete scenario,
it is useful to discuss the near-equilibrium case, which typically corresponds to
the long-time regime where the distributions mq,τ and nq,τ become close to their
equilibrium values (2.73) and (2.75). To this aim, we substitute nq,τ = nth

q + δnq,τ
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with δnq,τ ≪ nth
q in the kinetic equation (2.72) and linearize. If only the Beliaev

collision integral is kept, this leads to

∂τδnq,τ ≃ −2γBq δnq,τ , γBq =
√

3c
32πρ0

q3. (2.76)

This describes an exponential relaxation governed by the Beliaev damping rate γBq .
Note that, alternatively, the latter could have been directly derived from the self-
energy (2.59) evaluated at equilibrium: γBq = −ImΣR

q (nth
q ). In two dimensions,

the Beliaev damping rate (2.76) has been previously derived in [88, 142] using
Matsubara formalism.

If, on the other hand, only the Landau collision integral in Eq. (2.72) is consid-
ered, the linearization procedure provides

∂τδnq,τ ≃ −2γLq δnq,τ , γLq =
√

3π
8ρ0c

qT 2, (2.77)

which now involves the Landau damping rate γLq [88]. Comparison of Eqs. (2.76)
and (2.77) shows that Beliaev processes are mostly effective when the long-time
equilibrium temperature vanishes. Landau processes, on the contrary, typically
dominate at finite temperature. In the relaxation following a quantum quench (see
next chapter), this is the most common situation since a brutal quench at t = 0
naturally injects a certain amount of energy into the system, eventually leading to
a finite-temperature state at long time.

A near-equilibrium expansion, finally, can also be used for the anomalous mo-
mentum distribution, using that mq ≪ 1 at long time. Expanding Eq. (2.74) for
small δnq and small mq then yields

∂τmq,τ ≃ −2γL,Bq mq,τ , (2.78)

depending on which of the Beliaev or Landau processes dominates.

2.3.3 Classical-statistical limit
In the context of optics, a number of experiments involving “fluids of light” [109, 143]
have emerged in recent years, in particular in cavityless, nonlinear materials where
the propagation of a laser mimics the out-of-equilibrium dynamics of 2D dilute ultra-
cold Bose gases [68, 144–147]. At leading order, these experiments are well-described
by classical-statistical field theory, where quantum fluctuations are negligible but
the initial state is defined statistically (see Sec. 1.3.2). It is therefore interesting
to ask how to adapt the results of Sec. 2.3.1 to this setting. Another motivation
for studying the classical limit is that it can be readily checked numerically, since
in that limit the field theory becomes equivalent to the Gross-Pitaevskii equation
with a random initial state.
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The appropriate framework to construct a path integral formulation of the
nonequilibrium dynamics of classical systems with stochastic initial states can be
found in, e.g., Refs. [134, 148–150]. It is a particular case of the Martin–Siggia–Rose
path integral approach of stochastic differential equations [90, 151, 152], and is very
similar to the theory presented in Sec. 2.1, although it does not use a mixed state
or a closed contour, which are specific features of quantum systems. Instead, one
should construct a field theory from the classical evolution in phase space. This
leads to a nonequilibrium action Scl analogous to the Keldysh actions (2.15) and
(2.17). In detail, Scl can be written as Scl[α, α̃] = S0 + Scl

int, where S0 is still given
by Eq. (2.15), but the interaction part of the action reads

Scl
int =

∫
p,q,t

Λp,q(2α∗
p+q,tα̃p,tαq,t + α̃∗

p+q,tαp,tαq,t + c.c.). (2.79)

Therefore, the main difference between the quantum and classical field theories
is the presence of vertices of order α̃3 in the quantum case [cf. Eq. (2.17)]. In
fact, this close connection also constitutes another motivation for performing the
Keldysh rotation, since the latter brings the quantum field theory in a form that can
be compared with the classical-statistical theory. It also justifies the terminology
of “classical” and “quantum” fields respectively used for α and α̃.

The perturbation theory presented in Sec. (2.2) is essentially unchanged in the
classical-statistical case. The retarded self-energy ΣR remains the same because the
diagrams of Fig. 2.1 do not involve the triple quantum field vertices. However, ΣK

is modified: the diagrams c-d-e-f drawn in Fig. 2.2 are not involved in the classical
field theory. These diagrams are responsible for the terms ±1 in the kinetic equation
(2.63). Furthermore, using that, classically, the on-shell distribution function is
simply Fq ≃ nq, one eventually finds that the phonon momentum distribution
evolves according to

∂τnq,τ = 2
∫ ∞

0
dpKL

p,q [np+q (np+nq)−npnq] +

2
∫ q

0
dpKB

p,q [npnq−p−nq (np+nq−p)] . (2.80)

This could have been deduced directly with Eq. (2.72) by using that the large
occupation case nq ≫ 1 represents the classical limit of the quantum field theory.
The momentum distribution that cancels the collision integral (2.80) is now the
Rayleigh-Jeans distribution nq = T/ϵq. Note that this distribution suffers from the
well-known ultraviolet catastrophe, namely it is neither normalizable nor admit a
second moment [90]. In practice, the quantitative description of thermalization in
classical-field systems thus requires the introduction of a ultraviolet cutoff. This
cutoff is typically introduced in realistic physical scenarios, such as multimode op-
tical fibers [153].

Finally, let us mention that, in the classical-statistical limit, the anomalous
kinetic equation (2.74) is modified similarly to Eq. (2.80): the approximation np+



Chapter 2: Keldysh approach to 2D Bose superfluids 51

nq−p+1 ≃ np+nq−p can be introduced, as well as an ultraviolet cutoff to regularize
the integrals.

Conclusion
We have presented a general field-theoretical framework for studying the many-body
nonequilibrium dynamics of 2D dilute Bose superfluids. The approach is based on
a low-energy quantum hydrodynamic framework, and assumes that the time scales
associated with the coherent dynamics of the Bogoliubov phonons and with their
three-particle interaction processes are well separated. Under this condition, we
were able to fully describe the time evolution of the phonon normal and anomalous
momentum distributions, from the coherent regime to the final thermalization stage.





Chapter 3

Applications of the quantum
kinetic theory: quench dynamics
and self-consistent approach

In the previous chapter, we have derived quantum kinetic equations describing the
nonequilibrium evolution of 2D uniform Bose superfluids starting from a Gaussian
initial density matrix. Here, we apply this formalism to a concrete example, a
quench of the interaction strength in a 2D superfluid, and analyze the subsequent
time evolution of two observables, the structure factor and the spatial coherence
function, recently measured in cold-atom [44] and optical-fluid [68, 147] experi-
ments. Our approach, in particular, includes recent developments [154] allowing
for a proper treatment of the finite quench duration, crucial to avoid unphysical
divergences of the post-quench superfluid’s energy. Eventually, it provides a con-
sistent and unified theoretical description of the dynamics of 2D superfluids, from
the short-time coherent regime to the long-time thermalization.

Next, in Sec. 3.2, we extend the perturbation theory presented in Chapter 2 to a
self-consistent treatment, where the free propagators are replaced by their dressed
counterparts. Focusing on the near-equilibrium case, we then explore the possibility
of a regime where the perturbative approach may not be sufficient. In particular,
our analysis reveals the existence of an “anomalous” Landau damping rate in the
infrared region, where the quasiparticles exhibit significantly longer relaxation times
than predicted by the perturbative calculation. Following an argument developed
in Refs. [150, 155–158], we attribute this deviation to multiple scatterings caused
by the high occupancy of the distribution function in the infrared limit q → 0.
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3.1 Nonequilibrium structure factor and coher-
ence

3.1.1 Quench protocol

From now on, we consider a uniform two-dimensional Bose gas initially at equi-
librium at temperature T0 in a superfluid state with interaction strength g0. The
initial (pre-quench) quasiparticle distributions are thus given by

n0
q = 1

exp(ϵ0
q/T0) − 1 , m0

q = 0, (3.1)

where ϵ0
q =

√
Eq(Eq + 2g0ρ0), with Eq = q2/2m. As a quench protocol, we suppose

that around the time τ = 0 the interaction strength is changed from g0 > 0 to
another positive value g ̸= g0. The simplest description of this problem, studied,
e.g., in [102, 154], consists in assuming that the interaction change occurs instan-
taneously at τ = 0. In that case, applying the Bogoliubov transformation (1.9)
at both τ = 0− and τ = 0+ and using the continuity of the field operator (1.5),
we obtain the following relation between the post-quench (âps

q , â
ps†
q ) and pre-quench

(â0
q, â

0†
q ) Bogoliubov operators:

(
âps†
q

âps
−q

)
= 1

2
√
ϵqϵ

0
q

(
ϵq + ϵ0

q ϵq − ϵ0
q

ϵq − ϵ0
q ϵq + ϵ0

q

)(
â0†
q

â0
−q

)
.

where ϵq =
√
Eq(Eq + 2gρ0). The post-quench normal and anomalous momentum

distributions then take the form

nps
q = n0

q

(
2d2

q + 1
)

+ d2
q, (3.2)

mps
q =

√
d2
q + d4

q

(
2n0

q + 1
)
, (3.3)

with dq ≡ (ϵq − ϵ0
q)/(2

√
ϵqϵ0

q). At this stage, it is instructive to examine the large-
|q| asymptotics of this post-quench solution: for qξ ≫ 1, Eq. (3.2) leads to nps

q ≃
[mρ0(g − g0)]2/q4. An instantaneous interaction quench thus turns the pre-quench
exponential decay (3.1) into an algebraic one, provoking a logarithmic divergence
of the total energy

∫
q ϵqn

ps
q of the system after the quench. This underlines the

somewhat pathological character of the instantaneous quench for a quantum gas,
which needs to be regularized by including a finite switch-on time τs. Note that a
similar divergence occurs in the problem of Tan’s contact in Bose gases, originating
from the zero-range character of the contact interaction [65, 159].
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Figure 3.1: Inset: Sketch of the Wood-Saxon function modeling an interaction
quench of finite duration, with the asymptotic limits g(−∞) = g0 and g(∞) =
g. Main panel: effective equilibrium temperature reached by the Bose gas a long
time after the quench as a function of the quench duration τs [expressed in units
of τg = 1/(gρ0)]. The dotted and dashed curves show the asymptotic limits of
the temperature for fast and slow quenches, Eqs. (3.11) and (3.12), respectively.
Parameters are set to g0ρ0 = 0.1, gρ0 = 0.5, T0/g0ρ0 = 0.01, ρ0ξ

2 ≃ 0.5 .

To overcome the ultraviolet divergence resulting from an instantaneous interac-
tion quench, we rather consider the smooth Wood-Saxon quench g(τ) = g + (g0 −
g)/(1 + eτ/τs) [160], which was revisited recently in [154] and is sketched in the
inset of Fig. 3.1. For this model, Eqs. (3.2) and (3.3) still hold but n0

q (m0
q) and

nps
q (mps

q ) should now be understood as the (anomalous) momentum distributions
a long time |τ | ≫ τs before and after the interaction jump, respectively, and d2

q is
now given by [154]

d2
q =

sinh2
[
π(ϵq − ϵ0

q)τs
]

sinh(2πϵ0
qτs) sinh(2πϵqτs)

. (3.4)

At low momentum, the post-quench momentum distribution obeys the asymptotic
law

nps
q ≃ T0

q

c2 + c2
0

2cc2
0
, (3.5)

which involves the pre-quench c0 =
√
g0ρ0/m and post-quench c =

√
gρ0/m speeds

of sound. At large momentum, on the other hand, we have

nps
q ∝ exp(−2πτsq2/m). (3.6)
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This asymptotic law is similar to that to the pre-quench thermal distribution, n0
q ∼

exp[−q2/(2mT0)], except that the inverse of the quench duration 1/τs now takes
the role of the pre-quench equilibrium temperature.

3.1.2 Momentum distributions and thermalization
Using the post-quench distributions (3.2) and (3.3) as initial conditions, we have
performed numerical simulations of the kinetic equations (2.72) and (2.74). To
do this, we used a logarithmically-scaled momentum axis with typically Np ∼ 211

points covering around ∼ 10 orders of magnitude of qξ. The time evolution was
performed by a Runge-Kutta algorithm with time increment ∆t ∼ 1/10. We have
verified that the energy is conserved during the evolution to an accuracy of at least
∼ 10−3, and we have adjusted the precise choice of Np and h according to this
requirement.

The resulting distributions nq,τ and mq,τ are shown in Fig. 3.2 for different
times. As expected, we find that nq,τ slowly evolves toward a thermal distribution
of the form (2.73) at long time. Similarly, mq,τ converges to zero, with the region
where mq,τ is nonzero shrinking to smaller and smaller q−values as time grows.
For these simulations, we use as the unit time the Landau relaxation time (2.77)
evaluated at the healing length ξ =

√
1/(4gρ0m):

τℓ ≡ 1
2γLq=1/ξ

= 8√
3π
ρ0ξ

2 gρ0

T 2 , (3.7)

where T is the final equilibration temperature. In order for the kinetic approach
presented in Sec. 2.2 to be valid, the separation of time scale (2.46) should be
verified, namely τℓ should be large compared to the fast time scale τg ∼ 1/(c|q|) that
governs the coherent dynamics of the Bogoliubov phonons. Evaluated at q = 1/ξ,
the latter defines a “nonlinear time” that is sometimes used as a time scale in
experiments [143]:

τg ∼ ξ

c
∼ 1
gρ0

≪ τℓ. (3.8)

From the definition (3.7) of τℓ, we find that, in practice, this inequality holds as
long as the long-time equilibrium temperature is low enough, precisely when the
product (ρ0ξ

2)(gρ0/T )2 ≫ 1.

3.1.3 Dimensionless formulation
The definition of the time scale τℓ opens up the opportunity to rescale the time
variable of the kinetic equation (2.72) as t̃ ≡ t/τℓ. In addition, the momentum scale
can be conveniently rendered dimensionless by means of the healing length: q̃ ≡ qξ.
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In these units, the kinetic equation becomes

∂nq̃
∂t̃

= 6
π2

(
gρ0

T

)2 {∫ +∞

0
dp̃ p̃(p̃+ q̃) [np̃+q̃ (np̃+nq̃+1)−np̃nq̃]

+ 1
2

∫ q̃

0
dp̃ p̃(q̃ − p̃) [np̃nq̃−p̃−nq̃ (np̃+nq̃−p̃+1)]

}
. (3.9)

A similar rescaling can be performed for the anomalous kinetic equation (2.74).
In the next section, we compute the equilibrium temperature and show that it
is independent of the mass. Therefore, from the perspective of the resolution of
the kinetic equations, the only parameter of Eq. (3.9) is T/(gρ0) ≪ 1, which is
independent from m. The quantity ρ0ξ

2 ∼ 1/(mg) must large enough for the
hydrodynamic theory to be valid, as stated in Sec. 1.1.3, but it does not appear in
Eq. (3.9). We will use this property in numerical simulations to work with small
ρ0ξ

2, although, strictly speaking, the hydrodynamic treatment does not hold in this
limit. This will enable us to plot the structure factor in Fig. 3.3 without having to
cope with overly fast oscillations that would obscure the clarity of the plot.

3.1.4 Equilibrium temperature
The asymptotic thermal distribution (2.73) reached at long time τ ≫ τℓ is repre-
sented by the dashed curve in Fig. 3.2(a). The associated equilibrium temperature
T is entirely determined from energy conservation during the whole time evolution:

∫
q

c|q|
exp(c|q|/T ) − 1 = ζ(3)T 3

πρ0c2 =
∫
q
ϵqn

ps
q . (3.10)

The temperature T , computed from this relation using Eqs. (3.2) and (3.4), is
displayed in Fig. 3.1 as a function of the quench duration τs. As intuition suggests,
T decreases when τs increases, i.e., as the quench is more and more adiabatic. The
temperature admits a simple expression in the asymptotic regimes τs ≫ τg (slow
quench) and τs ≪ τg (fast quench). For the fast quench we find

T ∼

√√√√3(g − g0)2ρ2
0

π2 log
[√

τg
4πτs

]
, τs/τg ≪ 1 (3.11)

while

T ≃
[(
cT0

c0

)3
+ π(c− c0)2

29ζ(3)c0cτ 3
s

]1/3

, τs/τg ≫ 1 (3.12)

for the slow quench. Both Eqs. (3.11) and (3.12) are shown in Fig. 3.1, together
with the exact result. The temperature is minimal for infinitely slow quenches
τs/τg → ∞, reaching T → (c/c0)T0. As a remark, the curve in Fig. 3.1 also
indicates that when τs is of the order of τg or larger, the equilibrium temperature is
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Figure 3.2: Time evolution of the phonon (a) momentum nq,τ and (b) anomalous
mq,τ momentum distributions following an interaction quench g0 → g near τ = 0.
Here we set g0ρ0 = 0.1, gρ0 = 0.5, ρ0ξ

2 = 0.5, τs/τg = 10 and T0/g0ρ0 = 0.01. The
dashed-dotted curve shows the pre-quench thermal law (3.1), while dotted curves
are the post-quench distributions computed from Eqs. (3.2) and (3.3), used as
initial conditions for the kinetic equations. At long time, nq,τ converges to the
thermal distribution (2.73) (dashed curve), with an equilibrium temperature well
approximated by Eq. (3.12).
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such that T ≪ gρ0. In this limit, the quasiparticles typically belong to the phononic
branch of the dispersion and, at the same time, the condition of separation of time
scales is satisfied. For this reason, in all subsequent numerical simulations we have
chosen τs = 10τg.

3.1.5 Nonequilibrium structure factor
To illustrate the concrete impact of the phonon relaxation dynamics in a 2D quenched
superfluid, we now study a specific observable, the nonequilibrium quantum struc-
ture factor Sq,τ ≡ ⟨δρ̂q,τδρ̂−q,τ ⟩. The structure factor is the Fourier transform of the
spatial density-density correlator of the superfluid. This quantity has been recently
measured experimentally, in an ultra-cold Bose gas in two dimensions [44] and in
a quantum fluid of light produced in a hot atomic vapor [147], both experiments
involving a quench of the interaction strength. In practice, the nonequilibrium
structure factor provides a simple observable to characterize the dynamical emer-
gence of interference between quasiparticles emitted at the quench, which manifest
themselves as oscillations of Sq,τ in space and time. Such oscillations, observed
in laboratory superfluids, have also sparked interest because they are analogous to
the famous Sakharov oscillations, a characteristic feature in the anisotropy of the
cosmic microwave background radiation related to the emission of acoustic waves
in the early universe [107]. Employing the Bogoliubov transformations (1.9) and
(1.10), we can rewrite the structure factor as:

Sq,τ = Eq

ϵq

[
2⟨â†

q,τ âq,τ ⟩ + 1 + 2 Re ⟨âq,τ â−q,τ ⟩
]

= Eq

ϵq
[2nq,τ + 1 + 2 cos (2ϵqτ)mq,τ ] , (3.13)

where in the second equality we have introduced the normal and anomalous phonon
distributions. The structure factor primarily exhibits a fast, coherent dynamics
described by the term ∝ cos (2ϵqτ). These oscillations stem from the interference
between Bogoliubov quasiparticles with momenta q and −q emitted at the quench.
On top these oscillations, Sq,τ is characterized by a slow relaxation dynamics due
to the quasiparticle interactions that make nq,τ and mq,τ slowly vary in time.

The structure factor is shown in Fig. 3.3(a) for increasing times, from its post-
quench to its long-time (thermal) value. Shortly after the quench, Sq,τ exhibits
sizeable oscillations of period π/(cτ) in momentum space. In this regime [up to
∼ 102τℓ in Fig. 3.3(a)], the dynamics is almost purely coherent, mq,τ and nq,τ

remaining close to their initial, post-quench value. Within this short-time win-
dow, which was the main focus of previous experiments [44, 147], we can therefore
approximate mq,τ ≃ mps

q and nq,τ ≃ nps
q in Eq. (3.13), so that:

Sq,τ ≃Eq

ϵq
coth

(
ϵ0
q

2T0

) [
2d2

q+1+2
√
d2
q+d4

q cos(2ϵqτ)
]
, (3.14)
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which is nothing but the prediction of Bogoliubov perturbation theory.
The approximation (3.14) is shown in Fig. 3.3(a) at both times τ = 102τℓ

and 103τℓ. While in the former case it well captures the dynamics, in the latter
case it is clearly inaccurate. Indeed, at long times quasiparticle interactions be-
come prominent and lead to a damping of the coherent oscillations. The latter
eventually completely disappear when the system has thermalized, with Sq,∞ ≃
(Eq/ϵq)coth(ϵq/2T ). While a quantitative description of Sq,τ at an arbitrary time
requires a numerical resolution of the kinetic equations, at long time the phonon
distributions can be approximated by their near-equilibrium expressions, obtained
from Eqs. (2.77) and (2.78). Inserting these solutions into Eq. (3.14), we find

Sq,τ ≃ Eq

ϵq
coth

(
ϵq
2T

)(
1 − e−γqτ

)
(3.15)

+ Eq

ϵq
coth

(
ϵ0
q

2T0

) [
2d2

q+1+2
√
d2
q+d4

q cos(2ϵqτ)
]
e−γqτ

where γq coincides with either the Beliaev (2.76) or Landau (2.77) scattering rates
depending on the range of momenta probed. In Fig. 3.3(a), Eq. (3.15) is super-
imposed onto the exact result for τ = 104τℓ, using γq = γLq (dashed black curve).
The agreement is very good in the whole range of q (for the chosen parameters, we
have typically cq ≪ T , such that γLq is always much larger than γBq ). The impact
of the relaxation dynamics of the phonons is seen even more dramatically in Fig.
3.3(b), which shows the structure factor at fixed momentum as a function of time.
In the absence of phonon interactions (Bogoliubov approximation), Sq,τ oscillates
harmonically. Comparing with the exact behavior for qξ = 10−3.5 shows how poor
the Bogoliubov approximation becomes as time grows.

3.1.6 Nonequilibrium coherence function
As a second illustration, we study the time evolution of the coherence function of
the Bose gas following the interaction quench:

G1(r, τ) ≡ ⟨ψ̂†(0, τ)ψ̂(r, τ)⟩. (3.16)

In the density-phase representation (1.5), the coherence function can be expressed
in terms of the variance of phase and density fluctuations [49]:

G1(r, τ) =ρ0 exp
{

− 1
2⟨: [θ̂(0, τ) − θ̂(r, τ)]2 :⟩

− 1
8ρ0

⟨: [δρ̂(0, τ) − δρ̂(r, τ)]2 :⟩
}
, (3.17)

where the : symbol refers to normal ordering of operators in position representation.
Notice that G1 only depends r = |r| due to rotation invariance. In 2D Bose gases,
the spatial dependence of this function is typically dominated by the spatial growth
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Figure 3.3: Nonequilibrium structure factor Sq,τ , Eq. (3.13), versus (a) momentum
at different times and (b) time at different momenta. For a better readability, in
panel (a) the curves are shifted downward as time increases (except Sq,τ=0, black
dotted curve). In both panels, the thin black curves are the Bogoliubov prediction
(3.14), while the dashed curves are the long-time approximation (3.15). Observe
that the Bogoliubov result becomes clearly inaccurate as time increases. Parameters
have the same values as in Fig. 3.2: g0ρ0 = 0.1, gρ0 = 0.5, ρ0ξ

2 = 5 × 10−4,
τs/τg = 10 and T0/g0ρ0 = 0.01.
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of phase fluctuations, eventually leading to an algebraic decay of G1. This behavior
is noticeably different from the one of 3D Bose gases, whose phase fluctuations are
very small at low temperature. Using the Bogoliubov transformations (1.9-1.10)
and definitions (2.18-2.19), we find that Eq. (3.17) can be rewritten as

G1(r, τ)/ρ0 =G1(r)g1(r, τ). (3.18)
Here

g1(r, τ)= exp
{
−
∫
q

1
2 [1−cos(q ·∆r)]

[ (
ϵq
Eq

+Eq

ϵq

)
nq,τ

+
(
Eq

ϵq
− ϵq
Eq

)
mq,τ cos(2ϵqτ)

]}
(3.19)

encodes the time evolution of the Bose gas coherence following the quench. The
function G(r) is, in contrast, independent of time. It satisfies G1(0) = 1 and quickly
decays to G1(r ≫ ξ) ≃ 1−1/(16πρ0ξ

2) at distances larger than the healing length, a
value that coincides with the quantum depletion of zero-temperature Bose gases in
two dimensions [78, 80]. Note that G1 purely originates from the non-commutation
of the Bogoliubov operators involved in Eq. (3.17) and, as such, would be absent
within a classical-field description.

From now on we focus our attention on g1(r, τ), which we have computed from
Eq. (3.19), using the numerical solutions of the quantum kinetic equations (2.72)
and (2.74) for nq,τ and mq,τ . The full time evolution of this function is shown in
Fig. 3.4, and reveals the successive emergence of three characteristic regimes of
algebraic decay. At very short times, first, g1 mainly exhibits the algebraic decay
of the pre-quench equilibrium state:

g1(r, τ) ∼
(
λ0

r

) 1
ρ0λ2

0
, (3.20)

with λ0 =
√

2π/(mT0) the thermal de Broglie wavelength at the (pre-quench) tem-
perature T0. Shortly after the quench, then, a second algebraic law emerges at
intermediate scales, typically within a light cone of radius r = 2cτ . This character-
istic decay can be described at the level of the Bogoliubov approximation, namely
by simply replacing nq,τ and mq,τ by their post-quench values in Eq. (3.19). This
leads to the “pre-thermal” algebraic law

g1(r, τ) =
(
λ0

r

) 1+g/g0
2ρ0λ2

0
. (3.21)

At long time, finally, a third thermal algebraic scaling arises from short scales,
and eventually extends to all scales as the system fully thermalizes with nq,τ →
[exp(cq/T ) − 1]−1 and mq,τ → 0:

g1(r, τ → ∞) =
(
λ

r

) 1
ρ0λ2

, (3.22)
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with the algebraic exponent now controlled by the thermal wavelength λ =
√

2π/(mT ).
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Figure 3.4: Nonequilibrium coherence function g1(r, τ) versus position r at different
times, computed from Eq. (3.19) together with the numerical solution of quantum
kinetic equations for nq,τ and mq,τ . The three black dotted curves are the Bogoli-
ubov prediction at times τ = τℓ, 10τℓ and 100τℓ. Observe that at τ = 100τℓ the
Bogoliubov prediction becomes no longer accurate. The dashed curve shows the
long-time, thermal asymptotic value. Parameters are set to g0ρ0 = 0.1, gρ0 = 0.5,
ρ0ξ

2 = 0.5, τs/τg = 10 and T0/g0ρ0 = 0.01.

Note that in the case g > g0 considered here, the three algebraic exponents
satisfy the inequalities

1
ρ0λ2

0
≤ 1 + g/g0

2ρ0λ2
0

≤ 1
ρ0λ2 , (3.23)

with the two bounds being reversed in the case of a down-quench g < g0. It is
instructive, additionally, to compare the exact shape of the coherence function with
its Bogoliubov approximation. The latter is shown in Fig. 3.4 for the three shortest
times τ = τℓ, 10τℓ and 100τℓ. Again, while this approximation is acceptable at
short time, it becomes clearly inaccurate starting from τ ∼ 100τℓ. This shows that
in 2D Bose gases, a description in terms of independent quasiparticles should be
systematically questioned when dealing with nonequilibrium scenarios.
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3.2 Nonperturbative corrections to the Landau
relaxation rate

In the previous chapter, we have derived a quantum kinetic theory for a nonequilib-
rium gas of 2D bosons. An important object of our study was the self-energy ΣR,
whose imaginary part is related to the relaxation rates γL/B of the quasiparticles.
We have seen that for a purely linear dispersion ϵq ≃ c|q|, the angular integration
in Eq. (2.58) is divergent, leading to γL/B → ∞. Following a common strategy
in dimension D > 1 [88, 136, 137], we have cured this behavior by including the
first nonlinear correction to the Bogoliubov dispersion, ϵq ≃ c|q| + (cξ2/2)|q|3. The
diagrams considered in this approach are the one-loop scattering terms depicted in
Fig. 2.1. Our calculations thus constitute a perturbative expansion at leading order
in the small parameter 1/(ρ0ξ

2). It has led us to the perturbative Landau-Beliaev
damping rates Eqs. (2.76) and (2.77), for which we recall the expressions:

γLq =
√

3π
8ρ0c

qT 2, γBq =
√

3c
32πρ0

q3. (3.24)

However, we have mentioned that it is also possible to regularize the diver-
gence of ΣR in a completely different way, by means of a self-consistent extension of
Eq. (2.58), which amounts to taking into account an infinite number of high-order
scattering terms. Although this nonperturbative approach is strictly speaking un-
controlled (in the sense that infinitely many higher-order diagrams are neglected),
it is nonetheless a standard scheme in dimension one, where the cubic regular-
ization does not lead to any damping [136, 140], i.e., γB/L = 0. The idea of a
self-consistent technique in one dimension dates back to the work of Andreev [95],
and has also been used extensively in the context of non-quadratic Luttinger-liquid
models (cf. [96, 141] and references therein).

In this section, we explore the possibility of combining the two approaches men-
tioned above, i.e., we keep both the cubic correction to the dispersion and the self-
consistent scheme. We then derive the corresponding generalized Landau-Beliaev
rates ΓL/B. We find that, in most cases, the cubic regularization dominates the self-
consistent one, validating the method used in Sec. 2.2. For instance, the Beliaev
damping rate Eq. (2.76) is only slightly modified, i.e. ΓBq ∼ q3, and the prefac-
tor ΓBq /γBq remains close to one in the limit ρ0ξ

2 ≫ 1. However, we also show
that, for any given microscopic parameters g,m, ρ0, there exists an infrared range
of momenta where the Landau damping rate is dominated by the self-consistent
regularization. More precisely, for sufficiently small q, we find that ΓLq ∼ q3/2.

3.2.1 Self-consistent Born approximation
The perturbative approach of Sec. 2.2 leads to the (on-shell) retarded self-energy
(2.57). Alternatively, the self-consistent Born (one-loop) approximation (SCBA)
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consists in substituting the free propagators G0,R/A in the integrand by their dressed
counterparts GR/A. By doing so, high-order interaction terms based on the one-loop
diagrams of Fig. 2.1 are systematically resummed. In the self-consistent approach,
the retarded self-energy is thus:

ΣR
q,τ = 2i

∫
p,ν,ω

Aq,ω,τ

(
Λ2

p,q−pG
K
p,ν,τG

R
q−p,ω−ν,τ + Λ2

p,qG
K
p,ν,τG

R
p+q,ω+ν,τ

+ Λ2
p,qG

K
p+q,ν+ω,τG

A
p,ν,τ

)
. (3.25)

In the following, we will focus on the equilibrium case for simplicity. Consequently,
we will omit the τ index from the notations since the time dependence of self-
energies and distributions functions is not relevant for our current purposes.

Let us first perform the integration over ω in Eq. (3.25), which amounts to a
generalized on-shell approximation where the broadening of the spectral function is
self-consistently taken into account. The spectral function is expressed as Aq,ω =
i(GR

q,ω − GA
q,ω), where the dressed components of GR/A are given by the Dyson

equations (2.40) and (2.41), for which we recall the Wigner representation:G
R
q,ω =

(
ω − ω−

q

)−1
, ω−

q = ϵq + ΣR
q ,

GA
q,ω =

(
ω − ω+

q

)−1
, ω+

q = ϵq + ΣR ∗
q .

(3.26)

The poles ω±
q are distinguished according to the sign of their imaginary part. In

Eq. (3.26), we have injected the ω-independent expression of the retarded self-energy
[i.e., the left-hand side of Eq. (3.25)], in a self-consistent manner at the level of the
on-shell approximation. The integration over ω is then achieved by means of the
residue theorem:

ΣR
q = 2i

∫
p,ν

Λ2
p,q−pG

K
p,νG

R
q−p,ω+

q −ν + Λ2
p,qG

K
p,νG

R
p+q,ω+

q +ν

+Λ2
p,qFp+q,ν+ϵq

(
GR

p+q,ω+
q +ν −GA

p+q,ω−
q +ν

)
GA

p,ν , (3.27)

where we employed the parametrization (2.43) to express the Keldysh Green func-
tion GK

p+q,ν+ω in Eq. (3.25). By assuming the separation of time scales introduced
in Sec. 2.2.2, the latter can be expressed as the product of the spectral function
and the distribution function GK

p+q,ν+ω = −iAp+q,ν+ωFp+q,ν+ω, at leading order in
the Wigner expansion.

A similar integration over ν leads to

ΣR
q = −2

∫
p

(
Λ2

p,q−p

Fp

ϵp + ϵq−p − ϵq + ΣR
p + ΣR

q−p − ΣR ∗
q

+ Λ2
p,q

Fp − Fp+q

ϵp+q − ϵp − ϵq + ΣR
p+q − ΣR ∗

p − ΣR ∗
q

)
, (3.28)

where we recall that Fp ≡ Fp,ϵp . The first term in Eq. (3.28) describes a generalized
Beliaev process, that is the disintegration of a phonon ϵq into two smaller excitations
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ϵp, ϵq−p with a self-consistent account of the relaxation rate itself. The second term
corresponds to the Landau damping introduced in 2.3.2. Note that here ΣR

q is
typically a complex quantity with a non-vanishing real part, contrary to the previous
perturbative analysis, where ΣR was purely imaginary [cf. Eq. (2.59)]. It implies
that within the self-consistent Born approximation, the energies ϵp are rescaled by
a shift of amplitude Re(ΣR

p ).
Before turning to the angular integration of Eq. (3.28), we mention two tech-

nical aspects that deserve a preliminary comment. The first point is the assumed
existence and uniqueness of the solutions of the self-consistent equation (3.28). This
assumption is supported by numerical simulations. One important consequence is
the possibility to make progress in analytically solving Eq. (3.28) by making an ed-
ucated guess about the unknown variable ΣR. Specifically, if we propose an Ansatz
for ΣR that is self-consistent with the equation, then we can consider it to be cor-
rect, as there is only one solution. Secondly, we will heavily rely on the following
complex analysis result:∫ π

−π

dθ

θ2 + Ω ≃
∫
R

dθ

θ2 + Ω = −sgn (Im [Ω]) iπ√
−Ω

. (3.29)

The first approximation is correct provided 0 < |Ω| ≪ 1, and the second equality
requires Im [Ω] ̸= 0.

3.2.2 Corrections to Beliaev damping
For convenience, we now treat separately the Landau and Beliaev contributions to
the damping of quasiparticles characterized by Eq. (3.28). Let us first focus on the
dominant contribution at zero temperature, i.e., the Beliaev damping mechanism:

ΣR
q
T=0= −2

∫
p

Λ2
p,q−p

Fp

ϵp + ϵq−p − ϵq + ΣR
p + ΣR

q−p − ΣR ∗
q

. (3.30)

Similarly to what is done in Appendix B, we denote by θ the angle between p and
q. A Beliaev process involves a quasiparticle of energy ϵq that disintegrates into two
phonons of energies ϵp and ϵq−p, which implies that |p| < |q|. The boundaries of
the integral are thus

∫
p ≡

∫ q
0 dp

∫ π
−π dθ/[ρ0(2π)2]. Moreover, under the assumption

of long-lived (well-defined) quasiparticles, i.e., Im(ΣR
p ) ≪ ϵp, the main contribution

of Eq. (3.30) comes from small angles θ, where the expansion

ϵp + ϵq−p − ϵq ≃ cpq

2(q − p)
(
θ2 − θ2

B,+

)
, θB,+ =

√
3

2mc(q − p), (3.31)

holds true at leading order in |θ| ≪ 1. θB,+ is the angle at which the energy
conservation is satisfied, when the dispersion relation is expanded at cubic order.
Furthermore, the isotropy of space leads to Σq = Σq and Fq = Fq. Following the
insights of Appendix B, we also neglect the θ dependence of Λ2

p,q−p, i.e., we use
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Eq. (1.14) to obtain Λ2
p,q−p ≃ 9cpq(q − p)/(32m). At this stage, it is not obvious

if one can neglect the θ dependence of ΣR
q−p. To clarify this, let us take a leap

forward, and look at the self-consistent solution Eq. (3.34) obtained below: it is of
the form Σp ∼ |p|3. Now, the θ dependence of terms like |q − p|3 has already been
neglected in Eq. (3.31). The appropriate self-consistent treatment is therefore to
rule out any angular dependence in the self-energy ΣR

q−p in Eq. (3.30).
We can now proceed to the angular integration, using Eq. (3.29) with

Ω = −θ2
B,+ + 2(q − p)

cpq

(
ΣR
p + ΣR

q−p − ΣR ∗
q

)
, (3.32)

under the assumption that |Ω| ≪ 1, which can be verified self-consistently using
the final solution Eq. (3.34) (the underlying physical hypothesis is the separation
of time scales). After performing the change of variable u = p/q, we find

ΣR
q
T=0= −6iγBq

∫ 1

0

du u(1 − u)√
1 + 8m2c

3q3u(1−u)

(
ΣR ∗
q − ΣR

uq − ΣR
q−uq

) , (3.33)

where we have introduced the perturbative two-dimensional Beliaev damping rate
γBq , and we have used the on-shell value of the distribution function at zero temper-
ature: Fuq = 1. From Eq. (3.33), one recovers the perturbative Born approximation
ΣR
q → −iγBq by replacing the self-energies under the square root by −i0+.

We now use the Ansatz ΣR
q = γBq S, where the dimensionless complex number

S ∈ C does not depend on the momentum q. Importantly, the q3 factor under the
square root in Eq. (3.33) ensures the self-consistency of this Ansatz. After some
algebra, the SCBA solution ΓBq = −Im (ΣR

q ) of the Beliaev damping can be written
as

ΓBq
T=0= γBq S, S = 6

∫ 1

0

du u(1 − u)√
1 + 1

ρ0ξ2
3u(1−u)S−2i Im(S)

u(1−u)16
√

3π

, (3.34)

where the value of S is easily calculated numerically.
As shown by Eq. (3.34), the nonperturbative correction is small as soon as

ρ0ξ
2 ∼ (mg)−1 is very large. As the latter condition is a prerequisite of the hy-

drodynamic approach (see Sec. 1.1.3 of Chapter 1), it can be inferred that the
perturbative Born approximation of Sec. 2.2.3 is always valid for describing Beliaev
damping. This conclusion is consistent with the findings of Kopietz et al. [161, 162],
who applied the functional renormalization group (FRG) [163, 164] to the 2D inter-
acting Bose gas at zero temperature (see also [87, 165]). The FRG is a functional
theory (i.e., it uses a generalized path-integral representation of the many-body
problem, similarly to what is done with the Keldysh approach of Sec. 2.1) that
goes beyond perturbative treatments. It consists in systematically integrating out
small scale degrees of freedom. More precisely, in the context of the FRG, a flow
equation is derived for an effective action Γk that only includes fluctuations with
momenta larger than k (cf. [164] and references therein). Although mostly limited
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to equilibrium phenomena1, the FRG can be taylored to compute nonperturbative
corrections for the two-dimensional Bose gas. Specifically, it can address scenar-
ios involving strong interactions or high occupancy of distribution functions, where
multiple scatterings cannot be ignored [157, 158, 166].

3.2.3 Anomalous Landau damping
The second term in Eq. (3.28) corresponds to a generalized Landau relaxation,
which is dominant at finite temperature for q ≪ T/c (otherwise, Beliaev damping
gives the leading contribution, and the results of Sec. 3.2.2 are valid). Keeping the
cubic correction in Bogoliubov dispersion relation, the energy conservation of these
processes is written as

ϵp+q − ϵp − ϵq = − cpq

2(p+ q)
(
θ2 − θ2

L,+

)
, θL,+ =

√
3

2mc(p+ q). (3.35)

There are again two allowed scattering branches θ = ±θL,+, which is an expected
property of two dimensional systems [88]. However, unlike the case of Beliaev
damping, here no particular restriction holds on the integration domain, i.e., p ≡ |p|
can take all real positive values. By application of Eq. (3.29), the angular integration
yields

ΣR
q

q≪T/c= −i 3
√

3c
16πρ0

∫ ∞

0

dp p(p+ q)(Fp − Fp+q)√
1 + 8m2c

3pq(p+q)

(
ΣR
p+q − ΣR ∗

p − ΣR ∗
q

) . (3.36)

Eq. (3.36) represents the self-consistent expression of Landau damping. In the
specific case of equilibrium, the on-shell distribution function reduces to Fp = 2np+
1, where np is the Bose-Einstein distribution.

The integral (3.36) is dominated by values of p such that p ≫ q, where the
following approximation holds true:

2p(p+ q) (np − np+q) ≃ p2 ecq/T − 1
cosh(cp/T ) − 1 . (3.37)

At the Born approximation, the square root in Eq (3.36) can be replaced by one.
Employing

∫∞
0 du u2eu/(eu − 1)2 = π2/3, this leads to the standard perturbative

Landau damping rate (2.77).
At the self-consistent Born approximation, it turns out that in Eq. (3.36) one

can replace (ΣR
p+q−ΣR ∗

p −ΣR ∗
q )/p(p+q) by 2i Im(ΣR

p )/p2 in excellent approximation.
Therefore,

ΣR
q

q≪T/c
≃ −i 3

√
3c

16πρ0

cq

T

∫ ∞

0

dp p2

cosh(cp/T ) − 1
1√

1 + 8m2c
3p2q

(
2i Im(ΣR

p )
) , (3.38)

1We refer to [156] for a discussion on the out-of-equilibrium extension of the FRG.
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where, under the square root, the two terms correspond to either the cubic regu-
larization or the self-consistent one. Importantly, when q is sufficiently small, the
self-consistent contribution dominates the square root expression for any given mi-
croscopic parameters (m, g, ρ0). Therefore, in this infrared regime, a first reasonable
approximation is to replace the sum in the square root with 16im2c Im(ΣR

p )/(3p2q).
Consequently, the term √

q can be factored out of the integral over p, indicating that
ΣR

q ∼ q3/2 at leading order. To make progress in evaluating the integral (3.38), we
can then reintroduce the expected momentum dependence of the self-energy under
the square root in a self-consistent manner. After some rearrangement, we find

ΣR
q

q≪T/c
≃ 1 − i

25

(
9I

2πρ0ξ2

)2/3
T 3

(gρ0)2

(
cq

T

)3/2
, (3.39)

where I =
∫∞

0 du u9/4/[cosh(u) − 1]. Strikingly, our results imply that ΣR
q ∼ q3/2

for sufficiently small q, unlike the expected linear behavior of the perturbative rate
(2.77). This suggests that the phononic relaxation time scales are underestimated
by the perturbative approach. Note that, in Eq. (3.39), the requirements ρ0ξ

2 ≫ 1
(i.e., hydrodynamic regime) and T ≪ gρ0 (i.e., phononic approximation) do not
conflict with the assumption of small |ΣR| needed for the angle integration or the
Landau regime condition cq ≪ T .

In Fig. 3.5, we compare the full numerical solution of Eq. (3.28) with the deep
infrared result (3.39), and the perturbative rates (2.76, 2.77). At large q, the SCBA
calculation essentially coincides with the usual Landau and Beliaev scattering rates,
which are separated by the momentum scale q ∼ T/c. At low q, in contrast, the
Landau rate is strongly impacted, in agreement with the above calculations. By
equating Eq. (2.77) with Eq. (3.39), one can estimate the momentum at which the
crossover between the self-consistent q3/2 regime and perturbative Landau damping
occurs:

q∗ ∼ T

c

(
π5

35/2I2ρ0ξ2

)2/3

. (3.40)

In particular, in the limit of vanishing interaction strength g → 0, we find q∗ →
0 so that the perturbative rate is recovered at all momentum scales. Finally, it
is worth mentioning that in Fig. 3.5, the estimate (3.39) accurately captures the
momentum scaling ∼ q3/2, but it falls short in determining the correct prefactor of
ΣR

q . Furthermore, our numerical findings indicate that the error tends to be more
pronounced as g decreases in value. In fact, the relative lack of success of Eqs. (3.39,
3.40) is due to the approximation 16m2c Im(ΣR

p )/(3p2q) ≫ 1, which is somewhat
crude. To overcome this limitation, we present a refined self-consistent Ansatz in
the next section.
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Figure 3.5: Landau damping rate as a function of q, computed by numerically solv-
ing Eq. (3.28) (plain grey line), and comparison with asymptotic approximations:
The dashed curves correspond to the perturbative results given by Eqs. (2.76) and
(2.77), while the dotted-dashed lines show the estimates provided by Eqs. (3.39)
and (3.43). Parameters are set to T/gρ0 = 0.1, ρ0ξ

2 ≃ 25.

3.2.4 Multiple-scattering interpretation
Although our self-consistent calculation, Eq. (3.39), suggests the existence of an
anomalous Landau damping rate in the far infrared, the physical origin of this
observation remains unclear. Here, we discuss an argument inspired of Refs. [150,
155, 156] that may corroborate our findings. The argument is that the many-body
perturbation theory presented in Sec. 2.2.3 is inadequate in the strongly correlated
regime where multiple scattering processes (i.e., terms of higher degree than the one-
loop diagrams of Fig. 2.1) cannot be neglected. In practice, perturbation theory
fails as soon as the occupation number nq becomes large compared to the inverse
of the small parameter of the Popov expansion (1.6). Within the hydrodynamic
description of an interacting Bose gas in two dimensions, this small parameter is
1/(ρ0ξ

2) [49]. The breaking of perturbation theory thus occurs when

nq ≥ ρ0ξ
2, (3.41)

which, in practice, is typically verified for strong interaction strengths, for which
ρ0ξ

2 is not large. Of course, this regime lies beyond the scope of the hydrodynamic
theory. However, for a given small interaction strength g, the condition (3.41) is also
satisfied for q-labelled states that are largely occupied. In momentum regimes where
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Beliaev damping dominates, the occupation number is always very small. Indeed,
nq is exponentially damped at finite temperature for q ≫ T/c, and it vanishes at
T = 0. In contrast, for Landau damping, the momentum regime q ≪ T/c is such
that the occupation number diverges, since nq ∼ T/(cq). Eq. (3.41) thus leads to
another estimate for the crossover between the perturbative and nonperturbative
regimes of Landau damping:

q̃∗ = T

c

1
ρ0ξ2 , (3.42)

which bears a strong resemblance to Eq. (3.40), albeit with a slightly different
scaling of the interaction strength. Here, q̃∗ ∝ g, whereas we previously found
q∗ ∝ g2/3.

The exact numerical solution of Eq. (3.28) provides a way to decide which cri-
terion works best, either Eq. (3.40) or Eq. (3.42). We find that the crossover
momentum scales like g for small interaction strenghts, which validates Eq. (3.42).
Combining the scaling ΣR

q ∼ q3/2 with Eq. (3.42) leads to the anomalous Landau
damping rate

ΓLq
q≪T/c=

√
3π

25
√
ρ0ξ2

T 3

(gρ0)2

(
cq

T

)3/2
, (3.43)

which provides an excellent approximation of the numerical solution of Eq. (3.28),
for all values of g and T , as shown in Fig. 3.5.

In Sec. 3.2.2, we mentioned that the self-consistent corrections found for Beliaev
damping align with findings from the functional renormalization group [161, 162].
To the best of our knowledge, however, there is currently no available FRG results on
two-dimensional Landau damping. Consequently, it is not yet possible to establish
with certainty whether the relaxation rate (3.43) is theoretically accurate or whether
it can be measured experimentally. However, numerical simulations of the Gross-
Pitaevskii equation with random initial conditions could potentially shed light on
the self-consistent theory’s predictions of anomalous Landau damping in the small q
limit. Indeed, in this infrared regime, the classical-statistical field theory is expected
to hold true, because the occupation number nq is much greater than one (cf.
Sec 2.3.3). Moreover, the Gross-Pitaevskii equation has been successfully used to
verify the ∼ q3/2 damping rate that emerges from the SCBA theory in one dimension
(see Ref. [140]). The fact that the exponent of the self-consistent damping rate does
not depend on the dimension also remains to be addressed.

Conclusion
We have used the kinetic equations (2.72) and (2.74) to describe the dynamics
of a two-dimensional Bose gas after an interaction quench. We have applied this
framework to the calculation of two commonly measured observables, the quantum
structure factor and the coherence function of the superfluid following an interaction
quench.
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Furthermore, we have employed the self-consistent Born approximation to com-
pute generalized (nonperturbative) relaxation time scales for the quasiparticles.
Our analysis reveals that, while these corrections are small for large q, they cannot
be neglected in the infrared regime, where we anticipate a Landau damping rate
∼ q3/2 significantly different from the perturbative result ∼ q.



Chapter 4

Periodically kicked
one-dimensional Bose gases

In the previous chapters, we discussed the nonequilibrium behavior of an interacting
2D gas of bosons. A key assumption was the isolated nature of the system, excluding
any contact with the environment or any external driving forces. The total energy
was thus conserved throughout the evolution. To illustrate this conservation law,
one can consider the kinetic equations (2.72) and (2.74) derived in Sec. 2.3, which,
from the initial state to the final thermal distribution, verify ∂τ

∫
q c|q|nq,τ = 0 for

all τ . Here, we wish to explore another fruitful research direction of nonequilib-
rium quantum physics: periodically-driven systems [167–169]. These models are
characterized by Hamiltonians of the form

Ĥ(t) = Ĥα + F (t)Ĥβ, (4.1)

where, typically, [Ĥα, Ĥβ] ̸= 0 and F is a periodic function of time t. The time
dependence of Ĥ implies that the energy is not a conserved quantity anymore. In
fact, such systems are generally expected to “heat” to an infinite-temperature state
[170–172]. In the following, our focus will be on the interplay between external
forcing and interactions, where F is a periodic sequence of “kicks” and a mean-
field, self-interaction term is present in either Ĥα or Ĥβ. This study is, in particular,
motivated by the growing interest in driven quantum systems involving temporally-
modulated interactions [173–176], used for instance to design synthetic gauge fields
or to modify many-body quantum transport.

Furthermore, in contrast to the three previous chapters, from now on we will
turn our attention to Bose gases in one dimension. Let us make several general
comments with respect to this change. First, these systems have a well-established
physical relevance, thanks in particular to cold atom experiments. Indeed, it is
nowadays possible to achieve this geometry in laboratories by several means, for
instance by trapping atoms in atom-chips [64], arrays of tubes or tori [65]. Second,
from a theoretical point of view it should be pointed out that the one-dimensional
(1D) version of the Hamiltonian (1.1) modeling an homogeneous system of bosons
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with a contact-like repulsive potential, i.e., the Lieb-Liniger model, can be solved
exactly by the Bethe Ansatz [10, 13, 18, 19]. Similarly, the 1D nonlinear Schrödinger
equation, which is the mean-field limit of the Lieb-Liniger model, can be solved by
means of the inverse scattering technique [11, 12]. However, the integrability of these
models is in general broken by the introduction of a periodic drive (see, however,
Ref. [177] for an exception).

In the opening section of this chapter on driven problems, we introduce the
quantum kicked rotor, together with the phenomenon of dynamical localization
and its interplay with weak nonlinear interactions. Then, in Sec. 4.2, we move to
the quantum dynamics of a different system, a Bose gas subjected to periodically-
kicked interactions, which was the main focus of the thesis. In stark contrast with
the kicked rotor, in the case of infinitely short (delta) kicks, it was recently shown
that this system exhibits an ultrafast, exponential spreading of the wave function
in momentum space [61, 62]. After recovering this behavior for a random variant
of the model studied in [61, 62], we elaborate on this phenomenon by computing
two observables that play a crucial role in this context, the average populations
of the “condensate” (i.e., the uniform mode of momentum q = 0) and of the first
excitation. In both cases, we give a detailed analysis of the “linear” regime of very
short times, as well as an extension beyond that regime.

4.1 Quantum kicked rotor
4.1.1 The model
Let us start our discussions by quickly considering the quantum kicked rotor, a
paradigmatic model for quantum chaos [57, 59], for which

Ĥα = p̂2/2m, Ĥβ = K cos(x̂), (4.2)

with conjugate variables x̂, p̂ such that [x̂, p̂] = i, in units of ℏ = 1. In most
studies, F is a train of Dirac pulses at integer times n (the “kicks”), i.e., F (t) =∑
n δ(t − n). The stochasticity parameter K sets the strength of the kicks. The

quantum kicked rotor exhibits localization in momentum space, meaning that the
variance of a wave packet’s momentum distribution saturates for times larger than
a characteristic time scale called the “localization time”. Because this phenomenon
occurs in p-space, it is referred to as dynamical localization [58]. In contrast, the
standard map, the classical counterpart of the kicked rotor, is characterized by
the diffusive growth of its kinetic energy, E(t) = ⟨p̂2/2m⟩ ∝ t [54, 178]. The
suppression of classical diffusion observed in the quantum problem is reminiscent
of the phenomenon of Anderson localization in disordered systems, in that it stems
from quantum interferences within a random-walk problem [59, 179, 180]. The
quantum kicked rotor was first experimentally realized in Raizen’s group about
thirty years ago [181, 182] and has since received considerable attention [183–190].
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In particular, dynamical localization was first demonstrated within an ultracold
sodium setup, as illustrated in Fig. 4.1(a). The authors of Ref. [182] also verified the
exponential localization of the momentum distribution of the Bose gas as |ψ(p)|2 ∼
exp(−|p|/ξ), where ξ is the localization length.
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Figure 4.1: (a) Kinetic energy E(t) of the kicked rotor as a function of the stro-
boscopic time (number of kicks), as measured in Ref. [182]. E(t) is in units of the
recoil energy ER = ℏ2k2

L/2m, where kL is the wave number of the laser used to kick
the atoms of mass m. At short times, the wave packet spreads according to the
diffusive law E(t) ∼ t (plain line). Diffusion is suppressed after a sufficient number
of kicks, a phenomenon known as dynamical localization. Inset: profile of the wave
function in momentum space once dynamical localization is established (i.e., after
a few tens of kicks). The results show that the momentum density, measured by
means of a time-of-flight technique, decays exponentially. (b) The same experi-
ment was carried in a more recent cold atom setup [189]. Here the authors could
probe the effect of atomic interactions well beyond the localization time, using a
Feshbach resonance to tune the interaction strength g between particles (here, g is
proportional to the scattering length a expressed in units of the Bohr radius a0).
The horizontal shaded region corresponds to the localization energy scale. Inset:
at late times, localization breaks down and is replaced by a sub-diffusive behavior
where the energy grows as

√
t (dashed line). The “stochastic” data refer to a case

where the period of the kicks fluctuates randomly, which leads to classical diffusive
behavior (dotted line).
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4.1.2 Effect of finite pulses

Historically, the specific role of the driving function F (t) was one of the first object
of study in the quantum kicked rotor. More precisely, the broadening of pulses with
respect to the idealization of δ-kicks was first investigated theoretically in Ref. [191]
and later experimentally in the second generation of Raizen’s experiment [192–
194]. Importantly, it was understood that dynamical localization subsists for kicks
of finite duration, such as square pulses [193] or Gaussian pulses [191, 194], although
requiring a number of adjustments in the theory. For instance, for square pulses
of height ∼ f and duration ∼ 1/f , momentum transport is limited to a band
|p| < f , leading to bimodal momentum distributions after the localization time
(cf. Fig. 7 in Ref. [193]). Furthermore, the localization length was found to be
reduced compared to the δ-kicks limit [189]. Nevertheless, the finite duration of
the kicks was not deemed a significant limitation for the phenomenon of dynamical
localization itself. For the problem of periodically-kicked interactions introduced in
Sec. 4.2 below, we will see in the next chapter that the conclusion is dramatically
different.

4.1.3 Effect of atomic interactions

In the bosonic quantum kicked rotor, the role of weak interactions was studied
theoretically in [195–200]. To this aim, these works simply added to Ĥα a mean-
field term representing interactions between bosonic particles:

Ĥα = p̂2/2m+ g|ψ(x, t)|2, Ĥβ = K cos(x̂). (4.3)

Due to the time dependence of the wave function in Ĥα, the Hamiltonian (4.1) with
Hα given by (4.3) is no longer periodic in time. As a consequence, the standard
tools of Floquet theory [6] cannot be used, which represents a significant complica-
tion. It has been found that even a weak nonlinearity may have a dramatic impact
on the dynamics, by breaking the localization of wave packets, leading instead to
a sub-diffusive spreading. Such algebraic law ⟨p̂2/2m⟩ ∼ tν was observed very re-
cently in two cold-atom experiments [189, 190], and the rough estimate ν ≃ 1/2
was found [189] [see Fig. 4.1(b)]. It should be noted that a similar phenomenon
was also pointed out in nonlinear, spatially disordered chains [197, 201–206]. In the
next chapter, we will observe and analyze a closely related sub-diffusion mechanism,
with similar sub-diffusive exponent, in a different system involving kicked interac-
tions. Let us finally mention that a many-body version of the quantum kicked rotor
was studied in Ref. [207, 208], in a regime of strong interactions where dynamical
localization may survive.
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4.2 Gross-Pitaevskii map
Recently, a model presenting some resemblance with the interacting kicked rotor
(4.3) was introduced and studied theoretically in Ref. [61] (see also [60] for an early
discussion of a closely related problem). It addresses the mean-field, dynamical
evolution of a one-dimensional Bose gas with a time-dependent interaction coupling
parameter. More precisely, the “Gross-Pitaevskii map” (we borrow Guarneri’s ter-
minology [62]) is defined by the Hamiltonian (4.1), where the δ-kicks are no longer
made up of a K cos(x̂) potential but of the self-interacting term g|ψ|2, i.e.,

Ĥ = p̂2/2m+ g|ψ(x, t)|2 ×
∑
n

δ(t− n), (4.4)

with normalization
∫
dx|ψ(x, t)|2 = 1 and where periodic boundary conditions on

the wave packet are assumed. Like in the kicked rotor, the relevant dynamics is
here observed in momentum space, i.e., by probing the time evolution of the Fourier
transform of ψ(x, t), defined as

ψq(t) = 1√
2π

∫ 2π

0
dx eiqxψ(x, t). (4.5)

Recalling that permissible reduced momenta q ∈ Z, this relation can be inverted as

ψ(x, t) = 1√
2π

∑
q

e−iqxψq(t), (4.6)

with the normalization ∑
q |ψq(t)|2 = 1. Using the model (4.4), the authors of [61,

62] observed a strongly chaotic dynamics characterized by an exponential spreading
of the wave function in momentum space, which we review below in Sec. 4.2.2.
In [63], this model was also shown to support stroboscopic solitonic solutions in
position space.

4.2.1 Numerical implementation
Random Gross-Pitaevskii map The time evolution of the wave function ψ
during one period (free evolution and kick) can be accurately described by the
evolution operator

Û(n) = exp(−ig|ψ(x, t = n− 1)|2) exp(−iϕq), (4.7)

where we have replaced the deterministic phase induced by the free evolution term
p̂2/2m by a random variable ϕq distributed over [0, 2π]. To ensure the validity of the
latter approximation, it is possible to introduce a period T in the time modulation
F and impose T ≫ 2m. In Eq. (4.4), we have set T = 1 for simplicity, but an
extension to a more generic drive is straightforward, as will be discussed in Sec. 5.2
of the next chapter. Quantities of interest of the Gross-Pitaevskii map (dispersion,
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condensate fraction, etc) are typically not self-averaging and, therefore, a benefit of
the random variant (4.7) is to facilitate the process of averaging. Conveniently, such
averaging procedure also excludes a number of phenomena, like quantum resonances
[209–211], which are not the primary focus of our study.

Initial state To numerically describe the dynamics entailed by Eq. (4.4), one
needs to evolve a given initial state with the evolution operator (4.7). To this aim,
in the following we take as an initial state the wave function

ψq(t = 0) ∝ exp(−λ2q2), (4.8)

of momentum width λ−1 typically smaller than 1. In practice, this state is a good
model for the narrow momentum distribution of a Bose-Einstein condensate. Note
that the corresponding spatial distribution is broad, nearly uniform at the scale of
the system size, and it remains uniform on average during the time evolution (this
was also the configuration of [62]).

In order to numerically describe the evolution of the wave packet ψq(t), we
successively apply the evolution operator (4.7) to the initial state (4.8), using a
split-step method to evaluate the wave function at each stroboscopic time. In the
simulations we discretize the spatial interval [0, 2π] into Ns spatial steps, where
Ns ≫ 1. All our results, finally, are averaged over typically Nr ∼ 104 realizations
of the random phase ϕq. Some observables of interest, like |ψ0|2, are however very
sensitive to the numerical instability inherent to the nonlinear Schrödinger equa-
tion [212, 213]. These instabilities are discussed in more detail in Appendix C. In
order to circumvent them, we have worked with a high-precision arithmetic when-
ever exponential sensitivity to initial conditions was the limiting factor. Typically,
our algorithm ensured Nd = 100 significant decimal digits. We have systematically
checked that increasing Ns or Nd does not alter our numerical calculations.

4.2.2 Wave-packet spreading
To characterize the temporal spreading of the wave packet (4.8) subjected to the
interaction kicks, we examine the temporal evolution of its mean-square width in
momentum space,

σ2(t) =
∑
q

q2 |ψq(t)|2. (4.9)

Here, the overbar refers to averaging over the random phase ϕq accumulated between
the kicks. The corresponding time evolution of σ2(t) is shown in Fig. 4.2. It is
exponential, and characterized by two distinct dynamical regimes separated by a
certain characteristic time tE. σ2(t) first grows exponentially up to tE, then, for
t > tE, the increase slows down albeit it remains exponential. Such an exponential
spreading was confirmed by methods of classical chaos based on the calculation of
Lyapunov exponents [62] and on a mapping with a generalized kicked rotor [61].
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At weak interaction strength g/2π ≪ 1 and in the short-time regime, the mean-
square width (4.9) is dominated by the contribution of the first mode, i.e., σ2(t) ≃
2|ψ1(t)|2. Therefore, in Sec. 4.2.3, we study of the growth of the average population
of the first Fourier mode. Our main result [cf. Eq. (4.21)] which was not discussed
in the previous work [61, 62], is displayed in Fig. 4.2 (dashed curve), and matches
very well the numerical simulations.
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Figure 4.2: Mean-square width of the wave packet as a function of the number of
kicks t, for the Gross-Pitaevskii map. Here g = 0.7, λ = 3.03. The dashed curve is
the theoretical prediction for short times, Eq. (4.21), and the dashed-dotted curve
is the prediction of [61, 62] for long times, Eq. (4.10). The vertical dotted line
indicates the position of the characteristic time tE separating the two regimes of
exponential growth, given by Eq. (4.22).

At t ∼ tE, the modes |q| > 1 start to significantly impact the dynamics (see
also Sec. 4.2.4). For this reason, tE has the physical meaning of the typical time
needed for the wave function to spread over a significant portion of phase space,
the so-called Ehrenfest time [6]. We will use this terminology from now on.

The momentum dispersion in the regime t > tE was studied in the previous
works [61, 62], where it was found that

σ2(t) ∼ exp[t ln(1 + (g/π)2)]. (4.10)

In [62], in particular, the authors derived this exponential growth by rewriting
Eq. (4.4) in the form of a generalized kicked-rotor model and by studying the evo-
lution of σ2(t) in the corresponding classical map. A similar exponential growth was
also found in [60], in a slightly different model involving a linear kicking potential
on top of the nonlinear sequence of kicks. The exponential law (4.10) is shown in
Fig. 4.2, and well captures the numerical results at long time.
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In the next subsection, we present a theoretical perturbative description allowing
us to provide an analytical expression for the growth rate at short time (correspond-
ing to the first dashed curve in Fig. 4.2). Then we further elaborate on the random
Gross-Pitaevskii map, by examining the time evolution of the condensate fraction
under the interactions kicks. All these results serve as a benchmark for the regime
of kicks of finite duration that will be addressed in the next chapter and for which
a novel physics, different from that of Fig. 4.2, emerges.

4.2.3 Growth and saturation of the first Fourier mode
In this section, we compute the average population of the first Fourier mode that
governs the early stage of the dynamics. This calculation is, in particular, useful
to explain the first exponential slope in Fig. 4.2. Indeed, if the initial state (4.8)
is sufficiently peaked, λ ≫ 1, the momentum dispersion is approximately σ2(t) ≃
2|ψ1(t)|2 until the Ehrenfest time is reached.

Before proceeding with the calculation of |ψ1(t)|2, we mention an alternative
representation of our model. The (random) Gross-Pitaevskii map characterized by
Eq. (4.7) can also be represented by the Hamiltonian

Ĥ = g|ψ(x, t)|2 + Âq ×
∑
n

δ(t− n), (4.11)

where Âq is the operator that multiplies the Fourier modes by the random phase
exp(−iϕq). In between the kicks, which are now composed of the random phases,
the system evolves according to the equation of motion

i∂tψ(x, t) = g|ψ(x, t)|2ψ(x, t). (4.12)

Therefore, over one period, the evolution operator related to the Hamiltonian (4.11)
can be written as

Û(n) = exp
[
−i
∫ n

n−1
dt g|ψ(x, t)|2

]
exp(−iϕq), (4.13)

which is equal to Eq. (4.7) due to the conservation of |ψ(x, t)|2 under the dynamics
governed by Eq. (4.12). Indeed, in the density-phase formalism ψ =

√
neiθ, one

immediately obtains ∂tn = 0. While Eq. (4.7) is easily evolved numerically, the
propagator (4.13) is more convenient do deal with analytically [see Eq. (4.14)].

We now have all the necessary tools to compute the average population of the
first Fourier mode |ψ1|2(t) under the evolution operator (4.13).

Short times The growth of |ψ1|2 corresponds to a fast initial depletion of the
condensate from q = 0 to the neighboring momentum sites q ̸= 0. To describe it
quantitatively, we start from the evolution equation of the Fourier modes during a
given kick n:

i∂tψq = g

2π
∑
q1,q2

ψ∗
q1ψq2ψq+q1−q2 . (4.14)
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This equation corresponds to the first exponential term in the evolution operator
Û(n), and is the Fourier transform of Eq. (4.12) mentioned above.

At short time, mostly modes q = −1, 0, 1 are populated. Neglecting the other
modes and assuming |ψj|2 ≪ |ψ0|2 (j = ±1), we can linearize Eq. (4.14), which
leads to ψ0(t) ≃ ψ0(n− 1) exp[−ig(t− n+ 1)/2π] and

i∂tψj ≃ g

π
ψj + g

2πψ
2
0ψ

∗
−j. (4.15)

These equations still contain nonlinear factors that are conveniently removed with
the gauge transformation ψ̃j = ψj/ψ0. Then we introduce the circular state vector
for the first Fourier mode after the kick n, Γ(n) = (ℜ ψ̃1(n),ℑ ψ̃1(n))⊺, and assume
for simplicity1 ψ̃1 = ψ̃−1. The propagation of this state vector over one period obeys
Γ(n) = U Γ(n− 1), where the transfer matrix U is given by

U ≃
(

1 0
−g/π 1

)(
cosϕ1 − sinϕ1
sinϕ1 cosϕ1

)
. (4.16)

The second matrix in the right-hand side describes the free-space propagation be-
tween two interacting pulses, which involves the uniformly distributed kinetic phase
ϕ1, see Eq. (5.8). The first matrix, on the other hand, describes the propagation
during the kick n, and is inferred from Eq. (4.15) and its complex-conjugated ver-
sion. The average population of the first Fourier mode after n kicks, finally, follows
from:

|ψ1(t = n)|2 = 1
2π

∫ π

−π
dϕ1 ∥UnΓ(0)∥2, (4.17)

where the transfer matrix U is given by Eq. (4.16), and the initial state vector is
Γ(0) = (e−λ2

, 0)⊺. By symmetry, the contribution of negative ϕ1 equals the one of
positive ϕ1, so that the integral average in Eq. (4.17) can be replaced by 1/π

∫ π
0 dϕ1.

Explicitly, the matrix U reads

U =
(

cosϕ1 − sinϕ1
− g
π

cosϕ1+sinϕ1 cosϕ1+ g
π

sinϕ1

)
, (4.18)

whose eigenvalues are of the form µ ±
√
µ2 − 1, with µ = cosϕ1 + (g/2π) sinϕ1.

For values of ϕ1 such that µ2 − 1 < 0, the spectrum of U is unimodular. The
exponential growth of the first Fourier mode observed in the numerical simulations,
on the other hand, stems from the contributions of ϕ1 such that µ2 −1 > 0. Indeed,
in this case one of the two (distinct) eigenvalues is of modulus strictly larger than

1This assumption amounts to imposing ϕ1 = ϕ−1. Although this condition is not strictly
verified for a given realization of the random phase, we have verified that the final result is
unchanged when one considers ϕ1 ̸= ϕ−1. Indeed, in this case the eigenvalues of U , which is now
a 4 × 4 matrix, are given by e−i(ϕ1−ϕ−1)/2(µ ±

√
µ2 − 1). This is the same form as in the case

ϕ1 = ϕ−1, except for the additional phase factor e−i(ϕ1−ϕ−1)/2, which nevertheless has no impact
on the final result, Eq. (4.21).
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one, eventually leading to an exponential growth of |ψ1(t)|2. For weak interactions
g/2π ≪ 1, µ2 − 1 ≃ ϕ1(g/π − ϕ1) such that the values of ϕ1 leading to µ2 − 1 > 0
lie in the interval [0, g/π]. Note that this upper bound also defines the probability
P = g/π2 that the first excitation grows exponentially when one “draws” a value
of ϕ1.

The diagonalization of U provides

UnΓ(0) = − exp(−λ2)
(
η
x

sinh xn− cosh xn
ν
x

sinh xn

)
, (4.19)

for g ≪ 1, where η = ϕ1g/2π, x =
√
ϕ1(g/π − ϕ1) and ν = g/π − ϕ1. At leading

order in g, this leads to

|ψ1(t = n)|2 ≃ e−2λ2 + ge−2λ2

π2

∫ g/π

0

dϕ1

ϕ1
sinh2[t

√
ϕ1(g/π − ϕ1)]. (4.20)

The integral over ϕ1 can be calculated by a saddle point approximation, the saddle
point being ϕ1 = g/2π. This gives

|ψ1(t)|2 ≃ e−2λ2
[
1 + 1

2π

√
g

2te
gt/π

]
. (4.21)

This analytical result is displayed in Fig. 4.3(a), on top of the exact numerical
resolution of the random Gross-Pitaevskii map. As announced, the agreement is
very good up to the vicinity of the Ehrenfest time.

Intermediate times The above approach can also be used to access the Ehrenfest
time, by noting that at t ∼ tE the linearization breaks down. Precisely, we find
tE from the condition maxϕ1∥U tE Γ(0)∥2 = 1/2, i.e., from the specific configuration
where |ψ1|2 is maximal and becomes of the order of |ψ0|2 (recall that, as long as
only two modes are considered, |ψ0|2 + 2|ψ1|2 = 1 due to the normalization). This
criterion leads to

tE ≃ 2πλ2

g
. (4.22)

The Ehrenfest time tE thus represents the limit between linear and nonlinear dy-
namics. To provide a better and complementary understanding of the latter, in
Appendix D we elaborate on the above two-modes approximation, by proposing a
slightly more involved approach where the equations are not linearized as was done
in Eq. (4.15). Those calculations rely on the density-phase formalism and take ad-
vantage of the exact solution of a Bernoulli differential equation. They provide (see
Appendix D) the more accurate result:

|ψ1(t)|2 ≃ e−2λ2 + g

π2

∫ 1

0

dα

2 + |α−1/8|
α(1−α) cosh

[
2g
√
α(1 − α)(t− 2th)/π

] , (4.23)
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which is shown in Fig. 4.3(a) and is in good agreement with the numerical simula-
tions even slightly beyond the Ehrenfest time. Here, th is given by Eq. (D.6).
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Figure 4.3: (a) Time evolution of the average population of the first Fourier mode of
the wave packet with the initial condition (4.8). The growth is at first exponential,
a behavior which is well described by Eq. (4.21). At times later than tE ≃ 210
(vertical line), which marks the end of the validity of the linear theory, this growth
saturates and |ψ1(t)|2 slightly decreases. This saturation is well predicted by the
two-modes theory represented by Eq. (D.8) of Appendix D. The parameters are
λ = 3.03 and g = 0.28. (b) Condensate fraction versus time for g = 4. After tE,
the condensate is depleted exponentially by the growth of q-modes with q ≥ 1. The
dashed line is the estimate (4.31).

4.2.4 Exponential depletion of the condensate
The increase of the first Fourier mode, in turn, contributes to the depletion of the
condensate population. Numerically, we find that the condensate fraction decays
exponentially from tE:

|ψ0(t)|2 ≃ exp[−(t− tE)/τ ]. (4.24)

To understand this behavior and access the time scale τ , we note that |ψ0(t)|2
is essentially the probability for the condensate mode to remain populated at
time t. This probability is governed by specific realizations of the random phases
(ϕ1, ϕ2, . . . ) for which the small-q modes have not grown exponentially at a time
t larger than tE. Below we show that for such realizations the time at which the
mode q grows exponentially while the first q − 1 modes do not is tq = qtE, and
that the probability for a given mode population |ψq|2 to grow exponentially is
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P = g/π2 ≪ 1. Together, these two parameters yield the exponential decay men-
tioned above.

To this aim, we start by considering realizations of ϕ1 and ϕ2 for which the
population |ψ2|2 grows exponentially but the population |ψ1|2 does not. According
to the analysis of Sec. 4.2.3, |ψ1|2 does not grow exponentially when ϕ1 ∈ I =
[g/π, π] and, for weak interactions, this event occurs with the probability 1−P ≃ 1.
In that case, the spectrum of the transfer matrix U is unimodular, so that ψ1 rotates
in time in the complex plane. The depletion of |ψ0|2 is then mainly controlled by
the behavior of the second excitation. Our aim is then to find the new time scale
t2 at which the linearization breaks down due to the exponential growth of |ψ2|2.
Similarly to Sec. 4.2.3, this can be achieved by linearizing the Gross-Pitaevskii
equation (4.14) keeping the modes q = 0, 1, 2 only, and identifying t2 as the time
where the linearization procedure breaks down. Let us call Γ2 the state vector of the
second mode, Γ2 = (ℜ ψ̃2,ℑ ψ̃2)⊺, where ψ̃2 = ψ2/ψ0. Linearization of the equation
of motion (4.14) during a pulse gives

dtΓ2 =
(

0 0
−g/π 0

)
Γ2 + g

2π

(
ℑ ψ̃2

1
−2|ψ̃1|2 − ℜ ψ̃2

1

)
. (4.25)

Over one period, this can be written as

Γ2(n) = UΓ2(n− 1) + Σ(n), (4.26)

where Σ(n) refers to the rightmost term of Eq. (4.25), which implicitly depends on
ϕ1. U now denotes the transfer matrix (4.16) where ϕ1 has been replaced by ϕ2.
Using that ∥UΓ2(0)∥ ∼ e−4λ2 ≪ ∥Σ(1)∥ ∼ e−2λ2 , we obtain

Γ2(n) =
n−1∑
m=0

UmΣ(n−m), (4.27)

for times n ≥ 1. Since ψ̃1 rotates in the complex plane, we also infer ∥Σ(m)∥ ∼
e−2λ2 . Therefore, the same argument as in Sec. 4.2.3 shows that the exponential
grows of ⟨|ψ2(t)|2⟩ϕ1∈I arises for realizations ϕ2 ∈ Ī = [0, g/π], occurring with
probability P = g/π2. The average population of the second mode is then mainly
governed by the integral

∫
dϕ2∥Un−1Σ(1)∥2, which can evaluated by a saddle point

approximation similar to the procedure employed in Eq. (4.20). We find:

⟨|ψ2(t = n)|2⟩ϕ1∈I ∝ exp(−4λ2) exp [g(t− 1)/π] . (4.28)

Up to logarithmic corrections, the only difference with the second term in the r.h.s.
of Eq. (4.21) stems from the different prefactor e−4λ2 instead of e−2λ2 . Accordingly,
the time scale t2 at which the linearization hypothesis breaks down is given by

t2 ≃ 4πλ2

g
= 2tE. (4.29)
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Figure 4.4: Condensed fraction ⟨|ψ0|2⟩ϕ1,...,ϕq−1∈I for q = 1, . . . , 5 from left to right.
These curves are numerically obtained by averaging the population |ψ0|2 over the
random vector (ϕ1, ϕ2 . . . ) under the constraint ϕ1, . . . , ϕq−1 ∈ I. The case q = 1
(black curve) coincides with the unrestricted average |ψ0|2. Here λ = 3.03 and
g = 4. Vertical dashed lines indicate the positions of the theoretical predictions
(4.30) for tq.

This analysis can be extended to higher q > 2: we consider events of probability
(1 − P)q−1 for which ϕ1, . . . , ϕq−1 ∈ I. Then, the depletion of the condensate is
mostly controlled by the q-th mode, and the typical time scale at which linearization
breaks down is

tq ≃ qtE. (4.30)

We have corroborated this prediction numerically by computing the average popu-
lation ⟨|ψ0|2⟩ under the constraint ϕ1, . . . , ϕq−1 ∈ I, see Fig. (4.4).

Finally, we infer

|ψ0(tq)|2 ≃ (1 − P)q−1 ≃ exp[−(q − 1)P ]
= exp[−g(tq − tE)/(π2tE)]. (4.31)

This argument confirms the numerical observation, and identifies the characteristic
time τ to deplete the condensate as

τ ≃ π2tE
g

= 2π3λ2

g2 . (4.32)

We have also studied this time scale numerically as a function of g and λ, as shown
by the two plots in Fig. 4.5, and the results agree with the prediction (4.32).
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Figure 4.5: Characteristic time governing the exponential decay |ψ0(t)|2 ∼
exp(−(t − tE)/τ) of the average condensate fraction in the Gross-Pitaevskii map,
extracted from numerical simulations. The main panel shows τ as a function of the
interaction strength g, at fixed λ = 3.03. Dots are numerical data and the solid
curve is a linear fit providing τ ∝ 1/g2.05. The inset shows τ as a function of λ,
at fixed g = 1. The solid curve is a linear fit giving τ ∝ λ2.16. Together, the plots
provide τ ≃ 70.8λ2.16/g2.05, in very good agreement with the theoretical prediction
(4.32).

Conclusion
In this chapter, we have first introduced the quantum kicked rotor (4.2) and dynam-
ical localization, emphasizing how this phenomenon is modified when interactions
are taken into account at the mean-field level, and when kicks of finite duration
are considered. We then studied more quantitatively various properties of the less
known Gross-Pitaevskii map (4.4), a model that also displays remarkable transport
properties, in particular an (ultrafast) exponential spreading of wave packets. We
have complemented existing results in the literature on the wave packets dispersion
by investigating the evolution of the average population of the first excitation [Eqs.
(4.21) and (4.23)], as well as the exponential depletion of the “condensate” mode
beyond the Ehrenfest time, Eq. (4.24).



Chapter 5

Sub-diffusion of wave packets with
periodically kicked interactions

In the previous chapter, we presented two models of periodically driven 1D Bose
gases exhibiting dramatically different dynamics. In the first one, the quantum
kicked rotor, diffusion is completely suppressed in momentum space after a few
tens of kicks. In contrast, for the Gross-Pitaevskii map, wave packets spread expo-
nentially fast at all times in Fourier space. In this chapter, we revisit the Gross-
Pitaevskii map by considering interaction kicks of arbitrary duration. While we
recover the exponential spreading in the limit of delta kicks, we find that, as soon
as the kicks are finite, the spreading is no longer exponential but rather sub-diffusive
at long time. This phenomenon stems from the competition between the kinetic
and interaction energies within the kicks, which is absent in the limit of delta kicks.
At the microscopic level, we interpret this sub-diffusive spreading in terms of a
mechanism of incoherent coupling of the momentum sites, a phenomenon that also
occurs in the interacting version of the kicked rotor. Regarding the shape of the
momentum distribution, we find that the periodically kicked interactions first give
rise to an early-time exponential depletion of the condensate mode, quickly followed
by the emergence of a “thermal” background of particles spreading sub-diffusively.
Our analysis finally shows that the time scale where exponential spreading breaks
down scales logarithmically with the kick duration. This indicates that, as soon
as the kicks are finite, the sub-diffusive motion tends to take over the exponential
spreading at relatively short times, even if extremely short kicks are considered.

5.1 The model
As in the previous chapter, we consider the mean-field, dynamical evolution of a
one-dimensional Bose gas described by the Gross-Pitaevskii equation

iℏ∂tΨ(x, t) = p̂2

2mΨ(x, t) + g(t)|Ψ(x, t)|2Ψ(x, t), (5.1)
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with normalization
∫
dx|Ψ(x, t)|2 = 1 for the wave function Ψ(x, t). The momentum

operator is p̂ = −iℏ∂x. Instead of a periodic sequence of Dirac delta peaks, we
now assume that the time dependent interaction strength takes the form of a more
realistic sequence of square pulses of period T , width δt and amplitude gN , with g
the interaction parameter and N the total number of particles:

g(t) =

0 if t ∈ [nT, (n+ 1)T − δt], n ∈ Z,
gN otherwise.

(5.2)

In practice, such a sequence can be realized by applying a periodic magnetic field
modulation to the atomic cloud, exploiting a Feshbach resonance. From now on,
we denote by L the system size and assume periodic boundary conditions, thus
describing a ring geometry. This implies that the eigenstates p of the momentum
operator are quantized in units of 2πℏq/L, where q ∈ Z is an integer.

5.2 Dimensionless formulation
To study the time evolution entailed by the sequence (5.2), it is convenient to work
with a dimensionless version of Eq. (5.1). To this aim, we first rescale position,
time and wave function according to

t = t/T, x = 2πx/L, |ψ|2 = |Ψ|2L/2π, (5.3)

and introduce the effective Planck constant

ℏeff = ℏT
m

(2π
L

)2
. (5.4)

This leads to the dimensionless Gross-Pitaevskii equation

iℏeff∂tψ(x, t) = ℏ2
effq̂

2

2 ψ(x, t) + γ(t)|ψ(x, t)|2ψ(x, t), (5.5)

where the reduced momentum operator is q̂ = −i∂x. The dimensionless position x
lies in the interval [0, 2π), and the new wave function still obeys

∫
dx|ψ(x, t)|2 = 1.

The dimensionless, self-interaction modulation is now given by

γ(t) =

0 if t ∈ [n, n+ 1 − δt/T ], n ∈ Z,
γ otherwise,

(5.6)

where γ = 2πgNℏeffT/Lℏ.
In the previous chapter, Eqs. (5.5) and (5.6) were investigated in the limit

of Dirac delta kicks, i.e., for δt/T → 0, γ → ∞ with the product γδt/T constant:
γ(t) = γδt/T

∑
n δ(t−n). A particular consequence of taking the limit of pure delta

kicks is that the kinetic energy is irrelevant at the specific times where the kicks are
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nonzero. This is no longer the case as soon as the kick duration is finite: during
the kicks, the kinetic energy cannot be neglected and competes with the interaction
term. This is precisely the situation we explore in the following, where we will show
that this competition dramatically modifies the spreading of wave packets.

The time evolution of the state vector during one period (free evolution and
kick) is governed by the evolution operator

Û(n) = T exp
[
−i
∫ n

n−δt/T
dt′
(
ℏeffq̂

2

2 + γ|ψ|2

ℏeff

)]
× exp

[
−i
∫ n−δt/T

n−1
dt′

ℏeffq̂
2

2

]
, (5.7)

where T is the time-ordering operator. In this expression, the first exponential refers
to the evolution during kick n, while the second one describes the free evolution
stage before it. To study the system’s dynamics, from now on we focus for simplicity
on the limit ℏeff ≫ 1, excluding quantum resonances where ℏeff is a rational multiple
of 4π [214]. Therefore, the phase ∼ ℏeff accumulated during the free evolution stage
is very large, such that it can be accurately replaced by a random variable ϕq
uniformly distributed over [0, 2π]. This approximation was already introduced in
the previous chapter in Eq. (4.7), and finds here a simple justification in terms
of ℏeff which can be tuned at will, e.g. by adjusting the period T . Note that we
cannot apply the same random phase approximation for the kinetic phase in the
first exponential of Eq. (5.7), which is of the order of the product ℏeffδt/T , not
necessarily large. To deal with the latter, it is convenient to introduce the change
of variables s (n) = (T/δt)t′ + n(1 − T/δt), so that

Û(n)=T exp
[
−i
∫ n

n−1
ds

(
q̂2

2f 2 + γ∗|ψ|2
)]

exp(−iϕq), (5.8)

where
γ∗ = γδt

Tℏeff
= 2πgNδt

Lℏ
(5.9)

is the effective interaction strength, and

f =
√

T

δtℏeff
= L

2π

√
m

δtℏ
(5.10)

controls the amplitude of the kinetic energy during the kicks. Information about
the finite duration of the kicks is entirely contained in this parameter. In particular,
when f = ∞ the kinetic term in Eq. (5.8) vanishes and one effectively recovers the
delta-kick limit of [61, 62] studied in Sec. 4.2 [the effective interaction strength γ∗

was simply denoted by g in the previous chapter, cf. Eq. (4.7)].

5.3 Long-time sub-diffusion
5.3.1 Numerical simulations
The evolution of the wave-packet mean-square width for finite values of f is dis-
played in Fig. 5.1. The limit f = ∞ is also shown for comparison (black curve).
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Figure 5.1: Main panel: mean-square width of the wave packet as a function of
the number of kicks t up to t = 600, for finite, increasing values of f . Solid curves
from bottom to top correspond to f = 1, 2, 4, 8, 16, 32, 64. Here γ∗ = 4, λ = 3.03,
so that the Ehrenfest time predicted by Eq. (4.22) occurs around tE ≃ 14. The
black curve corresponds to numerical results in the limit f = ∞ (delta kicks). In
contrast to Fig. 4.2, the exponential growth of σ2 in this plot does not exhibit a
visible change in slope. This can be attributed to the use of a log-log scale and to
the larger value of γ∗ employed here, which makes it more challenging to observe
the two exponential regimes shown in Fig. 4.2. Inset: mean-square width up to
t = 5000 at f = 16, emphasizing the sub-diffusive behavior at finite f for t > tE.
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Figure 5.2: Distribution of the momentum density, P (|ψq(t)|2), at different times
and fixed f = 16 and γ∗ = 4. Here we choose q = 2 as an example, the distribu-
tions at other q-values behaving similarly. At long time, the distribution becomes
exponential, suggesting that the ψq are complex random Gaussian variables.

The figure shows that when f is finite, the behavior of σ2(t) at times t < tE re-
mains well captured by the δ-kicks theory detailed in Sec. 4.2, except, perhaps, for
small values of f . On the other hand, a dramatically different evolution emerges
beyond tE: the growth of σ2(t) is no longer exponential but rather algebraic, with
a prefactor increasing with f . An analysis up to t ≃ 5 × 103 is shown in the inset,
and suggests the following algebraic scaling at long time:

σ2(t) ∝ t1/2. (5.11)

5.3.2 Mode-coupling model
The sub-diffusive behavior observed in the numerical simulations can be understood
in terms of a mechanism of “heating” where the spreading wave packet is incoher-
ently coupled to its neighboring sites via the nonlinearity. A similar mechanism was
shown to also take place in the context of the nonlinear Schrödinger equation in
the presence of disorder [195, 196]. To clarify this idea, we start from the evolution
equation during a kick at finite f :

i∂sψq = q2

2f 2ψq + γ∗

2π
∑
q1,q2

ψ∗
q1ψq2ψq+q1−q2 . (5.12)

Let us now consider a certain momentum-site q located at the border of the spread-
ing wave packet. At the contact with the wave packet, the amplitude of this site
evolves according to Eq. (5.12). We then make the hypothesis that the coupling
between this site and the spreading wave packet consists in an incoherent heating
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mechanism where the second term in the right-hand side of Eq. (5.12) is replaced
by a random noise. This assumption is motivated by the fact that the complex
amplitudes ψq become Gaussian random variables at long enough time, as is con-
firmed by the numerical simulations in Fig. 5.2. We thus replace Eq. (5.12) by the
Langevin equation:

i∂sψq ≃ q2

2f 2ψq + γ∗

2πf
2ρ(s)3/2η(s), (5.13)

where ρ(s) is the momentum density of the spreading wave packet, which for the
simplicity of the argument we here take uniform, and η(s) is an uncorrelated random
noise, satisfying η(s)η(s′) = δ(s−s′). The prefactor f 2 = N 2 stems from the number
N of terms effectively involved in each sum in the right-hand side of Eq. (5.12).
At long time, this number must be related to the strength of the kinetic term in
Eq. (5.12), which is precisely responsible for the existence of sub-diffusion. As a
rough estimate, we identify N with the typical value of q for which the kinetic
term in Eq. (5.12) is of the order of 1, i.e., q ∼ N ∼ f . This scaling is also in
good agreement with a more quantitative analysis of the inverse participation ratio
discussed in Appendix E.

For late stroboscopic time t ≫ tE, the solution of the Langevin equation for
the average squared amplitude at the site q is |ψq(t)|2 ∼ f 4γ∗2ρ3t. From this, we
infer that the typical time ts it takes for the wave packet to “heat” the site q is
such that ρ ∼ f 4γ∗2ρ3ts, giving t−1

s ∼ f 4γ∗2ρ2. Finally, we assume that the wave-
packet spreading can be described by a nonlinear diffusion equation of the type
dσ2(t)/dt = D(t), with a diffusion coefficient D(t) proportional to the heating rate
t−1
s . This leads to

σ2(t) ∼ f 4γ∗2ρ2t. (5.14)

For a uniform wave packet, ρ(t) = 1/σ(t) due to norm conservation. The solution
of Eq. (5.14) for σ2(t) then immediately yields

σ2(t) ∼ f 2γ∗t1/2, (5.15)

which reproduces the time evolution in Fig. 5.1. We have also verified that the
scaling of the prefactor in f 2γ∗ is well reproduced by the numerical simulations at
long time, see Fig. 5.3.
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Figure 5.3: (a) Time evolution of the rescaled dispersion σ2/f 2 for γ∗ = 4 and
f = 1, 2, 4, 8, 16, 32, 64 (from bottom to top). It confirms the scaling σ2 ∝ f 2

[Eq. (5.15)] at large enough f . (b) The dispersion also scales like ∼ (γ∗)1.06 at late
times. Here f = 16, and γ∗ = 0.7, 1.68, 2.37, 3.37, 4.75 (from bottom to top).

5.4 Condensate fraction and crossover to the delta-
kick limit

5.4.1 Condensate fraction

Another relevant quantity for probing the difference between finite and delta kicks
is the average Bose condensate fraction, defined as |ψ0(t)|2. This quantity is shown
in the main panel of Fig. 5.4 for several values of f , as well as in the f = ∞ limit of
delta kicks. In the latter case, we recall that the decay is exponential, see Eq. (4.24)
of the previous chapter.
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Figure 5.4: Average condensate fraction |ψ0(t)|2 versus time for increasing values
of f . Solid curves from top to bottom correspond to f = 1, 2, 4, 8, 16, 32, 64, and
the black line is the f = ∞ limit. Here γ∗ = 4 and λ = 3.03. The inset shows
|ψ0(t)|2 in double logarithmic scale for f = 16. Interpolating between the short-
time (exponential) and long-time (algebraic) decays provides an estimate of the time
scale tf beyond which the description in terms of delta kicks becomes incorrect.

Like for the momentum dispersion σ2, however, as soon as f is finite we observe
a clear deviation from the exponential scaling, |ψ0(t)|2 decreasing much more slowly.
An analysis of the condensate fraction over longer times, shown in the inset of Fig.
5.4, again points toward a sub-diffusive behavior at finite f . We find |ψ0(t)|2 ∼
1/t1/4, which is fully consistent with the sub-diffusive law (5.11) for the mean-square
width (see also Sec. 5.5).

5.4.2 Cross-over to the delta-kick limit
The time evolutions of the condensate fraction at finite and infinite f discussed
above can be used to estimate the characteristic time tf beyond which the model
f = ∞ of delta kicks can no longer be reliably utilized to describe the dynamics.
This question is crucial from a practical point of view, since in a real experiment
the duration of the kicks cannot be made arbitrarily small, especially if the bosonic
interactions are modulated using Feshbach resonances. To find tf , we interpolate
the temporal scalings of the condensate fraction at finite and infinite f , where
|ψ0(t)|2 ∼ 1/ft1/4 and |ψ0(t)|2 ∼ exp[−(t− tE)/τ ], respectively. This method, il-
lustrated in the inset of Fig. 5.4, yields

tf ∼ τ ln f ∼ 2π3λ2

γ∗2 ln f. (5.16)

The logarithmic dependence of tf on f has a remarkable consequence: even for
extremely large values of f , i.e., for extremely short kick durations, the breakdown
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of the exponential decay of the condensate fraction [or the exponential growth of
σ2(t)] occurs at relatively short times (this phenomenon is, in fact, visible by eye in
Fig. 5.1). This implies that, in a real experiment that unavoidably involves finite
kicks, the sub-diffusive behavior described in the present work should be more the
rule than the exception.

5.5 Momentum distribution

All the above findings can be summarized by looking at the average momentum
distribution of the Bose gas at different times. Such distributions are displayed in
the upper panel of Fig. 5.5. The distributions first exhibit an exponential decay
of the condensate mode, |ψ0(t)|2, at the scale of τ , quickly accompanied by a slow
growth of the “thermal” modes q ̸= 0. The latter control the subsequent sub-
diffusive evolution of the wave-packet mean-square width according to Eq. (5.11).
The lower panel of the figure is a zoom on the central part of the distribution at
t = 200 and t = 500. As soon as the condensate fraction is negligible, i.e., at times
of the order of a few τ , we numerically find that this central part is always very
well approximated by the (normalized) Gaussian profile

|ψq(t)|2 ≃ 1√
2πσ2(t)

exp
[
− q2

2σ2(t)

]
, (5.17)

where σ2(t) is the mean-square width of the whole distribution [satisfying Eq.
(5.11)]. Note that this law, in particular, implies |ψ0(t)|2 ∼ 1/t1/4, in accordance
with the results of the previous section. This Gaussian shape is another marked
difference with the behavior observed in the f = ∞ limit, for which the profile is
known to be exponential at all momenta [60–62].
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Figure 5.5: Upper panel: average momentum distribution of the wave packet
at increasing times, at fixed f = 64, γ∗ = 4 and λ = 3.03. At short time, the
condensate mode |ψ0(t)|2 decays exponentially at the scale of τ . This decay is
accompanied by a slow growth of the thermal modes q ̸= 0. The latter control
the sub-diffusive evolution of the wave-packet mean-square width according to Eq.
(5.11). The lower panel is a zoom on the central part of the distribution at t = 200
and t = 500. These profiles are very well described by the Gaussian distribution
(5.17), without any fit parameter.

When f is finite, nevertheless, our numerics suggests that the far q-tails of the
momentum distribution also decay exponentially, see Fig. 5.5. At variance with
the f = ∞ limit, however, here the exponential decay length ξ(t) does not grow
exponentially in time, but rather sub-diffusively. The numerical results of Fig.
5.6, indeed, suggest |ψq(t)|2 ∼ exp[−|q|/ξ(t)] with ξ(t) ∼ tα and α close to 1/3.
Although the degree of universality of this value is not yet clear to us, this sub-
diffusive law is apparently different from the one governing σ2(t), see Fig. 5.6. There
is, of course, no contradiction at this stage, since the exponential tails provide a
negligible contribution to the variance of the whole distribution. While we have not
been able to find an analytical basis for the scaling of the far tails, it could stem from
a mechanism different from the incoherent heating discussed in Sec. 5.3, involving,
for example, resonant coherent coupling between the modes of the spreading wave
packet [215].



Chapter 5: Sub-diffusion in wave packets with kicked interactions 97

102

101

100

101 102 103

number of kicks

Figure 5.6: Time evolution of the exponential decay length ξ(t) governing the far
tails of the momentum distribution. A linear fit (dashed line) suggests an algebraic
scaling close to ξ(t) ∼ t1/3. The time evolution of the mean square width σ2(t) is
also shown for comparison. Here f = 16, γ∗ = 4 and λ = 3.03.

Conclusion
By considering a Bose gas subjected to a periodic modulation of the interactions
taking the form of finite kicks, we have found evidence for the emergence of a
mechanism of sub-diffusive spreading of the wave function beyond a characteristic
Ehrenfest time. This result has to be contrasted with the case of delta kicks, where
the spreading is always exponential. We have interpreted the sub-diffusive motion
in terms of an incoherent heating process for the nonlinear coupling of momentum
sites. Beyond this analysis, however, one may ask what fundamental mechanism
could explain the different dynamics observed for finite and delta kicks. A possible
explanation could be the different nature of the quantities conserved within a given
kick in the two scenarios. Indeed, when f = ∞, the evolution equation during one
kick can be immediately integrated to yield

ψ(x, n+ 1) = e−iγ∗|ψ(x,n)|2ψ(x, n). (5.18)

The norm of the wave function is thus conserved for all point x in that case. This
local constraint in position space suggests that, conversely, the coupling between
modes is weakly constrained in momentum space, resulting in a very fast spreading
of the wave packet. In contrast, when f is finite, such a local solution no longer
exists and, instead, the nonlinear Schödinger equation involves only global integrals
of motions of the form

∫
dxψ∗(x, t)Qj(x, t) with the Qj(x, t) defined via recursion

relations [216]. We expect this global character to translate into a much weaker
coupling between the modes in reciprocal space.
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Our analysis has also revealed that, for finite kicks, the sub-diffusive motion
takes over the exponential spreading at a characteristic time that scales logarith-
mically with the kick duration. This characteristic time is thus always relatively
short, even in the limit of the extremely short kicks. This suggests that, in prac-
tice, sub-diffusion rather than exponential spreading of wave packets should be more
naturally observed in this system.



Conclusion

In this thesis, we have first addressed the question of thermalization in isolated
many-body quantum systems. Our case study was the uniform, low-temperature
2D Bose gas with weak contact interactions, for which we have specifically analyzed
the effects of a quench of the coupling constant. This system is, indeed, particularly
interesting due to its recent realization in several groups of ultracold atoms [44, 50],
as well as for its relevance in quantum fluids of light platforms [68, 112, 147] (which
emulate the classical, mean-field limit of Bose superfluids). While the experiments
we have described are, for the time being, mainly capable of describing coherent
phenomena for which a Bogoliubov approach is valid, recent measurements of relax-
ation time scales in a 2D Bose superfluid carried out in [50] show that a complete
theory capturing both short and long time scales in quench protocols has become
a pressing matter. On the theoretical side, precisely, most theoretical works devel-
oped so far on this particular issue have focused on the dimensions one and three.
To describe the process of thermalization in ultracold 2D Bose gases, we used a
Keldysh field theory, allowing us to derive quantum Boltzmann equations for both
the normal and anomalous quasiparticles correlators. This enabled us to recover the
2D perturbative relaxation rates that were previously obtained in an equilibrium
Matsubara formalism [88], and which correspond to Landau-Beliaev damping. The
approach also provided us with explicit expressions for time-dependent observables
measured experimentally, the coherence function and the structure factor, which we
characterized from the short-time coherent dynamics to the final thermalization. In
Sec. 3.2, finally, we extended our Keldysh formalism to the self-consistent Born
approximation, which predicts the breakdown of a perturbation theory at very low
energies. In this case, we obtained a novel expression for the Landau damping rate
∼ q3/2T 3/2, instead of ∼ qT 2 within the perturbative approach.

In the second part of this thesis, we have also tackled the problem of the wave
packet spreading of a 1D Bose gas subject to periodic interaction kicks (the Gross-
Pitaevskii map). This system was recently shown to exhibit an unbounded expo-
nential growth of the momentum dispersion in the case of δ-kicks [60–62]. By using
a standard transfer matrix technique, we elaborated on these results by analyzing
specifically the average population of the condensate fraction and of the first exci-
tation. In the last chapter, finally, we considered a realistic implementation of the
Gross-Pitaevskii map, for which interaction kicks take the form of square pulses
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of finite width. Instead of the exponential transport scenario, we found that this
model displays sub-diffusion at late times, due to the competition between kinetic
and interaction energies during the nonlinear pulses. We proposed a mechanism
of incoherent heating of the Fourier modes to explain this novel transport behav-
ior. Strikingly, we found that, even for extremely short kicks, the crossover from
exponential to sub-diffusive spreading occurs at very short times, suggesting that
any future experimental realization of the Gross-Pitaevskii map would result in the
observation of sub-diffusion.

There are several possible research directions for extending the results of this
thesis. First, it would be interesting to compute numerically the Landau-Beliaev
relaxation rates by means of the 2D Gross-Pitaevskii equation with stochastic ini-
tial conditions (also known as the truncated Wigner approximation [217, 218]).
The latter technique is expected to give a correct description of Bose superfluids
in the limit of very small energies. To our knowledge, such a numerical study has
never been completed, even in the case of perturbative Landau damping. These
simulations, in particular, should have the ability to probe the existence of a non-
perturbative regime for relaxation rates, such as the one predicted in this thesis for
momenta smaller than Eq. (3.42). In addition, the Landau relaxation rates could be
calculated within the functional renormalization group formalism [163, 164], which
is tailored to provide results in nonperturbative contexts. Previously, the ∼ q3/2 law
was also predicted in 1D; a natural question is thus whether this anomalous scaling
also holds in 3D. A positive answer might signal a universal mechanism behind
it. In the previous works [140, 219], it was suggested that in 1D such mechanism
is associated with a Kardar-Parisi-Zhang (KPZ) dynamics, although more investi-
gations would be required to clarify this point. Finally, our self-consistent theory
could be easily extended to the computation of the Keldysh self-energy, which would
give access to generalized (nonperturbative) kinetic equations describing the deep
infrared regime. In 1D, such theory led to the observation of algebraic relaxation of
quasiparticles [96], and the question of whether similar equations yield comparable
behavior in higher dimensions remains unanswered.

On the other hand, the generalized Gross-Pitaevskii map introduced in Chap-
ter 5 could also benefit from further investigations. First all, for small values of f
(nonlinear pulses of large width), we have noticed numerically the trace of noner-
godic behavior, i.e., the late onset of sub-diffusion (results not shown in this thesis).
In this case, we have also found evidence for the existence of quantum resonances
that persist even after the average of random phases. One of these resonances sig-
nificantly postpones the Thouless time: tH ∼ (1/γ∗)2, instead of the law (4.22).
Furthermore, the Gross-Pitaevskii map with attractive interactions was also shown
to support solitonic solutions [63], a remarkable feature which is essentially the
opposite of the exponential spreading scenario found for repulsive interactions. In
line with the results of Chapter 5, it would be interesting to find out whether this
property holds true for realistic non-linear pulses of finite width.



Appendix A

Wigner transformation

By definition, the direct Wigner transform of a two-point function θ(t, t′) is

θ̃(τ, ω) =
∫
d∆t ei∆tωθ(τ + ∆t/2, τ − ∆t/2). (A.1)

Identification of variables leads to τ = (t + t′)/2 and ∆t = t − t′. Therefore, τ is
often called “forward” time, or “central” time, while ∆t is the “relative” time. Eq.
(A.1) states that θ̃ is the Fourier transform of θ with respect to the relative time.
The inverse Wigner transform reads

θ(t, t′) =
∫ dω

2π e
−i(t−t′)ωθ̃(τ, ω). (A.2)

For example, some useful Wigner transformations used in the main text are

θ(t, t′) = A(t, t′)B(t, t′) → θ̃(τ, ω) =
∫ dν

2πÃ(τ, ν)B̃(τ, ω − ν), (A.3)

θ(t, t′) = A(t, t′)B(t′, t) → θ̃(τ, ω) =
∫ dν

2πÃ(τ, ν)B̃(τ, ν − ω), (A.4)

θ(t, t′) = A(t′, t)B(t, t′) → θ̃(τ, ω) =
∫ dν

2πÃ(τ, ν − ω)B̃(τ, ν), (A.5)

θ(t, t′) = A∗(t, t′)B(t, t′) → θ̃(τ, ω) =
∫ dν

2πÃ
∗(τ, ν)B̃(τ, ν + ω), (A.6)

θ(t, t′) = eiτλ, λ ∈ R → θ̃(τ, ω) = eiτλ δ(ω) × 2π. (A.7)

As one can see from these examples, the Wigner transform of a product is a con-
volution product of the Wigner transforms. Sometimes, one wishes to perform the
reverse operations, i.e., compute the Wigner transform of a convolution product
such as

θ(t, t′) = [A ◦B] (t, t′) =
∫
dt1A(t, t1)B(t1, t′). (A.8)
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Unfortunately, there are no simple results for the latter expression. Instead, the
expansion

θ̃(τ, ω) = e− i
2 [∂A

τ ∂
B
ω −∂A

ω ∂
B
τ ]Ã(τ, ω)B̃(τ, ω)

= ÃB̃ − i

2
[
∂τ Ã∂ωB̃ − ∂ωÃ∂τ B̃

]
+ · · · (A.9)

holds true [139]. Here, ∂Yx indicates differentiation with respect to the variable
x = ω, τ applied to the function Y = A,B. Computing all the terms in this
expansion is a priori hopeless. Yet, we can often assume that the functions of
interest Y (t, t′) = Y (τ + ∆t/2, τ − ∆t/2) vary much more slowly with τ than with
∆t [90, 135]. Indeed, τ is related to macroscopic, external degrees of freedom
(typically classical driving mechanism), while ∆t represents microscopic, intrinsic
processes (e.g. quantum scattering events) [139]. Therefore, we can often assume∣∣∣∣∣∂xYY

∣∣∣∣∣ ≪ 1, (A.10)

i.e., ω and τ are both slow variables of A and B. This separation of time scales is the
main motivation for using the Wigner representation. It means that the expansion
(A.9) can be truncated to its first terms. At first non-zero order, we recover the
Fourier analysis result

θ̃ ≃ ÃB̃, (A.11)

which is used extensively in the main text, see, e.g., Eqs. (2.47, 2.48).
As an additional illustration of the Wigner representation, let us mention here

that the expansion (A.9) immediately gives the result

(F ◦
[
G0,A

]−1
−
[
G0,R

]−1
◦F )q,ω,τ = −i∂τFq,ω,τ , (A.12)

without resorting to the real time representation. Indeed, we recall that [G0,R
q,ω,τ ]−1 =

[G0,A
q,ω,τ ]−1 = ω − ϵq [cf Eqs. (2.36, 2.37)], which shows that ∂ω[G0,R/A

q,ω,τ ]−1 = 1, while
all other possible partial derivatives vanish. Using twice Eq. (A.9), one exactly
obtains Eq. (A.12).



Appendix B

Angular integration in
Landau-Beliaev scattering

In Sec. 2.2.3, we have used Keldysh’s formalism to derive a quantum kinetic theory
of an isolated, low-temperature, two-dimensional interacting Bose gas. A byproduct
of our approach was the nonequilibrium damping rate γq = −Im ΣR

q [cf. Eq. (2.59)],
which quantifies the lifetime of phononic quasiparticles characterized by a generic
distribution function Fq. In equilibrium, the latter can be explicitly evaluated as
Fq = coth[ϵq/(2T )], so that γq reduces to the Landau-Beliaev damping rates γL/Bq

[cf. Eq. (2.76) and Eq. (2.77)] that were previously obtained within Matsubara’s
framework [88], but could also be derived from a simple Fermi golden rule. At the
heart of all these techniques is the calculation of integrals of the form

I =
∫ q

0
pdp

∫ π

−π
dθfp,θ δ(gp,θ).

As we will see, in such equations, the Dirac delta typically states the energy conser-
vation gp,θ = 0 of the considered interaction process, and the function fp,θ represents
the scattering amplitude. The aim of this appendix is to explain how to estimate
these integrals in practice.

As a reminder, the excitation spectrum of the hydrodynamical Hamiltonian (1.6)
is ϵp = c|p|

√
1 + ξ2p2. The low-energy regime of interest is phononic, i.e. typical

momenta verify |p| ≪ 1/ξ, or equivalently T ≪ mc2. Under this assumption, it is
often useful to expand ϵp in the small parameter ξ|p|, as ϵp = c|p| + 1

2cξ
2|p|3 + · · · .

Beliaev damping The disintegration of a phonon of energy ϵq into two phonons
ϵp, ϵq−p of smaller energies is referred as Beliaev damping. The energy conservation
condition gBp,θ = ϵp + ϵq−p − ϵq = 0 shows that |p| < |q|. gB = 0 can also be
readily transformed into a quadratic equation on the variable |p−q|, whose angular
solutions are

θB± = ± arccos
 1

2pq

p2 + q2 +
1 −

√
1 + 4ξ2(ϵp − ϵq)2/c2

2ξ2

 , (B.1)
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where we have used the shorthand notation p ≡ |p|, and θB denotes the angle
between p and q. As Eq. (B.1) demonstrates, two-dimensional Beliaev scattering
is composed of two channels (or “branches”) in the (p, θ) plane, with reflection
symmetry around the θ = 0 axis. This result was derived, e.g., in Ref. [220], and
reduces to θB± = 0 (respectively, θB± = ±

√
3|p−q|/2mc) if the dispersion is linearized

(respectively, rendered cubic). Furthermore,

∂θg
B
p,θ = 2pqc sin θ [2ξ2 (p2 + q2 − 2pq cos θ) + 1]

2
√
ξ2(p2 + q2 − 2pq cos θ)2 + p2 + q2 − 2pq cos θ

, (B.2)

so that in principle we could also derive |∂θgBp,θ|θB
+

exactly, by injecting Eq. (B.1)
into Eq. (B.2). In practice, however, it is sufficient to observe that |∂θgBp,θ|θB

+
= 0,

if the spectrum is linearized, and that

|∂θgBp,θ|θB
+

=
√

3
2mpq, (B.3)

at cubic order. These results are helpful when integrating a delta distribution
evaluated at gBp,θ over dp = pdpdθ:

∫ q

0
pdp

∫ π

−π
dθfp,θ δ(gBp,θ) ≃

∫ q

0
pdp

∫ ∞

−∞
dθ fp,θ δ(gBp,θ) =

∫ q

0
pdp

2fp,θB
+

|∂θgBp,θ|θB
+

. (B.4)

The first approximation is excellent provided the dispersion relation is well esti-
mated by one of its low-order truncations, i.e., if T ≪ gρ0. Furthermore, the factor
of two in the last equality relates to the two branches of Beliaev scattering, as found
in Eq. (B.1). Importantly, a purely linear spectrum renders the integral (B.4) diver-
gent. However, keeping the cubic correction of the Bogoliubov dispersion relation
regularizes the calculation. We note that the integral can also be made conver-
gent by taking into account the correction from high-order diagrammatic terms, as
evidenced by the self-consistent Born approximation presented in 3.2. Finally, at
lowest order, ∫ q

0
pdp

∫ π

−π
dθfp,θ δ(gBp,θ) ≃

∫ q

0
pdp

4mfp,0√
3pq

, (B.5)

which is used to obtain Eq. (2.59).

Landau damping Let us conclude this Appendix by mentioning how to modify
the previous calculation to describe Landau damping, for which two phonons ϵp, ϵq
coalesce into a quasiparticle of energy ϵp+q. The energy conservation is now stated
as gLp,θ = ϵp + ϵq − ϵq+p = 0. Unlike Beliaev process, there is no constraint here
on the scattered momentum’s modulus, i.e. |p| > 0. The two scattering channels
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verify

θL± = ± arccos
−1

2pq

p2 + q2 +
1 −

√
1 + 4ξ2(ϵp + ϵq)2/c2

2ξ2


≃ ±

√
3(p+ q)
2mc , (B.6)

which leads to |∂θgLp,θ|θL
+

=
√

3pq/(2m), and therefore the result (B.5) is left un-
changed when substituting gBp,θ for gLp,θ.





Appendix C

Numerical instabilities

The numerical calculations performed in Chapters 4 and 5 are based on a second-
order split-step method [221]. In practice, however, the specificities of the system
of periodically kicked interactions make certain observables very sensitive to insta-
bilities of this numerical scheme. A typical example is provided by the average
condensate fraction, |ψ0(t)|2, which decays exponentially in time. Indeed, as ex-
plained in Sec. 5.4 and in Appendix 4.2.4, at long time this quantity is governed by
realizations of the random phases for which the populations |ψq(t)|2 of other modes
remain exponentially small up to large q values.

10-2

10-1

100

10-3

number of kicks
1000 50 150 200 250 300 350

Figure C.1: Benchmarking of high-precision calculations using Nd = 32, 64, 100, 128
against results of standard fixed-precision formats (i.e. “single”, “double” and “ex-
tended double” precisions, respectively 7, 15 and 18 significant decimal digits). Here
f = 64, λ = 3.03 and γ∗ = 4, and numerical parameters are 1/∆s = 500, Nr ∼ 104,
Ns = 212.

An accurate estimation of |ψ0(t)|2 thus requires an accurate computation of
many exponentially small |ψq(t)|2, typically limited by the round-off error threshold
that depends on the finite number of significant decimal digits Nd representing
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floating-point data. This issue is illustrated in Fig. C.1, which shows the average
condensate fraction computed for increasing values of Nd. At too low Nd, the results
exhibit a non-physical temporal collapse. In practice, for our typical choices of
{f, λ, γ∗}, we have found that Nd = 100 allows to faithfully estimate the condensate
fraction up to a several hundreds kicks at all time scales.



Appendix D

Two-modes problem beyond
linearization

In Sec. 4.2.3, we studied the Gross-Pitaevskii map (4.4) in the short time regime
where the equations of motion can be linearized. More precisely, by restricting
the system to only two Fourier modes (the ones relevant at short times, i.e., the
condensate q = 0 and the first excitation q = 1), we wrote the average population
of the first mode in terms of a transfer matrix [cf. Eq. (4.17)], hence mapping the
time evolution of the Gross-Pitaevskii map on a simple spectral problem. In this
Appendix, we extend this calculation beyond the linear theory, thanks, in particular,
to a reduction of the number of dynamical variables reminiscent of the two-body
gravitational problem.

We consider the Gross-Pitaevskii map in the idealized situation where all modes
of momenta |q| > 1 can be neglected. This assumption is correct for the initial state
(4.8) at sufficiently short times. Furthermore, we assume that random phases are
even in p-space so that ψ1 = ψ−1. During nonlinear pulses, the nonlinear equations
of motion are idtψ̃0 = 2u|ψ̃1|2ψ̃0 + 2uψ̃2

1ψ̃
∗
0,

idtψ̃1 = u(1 − |ψ̃1|2)ψ̃1 + uψ̃2
0ψ̃

∗
1,

(D.1)

where the notations u = g/2π and ψ̃j(t) = ψj(t)eiut have been introduced. In
the density-phase formalism ψ̃j = √

nje
iθj , the differential system (D.1) can be

expressed by means of only two real variables. Indeed, denoting by n1 the population
of the first excitation and ∆θ(t) = θ1(t) − θ0(t) the relative phase, we obtaindtn1 = 2un1(2n1 − 1) sin (2∆θ) ,

dt∆θ = −un1 + u(4n1 − 1)[1 + cos (2∆θ)],
(D.2)

by means of the conservation of the norm n0 + 2n1 = 1. The first equation of this
system is a Bernoulli equation, which, despite its nonlinearity, admits the solution

n1(t) = 1
2 + η−2 exp

(∫ t
0 2u sin [2∆θ(s)] ds

) . (D.3)
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Here, η2 ≡ e−2λ2 ≪ 1 is the initial value of n1.
To make progress, we rely on a numerical observation: For small coupling con-

stants u ≪ 1, the relative phase ∆θ is quasi-periodic in time of period 4th. More
precisely, the relative phase first decreases from its initial value ∆θ(0) = 0, quickly
approaching the lower bound ∆θl < 0. From t = th to t = 2th, the relative phase
increases until ∆θ ≃ 0. Moreover, for t < th, ∆θ(th − t) ≃ ∆θ(th + t). A simi-
lar property holds after 2th, i.e., ∆θ(2th − t) ≃ −∆θ(2th + t). As the value of u
decreases, the quasi-periodicity holds with higher precision.

Eq. (D.3) can be now improved by using the above properties of ∆θ(t). The
linearity of the integral gives

∫ t
0 · · · = 2

∫ th
0 · · · −

∫ 2th−t
0 . . . for th ≤ t ≤ 2th, which

leads to:
n1(th ≤ t ≤ 2th) = 1

2 + n1(2th−t)
[n1(th)]2

. (D.4)

In other words, the dynamics between th and 2th is merely a re-writing of the
dynamics before th, which is known from the linear theory. A similar equation can
be obtained after 2th. Therefore, for t ≤ 3th, the quasi-periodicity of the relative
phase leads to

n1(t) = 1
2 + 4a

uη2 e
−4

√
a(2u−a)th cosh

(
2
√
a(2u− a)(t− 2th)

) . (D.5)

Here, a is the random angle due to the free evolution in between nonlinear pulses.
We have assumed that 0 ≤ a ≤ 2u.

In order to compute th, we solve perturbatively the differential equation on ∆θ
in (D.2), by using the linear solution nlin

1 instead of n1. The quantity 1+cos [2∆θ(t)]
can be eliminated by using the conservation of the energy during a nonlinear pulse.
We find

th = 1
4
√
a(2u− a)

ln
[
8 η−2

(
a

u

)2 2u− a

|4a− u|

]
, (D.6)

in excellent agreement with numerical simulations. The final solution is then

n1(t) = 1
2 + u

2a
|4a−u|
2u−a cosh

(
2
√
a(2u− a)(t− 2th)

) . (D.7)

Finally, for t ≤ 3th, the average population of the first Fourier mode reads

n1(t) ≃ η2 + 2u
π

∫ 1

0

dα

2 + |α−1/8|
α(1−α) cosh

(
4u
√
α(1 − α)(t− 2th)

) , (D.8)

which is represented in Fig. (4.3). The linear solution (4.21) is just a particular
case of this equation, for t ≤ th.
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Statistics of fluctuations

In addition to the dispersion σ2(t) = ∑
q q

2 |ψq(t)|2, the spreading of the wave packet
can be characterized by the inverse participation ratio (IPR) 1/∑q |ψq(t)|4, which
measures the average number of excited modes at a given time t. The IPR is shown
in Fig. (E.1) as a function of time.

number of kicks
100 200 300 400 5000

IP
R

101

100

102

Figure E.1: Inverse participation ratio versus time. Solid curves from bottom to
top correspond to f = 1, 2, 4, 8, 16, 32, 64. Here γ∗ = 4 and λ = 3.03.

At very short times, 1/∑q |ψq|4 ≃ 1 since only one mode is appreciably populated.
This is the regime discussed in Sec. 4.2.2. When t ≥ tE, many q modes start to
be populated and the IPR rapidly increases. At late times, finally, the increase is
slowed down as the system enters the sub-diffusive regime described in Sec. 5.3. We
also note that for sufficiently large f , IPR ∝ f at a given time. This result validates
the estimation of Sec. 5.3 for the number of modes effectively participating in the
second term in the right-hand side of Eq. (5.12) in the sub-diffusive regime.

We finally comment on the fluctuations of the momentum dispersion σ2(t) =
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∑
q q

2 |ψq(t)|2 from one realization of the random phases to the other. These fluc-
tuations are illustrated in Fig. E.2, which shows the behavior of σ2(t) for many
realizations. The fluctuations are typically large in the vicinity of the Ehrenfest
time, while the dispersion becomes self-averaging in the long-time, sub-diffusive
regime. The standard deviation of the dispersion, defined as

sd(σ)=
[(∑

q

q2 |ψq(t)|2
)2

−
(∑

q

q2 |ψq(t)|2
)2]1/2

, (E.1)

is shown in the inset of Fig. E.2 and confirms this behavior.

number of kicks t

σ
2

sd(σ2)/σ2

Figure E.2: Wave-packet momentum dispersion σ2(t) for ∼ 103 realizations of the
random phases (colored curves), and its average (thick black curve). Here f = 16,
λ = 3.03 and γ∗ = 4. The inset shows the standard deviation of the dispersion
relative to its average.
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