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1. Loi Grenelle I, Article 3

Introduction (version franc ¸aise) 1.1 Oze-Energies

Oze-Energies, nouvellement Accenta, est une entreprise franc ¸aise sp écialis ée dans l'optimisation de la consommation énerg étique des b âtiments. Alors que la demande énerg étique en chauffage, climatisation et ventilation n'a cess é d'augmenter depuis plusieurs d écennies, r éduire l'impact environnemental du parc immobilier, tout en maintenant une qualit é de confort raisonnable, reste un probl ème complexe. Au travers de m éthodes innovantes et durables, Oze-Energies vise à am éliorer la qualit é de l'air et le confort dans les b âtiments, tout en r éduisant leur consommation, sans r énovation.

En 2009, le parc immobilier était responsable de 40% de la consommation énerg étique franc ¸aise, et pr ès d'un quart des émissions de gaz à effet de serre (Loi Grenelle 1 , Figure 1.1). La strat égie la plus directe pour r éduire cette consommation consiste à r énover l'isolation des vieux b âtiments, ce qui m ène g én éralement à des travaux longs et co ûteux. Malgr é s' être fix é comme objectif de r énover 500 000 b âtiments par an avant 20202 3 , les r ésultats ne sont à ce jour pas satisfaisants, comme soulign é par l'Ademe (Agence de la transition écologique) 4 . Selon la SNBC (Strat égie Nationale Bas Carbone), le nombre moyen de r énovations annuelles effectu ées d'ici 2030 avoisinera les 370 000 pour la p ériode 2015-2030. Oze-Energies a choisi une approche orthogonale en proposant aux gestionnaires de suivre des feuilles de route, produites sur mesure, afin de r éduire la consommation de leur b âtiments. Cela conduit à une r éduction de 25% en moyenne de la facture énerg étique, sans n écessiter de travaux de r énovation.

La consommation énerg étique d'un b âtiment peut être r éduite en grande partie en jouant sur les param ètres de chauffage, ventilation et air conditionn é (abr ég é HVAC pour Heating Ventilation and Air Conditioning). Oze-Energies travaille principalement sur l'occupation dans le secteur tertiaire o ù les comportements sont bien connus (journ ées classiques de travail, pas d'occupation le week-end, etc.), cependant on peut toujours noter des diff érences significatives d'un b âtiment à l'autre dues à une grande vari ét é de facteurs. On peut citer par exemple l'isolation, l'occupation du b âtiment ou encore l'utilisation de diff érents services de chauffage et climatisation. Ces diff érences repr ésentent une des difficult és techniques majeures de notre approche, que nous d étaillons dans ce document.

Afin de mod éliser pr écis ément les échanges de chaleur de chaque b âtiment, Oze-Energies suit leur consommation et mesure la qualit é de leur air de leur locaux en y installant des capteurs environnementaux, connect és à travers LoRA (un r éseau public et s écuris é). Ces donn ées sont regroup ées dans une base de donn ées centralis ée.

Les experts thermiciens de Oze-Energies peuvent alors les combiner avec leur connaissance de la thermique des b âtiments pour produire des feuilles de route qui d étaillent un jeu de param ètres de HVAC permettant d'optimiser la consommation et d'assurer une bonne qualit é de l'air. Avec une r éduction de la facture énerg étique de 25% en moyenne à confort constant, le co ût de ce service est largement couvert par les économies r éalis ées : il s'agit du produit principal propos é par Oze-Energies, OPTIMZEN®.

Oze-Energies recherche des m éthodes permettant de r éduire le travail parfois r ép étitif de ses thermiciens : Oze-Energies a ét é fond ée en 2014, couvre plus de 5 millions de m ètres carr és, étal és sur 500 b âtiments, et fait aujourd'hui partie de l'entreprise Accenta. 1.2 Optimisation du confort et de la consommation

Capteurs, compteurs et donn ées m ét éorologiques

Pour comprendre le comportement d'un b âtiment, nous combinons diff érents types de donn ées, souvent r écup ér ées directement sur le site. La premi ère étape de la production de feuilles de route consiste donc à installer des compteurs, qui transmettront aux bases de donn ées de Oze-Energies à intervalles r éguliers, en g én éral toutes les 10 minutes. Ils peuvent être rang és en trois cat égories :

-Les capteurs sont install és par les experts thermiciens à divers emplacements du b âtiment, et r écup èrent des donn ées ambiantes, telles que le niveau de CO 2 , l'humidit é relative ou encore la temp érature int érieure.

Parce que les donn ées r écolt ées peuvent varier d'une zone du b âtiment à une autre, les capteurs pr ésentent un probl ème d'agr égation complexe.

-Les compteurs enregistrent la consommation de chauffage, climatisation, ventilation et éventuellement d' électricit é. En g én éral, nous n'avons acc ès qu' à une variable pour chaque source de consommation, il n'y a donc pas de t âche d'agr égation n écessaire. La probl ématique principale li ée aux compteurs r éside dans la vari ét é de fournisseurs d' énergie, de frigories et de calories : alors que certains nous transmettent une consommation horaire, d'autres ne nous donnent acc ès qu' à une donn ée agr ég ée à la journ ée, ce qui implique un calcul de reconstruction non trivial. De plus, la gestion des erreurs d'enregistrement ou de transmission peut aussi varier, certains fournisseurs ignorant les donn ées aberrantes, alors que d'autres les compensent sur les signaux suivants. Enfin, des fournisseurs diff érents peuvent r épondre à un m ême besoin. Par exemple, il est possible de chauffer à partir de chauffages électriques, ou bien de se connecter à un r éseau de chaud.

-Les donn ées m ét éorologiques, telles que la temp érature ext érieure, l'humidit é ou les niveaux d'irradiation solaire, ont un impact important sur le comportement d'un b âtiment. Des donn ées historiques correspondant à la zone étudi ée sont disponibles pour les cinq derni ères ann ées. Pour r éaliser les feuilles de route, on peut aussi utiliser les pr évisions m ét éorologiques, qui sont consid ér ées pr écises jusqu' à une semaine dans le futur. Ces donn ées ne sont pas r écolt ées directement par Oze-Energies, mais par Meteotest 5 , une entreprise experte dans le domaine.

Un échantillon des donn ées historiques est pr ésent é dans la Figure 1.2. 

Simulation de l' évolution des b âtiments avec TRNSYS

Les simulateurs physiques permettant de simuler l' évolution d'un b âtiment reposent g én éralement sur des équations de propagation thermique. Ils permettent de pr édire, en particulier, l' énergie consomm ée et la temp érature int érieure à partir d'une description sch ématique du b âtiment, des mat ériaux de construction ainsi que de leur di-5. https ://meteotest.ch/ mensions, des donn ées m ét éorologiques et des usages et param ètres de HVAC. Due à la complexit é de la t âche à r ésoudre, seule une poign ée de simulateurs performants existent à ce jour.

Par exemple, EnergyPlus est utilis é dans [START_REF] Shabunko | EnergyPlus models for the benchmarking of residential buildings in Brunei Darussalam[END_REF] afin de d éfinir trois types g én ériques de b âtiments, et ainsi de comparer les performances énerg étiques de 400 b âtiments r ésidentiels. Dans Zhao et al. (2016), les auteurs proposent un framework de pr édiction bas é sur Matlab et EnergyPlus, qui leur permet d'optimiser la consommation d' énergie tout en respectant des pr éf érences de confort individuelles. Dans Magnier and Haghighat (2010), les auteurs mettent en avant les performances de TRNSYS comme simulateur physique, tout comme ses limites en termes de co ût de calcul : selon les auteurs, un processus d'optimisation complet aurait pris jusqu' à 10 ans s'il n'avaient pas remplac é TRNSYS par un mod èle substitut, beaucoup plus rapide. Les auteurs de [START_REF] Bre | Residential building design optimisation using sensitivity analysis and genetic algorithm[END_REF] -Les usages sont d écrits à travers une s érie temporelle, qui contient les param ètres de HVAC à chaque heure.

Soit T la dur ée d'un échantillon en heures, nous d éfinissons les usages comme (ψ k ) 1≤k≤T ∈ R d ψ . Ici, d ψ est le nombre de variables individuelles, telle que les horaires d'activation de la ventilation, les temp ératures de chauffage. Ψ est l'ensemble des param ètres de HVAC possibles.

-De la m ême mani ère, l'occupation du b âtiment est encod ée dans une s érie temporelle (δ k ) 1≤k≤T ∈ R qui d énote la fraction des occupants pr ésents dans le b âtiment à chaque heure. ∆ est l'ensemble des horaires d'occupation possibles.

-Les conditions m ét éorologiques sont agr ég ées dans la s érie temporelle (ϕ k ) 1≤k≤T ∈ R dϕ .

-Enfin, les consommations sont not ées

(ζ k ) 1≤k≤T ∈ R d ζ , et la temp érature int érieure (τ k ) 1≤k≤T ∈ R. Z (resp.
T ) est l'ensemble des consommations possibles (resp. temp ératures int érieures). Dans la suite de ce document, nous d ésignons par ϕ (resp. ψ, δ, ζ, τ ) les s éries temporelles compl ètes (ϕ k ) T k=1 (resp. (ψ) T k=1 , (δ) T k=1 , (ζ) T k=1 , (τ ) T k=1 ). Les simulateurs physiques, tels que TRNSYS, peuvent être d écrits comme des fonctions prenant comme param ètres d'entr ée les propri ét és du b âtiment, ses usages et son occupation pour la p ériode consid ér ée, ainsi que les donn ées m ét éorologiques associ ées, afin de pr édire (entre autres) la temp érature int érieure horaire et les diverses consommations.

f building : (λ, ψ, δ, ϕ) → (τ , ζ). 

Calibration et optimisation.

Oze-Energies vise à r éduire la consommation énerg étique des b âtiments, tout en maintenant leur niveau de confort. Le d épartement de R&D propose des solutions algorithmiques afin d'assister les experts de la thermique dans la g én ération de sc énarios associ és à un b âtiment, ainsi que dans leur comparaison. Dans cette section, nous d étaillons ce processus de calibration, puis d'optimisation.

Calibration. Afin de pouvoir g én érer des courbes de temp ératures int érieures et les consommations associ ées du b âtiment, nous avons besoin des param ètres physiques λ, ainsi que des usages (ψ k ) 1≤k≤T d écrits dans la section pr éc édente. Puisque ces param ètres sont en g én éral inconnus, nous devons les estimer.

Nous avons tout d'abord étudi é diff érentes approches pour estimer certains param ètres sp écifiques. Par exemple, la capacit é thermique d'un b âtiment peut être approch ée en estimant la pente de l' évolution de la temp érature int érieure ; de mani ère similaire, en analysant les courbes de consommation, on peut rep érer les horaires de d émarrage des HVAC, et donc en d éduire les usages. Cependant, estimer chaque param ètre de cette mani ère est non seulement beaucoup trop co ûteux, mais risque de surcroit de mener vers une mod élisation biais ée du b âtiment. On notera que les experts thermiciens de Oze-Energies pourrait analyser directement le b âtiment sur place, mais encore une fois cela engendrerait des co ûts trop importants.

Nous proposons plut ôt d'estimer tous les param ètres inconnus en m ême temps, à travers une proc édure de calibration automatique, qui consiste à minimiser une fonction de co ût qui associe, avec chaque jeu de param ètres, la diff érence entre une simulation du mod èle et les donn ées historiques du b âtiment, voir par exemple [START_REF] Coakley | A review of methods to match building energy simulation models to measured data[END_REF]; Le [START_REF] Corff | Optimizing thermal comfort and energy consumption in a large building without renovation works[END_REF] :

L calib (λ, ψ, δ) = L calib temperature (τ, τ ) + βL calib energy (ζ k , ζk ) (1.1)
o ù τ , ζ = f building (λ, ψ, δ, ϕ) et β est une param ètres d' échelle. Comme pr ésent é dans [START_REF] Nagpal | A methodology for auto-calibrating urban building energy models using surrogate modeling techniques[END_REF], cette m éthodologie fournie des r ésultats pr écis pour de grande vari ét é de b âtiments.

Nous d éterminons un jeu de param ètres en utilisant des algorithmes g én étiques, qui font partie des m éthodes les plus efficaces pour la minimisation de fonctions non d érivables. Dans [START_REF] Aird | Application of an optimisation approach for the calibration 1 of high-fidelity building energy models to support model-2 predictive control ( mpc ) of hvac systems[END_REF], les auteurs d émontrent l'utilit é du Non-dominated Sorting Genetic Algorithm II (NSGA-II) afin de s électionner un jeu de param ètres estim és minimisant à la fois un coefficient de variation sur l'erreur quadratique, ainsi que son biais. Ces crit ères peuvent aussi être combin és afin de se concentrer sur des m éthodes d'optimisation à un seul objectif. Dans Le [START_REF] Corff | Optimizing thermal comfort and energy consumption in a large building without renovation works[END_REF], l'algorithme CMA-ES, introduit par [START_REF] Igel | Covariance matrix adaptation for multi-objective optimization[END_REF], est utilis é pour minimiser une combinaison d'erreurs li ées à la pr édiction de la consommation du chauffage et de la climatisation.

Optimisation. L'optimisation consiste à d éterminer un jeu de param ètres qui m ènera à une baisse de la consommation, tout en maintenant le niveau de confort. Pour cela, nous pouvons jouer sur les param ètres d'usage : par exemple, en d écalant les horaires de d émarrage de la climatisation et du chauffage, ou en les r éduisant pendant la nuit et le week-end. Nous consid èrerons ici qu'une consommation plus faible correspond à une diminution de la consommation totale du b âtiment, somm ée sur la fen être temporelle étudi ée. On notera donc que nous ne prenons pas en compte les pics de consommation, ou l' évolution du prix du kilowattheure pendant la journ ée. Le confort est quant à lui d éfini comme la diff érence quadratique entre la temp érature int érieure du b âtiment, et une temp érature cible not ée T , pendant les p ériodes d'occupation. Nous d éfinissons les crit ères suivants :

L optim temperature (T , τ ) et L optim energy ( ζ) (1.2) o ù τ , ζ = f building (λ, ψ, δ, ϕ).
Contrairement à la t âche de calibration, nous devons ici r ésoudre un probl ème d'optimisation bi-objectif, car il n'existe pas de jeu de param ètres ψ permettant de minimiser les deux objectifs de consommation et de confort conjointement. En effet, si une telle solution existait, on pourrait toujours am éliorer un peu plus l'un des deux crit ères en d égradant l'autre, par exemple on peut toujours r éduire un peu plus la consommation de chauffage, mais cela m ènera à une d égradation du confort. Nous cherchons donc un ensemble de param étrages équivalents, permettant un compromis optimal entre les deux objectifs, que l'on formalise en front de Pareto.

Un jeu de param ètres ψ ∈ Ψ en domine (Pareto) un second ψ ∈ Ψ s'il v érifie les deux conditions suivantes :

1. L optim temperature (ψ ) ≤ L optim temperature (ψ) et L optim energy (ψ ) ≤ L optim energy (ψ), 

L

Qualit é de l'air

Nous nous int éressons maintenant à l'impact de l'air int érieur sur les conditions d'hygi ène et de confort, à travers l'analyse de la qualit é de l'air. Parmi les nombreux facteurs qui y jouent un r ôle, d étaill és dans [START_REF] Zhang | Low cost, multi-pollutant sensing system using raspberry pi for indoor air quality monitoring[END_REF], nous n' étudions que les grandeurs mesur ées par Oze-Energies : la temp érature int érieure, la concertation de CO 2 et l'humidit é relative.

Il a ét é montr é que la qualit é de l'air a un impact fort sur le confort int érieur, et peut mener à de mauvaises conditions d'hygi ène. Par exemple, de fortes concentrations de CO 2 , dues en g én éral à une surpopulation dans une pi èce close en l'absence de ventilation, peut être la source de maladies telles que le Sick Building Syndrome R éseaux de neurones profonds. Les m éthodes d'apprentissage profond visent à exploiter des quantit és de donn ées de plus en plus volumineuses. Elles consistent à combiner des fonctions param étriques non lin éaires diff érentiables, nomm ées couches, pour r ésoudre une t âche de classification ou de r égression à l'aide d'une fonction de co ût. Les param ètres des couches sont estim és de mani ère it érative par descente de gradient.

Les r éseaux de neurones profonds ont remplac é la plupart des architectures traditionnelles dans beaucoup de champs d'application tels que la vision par ordinateur, le traitement naturel du langage ou encore la pr évision de s éries temporelles. Parce qu'ils sont au centre d'un champ de recherche qui évolue rapidement, et pour les applications diverses qu'ils permettent, beaucoup des mod èles pr ésent és dans ce manuscrit sont bas és sur des architectures de r éseaux de neurones.

Estimation de l'incertitude

Les r éseaux de neurones profonds sont souvent pris és pour leur capacit é à estimer des millions de param ètres à partir de gigantesques bases de donn ées, et ainsi de r ésoudre des t âches complexes. C'est pourquoi nous nous en sommes inspir é pour d évelopper l'architecture du m étamod èle. En effet, le comportement de TRNSYS est tr ès complexe, fortement non lin éaire et traite des vecteurs d'entr ée et de sortie de grande dimension. Cependant, les r éseaux de neurones produisent aussi des pr évisions incorrectes, qu'il n'est pas ais é de discerner. Puisque nous ne pouvons pas simplement nous reposer sur les capacit és du m étamod èle à être pr écis pour g érer correctement la consommation et le confort dans un b âtiment, notre travail nous m ène à mod éliser l'incertitude des mod èles statistiques que nous d éveloppons.

Nous proposons de quantifier l'incertitude associ ée à une pr édiction en mod élisant la distribution des observations. Si cela ne permettra sans doute pas d'am éliorer les performances, il sera tout de m ême possible d'interpr éter la distribution pr édite afin de quantifier l'incertitude. Par exemple, si cette distribution semble Gaussienne avec une petite variance, on pourra consid érer la pr édiction du mod èle cr édible. Si la distribution semble bimodale, la pr édiction associ ée ne permet probablement pas d'appr écier correctement les variables estim ées.

Apr ès avoir d évelopp é le m étamod èle dans le Chapitre 3, nous explorons deux m éthodes de quantification de l'incertitude dans le Chapitre 4, avant de d étailler et d' étendre la seconde dans le Chapitre 5.

Changement de r égime pour les mod èles à états cach és discrets

Dans cette th èse, nous mod élisons l' évolution de variables li ées à un b âtiment à travers des mod èles à état cach és, qui reposent sur une repr ésentation interne des donn ées pour mod éliser les observations. Si ces états cach és sont souvent mod élis és comme des variables continues, nous pr ésentons aussi des mod èles à états cach és discrets, et cela pour deux raisons principales. Tout d'abord ils peuvent permettre de simplifier la proc édure de l'entraînement, car on peut alors s'affranchir de certaines approximations complexes n écessaires dans le cas continu.

De plus, ils conviennent particuli èrement bien à la mod élisation des probl èmes de changement de r égimes, comme nous le d étaillons maintenant.

Repr ésenter l' évolution d'un b âtiment à travers un nombre fini d' états cach és peut grandement en simplifier la mod élisation, sans n écessairement sacrifier les performances. Par exemple, on peut imaginer un r égime qui r ésumerait le comportement du b âtiment chaque matin (la temp érature ext érieure augmente, l'humidit é d écroît, les occupants qui arrivent participent au r échauffement du b âtiment), puis des comportements diff érents pour chaque saison de l'ann ée, ou encore simplement pour diff érencier la semaine du week-end.

Nous d émontrons l'int ér êt de ces mod èles à états latents discrets en les comparant à leur contrepartie continue, sur une t âche de pr évision de l'humidit é relative, dans le Chapitre 4. Dans le Chapitre 5, nous étendons notre cadre de travail à des distributions discr ètes plus complexes.

Contributions

Dans cette th èse, nous pr ésentons les contributions suivantes. Dans le Chapitre 3, nous proposons d'entraîner un m étamod èle bas é sur un r éseau de neurones r écurrent (RNN). Nous le comparons à plusieurs approches alternatives, qui illustrent que les mod èles de traitement des s équences conduisent à une am élioration significative des performances par rapport aux m éthodes de l' état de l'art. Notre m étamod èle est alors calibr é aux donn ées historiques r éelles de deux b âtiments, afin d'illustrer la flexibilit é de notre approche. La derni ère étape de notre m éthodologie de bout en bout consiste à optimiser la consommation énerg étique, tout en maintenant le niveau de confort. Cette m éthodologie nous permet de r éduire la consommation des deux b âtiments pr éc édemment mentionn és de 5% et 10%. Les r ésultats pr ésent és sont adapt és de la contribution suivante : End-to-end deep meta modelling to calibrate and optimize energy consumption and comfort, Cohen, M. Le Corff, S., Charbit, M., Champagne, A., Nozi ère, G, Preda, M., Energy and Buildings, Volume 250, November 2021.

Dans le Chapitre 4, nous pr ésentons deux approches pour mod éliser l'incertitude de mod èles statistiques, tels que le m étamod èle, appliqu é à la pr évision de l'humidit é relative. Nous proposons d'abord de d écoupler l'apprentissage de la repr ésentation latente des donn ées et celui de l'incertitude, dans une proc édure d'entraînement à deux étapes. Les param ètres inconnus sont estim és en minimisant une fonction de co ût d éterministe, puis la derni ère couche du mod èle est entraîn ée à nouveau en utilisant des m éthodes de Monte Carlo S équentielles. Les r ésultats pr ésent és sont adapt és de la contribution suivante : Last layer state space model for representation learning and uncertainty quantification, Cohen, M., Charbit, M. and Le Corff, S., 2023 IEEE Statistical Signal Processing Workshop. Chapitre 2

Introduction

Oze-Energies

Oze-Energies is a French company specialized in optimizing building's energy consumption. Global energy demand for heating, ventilation and air-conditioning in commercial or public buildings has been increasing rapidly for the past few decades. This rising demand is at the root of the complex problem of simultaneously maintaining a satisfactory thermal comfort in buildings while reducing the environmental impact. Through innovative and durable methods, Oze-Energies aims at improving air quality and comfort, while simultaneously reducing energy consumption, without requiring any site work.

In 2009, the building stock accounted for over 40% of the total French energy consumption, as well as almost a quarter of greenhouse emissions (Loi Grenelle 1 , Figure 1.1). The most straight forward strategy for reducing building's consumption consists in improving their isolation, which usually involves costly renovation works. Despite aiming to renovate 500,000 buildings every year before 20202 3 , the actions carried out in France to this date still fall short in terms of results, as stated by the Ademe (Agency for the environnement and energy)4 . According to the National Low-Carbon Strategy (SNBC), the average number of yearly renovations is expected to be around 370,000 for the period 2015-2030. In contrast, the premise of Oze-Energies is the ability to produce tailored road maps for managing buildings, without requiring any renovation work.

Building's energy consumption can be largely reduced by tuning the HVAC (Heating Ventilation and Air Conditioning) settings. Oze-Energies targets tertiary buildings, whose occupation behaviors are usually well understood (workday hours, no occupation during the weekend), however their behaviors still differ from one to another. This is due to a wide variety of factors, such as isolation, occupancy, or heating and cooling providers : it is one of the major technical challenges of this approach that we will detail in the following chapters. In order to precisely model the heat exchanges of each unique building, Oze-Energies monitors their consumption and air quality by integrating environmental sensors, connected through LoRA (a secured and public network) and reporting to a centralized dataset. By combining this data with their precise understanding of building's behavior, experts in energy efficiency known as Energy Managers are able to produce road maps for HVAC settings. They aim at reaching the best compromise between indoor comfort and energy consumption, while improving air quality (CO 2 levels, humidity, etc.). These road maps average in a 25% reduction in consumption, in just a few weeks. They are delivered for a recurring subscription, usually largely covered by the energy savings generated : this is Oze-Energies' main product, OPTIMZEN®.

Oze-Energies has been exploring methods to reduce the tedious work of Energy Managers : estimating building's physical attributes, proposing new road map scenarios, quantitatively comparing them. In particular, a numerical simulator can be configured to estimate the best management settings for a building, by predicting and comparing the impact of various policies. This expert software, TRNSYS, is able to simulate the complex behavior of buildings based on their schematics, as well as numerous related inputs such as building occupation, HVAC settings or ambient weather. TRNSYS is first calibrated to match the real building by a machine learning procedure, using data collected from sensors. As previously mentioned, due to the number of heat, cold or electricity providers, this calibration step becomes more and more complex as Oze-Energies acquires new clients. Once calibrated, TRNSYS can optimize the HVAC settings to reduce consumption while maintaining or even improving comfort in the building.

Oze-Energies was created in 2014, covers over 5 millions m 2 over 500 buildings, and is now part of Accenta.

Optimizing comfort and consumption

Sensors, counters and weather data

Knowledge of a building's behavior is assembled by combining various kinds of data, usually gathered directly from the site. Therefore, the first step in managing a new building consists in setting up counters responsible for sending data back to Oze-Energies' servers every few minutes. They can be divided in three main categories.

-Sensors are installed by Oze-Energies Managers in various areas of the building, and collect ambient variables, such as CO 2 levels, humidity, or indoor temperature. They typically report data every 10 minutes.

Because they can greatly vary from one area to another, sensor data involves a challenging aggregation problem.

-Counters report the building's consumption, such as heating, cooling, or electricity. We usually have access to a single time series for each variable, so no further aggregation task is required ; however, the main challenge of handling counters data resides in the variety of energy providers and building usage. While some providers report consumption every hour, other only give access to a single daily aggregated value, requiring a complex reconstruction task to get an hour to hour time series, usually based on usual consumption patterns. In addition, counter error handling can differ, as some providers ignore outliers, while others compensate on subsequent values. Finally, usage can differ significantly from one building to another : for instance, heating can be achieved through a local heater, consuming electricity, or by connecting the building to a heat provider.

-Weather data, such as outdoor temperature and humidity, or irradiance levels, play a significant role on buildings' behaviors. Historic data are available from the past few years. Weather forecast are also available, and considered to be accurate up to a week forward. These sensors are not setup by Oze-Energies directly, but rather by a weather forecasts company : Meteotest 5 .

A sample of the available historic data is presented in Figure 2.1.

Building behavior simulation with TRNSYS

Physical simulators based on thermal propagation equations are traditionally used to describe buildings. These transient systems simulators can predict the energy use based on a description of the building's layout, construction materials and dimensions, usage and HVAC schedules along with weather data. Because of the sheer complexity arising from modelling such diverse systems, only a few simulators are available today. EnergyPlus was used for instance in [START_REF] Shabunko | EnergyPlus models for the benchmarking of residential buildings in Brunei Darussalam[END_REF] to build three types of typical designs and to benchmark the energy performance of 400 residential buildings. In Zhao et al. (2016), the authors proposed a predictive control framework based on Matlab and EnergyPlus in order to optimize energy consumptions while meeting the individual thermal comfort preference. In Magnier and Haghighat (2010), the authors highlighted the performance of TRNSYS as a physical simulator, as well as its limits in terms of computational speed : the authors claimed that a full optimization process would take as much as ten years, had they not replaced TRNSYS with a faster surrogate model during optimization. The authors of [START_REF] Bre | Residential building design optimisation using sensitivity analysis and genetic algorithm[END_REF] studied the optimization of a single-family house using a combination of Energy-Plus and the NSGA-II optimization algorithm, and discussed sensitivity analysis using the Morris screening method. Likewise, the authors of [START_REF] Recht | Analyse de la fiabilit é de COMFIE par comparaison à des mesures. Application à un b âtiment passif[END_REF] performed sensitivity and uncertainty analysis on another building simulator known as COMFIE, and displayed its modelling performance on a passive building.

Among them, Oze-Energies chose TRNSYS for its completeness, flexibility and popularity. However, TRNSYS only runs under the Windows operating system, and requires launching a window for every single simulation, incurring a runtime of at least a few seconds.

Simulation parameters.

In this section, we describe the simulation parameters used by TRNSYS. Although the majority of these parameters are relevant for any type of buildings, the specific variables presented bellow were designed for two buildings handled by Oze-Energies, introduced later in Section 3.2. We plotted a sample of the available time series in Figure 2.2, while an example of TRNSYS simulations can be found in Figure 2.3. Please check Appendix A.1.2 for an exhaustive list and description of all used variables. In order to model more complex buildings in the future, introducing new parameters may be required.

-Physical properties of the building, such as heat capacity, size of the isolation, etc. are stacked together and denoted by a vector λ ∈ R d λ , where d λ is the number of parameters. Λ is the set of all possible set of physical properties.

-Usage is encoded as a time series describing the state of the HVAC at each hour. Let T be the length of a sample, usage is defined as

(ψ k ) 1≤k≤T ∈ R d ψ .
Here, d ψ is the number of individual variable, such as ventilation schedule, heating temperature, etc. Ψ is the set of all possible HVAC settings.

-Similarly, occupancy is encoded as a time series (δ k ) 1≤k≤T ∈ R denoting the fraction of occupants present in the building at each hour. ∆ is the set of all possible occupancy schedules.

-Weather conditions are gathered as a time series (ϕ k ) 1≤k≤T ∈ R dϕ .

-Finally, consumptions are denoted as (ζ k ) 1≤k≤T ∈ R d ζ , and indoor temperature is denoted (τ k ) 1≤k≤T ∈ R. Z (resp. T ) is the set of all possible consumptions (resp. indoor temperatures).

In the rest of this document, we use the short hand notation ϕ (resp. ψ, δ, ζ, τ ) to denote the entire time series

(ϕ k ) T k=1 (resp. (ψ) T k=1 , (δ) T k=1 , (ζ) T k=1 , (τ ) T k=1
). Building simulators, such as TRNSYS, are functions taking as input the physical properties of the building, its usage and occupancy for the given period, as well as the associated weather data, and predict (among others) the hourly indoor temperature and consumptions. Integration in the R&D pipeline. At the beginning of this work, TRNSYS was already integrated in the R&D pipeline in order to run automated simulations, as well as as calibration and optimization tasks that are described further below. However, this implementation suffered long computation times, linked to the numerous calls to the TRNSYS simulation function, as well as the need to manually configure each new building. Furthermore, because TRNSYS is an expert software, we have no way to interpret or modify its internal representation of the problem, in other words TRNSYS is a black box. Because of this, we cannot benefit from the real data gathered in order to learn model noise or other uncertainty sources.

f building : (λ, ψ, δ, ϕ) → (τ , ζ).

Calibration and optimization.

The aim of Oze-Energies is to reduce energy consumption while improving, or maintaining comfort. While Energy Managers use their own knowledge and experience to reach these objectives, the R&D department implements algorithmic solutions to provide coherent scenarios for the building, and later assist Energy Managers in their decision.

In this section, we describe the two-step process for producing these scenarios.

Calibration. Sampling indoor temperatures and consumptions associated with a given time period requires estimates of the unknown physical parameters λ as well as usage (ψ k ) 1≤k≤T described in the previous section. We first consider that various methods can be applied for estimating specific parameters. For instance, the heat capacity of the building can be approximated by analyzing the slope of the indoor temperature curve ; start and stop hours of the heaters can be extrapolated from the time of increase of the consumption every morning and evening.

However, estimating each parameter on its own is not only exceedingly time consuming, but also not guaranteed to result in an good estimation of the building behavior and these estimations are likely to be biased. Additionally, building experts could analyse and estimate those parameters on site, but such costly measure campaigns would have to be reiterated for every new building.

Instead, these unknown parameters may be estimated using an automatic calibration procedure, by minimizing a cost function which associates, with each set of parameters, the discrepancy between the simulation and the true consumptions and temperatures, see [START_REF] Coakley | A review of methods to match building energy simulation models to measured data[END_REF]; Le [START_REF] Corff | Optimizing thermal comfort and energy consumption in a large building without renovation works[END_REF] :

L calib (λ, ψ, δ) = L calib temperature (τ, τ ) + βL calib energy (ζ k , ζk ) (2.1)
where τ , ζ = f building (λ, ψ, δ, ϕ) and β is a scaling parameter. As shown in [START_REF] Nagpal | A methodology for auto-calibrating urban building energy models using surrogate modeling techniques[END_REF], calibration yields sufficiently accurate results for a variety of different buildings.

The calibration task revolves around a non differentiable optimization problem, which is often tackled using genetic optimization methods. In [START_REF] Aird | Application of an optimisation approach for the calibration 1 of high-fidelity building energy models to support model-2 predictive control ( mpc ) of hvac systems[END_REF], the authors demonstrate the use of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to select a set of estimated parameters that jointly minimize the coefficient of variation of the root mean square error, and the normalized mean bias error. All criteria can instead be combined in a single calibration error, in order to turn to single objective differentiation free algorithms that offer a single best candidate, avoiding the need for further selection processes. In Le [START_REF] Corff | Optimizing thermal comfort and energy consumption in a large building without renovation works[END_REF], the CMA-ES algorithm introduced in [START_REF] Igel | Covariance matrix adaptation for multi-objective optimization[END_REF] was used to minimize a combination of heating and cooling errors.

Optimization. The optimization task aims at reaching scenarios corresponding to lower consumption and higher comfort, by changing the usage of the building, in other words by improving the handling of the HVAC : changing the start and stop time of heaters, lowering cooling during the night, etc. We consider that lowering consumption simply corresponds to reaching a lower total consumption over the considered time frame, although it could be argued that high peak in consumption should be further penalized. We define a comfort metric as the squared distance between indoor temperature and a target temperate T during occupancy hours. From the simulation parameters defined in the previous section, we define the two following criteria :

L optim temperature (T , τ ) and L optim energy ( ζ) (2.2)
where τ , ζ = f building (λ, ψ, δ, ϕ).

Unlike the calibration task, we are facing a bi-objective problem, as we cannot find a set of usages ψ that optimizes both objectives simultaneously. For any such solution, we can always further improve one of the objectives by degrading the other, as an example reducing the heater will save energy but lower comfort, while providing the exact targeted indoor temperature throughout the day will undoubtedly increase consumption. Instead, we search for a collection of equivalent compromises between the two objectives, formalized as a Pareto front.

A feasible solution ψ ∈ Ψ is said to Pareto dominate another solution ψ ∈ Ψ if both :

1. L optim temperature (ψ ) ≤ L optim temperature (ψ) and L optim energy (ψ ) ≤ L optim energy (ψ), 2. L optim temperature (ψ ) > L optim temperature (ψ) or L optim energy (ψ ) > L optim energy (ψ). A solution ψ ∈ Ψ is then called Pareto optimal if there does not exist another solution that dominates it. The set of Pareto optimal outcomes, is called the Pareto front.

In the illustration shown in Figure 3.8, each point in space represents the total consumption and comfort level corresponding to a single set of usage. The Pareto front, formed by the set of drawn points, divide the space in two parts : the upper zone corresponds to sub optimal compromises between consumption and comfort ; the lower zone is not physically attainable (in the context of our simulations).

Air quality

The indoor air quality measures the impact of indoor air conditions on health and well being. A wide array of chemicals and conditions are involved in its analysis, as detailed in [START_REF] Zhang | Low cost, multi-pollutant sensing system using raspberry pi for indoor air quality monitoring[END_REF]. In this work, we will only study the variables monitored by Oze-Energies, for which we can retrieve historic data : indoor temperature, CO 2 concentrations and relative humidity.

Air quality has been shown to strongly impact indoor well being ; when poorly managed, indoor air can lead to unhealthy conditions. For instance, high CO 2 concentrations, usually caused by having too many people enclosed in a limited space with no ventilation, can cause a disease known as Sick Building Syndrome detailed in Hou et al. (2021). Low and high relative humidity lead to the development of bacteria, viruses and fungi, as summarized in the Sterling Chart in Figure 2.4.

Air quality modelling is at the center of our focus all along this thesis. In Chapter 3, we optimize indoor temperature to remain within predefined ranges. In Chapter 4 and Chapter 5, we model the evolution of relative humidity.

Motivation for statistical modelling

Metamodelling TRNSYS through deep learning methods

We aim at developing statistical models able to provide similar simulations as TRNSYS, while being both faster and more flexible. One of the most cumbersome limitation of TRNSYS resides in its speed, or rather lack of. If a few seconds for an Energy Manager to generate a scenario is a reasonable delay, computation times become unmanageable for the calibration and optimization tasks presented in the previous section, as they require thousands of (1985). calls to the simulation function. Modern statistical models are able to take advantage of the most recent hardware developments, such as the Graphical Processing Units (GPU), to compute dozens of simulations in parallel, in ever shorter times. Additionally, whereas TRNSYS is a black box from a statistical point of view, the metamodel we aim to design would be able to model uncertainty, as we detail in this document.

A naive data driven approach for modelling building's behavior could have consisted in creating a dataset from the available historic data, then training a statistical model such as a deep neural network. However, the data was too noisy and limited in the number of samples available for a neural network to learn such a complex task. This is why we propose the following methodology :

1. Train a metamodel : using TRNSYS, we sample various input scenarios (building properties, usage, weather conditions, etc.) and compute the associated simulation (indoor temperature and consumption). We train the models presented in this thesis on this synthetic dataset, in order to learn a surrogate function of the TRNSYS simulator.

2. Perform calibration and optimization : we can plug this metamodel to solve optimization and calibration tasks with limited computation time.

3. Improve the metamodel : finally, we can leverage and develop statistical methods for estimating uncertainty on the model, using the available historic data.

Deep neural networks.

Deep learning methods aim at leveraging ever increasing amounts of data available.

They consist in combining well known layers, differentiable nonlinear parametric functions, to approximate a given task associated with a loss function. The parameters are then updated iteratively, by gradient descent.

Neural networks have steadily replaced most traditional architectures in fields such as Computer Vision, Natural Language Processing, or time series forecasting. Because deep learning is a quickly evolving field of research, with diverse applications, many of the models presented in this thesis are derived from neural networks.

Parameters estimation through automated gradient descent. Neural networks have recently outperformed most other statistical models by inferring up to millions of parameters through an automated gradient descent. As all layers composing a neural network are differentiable, it is possible to compute the gradient of the loss function with respect to each parameter, as a function of the architecture of the network. In other words, it is possible to define a training algorithm, based on gradient descent, able to estimate the parameters of a deep learning model, regardless of the number or type of layers it is composed of. By combining this flexibility of the training procedure, with modern computing units able to parallelize computations (GPU), neural networks have been able to take advantage of arbitrary amounts of training samples.

Uncertainty estimation

Deep learning models are often utilized for their ability to infer millions of parameters from huge amounts of data, leading to accurate predictions during inference. This is why we chose such architecture for the metamodel, as the behavior of TRNSYS is complex (strongly non linear, high dimensional inputs and outputs). Yet neural networks can provide erroneous predictions, especially when explanatory variables are unknown or unavailable, and are usually over confident in doing so. As we cannot simply rely on a neural network being correct to provide adequate air quality, our work with Oze-Energies will lead us to investigate uncertainty modelling methods.

On way to quantify the uncertainty associated with a prediction is to model the distribution of the observations, instead of simply predicting its most likely value. Although this could hardly improve performance, one could interpret the modelled distribution in order to quantify the uncertainty of the model. For instance, if its behavior is similar to a Gaussian with small variance, the prediction could be considered accurate. On the other hand, if the distribution seems bimodal or uniform, the associated prediction is likely not enough to understand the underlying state of the estimated variable.

After developing the metamodel methodology in Chapter 3, we explore two uncertainty estimation methods in Chapter 4 and dive into the details of the last one in Chapter 5.

Regime switching with discrete latent models

In this thesis, we model the evolution of building related variables mainly through hidden latent models, which rely on an internal representation of the data to model observations. While these latent variables are often continuous, we will be utilizing discrete latent models too, for two main reasons. Not only can they lead to simpler training procedure, as they often require less approximations in order to estimate their parameters, but they are also particularly adequate for modelling inherently discrete behaviors, such as regime switching.

Representing the evolution of a building through a finite set of states can greatly simplify our modelling task, without necessarily loosing in performance. For instance, we could imagine a regime summarizing building's behavior each morning (outdoor temperature rising, outdoor humidity lowering, indoor heating through occupants and electronic devices increasing), different behaviors for different seasons of the year or simply to easily differentiate week days from week ends.

We demonstrate the interest behind discrete latent models by first comparing them to their continuous counterpart on a relative humidity forecasting task in Chapter 4. In Chapter 5, we extend our framework to more complex discrete latent distributions.

Notation

In the following paragraphs, we detail a set of recurring symbols and acronyms. This list is not exhaustive. -L : the Evidence Lower BOund, or ELBO -E q [X] : the expectation of the random variable X with probability density q -Ψ µ,Σ : the Gaussian probability function with mean vector µ and covariance matrix Σ -, η : centered Gaussian noise 

Symbols

Acronyms

Contributions

In this thesis, we present the following contributions. In Chapter 3, we propose to train a metamodel based on Recurrent Neural Networks (RNN). We compare several approaches which illustrate that sequence to sequence models can yield a significant increase in performance with respect to the alternatives previously considered in our framework. Our metamodel, which depends on a few physical parameters, is then calibrated using real data to provide accurate predictions for two buildings, to illustrate the flexibility of this approach. The final step of our end-toend methodology consists in optimizing energy consumption, while maintaining a given level of comfort. Following this methodology, we were able to train and calibrate our metamodel and to reduce the hourly consumption of two buildings by 5% and 10%. The results presented are adapted from the following contribution : End-to-end deep meta modelling to calibrate and optimize energy consumption and comfort, Cohen, M. Le Corff, S., Charbit, M., Champagne, A., Nozi ère, G, Preda, M., Energy and Buildings, Volume 250, November 2021.

In Chapter 4, we present two approaches to model the uncertainty of statistical models, such as the metamodel, applied to relative humidity forecasting. We first propose to decouple representation learning from uncertainty modelling, in a two step training procedure. The unknown parameters are estimated by minimizing a deterministic cost function, then the last layer of the architecture is finetuned using Sequential Monte Carlo (SMC) methods. The results presented are adapted from the following contribution : Last layer state space model for representation learning and uncertainty quantification, Cohen, M., Charbit, M. and Le Corff, S., 2023 IEEE Statistical Signal Processing Workshop. In a second approach, we develop a model with a discrete latent representation of the data. We show that discrete regimes allow better interpretability of the model. Additionally, parameter estimation does not require the complex approximations that come with continuous latent vectors, and is achieved through Variational Inference.

The results presented are adapted from the following contribution : Variational Discrete Latent Representation for Time Series Modelling, Cohen, M., Charbit, M. and Le Corff, S., 2023 IEEE Statistical Signal Processing Workshop. In Chapter 5, we explore more complex modelling of discrete latent spaces. In contrast with most prior models in the literature, whose architecture and complexity entail to various implementation tricks during the training procedure, we propose a theoretically grounded framework for discrete latent models, using diffusion bridges. We show that our architecture is consistent with state of the art performance on computer vision tasks, such as image synthesis and inpainting, and offer new perspectives. The results presented in this chapter are adapted from the following contribution : Diffusion Bridges Vector Quantized Variational Autoencoders, Cohen, M., Quispe, Q., Le Corff, S., Ollion, C., Moulines, E., Proceedings of the 39th International Conference on Machine Learning (ICML), Volume 162.
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Chapitre 3

Time series modelling for Air Quality and

Energy optimization

This first chapter focuses on the building-oriented data gathered by Oze-Energies, and the introduction of statistical models and inference procedures for time-series forecasting.

We propose in Section 3.1 a meta modelling protocol of the transient simulator TRNSYS. We find that there is an extensive literature on building meta modelling, however only the most simple statistical models are usually presented in the literature dedicated to energy use and efficiency in buildings. Therefore, we compare the performance of these models with the traditional deep learning architectures for sequential data presented in the introduction, and introduce a new metamodel based on recurrent deep neural networks. An appealing feature of the proposed model is that its training procedure allows to model multiple buildings at once.

In Section 3.2, we present the advantages of substituting TRNSYS for the metamodel during the calibration and optimization tasks, and demonstrate that the computation time reduction allows for the calibration of more complex buildings, that would have been prohibitive with TRNSYS. We also describe in detail the optimization task, as well as the protocol for choosing an optimal set of usages for the buildings, leading to a reduction of up to 10% in electric consumption. Our end-to-end methodology is summarized in Figure 3.10.

Finally, in Section 3.3, we introduce the Air Quality analysis, and provide a first approach to modelling indoor relative humidity. The high uncertainty on the data and the input variables lead us to explore state space models in the next chapter.

The results presented in this chapter are adapted from the following contributions : End-to-end deep meta modelling to calibrate and optimize energy consumption and comfort, Cohen, M. Le Corff, S., Charbit, M., Champagne, A., Nozi ère, G, Preda, M., Energy and Buildings, Volume 250, November 2021.

Energy meta modelling

In this section, we introduce a new metamodel to predict building behaviors after a comprehensive study of several approaches from traditional RNN to a model based on a Transformer architecture [START_REF] Vaswani | Attention is all you need[END_REF]. The performance of this metamodel are compared both in terms of accuracy and computational efficiency with TRNSYS.

Related works

The building optimization literature has seen an increasing number of surrogate approaches, as recent sophisticated statistical models provide appealing solutions to be used in this context. In [START_REF] Bre | An efficient metamodel-based method to carry out multi-objective building performance optimizations[END_REF]; [START_REF] Reynolds | A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control[END_REF], statistical models were trained on a dataset sampled from EnergyPlus, allowing significant computational savings during optimization. In [START_REF] Bre | An efficient metamodel-based method to carry out multi-objective building performance optimizations[END_REF], the authors proposed to combine NSGA-II with an artificial neural network metamodel, here a Feed Forward Network (FFN), in order to optimize the consumption of a 83 m 2 house.

Optimization was also conducted with the original building simulator, EnergyPlus, in order to compare both results and ensure that the FFN could be used as a substitute during optimization. Similarly, [START_REF] Reynolds | A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control[END_REF] proposed a FFN based meta modelling approach to reduce up to 25% the energy consumption in a small office building.

EnergyPlus was used to sample a dataset for various zones of the building. The metamodel was tested using a 4-week long EnergyPlus simulation with variable set point temperatures and using an alternative weather file. An example of recurrent neural architecture as a surrogate model can be found in [START_REF] Ohta | Evolutionary air-conditioning optimization using an lstm-based surrogate evaluator[END_REF], where the authors focused on an air-conditioning optimization problem using time series. If these articles justify the use of metamodels, the question of which type of model to choose remains. In an in-depth review, [START_REF] Roman | Application and characterization of metamodels based on artificial neural networks for building performance simulation : a systematic review[END_REF] compares standard statistical models, such as polynomial regression, multivariate adaptive regression splines, Gaussian processes or Decision Trees, in the context of building performance simulation. Artificial Neural Networks models stand out as a particularly relevant alternative, but are often presented in their most simple, time independent form, such as the FFN used in [START_REF] Bre | An efficient metamodel-based method to carry out multi-objective building performance optimizations[END_REF]. Although they may yield accurate predictions in some frameworks, these neural networks handle every time step independently, and are thus not adapted to time series problems. They are usually substituted for their sequential counterparts, such as recurrent or convolutional based approaches, as demonstrated by the authors of Sendra-Arranz and Guti érrez (2020). In their paper, they explored various architectures of Long Short Term Memory models, in order to predict HVAC consumption in buildings. Therefore, designing metamodels for building calibration and optimization is likely to benefit from such recurrent and attention-based models.

Recurrent Neural Network (RNN) were first introduced as a more suited architecture for dealing with time varying input patterns [START_REF] Mozer | A focused backpropagation algorithm for temporal pattern recognition[END_REF]. By replacing buffer based approaches with an updated context state, RNN are able to solve time series problems with short time dependencies, but are lackluster in problems requiring long term memory due to vanishing and exploding gradient Bengio et al. (1994). The Long Short Term Memory (LSTM) model proposed in Hochreiter and Schmidhuber (1997) Recurrent and convolutional approaches coincide in that temporally close time steps data are matched together.

In 2017, [START_REF] Vaswani | Attention is all you need[END_REF] proposed an attention based approach to solve NLP tasks that consider the entire input sequence in parallel. The Transformer model is based on a self-attention mechanism, that computes an attention value for every element of a sequence with respect to all others to model their dependency. This attention mechanism allows to understand at each time step which input elements are crucial to predict the new state. This makes these networks more interpretable than their most widely-used recurrent counterparts such as LSTM or GRU networks and motivates a keen interest for such approaches to predict complex time series.

Notation

In the following sections, we benchmark multiple models on the following regression task : for all t ∈ {1 • • • T }, let y t = (ζ t , τ t ) be the vector of observations at time t, such as inside temperatures in τ t , heating, cooling and ventilation consumptions in ζ t . We compare predictions of y t from a set of inputs u t = (λ, ϕ t , δ t , ψ t ), describing the building properties in λ, usage in ψ t , occupation in δ t as well as weather data in ϕ t . This input vector contains d u = 34 variables at each time step : 17 variables from λ, 7 from ϕ t , 1 from δ t and 9 from ψ t . Note that some of these properties, such as the ones contained in λ, do not vary with time. In an attempt to keep the definition of the problem as well as the notation as simple as possible, we choose to include them in the input vector u t indexed by the time step t, even if they remain constant for the entirety of the time series. A detailed list of all variables used in the following experiments is available, see Appendix A.1.2.

Proposed benchmarks

In most recent works, a great deal of research activities focused on FFN as surrogate models, see Bre et al.

(2020); Magnier and Haghighat (2010); [START_REF] Reynolds | A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control[END_REF]. Although they may lead to interesting performance during the training phase, these fully connected architectures are not well suited for time series prediction, in particular for long time spans. We ceased this opportunity to explore other approaches that have proven to be more relevant for solving time series tasks in the past few years. Therefore, we decided to evaluate the go-to architectures for time series.

-A LSTM model presented in details in Section 3.1.4.

-A bidirectional GRU (BiGRU). A definition of this model can be found in [START_REF] Li | Improving sentiment classification of restaurant reviews with attention-based bi-gru neural network[END_REF]. We chose the same hyper parameters (number of layers, latent space dimensions, etc.) as for the LSTM model.

-A hybrid model mixing both convolutional and GRU layers (ConvGru). This model was inspired by [START_REF] Zhang | Detecting hate speech on twitter using a convolution-gru based deep neural network[END_REF] and consists of three one dimension convolution layers, followed by three GRU layers.

-A Feed Forward Network (FFN) with two hidden layers, as for the one used in [START_REF] Bre | An efficient metamodel-based method to carry out multi-objective building performance optimizations[END_REF]. At each time step k, the model computes an estimation of the observation y k based on u k only. Note that because this process is done independently for each time step, we are able to parallelize the sequence of predictions, leading to a reduced computation time. However, this also means that the model cannot infer time dependencies from the data.

-A Transformer model modified for inference based on long time series is also considered. The original Transformer, as well as this new model, are presented in in the following chapter.

These models have been implemented using the deep learning framework PyTorch 1 , and can be found on our Github repository. 2

The Transformer

The Transformer is a neural network architecture developed originally to solve Natural Language Processing (NLP) tasks. It relies on attention mechanisms to address the lack of long term memory of LSTM models, highlighted in Zhou et al. (2021) for instance. We first present the self attention layer, then detail the full architecture of the Transformer. In the following chapter, we discuss our modified implementation adapted for time series.

Self attention. The self attention layer aims at combining elements of the input time series

(u 1 , • • • , u T ) that relate
to each other. This relation is learned by the network during training, and represented during inference by the Score 1. https ://pytorch.org 2. https ://github.com/maxjcohen/transformer matrix. Let X = (u 1 , • • • , u T ) the input matrix with shape (T, d u ) created by stacking all time steps of the input time series vertically. We start by computing three matrices Q ∈ R T ×dq , K ∈ R T ×dq and V ∈ R T ×dv containing query and keys vectors with dimension d q , as well as values vectors with dimension d v associated with each time step.

Both d q and d v are hyper parameters, set in the original paper to d q = d v = 64. Then the score matrix, with shape (T, T ), represents the attention of each time step towards every other.

Q = XW q Queries K = XW k Keys V = XW v Values Scores = d -1/2 q QK ,
where {W q , W k , W v } are parameters of the Transformer model, learned during the training procedure. Such transformations, referred to as self-attention, compares inputs with one another as the matrix QK contains all dot products between entries (columns) of Q and K. The attention is given by

Attention = softmax d -1/2 q QK V ,
where the softmax function is defined, for any z ∈ R d , by

softmax : z → (e z1 , . . . , e z d ) / d j=1 e zj .
By computing the product between Q and K , we are evaluating the association between every element of X, regardless of their position in the time series. This is the main contribution of the Transformer, as it allows the model to address all time steps at the same time, replacing the previous memory mechanism. The score matrix was designed to be computed in parallel, using modern hardware, allowing for very fast computation times. This makes for a computationally interesting alternative to RNNs, where the latent state must be computed recursively.

However, with this parallelisation comes a quadratic complexity in the time length. While this is usually not a problem for NLP tasks, as the length of a sentence is usually small (see [START_REF] Proust | [END_REF] for an inconvenient truth), it is a major limitation in our case.

Architecture of the Transformer. The Transformer builds on an encoder-decoder structure, which was introduced in [START_REF] Cho | Learning phrase representations using RNN encoder-decoder for statistical machine translation[END_REF], in order to push the model toward a meaningful, abstract representation of the data. By dividing the model in two almost symmetrical sections -an encoder and a decoder -with a bottleneck referred to as the latent vector, the model is constrained to perform a compression of the available information.

In the Transformer, the encoder blocks are composed of a self attention layer, as defined in the previous paragraph, followed by a two-layer Feed Forward Network (FFN) with a Rectified Linear Activation Unit (ReLU, see Bai (2022) for a review) :

FFN(x) = max(0, xW 1 + b 1 )W 2 + b 2 , where {W 1 , W 2 , b 1 , b 2 } are unknown parameters learnt du-
ring training. The decoder blocks follow the same architecture, with an additional "Encoder Decoder Attention" layer, where the attention score matrix is computed with respect to the latent vector. In our implementation, we chose to stack N = 4 encoder and decoder blocks, which is slightly lower that the value proposed in the original paper of N = 6, in order to reduce the size of the model and the computation cost. Similarly, we combine h = 4 attention layers instead of the original h = 8. See Figure 3.1 for a diagram of the full Transformer architecture.

During inference, the Transformer generates the latent vector in an autoregressive manner, by recursively computing predictions with the decoder section. In order to speed up evaluations of the model during the training phase, the ground truth is directly fed to the decoder, while future observations are masked. All parameters are then estimated using gradient descent. 

The Transformer adapted to Time Series

Because of its quadratic complexity in the time dimension, the Transformer is too computationally expensive for our use case, as time series can span up to 672 hours long. However, the self attention mechanism being appealing to take into account long-term dependencies, we propose to adapt the Transformer architecture for long time series.

In the proposed benchmark, the input sequence of the attention layers is decomposed using a rolling window, and each split is treated independently and in parallel. Let p be the size of this attention window, and κ a stride, we define a set of input matrices as follows : for all 0 ≤ i ≤ (T -p -1)/κ ,

x i = (u iκ+1 , • • • , u iκ+p+1 ) .
Following the same equations as for the original Transformer, presented in Section 3.1.3, we compute the attention for each subsection of the input time series, and concatenate the result.

In addition to greatly reducing the computation time for long sequences, we introduced a local attention mechanism which improved the model performance. After training our model on the metamodel dataset, see Section 3.1.5, we were able to produce attention maps presented in Figure 3.2.

Our metamodel

Our metamodel is built following a classical recurrent mechanism. We assume that the observations can be modeled using a sequence of hidden states (h t ) t≥0 . At each time step t, the observations are defined as random transformations of the input u t and the hidden state h t-1 depending on the past values (u 1 , . . . , u t-1 ). We use as a backbone a many to many RNN architecture, and denote by h t and x t the hidden state and input of layer 1 ≤ ≤ L at time step t, with the additional convention x 0 t ≡ u t . The hidden state is traditionally initialized as the zero vector, h 0 ≡ 0 for all 1 ≤ ≤ L.

In the original and most simple definition of a RNN, the hidden state is computed recursively as following state equations :

h t = tanh(W ih x t + W hh h t-1 + b h ),
Γ i = σ(W xi x t + W hi h t-1 + b i ) , Γ f = σ(W xf x t + W hf h t-1 + b f ) , Γ o = σ(W xo x t + W ho h t-1 + b o ) , ct = tanh(W xc x t + W hc h t-1 + b c ) , c t = Γ f * c t-1 + Γ i * ct . h t = Γ o * tanh c t .
where

x t ≡ h -1 t
is the hidden state computed in the previous layer. An additional fully connected layer is added on top of the RNN architecture, following results presented in Sendra-Arranz and Guti érrez (2020), to mobtain the observation model :

y t = σ(W y h L t + b y ) + ε t ,
where σ is the sigmoid activation function σ : x → (1+e -x ) -1 and where (ε t ) T t=1 are independent centered Gaussian variables with covariance matrix Σ y . The architecture is represented in Figure 3.3. The unknown parameters to be estimated during the training phase of the metamodel are

θ = W xi , W hi , W xf , W hf , W xo , W ho , W xc , W hc , W y , b i , b f , b o , b c , b y 1≤ ≤L .
The model is trained to produce accurate predictions by tuning its parameters θ, usually referred to as weights, through an iterative back propagation algorithm, where predictions are compared to the ground truth y t . Since we choose the Mean Square Error as a cost function, the covariance matrix Σ y is not estimated during training. FIGURE 3.3 -Our metamodel architecture (left), and a detailed LSTM cell (right). The LSTM cell improves on the classic RNN by introducing a cell state c t supposed to carry long term memory, without additional alterations, throughout the sequence. The three input gate Γ i , forward gate Γ f and output gate Γ o determine whether information in both hidden state h k and cell state c k should be carried away or discarded.

Dataset sampling

The training dataset is sampled by exploring the input space of the simulator. We chose TRNSYS as it was the simulator used by Oze-Energies, but any simulator can be used to train the metamodel. We define ranges for each input variable in λ and (ψ k ) k≥0 with the help of energy managers, such as highest and lowest scheduled temperature, or the earliest and latest hours of arrival of occupants, see the appendices for a complete list of these ranges. Because our dataset aims at capturing multiple buildings, these ranges are not centered around a specific set of variables, but rather cover all possible values across our cluster of buildings. In addition, real weather data (ϕ k ) k≥0 acquired between June and August 2020 around the Parisian area where used to obtain a dataset consistent with the real buildings.

In our numerical experiments, we chose a uniform sampling method over the ranges for each building and weather variable. This allows us to easily split the dataset uniformly into training and testing sets, which is crucial to validate the metamodel.

A total of 15,000 training examples were sampled, an example being 672 hours i.e. 28 days, which we will refer to as to as a month. During the training phase, the parameters of each metamodel described in Section 3.1.3, and called θ in the detailed case of the RNN approach, are estimated based on this dataset. The metamodels compared in this section are defined with a latent dimension of d emb = 64 and a total of L = 4 layers. Hyper parameters, such as learning rate, dropout, number of epochs or batch size, were chosen by cross validation.

Training

During training, for each example, we compute the Mean Squared Error (MSE) loss, and combine consumption and temperature errors :

MSE T = T t=1 (τ t -τ t ) 2 T t=1 (τ t -τ ) 2 and MSE Q = M t=1 (ζ t -ζ t ) 2 M t=1 (ζ t -ζ) 2 loss = βMSE T + (1 -β)MSE Q , where τ = T -1 T t=1 τ t , ζ = T -1 T t=1 ζ t and
(τ 1:T , ζ1:T ) = f building (λ, ψ 1:T , δ 1:T , ϕ 1:T ) and f building are all the architecture proposed in the previous sections. In the experiments below, as the inside temperatures and all consump-TABLE 3.1 -Metrics (means and standard deviations) of the metamodels on the validation splits. The best mean values are displayed in bold (the lowest losses and mean squared errors). Time is the computation time to run a single simulation through the network, and was estimated by averaging 100 inferences. Our selected architecture is detailed in Section 3.1.4, and achieves the best performance on all metrics, while still being on par with most models in computation time. 

BiGRU

Validation

Validation is essential to identify any potential overfit of the model on the training dataset. In this study, we implement a traditional cross-validation, whereby the dataset is split into k folds, and the model is trained on the k -1 first folds and evaluated on the last. We average this validation score by iteratively changing the validation fold, as detailed by the authors of [START_REF] Seyedzadeh | Machine learning modelling for predicting non-domestic buildings energy performance : A model to support deep energy retrofit decision-making[END_REF], with k = 5. This method ensures that our model is always evaluated on unseen data, which demonstrates its generalization capability and avoids any potential bias of the validation split. 

Energy Optimization in real buildings

The experiments conducted in this thesis to analyze the performance of the trained metamodel focused on the optimization of two buildings in the Parisian region. Each one is represented by a single thermal zone.

-Stanley is a 18, 512 m 2 building. It is delimited by four vertical walls of dimension 2, 314 m 2 , 1, 917 m 2 , 2, 123 m 2 and 1, 725 m 2 , as well as a roof and ground of dimension 2, 304 m 2 . The main insulator is a 10 cm layer of polystyrene. It was built in 1983.

-Livingstone is a 13, 594 m 2 building, including 4 vertical walls with respective areas 1, 678 m 2 , 1, 274 m 2 , 1, 281 m 2 and 1, 252 m 2 , a horizontal roof and a horizontal ground of dimension 4, 653 m 2 and 4, 286 m 2 . The main insulator is a 8 cm layer of polyurethane. It was built in 2006.

Based on a commonly used rule, it is assumed that 2/3 of the full area is occupied by people. Assuming that each occupant requires 12 m 2 , this allows to set the initial values for the number of occupants and the number of PCs (set to 1.2 times this value) in the building during occupancy hours. These values are assumed to be known and fixed and used to sample the training dataset.

Calibration

During the training phase, metamodel parameters are estimated by minimizing the loss function on the simulated dataset which corresponds to various configurations associated with choices of λ and (ψ k , ϕ k ) 1≤k≤T . Because this dataset is sampled from a simulation model, we trained the metamodel ignoring real building related noise and measurement errors. Additionally, both TRNSYS and our metamodel require an estimate of the parameters λ that cannot be properly identified for each building, especially without any site work. By comparing the metamodel predictions to real historic data during the calibration phase, we search for a set of building related parameters that best match reality. During this step, the weights θ of the metamodel are frozen, meaning that we no longer update each weight matrix of the neural network.

We can compute, for each given set of input parameters λ and (ψ k , ϕ k ) 1≤k≤T , the difference between estimated and real historical data. Goodness of fit of the model is measured with by combining two calibration criteria toward temperature and consumption, as presented in 2.1. Following the performance evaluation criteria in [START_REF] Ajib | Data-driven building thermal modeling using system identification for hybrid systems[END_REF], we define the normalized Mean Square Error for both :

L calib temperature (τ, τ ) = T t=1 (τ t -τt ) 2 T t=1 (τ t -τ ) 2 , L calib energy (ζ, ζ) = T t=1 (ζ t -ζt ) 2 T t=1 (ζ t -ζ) 2
, where

τ = T -1 T t=1 τ t , ζ = T -1 T t=1
ζ t , and (τ 1:T , ζ1:T ) = f building (λ, ψ 1:T , δ 1:T , ϕ 1:T ).

Because this is a non differentiable problem, the cost function cannot be minimized using a stochastic gradient descent algorithm as in the training step ; instead we use the CMA-ES algorithm [START_REF] Hansen | Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es)[END_REF], an evolutionary algorithm designed to solve constrained non-convex optimization problems. In our experiments, the variables we adjust for fitting are constrained by the same ranges defined in the data sampling section. The algorithm is implemented by the author of the paper in the pycma library. 3Following traditional methodology in building calibration, we measure the performance of the calibrated model with the Mean Bias Error (MBE) and Coefficient of variation of the Root Mean Square Error (Cv(RMSE)) criteria.

For any sequence of temperature (τ t ) 1≤t≤T associated with predictions (τ t ) 1≤t≤T , these quantities are defined as follows :

MBE T (%) = 100 T t=1 (τ t -τt ) T t=1 τ t , Cv(RMSE) T (%) = 100 τ T t=1 (τ t -τ t ) 2 T 1/2 . (3.1)
The criteria MBE Q and Cv(RMSE) Q are computed similarly for consumptions instead of temperature.

In a detailed review of calibration methods, the authors of [START_REF] Fabrizio | Methodologies and advancements in the calibration of building energy models[END_REF] have gathered the international recommended ranges regarding these criteria, when validating a calibrated model. Regardless of the simulation program, the Cv(RMSE) should fall within ±20%, and the MBE ± 5% when considering hourly calibrations. As shown in Table 3.2, our results for both consumptions and indoor temperatures calibration are well within these guidelines.

Calibration was run for both the metamodel and TRNSYS for a maximum of 3 hours. We chose the non informative value β = 0.5 for Equation 2.1. As shown in Table 3.2, we can achieve satisfactory results for Stanley in this timespan, as both model converge to close values for both the Cv(RMSE) and MBE. Figure 3.5 displays both models calibration results, compared to real data. On the other hand, TRNSYS calibration of Livingstone is sensibly below the results obtained with the metamodel, as calibration did not converge in the available time, see Figure 3.4.

The calibration of the metamodel reached convergence but with a tremendous number of epochs, that would have required to run TRNSYS for about 10 hours in order to get similar performance. As a comparison, we calibrated the metamodel for the same number of epochs as TRNSYS, and obtained similar results. This experiment comforts the idea that TRNSYS and the metamodel behave similarly after the calibration step, but the much shorter computation time of the metamodel allows us to better calibrate complex buildings, such as Livingstone. See Figure 3.6 for a visualization of the TRNSYS and metamodel calibration after one hour. Validation. The metamodel will assist the decision process for building management by simulating thermal behavior of future weeks. Because the calibration process requires real data, the metamodel is calibrated on several past weeks, in order to capture the real building behavior in a situation as close as possible to the future period we aim to match.

We validate the calibration phase using two successive weeks, by applying the calibrated settings to the two following weeks, with fresh weather data, and compare the results to the true observed values. The results are displayed in Figure 3.7 and display encouraging results, as the simulation of the metamodel on the two unseen weeks is able to match most trends is both consumption and indoor temperature.

Optimization

After a successful calibration, the metamodel is supposed to have correctly estimated building parameters λ, enabling it to accurately reproduce the thermal exchanges of the real building, as confirmed by the validation step.

The parameters (ψ k ) 1≤k≤T associated with the HVAC system can then be optimized for a given set of weather data (ϕ k ) 1≤k≤T . The optimization tasks consists in finding a set a usage related parameters that reduce consumption while keeping the same level of comfort. Optimizing energy consumption requires minimizing two conflicting objectives, making it impossible to find a solution that optimizes both objectives simultaneously. Instead, we search for optimal compromises between energy consumption and comfort, and plot each proposition to form a Pareto front, see Figure 3.8. Combinations of energy consumption and comfort are unreachable below the Pareto front, and suboptimal above ; we always aim at sampling points at the intersection. Indeed, for any such optimal compromise, we can always get a higher level of comfort, for the price of a higher consumption. The consumption criteria is the energy load during the month ; the comfort criteria is the gap between indoor temperature and a constant reference temperature T * :

L optim temperature (T , τ ) = t∈TOcc (T -τ t ) 2 , L optim energy (ζ) = T t=1 ζ 2 t , with (τ 1:T , ζ1:T ) = f building (λ, ψ 1:T , δ 1:T , ϕ 1:T ) ,
where T * = 22.5 • C and T occ is a subset of the daytime hours, where the building is considered to be occupied and the target temperature should be met. Following recent works in building energy optimization, we search for a set of optimal parameters using NSGA-II, see [START_REF] Deb | A fast elitist non-dominated sorting genetic algorithm for multi-objective optimisation : Nsga-ii[END_REF], another evolutionary algorithm, but adapted to multi objective problems. An implementation can be found in the Pygmo 4 library. We run the optimization for 3000 iterations (2 hours). Results can be viewed as a Pareto front which is given in Figure 3.8 for the second month used in the calibration process. As observed during calibration, this process can take a colossal number of iterations before achieving satisfactory results, once again justifying the use of a much faster metamodel. The predicted time series associated with the BMS parameters selected in Figure 3.8 are given in Figure 3.9. The relative gain, as well as the expected energy savings for both building are available in Table 3.3.

4. https ://esa.github.io/pygmo2/ FIGURE 3.7 -Consumption and temperature simulations after calibration on two weeks (top), simulation on the two following weeks for the same parameters (bottom), for Stanley. Although curves for the validation weeks are not matched perfectly, the metamodel is able to capture most trends of both consumption and indoor temperature. The remaining difference can be explained by the absence of real building usage settings ψ for the calibration week. This experiment comforts our assumption that the calibration step leads to a correct estimation of building parameters λ.

TABLE 3.3 -Energy gain after optimization. Relative gain represents the energy load reduction between calibration and optimization steps, when maintaining the initial level of comfort. We then apply this coefficient to the real monthly consumption to obtain the reduction forecast in MWh. We also provide a more interesting reduction obtained by reducing the comfort criteria by 0.5 • C.

relative gain (%) prevision (MWh) relative gain / 0.5 • C (%) prevision / 0.5 

Air quality modelling

In the previous sections, we proposed an end-to-end methodology to optimize energy loads and improve comfort.

Because regulating indoor temperature, through heating and cooling, is by far the most energy hungry aspect of comfort, we neglected all other variables. We now address a more complete analysis of building air quality control, and propose two initial naive approaches. The limitations arising from these methods lead us to develop more complex strategies in the next chapter.

Definition

The Indoor Air Quality measures the impact of indoor air conditions on health and well being. A wide array of chemicals and conditions are involved in its analysis, as detailed in [START_REF] Zhang | Low cost, multi-pollutant sensing system using raspberry pi for indoor air quality monitoring[END_REF]. In this study, we constrain ourselves to the data gathered by Oze-Energies : CO 2 levels, relative humidity and indoor temperature.

CO 2 concentration in the air is measured by ppm (parts per million) varying between 360 ppm and 412 ppm in fresh air. Indoor, it should be kept below the 1000 ppm threshold [START_REF] Persily | Indoor carbon dioxide concentrations in ventilation and indoor air quality standards[END_REF], as high CO 2 concentrations are linked to symptoms of an air quality disease known as Sick Building Syndrome detailed in Hou et al. (2021).

However, it is mainly impacted by the current occupation of the building, as highlighted in [START_REF] Madureira | Source apportionment of co2, pm10 and vocs levels and health risk assessment in naturally ventilated primary schools in porto, portugal[END_REF], which is unknown to us. Air quality regulation can still be achieved by tracking CO 2 evolution in the building, through sensors such as the ones described in Section 2.2.1, and acting whenever these levels get too high. In all following experiments regarding air quality in this thesis, we therefore consider CO 2 levels as a surrogate variable for the occupation of the building.

Humidity has an impact on both health and well being. Results in Hou et al. (2021) show that a higher relative humidity in Chinese homes were associated with higher percentage of perceived moldy odor and humid air, while lower levels lead to perceived dry air. From a health perspective, maintaining relative humidity between the recommended ranges prevents the spread of bacteria, viruses, and fungi among others, as described in the Sterling Chart in Figure 2.4. Indoor humidity has been a known health hazard for quite some time, as the Bible states that living in buildings with dampness problems ('plague of leprosy') is dangerous to your health (Leviticus 14, 34-57). Yet these concerns are relevant even for newly built dwellings, which may be well isolated, but still not allow for optimal relative humidity management, as showed in [START_REF] Ade | Is green certification the solution to substandard indoor air quality (humidity) ? a case study of old, new and green-certified dwellings[END_REF].

Experiments

In the subsequent paragraphs, we benchmark two statistical models applied to relative humidity forecast. Consider the regression task where the objective is to estimate the hourly indoor humidity, given by a sequence of observations y t , using as inputs u t , a combination of weather data as described in Section 2.2.1 and CO 2 levels, for 3.11 we present a visualization of this dataset.

t ∈ {1 • • • T }. In Figure

Deterministic neural network

We start by evaluating a traditional deterministic neural network for time series, by using the same LSTM architecture as presented for indoor temperature and consumption in Section 3.1.4. At each time step t > 1, a hidden state h t and a cell state c t are computed from the inputs : c t , h t = LSTM hidden (u t , h t-1 , c t-1 ), with c 0 ≡ h 0 ≡ 0.

Then, we apply a non linear transformation to map hidden states to observations : y t = LSTM observation (h t ) + t , where ( t ) 1≤t≤T are independent identically distributed centered Gaussian random variable with fixed variance. The parameters of the model are estimated by gradient descent, by minimizing the MSE. Unlike the metamodel training of the previous section, the LSTM applied to relative humidity is not able to model local variations of the observations. Although the general trend of the data was learned, hour to hour changes cannot be reconstructed by the model, as seen in Figure 3.12 where we compared two samples from the validation set to the corresponding prediction of the model. Additional samples can be found in Appendix A.1.3. We believe that this discrepancy can be explained by external factors, not represented in the input data, such as ventilation settings, or an occupant opening a window. In this context, it is not surprising that our model does not provide predictions perfectly matching the historic ground truth ; however, when inferring future weeks, it is important to have access to a measure of the model's uncertainty. For this reason, we turn to statistical models taking into account this uncertainty, in order to model the distribution of the observation, rather than simply providing a single prediction.

Hidden Markov Model

We compare our initial LSTM with a discrete Hidden Markov Model (HMM), where hidden states (z t ) T t=1 take values in a finite set {1, • • • , K}. We consider that the number K of states is fixed. At each time step t, we assume that the observation y t , conditionally on the hidden state z t = k ∈ {1, • • • , K}, is Gaussian distributed with mean µ k ∈ R and standard deviation σ k > 0. The hidden states are modelled as a homogeneous Markov chain, characterized by the transition matrix A such that for all t > 1, and for all 1 ≤ k, j ≤ K, p(z t = k|z t-1 = j) = a kj with K j=1 a kj = 1 and a kj > 0. The initial probabilities are defined as p(z We can derive the log-likelihood expression of the complete distribution : 

1 = k) = π k with K k=1 π k = 1 and π k > 0. The observations
(y 1:T , z 1:T ; θ) = T t=1 K k=1 log p(y t ; µ k , σ k )1{z t = k} + T t=1 K k=1 K j=1 log(a kj )1{z t = j, z t-1 = k} + K k=1 log π k 1{z 0 = k} , where θ = {µ k , σ k , a kj , π k } denote

Discussion

We evaluated two statistical models on a relative humidity forecasting task. The first one, a deterministic neural network, was able to provide good quality predictions based on the input variables, however lacked any information regarding its own uncertainty toward those predictions. When modelling historic data, we rarely have access to all relevant input variables : we cannot simply rely on the model being correct. In contrast, the Hidden Markov Model can be used to quantify the uncertainty, for instance by computing confidence intervals based on identical independent draws from the observation distribution. However, because it can only model linear interactions on the latent space, we report a higher bias for the HMM than the LSTM.

The approximation quality of the neural network can be combined with the distribution modelling of the HMM.

In the next chapter, we propose two generative models with low bias on the Relative Humidity dataset, while providing uncertainty estimation through confidence intervals. We compare two of the main approaches to parameter estimation for non linear time series models, Sequential Monte Carlo methods and Variational Inference.

Chapitre 4

Uncertainty modelling through random latent variables

Neural networks architectures are able to leverage huge amounts of data in order to infer millions of parameters, and produce accurate predictions. Yet we cannot simply rely on their predictions being accurate when making decisions impacting well being and health. In the previous chapter, we experimented with Hidden Markov Models (HMM) in an attempt to model the uncertainty associated with each prediction. This approach is able to model the distribution of the observations instead of simply producing a prediction. By analyzing it, we can derive information about the uncertainty of the model. However, unlike neural networks, the training procedure of HMM does not scale well to numerous parameters in deep architectures, leading to degraded accuracy.

The main challenge we address in this chapter consists in combining the accuracy of neural networks with uncertainty modelling. For this, we propose two approaches. In Section 4. 

Motivations

The metamodel has proven to be an accurate surrogate of TRNSYS for indoor temperature and consumption modelling and has provided interesting practical performance for several buildings, see Chapter 3. However, as real buildings behaviors are often much more complex than the simplified models written using TRNSYS, our model is still not able to closely match a huge variety of historic building data, during calibration for instance. This can be explained by many factors : a monozone simplified model is not realistic to describe all buildings, the noise incurred from sensors and captors are not taken into account in the metamodel training, and the building faces many random solicitations such as the actions of its occupants. The same factors can explain the limited performance when modelling relative humidity in the previous chapter.

Although neural networks have been developed to solve many predictive tasks, they often solely output a singlepoint estimate, so that no uncertainty measure is available to provide statistical guarantees on their predictions.

Designing deep models and training associated procedures to estimate predictive distributions of future observations is a long standing challenge. These distributions could naturally be used to compute several uncertainty measures and validate the model or metamodel predictions, or highlight situations in which the predictions cannot be trusted for critical practical applications. On the other hand, understanding better the uncertainty would help in introducing new models or new training procedures to improve the performance in large-scale real-world machine learning applications.

In this chapter, we propose a new approach to provide a flexible statistical framework that can be combined with deep learning architectures, taking into account stochastic latent states and noisy observations. One of the main challenges of this approach resides in the dimension of our statistical models : in order to compute abstract features from the input data, deep neural networks often rely on hundred of thousands of parameters. While there exists various methods for uncertainty estimation, fitting such large networks requires additional steps, that we introduce in the following sections.

Review of the literature

Recurrent Neural Networks (RNN) were first introduced as an efficient and convenient architecture to address short time dependencies problems. They have been consistently improved to develop longer term memory, and optimize their implementations Bengio et al. (1994); Hochreiter and Schmidhuber (1997). Current deep learning frameworks allow stacking arbitrary high number of recurrent layers, whose parameters are estimated by gradient descent through automated differentiation procedures, as shown in [START_REF] Graves | Speech recognition with deep recurrent neural networks[END_REF]. Fostering the dissemination of deep learning-based algorithms to such fields requires to design new approaches for uncertainty quantification.

Stochastic Recurrent Neural Networks. Bayesian statistics are able to approximate the distributions of future observations and to provide uncertainty estimation [START_REF] Hinton | Bayesian learning for neural networks[END_REF]. Several architectures inspired by Variational Inference (see [START_REF] Jordan | An introduction to variational methods for graphical models[END_REF] for an introduction) emerged by considering latent states as random variables and approximating their posterior distribution. The authors of [START_REF] Chung | A recurrent latent variable model for sequential data[END_REF]; [START_REF] Fraccaro | Sequential neural models with stochastic layers[END_REF] built on a traditional recurrent architecture by modelling temporal dependencies between these latent random states. baseline networks and that a single last layer is an appealing trade-off between computational cost and uncertainty quantification. However, this method is restricted to independent and identically distributed data and cannot be directly applied to time series.

Results presented in

Problem definition

Before considering uncertainty quantification for the end-to-end process associated with training a metamodel and solving calibration and optimization tasks, we propose in this chapter a solution to model predictive distributions for generic deep recurrent neural networks. We model the distribution of a series of observations (y k ) T k=1 , with the objective of both improving on the results of the previous chapter, presented in Table 3.4, and providing uncertainty quantification. At each time step k, we store exogenous variables in a deterministic vector u k . The sample length T is fixed.

Additionally to the Relative Humidity dataset, aggregated by Oze-Energies over two years, we also consider a publicly available dataset in order to propose reproducible results. Both datasets are treated similarly, in terms of model definition, training procedure and evaluation metrics.

Relative Humidity dataset. This dataset is composed of hourly records of indoor Relative Humidity (RH), from a building managed by Oze-Energies. Our input data is comprised of the outdoor humidity, temperature and current occupancy. Although occupancy is not directly observed by Oze-Energies, we do have access to CO 2 concentration at each time step, which we use as a surrogate variable. We chose to split the dataset in day long samples, where

T = 24 .
Two years worth of data, namely for 2020 and 2021, are available. Note that the lockdown from the COVID-19 happened in April 2020, and had a strong impact on both CO 2 and RH as the building was completely empty during this period. In Figure 3.11, where we plotted the entirety of the dataset for both input variables and target observations, we can see how occupation slowly rose after the lockdown, as highlighted by the growing CO 2 levels during occupancy times. For this reason, the first year and a half was used for training, and the remaining of the dataset was saved for validation. Once again, we have two years worth of hourly data, displayed in Figure 4.1 where we plotted inputs and outputs.

Electricity Transformer

Following the original paper, we train our models on samples from the first year, and validate on samples from the following four months. 

Monte Carlo approach for continuous latent

Inspired by [START_REF] Brosse | On last-layer algorithms for classification : Decoupling representation from uncertainty estimation[END_REF], we propose a last layer approach to split uncertainty quantification from representation learning, in the context of dependent data. This new method for uncertainty estimation combines high expressivity, quality uncertainty estimations and ease of training. Our proposed architecture is composed of an arbitrary sequential model, followed by a decoupled state space model layer. Using a state space model in the last layer allows to introduce complex predictive distributions for the observations based on task-dependent latent data.

However, because the loglikelihood of the observations is not available explicitly in such a setting, the second stage training requires using approximate sampling methods.

Estimating the parameters of potentially high-dimensional models with unobserved (i.e. noisy) layers is a challen- Transfer Learning is an essential part of our proposed architecture. Since estimating all parameters of a deep neural network using Sequential Monte Carlo methods would be computationally prohibitive, we first train the first layers of our model on a simple regression task. In a second stage, the parameters of the last layer can be finetuned on a more complex uncertainty modelling task.

Representation learning

Our objective is to take advantage of the recent efforts in deep neural network design, and training, to abstract huge amounts of complex, intricate data. The authors of [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF] demonstrated that high dimensional data can be represented in a much lower space using deep neural architectures, and proposed an autoencoder model to this end, see Figure 4.2. In [START_REF] Bengio | Learning deep architectures for ai[END_REF], it is further shown that more complex data may require deeper architectures to obtain low dimensional representations. On a practical experimentation with samples in a 220 dimension space, the authors of [START_REF] Alkhayrat | A comparative dimensionality reduction study in telecom customer segmentation using deep learning and pca[END_REF] concluded that deep neural networks outperformed traditional algorithms for dimensionality reduction, such as the Principal Component Analysis. In all these references, the huge number of parameters arising from deep neural network architectures where estimated using gradient descent.

By implementing such models, we aim at representing our potentially high dimensional input data in a smaller latent space. There, our Sequential Monte Carlo algorithm is be able to efficiently model uncertainty. 

Proposed architecture

In the following, for any sequence (a m , . . . , a n ) with n ≥ m, we use the short-hand notation a m:n = (a m , . . . , a n ).

Input model

We first consider an arbitrary multi-layer neural network h φ with unknown parameters φ, responsible for transforming the input time series u 1:T into high level features u 1:T , in a small dimension latent space :

u 1:T = h φ (u 1:T ) , input model.
We produce an estimate φ during the first training stage, by introducing an auxiliary function κ ψ to model the observations as follows : for all 1 ≤ t ≤ T , y t = κ ψ (y t-1 , u t ) + t and y 0 = κ ψ ( u 0 ) + 0 , where ( t ) t≤0 are i.i.d.

centered Gaussian random variables with unknown variance Σ. The input model is trained on a simple deterministic regression task, by performing gradient descent on the mean squared error, leading to a first estimate of φ and ψ.

We keep the estimated parameters φ while the auxiliary function κ ψ and its parameters, only designed to model the observations, are discarded.

State space model

The next step is to define a state space model taking as input the previously extracted features u 1:T . Let x 1:T a sequence of stochastic hidden states computed recursively and y t their associated predictions. For all t ≥ 1, the model is defined as :

x t = g θ (x t-1 , u t ) + η t , state model, y t = f θ (x t ) + ε t , observation model,
where θ are the unknown real-valued parameters of the network (weights and biases) and f θ and g θ are nonlinear parametric functions. We chose (η t ) t≥1 and (ε t ) t≥1 as two independent sequences of i.i.d. centered Gaussian random variables with covariance matrices Σ x and Σ y , although any distribution can be substituted to better match the noise distribution.

This decoupled approach aims at reducing the number of parameters in θ, compared to φ, in order to estimate them using Sequential Monte Carlo methods. In the next section, we describe this second training procedure for estimating the last layer parameters θ only, by keeping φ fixed. All implementation and training details are postponed to Section 4.4.5. 

Sequential Monte Carlo Layer

In this section, we detail how to estimate the parameter θ of the model introduced in Section 4.4.2, from a record of observations y 1:T . Unlike deterministic neural networks, the likelihood L of the observations is not available explicitly, as it would require integrating over the distribution of the hidden states x 1:T :

L : θ → p θ (y 1:T , x 1:T )dx 1:T , where p θ is the joint probability density function of the observations and the hidden states. Consequently, the score function θ → ∇ θ log L(θ) is intractable, and automated differentiation cannot be used directly. We propose to optimize instead a Monte Carlo estimator of this score function, using Fisher's identity, see for instance [START_REF] Douc | Nonlinear Time Series : Theory, Methods and Applications with R Examples[END_REF] :

∇ θ log p θ (y 1:T ) = E θ [∇ θ log p θ (x 1:T , y 1:T )|y 1:T ] , (4.1) 
where E θ designs the expectation under the model parameterized by θ (the dependency on the input u 1:T is kept implicit here for better clarity). The conditional distribution of x 1:T given y 1:T is not available explicitly for a nonlinear state space model, but it can be approximated using a sequential Monte Carlo smoother. A classical approach consists in first iteratively approximating the filtering distributions p θ (x t |y 1:t ), for t ≤ T , by a set of N particles (ξ t ) 1≤t≤T,1≤ ≤N . Then, the smoothing distribution p θ (x 1:T |y 1:T ) can be approximated by associating importance weights (ω T ) N =1 with each particle genealogy (ξ 1:T ) N =1 . In the following paragraphs, we denote by Ψ µ,Σ the Gaussian probability density function with mean vector µ and covariance matrix Σ. This degeneracy relative to the smoothing problem can be overcome using backward sampling. It is specifically designed for additive functionals so it is well suited to our setting (4.1) where

∇ θ log p θ (x 1:T , y 1:T ) = T s=1 {∇ θ log m θ (x t-1 , u t ; x t ) + ∇ θ log r θ (x t , y t )} ,
where m θ (x t-1 , u t ; •) is the transition density of the state model and r θ (x t , •) is the density of the conditional distribution of y t given x t and by convention m θ (x 0 , u 1 ; •) = ρ 0 (•).

Appealingly, using the path-space smoother described in the previous section, a Monte Carlo estimator of the score function can be obtained online by setting,

S N θ (y 1:T ) = N i=1 ω i T τ i T , (4.2) 
where the statistics {τ i s } N i=1 satisfy the recursion

τ i s+1 = τ I i s+1 s + hs (ξ I i s+1 s , ξ i s+1 ), (4.3) 
where hs (x s , x s+1 ) = ∇ θ log m θ (x s , u s+1 ; x s+1 ) + ∇ θ log r θ (x s+1 , y s+1 ) .

Note that the conditional probability that I i s+1 = j given the offspring ξ i s+1 and the ancestors {ξ s } N =1 is given by

Λ s (i, j) = ω j s m θ (ξ j s , ξ i s+1 ) N =1 ω s m θ (ξ s , ξ i s+1 ) . (4.4)
It is straightforward to note that Λ s is a Markov transition kernel on {1, . . . , N } × {1, . . . , N }. The particle-path degeneracy of the path-space smoother can be overcome by computing the expectation under the law of this kernel :

τ i s+1 = N j=1 Λ s (i, j){τ j s + hs (ξ j s , ξ i s+1 )}. (4.5)
This approach, first proposed in Del Moral et al. ( 2010), avoids the path degeneracy as is eliminates the ancestral connection between the particles by means of averaging. Furthermore, it is entirely online. Still, a significant drawback is the overall O(N 2 ) complexity. Following [START_REF] Olsson | Efficient particle-based online smoothing in general hidden markov models : the paris algorithm[END_REF], we propose to sample M N conditionally independent indices {J i,j s } M j=1 from the distribution Λ s (i, •) and to update the statistics according to

τ i s+1 = M -1 M j=1 τ J i,j s s + hs (ξ J i,j s s , ξ i s+1 ) . (4.6)
If the state transition density is uniformly bounded from above and below, an accept-reject approach allows the sampling-based update to be performed for i ∈ {1, . . . , N } at an O(N (M + 1)) overall complexity if a pre-initialized multinomial sampler is used. A key aspect of this approach is that the number M of sampled indices at each step can be very small ; indeed, for any fixed M ≥ 2, the algorithm, which is referred to as the PaRIS, can be shown to be stochastically stable with an O(t) variance (see [START_REF] Olsson | Efficient particle-based online smoothing in general hidden markov models : the paris algorithm[END_REF], Section 1) for details), and setting M to 2 or 3 yields typically fully satisfying results.

Stochastic Gradient Descent for online estimation

An appealing application of the last layer approach is recursive maximum likelihood estimation, i.e., where new observations are used only once to update the estimator of the unknown parameter θ. In Brosse et al. ( 2020), the authors used in particular Stochastic Gradient Descent (SGD) and Stochastic Gradient Langevin Dynamics to update the estimation of θ and perform uncertainty quantification. In state space models, recursive maximum likelihood estimation produces a sequence {θ t } t≥0 of parameter estimates writing, for each new observation y t , t ≥ 1, θ t = θ t-1 + γ t ∇ θ θ (y t |y 0:t-1 ) ,

where θ (y t |y 0:t-1 ) is the loglikelihood for the new observation given all the past, and {γ t } t≥1 are positive step sizes such that t≥1 γ t = ∞ and t≥1 γ 2 t < ∞. A practical implementation of such an algorithm, where ∇ θ θ (y t |y 0:t-1 ) is approximated using the weighted samples {(ξ t , ω t )} N =1 can be found for instance in [START_REF] Gloaguen | A pseudo-marginal sequential monte carlo online smoothing algorithm[END_REF]. The PaRIS algorithm proposed in [START_REF] Olsson | Efficient particle-based online smoothing in general hidden markov models : the paris algorithm[END_REF] allows to use the weighted samples {(ξ t , ω t )} N =1 and the statistics {τ t } N =1 on-the-fly to approximate ∇ θ θ (y t |y 0:t-1 ) either using rejection sampling approaches or importance sampling steps. The update of the recursive maximum likelihood algorithm is based on :

∇ θ θ (y t |y 0:t-1 ) = π t;θ [∇ θ r t;θ ] + η t;θ [r t;θ ] π t;θ [r t;θ ] , (4.7) 
where π t;θ is the predictive distribution at time t, i.e. the law of x t given y 0:t-1 , r t;θ = r θ (•, y t ) and

η t;θ [r t;θ ] = φ 0:t;θ|t-1 [h 0:t;θ r t;θ ] -π t;θ [r t;θ ]φ 0:t;θ|k-1 [h 0:t;θ ],
with φ 0:t;θ|t-1 the distribution of x 0:t given y 0:t-1 and

h 0:t;θ (x 0:t ) = t-1 s=0 ∇ θ log q s,θ (x s , x s+1 ), (4.8) 
with q s,θ (x s , x s+1 ) = r s,θ (x s+1 )m θ (x s , u s+1 ; x s+1 ). The signed measure η t;θ is known as the tangent filter. Recursive maximum likelihood algorithms rely on the following straightforward decomposition of the normalized loglikelihood :

1 n ∇ θ θ (y 0:t-1 ) = 1 t t-1 k=0 ∇ θ θ (y k | y 0:k-1 ) ,
with the convention θ (y 0 | y 0:-1 ) = θ (y 0 ). Under strong mixing assumptions, for all θ, {(X n , Y n , π n , η n )} n 0 is an ergodic Markov chain and the normalized score ∇ θ θ (y 0:t-1 )/t converges almost surely to a limiting quantity λ(θ, θ ) such that, under identifiability constraints, λ(θ , θ ) = 0. A gradient ascent algorithm cannot be designed as the limiting function θ → λ(θ, θ ) is not available explicitly. However, Robbins-Monro algorithm can be used to solve approximately the equation λ(θ , θ ) = 0 with iterative updates

θ t = θ t-1 + γ t ζ t , t ≥ 0, (4.9)
where ζ t is a noisy observation of λ(θ t-1 , θ ), equal to (4.7).

The objective is therefore to approximate the key quantity (4.7). Using the particle filter, we can compute the Monte Carlo estimators :

π N t [r t;θ ] = 1 N N =1 r t;θ (ξ t ) and π N t [∇ θ r t;θ ] = 1 N N =1 ∇ θ r t;θ (ξ t ).
In addition, the tangent filter can be approximated as follows :

η N t;θ [r t;θ ] = 1 N N =1 τ t r t;θ (ξ k ) - 1 N N =1 τ t 1 N N =1 r t;θ (ξ t ) . (4.10)
Plugging these estimates in equation (4.7) allows to perform the online recursive algorithm.

Although this algorithm is very efficient to update parameters recursively, it is computationally intensive and therefore fits particularly well our last layer approach as it would be intractable for very high dimensional latent states.

Discussion

The proposed approach allows to adapt widespread Monte Carlo techniques to deep learning architectures, yet several questions arise from this methodology, due to the nature of particle smoothers and their implementation.

The Path-space smoother is known to quickly degenerate due to the successive resampling steps of the auxiliary filter. During this step, if one of the particle is not selected to be propagated, i.e. for each time step t, if there exists i ∈ {1, • • • N } such that for all 1 ≤ j ≤ N, I j t = i, then the particle's genealogy is discarded for the rest of the process. Over many time steps, the smoother degenerates as most particles share the same genealogy. In Figure 4.4, the trajectories ξ 1 0:4 and ξ 3 0:4 share the same history. Although this limitation can be mitigated by using recent alternatives such as the PaRIS, this raises the question of trade-off between the additional complexity (coming from the M backward samples) and the accuracy of the score estimate.

In addition even the Path-space smoother comes at a heavy computation cost with simulating N trajectories at once. Even for modern processing units, such as the GPU able to parallelize hundreds of matrix multiplications, computation times are bound to increase. It is also noteworthy that the smoothing algorithm, although relatively lightweight compared to running inferences on the neural network or computing gradient descent, cannot be parallelized. Lastly, the number of particles N is an additional hyper parameter to tune during the optimization of the model.

Algorithm 1: Two-stage learning

Input: y 1:T , u 1:T Output: ( φ, θ) φ ← Train the input model h φ ; u 1:T ← h φ(u 1:T );

Initialize parameter estimate θ 0 ; for p ← 1 to MaxIt do ξ 0 ∼ ρ 0 and ω 0 ∝ Ψ y0,Σy (f θp-1 (ξ 0 )); for t ← 1 to T do for j ← 1 to N do

I j t ∼ P(I j t = m) = ω m t-1 ; ξ j t ∼ p t (ξ I j t t-1 , u t , •); ω j t ∝ Ψ yt,Σy (f θp-1 (ξ j t )); Set ξ j 0:t = (ξ I j t 0:t-1 , ξ j t ).
Update the parameter estimate using gradient descent with estimated gradient S N θp-1 (y 1:T ).

Benchmarked models

Hidden Markov Model

We benchmark our model against the Hidden Markov Model defined in Section 3.3.4. Parameters are estimated through the Expectation Maximization algorithm. Compared to our proposed architecture based on a deep neural network, the HMM performs poorly, as the data is strongly non linear, and present complex long term dependencies.

Monte Carlo Dropout

Dropout is a common method for regularising neural networks, that consists in randomly -and temporallydiscarding connections between neurons during training, see [START_REF] Srivastava | Dropout : A simple way to prevent neural networks from overfitting[END_REF]. It has been showed to prevent units from co-adapting. During inference, while dropout is usually disabled, it is possible to utilize it to measure the uncertainty associated with a prediction, see [START_REF] Brosse | On last-layer algorithms for classification : Decoupling representation from uncertainty estimation[END_REF] for a benchmark. Multiple samples are generated independently from the network, and interpreted as a distribution.

While this idea seems promising for independent data, one does not simply apply dropout to Recurrent Neural Networks. In [START_REF] Pham | Dropout improves recurrent neural networks for handwriting recognition[END_REF], the authors were not able to successfully utilise dropout in the recurrent connections of their network, as it lead to instability for long sequences. Faced with the same limitation, [START_REF] Moon | Rnndrop : A novel dropout for rnns in asr[END_REF] proposed to apply a fixed dropout mask to the entire sequence of latents, in order to regularise the model. By applying a mask on the weights, rather than the latent vectors, [START_REF] Gal | A theoretically grounded application of dropout in recurrent neural networks[END_REF] proposed a theoretically grounded application of dropout for recurrent networks, that extends to LSTM and GRU layers. We benchmarked their methodology, named the Monte Carlo Dropout (MC Dropout). Compared to our proposed approach, the training procedure is straightforward, however the model still suffers from overconfidence.

Experiments

In this section, we detail the implementation choices of the model described above as well as the evaluation procedure. Results on both the Relative Humidity and the Electricity Transfer datasets, presented in Section 4.3, are reported.

Models

The Input model is a L = 3 layered GRU model, as defined in the deep learning framework PyTorch2 : for all 1 ≤ ≤ L and all 1 ≤ t ≤ T ,

r t = σ(W ir u -1 t + b ir + W hr u t-1 + b hr ) , z t = σ(W iz u -1 t + b iz + W hz u t-1 + b hz ) , n t = tanh(W in u -1 t + b in + r t (W hn u t-1 + b hn )) , ũ t = (1 -z t )n t + z t u t-1 ,
where φ = {(W is , b is , W hs , b hs ), s ∈ {r, z, n}} are unknown parameters, and σ : x → 1/(1 + e -x ) is the sigmoid function. The first layer of the network is assimilated to the input vectors, u 0 t ≡ u t and u 0 ≡ 0. The input dimension d in corresponds to the number of exogenous input variables of the dataset : d in = 3 for the Relative Humidity dataset and d in = 6 for the Electricity Transformer dataset. The output dimension is set to 6 for both. In order to estimate the parameters φ, we introduce an auxiliary GRU layer responsible for modelling observations. During the training, we minimize the cost function

L input (φ) = Nsample i=1 model φ (u i 1:T ) -y i 1:T 2 where for each sample 1 ≤ i ≤ N sample in the dataset, model φ (u i 1:T )
is the prediction associated with y i 1:T obtained with this deterministic model. The State Space model is implemented using PyTorch implementations of RNN and Linear layers, in order to use auto differentiation. We chose the following form for f θ and g θ :

g θ : x t-1 , u t → tanh(W gx x t-1 + b gx + W gu u t + b gu ) , f θ : x t → σ(W f x t + b f ) , where θ = {W gx , b gx , W gu , b gu , W f , b f } are unknown parameters.
In these settings, the formula for updating both Σ x and Σ y is available explicitly, by directly deriving 4.1. Instead of relying on gradient descent, we simply update both matrix at each time step by computing the following :

Σ x = T -1 N =1 T t=1 ω T (tanh -1 (ξ t ) -g θ (ξ t-1 , u t )) 2 , Σ y = T -1 N =1 T t=1 ω T (y t -f θ (ξ t )) 2 .
All following experiments were conducted with N = 100 particles, using the Adam optimizer introduced in Kingma and Ba (2015). The learning rate and batch size were chosen using a Tree-structured Parzen Estimator algorithm, see [START_REF] Bergstra | Algorithms for hyper-parameter optimization[END_REF]. We train models for a maximum of 50 epochs, and employ early stopping to prevent overfit.

Evaluations

In this section, we illustrate the ability of our model to capture the distribution of future observations, by evaluating the benchmarked models using the following protocol. We draw 48 hours long samples (u 1:48 , y 1:48 ) from the validation dataset, composed of a 24 hour long lookback window (u 1:24 , y 1:24 ), containing historic commands and observations, and a predictions window where only future commands are available (u 25:48 ). Each model produces a 24 hour long forecast, which is compared to the ground truth to compute the Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) criteria reported in Table 4.2 for the Relative Humidity dataset and Table 4.1 for the Electricity Transformer dataset.

Predictions can be performed by approximating the predictive density p θ,φ (y t+1 |u 1:t+1 , y 1:t ) by :

p N θ, φ (y t+1 ) = N i=1 ω i t p θ, φ (y t+1 |ξ i t , u t+1 ) ,
where p θ, φ (y t+1 |ξ i t , u t+1 ) is the predictive distribution of y t+1 described in Section 4.4.2. Although predictions given the previous time step provide good performance, it is limited as many applications require multi-steps forecasts.

In order to explore longer ranges, we can simply run our model to get N samples for any time horizon p. Since re sampling of particles is no longer available at that point, the uncertainty grows for our model, as shown in Figure 4.5.

We report RMSE and MAE criteria by averaging the forecasts of these N draws. The associated intervals containing 95% of the samples are displayed in Figure 4.7 and Figure 4.6, for 1 ≤ p ≤ 24.

We compared our model with MC Dropout methods, by implementing recurrent dropout layers as described in [START_REF] Gal | A theoretically grounded application of dropout in recurrent neural networks[END_REF], with dropout values of p drop = 0.05 and p drop = 0.01. The training procedure is similar to traditional recurrent models ; during inference, we draw 100 samples from the dropout layers, and compute the same 

Discussion

We introduced a decoupled architecture for uncertainty estimation applied to dependant data, and evaluated our methodology on two time series datasets. Our deep neural network backbone is able to extract high level features, while particle filtering allows modelling recurrent non linear uncertainty. Our proposed model improves confidence interval quality, compared to MC Dropout methods, without degrading RMSE or MAE criteria.

We demonstrated the potential behind implementing latent space models as a modified RNN cell ; more complex architectures, such as the GRU network used in the input model, or LSTM cells, have the potential to model more complex and long term uncertainty. Likewise, the Path-space smoother could be replaced by more recent alternatives, such as the Forward Filtering Backward Smoothing [START_REF] Doucet | On sequential monte carlo sampling methods for bayesian filtering[END_REF] or the Forward Filtering Backward Simulation algorithm [START_REF] Godsill | Monte carlo smoothing for nonlinear time series[END_REF], which mitigate particle degeneracy at the cost of heavier computations.

These potential improvements are left for future works.

Our decoupled architecture also enables incorporating uncertainty estimation to an already trained network, by simply adding our last layer. Estimating its parameters would be cheaper than training an entire new uncertainty estimation model, as only the second stage training would be required. In a context where our computational budget is constraint, online smoother such as the PaRIS algorithm [START_REF] Olsson | Efficient particle-based online smoothing in general hidden markov models : the paris algorithm[END_REF]; [START_REF] Gloaguen | A pseudo-marginal sequential monte carlo online smoothing algorithm[END_REF], could also offer a very efficient method for recalibrating our parameters over large period of time, such as in the case of Oze-Energies.

Applications for Oze-Energies. The data gathered by Oze-Energies is quite complex. Even considering Relative Humidity only, our architecture still struggles to precisely model the daily evolution of the building, as seen in the previous section. This is made even more complex as data is scarce, and building's behavior greatly vary from season to season.

A promising methodology to address this complex modelling problem consists in training a global model on the entire available dataset, then estimating fine-tuned models for each month, or season. This way, while the global behavior over the year can be assimilated in a first stage training, specific aspects could be fine-tuned on restricted fractions of the dataset. Our decoupled architecture shines is this context, as different uncertainty levels could easily be derived for different parts of the year.

Limitations of a continuous latent space for time series

The main limitation of SMC in our use case is the difficulty to infer parameters. Even in the case of the simple Path-space smoother, computation costs are much heavier than traditional neural network architectures such as MC Dropout, and better alternatives to this smoother would likely only increase this gap. Additionally, each modification of the model requires rewriting the loss function.

For this reason, we decide to experiment on discrete latent, which are much simpler to model for time series as they do not require sampling and re sampling at each time step. The models we present in the following section offer lighter training procedures, and more appealing computational costs, without loosing in precision.

Variational approaches for discrete latent states

Introduction

Discrete latent space models aim at representing data through a finite set of features. Recent advances in generative models have pushed towards these representations, as they fit data with naturally discrete hidden states.

For instance, defining a classification task over a dataset often implies a partition of an unobserved latent space, which could be modelled using a categorical random variable, as presented in Kingma et al. (2014). In attentionbased models, representing the focus location as a discrete variable, i.e. the right place to focus in the past for predicting the next observation, has proven efficient, and can help interpreting prediction errors, see for instance [START_REF] Xu | Show, attend and tell : Neural image caption generation with visual attention[END_REF]. When analyzing time series data, the evolution of a discrete latent variable can be interpreted as a switch in regime, see [START_REF] Dzunic | Bayesian switching interaction analysis under uncertainty[END_REF]. In [START_REF] Bibliographie Ajib | Predicting the air temperature of a building zone by detecting different configurations using a switched system identification technique[END_REF], the authors model the indoor temperature of a building by identifying discrete regimes, such as the opening of a window, the presence of occupants or shade.

As one of the most widespread expression of discrete latent space models, Hidden Markov Models have been successfully applied in various fields [START_REF] Wilks | Multisite generalization of a daily stochastic precipitation generation model[END_REF]; [START_REF] Gales | The application of hidden Markov models in speech recognition[END_REF] 2014) and the references therein for a complete overview. However, dealing with latent data leads to models that are computationally expensive to train, for instance using Expectation Maximization based approaches, and still struggle to handle large scale datasets, in particular when the models contain high-dimensional additional latent states.

In contrast, deep learning methods are able to infer millions of parameters from huge amounts of data -at the cost of much more complex models -through automatic differentiation and gradient computation to optimize a well chosen loss function. However, discrete variables usually prevent us from using gradient propagation, and in turn straightforward trainings. For instance, the Vector-Quantized Variational AutoEncoder (VQ-VAE, van den Oord et al.

( 2017)) popularized discrete latent spaces for variational inference, by introducing a new family of generative models using posterior distribution over discrete latent variables. This approach requires various approximations in order to propagate the gradient through the model. The reparametrization trick, only recently introduced for categorical variables with the Gumbel Softmax approximation in Jang et al. (2017a), offers an appealing solution to overcome this problem.

We propose the following contributions :

-We introduce a generative model for time series, where the latent space is modelled as a discrete Markov chain, and, conditionally on the latent states, the observations follow a simple autoregressive process.

Parameters are jointly estimated by Variational Inference.

-We compared the impact of different prior models to extract high-level features from the input data (based on convolutional and recurrent architectures) on the quality of samples.

-Our model outperforms the state of the art VQ-VAE both in accuracy and computation time.

Background

Discrete latent representation

One of the most straightforward application of discrete latent representation is derived from semi or unsupervised classification problems, where the data presents distinct semantic classes. The authors of Kingma et al. (2014) propose to model such data as generated by both a continuous and a categorical class variable. By integrating a classification mechanism directly in the model, they are able to outperform continuous latent models, while allowing conditional generation. This idea was transposed to Generative Adversarial Networks by the authors of Chen Discrete latent space models have proven relevant even when there is no explicit classification task. The authors of [START_REF] Dzunic | Bayesian switching interaction analysis under uncertainty[END_REF] modelled climate data by inferring a state space switching interaction model, where the transitions between a finite set of regimes are treated as interactions. Their approach allows for exploratory pattern discovery and post-analysis by human experts. In [START_REF] Nguyen | Particle rejuvenation of rao-blackwellized sequential monte carlo smoothers for conditionally linear and gaussian models[END_REF], a unifying framework for Rao-Blackwellized particle smoother is introduced, where commodity market prices are modeled by a latent Markov chain. Unlike the continuous state space model we introduced previously (see Section 4.4.2), the particle smoother is able to exploit the discrete nature of the latent space. Examples arise in attention-based models too, which have dominated the Natural Language Processing and Computer Vision fields for the last years. [START_REF] Xu | Show, attend and tell : Neural image caption generation with visual attention[END_REF] presents an image captioning model where attention scores parametrize a categorical random variable ; by either sampling or computing its expectation, the model extracts visual features used to generate words.

Discrete representations have also successfully replaced continuous latent spaces in existing models. In this way, the authors of [START_REF] Sun | Generating diverse and natural text-to-speech samples using a quantized fine-grained vae and autoregressive prosody prior[END_REF] quantized the latent features of an existing variational recurrent neural network applied to text-to-speech synthesis, and reported improved quality in generated audio samples.

Introduction to Variational Inference

Variational Inference (VI, see [START_REF] Jordan | An introduction to variational methods for graphical models[END_REF] for an introduction) is another widely used method for estimating complex statistical models. Their posterior distribution, usually intractable, is approximated by a family of surrogate functions whose parameters are tuned along side the model parameters. The family of functions can be chosen to be very computationally efficient, making Variational Inference an interesting alternative to Sequential Monte Carlo methods for instance. The main challenge of VI resides in a trade-off between ease of computation and quality of the approximation.

Review of the literature. Variational Auto-Encoder (VAE), introduced in Kingma and Welling (2014), popularized

Variational Inference to statistical model inferring parameters from large datasets. This paper notably derived an Evidence Lower Bound for the likelihood, that can be optimized through gradient descent, taking advantage once again of the automated differentiation offered by deep learning. Its second major contribution consists in re-parametrizing samples from the posterior in order to reduce the variance of the computed gradients, see [START_REF] Kingma | An introduction to variational autoencoders[END_REF] for a complete overview of the model. Several models have since improved on the original VAE, such as the Importance Weighted Auto-Encoder introduced in [START_REF] Burda | Importance weighted autoencoders[END_REF], where the authors are able to derive a tighter bound using importance sampling, or the beta-VAE [START_REF] Higgins | beta-VAE : Learning basic visual concepts with a constrained variational framework[END_REF]. In this paper, a new hyper parameter β allows to adjust latent channel capacity and independence constraints with reconstruction accuracy.

VI methods have also been successfully applied to discrete latent models. In [START_REF] Salakhutdinov | Deep boltzmann machines[END_REF], the authors present a methodology for training deep Boltzmann machines through variational inference using Markov chains. [START_REF] Mnih | Variational inference for monte carlo objectives[END_REF] extends the Importance Weighted Auto-Encoder model to discrete latent variables. [START_REF] Petetin | Structured variational bayesian inference for gaussian state-space models with regime switching[END_REF] proposes a regime switching Bayesian model, where the Kullback-Leibler Divergence between the posterior and the discrete prior distribution can be computed exactly.

Definition. In the following, it is assumed that the distribution of y depends on a latent random variable z with prior distribution denoted z → p θ (z). Therefore, the likelihood of the observation can be written, for all y, p θ (y) = p θ (z)p θ (y|z)dz. Because the posterior distribution p θ (z|y) is not tractable, we approximate it using a parametric family of tractable distributions {q φ , φ ∈ Φ}. A lower bound for the loglikelihood, referred to as Evidence Lower BOund (ELBO) L, can be expressed as an expectation under this new distribution q φ : log p θ (y) = log E q φ p θ (y, Z) q φ (Z|y)

≤ E q φ log p θ (y|Z)p θ (Z) q φ (Z|y) = L θ,φ (y) .
method that introduces additional bias and hyper parameter tuning. Another method, introduced in Bartler et al.

(2019), leverage importance sampling to sample from the posterior, without introducing bias or new parameters.

However, a new differentiable distribution close to the posterior must be introduced, limiting its usage in general settings. The authors of Jang et al. (2017a) proposed a new differentiable distribution, approximating samples from a categorical law while being differentiable. Although this method does introduce a new hyper parameter, it offers a very appealing trade-off.

Prior. During the second stage of the VQ-VAE training, an autoregressive prior is trained on the latent discrete space. In the original paper, the authors chose very resource intensive models for both image van den Oord et al. 

Our model

We believe the methodology of the VQ-VAE to be pertinent, however the performance presented seem to heavily depend on the quality, and complexity of the prior model. As recent research on the choice of prior models have shown encouraging results with a variety of different architectures, we propose to model our latent discrete state with a Markovian prior. We hope to highlight the potential of modelling data with discrete states, by proposing a Hidden Markov Model whose behaviors are well known.

We define a latent state model, where we assume that the observations (y t ) T t=1 are independent of the commands (u t ) T t=1 conditionally on hidden variables (z t ) T t=1 , which take values in a discrete set of codebooks E = {e 1 , . . . , e K }. For each of 1 ≤ k ≤ K, e k ∈ R D . We then consider the following family of probability density functions :

p θ (y 1:T |u 1:T ) = p θ (y 1:T |z 1:T )p θ (z 1:T |u 1:T )dz 1:T , (4.11) 
depending on an unknown parameter θ ∈ R m .

Conditionally on the commands, we assume that the latent states z 1:T are Markovian and that the conditional law of the observations depends on past latent states, so that our model is more general than Hidden Markov Models. It also differs from other extensions of HMMs with dependencies between the observations, such as the autoregressive processes as described in [START_REF] Douc | Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime[END_REF]. In the following paragraphs, we detail the structure of the observation and prior models, as well as the choice of posterior family. An architecture of our model is displayed in Figure 4.8.

Codebooks

The codebooks represents the discrete regimes our model can switch between. Their positions in R D is inferred during training, in order to provide a good partition of the space. In our definition of the model, the number of codebooks K is fixed, as it is in most related works, and considered a hyper parameter. We kept the same value K = 32 as from the VQ-VAE paper van den [START_REF] Oord | Neural discrete representation learning[END_REF].

FIGURE 4.8 -Architecture of our proposed model. In order to generate samples conditional on the commands u, we draw from the prior model p θ (z 1:T |u 1:T ), then compute the associated prediction through the likelihood distribution p θ (y 1:T |z 1:T ).

Observation model

We consider a Gaussian observation model, and estimate at each time step its mean and variance :

p θ (y 1:T |z 1:T ) = T t=1 Ψ µt,σ 2 t (y t ) ,
where Ψ µ,σ2 is the probability density function of a Gaussian random variable with mean vector µ and covariance matrix σ 2 I d . For all 1 ≤ t ≤ T , µ t = g µ θ (µ t-1 , z 1:t-1 ) and σ t = g σ θ (σ t-1 , z 1:t-1 ), with µ 0 ≡ σ 0 ≡ 0. We discuss our choice for the parametric functions g µ θ and g σ θ in Section 4.5.5.

Prior model

We assume that, conditionally on the commands u 1:T , the latent state is a discrete Markov chain. Write, for all 1 ≤ ≤ K, p θ,1 = p θ (z 1 = e |u 1:T ), and for all 2 ≤ t ≤ T and 1 ≤ k, j ≤ K, p k,j θ,t|t-1 = p θ (z t = e k |z t-1 = e j , u 1:T ). The prior distribution is then defined as :

log p θ (z 1:T |u 1:T ) = K k=1 1 z1=e k log p k θ,1 + T t=2 K j,k=1
1 zt-1=ej 1 zt=e k log p k,j θ,t|t-1

Posterior distribution

As the posterior distribution of z 1:T given y 1:T is intractable, we use a variational approach to estimate θ. In the original approach proposed by van den [START_REF] Oord | Neural discrete representation learning[END_REF], the authors use an encoding function f φ , depending on an unknown parameter φ ∈ R p , mapping the observations to a series of encoded latent variables z e 1:T = f φ (y 1:T ). Then, the posterior is approximated by q φ (z t = e k |y 1:T ) = 1 e * =e k , where e * = argmin e ∈E z e t -e 2 . We propose, for 1 ≤ k ≤ K :

q k φ,t = q φ (z t = e k |y 1:T ) = softmax({-z e t -e 2 2 } 1≤ ≤K ) k ∝ exp{-z e t -e k

Inference procedure

The Evidence Lower BOund (ELBO) can be decomposed in three terms : for all (θ, φ),

L(θ, φ) = E q φ [log p θ (y 1:T |z 1:T )] + E q φ [log p θ (z 1:T |u 1:T )] -E q φ [log q φ (z 1:T |y 1:T )] ,
where E q φ designs the expectation under the posterior distribution q φ (z 1:T |y 1:T ). The last term of the ELBO can be computed explicitly as follows :

E q φ [log q φ (z 1:T |y 1:T )] = T t=1 K k=1 q k φ,t log q k φ,t .
We approximate the two other terms by drawing M > 0 samples under q φ and computing a Monte Carlo estimator.

In order for this operation to be differentiable, we use a reparametrization designed for categorical variables based on the Gumbel-Softmax distribution.

In [START_REF] Tocher | Statistical theory of extreme values and some practical applications : A series of lectures[END_REF], it is shown that we can draw samples under q φ by computing argmax K k=1 (log(q k φ ) + g k ), where (g k ) K k=1 are independent identically distributed samples from the Gumbel distribution G(0, 1) with probability density g(x) = e -(x+e -1 ) . The Gumbel-Softmax distribution [START_REF] Jang | Categorical reparameterization with gumbel-softmax[END_REF] aims at using the softmax function as a continuous and differentiable approximation to the argmax operator. We sample (g 1 , . . . , g K ) independently from the Gumbel distribution and define, for all 1 ≤ k ≤ K, π k,t ∝ exp((log q k φ,t + g k )/τ t ), where τ t > 0 is the softmax temperature, allowing for a smooth interpolation between a Uniform distribution (for large values of τ t ), and a Categorical distribution (for small values of τ t ). We propose to approximate the variational posterior distribution of z t by the Dirac mass at z t = K k=1 π k,t e k . Through re-parametrization, this method allows for differentiation of the sampled latent vector z t , with respect to the codebooks e k , 1 ≤ k ≤ K, and the encodings z e 1:T . The first term of the ELBO can now be approximated by (θ, φ) → M -1 M i=1 log p θ ( z 1:T |u 1:T ), and the second by (θ, φ) → M -1 M i=1 log p θ (y 1:T | z 1:T ). Estimating θ and φ jointly can induce instability at the beginning of the training, leading to diminished performance after convergence. As shown in Ramesh et al. (2021), we can perform end-to-end training by penalizing the prior and posterior terms by a factor β initialized close to zero, and then slowly increasing its value until reaching β = 1.

Experiments

We now report our choice of models and hyper parameters, and their performance on the Electricity Transformer and Relative Humidity datasets.

Chosen architectures

Our prior model can be decomposed in two sub-networks : an input model is responsible for extracting high level features from the commands, while the autoregressive kernel computes the Markov chain transition probabilities. This disentanglement allows us to keep the kernel simple, while still working with high level features :

ũ1:T = f input model θ (u 1:T ) , h t = ker θ (h t-1 , ũt-∆:t ), ∀1 ≤ t ≤ T, h 0 ≡ 0 .
For the input model, we implemented a 3-layered LSTM, with the same latent dimension as the commands. We then compared several auto regressive architectures.

-A simple RNN cell was used as a benchmark, as they struggle to model long term dependencies.

-A Gated Recurrent Unit (GRU) cell, following results in [START_REF] Sun | Generating diverse and natural text-to-speech samples using a quantized fine-grained vae and autoregressive prosody prior[END_REF]. These architectures have a more refined memory representation, and have shown encouraging results in our previous benchmarks.

-A kernel based on causal convolutions, as proposed in van den [START_REF] Van Den Oord | Parallel wavenet : Fast high-fidelity speech synthesis[END_REF], where memory is replaced by an explicit dependency on the last ∆ = 25 time steps.

For the encoder f φ and decoder g µ,σ θ parametric functions, we chose 3-layered LSTM networks as well.

Finally, we cross validated the number of codebooks using the Root-Mean-Square Error (RMSE), as described in Section 4.5.5 of the model, and settled for K = 8. The influence of each codebook on the sample generation is illustrated in Fig 4 .10.

We experimented with various schedules increasing β from 0 to 1, and found that, although this penalization is necessary to estimate all parameters jointly, the choice of schedule had little influence on the model performance.

Therefore, we increase β linearly between epochs 1 to 100, and keep β = 1 for the rest of the training, which amounts to 1500 total epochs. In all following simulations, D = 32.

Benchmarked architectures. We compared our model to the linear Gaussian Hidden Markov Model introduced in Section 3.3.4, with the same number of hidden states (K = 8). Transition parameters of the Markov chain, as well as mean and variance of each Gaussian are estimated through Expectation Maximization, using the Baum-Welch algorithm.

We also compared our approach to the original VQ-VAE. The architecture of the model is kept similar, to highlight the difference of methodology and training. The main differences are therefore :

-the auto encoder is trained while considering an uninformative prior ; then, we freeze the parameters of the autoencoder to estimate the parameters of the prior model.

-samples from the posterior distribution are drawn under a Dirac mass, as shown above. In order to compute the gradient, we use the straight-through estimator.

Evaluation

Provided a sequence of commands, our model produces samples predicting the observations. By averaging them over each time step, we compute the RMSE of our model : let xi

1:T , 1 ≤ i ≤ N be N independent sequences of predictions of x 1:T , then RMSE = (T -1 T t=1 (x t -N -1 N i=1 xi t ) 2 ) 1/2
. Similarly, we report the MAE. In the following experiments, we set N = 100. Results on the entire validation set are displayed in Table 4.3 for the Electricity Transformer dataset and Table 4.4 for the Relative Humidity dataset, compared to the HMM, the original VQ-VAE as well as the decoupled architecture presented in Section 4.4.

We visualize the uncertainty of our model by plotting confidence intervals at each time step. We draw N = 100 samples (z 1 , • • • , z T ) under the prior model, conditioned on a set of commands, then compute the associated predictions by drawing under p θ (y 1:T |z 1:T ). The boxplots presented in Figure 4.9 contain 95% of the generated samples, much like in Section 4.4. TABLE 4.3 -Electricity Transformer dataset. Comparison of RMSE, MAE and computation time of our model against the benchmarked VQ-VAE, HMM, as well as the decoupled architecture from the previously section. This table provides aggregated results of the predictions on the entire validation set. Our model performs similarly to state of the art benchmarks in terms of metrics. Mean values of the estimators, taken over the validation samples of the dataset, are displayed along with their variance.

RMSE MAE

Computation time SMCL 0.24 ± 0.13 0.21 ± 0.12 21ms Ours (gru) 0.21 ± 0.10 0.17 ± 0.09 39ms Ours (rnn) 0.21 ± 0.10 0.17 ± 0.09 39ms Ours (cnn) 0.20 ± 0.10 0.16 ± 0.09 131ms VQ-VAE 0.28 ± 0.12 0.24 ± 0.12 39ms 4.4. This new approach also allows to produce coherent confidence intervals, whose sizes are stable regardless of the length of the predicted time series. Some of the codebooks appear to be linked to particular behaviors of the building, for instance codebook 6 matches an increase of relative humidity at the beginning of the day. We could now combine such a representation with segmentation algorithms in an unsupervised setting.

Discussion

In this section, we explored time series modelling with discrete latent space models. A review of the recent contributions showed that a discrete latent representation of the data can be meaningful in a wide variety of scenarios.

These models offer performance on par with their continuous counterparts, as well new ways of interpreting the model, for instance through regime segmentation.

We proposed a generative model based on the Variational Auto Encoder (VAE) architecture, where the discrete posterior distribution is approximated by a family of neural network functions. Benchmarks were performed on two time series dataset, and show that this new model is able to consistently learn a relevant representation of the data. We showed that the choice of prior model does impacts performance, yet even simple architectures are able to model dependencies in the latent space. Through reparametrization, we are able to learn all parameters jointly, regardless of the number or nature of the layers composing the auto encoder and prior models. While choosing a suitable number of codebook remains an open question, the results presented in this section confirm the relevance of a discrete representation of the data, even for complex nonlinear modelling such as indoor air quality.

The experiments conducted in this chapter also present a good comparison of Sequential Monte Carlo and Variational Inference methods in the context of dependant data. Both allowed us to train complex networks, with thousands of parameters, and reach state of the art performance on two complex datasets. Sequential Monte Carlo methods fit perfectly with a decoupled model architecture, which has shown its potential in many uses cases ; additionally, SMC seamlessly fit in complex real time estimation, such as online filtering. On the other side, Variational

Inference propose a computationally efficient way to train models with an absurdly high number of parameters. In Such diffusion models are optimized using variational inference to learn the denoising process, i.e., the bridge that aims at inverting the multinomial diffusion. In [START_REF] Hoogeboom | Argmax flows and multinomial diffusion : Learning categorical distributions[END_REF], the authors propose a variational distribution based on bridge sampling. In [START_REF] Austin | Structured denoising diffusion models in discrete state-spaces[END_REF], the authors improve the idea by modifying the transition matrices of the corruption scheme with several tricks. The main one is the addition of absorbing states in the corruption scheme by replacing a discrete value with a MASK class, inspired by recent Masked Language Models like BERT. In this way, the corrupted dimensions can be distinguished from the original ones instead of being uniformly sampled. One drawback of their approach, mentioned by the authors, is that the transition matrix does not scale well for a large number of embedding vectors, which is typically the case in VQ-VAE.

Compared to discrete generative denoising, our approach takes advantage of the fact that the discrete latent distribution depends solely on an auxiliary continuous distribution. We derive a novel model based on continuousdiscrete diffusion that we believe is simpler and more scalable than the models mentioned in this section.

Generative denoising applied to a latent space. Instead of modelling the data directly, [START_REF] Vahdat | Score-based generative modeling in latent space[END_REF] propose to perform score matching in a latent space. The authors propose a complete generative model and are able to train the encoder/decoder and score matching end-to-end. Their method also achieve excellent visual patterns and results but relies on a number of optimization heuristics necessary for stable training. In [START_REF] Mittal | Symbolic music generation with diffusion models[END_REF], the authors have also applied such an idea in a generative music model. Instead of working in a continuous latent space, our method is specifically designed for a discrete latent space as in VQ-VAEs.

In the model proposed by [START_REF] Gu | Vector quantized diffusion model for text-to-image synthesis[END_REF], the autoregressive prior is replaced by a discrete generative denoising process, which is perhaps closer to our idea. However, the authors focus more on a text-image synthesis task where the generative denoising model is traine based on an input text : it generates a set of discrete visual tokens given a sequence of text tokens. They also consider the VQ-VAE as a trained model and focus only on the generation of latent variables. This work focuses instead on deriving a full generative model with a sound probabilistic interpretation that allows it to be trained end-to-end.

Diffusion bridges VQ-VAE

Model and loss function

Assume that the distribution of the input y ∈ R m depends on a hidden discrete state z ∈ E = {e 1 , . . . , e K } with e k ∈ R d for all 1 k K. Let p θ be the joint probability density of (z, y)

(z, y) → p θ (z, y) = p θ (z)p θ (y|z) ,
where θ ∈ R p are unknown parameters. Consider first an encoding function f φ and write z e (y) = f φ (y) the encoded data. In the original VQ-VAE, the authors proposed q φ (z|y) = δ e k * y (z) , as the variational distribution to approximate p θ (z|y), where δ is the Dirac mass and k * y = argmin 1 k K { z e (y) -e k 2 }, where φ ∈ R r are all the variational parameters.

In this paper, we introduce a diffusion-based generative VQ-VAE. This model allows to propose a VAE approach with an efficient joint training of the prior and the variational approximation. Assume that z is a sequence, i.e. z = z 0:T , where the superscript refers to the time in the diffusion process. Consider the following joint probability distribution p θ (z 0:T , y) = p z θ (z 0:T )p y θ (y|z 0 ) .

The latent discrete state z 0 used as input in the decoder is the final state of the chain (z T , . . . , z 0 ). We further assume that p z θ (z 0:T ) is the marginal distribution of p θ (z 0:T , z 0:T e ) = p ze θ,T (z T e )p z θ,T (z T |z T e )

T -1 t=0 p ze θ,t|t+1 (z t e |z t+1 e )p z θ,t (z t |z t e ) .

In this setting, {z t e } 0 t T are continuous latent states in R d×N and conditionally on {z t e } 0 t T the {z t } 0 t T are independent with discrete distribution with support E N . This means that we model jointly N latent states as this is useful for many applications such as image generation or time series forecasting. The continuous latent state is assumed to be a Markov chain and at each time step t the discrete variable z t is a random function of the corresponding z t e . Although the continuous states are modeled as a Markov chain, the discrete variables arising therefrom have a more complex statistical structure (and in particular are not Markovian).

The prior distribution of z T e is assumed to be uninformative ; the density of the final latent state z 0 e can be factorized as a sequence of denoising transition densities {p ze θ,t|t+1 } 0 t T -1 . Only this last state is mapped to the embedding space and decoded to compute the conditional law of the data given the latent states.

Since the conditional law p θ (z 0:T , z 0:T e |y) is not available explicitly, this work focuses on variational approaches to provide an approximation. Then, consider the following variational family : q φ (z 0:T , z 0:T e |y) = δ ze(y) (z 0 e )q z φ,0 (z 0 |z 0 e ) T t=1 q ze φ,t|t-1 (z t e |z t-1 e )q z φ,t (z t |z t e ) .

The family {q ze φ,t|t-1 } 1 t T of forward "noising" transition densities are chosen to be the transition densities of a continuous-time process (Z t ) t 0 with Z 0 = z e (y). Sampling the diffusion bridge ( Zt ) t 0 , i.e. the law of the process (Z t ) t 0 conditioned on Z 0 = z e (y) and Z T = z T e is a challenging problem for general diffusions, see for instance [START_REF] Beskos | Mcmc methods for diffusion bridges[END_REF]; [START_REF] Lin | On generating monte carlo samples of continuous diffusion bridges[END_REF]; [START_REF] Bladt | Simulation of multivariate diffusion bridges[END_REF]. By the Markov property, the marginal density at time t of this conditioned process is given by : qze φ,t|0,T (z t e |z 0 e , z T e ) = q ze φ,t|0 (z t e |z 0 e )q ze φ,T |t (z T e |z t e ) q ze φ,T |0 (z T e |z 0 e ) .

(5.1)

The Evidence Lower BOund (ELBO) is then defined, for all (θ, φ), as L(θ, φ) = E q φ log p θ (z 0:T , z 0:T e , y) q φ (z 0:T , z 0:T e |y) , (5.2)

where E q φ is the expectation under q φ (z 0:T , z 0:T e |y).

Lemma 5.3.1. For all (θ, φ), the ELBO L(θ, φ) is :

L(θ, φ) = E q φ log p y θ (y|z 0 ) + T t=0 L t (θ, φ) + T t=0 E q φ log p z θ,t (z t |z t e ) q z φ,t (z t |z t e )
, where, for

1 t T -1, L 0 (θ, φ) = E q φ log p ze θ,0|1 (z 0 e |z 1 e ) , L t (θ, φ) = E q φ log p ze θ,t-1|t (z t-1 e |z t e ) q ze φ,t-1|0,t (z t-1 e |z 0 e , z t e ) , L T (θ, φ) = E q φ log p ze θ,T (z T e ) q ze φ,T |0 (z T e |z 0 e )
. D émonstration. The proof is standard and postponed to Appendix A.2.1.

The three terms of the objective function can be interpreted as follows :

L(θ, φ) = L rec (θ, φ) + T t=0 L t (θ, φ) + T t=0 L reg t (θ, φ)
with L rec = E q φ [log p y θ (y|z 0 )] a reconstruction term, L t the diffusion term, and an extra term

L reg t = E q φ log p z θ,t (z t |z t e ) q z ϕ,t (z t |z t e ) , (5.3) 
which may be seen as a regularization term as discussed in next sections.

Application to Ornstein-Uhlenbeck processes

Consider for instance the following Stochastic Differential Equation (SDE) to add noise to the normalized inputs : (5.4) where ϑ, η > 0, z * ∈ R d×N is the target state at the end of the noising process and {W t } 0 t T is a standard Brownian motion in R d×N . We can define the variational density by integrating this SDE along small step-sizes. Let δ t be the time step between the two consecutive latent variables z t-1 e and z t e . In this setting, q ze φ,t|t-1 (z t e |z t-1 e ) is a Gaussian probability density function with mean z * + (z t-1 e -z * )e -ϑδt in R d×N and covariance matrix (2ϑ) -1 η 2 (1 -e -2ϑδt )I dN , where for all n 1, I n is the identity matrix with size n × n. Asymptotically the process is a Gaussian with mean z * and variance η 2 (2ϑ) -1 I dN .

dZ t = -ϑ(Z t -z * )dt + ηdW t ,
The denoising process amounts then to sampling from the bridge associated with the SDE, i.e. sampling z t-1 e given z 0 e and z t e . The law of this bridge is explicit for the Ornstein-Uhlenbeck diffusion (5.7). Using (5.1), qze φ,s|0,t (z s e |z t e , z 0 e ) ∝ q ze ϕ,s|0 (z t-1 e |z 0 e )q ze ϕ,t|s (z t e |z s e ) ,

where 0 s t, so that qze φ,t-1|0,t (z t-1 e |z t e , z 0 e ) is a Gaussian probability density function with mean μφ,t-1|0,t (z 0 e , z t e ) =

β t 1 -ᾱt z * + √ ᾱt-1 (z 0 e -z * ) + 1 -ᾱt-1 1 -ᾱt √ α t z t e -(1 - √ α t )z * and covariance matrix σ2 φ,t-1|0,t = η 2 2ϑ 1 -ᾱt-1 1 -ᾱt β t I dN ,
where β t = 1 -exp(-2ϑδ t ), α t = 1 -β t and ᾱt = t s=1 α s . Note that the bridge sampler proposed in Ho et al. ( 2020) is a specific case of this setting with η = √ 2, z * = 0 and ϑ = 1.

Choice of denoising model p θ . Following [START_REF] Ho | Denoising diffusion probabilistic models[END_REF], we propose a Gaussian distribution for p ze θ,t-1|t (z t-1 e |z t e ) with mean µ θ,t-1|t (z t e , t) and variance σ 2 θ,t-1|t I dN . In the following, we choose

σ 2 θ,t-1|t = η 2 2ϑ 1 -ᾱt-1 1 -ᾱt β t
so that the term L t of Lemma 5.3.1 writes 2σ 2 θ,t-1|t L t (θ, φ) = -E q φ µ θ,t-1|t (z t e , t) -μϕ,t-1|0,t (z 0 e , z t e ) 2 2 .

In addition, under q φ , z t e has the same distribution as

h t e (z 0 e , ε t ) = z * + √ ᾱt (z 0 e -z * ) + η 2 2ϑ (1 -ᾱt )ε t ,
where ε t ∼ N (0, I dN ). Then, for instance in the case z * = 0, μφ,t-1|0,t can be reparameterised as follows :

μφ,t-1|0,t (z 0 e , z t e ) = 1 √ α t h t e (z 0 e , ε t ) - η 2 2ϑ(1 -ᾱt ) β t ε t .
We therefore propose to use

µ θ,t-1|t (z t e , t) = 1 √ α t z t e - η 2 2ϑ(1 -ᾱt ) β t ε θ (z t e , t) ,
which yields Algorithm 2: Training procedure repeat Compute z 0 e = f φ (y) Sample ẑ0 ∼ q φ (z 0 |z 0 e ) Compute Lrec (θ, φ) = log p y θ (y|ẑ 0 ) Sample t ∼ U nif orm({0, . . . , T }) Sample ε t ∼ N (0, I dN ) Sample z t e ∼ q φ (z t e |z 0 e ) (using ε t ) Compute Lt (θ, φ) from ε θ (z t e , t) and ε t using (5.5) Compute Lreg t (θ, φ) from z t e (see text)

L t (θ, φ) = -β t 2α t (1 -ᾱt-1 ) E ε t -ε θ (h t e (z 0 e , ε t ), t)
L(θ, φ) = Lrec (θ, ϕ) + Lt (θ, ϕ) + Lreg t (θ, ϕ) Perform SGD step on -L(θ, φ) until convergence
The final training algorithm is described in Algorithm 2 and the sampling procedure in Algorithm 3.

Connections with the VQ-VAE loss function. In the special case where T = 0, our loss function can be reduced to a standard VQ-VAE loss function. In that case, write z = z 0 and z e = z 0 e , the ELBO then becomes :

L(θ, φ) = E qϕ [log p y θ (y|z)] + E q φ log p z θ (z|z e ) q z ϕ (z|z e ) ,
Then, if we assume that p z θ (z|z e ) = Softmax{-z e -e k 2 2 } 1≤k≤K and that q z φ (z|z e ) is as in [START_REF] Oord | Neural discrete representation learning[END_REF], i.e. a Dirac mass at z = argmin 1≤k≤K z e -e k 2 2 , up to an additive constant, this yields the following random estimation of E qϕ [log p z θ (z|z e )/q z ϕ (z|z e )],

L reg z (θ, φ) = z e -z 2 + log K k=1 exp {-z e -e k 2 } .
The first term of this loss is the loss proposed in [START_REF] Oord | Neural discrete representation learning[END_REF] which is then split into two parts using the stop gradient operator. The last term is simply the additional normalizing term of p z θ (z|z e ).

Connecting diffusion and discretisation. Similar to the VQ-VAE case above, it is possible to consider only the term L reg 0 (θ, φ) in the case T > 0. However, our framework allows for much flexible parameterisation of p z θ,t (z t |z t e ) and q z ϕ,t (z t |z t e ). For instance, the Gumbel-Softmax trick provides an efficient and differentiable parameterisation. A sample z t ∼ p z θ,t (z t |z t e ) (resp. z t ∼ q z ϕ,t (z t |z t e )) can be obtained by sampling with probabilities proportional to {exp{(-z e -e k 2 2 + G k )/τ t }} 1≤k≤K (resp. {exp{(-z e -e k 2 2 + Gk )/τ }} 1≤k≤K ), where {(G k , Gk )} 1≤k≤K are i.i.d. with distribution Gumbel(0, 1), τ > 0, and {τ t } 0≤t≤T are positive time-dependent scaling parameters. In practice, the third part of the objective function can be computed efficiently, by using a stochastic version of the ELBO, computing a single L reg t (θ, ϕ) instead of the sum (we use the same t for both parts of the ELBO). The term reduces to :

L reg t (θ, φ) = -KL(q ϕ (z t |z t e ) p θ (z t |z t e )) .
(5.6)

This terms connects the diffusion and quantization parts as it creates a gradient pathway through a step t of the diffusion process, acting as a regularisation on the codebooks and z t e . Intuitively, maximizing L reg t (θ, φ) accounts for pushing codebooks and z t e together or apart depending on the choice of τ, τ t . The final end-to-end training algorithm is described in Algorithm 2, and further considerations are provided in Appendix A.2.3. Algorithm 3: Sampling procedure (for z * = 0)

Sample z T e ∼ N (0, (2ϑ) -1 η 2 I dN ) for t = T to 1 do Set z t-1 e = α -1/2 t z t e - η 2
2ϑ(1-ᾱt) β t ε θ (z t e , t) end for Sample z 0 ∼ p z θ,0 (z 0 |z 0 e ) {quantization} Sample y ∼ p y θ (y|z 0 ) {decoder }

Experiments

Toy Experiment

In order to understand the proposed denoising procedure for VQ-VAE, consider a simple toy setting in which there is no encoder nor decoder, and the codebooks {e j } 0 j K-1 are fixed. In this case, with d = 2 and N = 5, y = z 0 e ∈ R 2×5 . We choose K = 8 and the codebooks e j = µ j ∈ R 2 , 0 j K -1, are fixed centers at regular angular intervals in R 2 and shown in Figure 5.2 ; the latent states (z t ) 1≤t≤T lie in {e 0 , . . . , e 7 } 5 . Data generation proceeds as follows. First, sample a sequence of (q 1 , . . . , q 5 ) in {0, . . . , 7} : q 1 has a uniform distribution, and, for s ∈ {0, 1, 2, 3}, q s+1 = q s + b s mod 8, where b s are independent Bernoulli samples with parameter 1/2 taking values in {-1, 1}. Conditionally on (q 1 , . . . , q 5 ), y is a Gaussian random vector with mean (e q1 , . . . , e q5 ) and variance I 2×5 . FIGURE 5.2 -Toy dataset, with K = 8 centroids, and two samples y = (y 1 , y 2 , y 3 , y 4 , y 5 ) in R 2×5 each displayed as 5 points in R 2 (blue and red points), corresponding to the discrete sequences (red) (6, 5, 4, 3, 2) and (blue) (7, 0, 1, 0, 1).

We train our bridge procedure with T = 50 timesteps, ϑ = 2, η = 0.1, other architecture details and the neural network ε θ (z t e , t) are described in Appendix A.2.5. Forward noise process and denoising using ε θ (z t e , t) are showcased in Figure 5.3, and more illustrations and experiments can be found in Appendix A.2.5. 

End

Image Synthesis Protocol

In this section, we focus on image synthesis using CIFAR10 and miniImageNet datasets. The goal is to evaluate the efficiency and properties of our model compared to the original PixelCNN. Note that for fair comparisons, the encoder, decoder and codebooks are pretrained and fixed for all models, only the prior is trained and evaluated here. As our goal is the comparison of priors, we did not focus on building the most efficient VQ-VAE, but rather a reasonable model in terms of size and efficiency. Computation times. We evaluated the computation cost of sampling a batch of 32 images, on a GTX TITAN Xp GPU card. Note that the computational bottleneck of our model consists of the T = 1000 sequential diffusion steps (rather than the encoder/decoder which are very fast in comparison). Therefore, a diffusion speeding technique such as the one described in [START_REF] Song | Denoising diffusion implicit models[END_REF] would be straightforward to apply and would likely provide a ×50 speedup as mentioned in the paper. 

Qualitative results

Sampling from the prior. Samples from the PixelCNN prior are shown in Figure 5.5b and samples from our prior in Figure 5.5a. Additional samples are given in Appendix A.2.6. Note that contrary to original VQ-VAE prior, the prior is not conditioned on a class, which makes the generation less specific and more difficult. However, the produced samples illustrate that our prior can generate a wide variety of images which show a large-scale spatial coherence in comparison with samples from PixelCNN.

Conditional sampling. As explained in Section 5.4.2, for each sample y, we mask some components of z 0 e (y), and aim at sampling the missing components given the observed ones using the prior models. This conditional denoising process is further explained for our model in Appendix A.2.2. To illustrate this setting, we show different conditional samples for 3 images in Figure 5.8 and Figure 5.9 for both the PixelCNN prior and ours. In Figure 5.8, the mask corresponds to a 9 × 9 centered square over the 21 × 21 feature map. In Figure 5.9, the mask corresponds to a 9 × 9 top left square. These figures illustrate that our diffusion model is much less sensitive to the selected masked region than PixelCNN. This may be explained by the use of our denoising function ε θ which depends on all conditioning pixels while PixelCNN uses a hierarchy of masked convolutions to enforce a specific conditioning order.

Additional conditional sampling experiments are given in Appendix A.2.6. 

Relative humidity forecasting

After asserting the quality of the proposed prior model on the traditional image datasets, compared to state of the art approaches, we present results applied on the Relative Humidity dataset.

First, notice that the discrete latent model presented in the previous chapter, see Section 4.5.3, can be expressed in the context of our new proposed framework. We set N as the length of the time series samples (24 in the case of our Relative Humidity dataset), and the number of diffusion step T = 0. In this context, the lattice of latent quantized vector is one dimensional. Then, we replace our initial autoregressive, Markovian prior with a diffusion FIGURE 5.6 -Sampling denoising chain from t = 500 up to t = 0, shown at regular intervals, conditioned on the outer part of the picture. We show only the last 500 steps of this process, as the first 500 steps are not visually informative. The sampling procedure is described in Appendix A.2.2. bridge. Similarly to our previous experiments, this diffusion bridge samples latent vectors conditionally on a set of commands, in order to produce forecasts matching the current state of the building as well as the outside weather.

We choose T = 100, and optimize the Evidence Lower BOund defined in 5.2, with the encoder function f φ proposed in Section 4.5.3.

As presented in Table 5.4, the performance of this new model are encouraging when compared to our benchmark, in particular to the previous discrete latent model approach. We compared the confidence intervals produced by both methods, results are displayed for two samples of the validation set in Figure 5.10. There still remains multiple limitations, in particular the much higher computation time required, which is not unusual for such a novel approach. Methods for reducing the sampling time have already been proposed in the literature, see [START_REF] Song | Denoising diffusion implicit models[END_REF] for instance. In addition, tuning the parameters of the diffusion bridges has been much more challenging than for the previous Markovian priors. In Section 5.5, we discuss an extension of diffusion bridges applied to dicrete data. TABLE 5.4 -Relative Humidity dataset. Comparison of RMSE, MAE and computation time of our model against the previously proposed discrete latent architecture (see Section 4.5.3), the benchmarked VQ-VAE, HMM, as well as our decoupled architecture (see Section 4.4.2). We report performance on par with these benchmarked models. This table also highlights one major limitation of this new approach : the high computation time. We believe that further works toward diffusion bridges will eventually address this problem, as already seen in [START_REF] Song | Denoising diffusion implicit models[END_REF]. This table provides aggregated results of the predictions on the entire validation set. Mean values of the estimators, taken over the validation samples of the dataset, are displayed along with their variance. 

RMSE

Extension of discrete diffusion

In this section, we propose an extension to probabilistic diffusion models applied to discrete latent states. We consider a set of discrete observations z ∈ E N , where E = {e 1 , • • • , e K }, with e k ∈ R d for all 1 ≤ k ≤ K. For the sake of visualization, and in order to compare diffusion methods directly on a discrete example, we propose a simple toy dataset of 5 letter words, whereby K = 26, N = 5. Only a few combinations of 5 letters (z k ) 5 k=1 result in an existing word. Once presented, we detail the results of our extended method on our benchmark dataset, the relative humidity forecasting task.

Motivations

Diffusion bridges applied directly on discrete random variables have already been proposed, such as the multinomial diffusion [START_REF] Hoogeboom | Argmax flows and multinomial diffusion : Learning categorical distributions[END_REF], where the authors work within the Categorical distribution space, modeling the probabilities in a K × N space. Their forward noise process consists of sampling a random i ∈ {1, . . . , N } and sampling z i from a uniform distribution. This however, seems to suffer from limitations, one of which being the inability to scale with large vocabularies K, which is the case in language models (K ∼ 50, 000) or VQ-VAEs (K ∼ 4, 000 or more).

We postulate that using a continuous diffusion in an embedded space X ⊂ R d×N is more appropriate as 1) it leverages recent advances in continuous diffusions and 2) it enables to scale better, as d can remain small compared to K, typically in word embeddings d evolves as log K. This embedding space can be given, created or trained. We will focus on a simple application, where e k ∼ N (0, I d ) , ∀1 ≤ k ≤ K are sampled independently and fixed during the process.

Our first approach was to simply embed the discrete data samples z into the continuous space X using the embedding projections e k , k ∈ {1, . . . , K}. Then, within the continuous space X we would be able to perform standard continuous denoising diffusion [START_REF] Ho | Denoising diffusion probabilistic models[END_REF]. In that case, the diffusion process in defined by choosing a non-informative prior distribution, building a forward noising process gradually corrupting the samples in order to reach the prior distribution, and training a denoising model. In practice, the prior distribution is often a unit Gaussian, the corrupting process a Ornstein-Uhlenbeck and the denoising model a deep neural network. Once trained, the sampling process consists in drawing a sample z T e under the prior distribution, computing T denoising steps p θ,t|t+1 (z t e |z t+1 e ) for t ∈ {T -1, • • • , 0}, and the associated quantized vector z ∼ p θ (z 0 |z 0 e ). Instead of defining the discrete distribution p θ (z|z e ) as a Dirac on the nearest neighbor embedding, δ e k (z), where k = argmin 1≤k≤K { z e -e k }, we sampled a codebook from the following Categorical distribution :

p θ (z = e k |z e ) = softmax 1≤j≤K {-z e -e j 2 } k , for all 1 ≤ k ≤ K.

Limitations

Whenever we experiment our proposed continuous diffusion on a high dimensional latent space, we notice a scaling issue. As the corrupting process adds noise independently and identically on all dimensions, the final sample of the noising chain z T e may be located quite far from the codebooks. Even in the context of our 5-letter word toy example, our diffusion leads to geometric problems, as shown in Figure 5.11. There, we plotted three denoising trajectories sampled after training a simple diffusion bridge.

Because the training procedure will direct the denoising process towards the codebooks, this limitation may be mitigated after reaching a good estimate of the models parameters. However, this implies long and complex trainings, and could impact the final performance of the diffusion bridge.

We now investigate a more sophisticated corrupting process, which aims at directing the noising towards the codebooks in the latent space. As we present in the next section, such an improvement can be incorporated directly in our mathematical framework. FIGURE 5.11 -PCA projection of embeddings of each letter and denoising diffusion trajectories. Because of a scaling problem, the starting point of the denoising diffusion z T e is very far from the codebooks (e k ) K k=1 , and the denoising process stay very far from the embeddings, resulting in exploration problems (not all embeddings are reachable, therefore the model will have trouble predicting some of them).

Embedding-guided denoising

Let µ be the empirical mean vector of the codebooks, and M their covariance matrix :

µ = 1 K K j=1 e k , M = 1 K K j=1 (e k -µ) (e k -µ) .
Consider that the noising process boils down to sampling solution to the following Stochastic Differential Equation (SDE) in R d :

dZ t = ϑ(Z t -µ)dt + ηM 1/2 dW t , (5.7) 
We can define the variational density by integrating this SDE along small step-sizes. In this setting, q ze φ,t|t-1 (z t e |z t-1 e ) is a Gaussian probability density function with mean vector µ + (z t-1 e -µ)e -ϑδt and covariance matrix (2ϑ) -1 η 2 (1e -2ϑδt )M . The denoising process amounts then to sampling from the law of z t-1 e given z 0 e and z t e , a Gaussian probability density function with mean :

μφ,t-1|0,t (z 0 e , z t e ) = β t 1 -ᾱt { √ ᾱt-1 z 0 e + (1 - √ ᾱt-1 )µ} + 1 -ᾱt-1 1 -ᾱt √ α t {z t e -(1 - √ α t )µ} and covariance matrix σ2 φ,t-1|0,t = 1 2ϑ 1 -ᾱt-1 1 -ᾱt β t M ,
with the same notation α, ᾱ and β as introduced in Section 5.3.2. Note that under q φ , z t e has the same distribution as

h t e (z 0 e , ε t ) = √ ᾱt z 0 e + (1 - √ ᾱt )µ + 1 2ϑ (1 -ᾱt )M 1/2 ε t
, where ε t ∼ N (0, I). Then, μφ,t-1|0,t can be reparameterised as follows :

μφ,t-1|0,t (z 0 e , ε t ) = 1 √ α t h t e (z 0 e , ε t ) - 1 2ϑ(1 -ᾱt ) β t M 1/2 ε t .
We therefore propose to use

µ θ,t-1|t (z t e , t) = 1 √ α t z t e - 1 2ϑ(1 -ᾱt ) β t M 1/2 ε θ (z t e , t) .
We demonstrate the impact of this extension in Figure 5.12, and detail its performance on the Relative Humidity dataset in the next chapter.

FIGURE 5.12 -PCA projection of embeddings of each letter and guided denoising diffusion trajectories.

Results on the Relative Humidity dataset

In order to benchmark this extension, we run the same experiments as presented in Section 5.4.3, where we train a diffusion bridge prior model on the relative humidity forecasting task. Although we could not obtain any noticeable improvement compared to the initially proposed diffusion bridge, regarding the RMSE criteria, our model now requires much less training epochs in order to converge (5 epochs for the embedded guided diffusion against over 50 for the previous diffusion). As an illustration, we plotted the evolution of the ELBO, as well as the RMSE criteria, over the training epochs for the simple diffusion (as presented in the previous Section) compared to the Extended guided diffusion, see Figure 5.13. These results comfort our intuition that the scaling issue, arising from adding noise independently and identically in all dimensions of the latent space, makes the training procedure much more complex. Although this limitation may be mitigated during the training procedure, the embedded guided diffusion offer an efficient alternative to the corrupting and reconstruction process, without suffering any additional computational cost or implementation complexity.

FIGURE 5.13 -Comparison of the evolution of the ELBO, as well as the RMSE criteria, over the training epochs of the simple diffusion presented in the previous Section, compared to the Extended guided diffusion. The latter version is able to converge much more quickly, although the resulting RMSE in not significantly higher.

Conclusion

In the previous chapter, we showed that discrete latent models offer performance on par with their continuous counterparts, while allowing simpler training procedures. In this chapter, we aimed at exploring more diverse and complex architectures.

Recent discrete latent models found in the literature are often benchmarked on computer vision tasks, such as image synthesis or inpainting. In our exploration, we found that these models rely on very complex, hard to train, autoregressive priors, presenting two main limitations : the autoregressive nature of the prior models do not always match the latent space structure, and estimating their parameters require a subsequent training procedure.

In order to address these shortcomings, and to compare recent models on a theoretically grounded benchmark, we proposed a new mathematical framework for discrete latent models. By proposing a novel method for modelling the discrete latent space, we allow for more generic prior models, and bypass the need for a two step training.

Modelling the discrete distribution of the latent space is a complex task, for which no satisfactory method exists yet. We proposed instead to map discrete vectors to a continuous space, through a set of learned embeddings.

This allows us to leverage known modelling tools, such as such as diffusion bridges, and scales much better to high dimension spaces than purely discrete alternatives. Our framework allows for any law between the continuous and discrete spaces. We hope that it will serve as a sound and stable foundation to derive future generative models.

We then demonstrated the performance of our framework on an image synthesis, and an inpainting task, where our proposed model is able to generate complex, coherent samples, competitive with state of the art methods. We also successfully applied our proposed methodology on the Relative Humidity dataset. We believe that these first numerical experiments open up many research avenues, such as scaling to larger models, optimal scaling of the hyperparameters, alternative diffusion methods, or studying the influence of the regularization loss for end-to-end training.

In a last section, we extended our initial diffusion bridge to improve the noising and denoising processes in the context of embedding vectors, such as the codebooks. This allowed to improve training performance, by greatly reducing the number of epochs before convergence of the model. It also brings forth a new approach to apply diffusion bridges to inherent discrete tasks, such as Natural Language Processing.

approximation of SMC methods. Furthermore, we show that interpreting the discrete latent states paves the way for new applications, such as unsupervised segmentation for instance. The parameters of the model are estimated by Variational Inference, by maximizing a lower bound on the likelihood. Performance wise, this new discrete based model is on par with its continuous counterpart on the relative humidity forecasting task.

The last part of this thesis focuses on modelling discrete distributions, in the same context of quantized latent states. In Chapter 5, we experiment with several choices of prior models, as they are at the center of the discrete latent generative models literature. State of the art architectures rely on complex autoregressive priors, which require several implementation tricks for their training procedure to converge. We propose a theoretically grounded methodology for modelling the discrete latent state distribution, regardless of the nature of the observations (time series, images, etc.), by using diffusion bridges. The key idea is to iteratively corrupt a complex distribution into a non informative one, by adding noise, then learning the inverse reconstruction process, bridging the gap between both distributions. Our experiments show the relevance of this new methodology on computer vision and time series tasks.

Finally, we propose an improvement of the noising process of the diffusion bridge. Because of the high dimension of the latent vectors space, adding independent noise in all dimension quickly causes scaling and geometric problems. By computing instead a covariance matrix as a function of relevant latent vectors, we are able to better direct the noising process towards a non informative distribution. Our new model is much faster to converge during training, reducing the number of epochs by a factor of 10.

Perspectives

Metamodelling and energy load optimization. The end-to-end metamodelling methodology proposed in Chapter 3 was satisfactory on two well chosen buildings, and introduced new improvement perspectives for future works on more complex behavior modelling.

For instance, during the training of the metamodel, we defined the loss as a function of a hyper parameter β, which we were not able to tune. Regardless, the results of the metamodel were satisfactory, yet exploring how to balance the consumption error criteria with the indoor temperature one may be required to obtain more precise results, especially during calibration. We believe this parameter can only be tuned by discussing with energy managers, as they are the most aware of the importance in the accuracy of each variable. Similarly, when optimizing energy loads, we only considered the total cumulated consumption of a building, without pondering any particular behavior. While implementing more complex objectives is not a limitation, defining which behavior to reward (low instant power consumption, heating during off-peak hours) will require significant reflection with the energy managers.

The metamodel is not only much faster than TRNSYS, it is also more flexible in its usage and manipulation. For instance, we could modify our model to provide uncertainty estimation, using the methods developed in Chapter 4 and Chapter 5. Although it would bring a valuable insight regarding the chosen optimization scenario, it is still unclear how to conjugate uncertainty estimation with the calibration and optimization tasks. We leave this question open for future works. Additionally, the metamodel allows for different input parameters at each time step of the simulation.

Instead of using the NSGA-II algorithms to solve our optimization task, we could explore reinforcement learning methods, and assign a reward associated with each hour to hour policy. This would be computationally intensive but reinforcement learning approaches allow to define new user-specific and non differentiable rewards which could benefit from insights from energy managers.

Sequential Monte Carlo methods. In order to demonstrate the use cases for SMC methods in our decoupled architecture, we utilised simple smoothing algorithms, known to quickly degenerate when dealing with longer time + E qϕ log p ze θ (z 0:T e ) q ze ϕ (z 

A.2.2 Inpainting diffusion sampling

We consider the case in which we know a sub-part of the picture X, and want to predict the complementary pixels from the uninformative distribution z e T ∼ N (0, (2ϑ) -1 η 2 I d×(N -n) ). In order to produce the chain of samples z t-1 e from z t e we then follow the following procedure.

z e t-1 is predicted from z t e using the neural network predictor, similar to the unconditioned case. -Sample z e t-1 using the forward bridge noising process.

A.2.3 Additional regularisation considerations

We consider here details about the parameterisation of p z θ (z t |z t e ) and q z φ (z t |z t e ) in order to compute L reg t (θ, ϕ). Using the Gumbel-Softmax formulation provides an efficient and differentiable parameterisation. where γ t = -1/τ t + 1/τ drives the behavior of the regulariser. By choosing is γ t negative for large t, the regulariser pushes the codebooks away from z t e , which prevents too early specialization, or matching of codebooks with noise, as z t≈T e is close to the uninformative distribution. Finally, for small t, choosing γ t positive helps matching codebooks with z e when the corruption is small. In practice τ = 1 and a simple schedule from 10 to 0.1 for τ t was considered in this work. For the parameterisation of the quantization part, we choose p z θ,t (z t = e j |z t e ) = Softmax 1≤k≤K {-z e -e k 2 } j , and the same parameterisation for q z φ,t (z t |z t e ). Therefore our loss simplifies to :

p

A.2.4 Neural Networks

L(θ, φ) = E qϕ log p x θ (x|z 0 ) + L t (θ, ϕ) ,
where t is sampled uniformly in {0, . . . , T }. 

Discrete samples during diffusion process

End-to-end training

In order to train the codebooks alongside the diffusion process, we need to backpropagate the gradient of the likelihood of the data z e given a z 0 e reconstructed by the diffusion process (corresponding to t NN sequence 50 (0, 7, 3, 6, 2) 40 (6, 5, 5, 5, 3) 30 (5, 5, 5, 4, 2) 20 (6, 6, 5, 4, 3) 10 (5, 6, 5, 4, 3) 0

(5, 6, 5, 4, 3) TABLE A.5 -Discrete samples during diffusion process. The discrete sequence is obtained by computing the nearest neighbour centroid µ j for each X t s . At t = 0, X 0 is sampled from a centered Gaussian distribution with small covariance matrix (2ϑ) -1 η 2 I 2×5 , resulting in a uniform discrete sequence, as all centroids have a similar unit norm.

L rec (θ, φ)). We use the Gumbel-Softmax parameterisation in order to obtain a differentiable process and update the codebooks e j .

In this toy example, the use of the third part of the loss T t=0 L reg t (θ, φ) is not mandatory as we obtain good results with L reg t (θ, ϕ) = 0, which means parametrising p z θ,t (z t |z t e ) = q z ϕ,t (z t |z t e ). However we noticed that L reg t (θ, ϕ) is useful to improve the learning of the codebooks. If we choose γ t to be decreasing with time t, we have the following. When t is low, the denoising process is almost over, L reg t (θ, ϕ) pushes z e and the selected z to close together : z e ∼ 1, then z t e will be likely near a specific e j and far from the others ; therefore only a single codebook is selected and receives gradient. When t is high, z t e ∼ 0 and the Gumbel-Softmax makes it so that all codebooks are equidistant from z Toy Diffusion inpainting We consider a case in which we want to reconstruct an x while we only know one (or a few) dimensions, and sample the others. Consider that x is generated using a sequence q = (q 1 , q 2 , q " , q 4 , q 5 ) where the last one if fixed q 1 = 0, q 5 = 4. Then, knowing q 1 , q 5 , we sample q 2 , q 3 , q 4 , as shown in Figure A.6.

A.2.6 Additional visuals

Cifar MiniImageNet FIGURE A.6 -Three independent sampling of X using a trained diffusion bridge, with fixed q 1 = 0, q 5 = 4. The three corresponding sequences are (0, 7, 6, 5, 4), (0, 1, 2, 3, 4), (0, 7, 6, 5, 4) all valid sequences. 

  estimer les param ètres physiques des b âtiments, proposer de nouveaux sc énarios de consommation, quantifier et comparer ces sc énarios entre eux. Une solution que nous étudierons dans les chapitres suivants consiste à utiliser un simulateur num érique, configur é pour estimer automatiquement le meilleur jeu de param ètres pour un b âtiment durant une p ériode donn ée, en simulant et comparant un grand nombre de politiques. Ce logiciel expert, TRNSYS, permet de simuler les comportements complexes des b âtiments à partir d'une repr ésentation sch ématis ée, ainsi que de nombreux param ètres d'entr ée comme l'occupation du b âtiment au cours de la p ériode étudi ée, les param ètres de HVAC ou encore les pr évisions m ét éorologiques. TRNSYS est d'abord calibr é pour repr ésenter au mieux un b âtiment pr écis, à travers des m éthodes de Machine Learning, en utilisant les donn ées historiques du b âtiment r écolt ées par les capteurs. Comme énonc é pr éc édemment, cette t âche est d'autant plus complexe que la vari ét é de sources de chaleur, de froid ou d' électricit é augmente avec chaque nouveau client. Une fois calibr é, nous pouvons utiliser TRNSYS pour optimiser la consommation, tout en maintenant un niveau de confort et une qualit é de l'air raisonnables.
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 11 FIGURE 1.1 -Consommation énerg étique par principaux secteurs (France, 2020, www.statistiques.developpementdurable.gouv.fr)

FIGURE 1 . 2 -

 12 FIGURE 1.2 -Nous avons trac é un échantillon d'une semaine de donn ées historiques correspondant aux capteurs (temp érature int érieure), compteurs (consommation) et donn ées m ét éorologiques (Direct Normal Irradiance).

  ont étudi é l'optimisation d'une maison familiale en combinant EnergyPlus et l'algorithme d'optimisation NSGA-II, et proposent une analyse de la sensibilit é en utilisant la m éthode Morris screening. Une analyse similaire est pr ésent ée dans Recht et al. (2014), accompagn ée d'une analyse d'incertitude sur le simulateur COM-FIE. Ses performances sont évalu ées sur un b âtiment passif. Parmi ces outils disponibles, Oze-Energies a choisi TRNSYS pour l' étendue de ses fonctionnalit és, sa flexibilit é et sa popularit é. Cependant, TRNSYS ne peut être ex écut é que sur le syst ème d'exploitation Windows, et n écessite le lancement d'une fen être pour chaque simulation, ce qui induit un temps de calcul d'au moins quelques secondes. Param ètres de simulation. Dans ce paragraphe, nous d étaillons les param ètres de simulation n écessaires à l'ex écution de TRNSYS. Bien que la majorit é de ces param ètres soient communs à tous les b âtiments, les variables pr ésent ées ci dessous correspondent à deux b âtiments sp écifiques g ér és par Oze-Energies, que nous introduisons plus tard dans la Section 3.2. Nous trac ¸ons un échantillon des donn ées disponibles dans la Figure 1.3, à titre de comparaison un échantillon d'une simulation r éalis ée par TRNSYS est affich é dans la Figure 1.4. Merci de se r éf érencer à l'Appendice A.1.2 pour une liste et une description exhaustive des variables utilis ées. Pour mod éliser de futurs b âtiments, de nouvelles variables pourraient être n écessaires. -Les param ètres physiques du b âtiment, tels que la capacit é thermique ou la taille des isolants, sont stock és dans un vecteur λ ∈ R d λ , o ù d λ est le nombre de param ètres disponibles. Λ est l'ensemble des jeux de param ètres physiques possibles.

FIGURE 1

 1 FIGURE 1.3 -Sur cette figure, nous trac ¸ons un échantillon des donn ées disponibles d'occupation δ et m ét éorologiques ϕ.

FIGURE 1

 1 FIGURE 1.4 -Échantillons simul és à partir de TRNSYS, nous affichons un extrait des consommations ζ et de la temp érature int érieure τ .

  optim temperature (ψ ) > L optim temperature (ψ) ou L optim energy (ψ ) > L optim energy (ψ). Une solution ψ ∈ Ψ est alors optimale s'il n'existe aucune autre solution qui la domine. Le front de Pareto et l'ensemble des solutions optimales. Sur l'illustration de la Figure 3.8, chaque point de l'espace repr ésente la consommation totale et le niveau de confort correspondant à un jeu de param ètres. Le front de Pareto, repr ésent é par les points trac és en bleu, divise l'espace en deux parties : au dessus du front se trouvent les compromis sous optimaux entre consommation et confort ; la zone en dessous n'est pas atteignable dans le contexte de nos simulations.

d

  étaill é dans Hou et al. (2021). Un air trop ou pas assez humide m ène au d éveloppement de bact éries, virus et champignons, voir le graphique de Sterling en Figure 2.4. La mod élisation de la qualit é de l'air est un sujet central tout au long de cette th èse. Dans le Chapitre 3, nous optimisons le confort li é à la temp érature int érieure, afin qu'elle ne d épasse pas des limites pr éd éfinies. Dans les Chapitre 4 et Chapitre 5, nous mod élisation l' évolution de l'humidit é relative. 1.3 Les motivations derri ère la mod élisation statistique 1.3.1 M étamod élisation de TRNSYS à travers des m éthodes d'apprentissage profond Nous avons pour objectif de r épliquer les simulations du logiciel TRNSYS à travers un mod èle statistique qui serait à la fois plus rapide et plus flexible. En effet, TRNSYS est particuli èrement lent à op érer. Si les quelques secondes n écessaires à son lancement ne posent en g én éral pas de probl ème aux experts, elles repr ésentent un temps colossal lorsque nous effectuons nos t âches d'optimisation it ératives (la calibration et l'optimisation). En revanche, les mod èles statistiques modernes sont capable de profiter des derni ères avanc ées techniques dans le domaine du hardware, en particulier les cartes graphiques (GPU pour Graphical Processing Unit) qui leur permettent de calculer des dizaines de simulations en parall èle. De plus, alors que TRNSYS est une boîte noire d'un point de vue statistique, le m étamod èle que nous proposons permet, à terme, de mod éliser l'incertitude li ée aux pr édictions, comme d étaill é dans les Chapitre 4 et Chapitre 5. Une approche naïve pour mod éliser le comportement d'un b âtiment consisterait à assembler une base à partir des donn ées historiques disponibles, puis entraîner un mod èle statistique tel qu'un r éseau de neurones sur cette base. Cependant, les donn ées disponibles se sont r év él ées trop bruit ées et clairsem ées pour permettre un entraînement correct, vis à vis de la t âche à r éaliser. Nous proposons la m éthodologie suivante : 1. Entraînement d'un m étamod èle : en g én érant divers sc énarios de b âtiments (propri ét és physiques, usages, conditions m ét éorologiques) à partir de TRNSYS, pour construire une base de donn ées synth étique sur laquelle nous entraînons les diff érents mod èles pr ésent és dans ce manuscrit. 2. Calibration et optimisation : le m étamod èle remplace TRNSYS lors des t âches de calibration et d'optimisation pour permettre d'en r éduire largement le temps de calcul. 3. Am élioration du m étamod èle : nous pouvons estimer l'incertitude du mod èle à partir des donn ées historiques disponibles.

FIGURE 2

 2 FIGURE 2.1 -We plotted week long samples of sensors (indoor temperature), counters (consumption) and weather data (Direct Normal Irradiance).

FIGURE 2

 2 FIGURE 2.2 -On this figure, we plotted samples from the available occupancy δ as well as weather data ϕ.

FIGURE 2

 2 FIGURE 2.3 -Sample simulated with TRNSYS, we plotted consumptions ζ and indoor temperature τ .

FIGURE 2

 2 FIGURE 2.4 -Sterling Chart introduced in Sterling et al. (1985).

  states a n:m : the sequence (a n , • • • , a m ) Deep learning. θ : unknown parameters w, b : weights and biases of the models f, g, h : non linear parametric functions Statistical modelling.

  aims at bridging that gap by enforcing error flow throughout time in the network. The LSTM architecture was modified in[START_REF] Cho | Learning phrase representations using RNN encoder-decoder for statistical machine translation[END_REF] in order to simplify its implementation and improve computation times, resulting in a novel model called Gated Recurrent Unit (GRU). In parallel to these advances on recurrent architectures, Convolutional Neural Networks (CNN), rendered popular by[START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] for image classification, have been adapted to time series problem. The approaches proposed in J ózefowicz et al. (2016);[START_REF] Kim | Character-aware neural language models[END_REF] outperformed traditional Natural Language Processing (NLP) models by replacing the embedding layer with a character-level convolutional layer.

FIGURE 3

 3 FIGURE 3.1 -The original Transformer contains N encoder and decoder layers, each one combining h self attention blocks.

  FIGURE 3.2 -Attention map for building behavior prediction, for two consecutive weeks. Each pixel corresponds to a scalar value in the attention map produced by the Transformer model during inference, with darker colors indicating lower values and brighter colors higher values. We can identify day and night cycles, as well as week and weekend.

FIGURE 3

 3 FIGURE 3.5 -Consumption and temperature simulations after calibration, for both the metamodel and TRNSYS, for Stanley.

  FIGURE 3.8 -Pareto front after optimization for the Stanley (left) and Livingstone (right) building. We select the point of closest equivalent comfort, corresponding to a 5.3% (Stanley) and 9.9% (Livingstone) reduction in consumption. Combinations of energy consumption and comfort are unreachable below the Pareto front, and suboptimal above ; we always aim at sampling points at the intersection.

FIGURE 3

 3 FIGURE 3.9 -Consumption and temperature simulations after optimization (metamodel) for the Stanley building.

FIGURE 3 .

 3 FIGURE 3.10 -Our end-to-end methodology for metamodel training, calibration and optimization.

FIGURE 3 .

 3 FIGURE 3.11 -Relative Humidity dataset. Visualization of a 4-week sample of the dataset. We aim at modelling indoor humidity based on the outdoor temperature, humidity (RHUM), aux indoor CO 2 levels.

FIGURE 3 .

 3 FIGURE 3.12 -Prediction of Relative Humidity given observations on two 24 hour samples. The neural network is able to model general trends, but fails at grasping hour to hour behaviors. Aggregated results on the entire validation set for the RMSE and MAE criteria can be found in Table 3.4. Additional samples can be found in Appendix A.1.3.

  the parameters of the model, estimated through the Expectation Maximization (EM, Dempster et al. (1977)) algorithm. Evaluation protocol. Unlike deterministic neural networks, HMMs allow to model the distribution of the observations easily. One common way to approximate this distribution consists in drawing multiple samples from the trained model, and computing the associated relative humidity predictions. From there, we can derive various metrics about the uncertainty of the model.In order to benchmark the precision of the HMM to the neural network, we average N = 100 independent predictions, and compute the Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE) criteria over the validation set. Results are displayed in Table3.4 and are discussed in the next paragraph.

  4, we propose to decouple representation learning from uncertainty modelling, in a two step training procedure. The unknown parameters are estimated by minimizing a deterministic cost function, then the last layer of the architecture is finetuned using Sequential Monte Carlo (SMC) methods. The results presented are adapted from the following contribution : Last layer state space model for representation learning and uncertainty quantification, Cohen, M., Charbit, M. and Le Corff, S., 2023 IEEE Statistical Signal Processing Workshop. In Section 4.5, we develop a model with a discrete latent representation of the data. We show that discrete regimes allow better interpretability of the model. Additionally, parameter estimation does not require the complex approximations that come with continuous latent vectors, and is achieved through Variational Inference. The results presented are adapted from the following contribution : Variational Discrete Latent Representation for Time Series Modelling, Cohen, M., Charbit, M. and Le Corff, S., 2023 IEEE Statistical Signal Processing Workshop.

  [START_REF] Fortunato | Bayesian recurrent neural networks[END_REF] yield improved performance when considering local gradient information for computing the posterior.Sequential Monte Carlo (SMC) methods have also been successfully applied to Recurrent Neural Networks.Instead of computing a single latent vector at each time step, a set of particles representing the distribution of the latent space are propagated, and associated with importance weights. In[START_REF] Maddison | Filtering variational objectives[END_REF];[START_REF] Naesseth | Variational Sequential Monte Carlo[END_REF], the authors were able to model complex distributions on dependant data. The parameters of the RNN are estimated through Variational Inference.In[START_REF] Blundell | Weight uncertainty in neural networks[END_REF], the authors considered weights as random variables and proposed approximations of their posterior distributions allowing more robust predictions. Such Bayesian neural networks have been proposed and studied in a variety of works, see for instance Hern ández-Lobato and Adams (2015);[START_REF] Khan | Fast and scalable bayesian deep learning by weight-perturbation in Adam[END_REF][START_REF] Teye | Bayesian uncertainty estimation for batch normalized deep networks[END_REF]. However, these methods are computationally intensive for high dimensional models and we do not have statistical guarantees on their ability to capture the target posterior distribution, seeFoong et al. (2020a).Ensemble methods. Monte Carlo Dropout (MC Dropout) methods offer to capture uncertainty by leveraging Dropout during both training and evaluation tasks, producing variable predictions from a single trained recurrent model, see[START_REF] Gal | A theoretically grounded application of dropout in recurrent neural networks[END_REF]. In the recent years, MC Dropout methods have been applied in many industrial fields, such as flight delay prediction[START_REF] Vandal | Prediction and uncertainty quantification of daily airport flight delays[END_REF] or molecular simulations[START_REF] Wen | Uncertainty quantification in molecular simulations with dropout neural network potentials[END_REF].Alternatively, ensemble methods consist in training distinct networks to obtain a combined prediction, as shown in[START_REF] Pearce | High-quality prediction intervals for deep learning : A distribution-free, ensembled approach[END_REF];[START_REF] Lakshminarayanan | Simple and scalable predictive uncertainty estimation using deep ensembles[END_REF]. However, these frequentist approaches fail to guarantee proper calibration of the model, as highlighted by[START_REF] Ashukha | Pitfalls of in-domain uncertainty estimation and ensembling in deep learning[END_REF], and suffer various limitations, see[START_REF] Foong | On the expressiveness of approximate inference in bayesian neural networks[END_REF].Decoupled architectures.In an effort to provide an alternative strategy with limited computation overhead,[START_REF] Brosse | On last-layer algorithms for classification : Decoupling representation from uncertainty estimation[END_REF] suggests splitting training in two stages to solve classification problems for independent data : representation learning and uncertainty estimation. The two steps proceed as follows : (i) the algorithm first trains a deep classifier to obtain accurate task-dependent representations of the data, and then (ii) ensemble models are trained using these representations and the output. Their experiments indicate that last-layer algorithms outperform

FIGURE 4 . 1 -

 41 FIGURE 4.1 -Visualization of a 4-week sample of the Electricity Transformer dataset from Zhou et al. (2021), and presented in Paragraph 4.3. We only plotted the input variables HUFL and MULL for better clarity, as well as the observations (Oil Temperature).

4

  ging task. We therefore propose to first train an input model following traditional deep learning approaches, then use Sequential Monte Carlo methods in a lower dimensional state space to account for uncertainty, with tractable and computationally efficient simulation-based methods. The two-stage training algorithm is presented in Algorithm 1, and the architecture of the model is described in Figure4.3 They are many approaches to model uncertainty in statistical models. We present an architecture based on Sequential Monte Carlo methods, an application of Monte Carlo algorithms for time dependent data. They have been successfully combined with recurrent neural networks to tackle variable sequential problems, see for instance[START_REF] Naesseth | Variational Sequential Monte Carlo[END_REF];[START_REF] Maddison | Filtering variational objectives[END_REF];[START_REF] Ma | Particle filter recurrent neural networks[END_REF]. We turn to[START_REF] Martin | The monte carlo transformer : a stochastic self-attention model for sequence prediction[END_REF] for an example using more complex neural architectures, such as the Transformer. Particle filters have also proven reliable in other fields, such as presented in[START_REF] Liu | Long short-term memory networks based on particle filter for object tracking[END_REF] for object tracking. These methods however do not scale to high dimension latent space, where computations quickly become intractable and inefficient.Two-stage trainingOur two stage training procedure is inspired by Transfer Learning, a well known deep learning technique which consists in producing a first estimate of the parameters using a computationally cheap related task.With deeper and deeper neural network architectures, come the need for bigger datasets and more complex training procedures, which themselves come at a high price : obtaining data can be expensive, and may require additional labeling ; heavy computations for extended periods usually incur costly infrastructure. Transfer learning first appeared with the realization that the first layers are often almost identical from one model to the next, regardless of the precise task they were trained for, as shown in[START_REF] Yosinski | How transferable are features in deep neural networks[END_REF]. Another major highlight from this paper is that initializing parameters with an auxiliary task can improve generalization performance.Many works have shown the practical use of Transfer Learning in diverse fields of application. A first estimate of the parameters is obtained from publicly available models, trained on generic tasks, or by training a new model on a public dataset. Then, the parameters -or a subset -are finetuned on a smaller scale dataset, see[START_REF] Pan | A survey on transfer learning[END_REF] for a review. This method is flexible, as it allows changing the architecture of the model, as well as removing or adding new layers between the pre-training and fine-tuning steps, see[START_REF] Chouhan | A novel transfer learning based approach for pneumonia detection in chest x-ray images[END_REF] for an example applied to Computer Vision or[START_REF] Raffel | Exploring the limits of transfer learning with a unified text-to-text transformer[END_REF] to Natural Language Processing.

FIGURE 4 . 2 -

 42 FIGURE 4.2 -An autoencoder architecture for dimensionality reduction using deep neural networks. The input vectors are mapped to a lower dimension space using the Encoder, and represented as encoded vectors, here in the middle of the diagram. The Decoder learns the inverse transformation, in order to reconstruct the original input vectors. Both the Encoder and Decoder are non linear parametric functions, usually a combination of well known deep learning layers.

FIGURE 4 . 3 -

 43 FIGURE 4.3 -Our architecture combining a generic input model with a state space model on the last layer.

FIGURE 4

 4 FIGURE 4.4 -The auxiliary particle filter for N = 3 and T = 4. In blue are the particles sampled for the last time step. Each particle from a previous time step belonging to their genealogy is colored in pink. The others, in white, will be discarded.

  average forecasts and intervals as for our model. Despite being based on the same deep learning architecture, the MC dropout model is still largely overconfident, while our proposed model provide more credible empirical confidence intervals. It also outperforms the Hidden Markov Model introduced in Section 3.3.4, see Table 4.2.

FIGURE 4

 4 FIGURE 4.5 -Prediction of Relative Humidity given observations in the lookback window (t < 24) and without (t > 24). Since re sampling of particles is no longer available after t = 24, the uncertainty grows as the confidence intervals get larger over time. In the absence of specific initialization rules, the first time step is highly uncertain, without posing a problem in the later steps.

FIGURE 4

 4 FIGURE 4.6 -Prediction of Oil temperature(ETDataset) given observations in the lookback window (t < 24). For better clarity, we only plotted the forecast window (t > 24). As a comparison, we plotted the confidence intervals produced by the MC Dropout model (for p drop = 0.01), whose performance are on par with our model but is still largely overconfident. Aggregated results on the entire validation set for the RMSE and MAE criteria can be found in Table4.1.

FIGURE 4

 4 FIGURE 4.7 -Prediction of Relative Humidity given observations in the lookback window (t < 24). For better clarity, we only plotted the forecast window (t > 24). As a comparison, we plotted the confidence intervals produced by the MC Dropout model (for p drop = 0.01), whose performance are on par with our model but is still largely overconfident. Aggregated results on the entire validation set for the RMSE and MAE criteria can be found in Table4.2.

  ; Patterson et al. (2017)). Despite modeling hidden states as a discrete Markov chain, they are able to handle complex data structure, see Capp é et al. (2005); Douc et al. (

  et al. (2016), by adding a discrete random variable as the input of the generator. Trainings on the MNIST dataset, introduced in LeCun et al. (1998), show how the model associates each value with a class of digits, even without supervision.

( 2016 )

 2016 and audio van den[START_REF] Van Den Oord | Parallel wavenet : Fast high-fidelity speech synthesis[END_REF] datasets. However, more parsimonious prior models already yield encouraging results. For instance, we can find in[START_REF] Sun | Generating diverse and natural text-to-speech samples using a quantized fine-grained vae and autoregressive prosody prior[END_REF] a comparison of different autoregressive priors on a text-to-speech task, associated with state of the art performance, using a single layered Long Short Term Memory (LSTM) network. On the same task, the authors of[START_REF] Yasuda | End-to-end text-to-speech using latent duration based on vq-vae[END_REF] were able to perform end-to-end training. Additionally, this prior model was conditioned on text data to produce speech samples.

FIGURE 4 . 9 -

 49 FIGURE 4.9 -Prediction of Relative Humidity on two samples from the validation dataset. Compared to the Sequential Monte Carlo approach, our discrete latent model is less biased, as confirmed by the results presented in Table4.4. This new approach also allows to produce coherent confidence intervals, whose sizes are stable regardless of the length of the predicted time series.

FIGURE 4 .

 4 FIGURE 4.10 -Codebook usage for a week long sample. We sampled N = 100 trajectories from the prior model, and plotted the associated codebook index at each time step. The full line represent the observed relative humidity. Some of the codebooks appear to be linked to particular behaviors of the building, for instance codebook 6 matches an increase of relative humidity at the beginning of the day. We could now combine such a representation with segmentation algorithms in an unsupervised setting.

  our particular case, VI allows to define a single training procedure regardless of the architecture of the auto encoder or prior model. It also offer new research perspectives around the choice of prior models, which is explored in the next chapter.

FIGURE 5

 5 FIGURE 5.1 -Our proposed architecture, for a prior based on a Ornstein-Uhlenbeck bridge. The top pathway from input image to z 0 e , to z 0 , to reconstructed image resembles the original VQ-VAE model. The vertical pathway from (z 0 e , z 0 ) to (z T e , z T ) and backwards is based on a denoising diffusion process. See Section 5.3.2 and Algorithm 3 for the corresponding sampling procedure.

  choices can be proposed to model the function ε θ . The deep learning architectures considered in the numerical experiments are discussed in Appendix A.2.4 and A.2.5. Similarly to Ho et al. (2020), we use a stochastic version of our loss function : sample t uniformly in {0, . . . , T }, and consider L t (θ, φ) instead of the full sum over all t.

  -to-end training. Contrary to VQ-VAE procedures in which the encoder/decoder/codebooks are trained separately from the prior, we can train the bridge prior alongside the codebooks. Consider a new setup, in which the K = 8 codebooks are randomly initialized and considered as parameters of our model (they are no longer fixed to the centers of the data generation process µ j ). The first part of our loss function, in conjunction with the Gumbel-Softmax trick makes it possible to train all the parameters of the model end-to-end. Details of the procedure and results are shown in Appendix A.2.5.

FIGURE 5

 5 FIGURE 5.3 -(Left) Forward noise process for one sample. First, one data is drawn (z 0 e (y) = y in the toy example) and then {z t e } 1≤t≤T are sampled under q φ and displayed. (Right) Reverse process for one sample z T e ∼ N (0, (2ϑ) -1 η 2 I dN ). As expected, the last sample z 0 e reaches the neighborhood of 5 codebooks.

CIFAR10.

  The CIFAR dataset consists of inputs y of dimensions 32×32 with 3 channels. The encoder projects the input into a grid of continuous values z 0 e of dimension 8×8×128. After discretisation, {z t } 0 t T are in a discrete latent space induced by the VQ-VAE which consists of values in {1, . . . , K} 8×8 with K = 256. The pre-trained VQ-VAE reconstructions can be seen in Figure A.7 in Appendix A.2.6. miniImageNet. miniImageNet was introduced by Vinyals et al. (2016) to offer more complexity than CIFAR10, while still fitting in memory of modern machines. 600 images were sampled for 100 different classes from the original ImageNet dataset, then scaled down, to obtain 60,000 images of dimension 84 × 84. In our experiments, we trained a VQVAE model to project those input images into a grid of continuous values z 0 e of dimensions 21 × 21 × 32, see Figure A.9 in Appendix A.2.6. The associated codebook contains K = 128 vectors of dimension 32. Prior models. Once the VQ-VAE is trained on the miniImageNet and CIFAR datasets, the 84×84×3 and 32×32×3 images respectively are passed to the encoder and result in 21 × 21 and 8 × 8 feature maps respectively. From this model, we extract the discrete latent states from training samples to train a PixelCNN prior and the continuous latent states for our diffusion. Concerning our diffusion prior, we choose the Ornstein-Uhlenbeck process setting η = √ 2, z * = 0 and ϑ = 1, with T = 1000. End-to-End Training. As an additional experiment, we propose an End-to-End training of the VQ-VAE and the diffusion process. To speed up training, we first start by pretraining the VQ-VAE, then learn the parameters of our diffusion prior alongside all the VQ-VAE parameters (encoder, decoder and codebooks). Note that in this setup, we cannot directly compare the NLL to PixelCNN or our previous diffusion model as the VQ-VAE has changed, but we can compare image generation metrics such as FID and sample quality. Averaged KL metric on the feature map.

  (a) Samples from our diffusion prior. (b) Samples from the PixelCNN prior.

FIGURE 5

 5 FIGURE 5.5 -Comparison between samples from our diffusion-based prior (top) and PixelCNN prior (bottom).

FIGURE 5

 5 FIGURE 5.7 -Sampling denoising chain from t = 500 up to t = 0, shown at regular intervals, unconditional. We show only the last 500 steps of this process, as the first 500 steps are not visually informative. The sampling procedure is described in Algorithm 3

FIGURE 5 .

 5 FIGURE 5.10 -Prediction of Relative Humidity on two samples from the validation dataset. Each box contains 75% of samples, while the whiskers cover 95%. The produced confidence intervals are coherent with previous approaches.

FIGURE A. 2 -

 2 FIGURE A.2 -Indoor temperature and consumption for Real data, Calibration and Optimization for Livingstone.

X.

  Knowing the corresponding n latent vectors z e 0 which result from X through the encoder, we sample N -n z e T to human activities in the building Q EQP Consumption of equipment, such as computers, elevators, fridges Q LIGHT Consumption of lights Q AHU C Consumption of AHU when cooling outside air Q AHU H Consumption of AHU when heating outside air T INT OFFICE Indoor temperature TABLE A.4 -Output variables of the equivalent model designed by the energy managers.

FIGURE A. 3 -

 3 FIGURE A.3 -Prediction of Relative Humidity given observations on two additional 24 hour samples, by the LSTM model. The neural network is able to model general trends, but fails at grasping hour to hour behaviors.

For

  ε θ (z t e , t), we use a U-net like architecture similar to the one mentioned in ?. It consists of a deep convolutional neural network with 57M parameters, which is slightly below the PixelCNN architecture (95.8M parameters). The VQ-VAE encoder / decoders are also deep convolutional networks totalling 65M parameters.A.2.5 Toy Example AppendixParameterisation We consider a neural network to model ε θ (z t e , t). The network shown in Figure A.4 consists of a time embedding similar to ?, as well as a few linear or 1D-convolutional layers, totalling around 5000 parameters.

  FIGURE A.4 -Graphical representation of the neural network used for the toy dataset.

  Discrete sequences corresponding to the denoising diffusion process shown in Figure 5.3 are shown in Table A.5.

  t e and receive non-zero gradient. This naturally solves training problem associated with dead codebooks in VQ-VAEs. Joint training of the denoising and codebooks yield excellent codebook positionning as shown in Figure A.5.

  FIGURE A.5 -Left, initial random codebooks positions. Right, after training, position of codebook vectors. Note that the codebook indexes do not match the indexes of the Gaussians, the model learnt to make the associations between neighboring centroids in a different order.

FIGURE A. 7 -

 7 FIGURE A.7 -Reconstruction of the VQVAE model used in the following benchmarks.

FIGURE A. 8 -

 8 FIGURE A.8 -Samples from the PixelCNN prior (left) and from our diffusion prior (right) on CIFAR10.

  FIGURE A.10 -Samples from our model for the miniimagenet dataset

  FIGURE A.12 -Sampling denoising chain from up to t = 0, shown at regular intervals, conditioned on the left part of the picture. The sampling procedure is described in Appendix A.2.2.

  

  

  

  

  

  

  

  

  

  

  

Table des mati ères 1 Introduction (version franc ¸aise) Chapitre 1

  

VAE Variational Auto Encoder -VQ-VAE Vector Quantized Variational Auto Encoder -SMC Sequential Monte Carlo -MCD Monte Carlo Dropout -MSE Mean Squared Error -RMSE Root Mean Squared Error -MAE Mean Absolute Error

  

	-HMM Hidden Markov Model
	-FFN Feed Forward Network
	-RNN Recurrent Neural Network
	-LSTM Long Short Term Memory
	-GRU Gated Recurrent Unit
	-VI Variational Inference
	-ELBO Evidence Lower BOund
	-

Table 3

 3 

.1 displays the mean values and standard deviations of the loss function of this cross validation at the end of the training procedure. The table also displays the mean squared error MSE T (resp. MSE Q ) on the temperatures (resp. consumptions) only, as well as these same metrics computed only during occupation time : MSE occ T and MSE occ Q . For a global consumption evaluation, we compute the absolute relative error on the cumulative consumptions ∆ Q Tot .

TABLE 3 .

 3 2 -Calibration metrics for Stanley and Livingstone buildings, see 3.1. Convergence is reached for Stanley after 300 iterations, which is not enough for Livingstone, as displayed in Figure3.4. This table demonstrates that the metamodel and TRNSYS perform similarly when calibrated for the same number of iterations, although the metamodel is much faster. Additionally, only the metamodel is able to reach convergence for Livingstone in a reasonable time frame.

	Stanley						
	Metamodel	-0.627	11.0	0.134	1.20	300	2mn
	TRNSYS	-0.409	12.1	-0.264	1.24	300	3h
	Livingstone						
	Metamodel	-0.690	14.2	-0.0551	1.29	10000	1h
	Metamodel	-0.574	14.2	-0.413	1.95	300	2mn
	TRNSYS	-1.08	15.8	0.156	1.96	300	3h

MBE Q Cv(RMSE) Q MBE T Cv(RMSE) T Iterations Computational time

FIGURE 3.4 -Calibration cost evolution for the metamodel and TRNSYS (see 2.1), on Livingstone and Stanley. Both models were calibrated for 300 epochs, which is enough to reach convergence for Stanley, but not Livingstone.

TABLE 3 .

 3 4 -Comparison of RMSE, MAE and computation time of our model against the benchmarked HMM. This table provide aggregated results on the entire validation set. Mean values of the estimators are displayed along with their variance.

	RMSE	MAE	Computation time
	LSTM 0.31 ± 0.18 0.27 ± 0.16 21ms
	HMM 0.46 ± 0.19 0.40 ± 0.17 99m

  temperature could help reduce energy waste. The dataset was introduced inZhou et al. (2021), and was released publicly 1 . Oil temperature records, which we aim to model, are associated with six power load features : High Useful Load (HUFL), High Useless Load (HULL), Middle Useful Load (MUFL), Middle Useless Load (MULL), Low Useful Load (LUFL) and Low Useless Load (LULL).

Dataset. The Electricity Transformer Dataset (ETDataset) records the evolution of oil temperature in electricity transformers in order to better understand and model their state. A good estimation of the future oil

TABLE 4 .

 4 4 -Relative Humidity dataset. Comparison of RMSE, MAE and computation time of our model against the benchmarked VQ-VAE, HMM, as well as the decoupled architecture from the previously section. This table provides aggregated results of the predictions on the entire validation set. Our model performs similarly to state of the art benchmarks in terms of metrics. Mean values of the estimators, taken over the validation samples of the dataset, are displayed along with their variance.

		RMSE	MAE	Computation time
	SMCL	0.30 ± 0.19 0.26 ± 0.16 21ms
	Ours (gru) 0.30 ± 0.19 0.24 ± 0.15 39ms
	Ours (rnn) 0.30 ± 0.20 0.25 ± 0.17 39ms
	Ours (cnn) 0.31 ± 0.20 0.25 ± 0.16 131ms
	VQ-VAE	0.55 ± 0.33 0.51 ± 0.32 39ms
	HMM	0.46 ± 0.19 0.40 ± 0.17 99ms

TABLE 5 .

 5 2 -Results on miniImageNet. Metrics are computed on the validation dataset. The means are displayed along with the standard deviation in parenthesis.

		NLL	FID s/sample
	PixelCNN Oord et al. (2017) 1.00 (±0.05) 98	10.6s (±28ms)
	Ours	0.94 (±0.02) 99	1.7s (±10ms)

TABLE 5 .

 5 3 -Results on CIFAR10. Metrics are computed on the validation dataset. The means are displayed along with the standard deviation in parenthesis. NLL for end-to-end takes into account the full model including the modified VQ-VAE, and therefore is not directly comparable to the two others.

		NLL	FID s/sample
	PixelCNN Oord et al. (2017) 1.41 (±0.06) 109 0.21 (±0.8ms)
	Ours	1.33 (±0.18) 104 0.05s (±0.5ms)
	Ours (end-to-end)	1.59 (±0.27) 92	0.11s (±0.5ms)

  List of variables contained in ψ k , along with their ranges. Each parameter can hold a different value for each day of the week. For ease of reading, we replaced them by a single line, as the ranges are the same for every day.

							Variable		Minimum Maximum Step
						start clim day (h)	7	9	1
						end clim day (h)	18	20	1
						t clim red day ( • C)	24	30	0.5
						t clim conf day ( • C)	20	24	0.5
						start heat day (h)	6	8	1
						end heat day (h)	17	19	1
						t heat red day ( • C)	17	22	0.5
						t heat conf day ( • C)	22	24	0.5
						start ventilation day (h)	7	9	1
						end ventilation day (h)	18	20	1
						t ventilation day ( • C)	18	26	0.5
						vol ventilation day	0.7	1.7	0.3
	TABLE A.2 -Variable		Description
								DNI	Direct Normal Irradiance
							IBEAM H Direct Horizontal Irradiance
							IBEAM N	Direct Normal Irradiance
							IDIFF H	Diffuse Horizontal Irradiance
							IGLOB H Global Horizontal Irradiance
							RHUM	Outdoor Relative Humidity
							TAMB		Outdoor temperature
						TABLE A.3 -Weather data as contained in ϕ k .
	The last term may be decomposed as		
			E q φ log	p ze θ (z 0:T e ) q ze ϕ (z 0:T e |x)	= E qϕ log p ze θ,T (z T e ) +	T t=1	E qϕ log	p ze θ,t-1|t (z t-1 e |z t e ) q ze ϕ,t|t-1 (z t e |z t-1 e )
	and								
	E q φ log	p ze θ (z 0:T e ) q ze ϕ (z 0:T e |x)	= E qϕ log p ze θ,T (z T e ) + E qϕ log	p ze θ,0|1 (z 0 e |z 1 e ) q ze ϕ,1|0 (z 1 e |z 0 e )	+	T t=2	E qϕ log	p ze θ,t-1|t (z t-1 e |z t e ) q ze ϕ,t|t-1 (z t e |z t-1 e )	.
	By (5.1),								
	E q φ log	p ze θ (z 0:T e ) q ze ϕ (z 0:T e |x)	= E qϕ log	p ze θ,T (z T e ) q ze ϕ,T |0 (z T e |z 0 e )	+	T t=2	E qϕ log	p ze θ,t-1|t (z t-1 e |z t e ) q ze ϕ,t-1|0,t (z t-1 e |z 0 e , z t e )	+ E qϕ log p ze θ,0|1 (z 0 e |z 1 e ) ,
	which concludes the proof.					
										0:T e |x)	.

  Gk )} 1 k K are i.i.d. with distribution Gumbel(0, 1), τ > 0, and {τ t } 0 t T are positive time-dependent scaling parameters. Then, up to the additive normalizing terms, where z t ∼ q z φ,t (z t |z t e ). Considering only the first term which depend on z t e and produce non-zero gradients, we get :

	L reg t (θ, φ) = E qϕ log	p z θ,t (z t |z t e ) q z ϕ,t (z t |z t e )	= -	1 τ t	+	1 τ	z t e -z t 2 2 -	Gk τ	+	G k τ t	,
		L reg t (θ, φ) = γ t z t e -z t 2 2					

z θ,t (z t = •|z t e ) = Softmax{(-z e -e k 2 2 + G k )/τ t } 1 k K , q φ,t (z t = •|z t e ) = Softmax{(-z e -e k 2 2 + Gk )/τ } 1 k K ,

113

where {(G k ,

Strat égie Nationale Bas-Carbone (SNBC)

Loi Grenelle I, Article 5

Herv é Lefebvre, directeur du d épartement Climat de l'Ademe, 2019

Strat égie Nationale Bas-Carbone (SNBC)

Loi Grenelle I, Article 5

Herv é Lefebvre, head of the Climat departiement of the Ademe, 2019

https ://github.com/CMA-ES/pycma

https ://github.com/zhouhaoyi/ETDataset/

https://pytorch.org/docs/stable/generated/torch.nn.GRU.html

2 } .In other words, instead of selecting the closest codebook, we sample from all available codebooks with probability proportional to their distance to the current encoded latent variable. During both training and inference, this discrete distribution encourages the exploration of the entire set of codebooks. Under the variational distribution, the latent data are assumed to be independent conditionally on the observations.
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Particle filter

We now present a standard particle filter. At t = 0, (ξ 0 ) N =1 are sampled independently from ρ 0 = Ψ 0,Σx , and each particle ξ 0 is associated with the standard importance sampling weight :

Then, for t ≥ 1, using {(ξ t-1 , ω t-1 )} N =1 , pairs {(I t , ξ t )} N =1 of indices and particles are sampled from the instrumental distribution :

In this application we use for p t (ξ t-1 , •) the prior kernel Ψ g θ (ξ t-1 ,ũt),Σx . For ∈ {1, . . . , N }, ξ t is associated with the importance weight ω t ∝ Ψ Yt,Σy (f θ (ξ t )). An application of this algorithm is presented in Figure 4.4 on a toy model. Such a particle filter with multinomial resampling is referred to as the bootstrap algorithm, see [START_REF] Gordon | Novel approach to nonlinear/non-gaussian bayesian state estimation[END_REF].

It has been extended and analyzed in many directions in the past decades, see [START_REF] Pitt | Filtering via simulation : Auxiliary particle filters[END_REF]; [START_REF] Douc | Comparison of resampling schemes for particle filtering[END_REF]; [START_REF] Chopin | An Introduction to Sequential Monte Carlo[END_REF]. In other lines of works, the adaptive tuning of the Monte Carlo effort has been analyzed in order to adapt the number of particles on-the-fly, see [START_REF] Elvira | Adapting the number of particles in sequential monte carlo methods through an online scheme for convergence assessment[END_REF][START_REF] Elvira | On the performance of particle filters with adaptive number of particles[END_REF].

Path-space particle smoother

Any particle smoother can be used to estimate (4.1) such as the Path-space smoother [START_REF] Kitagawa | Monte carlo filter and smoother for non-gaussian nonlinear state space models[END_REF], the Forward Filtering Backward Smoothing [START_REF] Doucet | On sequential monte carlo sampling methods for bayesian filtering[END_REF] or the Forward Filtering Backward Simulation algorithm [START_REF] Godsill | Monte carlo smoothing for nonlinear time series[END_REF]. Additionally, because estimating (4.1) amounts to computing a smoothed expectation of an additive functional, we can also use very efficient forward-only SMC smoothers such as the PaRIS algorithm and its pseudo-marginal extensions [START_REF] Olsson | Efficient particle-based online smoothing in general hidden markov models : the paris algorithm[END_REF]; [START_REF] Gloaguen | A pseudo-marginal sequential monte carlo online smoothing algorithm[END_REF].

In order to illustrate our approach with the simplest (and computationally cheapest) SMC smoother, consider first the Path-space smoother. The genealogical trajectories are defined recursively and updated at each time step with the particles and indices (ξ t+1 , I t+1 ) : for all 0 ≤ t ≤ T -1,

In Figure 4.4, the N = 3 genealogical trajectories are :

The score function (4.1) can then be estimated as follows :

where p θ is the joint probability density function of (x 1:T , y 1:T ) for the model described in Section 4.4.2. Using automated differentiation, we can perform gradient descent on the parameter θ.

Online extensions and the PaRIS

Although simple and computationally cheap, the smoother based on the ancestral lines of each particle may provide poor estimators. The resampling steps deplete the ancestor lines and, as time increases, two different All is left is to optimize L with respect to θ and φ. We can compute a Monte Carlo estimator of this ELBO by sampling M > 0 latent variables (z (i) ) M i=1 under the posterior distribution q φ (z|y) :

In practice, many numerical applications settle for a single sample from the posterior, M = 1. Then, we reparametrize samples z from the posterior in order to propagate the gradient through the model. We want to express z as a differentiable function g of the parameter φ and some independent random variable , such that z = g φ (y, ). The expectation under the posterior can now be written under the distribution p of , and the gradient operator becomes commutative. For any function f , we have :

Note that this reparametrization constraints the choice of parametric posterior distributions.

Comparison with Sequential Monte Carlo methods for time series. Sequential Monte Carlo and Variational

Inference offer two different path towards approximating a complex posterior distribution. The main advantage of VI methods reside in its computationally appealing surrogate family, and the use of the reparametrization trick allowing to reduce the variance when computation the gradient. The trade-off for this low variance is a higher bias, as the true posterior may not be expressed within the chosen parametric family.

Application to discrete latent models

The training methodology presented in the previous chapter only applies when the reparametrized posterior function is differentiable. As sampling discrete random variables prevent gradient propagation through the model, a workaround is required for discrete latent models to take advantage of automatic differentiation offered by modern deep learning frameworks.

Recently, a lot of new approaches to discrete latent models have been proposed, influenced by the Vector Quantized Variational Auto Encoders (VQ-VAE) introduced in van den [START_REF] Oord | Neural discrete representation learning[END_REF]. In this paper, the discrete posterior distribution is defined by associating, with each observation, one of a finite set of codebooks, whose positions are learned during training in order to partition the latent space. The main contribution of this paper is two-fold : first, it is shown that a rough approximation of the gradient of the posterior distribution allows to estimate all parameters using gradient descent ; second, the training procedure is decomposed into steps. In order to easily learn the auto encoder parameters, an uninformative prior is first considered. Samples generated after this step cannot catch the complex dependencies that lie in the latent space. To produce coherent samples, a complex prior model is trained on the latent space, while keeping the previously learnt parameters frozen. Because these prior models are usually already challenging to fit on their own, most applications of the VQ-VAE have not been able to jointly train both parts of the network, see [START_REF] Sun | Generating diverse and natural text-to-speech samples using a quantized fine-grained vae and autoregressive prosody prior[END_REF].

We now review alternative methods for defining a discrete posterior distribution, as well as an appropriate prior model.

Differentiation of the posterior. Sampling discrete variables from the posterior prevents gradient propagation through the model ; while the authors of the VQ-VAE proposed a straight-through approximation, other approaches have addressed this issue. In [START_REF] Lorberbom | Direct optimization through argmax for discrete variational auto-encoder[END_REF], the model is optimized through direct loss minimization, a

Chapitre 5

Prior models for discrete latent states

In the previous chapter, we explored latent space models applied to the forecasting of hourly relative humidity records in a building. We showed that a discrete representation of this data allows for simpler parameter estimation and better interpretability, without degrading the performance of the model, in terms of precision and quality of confidence intervals. Whereas we limited ourselves to simple Markovian prior models, in this chapter we experiment with recent advances in complex distribution modelling, such as diffusion bridges.

This chapter is organized as follows : in Section 5.1, we introduce the limitation behind using autoregressive priors, as well as the appeal of diffusion probabilistic models, before proposing a new mathematical framework for discrete latent models allowing estimating all parameters jointly. We review related works in Section 5.2, before presenting our methodology in Section 5.3. In Section 5.4, we present a set of experiments conducted on a toy problem, two image datasets and the relative humidity forecasting task. Due to limitations arising during the training phase, we propose an extension of diffusion applied to discrete data in Section 5.5, and discuss the overhaul results of this new approach in Section 5.6.

The results presented in this chapter are adapted from the following contribution : Diffusion Bridges Vector Quantized Variational Autoencoders, Cohen, M., Quispe, Q., Le Corff, S., Ollion, C., Moulines, E., Proceedings of the 39th International Conference on Machine Learning, Volume 162.

Introduction

Vector Quantized-Variational AutoEncoders (VQ-VAE) are generative models based on discrete latent representations of the data, where inputs are mapped to a finite set of learned embeddings. To generate new samples, an autoregressive prior distribution over the discrete states must be trained separately. This prior is generally very complex and leads to slow generation. Additionally, the implementation of VQ-VAE relies on many practical tricks, already highlighted in the previous chapter, see Section 4.5.2. Despite these limitations, the VQ-VAE and its derived Secondly, the autoregressive nature of the proposed prior models (PixelCNN and WaveNet) has several draw-backs in the general case, which are the same in the observation and latent space. The data is assumed to have a fixed sequential order, which forces the generation to start at a certain point. For instance, when modelling an image, such a prior would typically start modelling the upper left corner, then span the image in an arbitrary way. At each step, a new latent variable is sampled using the previously sampled pixels. This is also the case when modelling a complex, high dimensional lattice of latent vectors. During inference, the model may then accumulate prediction errors. Additionally, the runtime process, which depends mainly on the number of network evaluations, is sequential and depends on the size of the image or the multi-dimensional lattice. The influence of the prior is further explored in [START_REF] Razavi | Generating diverse high-fidelity images with vq-vae-2[END_REF], where VQ-VAE is used to sample images on a larger scale, using two layers of discrete 2021). The general idea is to apply a corrupting Markovian process on the data through T corrupting steps and learn a neural network that gradually denoises or reconstructs the original samples from the noisy data. For example, when sampling images, an initial sample is drawn from an uninformative distribution and reconstructed iteratively using the trained Markov kernel. This process is applied to all pixels simultaneously, so no fixed order is required and the sampling time does not depend on sequential predictions that depend on the number of pixels, but on the number of steps T . While this number of steps can be large (T = 1000 is typical), simple improvements enable to reduce it dramatically and obtain ×50 speedups [START_REF] Song | Denoising diffusion implicit models[END_REF]. These properties have led diffusion probability models to receive much attention in the context of continuous input modelling.

Our work addresses both limitations by introducing a new mathematical framework that extends the VQ-VAE to non autoregressive priors. The main claim of our proposed approach is that using diffusion bridges in a continuous space is a very efficient way to learn complex discrete distributions, with support on a large space. We propose the following contributions :

-We develop a new mathematical framework for quantized latent models, that extends and generalizes the standard VQ-VAE. Our method enables end-to-end training and, in particular, bypasses the separate training of an autoregressive prior.

-To this end, we build a diffusion bridge between a continuous coded vector and a non-informative prior distribution. The latent discrete states are then given as random functions of these continuous vectors.

-We show that our model is competitive with the autoregressive prior on the mini-Imagenet and CIFAR dataset and is efficient in both optimization and sampling. We also demonstrate an application for time series, by improving on the variational model presented previously, see Section 4.5.3.

Figure 5.1 describes the complete architecture of our model.

Related Works

Discrete Generative denoising. There exists approaches to diffusion probabilistic models, such as presented for the diffusion bridges, in the context of discrete data. In [START_REF] Hoogeboom | Argmax flows and multinomial diffusion : Learning categorical distributions[END_REF], the authors propose multinomial diffusion to gradually add categorical noise to discrete samples for which the generative denoising process is learned. Unlike alternatives such as normalizing flows (see [START_REF] Kobyzev | Normalizing flows : An introduction and review of current methods[END_REF] for a review), the diffusion proposed by the authors for discrete variables does not require gradient approximations because the parameter of the diffusion is fixed.

Quantitative results

We benchmarked our model using three metrics, in order to highlight the performance of the proposed prior, the quality of produced samples as well as the associated computation costs. Results are given as a comparison to the original PixelCNN prior for both the miniImageNet (see Table 5.2) and the CIFAR10 (see Table 5.3) datasets.

Negative Log Likelihood. Unlike most related papers, we are interested in computing the Negative Log Likelihood (NLL) directly in the latent space, as to evaluate the capacity of the priors to generate coherent latent maps. To this end, we mask a patch of the original latent space, and reconstruct the missing part, similar to image inpainting, following for instance Van Oord et al. (2016). In the case of our prior, for each sample y, we mask an area of the continuous latent state z 0 e , i.e. we mask some components of z 0 e , and aim at sampling the missing components given the observed ones using the prior model. Let z 0 and z e 0 (resp. z 0 and z e 0 ) be the masked (resp. observed) discrete and continuous latent variables. The target conditional likelihood is

This likelihood is intractable and replaced by a simple Monte Carlo estimate pθ (z 0 |z e 0 ) where z e 0 ∼ p θ (z e 0 |z e 0 ). Note that conditionally on z e 0 the components of z 0 are assumed to be independent but z e 0 are sampled jointly under p θ (z e 0 |z e 0 ). As there are no continuous latent data in PixelCNN, p θ (z 0 |z 0 ) can be directly evaluated.

Fr échet Inception Distance. We report Fr échet Inception Distance (FID) scores by sampling a latent discrete state z ∈ E N from the prior, and computing the associated image through the VQ-VAE decoder. In order to evaluate each prior independently from the encoder and decoder networks, these samples are compared to VQ-VAE reconstructions of the dataset images.

Kullback-Leibler divergence. In this experiment, we draw M = 1000 samples from test set and encode them using the trained VQ-VAE, and then draw as many samples from the pixelCNN prior, and our diffusion prior. We propose then to compute the empirical Kullback Leibler (KL) divergence between original and sampled distribution at each pixel. Figure 5.4 highlights that PixelCNN performs poorly on the latest pixels (at the bottom) while our method remains consistent. This is explained by our denoising process in the continuous space which uses all pixels jointly while PixelCNN is based on an autoregressive model. In this thesis, we develop deep learning architectures for modelling building energy consumption and air quality.

Using historic data, we propose to optimize energy demand, while improving indoor comfort and well being. Because modelling the behavior of a building is a complex task, where many of the relevant factors are unknown, we quantify the uncertainty associated with each prediction of our models.

When simulating buildings behaviors, we show in Chapter 3 that we can replace numerical simulators such as TRNSYS with statistical surrogate models. Once trained, they offer much faster computation times, which allows us to run costly optimization tasks in a reasonable time frame. We present an application on two real buildings handled by Oze-Energies. The unknown parameters of the building, such as physical properties or HVAC usages, are estimated by comparing the output of the model with the historic data gathered. Then, energy loads are optimized by evaluating simulated scenarios from the metamodel, and selecting a set of HVAC settings leading to a reduced consumption for an equivalent thermic comfort. This experiment demonstrates that results are coherent between the metamodel and the original physical simulator TRNSYS, throughout the calibration and optimization tasks. Additionally, the speed of the metamodel, and its ability to parallelize dozen of simulations, allows us to calibrate buildings that would have taken days using TRNSYS.

After demonstrating the performance of statistical models to approximate complex functions, we explore methods for quantifying their uncertainty. In a context where input variables may be noisy or unavailable, predicting a single point estimate cannot reflect the potential uncertainty ; instead, we model the distribution of the observations, from which we can quantify the uncertainty. Well known statistical models, such as Hidden Markov Model, fit this description, however their training procedure usually do not scale well to high number of parameters. In Chapter 4, we propose two approaches for combining the approximation capabilities of neural networks, with uncertainty modelling techniques.

We start by modelling noise on the recurrent layers of neural networks, whose parameters are estimated using Sequential Monte Carlo (SMC) methods. As it is sufficient to constraint this modelling to the last layer of the model only, we develop a decoupled deep learning architecture adapted to time series. The parameters of the model are first estimated in an efficient, deterministic gradient descent. Then, the weights of the last layer are finetuned by minimizing the log likelihood associated with a set of weighted particles. On a relative humidity forecasting task, our model produces accurate predictions along with confidence intervals.

In a second approach, we propose a quantized latent model. Recent advances in generative modelling have pushed towards these models, as they can lead to a more meaningful representation of the data, without degrading performance. In our case, we are able to simplify the training procedure, as we no longer rely on the complex series. Many alternative to the Path-space smoother have already been proposed in the literature, that allow to mitigate particle degeneracy with limited additional cost. Implementing such algorithms seems like the natural next step in the process of improving our methodology.

In addition, SMC methods shine in that parameters can be updated online, a use case particularly adapted to Oze-Energies. Modelling the changes in a building during an entire is extremely complex, which is why we usually limit ourselves to short time periods, about a few months. Instead of performing independent trainings for different part of the year, we could update the learnt parameters all along the year, in order to better match local weather and occupation conditions.

Variational discrete latent models. In this thesis, we presented simple Variational Inference training procedures, in order to focus on the models and their applications. In the future, it would be interesting to develop parameter estimations with more complex methods from the literature, such as the Importance Weighted VAE which allows to tighten the lower bound on the likelihood, or the β-VAE which introduced an new hyper parameter for balancing the prior loss term with reconstruction accuracy.

Additionally, one could explore more diverse sampling procedures and prior models. In the presented experiments, we constrained ourselves to quantizing vectors by sampling one of the neighboring codebook. Yet our framework is designed for any discrete law, which opens new perspectives for discrete latent models. Similarly, comparing the performance of more diverse prior models could bring new insights toward their impact on the overall performance, as well as on the modelled distribution of the latent states. Finally, we believe these architectures could be relevant in semi supervised learning, for instance by first training the generative model unsupervised, then using the available annotations to finetune the prior model. This way, we would be able to leverage important amounts of data, with limited annotation cost.