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Résumé: Cette thèse se concentre sur l'inférence
de modèles graphiques gaussiens multi-échelles ap-
pliqués à des données omiques. Les nombreuses
méthodes statistiques existantes pour l'inférence
de réseaux supposent généralement que le ré-
seau est parcimonieux (peu d'interactions réelles
parmi les interactions possibles) et font parfois
l'hypothèse de l'existence d'une structure sous-
jacente, qu'elle soit connue ou non. Ces a priori
permettent d'obtenir un résumé synthétique des
interactions présentes entre les variables d'un en-
semble de données.

Dans un premier temps, nous avons déve-
loppé une nouvelle approche d'inférence de graphes
permettant d'estimer des graphes à plusieurs ni-
veaux de granularité tout en recouvrant une struc-
ture de classi�cation hiérarchique sur les variables.

Pour cela, nous nous sommes basés sur les tech-
niques de sélection de voisinage et de classi�ca-
tion hiérarchique convexe. La fonction de pseudo-
vraisemblance dérivée a été optimisée grâce à une
méthode de continuation utilisant le lissage de
Nesterov.

Dans un second temps, nous avons e�ectué
des analyses de données omiques provenant de
populations naturelles de peupliers. Ces analyses
ont consisté à étudier conjointement des données
omiques de di�érentes natures a�n de mettre en
lumière en particulier les mécanismes de régula-
tion entre données épigénétiques et données géné-
tiques. Nous avons également pris en compte le
problème de la nature hétérogène des sources de
données grâce à des transformations de variables
permettant de revenir au cadre gaussien.

Title: Integration of complex omics data through Multiscale Gaussian Graphical Models
Keywords: Neighborhood selection � Convex hierarchical clustering � Gaussian graphical models �
Omic data - Nonsmooth optimization

Abstract: This thesis addresses the inference of
multiscale Gaussian graphical models with applica-
tions to omic data. Most existing statistical meth-
ods for inferring networks assume sparsity (few fun-
damental interactions among possible interactions)
and sometimes assume a known or unknown under-
lying structure. These priors enable summarizing
the interactions among variables in a data set.

To estimate graphs at several levels of granu-
larity and uncover a hierarchical clustering struc-
ture on variables, we developed a novel graphical
inference approach. This approach relies on neigh-

borhood selection and convex hierarchical cluster-
ing techniques. The resulting pseudo-likelihood
function is optimized via a continuation method
using Nesterov smoothing.

We also analyzed omics data from natural pop-
ulations of poplars, jointly studying di�erent types
of omics data to highlight the mechanisms of regu-
lation between epigenetic and genetic data. To ad-
dress the heterogeneity of data sources, we trans-
formed variables to return to the Gaussian frame-
work.
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1 - Introduction

Inferring networks from biological data is important to gain a more complete un-
derstanding of the biological mechanisms underlying a particular phenomenon. Net-
works are a natural way to integrate and describe how biological variables interact,
allowing the identi�cation of complex interactions. With the emergence of high-
throughput sequencing techniques, it is possible to generate large amounts of omics
data related to the genome, transcriptome, genetic variations and metabolome.
The highly dimensional nature of these data is the main di�culty from a statistical
and interpretation point of view. The objective of the research is to propose and
study a network inference method that takes into account a group structure or
hierarchy between variables. Identifying groups of densely connected nodes in the
network may correspond to biological variables with related functions and o�ers
the possibility of constructing multiscale structures to synthesize the information
retrieved by the groups and improve interpretability. This clustering task can be
considered before or in conjunction with the network inference task. Probabilistic
graphical models represent a well-suited model for inferring relationships between
variables. The research will focus on a general subclass of graphical models where
the conditional distribution at the nodes is Gaussian and examine methods for
estimating clusters with convex criteria.

The research is motivated by the EPITREE (Evolutionary and functional im-
pact of epigenetic variations in forest trees) project, which seeks to understand
how epigenetics, in this case DNA methylation, gene expression and allelic varia-
tion, in�uence mechanisms of adaptation and phenotypic plasticity in forest trees.
Epigenetics is the study of heritable changes that a�ect gene expression without
altering the DNA, while phenotypic plasticity is the ability of an individual genotype
to express di�erent values of a given phenotypic trait under di�erent environmen-
tal conditions (Rey et al., 2016). Trees are remarkable organisms that are long-
lived, have complex life cycles, and produce wood, while providing a wide range of
ecosystem services. In recent decades, widespread forest dieback due to drought
and heat stress has been observed worldwide (Anderegg et al., 2016). These events
highlight the vulnerability of forest ecosystems to environmental change and the
urgent need to understand how trees respond to environmental stress. Indeed,
climate change is the factor that will have the greatest impact on biodiversity by
2100, after land use (Chapin Iii et al., 2000). It is known that forest trees have
complex mechanisms that allow them to adapt to environmental stressors (Bruce
et al., 2007). Understanding the molecular mechanisms underlying their adaptation
is therefore essential for developing conservation and management strategies for
forest ecosystems. The EPITREE project studies the molecular mechanisms under-
lying tree adaptation, focusing on two tree models, poplar and oak. These species
were chosen for their genetic diversity and their potential to adapt to changing
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environments.

The project consists of several work packages, which include screening of can-
didate regions for epigenomic analysis and genome sequencing using modern omics
technologies. These technologies have generated data on methylated single poly-
morphisms, di�erentially methylated regions, gene expression and single nucleotide
polymorphisms. The PhD research is primarily motivated by the fourth work pack-
age, which aims to perform an integrative analysis to model the multi-scale rela-
tionships between quantitative traits and their molecular determinants. Speci�cally,
this work package aims to quantify the contribution of genetic and epigenetic di-
versity to phenotypic variation, to study the impact of oak and poplar evolution on
epigenomic plasticity, and to determine whether di�erentially methylated regions
at the gene level are conserved between the two species. In addition, this project
aims to improve models for predicting quantitative trait variation by combining
genetic and epigenetic information. Graphical models are a useful tool for infer-
ring interactions between genetic information and methylation patterns, and may
provide answers to some of the questions raised in the project.

Probabilistic graphical models (PGMs, Lauritzen (1996); Koller and Friedman
(2009)) have become a popular tool for analyzing high-dimensional data and cap-
turing the interactions between variables. They are widely used in various applica-
tions, such as genomics and image analysis, to reduce the number of parameters
by selecting the most relevant interactions between variables. One class of PGMs
that is particularly useful in Gaussian settings is the undirected Gaussian graph-
ical models (GGMs). In high-dimensional statistics, Gaussian graphical models
are often assumed to be sparse, meaning that only a small number of variables
interact compared to the total number of possible interactions. This sparsity as-
sumption o�ers both statistical and computational advantages by simplifying the
dependence structure between variables (Dempster, 1972) and enabling the devel-
opment of e�cient algorithms. To support this approach, many researchers have
developed methods to estimate sparse GGMs from data. These methods include
neighborhood selection and penalized maximum likelihood estimation.

In undirected Gaussian graphical models, inferring the conditional indepen-
dence graph (CIG) involves identifying the support of the precision matrix Ω (the
inverse of the variance-covariance matrix). To learn the CIG of GGMs, several
ℓ1-penalized methods have been proposed in the literature. One popular method
is the neighborhood selection (MB, Meinshausen and Bühlmann (2006)) approach
based on nodewise regression using the least absolute shrinkage and selection oper-
ator (LASSO). This method focuses on learning only the structure of the network.
The MB method has spawned a long line of work in nodewise regression meth-
ods, including extensions with various forms of sparsity-inducing penalties such
as the Dantzig selector (Yuan, 2010) and the Clime estimator (Cai et al., 2011).
Another family of sparse CIG inference methods directly estimates Ω via the min-
imization of the ℓ1-penalized negative log-likelihood (Banerjee et al., 2008). This
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method, called the graphical LASSO (GLASSO, Friedman et al. (2008)), bene�ts
from many optimization algorithms (Yuan and Lin, 2007; Rothman et al., 2008a;
Banerjee et al., 2008; Hsieh et al., 2014).

LASSO-type regularization methods are widely used for conditional indepen-
dence graph estimation and have been shown to be robust to high-dimensional
problems. However, they have limitations in the presence of strongly correlated vari-
ables, which are well-known and have been discussed in the literature (Bühlmann
et al., 2013; Park et al., 2006). To overcome these limitations and improve the esti-
mation procedure, previous works have attempted to integrate clustering structures
among the variables. Several studies have proposed di�erent methods for incor-
porating clustering structures, including Honorio et al. (2009), Ambroise et al.
(2009), Mazumder and Hastie (2012a), Tan et al. (2015), Devijver and Gallopin
(2018), and Yao and Allen (2019).

The methods discussed earlier utilize the group structure to simplify the graph
inference problem and infer the conditional independence graph between single
variables. However, the inference of the CIG between groups of variables or repre-
sentative variables of the groups has received less attention. Although some works
have addressed this problem, they have mostly focused on two-level estimations,
i.e., at the level of single variables and provided known groups (see, e.g., Cheng
et al. (2017)). The research problem addressed in this work aims to de�ne an in-
ference method that allows for more than two levels of granularity estimations with
unknown groups. This problem is mainly motivated by applications in biological
data analysis where data from multiple sources, typically multi-omic data, need
to be analyzed. In such cases, it might be necessary to group variables sharing
the same characteristics and simultaneously take that into account in the network
inference procedure, using a unique cost function instead of alternating clustering
and network inference tasks.

Our research aims to address the inference of hierarchical clustering struc-
tures that are more intuitive for interpretation and focus on learning the inferred
network structure rather than estimating the coe�cients of the precision matrix.
Although the applications are mainly motivated by biological questions from the
EPITREE project, answering these questions may require using other dedicated
machine learning tools. From a mathematical background, our research is located
at the crossroads of probabilistic graphical inference, clustering, and convex opti-
mization. From a statistical biological background, we address various biological
questions, primarily concerning the impact of epigenetics on poplar local adapta-
tion, which requires tools such as di�erential gene analysis, enrichment analysis
of gene sets, transformation of count data, and gene selection methods. Omics
applications include applications on transcriptomic (gene expression), epigenetic
(especially DNA methylation), genetic (especially SNPs), and an illustration on
metagenomic data (microbial abundance).

The proposed methodology for graphical inference is called Multiscale Graphi-
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cal LASSO (MGLASSO), which is a pseudo-likelihood-based method for estimating
hierarchical clustering structures and graphical models that depict the conditional
independence structure between clusters of variables at each level of the hierarchy.
MGLASSO combines neighborhood selection with a fused-LASSO type penalty for
clustering (Pelckmans et al., 2005; Hocking et al., 2011; Lindsten et al., 2011).
While the use of fusion penalties in Gaussian graphical model inference has been
widely studied, previous works have mainly focused on penalized likelihood and
investigated fusion penalties for enforcing local constancy in the nodes of the in-
ferred network (Honorio et al., 2009; Yao and Allen, 2019; Lin et al., 2020). In
contrast, MGLASSO employs a pseudo-likelihood criterion that is more computa-
tionally e�cient and establishes a link with multiscale graphical models. Although
the criterion used is similar to that used in supervised convex clustering (Hallac
et al., 2015; Chu et al., 2021), MGLASSO behaves more like a multitask learning
problem (Chiquet et al., 2011) due to its coupling with Gaussian graphical infer-
ence. In biological applications, MGLASSO relies on various data transformations
adapted to the nature of the data, including the center-log ratio (Aitchison, 1982)
for compositional data.

MGLASSO, like Yao and Allen (2019), is a method that combines Gaussian
graphical models and convex clustering. However, unlike their work, we focused
on the neighborhood selection framework and proposed adding a sparsity-inducing
penalty (LASSO) to produce sparser results. We have also made available a beta
version R package on the CRAN that implements the approach (Sanou, 2022).
The algorithm uses a basic path algorithm to highlight the estimated multiscale
structures. Our approach can also be seen as an extension of the SpiecEasi (Kurtz
et al., 2015) method to multiscale networks when applied to compositional data
with the centered log ratio transformation. Our biological applications, within
the framework of the EPITREE project, demonstrate that the DNA methylation
epigenetic mark for poplars can be used as markers of the genetic structure of the
studied populations (Sow et al., 2023).

The remaining of the manuscript is structured into three chapters. Chapter
2 provides a foundational understanding of graphical modeling, convex clustering,
and convex optimization, which are necessary for comprehending the rest of the
manuscript. In Chapter 3, the Multiscale Graphical Lasso (MGLASSO) is intro-
duced as a novel approach to Gaussian graphical model inference that combines
LASSO and fuse-group-LASSO penalties. Finally, in Chapter 4, the results of ap-
plying MGLASSO and other data analysis tools in the context of the EPITREE
project are presented.

Publications

� E. Sanou, C. Ambroise, G. Robin, Inference of Multiscale Gaussian Graphical
Model, Computo, 2023.
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� M. Sow et al., Epigenetic Variation in Tree Evolution: a case study in black
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� E. Sanou, mglasso: Multiscale Graphical Lasso, CRAN package, 2022.
https://CRAN.R-project.org/package=mglasso
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Notations

In this section we describe the notations used in the remaining of the manuscript.

Speci�c sets

X discrete or continuous space
Sp≻0 set of real symmetric p× p positive de�nite matrices

Vectors and matrices

X = (X1, . . . , Xp) p-dimensional random vector or data matrix if ∈ Rn×p

XA subset of X with variables indices taken in A
V al(X) set of values that X can take
Xk k-th column in X
Xi i-th row in X

X\(i,j) X deprived of columns i-th and j-th columns
βi ∈ Rp−1 regression vector
βi
k multiple regression coe�cient of i-th variable on k-th variable

V ec(.) convert a matrix into a column vector.

Probability

f(.) probability density function.
ϕ(.) potential functions.
⊥ independence.
X ⊥⊥ Y|Z X is conditionally independent of Y given Z.

Gaussian distribution

Σ covariance matrix
S empirical covariance matrix
Ω = Σ−1, precision matrix
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This chapter � which can be read independently � establishes the necessary
mathematical background for the rest of the manuscript and reviews existing re-
search of the �eld.

The manuscript focuses on a subclass of graphical models with no directional
arrows between the edges, as described in Section 2.1. The foundations of the
Gaussian graphical model, a particular case of the undirected graph model, are
introduced. The model and the central notion of conditional independence are
de�ned. Section 2.1.3 presents an overview of state-of-the-art inference approaches
for Gaussian graphical models.

Section 2.2 presents convex clustering, a method used to group data points
based on a convex criterion and will be used in conjunction with the Gaussian
graphical model inference problem later in the manuscript. Some essential proper-
ties of the convex approach and the links between convex clustering and clustering
approaches, such as hierarchical agglomerative clustering and the k-means method,
are discussed.

In Section 2.3, non-smooth convex optimization techniques are reviewed, in-
cluding subgradient methods, proximal methods such as the alternating direc-
tion multiplier method, and smoothing methods, with emphasis on the Nesterov
smoothing technique.
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2.1 Undirected Graphical Models

Probabilistic graphical models (Lauritzen, 1996; Koller and Friedman, 2009),
often seen as a marriage between probability and graph theory (Barber, 2012),
are widely used in high-dimensional data analysis to synthesize the interactions
between variables. In many applications, such as statistical physics, genomics,
image analysis, or social network analysis, graphical models can reduce the number
of parameters by selecting the most relevant interactions through parsimony. A
graph consists of a set of nodes and edges between the nodes. There are two
prominent traditional families of graphical models depending on the nature of the
edge that connects the nodes:

� Markov random �elds (MRF), also called undirected graphical models: These
models were �rst applied in 1902 by Gibbs (Bryan, 1902) to describe the
behavior of a system of interacting particles. MRFs are based on undirected
graphs with only undirected edges, hence useful to describe soft constraints
between variables. Figure 2.1 illustrates a 3-states Potts model. This model
(Potts, 1952) is a generalization of the Ising model which arose in statistical
physics to model interactions between spins of atoms. In the K-states Potts
model, each node takes values in a discrete space = {0, 1, . . . ,K−1} where
K > 2 is an integer. Nodes can only interact with their nearest neighbors,
and the model encourages neighboring nodes on the square lattice to be in
the same state.

Figure 2.1: Potts model

� Bayesian networks also called directed graphical models: Directed graphical
models' idea can be traced back to 1921. They were used by Wright (1934)
to model genetic inheritance in human family trees. They are expressed
via directed acyclic graphs (DAG) and help provide causal interpretations.
DAGs are graphs with only directed edges, i.e., arrows and no directed cycle.
Figure 2.2 shows a DAG that models the transmission of blood type from
parents F , M to child C according to their respective genotypes. Human
genetic material is encoded in DNA strings stored in 23 pairs of chromo-
somes. For each pair, one chromosome comes from the father and the other
from the mother. Chromosomes can be divided into regions called loci,
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which are responsible for observable traits such as eye color or blood type.
The genotype corresponding to the blood type is the pair (XF , XM ) which
takes values in {A,B,O}2. These types of models can be used for genetic
counseling, for example, to predict the genotypes of expected children.

Genotype C

Genotype F

Blood type F

Genotype M

Blood type F

Blood type C

Figure 2.2: Directed acyclic graph

Another family of graphs, less used, derived from the previous ones is the mixed
graphs (Sadeghi and Lauritzen, 2014). They contain more than one type of edge:
directed, undirected and bidirected. Regardless of the type of graph, graphical
models gravitate around the central concept of conditional independence. It occurs
when two sets of variables are independent given an additional set.

The following sections focus on the undirected Gaussian graphical model and
its inference problem. The three Markov properties are recalled as well as their
links with conditional independence. Then, an overview of existing sparse inference
approaches is given. Finally, inference methods that assume the existence of an
underlying clustering structure on the variables are presented.

2.1.1 Markov properties and factorization

This section contains some theoretical results related to undirected graphical
models.

2.1.1.1 Markov properties for Undirected Graphical Models

As mentioned, a graph is undirected if all edges have no directional arrows.
We usually denote undirected graphs as G. Let V = {1, . . . , p} and let P2(V ) be
the subsets of V of size 2.

De�nition 2.1. For E ⊆ P2(V ), an undirected graph is a pair G = (V,E)

where V is the set of vertices and E the set of edges. The graph is complete if

E = P2(V ). For a subset C ⊂ V , GC = (C, EC) is the subgraph of G induced by

C, with EC the set of edges in C × C. Whenever GC is complete, C is said to be

a clique of G.

For example, the graph in Figure 2.3 consists of four nodes forming a complete
graph with six undirected edges. The subgraphs induced by the sets of nodes
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{X1, X2, X3}, {X2, X3, X4} or {X1, X2, X4} are cliques of size 3 of the graph
G.

X1 X2

X3X4

Figure 2.3: The set C1 = {X1, X2, X3} is an example of clique. The set
C2 = {X1, X2, X3, X4} is a complete graph.

Undirected Graphical Models can be translated to conditional independence
constraints through a set of rules called Markov properties.

De�nition 2.2 (Conditional independence). Let XA,XB,XC be sets of ran-

dom variables. XA is said to be independent of XB given XC in a joint prob-

ability distribution P and writes XA ⊥⊥ XB|XC i�.

P (XA = xA,XB = xB|XC = xC) = P (XA = xA|XC = xC)P (XB = xB|XC = xC)

for all values x = (xA,xB,xC) ∈ V al(X), where V al(X) denote the set of

values that X can take.

The concept of conditional independence provides a precise and formal mean-
ing to the idea of information irrelevance. The notation XA ⊥⊥ XB|XC can be
interpreted as follows: given the information contained in XC , knowledge of XB

is irrelevant for understanding XA.
Let us consider conditional independence in the context where X = (Xv),

where v ∈ V , is a p-dimensional random vector taking values in some space
X p = ⊗p

s=1Xs, with a joint probability distribution P . Depending on the applica-
tion, the space X p can be continuous or discrete. When the collection of random
variables is associated with an undirected graph G, three Markov properties can
be established.

Let us �rst introduce the notion of separation, which is based on the idea that
speci�c subsets of nodes in a graph can block the �ow of information between
other subsets.

De�nition 2.3 (Separation). Let A,B, S be subsets of V. The set S is said to

separate set A from set B if any path from any element of A to any element

of B passes through S.

De�nition 2.4 (Global Markov property). Let A,B, S ⊂ V be three disjoint

subsets such that S separates A from B in the graph G. X satis�es the global

Markov property with respect to the graph G i�.

XA ⊥⊥ XB|XS . (2.1)

where XA = (Xk)\k ∈ A.
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The global Markov property is closely related to the other two Markov proper-
ties: the local and pairwise Markov properties.

Denote ne(i) = {u ∈ V : {u, i} ∈ E} the neighbourhood or Markov blanket
of node i and cl(i) = ne(i)∪{i}, the closure of node i. The local Markov property
states that each node is conditionally independent of its non-neighbors, given its
neighbors.

De�nition 2.5 (Local Markov property). X satis�es the local Markov Prop-

erty with respect to the graph G i�.

Xi ⊥⊥ XV \ cl(i)|Xne(i) (2.2)

for any node i ∈ V.

In contrast, the pairwise Markov property states that two non-adjacent nodes
are conditionally independent given their common neighbors.

De�nition 2.6 (Pairwise Markov property). X satis�es the pairwise Markov

property with respect to the graph G i�.

Xi ⊥⊥ Xj |XV \{i,j} (2.3)

whenever there is no edge between nodes i and j ie (i, j) /∈ E.

The global Markov property (2.1) implies the local property (2.2), which in turn
implies the pairwise property (2.3) (Lauritzen, 1996). When X has a continuous
and strictly positive joint density with respect to the Lebesgue measure, the three
properties are equivalent.

Thanks to the Markov properties, particularly the global Markov property, the
graph in Figure 2.4 can be interpreted as follows: X3 ⊥⊥ X4|X2. This is because
variable X2 separates the variables X1 and X4.

X1

X2

X3

X4

Figure 2.4: An undirected graph

2.1.1.2 Factorization

Another alternative to connect the graphical and probabilistic structure is
through factorization, which is used as a basis for many inference algorithms.
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De�nition 2.7. The density function f of probability distribution P with re-

spect to product measure ν is said to factorize with respect to the graph G if it

can be represented as follows

f(x) =
1

Z

∏
C∈C

ϕC(xC), (2.4)

where C denotes the set of maximal cliques, ϕ = (ϕC , c ∈ C) is a collection of

positive potential functions and Z is a normalization constant.

The factorization properties of graphical models make it possible to perform
tractable computations with multivariate distributions. By representing a joint
probability distribution as a product of factors, where each factor depends only
on a subset of variables corresponding to a clique in the graph, computations can
be performed locally on the cliques and then combined using factorization. This
enables the development of e�cient inference and learning algorithms for large and
complex models.

It is also worth noting that factorization implies the global Markov property
for any probability distribution P (Lauritzen, 1996). In the special case of strictly
positive distributions, there is an equivalence between factorization and the three
Markov properties, through the following theorem:

Theorem 2.1 (Hammersley-Cli�ord). A strictly positive and continuous prob-

ability distribution P with respect to a product measure ν factorizes with respect

to a graph G = (V,E) if and only if P satis�es the pairwise Markov property

with respect to G.

In other words, a probability distribution thus satis�es the Markov properties
with respect to an undirected graph if and only if it can be expressed as a positive
product of potential functions, where each potential function depends only on a
subset of variables corresponding to a clique in the graph. An undirected graphical
model can then be considererd as a pair (G,P ) where G is a graph with undirected
edges and P is a distribution that factorizes with respect to G.

The choice of the potential functions ϕC determines the structure of the de-
pendencies between variables in the graphical model.

2.1.1.3 Pairwise Markov networks

In a pairwise Markov network, the joint distribution over a set of random
variables is represented as a product of potential functions, each of which involves
at most two variables. Log-linear models are a way of parameterizing the potential
functions in a pairwise Markov network. Instead of directly specifying the potential
functions, they model the logarithm of these functions as linear combinations of
features. Each feature represents a particular con�guration of the variables, and
its weight determines the contribution of that con�guration to the overall potential
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function. The potential functions are de�ned as:

ϕC(xC) = exp (−ϵC(xC)) ,

where ϵC(xC) = − log ϕC(xC) is called an energy function (Koller and Friedman,
2009). Generally, ϵC is chosen such as

ϵC(xC) = −wCfC(xC)

where wC is the clique weight and fC a feature function over the clique.

De�nition 2.8. Pairwise Markov Networks can be de�ned as a subclass of

undirected graphical models for which the factorizing density function can be

written as

f(x) =
1

Z
exp

 p∑
i=1

wifi(xi) +
∑
i<j

wijfij(xi, xj)

 (2.5)

where wi, wij ,∀i ̸= j are weights, fi, fij feature functions and Z is a normal-

ization constant.

This family of Markov networks is well-known for its simplicity in parameteri-
zation. Pairwise Markov networks restrict the potential functions to be over single
or pairs of variables, which signi�cantly reduces the computational burden and im-
proves the interpretability of the model during the learning step. Some examples of
pairwise Markov networks for which conditional probability distributions of nodes
belong to the exponential family include the Poisson model for count data, Ising or
Potts models for categorical data, and the Gaussian model for continuous variables.
Gaussian graphical models, which use Markov random �elds, are a popular type of
pairwise Markov network.

2.1.2 Gaussian graphical models

Gaussian graphical models (GGMs) or covariance selection models (Lauritzen,
1996) are a special class of undirected graphical models used in gaussian settings.
Let X = (X1, . . . , Xp)T ∈ Rp be a p-dimensional Gaussian random vector, with
zero mean and covariance matrix Σ ∈ Sp≻0, where Sp≻0 denote the set of real
symmetric p × p positive de�nite matrices. Some properties of graphical models
speci�c to Gaussian distributions are given below.

Proposition 2.1. The conditional independence structure of X ∼ Np(0,Σ) is

characterized by the graph G which is uniquely determined by the support of

the precision or concentration matrix Ω = Σ−1.

Proof. The probability density function f of the multivariate normal distribu-

tion is de�ned as

f(X) =
(det(Ω))1/2

(2π)p/2
exp

(
−1

2
XTΩX

)
(2.6)
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The quadratic term can be rewritten as

exp

(
−1

2
XTΩX

)
= exp

−1

2

∑
(i,j)∈E

ΩijX
iXj

 =
∏

(i,j)∈E

ϕ(i,j)∈E(X
i, Xj)

with ϕ(i,j)∈E(X
i, Xj) = exp

(
−1

2ΩijX
iXj

)
. Hence, the distribution can be

factorized in terms of potentials over cliques composed of at most two nodes.

The Hammersley-Cli�ord theorem (2.1) thus ensures that, for any two vertices

i, j /∈ V , Ωij = 0 if and only if the i-th and j-th variables are conditionally

independent given the others i.e. Xi ⊥⊥ Xj |X\(i,j).

Proposition 2.2. The entries of the precision matrix are proportional to par-

tial correlation coe�cients.

Indeed, the partial correlation between Xi and Xj given X\{Xi, Xj} is equal
to −Ωij√

ΩiiΩjj
. The reader may refer to Lauritzen (1996) for proof.

The following corollary can be derived from partial correlations coe�cients
being directly related to regression coe�cients.

Proposition 2.3. Given the regression problem Xi = X\iβi + ϵi, where ϵi is

the normal residuals vector, the regression coe�cient is given by

βi
k = −Ωik/Ωii.

Proposition 6.1 suggests that the GGMs can be estimated by a series of re-
gressions as outlined by Meinshausen and Bühlmann (2006). The next section will
introduce some GGMs estimation methods.

2.1.3 Inference of Gaussian Graphical Models

Let P be an unknown probability distribution that factorizes over a graph G.
Given a set of independent and identically distributed (iid) samples from P , the
task of learning a Gaussian graphical model is to estimate the potential functions
that best �t the distribution (Maathuis et al., 2018). In other words, the goal
is to infer the edges of the graph and the parameters of the distribution. How-
ever, we also include inference methods in this review that consistently recover
the graph structure without necessarily providing consistent parameter estimation.
We di�erentiate learning approaches into three main classes: those without spar-
sity constraints, those which include sparsity-based approaches, and those with
additional constraints on the node structure.

2.1.3.1 Maximum Likelihood Estimation

A natural way to estimate a zero-mean GGM is by using the maximum like-

lihood estimator (MLE). The goal is to maximize the following strictly concave
(Hastie et al., 2015) log-likelihood function given x a realization of X:

l(Ω) =

n∑
i=1

log f(xi|Ω) ∝ log det(Ω)− tr(ΩS) (2.7)
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where S = 1
nX

TX is the empirical covariance matrix and log det the logarithm of
the determinant of the matrix. The solution to this problem is unique and given
by

Ω̂MLE = S−1 (2.8)

whenever S is non singular (Maathuis et al., 2018).
However, MLE is not computable when n is lower than p. Even if calculable,

it often performs poorly (Mazumder and Hastie, 2012a). Indeed the estimator can
result in complete graphs. In the context of high-dimensional statistics, GGMs are
generally assumed to be sparse, meaning that a small number of variables interact
compared to the total number of possible interactions. Dempster (1972) introduced
the idea of estimating the network structure by setting some elements of Ω to zero.
This assumption has been shown to simplify the structure of dependencies between
variables.

2.1.3.2 Edge recovery with sparsity constraints

Following the idea of Dempster (1972), several authors proposed approaches
to recover the precision matrix support using sparsity.

Lasso penalized pseudo-likelihood estimation

Meinshausen and Bühlmann (2006) originally introduced a nodewise regression
approach for neighbourhood selection based on the least absolute shrinkage and
selection operator (Lasso, Tibshirani (1996)). They regress each variableXi, i ∈ V

on the predictors X\{i} := {Xk|k ∈ V \{i}}, taking advantage of the link between
regression coe�cients and precision matrix entries (see proposition 6.1).

Denote β̂i ∈ Rp−1 the regression vector when Xi is considered as response
variable. ∀i ∈ [1, p], the Lasso-based neighborhood regression is solved by opti-
mizing the following problem:

β̂i := β̂i(λ) = argmin
βi∈Rp−1

1

n

∥∥∥Xi −X\iβi
∥∥∥2
2
+ λ

∥∥βi
∥∥
1
. (2.9)

where λ is a non negative regularization parameter and X\i denotes the matrix
X deprived of column i. The neighbourhood is thus all the vertices corresponding
to the non-zero regression coe�cients ie n̂e(i) = {u ∈ V \{i}|β̂i

j ̸= 0}. The
di�erent regressions are then combined applying an `AND' or `OR' rules to infer
the conditional independence graph. `AND' add an edge between Xi and Xj if
βi
j ̸= 0 and βj

i ̸= 0. While in `OR', an edge is added when βi
j ̸= 0 or βj

i ̸= 0.
Later, authors like Rocha et al. (2008), Ambroise et al. (2009) showed that

the neighborhood selection could be seen as a pseudo-likelihood (Besag, 1975)
approximation of the global likelihood.

Proposition 2.4. The neighborhood selection with Lasso applied to each node

of a gaussian graphical model is equivalent to maximizing a penalized pseudo-

likelihood estimation.
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A proof is given in the appendix 7.1. Penalized pseudo-likelihood approxi-
mations are less time-consuming to optimize than penalized maximum likelihood
methods that will be introduced later. They might not necessarily yield better
parameter estimates, but in the context of GGMs edge recovery, they lead to con-
sistent graph structure estimation under `AND' or `OR' rules (Meinshausen and
Bühlmann, 2006).

Other penalized pseudo-likelihood methods include the work of Rocha et al.
(2008) who merged all the linear regressions in Meinshausen and Bühlmann (2006)
into a single one and added symmetry constraints. A symmetrized version have
also been proposed by Friedman et al. (2010) and Peng et al. (2009).

Lasso penalized global likelihood estimation

Several authors have subsequently taken the idea of Lasso penalization of Mein-
shausen and Bühlmann (2006) and applied it to the overall likelihood of the model.
In contrast to neighborhood selection approaches, which are mainly concerned with
estimating the structure of the graph, likelihood-based approaches allow learn-
ing the graph structure and consistently estimating its parameters simultaneously.
They seek to optimize the following convex function (Boyd et al., 2011)

Ω̂ = argmax
Ω∈Sp≻0

log det(Ω)− tr(ΩS)− λ ∥Ω∥1 (2.10)

where S is the empirical covariance matrix, tr(A) the trace of a matrix A, λ a
positive penalty parameter and ∥Ω∥1 =

∑
i,j |Ω|ij . Computation is one of the

main challenges of problem (2.10). A variety of optimization algorithms have been
proposed over the last decades. Some of them are highlighted here.

Yuan and Lin (2007) solved the problem (2.10) by applying the interior points
methods. They exploited the link between (2.10) and the determinant maximiza-
tion problem (Vandenberghe et al., 1998). However, interior point algorithms
are not e�cient for large-scale problems (Hastie et al., 2015). Banerjee et al.
(2008) introduced a dual block coordinate descent approach interpretable as re-
cursive ℓ1−norm penalized regressions. The approach has been re�ned by Fried-
man et al. (2008) and called graphical Lasso. First order optimization methods
include d'Aspremont et al. (2008); Lu (2010). Later other approaches emerged,
which allowed improving the estimation process signi�cantly. Mazumder and Hastie
(2012b) and Witten et al. (2011) used the block diagonal screening rule to speed
up the graphical Lasso algorithm. They showed that the sample covariance matrix's
thresholding leads to the conditional independence graph connected components.
Indeed, the inverse of a block diagonal matrix has the same blocks as the matrix.
The inference problem can then be decomposed into low-dimensional subproblems
within each connected component. Hsieh et al. (2013) developed a proximal New-
ton approach based on the work of QUIC algorithm (Hsieh et al., 2014) that can
scale up to problems with a million variables. It is a block coordinate descent al-
gorithm combined with METIS graph clustering. Their algorithm converges faster
than the methods mentioned above.

26



The Graphical Lasso properties have been largely studied in Yuan and Lin
(2007); Ravikumar et al. (2011); Rothman et al. (2008b). Hence the inference of
GGMs with Lasso penalty has then been extended to di�erent contexts to address
speci�c applications/issues: for multiple sources data integration (Chiquet et al.,
2019), gene regulation networks (Charbonnier et al., 2010), clustered samples (Chi-
quet et al., 2011; Danaher et al., 2014), multiple response variables (Chiquet et al.,
2017b) or even accounting missing data (Robin et al., 2019).

Other sparsity penalties

Remark that in the literature of GGMs, sparsity penalties di�erent from Lasso
have also been explored. The ℓ2 penalty has been studied by Kuismin et al. (2017).
They called the approach ROPE, i.e., the Ridge type operator for precision matrix
estimation. Using the ridge penalty yields a closed form solution to the inference
problem contrarily to Graphical Lasso methods. However, the estimated precision
matrix might not be sparse.

Nonconcave penalties as SCAD (Smoothly Clipped Absolute Deviation, Fan
and Li (2001)) and adaptive Lasso (Zou, 2006) have been used in place of Lasso
by Fan et al. (2009) to address the ℓ1 penalty bias that can occur because of the
linear increase of the penalty on regression coe�cients. However, adaptive Lasso-
like penalties are sensitive to the choice of the initial estimate of the precision
matrix, and the nonconvexity of SCAD can make the computation di�cult.

Other penalties that belongs to the successive regressions family include the
Dantzig selector (Candes and Tao, 2007), the Sqrt-Lasso (Belloni et al., 2011), the
scaled-Lasso (Sun and Zhang, 2012), the grouped-Lasso (Yuan and Lin, 2006) and
the constrained ℓ1 minimizaton introduced by Yuan (2010), Liu and Wang (2017),
Sun and Zhang (2013), Friedman et al. (2010) and (Cai et al., 2011) respectively.

Kovács et al. (2021) proposed the graphical Elastic Net. The combination
of ℓ1 and ℓ2 penalties in the inference problem leads to stable estimations when
dealing with highly correlated variables. The approach includes in the estimation
procedure the addition of a target matrix which is prior knowledge that is provided
beforehand. Indeed, in strongly correlated variables presence, Lasso performance
is known to be impaired (Bühlmann et al., 2013; Park et al., 2006; Vigneau, 2020;
Grimonprez et al., 2018). In the following, we focus on approaches that tackle this
Lasso bias.

2.1.3.3 Inference while taking into account underlying structure

In a penalized regression problem, the Lasso selects only one feature from a
group of correlated features (Bühlmann et al., 2013). A variety of solutions have
been proposed using di�erent sparsity penalties. Among them, The Elastic-net
(Zou and Hastie, 2005) applies a linear combination of Lasso and ridge penalties
which encourages a grouping e�ect and can select groups of variables. OSCAR
(Bondell and Reich, 2008) achieved that by mixing Lasso and ℓ∞ penalizations.
For its part, the clustered Lasso (She, 2008) de�ned a sort of generalized Fused
Lasso (Tibshirani et al., 2005) criterion where there is no order on the variables.
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Another family of approaches associates a preliminary clustering step with the
model �tting problem. Variables from the same cluster are then averaged to form
new representative variables. Among them, we have Bühlmann et al. (2013) for
the Cluster Representative Lasso and Park et al. (2006).

In the graph inference problem, to overcome this, in addition to sparsity, sev-
eral previous works attempt to estimate CIG by integrating clustering structures
among variables for the sake of both statistical sanity and interpretability. A non-
exhaustive list of works that integrate a clustering structure to speed up or improve
the estimation procedure includes Honorio et al. (2009); Ambroise et al. (2009);
Mazumder and Hastie (2012a); Tan et al. (2015); Yao and Allen (2019); Devijver
and Gallopin (2018).

Duchi et al. (2012) proposed to penalize prior known groups of variables to-
gether via block ℓ1 penalties. In Ambroise et al. (2009), the clustering structure
is uncovered via a mixture model. Di�erent penalty levels are then used for each
group. The penalization is lowered when the variables belong to the same cluster
and increased in the opposite case. Tan et al. (2015) derives from the block diag-
onal screening rule a link between graphical Lasso and single linkage hierarchical
clustering. They then propose to adjust the penalization parameters to each cluster
of connected components. A similar approach is presented in Devijver and Gallopin
(2018) where clusters are selected in a non-asymptotic fashion. Other two-stage
methods include Marlin and Murphy (2009).

Honorio et al. (2009) infer GGMs graph with a prior knowledge of local neigh-
borhood called local constancy. They suppose that when Xi is neighbor to Xj ,
then Xk spatial neighbor of Xi is likely to be neighbor to Xj . The same goes for
non-neighbors nodes. They optimize the following cost function:

maxΩ∈Sp≻0
log(det(Ω))− tr(SΩ)− λ1||Ω||1 − λ2||D⊗Ω||1, (2.11)

where λ1 and λ2 non negative penalty weights, D ∈ Rq×p the matrix of prior
neighbourhood relationships. The problem (2.11) is solved using a coordinate
descent-like algorithm. They showed that their method outperforms the graphical
Lasso of Friedman et al. (2008), covariance selection of Banerjee et al. (2008) and
neighborhood selection of Meinshausen and Bühlmann (2006) in easy and hard
settings. Ganguly and Polonik (2014) extends the work of Honorio et al. (2009)
to the neighborhood selection case. Their neighborhood-fused Lasso consists in
estimating the regression coe�cients through

β̂i(λ1, λ2) = argmin
βi

1

n
||Xi −X−iβi||2 + λ1||βi||+ λ2||Diβi||1 (2.12)

In a recent work, Lin et al. (2020) proposed to simultaneously estimate a
precision matrix and uncover a clustering structure for variables. They maximize

28



the following function:

maxΩ∈Sp≻0

log det(Ω)− tr(SΩ)− λ1

∑
i<j

|Ωij | − λ2

∑
i<j

∑
s<t

|Ωij −Ωst|


(2.13)

The term
∑

s<t |Ωij−Ωst| do the pairwise di�erences between all the concentration
coe�cients.

In the next section, we introduce convex clustering. This is a tool that can
be coupled with the Gaussian graphical model inference problem in order also to
recover clustering and graph structures simultaneously.

2.2 Convex Clustering

As mentioned earlier, LASSO-type regularization methods commonly used for
estimating conditional independence graphs are known to struggle in cases with
highly correlated variables (Bühlmann et al., 2013; Park et al., 2006). To address
this limitation and improve the estimation process, some researchers have proposed
incorporating clustering structures into the analysis. Various methods have been
proposed for this purpose, including those described by Honorio et al. (2009),
Ambroise et al. (2009), Mazumder and Hastie (2012a), Tan et al. (2015), Devijver
and Gallopin (2018), and Yao and Allen (2019).

Clustering is an approach that aims to detect group patterns in data, and
various algorithms exist for this purpose. A comprehensive review can be found in
books such as Hartigan (1975). Here, we will focus on hierarchical agglomerative
clustering (HAC), k-means, and their convex relaxation.

2.2.1 Hierarchical Agglomerative Clustering

Hierarchical Agglomerative (or bottom up) Clustering (Johnson, 1967) is a
partitioning algorithm of a data set into successively big clusters. Clusters at each
level of the hierarchy are obtained by the merging of lower levels clusters. The
process starts with n observations or clusters and ends with one cluster. This
can be achieved by de�ning a dissimilarity between clusters also known as linkage
function.

Contrarily to k-means or k-medoids algorithms, there is no need to specify �rst
the number of clusters. Indeed, the cluster structure is recovered at multiple levels
of granularity.

Some common linkages functions are given below. Let A and B be two clusters.
Denote d(A,B) their dissimilarity and d(xi, xj) the distance between observations
xi ∈ A and xj ∈ B.

In single linkage,

d(A,B) = min {d(xi, xj)} , ∀xi ∈ A, xj ∈ B (2.14)
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In complete linkage,

d(A,B) = max {d(xi, xj)} , ∀xi ∈ A, xj ∈ B (2.15)

In average linkage,

d(A,B) =
1

nAnB

nA∑
i=1

nB∑
i=1

d(xi, xj) (2.16)

where nA, nB are the number of observations in clusters A and B respectively.
The Ward's distance is given by

d(A,B) =
nAnB

nA + nB
d(gA, gB)

2 (2.17)

where gA and gB are the barycenters of clusters A and B respectively.
In order to reduce the computational cost of the HAC algorithm, some dissim-

ilarity update formulas between clustering tree levels have been proposed. Among
them, the Lance-Williams formula (Lance and Williams, 1967) which allows to
compute distance between a newly formed cluster and the other observations as a
function of previous level distances.

The result of HAC can be represented in the form of a tree called dendrogram
whose leaves are observations and nodes intermediate clusters.

HAC is an attractive algorithm in term of ease of interpretation of the hierar-
chical clustering tree. However, the clustering errors made at lower levels remain,
as one's go up in the hierarchy. Moreover, the algorithm is highly sensitive to
perturbations in the input dataset (Chi and Steinerberger, 2019) and is de�ned in
an iterative way without cost function.

2.2.2 K-means clusetring

Let X = {x1, . . . , xn} be a dataset of n observations of a random variable x.

In k-means (Lloyd, 1982; MacQueen, 1967), the objective is to �nd the assignment
of the unlabeled n observations to the desired number of clusters K, and recover
a set of centroids vectors {ck, k = 1, . . . ,K}. Let rik be the binary variable which
indicates if point xi belongs to cluster k. We seek to minimize the following cost
function known as the inertia, with respect to r = {rik} and c = {ck}:

J(r, c) =

n∑
i=1

K∑
k=1

rik ∥xi − ck∥22 . (2.18)

This criterion ensures that each data point xi is assigned to its closest centroid
ck. Remark that dissimilarity measures di�erent from the Euclidean distance can
be used.

The problem (2.18) can be solved using alternating minimization. First, for
each centroid, the set of closest observations is determined. Secondly, the centroid
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is updated by the mean of assigned observations as follows

ck =
1

nk

∑
i∈Ak

xi,

where nk =
∑n

j=1 rjk and Ak is the set of observations indices composing cluster
k. The operation is repeated until the algorithm converges. Note that the previous
algorithm is closely related to the Expectation-Maximization algorithm (Dempster
et al., 1977) for Gaussian Mixture Models (GMMs). As a reminder, a GMM assign
observations to overlapping clusters while de�ning a probabilistic model and has
the following form:

p(x|π1, . . . , πK , µ1, . . . , µK ,Σ1, . . . ,ΣK) =
K∑
k=1

πkpk(x) (2.19)

where the k-th mixture component pk is the normal distribution with mean µk and
covariance matrix Σk, πk are weights with

∑
k πk = 1. K-means can be seen as

a special case of GMM (Murphy, 2022) in which Σk = I the identity matrix and
πk = 1/K.

When ck is de�ned as the observation in X which average dissimilarity to
the cluster's observations is minimal, it's called a medoid. A partitioning around
medoids algorithm (Rdusseeun and Kaufman, 1987) also known as k-medoids can
thus be derived and is more robust to outliers.

Despite being a popular clustering algorithm, K-means algorithm does not
necessarily provide global optima results and is sensible to the algorithm initializa-
tion values. Moreover, it might be subject to instabilities due to its non-convex
objective functions.

Some theoretical results of the method have been surveyed in Steinley (2006).

2.2.3 Convex relaxation of k-means and HAC

The convex relaxation of k-means and HAC (Pelckmans et al., 2005; Hocking
et al., 2011; Lindsten et al., 2011) also known as sum of norms clustering can be
formulated as follows. Given X = {x1, . . . , xn} ∈ Rn×p, we look to minimize with
respect to the centroids matrix α ∈ Rn×p the criterion

1

2

n∑
i=1

∥xi − αi∥22 + λ
∑
i<j

wij ∥αi − αj∥q (2.20)

where λ is a sparsity penalization parameter, {wij} are symmetric positive weights,
αi ∈ Rp is the centroid to which observation xi is assigned to, and ∥.∥q is the
ℓq-norm on Rp with q ≥ 1. The reader is refered to Lindsten et al. (2011) for the
proof of the link between the formulation (6.2) and k-means. The relation between
HAC and (6.2) is proved in Hocking et al. (2011). Indeed clustering methods like
k-means and HAC as outlined by Lindsten et al. (2011); Chi and Lange (2015);
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Radchenko and Mukherjee (2017) and Hastie et al. (2009) have a greedy strategy.
A simple approach like convex clustering solves the clustering problem for a grid
of penalization parameters λ independently and thus provide a global optimum.
The optimization problem being convex, the �nal solution is independent from the
initialization.

Unlike sparsity in GGMs used for features selection, in convex clustering sparsity
allows to determine a clustering structure. The data attachment term (�rst term)
allows centroids to be kept close to the observations that make up their cluster.
The penalization term ∥αi − αj∥q also knowned as fusion term is a fused-group
Lasso like penalty (Yuan and Lin, 2006; Tibshirani et al., 2005) when q > 1 and
fused-Lasso term when q = 1. It encourages the centroids to be sparse in their
di�erences. The common used norms are the ℓ1 and the ℓ2 norms. When q = 1,
the regularization term tends to produce sparse entries in the vectors αi. In the
case q = 2, sparsity is observed in the whole vector instead of its entries.

The penalty λ controls the tradeo� between the model �t and the number
of clusters. Two observations xi and xj belong to the same cluster when their
estimated centroids are identical ie α̂i = α̂j . Usually, strict equality is not required
for the assignement to clusters. A fusion threshold can be de�ned instead. When
λ increases, the fusion strength increases too and centroids tend to fuse together.
For a value of λ large enough, all the clusters merge into a single one.

Now let's consider the regularization path of solutions also so called clusterpath
in Hocking et al. (2011) obtained while convex clustering (6.2). Like for HAC, a
dendrogram can be recovered under some conditions. Recovering tree structures is
closely related to the type of norm and weights used. Some theoretical properties
and algorithms derived for hierarchical convex clustering problems will be addressed
in the following sections.

2.2.4 Convex hierarchical clustering

While solving problem (6.2) for a grid of λ values, it may happen that obser-
vations that were once in the same clusters for a given grid value, split for others.
Some authors have studied conditions under which a tree structure without splits
is obtained. These conditions are highly dependent on the weights {wij}.

When weights are identity ie wij = 1, Hocking et al. (2011) proved that a tree
structure is recovered in the ℓ1-norm space . Chiquet et al. (2017a) extended the
conclusions of Hocking et al. (2011). They showed no split occurs for arbitrary
norms ℓq, q = {1, . . . ,∞}.

Theorem 2.2. (Chiquet et al., 2017a) The solutions path S(λ,w) of the prob-

lem (6.2) contains no splits when q ∈ {1, . . . ,∞} and wij = 1.

Theoritical guarantees on cluster recovery with identity weigths have been de-
rived by Panahi et al. (2017). Tan and Witten (2015) studied some statistical
properties and thus proved a link between single linkage clustering and convex
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Figure 2.5: E�ect of weights wij choice on the clustering path of 10 data points
using distance decreasing weights of the form exp(−γ ∥xi − xj∥22) (Hocking
et al., 2011). Solutions paths while varying λ the fusion penalty, are observed
for ℓ1, ℓ2 and ℓ∞ for two di�erent weights choice. For norms di�erent from ℓ1,
fusions are abrupt when γ = 0 i.e. wij = 1 (�rst-row graphs). Adding weights
improves the tree structure (second-row graphs).

clustering. They also derived upperbounds of penalty parameter value λ for which
all the clusters merge.

The use of distance decreasing weights have also been treated in Chiquet et al.
(2017a); Chi and Steinerberger (2019). Figure 2.5 from Hocking et al. (2011)
illustrates the e�ect of a distance decreasing weight on the solutions path of a 10

observations convex clustering problem.

Theorem 2.3. (Chiquet et al., 2017a) The solutions path S(λ,w) of the prob-

lem (6.2) contains no splits when q = 1 and wij = f(|xi − xj |) with f , a

decreasing positive function.

Sun et al. (2021) derived conditions for perfect recovery in the general weighted
convex clustering model.

A variety of algorithms can be used to solve the convex clustering problem.
Hocking et al. (2011) proposed a homotopy algorithm to recover the solutions
path of problem (6.2) for ℓ1-norm with identity weights. This is inspired from the
general fused Lasso path algorithm proposed by Hoe�ing (2010). A more general
subgradient descent algorithm has been proposed by the same authors for ℓ1, ℓ2
norms spaces with arbitrary weights. A Franck-Wolf algorithm is used for ℓ∞-norm
space. Chi and Lange (2015) used two methods which are Alternating direction
method of multipliers (ADMM) and Alternating minimization algorithm (AMA).
In a recent work, Sun et al. (2021) used a semismooth Newton based augmented
Lagrangian method. This approach performs better than the previously mentioned
methods.

33



Convex clustering can thus allow, to achieve clustering and estimation simul-
taneously. This can motivate the association with graphical modelling approaches
to recover simultaneously networks and clustering partition.

We thus made a review of the litterature on inference of GGM with structure
constraints. In the following of the manuscript, we contribute to bring some light
on the �eld by connecting graphs inference with convex clustering.

2.3 Non-smooth convex optimization

Convex clustering and Gaussian graphical model inference, especially neigh-
borhood selection, rely on optimizing a convex function that involves the sum of
a smooth term (e.g., squared error loss) and non-smooth penalty functions (e.g.,
LASSO, group-fused LASSO, or Elastic-net). The problem of optimizing non-
smooth cost functions with structured parsimony has attracted some attention
over the last few years. We refer to Bach et al. (2011) for an exhaustive survey on
the topic.

De�ne the following optimization problem

minimize
x ∈ X

J (x) (2.21)

where J : X → R is a cost function with X a generic �nite-dimensional continuous
parameter space. In non-smooth optimization, the cost function is not continuously
di�erentiable everywhere. Indeed, there exist points where the gradient of J is not
well de�ned.

De�nition 2.9. The gradient of a function f : Rn → R at a point x is the

vector of its partial derivatives:

∇f =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)⊤
. (2.22)

We focus on optimization problems where the non-smooth cost function can
be partitioned as the sum of smooth terms Js (i.e., di�erentiable) and non-smooth
terms Jns:

J (x) = Js(x) + Jns(x). (2.23)

Moreover, we require the function J to be convex.

De�nition 2.10. Let C be a convex set. For any x, x′ ∈ S, we have

γx+ (1− γ)x′ ∈ C, for all γ ∈ [0, 1]. (2.24)

De�nition 2.11. A function f(x) is considered to be convex when it is de�ned

on a convex set and if, for any x,y ∈ C, and for any 0 ≤ γ ≤ 1, we have:

f(γx+ (1− γ)y) ≤ γf(x) + (1− γ)f(y). (2.25)
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The function f is strictly convex when the inequality (2.25) is strict.

De�nition 2.12. The function f is strongly convex with parameter c > 0 if

for all x,y in Rn, the following holds:

(∇f(x)−∇f(y))⊤ (x− y) ≥ c ∥x− y∥22 . (2.26)

Strong convexity implies strict convexity. In the next sections we review some
optimization methods that can tackle the problem de�ned in equation (2.21).

In the following, we consider three class of approaches that can be used for
unconstrained non-smooth optimization problems: subgradient methods, proximal
algorithms and smoothing techniques.

2.3.1 Subgradient methods

Historically, the subgradient approaches were the �rst to be used for non-
smooth optimization problems (Nesterov, 2005). The usual gradient based meth-
ods for smooth optimization become ine�ective.

De�nition 2.13. Let f : Rn → R be a convex function. The subgradient of f

at x is any vector v that satis�es the inequality f(y) ≥ f(x) + v⊤(y − x) for

all y.

The function f is said to be subdi�erentiable at x if there exist at least one
subgradient at x. The set of the subgradients is denoted ∂f(x). To minimize f,

at iteration k, the subgradient method takes a step of size ηk > 0 in the opposite
direction from v(k):

x(k+1) = x(k) − ηkv
(k). (2.27)

When f is di�erentiable, v(k) = ∇f(x(k)).

Let f⋆ denote the optimal value of the minimization problem. Denote {ηk}
the sequence of step sizes. Several methods exist for its choice (Boyd et al., 2003).
Some of them are given below with their convergence results.

� Constant step size: ηk = η with η > 0. The algorithm is guaranteed to
converge within some range of the optimal value. When f is di�erentiable,
the algorithm converges to the optimal value.

� Constant step length: ηk = d
(∥∥v(k)∥∥

2

)−1
with d > 0. The algorithm is

guaranteed to converge within a range of the optimal value.

� Square summable but not summable:
∑∞

k=1 η
2
k < ∞ and

∑∞
k=1 ηk = ∞.

The algorithm is guaranteed to converge to the optimal value.

� Nonsummable diminishing: limk→∞ ηk = 0 and
∑∞

k=1 ηk = ∞. The algo-
rithm is guaranteed to converge to the optimal value.
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2.3.2 Proximal methods

The proximal algorithms are a class of algorithms generally used for non-
smooth, constrained, or distributed problems (Parikh et al., 2014), typically when
the objective function can be decomposed as a sum of a smooth and a non-smooth
term. These approaches solve the convex optimization problem while using prox-
imal operators to approximate the non-di�erentiable components of the objective
function.

De�nition 2.14. Let f : Rn → R be a closed proper convex function. The

proximal operator prox of f is de�ned as

proxλf (ν) = argmin
x

f(x) +
1

2λ
∥x− ν∥22 (2.28)

The parameter λ > 0 controls to which extent the proximal operator maps a
given point towards the minimum of f. Proximal operators can be evaluated for
various functions for which an analytical solution exists to the convex optimization
problem. When a closed-form solution is unavailable for the proximal operator,
generic optimization algorithms like the subgradient or the gradient method can
be used. In the following, we recall the proximity operators for some common
norms functions.

Let f be the ℓ2 norm in Rn. Its proximal operator is given by the block-wise
soft-thresholding:

proxλf (v) =

(
1− λ

∥ν∥2

)
+

ν.

The proximal operator of the ℓ1 norm writes as follows for all j = 1, . . . , n:

(proxλf (v))j =

(
1− λ

∥νj∥1

)
+

νj .

This is also known as element-wise soft thresholding.

The sum of norms function f =
∑

g∈G ∥xg∥2 where G is a partition of
{1, . . . , p} admits the following proximal operator:

proxλf (v) =

(
1− λ

∥νg∥2

)
+

νg.

Some popular methods based on proximal operators include, among other ap-
proaches, the proximal gradient method, the fast iterative shrinkage-thresholding
algorithm (FISTA, Beck and Teboulle (2009)), and the alternating direction method
of multipliers (Boyd et al., 2011). In the following, we focus on the speci�c case
of the alternating direction method of multipliers (ADMM).

36



2.3.2.1 The alternating direction method of multipliers

The ADMM is an approach dedicated to composite objective function opti-
mization. It solves problems for which the objective function can be decomposed
into multiple smaller subproblems, simpler to solve, and coupled through some
constraint. Consider the problem

minimize f(x) + g(y)

subject to x = y.
(2.29)

where f, g : Rn → R are non-smooth (and smooth) convex functions. The ADMM
combines an alternate minimization of the augmented Lagrangian with respect to
variables x and y with an update of the Lagrange multiplier.

The augmented Lagrangian is de�ned as the Lagrangian of problem (2.29)

augmented with a penalty term for the constraint. It takes the form

Lρ(x,y,u) = f(x) + g(y) + u⊤(x− y) + ρ/2 ∥x− y∥22 , (2.30)

where u is the Lagrange multiplier, x and y ∈ Rn the primal variables.
The updates of the ADMM can be written as follows:

x(k+1) = argmin
x

Lρ(x,y
(k),u(k))

y(k+1) = argmin
y

Lρ(x
(k+1),y,u(k))

u(k+1) = y(k) + ρ(x(k+1) − y(k+1)).

(2.31)

Parikh et al. (2014) show the close connexion between the formulation of the
ADMM in terms of augmented Lagrangian and the proximal operators. By de�ning
the scaled dual variable z(k) = (1/ρ)u(k), and λ = 1/ρ it can be shown that the
updates (2.31) are equivalent to:

x(k+1) = proxλf (y
(k) − z(k))

y(k+1) = proxλg(x
(k+1) − z(k))

z(k+1) = z(k) + x(k+1) − y(k+1).

(2.32)

In practice, the algorithm can be stopped when the primal and dual residuals are
below a �xed tolerance. Following Boyd et al. (2011), the primal residuals p(k)

and dual residuals d(k) are de�ned as:

p(k+1) = x(k+1) + y(k+1) (2.33)

d(k+1) = ρ(y(k+1) − y(k)) (2.34)

Other stopping criteria based on combined residuals can also be used. The com-
bined residual measures both the primal and dual residuals simultaneously and have
been shown to lead to more robust solutions (see, e.g., Chan et al. (2016)).

Under mild conditions on functions f , g and the unaugmented Lagrangian (see
Boyd et al. (2011)), the ADMM algorithm satis�es for each iteration, ∀ρ > 0:
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� Residual convergence: p(k) → 0 as k →∞.

� Objective convergence: f(x(k)) + g(y(k))→ p⋆ as k →∞ where p⋆ is the
optimal value of the problem (2.29).

� Dual variable convergence: u(k) → u⋆ as k →∞ with u⋆ the dual optimal
point.

In some cases, the algorithm can be slow to converge with a �xed parameter ρ.
Boyd et al. (2011) proposed the residual balancing technique, which consists of
adjusting ρ to keep primal and dual residuals norms within a certain factor of one
another. However, proceeding so does not ensure convergence. Other variations
of the ADMM have been proposed for accelerated performances (see, e.g., Buccini
et al. (2020)) for a general framework of ADMM acceleration with a guarantee of
convergence. In the case of using the proximal version of ADMM, the algorithm
speed also depends on how e�ciently the proximity operators are solved.

2.3.3 Smoothing methods

Smoothing methods are a set of algorithms that transform non-smooth opti-
mization problems into di�erentiable problems. They create a smooth approxima-
tion of the original problem, which can then be solved via traditional optimization
methods.

Some popular smoothing techniques include the Moreau-Yosida regularization,
Nesterov smoothing, and Tikhonov regularization. In the following, we will focus
on Nesterov's technique.

2.3.3.1 Nesterov smoothing

Let f be a non-di�erentiable convex function f : Rn → R of the form:

f(x) = max
u∈U

{
u⊤Ax− ϕ(u)

}
(2.35)

with ϕ : U → R and U a convex, compact set. Let µ be a positive smoothing
parameter, the following smooth approximation is proposed by Nesterov (2005):

fµ(x) = max
u∈U

{
u⊤Ax− ϕ(u)− µd(u)

}
(2.36)

where A is matrix in Rm×n and d(u) is a called a prox function. The Nesterov
smoothing method consists in adding a regularization term to the objective function
f , which is often chosen to be the quadratic function d(u) = 1

2 ∥u∥
2
2 . Denote

u⋆
µ(x) the optimal solution of problem (2.36), the solution is unique since d(u) is

strongly convex with convexity parameter σ > 0 (Nesterov, 2005).

Proposition 2.5. The function fµ(x) is well de�ned, continuously di�eren-

tiable, and convex. The gradient

∇fµ(x) = A⊤u⋆µ(x) (2.37)
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is Lipschitz continuous with constant

Lµ =
1

µ
σ ∥A∥22 . (2.38)

with ∥A∥22 the spectral norm of A.

Proposition 2.6. Denote M = maxu d(u), the following inequality holds for

any x ∈ Rn

fµ(x) ≤ f(x) ≤ fµ(x) + µM. (2.39)

2.3.3.2 CONESTA

The CONESTA algorithm is dedicated to a general class of composite functions
formulated as the sum of a di�erentiable loss function and two regularization func-
tions. The algorithm is based on a Nesterov smoothing approach and dynamically
adapts the smoothing parameter according to a duality gap calculation.

Consider the problem

minimize J (x) = f(x) + g(x) + h(x) (2.40)

where f : Rn → R is a smooth convex function and g, h : Rn → R are non-
smooth convex functions. An analytical expression of function g proximal operator
is assumed to be available. The function h proximal operator is assumed to be
expensive to compute or not known and has the form of an l1,2 group-norm:

h(x) =
∑
ϕ∈Φ
∥DΦxΦ∥2

with Φ the set of possibly overlapping groups of indices, and DΦ a linear operator
on the group. Denote hµ(x) the smooth approximation of function h by the
Nesterov approach and ∇hµ(x) its gradient. The new smoothed optimization
function can be written as:

Jµ(x) = f(x) + g(x) + hµ(x). (2.41)

where (f + hµ)(x) is the smooth part.
Assuming the smooth function f has the form f(x) = 1

2 ∥Ax− y∥22 where
A∈Rm×n is a matrix of features and y the response variable, it can be rewritten as
a function of Ax with the constraint z = Ax. The Lagrangian function of (2.40)
is thus:

Lµ(x,ν) = Jµ(x) + ν⊤(Ax− z) (2.42)

where ν ∈ Rm is the dual variable composed of the multipliers of the equality con-
straint. The Lagrangian dual function of problem (2.40) is obtained by minimizing
the Lagrangian function with respect to x :

Hµ(ν) = inf
x
Lµ(x,ν). (2.43)
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For x primal feasible i.e., equality constraint satis�ed, and ν dual feasible i.e.
solution to the dual problem, δµ(x,ν) = Jµ(x) − Hµ(ν) is called the duality
gap between x and ν.

De�nition 2.15. The Fenchel conjugate of a function l : Rn → R is the

function l⋆ : Rn → R de�ned by

l⋆(ω) = sup
x∈Rn

{
ω⊤x− l(x)

}
. (2.44)

Exploiting the link between the Fenchel conjugate function and the Lagrangian
dual function (Borwein and Lewis, 2006), the duality gap can be written as:

δµ(x,ν) = Jµ(x) + f⋆(ν) + g⋆(ν) + h⋆µ(ν). (2.45)

where f⋆, g⋆ and h⋆ are the Fenchel conjugates of f, g and h respectively.
Moreover, the duality gap upperbounds the distance to the minimum. The

following inequality holds:

δµ(x,ν) ≥ Jµ(x)− Jµ(x⋆) ≥ 0. (2.46)

A zero duality gap is thus equivalent to optimality.
In CONESTA, the duality gap is used as a stopping criterion as it measures

the algorithm's progress. The duality gap is calculated at each iteration and com-
pared to a threshold value ϵ. At convergence for a �xed smoothing parameter, the
obtained approximation satis�es:

δµ(x,ν) ≥ ϵµ (2.47)

The precision is updated dynamically throughout the algorithm and is chosen to be
a linear function of the smoothing parameter. The optimization algorithm can be
guided toward a better solution by dynamically updating the tolerance level. The
smoothing parameter µ is selected to minimize the number of iterations needed to
reach the desired precision.

Proposition 2.7. For any tolerance level ϵ > 0, the optimal smoothing pa-

rameter which minimizes the worst case bound on the number of iterations is

given by

µopt(ϵ) =
−M ∥D∥22 +

√
(M ∥D∥22)2 +ML(∇(f)) ∥D∥22)ϵ

ML(∇(f))
(2.48)

where M is the maximum of the Nesterov smoothing prox function, L(∇(f))
the Lipschitz constant of the gradient of f and D the vertical concatenation of

the matrices Dϕ.
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The updates of the CONESTA algorithm write:

ϵ(k)µ = ϵ(k) − µ(k)M

x(k+1) = argmin
x

Jµ(k)(x)

ϵ(k) = δµ(k)(x(k+1),ν(k+1)) + µ(k)M

ϵ(k+1) = τϵ(k)

µ(k+1) = µopt(ϵ
(k+1))

(2.49)

where τ ∈]0, 1[ is the factor by which the distance to the minimum is geometri-
cally decreased. The smoothed minimization problem can be solved using classical
proximal algorithms.
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In this chapter, we introduce the Multiscale Graphical Least Absolute Shrinkage
Operator (MGLASSO), a novel method to estimate simultaneously a hierarchical
clustering structure, and graphical models depicting the conditional independence
structure between variables at multiple levels of granularity. Some of the chapter's
material has been published in Sanou et al..

We focus on the neighborhood selection framework and the convex clustering
theory presented in the previous chapter to propose a convex optimization problem
with a hybrid penalty term combining graphical LASSO and group-fused LASSO
penalties. The method allows for highlighting common patterns in the data through
clustering while computing interactions between those clusters. In the estimated
graphs, the variables belonging to the same clusters are likely to share the same
neighborhood.
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Thanks to the continuation of Nesterov smoothing in a shrinkage-thresholding
algorithm (Hadj-Selem et al., 2018), the method achieves faster convergence speed
than other competing approaches such as alternating direction methods of mul-
tipliers (ADMM, Boyd et al. (2011)). A quick empirical convergence analysis is
presented for that purpose. We then show how we implemented the approach in
practice. The graphs inferred by the MGLASSO are characterized by their multi-
scale structure, following a grid of fusion regularization parameters. The proposed
model selection method based on the stability approach to regularization selec-
tion (StARS, Liu et al. (2010)) focuses on selecting the LASSO regularization
parameter. We discuss some other selection methods that have been proposed for
the LASSO model selection problem. The performances are evaluated in di�erent
simulation settings, from graph models to phylogenetic tree-based models. The
application of MGLASSO on real data is available in the next chapter.

In Section 3.1 we present the basic framework of MGLASSO. In Section 3.2, we
present how the structure of the graphical model is learned. Section 3.3 describes
the model selection procedure. In Section 3.4, MGLASSO is compared to some
network inference and clustering approaches on synthetic data.

3.1 Model presentation

3.1.1 Problem formulation

The Multiscale Graphical LASSO method aims at inferring a graphical Gaussian
model while hierarchically grouping variables. It infers conditional independence
between di�erent groups of variables. The approach is based on neighborhood
selection (Meinshausen and Bühlmann, 2006) and considers an additional fused-
LASSO type penalty for clustering. In the spirit of hierarchical convex clustering,
the hierarchical structure is recovered by spanning the regularization path.

Let X = (X1, . . . , Xp)⊤ be a p-dimensional Gaussian random vector, with
mean vector µ ∈ Rp and positive de�nite covariance matrix Σ ∈ Rp×p. Let
G = (V,E) be a graph encoding the conditional independence structure of the
normal distribution N (µ,Σ), where V = {1, . . . p} is the set of vertices and E the
set of edges. The graph G is uniquely determined by the support of the precision
matrix Ω = Σ−1 (Dempster, 1972). Speci�cally, for any two vertices i ̸= j ∈ V ,
the edge (i, j) does not belong to the set E if and only if Ωij = 0. The variables
Xi and Xj are said to be independent conditionally to the remaining variables
X\(i,j). We note,

Xi ⊥⊥ Xj |X\(i,j) ⇔ Ωij = 0.

Let X = (X⊤
1 , . . . ,X⊤

n )⊤ be the n × p-dimensional data matrix composed
of n i.i.d samples of the Gaussian random vector X. To perform graphical model
inference, Meinshausen and Bühlmann (2006) consider p separate linear regressions
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of the form:

β̂i(λ) = argmin
βi∈Rp−1

1

n

∥∥∥Xi −X\iβi
∥∥∥2
2
+ λ

∥∥βi
∥∥
1
, (3.1)

where λ is a non-negative regularization parameter, X\i denotes the matrix X

deprived of column i, βi = (βi
j)j∈{1,...,p}\i is a vector of p − 1 regression coe�-

cients and ∥.∥1 is the ℓ1−norm. These LASSO regularized problems estimate the
neighborhoods, one variable at a time. The �nal edge set estimates Ê can be
deduced from the union of the estimated neighborhoods using an AND or OR rule
(Meinshausen and Bühlmann, 2006). The Meinshausen-Bûhlmann (MB) approach
is based on the central relationship between simple linear regression and precision
matrix coe�cients. It can be shown that βi

j = −
Ωij

Ωii
(Lauritzen, 1996).

Consider the data matrix X ∈ Rn×p without any underlying distribution and
the clustering analysis of the p points in Rn. The convex clustering problem (Hock-
ing et al., 2011; Lindsten et al., 2011; Pelckmans et al., 2005) is the minimization
of the quantity

1

2

p∑
i=1

∥∥Xi −αi
∥∥2
2
+ λ

∑
i<j

wij

∥∥αi −αj
∥∥
q

(3.2)

with respect to the matrix α ∈ Rp×n, where λ is a sparsity penalization parameter,
{wij} are symmetric positive weights, αi ∈ Rn is the centroid to which Xi is
assigned to, and ∥.∥q is the ℓq-norm on Rp with q ≥ 1. Points Xi and Xj are

assigned to the same cluster if α̂i ≈ α̂j . The regularization path of solutions to
problem in (3.2) can be represented as a dendrogram. The path properties have
been studied in Chi and Lange (2015) and Chiquet et al. (2017a), among others.

We propose merging the p independent LASSO regressions of the MB approach
into a single optimization criterion where a convex clustering fusion penalty in ℓ2
is applied on the regression vectors considered as cluster centers. Namely, the
Multiscale Graphical LASSO (MGLASSO) pseudo-likelihood problem minimizes in
a Gaussian framework the following quantity:

Jλ1,λ2(β;X) =
1

2

p∑
i=1

∥∥∥Xi −X\iβi
∥∥∥2
2
+ λ1

p∑
i=1

∥∥βi
∥∥
1
+ λ2

∑
i<j

∥∥βi − τijβ
j
∥∥
2
,

(3.3)

with respect to β := [β1, . . . ,βp] ∈ R(p−1)×p, where Xi ∈ Rn denotes the i-th
column of X, λ1 and λ2 are penalization parameters, τij ∈ R(p−1)×(p−1) is a
permutation matrix, which permutes the coe�cients in the regression vector βj

such as ∥∥βi − τijβ
j
∥∥
2
=

√ ∑
k∈{1,...,p}\{i,j}

(βi
k − βj

k)
2 + (βi

j − βj
i )

2,

as illustrated in Figure 3.1. The coe�cient βi
k is to be read as the multiple

regression coe�cients of Xi on Xk.
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3.1.2 Grouping e�ect

The MGLASSO criterion can be seen as a multitask regression problem where
the set of responses is identical to the set of predictors. The LASSO penalty term
encourages sparsity in the estimated coe�cients. The group-fused term encourages
fusion in the regression coe�cients βi and βj . An ℓ1-norm of the di�erences would
a�ect each variable individually Degras (2021). Moreover, some simulations studies
by Tan and Witten (2015) showed that the convex clustering in ℓ2 outperforms
the ℓ1 case.

The clustering e�ect in MGLASSO occurs at two scales: �rst, by using the
norm penalty ℓ2 to select groups of correlated variables, and second by considering
the parsimony of the di�erences of the regression vectors. The natural tendency
of this type of penalty would be to produce groups of nearly equal regression
vectors (Zeng et al., 2017). Using this form of penalization is helpful when no
prior information is available on the groups. Intuitively, one can notice that in a
framework where the data X has a block-diagonal correlation structure with similar
correlation levels, the model excels when these correlation levels are high enough
(Park et al., 2006).

Let us illustrate by an example the e�ect of the fusion term in the proposed
approach. Two variables i and j are in the same group when ∥βi − τijβ

j∥2 ≈ 0.
Considering a cluster C of q variables, it is straightforward to show that ∀(i, j) ∈ C2,
we have β̂i

j = βC , where βC is a scalar. Thus the algorithm is likely to produce
precision matrices with blocks of constant entries for a given value of λ2, each
block corresponding to a cluster. In the same vein as Park et al. (2006), a clus-
ter composed of variables that share the same coe�cients can be summarized by
a representative variable. A component-wise di�erence between two regression
vectors without reordering the coe�cients would not necesarily cluster variables
which share the same neighborhood. The permutation τij reoders coe�cients in
such a way that di�erences are taken between symmetric coe�ecients and those
corresponding to the same set of predictors. The model is thus likely to clus-
ter together variables that share the same neighboring structure and encourages
symmetric graph structures.

(βi, τijβ
j) =


βi
1 βi

2 . . . βi
j . . . . . . βi

k . . . βi
p

βj
1 βj

2 . . . βj
k . . . . . . βj

i . . . βj
p

 (3.4)

Figure 3.1: Illustration of the permutation between regression coe�cients in
the MGLASSO model.

The greater the regularization weight λ2 is, the larger groups become. This is
the core principle of the convex relaxation of hierarchical clustering introduced by
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Hocking et al. (2011). Hence, we can derive a hierarchical clustering structure by
spanning the regularization path obtained by varying λ2 while λ1 is �xed.

In practice, when external information about the clustering structure is avail-
able, the problem can be generalized into:

min
β

p∑
i=1

1

2

∥∥∥Xi −X\iβi
∥∥∥2
2
+ λ1

p∑
i=1

∥∥βi
∥∥
1
+ λ2

∑
i<j

wij

∥∥βi − τijβ
j
∥∥
2
,

where wij is a positive weight. In the remainder of the manuscript, we will assume
that wij = 1.

3.1.3 Local constancy

We succintly show the link between the MGLasso model and the local constancy
notion introduced by Honorio et al. (2009) and derived a sort of local constancy
de�nition in the sense of the MGLasso. Honorio et al. (2009) introcuded a Gaussian
graphical model in which the locality information i.e., known interactions in a
dataset are taken in account as a prior for learning the graph structure G. Local
constancy encourages the search of dependencies between clusters of variables,
instead of variables taken individually. Honorio et al. (2009) enforced that by using
the following penalty on the precision matrix in addition to the Lasso penalty:

Pλ2(Ω) = λ2 ∥D ⊘Ω∥1 ,

where D is a m × p matrix, with m the number of local neigbors and ⊘ the
diagonal excluded matrix product (Ganguly and Polonik, 2014). The k-th row
Dk, . = ei− ej where (Xi, Xj) are local neighbors and et a canonical basis vector
in Rp with the t-th element set to 1.

If the node X1 is independent (or dependent) of node X2, a local neighbor
X1′ of X1 is more likely to be independent or (dependent) of X2. Denote Glocal

the domain or prior knowledge graph (Ganguly and Polonik, 2014) and Elocal the
associated set of edges. As a remark, the local edges don't necessarily belong to
E, the set of edges of graph G. An illustration of the local constancy is given in
Figure 3.2.

X1 X2 X3 X4

Figure 3.2: Illustration of locally constant interactions. The prior knowledge
on the neighborhood structure is represented by dashed lines. X1 and X2 are
local neighbors and mutually connected to X4 in the true graph (with solid
lines). The interaction between {X1, X2} and X4 is locally constant. The edge
(X2, X3) is not locally constant as the local neighbor X1 is not connected to
X3.
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The di�erence matrix D according to the penalty of Honorio et al. (2009),
corresponding to Figure 3.2 is

D =

1 −1 0 0
0 1 −1 0
0 0 1 −1


In the MGLasso model with unitary weights, i.e. all wij = 1, implicitly all

nodes are supposed to be local neighbors. Indeed, the fusion penalty includes all
the pairwise di�erences between the p regression vectors. The local graph Glocal

is hence the complete graph where all the nodes are connected. This assumption
might be relevant when no locality information is available. For a model with 4

variables, the local graph is given in Figure 3.3.

X1 X2 X3 X4

Figure 3.3: Illustration of locality graph in the MGLasso model with 4 vari-
ables. All the nodes are expected to be local neighbors. The pairwises di�er-
ences includes all the existing pairs of variables.

The local constancy is enforced at the scale of the whole variable neighborhood
instead of neighbors taken individually in Honorio et al. (2009), by using the group
fused penalty term on the regression vectors,

Pλ2(β
1, . . . ,βp) = λ2

∑
i<j

∥∥βi − τijβ
j
∥∥
2
.

Let ne(X1) be the markov blanket or neighborhood of node X1. A local neigh-
bor X1′ of X1 is more likely to have the same markov blanket as node X1 in the
MGLasso.

One might notice that when local neighbors are neighbors in the estimated
graph Ĝ, the MGLasso model is likely to produce clustering structures where all
the variables belonging to the same cluster are mutually connected in term of
conditional dependence. The permutation τij encourages a symmetry structure.

3.2 Model learning

This section introduces a complete numerical scheme to apply MGLASSO in
practice using convex optimization algorithms. The objective function in 6 is the
sum of three convex components: a smooth function (squared loss) and two non-
smooth penalty functions: the LASSO function, which is separable i.e. can be
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broken down into independent components involving single entries correspond-
ing to predictors coe�cients, and the group-fused LASSO penalty, which is non-
separable. Several approaches can be used to tackle its minimization problem.
Among them, we have subgradients methods (Shor, 2012), alternating direction
methods of multipliers (ADMM, Boyd et al. (2011)) or continuation methods com-
bined with smoothing techniques for the non-smooth parts of the criterion (see,
e.g., Hadj-Selem et al. (2018)).

We compare the performances of the subgradient descent algorithm, the ADMM,
and the continuation with Nesterov smoothing in a shrinkage-thresholding algo-
rithm (CONESTA, Hadj-Selem et al. (2018)), the optimization algorithm used
in practice to solve MGLASSO. Except for the subgradient case, the algorithms
are generally applied to reformulated versions of the initial MGLASSO criterion.
Section 3.2.1.1 derives the subgradients equations. Section 3.2.1.2 presents the
ADMM algorithm. Section 3.2.1.3 reviews the principles of the continuation with
Nesterov smoothing in a shrinkage-thresholding algorithm (CONESTA, Hadj-Selem
et al. (2018)). The empirical convergence results of the algorithms in various set-
tings can be found in Section 3.2.1.4.

3.2.1 Optimization algorithms

3.2.1.1 Optimization via subgradient descent

The �rst natural approach that can be used to solve the non-smooth opti-
mization problem 6 is the subgradient descent algorithm (Boyd et al., 2003). The
objective in the equation 6 is a non-smooth convex function in β and hence admits
a non-unique solution for λ1 ≥ 0 and λ2 ≥ 0. That solution is characterized by
the following Karush-Kuhn-Tucker conditions, which are the MGLASSO equations
for the subgradient: for all i = 1, . . . , p :

∂Jλ1,λ2(β
i) = −X\i⊤

(
Xi −X\iβi

)
+ λ1 Sign(β

i)

+ λ2

∑
j ̸=i

(
βi − τijβ

j

∥βi − τijβj∥2
1βi ̸=τijβj + γij1βi=τijβj

)
= 0p, (3.5)

with γij ∈ Rp / ∥γij∥2 ≤ 1 and Sign(x) = (Sign(xi)), (1 ≤ i ≤ p)

Sign(xi) =


1 if xi > 0,
∈ [−1, 1] if xi = 0,
−1 if xi < 0,

for all x ∈ Rp. These equations are su�cient and necessary for the solution.
The subgradient method solves problem 6 iteratively. The update at iteration

k is given in algorithm 1 where ν(k) > 0 ∈ ∂Jλ1,λ2(β
(k)) and ηk = 0.1/

√
k is the

non-summable diminishing step size i.e. limk→∞ ηk = 0 and
∑∞

k=1 ηk =∞.

Algorithm 1: Subgradient method update

1 β(k+1) = β(k) − ηkν
(k);
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The algorithm is stopped when ∥β(k+1) − β(k)∥2 ≤ ϵ with ϵ the stopping
tolerance. The results obtained through the subgradient method are not always
sparse, and the convergence is slow (Bach et al., 2011).

Proposition 3.1. For diminishing step sizes ηk, with limk→∞ ηk = 0 and∑∞
k=1 ηk =∞, the subgradient algorithm is guaranteed to converge to an opti-

mal value J⋆. Namely,

limk→∞ Jλ1,λ2

(
β(k)

)
= J⋆.

Proof. Following Boyd et al. (2003), the proof is based on the fact that we

assume J to be a Lipschitz continuous function and hence have the subgradients

bounded by the Lipschitz constant.

3.2.1.2 Optimization via ADMM

A second strategy for solving the optimization problem (6) for �xed λ1 and λ2

is the Alternating Direction Method of Multipliers (ADMM, Boyd et al. (2011)).
The approach is adapted to cost functions with a separable structure. We introduce
additional variables to account for the di�erence between two regression vectors:
for (i, j) ∈ {1, . . . , p}2, i < j, let ∆i,j ∈ R(p−1). We convert the unconstrained
optimization (6) to the following constrained problem:

argmin

p∑
i=1

1

2
||Xi −X\iβi||22 + λ1

p∑
i=1

||βi||1 + λ2

∑
i<j

||∆i,j ||2

such that ∆i,j = βi − τijβ
j for all (i, j) ∈ {1, . . . , p}2.

(3.6)

The augmented Lagrangian function writes, for β ∈ Rp(p−1), ∆ = (∆i,j) ∈(
R(p−1)

)p(p−1)/2
, Γ = (Γi,j) ∈

(
R(p−1)

)p(p−1)/2
and ρ > 0:

Lρ(β,∆,Γ) =
1

2

p∑
i=1

||Xi −X\iβi||22 + λ1

p∑
i=1

||βi||1 + λ2

∑
i<j

||∆i,j ||2

+
∑
i<j

〈
Γi,j ,∆i,j − βi + τijβ

j
〉
+
∑
i<j

ρ/2∥∆i,j − βi + τijβ
j∥22, (3.7)

where ⟨u, v⟩ denotes the standard scalar product in R(p−1). ADMM consists of
separate iterative updates of the primal variables β and ∆, and of the dual variable
Γ. At iteration k+1, we apply the following update rules described in algorithm 2.

Algorithm 2: ADMM updates

1 while not converged do

2 (i) β(k+1) = argminβ∈Rp(p−1) Lρ(β,∆
(k),Γ(k));

3 (ii) ∆(k+1) = argminβ∈Rp(p−1) Lρ(β
(k+1),∆,Γ(k));

4 (iii) Γ(k+1)
i,j = Γ

(k)
i,j + ρ(∆

(k+1)
i,j − βi(k+1)

+ βj(k+1)
);

5 end
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Standard optimization procedures can be applied to carry out each one of these
updates.

Update (i) boils down to a weighted LASSO problem. Denote b = Vec(β) ∈
Rp(p−1), obtained by stacking the rows of β above each other. Denote also, for
i ∈ {1, . . . , p}, Ji ∈ R(p−1)×p(p−1), the block matrix containing p sub-matrices
of size (p − 1) × (p − 1), each null except for the i-th block which is equal to
the identity matrix of order (p− 1). Up to the terms which do not depend on β,
minimizing the augmented Lagrangian with respect to b is equivalent to

b(k+1) ∈ argmin
b∈Rp(p−1)

1

2

p∑
i=1

∥∥∥Xi −X\iJib
∥∥∥2
2

+
∑
i<j

ρ

2

∥∥∥∆(k)
i,j + ρ−1Γ

(k)
i,j − (Ji − Jj)b

∥∥∥2
2
+ λ1∥b∥1, (3.8)

which is a standard ℓ1 penalized quadratic minimization problem. The main issues
here are the problem's dimensionality and the non-separability of the quadratic
term with respect to the βi, i ∈ {1, . . . , p}. On the other hand, update (ii)
corresponds to a classical ℓ2 penalized problem. Denoting, for (i, j) ∈ {1, . . . , p}2,
v
(k)
i,j = −ρ−1Γ

(k)
i,j + (Ji − Jj)b

(k+1), we solve

∆(k+1) ∈ argmin
∆

∑
i<j

ρ

2

∥∥∥∆i,j − v
(k)
i,j

∥∥∥2
2
+ λ2

∑
i<j

∥∆i,j∥2 , (3.9)

which is separable across (i, j) pairs and solved in closed form. We obtain the
following update rule for all (i, j) ∈ {1, . . . , p}2:

∆
(k+1)
i,j =

(
1− λ2ρ

−1∥v(k)i,j ∥
−1
2

)
+
v
(k)
i,j . (3.10)

In contrast to the general residual balancing technique used to stop the ADMM
algorithm (Boyd et al., 2011), the criterion we apply is inspired by the work of
Chan et al. (2016), which sums up the primal and dual residuals. We then stop
the algorithm when the combined residual ζ(k+1) ≤ ϵ where ϵ > 0 is the tolerance
and

ζ(k+1) =
1√

p(p− 1)

∥∥∥b(k+1) − b(k)
∥∥∥
2

+
1√

p(p− 1)2/2

(∥∥∥∆(k+1) −∆(k)
∥∥∥
2
+
∥∥∥Γ(k+1) − Γ(k)

∥∥∥
2

)
. (3.11)

The factors 1√
p(p−1)

and 1√
p(p−1)2/2

account for the fact that the ℓ2 norms are in

Rp(p−1) and Rp(p−1)2/2 respectively.
The MGLASSO problem is convex. It can be shown that the ADMM algorithm

converges, i.e., in primal and dual residuals, when the penalty parameter ρ is held
constant (Boyd et al., 2011).
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Proposition 3.2. The iterates β(k) in the ADMM algorithm converge to the

global minimizer β⋆ of the multiscale graphical LASSO criterion Jλ1,λ2(β).

Proof. The proposition is a direct corollary of the convergence of the ADMM

algorithm for convex problems' optimization.

Although the ADMM algorithm converges for the MGLASSO optimization
problem, it results in a slow convergence in its vanilla version presented afore. The
following section introduces a faster algorithm for the MGLASSO optimization
problem, which is based on a continuation with Nesterov's smoothing (Nesterov,
2005) technique.

3.2.1.3 Optimization via CONESTA

The continuation with Nesterov smoothing in a shrinkage-thresholding algo-
rithm (CONESTA, Hadj-Selem et al. (2018)) is dedicated to high-dimensional re-
gression problems with structured sparsity. It optimizes criteria like (6) by using a
smooth approximation of the fused LASSO penalty. We reformulate (6) to comply
with the form of loss function required by CONESTA. The objective of MGLASSO
writes :

f(β̃) =
1

2
||Y − X̃β̃||22 + λ1||β̃||1 + λ2

∑
i<j

||Dijβ̃||2, (3.12)

where Y = Vec(X) ∈ Rnp, β̃ = Vec(β) ∈ Rp(p−1), X̃ is a R[np]×[p×(p−1)] block-
diagonal matrix with X\i on the i-th block. The matrix Dij is a (p−1)×p(p−1)

matrix chosen so that Dijβ̃ = βi − τijβ
j .

Notice that the above equation is a multivariate linear regression problem. De-
note s(β̃) =

∑
i<j ||Dijβ̃||2 the ℓ1,2 group-norm. A smooth function can approx-

imate this non-smooth penalty with a known gradient computed using Nesterov's
smoothing (Nesterov, 2005). Given a smoothness parameter µ > 0, the smooth
approximation is de�ned as follows:

sµ(β̃) = max
α∈K

{
α⊤Dβ̃ − µ

2
∥α∥22

}
, (3.13)

where K is the cartesian product of ℓ2-unit balls, D is the vertical concatenation of
the matricesDij and α is an auxiliary variable resulting from the dual reformulation
of s(β̃). Note that limµ→0 sµ(β̃) = s(β̃).

A Fast Iterative Shrinkage-Thresholding Algorithm (FISTA, Beck and Teboulle
(2009)) step can then be applied after computing the gradient of the smooth part.
Denote g(β̃) = ||Y − X̃β̃||22, the gradient is:

∇
β̃
(g + λ2sµ) = −X̃⊤(Y − X̃β̃) +D⊤α⋆

µ(β̃), (3.14)

where α⋆
µ(β̃) is the solution to problem (3.13).
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The main ingredient of CONESTA remains in determining the optimal smooth-
ness parameter using the duality gap, which minimizes the number of FISTA iter-
ations for a given tolerance ϵ. Let the smooth approximation of the function f(β̃)

be:

fµ(β̃) = l(X̃β̃) +Qµ(β̃) (3.15)

where l(X̃β̃) = ∥X̃β̃ −Y∥22 and Qµ(β̃ = λ1||β̃||1 + α⋆
µ(β̃)

⊤Dβ̃ − µ
2∥α

⋆
µ∥22. The

duality gap is given by

GAPµ(β̃
(k)) = fµ(β̃

(k)) + l⋆
(
X̃β̃(k) −Y

)
+Q⋆

µ,k

(
−X̃⊤

(
X̃β̃(k) −Y

))
(3.16)

where l⋆ and Q⋆
µ,k are the Fenchel conjugates.

The speci�cation of µ is subject to dynamic update. A sequence of decreasing
optimal smoothness parameters is generated to adapt the FISTA algorithm stepsize
towards ϵ dynamically. Namely, µ(k) = µopt(ϵ

(k)). The smoothness parameter
decreases as one gets closer to β̃⋆, a solution of problem (3.12). Since β̃⋆ is
unknown, the approximation of the distance to the minimum is achieved via the
duality gap. Indeed

GAP(β̃(k)) ≥ f(β̃(k))− f(β̃⋆) ≥ 0.

The CONESTA routine is spelled out in the algorithm 3 where L(g + λ2sµ)

is the Lipschitz constant of ∇(g + λ2sµ), k is the iteration counter for the inner
FISTA updates and i is the iteration counter for CONESTA updates.
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Algorithm 3: CONESTA solver

Input : f(β̃) = g(β̃) + h(β̃) + s(β̃), ϵ > 0, λ1 > 0, λ2 > 0, τ ∈ (0, 1)
Output: β̃

1 Initialize β̃(0), ϵ(0) = τ GAPµ=10−8(β̃(0)), µ(0) = µopt(ϵ
(0)) ;

2 repeat

3 ϵ
(i)
µ = ϵ(i) − µ(i)λ2

d
2 ;

4 /* FISTA */

5 k = 2 /* new iterator */

6 β̃
(1)
FISTA = β̃

(0)
FISTA = β̃(k) /* Initial parameters value */

7 tµ = 1
L(g+λ2sµ)

/* Compute stepsize with L(g + λ2sµ) the

Lipschitz constant of ∇(g + λ2sµ) */

8 repeat

9 z = β̃
(k−1)
FISTA + k−2

k+1(β̃
(k−1)
FISTA − β̃

(k−2)
FISTA)

β̃
(k)
FISTA = proxλ1h(z − tµ∇(g + λ2sµ)(z))

10 until GAPµ(β̃
(k)
FISTA) ≤ ϵ

(i)
µ ;

11 β̃(k+1) = θk
FISTA ;

12 ϵ(i) = GAPµ=µi β̃
(k+1) + µ(i)λ2

d
2 ;

13 ϵ(i+1) = τ ϵ(i) ;
14 µ(i+1) = µopt(ϵ

(i+1))

15 until ϵ(i) ≤ ϵ;

Proposition 3.3. The iterates β(k) in the CONESTA algorithm converge to

the global minimizer β⋆ of the multiscale graphical LASSO criterion Jλ1,λ2(β).

Proof. The proposition is straightforwardly deduced from the convergence the-

orem of the CONESTA algorithm in the continuation scheme (see Theorem 3

Hadj-Selem et al. (2018)).

3.2.1.4 Empirical convergence analysis

In this section, we present the numerical results for convergence analysis. We
use the objective function criterion at β(k) to assess the convergence of algorithms
for di�erent levels of tolerance for simulated data sets. We show the computation
times results for di�erent simulation models and the scalability of the algorithms
according to the stopping tolerance and the di�culty of the problem (number of
variables in the data set).
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Figure 3.4: Scalability of the algorithms on three types of graph structures.
The mean running time in minutes is plotted against the dimension of the data
set for di�erent tolerance levels.

Our analysis di�ers from Hadj-Selem et al. (2018), where the convergence error
i.e f(β(k)) − f(β⋆) is used to assess convergence. Indeed, the authors proposed
in Löfstedt et al. (2018) an approach to simulate a response variable Y and pre-
dictors X from a regression vector β⋆ for linear regression with control over the
penalization parameters. This simulation framework does not �t the speci�c case
of reformulated Gaussian graphical models in which the equality Y = vec(X) is
required.

Details on the simulation models are provided in Section 3.4.1.1. We used
an Erdös-Rényi simulation framework parameterized by α = 0.1. The stochastic
block model contains 5 blocks of equal size. The scale-free model contains as many
expected edges as the number of variables. We set λ1 = 0.5 and λ2 = 10 to run
the three optimization algorithms. The number of observations is �xed at n = 20.

The number of variables p is chosen in {10, 20, 40}. The stopping tolerance levels
�xed are 100, 10−1 and 10−2. The algorithms have been implemented in Python
and launched via an R program. The timing results are shown in minutes. We
choose the ADMM penalty parameter ρ �xed and proportional to the parameter
λ2. The algorithms are stopped when the stopping tolerance is not reached after
a maximum number of iterations equals 10000.
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Figure 3.5: Comparison of the e�ect of di�erent tolerance levels. We plot the
convergence as a function of the running time.

Figure 3.5 and Figure 3.4 indicate that the subgradient method is the fastest
algorithm for all stopping tolerance values. However, the algorithm does not con-
verge and does not yield sparse solutions. ADMM is faster than CONESTA for
higher stopping tolerance (ϵ = 1 and ϵ = 0.1). However, for lower stopping
tolerance (ϵ = 0.01) CONESTA is preferable to ADMM.

The results of our convergence analysis corroborate the more expanded analysis
done in Hadj-Selem et al. (2018). The CONESTA is a superior approach for lower
stopping tolerances and is the one chosen in practice for the MGLASSO problem
optimization.

3.2.2 Practical implementation

3.2.2.1 Path algorithm

In practice, the MGLASSO is implemented as a path-algorithm in which the
LASSO penalty is �xed. At each evaluation of the criterion 6 for a pair (λ1, λ2), the
CONESTA solver is applied. In order to determine clustering assignments as the
fusion penalty increases, the scheme described in algorithm 4 has been proposed.

If d(i, j) =
∥∥∥β̂i − τijβ̂j

∥∥∥
2
≤ ϵfuse then the elements of the pair (i, j) are assigned

to the same cluster.
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Algorithm 4: MGLASSO algorithm

Input : X = {X1, . . . ,Xp} ∈ Rn×p, λ1 ≥ 0, λ2initial > 0, η > 1,
ϵfuse ≥ 0

Output: β(λ1, λ2) ∈ Rp×(p−1), C(λ1, λ2) for all (λ1, λ2)

1 Initialize βi = (Xi)†Xi, ∀i = 1, . . . , p;
2 Set λ2 = 0 ;
3 Compute β using CONESTA solver in algorithm 3 ;
4 Compute clusters C ;
5 Set λ2 = λ2initial ;

6 /* Clustering path */

7 while Card(C) > 1 do
8 Compute β with CONESTA algorithm 3 ;
9 Compute clusters C;
10 λ2 = λ2 × ν ;

3.2.2.2 The mglasso package

The algorithm 4 is available as an R (R Core Team, 2022) package mglasso

(version 0.1.2, Sanou (2022)) available on the comprehensive R archive network
(CRAN) and Github (https://github.com/desanou/mglasso). It is based on
the Python (vanRossum, 1995) library pylearn-parsimony (Hadj-Selem et al.,
2018) and the R package reticulate (Ushey et al., 2020) which provides an R inter-
face to Python code. The mglasso package provides both Python and R functions
and can be installed at https://cran.r-project.org/package=mglasso.

R> install.packages("mglasso")

R> library(mglasso)

In the following, we show how to use in practice the principal functions and
highlight a hidden function that builds the linear operator A in the reformulated
criterion 3.12.

3.2.2.2.1 Installing Python libraries from Github into R

After installing mglasso, the required python libraries are delay loaded. That
allows the package to be loaded even when the Python engine is not correctly set up.
The next step is then installing the Python dependencies. For libraries not available
on Conda distribution or PyPi, reticulate does not o�er an easy option to install
them directly. The function install_pylearn_parsimony() in mglasso needs
to be run in order to install all the libraries not automatically installed by reticulate.
The following code installs the libraries in the Conda environment rmglasso.

R> install_pylearn_parsimony(envname = "rmglasso", method =

"conda")

R> reticulate::use_condaenv("rmglasso", required = TRUE)

R> reticulate::py_config() ## Initialize the Python engine
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3.2.2.2.2 The MGLASSO function

The CONESTA solver is loaded from a library that provides optimization meth-
ods for regression models with structured and sparse penalties. In order to solve
the MGLASSO problem, we construct a linear operator A = {Ak}k∈{1,...,p} which
encodes the structure of the fusion penalty. Instead of constructing the matrix
D (see the equation (3.13)) with p(p−1)

2 components, each corresponding to the
pairwise di�erence structure, the component Ak in A encodes the neighborhood
structure of the k-th variable. In other words, A = {Ak}k∈{1,...,p} is a reorganiza-
tion of the elements of D = {Dij}1≤i<j≤p so that the structure of the di�erences
involving the variable k is stored in the component Ak (see Algorithm 5). This
step, not directly accessible, is done internally via the following python routine:

Python> A_=linear_operator_from_num_variables(p, type_, W_)

Algorithm 5: Component k of linear operator A.

Input : p ∈ N, k ∈ {1, . . . , p},
Output: Ak

1 l = 1
2 for i← 1 to p− 1 do
3 for j ← i+ 1 to p do
4 if i = k then
5 Ak[l, (i− 1)× p+ k] = 1 ;
6 Ak[l, (j − 1)× p+ j] = −1 ;
7 else if j = k then
8 Ak[l, (i− 1)× p+ j] = 1 ;
9 Ak[l, (j − 1)× p+ i] = −1 ;

10 else

11 Ak[l, (i− 1)× p+ k] = 1 ;
12 Ak[l, (j − 1)× p+ k] = −1 ;
13 end

14 l = l+1 ;
15 end

16 end

Let us simulate multivariate random data from a simple block-diagonal model
to show how to estimate a Gaussian graphical model through MGLASSO. The
data set contains n = 50 observations of 9 Gaussian variables with K = 3 blocks.
To set up the block-diagonal model, we �rst simulate a correlation matrix (Fig-
ure 3.6) for which intra-clusters correlation levels are set arbitrarily to ρ = 0.85.

The multivariate random data X is then simulated from that correlation matrix.

R> n = 50

R> K = 3

R> p = 9

R> rho = 0.85

R> blocs <- list()
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R> for (j in 1:K) {

R> bloc <- matrix(rho, nrow = p/K, ncol = p/K)

R> for(i in 1:(p/K)) { bloc[i,i] <- 1 }

R> blocs[[j]] <- bloc

R> }

R> mat.correlation <- Matrix::bdiag(blocs)

R> set.seed(11)

R> mglasso_data <- mvtnorm::rmvnorm(n, mean = rep(0,p), sigma =

as.matrix(mat.correlation))

R> corrplot::corrplot(as.matrix(mat.correlation), method =

"color", tl.col="black")

Figure 3.6: Correlation matrix for a 3-block diagonal model with 3 variables
per clusters.

The MGLASSO routine is called via the function mglasso() to estimate graphs
and clusters for a �xed LASSO penalty λ1 and a grid of group fused LASSO
regularization parameters λ2s.

R> mglasso_data <- scale(mglasso_data)

R> fit_mglasso <- mglasso(mglasso_data, lambda1 = 0.2*n,

lambda2_start = 0.1, fuse_thresh = 1e-3, verbose = FALSE)

mglasso() returns a list with the following entries:

� fit_mglasso$out returns a list for which each element corresponds to a
λ2 value and a clustering level. An element fit_mglasso$out$levelk

contains the regression vectors' matrix beta beta and the computed cluster
partition clusters with k clusters;

� fit_mglasso$lambda1 stores the LASSO parameter.

3.2.2.2.3 Clustering path

We explore the clustering path using the function plot_clusterpath(). It
returns the algorithm regularization path representation when λ1 is kept �xed, and
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λ2 varies. We plot the estimated X̂ at each level onto the two principal components
of the input data in Figure 3.7.

R> library(ggplot2)

R> library(ggrepel)

R> mglasso:::plot_clusterpath(as.matrix(mglasso_data),

fit_mglasso)

Figure 3.7: Clustering path

3.2.2.2.4 Graphs path

The function plot_mglasso provides the adjacency matrices for each cluster-
ing level in Figure 3.8.

R> plot_mglasso(res)

Figure 3.8: Estimated adjacency matrices for di�erent levels of λ2 values
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3.3 Model selection

A crucial question for practical applications consists in de�ning a rule to select
the penalty parameters (λ1, λ2). This selection problem operates at two levels:
λ1 controls the sparsity of the graphical model, and λ2 controls the number of
clusters in the optimal clustering partition. First, these two parameters can be dealt
with separately: the sparsity parameter λ1, chosen via model selection, while the
clustering parameter λ2 varies across a grid of values to obtain graphs with di�erent
levels of granularity. Secondly, considering λ1 �xed, a model selection rule can be
applied to tune λ2. Finally, the parameters can be selected simultaneously. The
approach privileged in practical applications of MGLASSO is the �rst scheme that
allows highlighting the multiscale structure in a Gaussian data set. Nonetheless,
the selection criterion used for that scheme can be easily extended to others.

3.3.1 Selection of LASSO regularizer

The problem of model selection in graphical models is di�cult in the high
dimensional case where the number of samples is small compared to the number
of variables, as classical Akaike information criterion (AIC, Akaike (1998)) and
Bayesian information criterion (BIC, Schwarz (1978)) tend to perform poorly (Liu
et al., 2010).

In the following, we focus on the StARS stability selection approach proposed
by Liu et al. (2010) as suggested by some preliminary tests where we compared
the Extended BIC (EBIC, Foygel and Drton (2010)), the BIC calibrated with slope
heuristics (Baudry et al., 2012), the Rotation invariant criterion implemented in
the Huge package (Zhao et al., 2012), the GGMSelect procedure (Giraud et al.,
2012), cross-validation (Bien and Tibshirani, 2011) and StARS. The results of the
comparative analysis are shown in Section 3.3.2.

The StARS method uses k subsamples of data to estimate the associated
graphs for a given range of λ1 values. For each value, a global instability of the
graph edges is computed. The optimal value of λ1 is chosen so as to minimize
the instability, as follows. Let λ

(1)
1 , . . . , λ

(K)
1 be a grid of sparsity regularization

parameters, and S1, . . . , SN be the N bootstrap samples obtained by sampling the
rows of the data set X. For each k ∈ {1, . . . ,K} and for each j ∈ {1, . . . , N},
we denote by Ak,j(X) the adjacency matrix of the estimated graph obtained by

applying the inference algorithm to Sn with regularization parameter λ(k)
1 . For each

possible edge (s, t) ∈ {1, . . . , p}2, the probability of edge appearance is estimated
empirically by

θ̂
(k)
st =

1

N

N∑
j=1

Ak,j
st .

De�ne
ξ̂st(λ

(k)
1 ) = 2θ̂

(k)
st

(
1− θ̂

(k)
st

)
the empirical instability of edge (s, t) (that is, twice the variance of the Bernoulli

61



indicator of edge (s, t)). The instability level associated with λ
(k)
1 is given by

D̂(λ
(k)
1 ) =

∑
s<t ξ̂st(λ

(k)
1 )(

p
2

) .

StARS selects the optimal penalty parameter as follows

λ̂ = max
k

{
λ
(k)
1 : D̂(λ

(k)
1 ) ≤ υ, k ∈ {1, . . . ,K}

}
,

where υ is the threshold chosen for the instability level.

3.3.2 Other selection approaches

The goal is to outline how the model selection methods compare in di�erent
simulation settings. The performances are evaluated in Erdös-Rényi, scale-free,
and stochastic block models. The selection methods compared are cross-validation
(CV), CAPUSHE for selection based on slope heuristic, extended Bayesian infor-
mation criterion (EBIC), GGMSelect, rotation invariant criterion (RIC), and the
stability-based approach StARS. We used an Erdös-Rényi simulation framework
parameterized by α = 0.1. The stochastic block model contains 5 blocks with
equal sizes. The scale-free model contains as many expected edges as the number
of variables. Details on the simulation models are provided in Section 3.4.1.1. The
number of observations is �xed to n = 20. The number of variables p is chosen
in {10, 20, 40}. For each simulation setting, data are replicated 200 times. Perfor-
mances are assessed via the false positive rate (FPR), true positive rate (TPR),
and structural Hamming distance. The parameter λ1 takes values in [0, 1]. The
parameter λ2 is �xed to 0.

In Figures, 3.9a, 3.9c, 3.9b, each row of graphs represents a �xed value of the
ratio n/p. Each of the 6 columns corresponds to a model selection criterion. The
graphs give the performance values in percentage on the y-axis and the performance
criterion on the x-axis. The boxplots are taken over 200 simulated datasets. On
the one hand, low values of structural Hamming distances and false positive rates
indicate good performances. On the other hand, high values of true positive rate
correspond to good performances.
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(a) Erdös-Rényi model

In general, no matter the selection criterion used, the performances get better
when n/p is higher. The parameterization of the scale-free model does not scale
well to the criteria used. If one is interested in minimizing the risk of false edge
detections, StARS and RIC methods are preferred. They show consistent behavior
over the di�erent simulation settings. If the goal is to encourage edge detection
GGMSelect approach is well suited. Note that the analysis is not meant to give an
overall best selection criterion. According to the simulation setting, data nature,
or the analysis objective, a selection criterion can be preferred to another. We
preferred a criterion based on bootstrap that requires mild working conditions.
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(b) Scale-free model

(c) Stochastic block model

Figure 3.9: False positive rate, True positive rate, and structural Hamming dis-
tance for di�erent model selection criteria in a neighborhood selection problem.
Measures are taken on 200 data sets simulated with p chosen in {20, 40, 80}
and n = 40. 64



3.4 Model performance

In this Section, we conduct a simulation study to evaluate the performance of
the MGLASSO method, both in terms of clustering and support recovery. Receiver
Operating Characteristic (ROC) curves are used to evaluate the adequacy of the
inferred graphs with the ground truth, for the MGLASSO and GLASSO in its
neighborhood selection version, in the Erdös-Rényi (Erd®s et al., 1960), scale-
free (Newman et al., 2001), and Stochastic Block Models (SBM, Fienberg and
Wasserman (1981)) frameworks. The Adjusted Rand indices are used to compare
the partitions obtained with MGLASSO, hierarchical agglomerative clustering, and
k-means clustering in a stochastic block model framework and a hierarchical model.

3.4.1 Synthetic data models

3.4.1.1 Single level random graphs models

We consider three di�erent synthetic network models: the Stochastic Block
Model (Fienberg and Wasserman, 1981), the Erdös-Renyi model (Erd®s et al.,
1960) and the Scale-Free model (Newman et al., 2001). In each case, Gaussian
data is generated by drawing n independent realizations of a multivariate Gaussian
distribution N (0,Σ) where Σ ∈ Rp×p and Ω = Σ−1. The support of Ω, equiva-
lent to the network adjacency matrix, is generated from the three di�erent models.
The di�culty level of the problem is controlled by varying the ratio n

p with p �xed
at 40: n

p ∈ {0.5, 1, 2}.

3.4.1.1.1 Stochastic Block-Model

We construct a block-diagonal precision matrixΩ as follows. First, we generate
the support of Ω as shown in Figure 3.10, denoted by A ∈ {0, 1}p×p. To do this,
the variables are �rst partitioned into K = 5 hidden groups, noted C1, . . . , CK

described by a latent random variable Zi, such that Zi = k if i = Ck. Zi follows
a multinomial distribution

P (Zi = k) = πk, ∀k ∈ {1, . . . ,K},

where π = (π1, . . . , πk) is the vector of proportions of clusters whose sum is equal
to one. The set of latent variables is noted Z = {Z1, . . . , ZK}. Conditionally to
Z, Aij follows a Bernoulli distribution such that

Aij |Zi = k, Zj = l ∼ B(αkl), ∀k, l ∈ {1, . . . ,K},

where αkl is the probability of inter-cluster connectivity, with αkl = 0.01 if k ̸= l

and αll = 0, 75. For k ∈ {1, . . . ,K}, we de�ne pk =
∑p

i=1 1{Zi=k}. The precision
matrix Ω of the graph is then calculated as follows. We de�ne Ωij = 0 if Zi ̸= Zj

; otherwise, we de�ne Ωij = Aijωij where, for all i ∈ {1, . . . , p} and for all
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j ∈ {1, . . . , p|Zj = Zi}, ωij is given by :

ωii :=
1 + ρ(pZi − 2)

1 + ρ(pZi − 2)− ρ2(pZi − 1)
;

ωij :=
−ρ

1 + ρ(pZi − 2)− ρ2(pZi − 1)
.

If αll were to be equal to one, this construction of Ω would make it possible to
control the level of correlation between the variables in each block to ρ. Introducing
a more realistic scheme with αll = 0.75 allows only to have an approximate control.

Figure 3.10: Adjacency matrix of a stochastic block model de�ned by K = 5
classes with identical prior probabilities set to π = 1/K, inter-classes con-
nection probability αkl = 0.75, k ̸= l, intra-classes connection probability
αll = 0.01 and p = 40 vertices.

3.4.1.1.2 Erdös-Renyi Model

The Erdös-Renyi model is a special case of the stochastic block model where
αkl = αll = α is constant. We set the density α of the graph to 0.1; see Figure 3.11
for an example of the graph resulting from this model.
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Figure 3.11: Adjacency matrix of an Erdös-Renyi model with probability of
connection α = 0.1 and p = 40 vertices.

3.4.1.1.3 Scale-free Model

The scale-free Model generates networks whose degree distributions follow a
power law. The graph starts with an initial chain graph of 2 nodes. Then, new
nodes are added to the graph one by one. Each new node is connected to an
existing node with a probability proportional to the degree of the existing node.
We set the number of edges in the graph to 40. An example of scale-free graph is
shown in Figure 3.12.

Figure 3.12: Adjacency matrix of a scale-free model with 40 edges and p = 40
nodes.

3.4.1.2 Multilevel or hierarchically structured models

The motivation of these models is to simulate hierarchically-structured groups
of variables to illustrate how the performances of the MGLASSO compare to other
standard clustering methods. To do so, we will construct variance-covariance ma-
trices with underlying hierarchical clustering structure, using stochastic phylogeny
trees. We �rst recall brie�y the principles of stochastic phylogeny trees, before
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describing the detailed model. Phylogeny trees were initially used to describe re-
lationships between species and their evolution through time. The tree model
describes when speciation occurs, and the evolutionary model describes how the
species' quantitative traits evolve. The �rst can be chosen in a family available in
the ape R package (Paradis et al., 2004), and the second is usually a stochastic
process, e.g., the Brownian motion or the Ornstein-Uhlenbeck process. The tree
model and the evolutionary model are intimately related. When speciation occurs
from a specie, the children carry the parent trait and evolve independently. Hence,
a correlation or covariance can be de�ned between the children's traits, and this
quantity is known to be proportional to the shared evolution time (Bastide et al.,
2017). Here we are interested in the covariance structure between the leaves,
i.e., at the end of the evolution process, to derive the hierarchically structured
covariance matrix.

Let us introduce some terminology about trees. Let G = (V,E) be an undi-
rected graph with edge set E and vertices set V. Let T = (V, F ) be any rooted
ultrametric tree whose leaves correspond with V. Ultrametric trees are a class of
phylogenetic trees where leaves are equidistant to the root. Each edge f ∈ F has
an associated branch length lf . For leaf i, ti = lf = h denotes the distance from
the root to the leaf, and pa(i) is the leaf's parent. For leaves i, j ∈ V , mrca(i, j)

denotes their most recent common ancestor and tmrca(i,j) = ti,j is the distance
from the root to mrca(i, j). The phylogenetic distance di,j between the leaves is
di,j = ti + tj − 2ti,j . Note that T and G do not share the same edge set.

Denote Xi1≤i≤Card(V ) a sequence of continuous random variables describing
a given trait at each leaf. Let us assume that the branch lf has child leaf i and
parent node pa(i). A quantitative trait evolves on this branch according to a
stochastic process (W f

t , 0 ≤ t ≤ lf ) with distribution P(ωe), independently from
other species, conditionally on W e

0 = Xpa(i). At leaf i, we have Xi = W f
lf
.

A possible choice of the tree model is the coalescent model. We refer the reader
to Degnan and Salter (2005) for details on coalescent models. We assume the trait
of interest evolves along the coalescent tree under the Ornstein-Uhkenbeck (OU)
process. A univariate OU process Wt, 0 ≤ t ≤ h is characterized by an optimal
value θ. Its stochastic di�erential equation can be written as :

dWt = −α(Wt − θ)dt+ dϵt

where α is the selection strength. The Brownian motion ϵ ∼ N (0, σ2) where σ2

is the variance term. Note that when α = 0, the Ornstein-Uhlenbeck process is
equivalent to the Brownian motion.

If W0 is known and �xed, it can be shown that

E(Wt) = W0e
−αt + θ(1− e−αt)

and
Cov(Wt,Ws) =

1

2α
σ2
[
e−α|t−s| − e−α(t+s)

]
.
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At leaf i in the ultrametric case, we have Xi denote the OU process with
constant length branch lf = h. The distribution of Xi conditionally to the parent
node Xpa(i) can be written as:

Xi|Xpa(i) ∼ N
(
Xpa(i)e

−αh + θi(1− e−αh),
1

2α
σ2(1− e−2αh)

)
.

By integrating the distance constraint on the tree, the covariance between two
leaves can be written as:

Σi,j =
σ2

2α
(e−αdij − e−2αh).

We refer the reader to Bichat et al. (2020) and Bastide et al. (2017) for details
and proofs of the derivations.

Figure 3.13: Tree, Covariance and precision matrices of the phylogeny based
hierarchical model

The simulation procedure follows: we �rst simulate a coalescent tree. Then
with an OU process on its branches, we compute the covariance at leaves. This
covariance matrix is �nally used to simulate a multivariate Gaussian dataset if its
inverse exists. Figure 3.13 shows the covariance and inverse covariance matrices
derived with the OU process for a coalescent tree model. The bene�t of this
simulation scheme for the performance evaluation is that the ground truth tree
can be cut into any number of clusters to match the number of estimated clusters
by the compared methods.

3.4.2 Support recovery

In a small simulation study, we compare our approach to the GLASSO in
its neighborhood selection version. The goal is to measure the accuracy of the
compared methods for edge detection in sparse graphs using ROC curves. There
are 3 scenarios with a number of variables �xed to 40 and a varying ratio of sample
size over number of variables n

p ∈ {0.5, 1, 2}. The data were generated from
Gaussian distributions using the models described in Section 3.4.1.1. The stopping
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tolerance for the MGLASSO method was chosen to be 0.001. As mentioned earlier
in Section 3.2.2, the MGLASSO is coded in both R and Python, and the GLASSO
is performed using the huge package in R. For the approaches to be comparable,
LASSO penalties used for MGLASSO, need to be rescaled by a factor of n in huge
implementation. Timings results are not computed. However, GLASSO is much
faster than MGLASSO in all the described settings.

In GLASSO and MGLASSO, the sparsity is controlled by a regularization
parameter λ1, and they are selected through the StARS approach. Moreover,
MGLASSO admits an additional regularization parameter, λ2, which controls the
strength of the convex clustering. To compare the two methods, in each ROC
curve, we vary the parameter λ1 while the parameter λ2 (for MGLASSO) is kept
constant. We have chosen to compare ROC curves for di�erent fusion penalty
parameters instead of the results for a particular value of λ2 to highlight the fusion
penalty e�ect slightly. The GLASSO method does not aim at proposing clusters
of variables and focuses on the graph inference task. For this reason, we did not
derive clusters from its estimated graphs, as the approach chosen for clustering
might be subject to extensive discussion. We computed ROC curves for 3 di�erent
penalty levels for the λ2 parameter. Since GLASSO does not depend on λ2, the
GLASSO ROC curves are replicated.

In a decision rule associated with a sparsity penalty level λ1, we recall the
de�nition of the two following functions. The true positive rate is given by

TP (λ1)
TP (λ1)+FN(λ1)

. The false positive rate is de�ned as follows 1 − TN(λ1)
TN(λ1)+FP (λ1)

,
where TP is the number of true positives, TN the number of true negatives, FN

the number of false negatives and FP the number of false positives. The ROC
curve represents the true positive rate as a function of the false positive rate. For
a given level of true positive rate, the best method minimizes the false positive
rate.
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(a) Mean ROC curves for MGLASSO and GLASSO graph inference in the Erdos-Rényi
model.

(b) Mean ROC curves for MGLASSO and GLASSO graph inference in the scale-free model.
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(c) Mean ROC curves for MGLASSO and GLASSO graph inference in the stochastic block
model.

Figure 3.14: We varied the fusion penalty parameter of MGLASSO λ2 ∈
{0, 3.33, 10} alongside the ratio n

p ∈ {0.5, 1, 2}. Within each panel, the ROC
curve shows the True positive rate (y-axis) vs. the False positive rate (x-axis)
for both MGLASSO (blue) and GLASSO (brown). Since GLASSO does not
have a fusion penalty, its ROC curves were replicated for panels belonging to
the same row. We also plot the random classi�er (dotted grey line). The results
have been averaged over 50 simulated datasets and suggest that MGLASSO
performs no worse than GLASSO. For λ2 = 0, the MGLASSO approach is
equivalent to GLASSO in its neighborhood selection version.

Figures 3.14a, 3.14b, 3.14c show the average values of ROC curves for MGLASSO
and GLASSO for di�erent con�gurations as averaged over 50 simulations. Based on
these empirical results, we �rst observe that, in all the considered simulation mod-
els, MGLASSO improves over GLASSO in support recovery in the high-dimensional
setting where p < n. In addition, in the absence of a fusion penalty, i.e., λ2 = 0,
MGLASSO performs no worse than GLASSO in each one of the 3 models. This
con�guration corresponds to the baseline and thus suggests that the CONESTA
algorithm achieves similar results as the huge algorithm (Zhao et al., 2012) for
GLASSO neighborhood selection with no added fusion term. The entire regular-
ization path of the MGLASSO according to the fusion penalty is not presented,
and di�erences between the non-zeros fusion penalty parameter for MGLASSO are
minimal. Indeed, in a multiple con�guration analysis, the grid of penalty values
may not induces the same amount of fusion according to the size of the simulated
dataset. A �ner grid can be used for each con�guration taken independently to
handle this problem; however, it would be prohibitively expensive to compute. Note
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that a shrinkage e�ect might be observed in the regression vectors' estimates as
the λ2 penalty parameter increases. This shrinkage e�ect of group-fused penalty
terms was also observed in Chu et al. (2021). Moreover, the MGLASSO may fail to
recover the edges in a stochastic block model framework where the inter-clusters
edge connection probability is high.

3.4.3 Clustering

In this section we evaluate the performance of MGLASSO and compare with
existing methods in the stochastic-block model and the hierarchically structured
covariance matrix model.

We �rst compare the partitions estimated by MGLASSO, Hierarchical Agglom-
erative Clustering (HAC) with Ward's distance and k-means to the true partition
in a stochastic block model framework. Euclidean distances between variables are
used for HAC and k-means. The criterion used for the comparison is the adjusted
Rand index (ARI). A larger value of ARI is an indicator of good clusters recovery.

For the HAC and k-means, we vary the number of clusters from 2 to p = 40. For
the MGLASSO, the fusion penalty controls the number of clusters. The partitions
infered by MGLASSO do not necessarily cover the entire range of possible number
of clusters as HAC and k-means. According to the strength of the fusion, multiple
variables may merge together. The estimated partitions by the 3 methods are then
compared to the oracle partition used in the simulation of the stochastic-block
model. Note that it remains possible to compare partitions with di�erent number
of clusters with the ARI.

(a) Correlation level ρ = 0.1.

We study the in�uence of the correlation level inside clusters on the clustering
performances through two di�erent parameters: ρ ∈ {0.1, 0.3}; the vector of
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cluster proportions is �xed at π = (1/5, . . . , 1/5). Hundred Gaussian data sets
were then simulated for each con�guration (ρ, n/p �xed).The optimal sparsity
penalty for MGLASSO was chosen by the Stability Approach to Regularization
Selection (StARS) method (Liu et al., 2010). The parameter λ2 has been varied.

(b) Correlation level ρ = 0.3.

Figure 3.15: Boxplots of Rand index for HAC, k-means and MGLASSO in
the stochastic-block model. The number of estimated clusters {5, 10, 15, 20}
vary alongside the ratio n

p ∈ {0.5, 1, 2}. Within each panel, the boxplots of
ARI between true partition (with 5 classes) and estimated clustering parti-
tions on 100 simulated datasets for k-means (blue), hierarchical agglomerative
clustering (yellow), and MGLASSO (brown) methods are plotted against the
ratio n

p . The cluster assignments of MGLASSO are computed from a distance
between estimated regression vectors for a given value of λ2. Missing boxplots
for MGLASSO thus mean computed partitions in the grid of values of λ2 do
not yield the �xed number of clusters. The higher the ARI values, the better
the estimated clustering partition is.

The results shown in Figures 3.15b and 3.15a suggest that, particularly at
the lower to medium levels of the hierarchy (between 20 and 10 clusters), the
hierarchical clustering structure recovered by MGLASSO is comparable to popular
clustering methods used in practice. For the higher levels (5 clusters), the perfor-
mances of MGLASSO deteriorate. As expected, the three compared methods also
underperform as the level of correlation inside clusters decreases. Note that the
MGLASSO performances may be sensible to fusion threshold ϵfuse set to 10−6 for
this simulation study. Using non-trivial weights could also help improve the overall
performance.
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The expected empirical evidence according to which the MGLASSO would
work fairly well for correlated variables is somehow highlighted with Figures 3.15b
- 3.15a. However, the result suggests that controling the correlation between
groups of predictors used for each node wise regression in the simulation model, is
not an easy task in a multitask learning framework where the set of predictors is
the same as the set of responses.

As also noticed in Wang et al. (2018), some preliminary tests suggest that the
MGLASSO clusters recovery performance is robust to the Lasso penalty parameter
used. Higher values for the penalty contributes, however, to increase the strength
of the fusion, i.e., the number of variables merging simultaneously. Nevertheless,
the performances of the MGLASSO get signi�cantly improved in the hierarchically-
structured model described in the next paragraph.

Figure 3.16: Comparisons of adjusted Rand indices for MGLASSO and some
clustering methods in the hierarchically structured model. The Rand index
is computed between the estimated partition in k clusters and the partition
obtained after cutting the tree used for simulation in k clusters. The boxplots
of the indices distribution are provided for di�erent ratios n/p. The compared
approaches are the HAC, k-means, spectral clustering and vanilla convex clus-
tering. Missing boxplots for MGLASSO or convex clustering mean computed
partitions do not yield the �xed number of clusters.

Figure 3.16 compares the performances of MGLASSO, HAC, k-means, spectral
clustering, and convex clustering under di�erent n/p ratios for di�erent numbers of
clusters using the hierarchically structured covariance matrix simulation framework.
The signi�cant di�erence with the previous simulation framework is that the oracle
partition number is changed via cutting the tree used for simulation, according to
the number of estimated clusters by the compared methods.

The convex approaches (MGLASSO, classical convex clustering) do not share
the same number of boxplot points as HAC, k-means, and spectral clustering. In
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a multiple simulation framework, it appears di�cult to control or select a desired
number of clusters for these approaches. Each boxplot represents the distribution of
130 simulations for HAC, k-means, and spectral clustering, and at least 1 matching
simulation for MGLASSO and convex clustering if the results are available. The
MGLASSO performance decreases with the number of clusters. So it is easier to
�nd pertinent clusters at higher levels of the tree than at lower levels. The higher-
level tree performances for MGLASSO are relatively better than the other clustering
approaches results. For the classical convex clustering with unitary weights, clusters
tend to fuse abruptly, comparatively to MGLASSO. Intermediate partitions with a
number of clusters between 1 and 40 are harder to be found.

Another GGM inference method that is based on the theory of convex clustering
is the Clustered Gaussian graphical model developed by Yao and Allen (2019). This
approach would be a potential candidate for the evaluation of the performance
simultaneously in terms of support recovery and clustering results. However, the
approach does not lead to sparse graphs after some preliminary tests. So it would
be unfair to compare it to the MGLASSO. An alternative comparison method with
a graph and clustering method would be to apply a two-step approach where the
graph is �rst estimated, and community detection or classical clustering algorithms
are then used to infer clusters. However, proceeding in such a scheme diverts
from the initial objective of the MGLASSO, which is the simultaneous clustering
and graph inference. Nonetheless, a not yet published approach that attempts to
achieve the simultaneous task of graph inference and cluster estimation appears to
be the work of Lin et al. (2020). However, an explicit rule for cluster deduction is
not proposed in the paper, nor an explicit link with the theory of convex clustering
is established, which leaves it impractical to make an eventual comparison with the
MGLASSO.

3.5 Inference of microbial networks via MGLASSO

This section presents a second application of the MGLASSO model on real data,
particularly microbial abundance data that was collected as part of the American
gut project (McDonald et al., 2018). The use of neighborhood selection in sparse
microbial network inference has already been reported in works like Kurtz et al.
(2015). We show here how the MGLASSO model, also belonging to neighborhood
selection approaches, can be used for the problem while drawing a parallel with the
cited work. Human gut microbes play a critical role in homeostasis, disease, and
digestion. Knowledge of their interactions can serve as an initial community-level
description of the underlying microbial ecosystem (Yoon et al., 2019). We perform
multi-scale network clustering and inference analysis in which we focus on deriving
representative variables for microbial species, unlike the previous application of
MGLASSO, in which networks were drawn across the whole set of variables in
the model. The material of the analysis is described in Section 3.5.1. We brie�y
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reintroduce the inference approach proposed by Kurtz et al. (2015) in Section
3.5.2. MGLASSO learning is presented in Section 3.5.3. We show some results in
Section 3.5.4.

3.5.1 Material

We used the microbial abundance dataset called amgut1.filt included in
the SpiecEasi package (Kurtz et al., 2015). It describes the microbial community
structure of n = 289 samples via an abundance table for p = 127 types of microbes
(operational taxonomic units). The data has been pre-processed by Kurtz et al.
(2015) and is a subset acquired from the �rst round of the American gut project
(AGP, McDonald et al. (2018)). Samples of feces, skin and other body regions
were taken from thousands of participants and pro�led using 16S rRNA sequencing.
The project aimed to study the associations between the human microbiome and
factors such as diet.

3.5.2 SpiecEasi method

We brie�y recall the SpiecEasi method for the inference of sparse microbial asso-
ciation networks and refer to the seminal article for more details. The technique es-
sentially combines transformation for relative abundance data with a neighborhood
selection approach for Gaussian graphical inference (Meinshausen and Bühlmann,
2006) coupled with the StARS scheme for model selection (Liu et al., 2010). The
transformation applied to the data is the centered log ratio and is presented below.

For j = 1, . . . , n, let Yj = (Yj1, . . . , Yjp) ∈ Np be the p-dimensional row-
vector of number of OTUs observed from the j-th sample with an associated
relative abundance vector Ỹj =

Yj∑p
i=1 Yij

. Note that {Ỹj}j=1,...,p belongs to the

p-dimensional unit simplex :

Sp =

{
x = (x1, . . . , xp) ∈ Rp

∣∣∣ p∑
i=1

xi = 1,x ≥ 0

}
. (3.17)

Kurtz et al. (2015) then applied the centered log ratio transformation (clr, Aitchison
(1982)) to the relative abundances:

clr
(
Ỹj

)
= log

 Ỹj(∏p
i=1 Ỹij

)1/p
 , for all j = 1, . . . , p. (3.18)

where
(∏p

i=1 Ỹij

)1/p
is the geometric mean of the relative abundance vector. A

pseudo-count is added to {Yj}j=1,...,n to avoid numerical problems due to zero
counts.

3.5.3 MGLASSO learning

We applied the MGLASSO method introduced in Chapter 3, on the OTUs
previously transformed by the clr approach. The MGLASSO with a value of λ2 = 0

is therefore equivalent to the SpiecEasi method.
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For the model �tting, the LASSO penalty parameter λ1 is selected via the
StARS approach with a variability threshold set at 0.05 in a grid of values de�ned
according to the same rules as in Section 4.4.3. The fusion penalty λ2 is chosen
in the interval [0, 20] with irregular steps. This was done in an attempt to control
abrupt merges in the clustering path and to reduce the number of values to be
evaluated due to computation time. We chose 20 equidistant values in each of the
following intervals: [0.20], [1.20] and [0.4]. The CONESTA solver precision is set
to ϵ = 0.01.

To represent the graphs estimated on the grid of penalization parameters λ2,
we �rst selected the representative variables by clusters to contrast with the repre-
sentation used in the section 4.4 where the matrices of adjacency on the whole set
of nodes have been presented. The representative variable is one of the cluster's
variables�the fusion principle. Indeed, theoretically, variables that belong to the
same cluster share the same neighborhood. To compute clustering partitions, the
fusion threshold was set to ϵfuse = 0.001.

3.5.4 Results

Using the parameters above, we compute a clustering path of MGLASSO so-
lutions and then display the estimated networks for speci�c values of the λ2 fusion
penalty.

Figure 3.17 shows how the predicted data computed from the estimated regres-
sion vectors scales on the λ2 fusion penalty parameter grid. The variables were not
clearly separated on the �rst two principal components. The results are therefore
displayed on the components 3 and 4. The path is not always agglomerative and
shows several cases of abrupt merges. The OTUs have been colored according to
the biological clusters, here, the taxonomic classi�ers corresponding to the phy-
lum level (Rank 2). The taxonomy table is loaded from the amgut1.filt.phy

dataset available in the SpiecEasi package. The 27 OTUs belonging to the phy-
lum Bacteroidetes form a pure cluster that MGLASSO successfully identi�es. The
20 phylum Proteobacteria has been divided into three subgroups. The Firmicutes
phylum of 76 OTUs is split into two main clusters. The phyla Actinobacteria,
Tenericutes, and Verrucomicrobia, which respectively count 2, 1, and 1 OTU(s),
are less predominant in the clustering. Figure 3.18 displays networks and clus-
ters for di�erent levels of granularity corresponding to the values of the λ2 fusion
penalty parameter. The networks are built on representative variables of the com-
puted clustering partition. The �rst graph with λ2 = 0 displayed in Figure 3.18a
corresponds to the SpiecEasi network of 175 edges. Figures 3.18b, 3.18c and 3.18d
show intermediate graphs for the following (number of clusters, number of edges)
pairs : (63 clusters, 548 edge), (31 clusters, 240 edges) and (15 clusters, 91 edges)
respectively. Most networks are dense. The last network is represented on 2 rep-
resentative variables for a partition in 2 clusters (Figure 3.18e). The nodes are
colored according to their phylum taxonomic classi�er. It is important to note that
not all clusters are pure. Labeling a representative variable with a given phylum
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Figure 3.17: Clustering path of MGLasso solutions on human microbiome data
composed of 127 operational taxonomic units. OTUs are colored according to
their phylum classi�cation. The path displays abrupt merges. The pure cluster
on the graph's left side (down) corresponds to the phylum Bacteroidetes.

does not necessarily mean that all the OTUs in the cluster belong to the phylum
concerned.

(a) λ2 = 0
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(b) 63 clusters (c) 31 clusters

(d) 15 clusters (e) 2 clusters

Figure 3.18: Graphs estimated at multiple levels of granularity for the micro-
biome data. The �rst graph, showing a network inferred by the MGLASSO
method when λ2 = 0, corresponds to the SpiecEasi network. Increasing the
fusion penalty makes it possible to uncover graphs built on the representative
variable of each cluster. OTUs are colored according to their phylum taxo-
nomic classi�er.

3.5.5 Discussion

The analysis presented above was exploratory and aimed not only to illustrate
the MGLASSO model but also to show its connection to the SpiecEasi approach
when applied in a microbial network inference framework. It has the advantage of
proposing multi-scale networks with clustering of OTUs, which makes it possible
to �nd interesting links between OTUs that do not necessarily belong to known
taxonomic classi�cations. The partition into 2 groups found in data from the
American gut project suggests a relationship between a group composed exclusively
of OTUs belonging to the phylum Proteobacteria and the other phyla represented
by the phylum Firmicutes. Setting weights for the fusion penalty can improve
MGLASSO's clustering path with less abrupt fusions.
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4 - Applications on omics data
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This chapter focuses on applications of the MGLASSO model and other statisti-
cal models on omics data. In Section 4.3, various biological questions are answered,
in particular within the framework of the EPITREE project, which aims to study
the evolutionary and functional impact of epigenetic variation in forest trees. Note
that we have carried out other analyses within the project that are not reported in
this manuscript. In Section 4.4, MGLASSO is illustrated in an integrative analysis
of transcriptomic and DNA methylation data from the EPITREE project. Section
3.5 presents another example of applying MGLASSO to the inference of sparse
microbial networks.
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4.1 Elements of omics data

Omics is a �eld of study in biology that involves the comprehensive charac-
terization and quanti�cation of molecules, such as genes, proteins, and metabo-
lites, within a biological system. This can include genomics (study of genes and
genomes), proteomics (study of proteins), metabolomics (study of metabolites),
and other sub�elds. The goal of omics is to understand the interactions and rela-
tionships between these molecules in order to gain a better understanding of the
overall function and regulation of biological systems. The omics data are gener-
ated from high-throughput sequencing technologies, also known as next-generation
sequencing (NGS). NGS opposed to �rst-generation technologies, are new sequenc-
ing approaches that read genomes at a higher speed and a relatively cheaper cost.
In this section, we review some concepts of biology and some omics data type that
will help understand the remainder of the chapter.

4.1.1 Genomics

The deoxyribonucleic acid of an organism (DNA) is a helix molecule of two-
paired strands that contains information about its functioning, development, repro-
duction, and growth. It is structured into chromosomes found in the cell's nucleus.
The DNA sequence is an oriented sequence made up of four character states, also
known as bases: adenine (A), thymine (T), cytosine (C), and guanine (G). In the
paired structure, C is linked to G, and A is linked to T to form a base pair (bp).
Some DNA regions (coding regions) can be transcribed into messenger ribonucleic
acids (mRNA). The mRNAs can, in turn, be translated into proteins (chains of
amino acids) which are involved in various cellular processes � the central dogma
of molecular biology (see Figure 4.1).

Figure 4.1: Central dogma of molecular biology (source: National Human
Genome Research Institute).

The genome is the complete DNA sequence of an organism. Its size di�ers
between species. For example, the poplar (Populus trichocarpa) genome has 19
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chromosomes for about 0.485 billion base-pairs while the human (Homo sapiens)
genome has 42 chromosomes for approximately 3 billion base-pairs. The genomic
sequence can be segmented into genes and intergenic regions. Genes can, in turn,
be segmented into units called exons and introns. The exons correspond to coding
regions in the gene, while introns are the non-coding regions. The expression of
genes can be measured as the number of RNA transcripts produced by the gene.

4.1.2 Transcriptomics

Transcriptomics studies the ribonucleic acid (RNA) available in a cell or a
set of cells. The transcriptome is the complete set of RNA transcripts, some
coding (messenger) and others not (e.g., ribosomal, transfer, or small nuclear).
De novo RNA-sequencing (RNA-Seq) is a breakthrough technology in biology that
easily captures any RNA and, therefore, measures genes' expression. It refers
to a method of transcriptome assembly where a reference genome is not used
to align the RNA-seq reads. Instead, the reads are assembled into contigs and
then into longer transcript sequences (isoforms) without the use of a reference
genome. De novo assembly is useful for organisms for which a reference genome
is not yet available or for organisms that have a high degree of genetic diversity.
It can also be used to identify novel transcripts and isoforms, which can provide
important information about the regulation of gene expression. The de novo RNA-
seq pipeline includes several steps: RNA isolation, quality control, RNA sequencing,
assembly and annotation. This approach is computationally intensive and requires
large amounts of computational resources and memory, specially when dealing with
large or complex transcriptomes.

In the RNA-Seq experiment, the total numbers of mapped reads, i.e., sequenc-
ing depths, are di�erent for samples (see Figure 4.2), and more reads would map to
longer genomic regions. In order to have comparable counts between these sam-
ples, RNA-Seq data are usually normalized via diverse approaches, which might
take into account other within and between samples non-uniformities (Soneson
and Delorenzi, 2013).

Figure 4.2: Genes in two samples with di�erent numbers of reads (source:
(Rau, 2017))
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4.1.3 Genetics

Population genetics is the study of the variations in DNA sequence between
individuals in a population, while quantitative genetics focus on individuals' traits
and their heritability (Harmon, 2019). The genotype of an organism is its heritable
genetic identity.

Multiple variants exist in the genomes of a population of a given species and
can be regrouped into 2 signi�cant categories, which are the single nucleotides
variations and the structural variations which extend to multiple nucleotides (Man-
zoni et al., 2018). The SNVs are also known as singles nucleotide polymorphisms
(SNPs, Figure 4.3) when common in a population (frequency higher than 1%).
For most SNPs, two variants are only observed and called alleles (Neuvial et al.,
2011). Since organisms inherit one copy of each SNP position from each parent,
the organism's genotype at an SNP position is either AA, AB or BB with A and
B the two alleles (LaFramboise, 2009). The minor allele frequency (MAF) is the
proportion of the less common allele in a population (with a proportion lower than
0.5). Thus, an SNP is characterized by its genomic position, alleles, and MAF.

Figure 4.3: Single nucleotide polymorphism (source: David Hall)

The SNPs' genetic variants can be captured by whole genome sequencing based
on NGS technologies.

4.1.4 Epigenetics

Epigenetics studies heritable changes that a�ect gene expression without chang-
ing the DNA sequence (Plomion et al., 2016). The epigenome is the pattern of
these changes that mark the genome. For an organism, the genome is usually
stable across the cells. However, the epigenome is highly dynamic across cell types
and in time (Robinson et al., 2014a). Its pro�ling is thus more complex than
pro�ling the genome.

DNA methylation is a commonly studied epigenetic mark. It consists of the
addition of a methyl group to a cytosine position. Methylation occurs predomi-
nantly on CpG(CG) dinucleotides. Non-CpG methylation sites include CHG and
CHH contexts where H is a DNA base di�erent from the guanine.
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Figure 4.4: Di�erent methylation contexts (image readapted from Colette Pi-
card and Robert Erdmann)

The gold-standard method for methylation analysis is whole genome bisul�te
sequencing (WGBS). The WGBS uses the sodium bisul�te treatment to convert
unmethylated cytosines to thymine (via uracil) while the methylated cytosines
remain untouched (Wreczycka et al., 2017). This allows quantifying the proportion
of methylated cytosines over a number of reads (read coverage). When interested in
the sequencing of a speci�c region, approaches such as methyl capture sequencing
(MC-Seq, Teh et al. (2016)) can be used. They are cheaper than WGBS and need
the prior de�nition of probes to survey the genomic loci.

4.1.5 Microbiomics

Microbiomics studies the microbiome, which is the collection of microorganisms
(such as viruses and bacteria) that live in a particular environment1. Therefore,
the metagenome is the total genomic DNA of the microorganisms, and the meta-
transcriptome is their total transcribed RNA (Morgan and Huttenhower, 2012).
Microbial communities di�er from multicellular organisms such as poplars or hu-
mans, which have a unique genomic signature. They do not necessarily carry
identical genomes, and it can be impractical to sequence each cell's genome en-
tirely. Some molecular markers (DNA sequences), such as the 16S ribosomal RNA
gene, have thus been de�ned in microbial ecology, which can uniquely identify
distinct genomes.

Shotgun metagenomics and 16S metagenomics are two di�erent methods used
to study the microbial diversity in a sample. Shotgun metagenomics involves se-
quencing all the DNA in a sample, regardless of its origin. The DNA is then
broken down into smaller fragments, which are sequenced in parallel. The result-
ing sequences are then assembled into contigs and then into larger sequences called
sca�olds. Shotgun metagenomics provides a comprehensive overview of the mi-
crobial diversity in a sample, including both known and unknown species. It also
allows for the identi�cation of functional genes and metabolic pathways present
in the sample. 16S metagenomics, on the other hand, focuses speci�cally on the

1https://www.genome.gov/genetics-glossary/Microbiome
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16S rRNA gene, which is a conserved gene found in all bacteria and archaea. The
16S rRNA gene is used as a marker to identify and classify di�erent bacterial and
archaeal species. This method is typically used to study the composition and di-
versity of bacterial and archaeal communities in a sample, but it does not provide
information about the functional genes or metabolic pathways present in the sam-
ple. In summary, shotgun metagenomics is a more comprehensive approach that
allows for the identi�cation of both known and unknown species and functional
genes, while 16S metagenomics is more focused and is used speci�cally to identify
and classify di�erent bacterial and archaeal species.

The operational taxonomic unit (OTU) is a cluster of microorganisms with a
similar marker gene sequence beyond a �xed threshold. It replaces species because
named species genomes are not always available for speci�c marker genes. A typical
microbiome dataset is the count of sequences per OTUs for a given number of
samples. In order to have comparable OTUs between samples, relative counts are
usually computed, which gives rise to compositional data.

When interested in identifying SNPs in the microbial sequences, whole DNA
sequencing, also known as whole metagenome shotgun (WMS), can be conducted.
Then, the sequenced genome can be compared to reference genomes.

4.2 The EPITREE Project

The evolutionary and functional impact of epigenetic variation in forest trees
(EPITREE, ANR-17-CE32) is a forest research project that focuses on how genetic
and epigenetic variations contribute to phenotypic plasticity and adaptation to the
local environment. EPITREE was born from a need to understand the mechanisms
underlying forest tree adaptation to manage genetic resources better. Indeed, over
the last few years, widespread forest die-o� has been observed due to drought
constraints. These trees play an essential role in providing ecosystem balance on
earth. Two tree species are studied in the project, namely the poplar and oak.

The project is one of some, interested in the genetic bases of trees' local
adaptation. However, the existing studies usually focus on the contribution of
SNPs. Epigenetic mechanisms are not studied in depth. The dynamic nature
of the epigenome makes it an interesting subject to study in these long-lived or-
ganisms. EPITREE focuses on studying the variations of DNA methylation, gene
expression, and genome structural variations for a better understanding of the con-
tribution of epigenetic variations in local adaptation and phenotypic plasticity. The
project is subsetted in multiple work packages which center around the identi�ca-
tion of epigenomic candidate regions, the characterization of epigenomic variation
in natural populations and its functional consequences, the characterization of the
epigenomic plasticity and its functional consequences in response to environmental
constraints, data generation, and integrative multi-omics analysis.

Understanding the evolutionary pattern of species is essential in biology, espe-
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cially for long-lived organisms such as trees. The study of genetic and epigenetic
variations of these trees' natural populations can help shed light on their mech-
anisms of adaptation to their local environment, which is relevant in the current
context of climate change. Simultaneous interest in genetic and epigenetic vari-
ation is a recently explored area of research focused on annual plants, which are
short-lived organisms (Sow et al., 2018). Characterizing these variations for trees
remains an open question that can bring added value in forest management (Ama-
ral et al., 2020). One of the objective of the EPITREE project is to provide answers
to this concern by producing diversi�ed data on populations of trees located on
di�erent geographical sites, focusing on oak and poplar.

In the framework of the PhD research, we contribute to highlight poplar popu-
lations' genetic and epigenetic structure through SNP data and DNA methylation
data, respectively. We also show how methylation is used as a marker of population
di�erentiation by proposing genes whose methylation pattern closely follows the
genetic structure of populations. We brie�y study the link between methylation
and expression patterns for a speci�c class of genes whose expression pro�les are
stable between trees belonging to the same meta-populations. These chosen areas
of the analysis result from discussions with experts from the EPITREE project. We
also laid the groundwork for further analysis by brie�y exploring the structure and
interplay between transcriptomic and methylation patterns in di�erent methylation
contexts using the MGLASSO model. The study detailed in Section is summarized
in the application section on real data of the MGLASSO article (Sanou, 2022).

4.2.1 Data and material

Three datasets of di�erent omic natures were used for the analysis. These are
SNP data, DNA methylation data, and gene expression data. We present them in
this section and brie�y describe some applied preprocessing and transformations.
Note that details of plant material, experimental designs, and bioinformatics pre-
processing can be found in Sow (2019), Sow et al. (2023), and Chateigner et al.
(2020). Twenty genotypes corresponding to ten natural populations (two geno-
types per population) of poplars (Populus nigra), representative of the diversity of
the black poplar collection in Western Europe (see Figure 4.5), were investigated.

4.2.1.1 SNP data

The SNP data contained 9.7 million SNPs across the 20 genotypes and was
collected via the whole genome sequencing (WGS) method. An illustration of the
dataset is given in Table 4.1. Missing values are ignored and the SNPs are �ltered
out, so those with a minor allele frequency (MAF) less than 5% are discarded (see
Figure 4.6). This step made it possible to select 5.1 million SNPs.

4.2.1.2 Methylation data
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Figure 4.5: Map of Western Europe illustrating natural populations of black
poplars. The ten natural populations are partitioned into six ancestral pop-
ulations whose colors are shown on the map. Black dots indicate sites where
populations of Populus nigra were present, including sites in France, Germany,
and Italy.

1-A26 1-J31 ALL-014 ALL-019 AST-005 BDX-003
Chr01-314 1 2 1 1 1 1
Chr01-321 1 0 1 1 1 1
Chr01-357 1 0 1 1 1 1
Chr01-363 1 1 1 1 1 1
Chr01-369 1 1 1 1 1 1

Table 4.1: Sample of SNP data: allele count pro�les for �ve genomic positions
over six genotypes. The geographical location of the genotypes is as follows:
1-A26, 1-J31: Ramière; ALL-014, ALL-019: Val d'Allier; AST-005, BDX-003:
Adour.

DNA methylation levels per cytosine (single methylated polymorphism, SMP)
are measured by the whole genome bisul�te sequencing (WGBS) method for all
20 samples. Datasets are available for the three methylation contexts, with 3.53

million SMPs in the CpG context, 10.41 million in the CHG context, and 53.72

million in the CHH context. The DNA methylation data provided are count data,
and a sample is shown in Table 4.2.

Methylation proportions per cytosine are computed by taking the ratio between
the number of methylated reads and the total number of reads in the sample. Filters
based on standard deviation (Akalin, 2020) are applied to select the cytosines
that vary the most between the samples. The histogram of the distribution of
standard deviations in the CpG context is given in Figure 4.7. We chose an arbitrary
threshold of at least 20. After the �ltering step and the selection of complete cases,
we end up with 260078 SMPs in the CpG context, 92690 SMPs in the CHG context,
and 82436 SMPs in the CHH context.
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Figure 4.6: Histogram of minor allele frequencies. The SNPs with a minor
allele frequency (MAF) less than 5% are discarded from the study.

chr start end strand coverage1 numCs1 numTs1
10 Chr01 387 387 + 13 2 11
14 Chr01 416 416 + 21 2 19
18 Chr01 466 466 + 37 6 31
20 Chr01 504 504 + 44 9 35
21 Chr01 506 506 - 25 3 22

Table 4.2: Sample of DNA methylation data in CHG context for �ve ge-
nomic positions: chr, start, end and strand locate the genomic position
while coverage1 , numCs1 and numTs1 are the number of reads, the number
of methylated reads and the number of unmethylated reads, respectively for
sample 1 (Ramière).

The proportions of DNA methylation per gene in the gene body and promoter
regions are also available. They result from the correspondence between SMPs and
genes. A sample of the data is given in Table 4.3. After discarding missing values,
40238, 40318 and 40407 genes methylation levels are available for the CpG, CHG
and CHH contexts, respectively.

4.2.1.3 Expression data

The raw genes expression data are count data. They were collected via the
RNA sequencing method (RNA-seq) on the genotypes of interest. After being
normalized with the trimmed mean of M -values (TMM, Robinson and Oshlack
(2010)), the counts per millions (CPM) are computed. A mixed linear model is
then �tted on the gene expressions to correct for the e�ects of cofactors such as
date, block, or time of sampling. The best linear unbiased predictors of between
and within population random e�ects are summed to obtain the best linear unbiased
prediction for each gene. The process is described in detail in Chateigner et al.
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Figure 4.7: Histogram of the distribution of standard deviations of methylation
levels per genomic position in the CpG context. Positions with a standard
deviation greater than 20 are selected.

geneid ratio1.Adour.gbM.CG ratio2.Adour.gbM.CG
1 Potri.001G000200 0.80 0.74
2 Potri.001G000300 0.70 0.64
3 Potri.001G000400 0.29 0.33
4 Potri.001G000500 0.01 0.01
5 Potri.001G000600 0.01 0.01

Table 4.3: Sample of DNA methylation data in the CpG context for �ve genes
(gene body region). The methylation proportions are given for two genotypes
located in the Adour area.

(2020). A sample of the RNA-seq normalized data is given in Table 4.4. The
transcriptomic dataset used contains 34229 genes.
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1-A26 1-J31 AST-05 BDX-03
Potri.001G000200.1 -0.01 -0.01 -0.01 -0.02
Potri.001G000400.1 -0.13 0.12 0.07 -0.13
Potri.001G000700.1 -0.08 0.01 -0.02 -0.05
Potri.001G000800.1 0.19 0.46 -0.22 -0.50
Potri.001G000900.1 -0.06 -0.03 0.07 0.06

Table 4.4: Sample of normalized gene expression data for �ve genes over four
genotypes. The data is normalized in two rounds: �rst by the trimmed mean
of M -values and second by a correction for experimental design e�ects via a
mixed linear model (Chateigner et al., 2020). The geographical location of the
genotypes is as follows: 1-A26, 1-J31: Ramière; AST-005, BDX-003: Adour.

4.3 Di�erential analysis and selection of markers

Some material in this section is part of a collaborative article submitted (Sow
et al., 2023) to a biology journal. Note that the analysis is narrated here in a
language where the emphasis is on the statistical methodologies used, with an
attempt to bring together omics data of di�erent natures. We refer the reader to
Sow et al. (2023) for a deeper understanding of the biological motivations for this
study. We present the data used for the analyses in Section 4.2.1. In Sections
4.3.1, 4.3.2, and 4.3.3, we introduce statistical methods. Section 4.3.4 describes
the results.

4.3.1 Di�erential analysis

4.3.1.1 Binomial regression model for methylation data

The problem addressed here is the de�nition of a method to identify positions
of the genome for which the methylation proportions are signi�cantly di�erent
between sample groups. A treatment variable or clustering usually determines the
groups. The issue of di�erential analysis for methylation data has been tackled in
Robinson et al. (2014b); Wreczycka et al. (2017). Common methods are based
on standard statistical tests, regression models, or even hidden Markov Models.
Here, the focus is put on a regression-based method. These approaches are the
most suited when dealing with multiple groups in the samples and allow adding
additional covariates in the model if needed.

Denote yj = (y1j , . . . , ynj)
⊤ ∈]0, 1[n the vector encoding the proportion of

methylated cytosines at a position j of the DNA, in the n samples. Denote
Nj ∈ Nn the vector of reads coverages. The proportion of methylated cytosines
equals the ratio between the number of cytosines and the read coverage. Let Xj ∈
{1, . . . ,K}n be the categorical n-dimensional covariate with K ≥ 2 categories
corresponding to the groups to which the samples belong.

Let's introduce Ỹj , the response variable deduced from yj corresponding to the
number of successes in the Nj trials. We have Ỹij |Xij = xij ∼ Binomial(Nij , πij)
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where πij = π(xij). When Nij = 1, we return to classical logistic regression for
binary variables. We introduce dummy variables to encode the contribution of the
categorical variable as follows: dummy(xij) = [1(xij = 1), . . . ,1(xij = K)].

Consider the generalized linear model with the link function h(π) = log
(

π
1−π

)
,

with π ∈]0, 1[:

logit(πij) = log

{
πij

1− πij

}
=

K∑
k=1

βjk1(xij = k)

and
∑

k βjk = 0.

The log-likelihood is de�ned as follows:

logL(β) =
n∑

i=1

{ỹij log(πij) + (Nij − yij) log(1− πij)} (4.1)

The model without intercept is �tted via the following negative convex log-likelihood
function, except for one constant:

arg min
βj

n∑
i=1

{
−ỹij

(
K∑
k=1

βjk1(xij = k)

)
+Nij log

(
1 + exp

(
K∑
k=1

βjk1(xij = k)

))}
subject to

∑
k

βjk = 0.

(4.2)

In order to establish whether there is an association between the groups and the
response, the deviance of the null model is compared to the deviance of the �tted
modelM via:

G = 2(log L̂null − logLM),

where L̂s and LM are respectively the maximized likelihoods of the null model and
the �tted modelM.

The alternative hypothesis stating H1j : βjk ̸= 0 for at least one coe�cient
k was tested against the null hypothesis H0j : βjk = 0 for all k. The statistic G

follows a chi-square probability distribution χ2 with K degrees of freedom under
the null hypothesis. In practice, with a modality of the categorical variable chosen
as a reference class, G ∼ χ2(K − 1). Bonferroni corrections are applied to correct
for multiple tests. The di�erential analysis procedure described is available in the
methylKit package and named weighted fractional logistic regression.

4.3.1.2 ANOVA model for expression pro�les

The problem addressed here is the de�nition of a method to identify di�eren-
tially expressed genes from multiple samples. Various tools and methods can be
used depending on the nature of the gene expression data (Soneson and Delorenzi,
2013). Regarding counts, methods based on Poisson and Negative Binomial models
are the most common. In our case, the data has already been transformed from

92



counts to continuous data, which eases standard methods based on hypothesis
testing.

Di�erential analysis is conducted for gene expression data by one-way univariate
analysis of variance (ANOVA). Let yj = (y1j , . . . , ynj)

⊤ ∈ Rn be the vector
encoding the normalized gene expression values in the n samples. Let Xj ∈
{1, . . . ,K}n be the n-dimensional categorical covariate with K ≥ 2 categories
corresponding to the groups to which the samples belong.

Consider the generalized linear model with the identity link function h(y) = y,

where y ∈ R :

yij =

K∑
k=1

βjk1(xij = k),

and
∑

k βjk = 0 for identi�ability constraints.
The least squares estimation procedure can be used to estimate the model

coe�cients, which are the solution of:

arg min
βj

n∑
i=1

(
yij −

K∑
k=1

βjk1(xij = k)

)2

subject to
∑
k

βjk = 0.

(4.3)

An ANOVA table for hypothesis testing can be constructed by partitioning the sum
of squares and using a Fisher statistic. Denote ŷij the �tted values for gene j and
observation i and ȳj the mean expression in the sample. The regression residuals
can be broken down as follows:

n∑
i=1

(yij − ŷij)
2 =

n∑
i=1

(yij − ȳj)
2 −

n∑
i=1

(ŷij − ȳj)
2. (4.4)

The statistic

f =

∑n
i=1(ŷij − ȳj)

2/(K − 1)∑n
i=1(yij − ŷij)2/(N −K)

∼ F (K − 1, N −K), (4.5)

where F (df1,df2) is the Fisher distribution with df1 and df2 degrees of freedom.
The null hypothesis is formulated as follows: H0j : The gene j has the same
expression level in all groups. Bonferroni corrections are applied for the correction
of multiple tests. The ANOVA model is �tted using the stats package.

4.3.2 Clustering of SNP and methylation data

Identifying the genetic structure of a population of species is common in ge-
netics (Robin and Ambroise, 2019). As part of our analysis, the genetic structure
is used to �nd epigenetic markers that mimic the same population structure. We
brie�y recall the clustering procedure developed by a co-author of the paper Sow
et al. (2023) to �nd the genetic structure of populations. Hierarchical ascendant
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clustering with Ward's method is applied to the VanRaden Genomic Relationship
Matrix (GRM, VanRaden (2008)) converted into a dissimilarity matrix. The R
package stats is used.

The epigenetic structure is also uncovered using hierarchical clustering with
Ward's method on the correlation similarity matrix between populations. The
approach is implemented in the methylKit package.

4.3.3 Gene sets testing

We perform enrichment analysis to provide a biological interpretation of dif-
ferentially methylated cytosines. We seek signi�cantly enriched gene cluster in
gene ontology terms, recovered from clustering on the cytosines. This approach
is slightly di�erent from classical gene set enrichment analysis (GSEA), which
considers both a set of di�erentially expressed or methylated genes and the com-
plementary set.

Cytosine groups are found using k-means with euclidean distances on the
methylation pro�les. The centered log-ratio previously transforms these pro�les.
Note that the clustering step can make it possible to �nd co-methylated pro�les
and help characterize genes whose biological function is not yet known (Rau, 2017).
The number of clusters is selected using the slope heuristic (Baudry et al., 2012)
with a number of clusters varying between 1 and 30. Clustering is done using the
coseq package (Rau et al., 2017) initially developed for clustering RNA-Seq data.

In the second step, a map is established between the positions of the cytosines
and the known genes of poplar using the genome of Populus trichocarpa v3.1. The
Gene Ontology database (GO, Ashburner et al. (2000)) is used for functional gene
annotations. We limit ourselves to the GO terms of biological processes. Molecular
functions and cellular components are not taken into account.

Finally, the enrichment analysis is performed using the topGo package after
the clustering step. The tests are based on the number of genes per ontology
belonging to the cluster. For cluster k and GO term Y , the following question
is answered: Is there an association between the genes of the cluster k and the
annotations for the GO term Y ? The contingency table 4.5 can therefore be built.
The p-values are calculated using Fisher's exact (hypergeometric) test. The null

Di�erentially expressed
genes in Cluster k

Di�erentially expressed
genes in other clusters

Total

In
GO term Y

n11 n12 n1.

Not in
GO term Y

n21 n22 n2.

Total n.1 n.2 n..

Table 4.5: Contingency table between cluster's genes and ontology term.

hypothesis H0 states: the genes of the cluster k are not overrepresented in GO Y.
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Only ontologies with a p-value less than 0.05 after Benjamini-Hochberg correction
are considered signi�cant.

Complementary GO enrichment analysis is also performed using Metascape

(Zhou et al., 2019) bioinformatics software with default settings. This approach
is based on the sets of di�erentially and non-di�erentially methylated genes. Ad-
ditionally, it performs clustering of GO terms and returns the GO with the lowest
p-value per cluster.

4.3.4 Results

4.3.4.1 Populations' genetic and epigenetic structure

The recovered groups from SNP data and the natural groups from the ge-
ographical structure are concordant in di�erentiating the 10 natural populations
of poplar genotypes (see �gures 4.8 and 4.5). Indeed, each pair of poplars per
geographical site �rst merged before joining other sites. One genotype from the
Rhine population was discarded due to some �ltering constraints on the methyla-
tion data and removed from the SNPs and expression datasets. The hierarchical
tree in Figure 4.8 summarizes the pattern of evolutionary relatedness among the
group of poplars' species. With a partition into 3 clusters, we note that the �rst
group, composed of the populations of Basento and Paglia, corresponds to geo-
graphical sites in the south of the map (Figure 4.5). The second group, composed
of Dranse, Kuhkopf, Rhin, and Ticino, corresponds to the geographical sites of the
center. The last group, composed of populations from Adour, Val d'Allier, Loire,
and Ramières, corresponds to the geographical sites of the West.

DNA methylation data's epigenetic analysis must be considered a triple analysis
according to the methylation contexts (CpG, CHG, and CHH). To make the reading
pleasant and relevant, we focus only on the results obtained in the CpG context.
Note that the analysis is readily reproducible in other methylation contexts. The
clustering tree obtained on the methylation data in a CpG context is given in
Figure 4.9. The structure is di�erent from the genetic structure of the population.
However, the two genotypes belonging to the same natural population merged all
the same before joining other geographical sites.

The three meta-populations identi�ed earlier are used for the di�erential anal-
ysis step to identify epigenetic markers of the population's genetic structure and,
therefore, implicitly of the geographical structure.

4.3.4.2 Epigenetic markers of the genetic population structure

To characterize which cytosines di�erentiate the three meta-populations based
on the genetic structure (Section 4.3.4.1), we performed a di�erential analysis for
DNA methylation data in the CpG context. Figure 4.10 illustrates the histogram
of unadjusted p-values for cytosines. After Bonferroni's correction, 69189 cytosine
positions out of 260078, or about 26%, were signi�cantly associated with the
genetic structure. The overall signi�cance level was set at 0.01.

For the enrichment analysis, we selected the top 1500 of the most di�erenti-
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Figure 4.8: Genetic structure of natural poplar populations from SNP data.
The clustering dendrogram is obtained by hierarchical ascendant clustering
based on the similarity matrix of genomic relationships between genotypes. A
3 cluster partition is indicated by di�erent colors for the branches and leaves
of the tree.

ated cytosines, i.e., those with the lowest p-values. Their underlying population
structure is compared to the genetic structure in Figure 4.11. The two dendro-
grams are di�erent. However, the DNA methylation dendrogram shows that the
three poplar meta-populations are well discriminated.

We conducted an enrichment analysis on epigenetic markers, identifying 8

clusters obtained using the clustering approach described in Section 4.3.3. The
mapping step identi�ed 746 genes. Figure 4.12 shows the enriched GO for a
selected cluster. Compared to the other clusters, this displayed cluster is enriched
in genes involved in biological regulation and response to stimuli, among others.

A gene set enrichment analysis is also done using the Metascape approach in
Figure 4.13 and also highlights relevant biological processes.

4.3.4.3 Methylation and expression pro�les

The objective is to verify if there are patterns between the expression pro�les
and the methylation pro�les of the housekeeping and di�erentially methylated genes
within the meta-populations.

Housekeeping genes are, by de�nition, genes whose expression level is stable
between populations. In order to identify them, we performed a di�erential analysis
between genotypes belonging to the same meta-populations for the RNA-Seq data
and selected the non-di�erentially expressed genes. This di�erential analysis within
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Figure 4.9: Epigenetic structure of natural poplar populations from DNA
methylation data in the CpG context. The clustering dendrogram is obtained
by hierarchical ascendant clustering based on the similarity matrix of correla-
tion between genotypes.

Figure 4.10: Histogram of unadjusted p-values

meta-populations is also performed for DNA methylation data. The results are
presented only for the CpG context. We used the methylation dataset provided for
genes and not for SMPs.

For expression data (34229 genes), we identi�ed 34227, 33332, and 32660 non-
di�erentially expressed genes in the �rst meta-population (Paglia, Basento), the
second (Dranse, Kuhkopf, Rhin, Ticino) and the third (Adour, Val d'Allier, Loire,
Ramières), respectively. For DNA methylation data, we obtained 8558, 6154, and
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Figure 4.11: Epigenetic structure of natural poplars based on 1500 markers
from DNA methylation data in the CpG context. The hierarchical tree on
DNA methylation data is plotted against the one computed from the whole
SNP data.

Figure 4.12: Top 8 enriched gene ontology terms for the biological process
ontology in one selected cluster. The bar plot displays the −10 log of the
adjusted p-value for the Fisher's exact test.

7427 di�erentially methylated genes in the �rst, second, and third metapopulations,
respectively.

A simple linear regression model is then �tted between the expression and

98



Figure 4.13: Encriched gene ontology with Metascape.

methylation levels onto the intersection of the two subsets of genes, with the ex-
pression considered the response. Figure 4.14 shows the match between expression
and methylation pro�les for the natural population of Paglia. The analysis did not
identify a general trend for the di�erent subpopulations nor any signi�cant linear
model coe�cients.

Figure 4.14: Methylation pro�les plotted against expression pro�les for house-
keeping and di�erentially methylated genes. The samples are the mean expres-
sion and methylation levels of the genotypes belonging to the natural popula-
tion of Paglia in the CpG context. We do not observe a signi�cant linear trend
between the two genomic entities.

4.3.5 Discussion

The population structure was investigated for epigenetic data (DNA methy-
lation in a CpG context) and genetic data (SNPs). As mentioned earlier in the
introductory part of the review, studies exploring genetic and epigenetic variation
in trees are less well explored than in annual plants.

The results obtained on the poplar forest tree suggest that, as well as the SNPs
data, there is a relationship between DNA methylation and the local adaptation
of trees. This result has also been noted by Lamka et al. (2022). Indeed, the
hierarchical clustering trees have shown that it is always possible to merge �rst the
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genotypes from the same geographical sites. Our results also suggest that DNA
methylation can be used as a marker of population di�erentiation according to the
genetic structure. To this end, we have proposed a list of di�erentially methylated
genes markers of the genetic structure of the population.

When examining methylation within meta-populations, we did not �nd a clear
pattern between methylation and expression levels for housekeeping genes. The
analysis could be renewed by focusing on a smaller sample of genes and by de�ning,
together with the biologists, much more stringent �lters. We refer to Sow et al.
(2023) for more details on the biological �ndings of this study.
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4.4 Integrative analysis of methylation and transcriptomic data

through MGLASSO

This section presents an application of our MGLASSO approach (Chapter 3),
to transcriptomic and DNA methylation data. They were collected as part of the
EPITREE project (Maury et al., 2019) and have already been presented in the
previous section (Section 4.3). We performed an integrative analysis in which
we modeled the multi-scale relationships between natural poplar populations for
a set of selected genes. Unlike Section 4.3, where clustering is performed on
omics data of di�erent natures separately, in what follows, we incorporate several
types of omic data to generate a clustering path of the natural populations of
poplars and multi-scale interaction graphs. We laid the groundwork for further
analysis by brie�y exploring the structure and interplay between transcriptomic
and methylation patterns in di�erent methylation contexts. The study detailed
here is summarized in the application section on real data of the MGLASSO article
(Sanou, 2022). We present the data in Section 4.4.1. Section 4.4.2 introduces the
approach used for gene selection. Section 4.4.3 gives details on how the model is
learned. We present some results in Section 4.4.4.

4.4.1 Data and pretreatments

As mentioned earlier, poplar is often used as a model tree in studying molecular
determinants of drought stress. As part of the EPITREE project, natural popula-
tions of poplars were planted in common gardens in France, Italy, and Germany
(see Figure 4.15) with control over certain environmental variables such as water
availability (Sow et al., 2018). The datasets used have already been presented in

Figure 4.15: Photo of a black poplar (left, source: Christian Fischer) and
geographical distribution of the 10 natural populations of poplars (right).

Section 4.2.1. The focus here is on gene expression and methylation data. For each
of the 10 natural populations (with two genotypes per population), RNA sequenc-
ing data and DNA methylation data for the promoter and the gene-body regions,
in the CpG, CHG, and CHH contexts are available. Let A, C, G, and T be the
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nucleotides adenine, cytosine, guanine, and thymine, respectively. As a reminder,
methylation consists of adding a methyl group to a cytosine of the genome and oc-
curs in three contexts (CpG, CHG, and CHH, where H ∈ {A,C, T}). Methylation
can be measured on promoter and gene-body regions. In promoter regions, methy-
lation is related to gene silencing, while it is related to tissue-speci�c expression or
alternative splicing in gene-body regions (Sow, 2019).

For the genes methylation data, we used data that have been normalized via
the reads by density approach and then passed to a logarithm function log2(x+1)

with x ∈ R. The reads by density is the product between the number of methylated
reads and the proportion of methylated reads. The approach was de�ned in Sow
et al. (2023). RNA-Seq data were normalized via trimmed mean of M -values
followed by a correction for experimental design e�ects via a mixed linear model
(Chateigner et al., 2020).

An average value is calculated for each pair of genotypes per population. Inte-
grating the 10 natural populations on the 7 omic entities gives a set of 70 pro�les.
The analysis was restricted to a group of 151 target genes selected from 24926,
which explains the most variability in the data. The gene selection process is
described in Section 4.4.2.

4.4.2 Gene selection through sparse PCA

We perform a sparse principal component analysis for variable selection based
on singular value decomposition and the LASSO penalty on loading vectors. The
most signi�cant genes, i.e., those for which the loading vector entries are non-zero,
are selected. The approach is implemented in the R package mixomics (Rohart
et al., 2017), which is based on a low-rank matrix approximation (Shen and Huang,
2008).

Consider a datasetX ∈ Rn×p with n observations and p variables. Suppose the
columns of X are centered. Vanilla principal component analysis can be performed
via the singular value decomposition (SVD) of X. Denote r = rank(X), the SVD
writes:

X = UDV⊤, (4.6)

where U ∈ Rn×r is the matrix of left singular vectors, V ∈ Rp×r the matrix
of right singular vectors, and D ∈ Rr×r is a diagonal matrix whose diagonal
elements are ordered singular values. The columns of UD are the projections of
the data i.e. the principal components. The columns of V are the corresponding
loadings or direction vectors, which are used to interpret the principal component
axes. Interpretation is improved when loadings are sparse (see Hastie et al. (2009)
Section 14.5.5).

The intuition of the sparse PCA approach introduced by Shen and Huang
(2008) is to exploit the link between the SVD and the low-rank approximation
method (Eckart and Young, 1936) while solving a penalized least-squares regression
problem. The matrix X can be approximated by another matrix X(l) of lower rank
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with l ≤ r, as follows:

X(l) =

l∑
k=1

dkukv
⊤
k . (4.7)

For l = 1, we can write X(1) = ũṽ⊤ where ũ is a norm-1 n-vector and ṽ is a
p-vector. The rank one matrix X⋆ = ũ⋆ṽ⋆ is estimated as follows, with parsimony
constraints on the loading vector:

minimize
ũ, ṽ

∥∥∥X− ũṽ⊤
∥∥∥2
F
+ λ ∥ṽ∥1 ,

subject to ∥ũ∥2 = 1,

(4.8)

where ∥.∥F is the Frobenius norm and λ ≥ 0 the LASSO penalty parameter. The
authors propose an iterative procedure to obtain the �rst sparse loading vector
ṽ/∥ṽ∥2. The other sparse loading vectors are also computed via a rank one ap-
proximation.

In practice, the selection of the parameter λ is solved in Rohart et al. (2017) by
de�ning the degree of parsimony as the desired number of signi�cant genes, i.e.,
the number of non-zero entries in the vectors loading. We applied a sparse PCA on
the omics datasets taken separately; then, on the �rst 3 principal components, we
selected 15 genes. This yielded a set of 315 candidate genes. Removing duplicates
leaves us with a �nal set of 151 genes on which we integrate omics data.

4.4.3 MGLASSO learning

We applied the MGLASSO method introduced in Chapter 3, on the material
of the study. Natural populations are considered as variables, and genes as ob-
servations. The sample size is, therefore, n = 151, and the number of variables
p = 70.

The bounds on the penalization parameters introduced in Section 3.3 were
written after the study. They have, accordingly, not been tested in practice with
MGLASSO applications. Following the discussion on model selection in the section
mentioned above, we selected only the LASSO penalty parameter, and this via
the StARS approach (Liu et al., 2010) to provide maximal network stability. In
proceeding so, MGLASSO is equivalent to the neighborhood selection method
(Meinshausen and Bühlmann, 2006). The LASSO penalty parameter is chosen
from a grid of 50 equidistant values on a logarithmic scale [λ1min, . . . , λ1max]

where λ1min = λ1max/1000 and λ1max is the maximum of the smallest values of
the LASSO tuning parameters for which the node-wise regression coe�cients are
all zero (El Ghaoui et al., 2010). In practice, we used the huge package (Zhao
et al., 2012) to compute the StARS selection with a grid of penalization parameters
values provided. The StARS cut-point value (variability threshold) was set to 0.05.

We drew 50 subsamples from the data with a subsampling block size set to 0.8n.

The sequence of fusion penalty parameters λ2 is a grid of 20 equally-spaced values
in the interval [0, 30.94].
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In the convex clustering problem introduced by Hocking et al. (2011), the
classic illustration used for the method results is the path of convex clustering
solutions over the fusion penalty, projected onto the principal components of the
original dataset. In the MGLASSO model, we adopted the same idea with the
LASSO penalty �xed. However, the solutions, i.e., the estimated regression vectors,
do not belong to the same space as the data. Consequently, the path is drawn on
the predicted data.

Graphs computed using MGLASSO are symmetrized using theAND rule (Mein-
shausen and Bühlmann, 2006) i.e., an edge (i, j) is considered to be present when
the estimated coe�cient of variable i on variable j and the estimated coe�cient
of variable j on variable i are both non-zero. The desired precision for stopping
the CONESTA-based optimization algorithm (Hadj-Selem et al., 2018) is �xed to
ϵ = 0.01.

4.4.4 Results

We present the clustering path and the estimated adjacency matrices generated
via the MGLASSO model.

Figure 4.16 shows the resulting clustering paths on the entire grid of fusion
penalty parameters (Figure 4.16a) and a truncated grid (Figure 4.16b).

(a) Full clustering path
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(b) Cutted clustering path

Figure 4.16: Clustering path of solutions on DNA methylation and transcrip-
tomic samples. The �gure shows 3 distinct clusters which correspond to omics
data of di�erent natures: transcriptomic (right), methylation on the promoter
(bottom), and methylation on gene-body (top left).

We observe some observations' splits after their fusion. However, there is
a clear separation between the pro�les of natural populations corresponding to
RNA-Seq data, gene-body methylation data, and promoter methylation data. In
the group composed of gene-body pro�les, we can see a split between the other
methylation contexts and the CpG context. These pro�les in the CpG context can
be subdivided into two main groups consisting of the natural populations of the
Rhine, Kuhkopf, Paglia, and Ticino on the one hand and the natural populations of
Basento, Ramières, Loire Adour, Dranse, and Val d'Allier on the other hand. The
expression data suggest three groups of natural populations: Tessin and Ardour;
Rhine and Kuhkopf; Val d'Allier, Loire, Ramières, Paglia, Basento, and Dranse.

Figure 4.17 shows some graphs (adjacency matrices) of the MGLASSO network
inference path. As λ2 increases, the resulting multi-scale graphs are block-diagonal
graphs with the number of blocks in {7, 3, 2, 1}.
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(a) λ2 = 0

(b) λ2 = 1.63 (c) λ2 = 3.26

(d) λ2 = 4.89 (e) λ2 = 30.94

Figure 4.17: Adjacency matrices for di�erent fusion penalty parameters. The
�rst graph shows the inferred network when no fusion penalty is added to the
model. In that graph, the �rst block of size 10 × 10 variables corresponds
to RNA-Seq samples. The second sparser block of size 30 × 30 corresponds
to gene-body DNA methylation data in the three methylation contexts. The
last sparse block of the same size corresponds to promoter methylation. The
edge bands suggest a relationship between DNA methylation measurements
that belong to the same context. For example, the Loire methylation sample
in the CpG context is likely related to the Loire samples in the CHG and
CHH contexts. The graphs also suggest some relationships between expres-
sion and methylation for some natural populations. As the merging penalty
increases, the blocks corresponding to the three methylation contexts merge
�rst, then follow the upper left block corresponding to the expression data. For
λ2 = 30.94, all natural populations merge into a single cluster and complete
graph.
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Figure 4.17a shows the adjacency matrix with �xed Lasso penalty and λ2 = 0.

The graphs suggest a higher number of interactions between natural populations
belonging to the same omic entity. There are fewer interactions between natural
populations from di�erent omics entities. Regarding these interactions between
pro�les from di�erent omic entities, we observe a clear interaction trend between
pro�les belonging to the same methylation context.

As the fusion penalty increases, in Figure 4.17b we observe a grouping ef-
fect in the edges, which suggests the same 3 clusters identi�ed in the clustering
path. The interactions inside the 3 groups are irrelevant because almost all the
nodes have merged. However, the relationships between the three groups may
suggest potentially natural populations whose expression, gene-body methylation,
and methylation in the promoter region are correlated.

As the fusion penalty continues to increase, all methylation pro�les merge in
Figure 4.17d. The interactions highlighted may suggest potential natural popu-
lations with a stronger relationship between their transcriptomic and methylation
pro�les.

For a maximum fusion penalty value, the clustering e�ect extends to all nodes
in the graph resulting in a complete graph.

4.4.5 Discussion

We conducted an integrative analysis on multiple omics data to model the
multi-scale relationships between natural populations of poplar and also illustrate
the performance of the MGLASSO method in a context of real data where the
results can be proof checked according to the biological context.

We accounted for conditional dependencies within natural populations measur-
ing the same omic entity and conditional dependencies between natural populations
belonging to di�erent omic entities. It is well known that methylation regulates
the expression of genes (Neuvial, 2020), and some of the results suggest potential
poplar natural populations for which there is a strong link between their methyla-
tion and expression pro�les. When calculating the MGLASSO clustering path, the
path was not agglomerative, but the method highlighted three pure clusters that
correspond to strictly di�erent omics entities. These results also suggest that gene-
body methylation signals for CpG are clearly di�erentiated from other methylation
contexts in an integrative analysis framework. Note, Sow et al. (2023) indicated
that methylation in the CpG context has more adaptive power than methylation in
the other contexts.

The analysis presented is preliminary; however, it lays the groundwork for fur-
ther research. It is based on natural populations and not genes and contrasts with
integrative analysis approaches performed on genes (Section 5.1 in Rau (2017);
Chiquet et al. (2019)).
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5 - Conclusion and perspectives

This thesis proposes a novel approach to enhance the inference of Gaussian
graphical models by incorporating a structure of the variables. This structure is
assumed to be unknown. Multilevel Gaussian graphical models have gained in-
creasing attention in recent years, yet their application has been limited to the
inference of networks for single variables and a priori known groups of variables.
There is a growing interest in exploring their potential for analyzing heterogeneous
data, especially omics data consisting of variables from di�erent probability dis-
tributions. In omics projects, such as EPITREE, various types of data, including
genetic, genomic, and epigenetic data, have been produced to gain a better un-
derstanding of the molecular mechanisms involved in the adaptation of forest trees
throughout their lifespan. However, one question that has received less attention
is the quanti�ed impact of DNA methylation, an epigenetic mark, on the trees'
local adaptation. This question can be addressed by exploring the links that can
be established between the di�erent omics data. By proposing an approach that
can account for the structure of variables in Gaussian graphical models, this thesis
contributes to the advancement of statistical inference methods. Furthermore, by
demonstrating the potential of multilevel Gaussian graphical models for analyzing
heterogeneous omics data, this research has the potential to inform on the molec-
ular mechanisms of forest tree adaptation and improve our understanding of the
role of DNA methylation in this process.

In this research, we proposed a novel inference model that combines the the-
ories of convex clustering and neighborhood selection. Convex clustering is a
group-fused LASSO penalized convex relaxation of hierarchical clustering that can
produce robust results. Meanwhile, neighborhood selection is a LASSO penalized
pseudo-likelihood approximation that reduces the computational burden in estimat-
ing graphical models and simpli�es extensions to multiple probability distributions.
By linking the inference of Gaussian graphical models with the convex clustering
theory, we can construct networks with nested structures, similar to the hierar-
chical tree structure, under certain conditions. While some previous research has
combined both theories, the idea of multi-scaling structures has not been clearly
demonstrated. Our proposed model overcomes this limitation and provides a more
comprehensive framework for analyzing complex networks.

Our proposed model, the Multiscale Graphical LASSO (MGLASSO), aims to
improve the interpretability of networks by providing graphs at multiple levels of
granularity. This feature is particularly useful in biological data analysis where it's
necessary to zoom in and out of inferred networks. The procedure starts by esti-
mating a network based on single variables, followed by the addition of a fuse-group
LASSO penalty to encourage similarity in the estimated vectors of parameters and
recover networks on groups of variables. The approach uses convex optimization
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and minimizes the neighborhood selection objective, penalized by a hybrid regu-
larization that combines a sparsity-inducing norm and a convex clustering penalty.
To apply MGLASSO in practice, we developed a complete numerical scheme that
includes an optimization algorithm based on CONESTA (Hadj-Selem et al., 2018)
and a model selection procedure based on StARS (Liu et al., 2010). We imple-
mented the approach as an R package based on Python libraries (Sanou, 2022).
Although the MGLASSO was designed for graph inference, it is also a convex clus-
tering technique. In the literature of convex clustering, this is the �rst attempt to
use a continuation method based on Nesterov smoothing.

Our simulation results on synthetic and real datasets demonstrated that MGLASSO
outperforms GLASSO (Friedman et al., 2008) in network support recovery in the
presence of groups of correlated variables. We further illustrated the method's
e�ectiveness through its application on heterogeneous data, which combined tran-
scriptomic and DNA methylation data, as well as on non-heterogeneous metage-
nomic data. Our approach accounted for heterogeneous data and non-Gaussian
data by applying variable transformations to return to the Gaussian framework. In
an e�ort to better understand the impact of DNA methylation on the local adapta-
tion of forest trees, speci�cally the poplar, the results of a joint study suggest that
DNA methylation can be utilized as a marker of trees population di�erentiation
based on genetic structure (Sow et al., 2023).

The research work has some limitations that could be addressed in future
work. For example, the MGLASSO method struggles to produce tree structures
without splits, and the calibration of the threshold for merging variables can be
challenging. Data transformation can also introduce biases, and there is currently
no selection criterion for the fusion penalty parameter. Additionally, the method is
most e�ective with a relatively low number of variables, which may limit its utility in
certain applications. In the framewrk of the EPITREE project, it would be valuable
to explore the inference of gene regulatory networks from omics data, in order to
identify interactions between epigenetic markers of the genetic structure of natural
poplar populations. Furthermore, while the proposed R software is functional, it
could bene�t from more documentation to help users fully understand and utilize
its capabilities. Overall, this research lays the groundwork for further advancements
in this area, and future work can build upon these �ndings to address the existing
limitations and extend the method's capabilities.

5.1 Perspectives

5.1.1 Avenues in convex clustering

5.1.1.1 Recovering a tree structure

In the theory of convex clustering, weights wij are often used in the fusion
penalty to measure the similarity between variables Xi and Xj in order to improve
clustering results. However, as seen in the case of MGLASSO, the convex clustering

110



solution path may display abrupt fusions or splits of clusters when using identity
weights. It should be noted that while convex clustering is a convex relaxation
of hierarchical clustering, splits are uncommon in standard hierarchical clustering.
Several rules have been proposed for selecting weights that result in a clustering
solution path that re�ects a tree structure without splits. For example, Hocking
et al. (2011) conjectures that for decreasing weights wij = exp(−

∥∥Xi −Xj
∥∥2
2
) in

the case of ℓ2 fusions, the clustering does not display splits. In addition, Chiquet
et al. (2017a) proposed weights with theoretical guarantees that prevent splits
in the clustering solution path. Another study by Chi and Steinerberger (2019)
suggests that if the weights wij re�ect a tree structure among the variables, then
the expected solution path will exactly reconstruct the tree. However, how to select
weights in the MGLASSO framework to ensure paths with no splits is a topic for
future research.

5.1.1.2 Selection of clusters' fusion threshold

As mentioned throughout the work, in practice, exact equality between esti-
mated vectors is not required before assigning variables to the same cluster as
done in most research work about convex clustering. For example, in Sun et al.
(2021), the fusion threshold is arbitrarily set to ϵ = 10−5. De�ning the fusion
threshold based on a rigorous rule can improve the results. While we assumed a
transitivity relation by using an approximate test to derive the clusters, in practice,
we have no strong guarantee that

∥∥βi − τijβ
j
∥∥
2
≤ ϵ and

∥∥βj − τjkβ
k
∥∥
2
≤ ϵ

ensure that
∥∥βi − τikβ

k
∥∥
2
≤ ϵ. As suggested by Jiang and Vavasis (2020) for the

case of vanilla convex clustering, it may be worth exploring how the MGLASSO is
sensitive to threshold selection and how it can be selected more rigorously.

5.1.1.3 Bounds on the regularization parameters

The MGLASSO algorithm is currently implemented as a basic path algorithm
in which the LASSO penalty is kept constant and the clustering penalty parameter
is varied in a grid of values. Following iterations can bene�t from the previous
iterations' estimations as warm starts. However, this approach could be further
improved by considering theoretical guarantees and incorporating them into the
algorithm. In Hoe�ing (2010), a path following algorithm is proposed for the
Fused LASSO signal approximator. This algorithm considers the computation of
the next hitting times and violation times as fusion parameter values for which
the clusters will fuse or split, respectively. By adopting a similar approach for the
MGLASSO, the burden of de�ning the right grid of values for the fusion penalty
parameter could be removed, and the computation burden related to a path algo-
rithm could be optimized. In the worst case scenario, if the hitting and violation
times cannot be de�ned, one could consider deriving an upper-bound on the fusion
penalty parameter and avoid the blind de�nition of the grid of values. Tan and
Witten (2015)'s work on convex clustering and Tibshirani and Taylor (2011)'s work
on the generalized LASSO could provide some insights on how the upper-bound
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can be derived. Overall, incorporating theoretical guarantees into the MGLASSO
algorithm could lead to more e�cient and accurate clustering results.

5.1.2 Avenues in probabilistic graphical models inference

5.1.2.1 Estimation of precision matrix coe�cients

The MGLASSO algorithm is not based on the full Gaussian likelihood of the
model, unlike the graphical LASSO (GLASSO). Instead, it focuses on the neighbor-
hood selection scheme of inference of Gaussian graphical models using a pseudo-
likelihood approximation. While it would be interesting to aim for an exact esti-
mation of the precision matrix, it is not guaranteed to lead to faster optimization
procedures. However, it may overcome uncertainties related to edge estimations.
In neighborhood selection approaches, OR or AND rules are typically applied, and
the consistency of the approach for the MGLASSO case has not been proven with
theoretical properties. To prove the consistency of MGLASSO, the necessary as-
sumptions need to be explicitly addressed, as done in Meinshausen and Bühlmann
(2006).

The estimation of the precision matrix can be approached in two ways. The
�rst method involves directly maximizing the full likelihood criterion, which is given
by:

log detΩ− tr(SΩ)− λ1

∑
j,k

|Ωjk| − λ2

∑
i<j

∥Ωi. − τijΩj.∥2 , (5.1)

where S is the empirical covariance matrix, Ω is the precision matrix, λ1 and λ2 are
the regularization parameters for the LASSO and clustering penalties, respectively.

The second method is to �rst estimate the precision matrix using the vanilla
MGLASSO and then estimate the diagonal elements of the precision matrix. Ideas
about this approach can be found in Balmand and Dalalyan (2016). An additional
two-step approach involves re�tting a full likelihood model with the edge constraints
found via MGLASSO estimations, as done in Section 17.3.1 of Hastie et al. (2009).
In practice, a selection criterion has not been de�ned for the MGLASSO since
our focus was on exploratory applications. However, it may be worth considering
how a selection criterion can be de�ned for the fusion penalty parameter. This
could improve the algorithm's performance and make it more e�cient in real-world
applications.

5.1.2.2 Mixed graphical models

The initial aim of this research was to develop a class of graphical models that
can handle variables following di�erent probability distributions. As mentioned
earlier, one of the advantages of the pseudo-likelihood formulation of the model is
that it can be extended to the class of probability distributions belonging to the
exponential family. Some introductory work on this topic can be found in Yang
et al. (2012). For handling heterogeneous data, mixed graphical models can be
considered (Yang et al., 2014). However, when coupled with convex clustering,
de�ning the fusion penalty term may not be straightforward.
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5.2 Conclusion notes

The discussion sections of the thesis directly mention perspectives on bio-
logical data analysis. Although some quality control type data analyses for the
EPITREE project were carried out as part of the thesis, they were not reported in
this manuscript. Moving forward, the MGLASSO package could be signi�cantly
improved by enhancing the graphic rendering functions and by implementing object-
oriented programming in an S4 framework.
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6 - Résumé en français

This chapter is a summary of the present work, written in French.

Chapitre 1

L'inférence de réseaux à partir de données biologiques est utile pour obtenir
une compréhension plus complète des mécanismes biologiques sous-jacents à un
phénomène particulier. Les réseaux sont un moyen naturel d'intégrer et de décrire
la manière dont les variables biologiques interagissent, ce qui permet d'identi�er
des interactions complexes. Avec l'émergence des techniques de séquençage à
haut débit, il est possible de générer de grandes quantités de données omiques
liées au génome, au transcriptome, aux variations génétiques et au métabolome.
La grande dimension de ces données constitue la principale di�culté d'un point
de vue statistique et d'interprétation. L'objectif de la recherche est de proposer
et d'étudier une méthode d'inférence de réseau qui prend en compte une struc-
ture de groupe ou une hiérarchie entre les variables. L'identi�cation de groupes
de n÷uds densément connectés dans le réseau peut correspondre à des variables
biologiques ayant des fonctions apparentées et o�re la possibilité de construire des
structures multi-échelles pour synthétiser l'information récupérée par les groupes et
améliorer l'interprétabilité. Cette tâche de regroupement peut être envisagée avant
ou en même temps que la tâche d'inférence du réseau. Les modèles graphiques
probabilistes représentent un modèle bien adapté pour déduire les relations entre
les variables. La recherche se concentrera sur une sous-classe générale de modèles
graphiques où la distribution conditionnelle aux n÷uds est gaussienne et examinera
les méthodes d'estimation de groupes basées sur un critère convexe.

La recherche est motivée par le projet EPITREE (Impacts évolutif et fonction-
nel de variations épigénétiques chez des arbres forestiers), qui cherche à compren-
dre comment l'épigénétique, en l'occurrence la méthylation de l'ADN, l'expression
des gènes et la variation allélique, in�uence les mécanismes d'adaptation et la
plasticité phénotypique chez les arbres forestiers. L'épigénétique est l'étude des
changements héréditaires qui a�ectent l'expression des gènes sans modi�er l'ADN,
tandis que la plasticité phénotypique est la capacité d'un génotype individuel à
exprimer di�érentes valeurs d'un trait phénotypique donné dans des conditions en-
vironnementales di�érentes (Rey et al., 2016). Les arbres sont des organismes
remarquables qui vivent longtemps, ont des cycles de vie complexes et produisent
du bois, tout en fournissant un large éventail de services écosystémiques. Au cours
des dernières décennies, un dépérissement généralisé des forêts dû à la sécheresse
et au stress thermique a été observé dans le monde entier (Anderegg et al., 2016).
Ces événements mettent en évidence la vulnérabilité des écosystèmes forestiers
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aux changements environnementaux et le besoin urgent de comprendre comment
les arbres réagissent au stress environnemental. En e�et, le changement clima-
tique est le facteur qui aura le plus d'impact sur la biodiversité d'ici 2100, après
l'utilisation des terres (Chapin Iii et al., 2000). On sait que les arbres forestiers
possèdent des mécanismes complexes qui leur permettent de s'adapter aux facteurs
de stress environnementaux (Bruce et al., 2007). Il est donc essentiel de compren-
dre les mécanismes moléculaires qui sous-tendent leur adaptation pour élaborer
des stratégies de conservation et de gestion des écosystèmes forestiers. Le projet
EPITREE étudie les mécanismes moléculaires qui sous-tendent l'adaptation des
arbres, en se concentrant sur deux modèles d'arbres, le peuplier et le chêne. Ces
espèces ont été choisies pour leur diversité génétique et leur potentiel d'adaptation
à des environnements changeants.

Le projet se compose de plusieurs modules de travail, qui comprennent entre
autres le criblage de régions candidates, l'analyse épigénomique et le séquençage
du génome à l'aide de technologies omiques modernes. Ces technologies ont per-
mis de générer des données sur les polymorphismes simples méthylés, les régions
di�érentiellement méthylées, l'expression des gènes et les polymorphismes de nu-
cléotides simples. La recherche doctorale est principalement motivée par le qua-
trième module de travail, qui vise à e�ectuer une analyse intégrative pour modéliser
des relations multi-échelles entre les caractères quantitatifs et leurs déterminants
moléculaires. Plus précisément, ce module vise à quanti�er la contribution de la di-
versité génétique et épigénétique à la variation phénotypique, à étudier l'impact de
l'évolution du chêne et du peuplier sur la plasticité épigénomique, et à déterminer si
les régions di�érentiellement méthylées au niveau des gènes sont conservées entre
les deux espèces. En outre, ce module vise à améliorer les modèles de prédiction de
la variation des caractères quantitatifs en combinant les informations génétiques
et épigénétiques. Les modèles graphiques sont un outil utile pour déduire les in-
teractions entre l'information génétique et les schémas de méthylation, et peuvent
apporter des réponses à certaines des questions soulevées dans le projet.

Les modèles graphiques probabilistes (MGP, Lauritzen (1996); Koller and Fried-
man (2009)) sont un outil populaire d'analyse de données en grande dimension et
de capture d'interactions entre des variables. Ils sont largement utilisés dans di-
verses applications, telles que la génomique et l'analyse d'images, pour réduire le
nombre de paramètres en sélectionnant les interactions les plus pertinentes entre
les variables. Une classe de MGP particulièrement utile dans un contexte gaussien
est celle des modèles graphiques gaussiens non dirigés. En grande dimension, ces
modèles sont souvent supposés parcimonieux. On suppose que seul un petit nom-
bre de variables interagissent par rapport au nombre total d'interactions possibles.
Cette hypothèse de parcimonie o�re des avantages à la fois statistiques et compu-
tationnels. En simpli�ant la structure de dépendance entre les variables (Dempster,
1972), elle permet de développer des algorithmes e�caces.

L'inférence du graphe d'indépendance conditionnelle dans les modèles graphiques
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gaussiens non dirigés, implique l'identi�cation du support de la matrice de préci-
sion Ω (l'inverse de la matrice de variance-covariance). Pour apprendre ce graphe,
plusieurs méthodes ℓ1-pénalisées ont été proposées dans la littérature. Une des ap-
proches populaires est la méthode de sélection de voisinage (MB, Meinshausen and
Bühlmann (2006)) fondée sur des régressions successives par variable en utilisant
l'opérateur LASSO. Cette méthode se focalise sur l'apprentissage de la structure du
graphe. La méthode MB a donné lieu à une longue série de travaux sur les méth-
odes de régressions successives par variable, y compris des extensions avec diverses
formes de pénalités induisant la parcimonie, comme le sélecteur de Dantzig (Yuan,
2010) et l'estimateur Clime (Cai et al., 2011). Une autre famille de méthodes
d'inférence de graphes d'indépendance conditionnelle parcimonieux estime directe-
ment Ω au travers de la minimisation de la log-vraisemblance négative ℓ1-pénalisée
(Banerjee et al., 2008). Cette méthode, appelée LASSO graphique (GLASSO,
Friedman et al. (2008)), béné�cie de nombreux algorithmes d'optimisation (Yuan
and Lin, 2007; Rothman et al., 2008a; Banerjee et al., 2008; Hsieh et al., 2014).

Les méthodes discutées précédemment utilisent la structure de groupe pour
simpli�er le problème d'inférence de graphe et inférer le graphe d'indépendance
conditionnelle entre des variables non groupées. Cependant, l'inférence du graphe
entre des groupes de variables ou des variables représentatives de ces groupes a
reçu peu d'attention. Bien que certains travaux aient abordé ce problème, ils se
sont surtout concentrés sur des estimations à deux niveaux, c'est-à-dire au niveau
des variables prises individuellement et des groupes connus a priori (voir, par exem-
ple, Cheng et al. (2017)). Le problème de recherche abordé dans ce travail vise à
dé�nir une méthode d'inférence qui permet des estimations à plus de deux niveaux
de granularité avec des groupes inconnus. Ce problème est principalement motivé
par des applications en analyse de données biologiques où des données provenant de
sources multiples, typiquement des données multi-omiques, sont analysées. Dans
de tels cas, il peut être nécessaire de regrouper des variables partageant les mêmes
caractéristiques et de prendre simultanément en compte la structure de regroupe-
ment dans la procédure d'inférence de réseau, en utilisant une fonction de coût
unique au lieu d'alterner les tâches de clustering et d'inférence de réseau.

Nos recherches se focalisent sur l'inférence de structures de clustering hiérar-
chique, plus intuitives pour l'interprétation, et sur l'apprentissage de la structure
de réseau inférée plutôt que sur l'estimation des coe�cients de la matrice de pré-
cision. Bien que certaines des applications soient principalement motivées par des
questions biologiques du projet EPITREE, répondre à ces questions peut nécessiter
l'utilisation d'autres outils d'apprentissage automatique dédiés autre que l'inférence
de graphes. D'un point de vue mathématique, nos recherches se situent à la croisée
de l'inférence graphique probabiliste, du clustering et de l'optimisation convexe. Du
point de vue de la biologie statistique, nous abordons diverses questions biologiques,
concernant principalement l'impact de l'épigénétique sur l'adaptation locale du pe-
uplier, ce qui nécessite des outils tels que l'analyse di�érentielle des gènes, l'analyse
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d'enrichissement d'ensembles de gènes, la transformation des données de comp-
tage et les approches de sélection des gènes. Les applications omiques compren-
nent des applications sur les données transcriptomiques (expression des gènes),
épigénétiques (notamment la méthylation de l'ADN), génétiques (notamment les
SNP) et un exemple d'illustration sur des données métagénomiques (abondance
microbienne).

La méthodologie proposée pour l'inférence de modèle graphique, dénommée
LASSO graphique multi-échelle (MGLASSO), est une méthode basée sur la pseudo-
vraisemblance pour estimer des structures de clustering hiérarchique et des modèles
graphiques qui dépeignent la structure d'indépendance conditionnelle entre des
groupes de variables à chaque niveau de la hiérarchie. La méthode MGLASSO
combine la sélection de voisinage et le clustering via une pénalité de type fused-
LASSO (Pelckmans et al., 2005; Hocking et al., 2011; Lindsten et al., 2011).
Bien que l'utilisation de pénalités de fusion dans l'inférence de modèles graphiques
gaussiens ait été largement étudiée, les travaux précédents se sont principalement
concentrés sur la vraisemblance complète pénalisée et ont étudié les pénalités de
fusion pour renforcer la constance locale des n÷uds du réseau inféré (Honorio
et al., 2009; Yao and Allen, 2019; Lin et al., 2020). Cependant le MGLASSO
utilise un critère de pseudo-vraisemblance qui est plus e�cace d'un point de vue
computationnel et permet de proposer des structures multi-échelles. Bien que
le critère utilisé soit similaire à celui utilisé dans le clustering convexe supervisé
(Hallac et al., 2015; Chu et al., 2021), l'approche proposée peut-être vue comme
un problème d'apprentissage multitâche (Chiquet et al., 2011) en raison de son
couplage avec l'inférence graphique gaussienne. Dans les applications biologiques,
le MGLASSO s'appuie sur diverses transformations de données adaptées à la nature
des données, notamment le log ratio centré (Aitchison, 1982) pour les données
compositionnelles.

Le MGLASSO, comme l'approche introduite par Yao and Allen (2019), est une
méthode qui combine les modèles graphiques gaussiens et le clustering convexe.
Cependant, contrairement à leur travail, nous mettons l'accent sur l'approche sélec-
tion de voisinage et nous avons proposé d'ajouter une pénalité induisant la sparsité
(LASSO). Nous avons également mis à disposition sur le CRAN une version beta
d'un package R qui implémente l'approche (Sanou, 2022). L'algorithme proposé
met en évidence les structures multi-échelles estimées en faisant varier le paramètre
de fusion. Notre approche peut également être considérée comme une extension
de la méthode SpiecEasi aux réseaux multi-échelles lorsqu'elle est appliquée aux
données de composition avec la transformation log ratio centrée. Nos applications
biologiques dans le cadre du projet EPITREE, ont permis entre autres résultats, de
mettre en évidence que la marque épigénétique de la méthylation de l'ADN pour
les peupliers, peut être utilisée comme marqueur de la structure génétique (Sow
et al., 2023).
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Chapitre 2

Ce chapitre passe en revue les éléments de théorie utilisés pour la dé�ni-
tion et l'optimisation du modèle présenté dans le chapitre suivant. Le cadre des
modèles graphiques gaussiens est d'abord introduit avant d'aborder les approches
d'inférence existantes dans la littérature. Dans un second temps, la classi�ca-
tion convexe, une méthode de regroupement d'observations basée sur un critère
convexe est présentée, ainsi que son importance pour le problème d'inférence du
modèle graphique gaussien. Finalement, des techniques d'optimisation convexe
pour des critères non di�érentiables sont présentées en l'occurrence, les méthodes
de sous-gradient, proximales, et de lissage.

Modèles graphiques non dirigés

Les modèles graphiques probabilistes résultent d'une fusion entre la théorie des
probabilités et la théorie des graphes et sont couramment utilisés dans l'analyse
de données en grande dimension pour représenter les interactions entre les vari-
ables. Ils trouvent des applications dans des domaines variés tels que la physique
statistique, la génomique, l'analyse d'images et l'analyse de réseaux sociaux. Ces
modèles simpli�ent les interactions complexes, réduisent les paramètres en met-
tant en évidence les connexions les plus pertinentes. Les modèles graphiques se
composent de noeuds et d'arêtes.

Il existe deux principaux types de modèles graphiques : les champs aléatoires
de Markov (MRF), qui sont des modèles graphiques non dirigés, et les réseaux
bayésiens, qui sont des modèles graphiques dirigés. Les modèles graphiques peu-
vent également inclure des graphes mixtes avec plusieurs types d'arêtes : dirigées,
non dirigées et bidirigées. Indépendamment de leur nature, les modèles graphiques
gravitent autour du concept central d'indépendance conditionnelle. C'est une no-
tion essentielle permettant de traduire la structure du graphe en contraintes prob-
abilistes.

Propriétés de Markov et Factorisation

De�nition (Indépendance Conditionnelle). Soient XA,XB,XC des ensembles

de variables aléatoires. XA est indépendant de XB étant donné XC dans une

distribution de probabilité jointe P , si et seulement si :

P (XA = xA,XB = xB|XC = xC) = P (XA = xA|XC = xC)P (XB = xB|XC = xC)

pour toutes les valeurs x = (xA,xB,xC) ∈ V al(X). On note XA ⊥⊥ XB|XC .

Soit G, un graphe non dirigé, dé�ni par un ensemble de noeuds V et un
ensemble d'arêtes E, et dont les arêtes ne portent pas de �èches directionnelles.
La structure du graphe est liée à l'indépendance conditionnelle par la notion de
séparation.

De�nition (Séparation). Un sous-ensemble S est dit séparer les ensembles A

et B dans un graphe si tout chemin de A à B doit passer par S.
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Cela permet d'introduire les trois propriétés de Markov associées aux modèles
graphiques non dirigés :

De�nition (Propriété de Markov Globale). Dans un graphe où S sépare les

ensembles A et B, X satisfait la propriété de Markov globale par rapport au

graphe G si :

XA ⊥⊥ XB|XS .

où XA = (Xk) \ k ∈ A.

La propriété de Markov globale est liée à deux autres propriétés de Markov :
celles de Markov locale et de Markov par paires.

La propriété de Markov locale stipule que chaque noeud est conditionnellement
indépendant des noeuds non-voisins, étant donné ses noeuds voisins.

La propriété de Markov par paires quant à elle stipule que deux noeuds non ad-
jacents sont conditionnellement indépendants, étant donné leurs voisins communs.

La factorisation, un autre concept important, joue un rôle signi�catif dans la
compréhension des modèles graphiques. Un graphe est considéré comme complet
lorsque chaque arête possible existe entre les noeuds. On note E = P2(V ).

De�nition (Clique). Dans un graphe, un sous-ensemble C est appelé clique si

le sous-graphe GC induit par C est complet.

De�nition (Factorisation). La fonction de densité f de la distribution de prob-

abilité P par rapport à une mesure produit ν est dite se factoriser par rapport

au graphe G si elle peut être représentée comme suit :

f(x) =
1

Z

∏
C∈C

ϕC(xC),

où C désigne l'ensemble des cliques maximales, ϕ = (ϕC , c ∈ C) est une collec-

tion de fonctions potentielles positives, et Z est une constante de normalisation.

Les propriétés de factorisation des modèles graphiques permettent d'e�ectuer
des calculs tractables sur des distributions multivariées. En représentant une dis-
tribution de probabilité jointe comme un produit de facteurs, où chaque facteur
ne dépend que d'un sous-ensemble de variables correspondant à une clique dans
le graphe, les calculs peuvent être e�ectués localement sur les cliques et ensuite
combinés à l'aide de la factorisation. Cela permet de développer des algorithmes
d'inférence et d'apprentissage e�caces pour des modèles larges et complexes.

Modèles graphiques gaussiens

Les modèles graphiques gaussiens (GGM), également connus sous le nom de
modèles de sélection de covariance (Lauritzen, 1996), sont une catégorie spéciale
de modèles graphiques non dirigés utilisés dans des cadres gaussiens. Soit X =

(X1, . . . , Xp)T ∈ Rp un vecteur aléatoire gaussien de dimension p, de moyenne
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nulle et de matrice de covariance Σ ∈ Sp≻0, où Sp≻0 désigne l'ensemble des matrices
réelles symétriques dé�nies positives de taille p×p. Certaines propriétés des modèles
graphiques spéci�ques aux distributions gaussiennes sont présentées ci-dessous.

Proposition. La structure d'indépendance conditionnelle de X ∼ Np(0,Σ)

est caractérisée par le graphe G, qui est uniquement déterminé par le support

de la matrice de précision ou de concentration Ω = Σ−1.

Proposition. Les entrées de la matrice de précision sont proportionnelles aux

coe�cients de corrélation partielle.

En e�et, la corrélation partielle entre Xi et Xj étant donné X\{Xi, Xj} est
égale à −Ωij√

ΩiiΩjj
. Le lecteur peut se référer à Lauritzen (1996) pour la preuve.

Le corollaire suivant peut être dérivé du fait que les coe�cients de corrélation
partielle sont directement liés aux coe�cients de régression.

Proposition 6.1. Dans le cadre du problème de régression Xi = X\iβi + ϵi,

où ϵi est le vecteur résiduel gaussien, le coe�cient de régression est donné par

βi
k = −Ωik/Ωii.

La Proposition 6.1 suggère que les modèles graphiques gaussiens peuvent être
estimés par une série de régressions, comme cela a été exposé par Meinshausen and
Bühlmann (2006). La prochaine section présentera quelques approches d'inférence
de modèles graphiques gaussiens.

Inférence des Modèles Graphiques Gaussiens

Soit P une distribution de probabilité inconnue qui se factorise par rapport au
graphe G. En utilisant un ensemble d'échantillons indépendants et identiquement
distribués (i.i.d) de P , l'objectif de l'apprentissage d'un modèle graphique gaussien
est d'estimer les fonctions potentielles qui correspondent le mieux à la distribu-
tion (Maathuis et al., 2018). En d'autres termes, on cherche à estimer les arêtes
du graphe et les paramètres de la distribution. Nous regroupons les approches
d'apprentissage en trois catégories principales : celles sans contraintes de parci-
monie, celles basées sur la parcimonie et celles avec des contraintes supplémentaires
sur la structure des noeuds.

Estimation du Maximum de Vraisemblance (MLE)

Une approche courante pour estimer un modèle graphique gaussien est d'utiliser
l'Estimateur du Maximum de Vraisemblance. L'objectif est de maximiser la fonc-
tion de log-vraisemblance concave basée sur les données observées x provenant du
vecteur aléatoire X :

l(Ω) =

n∑
i=1

log f(xi|Ω) ∝ log det(Ω)− tr(ΩS) (6.1)
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où S = 1
nX

TX est la matrice de covariance empirique. La solution à ce problème
est unique et donnée par Ω̂MLE = S−1 pour toute matrice S non singulière.
Cependant, le MLE n'est pas calculable lorsque le nombre d'échantillons n est
inférieur à la dimension p. Même s'il est calculable, il peut être peu performant et
donner lieu à des graphes complets. En général, les modèles graphiques gaussiens
sont souvent supposés être parcimonieux, ce qui signi�e qu'un petit nombre de
variables interagissent par rapport à toutes les interactions possibles. Une approche,
introduite par Dempster (1972), consiste à estimer la structure du réseau en �xant
certains éléments de la matrice de précision Ω à zéro, simpli�ant ainsi la structure
des dépendances entre les variables.

Inférence avec des contraintes de parcimonie

Suivant l'idée de Dempster (1972), plusieurs auteurs ont proposé des approches
pour retrouver la structure de la matrice de précision en utilisant la parcimonie.

Estimation de la pseudo-vraisemblance pénalisée par Lasso

Meinshausen and Bühlmann (2006) ont introduit une approche basée sur la
régression pour la sélection de voisinage. Ils utilisent la régularisation Lasso et
régressent chaque variable sur les autres, en tirant parti du lien entre les coe�cients
de régression et la matrice de précision. Les di�érentes régressions sont ensuite
combinées pour inférer le graphe d'indépendance conditionnelle. Plus tard, des
auteurs comme Rocha et al. (2008), Ambroise et al. (2009) ont montré que la
sélection de voisinage pouvait être considérée comme une approximation de la
vraisemblance globale via une pseudo-vraisemblance.

Estimation de la vraisemblance globale pénalisée par Lasso

D'autres auteurs ont étendu la pénalisation Lasso aux vraisemblances glob-
ales du modèle. Contrairement aux approches de sélection de voisinage, qui
s'intéressent principalement à l'estimation de la structure du graphe, les approches
basées sur la vraisemblance globale permettent d'apprendre la structure du graphe
et d'estimer simultanément ses paramètres de manière cohérente. Elles optimisent
une fonction convexe en utilisant divers algorithmes.

Cette approche communément connu sous le nom de Graphical Lasso (Baner-
jee et al., 2008; Friedman et al., 2008) a été largement étudiée (Yuan and Lin,
2007; Ravikumar et al., 2011; Rothman et al., 2008b) et étendue à diverses appli-
cations (Chiquet et al., 2019; Charbonnier et al., 2010; Danaher et al., 2014; Robin
et al., 2019). Elle reste un outil puissant pour l'inférence des modèles graphiques
gaussiens.

Autres pénalités de parcimonie

Dans la littérature sur les modèles graphiques gaussiens, des pénalités de parci-
monie alternatives au Lasso ont été étudiées. En présence de variables fortement
corrélées, le Lasso peut être moins performant. Ainsi, di�érentes pénalités, telles
que la pénalité ℓ2, le SCAD (Smoothly Clipped Absolute Deviation), le Lasso adap-
tatif (Zou, 2006), le Lasso groupé (Yuan and Lin, 2006) et l'Elastic-net Kovács
et al. (2021), ont été explorées selon la nature du problème d'inférence.
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Inference tout en prenant en compte la structure sous-jacente

Dans un problème de régression pénalisée, le Lasso a tendance à sélectionner
une seule variable parmi un groupe de variables corrélées (Bühlmann et al., 2013).
Diverses solutions ont été proposées en utilisant di�érentes pénalités de parcimonie.
Parmi elles, l'Elastic-net (Zou and Hastie, 2005) applique une combinaison linéaire
des pénalités Lasso et Ridge, favorisant un e�et de regroupement et permettant la
sélection de groupes de variables. OSCAR (Bondell and Reich, 2008) y parvient en
mélangeant des pénalités Lasso et ℓ∞. Le clustered Lasso (She, 2008) dé�nit un
critère généralisé de Fused Lasso (Tibshirani et al., 2005) où il n'y a pas d'ordre
spéci�que sur les variables.

Dans le problème de l'inférence des graphes, pour surmonter ce problème, en
plus de la sparsité, plusieurs travaux antérieurs tentent d'estimer la CIG en inté-
grant des structures de regroupement parmi les variables, dans un souci d'équilibre
statistique et d'interprétabilité. Une liste non exhaustive de travaux qui intègrent
une structure de clustering pour accélérer ou améliorer la procédure d'estimation
comprend Honorio et al. (2009); Ambroise et al. (2009); Mazumder and Hastie
(2012a); Tan et al. (2015); Yao and Allen (2019); Devijver and Gallopin (2018).

Clustering convexe

Étant donné un ensemble de donnéesX = {x1, . . . , xn} ∈ Rn×p et une matrice
de centroïdes α ∈ Rn×p, l'objectif du clustering convexe est de minimiser le critère
suivant :

1

2

n∑
i=1

∥xi − αi∥22 + λ
∑
i<j

wij∥αi − αj∥q (6.2)

où λ est un paramètre de pénalisation, {wij} sont des poids symétriques posi-
tifs, αi ∈ Rp est le centroïde attribué à l'observation xi, et ∥ · ∥q est la norme ℓq
sur Rp avec q ≥ 1.

La relation entre cette formulation (6.2) et le clustering k-means est détail-
lée dans Lindsten et al. (2011); et la relation avec la classi�cation ascendante
hiérarchique est établie dans Hocking et al. (2011). Le clustering convexe résout
le problème de clustering de manière indépendante pour une plage de paramètres
de pénalisation λ. Étant donné que le problème d'optimisation est convexe, la
solution �nale est indépendante de l'initialisation des centroides.

Contrairement à la parcimonie dans les modèles graphiques gaussiens, utilisée
pour la sélection de variables, dans le clustering convexe, la parcimonie est utilisée
pour déterminer une structure de clustering. Le terme d'attache aux données (le
premier terme) garantit que les centroïdes restent proches des observations qui
composent leur groupe. Le terme de régularisation ∥αi − αj∥q, également connu
sous le nom de "terme de fusion", est une pénalité de type fused-group Lasso
(Yuan and Lin, 2006; Tibshirani et al., 2005) lorsque q > 1 et un terme fused-
Lasso lorsque q = 1. Cela encourage la parcimonie dans les di�érences entre
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centroïdes.
Le paramètre de pénalisation λ contrôle le compromis entre l'ajustement du

modèle et le nombre de clusters. Deux observations xi et xj sont considérées
comme appartenant au même cluster lorsque leurs centroïdes estimés sont presque
identiques, c'est-à-dire α̂i ≈ α̂j . À mesure que λ augmente, la force de fusion
augmente également, ce qui provoque la fusion des centroïdes. Pour une valeur
de λ su�samment grande, tous les clusters fusionnent en un seul.

Le chemin de régularisation des solutions, également connu sous le nom de
clusterpath (Hocking et al., 2011) et similaire au dendrogramme de la classi�cation
ascendante hiérarchique, peut être obtenu après une tâche de clustering convexe.

Chapitre 3

Dans ce chapitre, nous introduisons la méthode d'inférence de graphe dénom-
mée Lasso Graphique multi-échelle (MGLASSO, Sanou et al.), une nouvelle ap-
proche permettant d'estimer simultanément une structure de clustering hiérar-
chique et des graphes d'indépendance conditionnelle entre des variables, à plusieurs
niveaux de granularité.

Modèle

Les outils ayant servi à la construction du modèle sont inspirés de la sélection
de voisinage via le Lasso introduite par Meinshausen and Bühlmann (2006) et
de la théorie du clustering convexe (Hocking et al., 2011; Lindsten et al., 2011;
Pelckmans et al., 2005).

Nous proposons de fusionner les p régressions LASSO indépendantes de l'approche
de Meinshausen and Bühlmann (2006) en un seul critère d'optimisation avec ajout
d'une pénalité de fusion dans ℓ2 sur les vecteurs de régression considérés comme
centres de cluster. Plus précisément, le problème de pseudo-vraisemblance du
MGLASSO minimise, dans le cadre gaussien, la quantité suivante :

Jλ1,λ2(β;X) =
1

2

p∑
i=1

∥∥∥Xi −X\iβi
∥∥∥2
2
+ λ1

p∑
i=1

∥∥βi
∥∥
1
+ λ2

∑
i<j

∥∥βi − τijβ
j
∥∥
2
,

par rapport à β := [β1, . . . ,βp] ∈ R(p−1)×p, où Xi ∈ Rn désigne la i-ème colonne
de X, λ1 et λ2 sont des paramètres de pénalisation, τij ∈ R(p−1)×(p−1) est une
matrice de permutation, qui permute les coe�cients dans le vecteur de régression
βj comme suit :

∥∥βi − τijβ
j
∥∥
2
=

√ ∑
k∈{1,...,p}\{i,j}

(βi
k − βj

k)
2 + (βi

j − βj
i )

2.

Le critère MGLASSO peut être vu comme un problème de régression multi-tâches
où l'ensemble des réponses est identique à l'ensemble des prédicteurs. Le terme
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de pénalisation LASSO encourage la parcimonie dans les coe�cients estimés. Le
terme fused-group LASSO encourage la fusion dans les coe�cients de régression
βi et βj . Le MGLASSO permet ainsi de mettre en évidence de façon simul-
tanée les interactions entre variables tout en proposant des groupes. Les variables
qui appartiennent au même groupe sont suceptibles d'avoir la même structure de
voisinage.

Optimisation

La fonction objective introduite est la somme de trois composantes convexes :
une fonction di�érentiable (perte quadratique) et deux fonctions de pénalité non
di�érentiables : la fonction de pénalité LASSO, qui est séparable car décompos-
able en composantes indépendantes correspondant chacune aux coe�cients des
prédicteurs, et la pénalité group-fused LASSO, qui n'est pas séparable. Plusieurs
approches peuvent être utilisées pour résoudre ce type de problème de minimisa-
tion. Parmi celles-ci, se trouvent entre autres la méthode du sous-gradient (Shor,
2012), la méthode ADMM Boyd et al. (2011) ou encore les méthodes de continu-
ation combinées avec des techniques de lissage pour les parties non di�érentiables
du critère telle que CONESTA (Hadj-Selem et al., 2018).

Nous avons comparé les performances de convergence empirique de ces 3 ap-
proches d'optimisation.

Sauf pour le cas de la méthode du sous-gradient, les algorithmes sont générale-
ment appliqués à des versions reformulées du critère initial MGLASSO, en un
problème de régression unique. Avec l'algorithme d'optimisation CONESTA (Hadj-
Selem et al., 2018), le MGLASSO atteint une vitesse de convergence plus rapide
que les autres approches concurrentes. Une brève analyse empirique de la con-
vergence a été présentée à cette �n. En pratique, le MGLASSO est implémenté
dans le package R mglasso (version 0.1.2, Sanou (2022)). La pénalité LASSO est
gardée �xe et le paramètre de pénalité group-fused LASSO varie dans une grille de
valeurs. Pour un certain seuil ϵfuse, les variables i et j sont assignées au même

groupe si d(i, j) =
∥∥∥β̂i − τijβ̂j

∥∥∥
2
≤ ϵfuse.

La sélection du paramètre de régularisation LASSO est faite via l'approche
StARS (Liu et al., 2010) qui est une méthode de sélection basée sur une technique
de ré-échantillonnage, en gardant le paramètre de pénalité group-fused LASSO nul.
Nous avons également discuté d'autres méthodes de sélection qui ont été proposées
pour le problème de sélection de modèle de modèles graphiques gaussiens telles
que le BIC étendu (EBIC, Foygel and Drton (2010)), la validation croisée (Bien
and Tibshirani, 2011) et la méthode GGMSelect (Giraud et al., 2012).

Performances

Nous avons mené une étude de simulation pour évaluer les performances de
la méthode MGLASSO, tant en terme de clustering que de recouvrement de sup-
port. Les courbes ROC sont utilisées pour évaluer l'adéquation des graphes inférés
avec les graphes de référence, pour le MGLASSO et le GLASSO dans sa version
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de sélection de voisinage, dans les cadres des modèles Erdös-Rényi (Erd®s et al.,
1960), scale-free (Newman et al., 2001), et des modèles blocs stochastiques (SBM,
Fienberg and Wasserman (1981)). Les indices de Rand ajustés sont utilisés pour
comparer les partitions obtenues avec MGLASSO, la classi�cation hiérarchique
ascendante, et la classi�cation k-means pour des modèles bloc stochastique et
hiérarchique. Le MGLASSO ne fait pas pire que le GLASSO en terme de per-
formance. En présence de l'ajout d'une pénalité de fusion, l'approche MGLASSO
donne lieu à des performances meilleures en terme de courbe ROC.

Chapitre 4

Ce chapitre se concentre sur les applications du modèle MGLASSO et d'autres
modèles statistiques sur les données omiques. Diverses questions biologiques sont
abordées, en particulier dans le cadre du projet EPITREE, qui vise à étudier l'impact
évolutif et fonctionnel de la variation épigénétique chez les arbres forestiers. La
méthode MGLASSO est illustrée dans une analyse intégrative des données tran-
scriptomiques et de méthylation d'ADN provenant du projet EPITREE.

L'impact évolutif et fonctionnel des variations épigénétiques chez les arbres
forestiers (EPITREE, ANR-17-CE32) est un projet de recherche forestière qui se
concentre sur la façon dont les variations génétiques et épigénétiques contribuent
à la plasticité phénotypique et à l'adaptation à l'environnement local. EPITREE
est né de la nécessité de comprendre les mécanismes sous-jacents à l'adaptation
des arbres forestiers a�n de mieux gérer les ressources génétiques. En e�et, au
cours des dernières années, un dépérissement généralisé des forêts a été observé
en raison des contraintes liées à la sécheresse. Ces arbres jouent un rôle essentiel
dans l'équilibre des écosystèmes de la planète.

Le projet s'intéresse aux bases génétiques de l'adaptation locale des arbres.
Cependant, les études existantes se concentrent généralement sur la contribution
des SNP. Les mécanismes épigénétiques ne sont pas étudiés en profondeur. La
nature dynamique de l'épigénome en fait un sujet intéressant à étudier chez ces
organismes à longue durée de vie. EPITREE se concentre sur l'étude des vari-
ations de la méthylation de l'ADN, de l'expression des gènes et des variations
structurelles du génome a�n de mieux comprendre la contribution des variations
épigénétiques à l'adaptation locale et à la plasticité phénotypique. Le projet est
subdivisé en plusieurs modules qui s'articulent autour de l'identi�cation de régions
épigénomiques candidates, de la caractérisation des variations épigénomiques dans
les populations naturelles et de leurs conséquences fonctionnelles, de la caractérisa-
tion de la plasticité épigénomique et de ses conséquences fonctionnelles en réponse
aux contraintes environnementales, de la génération de données et de l'analyse
multiomique intégrative.

Comprendre le schéma évolutif des espèces est essentiel en biologie, en par-
ticulier pour les organismes à longue durée de vie tels que les arbres. L'étude
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des variations génétiques et épigénétiques des populations naturelles de ces ar-
bres peut contribuer à mettre en lumière leurs mécanismes d'adaptation à leur
environnement local, ce qui est pertinent dans le contexte actuel du changement
climatique. L'intérêt simultané pour les variations génétiques et épigénétiques est
un domaine de recherche récemment exploré, centré sur les plantes annuelles, qui
sont des organismes à courte durée de vie (Sow et al., 2018). La caractérisation
de ces variations pour les arbres reste une question ouverte qui peut apporter une
valeur ajoutée dans la gestion forestière (Amaral et al., 2020). L'un des objectifs du
projet EPITREE est d'apporter des réponses à cette préoccupation en produisant
des données diversi�ées sur des populations d'arbres situées sur di�érents sites
géographiques, en se concentrant sur le chêne et le peuplier.

Dans le cadre de la recherche doctorale, nous avons contribué à mettre en
évidence la structure génétique et épigénétique des populations de peupliers grâce
aux données SNP et aux données de méthylation de l'ADN, respectivement. Nous
montrons également comment la méthylation est utilisée comme marqueur de la
di�érenciation des populations en proposant des gènes dont le pro�l de méthylation
suit de près la structure génétique des populations. Nous étudions brièvement le
lien entre la méthylation et les pro�ls d'expression pour une classe spéci�que de
gènes dont les pro�ls d'expression sont stables entre les arbres appartenant aux
mêmes métapopulations. Ces domaines d'analyse choisis résultent de discussions
avec des experts du projet EPITREE. Nous avons également exploré brièvement la
structure et l'interaction entre les pro�ls transcriptomiques et de méthylation dans
di�érents contextes de méthylation à l'aide du modèle MGLASSO.
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7 - Appendix

7.1 Link between neighbourhood selection and pseudo-likelihood

optimization

Proof. The pseudo log-likelihood pl of a multivariate normal random vector

X ∼ Np(µ,S) is given by

pl(Σ;X) =
n∑

i=1

p∑
j=1

log p(Xj
i |X

−j
i ). (7.1)

This function is concave with respect to the parameters µ and Σ. Now let's

derive the normal conditionals.

Given the set of random variables X\j = Z, the conditional distribution

of node Xj = Y is gaussian (Lauritzen, 1996). We can partitioned Σ in four

blocks

Σ =

(
ΣY Y ΣY Z

ΣZY ΣZZ

)
and thus have,

Y |Z = z ∼ N (µY |Z , ΣY |Z)

∼ N (µY + (z − µZ)
TΣ−1

ZZΣZY , ΣY Y − ΣT
ZY Σ

−1
ZZΣZY )

(7.2)

Using Schur complement for block inverse matrix and partitionning Ω as

we did for Σ, we have the following

Y |Z = z ∼ N (µY + (z − µZ)
T (−ΩY Z/ΩY Y ), Ω−1

Y Y )

Let µ = (µY , µZ) = 0p for the sake of simplicity. The log-likelihood of the

univariate-conditional normal distribution is given by

log p(Y |Z) = log

(
1

(2πΣY |Z)1/2
exp

(
−1

2

(y − µY |Z)
2

ΣY |Z

))
=

1

2
log(Σ−1

Y |Z)−
1

2
Σ−1
Y |Z(y − µY |Z)

2 − 1

2
log(2π)

=
1

2
log(ΩY Y )−

1

2
ΩY Y

(
y +

ΩY Z

ΩY Y
z

)2

+ const

Let's �x ΩY Y to a constant and denote β = −ΩY Z/ΩY Y , we have:

log p(Y |Z) = −1

2
ΩY Y (y − Zβ)2 + const
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Penalizing the pseudo-likelihood with a sparsity term and coming back to

our original notations amounts to:

pl(Ω;X)− λ1||Ω||1 =
n∑

i=1

p∑
j=1

−Ωjj

2

(
(Xj

i −X−j
i βj)2 + λ1||βj ||1

)
=

p∑
j=1

−Ωjj

2

(
||Xj −X−jβj ||22 + λ1||βj ||1

) (7.3)

with diagonal entries of Ωjj not estimated.
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