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Titre : La mesure des propriétés du boson de Higgs et l’étalonnage temporel du détecteur CMSà l’aide de méthodes d’apprentissage automatique
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Après l’observation du boson de Higgs parles expériences ATLAS et CMS en 2012, les me-sures de précision de ses propriétés sont au-jourd’hui un des enjeuxmajeurs de la physiquedes hautes énergies et du Large Hadron Col-lider (LHC). En effet, il s’agit de tester la com-patibilité de ce boson avec celui attendu par lemodèle standard (MS) de la physique des par-ticules. Dans son canal de désintégration endeux photons (H → γγ ), le boson de Higgsest entièrement reconstruit, le pic de massecorrespondant pouvant être mesuré avec unetrès bonne résolution expérimentale (autourde 1%). En conséquence, en dépit d’un tauxd’embranchement très faible dans le MS (d’en-viron 0.2%), le canal H → γγ fut l’un desdeux canaux ayant permis la découverte duboson de Higgs, le canal de désintégration enquatre leptons étant le second. Cette thèsepose des contraintes sur couplages anormaux(CA) du boson de Higgs avec des bosons dejauge. Un classificateur en multiples catégoriesbasé sur des méthodes d’apprentissage pro-fond (deep learning) est développé pour utiliserl’ensemble des informations disponibles dansl’analyse H → γγ et pour fournir la meilleureséparation possible entre le bruit de fond, lesdifférents modes de production du boson deHiggs du MS et les productions CA du boson deHiggs.Un bruit de fond conséquent pour les ana-lyses H → γγ vient des processus QCD pro-duisant une paire diphoton. Même les événe-ments avec seulement un, voire aucun pho-

ton, contribuent grandement à la contamina-tion du signal si d’autres particules sont faus-sement identifiées comme des photons. De cefait, une estimation précise du bruit de fondémergeant de ces photons mal identifiés estnécessaire pour atteindre une extraction opti-male du signal. Cette thèse décrit une nouvelleméthode pour l’estimation précise du bruit defond. Cette méthode s’appuie sur des modèlesd’apprentissage profond avancés appelés ré-seaux antagonistes génératifs (ou GAN), pourgénérer des photons mal identifiés et amélio-rer la description du bruit de fond associé grâceà des régions de contrôle définis dans les don-nées.D’autre part, le LHC subira dans les pro-chaines années une jouvence permettantd’augmenter sa luminosité (High LuminosityLHC, HL-LHC) d’un facteur 10 environ. Encontrepartie, les conditions de prise de don-nées seront beaucoup plus difficiles. En consé-quence, le détecteur CMS sera également amé-lioré (jouvence Phase II) pour faire face à cesconditions. La possibilité d’associer à chaqueobjet reconstruit dans la collision un tempsmesuré avec une grande précision constitueun enjeu majeur qui permettra d’améliorer laqualité des différentes mesures réalisées dansle canal H → γγ . Cette thèse fournit une contri-bution aux mesures de temps de haute réso-lution envisagées par CMS, en particulier surla surveillance et la calibration ultra rapide dusystème de distribution d’horloge.
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After the observation of a Higgs bosonwhich is compatible with the predictions of thestandard model (SM) of particle physics at theATLAS and CMS detectors in 2012, the pre-cise measurement of its properties is now oneof the primary goals of high energy physics.The Higgs boson decaying into two photons(H → γγ decay channel) provides a fully re-constructed final state and its invariant masspeak can be measured with a very good massresolution (around 1%). Consequently, despitethe small branching ratio predicted by the SM(approximately 0.2%), H → γγ was one of thetwomost essential channels involved in the dis-covery of the Higgs boson together with its de-cay to four leptons. This PhD thesis establishesconstraints on theHiggs boson anomalous cou-plings (AC) to gauge bosons. A multiclassifierbased on a deep learning model is designed touse all possible ingredients of the H → γγ anal-yses to provide themost optimal separation be-tween background, SM production and AC pro-duction of the Higgs boson.Significant backgrounds to the H → γγanalysis originate from QCD-induced produc-tion of diphoton, or diphoton-like, pairs. Pro-cesses producing only one or no photon con-

tribute significantly to the contamination of sig-nal if other particles are misidentified as pho-tons. As such, a precise estimation of the back-ground emerging from misidentified photonsis necessary to reach an optimal signal extrac-tion. This thesis describes a novel method re-lying on advanced machine learning modelsnamed generative adversarial networks or GANto generatemisidentified photons and improvethe description of such backgrounds from datacontrol regions.Furthermore, the LHC will undergo a HighLuminosity (HL) upgrade, delivering aroundten times more integrated luminosity with thedownside of imposing harsher conditions onthe CMS detector. An accompanying upgradeof the CMS detector (Phase II upgrade) is fore-seen to not only cope with these harsher condi-tions but also significantly improve the perfor-mance of the detector. One of the most criti-cal aspects of this upgrade is the ability to tagevents with very high timing resolution, whichwill also improve the study of the H → γγ de-cay channel. This thesis provides a contributionto the timing upgrade of the CMS detector, par-ticularly to the fast monitoring and calibrationof the high-precision clock distribution.
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Résumé en français

Dix ans après la découverte du boson de Higgs, nos connaissances sur ses pro-priétés se sont sensiblement étoffées grâce aux performances excellentes dugrand collisionneur de hadrons (LHC) du CERN ainsi qu’à celles de ses détec-teurs. Les collaborations ATLAS et CMS ont annoncé la découverte d’une parti-cule pouvant correspondre au boson de Higgs en 2012, après deux ans de prisede données venant de collisions proton-proton avec une énergie du centre demasse de 7 TeV et 8 TeV. La désintégration du boson de Higgs en deux photons(H → γγ ) a fait partie de ses canaux de désintégration offrant la sensibilité laplus fine au moment de la découverte. La désintégration H → γγ a un rapportd’embranchement assez faible, autour de 0.2%, mais son état final est entiè-rement reconstruit, avec une résolution proche de 1% sur la masse invariantedu système diphoton. Depuis sa découverte, environ 13 fois plus de donnéesont été collectées à des énergies plus élevées et cette particule a été établiecomme étant le boson de Higgs prédit par le modèle standard (MS) de la phy-sique des particules. Les mesures de sa masse, de son spin, et de ses couplagesont été réalisées avec une grande précision, toutes confirmant la robustesse duMS. Augmenter la quantité de données accessibles crée une opportunité remar-quable pour pousser encore plus loin notre compréhension du boson de Higgset, pour exploiter cette opportunité au maximum, les équipes mettant en placedes analyses pour les expériences du LHC fournissent un effort constant pouraméliorer la conception des stratégies d’analyse.

Parallèlement, au cours de la dernière décennie, le domaine de l’apprentissageautomatique (ML, de l’anglais "machine learning") a connu une croissance im-pressionnante grâce au développement d’outils de plus en plus performants,tels que les nombreuses variétés de réseaux de neurones profonds. Ces mé-thodes avancées se montrent particulièrement efficaces lorsqu’elles sont en-traînées avec une grande quantité de données. De ce fait, elles deviennent unchoix naturel pour les communautés de physique des hautes énergies lorsqu’ils’agit d’extraire l’information venant d’un signal enfoui sous une vaste quantitéde bruit de fond.
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Comme l’analyse H → γγ fournit un accès essentiel aux propriétés du boson deHiggs, cette thèse a pour but d’améliorer les performances de l’analyse H → γγde l’expérience CMS en apportant, à différentes étapes de l’analyse, des mé-thodes basées sur l’apprentissage automatiqueprofond. Unepremièreméthodeest proposée dans le Chapitre IV pour améliorer la description du bruit de fondde l’analyse H → γγ grâce à des réseaux antagonistes génératifs (GAN). Lessources principales de bruit de fond de l’analyse H → γγ sont les processus phy-siques produisant deux photons dans leur état final ou des particules (souventdes jets) faussement identifiées en tant que photons. Pour mieux différencierces deux types de photons, chaque photon dans un évènement se voit attri-buer un score appelé le photonID, qui représente sa probabilité d’être un pho-ton correctement identifié. Ce score permet de réaliser une sélection visant lesévènements dont deux photons ont un photonID élevé afin de construire unerégion enrichie en signal. De façon similaire, une région de contrôle peut êtredéfinie en inversant la sélection sur l’un des photonID. Cette région de contrôleest donc enrichie en bruit de fond et donne accès à une description du bruitde fond plus fidèle que les simulations Monte Carlo (MC) actuellement dispo-nibles. Cependant, en inversant la sélection sur l’un des photonID, celui-ci a unevaleur qui n’est pas dans le bon intervalle si l’on cherche à estimer le bruit defond de la région de signal. Le rôle du GAN est de générer de nouveaux pho-tons faussement identifiées (dont un nouveau photonID) pour offrir une esti-mation du bruit de fond dans la région de signal. Une stratégie d’évaluation desperformances du GAN spécifique à notre méthode a été mise en place. Cettestratégie permet de tester plusieurs configurations d’entraînement et d’optimi-ser les hyperparamètres du GAN pour atteindre les meilleures performances.Finalement, le GAN se montre capable d’apprendre comment générer des pho-tons faussement identifiés convaincants et corrélés correctement avec le restede l’évènement, comme illustré en Fig. 1. De plus, une comparaison de la mé-thode basée sur le GAN avec la méthode utilisée dans les dernières analysesH → γγ publiées montre que des arbres de décision boostés (BDTs) entraînésavec l’échantillon de bruit de fond généré par le GAN atteignent de meilleuresperformances lors de la séparation du signal et du bruit de fond de l’analyseH → γγ .

L’une des propriétés du boson de Higgs étudiée dans cette thèse est son com-portement sous la symétrie charge-parité (CP). Comme le boson de Higgs estsupposé avoir des interactions CP paires, tous couplages pointant vers un com-portement différent (couplages CP impairs par exemple) sont considérés anor-maux. De tels couplages indiqueraient une nouvelle source de violation CP dansle MS (en plus des interactions électrofaibles) et une fraction (fa3) des évène-ments de signal observés contiendrait un boson de Higgs avec un comporte-ment CP impair. Cette thèse présente les contraintes attendues sur de tels cou-plages anormaux en sondant les couplages du boson de Higgs avec des bosonsde jauge électrofaibles (boson W ou Z). L’analyse complète englobe plusieursmodes de productions du boson de Higgs qui sont sensibles à ses couplagesavec le boson W ou Z : sa production par fusion de bosons vecteurs (VBF) et saproduction en association avec un boson vecteur (VH). Cette thèse présente la
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Figure 1 – Diagonale : Comparaison entre les distributions des propriétés des photonsgénérés par le GAN depuis la région de contrôle ("GANed" en rouge) et les distributionsdécrites par la région de signal de la simulation MC ("Full MC" en bleu). Les propriétésmontrées sont le photonID ID/γ , la quantité de mouvement transverse pT/γ , la pseudora-pidité η/γ et l’angle azimutal ϕ/γ du photon généré. Hors diagonale : Courbes de densitésqui contiennent 25 %, 50 % et 75 % des évènements et montrant les corrélations entrepaires de propriétés.

structure générale de l’analyse en portant une attention particulière àma contri-bution : la mise en place d’une stratégie pour étudier la production VH où V estun boson W ou Z qui se désintègre en une paire de quarks (VhadH). Pour mettreen évidence les différences entre certains types d’évènements, nous mettonsen oeuvre un réseau de neurones profond (DNN) chargé de séparer les évène-ments entre plusieurs classes : bruit de fond, signal avec couplages attendus parle MS, signal avec couplages anormaux. Les scores obtenus par les évènementsen sortie du DNN permettent de les classifier selon plusieurs catégories pouraméliorer la sensibilité de l’analyse. La définition de ces catégories est optimiséeen minimisant une estimation de la limite supérieure de fa3. Enfin, un test sta-tistique est calculé pour déterminer la valeur de fa3 en accord avec les donnéesanalysées. Cette analyse utilise l’ensemble des données collectées entre 2016et 2018 par le détecteur CMS. Cela correspond à 137 fb−1 de données provenantde collisions proton-proton à√s = 13 TeV. Cette analyse et ses résultats prélimi-naires sont exposés dans le Chapitre V ; le scan du test statistique est rapporté
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Figure 2 – Scan du test statistique (2∆NLL) pour différentes hypothèses sur la valeurde fa3. Trois configurations sont présentées pour comparer les améliorations apportéespar les catégories optimisées. En vert, le test statistique est calculé sans utiliser les caté-gories ciblant les productions VBF et VhadH. En bleu, les catégories VBF sont incluses.Enfin, le scan final utilisant toutes les categories (VhadH comprises) est représentée parla courbe noire.

en Fig. 2 et les contraintes attendues sur la valeur de fa3 forment l’intervalle deconfiance à 68% suivant : [−0.17× 10−3, 0.13× 10−3]. Les limites attendues obte-nues sont compétitives avec d’autres analyses ciblant des états finaux du bosonde Higgs différents, notamment les analyses H → ZZ et H → τ τ .
Bien que le LHC aura fourni une quantité de données importante (une lumi-nosité intégrée de 300 fb−1 est prévue) à la fin de la période de prise de don-nées en cours (fin 2025), le potentiel de découvertes liées à une physique au-delà du MS deviendra ensuite négligeable à la fréquence de collision actuelle.C’est pourquoi une jouvence importante est planifiée pour le LHC et ses expé-riences afin d’entrer en phase dite de haute luminosité qui devrait fournir uneluminosité totale dix fois plus élevée après la même durée de fonctionnement.Les améliorations prévues pour cette jouvence seront mises en place lors du
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prochain arrêt long (long shutdown 3) du LHC. Pour le détecteur CMS, un as-pect important de cette jouvence consiste à ajouter la possibilité d’extraire letemps d’arrivée des particules dans les sous-détecteurs avec une très grandeprécision. Cette information devrait permettre de compenser les effets néfastesdu grand nombre d’évènements simultanés causés par la fréquence de colli-sion plus rapide. Cela sera aussi bénéfique aux analyses physiques telles quel’analyse H → γγ . Pour atteindre la résolution temporelle nécessaire (entre
30 ps et 40 ps), un signal d’horloge très précis doit être distribué et synchroniséentre toutes les parties des sous-détecteurs. Cette thèse apporte une contribu-tion au contrôle rapide et à la calibration de la distribution du signal d’horlogede haute précision. Cette contribution prend la forme d’un environnement desimulation décrit dans le Chapitre II : pyDDMTD. Cet environnement apporte unesimulation de ce qu’apporterait d’une surveillance du signal d’horloge basée surun DDMTD (digital dual mixer time difference) pour contrôler la gigue intro-duite par la chaîne de distribution du signal. D’après les résultats d’une étudesimple reposant sur les simulations réalisées avec pyDDMTD, une solution utili-sant seulement un DDMTD pourrait déjà apporter une correction des élémentsde gigue ayant une fréquence au-dessus de 10Hz. Les simulations fournies parpyDDMTD pourraient maintenant être utilisées pour étudier et comparer diffé-rentes stratégies de correction basées sur des DDMTDs.
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Introduction

Ten years after the discovery of the Higgs boson, our knowledge of its prop-erties has greatly increased thanks to the excellent performance of the CERNlarge hadron collider (LHC) and its detectors. The ATLAS and CMS collabora-tions announced the discovery of a candidate Higgs boson in 2012 after twoyears of data taking with proton-proton collisions at a centre-of-mass energyof 7 TeV and 8 TeV. The decay of the Higgs boson into two photons (H → γγ )was one of the decay channels with the highest sensitivity at the time of discov-ery, together with the decay of the Higgs boson in four leptons. The H → γγdecay has a small branching ratio of about 0.2%, but its final state is fully recon-structed, with a resolution close to 1% on the invariant mass of the diphotonsystem. Since the discovery, about 13 times more data have been collected athigher energies, and this boson candidate has been confirmed to correspondto the Higgs boson predicted by the standard model (SM) of particle physics.Measurements of its mass, spin, and couplings with other particles of the SMhave been achieved with great precision, all confirming the robustness of theSM. Increasing the amount of data available provides a remarkable opportunityto push further our understanding of the Higgs boson, and to make the most ofit, analyses teams of the LHC experiments deliver constant efforts to improvethe design of analysis strategies.
Concurrently, in the last decade, the field of machine learning (ML) has knownextensive growth with the development of more performing tools, particularlythemanyflavours of deepneural networks. These advancedmethods are provento be especially powerful when given a large amount of data during their trainingphase. Therefore, they are becoming a natural choice for high energy physics(HEP) communities when developing techniques to extract information from sig-nal events buried under vast amounts of background.
As the H → γγ analysis is a crucial probe to access properties of the Higgs bo-son, this thesis aims to enhance the performance of the H → γγ analysis of theCMS experiment by including deep learning methods at different stages of theanalysis. A first improvement is proposed by implementing generative adver-sarial networks (GAN) to better describe the background of the H → γγ anal-ysis. The primary background sources of the H → γγ analysis are processesproducing two photons in their final state or objects (mainly jets) misidentified
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as photons. The role of the GAN is to generate new misidentified photons forevents belonging to a control region in data so that these events offer a moreaccurate estimation of background in the signal region than the available MonteCarlo simulations.
One of the properties of the Higgs boson studied in this thesis is its behaviourwith respect to the charge-parity (CP) symmetry. As the Higgs boson is expectedto have a CP-even nature in the SM, any couplings hinting at a different be-haviour (e.g. CP-odd couplings) are considered anomalous. This thesis presentsthe expected constraints on these anomalous couplings (AC) through the cou-plings of the Higgs boson with electroweak gauge bosons (W or Z boson). Thecomplete analysis targets multiple production modes of the Higgs boson sensi-tive to its couplings with the W or Z boson. I am involved in the analysis throughthe design of the analysis strategy for the VH production where V is a W or Zboson which decays hadronically. To improve the sensitivity of the analysis, weinclude a multiclassifier deep neural network to separate events between back-ground, SM-like signal and AC-like signal.
Although the LHC will have provided a significant amount of data (an integratedluminosity of 300 fb−1 is foreseen) at the end of the current data-taking period(end of 2025), the potential for new physics discoveries will become negligibleat the current rate of collisions. This is why significant upgrades are plannedfor the LHC and its experiments to enter a high-luminosity phase which shouldprovide a total luminosity ten times higher after the same operation time. Theseupgrades will be implemented during the long shutdown 3 of the LHC. For theCMS detector, a significant aspect of its upgrades is to include information onthe time of arrival of particles in its subdetectors. This information should mit-igate the side effects of the high number of simultaneous events arising froma faster collision rate. It will also benefit offline analyses such as the H → γγanalysis. To reach the necessary timing resolution of 30 ps to 40 ps, a very cleanclock signal needs to be delivered and synchronised among all parts of the sub-detectors. This thesis contributes to the fast monitoring and calibration of thehigh-precision clock distribution.
The thesis unfolds as follows. In Chapter I, I describe the theoretical context ofthe SM and of Higgs boson physics at the LHC. A brief description of the LHC,the CMS detector and their upgrade for a high-luminosity phase are given inChapter II, just before a report on my contribution to the monitoring of high-precision clock distribution in the context of the high-luminosity LHC (Section II.3of the same chapter). Furthermore, the notions of deep learning necessary forpresenting ML-basedmethods in the H → γγ analysis are defined in Chapter III.These notions are applied in Chapter IV, which details the implementation of aGAN for the data-driven description of the background of the H → γγ analysis.Finally, Chapter V presents the analysis of anomalous couplings of the Higgsbosonwith gauge boson in the H → γγ channel with a focus onmy contribution,i.e. on the VH production of the Higgs boson.
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In an attempt to describe the laws of our universe, the standardmodel of particlephysics (SM) offers a single theoretical framework describing three of the fourfundamental interactions discovered so far. The SM was established through-out the second half of the 20th century from the joint progress of quantumfield theories (QFT) and high energy physics (HEP) experiments. One aspect thatdemonstrates the strength of the SM is its accurate prediction of many physicaleffects, later confirmed experimentally such as the predictions and observationsof neutral weak currents (by the Gargamelle experiment in 1973), the discoveryof the weak gauge bosons (UA1/UA2 experiments, 1983), of the top quark (CDFand DØ experiments, 1995), of the tau neutrino (DONUT experiment, 2000), andmore recently of theHiggs boson (ATLAS and CMS experiments, 2012). While theSM has proven to be highly robust, it still leaves open questions about certainobserved phenomena, and the search for physics going beyond the standardmodel (BSM) is one of the main ambitions of modern HEP experiments. Thischapter briefly summarises the SM in Section I.1, then Section I.2 covers theHiggs sector and its experimental status.

I.1 The standard model of particle physics

The SM is based on QFT to describe three fundamental forces: the strong in-teraction (SI), the electromagnetic interaction (EMI), and the weak interaction(WI). These forces act on and are mediated by particles. In the context of QFT,each particle type is represented by a field taking values everywhere in space-time. When quantised, the local excitation of the fields corresponds to particles.These particles are divided into two categories based on their spin. Half-integerspin particles are called fermions, and integer spin particles are bosons. TheSM characterises the behaviour of elementary particles, i.e. particles that do nothave internal substructures to our current knowledge. Among these particles,the building blocks of matter are the elementary fermions with spin 1/2.
In the SM, the fundamental interactions have an elegant origin based on in-ternal symmetries on the Lagrangian. Building a theory of interacting particlescan be summarised in three main steps. First, one isolates the internal globalsymmetries in the Lagrangian of a non-interacting field of matter (free field).A global symmetry is a differentiable transformation of the fields that do notdepend on space-time and leaves the Lagrangian unchanged: for instance, aphase rotation of the fields for the EMI. These symmetries are fundamental inphysics since, via Noether’s theorem, they correspond to a conserved physicalquantity, like the electric charge for the EMI. In the second step, one follows arecipe adapted from the building of the EMItheory, global symmetries are re-quired to be local symmetries, i.e. that the field transformations depend on thespace-time point. To do so, one needs to introduce a new field (known as agauge field) as well as an interaction between these gauge fields and the orig-inal fields of matter. Finally, one provides some dynamics to the gauge fieldsby introducing a corresponding kinematic term in the Lagrangian. In this finalstep, one should stress that mass terms for gauge fields are prohibited becausethey would break the local symmetries (also known as gauge symmetries); thus,all gauge fields are, in essence, massless. A more thorough overview of these
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steps in the context of interactions of the SM is given in Sections I.1.2 and I.1.3.In the SM, the interactions are the fundamental forces, and they are carried bythe quantised gauge fields which are the gauge bosons. The set ofmathematicaltransformations associated with the gauge symmetries of the system forms thesymmetry group (or gauge group), and the total symmetry group of the SM is
SU(3)C × SU(2)L × U(1)Y [1].

I.1.1 Elementary particles

The elementary particles of the SM are presented and classified in Fig. I.1.
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Figure I.1 – Classification of the particles described by the SM. Adapted from Ref. [2].Values of the masses are taken from Ref. [3].

The elementary fermions of the SM have a spin S = 1/2 and are classified ac-cording to how they behave with respect to the fundamental interactions. Thisbehaviour is encoded in a quantum number called a charge, with a differentcharge for each interaction. The dynamics of spin-1/2massive particles are de-scribed by the Dirac equation, which implies that, for each such particle, thereexists an antiparticle of the same mass but with opposite charges. Thus, from
12 fermions forming matter, there are 12 associated antifermions forming anti-matter.
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The 6 fermions interacting through the SI are thequarks: up (u), down (d), strange(s), charm (c), bottom (b), and top (t). They carry a colour charge (red (R), green(G) or blue (B)) and have masses ranging between 2.2MeV for the up quark to
172.7GeV for the top quark. The theory describing the SI is called quantumchromodynamics (QCD) and shows that quarks cannot exist outside of colour-neutral bounded states (hadrons); this phenomenon is known as colour con-finement. Hadrons can be further classified depending on their quark compo-sition; bounded states consisting of three quarks are called baryons, and thosecontaining one quark and one antiquark are called mesons. In the last decade,collider experiments have also discovered exotic baryons: pentaquarks (fourquarks and one antiquark) and exotic mesons: tetraquarks (two quarks and twoantiquarks). Therefore, when quarks are produced in collider experiments, weobserve jets of hadrons in the detectors rather than quarks due to their hadro-nisation. Only the top quark has a mean lifetime so short (≈ 5 × 10−25 ps) thatit decays before it can hadronise (typical SI time scale is ≈ 10−23 s). Quarks arealso sensitive to the EMI andWI, so they have an electric and weak charge.
The 6 remaining fermions are uncoloured as they do not interact through the
SI and are called leptons. Three of them interact electromagnetically and alsothrough theWI: the electron e− (me = 511 keV), the muon µ− (mµ = 105.7MeV),
and the tau τ− (mτ = 1.777GeV). They are associated with three neutrinos: theelectron neutrino νe (mνe < 0.8 eV), the muon neutrino νµ (mνµ

< 0.19MeV), andthe tau neutrino ντ (mντ
< 18.2MeV). As neutrinos do not have an electric charge,they interact only through theWI (and potentially gravity), making them partic-ularly hard to detect as they pass through matter unfazed.

The SM includes bosonswith a spin S = 1which are the gauge bosonsmediatingthe SI, EMI, andWI. The gauge bosons carrying the SI are the gluons correspond-ing to the SU(3)C symmetry group of QCD. Since the SU(N) group is describedby (N2−1) generators, the SU(3)C group has 8 generators, and that imposes thenumber of force-carrier of the theory: 8 gluons. Each corresponds to a differ-ent combination of colour and anticolour charges transferred between quarks.They are massless and do not interact with other gauge bosons, so they do notcarry additional charges.
The four bosons γ , Z, W+, andW− are emerging from a unified theory describingboth the EMI and theWI: the Glashow-Salam-Weinberg (GSW) theory [4–6]. TheGSWmodel has a SU(2)L ×U(1)Y symmetry group (which has 3 + 1 generators)that describes four massless gauge bosons before taking into account a sponta-neous symmetry breaking leading to the Brout–Englert–Higgs (BEH)mechanism.This mechanism details how the four massless gauge bosons transform into themassive physical states Z, W±, plus a massless photon that are observed experi-mentally. The photonmediates the EMIbut does not carry any charge. The Z bo-sonmediates the neutralWI; it has no electric charge and amassmZ = 91.2GeV.In contrast, the W boson, which carries the charged WI, has an electric chargeof one unit and a mass mW = 80.4GeV.
The Higgs boson and BEHmechanism are presented inmore detail in Section I.2
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I.1.2 Strong interaction

The SI is described by theQCD gauge theory. This theorywas needed to describehow the large number of hadrons experimentally observed could be explainedby the existence of smaller particles: the quarks. A new quantum number, thecolour C = {r , g , b}, was introduced to represent an interaction with a SU(3)Csymmetry group between quarks. Thus, the quark field ψ can be representedas a triplet of Dirac spinors corresponding to the different colour charges:

ψ =

ψr

ψg

ψb

 and a Dirac adjoint defined as ψ̄ = ψ†γ0 .

As mentioned already, the dynamics of spin-1/2massive particles are describedby the Dirac equation, so the most basic description of the Lagrangian of thetheory has the form
LDirac = ψ̄(i /∂ −m)ψ , (I.1)

where the slashed notation is used, /∂ = γµ∂µ, and γµ are the Dirac matrices.A unitary 3×3 matrix U , with determinant 1, can be used to represent a globalsymmetry of SU(3) through the transformation
ψ → ψ′ = Uψ (I.2)

which leavesLDirac unchanged. This transformation can be adapted to representa local symmetry if it depends on the space-time coordinate x : U → U(x). Sincethe transformation belongs to the symmetry group, it can be expressed as afunction of the generators ta of the group
U(x) = e igα

a
(x)t

a

, (I.3)

where g is the strong coupling constant and αa are arbitrary functions of space-time. Following Einstein’s notation, we imply the summation of repeated indicesfor both Greek and Roman indices. In the context of SU(3), the generators arerepresented by theGell-Mannmatrices λa as ta = λa/2. The transformationU(x)can be written in its infinitesimal form
U(x) = 1 + igαa(x)ta +O(α2) . (I.4)

To ensure the symmetry of the Lagrangian with respect to this local transfor-mation, we need to introduce new vector fields Aa, which are absorbed in thedefinition of a sensible derivative adapted to the theory (the covariant deriva-tive):
Dµ = ∂µ − igAa

µt
a . (I.5)

A field is associated with each generator of SU(3), so 8 in total, and they areassociated with the gluon fields carrying the SI. For non-Abelian theories (i.e.the ta do not commute), the commutator of the ta generators can be written as
[ta, tb] = if abctc , (I.6)
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where the f abc are called the structure constants. It allows the definition of thetransformation laws for the fields of the theory as
ψ → (1 + igαata)ψ ; (I.7)

Aa
µ → Aa

µ +
1

g
∂µα

a + f abcAb
µα

c . (I.8)

To define themost general locally invariant Lagrangian, it must include an invari-ant term describing the dynamics of the Aa fields. It is defined by introducing agluon field strength tensor G and forming a simple invariant term
LGluon = −1

4
(G a

µν)
2 , (I.9)

with
G a
µν = ∂µA

a
ν − ∂νA

a
µ + gf abcAb

µA
c
ν . (I.10)

Thus, the complete QCD Lagrangian is written as
LQCD = LDirac + LGluon

= ψ̄(i /D −m)ψ − 1

4
(G a

µν)
2 .

(I.11)

which describe a special case of Yang-Mills theory [7] associated with a SU(3)symmetry. The interaction between quarks and gluon is described through theterm
LQCD = · · ·+ g ψ̄γµAa

µt
aψ + · · ·

and the nonlinear term in the gluon field strength tensor gives rise to three- andfour-gluons interactions. The only mass term of the theory is associated withthe quarks
LQCD = · · · −mψ̄ψ + · · · .

Mass terms for the gaugefields of the formAa
µA

aµwould not keep the Lagrangianinvariant under SU(3) transformations, so they cannot be included in such agauge theory, i.e. gluons must be massless.
I.1.3 Electroweak interaction

The unified theory describing the EMI andWI is also a Yang-Mills theory but as-sociated with a SU(2)L × U(1)Y gauge group. This describes the experimentalobservations showing that the W± bosons only interact with certain fermions,depending on their chirality. The chirality of a fermion is exhibited by the γ5 =
iγ0γ1γ2γ3 operator, which has ±1 eigenvalues: +1 corresponds to right-handedfermions and −1 to left-handed fermions. In the massless limit, the chirality ofa particle is equivalent to its helicity (projection of the spin direction on the mo-mentumdirection). Moreover, theWI acts on pairs of fermions of different types(e.g. W+ → ud or W− → e−νe). Thus, through the WI, left-handed fermions (orright-handed antifermions) are represented as doublets that can interact with
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the WI, whereas right-handed fermions (or left-handed antifermions) are sin-glets that do not interact through WI. In this section, the particle fields are de-noted by their symbol and the different doublets and singlets are representedas
ΨL =

(uLdL

)
,

(
νeL
e−L

)
, · · · , and ψR = uR,dR, e

−
R , · · ·

Given that left- and right-handed fermions belong to different SU(2) represen-tations, the free Lagrangian for fermions cannot contain terms such as:
LDirac = · · · −mu(ūLuR + ūRuL) + · · ·

Thiswould spoil the SU(2)L invariance of the Lagrangian, so it imposes the fermionsof the theory to be massless.
Then, by proceeding similarly as the SI, we can introduce two kinds of gaugefields Aa (a = 1, 2, 3) and B to keep the Lagrangian invariant with respect totransformations from the two symmetry groups SU(2)L and U(1)Y . They are as-sociated with the generators of these groups: three generators T a = σa/2 for
SU(2)L, where σa are the Pauli matrices, and one generator Y /2 for U(1)Y . Theeigenvalues (+1/2 or −1/2) I3 of T3 corresponds to the weak isospin. Basedon the weak isospin, fermions can be classified into two categories: up-typefermions have a value I3 = +1/2, while down-type fermions correspond to I3 =
−1/2. The Y value is the weak hypercharge, and its combination with the weakisospin gives the electric charge Q of a fermion following Eq. I.12. A summary ofthe electric charge, weak isospin, and weak hypercharge of each fermion type isgiven in Table I.1.

Q = I 3 +
Y

2
. (I.12)

Fermions Q I3 Y
Left Right Left Right

u, c, t +2
3

+1
2

0 +1
3

+4
3

d, s, b −1
3

−1
2

0 +1
3

−2
3

e−, µ−, τ− −1 −1
2

0 −1 −2

νe, νµ, ντ 0 +1
2

−1

Table I.1 – Value of the electric charge Q , weak isospin I3, and weak hypercharge Y foreach fermion type, with a distinction between left-handed (Left) and right-handed (Right)particles when needed.

From these gauge fields and generators, we can define the covariant derivativeof the theory
Dµ = ∂µ − ig2A

a
µT

a − ig1
Y

2
Bµ . (I.13)
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And finally, we can write their associated field strength tensors:
Aa
µν = ∂µA

a
ν − ∂νA

a
µ + g2ϵ

abcAb
µA

c
ν (I.14)

Bµν = ∂µBν − ∂νBµ , (I.15)

where ϵabc is the Levi-Civita tensor, giving the commutation relation of the Paulimatrices.
We can now write the Lagrangian of the electroweak theory:

LEW = Lfermion + Lint + Lbosons

= Ψ̄L(i /D)ΨL + ψ̄R(i /D)ψR − 1

4
(Aa

µν)
2 − 1

4
(Bµν)

2

= Ψ̄L(i /∂)ΨL + ψ̄R(i /∂)ψR

+ g2Ψ̄Lγ
µAa

µT
aΨL + g1

Y

2
Ψ̄Lγ

µBµΨL + g1
Y

2
ψ̄Rγ

µBµψR

− 1

4
(Aa

µν)
2 − 1

4
(Bµν)

2 .

(I.16)

But as mentioned above, given the observed behaviour of the WI, we expectinteraction terms of the form:
Lint = · · ·+ κ ūLγ

µW+
µ dL + · · · ,

with a coupling constant κ, so under their current form, the gauge fields arenot the physical gauge bosons we observe experimentally. The latter can berecovered by combining the Aa and B fields. The two charged W± bosons areobtained from
W±

µ =
A1
µ ∓ iA2

µ√
2

, (I.17)

and similarly, to obtain the correct association of generators
T± = T 1 ± iT 2 . (I.18)

On the other hand, the Zµ and Aµ fields associated with the Z boson and the
photon are recovered by mixing the remaining A3

µ and Bµ fields:(
Zµ

Aµ

)
=

(
cos θw − sin θw
sin θw cos θw

)(
A3
µ

Bµ

)
, (I.19)

where θw is the weak mixing angle, also called the Weinberg angle.
From these definitions, we can rewrite the covariant derivative defined in Eq. I.13as

Dµ = ∂µ − i
g2√
2
W+

µ T+ − i
g2√
2
W−

µ T−

− i

(
g2 cos(θw )T

3 − g1 sin(θw )
Y

2

)
Zµ

− i

(
g2 sin(θw )T

3 + g1 cos(θw )
Y

2

)
Aµ .

(I.20)
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Since the last term, associated with the photon field Aµ, should have as couplingconstant the electric charge, we can identify the following relation using Eq. I.12:
e = g1 cos(θw ) = g2 sin(θw ) , (I.21)

which allows the expression of the weak mixing angle θw with respect to thecoupling constants g1 and g2:
cos θw =

g2√
g 2
1 + g 2

2

, sin θw =
g1√

g 2
1 + g 2

2

, as well as e =
g1g2√
g 2
1 + g 2

2

. (I.22)

Finally, we can write the different interaction terms between fermions and thephysical gauge bosons, first for left-handed fermions e.g. with the doublet de-scribing the uL and dL quarks:
LL

int =
g2√
2
ūLγ

µW+
µ dL +

g2√
2
d̄Lγ

µW−
µ uL

+ e

(
I 3u +

Yu
2

)
ūLγ

µAµuL + e

(
I 3d +

Yd
2

)
d̄Lγ

µAµdL

+ e
g2
g1

(
I 3u −

(
g1
g2

)2 Yu
2

)
ūLγ

µZµuL

+ e
g2
g1

(
I 3d −

(
g1
g2

)2 Yd
2

)
d̄Lγ

µZµdL .

(I.23)

And then, for any right-handed fermion ψR with electric charge Q we have:
LR

int = eQψ̄Rγ
µAµψR +

g1
g2
eQψ̄Rγ

µZµψR . (I.24)

The interactions between gaugebosons is included in theLboson term, expressinginteractions between three (γW+W−, ZW+W−) and four (γγW+W−, ZZW+W−,ZγW+W−, W+W−W+W−) gauge bosons.
While successfully describing the interactions between particles under the WI,the electroweak LagrangianLEW reachedhere ismissing crucial components. In-deed, to conserve the SU(2)L×U(1)Y symmetry assumed for this gauge theory,all fermions and bosons should be massless. However, the previous theory de-scribed theWI through a four-fermions point-like interaction (Fermi’s contact in-teraction [8]) introducing a coupling constantGF . With the development of QFTs,mathematical inconsistencies in Fermi’s contact interaction were pointed out,and Fermi’s theory was interpreted as a low-energy effective theory. Its propermathematical description was achieved via the electroweak theory with gaugebosons mediating the WI. Yet, the short-range interaction which was impliedby the contact interaction, was pointing towards very massive gauge bosons,in contradiction with the requirement of massless gauge bosons required bygauge theories. It means that the gauge symmetry of the theory should breakspontaneously to give mass to certain particles; this mechanism is described inSection I.2.1.
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I.2 The Higgs boson and where to find it

I.2.1 The Brout–Englert–Higgs mechanism

The SU(2)L symmetry of the electroweak theory, while offering an accurate de-scription of the WI, is not observed experimentally as fermions and the Z andW± bosons have a measurable mass. It is suggestive of a hidden symmetry ofthe theory. Only a U(1) symmetry is observed in the electroweak sector, as-sociated with the EMI and to a massless photon. This specific mechanism ofspontaneous symmetry breaking SU(2)L × U(1)Y → U(1)EM of the electroweaktheory giving mass to the bosons of the SM is called the Brout–Englert–Higgs(BEH) mechanism [9–11].
The BEHmechanism introduces a complex scalar (S = 0) field ϕwhich is a SU(2)Ldoublet with hypercharge Y = 1 and transforms under the SU(2)L×U(1)Y sym-metry as

ϕ→ e iα
a
(x)T

a

e i
β(x)
2 ϕ , (I.25)

with arbitrary functions of space-time αa and β. The dynamics of this field aredescribed through a Lagrangian, including a kinematic and a potential term ofthis scalar field:
LBEH = (Dµϕ

†)(Dµϕ)− V (ϕ) (I.26)

where D is the covariant derivative defined in Eq. I.20 including the gauge fieldsof the electroweak theory, and the potential V is defined as
V (ϕ) = −µ2|ϕ|2 + λ|ϕ|4 , (I.27)

with two parameters µ and λ such that µ2 > 0 and λ > 0. An illustration of theshape of the potential function V is provided in Fig. I.2. The ground state of thescalar field is at the minimum of the potential function such that

|ϕmin| =
v√
2
, with v =

√
µ2

λ
. (I.28)

It means that the field ϕ acquires a nonzero vacuum expectation value (VEV),and the SU(2)L × U(1)Y is spontaneously broken. We write the VEV of the field
ϕ under the form

⟨ϕ⟩ = 1√
2

(
0
v

)
. (I.29)

Small excitations of the scalar field about its VEV can be parameterised usingfour real fields:
ϕ(x) =

1√
2
e iT

a
θ
a
(x)

(
0

v + H(x)

)
. (I.30)

where the three θa fields are called the Goldstone fields andH is the Higgs bosonreal scalar field. Since the rest of the Lagrangian is invariant under SU(2) trans-formations, we can use the inverse transformation to remove any dependency
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Figure I.2 – Illustration [12] of the potential described by Eq. I.27. The ball is shown attwo equilibrium positions: an unstable one associated with a null field and a stable onecorresponding to |ϕ| = |ϕmin|.
with respect to the Goldstone fields:

ϕ→ e−iT
a
θ
a
(x)ϕ(x) =

1√
2

(
0

v + H(x)

)
. (I.31)

Thus, the only physical field remaining is the scalar Higgs boson H which corre-sponds to the last particle predicted by the SM.
By using the form of the scalar field ϕ presented in Eq. I.31 and the covariantderivative defined in Eq. I.20, we can expand the Lagrangian LBEH and exhibitmass terms for the theory:

LBEH = · · ·+ 1

2
2µ2H2 +

g 2
2 v

2

4
W+

µ W−µ +
1

2

g 2
1 + g 2

2

4
v 2ZµZ

µ + · · · ,

where we can identify
mH =

√
2µ, mW =

g2v

2
, and mZ =

√
g 2
1 + g 2

2

2
v . (I.32)

The rest of the Lagrangian also contains the interaction terms between theH bo-son and theW, Z bosons, aswell as self-coupling terms of theH boson. However,as there is no term including the photon field Aµ, the photon remains masslessafter the symmetry breaking, as expected, and it does not interact with the Higgsfield.
Finally, the observed mass of the fermions of the theory is described by theYukawa interaction between these fermions and the scalar field doublet ϕ. Formore clarity in the presentation of the following equations, we separate thefermion left-handed doublets between quark and lepton doublets:

Q iL =
(ui

Ldi
L

)
and E iL =

(
ν iLei
L

)
(I.33)

with i running over the different generations of fermions, so ui (di ) correspondsto the up-type(down-type) quarks. Then, we can define the Lagrangian repre-senting the Yukawa interaction:
LYukawa = −λu i Q̄ i

Lϕ̃ui
R − λd i Q̄ i

Lϕdi
R − λe i Ē i

Lϕei
R + h.c. , (I.34)
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where ϕ̃ is the charge-conjugate Higgs field ϕ̃ = iσ2ϕ, h.c. denotes the hermitianconjugate terms and λX are the coupling constants of the interactions betweenthe Higgs boson and fermions. Given the form of ϕ defined in Eq. I.31, we canexpand the Lagrangian as
LYukawa =− λu i

v + H√
2

ūi
Lui

R − λd i

v + H√
2

d̄i

Ldi
R − λe i

v + H√
2

ēi
Lei

R + h.c.

=−
λu iv
√
2
ūiui −

λd iv
√
2
d̄idi −

λe iv√
2
ēiei

−
λu i

√
2
Hūiui −

λd i

√
2
Hd̄idi −

λe i√
2
H ēiei

(I.35)

where the fermion fields are regrouped as u = (ui
R,ui

L), di = (di
R,di

L), and ei =
(ei

R, ei
L). Thus, the masses of fermions are expressed as

mu i =
λu iv
√
2
, md i =

λd iv
√
2
, and me i =

λe iv√
2
, (I.36)

andwe can identify interactions between theHiggs boson and fermions (last lineof Eq. I.35) with a coupling constant related to the mass of fermions of the form
mX/v . In this brief presentation of the Yukawa couplings, we omit the terms re-sponsible for mixing the different generations of fermions in theWI. The termsare introduced by the CKM matrix, which has nonzero off-diagonal values. TheCKMgives rise to the only known source of charge-parity (CP) symmetry violationin the SM.
Themodel presented here assumes neutrinos aremassless, which is not what isobserved experimentally. Alternative mechanisms are proposed to include themass of neutrinos. For instance, adding a Yukawa coupling to Eq. I.34 could de-scribe a massive Dirac neutrino. The BEH mechanism provides an explanationto the observed mass of fermions and gauge bosons, and expands the electro-weak theory with a description of the dynamics of a Higgs field and its interac-tions with other particles LEW = Lfermion + Lboson + LL

int + LR
int + LBEH + LYukawa.The Higgs boson interacts with fermions and bosons with coupling constantsrelated to their mass, granting a unique way to probe fundamental propertiesof particles.

I.2.2 The Higgs boson ten years after its discovery

The large hadron collider (LHC) was designed to reach energy levels sufficient toprobe the properties and interactions of the Higgs field described in Section I.2.1by producingHiggs bosons fromproton-proton (pp) collisions. In 2012, after twoyears of data-taking at centre-of-mass energies√s = 7 TeV and 8 TeV, the ATLASand CMS experiments of the LHC discovered the Higgs boson [13–15]. A decadelater, the LHC has provided much more data to the experiments through theRun 1 (data-taking period 2010–2012) and Run 2 (2015–2018) and has reachedeven higher energies. For instance, the CMS experiment has recorded a total of
138 fb−1 of data at √s = 13 TeV during the Run 2. The goal of this section is to
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provide an overview of our knowledge of the BEH sector thanks to the experi-ments of the LHC.
As the couplings of the Higgs boson grow linearly with the mass of fermionsand quadratically with the mass of bosons, interactions of the Higgs boson withheavy particles are more likely. The most frequent production modes occurringin pp collisions at the LHC are presented in Table I.2 (left) along with their crosssection (σX ). The cross section is a representation of the probability for a givenprocess to occur following a pp collision and is expressed here in picobarn (1 pb= 10−36 cm−2). According to Table I.2, the total cross section of Higgs boson pro-
Production Cross section (pb) Decay Branching fraction (%)mode channel

ggH 48 ± 2 bb 57.6 ± 0.7
VBF 3.8 ± 0.8 WW 22.0 ± 0.3WH 1.36± 0.03 gg 8.2 ± 0.4ZH 0.88± 0.04 τ τ 6.21 ± 0.09ttH 0.50± 0.04 cc 2.86 ± 0.09bbH 0.48± 0.09 ZZ 2.71 ± 0.04tH 0.09± 0.01 γγ 0.227 ± 0.005Zγ 0.157 ± 0.009ss 0.025 ± 0.001

µµ 0.0216± 0.0004

Table I.2 – Expected cross sections for the leading productionmodes of theH boson andexpected branching fraction of its leading decay channels for proton-proton collision at√
s = 13 TeV and for mH = 125.38GeV. Adapted from Ref. [16].

duction at√s = 13 TeV is around 55 pb, so for a total of 138 fb−1 of collision dataaccumulated during the Run 2, we expect around 55 000× 138 ≈ 7.6million col-lisions produced a Higgs boson; the challenge is then to detect them. The dom-inant production mode is by far the gluon fusion (ggH or ggF), where the Higgsboson is produced via a loop of heavy quarks (mainly involving t quarks). Thesecond-largest production comes from the fusion of vector bosons (VBF), andthe Higgs boson is produced in association with two quarks. Finally, the Higgsboson can be produced in association with a single vector boson (VH with V = Zor W) or a pair of heavy quarks (ttH, bbH). The Feynman diagrams associatedwith these production modes are shown in Fig. I.3.
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Figure I.3 – Feynman diagrams of the dominant production modes of the Higgs bosonat the LHC: ggH (top left), VBF (top right), VH (bottom left), and ttH (bottom right).

After being produced, the Higgs boson decays through one of its decay channelsto form the final states that will be observed by the detector. The probability ofdecay in a given channel is called branching fraction (BY ). The dominant decaychannels and their branching fraction are reported in Table I.2, and the associ-ated Feynman diagrams are shown in Fig. I.4. The largest B is associated with
f

f

Figure I.4 – Feynman diagrams of the decay channels of the Higgs boson: into a pair ofmassive fermions (top left), into a pair of massive bosons (top right), and through loopsof heavy particles to produce two photons (bottom).
the decay in a pair of b quarks, occurring in around 58% of the cases. However,the two most sensitive channels for measurements on the Higgs boson are itsdecay in a pair of Z bosons (then decaying to four leptons) and its decay in apair of photons through loops of W bosons or t quarks. They both have a lowbranching fraction of around 0.23% and 0.01% for the H → γγ and H → ZZ → 4ldecay respectively, but their final state is fully reconstructed, and the LHC ex-periments have very good resolution on the energy resolution of leptons and
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photons. These two decay channels brought a key sensitivity to the discovery ofthe Higgs boson, and they are currently the only channels allowing for a precisemeasurement of the Higgs bosonmass (mH). Themost precise determination of
mH with the CMS experiment [17] is obtained for now from a combination of themeasurements in these two channels for data obtained during the Run 1 plus2016:

mH = 125.38± 0.14GeV . (I.37)

To check the consistency of the Higgs boson observed experimentally with theproperties predicted by the SM, the number of observed events associated witha Higgs boson for a given productionmode or a given decay channel are param-eterised using the signal strength µY
X defined as

µY
X =

σXBY

σSM
X BSM

Y

. (I.38)

Measurements of the signal strength parameters are presented in Figs. I.5 and I.6for different production modes (µX assuming BY = BSM
Y , left) and decay chan-nels (µY assuming σX = σSM

X , right). The results obtained by the CMS experi-ment over the Run 2 (Fig. I.6) are compared to ATLAS and CMS results duringRun 1 (Fig. I.5). Thanks to the large amount of data collected during Run 2, newproduction mode (tH) and decay channels (µµ, Zγ ) are analysed. Moreover, forthe productionmodes and decay channels already considered during Run 1, theCMS experiment has increased its precision on the results bymore than a factor
2. All measurements are compatible with the predictions of the SM.
Another parameterisation can be introduced at the coupling constant level totake into account the fact that a deviation of the coupling constant would affectboth production modes and decay channels in a correlated way. This modifier
κX is introduced in the couplings of fermions and bosons probed by the currentanalyses. The results of the fit of the κ parameters are shown in Figs. I.7 and I.8.The value of the coupling parameters is drawn as a function of the particlemass.An agreement is observed between measurements and expectations of the SMfor the couplings of the Higgs boson already with data of Run 1 (Fig. I.7). Thisagreement is getting much clearer with the results of Run 2. Analyses of theRun 2 data recorded by the CMS experiment resulted in the observation of theHiggs boson decay to a pair τ leptons [19], to a pair of b quarks [20] and firstevidence of the Higgs decay to a pair of muons [21], showing that this agree-ment holds over more than three orders of magnitude of mass. This is powerfulproof that the observed Higgs boson is indeed the one introduced by the BEHmechanism.
One last argument to confirm the nature of the boson observed experimentallyis to examine its spin-parity nature. Indeed, as the SM predicts the Higgs bo-son to be a scalar field, it should be the only elementary particle with quantumnumbers JP = 0+, where J is the spin of the particle and P is the parity sym-metry. Many alternative JP hypotheses are tested and confronted with the SMhypothesis using Run 1 data [22]. The different alternatives can be comparedusing the kinematic variables of the decay products as they differ depending onthe spin-parity hypothesis. The results are detailed in Fig. I.9. A test statistics
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Figure I.5 – Value of the signal strength for several production modes (left) and decaychannels (right) of the Higgs boson using data collected by the ATLAS and CMS experi-ments during the Run 1 of the LHC [18].

Figure I.6 – Value of the signal strength for several production modes (left) and decaychannels (right) of the Higgs boson using data collected by the CMS experiment duringthe Run 2 of the LHC [16].
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Figure I.7 – Coupling constants of the interaction of the Higgs boson with different par-ticles represented as a function of the mass of these particles using data collected bythe ATLAS and CMS experiments during the Run 1 of the LHC [18].

CMS Run 2

Figure I.8 – Coupling constants of the interaction of the Higgs boson with different par-ticles represented as a function of the mass of these particles using data collected bythe CMS experiment during the Run 2 of the LHC [16].
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Figure I.9 – Distributions of the test statistics for alternative JP models tested againstthe SM Higgs boson hypothesis in its ZZ and WW decay channels [22]. The expectedmedian and the 68.3%, 95.3% and 99.7% CL regions are shown for the SM Higgs boson(orange) and for the alternative (blue) hypotheses. The observed q values are indicatedby black dots.

q = −2 ln(L
J
P/L0+) is defined, and the observed value of the test statistics is in-dicated by the black dot. As the decay of the Higgs boson has been observedin the diphoton decay channel, the J = 1 hypotheses are ruled out as a conse-quence of the Landau-Yang theorem [23, 24]. This is also confirmed in the ZZand WW decay channels where the observed value of q excludes the J = 1 hy-potheses at a greater than 99.999% confidence level (CL). For alternative J = 2hypotheses, the same combination of decay channels is able to exclude them ata 99% CL or higher. Moreover, the same analysis excludes a pure pseudoscalar

JP = 0− hypothesis at a 99.98% CL. All of this indicates that the observed bosonis consistent with a scalar SM-like Higgs boson. However, the constraints of theanalysis are not enough to reject CP-violating couplings of the Higgs boson. Thiswould be strong evidence of BSM physics.
Recent analyses of the Run 2 have tried to constrain further the possibility ofCP-violating couplings of the Higgs boson. Both the interactions of the Higgsboson with gauge bosons and with fermions are studied to determine if theycontain small contributions from CP-odd couplings called anomalous couplings(AC). Since the behaviour of the kinematic variables of the decay products de-pends on the CP-nature of the Higgs boson, different AC hypotheses can be eval-uated. These analyses compare these AC hypotheses to the SM hypothesis (noCP-odd contribution) using Run 2 data and extract the most likely fractions ofevents resulting from these anomalous contributions. Results from an AC anal-ysis in the Yukawa interactions are presented in Fig. I.10. This analysis observesthe ttH production of the Higgs boson and its decay into two photons to de-termine if there is any anomalous contribution in the interaction between theHiggs boson and the top quark. Events are sorted among three bins dependingon their kinematic variables, and results are reported in the scan of AC hypothe-
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ses (fHtt
CP , top right of Fig. I.10). The observed 68% CL region is [−0.33, 0.33] forthe value of fHttCP . The anomalous couplings of the Higgs boson with the weak

Figure I.10 – Distribution of ttH(H →
γγ) events in bins of a discriminant (D0−)based on their kinematic variables [25].The negative log-likelihood scan of thefraction of events originating from CP-oddcouplings of theHiggs bosonwith t quarks(fHtt
CP ) is shown in the top right corner.

Figure I.11 – Negative log-likelihood scanof the fraction of events originating fromCP-odd couplings of the Higgs boson withweak gauge bosons (fa3) for the combina-tion of H → ZZ and H → τ τ analyses [26].

bosons (Z, W) have been studied in its decay into four leptons [27] and into apair of tau leptons [26], their combined results on the fraction of CP-odd Higgsboson events (fa3) are shown in Fig. I.11. They report an observed 68% CL in-terval of [−0.16 × 10−3, 0.26 × 10−3] for the value of fa3. This thesis presents, inChapter V, an additional way of constraining the value of fa3 by using the decayof the Higgs boson into a pair of photons.

I.3 Physics beyond the standard model

The SM offers a consistent theory depicting numerous physical effects. It hasalso been able to predict the properties of elementary particles with great ac-curacy. All the recent measurements performed at the LHC have shown resultscompatible with the expectations of the SM. Yet, a number of questions are leftunanswered by the current formulation of the SM.
Some of these questions relate to the content of the SM. For instance, the scaleof the electroweak symmetry breaking seems strangely fine-tuned, which is vis-ible in the mass of the Higgs boson. In the SM, the physical mass observedexperimentally is expected to arise from a bare mass getting very large quan-tum corrections [28]. These corrections are predicted to reach values of theorder of the Planck scale ≈ 1019 GeV meaning that there is a compensation be-tween two numbers over 1017 orders of magnitude to reach the observed massof mH = 125GeV. It appears as an unlikely coincidence if not explained by anunderlying effect. The Higgs boson mass is not the only one raising questions,
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as neutrinos are considered massless in the SM. However, experiments suchas Super-Kamiokande or the Sudbury Neutrino Observatory observed a phe-nomenon known as neutrino oscillation [29], indicating that each of the neutrinoflavours has a nonzero mass. A recent measurement from Fermilab’s Muon g -
2 experiment confirmed the disagreement observed between SM predictionsand the observed value of the g -2 anomalous magnetic moment of the muon.This value is computed from the loop corrections predicted by the SM to thescattering of muons on an external magnetic field. The latest value reported bythe Muon g -2 experiment [30] shows a strong disagreement with respect to thelatest theoretical previsions [31], hinting at effects from new physics.
The necessity to devise BSM theories also arises from observations of physicsphenomena not described by the SM. Therefore, the SM can be considered asa solid foundation which should be included in a broader model. In particular,some cosmological observations are currently unexplained by the SM. A strikingexample is the gravitational interaction, which is the last fundamental force notencompassed by the SM. By observing the large-scale structure of the Universe,it was inferred that most of our universe consists of dark energy (≈ 68%) anddark matter (≈ 27%) [32]. Nevertheless, no particle of the SM constitutes a con-vincing candidate corresponding to dark energy or dark matter. The remaining
5% of the content of the Universe is composed of baryonic matter. This alsoraises a fundamental question: Why is there so much matter and so little anti-matter? Explanations for this asymmetry have been proposed by Sakharov [33],who described that for a universe out of thermal equilibrium, if the baryon quan-tumnumber and the CP symmetry are violated, then the Universe could cascadein amatter-dominated state. We know that theweak interaction is a source of CPviolation, but this contribution is too small for the effects described by Sakharov.It means that the SM should contain other sources of CP violation. The interac-tion between the Higgs boson and other particles could be one of these sources,so it motivates measurement like the one presented in Chapter V.
All of these questions justify the necessity to design theories describing physicsbeyond the standardmodel. Therefore, one of themain objectives in the physicsprogramme of the LHC experiments is now to determine where these theoriescould stem from by probing as many physical effects as possible and comparingthe consistency of the results with the SM.
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The large hadron collider (LHC) is a particle accelerator descending from a longlist of machines and past experience probing the fundamental constituents ofour Universe. It is operated by the European Organisation for Nuclear Research(CERN, from the French "Conseil Européen pour la Recherche Nucléaire") andlocated at the Swiss-French border. The specifications of the LHC, at the time ofits design, were driven by its physics program: discover or rule out the existenceof the Higgs boson predicted by the SM, push further the precision on the mea-surement of particle properties, probe sectors of the SM that would be sensitiveto BSM physics.
Collisions at the LHC happen at four interaction points where four experimentsrecord the subsequent production and decay of particles. One of these experi-ments is the compactmuon solenoid (CMS), which provides the data and contextfor this thesis.
After approximately sixteen years of physics operations (which started in 2010),the LHC and its detectors will undergo significant upgrades to enter the high-luminosity phase of the LHC (HL-LHC). As there will be at least five times morecollisions occurring each second, theCMSdetectorwill have to dealwith a harsheroperating environment. One way to mitigate these effects in the CMS experi-ment and retain good precision on the relevant physics effects will be to rely onthe time of arrival of particles in the subdetectors. Therefore, precise timing cal-ibration and synchronisation will be needed over the entire CMS detector withthe HL-LHC.
A description of the current operation of the LHC and CMS experiment is givenin Section II.1 of this chapter. The upgrades planned for the HL-LHC and CMSare presented in Section II.2. Finally, my contribution to the timing calibration ofCMS detectors in preparation for the HL-LHC is detailed in Section II.3.

II.1 The LHC and the CMS detector

II.1.1 The large hadron collider at CERN

Design

At this time, the LHC is the largest accelerator ever built, granting access to un-precedented levels of energy in the collisions of particles. This synchrotron isinstalled in the tunnel initially built to accommodate the large electron-positroncollider (LEP). Thus, the particle beamsof the LHCare accelerated throughbeam-lines of 27 km of circumference located 70m to 140m underground.
The LHC is primarily designed for proton-proton (pp) collisions. However, forabout one month per year, heavy ions (lead ions) are accelerated and collideto probe the quark-gluon plasma, an exotic state of matter where quarks andgluons are deconfined. A one-month period of proton-lead collisions also tookplace beginning of 2013. In all cases, the acceleration path of the beams can befollowed through the accelerator complex of CERN detailed in Fig. II.1.
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Figure II.1 – Illustration of the CERN accelerator complex [34].

The proton beam takes its source in a stock of negatively charged hydrogenions (H−) which are accelerated up to 160MeV by the LINAC 4, a linear accel-erator which replaced the LINAC 2 since 2020 to prepare for the HL-LHC. Thebeam then enters the proton synchrotron booster (BOOSTER in Fig. II.1 or PSB),the first circular accelerator of the chain. There, thanks to a strong magneticfield and a carbon stripping foil, more than 99% of the H− ions are striped of apair of electrons, leaving a beam of proton boosted to 2GeV. Then, the protonsynchrotron (PS) accelerates the beam up to 26GeV and passes it to the superproton synchrotron (SPS). The SPS is famous for allowing the discovery of the Zand W bosons in 1983 when it was colliding proton-antiproton beams. It is nowin charge of accelerating the proton beam to 450GeV before the LHC. The protonbeam is split in two to circulate in opposite directions in the parallel beamlinesof the LHC until collisions are started at the designated interaction points.
The proton beams of the LHC are accelerated with 16 radiofrequency (RF) cavi-ties where electromagnetic fields modulated at a frequency of 400MHz are syn-chronised with the passing of packets of protons (bunches). After the PS accel-erator, bunches are 25 ns apart in time, corresponding to a frequency of 40MHz,so the bunches are indeed synchronised with the fields of the RF cavities. Inorder to align their trajectory with the LHC ring and squeeze protons withineach bunch, thousands of superconducting electromagnets are arranged alongthe beamlines. These magnets come in different shapes and sizes depend-ing on their role. A total of 1232 15m-long dipole magnets are used to bendthe beams within the circular geometry of the LHC. Quadrupole magnets (392in number and between 5m to 7m in length) focus the beams to increase thecollision rate. Moreover, multipole magnets of higher orders correct imperfec-tions in the spread of the protons around each bunch. All of these magnets aremade of copper-clad niobium-titanium (Nb-Ti), so they are cooled down to 1.9K(-271.3 ◦C) using helium-4 to reach their superconducting state.
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Operation

The maximal energy reached by the proton beams in the LHC increases witheachdata-taking period (called Run). Figure II.2 shows the evolution of the center-of-mass energy, starting at 7 TeV–8 TeVduring Run1 (2010–2013), reaching 13 TeVduring Run 2 (2015–2018) and attaining now 13.6 TeVwith Run 3 (2022–ongoing).In its high-luminosity phase, the LHC should reach its design energy of 14 TeV;however, as its name suggests, a focus is given to increasing the luminosity ofthe accelerator.
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Apart from the energy of the beam, an essential parameter of the beam is itsluminosity. The luminosity is the representation of the rate of collisions hap-pening between protons of the two beams. The luminosity is expressed in twoways, through the instantaneous luminosity L expressed in cm−2 s−1 or throughthe integrated luminosity L =
∫
L dt which is the instantaneous luminosity in-

tegrated throughout the experiment and expressed in fb−1. The luminosity di-rectly represents the expected number of times a given process should occur(such occurrence is called an event). Given a physical process with cross section
σproc, the expected number of events is N = σproc L. Evolution of the instanta-neous luminosity with each Run of the LHC is also presented in Fig. II.2 with avalue of around 2× 10−34 cm−2 s−1 for Run 3. The increase in total integrated lu-minosity recorded by the CMS experiment each year is summarised in Fig. II.3.
With a high rate of collisions, the average number of collisions occurring in thesame bunch crossing (pileup, PU) increases. The average number of PU eventsis given by

< µ >=
L σ

pp
in

nb fLHC
(II.1)

where σpp is the cross section of the inelastic pp collision process at 13 TeV, nb isthe number of bunches being accelerated in the LHC, and fLHC is the revolutionfrequency. The nominal value for the number of bunches nb is 2808, and therevolution frequency fLHC is 11 245Hz. With that in mind, the cross section ofthe inelastic pp process for different centre-of-mass energies is given in Fig. II.4,with the associated average PU separated year by year.
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Experiments

Four detectors collect collision data at four interaction points of the LHC, as de-scribed in Fig. II.1. The ATLAS (A Toroidal LHC ApparatuS) and the CMS (CompactMuon Solenoid) are experiments with comprehensive physics programs utilis-ing asmuch luminosity as possible to study rare processes. One of their primarygoals is the study of the Higgs boson and its properties, and they reached a sig-nificant milestone in 2012 with the discovery of the Higgs boson. A detaileddescription of the CMS detector is given in Section II.1.2. The LHCb (LHC beauty)and ALICE (A Large Ion Collider Experiment) are the other two detectors oper-ating at lower luminosity. LHCb specialises in heavy flavour quark physics, andsome of its objectives are to study CP violation to search for BSM physics andobserve rare hadrons of b and c quarks. Finally, ALICE relies on heavy ion col-lisions to focus on the strong interaction of the SM and probe the quark-gluonplasma, a state of matter that occurred at a very early stage of our Universe.
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II.1.2 A compact muon solenoid: the CMS detector

The CMS experiment has a broad physics program. In addition to increasing theprecision of measurements of observables described by the SM, one of its goalsis to be able to observe any new physics phenomena produced from collisionsat the LHC. The detector is cylindrical, with a central region called the barrel andboth ends of the detectors forming the endcaps. Thus, it covers most of thesolid angle around the interaction point. It consists of several concentric lay-ers of subdetectors, each with a different specificity and dedicated to detectingdifferent kinds of particles. All of the detector parts are presented in Fig II.5:
• Tracking system: its role is to identify the trajectory of charged particles(tracks) by reconstruction from the successive signal pulses (hits) triggeredin the different layers of the tracker by the particles along their path. Fromthese tracks, we can reconstruct the origin of the tracks (vertex).
• Electromagnetic calorimeter (ECAL): subdetector designed to collect theenergy of electromagnetic showers. They originate from electrons or pho-tons identified by gathering energy deposits as clusters in the ECAL.
• Hadronic calorimeter (HCAL): most hadrons leave only a small part oftheir energy in the ECAL; the HCAL is designed to collect the rest of thehadron energy.
• Solenoid magnet: it provides an intense magnetic field of 3.8T withinits volume, allowing to separate efficiently neutral particles from chargedparticles with a bent trajectory. By placing this superconducting magnetaround the tracker, ECAL, and HCAL, less material impacts the particles,and it is easier to connect tracks in the tracker and energy deposits in thecalorimeters.
• Steel return yokes: given the solenoid nature of the magnet, large ironpanels are used to constrain, within the entire detector, the looping mag-netic field outside of the solenoid. The magnetic field intensity around thereturn yokes is about 2T. In addition to constraining the magnetic field,they also serve as absorber material for the muon chambers.
• Muon chambers: alternating with the steel return yokes are muon cham-bers. They are used for the tracking of the muons as these particles havelittle interaction with the rest of the subdetectors.

The constituents of the subdetectors are described inmore detail in this section.
A coordinate system common to all the subdetectors of CMS is represented inFig. II.6. Its origin is defined at the interaction point (IP) where the two beamscollide, and both a cartesian or cylindrical right-handed system can be used. Thecartesian system is defined with the x coordinate pointing towards the centreof the LHC and the z coordinate in the direction of the beamline pointing anti-clockwise when looking at the LHC from above. The kinematic properties of aparticle within the detector are often described through the cylindrical coordi-nate system, with a preference for coordinates not dependent on the boost of
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the centre of mass of the event. This is because we do not know, a priori, whichfraction of momentum along z is carried by each of the partons when protonscollide, so the longitudinal boost of the centre of mass of an event is unknown.Thus, instead of using the canonical (|p|, θ, ϕ) system, we rely on the followingset of parameters: (pT , η, ϕ). Within this system, pT is the transverse momen-tum of the particle, so perpendicular to the direction of the boosted centre ofmass (projection of themomentum in the xy plane), and η is the pseudorapidity,which corresponds to the rapidity in the ultra-relativistic limit:
η = − ln

(
tan

θ

2

)
.

The differences in η are invariant under a Lorentz boost in the z direction, andso is the azimuthal angle ϕ. From the angular coordinates, we define the spatial
separation between two particles ∆R =

√
(∆η)2 + (∆ϕ)2.

Tracker system

The tracking system of the CMS experiment [38, 39] is the subdetector closest tothe interaction point. Its role is to provide a precise spatial measurement of thetracks of charged particles and a measurement of the vertex position with highaccuracy. Two kinds of vertex need to be identified: the vertex of the hard in-teraction (primary vertex) and vertices coming from the decays of particles witha long lifetime, such as τ leptons and hadrons containing b or c quarks (sec-ondary vertices). The primary vertex should be well separated from additionalPU events and secondary vertices which are displaced from hundreds of µm forc-hadron and up to a few mm for K0S-mesons. The tracker should also withstandextremely high levels of radiation while keeping the amount of material to aminimum to preserve the energy measurements in the calorimeters. Given allthese requirements, the tracker system is based on the careful placement ofsilicon detectors with different granularity.
The composition of the subdetector is laid out in Fig II.7. In the barrel, the char-

Figure II.7 – Simplified view of the tracker system of CMS from Ref. [40]. Each line rep-resents a strip module or a layer of pixels. A description of the arrangement of thedetector modules is given in the text.
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acteristics of the silicon modules change depending on their distance to the IP.The PIXEL part of the detector is the closest to the IP (29mm < r < 10 cm) andconsists of pixel cells of size 100µm×150µm. It grants a spatial resolution onthe measurement of the vertex position of 15µm to 20µm. Further, come thetracker inner barrel (TIB) and the tracker inner disks (TID) (20 cm < r < 55 cm)with silicon microstrips of typical size 10 cm×80µm. At the edge of the bar-rel (55 cm < r < 120 cm) is the tracker outer barrel (TOB) with larger siliconstrips of size 25 cm×180µm. Finally, the tracker endcaps (TEC) cover the region
|z | > 118 cm with silicon strips in the form of disks with a radial size between
100µm and 180µm. Each layer of pixel cells or strips is shifted with respect tothe previous one to reach the highest acceptance.

Electromagnetic calorimeter (ECAL)

The electromagnetic calorimeter (ECAL) of the CMS experiment [41] enclosesthe tracking system and is dedicated to measuring the energy of photons andelectrons. Consequently, the performance of the ECAL is directly impacting theperformance of the H → γγ analysis in the CMS experiment. The subdetec-tor relies on lead-tungstate (PbWO4) scintillating crystals, a single medium to actas absorber (i.e. force electrons and photons to deposit their energy) and ac-tive (collect these energy deposits) material. Photons and electrons leave theirenergy by producing electromagnetic showers when interacting with the leadnuclei of these dense crystals. By using a homogeneous calorimeter, the CMSdetector has access to the full deposited energy and is less impacted by fluc-tuations due to non-measured showers. When luminescent centres [42] of thecrystals are excited by these showers, they emit a signal in the form of light,which is collected on the crystal side opposite to the IP. This means that thecrystals need to be as transparent as possible to ensure high efficiency in thelight collection.
The longitudinal expansion of the electromagnetic showers depends on the ra-diation length X0 of the absorber material. This radiation length is defined asthe typical length after which an electron loses most of its energy (≈ 63% of lostenergy). In a material with a small radiation length, electromagnetic showersare narrower, allowing for a better separation of electromagnetic candidates.With a high density (8.28 g cm−3), small radiation length (8.9mm), and fast signalproduction (80% of the light is produced in 25 ns in an ECAL crystal), the lead-tungstate crystals offers a compact and highly granular solution for the ECAL.However, these crystals have a relatively low light yield (≈ 30γ produced perMeV), so their signal is amplified with silicon avalanche photodiodes (APD) in thebarrel and vacuum phototriodes (VPT) in the endcaps.
The disposition of the ECAL crystals is presented in Fig. II.8. About 61 200 trape-zoidal crystals of surface 22mm×22mm covers the barrel region |η| < 1.479. Foreach endcap 1.479 < |η| < 3.0, a total of 7324 crystals of surface 28.6mm×28.6mmare used. The mean size of the crystals in the ECAL is ≈ 23 cm corresponding to
≈ 26X0. The size and alignment of the crystal are carefully chosen. All the crys-tals point towards the nominal IP in a quasi-projective geometry, but with a 3◦angle to avoid acceptance gaps between the crystals. Their surface is computed
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Figure II.8 – Illustration of a quadrant of the ECAL subdetector of CMS from Ref. [43].The three main structures of the ECAL are represented: crystals in the barrel (EB) andendcap (EE) regions and the preshower lead/silicon-strips detector (ES).

to confine the longitudinal expansion of the electromagnetic shower producedby lead-tungstate. Therefore, the total volume of the crystal contains more than98% of the electromagnetic deposit delivered by photons and electrons withenergy up to 1 TeV. A preshower detector made of a lead absorber and siliconstrips is located in front of each of the endcaps in the region 1.653 < |η| < 2.6.The silicon sensors measure the x and y coordinates of electrons and photonsbefore they shower in the ECAL crystals.
The evaluation of the performance of the ECAL is described in detail in Ref. [44].The resolution of an electromagnetic calorimeter is parameterised as:

σE
E

=
N

E
⊕ S√

E
⊕ C

whereN is the noise termduemostly to the readout electronics, S is the stochas-tic termarising from statistics fluctuations in the showers or from the energy lostin the absorber, and C is a constant term due to the channel-to-channel inter-calibration as well as to the time variation of the channel response. For the ECALof the CMS detector, they aremeasured to beN = 0.12GeV, S = 0.028
√
GeV and

C = 0.3% from showers reconstructed in 3×3 crystals during electron beamtests [45]. The low value of the stochastic term is possible thanks to the ho-mogeneous nature of the ECAL. Its resolution during Run 2 after calibration isshown in Fig. II.9 from the invariant mass distribution of electron pairs comingfrom the Z boson decay.
The high radiation level reaching the ECAL crystals damages the crystalline struc-tures, creating coloured centres that reduce the crystal transparency. Thus, thecrystal transparency is monitored during data-taking periods with a laser moni-toring system [47]. Thanks to this system, corrections are applied to the crystalresponse to take into account the loss of transparency. These corrections mustbe applied every 40min to keep the impact of the transparency loss on the con-stant term C below 0.2%.
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Figure II.9 – Resolution of the ECAL from the invariant mass distribution of electronpairs coming from the Z boson decay for each year of the Run 2 [46].

Hadronic calorimeter (HCAL)

Thehadronic calorimeter (HCAL) of the CMSexperiment [41] surrounds the ECALand is the last subdetectorwith structureswithin the solenoidmagnet. TheHCALis responsible for the detection of hadrons. Because ofQCD colour confinement,quarks and gluons cannot exist as free states. They immediately hadronise aftercollisions to form hadrons, and instead of single partons, narrow jets made ofhadrons and photons are observed in the detectors. To collect the energy of thejets, a dense absorber material is used to increase the probability of interactionof the hadrons with the medium, and a scintillating material gives informationon the quantity of energy deposited. Similarly to the radiation lengthX0 used forelectrons and photons, a relevant length is defined for hadrons with the hadroninteraction length λi . This time, λi represents the average distance a hadron cancross through a medium before interacting with a nucleus.
The nature of the absorber and scintillating materials depends on the targetedregion of the detector. The different structures of the HCAL are illustrated inFig. II.10 and summarised here:

• the barrel hadronic calorimeter (HB) and endcap hadronic calorimeters(HE) are located inside the solenoid magnet and cover respectively the
|η| < 1.4 and 1.3 < |η| < 3 regions. They rely on alternations of brassabsorbers and plastic scintillators connected to hybrid photodiodes. TheHB and HE are between 7λi and 10λi thick.

• the outer hadronic calorimeter (HO) is used to increase the longitudinalconfinement of hadronic showers. It is located outside of the solenoidmagnet and covers a |η| < 1.4 region. The scintillator is placed in the steelyoke, which plays the role of absorber material and is read out by siliconphotomultipliers (SiPM).
• the forward hadronic calorimeters (HF) are located close to the beamline,covering the 3 < |η| < 5.2 region. It uses steel absorbers and quartz fi-bres emitting Cherenkov light, which is collected by photomultiplier tubes(PMT).
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Figure II.10 – Layout of a quadrant of theHCAL [48] and of itsmain structures: the barrelHCAL (HB), the endcap HCAL (HE), the outer HCAL (HO) and the forward HCAL (HF). Thetracker system and ECAL are also illustrated in the bottom left corner.
Given that hadrons can already start showering in the ECAL, and some of theenergy is not deposited in the HCAL, the global resolution of the ECAL+HCALsystem on the energy measurement is reported. Performance is evaluated byusing the resolution on the energy E of pions in the range 2GeV to 350GeV [49]:

σE
E

=
84.7%√

E
⊕ 7.4% .

The first term is associated with stochastic effects (e.g. fluctuation in the shapeand energy deposited by the hadronic showers), while the constant term ac-counts for effects independent of the energy scale (e.g. imperfect calibration ofthe calorimeters).
Muon chambers

Themuon chambers of the CMSexperiment [41] are the outermost subdetector.The muons targeted by physics analyses of the CMS collaboration have energyin the range of a few GeV to hundreds of GeV. Within this range, their energyloss through the multiple layers of the CMS detector is generally small. At thesame time, almost all other particles are absorbed (apart from neutrinos), andmuons are the only particles reaching the external layers of the detector.
The muon system is outside of the solenoid magnet, but it is intertwined withsteel return yokes so the residual magnetic field still has an intensity of around
2T, allowing the bending of the trajectory ofmuons and, thus, themeasurementof their pT and electric charge. However, the magnetic field behaviour within amuon chamber depends on its location. To cope with the differences in mag-netic field and particle rates, three different strategies were designed for themuon system: drift tubes (DT) chambers, cathode strip chambers (CSC), and re-sistive plate chambers (RPC). All of these strategies rely on gas ionisation. Theirlocation in a quadrant of the CMS detector is shown in Fig. II.11.
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Figure II.11 – Depiction of a quadrant the CMS detector from Ref. [50] focusing on thethree technologies employed for the muon system: drift tubes (DT) chambers, cathodestrip chambers (CSC), and resistive plate chambers (RPC).

The DT chambers are in the barrel region with |η| < 1.2. They are arranged in 4stations (MB1 to MB4 in Fig. II.11), each divided in 12 chambers (except for MB4which has 14). They are filled with a mixture of argon (85%) and CO2 (15%). Theirspatial resolution is between 80µm and 120µm in the (r , ϕ) plane and between
200µm and 300µm in the z direction.
In the endcaps region (0.9 < |η| < 2.4), chambers endure a large muon rateand non-uniform magnetic field. Hence the choice of cathode-strips-based de-tectors (CSCs), which have a very fast response time. They are arranged in 4stations (ME1 to ME4 in Fig. II.11) in the form of disks. These multi-wire cham-bers are filled with argon (40%), CO2 (50%), and CF4 (10%). They provide a spatialresolution between 30µm and 150µm.
The RPCs overlap with other chambers in the barrel and endcap regions in orderto add robustness and redundancy to the muon trigger. They have a moderatespatial resolution but an excellent time resolution of less than 3 ns, thus helpingto measure the correct beam-crossing time. They consist of double-gap cham-bers filled with a mixture of C2H2F4 (95.2%), i-C4H10 (4.5%) and SF6 (0.3%), andoperated in avalanche mode to ensure good operation at high rates.
Evaluation of the performance of the muon system using pp collisions at √s =
7 TeV is described in detail in Ref. [51].
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Particle reconstruction and identification

The standard reconstruction of objects in the CMS detector is described in thissection. A more detailed description of the object reconstruction and identifica-tion in the context of the H → γγ analysis is given in Section V.2 of Chapter V.
This standard reconstruction relies on the particle flow (PF) algorithm [52]. Sinceeach type of particle (photon, electron, muon, charged or neutral hadron) leavesa specific combination of signals in the subdetectors, as illustrated in Fig. II.12,the PF algorithm uses associations of information from all subdetectors to re-construct the particles. This information is separated into two classes of basicelements: the tracks and the energy deposits in the calorimeters (clusters). Thetracks are reconstructed from a series of hits in the tracker and are connectedto a reconstructed vertex. Clusters are groups of crystals (in the ECAL) or scin-tillator segments (in the HCAL) that hold the energy of a single electromagneticor hadronic shower.

Figure II.12 – Slice of the CMS detector illustrating the expected interaction of eachparticle type with each subdetector [53].

Once the tracks and energy clusters of the event have been identified, the PFalgorithm attempts a geometric association of the different elements. The strat-egy of the PF algorithm can be summarised as follows:
• First, if tracks reconstructed in themuon chambers and in the inner trackerare compatible, they form a muon candidate. These tracks and the poten-tially associated clusters along their way are removed from the followingsteps of the algorithm.
• The second step is dedicated to the reconstruction of electrons. Electronshave bent tracks in the inner tracker and electromagnetic deposits in theECAL. A selection on the quality of electron candidates is defined from anadditional algorithm dedicated to electron reconstruction [54] using thetracker and ECAL information. If the candidate passes the selection, itstracks and clusters are removed from the next steps.
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• Then, the remaining tracks of the inner tracker should belong to chargedhadrons depositing energy in the HCAL. The compatibility between thetrack momentum and the energy deposited in the HCAL is checked. Typ-ical discrepancies between the two come from excesses of energy in thecluster. This indicates that overlapping neutral particles left energy withinthe same cluster in the HCAL. To account for this, a photon (or, if needed,a neutral hadron) is created, carrying the difference in energy.
• Finally, the remaining energy clusters in the ECAL are associated with pho-tons and those of the HCAL are associated with neutral hadrons.

Trigger system

This section summarises the global trigger system in the CMS experiment [55].The triggering of the CMS detector to collect H → γγ events is described inSection V.2 of Chapter V.
Collecting the full information of all subdetectors of the CMS experiment foreach collision occurring at 40MHz would require an unattainable data through-put and a hardly-conceivable amount of storage. Moreover, most of these dataare associated with uninteresting events (associated with well-known physics).That is why a trigger system ensures that the CMS experiment records onlyevents of potential interest. The CMS trigger system performs an online eventsselection in two steps thanks to the level-1 (L1) trigger and the high-level trigger(HLT).
The goal of the L1 trigger is to limit the event rate to 100 kHz, the limit of thereadout electronics. The L1 trigger is based on a simplified version of the in-formation of the subdetectors. An L1 trigger menu of about 440 algorithms isused to look for specific signatures in the detector response (e.g. cluster in theECAL with a certain energy level, ...) corresponding to an object then passed tothe HLT. The L1 trigger works at a fixed latency of 4µs to decide on acceptingor rejecting an event. This decision is based on information from calorimetersand muon detectors, and the triggering process is described in Fig. II.13. Triggerprimitives are computed from a fast readout and a limited granularity on en-ergy deposits in the ECAL and HCAL and on track segments and hit patterns inthe muon chambers (DT, CSC, RPC). From the trigger primitives, coarse versionsof the physics objects are built: muon candidates from the muon trigger andelectron, photons, jet, or tau candidates from the calorimeter trigger. Finally,the combined information is used by the global trigger and depending on thetrigger menu, the event is discarded or processed by the HLT.
The HLT is based on software close to offline reconstruction, identification andanalysis and relies on the full readout of the detectors. For instance, the ob-ject reconstruction follows a simplified version of the PF algorithm. However,the HLT must trigger at a high rate, so all these software are whittled down totheir elementary steps to gain computational efficiency. TheHLT rate is, on aver-age, around 1 kHz, and it delivers the complete raw detector data for permanentstorage and offline steps. This high rate is also achievable thanks to a dedicatedcomputing farm. With the start of Run 3, some graphics processing units (GPU)
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Figure II.13 – Diagram of the L1 trigger system for the CMS detector [56].

are used in addition to many central processing units (CPU) already present inprevious runs. It amounts to a total of 25 600 CPU cores and 400 GPU cores. TheGPU cores are particularly efficient for neural network implementations. Withthe development of advanced machine learning techniques for particle recon-struction or identification, some high-performing networks are now included inthe HLT step. HLT candidates generally come from L1 trigger objects and aretested by multiple algorithms (HLT paths) to decide on the trigger. There aremore than a hundred HLT paths, each corresponding to different usage of theevents: some paths collect events for physics analyses and others for data qual-ity monitoring, detector calibration, ...

II.2 High-luminosity LHC and subdetectors
adapted for timing in CMS phase II

II.2.1 A luminosity upgrade for the LHC

With the end of Run 3 planned for the end of 2025, the latest previsions foreseea total integrated luminosity of ≈ 300 fb−1 over sixteen years of physics oper-ation. The LHC already achieved some of its goals in this period, with the dis-covery of the Higgs boson in 2012 and many measurements with record pre-cision (all confirming the robustness of the SM so far), thanks to its four large-scale experiments. However, after this point, the physics benefits fromcollectingdata at this rate will become minimal. That is why the LHC and its experimentswill undergo significant upgrades during the long shutdown 3 to enter a high-luminosity phase. The goal for the HL-LHC is to reach an instantaneous lumi-nosity between 5×10−34 cm−2 s−1 and 7.5×10−34 cm−2 s−1 during this phase andto provide an integrated luminosity of 250 fb−1 per year. At the end of the high-
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luminosity phase (after a dozen years), it should amount to a total integratedluminosity between 3000 fb−1 and 4000 fb−1.
To achieve such luminosity, an upgrade of the LHC is needed, equivalent to in-stalling new parts of an accelerator over 1.2 km in various places of the currentring. The main modifications come from the improvement of quadrupole mag-nets and the addition of crab cavities around the ATLAS and CMS detectors. Thequadrupole magnets are responsible for squeezing bunches. This is particu-larly important around the interaction points where more focused beamsmeanmore chances of collisions. As mentioned in the previous section, the currentmagnets of the LHC are made of copper-clad niobium-titanium, forming a mag-netic field of up to 9T. To achieve even higher magnetic fields at the HL-LHC,quadrupole magnets around the interaction points of the LHC will be replacedby intermetallic niobium-tin (Nb3Sn) magnets producing fields of up to 11T [57].In addition to the more focused beams, crab cavities are proposed as the base-line solution to increase the overlap between crossing bunches at the interactionpoint [58]. The crab cavities are additional RF cavities also creating a 400MHzelectric field. However, their role is not to accelerate bunches but to give themtorque to introduce a rotation and align the colliding bunches. On the oppositebeamline, a crab cavity gives a torque in the opposite direction to recover theinitial alignment of the beam and ensure stability. This process is illustrated inFig. II.14.

Figure II.14 – Illustration of the rotation introduced by the crab cavities. Bunches areflying sideways towards the interaction point, hence the name of the crab cavities.
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II.2.2 CMS 2.0: probing a 4th dimension

During theHL-LHCphase, the goal of theCMSexperiment is tomaintain its excel-lent performance in terms of efficiency and resolution on object reconstructionand identification. However, as described by Eq. II.1, increasing the instanta-neous luminositymeans increasing the average PU. The PU level recorded by theCMS detector during the first three runs of the LHC is shown in Fig. II.4 and hasa value of≈ 40 in the nominal luminosity setting of the LHC (L = 10−34 cm−2 s−1).By increasing the instantaneous luminosity by a factor 5, we expect an averagePU of≈ 200. At this level of PU, it will become a significant challenge for the CMSexperiment. Another challenge will be the radiation damage to the detector.
To overcome these challenges, a set of upgrades is studied for several subdetec-tors of the CMS experiment. The addition of a new detector system is planned:the minimum ionising particle (MIP) timing detector (MTD). A major idea to in-crease the PU rejection during the HL-LHC phase is to rely on the timing informa-tion provided by the CMS subdetectors. Currently, the spatial resolution of thetracking system is good enough to allow the PF algorithm to correctly connectparticles of an event to their primary vertex with a low fake rate. However, it willnot be enough under the harsher conditions of the high-luminosity phase. How-ever, by identifying the time of arrival of particles, the PF reconstruction can re-cover performance close to what it achieved during Run 2. This is demonstratedin Fig. II.15. The resolution on the timing information of particles is determined

Figure II.15 – Evaluation of the vertex reconstruction performance when assuming tim-ing detectors with ≈ 30 ps time resolution as presented in Ref. [59].
to get back to PU levels of 40–60. By considering the beam spot sliced into timeexposures, these PU values are recovered with 30 ps to 40 ps time exposures.
A summary of the upgrades planned for phase 2 of the CMS detector is given inthis section. The baseline upgrade plan is presented in detail in Ref. [60].
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Tracker system

Because of significant radiation damages during its operation in phase 1 of theLHC, the tracker system will be replaced before the high-luminosity phase [61].Moreover, modifications of the components of the tracker modules are alsoplanned. ThePIXEL systemwill be reinstalledwith smaller pixels of 25µm×100µmor 50µm×50µm. In the rest of the system, the silicon strips will be shortened bya factor 4 without changing their width. As the full detector will be about fourtimes more granular than its current design, this upgrade will improve the sep-aration between tracks close to each other, for instance, in boosted jets, andshould compensate for the higher PU. Finally, with additional disks in the end-cap regions, the coverage of the tracker will be extended to |η| < 4.
Calorimeter endcaps

The electromagnetic and hadronic calorimeter endcaps will also be replacedduring the long shutdown 3 because of their loss of transparency due to radia-tions. A new system is designed to serve as a replacement for these calorimeterendcaps: the high granularity calorimeter (HGCAL) [61]. The layout of the HGCALis presented in Fig. II.16. The electromagnetic section (CE-E) consists of tungsten

Figure II.16 – Arrangement of the electromagnetic (CE-E) and hadronic (CE-H) sectionsof the HGCAL.
and copper plates interlaced with silicon sensors that are less than 1 cm2. Thedepth of this section is about 25X0 or 1λi . The hadronic section (CE-H) is an al-ternation of brass and copper plates and silicon sensors over a depth of around
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3.5λi . Given the intrinsically fast response time of the silicon sensor, the HGCALwill provide high-precision timing capabilities. The outermost part of the HGCALconsists of the same design of brass plates and plastic scintillator currently usedin the HCAL endcap. The total depth of the system is about 10λi .
Muon chambers

The four stations of CSC in the high pseudorapidity region 1.6 < |η| < 2.4 willbe enhanced by adding redundancy. Two gas electron multiplier (GEM) cham-bers will be added to the two innermost stations. GEM chambers will be filledwith a mixture of argon (70%) and CO2 (30%) and will improve the momentumresolution for the muon trigger of the L1 trigger. The two outermost stationswill include additional RPCs with intrinsically good timing capabilities, as is donecurrently for the DT chambers and CSCs at lower pseudorapidity.
Trigger system

The L1 trigger will be improved by using the tracking and high-granularity infor-mation [62]. This will be possible by upgrading the readout electronics of somesubdetectors. To account for the additional time needed for the track recon-struction and matching with calorimeter information, the latency of the L1 trig-ger will increase from 4µs to 12.5µs. From its expected performance with trackinformation, its rate must increase from 100 kHz to 750 kHz to keep comparableperformance with its current version despite the increase in PU. The current se-lection of events between the L1 and HLT output leads to 1 out of 100 eventsbeing saved. Assuming the same proportion during the high-luminosity phase,a 7.5 kHz rate is required for the HLT [63].
MIP timing detector (MTD)

A new detector dedicated to timing measurements will be added to the CMSexperiment. The MTD [59] is designed to detect MIP deposition from chargedparticles with a high signal-to-noise ratio. It will consist of a thin layer locatedbetween the tracker and the ECAL. The barrel timing layer (BTL) covers the re-gion |η| < 1.5 and will be equipped with LYSO scintillating crystals, read out bySiPMs. Crystals have a surface of 5.7 cm×3mm and a thickness between 2.4mmand 3.7mm. The LYSO crystals are chosen because of their high light yield (40 000photons per MeV), fast scintillation (< 100 ps) and relatively short decay time(≈ 40 ns). The endcap timing layer (ETL) extends over the region 1.6 < |η| < 3with twodisks per endcap. Given the high radiation level, the ETL relies on planarsilicon devices with internal gain: low gain avalanche detectors (LGAD). A totalof about 4× 106 LGAD sensors with size 1.3mm×1.3mm are used per endcap.
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II.3 DDMTD simulation for precise clock
monitoring in CMS subdetectors

II.3.1 Clock distribution

To provide precise timing information about the arrival of a particle, the detectorresponse must be compared to a reference time. Within the detector system,the initial timing information of a time to digital converter (TDC) is the reference
t0. The role of a TDC is to return a digital representation of the time of occurrenceof a given signal, such as the detector pulse triggered by the arrival of a particle.This time of detection t1 is compared to t0, and the difference between the twogives the precise time of arrival of the particle.
As mentioned in Section II.2.2, timing information in the subdetectors shouldhave a 30 ps to 40 ps resolution to reduce the impact of the expected pile-up (200events per bunch crossing) by improving the matching of tracks, vertices andenergy deposits [59, 64]. It means that all components of the subdetectors needto have a precisely synchronised time of reference t0. This is done by distributinga common clock throughout the full subdetector. Distributing an accurate clockin the context of CMS subdetectors is a challenging task as it means sending theclock signal to thousands of readout units (ROU) in charge of reading the signalproduced by the sensitive part of the detector. Moreover, each of these ROUis placed in different parts of the detector, separated by cables of hundreds ofmeters, and within significantly different radiation and temperature conditions.All these elements can alter the clock and introduce jitter in the signal.
A perfect digitised clock signal consists of a square wave oscillating between twoamplitude levels corresponding to 0 and 1, with the rising and falling edges defin-ing the unit of time as they follow the constant frequency of the clock. In reality,the square wave is imperfect and consists of fast-rising and falling edges (butwith a small slope), and noise in the signal causes a shift in the time associatedwith an edge. These shifts of the clock edges are called jitter. This jitter can bedecomposed into two components, the random jitter (RJ), where the shifts arerandomly distributed. Since the random jitter originates from many indepen-dent physical effects, it creates shifts following a normal distribution around 0.The second component is the deterministic jitter (DJ), which produces periodicbounded shifts in the clock signal. Given the periodic nature of this noise, afrequency is associated with the DJ (fDJ), and multiple DJ components can bedefined if they impact the clock signal at different frequencies. This is an impor-tant element of jitter estimation and clock monitoring since our measurementor monitoring of a clock is done at a given sampling frequency fsamp. Then fromthe Nyquist-Shannon theorem, it means that our measurement is only sensitiveto DJ components with frequency fDJ < fsamp/2.
To study the jitter of a clock, we rely on the distribution of the shifts δ(t) be-tween the clock we want to characterise and a clean clock of reference. Thenthese shifts can be studied in the time or frequency domain. By looking at thedistribution of differences between themeasured edges of a clock and the refer-
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ence edge time, we measure a time interval error (TIE) histogram. The standarddeviation or the root mean square (RMS) of the TIE histogram gives a figure ofmerit of the clock quality and of the jitter introduced by the distribution chain.In the frequency domain, an interesting figure of merit is the phase noise whichshows at which frequencies the DJ is impacting the clock. The phase noise L(f )is defined as half the power spectral density (PSD) Sδ(f ) of the shifts. The phasenoise measurement is also useful to quantify the RMS jitter within a given fre-quency range [f1, f2] as
RMS([f1, f2]) =

√
2∆ϕ2

2πfsamp

, with ∆ϕ2 =

∫ f2

f1

L(f ) df . (II.2)

Examples of TIE histograms andphasenoise plots are shown in Figs II.20 and II.21.
In order to achieve the required 30 ps to 40 ps resolution on the time informationof particles, the clock distribution strategy should have less than 15 ps RMS jitterin all paths to the ROU [59, 64]. Three frequency ranges are defined with respectto their potential jitter contribution:

• High frequencies (100 kHz to 1MHz): the clock signal can be embedded in adata streamat some stages of the distribution chain. The clock informationis recovered thanks to phase-locked loops (PLLs). PLLs are expected tocancel most of the jitter in the clock signal in this range.
• Intermediate frequencies (10Hz to 100 kHz): the jitter in this range should bemonitored and cleaned if possible.
• Low frequencies (below 10Hz): jitter in this range is qualified as wander asit causes the clock to slowly drift apart from its original phase. The TCLinksystem [65] was developed within the high precision timing distribution(HPTD) group of CERN to control this wander.

In this section, we describe a simulation framework of the digital dualmixer timedifference (DDMTD) system to evaluate its correction potential of the jitter inthe intermediate frequency range (10Hz to 100 kHz). This study was performedwith an application on the MTD and HGCAL subdetectors in mind which havea similar clock distribution strategy [59, 64]. A simplified diagram of this clockdistribution strategy is shown in Fig.II.17 and relies on a solution where the clocksignal is embedded in the data acquisition (DAQ) path.
The LHC clock is derived directly from its radio frequency (RF) cavities, operatingat a frequency of 400.788MHz. After a division of its frequency by 10, the LHCclock is synchronisedwith the bunch crossings at a frequency of 40.079MHz. Thisclock starts with a jitter specification of 9 ps RMS jitter [66] and should achievebetter performance with improvements foreseen for the HL-LHC. The baselinesuggestion for the clock distribution is to include the clock in the DAQ path.
First, the LHC clock is received by the new version of the trigger and clock dis-tribution system (TCDS2) of the CMS detector. Then the TCDS2 transmits theclock or multiples of it (160MHz, 320MHz, ...) with the trigger and fast controls
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Figure II.17 – Diagram of the baseline clock distribution chain considered for the MTDand HGCAL subdetectors. A description of the distribution chain is provided in the text.

to the DAQ boards. Both the TCDS2 and DAQ boards are located within ad-vanced telecommunications computing architecture (ATCA) crates and can relyon the high-speed lane of the ATCA backplane. There the field-programmablegate arrays (FPGAs) encode the clock to send it downlink to the front end at
2.5Gb/s. At the front end level, low-power gigabit transceivers (lpGBTs) [67] areresponsible for recovering the clock signal and propagating it to the ROUs. ThelpGBT receives high-speed serial data streams sent without an explicit accom-panying clock. But from the encoding of the clock information by means of ashort recognisable periodic sequence in the stream, the PLL at the lpGBT levelis able to lock on the phase of this sequence and recover a clock signal. Thenthis same clock is used as a reference to generate the uplink frame at 10Gb/s.Even with this asymmetry in data throughput, the backend can recover the LHCclock. The monitoring (and cleaning) of the clock can be done thanks to systemsimplemented on the FPGAs using this clock loopback. For instance, a DDMTDsystem, as described in Section II.3.3, implemented on the FPGAs can comparethe uplink clock to the downlink clock.

II.3.2 Characterisation study of the lpGBT version 1

To characterise the new version of the lpGBT (version 1), we perform an evalu-ation of its clock distribution performance. We used a distribution chain mim-icking the back end and front end configuration of the detector chain. The testbench is summarised in Fig. II.18.
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Figure II.18 – Diagram of the test bench for the characterisation of lpGBTv1.
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First, a high-precision timing clock (HPTC) is generated and sent to the KCU105equipped with an FPGA, which emulates the back end system. Its role is to en-code the clock in the data stream and distribute it to the versatile link demoboard (VLDB), which contains the lpGBTv1. The lpGBTv1 recovers the clock andpropagate it through aRAFAELASIC (application-specific integrated circuit), whichis dedicated to fan out the clock signal to all the sensor part of the detector. Inthis case, the clock does not reach the detector but is studied by a high samplingscope and a spectrum analyser. A picture of the test bench is shown in Fig. II.19.
The TIE histogram of Fig II.20 is measured from a clock with a frequency of
320MHz. The output clock of the RAFAEL ASIC is compared to the input ref-erence clock and shows a small RMS jitter contribution of 2.9 ps. Moreover, forthe same configuration, the phase noise is measured, and results are shown inFig II.21. From this measurement, we can compute the RMS jitter in the range
1Hz–1MHz and we find a low value of 0.97 ps.
These measurements show that the lpGBTv1 provides a clock distribution wellwithin requirements for the phase 2 of the CMS detector. It can also be com-pared to the previous RMS jitter found for the lpGBTv0. Characterisation gavea value of 8.2 ps RMS jitter introduced by the lpGBTv0, so the improvementsbrought by version 1 are very promising.

II.3.3 The DDMTD system

As its name suggests, the digital DMTD (DDMTD) is a digital implementationof the dual mixer time difference system [68]. The DMTD was developed totransform the measurement of very fine phase shifts between two signals in alow-frequency domain with amplified shifts. It proves particularly useful whenmeasuring differences in clock signals running at the same frequency. A digi-tal implementation of the DMTD is proposed in Ref. [69]. This version of the
DMTD was developed to run with digitised signals and can be adapted to manysystems such as FPGAs. A simplified description of theDDMTD system is shownin Fig. II.22.
The system takes two clock signals u1 and u2 as input with the same frequency
f and with a shift varying in time∆t(t). An additional clock udmtd is derived fromthe input clocks and is slightly shifted in frequency with respect to the originalsignals thanks to a crucial parameter which is an integer commonly referred toas the N parameter of the DDMTD. This shift in frequency is defined as

fdmtd =
N

N + 1
f (II.3)

where fdmtd is the frequency of the udmtd clock. Both input signals pass througha gate called a D flip-flop [70] which uses as a reference clock the udmtd clock.In a D flip-flop, the signal (D in Fig. II.22) is effectively sampled by the referenceclock (clk). In practice, it means that at each rising edge of the reference clock,the input signal is probed: if it is 1, the output signal is set to 1 until the nextrising edge, and vice versa if the input is 0. The sampled clocks returned by the
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Figure II.19 – Picture of the test bench being validated on a lpGBT version 0. The boardclose to the table edge is the concentrator card (CC) with the lpGBT. It is replaced by theVLDB and lpGBTv1 in the actual characterisation study. Above are the KCU105 board(green) and clock generator (yellow).
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Figure II.20 – TIE histogram of the 320MHz output clock of the lpGBTv1+RAFAEL system.
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Figure II.21 – Phase noise of the 320MHz output clock of the lpGBTv1+RAFAEL system.
D flip-flops, ubeat1 and ubeat2, have a frequency

fbeat = f − fdmtd =
f

N + 1
. (II.4)

This process of creating the beat clocks is illustrated in Fig. II.23. If the inputclocks u1 and u2 have a noisy signal, passage through the D flip-flops can createglitches where the beat clocks have several rising and falling edges at each tran-sition before stabilising. Hence the necessity of a deglitching procedure for thebeat clocks. Finally, the time difference∆tbeat between the rising or falling edgesof ubeat1 and ubeat2 gives a proxy to access the actual time difference∆t between
u1 and u2. The conversion between the beat frequency domain and the originalhigh frequency domain is given by

∆t = ∆tbeat
fbeat
f

=
∆tbeat
N + 1

. (II.5)

The DDMTD system provides a way to measure narrow differences betweenclock signals but at the cost of not comparing as many rising edges since thecomparison is done with the rising edges of the beat clocks, which run at amuch
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Figure II.22 – Schematic description of the DDMTD system adapted from Ref. [69].

slower frequency. It also imposes a restriction on the minimum ∆t value thatcan bemeasured. If there is no visible shift in the beat domain, we cannot accessthe ∆t information. To make sure there is a measurable difference between
ubeat1 and ubeat2, the ∆tbeat value needs to be higher than the period of the udmtdclock∆tbeat > 1/fdmtd. From this requirement and using Eqs. II.3 and II.5, we candetermine the lowest ∆t accessible to the DDMTD:

∆tbeat >
1

fdmtd

⇔ ∆tbeat >
N + 1

N × f

⇔ ∆t >
1

N × f

II.3.4 Simulating a DDMTD: pyDDMTD

The DDMTD system is a good candidate to monitor the clock jitter and poten-tially correct it to ensure conformity with the clock distribution requirementsof CMS subdetectors during HL-LHC. Its hardware implementation has alreadybeen extensively tested in theCERN community, especially via theHPTDgroup [71].However, in order to expand our understanding of the system and make futuredevelopments ofmonitoring or correction strategies easier, we developed a fastand accessible Python-based DDMTD simulation framework: pyDDMTD.
The simulation of the working principle of a DDMTD in a perfect clocks scenariois summarised in Figs. II.23 and II.24. First the input clocks u1 and u2 are definedwith a frequency of 40MHz and a constant offset ∆t = 4ns between the two.Then the udmtd is defined with N = 5 in this example, and the dmtd clock is usedto get the two beat clocks ubeat1 and ubeat2. The sampling process is illustratedwith the two red arrows of Fig. II.23. Then from the shifts of ubeat1 and ubeat2 the
∆tbeat signal is built (see Fig. II.24) and can be converted to ∆t using Eq. II.5.
Jitter can be added to the input clocks of the DDMTD simulation. To stay closeto the typical operation expected in the HL-LHC, input clocks have a frequency
f = 40MHz, a shift of ∆t = 4ps is introduced between the two clocks and aparameter N = 10000 is taken for the DDMTD to observe fine shift due to the
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Figure II.23 – Clock signals are shown in units of the period of u1 and u2, 1/f , to avoidunnecessary large time values when drawing a small number of beat clocks cycles. Top:simulation of two clock signals u1 and u2 running at the same frequency andwith a smalloffset. Middle: simulation of the DMTD clock udmtd with a frequency slightly lower than
u1 and u2. Bottom: beat clocks ubeat1 and ubeat2 sampled from u1 and u2 with udmtd. Thetwo arrows illustrate the sampling process to create the two beat clocks.

Figure II.24 – Extraction of the∆tbeat signal from the two beat clocks.
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jitter of the input clocks. With such settings, the beat clocks run at frequency
fbeat = 4 kHz and the DDMTD can probe shifts down to ∆tmin = 2.5 ps. Randomjitter is added to u1 and u2 by shifting their rising and falling edges with valuesdrawn from a Gaussian distribution with mean 0 and standard deviation 0.5 ns.As expected and as reported in Fig. II.25, glitches appear in the beat clocks andin the ∆tbeat measurements in the form of packets of rising and falling edgesinstead of single edges at the truth value.

Figure II.25 – Impact of jitter on the udmtdclock. Glitches appear in the two beat clocks(top) and distort the∆tbeatsignal measurement (bottom).

These glitches can be studied by looking at the distribution of rising edges whenthey are all folded in a clock cycle. The comparison of distributions with andwithout glitches is shown in Fig. II.26. In the clean clocks case, the edges arealways falling at the same position in the clock cycle resulting in a peak with anumber of edges equal to the number of simulated clock cycles (100 in the caseof Fig. II.26). In the same way, the converted∆tmeasurements are at their truthvalue of 4 nswith no dispersion. However, in the case of noisy clock signals, risingedges follow a Gaussian distribution centred around the truth value but witha dispersion corresponding to the intensity of RJ included. Note also that thenumber of rising edges is significantly higher than the number of simulated clockcycles (100), this is a clear symptom of glitches in the beat clocks. The effectsare then clearly visible in the ∆t measurements. With the rapid alternation ofrising and falling edges in the beat clocks, a lot of∆tbeat signals are observed (asshown in Fig. II.25) with duration close to 0 ps. Hence the peak at 0 ps in the final
∆t measurements of Fig. II.26.
In following studies of the DDMTD performance [72], three deglitching proce-dureswere proposed: the first edge,mean edge, and zero count algorithms. Thesemethods resolve the glitches issue by respectively selecting the first, mean, ormedian edge of the glitch packet as the correct edge. We studied the effects
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Figure II.26 – Left plots show the distribution of all rising edges of the two beat clocksfolded into a single clock cycle and right plots show the distribution of ∆t measure-ments. Two configurations are shown: without (above) and with (below) glitches due tojitter in the input clocks.
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of the three methods on the distribution of edges and∆t measurements simu-latedwith pyDDMTD, and the comparison is detailed in Fig. II.27. Since all of theseprocedures select a single edge, they all fix the issue of having mainly∆tbeat ≈ 0durations and recover the expected number of measured∆tbeat. However, theirperformance is not equivalent. The first edge algorithm is the simplest to imple-ment in practice. It does not select edges close to their truth value but instead as-sumes that, for independent glitch packets, the minima of Gaussian-distributededges keep the same distance as their mean. Thus, rising edges are lower thantheir truth value, but the mean of the ∆t measurements is close to the correctvalue. In the case of themean edge andmedian edge algorithms, selected edgesare expected to be close to their truth value, and the∆tbeatvalue is recovered byconstruction. Finally, as presented in Fig. II.27, best results are obtained with themedian edgemethod as it shows the lowest dispersion of DDMTD outputs witha standard deviation of≈1% around the mean. This result is consistent with thehardware implementation studied in Ref. [72].
To confirm these observations were not dependent on the amount of RJ intro-duced in the signal, the same study is performed with varying RJ in the u1 and
u2 input clocks. Results are reported in Fig. II.28 and show themedian edge algo-rithm should be favoured for any RJ hypothesis. Very high RJ values are tested,but less than 5 ps is expected on the input clocks in the context of HL-LHC.

II.3.5 Realistic jitter simulation

As mentioned already in Section II.3.1, the total jitter observed on a clock sig-nal can be decomposed into two main components: the random jitter and thedeterministic jitter. To offer more simulation possibilities, especially when con-sidering realistic scenarios, both types of jitter can be simulated with pyDDMTD.The RJ is emulated by shifting the clock edges with values following a normaldistributionN (0,σRJ) where σRJ is the RJ intensity. The DJ corresponds to a pe-riodical shift of the edges and is added through the sine wave σDJ/2 sin(2πfDJt)where σDJ is theDJ intensity impacting frequency fDJ. As theDJ can impact mul-tiple frequencies with different intensities, the condensed notation σDJ@fDJ isused in this section to clearly identify the components of DJ. Examples of jittersimulation are presented in Fig. II.29.
These examples are described through TIE histograms and, although this kindof distribution measure ∆t shifts between two clocks, note that they representa concept distinct from DDMTD measurements. The goal of a TIE histogram isto characterise a single clock by comparing it to a reference clock that is the per-fectly clean equivalent of the measured clock. In practice, these TIE histogramsare measured with high-frequency oscilloscopes and are sensitive to very fineshifts. On the other hand, theDDMTD output compares and characterises shiftsbetween two (potentially noisy) input clocks. The sensitivity of the DDMTD de-pends on its N parameter. As such, in this section, TIE histograms serve as truthinformation to evaluate a clock and compare it to the DDMTDmeasurements.
With these additional handles to simulate jitter in clocks, we can reproduce thejitter expected in the actual clock distribution chain developed for subdetectors
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Figure II.27 – Left plots show the distribution of rising edges of the two beat clocksin a clock cycle, and right plots show the distribution of ∆t measurements. Plots areshowing the effects of the first edge (top),mean edge (middle), andmedian edge (bottom)deglitching methods.
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Figure II.28 – Distribution of ∆t measurements for an increasing random jitter on theinput clocks (left to right). The first deglitching method is applied in the top row, and themedianmethod is applied in the bottom row.
of CMS phase II. To evaluate this expected jitter, we performed measurementson a test bench imitating the distribution chain and characterised the outputclock of the lpGBT that corresponds to the clock guiding the front end systems.A clean clock with frequency 160MHz is delivered to the distribution chain, anda TIE histogram of the output clock is performed with a high-sampling oscillo-scope. The measured TIE histogram is reported in Fig. II.30. From this jitterprofile, a satisfactory simulation is done with pyDDMTD using the following jittercharacteristics:

• RJ: 2.8 ps
• DJ: 20 ps@0.1Hz / 1 ps@100 kHz / 15.7 ps@40MHz

This jitter profile ismeasured at the front end level, so it cannot be accessed dur-ing the normal operation of the CMS detector. Instead, what is observed by the
DDMTD is the clock sent back to the back end (uplink). Then, it seems sensibleto formulate a symmetry hypothesis by assuming the same contribution fromdownlink and uplink and to model the jitter at the front end as half of what ismeasured by the DDMTD. The relation between the jitter at the detector level(front end) and the jitter measured at the back end has been studied during ameasurement campaign by teams from the HPTD group, Minnesota Universityand CEA Saclay. To study this relation, both the fibres and the front end havebeen put in a climate chamber alternately to assess the effects of temperatureon jitter. Their results are presented in Fig. II.31. When the fibres are in theclimate chamber, the downlink and uplink paths seem to add the same phasevariation. This is visible on the left plot of Fig. II.31 where the symmetry hypoth-esis (0.5*DDMTD) matches what is observed in the output clocks of the lpGBT(ECLK0, ECLK1, PSCLK0). However, a significant difference is observedwhen onlythe front end is put in the climate chamber: the phase shift in the front end is ap-proximately 7 times higher than the symmetry hypothesis. These results show

II.3 DDMTD simulation for precise clock monitoring in CMS subdetectors 55



Figure II.29 – TIE histograms of clocks simulated with RJ (2.5 ps) in the top left, DJ(5 ps@10 kHz and 17 ps@40MHz) in the top right and a combination of RJ (2.5 ps) and
DJ (50 ps@10 kHz) at the bottom.

that in the feedback path to the DDMTD, the clock is not passing through someof the internal components of the lpGBT and on-detector modules.
A model of this asymmetry is implemented in pyDDMTD based on the result ofthis measurement campaign and on the following assumptions:

• external factors introduce slow jitter components (below 100Hz) in thefront end,
• we expect higher power and temperature fluctuations within one order ofmagnitude of the L1 trigger rate (750 kHz).

As such,DJwithin these frequency ranges is reduced by a factor 7 at theDDMTDlevel. The symmetric part is also included by considering the same jitter contri-bution from downlink and uplink. The impact of this modelling on the back endmeasurement of a clock with the jitter profile described in Fig. II.30 is shownwiththe TIE histograms of Fig. II.32.
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Figure II.30 – TIE histogrammeasured on the output clock of a lpGBT (v0) with frequency
160MHz (right) and TIE histogram of a clock simulated with pyDDMTD at the same fre-quency with 2.8 ps RJ and 20 ps@0.1Hz, 1 ps@100 kHz, and 15.7 ps@40MHz DJ.

Figure II.31 – Measurements comparing the impact of temperature on the clock signalwhen the fibres (left) or the front end only (right) are put in a climate chamber. Theplots show the compatibility between the phase shift in multiple clock links at the frontend level (ECLK0, ECLK1, PSCLK0) and the assumption that the phase shift is half of the
DDMTDmeasurement at the back end level (0.5*DDMTD) [71].

II.3.6 Evaluating corrections on the clock jitter

The goal of implementing DDMTDs on FPGAs of the back end is to monitor andcorrect the jitter introduced by the distribution of the clock to the detector andto ensure synchronisation among all parts of the subdetectors. These DDMTDstake as input the downlink clock sent to the front end and the uplink clock com-ing back. Thus, their output tracks down the jitter introduced along the clockpath and brings correction possibilities.
In order to extract an accurate correction value, we need to evaluate the dis-tribution of the DDMTD output i.e. we need to register the DDMTD informa-tion over several clock cycles. The number of clock cycles needed to compute acorrection defines a monitoring window of the DDMTD output with a duration
∆twindow . This duration sets the frequency of the correction on the clock with
fcorr = 1/∆twindow , and it marks a limit on the maximal frequency of DJ we cancorrect as the correction does not impact DJ with fDJ > fcorr/2. Examples of cor-rection of noisy clocks using DDMTDmeasurements are shown in Fig. II.33. The
DDMTD is simulated with a parameter N = 8192, and its measurements are
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Figure II.32 – Simulation of the effect of additional jitter in the front end components(orange) on the measurement at back end level (blue).
collected during monitoring windows of 5ms. The correction value is computedas the mean of the DDMTD output distribution acquired during that window. Itcorresponds to a correction frequency fcorr = 200Hz. Two jitter configurationsare tested in Fig. II.33, associated with the top row and bottom row examples.Both clocks have a frequency f = 160MHz, a RJ of 2.5 ps, a high-frequency DJcomponent of 17 ps@40MHz but they have different low-frequencyDJ. The clockon the top row example has a low-frequencyDJ of 50 ps@100Hz. Thus, the distri-butions of the DDMTD output are shifted in eachmonitoring window since theycollect measurements faster than the effects of the DJ. This can be seen in theleftmost plot of Fig. II.33, where each colour represents a different monitoringwindow. Then, eachmonitoringwindow is corrected by themean of theDDMTDmeasurements, resulting in the central plots where all distributions are aligned.The effects on the full clock signal are visible from the TIE histograms on theright, where the standard deviation of the TIE distribution decreased from 6.8 psto 6.4 ps. However, the bottom row example uses a clock with a low-frequency
DJ components of 50 ps@1 kHz. Since the correction frequency is 200Hz, it is notsensitive to the jitter components of this clock. Indeed, no effect is seen on thedistribution of the DDMTDmeasurements, and the TIE histogram is unchangedbefore or after correction.
So while we need to accumulate several clock cycles to increase the precision onthe correction value, we also need a fast correction process if we want to reducethe effects of DJ at high frequencies. The number of DDMTDmeasurements ina monitoring window is given by

nddmtd =
f

(N + 1)fcorr
. (II.6)

As it is inversely proportional to fcorr, there is a direct trade-off between the num-ber of measurements per window to compute an accurate correction and themaximum jitter frequency that can be corrected. A solution could be to decreasethe value of N while increasing fcorr. But this cannot be done arbitrarily as N alsoimposes the precision of the DDMTD measurement through ∆tmin = 1/(Nf ),
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so smaller N also decreases the accuracy on the correction value. To evaluatethe impact of N on the correction performance, we scanned the standard devi-ation of TIE histograms of clocks with varying low-frequency DJ (fDJ) and using
DDMTDs with varying N . The results of these scans are detailed in Fig. II.34.Given our asymmetry assumption, the clock measured at the back end shows asmaller jitter than expected at the front end. Effects of a low N are noticeable asthe correction, in this case, mostly degrades the clock. However, we can also seethat the correction is able to lower the jitter level in the front end up to 15% de-pending on the N setting. It means that a DDMTD only correction can alreadybring improvements in the clock distribution and allows some cleaning of thejitter in the frequency range above 10Hz.

II.4 Conclusion

The first part of this chapter is dedicated to the description of the LHC at CERN, ofthe CMS experiment, and of the planned upgrades to adapt to a high-luminosityphase for the LHC.
A particular focus is given to the clock distribution chain within CMS subdetec-tors and the requirements for the detectors to uphold the quality of their physicsmeasurements. To ensure a high level of synchronicity between the differentcomponents of the detectors, careful monitoring of the jitter introduced in theirreference clock is needed. I present in this chapter a simulation frameworkto evaluate the monitoring and correction possibilities brought by a DDMTDsystem implemented at the back end level for jitter impacting frequency above
10Hz. This framework gives a fast and accessible simulation of a DDMTD withtunable parameters and is applied on a customisable jitter profile. As a prelimi-nary study, we study the correction possibilities of suchDDMTD on an asymmet-ric jitter introduced at the front end level. Results show that with an appropriateselection of the parameters of theDDMTD, the system is able to reduce the jittercomponents with frequencies below half of the correction frequency.
This framework can now be used to test different correction strategies. Thecorrection presented in this chapter is not the only possible one, and more ad-vanced strategies canbe considered, for instance by introducingmultipleDDMTD(each with a different N parameter or with an offset between each other) andcomputing a correction based on a combination of their outputs. We can eventhink of machine-learning-based corrections where a model is trained to learnthe asymmetry in jitter between the front end and the back end. In that case, py-DDMTD can be used to produce training samples for the machine-learning mod-els.
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Figure II.33 – DDMTDmeasurements in fixed time windows before (left) and after (mid-dle) correction. Each colour represents a different time window. Plots on the right showthe TIE histogramof the full clock signal without (blue) andwith (orange) correction fromtheDDMTD information. Two configurations are tested: one where theDDMTD is sen-sitive to the DJ of the clock (top row) and one where it is not sensitive (bottom row).
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Figure II.34 – Scan of the impact of the DDMTD correction for clocks with a RJ of 2.5 ps,
DJ of 17 ps@40MHz and an additional contribution to the DJ of 50 ps at varying fre-quency fDJ. A scan is also performed on the N parameter of the DDMTD. Each matrixgives the standard deviation of the TIE histogram at the back end (top row) or front end(bottom row) level and without (left column) or with (right column) correction.
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Applications for machine learning are numerous as it is a rapidly growing field,and physicists in high energy physics (HEP) are prolific contributors. Given thehigh performance necessary from detectors and the precision required in thestatistical analyses of data, machine learning is indeed a relevant tool that ben-efits from the large amount of data available. In that regard, one of the mainaspects of my PhD topic is to apply advanced machine learning techniques todifferent aspects of physics analyses of the CMS experiment.
This chapter covers the developments in deep learning that are necessary for de-scribingmywork in Chapter IV and V. It is also a goodway to transcribemy expe-rience as the contact person between themachine learning group and the Higgsphysics analysis group of CMS. It starts with a summary of machine learning andhow to build artificial neural networks. Section III.2.1 describes the learning pro-cess of such networks. Finally, the last two sections detail deep neural networksand generative adversarial networks, respectively, as well as the common regu-larisation techniques needed for their training.

III.1 Machine learning and neural networks

III.1.1 Development of machine learning

Machine learning is a field studying how a computing machine can learn theoptimal set of parameters needed to perform a given task. For instance, high-performing data-fitting methods such as the least squares methods or maxi-mum likelihood estimation are building blocks of such parameter optimisation.But a shift in paradigm was brought in 1943 with the first mathematical modelof the neuron by McCulloch and Pitts [73]. The 1950s saw the first learningneural network machines [74, 75] and, in particular, the first implementationof the McCulloch and Pitts neuron with the perceptron of Rosenblatt [76]. Thisinterest continued throughout the 1960s with the parallel development of non-neural-network-based techniques such as support vector machines (SVM) [77]or the nearest neighbour algorithm [78]. This enthusiasm surrounding machinelearning then came to a halt for more than a decade with the realisation that asingle-layer neural network could only achieve optimal classification for linearlyseparable classes and that they were computationally limited (with the bookPerceptron [79]). Only in the 1980s came a resurgence of the field with the de-velopment of neural networks with more complex architectures (precursors ofthe convolutional neural networks (CNNs) [80], first recurrent neural networks(RNNs) [81], ...) and the application of backpropagation tomachine learning [82–84] for a great gain in computational performance (although backpropagationwas already described since 1970 [85]). Outside of neural networks, this periodsaw the creation of additional techniques such as random forest algorithms [86]or boosted decision trees (BDT) [87]. Finally, in the last 10 to 20 years, the releaseof exhaustive databases (MNIST [88], ImageNet [89], ...), the implementation ofhigh-level software libraries (Torch [90], Tensorflow [91], ...) and the upgradeof computing hardware (especially graphics processing units (GPU) and now ar-tificial intelligence (AI) dedicated hardware [92]) enabled to study deeper and
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deeper neural network models and to enter the deep learning era.
III.1.2 Building an artificial neuron

As for many technological progress, machine learning was shaped by observa-tions of nature. In this case, the concepts of neural networks are directly inspiredby the learning process in the animal kingdom. The support of this process isthe neurons and their interconnections, forming intricate circuits throughoutthe whole body, especially in the brain. A healthy human brain is expected tocontain around 90 billion neurons, each connected to thousands of others [93].This figure can serve as a reference to compare with the size of neural networkspresented in this thesis; for instance, the networks trained in Chapter IV haveapproximately 30 000 neurons each and the network described in Section V.4of Chapter V contains approximately 80 000 neurons. All of these connectionsneed to cover a very broad spectrum of tasks going from perception to complexreasoning but also taking care of memory, movement and other physiologicalprocesses (sleep, respiration, etc.).
Acting as a building block of the learning process, the neuron is the cell whoserole is to convey information. A simple representation of a biological neuron isshown in Fig. III.1 with its different constituents:

• Dendrites: where the information is received from precedent neurons inthe chain.
• Cell body: where one finds the usual components of a cell (nucleus, mito-chondria, . . . ).
• Axon: its role is to propagate the information thanks to an electrical signal.
• Presynaptic terminal: which translates the information from an electricalsignal to a biochemical one by releasing neurotransmitters outside of theneuron. These neurotransmitters cross the gap between two neurons (thesynapse) before reaching the dendrites of the next neuron.

The most popular model behind the working principle of a neuron can be easilysummarised by following the role of each of its constituents [95]. When den-drites receive neurotransmitters from other neurons, their contribution to thepotential of the neuron’s membrane is summed both in time and in multiplicity.Some of the dendrites have an inhibitory function, so they contribute negativelyto this sum. If the potential reaches a certain threshold, the neuron activates,and an electric pulse is sent along its axon. This maximum of the pulse has afixed value and is not dependent on the sum of the stimuli received by the den-drites: it is an all-or-nothing mechanism. Only the frequency of the pulses isaffected by the input stimuli. Then the learning process emerges from the inter-connection of these neurons. Each of these connectionsmust be tuned (numberof connected neurons, number of neurotransmitters released, frequency of thepulses, . . . ) to give the optimal neuronal chain for a given task. This tuning is
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Figure III.1 – Simplified representation of a neuron from Ref. [94]

updated constantly through life by learning new tasks or training by repeatingthem, for instance, and is one of the main mechanisms behind neuroplasticity.
As mentioned above, translations of this biological neuron to an artificial onestarted in 1943 with McCulloch and Pitts [73] and were developed by Rosen-blatt [76] to the model presented here. They realised that we can model a neu-ron as a basic mathematical function. It receives a number of input stimuli (ai ),which are weighted (wi ) by importance (some being even negative) and inte-grated over time (∑ aiwi ). Then it outputs a certain number of pulses dependingon this weighted sum of inputs if some threshold has been reached f (

∑
aiwi),where f is called the activation function. This activation function is of primaryimportance as it allows for a non-linear response of the neurons with respect tothe inputs, increasing its capabilities in learning and reproducing complex func-tions. A bias (b) can also be added to shift the combination of inputs towardsan optimal range in the activation function domain f (

∑
aiwi + b). From this, wecan model a simple artificial neuron as described in Fig. III.2.

III.1.3 Neural networks

Oncewe have built this elementary block, we can assemblemore complex struc-tures by connecting artificial neurons together. The first emerging structure isa layer of neurons. A layer consists of parallel neurons that are not intercon-nected but that share the same input neurons and the same output neurons.Then, by concatenating several layers, we arrange a network of neurons or, inother terms, an artificial neural network. In its most basic form, a neural net-work consists of at least an input layer — where the neurons take as inputs thevalues evaluated by the network— and of an output layer—where the neuronsoutput the value predicted by the network. Any layers between the input andoutput layers are called hidden layers.
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Figure III.2 –Model for an artificial neuron. ai are the inputs of the neuron,wi representsthe importance given to each input, b is the bias and f is the activation function.

A simple architecture of such a neural network is presented in Fig. III.3 and iscalled a feedforward neural network. All outputs of one layer proceed forwardto the next one; there is no loop. However, layers can takemore elaborate struc-tures. Some layers can take as input the output of anterior layers and not justthe previous one (skip connection layers), and some can take as additional inputan earlier state of the network in time (recurrent networks), or share the sameweights betweenmultiple neurons, etc. Actually, a layer represents a more gen-eral idea of a specific arrangement of neurons dedicated to a precise task, andthe final output of the network is the transformation of the input values aftergoing through each layer. It means that the output of a network ŷ can be de-composed as a combination of functions fk applied to the input vector x. So, fora network with L layers:
ŷ = fL ◦ · · · ◦ fk ◦ · · · ◦ f1

(∑
j

w 1
ij xj + b1i

)
(III.1)

and in the case of a feedforward network, all neurons of a layer are connectedto all neurons of the previous layers so the pass through each layer can be ex-pressed as a simple matrix multiplication:
ŷ = fL

(
WLfL−1

(
· · · f1

(
W1x+ b1

)
· · ·
))

(III.2)

whereWl is the matrix representation of layer l meaning that each componentof the matrix w l
ij is the weight applied to input j of neuron i in layer l .
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Figure III.3 – Model of a feedforward neural network.

III.2 Teaching a machine

III.2.1 Learning paradigms

Given a set of inputs, the output of a neural network is completely defined by theset of weights, biases and activation functions of each layer. While the activationfunctions are defined when building the network architecture, the weights andbiases are the tunable parameters that must be optimised. This step of learningthe optimal set of parameters from successive predictions over available data iscalled the training of themachine learning technique. These tunable weights areto be distinguished from other parameters of the training that can be adaptedto improve the training process but which are fixed at training time such as thewidth of the network layers, the update strategy for the weights, the learningrate (see Section III.2.3), etc.The latter are called hyperparameters. The learn-ing procedure requires first to define a precise model of the objective that thealgorithm should reach through the learning process. This objective is highly de-pendent on the task assigned to the algorithm and on the nature of the trainingdata. Machine learning methods are usually categorised between three mainobjectives representing different learning processes:
• Supervised learning: each training data point links a set of inputs to alabel, and the machine learning algorithm should learn how to predict thecorrect label from a given input. An optimal algorithm can then infer labelseven for inputs not seen in the training data. For instance, algorithms builtfor classification or regression are trained with supervised learning. Assuch, it is the preferred learning mode for physics analyses, whether it isfor event tagging and categorisation or regression of event observables.
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• Unsupervised learning: it corresponds to a case where the training datahas no label or it is irrelevant. The objective of the algorithm while trainingis to reproduce the input data. It forces the algorithm to find the relevantfeatures that constitute the minimal information from which one can ex-trapolate the rest of the data. In HEP, it is particularly useful for clusteringor dimension-reduction tasks. It is also used in anomaly-detection-basedsearches or data quality monitoring.
• Reinforcement learning: in this context, the machine learning algorithmis considered as an agent belonging to a given environment, and its ob-jective is to learn what is the correct next action to perform. This actionimpacts the environment, which brings a reward to the agent and sets it ina new state. It can be used when there is a clear set of possible actions tochoose from, and it is typically how the algorithms controlling autonomousvehicles or the ones playing games are trained. It can be seen as a modelof the reward system of the brain. Its applications are rare in the contextof collider experiments, but it could be applied to the control of particleaccelerator operations [96].

III.2.2 Loss and metrics

In the context of machine learning, the learning objective needs to be translatedinto a mathematical expression to give the algorithm an estimation of how itperforms and how to improve. This expression is a function of the algorithmoutput and is commonly called a loss function. The definition of this loss func-tion depends on the goal of the algorithm, but there are common losses foreach context, especially when training neural networks. For instance, in clas-sification tasks, the objective is to check the agreement between the networkoutput and the class of the input data. Outputs of a classifier network are oftenbounded between 0 and 1 and can be interpreted as probabilities to belong toa given class. The loss is expressed as the cross entropy H between these twoprobability distributions:
H (y, ŷ) = −

n∑
i=1

yi log ŷi (III.3)

where n is the number of classes, ŷ is a vector encoding the network output, soeach ŷi represents the probability of the input data to belonging to class i and
y is the vector encoding the true class, i.e. yi = δij for class j . Note that Eq. III.3simplifies asH (y , ŷ) = − (y log ŷ + (1− y) log (1− ŷ)) for the binary case. As thenetwork learns to predict the label value, the ŷ ≈ 0 cases are not pathologicalsince they correspond to an associated y = 0. For unsupervised learning orsupervised regression, the goal of the network is to reproduce the input data orthe continuous label of the input data. Then, an evaluation of the error of thenetwork is preferred, e.g. with the mean squared error:

MSE (y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2 (III.4)
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where n is the number of output neurons and ŷ and y the predicted and ex-pected output respectively.
Even if the loss function usually gives crucial insight into the state of the training,it is useful, most of the time, to define additional metrics of the network perfor-mance. These metrics are independent of the learning process as they are notentering the update of the weights (so they are not affected by constraints onthe continuity of their derivatives), but they act as indicators that the training isgoing in the correct direction and that the network is learning the proper task.For example, when training a network for a classification task, a powerful toolto compute its classification performance is the receiver operating characteris-tic curve (ROC curve), from which one can extract its area under the curve as ametric. In the context of applying machine and deep learning to Physics, this istypically where our intuition as physicists comes into play. Physicists are usedto developmeaningful figures of merit to summarise information from complexcontexts, and this can be applied directly to network training by using additionalmetrics to check for expected physical consequences or to rule out unphysicalresults.

III.2.3 Gradient descent and backpropagation

As described in Eq. III.1, the output of a network is entirely determined by itsinput and weights ŷ = ŷ(x). So any loss for a network is, in fact, a function of theinputs, the weights of the network w and the expected output: Lw (y, ŷ (x)). Thislays the foundations of the neural network training (a model of the learning pro-cess), as the goal of this phase is to learn the optimal distribution of the weights— the one that minimises the loss. In fact, it becomes a high-dimensional op-timisation problem or, in other words, a fit over many parameters. Given thehigh number of trainable parameters (usually of the order of several millions)and sometimes of input variables, it is often impossible to know analytically theloss function over its full definition domain. Instead, the resolution of this prob-lem is brought by numerical methods where we replace the full knowledge ofthe loss function with an estimation using the highest possible number of eval-uations, as the final goal is to get a network with high predictive performanceon unseen samples. This is also why neural network trainings require a highnumber of training data points.
One of the best-performing algorithms to solve optimisation problems is thegradient descent algorithm. The gradient descent algorithm starts by computingthe gradient of the loss function for a given input point. Since we want to updatethe weights, the inputs and expected outputs of the network are consideredfixed, and the gradient is computedwith respect to each of the trainable weightsof the network. By definition, the gradient indicates the direction where thefunction changes the most. It means that, by using the gradient information, wecan update the weights towards the direction of the steepest descent, and thenetwork gets closer to the minimal value of the loss. After the training step t ,
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each weight can be updated as:
wt+1 = wt − γ

1

nX

∑
x∈X

∇wt
Lw(y, x) (III.5)

where X is the full training sample, nX is the size of the training sample and γis called the learning rate and is used to decrease or increase the importance ofthe update following the direction opposite to the gradient. The gradient withrespect to a given weight w l
ij at training step t can be derived as follow using thechain rule:

∇
w

l
ij
Lw(y, ŷ) =
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(III.6)

where ŷl is the vector of outputs of layer l (so ŷ = ŷL) and sl = Wl ŷl−1 + bl

is the weighted sum of the inputs of neurons at layer l . Although the methodof gradient descent was already described by Cauchy in 1847 [97], its applica-tion to machine learning and neural networks was limited because of the highnumber of computation it requires. It was onlywith the rediscovery of backprop-agation (presented in III.7) and its application to the training of neural networksin 1982 [82] that a new interest in neural networks emerged since it improvedgreatly the computational efficiency of gradient descent. Indeed, by computingthe output and its derivatives for each neuron when evaluating the loss functionand then storing them, one can extract the gradient of the loss with respect toa specific weight by simple matrix multiplication:
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· ŷL−2 ,

...
∇

w
l
ij
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(III.7)

Note that the computation starts with the final layers and goes decreasingly intheir position, hence the backward propagation. This method corresponds to
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the reverse version of automatic differentiation. The benefit with respect to anaive computation of the gradient for eachweight is twofold: first, the repetitionof calculations is avoided by computing each derivative only once, and second,by going backwards, it is only a vector andmatrixmultiplication instead ofmatrixandmatrixmultiplications if it was going forward. Hence the usefulness of GPUswhich are particularly powerful when dealing with vectors and matrices opera-tions. This method of backpropagation also imposes some conditions on theloss and activation functions of each layer. If some gradient-based optimisationis performed, such as gradient descent, the loss and activation functions shouldbe differentiable in addition to being non-linear. For instance, the Heavisidestep function — that would be the simplest representation of an all-or-nothingbehaviour — is not differentiable in 0 and has a null derivative everywhere else,so it would not train with a standard gradient descent method.
With the development of a new method for updating weights to increase con-vergence capabilities and decrease the training time, the basic update strategyof Eq. III.5 has been superseded. A short description of some optimiser algo-rithms useful for this thesis will be given here. Firstly, most modern optimisersrely on a batch version of the gradient descent algorithm. Instead of computingthe update as the average gradient over the full training sample X , the trainingsample is divided into smaller batches B (X ) and the update of the weights iscomputed as the average gradient over these batches:

wt+1 = wt − γ
1

nB

∑
x∈B

∇wt
Lw(y, x) (III.8)

where nB is the size of batchB. The unit of training composed after going throughall batches of the training sample once is called an epoch. This is a good com-promise between the standard gradient descent computed over the full trainingsample, which is expensive regarding memory and computational power, anda stochastic gradient descent that uses only one batch as an epoch. In additionto the training by batch, some optimisers add a momentum term in the update,which includes information about the gradient at previous training steps. It is thecase for the Adamoptimiser [98], which is considered a standard optimiser givenits good performance on a wide spectrum of training settings. The LAMB opti-miser is also worth mentioning. It is a modified version of the Adam optimiser,which adds a layerwise normalisation factor to the weight update. This normal-isation is particularly useful when training with a large batch size (i.e. smallertraining time) as the direction of the gradient is preserved while mitigating thenegative impact of too low or too high gradients.
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III.3 Deep neural networks

As mentioned already in Section III.1.1, one of the reasons behind the loss ofinterest in neural networks was the realisation that a single-layer network is, inany case, limited to elementary tasks. One could always train multiple single-layer networks and perform an intricate non-linear combination of their output,but this is mostly impractical. A set of theorems called universal approximationtheorems brought a solution to overcome this crippling shortcoming.
These theorems show that under certain conditions, a neural network can ap-proximate any continuous function. The first proven universal approximationtheorem states that a single-layer feedforward network is a universal approxi-mator if it uses a non-linear activation function and that its hidden layer has aninfinite width [99]. Then additional theorems confirmed that it is also the casefor networks with an infinite number of fixed-width hidden layers [100] and that,fortunately, networks with a finite number of layers with finite width can approx-imate any function if they have a large enough number of neurons [101, 102].These results also extend to other popular network architectures [103].
This set of theorems implies that by going towards deeper network architec-ture, i.e. adding more hidden layers, we can describe more intricate functionswith neural networks and use them for more ambitious tasks. Moreover, theconstant improvement of the computational capabilities of modern hardwaremade the idea of building and training models with a great number of neuronspossible on reasonable timescales. These observations drove the rise of thedeep learning field, which aims to train a class of networks with an extensivenumber of neurons, from simple deep feedforward neural networks to moreconvoluted architectures.

III.3.1 Overtraining

While the large number of neurons provided by deep architecture promises bet-ter performance, it also leads to additional challenges when training. Probablythe most common one is the issue of overtraining. It is coming from the bias-variance trade-off arising when training a machine learning algorithm.
The bias of the algorithm describes its capacity to provide an accurate outputclose to the expected value, and the variance represents its capacity to returnconsistent results when the input is impacted by small variations due to noise.This problem is well known in optimisation procedures as fits or trainings reach-ing low bias and low variance are rarely possible and often limited by availabledata. Usually, an adjustment is needed between a network able to learn generalrules from a training sample but reaching lower performance (underfitting) anda network giving the best performance on the training sample but thrown offwhen presented with unseen configuration (overtraining). This compromise de-pends on the number of times the network sees the training data. Networks un-derfit at the beginning of the training and overfit after a large number of epochs.
However, overtraining can be easily monitored by evaluating the loss value of
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the network on a validation sample. This sample must be independent of thetraining sample and not seen by the network while training. It allows regularchecks of the generalisation capabilities of the network. In this way, if the losscomputed on the training sample keeps decreasing even though the loss fromthe validation sample starts to increase, we have a clear indication that the net-work starts to overtrain. This is also a good way to know when to stop the train-ing. This technique is called early stopping and checks for an increase in thevalidation loss to stop the training of the network. An example of overtraininghappening while training is shown in Fig. III.4. Additional techniques can be ap-
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Figure III.4 – Example of overtraining seen when training a DNN. The loss of the train-ing sample is dropping rapidly, but the loss from the validation sample is skyrocketing,indicating overtraining from the network.
plied to prevent such effects rather than just stopping the training when thenetwork starts to overtrain. Most of them rely on limiting the complexity of thenetwork by reducing the range of possible values for the weights and not let-ting them take arbitrarily high values. This can be achieved in several ways, withthe most straightforward way consisting of clipping the weights within a smallrange [104]. A penalty term can also be added to the loss function of the networkas the L1 or L2 norm of the vector of weights:

L1 (w) =
∑

|wi | (III.9)

L2 (w) =
∑

w 2
i (III.10)

as it pushes the weights toward smaller values while training.
Finally, a popular method to increase the robustness of the network againstsmall variations of the input is to use dropout [105]. Dropout refers to thetechnique of randomly selecting a given fraction of the weights and setting theirvalue to 0 after each training step — as if some of the neuron connections weredropped out (illustrated in Fig. III.5). It forces the network not to rely on a fewvery important weights (or series of weights) and to spread the computationover the full network.
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Figure III.5 – When using dropout, a random set of neuron connections are dropped ateach training step. All connections are restored for evaluation.

III.3.2 Vanishing and exploding gradients

The choice of activation functions also plays a big role when training deep archi-tectures, as their effect is applied after each layer. This is crucial when traininga network with gradient descent and backpropagation. Indeed, as mentionedalready in Section III.2.3, if the derivative of the activation functions is null, thenthe weights are not updated, and the network effectively stops learning. Frommy teaching experience, I would translate that as if your lecture lacks interest-ing twists, then students get bored and stop learning. And this can happen evenwithout regions of null derivative in the activation functions. If the derivative hasvalues in [0, 1], then by using backpropagation andmultiplying the derivatives oflayer l by the gradients computed for layer l+1, the gradients are actually expo-nentially decreasing, and the first layers of the network get very small updates.Conversely, some activation functions have derivatives taking very high valuesthat will be enlarged during backpropagation leading to the inverse problem ofexploding gradient. This could be translated as if you keep exhausting your stu-dents with a constant flow of difficult information, they will saturate and stoplearning.
The most popular activation functions were shaped to avoid these problems.We already saw that the linear and Heaviside step functions were removed fromthe equation. Given their properties, the sigmoid (Eq. III.11) and hyperbolic tan-gent (Eq. III.12) functions are good candidates for activation functions. They arecontinuously derivable, bounded and, with their S shape, they are close to thedescription of an all-or-nothing mechanism. However, such S-shaped functionshave a gradient tending to 0 when their input tends to ±∞, so they are partic-ularly prone to bringing vanishing gradients. They are still good options for theactivation of the output neurons. This led to the design of a set of activation
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functions called rectified linear unit functions which are piecewise linear func-tions. In its basic form, the ReLU [106] (Eq. III.13) is linear for positive input andnull otherwise. It allows the recovery from vanishing gradients in one directionat the cost of having a function non-differentiable in one point (but this is easilyfixed by arbitrarily setting the gradient at 0 to 0 or 1). Several alternatives weredeveloped from the original ReLU [107–109]; a popular one is the LeakyReLU(Eq. III.14) that also fixes the issue of vanishing gradients for negative inputs.

σ (x) =
1

1 + ex
(III.11) tanh (x) =

ex − e−x

ex + e−x (III.12)

ReLU (x) =

{
0 if x ≤ 0

x if x > 0
(III.13)

LeakyReLU (α, x) =

{
αx if x ≤ 0

x if x > 0
(III.14)

In addition to the choice of activation functions, some techniques were devel-oped to avoid vanishing or exploding gradients. In the search for how to prop-erly initialise the weights of the network before training, it was shown that thisinitialisation could prevent any vanishing or exploding gradients. For instance,in the case of a network with sigmoid-activated hidden layers, the problem ofvanishing gradient can be fixed if the weights have a random initialisation fol-lowing the popular Glorot uniform (Eq. III.15) or normal (Eq. III.16) [110] or byfollowing the recent initialisation developed by Yilmaz and Poli [111] (Eq. III.17):
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)
(III.17)

with Wl the set of weights of layer l and nl the number of weights of layer l .Similarly to the weight clipping used to mitigate overtraining, a gradient clippingcan also be applied to avoid exploding gradient effects [112].
III.3.3 Learning rate

The landscape of the loss function can be quite complex as the dimensionality ofits definition domain increases with the number of neurons. Since the gradientdescent technique uses local information to find the direction of the minimum,it can start targeting a saddle point or a local minimum and get stuck aroundit, effectively stopping the training. To avoid such premature convergence while
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training, the size of the step performed in the gradient descent (i.e. the size ofthe weights update) must be carefully selected. This is the role of the learningrate, denoted as γ in Eq. III.5.
If the learning rate is too big, then chances are that the gradient descent willmiss the global minimum, and if the learning rate is too small, then the timeof convergences of the networks increases, and the algorithm is more likely tofind a local minimum as illustrated in Fig. III.6. That is why the learning rate israrely constant and changes throughout the training by planning a learning rateschedule. A simple yet popular way of scheduling the evolution of the learningrate is to let it decrease exponentially with respect to the epochs or each trainingstep. It allows the learning rate to start at a rather high value and then takesmaller steps as the weights get closer to their optimal value. Alternatively, astrategy is to decrease the learning rate by a given factor each time the lossreaches a plateau. Some optimisers are also effectively adapting the learningrate as the training progresses. For example, in the Adam and LAMB optimisers,the moments of the gradient from the previous training steps effectively act asan adjustment to the learning rate. It is also worth mentioning the notion of
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Figure III.6 – Illustration of the impact of the learning rate (LR) during the gradient de-scent when updating a given weight (left) and over the full training (right). If the learningrate is too high (orange), the training is suboptimal as the weights might not convergeto the global minimum. If the learning rate is too low (blue), the training time increasesunnecessarily, and the weights are more likely to get stuck in a local minimum.
warm restarts of the learning rate [113]. In trainings where the training is clearlygetting stuck in a local minimum, regular and sudden increases in the learningrate can help to unblock the network and put it back on the way to the globalminimum.
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III.3.4 An example of DNN: the convolutional neural
network

A short description of convolutional neural networks is given in this section as,first, they are a typical example of deep learning technique, and second, they areone of the building blocks of the method presented in Chapter IV. The convolu-tional neural network (CNN) is an attempt at extracting high-level informationfrom organised arrays of data such as images, texts, spectrograms, and manymore. Thus, it makes sense that their architecture was inspired by the operationof the visual cortex in biological brains.
When a sensory signal enters the visual cortex, it first goes through layers of sim-ple cells that extract some level of information from these stimuli, for instance,particular lines, shapes and orientations at precise positions. The extracted in-formation is then passed to layers of complex cells that build higher-level con-cepts, such as a movement in a specific direction and are usually unaffected bythe absolute position of the stimuli in their perceptive field. This led to the cre-ation of the precursor of CNNs in 1979 by Fukushima: the neocognitron [80],which was successfully trained to recognise Japanese characters and numbers.The prevalent architecture for CNNs and their training with end-to-end back-propagation of all the layers was developed in 1989 by LeCun et al. [84]. Thisstandard architecture is composed of several layers alternating between convo-lutional layers and pooling layers:

• Convolutional layers: as their name suggests, they rely on the convolu-tion operation, so the neurons are not fully connected to all neurons ofthe previous layer but rather to a smaller set of adjacent neurons of theprevious layer. Since the goal of the layer is to learn a feature that couldappear several times and anywhere on the output of the previous layer, allneurons covering the full input share the same set of weights. This is anal-ogous to a small filter that would be convoluted to patches of an imageand then shifted to repeat the operation over the full image (as describedin Fig. III.7). A filter would learn to extract one type of feature, so convo-lutional layers usually consist of several filters learning a different type offeature each. The output of a filter over the full input is called a featuremap, as it returns a mapping of the presence or absence of the feature inthe input.
Note that, as for any layer, the convolutional layer can be represented by amatrix. It allows the definition of transposed convolutional layers that per-form the inverse operation (sometimes called deconvolution) in the sensethey can learn to extrapolate a higher dimensional representation from afeature map. This is useful to define networks symmetrical to CNNs thatwould take as input a vector of features and return the associated decon-voluted image, e.g. when using generative adversarial networks (see Sec-tion III.4).

• Pooling layers: the goal of pooling layers is to extract the prevailing as-pects of each feature map while reducing the position dependency. Thisis done by looking at patches of the input feature maps and summarising
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this patch with a single figure. For instance, it can be the average of the val-ues over this patch or, most commonly, the maximum value of the patch.When applying a convolution layer, the feature maps usually have a sizeclose to the input, so a network without pooling layers would learn to lookfor specific input regions to find a feature. However, the position of the fea-ture relative to other features is usually more important than its absoluteposition; hence this downsampling is performed after each convolutionallayer. Such a layer is entirely defined and has no trainable parameter.
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Figure III.7 – Illustration of the effect of one filter (middle) producing a feature map(right) from an input array (left). A convolutional layer can have several filters where thevalues of the filter are the trainable weights.
This alternation of convolutional and pooling layers makes CNN very robustagainst the vanishing and exploding gradient problems as the weight sharingacts as an efficient regularisation. Moreover, by combining the input throughmultiple applications of convolutions, CNNs learn to extract high-level featuresand the correlations between them. This is particularly useful in HEP. It can haveintuitive applications on the response of the detector since they are already closeto what is found in an image — by using the energy deposit in each pixel of thedetector, for instance. Even the final reconstruction of an event can be repre-sented as an image, with each pixel being one of the observables of the event.
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III.4 Generative adversarial networks

A special field in artificial intelligence is the study of techniques with generativecapabilities. The goal of such techniques is to generate samples that are pos-sibly statistically independent from the training samples. Deep learning mod-els are largely prevalent in this generation of all sorts of data, from text withlarge language models such as BERT [114] or CHATGPT and its recent GPT-4 archi-tecture [115], to images with DALL-E [116] or MIDJOURNEY [117] or even moleculeswith ALPHAFOLD [118]. Along with the rise of generative pre-trained transformers(GPTs) in recent years, one of the most prominent frameworks for generationpurposes is generative adversarial networks (GANs) [119, 120]. A GAN consistsof two deep networks trained with competitive objectives. On one side, a gener-ator network G is trained to map a latent vector of randomly generated inputs
z ∈ Z to meaningful and realistic data G (z). On the other side, a discriminatornetwork D is trained to distinguish between data from a sample of reference
x ∈ Xref for which the expected output is y (x) = 1 and generated data from thegenerator x ∈ G (Z) for which y (x) = y (G (z)) = 0. It means that the genera-tor is actually a forger trying to fool the discriminator, and the discriminator is acritic trying to spot any counterfeit (as represented in Fig. III.8).
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Figure III.8 – Simplified representation of a GAN.

So both networks have opposed objectives, which are translated mathemati-cally by two different loss functions. The discriminator is classifying its inputsbetween reference y (x) = 1 and generated y (G (z)) = 0 so its binary cross-
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entropy loss writes as:
Ld =

1

2 nB

 ∑
x∈B(Xref )∪B(G(Z))

y (x) ln (D (x)) + (1− y (x)) ln (1− D (x))


=

1

2 nB

 ∑
x∈B(Xref )

ln (D (x)) +
∑

z∈B(Z)

ln (1− D (G (z)))

 .

(III.18)

Since the objective of the generator is to fool the discriminator, its loss is basedon the output of the discriminator and the expected outputs are reversed, i.e.
y (G (z)) = 1:

Lg =
1

nB

 ∑
x∈B(G(Z))

y (x) ln (D (x)) + (1− y (x)) ln (1− D (x))


=

1

nB

∑
z∈B(Z)

lnD(G (z)) .

(III.19)

The networks are trained simultaneously as adversaries, and they compete ina zero-sum game — each gain for one of the networks is a loss for the other— and the final goal is to reach a Nash equilibrium [121] where both networkscannot improve anymore against the other.
Overall, GANs are known to be difficult models to train for several reasons. First,this zero-sum game brings the necessity for both networks to perform relativelywell against the other in order to reach convergence. Indeed, if one of the net-works starts to perform too well, then the other is stuck with a very high loss,no matter the direction of the weight update, meaning that its gradient getsclose to 0, becoming a vanishing gradient problem. Yet, if the loss of each net-work should not increase or decrease too much, then a successful GAN trainingshows very stable losses during the training. It means that the evolution of theloss for each epoch does not give any information about the absolute perfor-mance of each network. This is unlike deep networks trained in non-adversarialsettings where the loss should decrease during training and allows the directcomparison of different training frames, for instance, when looking for the besthyperparameters. Thus, the definition of additional metrics for the evaluationof the performance of the network is needed in the context of GANs. Second,the convergence of the networks toward a Nash equilibrium is not guaranteedin practice [122]. This is coming from the concurrent update of both networks,where they each try to minimise their loss through gradient descent and inde-pendently of the evolution of the other network. Since their loss is heavily de-pendent on the performance of the other network, each update can become areaction to compensate for the effects of the previous update on the other net-work, leading easily to diverging oscillations in the evolution of the respectiveloss functions. Finally, an unfortunate pitfall of GANs appears when the gener-ator needs to learn how to generate different classes of objects and generateonly a few or even only one class of objects. This is called mode collapse or"the Helvetica scenario" [119] and is a direct example of what happens whenthe generator gets stuck in a local minima of the weights space.
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Given the high popularity of GANs in the last 5 years, variations around this kindof deep model gave birth to a large variety of GAN-based techniques. A fewnotable architectures are presented here:
Convolutional GANs As their name suggests, convolutional GANs consist ofGANs using convolutional neural networks. More precisely, the discrim-inator uses regular convolutional layers, but the generator is transforminga random latent vector to an organised array of data, so it usually uses de-convolutional layers. This is also coming from the fact that, in order to getnetworks of comparable potential in the GAN, it is easier to use networksthat are comparable by construction. Thus, the discriminator and gener-ator usually have symmetrical architectures. Convolutional GANs have alot of applications in image generation, such as STYLEGAN [123]. STYLEGANintroduced training in a progressive fashion, beginning with a training togenerate low-quality images, and after each training, a new layer is addedto the generator and to the discriminator to upscale the image generationto higher quality images. STYLEGAN is famous for its generation of decep-tively good portraits; it is indeed very difficult to distinguish which portraitwas generated in Fig. III.9.

Figure III.9 – Examples of portrait generation with STYLEGAN. Both faces are actuallygenerated and are not existing persons.

Conditional GANs With conditional GANs, some features are shown to the gen-erator and discriminator. The GAN learns about correlations between theconditional features and the data that should be generated, hence condi-tioning the generator output to have specific features. This can be used,for example, to generate an image but keeping a background given as aconditional feature or to generate a random painting but in the style of agiven painter.
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Wasserstein GANs The concept behind this is to change its loss function ratherthan changing its architecture [104]. Instead of using the binary cross en-tropy to get the loss functions, the Wasserstein metric [124, 125] is used.It provides a meaningful loss that should allow for clear hyperparameterselection, contrary to the standard GAN. Wasserstein GANs were also de-veloped to improve the training convergence and avoid mode collapse.

III.5 Summary

This thesis takes place in the context of the growing contribution from the ma-chine learning field to high-energy physics research activities. For instance, thetraining of BDTs and simple binary DNNs is gainingmomentum in collider exper-iments communities, and it is becoming a popular method for events classifica-tion, particle identification or object reconstruction. Reciprocally, HEP provides afavourable environment for the development and application of modern deeplearning techniques, and covering them would go beyond the scope intendedfor this chapter. Such techniques include generative models for data samplegeneration using GANs (such as the study described in the next chapter) or nor-malising flows [126]. Other methods rely on the structure of data collected inHEP: features of an event can be seen as properties interconnected through agraph, and graph neural networks are, indeed, showing high performance ontasks such as particle identification [127, 128]. Finally, another example of ac-tive developments based on deep learning arises from the nature of researchin Physics with models taking into account the uncertainty on their inputs [129–131].
This chapter summarises theworking principle of neural networks and how theyare trained. A particular focus is given to deep neural networks (DNN), genera-tive adversarial networks (GAN), and regularisation techniques to improve theirtraining. It gives a broad overview of all the considerations we take into accountwhen training and optimising such models. Indeed, a crucial aspect of the data-driven estimation technique presented in Chapter IV is the careful optimisationof a conditional and convolutional GAN, which drives the quality of the gener-ated background sample. In a similar way, a key element to the successful def-inition of phase space regions with high sensitivity for the analysis described inChapter V is the training of a DNN model providing good discrimination of theevents.
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IV.1 Motivations

In high energy physics (HEP), characterising a signal hypothesis requires distin-guishing its signature from a large number of background processes with sim-ilar final states. Observables of physics objects are used to construct classifi-cation algorithms that can discriminate signal signatures from the backgroundprocesses. An accurate description of these final states and their observableswith the detailedmodelling of the detector responses is crucial for the sensitivityof the analysis.
Monte Carlo (MC) techniques are widely used in HEP experiments to simulatea process from a physics model of interest (denoted as signal) and other stan-dard model (SM) processes (denoted as background). Software libraries such asGEANT4 [132, 133] are used tomodel detailed descriptions of themodern colos-sal particle detectors and thereby provide an accurate simulation of the detec-tor responses to these processes. Due to the intricate nature of these detectors,the large amount of data delivered by the colliders and the rarity of the signal,a substantial computational infrastructure in the form of grid processing powerand a significantly large storage-disc volume are needed. This requirement usu-ally constrains the simulation sample production to have a limited number ofevents in the tails of discriminating observables. Furthermore, inaccuracies inthe underlying physics model and in the description of detector responses limitthe use of MC simulations for background description.
Many leading background processes have signatures mimicking the signal dueto one ormoremisidentified particles in their final states. For instance, theHiggsboson signature with two isolated photons in the final state has to be distin-guished from other SM processes with a single photon and multiple jets in thefinal state where one of the jets is misidentified as a photon. A similar exam-ple can be given for the signal signatures where two b jets are expected. In thiscase, processes with a single b jet can have a second light flavour jet misclassi-fied as b jet, thus populating the signal region. ML classification algorithms arewidely used for optimal separation between signal and background processes.They can extract the higher-order relations between observables to provide abetter classification performance [134] with respect to techniques treating ob-servables sequentially. Therefore, the training samples should provide a gooddescription of signal and background observables and their correlations. Mod-elling the misidentification of the physics objects is challenging as it might besubject to systematic effects creating discrepancies at the tails of distributions.Various data-driven techniques are used tomitigate the possible impacts ofmis-modelling. For instance, a data-driven technique that requires two additionalsub-sample spaces, known as the ABCD technique, is widely used in HEP, e.g. inRef. [135]. Even though this technique can estimate the yields of the differentprocesses, the shapes or the correlations of the observables in the high-puritysignal region cannot be retained. Other techniques are also tailored explicitlyfor particular signatures. However, their generalisation cannot be assured, andthey may still suffer from the aforementioned shortcomings.
This chapter describes my work on a novel data-driven technique using a condi-
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tional generative adversarial network (GAN) tomodel backgroundswithmisiden-tified particles. This GAN generates new observables for a particle that fails theidentification criteria to mimic a misidentified object whose observables retaincorrelations with other event observables. I demonstrate the technique in thecontext of the CMS analysis of the Higgs boson decay into a pair of photons(H → γγ ) as presented in Ref. [136, 137].
Between the beginning of this study and its publication, additional methodswere introduced to tackle this objective of improving the description of back-ground processes thanks to machine learning and generative techniques [138–140]. However, contrary to these methods, we train our generative model on asignal-enriched region in simulated MC samples and generate a complete eventby making use of the large amount of discarded data events not passing the sig-nal selection requirements. Furthermore, by using all features that may havecorrelations with the generated observables as conditional inputs to the GANrather than considering only a single feature (such as the reconstructedmass ofa particle, cf. [139]), the network is able to model linear and nonlinear correla-tions with both the generated object features and the conditional features.
This study was published in volume 83 of The European Physical Journal C [141]and presented at multiple conferences such as the 2023 Electroweak session ofthe 57th Rencontres de Moriond or the 26th International Conference on Com-puting for High Energy and Nuclear Physics (CHEP2023).
The chapter is organised as follows: a description of a typical data-driven es-timation for the background of the H → γγ analysis is given in Section IV.2.Section IV.3 describes the GAN architecture as well as its training and evaluationprocedure, and the performance of the GAN is presented in Section IV.4. Finally,the impact of the method on the training of discriminants aiming at rejectingbackground is shown in Section IV.5.

IV.2 Data-driven estimation of the background in
the H → γγ analysis of CMS

After collecting data and reconstructing the physical objects in the event, a typi-cal analysis flow in HEP experiments starts with identifying the physics objects.Multivariate analysis techniques are widely used to provide an identification (ID)score. For instance, a photon ID score is developed to discriminate real promptphotons γ (originating from the primary vertex) from jets reconstructed as pho-ton /γ (named misidentified hereafter or sometimes fake in the literature) in theH → γγ analysis. In this manuscript, the notations γ and /γ are used to identifyprompt and misidentified photons, respectively. Misidentified photons mainlyoriginate from the fragmentation of particles and the decay of neutral mesons,such as π0 or η , into two collimated photons. During the second run of the LHC,the photon ID was computed from a boosted decision tree (BDT) trained onobject properties with the highest discriminating power. These variables aremainly extracted from the reconstruction steps performed with the energy de-posits measured in the ECAL. Indeed, the two boosted photons usually leave a
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wider shape profile in the ECAL compared to a single prompt photon of compa-rable energy, as shown in Fig. IV.1.

Figure IV.1 – Event display from Ref. [142] illustrating the differences in shower shapein the ECAL between prompt (narrow peak, on the left) and non-prompt (wide shape,on the right) photons.

Moreover, as these non-prompt photons emerge from the fragmentation of jets,they are often reconstructed close to additional objects. This leads to higherenergy deposition in the surroundings of the photon candidate, as can be seenin Fig. IV.2. By defining the isolation as the sum of transverse energy measuredin a cone surrounding a candidate particle, we can check for additional objectsnearby. These two considerations drive the relevance of using shower shapeand isolation variables for their discriminating potential.
The performance of the photon ID score is also improved thanks to the BDTcompared to a cut-based ID, which allows a more distinct separation betweenprompt and misidentified photons as presented in Fig. IV.3. For a given signalefficiency, the background efficiency is lower on the BDT curve than the cut-based dots, meaning thatmore background is rejected. Examples of inputs usedfor the BDT include the isolation variables of Fig. IV.2, the sumof energy depositsand their distribution in neighbouring crystals or the η position of the energydeposit.
Object candidates passing a certain threshold on the ID score are identified asphysics objects (e.g. signal photons). Additional selection criteria are applied tochoose events with similar final states to the signal process of interest, creatinga signal region named SR. Various background processes with similar signa-tures may pass these selection criteria. In the context of the H → γγ analysis,photon candidates in the final state are selected by imposing photon ID crite-ria. This requirement on the ID of the two expected photons defines the SR
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Figure IV.2 – The isolation is defined as the sum of transverse energy measured in
a cone of R =

√
∆η2 +∆ϕ2 = 0.3 around the photon candidate as presented inRef. [143]. Distributions are shown for photons reconstructed in the ECAL barrel (EB)or endcap (EE) and taking into account energy deposited by photons (EM isolation) orcharged hadrons (Charged Isolation) according to the particle flow algorithm. These iso-lation variables allow us to discriminate between prompt photons (in blue) andmisiden-tified photons (in red).
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Figure IV.3 – Comparison from Ref. [144] of the identification of prompt photons whenrelying on the BDT score (line) or on loose, medium and tight cuts on the object features(dots).

in this work. A jet passing photon-ID-selection criteria is thus misidentified asa photon, contributing to the background in the SR. Indeed, processes with aphoton andmultiple jets (γ+jets) in the final state are major backgrounds in theH → γγ analysis as well as processes solely composed of jets produced throughthe strong interaction where two of them are misidentified as photons (multijeteventsMJ).
The contribution of the background processes in data can be clearly identified inFig. IV.4, where signal events in red are overwhelmed by several orders ofmagni-tude of background events in blue. These histograms represent the distributionof the photon ID with the lowest score, and they illustrate the separation poten-tial offered by the ID algorithm since the γ + jets andMJ background processeshave a lowerminimal ID than processes with nomisidentified photons (Fig. IV.4).Using features of the selected objects, a multivariate technique can further beused to increase the signal purity in the SR. They usually rely on the ID score ofthe photon, among other features, given its discrimination potential.
To build an efficient discrimination for background processes, the widespreadstrategy in HEP is to rely on a precise description of such background behaviourbymeans of simulation. Unfortunately, theMC simulations of the γ+jets andMJhave a limited number of simulated events, and they show discrepancies whencompared to data (due to reasons already mentioned in Section IV.1). This isparticularly true when the analysis focuses on SRs with additional selection cri-teria, e.g. on the jet selection. These shortcomings led to an estimation of thebackground based on data outside of the SR in some H → γγ studies such as
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Ref. [145]. Themethod relies on selecting a control region (CR) using data eventswhere one photon fails the ID selection criteria as illustrated in Fig. IV.5. Mostdata events with one object failing photon selection criteria, and the other onepassing the selection, are γ + jets orMJ events and constitute a CR with similarphysics properties as the SR, especially in terms of the number of jets, jet iden-tifications, jet kinematics, jet flavours, etc. This approach brings improvementsin two ways. First, by using data events of the CR that would be discarded oth-erwise, we gain access to a sizeable amount of events, often offering a largernumber of events than the SR of the MC simulations. Then, it grants a bettermodelling of the physics (even if a reweighting is sometimes needed to accountfor differences in the kinematics of the photons between the two regions).
Yet, by selecting events where one photon fails the ID requirement to build the
CR the ID of the misidentified photon cannot be used any longer as it is fallingoutside the range of what is expected in the SR. Since the photon ID is oneof the crucial features used to reject background, a workaround to retrieve thephoton ID is to generate a new one. A first approach for generating a new IDis described in Ref. [25]. By extracting the 1D probability distribution function(PDF) of the minimal photon ID in the SR, a new ID can be randomly gener-ated in the correct range. Nevertheless, a random generation using a 1D PDFis not reproducing the correlations of the photon ID with other observables ofthe misidentified photon (e.g. pT , η, ...) or with other observables of the event(e.g. pT of the other photon, number of jets, ...). Furthermore, there are kine-matics differences between events in the SR and events in the CR. And even if areweighting of the events is possible, there is some subjectivity in selecting the
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Figure IV.5 – Diagram of the signal and control region selection in the H → γγ analysis.

final set of reweighting features, and it can lead to a suboptimal description ofthe background in the SR.
That is why we propose to improve the generation step thanks to a GAN bygenerating the full misidentified object. It resolves the issue of replacing thephoton ID while keeping realistic correlations with other observables, and atthe same time, it produces a misidentified photon whose kinematics match theexpectations in the SR.

IV.3 Generating photons with a GAN: a brilliant
method?

IV.3.1 Methodology

Here is a detailed description of the entire proposed strategy :
1. Selection of the SR of interest where the main background sources areprocesses with misidentified objects.
2. Definition of an orthogonal CR, based on the properties of a misidentifiedobject (e.g. photon ID of a misidentified photon).
3. Training of the GAN in the SR using simulated background events and op-timising the hyperparameters to reach the generator model with optimalperformance. Themisidentified object used in the training is selected withthe MC truth information.
4. Using the generator network of the GAN, new objects are generated to re-placemisidentified objects in events of theCRof data. In data, themisiden-
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tified object is taken as the one failing the SR criteria.
5. The produced sample can be used to define the analysis strategy (trainingof ML techniques for signal extraction, optimisation of selections, ...).

In the context of the H → γγ analysis, the goal of the GAN is to generate aphoton that replaces the photon failing the ID selection criteria. In that sense,it generates a new misidentified photon that passes the ID requirement, effec-tively converting events from the CR into events of the SR. Generating a photonmeans generating its associated observables: pT/γ , η/γ , ϕ/γ , ID/γ , and then recom-puting the related features of the event such as the diphoton pair pT , the massof the diphoton system, etc.. As the GAN needs to learn the observables andcorrelations of a misidentified photon (originating from a jet) from backgroundevents comparable to signal events, the GAN is trained with events from the
SR of a γ + jets simulation. This is done with a γ + jets simulated dataset fromCMS open data [146] containing around 2.7 million events where a specific filterensures that they contain at least two reconstructed photons.

IV.3.2 Model architecture and training

In order for the GAN to learn the correlations between the generated outputsand the rest of the event, it is necessary to show the model the features of in-terest that it needs to consider while generating amisidentified photon. In addi-tion, correlations are extracted by observing specific patterns in relations amongmultiple features, so it leads naturally to the choice of a convolutional architec-ture for both networks composing the GAN. Our GANmodel is both conditionaland convolutional, following what is described in Section III.4 of Chapter III. Ac-tually, it is an extension of the deep convolutional GAN architecture described inRef. [147] with the addition of conditional features as illustrated in Fig. IV.6. Un-like regular GANs, which only use randomly generated inputs for the generator,the conditional architecture allows the GAN to reproduce correlations. Theseconditional features are concatenated to the inputs of the generator and alsoto the inputs of the discriminator. The architecture of the GAN was studied asone of the hyperparameters of the training; a more detailed description of thenetworks’ architecture is given in section IV.3.4 after the full optimisation.
Training and validation samples are taken from an MC simulation of the pro-cess of interest in the SR. For each event i , a set xi of nfeat features is defined.From this vector, a subset of conditional features xi ,cond of size ncond is selectedand concatenated to a vector of random latent features sampled from a nor-mal distribution zi of size nrand to form an input vector to the generator model
g : Rncond+nrand → Rnfeat . The goal of the generator model is to produce a set ofobservables of size nout ≡ nfeat − ncond describing a misidentified object in the SR(e.g. transverse momentum pT , pseudorapidity η, ...). These generated observ-ables are, in turn, concatenated to the set of conditional observables formingan output vector g(xi ,cond, zi). The output vectors are used and compared to theoriginal observables xi to train the discriminator model d : Rncond+nout → [0, 1].To distinguish between the generated and original observables, the events arecoupled to a discriminator label yi with the choice of 0 for the generated ob-
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servables (ŷi = g(xi ,cond, zi), li = 0) and 1 for the original ones (ŷi = xi , li =
1). Additional noise is added to the training labels as it has been shown to in-crease the chance of convergence for GAN [148] and is called label smoothing.The noise value is generated uniformly between 0 and a maximum ϵ, meaning
li ∈ [0, 0 + ϵ] ∪ [1 − ϵ, 1]. Finally, the objective for the discriminator model is toreturn a value as close as possible to the input label (i.e. d(ŷi) = li ).
Based on the binary cross-entropy, the following loss functions Ld and Lg arerespectively defined for the discriminator and generator networks:

Ld =
1

nB

nB∑
i=1

li ln(d(ŷi)) + (1− li) ln(1− d(ŷi)) (IV.1)

Lg =
1

nB

nB∑
i=1

ln d(g(xi ,cond, zi)) (IV.2)

where nB is the batch size (defined in Section III.2.3 of Chapter III). Trainableweights of the network are initialised following the Glorot uniform distributiondefined in Eq. III.15 of the previous chapter. Then, the weights of events areupdated after computing the loss for a given batch of events by using backprop-agation and optimizers derived from the gradient descent algorithm. Three op-timizer algorithms already described in Section III.2.3 of Chapter III are tested:the stochastic gradient descent algorithm (SGD) [149], the Adam optimizer [98]and the LAMB optimizer [150].
IV.3.3 Performance metrics

As the generator and discriminator models are trained adversarially in a zero-sum game, their loss functions do not reflect the absolute performance of eachneural network. And because the losses of the two networks are balanced, anindependent figure-of-merit is required to assess the performance of the gener-ator. Once again, oneof the primary objectives of this study is tomake the gener-ator model learn the correlations between the observables of the event. There-fore, we propose a performance score based on the negative log-likelihood of
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the underlying probability distributions of the generated and original samples.We demonstrate that this score suffers from large fluctuations, intrinsic to thenature of GANs, and presents a way to stabilise it. This allows the selectionof the best-performing model without introducing a significant computationaloverhead, an appreciated possibility for the optimisation of the hyperparame-ters of the training.
From an input sample X = {x1, ..., xN} with N events and a sample of randomvectors Z = {z1, ..., zN}, an output sample Ŷ = {ŷ1, ..., ŷN} = g(X ,Z) is gener-ated with the GAN. Events are distributed in bins numbered from 1 to Nb, whichspan amultidimensional space chosen to reflect the physics one wants to repro-duce (in our case pT , η, ID score of the misidentified photon in the H → γγ anal-ysis, pT γγ/mγγ ). We define a negative log-likelihood performance metric (NLLmetric) as:

−2 ln Λ(X|Ŷ) = −2

Nb∑
k

mk ln pŶ(k) (IV.3)

where we use the frequency pŶ(k) = nk/N as an estimation of the probability of
an event to fall in bin k estimated from sample Ŷ and mk (nk ) is the number of
xi (ŷi ) in bin number k . For each dimension in the log-likelihood, we transformthe distribution of the corresponding variable to be uniform so we can use 10bins by dimension, which is enough to capture the variable shapewhile retaininga sufficient amount of data per bin.
This metric is computed on the training sample and on an independent valida-tion sample after each epoch to check for any overtraining effect. The optimalstate of the GAN is then chosen as the set of weights giving the lowest −2 ln Λvalue on the validation sample.
The balance needed between the performance of the two networksmakes themprone to collapse towards suboptimal states, which produces a poor descriptionof the event observables. Even when the GAN converges, large fluctuations areusually observed in the performance metrics. These fluctuations make the op-timization of the network challenging. An averaging method was developed toovercome this limitation and better assess the performance of the GAN. Thecareful reader remembers that a crucial aspect of the proposed GAN architec-ture is that features of an event are given as input to the model in addition tothe random latent space. It means that a GAN generator can produce differentobjects for the same event by using several random vectors for the same condi-tional variables (i.e. g(xi , zi) ̸= g(xi , z

′
i )). An example is presented in Fig. IV.7 bygenerating ten thousand objects for a set of conditional features coming fromone event of the SR. As the GAN learns the correlations between conditionalfeatures and properties of the misidentified photons, the generated distribu-tions (in red) deviate from the original distributions of the SR (in blue) to forman excess around the actual values of the replaced photon (vertical lines). How-ever, by generating only one photon per eventwhen evaluating the performanceof the GAN, we are not properly estimating the location of the excesses, i.e. itsunderstanding of the correlations. In the context of performance metrics, bygeneratingmultiple objects, the GAN output is effectively averaged over the ran-dom latent space, giving a more accurate estimator pŶ in Eq. IV.3. This effect is
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Figure IV.7 – Example of generation of 10000 objects with the GAN from one set ofconditional variables (in red). The generated distributions are compared to the originaldistributions described in the SR of the MC sample ("Full MC" in blue), and the originalproperties of the misidentified photons are shown with vertical lines.
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demonstrated in Fig. IV.8 by using three different configurations where we gen-erate 1, 10 and 100 objects for each event. Fluctuations are decreasing whenmore objects are generated per event. As the evaluation time increases withthe number of generated objects, a compromise of 100 objects per event waschosen in this work.

4000 4500 5000 5500 6000
Epoch

−500

0

500

1000

1500

2000

2500
−2

ln
Λ 〈Λ
〉

Object per event :

1

10

100

Figure IV.8 – Comparison of the −2 ln Λ metric evolution during training for differentnumbers of objects generated per event using different random latent spaces. Each
metric is shifted by its average over the last thousand epochs (⟨Λ⟩ =∏6000

i=5000 Λi
0.001,where i refers to the epoch number) to better illustrate the stabilisation of the met-ric.

IV.3.4 Hyperparameters optimisation

Thanks to the negative log-likelihood metric and the reduction of the fluctua-tions, it becomes possible to efficiently rank different training strategies, differ-ent models, etc. One of the first studies on improving the training concernedthe preprocessing of the input features. The goal of the preprocessing step is totransform the original input vectors into a representation more suitable for thetraining of neural networks. This transformation needs to be bijective so that atransformed vector can be processed back to its original values in a unique way.It can mitigate the impact of rapidly falling or non-smooth distributions of thephysics observables (e.g. due to detector effects), those being harder to learnfor a network. Multiple preprocessing methods are tested from the Scikit-learnmodule [151], and the best performance is obtained with the quantile transfor-mation to a uniformoutput. The quantile transformation relies on themethodofinverse random sampling: for any randomvariableX ∈ Rwith cumulative distri-
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bution function (CDF) F , the inverse CDF (or quantile function) F−1 applied on arandom variable U ∼ U (0, 1) gives a random variable following the distributionof X , i.e. F−1 (U) ∼ X . This method is used to generate random numbers follow-ing any distribution. Knowing that a CDF applied to its associated random vari-able is also a random variable following a uniform distribution F (X ) ∼ U (0, 1),then a transformation from one distribution X to another one Y with CDF G canbe derived using G−1 (F (X )) ∼ Y . In our case, the quantile transformation isfitted to map the distribution of the conditional and generated features to fol-low U (−1, 1). The impact of the preprocessing step on the training is visible inFig. IV.9, where we can clearly see that it helps the GAN to learn non-smooth dis-tributions such as the gaps in the pseudorapidity distribution due to the junctionbetween the barrel and the endcap of the detectors.

Figure IV.9 – Comparison of the distribution of η/γ when simulated (in blue) or generatedby the GAN (in red) with (below) and without (above) quantile transformation beforetraining.

Another major tuning was the identification of the best set of conditional fea-tures. Three different training strategies with respect to the feature sets areconsidered and compared. The first strategy follows the vanilla GAN applicationas described in Section IV.3, i.e. the latent space is purely composed of randomvariables. In the second strategy (partial set), we consider as conditional featuresthe observables of the prompt object. These conditional features, together with
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the random latent ones, are used as input to the GAN. The last strategy (fullset) takes as input random latent features and an extended set of conditionalfeatures: the observables of the prompt object together with additional eventobservables, i.e. IDγ , pTγ , ηγ , ϕγ , Njets, Nvtx. We performed three trainings corre-sponding to these three strategies to test the impact of the conditional features.As shown in Fig. IV.10, the best-performing strategy is to use the full set of con-ditional features as the training loss reaches the lowest value of−2 ln Λ. Besides
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Figure IV.10 – Comparison of the −2 ln Λ figure of merit evolution during the trainingof the different strategies tested for the addition of conditional features to the randomlatent ones.
the values of the NLL metrics, additional distributions were drawn to check ifthe GAN is properly reproducing the correlations. The effects of conditional fea-tures on the GAN ability to learn correlation among features of the event arecompelling from distributions such as Fig. IV.11. When no conditional featuresare shown (in yellow), the generated objects have features independent fromone another or with respect to the rest of the event. This flat distribution isactually what one would get when using a 1D PDF for ID generation. With apartial set of conditional features (in orange), the GAN learns some correlationbetween features. Finally, with the full set (in red), the GAN is able to reproducethe correlations of the original sample (in blue).
We further investigate the impact of different parameters of the models in theGAN. For instance, we find that increasing the dimension of the latent spaceto more than 32 does not provide additional performance improvement, asdemonstrated in Fig. IV.12.
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Figure IV.11 – Scatter plots showing the correlations between two properties of themisidentified photon /γ . An average of its ID is computed for each pT bin. The threedifferent trainings with different sets of conditional variables (no conditional variablesat the top, partial set in the middle, full set at the bottom) are compared to the SR ofthe MC simulation ("Full MC" in blue).
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Figure IV.12 – Example of hyperparameter optimisation where different configurationsare tested. Lines with different colours correspond to different numbers of dimensionsof the random latent spaces given as input to the generator model.

Overall, the optimised parameters are found to be:
– random latent space dimension : 32
– number of training events : 100,000 events
– gradient descent optimizer : LAMB optimizer
– learning rate : cosine decay as described in [113] starting at 0.001 andreaching 0 after 5,000 training epochs
– batch size : 1024
– noise on training labels : 0.15
– model architecture :
generator : a dense input layer of 1024 nodes, three 2D deconvolutionlayers with 32/16/8 filters of size 4x4/2x2/2x2 respectively, one 2Dconvolution with 4 filters of size 3x3 and a dense layer with 4 outputswith hyperbolic tangent activation function
discriminator : a dense input layer of 256 nodes, three 2D convolutionlayers with 32/64/64 filters of size 2x2/2x2/4x4 respectively and witha LeakyReLU activation function [152], a dense layer with 1 outputwith sigmoid activation function. A dropout [105] of 20% is also im-plemented before the last layer of the discriminator.
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IV.4 GAN performance

As described in the previous sections, we select an SR with two photons pass-ing stringent photon ID criteria IDγ 1,2
≥ −0.2. A CR composed of events withone photon candidate passing the ID criteria and another one not passing themis formed. As the second object fails to pass the photon selection criteria, it islikely to originate from a jet. This latter object is replaced with a misidentifiedphoton /γ generated by the GAN model, thus with SR properties. The strikingtransformation capability of this technique is demonstrated in Fig. IV.13. The pTdistribution of the GANed /γ matches the distribution of the same observable inthe SR, while the MC-simulated misidentified object from the CR has differentcharacteristics. This is a strong piece of evidence that the GAN adapts the kine-matics of the misidentified object where a reweighting of the events would beneeded with a generation of the ID only.
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Figure IV.13 – Distribution of the misidentified photon pT in the MC SR (MC Signal), MC
CR (MC Ctrl) and a misidentified photon generated by the GAN using observables of theevents in the CR (GANed Ctrl).

Figure IV.14 shows an excellent agreement of the GANed-object observable dis-tributions (namedGANed in Fig. IV.14) compared to the ones fromactualmisiden-tified photons of the SR (named Full MC in Fig. IV.14). Furthermore, the fact thatthe isopleths match between the two distributions indicates that the generatoralso reproduces the correlations between GANed and original Full MC observ-ables. Additional scatter plots illustrating some of the correlations learnt by theGAN between the misidentified photon and the rest of the event are shown inFig. IV.15.
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In order to assess the performance of the GAN in terms of reproduction of thecorrelations between observables, we use the distance correlation as defined inRef. [153]. Thismetric allows us to quantify both the nonlinear and linear correla-tions between the observables of the event. The distance correlation coefficientgoes from 0 to 1, where 0 indicates that two observables are independent andnonzero values mean that there exists some correlation (linear or nonlinear).We measure the correlations between the misidentified photon properties andother event observables (prompt photon properties, Njets, Nvtx...) for both the
SR and the CR with a GANed misidentified object. These correlation matricesare shown in Fig. IV.16. We use a χ2 to evaluate the difference between the 2matrices defined as:

χ ≡ 1

Nχ
2

∑
i<j

√
χ2
ij with χ2

ij ≡

(
dGAN
ij − dSR

ij

)2
σ2
ij

,

where (i , j) is a pair of observables, dij the corresponding distance correlationand Nχ
2 the number of couples with i < j . The uncertainty σij on the computa-tion of the distance correlation for both theMC andGANed samples is estimated
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Figure IV.15 – Scatter plots constructed in a similar fashion as Fig. IV.11 and showingcorrelations between features of the generated object and other features of the event.Correlations generated with the GAN applied on the CR (GANed Ctrl in red) are com-pared with the target correlations from the MC SR (MC Sig in blue).

through two contributions. The first one comes from the finite size of the MCsample and is evaluated by splitting the sample, computing the distance correla-tion coefficients of each subsample and extracting their standard deviation overall the subsamples σMC
ij . The second contribution is introduced by the random la-tent space used as part of the GAN input. As described already in Section IV.3.3,we rely on the generation of multiple objects for the same event to assess thelevel of uncertainty. A hundred different samples are generated with the GANfrom the same initial events, and the distance correlation coefficients are com-puted for each sample allowing the determination of their standard deviation

σGAN
ij . Thus, the combined uncertainty is σ2

ij =
(
σMC
ij

)2
+
(
σGAN
ij

)2. As shown
in Fig. IV.17, correlations are well reproduced and compatible with originating
from statistical fluctuations as χ ≈ 1.1. While most of the individual √χ2

ij arebelow 3, a few exceptions might be noted: the correlations between pTγ /γ and
mγ /γ are at the level of

√
χ2
pTγ /γ

mγ /γ
≈ 5.8, denoting some degree of imperfection

in the GAN generation.
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Figure IV.16 – Correlation matrices computed using the distance correlation on the MC
SR (left) and on sample produced from the GAN application to the MC CR (right).
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Figure IV.17 – Values of the √χ2
ij estimating the agreement between generated and

target correlation for each pair of features.
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IV.5 Application to data

At collider experiments, the strategy of an analysis is usually built from MC sim-ulations. By applying the analysis strategy to the simulated physical processes,we get an estimation of the sensitivity of the analysis. Then, the strategy can betuned to improve the expected sensitivity of the analysis. In this regard, a goodagreement between simulated processes and data is crucial.
A key step of the analysis strategy, after the reconstruction and selection ofphysical objects, is rejecting background events to base the measurement ofphysics observable on signal-enriched events. Thanks to their classification per-formance on problems with high dimensionality, machine learning techniquesare one of the standard procedures for signal extraction/background rejectionin collider analyses. It is the case in H → γγ analyses where a BDT (the dipho-ton BDT) has been implemented to identify events where the diphoton pair isproduced by the decay of a Higgs boson and not by any other SM process. Thediphoton BDT score is computed using as inputs: kinematic variables of bothphotons, photonID BDT score, the resolution estimates on the diphoton massand an estimation of the probability that the diphoton system is associated withthe correct vertex. The output of the diphoton BDT is evaluated in Fig. IV.18 ondifferent background (red) and signal (blue) processes, as well as on data (blackdots).
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Figure IV.18 – Evaluation of the diphoton BDT on simulated samples of background(red) and signal (blue) processes, as well as on data (black dots). The figure comes fromRef. [145], and the shaded region represents the scores of events considered as back-ground in the analysis.
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To determine the level of improvements brought by the GAN, we propose to ap-ply it to a CR from the data recorded by CMS in 2017 to generate an estimationof the γ + jets process. This GANed γ + jets sample is used to replace the MCsimulation of the process in the training of a BDT with a role akin to the dipho-ton BDT, i.e. to single out events with a Higgs boson decaying to two photons. Asecond γ +jets sample is produced by replacing the ID of the misidentified pho-ton (photon with the lowest score) in the same CR of data with a generated IDfollowing the estimated 1D PDF of the ID of themisidentified photon in the SR ofthe MC sample as described in Ref. [25]. This second sample is, in turn, used totrain a diphoton BDT. The performance of the GANed sample is assessed fromthe improvement of the BDT to reject background. To get a fair comparison ofthe discrimination power of both networks, the background sample used for thefinal evaluation is taken from the SR using only the sidebands of data, defined asthe region where mγγ /∈ [115GeV, 135GeV]. The data sidebands exclude most ofthe Higgs-boson signal, ensuring that we evaluate networks on mostly γγ + jetsand γ + jets background.
IV.5.1 Generating a γ + jets sample with the GAN

To investigate a concrete application of the GAN to a H → γγ analysis, the GANis trained with a γ + jets sample generated with MADGRAPH with an additionalfilter enriching the sample with events with two photons. The SR is defined asthe region where events have one photon with an ID score greater than 0 andthe other photon with an ID score above −0.8 and the CR has a requirementreversed for the second photon (below −0.8). Standard selection criteria usedin H → γγ analyses are applied. A summary of all these criteria is provided inTable IV.1. Since we do not have information on the prompt or misidentified
SR CR

IDγmax
≥ 0.0 IDγmax

≥ 0.0
IDγmin

≥ −0.8 IDγmin
< −0.8

100GeV ≤ mγγ ≤ 180GeV∣∣ηγ ∣∣ ≤ 2.5
pTγ 1

≥ 35GeV and pTγ 2
≥ 25GeV

pTγ 1
≥ mγγ/3 and pTγ 2

≥ mγγ/4

Table IV.1 – Definition of the SR and CR to reproduce a H → γγ analysis setting.
nature of photons in data, they are ordered by transverse momentum with γ1(γ2) being the photon with leading (subleading) transverse momentum, i.e. pTγ 1≥ pTγ 2

. They can be also ordered by ID score with γmax (γmin) being the photonwithmax (min) ID, i.e. IDγmax
≥ IDγmin

. These two sorting systems are independent,meaning that γmax does not necessarily have leading pT and vice versa. The GANgenerator is used to replace photonswith the lowest ID score in events of theCR,and the features of the diphoton system are recomputed accordingly. Since theGANed photon is not guaranteed to have an ID below the ID of the unchanged
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photon, photons are reordered after the generation, making sure that pTγ 1
≥

pTγ 2
and IDγmax

≥ IDγmin
.

A reweighting of the events is needed to correct for kinematic differences be-tween theCR and the SR. As demonstrated in Section IV.4, weplanned to reweightthe events based on the kinematic properties of the non-generated photon,given that the generated photons were shown to match the properties of the
SR. However, we found that a non-negligible amount of MJ events were pop-ulating the CR in the data. Unfortunately, the current available MJ simulatedsamples by CMS do not allow the training of the GAN on a mixture of γ + jetsand MJ events. Therefore our final reweighting was performed in two dimen-sions along the transverse momentum of both photons. Contrarily to the CR, amajor contribution to the background in the SR is coming from γγ + jets events.Before reweighting the generated γ + jets sample to the SR in data, a carefultreatment of the γγ + jets event is necessary. The proportion of γγ + jets and
γ + jets in the SR of data is determined by a maximum likelihood fit betweena mixture of the MC simulation for these processes and the data sidebands.This fit is performed in 2D over the IDγmax

and the IDγmin
. Once the proportionof γγ + jets events in the SR is measured, it can be subtracted from the datadistribution in the (pTγmax

, pTγmin
) plane used for the reweighting. Examples ofdistributions before and after fit plus reweighting are shown in Fig. IV.19.

IV.5.2 Generating a γ + jets sample with a 1D PDF

The generation of the estimated γ + jets sample with a 1D PDF is similar to thegeneration from the GAN. The definitions of the SR, the CR, and the selectioncriteria are kept identical, and the method is taken from Ref. [25]. Before gener-ating a photon ID, the PDF of the misidentified photon ID score is derived fromthe SR of the MC simulation of the γ + jets sample (see Fig. IV.20). For all events,a value is randomly drawn with a probability following this PDF to replace thephoton ID of the photon with the lowest ID. This new ID is generated in therange [−0.8, IDγmax

] to ensure that IDγmin
≤ IDγmax

. In addition, a per-event weight
wID is computed to correct the IDγmax

distribution from its shape in the CR to itsexpected shape in the SR:

wID =

∫ IDγmax
−0.8 PDF∫ −0.8

−1
PDF

.
In this case, no need to reorder the photons in terms of ID or pT , so the fit plusreweighting is directly performed, following the procedure described in Sec-tion IV.5.1. Examples of distributions before and after fit plus reweighting areshown in Fig. IV.21.
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Figure IV.19 – Distribution of the pTγ 1
, pTγ 2

, and mγγ using the GANed sample as es-timation of the γ + jets sample before (left column) and after (right column) fit plusreweighting to the data sidebands.
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Figure IV.20 – Probability density function of the ID/γ evaluated in the SR from the γ+jetssimulated sample.

IV.5.3 Comparison of the two methods

Two BDTs are trained tomimic the role of the diphoton BDT and to compare thequality of the two generated samples. Both BDTs are trained using MC samplesof processes producing a Higgs boson (signal sample), and the background sam-ple is the γ + jets sample generated with a PDF for one BDT (BDTPDF) while theother (BDTGAN) takes the γ+jets sample generatedwith the GAN as background.
As inputs to the BDTs, the kinematic features of the photons as well as their IDare used. The output represents the probability that the diphotonpair originatesfrom a Higgs boson. While training, they are also evaluated on an independentvalidation sample to check for any overtraining and the training is stoppedwhenthe validation loss starts increasing. Evaluation of the two BDTs on test samplesis shown in Fig. IV.22. To have a fair comparison of the background rejectioncapabilities of the two trainings, both are evaluated on the same sample fromthe data sidebands of the SR. These data sidebands are mainly composed of
γγ + jets or γ + jets events. To evaluate the performance of a BDT on γ + jetsevents of the data sidebands, the BDT score distribution is computed from anMC γγ + jets sample and the expected fraction of γγ + jets events (computedfrom the fits of Sections IV.5.1 and IV.5.2) is subtracted from the data sidebandsdistribution.
The figure ofmerit used to quantify the discrimination capabilities of a classifica-tion technique is the receiver operating characteristics (ROC) curve. A decisionon the type of an event (signal or background) can be made by setting a thresh-old on theBDToutput. Above the threshold, events are considered as signal, andbelow, they are rejected as background. Therefore, we define the rate of truepositive results as the number of signal events above the threshold divided bythe total number of evaluated signal events and the rate of false positive resultsas the number of background events above the threshold divided by the totalnumber of evaluated background events. The true positive and false positive
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Figure IV.21 – Distribution of the pTγ 1
, pTγ 2

, and mγγ using the sample where IDγmin
isgenerated from a 1D PDF as estimation of the γ + jets sample before (left column) andafter (right column) fit plus reweighting to the data sidebands.
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Figure IV.22 – Evaluation of the output of BDTPDF (left) and BDTGAN (right) on the back-ground (data - MC dipho) and signal (ggH, VBFH) samples.

rates are also called signal efficiency and background efficiency, respectively.By scanning the threshold over the full BDT output range, we extract points inthe (signal efficiency, background efficiency) plane forming the ROC curve. Thearea under the ROC curve (AUC) gives meaningful information on the discrim-ination power of the classification method as a perfect classifier would get anAUC of 1 and a random classifier an AUC of 0.5.
The ROC curves of the two BDTs of interest are compared in Fig. IV.23. As thehighest AUC is obtained with BDTGAN, it means that the sample generated withtheGAN is improving the background rejection possibilities. A comparison of theimpact on signal and background efficiencies for fixed working points is giventhrough the ratio plots of Fig. IV.23. The ratio of signal efficiencies obtainedfrom the two trainings (ratio sig) shows that BDTGAN based selection offers ahigher signal efficiency for a given background efficiency. In the same way, ratiobkg demonstrates that BDTGAN gives a lower background efficiency at fixed sig-nal efficiency levels. While their performance is similar at very high signal andbackground efficiency, BDTGAN reduces background down to 88% of what couldbe achieved with BDTPDF depending on the targeted signal efficiency level. Byusing S/√B , where S and B are, respectively, the signal and background yields,as an estimation of the sensitivity of a region in the phase space, reducing thelevel of background by 12% for the same signal efficiency means improving thesensitivity of this region by ≈ 7%.
To show the difference when applying selection requirements on the score of
BDTPDF or BDTGAN, we report in Table IV.2 the number of events selected fromeach sample when targeting 80% signal efficiency. A zoom around this efficiencylevel is provided in Fig. IV.23. As expected, the selection from the output of bothBDTs reduces mainly γ + jets events (equivalent to Data − (γγ + jets) events inTable IV.2); they are the main source of background when no cut is applied and
γγ + jets events become dominant after the selection. However, at the samesignal efficiency level, the selection on BDTGAN rejects more background fromboth γγ + jets and γ + jets events.
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Figure IV.23 – Comparison of the ROC curve of BDTPDF (blue) and BDTGAN (red). Ratiosig is the ratio of signal efficiencies of both ROC curves at a given value of backgroundefficiency. And vice versa, ratio bkg is the ratio of background efficiencies of both ROCcurves at a given value of signal efficiency.

Signal γγ + jets Data − (γγ + jets)
No cut 56 227220 739674Cut BDTPDF (ϵsig = 0.8) 45 (80%) 170534 (75%) 121909 (17%)Cut BDTGAN (ϵsig = 0.8) 45 (80%) 168259 (74%) 118756 (16%)

Table IV.2 – Estimated yield of each sample when applying cut on the score of BDTPDFand BDTGAN to target a signal efficiency (ϵsig) of 80%.
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IV.6 Conclusion

In this chapter, I have presented a new data-driven technique to create back-ground samples for HEP background processes with one misidentified object.A CR is defined by requiring an object to fail ID criteria. A generated misidenti-fied object replaces this object to simulate an event in the SR. The technique isbased on conditional generative adversarial networks (GANs), which are knownto be challenging to train. To assess the generator performance, we developeda figure of merit based on a negative log-likelihood. Due to random fluctuationsintrinsic to the latent space used in GANs, we introduced a multiple-samplingmethod to obtainmore consistent results in themodel performance evaluation.
The application and the performance of the technique are demonstrated on the
γ + jets background in the context of the H → γγ analysis at the LHC. I haveshown that the conditional GAN-based technique produces object observablesthat have excellent agreement with the signal-like object observables and non-linear correlations of these observables within themselves and with the proper-ties of the rest of the event. Therefore, the samples generated by this techniquecan be used to improve the background description in the H → γγ analysis. Thisis especially true in SR with specific constraints where the MC simulation mightbe suboptimal due to its low number of events and its inaccurate description ofthe γ + jets background. This work is published as Ref. [141].
Finally, to quantify the improvements brought by the GAN in the estimation ofthe γ + jets background, a BDT was trained to reject background thanks to theGANed sample. This BDT was compared to a second one, this time trained witha γ + jets sample generated with the method of the ID/γ probability distributionfunction. Their receiver operating curve is drawn to confront their classifica-tion performance on data sidebands. From the area under the ROC curves, afinal score arbitrates that the GAN offers better discrimination possibilities toimprove the absolute sensitivity of the analysis.
It has to be noted that although this study was carried out in the context ofthe H → γγ analysis, this method could be trained to generate other objectsand help other analyses dealing with backgrounds coming from misidentifiedobjects.
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V.1 Physics motivations and analysis strategy

This chapter lays out my involvement in the analysis of the H boson couplingswith electroweak gauge bosons (W and Z bosons) using theH boson decay chan-nel into a pair of photons. Ten years after the discovery of the H boson, manyanalyses aim at precise measurements of its properties thanks to the increasingamount of data collected by the CMS and ATLAS experiments. This is a way ofchecking the consistency of the H boson properties with the predictions of thestandard model (SM). Any deviation from these predictions could hint at newphysics effects that would require theories going beyond the standard model(BSM). Since the SM does not explain several fundamental questions (as men-tioned already in Chapter I), major efforts at the LHC are carried out to identifywhich sectors of the SM could open the door to new physics.
The SM predicts the H boson to have spin-parity quantum numbers JPC = 0++,i.e. a spin 0 and a CP-even behaviour. Constraints consistent with the SM predic-tions have already been put by the CMS [22, 25, 27, 154] and ATLAS [155–158] ex-periments on the spin-parity nature of the H boson. However, these constraintsare leaving room for small BSM couplings and some of them would indicatea potential CP-odd nature for the H boson. These small couplings are not ex-pected in the SM, and in that sense, are regarded as anomalous couplings. Theseanomalous couplings were studied in different decay channels (H → ZZ [27] orH → τ τ [154]) and in the H → γγ channel but in the particular case of the ttHproduction mode [25]. This chapter presents a complementary way of probingthe CP nature of the H boson by analysing its production in the VBF and VH(V = Z or W) modes and in the H → γγ channel. Preliminary studies showedthat, given a large enough data set, this analysis is sensitive to the couplings ofthe H boson with electroweak gauge bosons through the VVH coupling vertex inthe vector boson fusion (VBF) and VH productions [143]. The analysis is sharedbetween several CMS analysis teams with the VBF production analysed by theteam of INFN Rome, the VH production where V decays to leptons (VlepH) and Vdecays to neutrinos (VMETH) is treated by teams of the University of Minnesota,the John Hopkins University and the National Taiwan University, while I am re-sponsible of the VH production where V decays hadronically (VhadH). We anal-yse data collected by the CMS experiment during the three years (2016, 2017,2018) of the second run of the LHC, corresponding to an integrated luminosityof 137.6 fb−1.

V.1.1 Modeling couplings of the Higgs boson with
electroweak gauge bosons

We rely on an effective description of the interaction between a spin-zero H bo-son and two spin-one gauge bosons. This is achieved by defining the scatteringamplitude of this interaction A(HVV) in its most general form and bymeasuringor constraining the parameters manifesting the intensity of each coupling term.It allows for a model-independent study of the HVV vertex, and specific theo-ries can confront their model to the measured couplings. By taking the same
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notation as previous CMS analyses [22], the scattering amplitude takes the form

A(HVV) ∼
aVV1 +

κVV1 q2
1 + κVV2 q2

2(
ΛVV
1

)2 +
κVV3 (q1 + q2)

2(
ΛVV
Q

)2
m2

V1ϵ
∗
V1ϵ

∗
V2

+ aVV2 f ∗(1)µν f ∗(2),µν + aVV3 f ∗(1)µν f̃ ∗(2),µν , (V.1)

where mVi , qi and ϵi are the mass, momentum and polarisation vector of vec-tor boson i , allowing the definition of its field strength tensor f (i),µν and its dual
f̃ (i),µν as f (i),µν = ϵµi q

ν
i − ϵνi q

µ
i and f̃ (i),µν = 1

2
ϵµνρσf (i)ρσ . The ai are the couplingconstants modifying the contribution of each term in the total amplitude, and

Λ1 and ΛQ correspond to the energy scale of BSM effects. The VV pair standsfor ZZ, WW, gg, γγ or Zγ but through the VBF and VH production mode, we areonly sensitive to the impact of the couplings of the H boson with ZZ, WW or Zγpairs. Some of these couplings are expected to have nonzero values by the SM.In particular, the aVV1 parameter corresponds to the contribution from the treediagram of a H boson with a pair of gauge bosons, so in the SM, aZZ1 = aWW
1 = 1while κ1,κ2, a2, a3 = 0. The aVV2 , κVVi /(ΛVV

1 )2 and κVV3 /(ΛVV
Q )2 couplings are partof CP-even terms. They may get loop-induced contribution from the SM at thelevel of (O(10−2–10−3)), not accessible with the current data. Tight constraintshave already been set on ΛVV

Q [159], so this parameter is not considered in the
analysis. The aVV3 term would indicate a pseudoscalar H boson (i.e. with CP-oddbehaviour), so it is also considered as an anomalous coupling. Because of sym-metry and gauge invariance arguments, constraints can be put on the followingcouplings κZZ1 = κ

ZZ
2 = − exp(iϕZZΛ1), κZγ1 = 0 and κZγ2 = − exp(iϕZγΛ1). We assumethe following symmetry for all parameters xZZ = xWW where x is ai , κi or Λ1,so the superscripts are dropped if they concern parameters of HZZ or HWWprocesses.

To represent the physical effects of these anomalous couplings, it is relevant todefine their associated cross section fraction fx and phases ϕx . By defining thetotal cross section as σtot = |a1|2σ1 + |a2|2σ2 + |a3|2σ3 + σ̃Λ1
/(Λ1)

4 + σ̃
Zγ
Λ1
/(ΛZγ1 )4

where σ̃Λ1
(σ̃ZγΛ1

) is the effective cross section for the process with Λ1 (Λ
Zγ
1 ) = 1 TeV

and thus in units of fb TeV4, we have the final list of observables of interest forthis analysis:
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As it is a ratio of cross sections, many systematic uncertainties are cancelling forthese parameters, and they act as mixture coefficients between the differentBSM hypotheses, so their range is bounded between 0 and 1.
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V.1.2 Strategy

The outline of the analysis strategy is similar to what was proposed in previousH → γγ analyses [145]:
• Preselection: After the physics objects reconstruction and correction, apreselection is applied based on the kinematic features of the event toenhance the signal purity.
• Categorisation: First, a machine-learning-based algorithm is trained todiscriminate Higgs boson signals (SM and BSM) from SM backgrounds andSM Higgs boson production from BSM Higgs boson production. Basedon the score of these classifiers, we define categories targeting regions ofthe phase space where we expect different behaviour from the differentphysics model hypotheses. It allows the final statistical analysis to probethe compatibility between hypotheses.
• Statistical analysis: Models for the signal and background distributionsof the diphoton massmγγ are defined in each category. These models arefitted to data, and a log-likelihood ratio is defined as a statistical test to putconstraints on a parameter of interest (like fa3).

In this chapter, I will focus onmy contribution to the design of the VhadH part. Af-ter the physics objects reconstruction and correction (summarised in Section V.2),we study the specific behaviour of the VhadH-event properties. Section V.3.3compares the kinematics of the different production modes to clarify the pre-selection requirements. To enhance the discrimination power, a deep neuralnetwork (DNN) is trained from kinematics features to classify events betweenthree classes: VH SM signal, VH BSM signal and background described in Sec-tion V.4. Since the outputs of the DNN provide a greater separation comparedto kinematics variables only, categories are built from these outputs to createregions in phase space enriched either with SM or BSM signal. The optimisa-tion of the categories is described in Section V.5 and is done by computing anestimate of the upper limit on fa3 at a 95%CL. Finally, the expected results are ex-tracted using common statistical tools developed within CMS collaboration andare presented in Section V.6.5.

V.2 Trigger and objects definition

Triggers

As described in Chapter II, because of constraints on the data collection through-put and available storage, event information is stored for offline analyses only ifthey pass some trigger requirements. These requirements target specific signa-tures to enrich the recorded data with potentially interesting events in terms ofphysics. Two trigger levels must be satisfied based on the hardware response:the first-level trigger (L1 trigger) and the high-level trigger (HLT). The trigger re-quirements for H → γγ analyses are detailed in this section.
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The L1 trigger expects at least one electromagnetic candidate in the ECAL. Thesecandidates are built by aggregating the energy deposits of adjacent crystals ofthe ECAL, thus forming relevant clusters of crystals. If two candidates are de-tected, then the requirements on the ET of the candidates are lowered to 25GeVand 14GeV (23GeV and 10GeV) for 2017-2018 (2016) data.
From the clusters passing the L1 requirements, the HLT system builds furtherrequirements to ensure the relevance of candidate events containing electronsor photons (e/γ ). A version of the CMS-offline-reconstruction algorithmwhittleddown to its elementary steps is applied to the electromagnetic clusters to forme/γ candidates. With these steps, e/γ are defined through kinematic, isolationand shower shape variables:

• ET : transverse energy of the photon;
• H/E: ratio between the energy collected in the HCAL (H) and energy de-posited in the ECAL (E);
• R9: fraction of the supercluster total energy contained in a 3×3 crystal sur-rounding the supercluster seed;
• σiηiη: lateral extension of the electromagnetic shower in terms of crystal;
• IsoHLT

ph : sumof the transverse energy of other particles identified as photonby the particle-flow algorithm [52] and falling in a conewithR = 0.3 aroundthe photon candidate direction;
• IsoHLT

track: sumof the transverse energy of tracks falling in a conewithR = 0.3around the photon candidate direction but not falling in the inner conewith R = 0.04;
The set of HLT requirements dedicated to photon candidates in the H → γγanalysis is summarised in Table V.1 and is applied on the single or pair of clustersof the event that passed the L1 criteria.

EB EE
ET > 30GeV ET > 30GeV
|η| < 2.5 |η| < 2.5

H/E < 0.12 H/E < 0.1
R9 > 0.5 R9 > 0.8

R9 > 0.85 R9 ≤ 0.85 R9 > 0.9 R9 ≤ 0.9— σiηiη < 0.015 — σiηiη < 0.035

— IsoHLTph < 6.0 + 0.012ET — IsoHLTph < 6.0 + 0.012ET

Table V.1 – Requirements of the HLT to collect an event in the H → γγ path.

Finally, if at least one of the clusters passes the L1 and HLT selections, then theentire ECAL is clustered, and a pair of γ is required (where at least one is the L1candidate). A new set of selection criteria is applied to all the electromagneticobjects reconstructed as clusters in the ECAL detector. They are the same as
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Table V.1 with the following substitution and additions : ET of the photons above
22GeV (18GeV) in 2017-2018 (2016) data, IsoHLTtrack < 6.0 + 0.002ET , and mγγ >
90GeV.
The performance of the triggers is studied bymeasuring the efficiency of the trig-ger selection using the tag and probe method on Z → ee events. Yet, becauseof the material located in front of the ECAL, electrons have different showershapes compared to photons. Due to bremsstrahlung emission along the elec-tron track path, the electron showers tend to be broader. The η distribution ofphotons coming from the Higgs boson decay also differs significantly from theone of electrons arising in the Z boson decay. To correct these effects, eventsare reweighted in 2D with R9 – |η| weight matrices computed from H → γγ andDrell-Yan Z → ee simulated samples. Finally, the computed efficiencies for eachyear are binned in pT , R9, and |η| and are used to correct simulated samples. Thiscorrection reproduces the effects of the trigger on the expected background andsignal yields in data.

Photons

Asmentioned already in thedescription of the trigger, photons are reconstructedfrom clusters of energy deposits in the ECAL. Photons leave all their energyin the form of an electromagnetic shower in the ECAL, which can spread overmultiple crystals. In some occurrences, interactions happen with the materialupstream from the ECAL, and photons can convert into an electron-positronpair. Since the ECAL is within the high magnetic field of the CMS detector, elec-trons and positrons have bent trajectories that lead to energy deposits spreadover an even larger number of crystals. In order to recover all possible infor-mation, these clusters are grouped into larger ensembles called superclusters,representing the complete shower stemming from a prompt photon, convertedor not. Information on the pseudorapidity and azimuthal angle of the recon-structed photons is extracted from the supercluster position. However, the en-ergy of the photon candidate is inferred from a multivariate approach to com-pensate for the energy loss due to upstream material or due to imperfectionsin the cluster aggregations. This method allows a more accurate measurementof the photon energy and also gives an estimation of the resolution of the en-ergy measurement. By using Z → ee events, a correction on the energy scaleof the regressed energy can be determined from the difference of the Z peak inMC simulations and in data. After applying the scale correction, a correction onthe resolution is computed by applying Gaussian smearing centred around thecorrected peak to MC simulations and using a maximum likelihood fit to data tofind the correct modification needed on the energy resolution.
A description of the photon ID was already given in Section IV.2 of Chapter IV,particularly how it is derived from shower shape and isolation variables. Eachreconstructed photon is given a score (the photon ID score) representing its like-lihood to be a prompt photon, as opposed to a misidentified photon originatingfrom the decay of neutral mesons. It means that discrepancies in the photon IDdistributions between MC samples and data indicate that part of these showershape and isolation variables are impacted by imperfect modelling of the CMS
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detector simulation. To mitigate these effects, corrections can be applied to MCsimulations. They are computed from a procedure based on chained quantileregression [145] that aim at shifting the input distributions of the photon ID BDTin the simulation until their cumulative distribution function matches the onesof data. Again, these corrections are derived from Z → ee events. It allows therecovery of shower shape and isolation distributions as observed in data, and itcorrects the bias on the photon efficiency.
Then, from the reconstructed and corrected photons of the events, diphotonpairs are formed. In addition to the requirements of the triggers on photons,selection criteria are applied on the pT of the photons to recover a smoothlyfalling background shape in the diphoton mass distribution: pTγ 1

/mγγ > 1/3and pTγ 2
/mγγ > 1/4.

Vertices

To reach the highest precision in reconstructing the Higgs boson properties, allinformation on the diphoton system needs to be precisely reconstructed. Inparticular, any shift in the reconstructed vertex position is detrimental as it de-grades the mass resolution of the diphoton system and would squander theexcellent energy resolution of the ECAL. A first set of primary vertices is recon-structed for each event through a standard CMS algorithm [160]. Based on thisset of reconstructed vertices, a vertex identification algorithmwas developed asa common remedy for H → γγ analyses [145].
Because of additional collisions occurring at the same time, known as pile-upcollisions (PU), several primary vertices are reconstructed for a given eventwith acommon primary vertex reconstruction algorithmwithin the CMS collaboration.Thus, a first BDT is trained to give a vertex-based score (the vertex identificationscore vtxID), indicating its likelihood to be the primary vertex associated with thediphoton system. The vtxID BDT takes as input variables related to the diphotontopology in the detector as well as variables of the other tracks associated withthe vertex. A signal sample is built from H → γγ MC samples with the primaryvertices closest to the true generated one, and the background sample consistsof any other primary vertices. After computation of the vtxID of each primaryvertex in H → γγ analyses, the final vertex chosen for a given event is the onewith the highest vtxID score.
A second BDT defines the per-event probability that the chosen vertex is thecorrect one (the vertex probability score vtxprob). The impact of the diphotonvertex displacement on the mγγ reconstruction is negligible compared to theeffects of the ECAL resolution if it is less than 10mm away from its true posi-tion. Therefore, the vtxprob BDT determines the probability that the selecteddiphoton vertex is within 10mm of the true vertex, i.e. the fraction of eventswith |∆z | = |zselected − ztrue| < 10mm where zselected is the position of the chosendiphoton vertex and ztrue its true position. It is trained using the same signal andbackground samples as the vtxID BDT, and it uses as inputs the pT of the dipho-ton pair, the number of primary vertices, the three highest vtxID, the distancebetween the chosen vertex and other candidates, and the number of converted
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photons.
The performance of the full vertex identification algorithm is validated by usingZ → µµ events from data and MC samples. As the algorithm is built aroundphotons, i.e. with no track information, it can be used on reconstructed muonsby withholding their track information and comparing the results of the algo-rithm with the actual reconstructed vertex of the dimuon system. A reasonableagreement is observed betweendata andMC simulations (see Fig. V.1), and scalefactors are computed to account for the remaining differences. These scale fac-tors are computed as the ratio between the per-event probability computed indata and MC samples for Z → µµ events, and they are applied to H → γγ MCsimulations as a function of the diphoton pT .
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Figure V.1 – Validation of the vertex identification algorithm on Z → µµ events fromRef. [145].

Jets

Jets are objects reconstructed from the imprint left in the detector by the showerof particles originating from quarks or gluons. Indeed, they immediately frag-ment and hadronise, so they cannot be observed directly. The reconstructionof all particles present in these showers is essential as it impacts the inferredproperties of the initial parton. Jets are reconstructed from the set of particlecandidates clustered by the PF algorithm using the anti-kT algorithm [161] witha radius parameter set to 0.4. Charged particles are removed from this clus-tering step if they are not associated with the primary vertex identified with the
vtxID. This is tomitigate the contribution fromparticles produced by PUhappen-ing within the same bunch crossing. Corrections to the jet energy are derivedwith respect to the jet type and its kinematic variables and are applied to jetsin data and MC simulations. In addition, measurements show that the energyresolution of the jets in data is worse than in MC. This is taken into account bysmearing the jets pT in MC samples to match the jet energy resolution observedin the data.
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V.3 Highlighting H → γγ events

V.3.1 Collected data and MC simulations

Data samples

This analysis uses the full data set collected during the second data acquisitionperiod of the LHC, spanning three years from 2016 to 2018 at a centre-of-massenergy of√s = 13 TeV. The integrated luminosity collected for each year is as fol-lows: 35.9 fb−1 in 2016, 41.5 fb−1 in 2017 and 59.8 fb−1 in 2018. This correspondsto a total integrated luminosity of 137.2 fb−1. Data samples are blinded duringthe design of the analysis so as not to bias ourselves by masking events with adiphoton mass close to the mass of the H boson: mγγ /∈ [115GeV, 135GeV].
Simulated samples

Monte Carlo programs are used to simulate specific physics processes arising inthe proton-proton collisions followingmatrix element calculationswith a leading-order (LO) or next-to-leading-order (NLO) description of QCD effects, dependingon the generator. The pp → γ + jets and pp → γγ background processes aregenerated with theMADGRAPH5_AMC@NLO [162, 163] and SHERPA [164] generatorsrespectively. The background samples are used to define the analysis strategyand train potential discriminates, but they are not used to do the final back-ground estimation (as it is done directly from data sidebands). Samples describ-ing processes with anomalous couplings of the H boson are generated with theJHUGEN [165–167] program for different values of the a2, a3, Λ1 or ΛZγ1 anoma-lous coupling parameters. The SMproductions of theH boson fromgluon fusion(ggH), vector boson fusion (VBF), or associated with a Z or W boson (VH), or att pair (ttH) are described with the POWHEG [168–170] and MADGRAPH programs,with a NLO generation. MADGRAPH is also used to generate samples used in thesignal modelling with alternative mass value hypotheses for the Higgs boson at
120GeV and 130GeV. The samples from POWHEG are favoured for the design ofthe analysis strategy and the training of MVA methods as they have the benefitof providing non-negative weights. It allows the comparison of NLO and LO de-scriptions of the processes (see Section V.3.2). The NNPDF 3.0 (3.1) [171] partondistribution functions are used for 2016 (2017 and 2018).
The PYTHIA [172] program is interfaced on all samples to include all particle de-cays, to describe parton showering and hadronisation, and also to overlay ad-ditional pileup events following the luminosity profile. All cross sections andbranching ratios are taken from the recommendations of the LHC CrossSection-Working-Group [173]. These samples are processed through a GEANT4 [132, 133]description of the CMS detector to simulate detector effects. Finally, correctionsdescribed in Section V.2 are applied to correct MC simulations.
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V.3.2 Reweighting of JHU samples

The anomalous productions of the H boson are simulated using the dedicatedgenerator JHUGEN at LO QCD. To compare the deviations from an NLO genera-tion, an SM sample is generated with JHUGEN by removing all anomalous contri-butions. The JHUGEN (LO) and POWHEG (NLO) simulations are explicitly comparedafter parton showering in the SM case, and discrepancies are found in kinematicobservables as demonstrated in Fig. V.2. For instance, a large deviation is found
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Figure V.2 – Comparison of the differences in event properties between the generationof an SM sample at LO with JHUGEN and at NLO with POWHEG.
in the number of jets NJets due to a lower number of jets produced at LO. Thishas a significant impact on the dijet mass distribution as the combinatorial back-ground is reduced. The two jets coming from the decay of the V boson are iden-tified more frequently, resulting in a thinner dijet mass distribution. Anotherdifference is visible in the minimal angle between a jet and a photonmin(∆Rjγ ).As less jets are generated,min(∆Rjγ ) is higher in the JHUGEN case. The pT of thereconstructed intermediate vector boson (pTγγ jj ) is also softer in the LO case.Therefore, a reweighting of the JHUGEN samples is implemented to correct forthese discrepancies.
To implement a reweighting efficient on all BSMsamples generatedwith JHUGEN,the reweighting is computed from event properties that do not depend on theBSM hypothesis, such as the number of jets Njets or the dijet massmjj , as shownin Fig. V.3. This reweighting is then applied to all JHUGEN samples to improve thedescription of BSM processes. After numerous attempts, no set of variables hasproven capable of correcting all discrepancies between the JHUGEN and POWHEGdescriptions of the SM distributions. The best reweighting we reached is offeredby using the (mjj , Njets) pair of distributions in two dimensions. An illustration ofsome reweighting choices is shown in Fig. V.4 with examples both before (filledhistogram) and after reweighting (dashed histograms).
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Figure V.3 – Comparison of different BSM hypotheses.
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Figure V.4 – Example of kinematic distributions of the VH process in the SM with NLOQCD generation (POWHEG, filled histogram) and attempts at reweighting the SM samplewith LO generation (JHUGEN, dashed histograms).
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The goal of this reweighting is to get a better description of the BSM distribu-tions to improve the definition of the categories defined in Section. V.5. Thesecategories are defined from the outputs of a multiclassifier DNN trained to en-hance the discrimination of the different physics processes. Thus, the reweight-ing is done on theDNNoutputs directly to reach the optimal agreement betweenthe DNN distributions of both SM samples (LO and NLO). More details on thisreweighting are given in Section. V.5. In addition to the reweighting, a system-atic uncertainty is derived to account for the effects of an imperfect reweightingand is described in Section. V.6.4. A similar procedure is applied in the VBF and
VlepH parts of the analysis.

V.3.3 Phenomenology of VhadH events and preselection

As mentioned in Section. V.1.1, the H → γγ analysis is sensitive to the couplingsof the Higgs boson with electroweak gauge bosons through the VH and VBFproduction modes of the Higgs boson. The HVV vertex can be clearly identifiedfrom their Feynman diagram presented in Fig. V.5.

Figure V.5 – Feynman diagrams of the VH (left) and VBF (right) production modes ofthe H boson.

The analysis is divided into orthogonal phase spaces. The first one is dedicatedto the VBF production, and two others depend on the final state of the VHproduction (where V = Z or W). Indeed, with the production of a gauge bo-son in the VH case, we can expect the vector boson to decay in two hadrons(B(Z → qq) = 70%, B(W → qq) = 67%), in two leptons (B(Z → ℓℓ) = 3.3% with
ℓ = e,µ or τ ), in one lepton and one neutrino (B(W → ℓν) = 11%), or two neu-trinos (B(Z → νν) = 20%). Events with at least one lepton are gathered as VlepH,events with a significant missing transverse momentum correspond to VMETH,and other events with at least two jets belong to the VhadH phase space.
Since we are responsible for optimising the sensitivity in the VhadH case, we aimto define a way to extract VhadH events from other processes. As such, duringthe design of VhadH strategy, we consider other SM productions of the H bo-son as background, in addition to the QCD processes producing two photons intheir final state (γγ + jets) or with misidentified photons (γ + jets). This extrac-tion is done through preselection of the events from their distinctive kinematicfeatures and by training a DNN (described in Section V.4) to classify events. Thepreselection already provides a way to separate VhadH events from other pro-
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duction modes of the SM. The VlepH part of the analysis requires leptons in itsfinal state, so we apply a veto on events with leptons. Contrary to the VBF phasespace, we expect two hadrons originating from the decay of a W or Z boson, sothe invariant mass of the dijet system mjj should be close to mW or mZ . Thus,we focus on the region mjj < 250GeV while the VBF part focuses on the regionwhere mjj > 250GeV. Additional requirements are introduced, following rec-ommendations of physics groups of the CMS collaboration in charge of physicsobject reconstruction, and the final set of requirements is given in Table V.2.
Full VhadH preselection

100GeV < mγγ < 180GeV
pTγ 1

/mγγ > 1/3

pTγ 2
/mγγ > 1/4

IDγ > 0
|ηγ | < 2.5

pTj > 30GeV
|ηj | < 2.5

mjj < 250GeV
Table V.2 – Presentation of the preselection behind the definition of the signal regionfor the VhadH case.

Examples of distributions showing discrimination potential are shown in Fig. V.6.These discriminating features are particularly useful for the training of discrim-inants such as DNN. Most of the diphoton features allow the discriminationbetween Higgs and non-Higgs processes because the diphoton pair is moreboosted when coming from the decay of a Higgs boson. This results in a harder
pT spectrum for the photons (pTγ 1

and pTγ 2
) and tighter differences in azimuthalangles (∆ϕγγ ) or pseudorapidity (∆ηγγ ). Other variables allow the direct separa-tion of the VhadH process from all background processes, such as the dijet mass

mjj (as already described) or the cos(θ∗) property. The angle θ∗ is defined as theangle between the direction of the diphoton pair in the diphoton-dijet centre-of-mass and the direction of the diphoton-dijet system in the lab frame. Given thecommon origin of the dijet and diphoton systems in the VhadH case, the cos(θ∗)is flat, while for other processes where the dijet and diphoton systems are notcorrelated, the distribution is peaked at cos(θ∗) = −1 or 1.
Distributions comparing the different BSM scenarios are presented in Fig. V.7.To allow for a fair comparison, the distributions from LO generation are com-pared to an NLO generation in Fig. V.8 to distinguish effects from the order ofgeneration and effects due to different BSM hypotheses. A major differencebetween samples with a BSM scenario and SM distribution is that the BSM sce-narios describe loop-induced processes. It results in amuch harder pT spectrumand more boosted reconstructed objects.

V.3 Highlighting H → γγ events 125



200 400
pTj1

[GeV]

0:00

0:02

0:04

0:06

0:08a.
u.

CMS Work in progress

‚‚

‚ + jets

ggH+VBF+ttH

VH

Data

50 100 150
pTj2

[GeV]

0:00

0:02

0:04

0:06

0:08

a.
u.

CMS Work in progress

‚‚

‚ + jets

ggH+VBF+ttH

VH

Data

0:00 0:25 0:50 0:75 1:00
btagj1

0:000

0:025

0:050

0:075

0:100

0:125a.
u.

CMS Work in progress

‚‚

‚ + jets

ggH+VBF+ttH

VH

Data

0 2 4
|∆”jj|

0:00

0:01

0:02

0:03

0:04

a.
u.

CMS Work in progress
‚‚

‚ + jets

ggH+VBF+ttH

VH

Data

100 200
mjj[GeV]

0:00

0:02

0:04

0:06

a.
u.

CMS Work in progress
‚‚

‚ + jets

ggH+VBF+ttH

VH

Data

1 2 3 4
min(∆Rj‚)

0:00

0:01

0:02

0:03

a.
u.

CMS Work in progress
‚‚

‚ + jets

ggH+VBF+ttH

VH

Data

0 1 2 3 4
pT‚1

m‚‚

0:00

0:02

0:04

0:06

0:08

0:10

a.
u.

CMS Work in progress

‚‚

‚ + jets

ggH+VBF+ttH

VH

Data

0:0 0:5 1:0 1:5 2:0
pT‚2

m‚‚

0:000

0:025

0:050

0:075

0:100

0:125

a.
u.

CMS Work in progress

‚‚

‚ + jets

ggH+VBF+ttH

VH

Data

−2 0 2
∆”‚‚

0:000

0:005

0:010

0:015

0:020

0:025

a.
u.

CMS Work in progress
‚‚

‚ + jets

ggH+VBF+ttH

VH

Data

−2 0 2
∆ffi‚‚

0:00

0:01

0:02

0:03

0:04

a.
u.

CMS Work in progress
‚‚

‚ + jets

ggH+VBF+ttH

VH

Data

0 200 400 600 800
pT‚‚ [GeV]

0:00

0:02

0:04

0:06

0:08

0:10

a.
u.

CMS Work in progress

‚‚

‚ + jets

ggH+VBF+ttH

VH

Data

−1:0 −0:5 0:0 0:5 1:0
cos(„∗)

0:00

0:01

0:02

0:03

0:04

a.
u.

CMS Work in progress
‚‚

‚ + jets

ggH+VBF+ttH

VH

Data

Figure V.6 – Distributions of event variables for SM samples. They are normalised to the
VH sample to better illustrate differences in shape. The γγ and γ + jets distributionsare first stacked and then normalised.
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Figure V.7 – Distributions of event variables of the VH process in different BSM scenar-ios. They are normalised to the SM VH sample to better illustrate differences in shape.
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Figure V.8 – Distributions of event variables of the VH process in the SM case to com-pare the effect of using LO (JHUGEN) or NLO (POWHEG) computations to generate thesimulated sample.
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V.4 Machine learning for events discrimination

In addition to the dedicated preselection, a multiclassifier DNN is specificallytrained to identify events within the VhadH phase space. Multiclassifiers are neu-ral networks with multiple outputs representing the probability for an event tobelong to a given class. In our case, its role is to separate events into threeclasses:
• VhadH background: backgrounds to theVH hadronic productionmode in-clude resonant background from other SM productionmodes of the Higgsbosonor non-resonant background coming frompp → γγ or pp → γ+jetsprocesses. For the resonant background, the ggH sample is used, andeach background component (ggH, γγ + jets, γ + jets) is then mixed withthe same proportion (33% of the total background weights).
• VhadH SM-like signal: VhadH events with couplings as expected in the SM.
• VhadH BSM-like signal: VhadH events displaying deviations from the ex-pected couplings of the SM.

The three associated output probabilities given by the DNN are respectively
DNNbkg,DNNvh, andDNNbsm following the relationDNNbkg+DNNvh+DNNbsm = 1.As inputs to the network, we use the kinematic properties of the two photonsand the two jets with leading pt and features with high discrimination powerbetween the three considered classes. We base our selection of input featureson the VhadH BDT developped for the STXS analysis [145] and extend them tothe following list: pTγ 1

/mγγ , ηγ 1
, IDγ 1

, pTγ 2
/mγγ , ηγ 2

, IDγ 2
, ∣∣∆ηγγ ∣∣, ∣∣∆ϕγγ

∣∣, pTj1
,

ηj1 , ϕj1
, btagj1 , pTj2

, ηj2 , ϕj2
, btagj2 , mjj , ∣∣∆ηjj ∣∣, min(∆Rjγ ), cos θ∗. Some of the mostdiscriminating features in the list of inputs are shown in Figs. V.6, V.8 and V.7.

The DNN is trained using Keras and its TensorFlow backend [91]. The trainingis done with MC samples taking into account the productions γ + jets, γγ , ggH,
VH 0+ and VH 0-. During the study of the reweighting procedure for JHUGENsamples, we found that using a reweighting based on (pTγγ , Njets) before thetraining of theDNNhelped the network to improve its performance. Theweightsof the events are usedduring the training toweight the categorical cross-entropyloss accordingly, and the sum of the weights in each class is normalised to bringthe same contribution to the loss computation. A proportion of 25% of the totalnumber of events is kept for validation, i.e. to check for any overfitting whiletraining.
Multiple training setups are tested through the Hyperband algorithm [174] ofthe Keras tuner [175] to determine which provides the best-performing net-work. The Hyperband algorithm is an extension of the random search for theoptimal set of hyperparameters. It considers the finite amount of resourcesavailable (e.g. training time, number of epochs, etc.) and relies on a tournament-based search. The algorithm starts by providing a small number of resources,for instance, a few training epochs, to a large number of trainings with randomlydrawn hyperparameters configurations. After these few epochs, the algorithmdiscards two-thirds of theworst-performing trainings basedon the result of theirvalidation loss and continues training the best-performing one. Finally, only
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one training configuration remains and is designated as the winner of the ini-tial bracket. Five brackets are formed, and the model with the lowest validationloss among all brackets identifies the optimal set of hyperparameters. The Hy-perband algorithm optimises hyperparameters among the number of neuronsfor each layer of the network, the percentage of dropoutwhile training, the slopeof the leakyReLU activation function, the batch size, and the learning rate. Theoptimal values are found to be :
• Number of neurons: 512 (first layer), 128 (second layer), 32 (third layer)
• Dropout: 0.25
• Slope of leakyReLU: 0.0
• Batch size: 128

• Learning rate: 10−3

The performance of the optimised network is shown in Fig. V.9 with the eval-uation of the three DNN outputs on samples belonging to the three differentclasses. The GJet, Diphoton and ggH samples corresponds respectively to the
γ +jets, γγ +jets and ggH processes belonging to the background class. The VHsample represents the VhadH SM-like signal class. Finally, the VH0M sample isdescribing events in the fa3 = 1 hypothesis which constitute the VhadH BSM-likesignal class. It illustrates the discrimination possibilities brought by the threeDNN scores. Figure V.10 shows the same evaluation from a different point ofview with the distributions of the three scores sample by sample and the 2Dhistograms hinting at correlations between the three possible pairs of DNN out-put. Furthermore, ROC curves are computed (see Fig. V.11) to probe the abilityof each DNN score to distinguish events coming from two different classes.
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Figure V.9 – Evaluation of the DNN outputs on samples from the three classes.
Fromseveral figures ofmerits inspecting the performance of theDNN (especiallyFig. V.10), it appears that the outputs of the DNN are strongly correlated. Thus,rather than relying on a single score for each event, a better strategy to buildcategories enriched in SM-like or BSM-like signal events is to rely on 2D cutson two of the three DNN outputs. Since their sum is one, constraints on twoof the DNN outputs are actually fixing the third one as well. We can see fromFig. V.10 that events are already localised in distinct areas based on their classin the plane (DNNbkg, DNNbsm) in the 3rd column, offering good categorisationpossibilities. Fig. V.11 confirms this by showing that the background and BSM
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Figure V.10 – Evaluation of the DNN outputs sample by sample (one sample per row).The first column shows the distributions of the three DNN scores for a given sample.From the second to the fourth column, the distributions of the events of a given samplein the three possible 2D planes formed by pairs of the DNN scores.
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Figure V.11 – ROC curves evaluating the performance of each DNN score in identifyingevents belonging to the three possible pairs of classes.

scores of the DNN provide suitable identification for any pair of classes as themaximal AUC is always from the ROC curve of the background or BSM score.
As a comparison, two DNN classifiers with a single output each were trained, thefirst one to extract SM-like signal events and the second one to extract BSM-likeevents. Their respective output score was used to build categories and optimisethem as described in the next section. This method showed 4% worst results onthe figure of merit described in Section V.5 (upper limit of fa3) after optimisingcategories. In addition to havingworst results, thismethod requires training twoDNNs instead of one multiclassifier, so the method is less relevant.
An additional test was performed by including the quark-gluon tag (qgtag) in-formation of jets as inputs of the DNN multiclassifier. This score represents thelikelihood for the jet to originate from a quark (score close to 1) or from a gluon(score close to 0). Since we target VH events where the gauge boson decays intwo quarks (and not in leptons), the qgtag of both jets is peaked at 1 as opposedto the inclusive H+2jets productionwhere the 2 jets tend to originate from gluon
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radiations. Thus, it provides additional discrimination information to the DNN.And indeed, the area under the ROC curve computed over all classes, when train-ing the DNN with the qgtag, improved by 2%. Unfortunately, for this iteration ofthe analysis, we abandoned this additional discrimination because the system-atic uncertainty on the quark-gluon tagger is not yet determined. However, werecommend including it, if available, for the next iterations of DNN trainings inthe VhadH case.
V.5 Optimisation of analysis categories

The final results are extracted using a statistical test (described in Section V.6.1)which scans values of the observables of interest and tests the compatibility ofdata with the corresponding physics model. Hence the necessity to define cat-egories targeting regions of the phase space where any difference between dif-ferent models would be striking. Constructing categories allows the evaluationof the separation of the different hypotheses by the statistical test, and then,by improving the definition of the categories, we enhance the sensitivity of theanalysis. The regions sensitive to signal are built from the DNN outputs, butbefore optimising these categories, the reweighting of the DNN ouptuts men-tioned in Section. V.3.2 is applied. The effects of this reweighting are demon-strated in Fig. V.12 by comparing it to a reweighting using physics variables. Asexpected, the DNN distributions are recovered for the SM distributions, wherethe reweighting on physics still shows significant deviations.
To increase our sensitivity to processes including anomalous couplings of theHiggs boson to gauge boson, we define categories enriched in SM- and BSM-likesignal events in the VhadH preselected phase space. The total number and defi-nition of these categories are optimised tominimise the expected upper limit on
fa3 at 95% confidence level. This upper limit on the value of fa3 is computed witha likelihood ratio as a test statistic and following prescriptions from previousHiggs boson searches at the LHC [176] and Cowan et al. [177]. When constrain-ing only the fa3 parameter, the number of expected signal events in category kis parametrised as

µa3
sk = µa3

[(1− fa3)s
SM
k + fa3s

a3
k ] (V.2)

with sSMk the expected number of SM-like signal events, sa3k the number of eventsin the hypothesis a3 = 1, a1 = 0, and µa3
is the signal strength associated with agiven value of fa3. Under this decomposition, we can write the Poisson probabil-ity for nk events to fall in category k , given the expected number of signal sk andbackground bk events :

P
(
nk |µa3

sk , bk , fa3
)
=

(
µa3

sk + bk
)nk

nk !
e−µa3

sk+bk . (V.3)

Then, the negative log-likelihood (NLL) is defined, up to a normalisation factor,as
− lnL

(
n|µa3

s,b, fa3
)
=

Ncat∑
k

(
µa3

sk + bk
)
− nk ln

(
µa3

sk + bk
)
. (V.4)

The signal strength µa3
is not known a priori, but its maximum likelihood esti-mator µ̂fa3

can be profiled from the NLL for each value of fa3. The estimator µ̂a3
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Figure V.12 – Comparison of the reweightings using physics variables (top row) and theDNN outputs (bottom row) on the shapes of the DNN outputs for the background (leftcolumn) and BSM classes (right column).
is the value of µa3

for which the NLL is minimal, so it can be extracted from thederivative of the NLL:
d lnL
dµa3

∣∣∣∣
µa3

=µ̂a3

= 0 ⇒
Ncat∑
k

(
sk −

nksk
µ̂a3

sk + bk

)
= 0 . (V.5)

Thus, for any value of fa3, we can use a test statistic qfa3 entirely defined through
qfa3 (n) = −2 ln

L
(
n|µ̂a3

s,b, fa3
)

L (n|µ̂0 sSM,b, 0)
. (V.6)

which test the compatibility between a given fa3 hypothesis and the SM-only hy-pothesis (a3 = 0 and thus fa3 = 0). To estimate the expected upper limit on
fa3 offered by a given configuration of categories, we build an Asimov data setwhere the yield in each category assumes no contribution from BSM processes,i.e. nAk = µ∗sSMk + bk , where µ∗ is an ad hoc normalisation to compensate for thelow number of expected events. We use a value of µ∗ = 5 and keep it identicalto compare all categories configurations. As such, the value obtained for the ex-pected upper limit of fa3 is not the final expected upper limit provided through
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our analysis strategy but rather a relevant relative value for the classificationof configurations. Finally, the expected upper limit at 95% confidence level iscomputed as the value of fa3 for which√
qfa3(n

A) = Φ−1 (1− 0.95) , (V.7)

where Φ is the cumulative distribution function of the normal distribution [177].The number of expected signal events, sSM and sa3, corresponding to SM andBSMprocesses respectively, is taken as the number of events in the rangemγγ ∈
[122.5GeV, 127.5GeV] from their associated MC sample.
The expected number of background events, b, is computed from a maximumlikelihoodfit to themγγ distribution in data sidebands, i.e.mγγ /∈ [115GeV, 135GeV]using a power-law model as illustrated in Fig. V.13. Then, the fitted function isintegrated over the range mγγ ∈ [122.5GeV, 127.5GeV] as well to estimate thenumber of background events. In addition to this number of events from thenon-resonant background, we take into account events from the ggH process.
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Figure V.13 – Example of background fit (red line) performed on the data sidebands(black dots) entering a given category.

To find the optimal number and shape of categories to build from the DNNbkgand DNNbsm scores, the (ln(DNNbkg), DNNbsm) plane is filled with categories untilthe improvement on the expected upper limit of fa3 becomes negligible. It resultsin eight categories, whose borders have been optimised to minimise the upperlimit on fa3, resulting in an upper limit of 0.253 for µ∗ = 5. These categories arepresented in Fig. V.14.
As all categories do not bring the same sensitivity to the estimation of fa3, weremove each category one by one, compute the new upper limit (with a missingcategory) and compare it to the original value (with eight categories) to estimatethe impact of each category on the optimisation of the upper limit of fa3. Resultsof this study are summarized in Table V.3.
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Figure V.14 – The categories are overlaid to the 2D distribution of the events as a func-tion of their DNN scores. The 2D distributions represent different classes of the DNN(from left to right, top to bottom: SM-like, BSM-like, background from data sidebandsand background from ggH process).

Removed BSM1 BSM2 BSM3 BSM 4 SM 1 SM 2 SM 3 SM 4
Impact on

+129% +3% +2% < +1% +3% +15% +13% +8%upper limit
Table V.3 – Impact of each category on the estimation of the upper limit of fa3.
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From the impact values, we discard the BSM4 category. The SM1 category is sen-sitive because it mainly comprises BSM events, so the top of the SM1 categoryis merged with the BSM2 and BSM3 categories. It creates a category collectingevents around the very sensitive BSM1 category. The bottom of category SM1 ismerged with SM2, and categories SM3 and SM4 are kept in the same position.
The optimal categorisation is presented through Figs. V.15 and V.16. Five cate-gories are left: two enriched in BSM-like signal events (called BSM1 and BSM2)and three enriched in SM-like events (SM1, SM2 and SM3). As some of the cate-gories are chosen to be adjacent, nine boundaries are needed to build the fivecategories, creating a 9D optimisation problem. The optimal set of selection cri-teria gives the lowest expected upper limit on fa3 from the procedure describedabove. Figure V.15 shows the values of the expected limit of fa3 when scanningthe possible boundaries for the definition of the SM1 (left) and SM2 categories(right). The optimal categories are overlaid to the 2Ddistributions of events from
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Figure V.15 – Projection of the 9D optimisation in 2D planes containing the lowest up-per limit on fa3 (white star). The heatmaps show the values of fa3 when scanning therequirements on the DNN scores for category SM1 (cut3 and cut4 on the left) and forcategory SM2 (cut5 and cut6 on the right).
the three different classes in Fig. V.16. The lowest upper limit on fa3 at 95% con-fidence level is 0.227 for µ∗ = 5, and the expected yield in each category is sum-marised in Table V.4.

V.6 Statistical inference and results

V.6.1 Inference procedure

The statistical methods used to extract the expected and observed results of theanalysis are widespread in analyses of the ATLAS and CMS experiments [176].These methods rely on the definition of a test statistic, which acts as the figureof merit assessing the compatibility between two hypotheses. A hypothesis rep-resents a physics model, and in our particular context, the two hypotheses (or
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VhadH category SM-like BSM-like Background/GeV
BSM1 0.18 3.26 0.33BSM2 0.62 3.57 1.69SM1 2.10 1.57 2.37SM2 3.67 1.62 16.44SM3 4.91 1.92 83.59

Table V.4 – Estimated yield from each DNN class in the three optimised categories de-fined with the DNN scores. Values for the background are given in number of eventsper GeV within the 5GeV mass region of interest.
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models) wewant to compare are the standardmodel and themodel described inSection V.1, where any of the couplings (apart from a1) is nonzero. As describedin Section V.5, categories are built from the kinematics of the events (indirectlyas they are transformed to more discriminating features with the DNN) since itdiffers significantly between the two hypotheses.
The test statistic used to extract the final value and uncertainties of the fai quan-tities is defined in a similar fashion to what is described in Section V.5. Each
fai is scanned one by one by fixing all the others to 0. However, by taking intoaccount the potential interference between the scanned fraction terms (f =
(fa2, fa3, fΛ1, f

Zγ
Λ1 )) and the a1 term, as described in Eq. V.1, the expected number ofsignal events in each category includes an additional term compared to Eq. V.2:
sk = (1− fai)s

SM
k + fais

ai
k + 2

√
fai(1− fai) s

int
k sgn(a1 · ai) (V.8)

with sSMk (saik ) the expected number of SM-like (BSM-like) signal events, and s intk isthe effective number of signal event emerging from the interaction of the am-plitudes related to the a1 and ai terms. Systematic uncertainties are added asnuisance parameters θ that potentially impact the event yields in each of thecategories: sk → sk(θ), bk → bk(θ). This effect propagates to the probability ofdata events to fall in a given categoryP(nk |µ sk(θ), bk(θ), f) as defined in Eq. V.3.Constraints can be applied to the effects of systematic uncertainties by includinga probability distribution function of the uncertainty p(θi) to the likelihood
L(n |µ s(θ),b(θ), f) =

Ncat∏
k

P(nk |µ sk(θ), bk(θ), f)
Nnuis∏
i

p(θi) . (V.9)

Thus, the test statistic, defined as a likelihood ratio, takes the form
qf (n) = −2∆ lnL = −2 ln

L (n |µ s(θ),b(θ), f)
L
(
n | µ̂ s(θ̂),b(θ̂), f̂

) (V.10)

where the hat symbol denotes the maximum likelihood estimator of the corre-sponding variables, i.e. their value is themost compatible one with data, and thedenominator is actually the global maximum of the likelihood function.
In the diphoton decay channel, we expect a peaked signal in the diphoton massdistribution at theH bosonmass (mH) over a smoothly falling background. There-fore, the signal and background contributions are parameterised in each cat-egory as a function of the diphoton mass. The modelling of background andsignal distributions are described in the following Sections V.6.2 and V.6.3, re-spectively. These modelling techniques were developed over previous H → γγanalyses such as Ref. [145], so a short description of themethods is given beforedescribing their application to the VhadH categories. Once models are designedin each category, the likelihood ratio evaluates the compatibility of the data dis-tribution over the diphoton mass with the combination of the background andsignal models simultaneously over all categories. The likelihood ratio is scannedalong each fai parameter one by one (fixing other BSM contributions to 0), andfor each value of the fai , the signal strength,mH and systematic uncertainties areprofiled and taken as their maximum likelihood estimator. In order to get the
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expected results of the analysis, the statistical test is performed on an Asimovdata set which consists of a simulation where the maximum likelihood estima-tor of each parameter is equal to its expected value. In our case, it means thatin the Asimov data set, the signal strength is set to 1, the H boson mass to itsmost precise value of 125.38GeV [17], systematic uncertainties to their expectedvalue and all the BSM fai are set to 0.
V.6.2 Background modelling

Standard procedure for H → γγ analyses at CMS experiment

The modelling of the background distribution as a function of mγγ relies on thedata sidebands and is not based onMC simulations. Since it is an effectivemodelbased on empirical fits, data from all years are merged. The background modelfit is performed with different families of functions to find the optimal descrip-tion of the distribution. These families and their parameters pi (and qi whenneeded) are listed below for a given order N :
• Exponentials: fN(x) =∑N

i=1 pi e
qi x

• Power-laws: fN(x) =∑N
i=1 pi x

−qi

• Bernstein polynomials: fN(x) =∑N
i=0 pi

(
N
i

)
x i(1− x)N−i

• Laurent polynomials: fN(x) =∑N
i=1 pi x

−4+
∑i

j=1 (−1)
j
(j−1)

To check the goodness-of-fit obtained with each function, an F-test [178] is com-puted from each fit and only functions passing a loose requirement on this testare kept as candidates for the final fit procedure. Since these functions can fitany distribution as their order N increases, i.e. there is a risk of overfitting datawith high-order functions. To prevent this, functions in each family are fittedin increasing order, and a negative log-likelihood is computed at each order,
NLLNfit. It is then compared to the negative log-likelihood of the next order as
2∆NLLN+1

fit = 2(NLLN+1
fit − NLLNfit) should have a χ2 distribution with m degreesof freedom, where m is the difference in degrees of freedom of functions of or-der N + 1 and N . In the tested families of functions, m = 1 or 2 as they eitherhave N or 2N parameters at order N. A p-value is computed to compare whichhypothesis (order N or order N + 1) data are describing better
p-value = P

(
2NLLNfit > 2∆NLLN+1

fit |χ2
m

)
,

whereP is the probability density function associated with a χ2 distribution withm degrees of freedom. For a p-value lower than 0.1, the procedure continuesand tests following orders but for a p-value above 0.1, the higher order functionis considered overfitting the data sidebands.
To account for the uncertainty on the final choice of background model amongthe remaining candidates, they are added as a discrete nuisance parameter tothe final fit [179]. Then when scanning the likelihood ratio in the final fit to data,
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the likelihood is computed for each of the background-model-candidates func-tions with the order determined from the modelling in each category and theminimal value is retained. It means that the final likelihood is actually an en-velope of all profiles obtained for each background model. Thus, the shape ofthe final likelihood is broader than with a single fit, so it is a conservative way oftaking into account the uncertainty of the background model.
Application to VhadH categories

The above procedure is applied to all VhadH categories described in Section V.5and is shown in Fig. V.17 for data events from the mass sidebands. Between 5and 7 background models are selected in each category, and the order of eachfunction is fixed for the final fit. All of these functions are fitted in the final like-lihood ratio scan, and the best fit is combined with the signal model defined inthe next section.
V.6.3 Signal modelling

Standard procedure for H → γγ analyses at CMS experiment

A signal model is built from MC samples as a function of mγγ in each category,for each year, and separately for events where the right vertex (RV) or the wrongvertex (WV) is selected. This decomposition allows the computation of a com-bined signal model mixing the contribution from each process depending onthe physics scenario (typically, in our case, how the fai observables are mixingeach BSM contribution). The last division, depending on the correctness of theselected diphoton vertex, allows the computation of the fraction of events withcorrectly identified primary vertex (RV fraction) and to include an uncertainty onits value (in Table V.6).
These numerous signal models are fitted with a sum of one to five Gaussianfunctions. An F-test [178] is performed to identify the optimal number of Gaus-sian functions and their parameters to fit the signal distribution. The modelsrepresenting RV andWV are summed, and themixture between the two is fittedin each category from MC simulation to get the fraction of RV association.
The dependency of these signal models onmH is determined by parameterisingthe models as functions of important parameters, namely: the total normali-sation Nexp, the cross section σ, the branching ratio B, the product of selectionefficiency and acceptance ϵ × A, the RV fraction. The dependence on mH of thecross section and branching ratio is taken from Ref. [173] while for every otherparameter, a polynomial dependence is assumed. To obtain the latter, the sig-nal models are derived for three different mH samples (mH = 120GeV, 125GeV,and 130GeV) and the relevant parameters are fitted with an order 2 polynomialas a function of mH . This allows interpolating the signal model for any value of
mH . This way, mH remains floating around the best estimate during the final fit,and no assumption is made on its true value. Since the MC simulations describ-ing different H boson mass are available only for SM signals, the dependency ofthe signal model on mH is kept identical for BSM processes.
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Figure V.17 – Representation of the background model candidates selected for each
VhadH category. The best fit in each category is indicated in the legend and is the oneshown in the ratio below each plot. The association with categories of Section V.5 is(from left to right, top to bottom): BSM1, BSM2, SM1, SM2, SM3.
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Finally, signal models are summed over the three data taking years weighted bytheir recorded luminosity to give the signal model of each signal process in eachcategory that is used in the global likelihood ratio scan.
Application to VhadH categories

Results of the identification of the optimal number of Gaussian functions tomodel someof the signal processes in theVhadH categories are shown in Figs. V.18and V.19. Figure V.18 shows the difference in signal distribution for the sameprocess in the same category but with different vertex identification scenarios.The top row corresponds to events where the wrong vertex is associated withthe diphoton pair. As mentioned already, it results in a worse mass resolutionwithmore spreadGaussian functions compared to the right vertex identificationshown on the bottom row. The number of Gaussian functions and the contribu-tion of each Gaussian function to the signal model is shown in Fig. V.19 for somesignal processes targeted by the different categories. The maximum number ofGaussian functions allowed in the fit is limited to 5 to avoid overfitting, but it israrely a constraint as a good description of the signal (χ2/n(dof) ≈ 1) is alreadyachieved with fewer Gaussian functions.
The parameterisation of the signal models as a function of mH are illustrated inFig. V.20 for the SM WH process in the SM3 category. Three fits are performedwith the signal model corresponding on the mH = 120GeV, 125GeV, or 130GeVhypotheses, allowing the determination of the evolution of the Nexp, σ, B, ϵ× A,and RV fraction parameters as function of mH (see left plot of Fig. V.20). Fromthis evolution, a smooth interpolation of the signal models is derived over thepotential range of the H boson mass (right plot of Fig. V.20).
The combination of the signal models of all signal processes for the three data-taking years is shown in Fig.V.21 for each of theVhadH categories. A resolution onthemγγ peak of approximately 1.3% is achieved. The signalmodels are also com-bined per year for all signal processes in all categories, as reported in Fig. V.22.The resolution per year is closer to 1.6% and is consistent for the three years.

V.6.4 Systematic uncertainties

As mentioned already in Section V.6.2, the systematic uncertainty associatedwith the background modelling on data sidebands is taken into account by thediscrete profiling method [179]. Systematic uncertainties impacting the signalmodel are addressed differently if they affect the shape of the mγγ distributionor just the event yield. In the latter case, the uncertainty is added as a log-normaldeviation on the event yield. However, if an uncertainty is modifying themγγ dis-tribution shape, it is included in the signal model as a nuisance parameter, po-tentially changing the parameters of the model and causing migration of eventsbetween categories.
These systematic uncertaintieswere derived for previousH → γγ analyses [145],and their implementation in this analysis is mostly unchanged. Two sources ofuncertainty are expected to bringmost of the impact inVhadH categories: the un-
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Figure V.18 – Illustration of the signal model building. The sum of Gaussian function fitsis presented in the left column, and the evolution of the goodness-of-fit with an increas-ing number of Gaussian functions is on the right. Two vertex identification situationsare shown for the same signal process in the same category. In the top row, the wrongvertex is associated with the diphoton pair, and in the bottom row, it is correctly identi-fied.
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Figure V.19 – Contribution of each Gaussian function to the total parametric signalmodel for processes expected in the VhadH categories. The association with categoriesof Section V.5 is (from left to right, top to bottom): BSM1, BSM2, SM1, SM2, SM3.
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Figure V.20 – Left: Evolution of physical parameters extracted from the signal model asa function of mH . Three mass hypotheses are fitted mH = 120GeV, 125GeV, or 130GeV.Right: Interpolation of the signal model with respect to mH based on the parametersfitted for three different masses.
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Figure V.21 – All signal models within a category are combined. The association withcategories of Section V.5 is (from left to right, top to bottom): BSM1, BSM2, SM1, SM2,SM3.
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Figure V.22 – Combination of signal models per year.
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certainty on the jet energy scale and smearing corrections and the uncertaintycoming from the reweighting of JHUGEN samples. The first one is evaluated byusing the pT balance of jets with Z boson and photons in Z → ee, Z → µµ and
γ+jets events, as well as the pT balance between jets in dijet andmultijet events.When propagating the uncertainty on the jet energy scale to the final result, animpact on the category yield of up to 22% can be observed. The uncertaintyon the reweighting has an impact between 7% and 25% depending on the cate-gory and is detailed in a dedicated section after the description of the commonsystematic uncertainties for the H → γγ analyses of the CMS collaboration.
Theoretical uncertainties

Theoretical predictions are needed to use the correct cross section, branchingratio, efficiency and acceptance in each category. Thus, uncertainties in thesepredictions lead to variations in the global normalisation of the event yield ofthe categories and also to the migration of events. A summary of theoreticaluncertainties and their impact is reported in Table V.5.
Experimental uncertainties

Experimental uncertainties can impact the energy scale of individual photonsand, thus, on the shape of the reconstructed mass of the diphoton system. Asummary of experimental uncertainties impacting the shape of the mγγ distri-bution is given in Table V.6. If the uncertainty affects only the event yield, it isdescribed in Table V.7
Study of the uncertainty on the reweighting of JHUGEN BSM samples

The uncertainty on the reweighting of the JHUGEN BSM samples is implementedto account for the imperfection in the reweighting since, for a perfect matchwith an NLO sample, the generation of additional jets would be needed. Toestimate this uncertainty, we compare the final reweighting of JHUGEN samplesto alternative reweighting with other sets of variables. The final reweighting isdone from the outputs of the DNN since the kinematic categories are built fromthese outputs. Several other reweightingswere tested, and this final reweightingis compared to the best reweighting of the DNN output distributions we wouldreach using a set of physics variables.
To make sure that we are not also including variations due to the expected dif-ference in the kinematics of SM and BSM samples, the reweighting from physicsvariables is selected fromvariableswith distributions that aremodel-independent(the comparison is shown in Fig. V.7). Thus, we use a 2D reweighting based onthe physics variables (mjj , Njets) as mentioned in Section V.3.2. The derivationprocedure of this systematic uncertainties is summarised in Fig. V.23 and is donein two steps:

1. the comparison of the reweightings is done by computing the ratios, RSMand RBSM, of the DNNx distributions obtained after reweighting (mjj , Njets)and reweighting (DNNbkg, DNNbsm) applied on the SM and BSM samples.
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Uncertainty Impact

QCD scale uncertainty: arises fromvariations of the renormalisation andfactorisation scales when computingthe expected SM cross section. Fol-lowing recommendations from LHCCross Section Working Group [173].

Overall normalisation varies between0.5% and 15%. Migration of eventsaround 1%.

ggH contamination: theoretical pre-dictions for gluon fusion are less reli-able in a regime where the Higgs bo-son is produced in association withjets.

Impact on the signal strength byabout 2%.

qqH signal fraction: similar to ggHcontamination but for VBF produc-tion. The uncertainty reflects alsothe migration of events to the region
mjj < 250GeV.

Uncertainty of at most 8% in the SMprediction for cross section measure-ment.

Parton density functions: accountsfor the uncertainty on which partonsare most likely to initiate high en-ergy events from proton-proton colli-sions [173, 180].

Overall normalisation uncertainty be-tween 1% and 5%. Migration ofevents less than 1%.

QCD coupling constant: propaga-tion of the uncertainty on the valueof the strong interaction coupling
αS [180].

Impact on overall normalisation be-low 2.6%.

H → γγ branching fraction: un-certainty on the value of the H → γγbranching fraction [173].
Uncertainty on the SM prediction of2%.

Underlying event and parton
shower uncertainty: propagation ofthe uncertainty on the parametersused for MC generation.

Normalisation uncertainty around 5%(up to 30% for high-pTH categories).Migration between 1% and 16%.

Table V.5 – Theoretical uncertainties
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Uncertainty Impact

Photon energy scale and resolu-
tion: uncertainty on the correction ofthe photon energy scale described inthe photon definition of Section V.2.

Uncertainty on the energy scale be-tween 0.05% and 3%.

Non-linearity of photon energy
scale: uncertainty taking into ac-count differences in the linearity ofthe photon energy scale betweendata and simulation.

Uncertainty on the energy scale be-tween 0.2%.

Shower shape corrections: uncer-tainty on the correction of the showershape described in the photon defini-tion of Section V.2.

Uncertainty on the energy scale from0.01% to 0.15%.

Non-uniformity of light collection:uncertainty from the model of lightcollection as a function of emissiondepth for a given ECAL crystal.

Uncertainty on the energy scale be-tween 0.07% and 0.25%.

Modelling of material in front of
the ECAL: covers the imperfect mod-elling of electromagnetic showersarising from thematerial upstream ofthe ECAL.

Uncertainty on the energy scale be-tween 0.02% and 0.05% for centralphotons, less than 0.24% in the end-cap.
Vertex assignment: incorrect mod-elling of the underlying event leads toan uncertainty on the fraction of pri-mary vertex correctly assigned.

Fraction of RV and WV in categoriescan vary by ±2%.

Table V.6 – Experimental uncertainties impacting the shape of the mγγ distribution.
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Uncertainty Impact

Integrated luminosity: uncertaintyobserved by the CMS luminositymon-itoring.
Uncertainties of 2.5%, 2.3%, and 2.5%on the integrated luminosity for 2016,2017, and 2018.

PhotonID BDT score: propagationof the uncertainty of the inputs onthe training of the quantile regressioncorrection described in Section V.2.

Impact on category yield below 3%.

Per-photon energy resolution: un-certainty on the per-photon resolu-tion coming from the energy regres-sion step.

Impact on category yield below 5%.

Trigger efficiency: uncertainty onthe efficiency of the trigger selectionmeasured with the tag-and-probemethod.

Impact on category yield below 1.4%.

Photon preselection: account forthe difference between preselectionefficiency in data and in simulation.
Impact on category yield below 1%.

Pileup jet identification: uncer-tainty on the PU jet classification out-put score.
Impact on category yield around 1%.

Table V.7 – Experimental uncertainties impacting the event yields.
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2. the difference observed in the BSM case is compensated by the one ob-served in the SM case by computing the ratio RBSM/RSM. For a perfectreweighting, this ratio should be one. The deviation of this ratio to one istaken as systematic uncertainty (+1σ). This systematic uncertainty is alsosymmetrised around one (−1σ).
This uncertainty brings a shift between 7% and 25% on the expected numberof BSM signal events, so it is one of the dominating systematic uncertainties inthe VhadH categories. While being included in the final analysis, the reweightingof the JHU samples based on DNN outputs and its associated uncertainty is notincluded at the current stage of preliminary results presented in this section.
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Figure V.23 – Decomposition of the derivation of the systematic uncertainty onreweighting of JHUGENBSMsamples. The top distributions show the effects of reweight-ings computed from the DNNoutputs (solid histogram) or physics variables (dashed his-togram) on the shape of the background (left) and BSM (right) outputs of theDNN. Thesereweightings are applied to SM (green) and BSM (orange) simulated events. The ratiosbelow highlight the difference between the difference of the two reweightings, i.e. theyare the ratio between the dashed histograms and the filled ones. Finally, the uncertaintyis presented at the bottom as the +1σ curve and is determined from the difference ofreweightings on BSM samples compensated by the difference of reweightings on SMsamples, i.e. orange over green from the ratio plot just above.
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V.6.5 Results

Results of the analysis are extracted by scanning the binned likelihood ratio
−2∆ lnL defined in Section V.6.1 for each parameter of interest (fa2, fa3, fΛ1, f ZγΛ1 ).The value of the likelihood function is computed from a fit of the combinationof the background and signal models defined through Sections V.6.2 and V.6.3and including the systematic uncertainties described in Section V.6.4 as nuisanceparameters. The combination of signal and background models for the VhadHcategories over the three years is shown in Fig. V.24. The total signal and back-ground models for all categories are also included in the figure. These com-binations give a visual representation of the relative contribution of expectedsignal events compared to the background received in each category. While theexpected signal yield in the VhadH categories is relatively small (compared to in-clusive categories, for instance), Fig. V.24 show that some of these categorieshave a promising signal purity.
The fit is performedwith a common framework of the CMS experiment and is fit-ting simultaneously all categories of all production modes with the three yearsof data. Through the precise modelling of each signal process, this analysis issensitive to the effective cross section fractions emerging from anomalous cou-plings of the H boson with gauge bosons fa2, fa3, fΛ1, f ZγΛ1 . This thesis focuses onthe expected results for the fa3 parameter. These results are extracted by fit-ting the likelihood ratio to an Asimov data set assuming the SM-only hypothesis(signal strengths are set to 1, mH to 125.38GeV, systematic uncertainties to theirexpected value and fai are set to 0).
The results presented here are preliminary andmay be subject to change as, forinstance, the VlepH and VMETH categories are being integrated into the commonanalysis. To increase the sensitivity of the analysis, at least with respect to theSM background, production modes where categories were not optimised havedefault categories defined as in the STXS analysis [145].
Expected yields

The expected yields in categories optimised for this analysis are reported in Ta-bles V.8 and V.9. Categories with the "AC" prefix are optimised and integratedto target a good sensitivity of the global analysis to anomalous couplings. Cat-egories without this prefix are the STXS categories optimised on the SM-onlysignal yield versus background and thus provide some sensitivity to the effectsof anomalous couplings. Table V.8 details yields for categories targeting the VHproduction mode while Table V.9 focuses on the VBF production. These tablesinclude only the SM signals, hence the low purity in categories expecting contri-bution from BSM signals.
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Figure V.24 – Combination of signal plus backgroundmodels in categories of the VhadHproduction mode and also shown when combining all categories (bottom right). Thefit is performed on the blinded data, and the 68% (green) and 95% (yellow) bands aredetermined using toy MC simulations.
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Analysis categories SM 125 GeV Higgs boson expected signal S/S+BTotal Production Mode Fractions σeff(GeV)VH
AC_VHADH_BSM_Tag0 2.7 27.0% 1.57 0.21AC_VHADH_BSM_Tag1 7.9 31.6% 1.65 0.17AC_VHADH_SM_Tag0 17.0 50.8% 1.63 0.13AC_VHADH_SM_Tag1 37.0 36.4% 1.77 0.06AC_VHADH_SM_Tag2 98.5 17.2% 1.64 0.04VH_MET_Tag0 1.9 98.4% 2.00 0.46VH_MET_Tag1 3.0 95.4% 2.03 0.37VH_MET_Tag2 5.1 85.3% 1.98 0.19WH_LEP_PTV_0_75_Tag0 1.8 99.2% 1.80 0.45WH_LEP_PTV_0_75_Tag1 4.1 98.0% 1.92 0.19
Table V.8 – Expected event yields for categories targeting the VH production mode.Results are separated by: total expected event yield in the category (Total), fraction ofsignal events coming from the VH SM production, resolution on the mγγ peak (σeff ),and estimation of the purity of the category as S/S+B where S and B are the number ofexpected SM signal and background events within ±1σeff of mH .

Analysis categories SM 125 GeV Higgs boson expected signal S/S+BTotal Production Mode Fractions σeff(GeV)VBF

AC_GGH_Tag0 117.6 42.9% 1.89 0.06AC_GGH_Tag1 54.2 27.3% 1.79 0.04AC_VBF_BSM_Tag0 5.3 28.1% 1.49 0.35AC_VBF_BSM_Tag1 26.1 70.6% 1.71 0.40AC_VBF_SM_Tag0 77.0 78.0% 1.79 0.36
Table V.9 – Expected event yields for categories targeting the VBF production mode.Results are separated by: total expected event yield in the category (Total), fraction ofsignal events coming from the VBF SM production, resolution on the mγγ peak (σeff ),and estimation of the purity of the category as S/S+B where S and B are the number ofexpected SM signal and background events within ±1σeff of mH .
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Anomalous couplings

Expected results on fa3 are obtained by scanning values of the fa3 parameterand setting other fai to 0 as a first approach, as a simultaneous scan can also beconsidered. The likelihood profile is provided in Fig. V.25, and the expected con-straints on fa3 are reported in Table V.10. Figure V.25 describes three likelihoodscans performed over three different sets of categories. The green one does notinclude the VhadH and VBF categories; only the categories for other productionmodes are taken into account, so it corresponds to the categories targeting theggH, ttH, VlepH, and VMETH production modes. For these production modes,the definition of the categories of the STXS is used. These categories are de-fined to probe the complete phase space of production of the Higgs boson. Inparticular, some of these categories target events with a high reconstructed pTfor the H boson, and they already bring some sensitivity to the measurementof fa3. The blue curve is the likelihood scan, including VBF categories. They areoptimised to enhance the sensitivity to anomalous couplings, so they bring asignificant contribution in constraining fa3. Finally, the additional improvementin sensitivity brought by the VhadH categories is demonstrated through the blackcurve. We defined and optimised these categories to discern effects from theanomalous contribution as well, and the high purity of some of the categorieshelps constrain further possible values of fa3. The constrains at 68% and 95%confidence level (CL) are extracted for −2∆ lnL values reaching 0.99 or 3.84 re-spectively. Thus, values outside of the dashed lines on Fig. V.25 correspond tothe ranges expected to be excluded at the 95% CL. From these projections, if theunblinded data are compatible with an SM-only hypothesis, the analysis will beable to rule out the pure CP-odd hypothesis (|fa3| = 1) and set tight constraintson the possible values of fa3.
The sensitivity of this analysis can be compared to anomalous coupling analy-ses already performed for other decay channels of the H boson. In particular,two analyses studied the full data set collected by the CMS experiment duringthe three years of the Run2 in the H → ZZ [27] and H → τ τ [154] decay chan-nels. The H → τ τ analysis also includes combined results with the H → ZZchannel. The three sets of expected results are extracted from Refs. [27, 154]and reported in Table V.11. As the study of anomalous couplings through theH → γγ decay channel shows comparable sensitivity, its combination with theresults of these two analyses could tighten the constraints set on the values ofanomalous couplings.

V.7 Conclusion

This last chapter describes the strategy and expected results for the analysis ofthe Higgs boson anomalous couplings with electroweak gauge bosons using theHiggs boson decay in two photons and the full Run2 data set recorded by theCMS experiment. In particular, a focus is given to my involvement in the designof the analysis strategy targeting theVhadH productionmode of the Higgs boson.While following a common global approach of preselecting events, producinga discriminant, and optimising categories, the strategy relies on non-standard
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Figure V.25 – Likelihood scan of the fa3 parameter. Different configurations are shownto compare improvements brought by the optimised categories for the VBF and VhadHproduction modes. In green, the likelihood is computed without the VBF and VhadHcategories. In blue, the VBF categories are included. The final likelihood scan using allcategories (including VhadH ones) is represented by the black curve.

Parameter Expected constraints68% CL 95% CL
fa3 [−1.7, 1.3]× 10−4 [−4.0, 3.3]× 10−4

Table V.10 – Expected constraints on fa3 at 68% and 95% CL.
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Analysis Expected intervals for fa368% CL 95% CL
H → ZZ [−8.1, 8.1]× 10−4 [−41.2, 41.2]× 10−4

H → τ τ [−0.6, 0.6]× 10−4 [− 2.3, 2.3]× 10−4

Combined [−0.5, 0.5]× 10−4 [− 2.1, 2.1]× 10−4

Table V.11 – Expected constraints on fa3 at 68% and 95% CL for anomalous couplingsanalyses in the H → ZZ [27] and H → τ τ [154] decay channels.

steps. I developed and trained a multiclassifier DNN to classify events betweenSM-like, BSM-like, and background-like classes. I also demonstrated that using amulitclassifier improved the sensitivity to fa3 while training only one DNN, com-pared to a more standard approach of training n-1 binary classifiers to separateevents between n classes. Then, from the output scores of the DNN, I imple-mented a way to extract an estimator on the upper limit of fa3. It allows theoptimisation of the number, shape and definition of categories to enhance thefinal sensitivity of the analysis.
Finally, after combining the VhadH categories to the common framework, I ex-tracted the expected results on fa3 by applying common statistical inferencesteps and using the optimised categories for the VhadH process. The expectedresults are computed with different sets of categories, and they show that the
VhadH categories bring additional constraints to the expected results of fa3. Thesensitivity of the analysis is comparable to anomalous couplings analyses tar-geting other decay channels, and thus, promising results with tight constraintson the anomalous couplings are expected from the unblinded fit to data.
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Conclusion

With this thesis, I have presented my contribution to enhancing the H → γγanalysis of the CMS experiment, notably by proposing deep learningmethods atdifferent steps of the global analysis framework. I have also describedmy partic-ipation in the timing calibration of the CMS detector in the context of its futureupgrades through the development of a simulation framework to investigatemonitoring and correction possibilities of the high-precision clock distribution.
The general theoretical context regarding the SM and the current experimen-tal status of the Higgs boson properties are briefly covered by the first chapterof this thesis, allowing an introduction of the motivations for particle colliderexperiments and how they deepen our knowledge of fundamental laws of theUniverse. The particular experimental context of this thesis, relying on data ofproton-proton collisions produced by the LHC and recorded by the CMS exper-iment, is described in Chapter II. This description also covers upgrades plannedfor the CMS detector to adapt to a high-luminosity phase of the LHC. In particu-lar, the CMS detector will rely on the timing information of particles to mitigatethe effects of a harsher data-taking environment. In this context, the simula-tion framework described in Section. II.3, pyDDMTD, provides a description ofa DDMTD based monitoring of the clock to control the jitter introduced in thedistribution chain and ensure a precise synchronisation of all detector compo-nents. From the results of simple simulation studies, a basic DDMTD basedsolution could already bring some corrections of the jitter with frequency com-ponents above 10Hz. The pyDDMTD simulation tool could now be used to inves-tigate and compare different correction strategies based on DDMTD systems.
My contributions to the H → γγ analysis of the CMS experiment are presentedin Chapters IV and V. Since they employ uncommonmachine learning methods,a general introduction to deep learning is provided in Chapter III. Indeed, Chap-ter IV introduces a method based on advanced deep learning models: GANs.This GAN is implemented to generate misidentified photons from events of acontrol region in data to produce an accurate background sample for the H →
γγ analysis. An evaluation strategy was defined to assess the performance ofthe GAN, and the GAN is shown to learn how to generate convincing misidenti-fied photonswhose properties are correctly correlatedwith the rest of the event.A comparison study between the GAN-based method and the method used in
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the last published H → γγ analyses shows that BDTs trained with the GAN sam-ple perform better in separating background and signal events for the H → γγanalysis.
Finally, this thesis presents preliminary results of an H → γγ analysis studyingthe couplings of the Higgs bosonwith theweak gauge bosons (Z andW) to deter-mine if there is any contribution from anomalous couplings not expected by theSM and in particular CP-odd couplings. Small anomalous couplings could indi-cate a new source of CP-violation in the SM and signify that a fraction (fa3) of theobserved signal events have a CP-odd behaviour. The complete Run 2 datasetis analysed, corresponding to 137 fb−1 of data collected with the CMS detectorin proton-proton collisions with a centre-of-mass energy of √s = 13 TeV. Mycontribution to this analysis concerns the design of the analysis strategy target-ing events with a production of the Higgs boson in association with a Z or Wboson which decays hadronically. This strategy includes a DNN multiclassifier,which relies on the properties of the events to class them as background, SM-like signal or anomalous-like signal. The preliminary results are reported, withexpected constraints on fa3 of [−0.17× 10−3, 0.13× 10−3] at the 68% confidencelevel. Therefore, tight constraints can be expected for the final results.
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