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Apreés l'observation du boson de Higgs par
les expériences ATLAS et CMS en 2012, les me-
sures de précision de ses propriétés sont au-
jourd’hui un des enjeux majeurs de la physique
des hautes énergies et du Large Hadron Col-
lider (LHC). En effet, il s'agit de tester la com-
patibilité de ce boson avec celui attendu par le
modele standard (MS) de la physique des par-
ticules. Dans son canal de désintégration en
deux photons (H — ~v), le boson de Higgs
est entierement reconstruit, le pic de masse
correspondant pouvant étre mesuré avec une
trées bonne résolution expérimentale (autour
de 1%). En conséquence, en dépit d'un taux
d'embranchement trés faible dans le MS (d'en-
viron 0.2%), le canal H — ~~ fut l'un des
deux canaux ayant permis la découverte du
boson de Higgs, le canal de désintégration en
quatre leptons étant le second. Cette these
pose des contraintes sur couplages anormaux
(CA) du boson de Higgs avec des bosons de
jauge. Un classificateur en multiples catégories
basé sur des méthodes d'apprentissage pro-
fond (deep learning) est développé pour utiliser
'ensemble des informations disponibles dans
'analyse H — ~~ et pour fournir la meilleure
séparation possible entre le bruit de fond, les
différents modes de production du boson de
Higgs du MS et les productions CA du boson de
Higgs.

Un bruit de fond conséquent pour les ana-
lyses H — v~ vient des processus QCD pro-
duisant une paire diphoton. Méme les événe-
ments avec seulement un, voire aucun pho-

ton, contribuent grandement a la contamina-
tion du signal si d'autres particules sont faus-
sement identifiées comme des photons. De ce
fait, une estimation précise du bruit de fond
émergeant de ces photons mal identifiés est
nécessaire pour atteindre une extraction opti-
male du signal. Cette theése décrit une nouvelle
meéthode pour l'estimation précise du bruit de
fond. Cette méthode s'appuie sur des modéles
d'apprentissage profond avancés appelés ré-
seaux antagonistes génératifs (ou GAN), pour
générer des photons mal identifiés et amélio-
rer la description du bruit de fond associé grace
a des régions de contréle définis dans les don-
nées.

D’autre part, le LHC subira dans les pro-
chaines années une jouvence permettant
d'augmenter sa luminosité (High Luminosity
LHC, HL-LHC) d'un facteur 10 environ. En
contrepartie, les conditions de prise de don-
nées seront beaucoup plus difficiles. En consé-
quence, le détecteur CMS sera également amé-
lioré (jouvence Phase Il) pour faire face a ces
conditions. La possibilité d'associer a chaque
objet reconstruit dans la collision un temps
mesuré avec une grande précision constitue
un enjeu majeur qui permettra d'améliorer la
qualité des différentes mesures réalisées dans
le canal H — ~~. Cette thése fournit une contri-
bution aux mesures de temps de haute réso-
lution envisagées par CMS, en particulier sur
la surveillance et la calibration ultra rapide du
systéme de distribution d’horloge.




ECOLE DOCTORALE

.° i Particules, hadrons, énergie et noyau:
U n |Ve FS |te instrumentation, imagerie, cosmos
PARIS-SACLAY | etsimulation (PHENIICS)

Title: The measurement of the Higgs Boson properties and the timing calibration of the CMS

detector using machine learning techniques

Keywords: LHC, CMS upgrade, Higgs, Timing, Deep learning, Artificial intelligence

After the observation of a Higgs boson
which is compatible with the predictions of the
standard model (SM) of particle physics at the
ATLAS and CMS detectors in 2012, the pre-
cise measurement of its properties is now one
of the primary goals of high energy physics.
The Higgs boson decaying into two photons
(H — v~ decay channel) provides a fully re-
constructed final state and its invariant mass
peak can be measured with a very good mass
resolution (around 1%). Consequently, despite
the small branching ratio predicted by the SM
(approximately 0.2%), H — ~+ was one of the
two most essential channels involved in the dis-
covery of the Higgs boson together with its de-
cay to four leptons. This PhD thesis establishes
constraints on the Higgs boson anomalous cou-
plings (AC) to gauge bosons. A multiclassifier
based on a deep learning model is designed to
use all possible ingredients of the H — v~ anal-
yses to provide the most optimal separation be-
tween background, SM production and AC pro-
duction of the Higgs boson.

Significant backgrounds to the H — ~v
analysis originate from QCD-induced produc-
tion of diphoton, or diphoton-like, pairs. Pro-
cesses producing only one or no photon con-

tribute significantly to the contamination of sig-
nal if other particles are misidentified as pho-
tons. As such, a precise estimation of the back-
ground emerging from misidentified photons
is necessary to reach an optimal signal extrac-
tion. This thesis describes a novel method re-
lying on advanced machine learning models
named generative adversarial networks or GAN
to generate misidentified photons and improve
the description of such backgrounds from data
control regions.

Furthermore, the LHC will undergo a High
Luminosity (HL) upgrade, delivering around
ten times more integrated luminosity with the
downside of imposing harsher conditions on
the CMS detector. An accompanying upgrade
of the CMS detector (Phase Il upgrade) is fore-
seen to not only cope with these harsher condi-
tions but also significantly improve the perfor-
mance of the detector. One of the most criti-
cal aspects of this upgrade is the ability to tag
events with very high timing resolution, which
will also improve the study of the H — ~~ de-
cay channel. This thesis provides a contribution
to the timing upgrade of the CMS detector, par-
ticularly to the fast monitoring and calibration
of the high-precision clock distribution.
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Résumeée en francais

Dix ans apres la découverte du boson de Higgs, nos connaissances sur ses pro-
priétés se sont sensiblement étoffées grace aux performances excellentes du
grand collisionneur de hadrons (LHC) du CERN ainsi qu’a celles de ses détec-
teurs. Les collaborations ATLAS et CMS ont annoncé la découverte d'une parti-
cule pouvant correspondre au boson de Higgs en 2012, apres deux ans de prise
de données venant de collisions proton-proton avec une énergie du centre de
masse de 7TeV et 8 TeV. La désintégration du boson de Higgs en deux photons
(H — ~~) a fait partie de ses canaux de désintégration offrant la sensibilité la
plus fine au moment de la découverte. La désintégration H — v~ a un rapport
d'embranchement assez faible, autour de 0.2%, mais son état final est entié-
rement reconstruit, avec une résolution proche de 1% sur la masse invariante
du systéeme diphoton. Depuis sa découverte, environ 13 fois plus de données
ont été collectées a des énergies plus élevées et cette particule a été établie
comme étant le boson de Higgs prédit par le modéle standard (MS) de la phy-
sique des particules. Les mesures de sa masse, de son spin, et de ses couplages
ont été réalisées avec une grande précision, toutes confirmant la robustesse du
MS. Augmenter la quantité de données accessibles crée une opportunité remar-
quable pour pousser encore plus loin notre compréhension du boson de Higgs
et, pour exploiter cette opportunité au maximum, les équipes mettant en place
des analyses pour les expériences du LHC fournissent un effort constant pour
améliorer la conception des stratégies d’analyse.

Parallelement, au cours de la derniére décennie, le domaine de I'apprentissage
automatique (ML, de l'anglais "machine learning") a connu une croissance im-
pressionnante grace au développement d'outils de plus en plus performants,
tels que les nombreuses variétés de réseaux de neurones profonds. Ces mé-
thodes avancées se montrent particulierement efficaces lorsqu’elles sont en-
trainées avec une grande quantité de données. De ce fait, elles deviennent un
choix naturel pour les communautés de physique des hautes énergies lorsqu'il
s'agit d'extraire I'information venant d’'un signal enfoui sous une vaste quantité
de bruit de fond.
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Comme I'analyse H — ~~ fournit un acces essentiel aux propriétés du boson de
Higgs, cette thése a pour but d'améliorer les performances de I'analyse H — vy
de I'expérience CMS en apportant, a différentes étapes de l'analyse, des mé-
thodes basées sur 'apprentissage automatique profond. Une premiere méthode
est proposée dans le Chapitre IV pour améliorer la description du bruit de fond
de l'analyse H — ~~v grace a des réseaux antagonistes génératifs (GAN). Les
sources principales de bruit de fond de 'analyse H — ~~ sont les processus phy-
siques produisant deux photons dans leur état final ou des particules (souvent
des jets) faussement identifiées en tant que photons. Pour mieux différencier
ces deux types de photons, chaque photon dans un évenement se voit attri-
buer un score appelé le photonID, qui représente sa probabilité d'étre un pho-
ton correctement identifié. Ce score permet de réaliser une sélection visant les
évenements dont deux photons ont un photonlID élevé afin de construire une
région enrichie en signal. De facon similaire, une région de contrdle peut étre
définie en inversant la sélection sur I'un des photonlID. Cette région de contrdle
est donc enrichie en bruit de fond et donne accés a une description du bruit
de fond plus fidéle que les simulations Monte Carlo (MC) actuellement dispo-
nibles. Cependant, en inversant la sélection sur I'un des photonlID, celui-ci a une
valeur qui n'est pas dans le bon intervalle si I'on cherche a estimer le bruit de
fond de la région de signal. Le réle du GAN est de générer de nouveaux pho-
tons faussement identifiées (dont un nouveau photonlID) pour offrir une esti-
mation du bruit de fond dans la région de signal. Une stratégie d’évaluation des
performances du GAN spécifique a notre méthode a été mise en place. Cette
stratégie permet de tester plusieurs configurations d’entrainement et d'optimi-
ser les hyperparameétres du GAN pour atteindre les meilleures performances.
Finalement, le GAN se montre capable d'apprendre comment générer des pho-
tons faussement identifiés convaincants et corrélés correctement avec le reste
de I'événement, comme illustré en Fig. 1. De plus, une comparaison de la mé-
thode basée sur le GAN avec la méthode utilisée dans les dernieres analyses
H — ~v publiées montre que des arbres de décision boostés (BDTs) entrainés
avec I'échantillon de bruit de fond généré par le GAN atteignent de meilleures
performances lors de la séparation du signal et du bruit de fond de I'analyse
H— v7.

L'une des propriétés du boson de Higgs étudiée dans cette these est son com-
portement sous la symétrie charge-parité (CP). Comme le boson de Higgs est
supposeé avoir des interactions CP paires, tous couplages pointant vers un com-
portement différent (couplages CP impairs par exemple) sont considérés anor-
maux. De tels couplages indiqueraient une nouvelle source de violation CP dans
le MS (en plus des interactions électrofaibles) et une fraction (f,;) des évene-
ments de signal observés contiendrait un boson de Higgs avec un comporte-
ment CP impair. Cette thése présente les contraintes attendues sur de tels cou-
plages anormaux en sondant les couplages du boson de Higgs avec des bosons
de jauge électrofaibles (boson W ou Z). L'analyse complete englobe plusieurs
modes de productions du boson de Higgs qui sont sensibles a ses couplages
avec le boson W ou Z : sa production par fusion de bosons vecteurs (VBF) et sa
production en association avec un boson vecteur (VH). Cette thése présente la
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[ 1 GANed
B Full MC

Figure 1 - Diagonale : Comparaison entre les distributions des propriétés des photons
générés par le GAN depuis la région de contréle ("GANed" en rouge) et les distributions
décrites par la région de signal de la simulation MC ("Full MC" en bleu). Les propriétés
montrées sont le photonID 1D, la quantité de mouvement transverse Pry la pseudora-
pidité 1y €t l'angle azimutal ¢, du photon généré. Hors diagonale : Courbes de densités
qui contiennent 25 %, 50 % et 75 % des événements et montrant les corrélations entre
paires de propriétés.

structure générale de I'analyse en portant une attention particuliere a ma contri-
bution : la mise en place d’'une stratégie pour étudier la production VH ou V est
un boson W ou Z qui se désintégre en une paire de quarks (V,.,qH). Pour mettre
en évidence les différences entre certains types d'événements, nous mettons
en oeuvre un réseau de neurones profond (DNN) chargé de séparer les évene-
ments entre plusieurs classes : bruit de fond, signal avec couplages attendus par
le MS, signal avec couplages anormaux. Les scores obtenus par les événements
en sortie du DNN permettent de les classifier selon plusieurs catégories pour
améliorer la sensibilité de I'analyse. La définition de ces catégories est optimisée
en minimisant une estimation de la limite supérieure de f,;. Enfin, un test sta-
tistique est calculé pour déterminer la valeur de f,; en accord avec les données
analysées. Cette analyse utilise 'ensemble des données collectées entre 2016
et 2018 par le détecteur CMS. Cela correspond a 137 fb~' de données provenant
de collisions proton-proton a /s = 13 TeV. Cette analyse et ses résultats prélimi-
naires sont exposés dans le Chapitre V; le scan du test statistique est rapporté
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CMS Work in progress 137 fb-1 (13 TeV)
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Figure 2 - Scan du test statistique (2ANLL) pour différentes hypothéses sur la valeur
de f,3. Trois configurations sont présentées pour comparer les améliorations apportées
par les catégories optimisées. En vert, le test statistique est calculé sans utiliser les caté-
gories ciblant les productions VBF et V,_4H. En bleu, les catégories VBF sont incluses.
Enfin, le scan final utilisant toutes les categories (V,,4H comprises) est représentée par
la courbe noire.

en Fig. 2 et les contraintes attendues sur la valeur de f,; forment l'intervalle de
confiance & 68% suivant : [-0.17 x 107>, 0.13 x 107]. Les limites attendues obte-
nues sont compétitives avec d’'autres analyses ciblant des états finaux du boson
de Higgs différents, notamment les analysesH — ZZ etH — 7.

Bien que le LHC aura fourni une quantité de données importante (une lumi-
nosité intégrée de 300fb~" est prévue) & la fin de la période de prise de don-
nées en cours (fin 2025), le potentiel de découvertes liées a une physique au-
dela du MS deviendra ensuite négligeable a la fréquence de collision actuelle.
C'est pourquoi une jouvence importante est planifiée pour le LHC et ses expé-
riences afin d'entrer en phase dite de haute luminosité qui devrait fournir une
luminosité totale dix fois plus élevée apres la méme durée de fonctionnement.
Les améliorations prévues pour cette jouvence seront mises en place lors du
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prochain arrét long (long shutdown 3) du LHC. Pour le détecteur CMS, un as-
pect important de cette jouvence consiste a ajouter la possibilité d'extraire le
temps d'arrivée des particules dans les sous-détecteurs avec une trés grande
précision. Cette information devrait permettre de compenser les effets néfastes
du grand nombre d'évenements simultanés causés par la fréquence de colli-
sion plus rapide. Cela sera aussi bénéfique aux analyses physiques telles que
'analyse H — ~~. Pour atteindre la résolution temporelle nécessaire (entre
30 ps et 40 ps), un signal d’horloge tres précis doit étre distribué et synchronisé
entre toutes les parties des sous-détecteurs. Cette thése apporte une contribu-
tion au contrdle rapide et a la calibration de la distribution du signal d’horloge
de haute précision. Cette contribution prend la forme d'un environnement de
simulation décrit dans le Chapitre Il : pyDDMTD. Cet environnement apporte une
simulation de ce qu'apporterait d'une surveillance du signal d’horloge basée sur
un DDMTD (digital dual mixer time difference) pour contrdler la gigue intro-
duite par la chaine de distribution du signal. D'apres les résultats d'une étude
simple reposant sur les simulations réalisées avec pyDDMTD, une solution utili-
sant seulement un DDMTD pourrait déja apporter une correction des éléments
de gigue ayant une fréquence au-dessus de 10 Hz. Les simulations fournies par
pyDDMTD pourraient maintenant étre utilisées pour étudier et comparer diffé-
rentes stratégies de correction basées sur des DDMTDs.
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Introduction

Ten years after the discovery of the Higgs boson, our knowledge of its prop-
erties has greatly increased thanks to the excellent performance of the CERN
large hadron collider (LHC) and its detectors. The ATLAS and CMS collabora-
tions announced the discovery of a candidate Higgs boson in 2012 after two
years of data taking with proton-proton collisions at a centre-of-mass energy
of 7TeV and 8TeV. The decay of the Higgs boson into two photons (H — ~7)
was one of the decay channels with the highest sensitivity at the time of discov-
ery, together with the decay of the Higgs boson in four leptons. The H — 7~
decay has a small branching ratio of about 0.2%, but its final state is fully recon-
structed, with a resolution close to 1% on the invariant mass of the diphoton
system. Since the discovery, about 13 times more data have been collected at
higher energies, and this boson candidate has been confirmed to correspond
to the Higgs boson predicted by the standard model (SM) of particle physics.
Measurements of its mass, spin, and couplings with other particles of the SM
have been achieved with great precision, all confirming the robustness of the
SM. Increasing the amount of data available provides a remarkable opportunity
to push further our understanding of the Higgs boson, and to make the most of
it, analyses teams of the LHC experiments deliver constant efforts to improve
the design of analysis strategies.

Concurrently, in the last decade, the field of machine learning (ML) has known
extensive growth with the development of more performing tools, particularly
the many flavours of deep neural networks. These advanced methods are proven
to be especially powerful when given a large amount of data during their training
phase. Therefore, they are becoming a natural choice for high energy physics
(HEP) communities when developing techniques to extract information from sig-
nal events buried under vast amounts of background.

As the H — ~~ analysis is a crucial probe to access properties of the Higgs bo-
son, this thesis aims to enhance the performance of the H — ~~ analysis of the
CMS experiment by including deep learning methods at different stages of the
analysis. A first improvement is proposed by implementing generative adver-
sarial networks (GAN) to better describe the background of the H — ~~ anal-
ysis. The primary background sources of the H — ~~ analysis are processes
producing two photons in their final state or objects (mainly jets) misidentified
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as photons. The role of the GAN is to generate new misidentified photons for
events belonging to a control region in data so that these events offer a more
accurate estimation of background in the signal region than the available Monte
Carlo simulations.

One of the properties of the Higgs boson studied in this thesis is its behaviour
with respect to the charge-parity (CP) symmetry. As the Higgs boson is expected
to have a CP-even nature in the SM, any couplings hinting at a different be-
haviour (e.g. CP-odd couplings) are considered anomalous. This thesis presents
the expected constraints on these anomalous couplings (AC) through the cou-
plings of the Higgs boson with electroweak gauge bosons (W or Z boson). The
complete analysis targets multiple production modes of the Higgs boson sensi-
tive to its couplings with the W or Z boson. | am involved in the analysis through
the design of the analysis strategy for the VH production where V is a W or Z
boson which decays hadronically. To improve the sensitivity of the analysis, we
include a multiclassifier deep neural network to separate events between back-
ground, SM-like signal and AC-like signal.

Although the LHC will have provided a significant amount of data (an integrated
luminosity of 300fb™" is foreseen) at the end of the current data-taking period
(end of 2025), the potential for new physics discoveries will become negligible
at the current rate of collisions. This is why significant upgrades are planned
for the LHC and its experiments to enter a high-luminosity phase which should
provide a total luminosity ten times higher after the same operation time. These
upgrades will be implemented during the long shutdown 3 of the LHC. For the
CMS detector, a significant aspect of its upgrades is to include information on
the time of arrival of particles in its subdetectors. This information should mit-
igate the side effects of the high number of simultaneous events arising from
a faster collision rate. It will also benefit offline analyses such as the H — ~~
analysis. To reach the necessary timing resolution of 30 ps to 40 ps, a very clean
clock signal needs to be delivered and synchronised among all parts of the sub-
detectors. This thesis contributes to the fast monitoring and calibration of the
high-precision clock distribution.

The thesis unfolds as follows. In Chapter |, | describe the theoretical context of
the SM and of Higgs boson physics at the LHC. A brief description of the LHC,
the CMS detector and their upgrade for a high-luminosity phase are given in
Chapter I, just before a report on my contribution to the monitoring of high-
precision clock distribution in the context of the high-luminosity LHC (Section 11.3
of the same chapter). Furthermore, the notions of deep learning necessary for
presenting ML-based methods in the H — ~~ analysis are defined in Chapter Ill.
These notions are applied in Chapter IV, which details the implementation of a
GAN for the data-driven description of the background of the H — ~~ analysis.
Finally, Chapter V presents the analysis of anomalous couplings of the Higgs
boson with gauge boson in the H — ~+ channel with a focus on my contribution,
i.e. on the VH production of the Higgs boson.
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In an attempt to describe the laws of our universe, the standard model of particle
physics (SM) offers a single theoretical framework describing three of the four
fundamental interactions discovered so far. The SM was established through-
out the second half of the 20th century from the joint progress of quantum
field theories (QFT) and high energy physics (HEP) experiments. One aspect that
demonstrates the strength of the SM is its accurate prediction of many physical
effects, later confirmed experimentally such as the predictions and observations
of neutral weak currents (by the Gargamelle experiment in 1973), the discovery
of the weak gauge bosons (UA1/UA2 experiments, 1983), of the top quark (CDF
and D@ experiments, 1995), of the tau neutrino (DONUT experiment, 2000), and
more recently of the Higgs boson (ATLAS and CMS experiments, 2012). While the
SM has proven to be highly robust, it still leaves open questions about certain
observed phenomena, and the search for physics going beyond the standard
model (BSM) is one of the main ambitions of modern HEP experiments. This
chapter briefly summarises the SM in Section 1.1, then Section 1.2 covers the
Higgs sector and its experimental status.

1.1 The standard model of particle physics

The SM is based on QFT to describe three fundamental forces: the strong in-
teraction (Sl), the electromagnetic interaction (EMI), and the weak interaction
(WI). These forces act on and are mediated by particles. In the context of QFT,
each particle type is represented by a field taking values everywhere in space-
time. When quantised, the local excitation of the fields corresponds to particles.
These particles are divided into two categories based on their spin. Half-integer
spin particles are called fermions, and integer spin particles are bosons. The
SM characterises the behaviour of elementary particles, i.e. particles that do not
have internal substructures to our current knowledge. Among these particles,
the building blocks of matter are the elementary fermions with spin 1/2.

In the SM, the fundamental interactions have an elegant origin based on in-
ternal symmetries on the Lagrangian. Building a theory of interacting particles
can be summarised in three main steps. First, one isolates the internal global
symmetries in the Lagrangian of a non-interacting field of matter (free field).
A global symmetry is a differentiable transformation of the fields that do not
depend on space-time and leaves the Lagrangian unchanged: for instance, a
phase rotation of the fields for the EMI. These symmetries are fundamental in
physics since, via Noether’'s theorem, they correspond to a conserved physical
quantity, like the electric charge for the EMI. In the second step, one follows a
recipe adapted from the building of the EMItheory, global symmetries are re-
quired to be local symmetries, i.e. that the field transformations depend on the
space-time point. To do so, one needs to introduce a new field (known as a
gauge field) as well as an interaction between these gauge fields and the orig-
inal fields of matter. Finally, one provides some dynamics to the gauge fields
by introducing a corresponding kinematic term in the Lagrangian. In this final
step, one should stress that mass terms for gauge fields are prohibited because
they would break the local symmetries (also known as gauge symmetries); thus,
all gauge fields are, in essence, massless. A more thorough overview of these
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steps in the context of interactions of the SM is given in Sections 1.1.2 and 1.1.3.
In the SM, the interactions are the fundamental forces, and they are carried by
the quantised gauge fields which are the gauge bosons. The set of mathematical
transformations associated with the gauge symmetries of the system forms the
symmetry group (or gauge group), and the total symmetry group of the SM is
SU3)c x SU(2)L x U(L)y [11.

1.1.1 Elementary particles

The elementary particles of the SM are presented and classified in Fig. I.1.

1st 2nd 3rd generation

standard matter  unstable matter force carriers
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Figure 1.1 - Classification of the particles described by the SM. Adapted from Ref. [2].
Values of the masses are taken from Ref. [3].

The elementary fermions of the SM have a spin S = 1/2 and are classified ac-
cording to how they behave with respect to the fundamental interactions. This
behaviour is encoded in a quantum number called a charge, with a different
charge for each interaction. The dynamics of spin-1/2 massive particles are de-
scribed by the Dirac equation, which implies that, for each such particle, there
exists an antiparticle of the same mass but with opposite charges. Thus, from
12 fermions forming matter, there are 12 associated antifermions forming anti-
matter.
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The 6 fermions interacting through the Sl are the quarks: up (u), down (d), strange
(s), charm (c), bottom (b), and top (t). They carry a colour charge (red (R), green
(G) or blue (B)) and have masses ranging between 2.2 MeV for the up quark to
172.7 GeV for the top quark. The theory describing the Sl is called quantum
chromodynamics (QCD) and shows that quarks cannot exist outside of colour-
neutral bounded states (hadrons); this phenomenon is known as colour con-
finement. Hadrons can be further classified depending on their quark compo-
sition; bounded states consisting of three quarks are called baryons, and those
containing one quark and one antiquark are called mesons. In the last decade,
collider experiments have also discovered exotic baryons: pentaquarks (four
quarks and one antiquark) and exotic mesons: tetraquarks (two quarks and two
antiquarks). Therefore, when quarks are produced in collider experiments, we
observe jets of hadrons in the detectors rather than quarks due to their hadro-
nisation. Only the top quark has a mean lifetime so short (=~ 5 x 10~ ps) that
it decays before it can hadronise (typical Sl time scale is ~ 107>*s). Quarks are
also sensitive to the EMI and WI, so they have an electric and weak charge.

The 6 remaining fermions are uncoloured as they do not interact through the
Sl and are called leptons. Three of them interact electromagnetically and also
through the WI: the electron e™ (m, = 511keV), the muon = (m, = 105.7 MeV),
and the tau 7~ (m, = 1.777 GeV). They are associated with three neutrinos: the
electron neutrino v, (m,, < 0.8 eV), the muon neutrino v, (mm < 0.19 MeV), and
the tau neutrino v, (m,_ < 18.2 MeV). As neutrinos do not have an electric charge,
they interact only through the WI (and potentially gravity), making them partic-
ularly hard to detect as they pass through matter unfazed.

The SMincludes bosons with a spin S = 1 which are the gauge bosons mediating
the SI, EMI, and WI. The gauge bosons carrying the Sl are the gluons correspond-
ing to the SU(3) symmetry group of QCD. Since the SU(N) group is described
by (N> —1) generators, the SU(3) group has 8 generators, and that imposes the
number of force-carrier of the theory: 8 gluons. Each corresponds to a differ-
ent combination of colour and anticolour charges transferred between quarks.
They are massless and do not interact with other gauge bosons, so they do not
carry additional charges.

The four bosons v, Z, W*, and W~ are emerging from a unified theory describing
both the EMI and the WI: the Glashow-Salam-Weinberg (GSW) theory [4-6]. The
GSW model has a SU(2)_ x U(1)y symmetry group (which has 3 + 1 generators)
that describes four massless gauge bosons before taking into account a sponta-
neous symmetry breaking leading to the Brout-Englert-Higgs (BEH) mechanism.
This mechanism details how the four massless gauge bosons transform into the
massive physical states Z, W=, plus a massless photon that are observed experi-
mentally. The photon mediates the EMIbut does not carry any charge. The Z bo-
son mediates the neutral WI; it has no electric charge and a mass m;, = 91.2 GeV.
In contrast, the W boson, which carries the charged WI, has an electric charge
of one unit and a mass my, = 80.4 GeV.

The Higgs boson and BEH mechanism are presented in more detail in Section 1.2
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1.1.2 Strong interaction

The Slis described by the QCD gauge theory. This theory was needed to describe
how the large number of hadrons experimentally observed could be explained
by the existence of smaller particles: the quarks. A new quantum number, the
colour C = {r, g, b}, was introduced to represent an interaction with a SU(3)
symmetry group between quarks. Thus, the quark field ¢ can be represented
as a triplet of Dirac spinors corresponding to the different colour charges:

Ur
¢ = [ v, | and a Dirac adjoint defined as ¢ = ¢/"7°.

(G

As mentioned already, the dynamics of spin-1/2 massive particles are described
by the Dirac equation, so the most basic description of the Lagrangian of the
theory has the form

EDirac = QZ(’& - m)w, (|.1)

where the slashed notation is used, J = 7*0,, and v* are the Dirac matrices.
A unitary 3x3 matrix U, with determinant 1, can be used to represent a global
symmetry of SU(3) through the transformation

Y= = Uy (1.2)

which leaves Lp;,... unchanged. This transformation can be adapted to represent
a local symmetry if it depends on the space-time coordinate x: U — U(x). Since
the transformation belongs to the symmetry group, it can be expressed as a
function of the generators t* of the group

U(x) = e’ (1.3)

where g is the strong coupling constant and «” are arbitrary functions of space-
time. Following Einstein’s notation, we imply the summation of repeated indices
for both Greek and Roman indices. In the context of SU(3), the generators are
represented by the Gell-Mann matrices A\? as t* = A\?/2. The transformation U(x)
can be written in its infinitesimal form

U(x) = 1+ iga®(x)t° + O(a?) . (1.4)

To ensure the symmetry of the Lagrangian with respect to this local transfor-
mation, we need to introduce new vector fields A%, which are absorbed in the
definition of a sensible derivative adapted to the theory (the covariant deriva-
tive):

D,=0,— igh,t". (1.5)

A field is associated with each generator of SU(3), so 8 in total, and they are
associated with the gluon fields carrying the SI. For non-Abelian theories (i.e.
the t* do not commute), the commutator of the t* generators can be written as

[t7, t°] = if ™€, (1.6)

1.1 The standard model of particle physics | 7



where the £2°¢ are called the structure constants. It allows the definition of the

transformation laws for the fields of the theory as

Y — (14 iga’t®)y; (1.7)
a a 1 a abc ab ¢
A At 0,07+ (A (1.8)

To define the most general locally invariant Lagrangian, it must include an invari-
ant term describing the dynamics of the A? fields. It is defined by introducing a
gluon field strength tensor G and forming a simple invariant term

1 .
Lauon = —5(GL)" (1.9)
with
a a a abc ab pc
G2, = DAL — 0,AL + gf AL AC. (110)

Thus, the complete QCD Lagrangian is written as

Lqaco = Lpirac + Laiuon

_ 1, . (1.11)
= ¢(’m - m)qu) - Z(G;w)z :
which describe a special case of Yang-Mills theory [7] associated with a SU(3)
symmetry. The interaction between quarks and gluon is described through the
term

£QCD:-..+grlE,7iu‘AZtaw+...

and the nonlinear term in the gluon field strength tensor gives rise to three- and
four-gluons interactions. The only mass term of the theory is associated with
the quarks

Mass terms for the gauge fields of the form A7 A** would not keep the Lagrangian
invariant under SU(3) transformations, so they cannot be included in such a
gauge theory, i.e. gluons must be massless.

1.1.3 Electroweak interaction

The unified theory describing the EMI and Wl is also a Yang-Mills theory but as-
sociated with a SU(2), x U(1), gauge group. This describes the experimental
observations showing that the W= bosons only interact with certain fermions,
depending on their chirality. The chirality of a fermion is exhibited by the 4° =
i7°v'~+?+* operator, which has +1 eigenvalues: +1 corresponds to right-handed
fermions and —1 to left-handed fermions. In the massless limit, the chirality of
a particle is equivalent to its helicity (projection of the spin direction on the mo-
mentum direction). Moreover, the WI acts on pairs of fermions of different types
(eg WH — ud or W~ — e 1,). Thus, through the WI, left-handed fermions (or
right-handed antifermions) are represented as doublets that can interact with
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the WI, whereas right-handed fermions (or left-handed antifermions) are sin-
glets that do not interact through WI. In this section, the particle fields are de-
noted by their symbol and the different doublets and singlets are represented

as
u Ve _ -
V= (dt) ' (e[L) o AN PR = e, SRy

Given that left- and right-handed fermions belong to different SU(2) represen-
tations, the free Lagrangian for fermions cannot contain terms such as:

‘CDirac — mU(L_JLUR + GRUL) ‘l‘ ttt

This would spoil the SU(2), invariance of the Lagrangian, so itimposes the fermions
of the theory to be massless.

Then, by proceeding similarly as the SI, we can introduce two kinds of gauge
fields A® (a = 1,2,3) and B to keep the Lagrangian invariant with respect to
transformations from the two symmetry groups SU(2), and U(1)y. They are as-
sociated with the generators of these groups: three generators T° = ¢°/2 for
SU(2)., where ¢° are the Pauli matrices, and one generator Y/2 for U(1)y. The
eigenvalues (+1/2 or —1/2) I3 of T; corresponds to the weak isospin. Based
on the weak isospin, fermions can be classified into two categories: up-type
fermions have a value /; = +1/2, while down-type fermions correspond to ; =
—1/2. The Y value is the weak hypercharge, and its combination with the weak
isospin gives the electric charge Q of a fermion following Eq. 1.12. A summary of
the electric charge, weak isospin, and weak hypercharge of each fermion type is
given in Table I.1.

Q:/3+§. (1.12)
Fermions ¢ Left I3Right Left YRight
uct |[+3]+3 0 |[+3 +3
d,s, b —% —% 0 +% —%
e, u,7 | —1 —% 0 -1 =2
Ver Vyr Vy 0 —|—% -1

Table 1.1 - Value of the electric charge Q, weak isospin /5, and weak hypercharge Y for
each fermion type, with a distinction between left-handed (Left) and right-handed (Right)
particles when needed.

From these gauge fields and generators, we can define the covariant derivative
of the theory

. aTJa . Y
D, =0, — igA, T — /glEBM. (1.13)
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And finally, we can write their associated field strength tensors:

A2, = 0,0 — OAL + g™ ALAS (1.14)
Buu = a,uBu - auBu ' (|.15)

where ¢®* is the Levi-Civita tensor, giving the commutation relation of the Pauli
matrices.

We can now write the Lagrangian of the electroweak theory:

£EW = £fermion + ‘cint + ‘cbosons
1

- - . 1, .,
= WL(IID)\UL + wR(’lme - Z(A,uu)z - Z(B;w)z
= W (i)W + Pr(id)er (1.16)
1T aTa Y - Y -
+ VIV ATV 4 g EWL/VMB;L\UL + g1§¢R7uBu¢R
1 a \2 1 2
- Z(A;w) - Z(B;w) :

But as mentioned above, given the observed behaviour of the WI, we expect
interaction terms of the form:

Lo =+ RO WId +---

with a coupling constant x, so under their current form, the gauge fields are
not the physical gauge bosons we observe experimentally. The latter can be
recovered by combining the A? and B fields. The two charged W bosons are
obtained from

Al -A2
W;E — Au T 1A , (1.17)
V2
and similarly, to obtain the correct association of generators
T =T'+iT. (1.18)

On the other hand, the Z, and A, fields associated with the Z boson and the
photon are recovered by mixing the remaining Ai and B, fields:

Z cosfl, —sinf A3
T w w n
(AN) a (sin 0, cosb, ) (Bu) ' (1119)

where 6, is the weak mixing angle, also called the Weinberg angle.

From these definitions, we can rewrite the covariant derivative defined in Eq.1.13
as
82 T+ 82 -
DH = (%— IEW‘H T — IEWM T

. ) Y
-1 (meos(0) T - msin(0,) ) 2, (1.20)

Y
— (g2 sin((9W)T3 +g cos(@w)§> A, .
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Since the last term, associated with the photon field A, should have as coupling
constant the electric charge, we can identify the following relation using Eq. 1.12:

e = gy cos(f,,) = gsin(6,,), (1.21)

which allows the expression of the weak mixing angle 6, with respect to the
coupling constants g; and g»:

cosf,, = % sinf,, = % aswellas e = % . (1.22)
V &1 + & 81 1+ & 81 T &

Finally, we can write the different interaction terms between fermions and the
physical gauge bosons, first for left-handed fermions e.g. with the doublet de-
scribing the u, and d, quarks:

8 -

& - _
Lhy = EUL’V#W:CIL + 725dL’7MW;L up
Y, Y\ -
+e (/3 + 7u) Uy Auu +e (/d3 + 7d) dy"A,d.
2

Y, (1.23)

+ e? (/j - (?) 7) 0,7 Z,u,
1 2

2
2] 3 81 Yo\ 5
ro8 (5o (5) ) arza
g1<d 82 2) - et

And then, for any right-handed fermion r with electric charge Q we have:
Ll = QU A + QU Z . (1.24)

Theinteractions between gauge bosonsisincludedinthe £, ., term, expressing
interactions between three (YW W™, ZW"W™) and four (yyW W™, ZZW W,
ZYWHTW™, WrW~W'W™) gauge bosons.

While successfully describing the interactions between particles under the WI,
the electroweak Lagrangian Lg reached here is missing crucial components. In-
deed, to conserve the SU(2), x U(1), symmetry assumed for this gauge theory,
all fermions and bosons should be massless. However, the previous theory de-
scribed the WI through a four-fermions point-like interaction (Fermi’s contact in-
teraction [8]) introducing a coupling constant Gr. With the development of QFTSs,
mathematical inconsistencies in Fermi's contact interaction were pointed out,
and Fermi’s theory was interpreted as a low-energy effective theory. Its proper
mathematical description was achieved via the electroweak theory with gauge
bosons mediating the WI. Yet, the short-range interaction which was implied
by the contact interaction, was pointing towards very massive gauge bosons,
in contradiction with the requirement of massless gauge bosons required by
gauge theories. It means that the gauge symmetry of the theory should break
spontaneously to give mass to certain particles; this mechanism is described in
Section 1.2.1.

1.1 The standard model of particle physics

1"



1.2 The Higgs boson and where to find it

1.2.1 The Brout-Englert-Higgs mechanism

The SU(2), symmetry of the electroweak theory, while offering an accurate de-
scription of the WI, is not observed experimentally as fermions and the Z and
W= bosons have a measurable mass. It is suggestive of a hidden symmetry of
the theory. Only a U(1) symmetry is observed in the electroweak sector, as-
sociated with the EMI and to a massless photon. This specific mechanism of
spontaneous symmetry breaking SU(2), x U(1)y — U(1)gym of the electroweak
theory giving mass to the bosons of the SM is called the Brout-Englert-Higgs
(BEH) mechanism [9-11].

The BEH mechanism introduces a complex scalar (S = 0) field ¢ whichiis a SU(2),
doublet with hypercharge Y = 1 and transforms under the SU(2), x U(1)y sym-
metry as

b — eI Iy (1.25)

with arbitrary functions of space-time o® and 3. The dynamics of this field are
described through a Lagrangian, including a kinematic and a potential term of
this scalar field:

Leen = (D,¢")(D") — V(¢) (1.26)

where D is the covariant derivative defined in Eq. 1.20 including the gauge fields
of the electroweak theory, and the potential V is defined as

V(g) = —1|¢|* + Ao[*, (1.27)

with two parameters x and X such that 4> > 0and A > 0. An illustration of the
shape of the potential function V is provided in Fig. I.2. The ground state of the
scalar field is at the minimum of the potential function such that

’¢min| = L' Wlth vV =

V2

It means that the field ¢ acquires a nonzero vacuum expectation value (VEV),
and the SU(2)_ x U(1)y is spontaneously broken. We write the VEV of the field

¢ under the form
1
(9) = —= <0> : (1.29)

12
N (1.28)

Small excitations of the scalar field about its VEV can be parameterised using

four real fields:
_ 1 e 0
o(x) = \/ie vt H(x)) (1.30)
where the three 6° fields are called the Goldstone fields and H is the Higgs boson

real scalar field. Since the rest of the Lagrangian is invariant under SU(2) trans-
formations, we can use the inverse transformation to remove any dependency
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Figure 1.2 - lllustration [12] of the potential described by Eq. I.27. The ball is shown at
two equilibrium positions: an unstable one associated with a null field and a stable one
corresponding to |¢| = |Pminl-

with respect to the Goldstone fields:

5 e T () \% (v+(,)L/ (X)) _ (1.31)

Thus, the only physical field remaining is the scalar Higgs boson H which corre-
sponds to the last particle predicted by the SM.

By using the form of the scalar field ¢ presented in Eq. I.31 and the covariant
derivative defined in Eq. 1.20, we can expand the Lagrangian Lggy and exhibit
mass terms for the theory:

15,0, 8V 1gi +& »
EBEH:"'+§2MH + 7 WJW7“+§TVZNZ“+'”'

where we can identify

Vv
mH:\/E,u, mwz%, and mzzng—i_gzv. (1.32)

The rest of the Lagrangian also contains the interaction terms between the H bo-
son andthe W, Z bosons, as well as self-coupling terms of the H boson. However,
as there is no term including the photon field A,, the photon remains massless
after the symmetry breaking, as expected, and it does not interact with the Higgs
field.

Finally, the observed mass of the fermions of the theory is described by the
Yukawa interaction between these fermions and the scalar field doublet ¢. For
more clarity in the presentation of the following equations, we separate the
fermion left-handed doublets between quark and lepton doublets:

i U{_ i_ V{_
QL= (d,L) and £/ = (e{_) (1.33)

with i running over the different generations of fermions, so u’(d’) corresponds
to the up-type(down-type) quarks. Then, we can define the Lagrangian repre-
senting the Yukawa interaction:

Lovgawa = — A, QLoUR — A\ Qlpdg — A\ E peg + h.c., (1.34)
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where ¢ is the charge-conjugate Higgs field ¢ = io,¢, h.c. denotes the hermitian
conjugate terms and Ay are the coupling constants of the interactions between
the Higgs boson and fermions. Given the form of ¢ defined in Eq. .31, we can
expand the Lagrangian as

J—— Auf%uﬁug - Adf%adg - Ae;%éﬂeg e
AV o Agivop o AV
——\/iuu—\/id —\/iee (1.35)
N i = 2 g 2 e
V2 V2 V2

where the fermion fields are regrouped as u = (ug, uj), d' = (dg,d{), and e’ =
(er.€eL). Thus, the masses of fermions are expressed as
)\Uiv ALV Aiv

mi=—"_ m.,="%_  and mgi = € (1.36)

VRV V2

and we can identify interactions between the Higgs boson and fermions (last line
of Eq. I.35) with a coupling constant related to the mass of fermions of the form
my /v. In this brief presentation of the Yukawa couplings, we omit the terms re-
sponsible for mixing the different generations of fermions in the WI. The terms
are introduced by the CKM matrix, which has nonzero off-diagonal values. The
CKM gives rise to the only known source of charge-parity (CP) symmetry violation
in the SM.

The model presented here assumes neutrinos are massless, which is not what is
observed experimentally. Alternative mechanisms are proposed to include the
mass of neutrinos. For instance, adding a Yukawa coupling to Eq. 1.34 could de-
scribe a massive Dirac neutrino. The BEH mechanism provides an explanation
to the observed mass of fermions and gauge bosons, and expands the electro-
weak theory with a description of the dynamics of a Higgs field and its interac-
tions with other particles Lew = Leermion + Lboson + Line + L8s + Laen + Lyukowa-
The Higgs boson interacts with fermions and bosons with coupling constants
related to their mass, granting a unique way to probe fundamental properties
of particles.

1.2.2 The Higgs boson ten years after its discovery

The large hadron collider (LHC) was designed to reach energy levels sufficient to
probe the properties and interactions of the Higgs field described in Section 1.2.1
by producing Higgs bosons from proton-proton (pp) collisions. In 2012, after two
years of data-taking at centre-of-mass energies /s = 7 TeV and 8 TeV, the ATLAS
and CMS experiments of the LHC discovered the Higgs boson [13-15]. A decade
later, the LHC has provided much more data to the experiments through the
Run 1 (data-taking period 2010-2012) and Run 2 (2015-2018) and has reached
even higher energies. For instance, the CMS experiment has recorded a total of
138fb~* of data at /s = 13TeV during the Run 2. The goal of this section is to

14 | CHAPTER | The Standard Model and the Higgs Boson



provide an overview of our knowledge of the BEH sector thanks to the experi-
ments of the LHC.

As the couplings of the Higgs boson grow linearly with the mass of fermions
and quadratically with the mass of bosons, interactions of the Higgs boson with
heavy particles are more likely. The most frequent production modes occurring
in pp collisions at the LHC are presented in Table 1.2 (left) along with their cross
section (ox). The cross section is a representation of the probability for a given
process to occur following a pp collision and is expressed here in picobarn (1 pb
=107*° cm™?). According to Table 1.2, the total cross section of Higgs boson pro-

Pr?;igggon Cross section (pb) cﬁsri?:el Branching fraction (%)
ggH 48 +2 bb 576  +0.7
VBF 38 +£0.8 WW 22.0 +0.3
WH 1.36 +0.03 gg 8.2 +04
ZH 0.88 +£0.04 T 6.21 +0.09
ttH 0.50 +0.04 cc 2.86 +0.09
bbH 0.48 £ 0.09 77 271 +0.04
tH 0.09 £0.01 vy 0.227 4+ 0.005
Zv 0.157 +0.009
Ss 0.025 +0.001
[ 0.0216 + 0.0004

ggH

u
‘?___—_____—J 77 V¥ zy®
‘&\\/

99

Table 1.2 - Expected cross sections for the leading production modes of the H boson and
expected branching fraction of its leading decay channels for proton-proton collision at
v/s = 13TeV and for my = 125.38 GeV. Adapted from Ref. [16].

duction at /s = 13 TeV is around 55 pb, so for a total of 138fb™* of collision data
accumulated during the Run 2, we expect around 55000 x 138 = 7.6 million col-
lisions produced a Higgs boson; the challenge is then to detect them. The dom-
inant production mode is by far the gluon fusion (ggH or ggF), where the Higgs
boson is produced via a loop of heavy quarks (mainly involving t quarks). The
second-largest production comes from the fusion of vector bosons (VBF), and
the Higgs boson is produced in association with two quarks. Finally, the Higgs
boson can be produced in association with a single vector boson (VH withV = Z
or W) or a pair of heavy quarks (ttH, bbH). The Feynman diagrams associated
with these production modes are shown in Fig. 1.3.
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Figure 1.3 - Feynman diagrams of the dominant production modes of the Higgs boson
at the LHC: ggH (top left), VBF (top right), VH (bottom left), and ttH (bottom right).

After being produced, the Higgs boson decays through one of its decay channels
to form the final states that will be observed by the detector. The probability of
decay in a given channel is called branching fraction (By). The dominant decay
channels and their branching fraction are reported in Table 1.2, and the associ-
ated Feynman diagrams are shown in Fig. I.4. The largest B is associated with

Figure 1.4 - Feynman diagrams of the decay channels of the Higgs boson: into a pair of
massive fermions (top left), into a pair of massive bosons (top right), and through loops
of heavy particles to produce two photons (bottom).

the decay in a pair of b quarks, occurring in around 58% of the cases. However,
the two most sensitive channels for measurements on the Higgs boson are its
decay in a pair of Z bosons (then decaying to four leptons) and its decay in a
pair of photons through loops of W bosons or t quarks. They both have a low
branching fraction of around 0.23% and 0.01% for the H — yyand H — ZZ — 4/
decay respectively, but their final state is fully reconstructed, and the LHC ex-
periments have very good resolution on the energy resolution of leptons and
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photons. These two decay channels brought a key sensitivity to the discovery of
the Higgs boson, and they are currently the only channels allowing for a precise
measurement of the Higgs boson mass (my). The most precise determination of
my with the CMS experiment [17] is obtained for now from a combination of the
measurements in these two channels for data obtained during the Run 1 plus
2016:

my = 125.38 £ 0.14 GeV . (1.37)

To check the consistency of the Higgs boson observed experimentally with the
properties predicted by the SM, the number of observed events associated with
a Higgs boson for a given production mode or a given decay channel are param-
eterised using the signal strength px defined as

oxBy

—e e - (1.38)
B

4
Mx =

Measurements of the signal strength parameters are presented in Figs. 1.5and I.6
for different production modes (1 assuming By = By, left) and decay chan-
nels (1" assuming ox = ox", right). The results obtained by the CMS experi-
ment over the Run 2 (Fig. 1.6) are compared to ATLAS and CMS results during
Run 1 (Fig. I.5). Thanks to the large amount of data collected during Run 2, new
production mode (tH) and decay channels (uu, Zv) are analysed. Moreover, for
the production modes and decay channels already considered during Run 1, the
CMS experiment has increased its precision on the results by more than a factor
2. All measurements are compatible with the predictions of the SM.

Another parameterisation can be introduced at the coupling constant level to
take into account the fact that a deviation of the coupling constant would affect
both production modes and decay channels in a correlated way. This modifier
kx isintroduced in the couplings of fermions and bosons probed by the current
analyses. The results of the fit of the x parameters are shown in Figs. 1.7 and 1.8.
The value of the coupling parameters is drawn as a function of the particle mass.
An agreement is observed between measurements and expectations of the SM
for the couplings of the Higgs boson already with data of Run 1 (Fig. I.7). This
agreement is getting much clearer with the results of Run 2. Analyses of the
Run 2 data recorded by the CMS experiment resulted in the observation of the
Higgs boson decay to a pair 7 leptons [19], to a pair of b quarks [20] and first
evidence of the Higgs decay to a pair of muons [21], showing that this agree-
ment holds over more than three orders of magnitude of mass. This is powerful
proof that the observed Higgs boson is indeed the one introduced by the BEH
mechanism.

One last argument to confirm the nature of the boson observed experimentally
is to examine its spin-parity nature. Indeed, as the SM predicts the Higgs bo-
son to be a scalar field, it should be the only elementary particle with quantum
numbers J” = 0%, where J is the spin of the particle and P is the parity sym-
metry. Many alternative J” hypotheses are tested and confronted with the SM
hypothesis using Run 1 data [22]. The different alternatives can be compared
using the kinematic variables of the decay products as they differ depending on
the spin-parity hypothesis. The results are detailed in Fig. .9. A test statistics
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Figure 1.5 - Value of the signal strength for several production modes (left) and decay
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Figure 1.9 - Distributions of the test statistics for alternative JP models tested against
the SM Higgs boson hypothesis in its ZZ and WW decay channels [22]. The expected
median and the 68.3%, 95.3% and 99.7% CL regions are shown for the SM Higgs boson
(orange) and for the alternative (blue) hypotheses. The observed q values are indicated
by black dots.

g = —2In(L »/L,+) is defined, and the observed value of the test statistics is in-
dicated by the black dot. As the decay of the Higgs boson has been observed
in the diphoton decay channel, the J = 1 hypotheses are ruled out as a conse-
guence of the Landau-Yang theorem [23, 24]. This is also confirmed in the ZZ
and WW decay channels where the observed value of g excludes the J = 1 hy-
potheses at a greater than 99.999% confidence level (CL). For alternative J = 2
hypotheses, the same combination of decay channels is able to exclude them at
a 99% CL or higher. Moreover, the same analysis excludes a pure pseudoscalar
J” = 0 hypothesis at a 99.98% CL. All of this indicates that the observed boson
is consistent with a scalar SM-like Higgs boson. However, the constraints of the
analysis are not enough to reject CP-violating couplings of the Higgs boson. This
would be strong evidence of BSM physics.

Recent analyses of the Run 2 have tried to constrain further the possibility of
CP-violating couplings of the Higgs boson. Both the interactions of the Higgs
boson with gauge bosons and with fermions are studied to determine if they
contain small contributions from CP-odd couplings called anomalous couplings
(AC). Since the behaviour of the kinematic variables of the decay products de-
pends on the CP-nature of the Higgs boson, different AC hypotheses can be eval-
uated. These analyses compare these AC hypotheses to the SM hypothesis (no
CP-odd contribution) using Run 2 data and extract the most likely fractions of
events resulting from these anomalous contributions. Results from an AC anal-
ysis in the Yukawa interactions are presented in Fig. 1.10. This analysis observes
the ttH production of the Higgs boson and its decay into two photons to de-
termine if there is any anomalous contribution in the interaction between the
Higgs boson and the top quark. Events are sorted among three bins depending
on their kinematic variables, and results are reported in the scan of AC hypothe-
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ses (fy', top right of Fig. 1.10). The observed 68% CL region is [—0.33, 0.33] for

the value of fg&'. The anomalous couplings of the Higgs boson with the weak
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couplings of the Higgs boson with t quarks

(fE5) is shown in the top right corner.

bosons (Z, W) have been studied in its decay into four leptons [27] and into a
pair of tau leptons [26], their combined results on the fraction of CP-odd Higgs
boson events (f,3) are shown in Fig. 1.11. They report an observed 68% CL in-
terval of [-0.16 x 107%,0.26 x 107°] for the value of f,;. This thesis presents, in
Chapter V, an additional way of constraining the value of f,; by using the decay
of the Higgs boson into a pair of photons.

1.3 Physics beyond the standard model

The SM offers a consistent theory depicting numerous physical effects. It has
also been able to predict the properties of elementary particles with great ac-
curacy. All the recent measurements performed at the LHC have shown results
compatible with the expectations of the SM. Yet, a number of questions are left
unanswered by the current formulation of the SM.

Some of these questions relate to the content of the SM. For instance, the scale
of the electroweak symmetry breaking seems strangely fine-tuned, which is vis-
ible in the mass of the Higgs boson. In the SM, the physical mass observed
experimentally is expected to arise from a bare mass getting very large quan-
tum corrections [28]. These corrections are predicted to reach values of the
order of the Planck scale ~ 10' GeV meaning that there is a compensation be-
tween two numbers over 10" orders of magnitude to reach the observed mass
of my = 125GeV. It appears as an unlikely coincidence if not explained by an
underlying effect. The Higgs boson mass is not the only one raising questions,
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as neutrinos are considered massless in the SM. However, experiments such
as Super-Kamiokande or the Sudbury Neutrino Observatory observed a phe-
nomenon known as neutrino oscillation [29], indicating that each of the neutrino
flavours has a nonzero mass. A recent measurement from Fermilab’s Muon g-
2 experiment confirmed the disagreement observed between SM predictions
and the observed value of the g-2 anomalous magnetic moment of the muon.
This value is computed from the loop corrections predicted by the SM to the
scattering of muons on an external magnetic field. The latest value reported by
the Muon g-2 experiment [30] shows a strong disagreement with respect to the
latest theoretical previsions [31], hinting at effects from new physics.

The necessity to devise BSM theories also arises from observations of physics
phenomena not described by the SM. Therefore, the SM can be considered as
a solid foundation which should be included in a broader model. In particular,
some cosmological observations are currently unexplained by the SM. A striking
example is the gravitational interaction, which is the last fundamental force not
encompassed by the SM. By observing the large-scale structure of the Universe,
it was inferred that most of our universe consists of dark energy (~ 68%) and
dark matter (=~ 27%) [32]. Nevertheless, no particle of the SM constitutes a con-
vincing candidate corresponding to dark energy or dark matter. The remaining
5% of the content of the Universe is composed of baryonic matter. This also
raises a fundamental question: Why is there so much matter and so little anti-
matter? Explanations for this asymmetry have been proposed by Sakharov [33],
who described that for a universe out of thermal equilibrium, if the baryon quan-
tum number and the CP symmetry are violated, then the Universe could cascade
in a matter-dominated state. We know that the weak interaction is a source of CP
violation, but this contribution is too small for the effects described by Sakharov.
It means that the SM should contain other sources of CP violation. The interac-
tion between the Higgs boson and other particles could be one of these sources,
so it motivates measurement like the one presented in Chapter V.

All of these questions justify the necessity to design theories describing physics
beyond the standard model. Therefore, one of the main objectives in the physics
programme of the LHC experiments is now to determine where these theories
could stem from by probing as many physical effects as possible and comparing
the consistency of the results with the SM.
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The large hadron collider (LHC) is a particle accelerator descending from a long
list of machines and past experience probing the fundamental constituents of
our Universe. It is operated by the European Organisation for Nuclear Research
(CERN, from the French "Conseil Européen pour la Recherche Nucléaire") and
located at the Swiss-French border. The specifications of the LHC, at the time of
its design, were driven by its physics program: discover or rule out the existence
of the Higgs boson predicted by the SM, push further the precision on the mea-
surement of particle properties, probe sectors of the SM that would be sensitive
to BSM physics.

Collisions at the LHC happen at four interaction points where four experiments
record the subsequent production and decay of particles. One of these experi-
ments is the compact muon solenoid (CMS), which provides the data and context
for this thesis.

After approximately sixteen years of physics operations (which started in 2010),
the LHC and its detectors will undergo significant upgrades to enter the high-
luminosity phase of the LHC (HL-LHC). As there will be at least five times more
collisions occurring each second, the CMS detector will have to deal with a harsher
operating environment. One way to mitigate these effects in the CMS experi-
ment and retain good precision on the relevant physics effects will be to rely on
the time of arrival of particles in the subdetectors. Therefore, precise timing cal-
ibration and synchronisation will be needed over the entire CMS detector with
the HL-LHC.

A description of the current operation of the LHC and CMS experiment is given
in Section II.1 of this chapter. The upgrades planned for the HL-LHC and CMS
are presented in Section 11.2. Finally, my contribution to the timing calibration of
CMS detectors in preparation for the HL-LHC is detailed in Section I1.3.

11.1 The LHC and the CMS detector

11.1.1 The large hadron collider at CERN

Design

At this time, the LHC is the largest accelerator ever built, granting access to un-
precedented levels of energy in the collisions of particles. This synchrotron is
installed in the tunnel initially built to accommodate the large electron-positron
collider (LEP). Thus, the particle beams of the LHC are accelerated through beam-
lines of 27 km of circumference located 70 m to 140 m underground.

The LHC is primarily designed for proton-proton (pp) collisions. However, for
about one month per year, heavy ions (lead ions) are accelerated and collide
to probe the quark-gluon plasma, an exotic state of matter where quarks and
gluons are deconfined. A one-month period of proton-lead collisions also took
place beginning of 2013. In all cases, the acceleration path of the beams can be
followed through the accelerator complex of CERN detailed in Fig. I1.1.
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The CERN accelerator complex
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Figure 11.1 - lllustration of the CERN accelerator complex [34].

The proton beam takes its source in a stock of negatively charged hydrogen
ions (H™) which are accelerated up to 160 MeV by the LINAC 4, a linear accel-
erator which replaced the LINAC 2 since 2020 to prepare for the HL-LHC. The
beam then enters the proton synchrotron booster (BOOSTER in Fig. Il.1 or PSB),
the first circular accelerator of the chain. There, thanks to a strong magnetic
field and a carbon stripping foil, more than 99% of the H™ ions are striped of a
pair of electrons, leaving a beam of proton boosted to 2 GeV. Then, the proton
synchrotron (PS) accelerates the beam up to 26 GeV and passes it to the super
proton synchrotron (SPS). The SPS is famous for allowing the discovery of the Z
and W bosons in 1983 when it was colliding proton-antiproton beams. It is now
in charge of accelerating the proton beam to 450 GeV before the LHC. The proton
beam is split in two to circulate in opposite directions in the parallel beamlines
of the LHC until collisions are started at the designated interaction points.

The proton beams of the LHC are accelerated with 16 radiofrequency (RF) cavi-
ties where electromagnetic fields modulated at a frequency of 400 MHz are syn-
chronised with the passing of packets of protons (bunches). After the PS accel-
erator, bunches are 25 ns apart in time, corresponding to a frequency of 40 MHz,
so the bunches are indeed synchronised with the fields of the RF cavities. In
order to align their trajectory with the LHC ring and squeeze protons within
each bunch, thousands of superconducting electromagnets are arranged along
the beamlines. These magnets come in different shapes and sizes depend-
ing on their role. A total of 1232 15m-long dipole magnets are used to bend
the beams within the circular geometry of the LHC. Quadrupole magnets (392
in number and between 5m to 7m in length) focus the beams to increase the
collision rate. Moreover, multipole magnets of higher orders correct imperfec-
tions in the spread of the protons around each bunch. All of these magnets are
made of copper-clad niobium-titanium (Nb-Ti), so they are cooled down to 1.9K
(-271.3°C) using helium-4 to reach their superconducting state.

1.1 The LHC and the CMS detector
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Operation

The maximal energy reached by the proton beams in the LHC increases with
each data-taking period (called Run). Figure 11.2 shows the evolution of the center-
of-mass energy, starting at 7 TeV-8 TeV during Run 1 (2010-2013), reaching 13 TeV
during Run 2 (2015-2018) and attaining now 13.6 TeV with Run 3 (2022-ongoing).
In its high-luminosity phase, the LHC should reach its design energy of 14 TeV;
however, as its name suggests, a focus is given to increasing the luminosity of
the accelerator.
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Figurell.2 - Summary of the LHC operations and projections for the HL-LHC phase. Each
Run is separated by a long shutdown (LS) period to allow for accelerator and detector
upgrades. They can also be interrupted during an extended year-end technical stop
(EYETS).

Apart from the energy of the beam, an essential parameter of the beam is its
luminosity. The luminosity is the representation of the rate of collisions hap-
pening between protons of the two beams. The luminosity is expressed in two
ways, through the instantaneous luminosity £ expressed in cm s~ or through
the integrated luminosity L = [ £ dt which is the instantaneous luminosity in-
tegrated throughout the experiment and expressed in fb~*. The luminosity di-
rectly represents the expected number of times a given process should occur
(such occurrence is called an event). Given a physical process with cross section
Oprocr the expected number of events is N = o, L. Evolution of the instanta-
neous luminosity with each Run of the LHC is also presented in Fig. 1.2 with a
value of around 2 x 10**cm~2s™! for Run 3. The increase in total integrated lu-
minosity recorded by the CMS experiment each year is summarised in Fig. 11.3.

With a high rate of collisions, the average number of collisions occurring in the
same bunch crossing (pileup, PU) increases. The average number of PU events
is given by
oPP
< >=—"" (1.1)
Ny fLne

where o, is the cross section of the inelastic pp collision process at 13 TeV, n, is
the number of bunches being accelerated in the LHC, and f ¢ is the revolution
frequency. The nominal value for the number of bunches n, is 2808, and the
revolution frequency fiyc is 11245Hz. With that in mind, the cross section of
the inelastic pp process for different centre-of-mass energies is given in Fig. 1.4,
with the associated average PU separated year by year.

26 | CHAPTER Il The CMS Experiment



w
1=}
S

CMS m— 2010, 7 TeV, 45.0 pb™"
m— 2011,7 TeV, 6.1 fb™" /

N
@
S

m— 2012,8 TeV, 23.3 fb™
m— 2015, 13 TeV, 4.3 fo™'
2016,13 TeV, 41.6fo™"
e 2017,13 TeV, 49.8 fb™"
— 2018,13 TeV, 67.9 fb™"
m— 2022, 13.6 TeV, 42.0 fb™"

——— 2023, 136 TeV, 31.4 fb" /
/
P—_

AN N \Y Y Y Y A\ AN AN AN Y N} N
O N S ST L L N L T N e

Date (UTC)

n
=1
=)

Total integrated luminosity (fb™")
g g

o
=)

Figure I1.3 - Luminosity of pp data delivered by the LHC as recorded by the CMS detec-
tor [35].
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Experiments

Four detectors collect collision data at four interaction points of the LHC, as de-
scribed in Fig. Il.1. The ATLAS (A Toroidal LHC ApparatuS) and the CMS (Compact
Muon Solenoid) are experiments with comprehensive physics programs utilis-
ing as much luminosity as possible to study rare processes. One of their primary
goals is the study of the Higgs boson and its properties, and they reached a sig-
nificant milestone in 2012 with the discovery of the Higgs boson. A detailed
description of the CMS detector is given in Section 11.1.2. The LHCb (LHC beauty)
and ALICE (A Large lon Collider Experiment) are the other two detectors oper-
ating at lower luminosity. LHCb specialises in heavy flavour quark physics, and
some of its objectives are to study CP violation to search for BSM physics and
observe rare hadrons of b and c quarks. Finally, ALICE relies on heavy ion col-
lisions to focus on the strong interaction of the SM and probe the quark-gluon
plasma, a state of matter that occurred at a very early stage of our Universe.

1.1 The LHC and the CMS detector
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11.1.2 A compact muon solenoid: the CMS detector

The CMS experiment has a broad physics program. In addition to increasing the
precision of measurements of observables described by the SM, one of its goals
is to be able to observe any new physics phenomena produced from collisions
atthe LHC. The detector is cylindrical, with a central region called the barrel and
both ends of the detectors forming the endcaps. Thus, it covers most of the
solid angle around the interaction point. It consists of several concentric lay-
ers of subdetectors, each with a different specificity and dedicated to detecting
different kinds of particles. All of the detector parts are presented in Fig II.5:

+ Tracking system: its role is to identify the trajectory of charged particles
(tracks) by reconstruction from the successive signal pulses (hits) triggered
in the different layers of the tracker by the particles along their path. From
these tracks, we can reconstruct the origin of the tracks (vertex).

+ Electromagnetic calorimeter (ECAL): subdetector designed to collect the
energy of electromagnetic showers. They originate from electrons or pho-
tons identified by gathering energy deposits as clusters in the ECAL.

* Hadronic calorimeter (HCAL): most hadrons leave only a small part of
their energy in the ECAL; the HCAL is designed to collect the rest of the
hadron energy.

+ Solenoid magnet: it provides an intense magnetic field of 3.8 T within
its volume, allowing to separate efficiently neutral particles from charged
particles with a bent trajectory. By placing this superconducting magnet
around the tracker, ECAL, and HCAL, less material impacts the particles,
and it is easier to connect tracks in the tracker and energy deposits in the
calorimeters.

+ Steel return yokes: given the solenoid nature of the magnet, large iron
panels are used to constrain, within the entire detector, the looping mag-
netic field outside of the solenoid. The magnetic field intensity around the
return yokes is about 2 T. In addition to constraining the magnetic field,
they also serve as absorber material for the muon chambers.

* Muon chambers: alternating with the steel return yokes are muon cham-
bers. They are used for the tracking of the muons as these particles have
little interaction with the rest of the subdetectors.

The constituents of the subdetectors are described in more detail in this section.

A coordinate system common to all the subdetectors of CMS is represented in
Fig. I1.6. Its origin is defined at the interaction point (IP) where the two beams
collide, and both a cartesian or cylindrical right-handed system can be used. The
cartesian system is defined with the x coordinate pointing towards the centre
of the LHC and the z coordinate in the direction of the beamline pointing anti-
clockwise when looking at the LHC from above. The kinematic properties of a
particle within the detector are often described through the cylindrical coordi-
nate system, with a preference for coordinates not dependent on the boost of
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Figure I1.5 - Schematic view of the CMS detector detailing all its subdetectors [36].
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Figure 11.6 - The CMS coordinates system [37].
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the centre of mass of the event. This is because we do not know, a priori, which
fraction of momentum along z is carried by each of the partons when protons
collide, so the longitudinal boost of the centre of mass of an event is unknown.
Thus, instead of using the canonical (|p|, 8, ¢) system, we rely on the following
set of parameters: (pr, 1, ¢). Within this system, pr is the transverse momen-
tum of the particle, so perpendicular to the direction of the boosted centre of
mass (projection of the momentum in the xy plane), and n is the pseudorapidity,
which corresponds to the rapidity in the ultra-relativistic limit:

= —1In tang
n= 5

The differences in n are invariant under a Lorentz boost in the z direction, and
so is the azimuthal angle ¢. From the angular coordinates, we define the spatial

separation between two particles AR = \/(An)2 + (M),

Tracker system

The tracking system of the CMS experiment [38, 39] is the subdetector closest to
the interaction point. Its role is to provide a precise spatial measurement of the
tracks of charged particles and a measurement of the vertex position with high
accuracy. Two kinds of vertex need to be identified: the vertex of the hard in-
teraction (primary vertex) and vertices coming from the decays of particles with
a long lifetime, such as 7 leptons and hadrons containing b or ¢ quarks (sec-
ondary vertices). The primary vertex should be well separated from additional
PU events and secondary vertices which are displaced from hundreds of um for
c-hadron and up to a few mm for K2-mesons. The tracker should also withstand
extremely high levels of radiation while keeping the amount of material to a
minimum to preserve the energy measurements in the calorimeters. Given all
these requirements, the tracker system is based on the careful placement of
silicon detectors with different granularity.

The composition of the subdetector is laid out in Fig I.7. In the barrel, the char-
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Figure 11.7 - Simplified view of the tracker system of CMS from Ref. [40]. Each line rep-
resents a strip module or a layer of pixels. A description of the arrangement of the
detector modules is given in the text.
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acteristics of the silicon modules change depending on their distance to the IP.
The PIXEL part of the detector is the closest to the IP (29mm < r < 10cm) and
consists of pixel cells of size 100 umx150 um. It grants a spatial resolution on
the measurement of the vertex position of 15pum to 20 ym. Further, come the
tracker inner barrel (TIB) and the tracker inner disks (TID) (20cm < r < 55cm)
with silicon microstrips of typical size 10cmx80pum. At the edge of the bar-
rel (55cm < r < 120cm) is the tracker outer barrel (TOB) with larger silicon
strips of size 25cmx 180 pm. Finally, the tracker endcaps (TEC) cover the region
|z| > 118cm with silicon strips in the form of disks with a radial size between
100 pm and 180 pm. Each layer of pixel cells or strips is shifted with respect to
the previous one to reach the highest acceptance.

Electromagnetic calorimeter (ECAL)

The electromagnetic calorimeter (ECAL) of the CMS experiment [41] encloses
the tracking system and is dedicated to measuring the energy of photons and
electrons. Consequently, the performance of the ECAL is directly impacting the
performance of the H — v~ analysis in the CMS experiment. The subdetec-
tor relies on lead-tungstate (PbWO,) scintillating crystals, a single medium to act
as absorber (i.e. force electrons and photons to deposit their energy) and ac-
tive (collect these energy deposits) material. Photons and electrons leave their
energy by producing electromagnetic showers when interacting with the lead
nuclei of these dense crystals. By using a homogeneous calorimeter, the CMS
detector has access to the full deposited energy and is less impacted by fluc-
tuations due to non-measured showers. When luminescent centres [42] of the
crystals are excited by these showers, they emit a signal in the form of light,
which is collected on the crystal side opposite to the IP. This means that the
crystals need to be as transparent as possible to ensure high efficiency in the
light collection.

The longitudinal expansion of the electromagnetic showers depends on the ra-
diation length X, of the absorber material. This radiation length is defined as
the typical length after which an electron loses most of its energy (~ 63% of lost
energy). In a material with a small radiation length, electromagnetic showers
are narrower, allowing for a better separation of electromagnetic candidates.
With a high density (8.28gcm*3), small radiation length (8.9 mm), and fast signal
production (80% of the light is produced in 25ns in an ECAL crystal), the lead-
tungstate crystals offers a compact and highly granular solution for the ECAL.
However, these crystals have a relatively low light yield (~ 30~ produced per
MeV), so their signal is amplified with silicon avalanche photodiodes (APD) in the
barrel and vacuum phototriodes (VPT) in the endcaps.

The disposition of the ECAL crystals is presented in Fig. 11.8. About 61 200 trape-
zoidal crystals of surface 22 mmx22 mm covers the barrel region |n| < 1.479. For
eachendcap 1.479 < |n| < 3.0, a total of 7324 crystals of surface 28.6 mm x28.6 mm
are used. The mean size of the crystals in the ECAL is ~ 23 cm corresponding to
~ 26X,. The size and alighment of the crystal are carefully chosen. All the crys-
tals point towards the nominal IP in a quasi-projective geometry, but with a 3°
angle to avoid acceptance gaps between the crystals. Their surface is computed
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ECAL (EE)

Figure 11.8 - Illustration of a quadrant of the ECAL subdetector of CMS from Ref. [43].
The three main structures of the ECAL are represented: crystals in the barrel (EB) and
endcap (EE) regions and the preshower lead/silicon-strips detector (ES).

to confine the longitudinal expansion of the electromagnetic shower produced
by lead-tungstate. Therefore, the total volume of the crystal contains more than
98% of the electromagnetic deposit delivered by photons and electrons with
energy up to 1 TeV. A preshower detector made of a lead absorber and silicon
strips is located in front of each of the endcaps in the region 1.653 < |n| < 2.6.
The silicon sensors measure the x and y coordinates of electrons and photons
before they shower in the ECAL crystals.

The evaluation of the performance of the ECAL is described in detail in Ref. [44].
The resolution of an electromagnetic calorimeter is parameterised as:

e NS
E—E@\/E@C

where N is the noise term due mostly to the readout electronics, S is the stochas-
ticterm arising from statistics fluctuations in the showers or from the energy lost
in the absorber, and C is a constant term due to the channel-to-channel inter-
calibration as well as to the time variation of the channel response. For the ECAL
of the CMS detector, they are measuredtobe N = 0.12GeV, S = 0.028 v/GeV and
C = 0.3% from showers reconstructed in 3x3 crystals during electron beam
tests [45]. The low value of the stochastic term is possible thanks to the ho-
mogeneous nature of the ECAL. Its resolution during Run 2 after calibration is
shown in Fig. 1.9 from the invariant mass distribution of electron pairs coming
from the Z boson decay.

The high radiation level reaching the ECAL crystals damages the crystalline struc-
tures, creating coloured centres that reduce the crystal transparency. Thus, the
crystal transparency is monitored during data-taking periods with a laser moni-
toring system [47]. Thanks to this system, corrections are applied to the crystal
response to take into account the loss of transparency. These corrections must
be applied every 40 min to keep the impact of the transparency loss on the con-
stant term C below 0.2%.
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Figure 11.9 - Resolution of the ECAL from the invariant mass distribution of electron
pairs coming from the Z boson decay for each year of the Run 2 [46].

Hadronic calorimeter (HCAL)

The hadronic calorimeter (HCAL) of the CMS experiment [41] surrounds the ECAL
andis the last subdetector with structures within the solenoid magnet. The HCAL
is responsible for the detection of hadrons. Because of QCD colour confinement,
quarks and gluons cannot exist as free states. They immediately hadronise after
collisions to form hadrons, and instead of single partons, narrow jets made of
hadrons and photons are observed in the detectors. To collect the energy of the
jets, a dense absorber material is used to increase the probability of interaction
of the hadrons with the medium, and a scintillating material gives information
on the quantity of energy deposited. Similarly to the radiation length X, used for
electrons and photons, a relevant length is defined for hadrons with the hadron
interaction length A;. This time, ); represents the average distance a hadron can
cross through a medium before interacting with a nucleus.

The nature of the absorber and scintillating materials depends on the targeted
region of the detector. The different structures of the HCAL are illustrated in
Fig. [1.L10 and summarised here:

+ the barrel hadronic calorimeter (HB) and endcap hadronic calorimeters
(HE) are located inside the solenoid magnet and cover respectively the
In| < 1.4 and 1.3 < |n| < 3 regions. They rely on alternations of brass
absorbers and plastic scintillators connected to hybrid photodiodes. The
HB and HE are between 7); and 10); thick.

* the outer hadronic calorimeter (HO) is used to increase the longitudinal
confinement of hadronic showers. It is located outside of the solenoid
magnet and covers a |n| < 1.4 region. The scintillator is placed in the steel
yoke, which plays the role of absorber material and is read out by silicon
photomultipliers (SiPM).

+ the forward hadronic calorimeters (HF) are located close to the beamline,
covering the 3 < |n| < 5.2 region. It uses steel absorbers and quartz fi-
bres emitting Cherenkov light, which is collected by photomultiplier tubes
(PMT).
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Figure 11.10 - Layout of a quadrant of the HCAL [48] and of its main structures: the barrel
HCAL (HB), the endcap HCAL (HE), the outer HCAL (HO) and the forward HCAL (HF). The
tracker system and ECAL are also illustrated in the bottom left corner.
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Given that hadrons can already start showering in the ECAL, and some of the
energy is not deposited in the HCAL, the global resolution of the ECAL+HCAL
system on the energy measurement is reported. Performance is evaluated by
using the resolution on the energy E of pions in the range 2 GeV to 350 GeV [49]:

E~ VE
The first term is associated with stochastic effects (e.g. fluctuation in the shape
and energy deposited by the hadronic showers), while the constant term ac-

counts for effects independent of the energy scale (e.g. imperfect calibration of
the calorimeters).

®7.4%.

Muon chambers

The muon chambers of the CMS experiment [41] are the outermost subdetector.
The muons targeted by physics analyses of the CMS collaboration have energy
in the range of a few GeV to hundreds of GeV. Within this range, their energy
loss through the multiple layers of the CMS detector is generally small. At the
same time, almost all other particles are absorbed (apart from neutrinos), and
muons are the only particles reaching the external layers of the detector.

The muon system is outside of the solenoid magnet, but it is intertwined with
steel return yokes so the residual magnetic field still has an intensity of around
2T, allowing the bending of the trajectory of muons and, thus, the measurement
of their p; and electric charge. However, the magnetic field behaviour within a
muon chamber depends on its location. To cope with the differences in mag-
netic field and particle rates, three different strategies were designed for the
muon system: drift tubes (DT) chambers, cathode strip chambers (CSC), and re-
sistive plate chambers (RPC). All of these strategies rely on gas ionisation. Their
location in a quadrant of the CMS detector is shown in Fig. I1.11.
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Figure 11.11 - Depiction of a quadrant the CMS detector from Ref. [50] focusing on the

three technologies employed for the muon system: drift tubes (DT) chambers, cathode
strip chambers (CSC), and resistive plate chambers (RPC).

The DT chambers are in the barrel region with |n| < 1.2. They are arranged in 4
stations (MB1 to MB4 in Fig. 1.11), each divided in 12 chambers (except for MB4
which has 14). They are filled with a mixture of argon (85%) and CO, (15%). Their
spatial resolution is between 80 um and 120 uym in the (r, ¢) plane and between
200 ym and 300 pm in the z direction.

In the endcaps region (0.9 < |n| < 2.4), chambers endure a large muon rate
and non-uniform magnetic field. Hence the choice of cathode-strips-based de-
tectors (CSCs), which have a very fast response time. They are arranged in 4
stations (ME1 to ME4 in Fig. I1.11) in the form of disks. These multi-wire cham-
bers are filled with argon (40%), CO, (50%), and CF, (10%). They provide a spatial
resolution between 30 ym and 150 pm.

The RPCs overlap with other chambers in the barrel and endcap regions in order
to add robustness and redundancy to the muon trigger. They have a moderate
spatial resolution but an excellent time resolution of less than 3 ns, thus helping
to measure the correct beam-crossing time. They consist of double-gap cham-
bers filled with a mixture of C,H,F, (95.2%), i-C4H1o (4.5%) and SF4 (0.3%), and
operated in avalanche mode to ensure good operation at high rates.

Evaluation of the performance of the muon system using pp collisions at /s =
7TeV is described in detail in Ref. [51].

1.1 The LHC and the CMS detector
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Particle reconstruction and identification

The standard reconstruction of objects in the CMS detector is described in this
section. A more detailed description of the object reconstruction and identifica-
tion in the context of the H — ~~ analysis is given in Section V.2 of Chapter V.

This standard reconstruction relies on the particle flow (PF) algorithm [52]. Since
each type of particle (photon, electron, muon, charged or neutral hadron) leaves
a specific combination of signals in the subdetectors, as illustrated in Fig. I.12,
the PF algorithm uses associations of information from all subdetectors to re-
construct the particles. This information is separated into two classes of basic
elements: the tracks and the energy deposits in the calorimeters (clusters). The
tracks are reconstructed from a series of hits in the tracker and are connected
to a reconstructed vertex. Clusters are groups of crystals (in the ECAL) or scin-
tillator segments (in the HCAL) that hold the energy of a single electromagnetic
or hadronic shower.
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Charged Hadron (e.g. Pion)
— — — - Neutral Hadron (e.g. Neutron)
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Transverse slice with Muon chambers

through CMS

Figure 11.12 - Slice of the CMS detector illustrating the expected interaction of each
particle type with each subdetector [53].

Once the tracks and energy clusters of the event have been identified, the PF
algorithm attempts a geometric association of the different elements. The strat-
egy of the PF algorithm can be summarised as follows:

* First, if tracks reconstructed in the muon chambers and in the inner tracker
are compatible, they form a muon candidate. These tracks and the poten-
tially associated clusters along their way are removed from the following
steps of the algorithm.

+ The second step is dedicated to the reconstruction of electrons. Electrons
have bent tracks in the inner tracker and electromagnetic deposits in the
ECAL. A selection on the quality of electron candidates is defined from an
additional algorithm dedicated to electron reconstruction [54] using the
tracker and ECAL information. If the candidate passes the selection, its
tracks and clusters are removed from the next steps.
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* Then, the remaining tracks of the inner tracker should belong to charged
hadrons depositing energy in the HCAL. The compatibility between the
track momentum and the energy deposited in the HCAL is checked. Typ-
ical discrepancies between the two come from excesses of energy in the
cluster. This indicates that overlapping neutral particles left energy within
the same cluster in the HCAL. To account for this, a photon (or, if needed,
a neutral hadron) is created, carrying the difference in energy.

* Finally, the remaining energy clusters in the ECAL are associated with pho-
tons and those of the HCAL are associated with neutral hadrons.

Trigger system

This section summarises the global trigger system in the CMS experiment [55].
The triggering of the CMS detector to collect H — ~+v events is described in
Section V.2 of Chapter V.

Collecting the full information of all subdetectors of the CMS experiment for
each collision occurring at 40 MHz would require an unattainable data through-
put and a hardly-conceivable amount of storage. Moreover, most of these data
are associated with uninteresting events (associated with well-known physics).
That is why a trigger system ensures that the CMS experiment records only
events of potential interest. The CMS trigger system performs an online events
selection in two steps thanks to the level-1 (L1) trigger and the high-level trigger
(HLT).

The goal of the L1 trigger is to limit the event rate to 100 kHz, the limit of the
readout electronics. The L1 trigger is based on a simplified version of the in-
formation of the subdetectors. An L1 trigger menu of about 440 algorithms is
used to look for specific signatures in the detector response (e.g. cluster in the
ECAL with a certain energy level, ...) corresponding to an object then passed to
the HLT. The L1 trigger works at a fixed latency of 4 us to decide on accepting
or rejecting an event. This decision is based on information from calorimeters
and muon detectors, and the triggering process is described in Fig. 11.13. Trigger
primitives are computed from a fast readout and a limited granularity on en-
ergy deposits in the ECAL and HCAL and on track segments and hit patterns in
the muon chambers (DT, CSC, RPC). From the trigger primitives, coarse versions
of the physics objects are built: muon candidates from the muon trigger and
electron, photons, jet, or tau candidates from the calorimeter trigger. Finally,
the combined information is used by the global trigger and depending on the
trigger menu, the event is discarded or processed by the HLT.

The HLT is based on software close to offline reconstruction, identification and
analysis and relies on the full readout of the detectors. For instance, the ob-
ject reconstruction follows a simplified version of the PF algorithm. However,
the HLT must trigger at a high rate, so all these software are whittled down to
their elementary steps to gain computational efficiency. The HLT rate is, on aver-
age, around 1 kHz, and it delivers the complete raw detector data for permanent
storage and offline steps. This high rate is also achievable thanks to a dedicated
computing farm. With the start of Run 3, some graphics processing units (GPU)
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Figure 11.13 - Diagram of the L1 trigger system for the CMS detector [56].

are used in addition to many central processing units (CPU) already present in
previous runs. It amounts to a total of 25600 CPU cores and 400 GPU cores. The
GPU cores are particularly efficient for neural network implementations. With
the development of advanced machine learning techniques for particle recon-
struction or identification, some high-performing networks are now included in
the HLT step. HLT candidates generally come from L1 trigger objects and are
tested by multiple algorithms (HLT paths) to decide on the trigger. There are
more than a hundred HLT paths, each corresponding to different usage of the
events: some paths collect events for physics analyses and others for data qual-
ity monitoring, detector calibration, ...

11.2 High-luminosity LHC and subdetectors
adapted for timing in CMS phase Il

11.2.1 A luminosity upgrade for the LHC

With the end of Run 3 planned for the end of 2025, the latest previsions foresee
a total integrated luminosity of ~ 300fb~! over sixteen years of physics oper-
ation. The LHC already achieved some of its goals in this period, with the dis-
covery of the Higgs boson in 2012 and many measurements with record pre-
cision (all confirming the robustness of the SM so far), thanks to its four large-
scale experiments. However, after this point, the physics benefits from collecting
data at this rate will become minimal. That is why the LHC and its experiments
will undergo significant upgrades during the long shutdown 3 to enter a high-
luminosity phase. The goal for the HL-LHC is to reach an instantaneous lumi-
nosity between 5 x 10 >*ecm s ! and 7.5 x 10**cm~*s ™! during this phase and
to provide an integrated luminosity of 250 fb~" per year. At the end of the high-
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luminosity phase (after a dozen years), it should amount to a total integrated
luminosity between 3000 b~ and 4000 fb ™",

To achieve such luminosity, an upgrade of the LHC is needed, equivalent to in-
stalling new parts of an accelerator over 1.2km in various places of the current
ring. The main modifications come from the improvement of quadrupole mag-
nets and the addition of crab cavities around the ATLAS and CMS detectors. The
guadrupole magnets are responsible for squeezing bunches. This is particu-
larly important around the interaction points where more focused beams mean
more chances of collisions. As mentioned in the previous section, the current
magnets of the LHC are made of copper-clad niobium-titanium, forming a mag-
netic field of up to 9T. To achieve even higher magnetic fields at the HL-LHC,
guadrupole magnets around the interaction points of the LHC will be replaced
by intermetallic niobium-tin (Nb3;Sn) magnets producing fields of upto 11 T [57].
In addition to the more focused beams, crab cavities are proposed as the base-
line solution to increase the overlap between crossing bunches at the interaction
point [58]. The crab cavities are additional RF cavities also creating a 400 MHz
electric field. However, their role is not to accelerate bunches but to give them
torque to introduce a rotation and align the colliding bunches. On the opposite
beamline, a crab cavity gives a torque in the opposite direction to recover the
initial alignment of the beam and ensure stability. This process is illustrated in
Fig. 11.14.
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Figure 11.14 - lllustration of the rotation introduced by the crab cavities. Bunches are
flying sideways towards the interaction point, hence the name of the crab cavities.
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11.2.2 CMS 2.0: probing a 4th dimension

During the HL-LHC phase, the goal of the CMS experiment is to maintain its excel-
lent performance in terms of efficiency and resolution on object reconstruction
and identification. However, as described by Eq. I.1, increasing the instanta-
neous luminosity means increasing the average PU. The PU level recorded by the
CMS detector during the first three runs of the LHC is shown in Fig. Il.4 and has
avalue of ~ 40 in the nominal luminosity setting of the LHC (£ = 10 **cm ™ ?s™1).
By increasing the instantaneous luminosity by a factor 5, we expect an average
PU of &~ 200. At this level of PU, it will become a significant challenge for the CMS
experiment. Another challenge will be the radiation damage to the detector.

To overcome these challenges, a set of upgrades is studied for several subdetec-
tors of the CMS experiment. The addition of a new detector system is planned:
the minimum ionising particle (MIP) timing detector (MTD). A major idea to in-
crease the PU rejection during the HL-LHC phase is to rely on the timing informa-
tion provided by the CMS subdetectors. Currently, the spatial resolution of the
tracking system is good enough to allow the PF algorithm to correctly connect
particles of an event to their primary vertex with a low fake rate. However, it will
not be enough under the harsher conditions of the high-luminosity phase. How-
ever, by identifying the time of arrival of particles, the PF reconstruction can re-
cover performance close to what it achieved during Run 2. This is demonstrated
in Fig. I1.15. The resolution on the timing information of particles is determined
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Figure 11.15 - Evaluation of the vertex reconstruction performance when assuming tim-
ing detectors with ~ 30 ps time resolution as presented in Ref. [59].

to get back to PU levels of 40-60. By considering the beam spot sliced into time
exposures, these PU values are recovered with 30 ps to 40 ps time exposures.

A summary of the upgrades planned for phase 2 of the CMS detector is given in
this section. The baseline upgrade plan is presented in detail in Ref. [60].
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Tracker system

Because of significant radiation damages during its operation in phase 1 of the
LHC, the tracker system will be replaced before the high-luminosity phase [61].
Moreover, modifications of the components of the tracker modules are also
planned. The PIXEL system will be reinstalled with smaller pixels of 25 umx100 pm
or 50 ym x50 pm. In the rest of the system, the silicon strips will be shortened by
a factor 4 without changing their width. As the full detector will be about four
times more granular than its current design, this upgrade will improve the sep-
aration between tracks close to each other, for instance, in boosted jets, and
should compensate for the higher PU. Finally, with additional disks in the end-
cap regions, the coverage of the tracker will be extended to || < 4.

Calorimeter endcaps

The electromagnetic and hadronic calorimeter endcaps will also be replaced
during the long shutdown 3 because of their loss of transparency due to radia-
tions. A new system is designed to serve as a replacement for these calorimeter
endcaps: the high granularity calorimeter (HGCAL) [61]. The layout of the HGCAL
is presented in Fig. 11.16. The electromagnetic section (CE-E) consists of tungsten

I
it

Figure 11.16 - Arrangement of the electromagnetic (CE-E) and hadronic (CE-H) sections
of the HGCAL.

T

and copper plates interlaced with silicon sensors that are less than 1cm?. The
depth of this section is about 25X, or 1);. The hadronic section (CE-H) is an al-
ternation of brass and copper plates and silicon sensors over a depth of around
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3.5);. Given the intrinsically fast response time of the silicon sensor, the HGCAL
will provide high-precision timing capabilities. The outermost part of the HGCAL
consists of the same design of brass plates and plastic scintillator currently used
in the HCAL endcap. The total depth of the system is about 10A;.

Muon chambers

The four stations of CSC in the high pseudorapidity region 1.6 < |n| < 2.4 will
be enhanced by adding redundancy. Two gas electron multiplier (GEM) cham-
bers will be added to the two innermost stations. GEM chambers will be filled
with a mixture of argon (70%) and CO, (30%) and will improve the momentum
resolution for the muon trigger of the L1 trigger. The two outermost stations
will include additional RPCs with intrinsically good timing capabilities, as is done
currently for the DT chambers and CSCs at lower pseudorapidity.

Trigger system

The L1 trigger will be improved by using the tracking and high-granularity infor-
mation [62]. This will be possible by upgrading the readout electronics of some
subdetectors. To account for the additional time needed for the track recon-
struction and matching with calorimeter information, the latency of the L1 trig-
ger will increase from 4 ps to 12.5 ys. From its expected performance with track
information, its rate must increase from 100 kHz to 750 kHz to keep comparable
performance with its current version despite the increase in PU. The current se-
lection of events between the L1 and HLT output leads to 1 out of 100 events
being saved. Assuming the same proportion during the high-luminosity phase,
a 7.5kHz rate is required for the HLT [63].

MIP timing detector (MTD)

A new detector dedicated to timing measurements will be added to the CMS
experiment. The MTD [59] is designed to detect MIP deposition from charged
particles with a high signal-to-noise ratio. It will consist of a thin layer located
between the tracker and the ECAL. The barrel timing layer (BTL) covers the re-
gion |n| < 1.5 and will be equipped with LYSO scintillating crystals, read out by
SiPMs. Crystals have a surface of 5.7cmx3mm and a thickness between 2.4 mm
and 3.7 mm. The LYSO crystals are chosen because of their high light yield (40 000
photons per MeV), fast scintillation (< 100 ps) and relatively short decay time
(=~ 40ns). The endcap timing layer (ETL) extends over the region 1.6 < |n| < 3
with two disks per endcap. Given the high radiation level, the ETL relies on planar
silicon devices with internal gain: low gain avalanche detectors (LGAD). A total
of about 4 x 10° LGAD sensors with size 1.3mmx1.3mm are used per endcap.
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11.3 DDMTD simulation for precise clock
monitoring in CMS subdetectors

11.3.1 Clock distribution

To provide precise timing information about the arrival of a particle, the detector
response must be compared to a reference time. Within the detector system,
the initial timing information of a time to digital converter (TDC) is the reference
to. Therole ofa TDCistoreturn a digital representation of the time of occurrence
of a given signal, such as the detector pulse triggered by the arrival of a particle.
This time of detection t; is compared to t,, and the difference between the two
gives the precise time of arrival of the particle.

As mentioned in Section 11.2.2, timing information in the subdetectors should
have a 30 ps to 40 ps resolution to reduce the impact of the expected pile-up (200
events per bunch crossing) by improving the matching of tracks, vertices and
energy deposits [59, 64]. It means that all components of the subdetectors need
to have a precisely synchronised time of reference t,. This is done by distributing
a common clock throughout the full subdetector. Distributing an accurate clock
in the context of CMS subdetectors is a challenging task as it means sending the
clock signal to thousands of readout units (ROU) in charge of reading the signal
produced by the sensitive part of the detector. Moreover, each of these ROU
is placed in different parts of the detector, separated by cables of hundreds of
meters, and within significantly different radiation and temperature conditions.
All these elements can alter the clock and introduce jitter in the signal.

A perfect digitised clock signal consists of a square wave oscillating between two
amplitude levels corresponding to 0 and 1, with the rising and falling edges defin-
ing the unit of time as they follow the constant frequency of the clock. In reality,
the square wave is imperfect and consists of fast-rising and falling edges (but
with a small slope), and noise in the signal causes a shift in the time associated
with an edge. These shifts of the clock edges are called jitter. This jitter can be
decomposed into two components, the random jitter (RJ), where the shifts are
randomly distributed. Since the random jitter originates from many indepen-
dent physical effects, it creates shifts following a normal distribution around 0.
The second component is the deterministic jitter (DJ), which produces periodic
bounded shifts in the clock signal. Given the periodic nature of this noise, a
frequency is associated with the DJ (fy;), and multiple DJ components can be
defined if they impact the clock signal at different frequencies. This is an impor-
tant element of jitter estimation and clock monitoring since our measurement
or monitoring of a clock is done at a given sampling frequency f,,,,. Then from
the Nyquist-Shannon theorem, it means that our measurement is only sensitive
to DJ components with frequency fp; < fmp/2.

To study the jitter of a clock, we rely on the distribution of the shifts 6(t) be-
tween the clock we want to characterise and a clean clock of reference. Then
these shifts can be studied in the time or frequency domain. By looking at the
distribution of differences between the measured edges of a clock and the refer-
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ence edge time, we measure a time interval error (TIE) histogram. The standard
deviation or the root mean square (RMS) of the TIE histogram gives a figure of
merit of the clock quality and of the jitter introduced by the distribution chain.
In the frequency domain, an interesting figure of merit is the phase noise which
shows at which frequencies the DJ is impacting the clock. The phase noise £(f)
is defined as half the power spectral density (PSD) Ss(f) of the shifts. The phase
noise measurement is also useful to quantify the RMS jitter within a given fre-
quency range [f,, f,] as

V2AP?

samp

fy
RMS([f,, 6]) = , with Ag¢? :/ L(f) df . (11.2)
f

Examples of TIE histograms and phase noise plots are shown in Figs [1.20 and 11.21.

In order to achieve the required 30 ps to 40 ps resolution on the time information
of particles, the clock distribution strategy should have less than 15 ps RMS jitter
in all paths to the ROU [59, 64]. Three frequency ranges are defined with respect
to their potential jitter contribution:

* High frequencies (100 kHz to 1 MHz): the clock signal can be embedded in a
data stream at some stages of the distribution chain. The clock information
is recovered thanks to phase-locked loops (PLLs). PLLs are expected to
cancel most of the jitter in the clock signal in this range.

* Intermediate frequencies (10 Hz to 100 kHz): the jitter in this range should be
monitored and cleaned if possible.

* Low frequencies (below 10 Hz): jitter in this range is qualified as wander as
it causes the clock to slowly drift apart from its original phase. The TCLink
system [65] was developed within the high precision timing distribution
(HPTD) group of CERN to control this wander.

In this section, we describe a simulation framework of the digital dual mixer time
difference (DDMTD) system to evaluate its correction potential of the jitter in
the intermediate frequency range (10 Hz to 100 kHz). This study was performed
with an application on the MTD and HGCAL subdetectors in mind which have
a similar clock distribution strategy [59, 64]. A simplified diagram of this clock
distribution strategy is shown in Fig.Il.17 and relies on a solution where the clock
signal is embedded in the data acquisition (DAQ) path.

The LHC clock is derived directly from its radio frequency (RF) cavities, operating
at a frequency of 400.788 MHz. After a division of its frequency by 10, the LHC
clockis synchronised with the bunch crossings at a frequency of 40.079 MHz. This
clock starts with a jitter specification of 9 ps RMS jitter [66] and should achieve
better performance with improvements foreseen for the HL-LHC. The baseline
suggestion for the clock distribution is to include the clock in the DAQ path.

First, the LHC clock is received by the new version of the trigger and clock dis-
tribution system (TCDS2) of the CMS detector. Then the TCDS2 transmits the
clock or multiples of it (160 MHz, 320 MHz, ...) with the trigger and fast controls
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Figure 11.17 - Diagram of the baseline clock distribution chain considered for the MTD
and HGCAL subdetectors. A description of the distribution chain is provided in the text.

to the DAQ boards. Both the TCDS2 and DAQ boards are located within ad-
vanced telecommunications computing architecture (ATCA) crates and can rely
on the high-speed lane of the ATCA backplane. There the field-programmable
gate arrays (FPGAs) encode the clock to send it downlink to the front end at
2.5Gb/s. At the front end level, low-power gigabit transceivers (IpGBTs) [67] are
responsible for recovering the clock signal and propagating it to the ROUs. The
IpGBT receives high-speed serial data streams sent without an explicit accom-
panying clock. But from the encoding of the clock information by means of a
short recognisable periodic sequence in the stream, the PLL at the IpGBT level
is able to lock on the phase of this sequence and recover a clock signal. Then
this same clock is used as a reference to generate the uplink frame at 10 Gb/s.
Even with this asymmetry in data throughput, the backend can recover the LHC
clock. The monitoring (and cleaning) of the clock can be done thanks to systems
implemented on the FPGAs using this clock loopback. For instance, a DDMTD
system, as described in Section 11.3.3, implemented on the FPGAs can compare
the uplink clock to the downlink clock.

11.3.2 Characterisation study of the IpGBT version 1

To characterise the new version of the IpGBT (version 1), we perform an evalu-
ation of its clock distribution performance. We used a distribution chain mim-
icking the back end and front end configuration of the detector chain. The test
bench is summarised in Fig. I.18.
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Figure 11.18 - Diagram of the test bench for the characterisation of IpGBTv1.
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First, a high-precision timing clock (HPTC) is generated and sent to the KCU105
equipped with an FPGA, which emulates the back end system. Its role is to en-
code the clock in the data stream and distribute it to the versatile link demo
board (VLDB), which contains the [pGBTv1. The IpGBTv1 recovers the clock and
propagate it through a RAFAEL ASIC (application-specific integrated circuit), which
is dedicated to fan out the clock signal to all the sensor part of the detector. In
this case, the clock does not reach the detector but is studied by a high sampling
scope and a spectrum analyser. A picture of the test bench is shown in Fig. 11.19.

The TIE histogram of Fig 11.20 is measured from a clock with a frequency of
320 MHz. The output clock of the RAFAEL ASIC is compared to the input ref-
erence clock and shows a small RMS jitter contribution of 2.9 ps. Moreover, for
the same configuration, the phase noise is measured, and results are shown in
Fig 11.21. From this measurement, we can compute the RMS jitter in the range
1Hz-1MHz and we find a low value of 0.97 ps.

These measurements show that the IpGBTv1 provides a clock distribution well
within requirements for the phase 2 of the CMS detector. It can also be com-
pared to the previous RMS jitter found for the IpGBTvO. Characterisation gave
a value of 8.2ps RMS jitter introduced by the IpGBTVO, so the improvements
brought by version 1 are very promising.

11.3.3 The DDMTD system

As its name suggests, the digital DMTD (DDMTD) is a digital implementation
of the dual mixer time difference system [68]. The DMTD was developed to
transform the measurement of very fine phase shifts between two signals in a
low-frequency domain with amplified shifts. It proves particularly useful when
measuring differences in clock signals running at the same frequency. A digi-
tal implementation of the DMTD is proposed in Ref. [69]. This version of the
DMTD was developed to run with digitised signals and can be adapted to many
systems such as FPGAs. A simplified description of the DDMTD system is shown
in Fig. 11.22.

The system takes two clock signals u; and u, as input with the same frequency
f and with a shift varying in time At(t). An additional clock g is derived from
the input clocks and is slightly shifted in frequency with respect to the original
signals thanks to a crucial parameter which is an integer commonly referred to
as the N parameter of the DDMTD. This shift in frequency is defined as

N

famtd = NT1 lf (11.3)

where f,,..4 is the frequency of the ugy,.q clock. Both input signals pass through
a gate called a D flip-flop [70] which uses as a reference clock the uy,,.4 clock.
In a D flip-flop, the signal (D in Fig. 11.22) is effectively sampled by the reference
clock (clk). In practice, it means that at each rising edge of the reference clock,
the input signal is probed: if it is 1, the output signal is set to 1 until the next
rising edge, and vice versa if the input is 0. The sampled clocks returned by the
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Figure 11.19 - Picture of the test bench being validated on a IpGBT version 0. The board
close to the table edge is the concentrator card (CC) with the IpGBT. It is replaced by the
VLDB and IpGBTv1 in the actual characterisation study. Above are the KCU105 board
(green) and clock generator (yellow).
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Figure 11.21 - Phase noise of the 320 MHz output clock of the IpGBTv1+RAFAEL system.

D flip-flops, tpeat: @Nd upearo, have a frequency

f
N+1°

This process of creating the beat clocks is illustrated in Fig. 11.23. If the input
clocks u; and u, have a noisy signal, passage through the D flip-flops can create
glitches where the beat clocks have several rising and falling edges at each tran-
sition before stabilising. Hence the necessity of a deglitching procedure for the
beat clocks. Finally, the time difference At,.,. between the rising or falling edges
Of Upear1 @Nd Upearr giVeSs a proxy to access the actual time difference At between
u; and u,. The conversion between the beat frequency domain and the original
high frequency domain is given by

ﬂ)eat =f— ﬁimtd = ("'4)

f; At
At — Atbeat beat beat

i (11.5)

The DDMTD system provides a way to measure narrow differences between
clock signals but at the cost of not comparing as many rising edges since the
comparison is done with the rising edges of the beat clocks, which run at a much
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Figure 11.22 - Schematic description of the DDMTD system adapted from Ref. [69].

slower frequency. It also imposes a restriction on the minimum At value that
can be measured. If there is no visible shift in the beat domain, we cannot access
the At information. To make sure there is a measurable difference between
Upear1 aNd Upearo, the Aty value needs to be higher than the period of the ugnq
clock Atyese > 1/fymeq- From this requirement and using Egs. 11.3 and 11.5, we can
determine the lowest At accessible to the DDMTD:

N+1

Atpesr > N xf

& Atpear >
ﬁ:lmtd

< At >

N x f

11.3.4 Simulating a DDMTD: pyDDMTD

The DDMTD system is a good candidate to monitor the clock jitter and poten-
tially correct it to ensure conformity with the clock distribution requirements
of CMS subdetectors during HL-LHC. Its hardware implementation has already
been extensively tested in the CERN community, especially via the HPTD group [/ 1].
However, in order to expand our understanding of the system and make future
developments of monitoring or correction strategies easier, we developed a fast
and accessible Python-based DDMTD simulation framework: pyDDMTD.

The simulation of the working principle of a DDMTD in a perfect clocks scenario
is summarised in Figs. I1.23 and I1.24. First the input clocks u; and u, are defined
with a frequency of 40 MHz and a constant offset At = 4 ns between the two.
Then the ugn is defined with N = 5 in this example, and the dmtd clock is used
to get the two beat clocks upe,y; aNd uperp. The sampling process is illustrated
with the two red arrows of Fig. 11.23. Then from the shifts of vy, aNd e the
Aty Signal is built (see Fig. 1.24) and can be converted to At using Eq. II.5.

Jitter can be added to the input clocks of the DDMTD simulation. To stay close
to the typical operation expected in the HL-LHC, input clocks have a frequency
f = 40MHz, a shift of At = 4ps is introduced between the two clocks and a
parameter N = 10000 is taken for the DDMTD to observe fine shift due to the
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jitter of the input clocks. With such settings, the beat clocks run at frequency
foeat = 4kHz and the DDMTD can probe shifts down to At,,;, = 2.5 ps. Random
jitter is added to u; and u, by shifting their rising and falling edges with values
drawn from a Gaussian distribution with mean 0 and standard deviation 0.5 ns.
As expected and as reported in Fig. 11.25, glitches appear in the beat clocks and
in the At,.,; measurements in the form of packets of rising and falling edges
instead of single edges at the truth value.
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Figure 11.25 - Impact of jitter on the uygclock. Glitches appear in the two beat clocks
(top) and distort the At,,.Signal measurement (bottom).

These glitches can be studied by looking at the distribution of rising edges when
they are all folded in a clock cycle. The comparison of distributions with and
without glitches is shown in Fig. 11.26. In the clean clocks case, the edges are
always falling at the same position in the clock cycle resulting in a peak with a
number of edges equal to the number of simulated clock cycles (100 in the case
of Fig. 11.26). In the same way, the converted At measurements are at their truth
value of 4 ns with no dispersion. However, in the case of noisy clock signals, rising
edges follow a Gaussian distribution centred around the truth value but with
a dispersion corresponding to the intensity of RJ included. Note also that the
number of rising edges is significantly higher than the number of simulated clock
cycles (100), this is a clear symptom of glitches in the beat clocks. The effects
are then clearly visible in the At measurements. With the rapid alternation of
rising and falling edges in the beat clocks, a lot of At,,, signals are observed (as
shown in Fig. 11.25) with duration close to 0 ps. Hence the peak at 0 ps in the final
At measurements of Fig. I1.26.

In following studies of the DDMTD performance [72], three deglitching proce-
dures were proposed: the first edge, mean edge, and zero count algorithms. These
methods resolve the glitches issue by respectively selecting the first, mean, or
median edge of the glitch packet as the correct edge. We studied the effects
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of the three methods on the distribution of edges and At measurements simu-
lated with pyDDMTD, and the comparison is detailed in Fig. 1.27. Since all of these
procedures select a single edge, they all fix the issue of having mainly Aty ~ 0
durations and recover the expected number of measured At,.... However, their
performance is not equivalent. The first edge algorithm is the simplest to imple-
mentin practice. It does not select edges close to their truth value but instead as-
sumes that, for independent glitch packets, the minima of Gaussian-distributed
edges keep the same distance as their mean. Thus, rising edges are lower than
their truth value, but the mean of the At measurements is close to the correct
value. In the case of the mean edge and median edge algorithms, selected edges
are expected to be close to their truth value, and the At,...value is recovered by
construction. Finally, as presented in Fig. 11.27, best results are obtained with the
median edge method as it shows the lowest dispersion of DDMTD outputs with
a standard deviation of ~1% around the mean. This result is consistent with the
hardware implementation studied in Ref. [72].

To confirm these observations were not dependent on the amount of RJ intro-
duced in the signal, the same study is performed with varying RJ in the v; and
u, input clocks. Results are reported in Fig. 11.28 and show the median edge algo-
rithm should be favoured for any RJ hypothesis. Very high RJ values are tested,
but less than 5 ps is expected on the input clocks in the context of HL-LHC.

11.3.5 Realistic jitter simulation

As mentioned already in Section 11.3.1, the total jitter observed on a clock sig-
nal can be decomposed into two main components: the random jitter and the
deterministic jitter. To offer more simulation possibilities, especially when con-
sidering realistic scenarios, both types of jitter can be simulated with pyDDMTD.
The RJ is emulated by shifting the clock edges with values following a normal
distribution A/(0, or;) where og, is the RJ intensity. The DJ corresponds to a pe-
riodical shift of the edges and is added through the sine wave op /2 sin(27fy,;t)
where op, is the DJ intensity impacting frequency fy;. As the DJ can impact mul-
tiple frequencies with different intensities, the condensed notation op,@fy) is
used in this section to clearly identify the components of DJ. Examples of jitter
simulation are presented in Fig. 11.29.

These examples are described through TIE histograms and, although this kind
of distribution measure At shifts between two clocks, note that they represent
a concept distinct from DDMTD measurements. The goal of a TIE histogram is
to characterise a single clock by comparing it to a reference clock that is the per-
fectly clean equivalent of the measured clock. In practice, these TIE histograms
are measured with high-frequency oscilloscopes and are sensitive to very fine
shifts. On the other hand, the DDMTD output compares and characterises shifts
between two (potentially noisy) input clocks. The sensitivity of the DDMTD de-
pends on its N parameter. As such, in this section, TIE histograms serve as truth
information to evaluate a clock and compare it to the DDMTD measurements.

With these additional handles to simulate jitter in clocks, we can reproduce the
jitter expected in the actual clock distribution chain developed for subdetectors
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Figure 11.28 - Distribution of At measurements for an increasing random jitter on the
input clocks (left to right). The first deglitching method is applied in the top row, and the
median method is applied in the bottom row.

of CMS phase II. To evaluate this expected jitter, we performed measurements
on a test bench imitating the distribution chain and characterised the output
clock of the IpGBT that corresponds to the clock guiding the front end systems.
A clean clock with frequency 160 MHz is delivered to the distribution chain, and
a TIE histogram of the output clock is performed with a high-sampling oscillo-
scope. The measured TIE histogram is reported in Fig. 11.30. From this jitter
profile, a satisfactory simulation is done with pyDDMTD using the following jitter
characteristics:

* RJ: 2.8ps
* DJ: 20 ps@0.1Hz / 1 ps@100 kHz / 15.7 ps@40 MHz

This jitter profile is measured at the front end level, so it cannot be accessed dur-
ing the normal operation of the CMS detector. Instead, what is observed by the
DDMTD is the clock sent back to the back end (uplink). Then, it seems sensible
to formulate a symmetry hypothesis by assuming the same contribution from
downlink and uplink and to model the jitter at the front end as half of what is
measured by the DDMTD. The relation between the jitter at the detector level
(front end) and the jitter measured at the back end has been studied during a
measurement campaign by teams from the HPTD group, Minnesota University
and CEA Saclay. To study this relation, both the fibres and the front end have
been put in a climate chamber alternately to assess the effects of temperature
on jitter. Their results are presented in Fig. 11.31. When the fibres are in the
climate chamber, the downlink and uplink paths seem to add the same phase
variation. This is visible on the left plot of Fig. 11.31 where the symmetry hypoth-
esis (0.5*DDMTD) matches what is observed in the output clocks of the IpGBT
(ECLKO, ECLK1, PSCLKO). However, a significant difference is observed when only
the frontend is putin the climate chamber: the phase shiftin the front end is ap-
proximately 7 times higher than the symmetry hypothesis. These results show
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Figure 11.29 - TIE histograms of clocks simulated with RJ (2.5ps) in the top left, DJ
(5ps@10kHz and 17 ps@40 MHz) in the top right and a combination of RJ (2.5 ps) and
DJ (50 ps@10 kHz) at the bottom.

that in the feedback path to the DDMTD, the clock is not passing through some
of the internal components of the IpGBT and on-detector modules.

A model of this asymmetry is implemented in pyDDMTD based on the result of
this measurement campaign and on the following assumptions:

+ external factors introduce slow jitter components (below 100 Hz) in the
front end,

+ we expect higher power and temperature fluctuations within one order of
magnitude of the L1 trigger rate (750 kHz).

As such, DJ within these frequency ranges is reduced by a factor 7 at the DDMTD
level. The symmetric part is also included by considering the same jitter contri-
bution from downlink and uplink. The impact of this modelling on the back end
measurement of a clock with the jitter profile described in Fig. 11.30 is shown with
the TIE histograms of Fig. I1.32.
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11.3.6 Evaluating corrections on the clock jitter

The goal of implementing DDMTDs on FPGAs of the back end is to monitor and
correct the jitter introduced by the distribution of the clock to the detector and
to ensure synchronisation among all parts of the subdetectors. These DDMTDs
take as input the downlink clock sent to the front end and the uplink clock com-
ing back. Thus, their output tracks down the jitter introduced along the clock
path and brings correction possibilities.

In order to extract an accurate correction value, we need to evaluate the dis-
tribution of the DDMTD output i.e. we need to register the DDMTD informa-
tion over several clock cycles. The number of clock cycles needed to compute a
correction defines a monitoring window of the DDMTD output with a duration
At,indow- This duration sets the frequency of the correction on the clock with
feorr = 1/Atyindow, @nd it marks a limit on the maximal frequency of DJ we can
correct as the correction does not impact DJ with fy; > £, /2. Examples of cor-
rection of noisy clocks using DDMTD measurements are shown in Fig. 11.33. The

DDMTD is simulated with a parameter N = 8192, and its measurements are
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Figure 11.32 - Simulation of the effect of additional jitter in the front end components
(orange) on the measurement at back end level (blue).

collected during monitoring windows of 5 ms. The correction value is computed
as the mean of the DDMTD output distribution acquired during that window. It
corresponds to a correction frequency f,, = 200 Hz. Two jitter configurations
are tested in Fig. 11.33, associated with the top row and bottom row examples.
Both clocks have a frequency f = 160 MHz, a RJ of 2.5 ps, a high-frequency DJ
component of 17 ps@40 MHz but they have different low-frequency DJ. The clock
on the top row example has a low-frequency DJ of 50 ps@100 Hz. Thus, the distri-
butions of the DDMTD output are shifted in each monitoring window since they
collect measurements faster than the effects of the DJ. This can be seen in the
leftmost plot of Fig. 11.33, where each colour represents a different monitoring
window. Then, each monitoring window is corrected by the mean of the DDMTD
measurements, resulting in the central plots where all distributions are aligned.
The effects on the full clock signal are visible from the TIE histograms on the
right, where the standard deviation of the TIE distribution decreased from 6.8 ps
to 6.4 ps. However, the bottom row example uses a clock with a low-frequency
DJ components of 50 ps@1 kHz. Since the correction frequency is 200 Hz, it is not
sensitive to the jitter components of this clock. Indeed, no effect is seen on the
distribution of the DDMTD measurements, and the TIE histogram is unchanged
before or after correction.

So while we need to accumulate several clock cycles to increase the precision on
the correction value, we also need a fast correction process if we want to reduce
the effects of DJ at high frequencies. The number of DDMTD measurements in
a monitoring window is given by

f
Nddmtd = W

corr

(11.6)

As itisinversely proportional to f_,,, there is a direct trade-off between the num-
ber of measurements per window to compute an accurate correction and the
maximum jitter frequency that can be corrected. A solution could be to decrease
the value of N while increasing f.,,. But this cannot be done arbitrarily as N also
imposes the precision of the DDMTD measurement through At,,,, = 1/(Nf),
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so smaller N also decreases the accuracy on the correction value. To evaluate
the impact of N on the correction performance, we scanned the standard devi-
ation of TIE histograms of clocks with varying low-frequency DJ (fy;) and using
DDMTDs with varying N. The results of these scans are detailed in Fig. 11.34.
Given our asymmetry assumption, the clock measured at the back end shows a
smaller jitter than expected at the front end. Effects of a low N are noticeable as
the correction, in this case, mostly degrades the clock. However, we can also see
that the correction is able to lower the jitter level in the front end up to 15% de-
pending on the N setting. It means that a DDMTD only correction can already
bring improvements in the clock distribution and allows some cleaning of the
jitter in the frequency range above 10 Hz.

1.4 Conclusion

The first part of this chapter is dedicated to the description of the LHC at CERN, of
the CMS experiment, and of the planned upgrades to adapt to a high-luminosity
phase for the LHC.

A particular focus is given to the clock distribution chain within CMS subdetec-
tors and the requirements for the detectors to uphold the quality of their physics
measurements. To ensure a high level of synchronicity between the different
components of the detectors, careful monitoring of the jitter introduced in their
reference clock is needed. | present in this chapter a simulation framework
to evaluate the monitoring and correction possibilities brought by a DDMTD
system implemented at the back end level for jitter impacting frequency above
10 Hz. This framework gives a fast and accessible simulation of a DDMTD with
tunable parameters and is applied on a customisable jitter profile. As a prelimi-
nary study, we study the correction possibilities of such DDMTD on an asymmet-
ric jitter introduced at the front end level. Results show that with an appropriate
selection of the parameters of the DDMTD, the system is able to reduce the jitter
components with frequencies below half of the correction frequency.

This framework can now be used to test different correction strategies. The
correction presented in this chapter is not the only possible one, and more ad-
vanced strategies can be considered, for instance by introducing multiple DDMTD
(each with a different N parameter or with an offset between each other) and
computing a correction based on a combination of their outputs. We can even
think of machine-learning-based corrections where a model is trained to learn
the asymmetry in jitter between the front end and the back end. In that case, py-
DDMTD can be used to produce training samples for the machine-learning mod-
els.

1.4 Conclusion
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Applications for machine learning are numerous as it is a rapidly growing field,
and physicists in high energy physics (HEP) are prolific contributors. Given the
high performance necessary from detectors and the precision required in the
statistical analyses of data, machine learning is indeed a relevant tool that ben-
efits from the large amount of data available. In that regard, one of the main
aspects of my PhD topic is to apply advanced machine learning techniques to
different aspects of physics analyses of the CMS experiment.

This chapter covers the developmentsin deep learning that are necessary for de-
scribing my work in Chapter IV and V. Itis also a good way to transcribe my expe-
rience as the contact person between the machine learning group and the Higgs
physics analysis group of CMS. It starts with a summary of machine learning and
how to build artificial neural networks. Section I11.2.1 describes the learning pro-
cess of such networks. Finally, the last two sections detail deep neural networks
and generative adversarial networks, respectively, as well as the common regu-
larisation techniques needed for their training.

I11.1 Machine learning and neural networks

111.1.1 Development of machine learning

Machine learning is a field studying how a computing machine can learn the
optimal set of parameters needed to perform a given task. For instance, high-
performing data-fitting methods such as the least squares methods or maxi-
mum likelihood estimation are building blocks of such parameter optimisation.
But a shift in paradigm was brought in 1943 with the first mathematical model
of the neuron by McCulloch and Pitts [73]. The 1950s saw the first learning
neural network machines [74, 75] and, in particular, the first implementation
of the McCulloch and Pitts neuron with the perceptron of Rosenblatt [76]. This
interest continued throughout the 1960s with the parallel development of non-
neural-network-based techniques such as support vector machines (SVM) [77]
or the nearest neighbour algorithm [/&]. This enthusiasm surrounding machine
learning then came to a halt for more than a decade with the realisation that a
single-layer neural network could only achieve optimal classification for linearly
separable classes and that they were computationally limited (with the book
Perceptron [79]). Only in the 1980s came a resurgence of the field with the de-
velopment of neural networks with more complex architectures (precursors of
the convolutional neural networks (CNNs) [80], first recurrent neural networks
(RNNs) [81],...) and the application of backpropagation to machine learning [82-

] for a great gain in computational performance (although backpropagation
was already described since 1970 [85]). Outside of neural networks, this period
saw the creation of additional techniques such as random forest algorithms [86]
or boosted decision trees (BDT) [87]. Finally, inthe last 10 to 20 years, the release
of exhaustive databases (MNIST [88], ImageNet [89], ...), the implementation of
high-level software libraries (Torch [90], Tensorflow [91], ...) and the upgrade
of computing hardware (especially graphics processing units (GPU) and now ar-
tificial intelligence (Al) dedicated hardware [92]) enabled to study deeper and
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deeper neural network models and to enter the deep learning era.

111.1.2 Building an artificial neuron

As for many technological progress, machine learning was shaped by observa-
tions of nature. In this case, the concepts of neural networks are directly inspired
by the learning process in the animal kingdom. The support of this process is
the neurons and their interconnections, forming intricate circuits throughout
the whole body, especially in the brain. A healthy human brain is expected to
contain around 90 billion neurons, each connected to thousands of others [93].
This figure can serve as a reference to compare with the size of neural networks
presented in this thesis; for instance, the networks trained in Chapter IV have
approximately 30000 neurons each and the network described in Section V.4
of Chapter V contains approximately 80000 neurons. All of these connections
need to cover a very broad spectrum of tasks going from perception to complex
reasoning but also taking care of memory, movement and other physiological
processes (sleep, respiration, etc.).

Acting as a building block of the learning process, the neuron is the cell whose
role is to convey information. A simple representation of a biological neuron is
shown in Fig. IIl.1 with its different constituents:

+ Dendrites: where the information is received from precedent neurons in
the chain.

+ Cell body: where one finds the usual components of a cell (nucleus, mito-
chondria, ...).

+ Axon: itsrole is to propagate the information thanks to an electrical signal.

* Presynaptic terminal: which translates the information from an electrical
signal to a biochemical one by releasing neurotransmitters outside of the
neuron. These neurotransmitters cross the gap between two neurons (the
synapse) before reaching the dendrites of the next neuron.

The most popular model behind the working principle of a neuron can be easily
summarised by following the role of each of its constituents [95]. When den-
drites receive neurotransmitters from other neurons, their contribution to the
potential of the neuron’s membrane is summed both in time and in multiplicity.
Some of the dendrites have an inhibitory function, so they contribute negatively
to this sum. If the potential reaches a certain threshold, the neuron activates,
and an electric pulse is sent along its axon. This maximum of the pulse has a
fixed value and is not dependent on the sum of the stimuli received by the den-
drites: it is an all-or-nothing mechanism. Only the frequency of the pulses is
affected by the input stimuli. Then the learning process emerges from the inter-
connection of these neurons. Each of these connections must be tuned (number
of connected neurons, number of neurotransmitters released, frequency of the
pulses, ...) to give the optimal neuronal chain for a given task. This tuning is
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Figure I11.1 - Simplified representation of a neuron from Ref. [94]

updated constantly through life by learning new tasks or training by repeating
them, for instance, and is one of the main mechanisms behind neuroplasticity.

As mentioned above, translations of this biological neuron to an artificial one
started in 1943 with McCulloch and Pitts [73] and were developed by Rosen-
blatt [76] to the model presented here. They realised that we can model a neu-
ron as a basic mathematical function. It receives a number of input stimuli (a;),
which are weighted (w;) by importance (some being even negative) and inte-
grated over time (> a;w;). Then it outputs a certain number of pulses depending
on this weighted sum of inputs if some threshold has been reached f (> a;jw;),
where f is called the activation function. This activation function is of primary
importance as it allows for a non-linear response of the neurons with respect to
the inputs, increasing its capabilities in learning and reproducing complex func-
tions. A bias (b) can also be added to shift the combination of inputs towards
an optimal range in the activation function domain f (> a;w; 4+ b). From this, we
can model a simple artificial neuron as described in Fig. l1l.2.

111.1.3 Neural networks

Once we have built this elementary block, we can assemble more complex struc-
tures by connecting artificial neurons together. The first emerging structure is
a layer of neurons. A layer consists of parallel neurons that are not intercon-
nected but that share the same input neurons and the same output neurons.
Then, by concatenating several layers, we arrange a network of neurons or, in
other terms, an artificial neural network. In its most basic form, a neural net-
work consists of at least an input layer — where the neurons take as inputs the
values evaluated by the network — and of an output layer — where the neurons
output the value predicted by the network. Any layers between the input and
output layers are called hidden layers.
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Figure I11.2 - Model for an artificial neuron. a; are the inputs of the neuron, w; represents
the importance given to each input, b is the bias and f is the activation function.

A simple architecture of such a neural network is presented in Fig. Il.3 and is
called a feedforward neural network. All outputs of one layer proceed forward
to the next one; there is no loop. However, layers can take more elaborate struc-
tures. Some layers can take as input the output of anterior layers and not just
the previous one (skip connection layers), and some can take as additional input
an earlier state of the network in time (recurrent networks), or share the same
weights between multiple neurons, etc. Actually, a layer represents a more gen-
eral idea of a specific arrangement of neurons dedicated to a precise task, and
the final output of the network is the transformation of the input values after
going through each layer. It means that the output of a network y can be de-
composed as a combination of functions f, applied to the input vector x. So, for
a network with L layers:

y:fLo...ofko...ofl(ng)g+b}> (1.1)
J

and in the case of a feedforward network, all neurons of a layer are connected
to all neurons of the previous layers so the pass through each layer can be ex-
pressed as a simple matrix multiplication:

y=~1 (WLfL—l ( - h (W1X+ bl) )) (11.2)

where W' is the matrix representation of layer / meaning that each component
of the matrix w,-j- is the weight applied to input j of neuron i/ in layer /.
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Figure 111.3 - Model of a feedforward neural network.

I11.2 Teaching a machine

111.2.1 Learning paradigms

Given a set of inputs, the output of a neural network is completely defined by the
set of weights, biases and activation functions of each layer. While the activation
functions are defined when building the network architecture, the weights and
biases are the tunable parameters that must be optimised. This step of learning
the optimal set of parameters from successive predictions over available data is
called the training of the machine learning technique. These tunable weights are
to be distinguished from other parameters of the training that can be adapted
to improve the training process but which are fixed at training time such as the
width of the network layers, the update strategy for the weights, the learning
rate (see Section 111.2.3), etc.The latter are called hyperparameters. The learn-
ing procedure requires first to define a precise model of the objective that the
algorithm should reach through the learning process. This objective is highly de-
pendent on the task assigned to the algorithm and on the nature of the training
data. Machine learning methods are usually categorised between three main
objectives representing different learning processes:

* Supervised learning: each training data point links a set of inputs to a
label, and the machine learning algorithm should learn how to predict the
correct label from a given input. An optimal algorithm can then infer labels
even for inputs not seen in the training data. For instance, algorithms built
for classification or regression are trained with supervised learning. As
such, it is the preferred learning mode for physics analyses, whether it is
for event tagging and categorisation or regression of event observables.
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* Unsupervised learning: it corresponds to a case where the training data
has no label or itis irrelevant. The objective of the algorithm while training
is to reproduce the input data. It forces the algorithm to find the relevant
features that constitute the minimal information from which one can ex-
trapolate the rest of the data. In HEP, it is particularly useful for clustering
or dimension-reduction tasks. It is also used in anomaly-detection-based
searches or data quality monitoring.

* Reinforcement learning: in this context, the machine learning algorithm
is considered as an agent belonging to a given environment, and its ob-
jective is to learn what is the correct next action to perform. This action
impacts the environment, which brings a reward to the agent and sets it in
a new state. It can be used when there is a clear set of possible actions to
choose from, and itis typically how the algorithms controlling autonomous
vehicles or the ones playing games are trained. It can be seen as a model
of the reward system of the brain. Its applications are rare in the context
of collider experiments, but it could be applied to the control of particle
accelerator operations [96].

111.2.2 Loss and metrics

In the context of machine learning, the learning objective needs to be translated
into a mathematical expression to give the algorithm an estimation of how it
performs and how to improve. This expression is a function of the algorithm
output and is commonly called a loss function. The definition of this loss func-
tion depends on the goal of the algorithm, but there are common losses for
each context, especially when training neural networks. For instance, in clas-
sification tasks, the objective is to check the agreement between the network
output and the class of the input data. Outputs of a classifier network are often
bounded between 0 and 1 and can be interpreted as probabilities to belong to
a given class. The loss is expressed as the cross entropy H between these two
probability distributions:

H(y.9)=—)_ yilogi (111.3)
i=1

where nis the number of classes, ¥ is a vector encoding the network output, so
each y; represents the probability of the input data to belonging to class i and
y is the vector encoding the true class, i.e. y; = §; for class j. Note that Eq. IIl.3
simplifiesas H(y,y) = — (ylog y + (1 — y) log (1 — y)) for the binary case. As the
network learns to predict the label value, the y ~ 0 cases are not pathological
since they correspond to an associated y = 0. For unsupervised learning or
supervised regression, the goal of the network is to reproduce the input data or
the continuous label of the input data. Then, an evaluation of the error of the
network is preferred, e.g. with the mean squared error:

1
MSE(y.9)=~> (i —5)’ (111.4)
i=1
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where n is the number of output neurons and y and y the predicted and ex-
pected output respectively.

Even if the loss function usually gives crucial insight into the state of the training,
it is useful, most of the time, to define additional metrics of the network perfor-
mance. These metrics are independent of the learning process as they are not
entering the update of the weights (so they are not affected by constraints on
the continuity of their derivatives), but they act as indicators that the training is
going in the correct direction and that the network is learning the proper task.
For example, when training a network for a classification task, a powerful tool
to compute its classification performance is the receiver operating characteris-
tic curve (ROC curve), from which one can extract its area under the curve as a
metric. In the context of applying machine and deep learning to Physics, this is
typically where our intuition as physicists comes into play. Physicists are used
to develop meaningful figures of merit to summarise information from complex
contexts, and this can be applied directly to network training by using additional
metrics to check for expected physical consequences or to rule out unphysical
results.

111.2.3 Gradient descent and backpropagation

As described in Eq. 1ll.1, the output of a network is entirely determined by its
input and weights §y = y(x). So any loss for a network is, in fact, a function of the
inputs, the weights of the network w and the expected output: L,, (y, ¥ (x)). This
lays the foundations of the neural network training (a model of the learning pro-
cess), as the goal of this phase is to learn the optimal distribution of the weights
— the one that minimises the loss. In fact, it becomes a high-dimensional op-
timisation problem or, in other words, a fit over many parameters. Given the
high number of trainable parameters (usually of the order of several millions)
and sometimes of input variables, it is often impossible to know analytically the
loss function over its full definition domain. Instead, the resolution of this prob-
lem is brought by numerical methods where we replace the full knowledge of
the loss function with an estimation using the highest possible number of eval-
uations, as the final goal is to get a network with high predictive performance
on unseen samples. This is also why neural network trainings require a high
number of training data points.

One of the best-performing algorithms to solve optimisation problems is the
gradient descent algorithm. The gradient descent algorithm starts by computing
the gradient of the loss function for a given input point. Since we want to update
the weights, the inputs and expected outputs of the network are considered
fixed, and the gradient is computed with respect to each of the trainable weights
of the network. By definition, the gradient indicates the direction where the
function changes the most. It means that, by using the gradient information, we
can update the weights towards the direction of the steepest descent, and the
network gets closer to the minimal value of the loss. After the training step t,
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each weight can be updated as:

1
Werr = Wy —7— Y Vi, Ly, x) (111.5)

n
X xeX

where X is the full training sample, ny is the size of the training sample and ~
is called the learning rate and is used to decrease or increase the importance of
the update following the direction opposite to the gradient. The gradient with
respect to a given weight W,-j- at training step t can be derived as follow using the
chain rule:
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where §' is the vector of outputs of layer / (soy = ghyands’ = W§'™ + b’
is the weighted sum of the inputs of neurons at layer /. Although the method
of gradient descent was already described by Cauchy in 1847 [97], its applica-
tion to machine learning and neural networks was limited because of the high
number of computation it requires. It was only with the rediscovery of backprop-
agation (presented in Il.7) and its application to the training of neural networks
in 1982 [82] that a new interest in neural networks emerged since it improved
greatly the computational efficiency of gradient descent. Indeed, by computing
the output and its derivatives for each neuron when evaluating the loss function
and then storing them, one can extract the gradient of the loss with respect to
a specific weight by simple matrix multiplication:
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Note that the computation starts with the final layers and goes decreasingly in
their position, hence the backward propagation. This method corresponds to
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the reverse version of automatic differentiation. The benefit with respect to a
naive computation of the gradient for each weight is twofold: first, the repetition
of calculations is avoided by computing each derivative only once, and second,
by going backwards, itis only a vector and matrix multiplication instead of matrix
and matrix multiplications if it was going forward. Hence the usefulness of GPUs
which are particularly powerful when dealing with vectors and matrices opera-
tions. This method of backpropagation also imposes some conditions on the
loss and activation functions of each layer. If some gradient-based optimisation
is performed, such as gradient descent, the loss and activation functions should
be differentiable in addition to being non-linear. For instance, the Heaviside
step function — that would be the simplest representation of an all-or-nothing
behaviour — is not differentiable in 0 and has a null derivative everywhere else,
so it would not train with a standard gradient descent method.

With the development of a new method for updating weights to increase con-
vergence capabilities and decrease the training time, the basic update strategy
of Eq. IIl.5 has been superseded. A short description of some optimiser algo-
rithms useful for this thesis will be given here. Firstly, most modern optimisers
rely on a batch version of the gradient descent algorithm. Instead of computing
the update as the average gradient over the full training sample X, the training
sample is divided into smaller batches B (X’) and the update of the weights is
computed as the average gradient over these batches:

1
Wiy = We = > Vi Lu(y. x) (111.8)

xeB

where ngis the size of batch B. The unit of training composed after going through
all batches of the training sample once is called an epoch. This is a good com-
promise between the standard gradient descent computed over the full training
sample, which is expensive regarding memory and computational power, and
a stochastic gradient descent that uses only one batch as an epoch. In addition
to the training by batch, some optimisers add a momentum term in the update,
which includes information about the gradient at previous training steps. Itis the
case for the Adam optimiser [98], which is considered a standard optimiser given
its good performance on a wide spectrum of training settings. The LAMB opti-
miser is also worth mentioning. It is a modified version of the Adam optimiser,
which adds a layerwise normalisation factor to the weight update. This normal-
isation is particularly useful when training with a large batch size (i.e. smaller
training time) as the direction of the gradient is preserved while mitigating the
negative impact of too low or too high gradients.
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I11.3 Deep neural networks

As mentioned already in Section 111.1.1, one of the reasons behind the loss of
interest in neural networks was the realisation that a single-layer network is, in
any case, limited to elementary tasks. One could always train multiple single-
layer networks and perform an intricate non-linear combination of their output,
but this is mostly impractical. A set of theorems called universal approximation
theorems brought a solution to overcome this crippling shortcoming.

These theorems show that under certain conditions, a neural network can ap-
proximate any continuous function. The first proven universal approximation
theorem states that a single-layer feedforward network is a universal approxi-
mator if it uses a non-linear activation function and that its hidden layer has an
infinite width [99]. Then additional theorems confirmed that it is also the case
for networks with an infinite number of fixed-width hidden layers [100] and that,
fortunately, networks with a finite number of layers with finite width can approx-
imate any function if they have a large enough number of neurons [1017, 1.
These results also extend to other popular network architectures [103].

This set of theorems implies that by going towards deeper network architec-
ture, i.e. adding more hidden layers, we can describe more intricate functions
with neural networks and use them for more ambitious tasks. Moreover, the
constant improvement of the computational capabilities of modern hardware
made the idea of building and training models with a great number of neurons
possible on reasonable timescales. These observations drove the rise of the
deep learning field, which aims to train a class of networks with an extensive
number of neurons, from simple deep feedforward neural networks to more
convoluted architectures.

111.3.1 Overtraining

While the large number of neurons provided by deep architecture promises bet-
ter performance, it also leads to additional challenges when training. Probably
the most common one is the issue of overtraining. It is coming from the bias-
variance trade-off arising when training a machine learning algorithm.

The bias of the algorithm describes its capacity to provide an accurate output
close to the expected value, and the variance represents its capacity to return
consistent results when the input is impacted by small variations due to noise.
This problem is well known in optimisation procedures as fits or trainings reach-
ing low bias and low variance are rarely possible and often limited by available
data. Usually, an adjustment is needed between a network able to learn general
rules from a training sample but reaching lower performance (underfitting) and
a network giving the best performance on the training sample but thrown off
when presented with unseen configuration (overtraining). This compromise de-
pends on the number of times the network sees the training data. Networks un-
derfit at the beginning of the training and overfit after a large number of epochs.

However, overtraining can be easily monitored by evaluating the loss value of
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the network on a validation sample. This sample must be independent of the
training sample and not seen by the network while training. It allows regular
checks of the generalisation capabilities of the network. In this way, if the loss
computed on the training sample keeps decreasing even though the loss from
the validation sample starts to increase, we have a clear indication that the net-
work starts to overtrain. This is also a good way to know when to stop the train-
ing. This technique is called early stopping and checks for an increase in the
validation loss to stop the training of the network. An example of overtraining
happening while training is shown in Fig. Ill.4. Additional techniques can be ap-
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Figure I11.4 - Example of overtraining seen when training a DNN. The loss of the train-
ing sample is dropping rapidly, but the loss from the validation sample is skyrocketing,
indicating overtraining from the network.

plied to prevent such effects rather than just stopping the training when the
network starts to overtrain. Most of them rely on limiting the complexity of the
network by reducing the range of possible values for the weights and not let-
ting them take arbitrarily high values. This can be achieved in several ways, with
the most straightforward way consisting of clipping the weights within a small
range [104]. Apenalty term can also be added to the loss function of the network
as the L; or L, norm of the vector of weights:

Ly(w) = |w (111.9)
Ly(w) =) w} (111.10)
as it pushes the weights toward smaller values while training.

Finally, a popular method to increase the robustness of the network against
small variations of the input is to use dropout [105]. Dropout refers to the
technique of randomly selecting a given fraction of the weights and setting their
value to 0 after each training step — as if some of the neuron connections were
dropped out (illustrated in Fig. II.5). It forces the network not to rely on a few
very important weights (or series of weights) and to spread the computation
over the full network.
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Figure I11.5 - When using dropout, a random set of neuron connections are dropped at
each training step. All connections are restored for evaluation.

111.3.2 Vanishing and exploding gradients

The choice of activation functions also plays a big role when training deep archi-
tectures, as their effect is applied after each layer. This is crucial when training
a network with gradient descent and backpropagation. Indeed, as mentioned
already in Section 111.2.3, if the derivative of the activation functions is null, then
the weights are not updated, and the network effectively stops learning. From
my teaching experience, | would translate that as if your lecture lacks interest-
ing twists, then students get bored and stop learning. And this can happen even
without regions of null derivative in the activation functions. If the derivative has
valuesin [0, 1], then by using backpropagation and multiplying the derivatives of
layer / by the gradients computed for layer /+ 1, the gradients are actually expo-
nentially decreasing, and the first layers of the network get very small updates.
Conversely, some activation functions have derivatives taking very high values
that will be enlarged during backpropagation leading to the inverse problem of
exploding gradient. This could be translated as if you keep exhausting your stu-
dents with a constant flow of difficult information, they will saturate and stop
learning.

The most popular activation functions were shaped to avoid these problems.
We already saw that the linear and Heaviside step functions were removed from
the equation. Given their properties, the sigmoid (Eq. Ill.11) and hyperbolic tan-
gent (Eqg. I11.12) functions are good candidates for activation functions. They are
continuously derivable, bounded and, with their S shape, they are close to the
description of an all-or-nothing mechanism. However, such S-shaped functions
have a gradient tending to 0 when their input tends to +o0o, so they are partic-
ularly prone to bringing vanishing gradients. They are still good options for the
activation of the output neurons. This led to the design of a set of activation
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functions called rectified linear unit functions which are piecewise linear func-
tions. In its basic form, the ReLU [106] (Eq. I1l.13) is linear for positive input and
null otherwise. It allows the recovery from vanishing gradients in one direction
at the cost of having a function non-differentiable in one point (but this is easily
fixed by arbitrarily setting the gradient at 0 to 0 or 1). Several alternatives were
developed from the original ReLU [107-109]; a popular one is the LeakyRelLU
(Eq. 111.14) that also fixes the issue of vanishing gradients for negative inputs.

1 e —e”~
U(X) = 1+ eX “”'11) tanh (X) = m (I”.12)
i < i <
ReLU (x) — 40 1Tx=0 LeakyReLU (a, x) = 4 2 TX =0 4y 1)
x ifx>0 x ifx>0
(111.13)

In addition to the choice of activation functions, some techniques were devel-
oped to avoid vanishing or exploding gradients. In the search for how to prop-
erly initialise the weights of the network before training, it was shown that this
initialisation could prevent any vanishing or exploding gradients. For instance,
in the case of a network with sigmoid-activated hidden layers, the problem of
vanishing gradient can be fixed if the weights have a random initialisation fol-
lowing the popular Glorot uniform (Eq. 111.15) or normal (Eq. 111.16) [110] or by
following the recent initialisation developed by Yilmaz and Poli [1711] (Eq. IIl.17):

W ~ul|— V6 v6 (111.15)
Vi gy /g
W ~ N O,L (111.16)
ny+ N
W ~ N (max <—1, —g) ,0.01) (11.17)
/

with W' the set of weights of layer / and n, the number of weights of layer /.
Similarly to the weight clipping used to mitigate overtraining, a gradient clipping
can also be applied to avoid exploding gradient effects [112].

111.3.3 Learning rate

The landscape of the loss function can be quite complex as the dimensionality of
its definition domain increases with the number of neurons. Since the gradient
descent technique uses local information to find the direction of the minimum,
it can start targeting a saddle point or a local minimum and get stuck around
it, effectively stopping the training. To avoid such premature convergence while
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training, the size of the step performed in the gradient descent (i.e. the size of
the weights update) must be carefully selected. This is the role of the learning
rate, denoted as ~y in Eq. llI.5.

If the learning rate is too big, then chances are that the gradient descent will
miss the global minimum, and if the learning rate is too small, then the time
of convergences of the networks increases, and the algorithm is more likely to
find a local minimum as illustrated in Fig. lll.6. That is why the learning rate is
rarely constant and changes throughout the training by planning a learning rate
schedule. A simple yet popular way of scheduling the evolution of the learning
rateis to let it decrease exponentially with respect to the epochs or each training
step. It allows the learning rate to start at a rather high value and then take
smaller steps as the weights get closer to their optimal value. Alternatively, a
strategy is to decrease the learning rate by a given factor each time the loss
reaches a plateau. Some optimisers are also effectively adapting the learning
rate as the training progresses. For example, in the Adam and LAMB optimisers,
the moments of the gradient from the previous training steps effectively act as
an adjustment to the learning rate. It is also worth mentioning the notion of
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Figure I11.6 - lllustration of the impact of the learning rate (LR) during the gradient de-
scent when updating a given weight (left) and over the full training (right). If the learning
rate is too high (orange), the training is suboptimal as the weights might not converge
to the global minimum. If the learning rate is too low (blue), the training time increases
unnecessarily, and the weights are more likely to get stuck in a local minimum.

warm restarts of the learning rate [1713]. In trainings where the training is clearly
getting stuck in a local minimum, regular and sudden increases in the learning
rate can help to unblock the network and put it back on the way to the global
minimum.
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111.3.4 An example of DNN: the convolutional neural
network

A short description of convolutional neural networks is given in this section as,
first, they are a typical example of deep learning technique, and second, they are
one of the building blocks of the method presented in Chapter IV. The convolu-
tional neural network (CNN) is an attempt at extracting high-level information
from organised arrays of data such as images, texts, spectrograms, and many
more. Thus, it makes sense that their architecture was inspired by the operation
of the visual cortex in biological brains.

When a sensory signal enters the visual cortex, it first goes through layers of sim-
ple cells that extract some level of information from these stimuli, for instance,
particular lines, shapes and orientations at precise positions. The extracted in-
formation is then passed to layers of complex cells that build higher-level con-
cepts, such as a movement in a specific direction and are usually unaffected by
the absolute position of the stimuli in their perceptive field. This led to the cre-
ation of the precursor of CNNs in 1979 by Fukushima: the neocognitron [80],
which was successfully trained to recognise Japanese characters and numbers.
The prevalent architecture for CNNs and their training with end-to-end back-
propagation of all the layers was developed in 1989 by LeCun et al. [84]. This
standard architecture is composed of several layers alternating between convo-
lutional layers and pooling layers:

+ Convolutional layers: as their name suggests, they rely on the convolu-
tion operation, so the neurons are not fully connected to all neurons of
the previous layer but rather to a smaller set of adjacent neurons of the
previous layer. Since the goal of the layer is to learn a feature that could
appear several times and anywhere on the output of the previous layer, all
neurons covering the full input share the same set of weights. This is anal-
ogous to a small filter that would be convoluted to patches of an image
and then shifted to repeat the operation over the full image (as described
in Fig. 111.7). A filter would learn to extract one type of feature, so convo-
lutional layers usually consist of several filters learning a different type of
feature each. The output of a filter over the full input is called a feature
map, as it returns a mapping of the presence or absence of the feature in
the input.

Note that, as for any layer, the convolutional layer can be represented by a
matrix. It allows the definition of transposed convolutional layers that per-
form the inverse operation (sometimes called deconvolution) in the sense
they can learn to extrapolate a higher dimensional representation from a
feature map. This is useful to define networks symmetrical to CNNs that
would take as input a vector of features and return the associated decon-
voluted image, e.g. when using generative adversarial networks (see Sec-
tion 111.4).

+ Pooling layers: the goal of pooling layers is to extract the prevailing as-
pects of each feature map while reducing the position dependency. This
is done by looking at patches of the input feature maps and summarising
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this patch with a single figure. For instance, it can be the average of the val-
ues over this patch or, most commonly, the maximum value of the patch.
When applying a convolution layer, the feature maps usually have a size
close to the input, so a network without pooling layers would learn to look
for specificinput regions to find a feature. However, the position of the fea-
ture relative to other features is usually more important than its absolute
position; hence this downsampling is performed after each convolutional
layer. Such a layer is entirely defined and has no trainable parameter.
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Figure 111.7 - lllustration of the effect of one filter (middle) producing a feature map
(right) from an input array (left). A convolutional layer can have several filters where the
values of the filter are the trainable weights.

This alternation of convolutional and pooling layers makes CNN very robust
against the vanishing and exploding gradient problems as the weight sharing
acts as an efficient regularisation. Moreover, by combining the input through
multiple applications of convolutions, CNNs learn to extract high-level features
and the correlations between them. This is particularly useful in HEP. It can have
intuitive applications on the response of the detector since they are already close
to what is found in an image — by using the energy deposit in each pixel of the
detector, for instance. Even the final reconstruction of an event can be repre-
sented as an image, with each pixel being one of the observables of the event.

1.3 Deep neural networks
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111.4 Generative adversarial networks

A special field in artificial intelligence is the study of techniques with generative
capabilities. The goal of such techniques is to generate samples that are pos-
sibly statistically independent from the training samples. Deep learning mod-
els are largely prevalent in this generation of all sorts of data, from text with
large language models such as BERT [114] or CHATGPT and its recent GPT-4 archi-
tecture [115], to images with DALL-E [1716] or MIDJOURNEY [117] or even molecules
with ALPHAFOLD [1718]. Along with the rise of generative pre-trained transformers
(GPTs) in recent years, one of the most prominent frameworks for generation
purposes is generative adversarial networks (GANs) [1719, ]. A GAN consists
of two deep networks trained with competitive objectives. On one side, a gener-
ator network G is trained to map a latent vector of randomly generated inputs
z € Z to meaningful and realistic data G (z). On the other side, a discriminator
network D is trained to distinguish between data from a sample of reference
x € X,.¢ for which the expected outputis y (x) = 1 and generated data from the
generator x € G (2) for which y (x) = y (G (z)) = 0. It means that the genera-
tor is actually a forger trying to fool the discriminator, and the discriminator is a
critic trying to spot any counterfeit (as represented in Fig. I11.8).
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Figure 111.8 - Simplified representation of a GAN.

So both networks have opposed objectives, which are translated mathemati-
cally by two different loss functions. The discriminator is classifying its inputs
between reference y (x) = 1 and generated y (G (z)) = 0 so its binary cross-
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entropy loss writes as:

L, - i Yy (D) + (1 -y (x)In(l-D(x))
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Since the objective of the generator is to fool the discriminator, its loss is based
on the output of the discriminator and the expected outputs are reversed, i.e.

y(G(2) =1

L= ¥ yen(De)+1-yx)in@- D)
13 x€B(G(2)) (111.19)
=— > InD(G(2)).
B zen(2)

The networks are trained simultaneously as adversaries, and they compete in
a zero-sum game — each gain for one of the networks is a loss for the other
— and the final goal is to reach a Nash equilibrium [1271] where both networks
cannot improve anymore against the other.

Overall, GANs are known to be difficult models to train for several reasons. First,
this zero-sum game brings the necessity for both networks to perform relatively
well against the other in order to reach convergence. Indeed, if one of the net-
works starts to perform too well, then the other is stuck with a very high loss,
no matter the direction of the weight update, meaning that its gradient gets
close to 0, becoming a vanishing gradient problem. Yet, if the loss of each net-
work should not increase or decrease too much, then a successful GAN training
shows very stable losses during the training. It means that the evolution of the
loss for each epoch does not give any information about the absolute perfor-
mance of each network. This is unlike deep networks trained in non-adversarial
settings where the loss should decrease during training and allows the direct
comparison of different training frames, for instance, when looking for the best
hyperparameters. Thus, the definition of additional metrics for the evaluation
of the performance of the network is needed in the context of GANs. Second,
the convergence of the networks toward a Nash equilibrium is not guaranteed
in practice [122]. This is coming from the concurrent update of both networks,
where they each try to minimise their loss through gradient descent and inde-
pendently of the evolution of the other network. Since their loss is heavily de-
pendent on the performance of the other network, each update can become a
reaction to compensate for the effects of the previous update on the other net-
work, leading easily to diverging oscillations in the evolution of the respective
loss functions. Finally, an unfortunate pitfall of GANs appears when the gener-
ator needs to learn how to generate different classes of objects and generate
only a few or even only one class of objects. This is called mode collapse or
"the Helvetica scenario” [119] and is a direct example of what happens when
the generator gets stuck in a local minima of the weights space.
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Given the high popularity of GANs in the last 5 years, variations around this kind
of deep model gave birth to a large variety of GAN-based techniques. A few
notable architectures are presented here:

Convolutional GANs As their name suggests, convolutional GANs consist of
GANSs using convolutional neural networks. More precisely, the discrim-
inator uses regular convolutional layers, but the generator is transforming
arandom latent vector to an organised array of data, so it usually uses de-
convolutional layers. This is also coming from the fact that, in order to get
networks of comparable potential in the GAN, it is easier to use networks
that are comparable by construction. Thus, the discriminator and gener-
ator usually have symmetrical architectures. Convolutional GANs have a
lot of applications in image generation, such as STYLEGAN [123]. STYLEGAN
introduced training in a progressive fashion, beginning with a training to
generate low-quality images, and after each training, a new layer is added
to the generator and to the discriminator to upscale the image generation
to higher quality images. STYLEGAN is famous for its generation of decep-
tively good portraits; it is indeed very difficult to distinguish which portrait
was generated in Fig. l11.9.

Figure 111.9 - Examples of portrait generation with STYLEGAN. Both faces are actually
generated and are not existing persons.

Conditional GANs With conditional GANs, some features are shown to the gen-
erator and discriminator. The GAN learns about correlations between the
conditional features and the data that should be generated, hence condi-
tioning the generator output to have specific features. This can be used,
for example, to generate an image but keeping a background given as a
conditional feature or to generate a random painting but in the style of a
given painter.

CHAPTER Ill Deep Learning



Wasserstein GANs The concept behind this is to change its loss function rather
than changing its architecture [104]. Instead of using the binary cross en-
tropy to get the loss functions, the Wasserstein metric [124, ]is used.
It provides a meaningful loss that should allow for clear hyperparameter
selection, contrary to the standard GAN. Wasserstein GANs were also de-
veloped to improve the training convergence and avoid mode collapse.

I11.5 Summary

This thesis takes place in the context of the growing contribution from the ma-
chine learning field to high-energy physics research activities. For instance, the
training of BDTs and simple binary DNNs is gaining momentum in collider exper-
iments communities, and it is becoming a popular method for events classifica-
tion, particle identification or object reconstruction. Reciprocally, HEP provides a
favourable environment for the development and application of modern deep
learning techniques, and covering them would go beyond the scope intended
for this chapter. Such techniques include generative models for data sample
generation using GANs (such as the study described in the next chapter) or nor-
malising flows [126]. Other methods rely on the structure of data collected in
HEP: features of an event can be seen as properties interconnected through a
graph, and graph neural networks are, indeed, showing high performance on
tasks such as particle identification [127, 1. Finally, another example of ac-
tive developments based on deep learning arises from the nature of research
in Physics with models taking into account the uncertainty on their inputs [129-

1.

This chapter summarises the working principle of neural networks and how they
are trained. A particular focus is given to deep neural networks (DNN), genera-
tive adversarial networks (GAN), and regularisation techniques to improve their
training. It gives a broad overview of all the considerations we take into account
when training and optimising such models. Indeed, a crucial aspect of the data-
driven estimation technique presented in Chapter IV is the careful optimisation
of a conditional and convolutional GAN, which drives the quality of the gener-
ated background sample. In a similar way, a key element to the successful def-
inition of phase space regions with high sensitivity for the analysis described in
Chapter V is the training of a DNN model providing good discrimination of the
events.

L5 Summary
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IV.1 Motivations

In high energy physics (HEP), characterising a signal hypothesis requires distin-
guishing its signature from a large number of background processes with sim-
ilar final states. Observables of physics objects are used to construct classifi-
cation algorithms that can discriminate signal signatures from the background
processes. An accurate description of these final states and their observables
with the detailed modelling of the detector responses is crucial for the sensitivity
of the analysis.

Monte Carlo (MC) techniques are widely used in HEP experiments to simulate
a process from a physics model of interest (denoted as signal) and other stan-
dard model (SM) processes (denoted as background). Software libraries such as
GEANT4[132, ] are used to model detailed descriptions of the modern colos-
sal particle detectors and thereby provide an accurate simulation of the detec-
tor responses to these processes. Due to the intricate nature of these detectors,
the large amount of data delivered by the colliders and the rarity of the signal,
a substantial computational infrastructure in the form of grid processing power
and a significantly large storage-disc volume are needed. This requirement usu-
ally constrains the simulation sample production to have a limited number of
events in the tails of discriminating observables. Furthermore, inaccuracies in
the underlying physics model and in the description of detector responses limit
the use of MC simulations for background description.

Many leading background processes have signatures mimicking the signal due
to one or more misidentified particles in their final states. For instance, the Higgs
boson signature with two isolated photons in the final state has to be distin-
guished from other SM processes with a single photon and multiple jets in the
final state where one of the jets is misidentified as a photon. A similar exam-
ple can be given for the signal signatures where two b jets are expected. In this
case, processes with a single b jet can have a second light flavour jet misclassi-
fied as b jet, thus populating the signal region. ML classification algorithms are
widely used for optimal separation between signal and background processes.
They can extract the higher-order relations between observables to provide a
better classification performance [134] with respect to techniques treating ob-
servables sequentially. Therefore, the training samples should provide a good
description of signal and background observables and their correlations. Mod-
elling the misidentification of the physics objects is challenging as it might be
subject to systematic effects creating discrepancies at the tails of distributions.
Various data-driven techniques are used to mitigate the possible impacts of mis-
modelling. For instance, a data-driven technique that requires two additional
sub-sample spaces, known as the ABCD technique, is widely used in HEP, e.g. in
Ref. [135]. Even though this technique can estimate the yields of the different
processes, the shapes or the correlations of the observables in the high-purity
signal region cannot be retained. Other techniques are also tailored explicitly
for particular signatures. However, their generalisation cannot be assured, and
they may still suffer from the aforementioned shortcomings.

This chapter describes my work on a novel data-driven technique using a condi-
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tional generative adversarial network (GAN) to model backgrounds with misiden-
tified particles. This GAN generates new observables for a particle that fails the
identification criteria to mimic a misidentified object whose observables retain
correlations with other event observables. | demonstrate the technique in the
context of the CMS analysis of the Higgs boson decay into a pair of photons
(H — ~v~) as presented in Ref. [136, 1.

Between the beginning of this study and its publication, additional methods
were introduced to tackle this objective of improving the description of back-
ground processes thanks to machine learning and generative techniques [138-
]. However, contrary to these methods, we train our generative model on a
signal-enriched region in simulated MC samples and generate a complete event
by making use of the large amount of discarded data events not passing the sig-
nal selection requirements. Furthermore, by using all features that may have
correlations with the generated observables as conditional inputs to the GAN
rather than considering only a single feature (such as the reconstructed mass of
a particle, cf. [139]), the network is able to model linear and nonlinear correla-
tions with both the generated object features and the conditional features.

This study was published in volume 83 of The European Physical Journal C[141]
and presented at multiple conferences such as the 2023 Electroweak session of
the 57th Rencontres de Moriond or the 26th International Conference on Com-
puting for High Energy and Nuclear Physics (CHEP2023).

The chapter is organised as follows: a description of a typical data-driven es-
timation for the background of the H — ~+ analysis is given in Section IV.2.
Section V.3 describes the GAN architecture as well as its training and evaluation
procedure, and the performance of the GAN is presented in Section IV.4. Finally,
the impact of the method on the training of discriminants aiming at rejecting
background is shown in Section IV.5.

IV.2 Data-driven estimation of the background in
the H — ~~ analysis of CMS

After collecting data and reconstructing the physical objects in the event, a typi-
cal analysis flow in HEP experiments starts with identifying the physics objects.
Multivariate analysis techniques are widely used to provide an identification (ID)
score. For instance, a photon ID score is developed to discriminate real prompt
photons v (originating from the primary vertex) from jets reconstructed as pho-
ton 7 (named misidentified hereafter or sometimes fake in the literature) in the
H — ~v analysis. In this manuscript, the notations v and 7 are used to identify
prompt and misidentified photons, respectively. Misidentified photons mainly
originate from the fragmentation of particles and the decay of neutral mesons,
such as 7° or 1, into two collimated photons. During the second run of the LHC,
the photon ID was computed from a boosted decision tree (BDT) trained on
object properties with the highest discriminating power. These variables are
mainly extracted from the reconstruction steps performed with the energy de-
posits measured in the ECAL. Indeed, the two boosted photons usually leave a
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wider shape profile in the ECAL compared to a single prompt photon of compa-
rable energy, as shown in Fig. IV.1.
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Figure IV.1 - Event display from Ref. [142] illustrating the differences in shower shape
in the ECAL between prompt (narrow peak, on the left) and non-prompt (wide shape,
on the right) photons.

Moreover, as these non-prompt photons emerge from the fragmentation of jets,
they are often reconstructed close to additional objects. This leads to higher
energy deposition in the surroundings of the photon candidate, as can be seen
in Fig. IV.2. By defining the isolation as the sum of transverse energy measured
in a cone surrounding a candidate particle, we can check for additional objects
nearby. These two considerations drive the relevance of using shower shape
and isolation variables for their discriminating potential.

The performance of the photon ID score is also improved thanks to the BDT
compared to a cut-based ID, which allows a more distinct separation between
prompt and misidentified photons as presented in Fig. IV.3. For a given signal
efficiency, the background efficiency is lower on the BDT curve than the cut-
based dots, meaning that more background is rejected. Examples of inputs used
for the BDT include the isolation variables of Fig. IV.2, the sum of energy deposits
and their distribution in neighbouring crystals or the 7 position of the energy
deposit.

Object candidates passing a certain threshold on the ID score are identified as
physics objects (e.g. signal photons). Additional selection criteria are applied to
choose events with similar final states to the signal process of interest, creating
a signal region named SR. Various background processes with similar signa-
tures may pass these selection criteria. In the context of the H — ~~ analysis,
photon candidates in the final state are selected by imposing photon ID crite-
ria. This requirement on the ID of the two expected photons defines the SR
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Figure IV.2 - The isolation is defined as the sum of transverse energy measured in

a cone of R = /An®+ A¢? = 0.3 around the photon candidate as presented in
Ref. [143]. Distributions are shown for photons reconstructed in the ECAL barrel (EB)
or endcap (EE) and taking into account energy deposited by photons (EM isolation) or
charged hadrons (Charged Isolation) according to the particle flow algorithm. These iso-
lation variables allow us to discriminate between prompt photons (in blue) and misiden-
tified photons (in red).

IV.2 Data-driven estimation of the background in the H — ~~ analysis of CMS

87



CMS Simulation (13 TeV) 2017

(3\ 0.4L\ T TT ‘ T T ‘ T T ‘ T T T T 1T T T 1T ‘ T T 1T ‘ T l
< - .
‘s 0351 —
% - — BDT-based ID ]
i 0.3 o Cut-based ID E
3 of ]
S 0-25 M Barrel g
_;66 - [ Endcap .
B 0.2; f:
0.151 =
0.1~ =
0.05F -

F\ 111 ‘ | | ‘ | | ‘ | | ‘ | | ‘ | | ‘ | | ‘ | \}

1

06 065 0.7 0.75 0.8 0.85 09 0.95
Signal efficiency

Figure IV.3 - Comparison from Ref. [144] of the identification of prompt photons when
relying on the BDT score (line) or on loose, medium and tight cuts on the object features
(dots).

in this work. A jet passing photon-ID-selection criteria is thus misidentified as
a photon, contributing to the background in the SR. Indeed, processes with a
photon and multiple jets (v + jets) in the final state are major backgrounds in the
H — ~~ analysis as well as processes solely composed of jets produced through
the strong interaction where two of them are misidentified as photons (multijet
events MJ).

The contribution of the background processes in data can be clearly identified in
Fig. IV.4, where signal events in red are overwhelmed by several orders of magni-
tude of background events in blue. These histograms represent the distribution
of the photon ID with the lowest score, and they illustrate the separation poten-
tial offered by the ID algorithm since the v + jets and MJ background processes
have a lower minimal ID than processes with no misidentified photons (Fig. IV.4).
Using features of the selected objects, a multivariate technique can further be
used to increase the signal purity in the SR. They usually rely on the ID score of
the photon, among other features, given its discrimination potential.

To build an efficient discrimination for background processes, the widespread
strategy in HEP is to rely on a precise description of such background behaviour
by means of simulation. Unfortunately, the MC simulations of the v+ jetsand MJ
have a limited number of simulated events, and they show discrepancies when
compared to data (due to reasons already mentioned in Section IV.1). This is
particularly true when the analysis focuses on SRs with additional selection cri-
teria, e.g. on the jet selection. These shortcomings led to an estimation of the
background based on data outside of the SR in some H — ~~ studies such as
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Ref.[145]. The method relies on selecting a control region (CR) using data events
where one photon fails the ID selection criteria as illustrated in Fig. IV.5. Most
data events with one object failing photon selection criteria, and the other one
passing the selection, are v + jets or MJ events and constitute a CR with similar
physics properties as the SR, especially in terms of the number of jets, jet iden-
tifications, jet kinematics, jet flavours, etc. This approach brings improvements
in two ways. First, by using data events of the CR that would be discarded oth-
erwise, we gain access to a sizeable amount of events, often offering a larger
number of events than the SR of the MC simulations. Then, it grants a better
modelling of the physics (even if a reweighting is sometimes needed to account
for differences in the kinematics of the photons between the two regions).

Yet, by selecting events where one photon fails the ID requirement to build the
CR the ID of the misidentified photon cannot be used any longer as it is falling
outside the range of what is expected in the SR. Since the photon ID is one
of the crucial features used to reject background, a workaround to retrieve the
photon ID is to generate a new one. A first approach for generating a new ID
is described in Ref. [25]. By extracting the 1D probability distribution function
(PDF) of the minimal photon ID in the SR, a new ID can be randomly gener-
ated in the correct range. Nevertheless, a random generation using a 1D PDF
is not reproducing the correlations of the photon ID with other observables of
the misidentified photon (e.g. py, 1, ...) or with other observables of the event
(e.g. pr of the other photon, number of jets, ...). Furthermore, there are kine-
matics differences between events in the SR and events in the CR. And even if a
reweighting of the events is possible, there is some subjectivity in selecting the
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Figure IV.5 - Diagram of the signal and control region selection in the H — ~+ analysis.

final set of reweighting features, and it can lead to a suboptimal description of
the background in the SR.

That is why we propose to improve the generation step thanks to a GAN by
generating the full misidentified object. It resolves the issue of replacing the
photon ID while keeping realistic correlations with other observables, and at
the same time, it produces a misidentified photon whose kinematics match the
expectations in the SR.

IV.3 Generating photons with a GAN: a brilliant
method?

IV.3.1 Methodology
Here is a detailed description of the entire proposed strategy :

1. Selection of the SR of interest where the main background sources are
processes with misidentified objects.

2. Definition of an orthogonal CR, based on the properties of a misidentified
object (e.g. photon ID of a misidentified photon).

3. Training of the GAN in the SR using simulated background events and op-
timising the hyperparameters to reach the generator model with optimal
performance. The misidentified object used in the training is selected with
the MC truth information.

4. Using the generator network of the GAN, new objects are generated to re-
place misidentified objects in events of the CR of data. In data, the misiden-
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tified object is taken as the one failing the SR criteria.

5. The produced sample can be used to define the analysis strategy (training
of ML techniques for signal extraction, optimisation of selections, ...).

In the context of the H — ~+ analysis, the goal of the GAN is to generate a
photon that replaces the photon failing the ID selection criteria. In that sense,
it generates a new misidentified photon that passes the ID requirement, effec-
tively converting events from the CR into events of the SR. Generating a photon
means generating its associated observables: Prys Ny G0 1D, and then recom-
puting the related features of the event such as the diphoton pair pr, the mass
of the diphoton system, etc.. As the GAN needs to learn the observables and
correlations of a misidentified photon (originating from a jet) from background
events comparable to signal events, the GAN is trained with events from the
SR of a v + jets simulation. This is done with a v + jets simulated dataset from
CMS open data [146] containing around 2.7 million events where a specific filter
ensures that they contain at least two reconstructed photons.

IV.3.2 Model architecture and training

In order for the GAN to learn the correlations between the generated outputs
and the rest of the event, it is necessary to show the model the features of in-
terest that it needs to consider while generating a misidentified photon. In addi-
tion, correlations are extracted by observing specific patterns in relations among
multiple features, so it leads naturally to the choice of a convolutional architec-
ture for both networks composing the GAN. Our GAN model is both conditional
and convolutional, following what is described in Section Ill.4 of Chapter Ill. Ac-
tually, it is an extension of the deep convolutional GAN architecture described in
Ref. [147] with the addition of conditional features as illustrated in Fig. IV.6. Un-
like regular GANs, which only use randomly generated inputs for the generator,
the conditional architecture allows the GAN to reproduce correlations. These
conditional features are concatenated to the inputs of the generator and also
to the inputs of the discriminator. The architecture of the GAN was studied as
one of the hyperparameters of the training; a more detailed description of the
networks’ architecture is given in section 1V.3.4 after the full optimisation.

Training and validation samples are taken from an MC simulation of the pro-
cess of interest in the SR. For each event /, a set x; of ng,, features is defined.
From this vector, a subset of conditional features x; .o,q Of Size n..,q is selected
and concatenated to a vector of random latent features sampled from a nor-
mal distribution z; of size n,,,4 to form an input vector to the generator model
g : RMendtMand _y R The goal of the generator model is to produce a set of
observables of size n,; = ngar — Neong describing a misidentified object in the SR
(e.g. transverse momentum p, pseudorapidity 7, ...). These generated observ-
ables are, in turn, concatenated to the set of conditional observables forming
an output vector g(x; .nd, ;). The output vectors are used and compared to the
original observables x; to train the discriminator model d : R ™™ s [0 1],
To distinguish between the generated and original observables, the events are
coupled to a discriminator label y; with the choice of 0 for the generated ob-
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Figure IV.6 - Layout of the proposed conditional GAN architecture training. Conditional
features and random latent features are given as inputs to the generator model. The
generator model creates a new object with properties of a misidentified object of the
SR. The discriminator model is expected to classify between MC-simulated events and
GANed events.

servables (¥, = g(X;cond» Z;), /i = 0) and 1 for the original ones (y; = x;, [, =
1). Additional noise is added to the training labels as it has been shown to in-
crease the chance of convergence for GAN [148] and is called label smoothing.
The noise value is generated uniformly between 0 and a maximum ¢, meaning
l; € [0,0 4+ €] U [1 — ¢ 1]. Finally, the objective for the discriminator model is to
return a value as close as possible to the input label (i.e. d(y;) = /).

1

Based on the binary cross-entropy, the following loss functions L, and L, are
respectively defined for the discriminator and generator networks:

Ly = ,,—IB FIn(d(:)) + (1 — ) In(1 — d(3,)) (V1)
=1
1 &

Le= > " Ind(g(%j.cond: 27)) (IV.2)
=1

where ng is the batch size (defined in Section I11.2.3 of Chapter Ill). Trainable
weights of the network are initialised following the Glorot uniform distribution
defined in Eq. ll.15 of the previous chapter. Then, the weights of events are
updated after computing the loss for a given batch of events by using backprop-
agation and optimizers derived from the gradient descent algorithm. Three op-
timizer algorithms already described in Section I11.2.3 of Chapter Il are tested:
the stochastic gradient descent algorithm (SGD) [149], the Adam optimizer [98]
and the LAMB optimizer [150].

IV.3.3 Performance metrics

As the generator and discriminator models are trained adversarially in a zero-
sum game, their loss functions do not reflect the absolute performance of each
neural network. And because the losses of the two networks are balanced, an
independent figure-of-merit is required to assess the performance of the gener-
ator. Once again, one of the primary objectives of this study is to make the gener-
ator model learn the correlations between the observables of the event. There-
fore, we propose a performance score based on the negative log-likelihood of
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the underlying probability distributions of the generated and original samples.
We demonstrate that this score suffers from large fluctuations, intrinsic to the
nature of GANs, and presents a way to stabilise it. This allows the selection
of the best-performing model without introducing a significant computational
overhead, an appreciated possibility for the optimisation of the hyperparame-
ters of the training.

From an input sample & = {xy, ..., xy} with N events and a sample of random
vectors Z = {z;, ..., zy}, an output sample Y = {§;,....¥x} = g(X, Z) is gener-
ated with the GAN. Events are distributed in bins numbered from 1 to N,, which
span a multidimensional space chosen to reflect the physics one wants to repro-
duce (in our case pr, n, ID score of the misidentified photon in the H — ~~ anal-
ysis, pr..,/m,.). We define a negative log-likelihood performance metric (NLL
metric) as:

—2InA(X|D) = —2ka|npy (IV.3)

where we use the frequency py (k) = n,/N as an estimation of the probability of
an event to fall in bin k estimated from sample JAJ and my(n,) is the number of
x;(y;) in bin number k. For each dimension in the log-likelihood, we transform
the distribution of the corresponding variable to be uniform so we can use 10
bins by dimension, which is enough to capture the variable shape while retaining
a sufficient amount of data per bin.

This metric is computed on the training sample and on an independent valida-
tion sample after each epoch to check for any overtraining effect. The optimal
state of the GAN is then chosen as the set of weights giving the lowest —2In A
value on the validation sample.

The balance needed between the performance of the two networks makes them
prone to collapse towards suboptimal states, which produces a poor description
of the event observables. Even when the GAN converges, large fluctuations are
usually observed in the performance metrics. These fluctuations make the op-
timization of the network challenging. An averaging method was developed to
overcome this limitation and better assess the performance of the GAN. The
careful reader remembers that a crucial aspect of the proposed GAN architec-
ture is that features of an event are given as input to the model in addition to
the random latent space. It means that a GAN generator can produce different
objects for the same event by using several random vectors for the same condi-
tional variables (i.e. g(x;,z;) # g(x;,z/)). An example is presented in Fig. IV.7 by
generating ten thousand objects for a set of conditional features coming from
one event of the SR. As the GAN learns the correlations between conditional
features and properties of the misidentified photons, the generated distribu-
tions (in red) deviate from the original distributions of the SR (in blue) to form
an excess around the actual values of the replaced photon (vertical lines). How-
ever, by generating only one photon per event when evaluating the performance
of the GAN, we are not properly estimating the location of the excesses, i.e. its
understanding of the correlations. In the context of performance metrics, by
generating multiple objects, the GAN output is effectively averaged over the ran-
dom latent space, giving a more accurate estimator py in Eq. IV.3. This effect is
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Figure IV.7 - Example of generation of 10000 objects with the GAN from one set of
conditional variables (in red). The generated distributions are compared to the original
distributions described in the SR of the MC sample ("Full MC" in blue), and the original
properties of the misidentified photons are shown with vertical lines.
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demonstrated in Fig. IV.8 by using three different configurations where we gen-
erate 1, 10 and 100 objects for each event. Fluctuations are decreasing when
more objects are generated per event. As the evaluation time increases with
the number of generated objects, a compromise of 100 objects per event was
chosen in this work.

<|€ 2500_ L e . A A B B S B | ]
c i Object per event : 1
N i — 1
| 2000f 8
i — 10
i — 100 1
15001 H

1000}

500

\
\

0
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Figure 1V.8 - Comparison of the —2In A metric evolution during training for different

numbers of objects generated per event using different random latent spaces. Each

0.001
metric is shifted by its average over the last thousand epochs ((A) = ?gggoo A

where / refers to the epoch number) to better illustrate the stabilisation of the met-
ric.

’

IV.3.4 Hyperparameters optimisation

Thanks to the negative log-likelihood metric and the reduction of the fluctua-
tions, it becomes possible to efficiently rank different training strategies, differ-
ent models, etc. One of the first studies on improving the training concerned
the preprocessing of the input features. The goal of the preprocessing step is to
transform the original input vectors into a representation more suitable for the
training of neural networks. This transformation needs to be bijective so that a
transformed vector can be processed back to its original values in a unique way.
It can mitigate the impact of rapidly falling or non-smooth distributions of the
physics observables (e.g. due to detector effects), those being harder to learn
for a network. Multiple preprocessing methods are tested from the Scikit-learn
module [151], and the best performance is obtained with the quantile transfor-
mation to a uniform output. The quantile transformation relies on the method of
inverse random sampling: for any random variable X € R with cumulative distri-
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bution function (CDF) F, the inverse CDF (or quantile function) F~* applied on a
random variable U ~ U/ (0, 1) gives a random variable following the distribution
of X, i.e. F~' (U) ~ X. This method is used to generate random numbers follow-
ing any distribution. Knowing that a CDF applied to its associated random vari-
able is also a random variable following a uniform distribution F (X) ~ ¢ (0, 1),
then a transformation from one distribution X to another one Y with CDF G can
be derived using G~ (F (X)) ~ Y. In our case, the quantile transformation is
fitted to map the distribution of the conditional and generated features to fol-
low U (—1,1). The impact of the preprocessing step on the training is visible in
Fig. IV.9, where we can clearly see that it helps the GAN to learn non-smooth dis-
tributions such as the gaps in the pseudorapidity distribution due to the junction
between the barrel and the endcap of the detectors.

o
T F Y
E 1.00feos oot 4-0-0—g-9-0-0-0-0-9-0-0-0-g-0-g3-0 ] oot

) °

-2 -1 0
fakePhoEta

0
fakePhoEta

Figure IV.9 - Comparison of the distribution of r, when simulated (in blue) or generated
by the GAN (in red) with (below) and without (above) quantile transformation before
training.

Another major tuning was the identification of the best set of conditional fea-
tures. Three different training strategies with respect to the feature sets are
considered and compared. The first strategy follows the vanilla GAN application
as described in Section V.3, i.e. the latent space is purely composed of random
variables. Inthe second strategy (partial set), we consider as conditional features
the observables of the prompt object. These conditional features, together with
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the random latent ones, are used as input to the GAN. The last strategy (full
set) takes as input random latent features and an extended set of conditional
features: the observables of the prompt object together with additional event
observables, i.e. ID., pr.. 1y, ¢y, Nietss Noex- We performed three trainings corre-
sponding to these three strategies to test the impact of the conditional features.
As shown in Fig. IV.10, the best-performing strategy is to use the full set of con-
ditional features as the training loss reaches the lowest value of —2In A. Besides

< 1190000 prrmerrre LS B o B S LS
£ i Conditional variables 1
N i ]
| 1189000 None ]
I Partial set ]
i ——  Full set i
1188000 5
1187000} .
1186000 .
1185000 .
1184000} .
1183000 ]
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0 1000 2000 3000 4000 5000 6000

Epoch

Figure 1V.10 - Comparison of the —2In A figure of merit evolution during the training
of the different strategies tested for the addition of conditional features to the random
latent ones.

the values of the NLL metrics, additional distributions were drawn to check if
the GAN is properly reproducing the correlations. The effects of conditional fea-
tures on the GAN ability to learn correlation among features of the event are
compelling from distributions such as Fig. IV.11. When no conditional features
are shown (in yellow), the generated objects have features independent from
one another or with respect to the rest of the event. This flat distribution is
actually what one would get when using a 1D PDF for ID generation. With a
partial set of conditional features (in orange), the GAN learns some correlation
between features. Finally, with the full set (in red), the GAN is able to reproduce
the correlations of the original sample (in blue).

We further investigate the impact of different parameters of the models in the
GAN. For instance, we find that increasing the dimension of the latent space
to more than 32 does not provide additional performance improvement, as
demonstrated in Fig. IV.12.
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Figure IV.11 - Scatter plots showing the correlations between two properties of the
misidentified photon 7. An average of its ID is computed for each py bin. The three
different trainings with different sets of conditional variables (no conditional variables
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Figure IV.12 - Example of hyperparameter optimisation where different configurations
are tested. Lines with different colours correspond to different numbers of dimensions
of the random latent spaces given as input to the generator model.

Overall, the optimised parameters are found to be:

- random latent space dimension : 32
- number of training events : 100,000 events
- gradient descent optimizer : LAMB optimizer

- learning rate : cosine decay as described in [113] starting at 0.001 and
reaching 0 after 5,000 training epochs

- batch size : 1024
- noise on training labels : 0.15

- model architecture :

generator : a dense input layer of 1024 nodes, three 2D deconvolution
layers with 32/16/8 filters of size 4x4/2x2/2x2 respectively, one 2D
convolution with 4 filters of size 3x3 and a dense layer with 4 outputs
with hyperbolic tangent activation function

discriminator : a dense input layer of 256 nodes, three 2D convolution
layers with 32/64/64 filters of size 2x2/2x2/4x4 respectively and with
a LeakyRelLU activation function [152], a dense layer with 1 output
with sigmoid activation function. A dropout [105] of 20% is also im-
plemented before the last layer of the discriminator.
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IV.4 GAN performance

As described in the previous sections, we select an SR with two photons pass-
ing stringent photon ID criteria ID, , > —0.2. A CR composed of events with
one photon candidate passing the ID criteria and another one not passing them
is formed. As the second object fails to pass the photon selection criteria, it is
likely to originate from a jet. This latter object is replaced with a misidentified
photon 7 generated by the GAN model, thus with SR properties. The striking
transformation capability of this technique is demonstrated in Fig. IV.13. The p
distribution of the GANed 7 matches the distribution of the same observable in
the SR, while the MC-simulated misidentified object from the CR has different
characteristics. This is a strong piece of evidence that the GAN adapts the kine-
matics of the misidentified object where a reweighting of the events would be
needed with a generation of the ID only.

BN MC Signal
S0 MC Crl 1
1 GANed Ctrl

000 GeV.
g

; 1750

1500

Entries / 1

1250

1000

750
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250

30 40 50 60 70 80 90
pr, [GeV]

Figure IV.13 - Distribution of the misidentified photon pt in the MC SR (MC Signal), MC
CR (MC Ctrl) and a misidentified photon generated by the GAN using observables of the
events in the CR (GANed Ctrl).

Figure IV.14 shows an excellent agreement of the GANed-object observable dis-
tributions (named GANed in Fig. IV.14) compared to the ones from actual misiden-
tified photons of the SR (named Full MC in Fig. IV.14). Furthermore, the fact that
the isopleths match between the two distributions indicates that the generator
also reproduces the correlations between GANed and original Full MC observ-
ables. Additional scatter plots illustrating some of the correlations learnt by the
GAN between the misidentified photon and the rest of the event are shown in
Fig. IV.15.
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Figure I1V.14 - Diagonal: Comparison of the misidentified photon-observable distribu-
tions from the MC SR (named Full MC) and from the application of the GAN to the MC CR
(named GANed). Off diagonal: Contour lines (named isopleths) containing 25 %, 50 %
and 75 % of the events and showing correlations between pairs of observables.

In order to assess the performance of the GAN in terms of reproduction of the
correlations between observables, we use the distance correlation as defined in
Ref.[153]. This metric allows us to quantify both the nonlinear and linear correla-
tions between the observables of the event. The distance correlation coefficient
goes from 0 to 1, where 0 indicates that two observables are independent and
nonzero values mean that there exists some correlation (linear or nonlinear).
We measure the correlations between the misidentified photon properties and
other event observables (prompt photon properties, Ny, Nyy...) for both the
SR and the CR with a GANed misidentified object. These correlation matrices
are shown in Fig. IV.16. We use a x° to evaluate the difference between the 2
matrices defined as:

2
GAN SR
1 S 2 L)
XEsz X; Wwith x; = 5 ,
X

i<j Tij

y

where (i, ) is a pair of observables, d; the corresponding distance correlation
and N » the number of couples with i < j. The uncertainty o; on the computa-
tion of the distance correlation for both the MC and GANed samples is estimated
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Figure IV.15 - Scatter plots constructed in a similar fashion as Fig. IV.11 and showing
correlations between features of the generated object and other features of the event.
Correlations generated with the GAN applied on the CR (GANed Ctrl in red) are com-
pared with the target correlations from the MC SR (MC Sig in blue).

through two contributions. The first one comes from the finite size of the MC
sample and is evaluated by splitting the sample, computing the distance correla-
tion coefficients of each subsample and extracting their standard deviation over
all the subsamples aE-"C. The second contribution is introduced by the random la-
tent space used as part of the GAN input. As described already in Section IV.3.3,
we rely on the generation of multiple objects for the same event to assess the
level of uncertainty. A hundred different samples are generated with the GAN
from the same initial events, and the distance correlation coefficients are com-
puted for each sample allowing the determination of their standard deviation

,-?AN. Thus, the combined uncertainty is a,-zj = <a,§-"c>2 + (U,JG-AN)Q. As shown
in Fig. IV.17, correlations are well reproduced and compatible with originating
from statistical fluctuations as y =~ 1.1. While most of the individual \/;i are
below 3, a few exceptions might be noted: the correlations between [ and

m,, are at the level of , /X,Z,Tw my, 5.8, denoting some degree of imperfection
in the GAN generation.
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IV.5 Application to data

At collider experiments, the strategy of an analysis is usually built from MC sim-
ulations. By applying the analysis strategy to the simulated physical processes,
we get an estimation of the sensitivity of the analysis. Then, the strategy can be
tuned to improve the expected sensitivity of the analysis. In this regard, a good
agreement between simulated processes and data is crucial.

A key step of the analysis strategy, after the reconstruction and selection of
physical objects, is rejecting background events to base the measurement of
physics observable on signal-enriched events. Thanks to their classification per-
formance on problems with high dimensionality, machine learning techniques
are one of the standard procedures for signal extraction/background rejection
in collider analyses. It is the case in H — ~+ analyses where a BDT (the dipho-
ton BDT) has been implemented to identify events where the diphoton pair is
produced by the decay of a Higgs boson and not by any other SM process. The
diphoton BDT score is computed using as inputs: kinematic variables of both
photons, photonID BDT score, the resolution estimates on the diphoton mass
and an estimation of the probability that the diphoton system is associated with
the correct vertex. The output of the diphoton BDT is evaluated in Fig. IV.18 on
different background (red) and signal (blue) processes, as well as on data (black
dots).
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Figure IV.18 - Evaluation of the diphoton BDT on simulated samples of background
(red) and signal (blue) processes, as well as on data (black dots). The figure comes from
Ref. [145], and the shaded region represents the scores of events considered as back-
ground in the analysis.
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To determine the level of improvements brought by the GAN, we propose to ap-
ply it to a CR from the data recorded by CMS in 2017 to generate an estimation
of the v + jets process. This GANed v + jets sample is used to replace the MC
simulation of the process in the training of a BDT with a role akin to the dipho-
ton BDT, i.e. to single out events with a Higgs boson decaying to two photons. A
second « + jets sample is produced by replacing the ID of the misidentified pho-
ton (photon with the lowest score) in the same CR of data with a generated ID
following the estimated 1D PDF of the ID of the misidentified photon in the SR of
the MC sample as described in Ref. [25]. This second sample is, in turn, used to
train a diphoton BDT. The performance of the GANed sample is assessed from
the improvement of the BDT to reject background. To get a fair comparison of
the discrimination power of both networks, the background sample used for the
final evaluation is taken from the SR using only the sidebands of data, defined as
the region where m. ., ¢ [115GeV, 135 GeV]. The data sidebands exclude most of
the Higgs-boson signal, ensuring that we evaluate networks on mostly v+ + jets
and ~ + jets background.

IV.5.1 Generating a v + jets sample with the GAN

To investigate a concrete application of the GAN to a H — v~ analysis, the GAN
is trained with a v + jets sample generated with MADGRAPH with an additional
filter enriching the sample with events with two photons. The SR is defined as
the region where events have one photon with an ID score greater than 0 and
the other photon with an ID score above —0.8 and the CR has a requirement
reversed for the second photon (below —0.8). Standard selection criteria used
in H — v~ analyses are applied. A summary of all these criteria is provided in
Table IV.1. Since we do not have information on the prompt or misidentified

SR CR |
ID, >00 | D, >00
ID, ">-08| ID, <-08

100 GeV < m.., < 180 GeV
| <25
PTy, > 35GeV and P, > 25 GeV

Pry, 2 My /3and pr,, > m,, /4

Table IV.1 - Definition of the SR and CR to reproduce a H — ~+ analysis setting.

nature of photons in data, they are ordered by transverse momentum with ~,
(7,) being the photon with leading (subleading) transverse momentum, i.e. Py,
> pr.,,- They can be also ordered by ID score with .., (7;,) being the photon
with max(mln) ID,ie.lD, >ID, .Thesetwo sortingsystemsareindependent,
meaning that v, .. does not necessarlly have leading pr and vice versa. The GAN
generator is used to replace photons with the lowest ID score in events of the CR,
and the features of the diphoton system are recomputed accordingly. Since the
GANed photon is not guaranteed to have an ID below the ID of the unchanged
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photon, photons are reordered after the generation, making sure that pr., >
PTy, and ID, >1ID

Ymin”

A reweighting of the events is needed to correct for kinematic differences be-
tween the CRand the SR. As demonstrated in Section IV.4, we planned to reweight
the events based on the kinematic properties of the non-generated photon,
given that the generated photons were shown to match the properties of the
SR. However, we found that a non-negligible amount of MJ events were pop-
ulating the CR in the data. Unfortunately, the current available MJ simulated
samples by CMS do not allow the training of the GAN on a mixture of v + jets
and MJ events. Therefore our final reweighting was performed in two dimen-
sions along the transverse momentum of both photons. Contrarily to the CR, a
major contribution to the background in the SR is coming from v~ + jets events.
Before reweighting the generated v + jets sample to the SR in data, a careful
treatment of the v+ + jets event is necessary. The proportion of vy + jets and
v + jets in the SR of data is determined by a maximum likelihood fit between
a mixture of the MC simulation for these processes and the data sidebands.
This fit is performed in 2D over the ID, and the ID, . Once the proportion
of vy + jets events in the SR is measured it can be subtracted from the data
distribution in the (pr, , pr, ) plane used for the reweighting. Examples of
distributions before and after fit plus reweighting are shown in Fig. IV.19.

IV.5.2 Generating a v + jets sample with a 1D PDF

The generation of the estimated v + jets sample with a 1D PDF is similar to the
generation from the GAN. The definitions of the SR, the CR, and the selection
criteria are kept identical, and the method is taken from Ref. [25]. Before gener-
ating a photon ID, the PDF of the misidentified photon ID score is derived from
the SR of the MC simulation of the v + jets sample (see Fig. IV.20). For all events,
a value is randomly drawn with a probability following this PDF to replace the
photon ID of the photon with the lowest ID. This new ID is generated in the
range [—0.8,1D, } toensurethatID, <ID, .Inaddition, aper-eventweight
Wp IS computed to correct the D, dlstrlbutlon from its shape in the CR to its
expected shape in the SR:

[ por

—-0.8 *
2 PDF

Wip =

In this case, no need to reorder the photons in terms of ID or pt, so the fit plus
reweighting is directly performed, following the procedure described in Sec-
tion IV.5.1. Examples of distributions before and after fit plus reweighting are
shown in Fig. IV.21.
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IV.5.3 Comparison of the two methods

Two BDTs are trained to mimic the role of the diphoton BDT and to compare the
quality of the two generated samples. Both BDTs are trained using MC samples
of processes producing a Higgs boson (signal sample), and the background sam-
ple is the 7 + jets sample generated with a PDF for one BDT (BDTppg) while the
other (BDTgay) takes the v+ jets sample generated with the GAN as background.

As inputs to the BDTs, the kinematic features of the photons as well as their ID
are used. The output represents the probability that the diphoton pair originates
from a Higgs boson. While training, they are also evaluated on an independent
validation sample to check for any overtraining and the training is stopped when
the validation loss starts increasing. Evaluation of the two BDTs on test samples
is shown in Fig. IV.22. To have a fair comparison of the background rejection
capabilities of the two trainings, both are evaluated on the same sample from
the data sidebands of the SR. These data sidebands are mainly composed of
vy + jets or v + jets events. To evaluate the performance of a BDT on v + jets
events of the data sidebands, the BDT score distribution is computed from an
MC v+ + jets sample and the expected fraction of vy + jets events (computed
from the fits of Sections IV.5.1 and IV.5.2) is subtracted from the data sidebands
distribution.

The figure of merit used to quantify the discrimination capabilities of a classifica-
tion technique is the receiver operating characteristics (ROC) curve. A decision
on the type of an event (signal or background) can be made by setting a thresh-
old onthe BDT output. Above the threshold, events are considered as signal, and
below, they are rejected as background. Therefore, we define the rate of true
positive results as the number of signal events above the threshold divided by
the total number of evaluated signal events and the rate of false positive results
as the number of background events above the threshold divided by the total
number of evaluated background events. The true positive and false positive
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rates are also called signal efficiency and background efficiency, respectively.
By scanning the threshold over the full BDT output range, we extract points in
the (signal efficiency, background efficiency) plane forming the ROC curve. The
area under the ROC curve (AUC) gives meaningful information on the discrim-
ination power of the classification method as a perfect classifier would get an
AUC of 1 and a random classifier an AUC of 0.5.

The ROC curves of the two BDTs of interest are compared in Fig. IV.23. As the
highest AUC is obtained with BDT ¢4y, it means that the sample generated with
the GAN isimproving the background rejection possibilities. Acomparison of the
impact on signal and background efficiencies for fixed working points is given
through the ratio plots of Fig. IV.23. The ratio of signal efficiencies obtained
from the two trainings (ratio sig) shows that BDT sy based selection offers a
higher signal efficiency for a given background efficiency. In the same way, ratio
bkg demonstrates that BD T,y gives a lower background efficiency at fixed sig-
nal efficiency levels. While their performance is similar at very high signal and
background efficiency, BDT sy reduces background down to 88% of what could
be achieved with BDTppr depending on the targeted signal efficiency level. By
using S/v/B, where S and B are, respectively, the signal and background yields,
as an estimation of the sensitivity of a region in the phase space, reducing the
level of background by 12% for the same signal efficiency means improving the
sensitivity of this region by =~ 7%.

To show the difference when applying selection requirements on the score of
BDTppr or BDT¢an, We report in Table IV.2 the number of events selected from
each sample when targeting 80% signal efficiency. Azoom around this efficiency
level is provided in Fig. IV.23. As expected, the selection from the output of both
BDTs reduces mainly v + jets events (equivalent to Data — (v + jets) events in
Table IV.2); they are the main source of background when no cut is applied and
vy + jets events become dominant after the selection. However, at the same
signal efficiency level, the selection on BDT¢ay rejects more background from
both v+ + jets and v + jets events.
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| | Signal vy + jets Data — (7 + jets) |
No cut 56 227220 739674
Cut BDTppr (65, = 0.8) | 45(80%) 170534 (75%) 121909 (17%)
Cut BDTgan (65 = 0.8) | 45(80%) 168259 (74%) 118756 (16%)
Table IV.2 - Estimated yield of each sample when applying cut on the score of BDT ppg
and BDTgay to target a signal efficiency (e4g) of 80%.
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IV.6 Conclusion

In this chapter, | have presented a new data-driven technique to create back-
ground samples for HEP background processes with one misidentified object.
A CRis defined by requiring an object to fail ID criteria. A generated misidenti-
fied object replaces this object to simulate an event in the SR. The technique is
based on conditional generative adversarial networks (GANs), which are known
to be challenging to train. To assess the generator performance, we developed
a figure of merit based on a negative log-likelihood. Due to random fluctuations
intrinsic to the latent space used in GANs, we introduced a multiple-sampling
method to obtain more consistent results in the model performance evaluation.

The application and the performance of the technique are demonstrated on the
v + jets background in the context of the H — ~+ analysis at the LHC. | have
shown that the conditional GAN-based technique produces object observables
that have excellent agreement with the signal-like object observables and non-
linear correlations of these observables within themselves and with the proper-
ties of the rest of the event. Therefore, the samples generated by this technique
can be used to improve the background description inthe H — ~~ analysis. This
is especially true in SR with specific constraints where the MC simulation might
be suboptimal due to its low number of events and its inaccurate description of
the v + jets background. This work is published as Ref. [141].

Finally, to quantify the improvements brought by the GAN in the estimation of
the v + jets background, a BDT was trained to reject background thanks to the
GANed sample. This BDT was compared to a second one, this time trained with
a v + jets sample generated with the method of the ID, probability distribution
function. Their receiver operating curve is drawn to confront their classifica-
tion performance on data sidebands. From the area under the ROC curves, a
final score arbitrates that the GAN offers better discrimination possibilities to
improve the absolute sensitivity of the analysis.

It has to be noted that although this study was carried out in the context of
the H — ~~v analysis, this method could be trained to generate other objects
and help other analyses dealing with backgrounds coming from misidentified
objects.
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V.1 Physics motivations and analysis strategy

This chapter lays out my involvement in the analysis of the H boson couplings
with electroweak gauge bosons (W and Z bosons) using the H boson decay chan-
nel into a pair of photons. Ten years after the discovery of the H boson, many
analyses aim at precise measurements of its properties thanks to the increasing
amount of data collected by the CMS and ATLAS experiments. This is a way of
checking the consistency of the H boson properties with the predictions of the
standard model (SM). Any deviation from these predictions could hint at new
physics effects that would require theories going beyond the standard model
(BSM). Since the SM does not explain several fundamental questions (as men-
tioned already in Chapter 1), major efforts at the LHC are carried out to identify
which sectors of the SM could open the door to new physics.

The SM predicts the H boson to have spin-parity quantum numbers J°¢ = 0™,
i.e. a spin 0 and a CP-even behaviour. Constraints consistent with the SM predic-
tions have already been put by the CMS[22, 25, 27, Jand ATLAS[155-158] ex-
periments on the spin-parity nature of the H boson. However, these constraints
are leaving room for small BSM couplings and some of them would indicate
a potential CP-odd nature for the H boson. These small couplings are not ex-
pected in the SM, and in that sense, are regarded as anomalous couplings. These
anomalous couplings were studied in different decay channels (H — ZZ [27] or
H — 77 [154]) and in the H — v channel but in the particular case of the ttH
production mode [25]. This chapter presents a complementary way of probing
the CP nature of the H boson by analysing its production in the VBF and VH
(V =Z or W) modes and in the H — ~~ channel. Preliminary studies showed
that, given a large enough data set, this analysis is sensitive to the couplings of
the H boson with electroweak gauge bosons through the VVH coupling vertex in
the vector boson fusion (VBF) and VH productions [143]. The analysis is shared
between several CMS analysis teams with the VBF production analysed by the
team of INFN Rome, the VH production where V decays to leptons (V,,,H) and V
decays to neutrinos (VyetH) is treated by teams of the University of Minnesota,
the John Hopkins University and the National Taiwan University, while | am re-
sponsible of the VH production where V decays hadronically (Vj,qH). We anal-
yse data collected by the CMS experiment during the three years (2016, 2017,
2018) of the second run of the LHC, corresponding to an integrated luminosity
of 137.6fb ™.

V.1.1 Modeling couplings of the Higgs boson with
electroweak gauge bosons

We rely on an effective description of the interaction between a spin-zero H bo-
son and two spin-one gauge bosons. This is achieved by defining the scattering
amplitude of this interaction A(HVV) in its most general form and by measuring
or constraining the parameters manifesting the intensity of each coupling term.
It allows for a model-independent study of the HVV vertex, and specific theo-
ries can confront their model to the measured couplings. By taking the same
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notation as previous CMS analyses [22], the scattering amplitude takes the form

w2 w2 vV 2
AHVV) ~ a\l/v n K1 g1 + /‘63 9 k3 (g1 + ;72) m\2/1€§k/1€§k/2
() (r%)

+ AV D @ QW M E Ly q)

n% v

where my;, g; and ¢; are the mass, momentum and polarisation vector of vec-
tor boson /, allowing the definition of its field strength tensor f)* and its dual
b as fidm — ehgr — &gt and F = 177D The a; are the coupling
constants modifying the contribution of each term in the total amplitude, and
A; and Ag correspond to the energy scale of BSM effects. The VV pair stands
forzZz, WW, gg, v~ or Z~ but through the VBF and VH production mode, we are
only sensitive to the impact of the couplings of the H boson with ZZ, WW or Z~
pairs. Some of these couplings are expected to have nonzero values by the SM.
In particular, the a)" parameter corresponds to the contribution from the tree
diagram of a H boson with a pair of gauge bosons, so in the SM, afz = a\INW =1
while ky, Ky, a5, a3 = 0. The a3, 'V /(AY¥)? and 3" /(A§’)? couplings are part
of CP-even terms. They may get loop-induced contribution from the SM at the
level of ((9(10_2—10_3)), not accessible with the current data. Tight constraints
have already been set on /\\év [159], so this parameter is not considered in the
analysis. The a3’ term would indicate a pseudoscalar H boson (i.e. with CP-odd
behaviour), so it is also considered as an anomalous coupling. Because of sym-
metry and gauge invariance arguments, constraints can be put on the following
couplings k3% = k5% = —exp(idrs), k27 = 0and k57 = —exp(igs). We assume
the following symmetry for all parameters x** = x""V where x is a;, x; or A,,
so the superscripts are dropped if they concern parameters of HZZ or HWW

processes.

To represent the physical effects of these anomalous couplings, it is relevant to
define their associated cross section fraction f, and phases ¢,. By defining the
total cross section as o™ = [a; [’y + |a, %05 + |35 + G4 /(M) + 547 /(A7)
where G, (6,2\17) is the effective cross section for the process with A; (A27) = 1 TeV

and thus in units of fb TeV*, we have the final list of observables of interest for
this analysis:

2
|a,| "0 a
f:92 - ot ' ¢a2 = arg <_) )

o a;
2
a| o a
f3 = l 3‘tot 2 ' Ga3 = arg <—3> )
o a;
&p, /(M)
f/\l = LT' GZS/\1 = arg (K1),
~Z z
L0 D) 2
AZ’Y - tot ’ QSAZ'Y - arg <l{1 > )
1 o 1

As itis a ratio of cross sections, many systematic uncertainties are cancelling for
these parameters, and they act as mixture coefficients between the different
BSM hypotheses, so their range is bounded between 0 and 1.
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V.1.2 Strategy

The outline of the analysis strategy is similar to what was proposed in previous
H — ~v analyses [145]:

* Preselection: After the physics objects reconstruction and correction, a
preselection is applied based on the kinematic features of the event to
enhance the signal purity.

+ Categorisation: First, a machine-learning-based algorithm is trained to
discriminate Higgs boson signals (SM and BSM) from SM backgrounds and
SM Higgs boson production from BSM Higgs boson production. Based
on the score of these classifiers, we define categories targeting regions of
the phase space where we expect different behaviour from the different
physics model hypotheses. It allows the final statistical analysis to probe
the compatibility between hypotheses.

+ Statistical analysis: Models for the signal and background distributions
of the diphoton mass m. ., are defined in each category. These models are
fitted to data, and a log-likelihood ratio is defined as a statistical test to put
constraints on a parameter of interest (like £,3).

In this chapter, | will focus on my contribution to the design of the V, ,4H part. Af-
ter the physics objects reconstruction and correction (summarised in Section V.2),
we study the specific behaviour of the V,,4H-event properties. Section V.3.3
compares the kinematics of the different production modes to clarify the pre-
selection requirements. To enhance the discrimination power, a deep neural
network (DNN) is trained from kinematics features to classify events between
three classes: VH SM signal, VH BSM signal and background described in Sec-
tion V.4. Since the outputs of the DNN provide a greater separation compared
to kinematics variables only, categories are built from these outputs to create
regions in phase space enriched either with SM or BSM signal. The optimisa-
tion of the categories is described in Section V.5 and is done by computing an
estimate of the upper limit on f,3 at a 95% CL. Finally, the expected results are ex-
tracted using common statistical tools developed within CMS collaboration and
are presented in Section V.6.5.

V.2 Trigger and objects definition

Triggers

As described in Chapter Il, because of constraints on the data collection through-
put and available storage, event information is stored for offline analyses only if
they pass some trigger requirements. These requirements target specific signa-
tures to enrich the recorded data with potentially interesting events in terms of
physics. Two trigger levels must be satisfied based on the hardware response:
the first-level trigger (L1 trigger) and the high-level trigger (HLT). The trigger re-
quirements for H — v~ analyses are detailed in this section.
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The L1 trigger expects at least one electromagnetic candidate in the ECAL. These
candidates are built by aggregating the energy deposits of adjacent crystals of
the ECAL, thus forming relevant clusters of crystals. If two candidates are de-
tected, then the requirements on the E4 of the candidates are lowered to 25 GeV
and 14 GeV (23 GeV and 10 GeV) for 2017-2018 (2016) data.

From the clusters passing the L1 requirements, the HLT system builds further
requirements to ensure the relevance of candidate events containing electrons
or photons (e/v). A version of the CMS-offline-reconstruction algorithm whittled
down to its elementary steps is applied to the electromagnetic clusters to form
e/v candidates. With these steps, e/~ are defined through kinematic, isolation
and shower shape variables:

+ E;: transverse energy of the photon;

« H/E: ratio between the energy collected in the HCAL (H) and energy de-
posited in the ECAL (E);

* Ry: fraction of the supercluster total energy contained in a 3x3 crystal sur-
rounding the supercluster seed;

* o lateral extension of the electromagnetic shower in terms of crystal;

« Isopy": sum of the transverse energy of other particles identified as photon
by the particle-flow algorithm [52] and falling in a cone with R = 0.3 around
the photon candidate direction;

« Isof'tT : sum of the transverse energy of tracks falling in a cone with R = 0.3

around the photon candidate direction but not falling in the inner cone
with R = 0.04;

The set of HLT requirements dedicated to photon candidates in the H — ~~v
analysisis summarisedin Table V.1 and is applied on the single or pair of clusters
of the event that passed the L1 criteria.

| EB I EE
E+ > 30 GeV E+ > 30 GeV
In| < 2.5 In| < 2.5
H/E < 0.12 H/E <0.1
Ry > 0.5 Ry > 0.8
R, > 0.85 R, < 0.85 Ry > 0.9 Ry <0.9
—_— 0',',,];77 < 0015 — O','n,'n < 0035
— lsofh’ < 6.0 +0.012 ¢ — lsob’ < 6.0 +0.012 Er

Table V.1 - Requirements of the HLT to collect an event in the H — ~~ path.

Finally, if at least one of the clusters passes the L1 and HLT selections, then the
entire ECAL is clustered, and a pair of v is required (where at least one is the L1
candidate). A new set of selection criteria is applied to all the electromagnetic
objects reconstructed as clusters in the ECAL detector. They are the same as
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Table V.1 with the following substitution and additions : E; of the photons above
22 GeV (18 GeV) in 2017-2018 (2016) data, Isofisg, < 6.0 + 0.002 Er, and m., >
90 GeV.

The performance of the triggers is studied by measuring the efficiency of the trig-
ger selection using the tag and probe method on Z — ee events. Yet, because
of the material located in front of the ECAL, electrons have different shower
shapes compared to photons. Due to bremsstrahlung emission along the elec-
tron track path, the electron showers tend to be broader. The n distribution of
photons coming from the Higgs boson decay also differs significantly from the
one of electrons arising in the Z boson decay. To correct these effects, events
are reweighted in 2D with R, - |n| weight matrices computed from H — ~+ and
Drell-Yan Z — ee simulated samples. Finally, the computed efficiencies for each
year are binned in p, Ry, and |n| and are used to correct simulated samples. This
correction reproduces the effects of the trigger on the expected background and
signal yields in data.

Photons

As mentioned already in the description of the trigger, photons are reconstructed
from clusters of energy deposits in the ECAL. Photons leave all their energy
in the form of an electromagnetic shower in the ECAL, which can spread over
multiple crystals. In some occurrences, interactions happen with the material
upstream from the ECAL, and photons can convert into an electron-positron
pair. Since the ECAL is within the high magnetic field of the CMS detector, elec-
trons and positrons have bent trajectories that lead to energy deposits spread
over an even larger number of crystals. In order to recover all possible infor-
mation, these clusters are grouped into larger ensembles called superclusters,
representing the complete shower stemming from a prompt photon, converted
or not. Information on the pseudorapidity and azimuthal angle of the recon-
structed photons is extracted from the supercluster position. However, the en-
ergy of the photon candidate is inferred from a multivariate approach to com-
pensate for the energy loss due to upstream material or due to imperfections
in the cluster aggregations. This method allows a more accurate measurement
of the photon energy and also gives an estimation of the resolution of the en-
ergy measurement. By using Z — ee events, a correction on the energy scale
of the regressed energy can be determined from the difference of the Z peak in
MC simulations and in data. After applying the scale correction, a correction on
the resolution is computed by applying Gaussian smearing centred around the
corrected peak to MC simulations and using a maximum likelihood fit to data to
find the correct modification needed on the energy resolution.

A description of the photon ID was already given in Section IV.2 of Chapter IV,
particularly how it is derived from shower shape and isolation variables. Each
reconstructed photon is given a score (the photon ID score) representing its like-
lihood to be a prompt photon, as opposed to a misidentified photon originating
from the decay of neutral mesons. It means that discrepancies in the photon ID
distributions between MC samples and data indicate that part of these shower
shape and isolation variables are impacted by imperfect modelling of the CMS
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detector simulation. To mitigate these effects, corrections can be applied to MC
simulations. They are computed from a procedure based on chained quantile
regression [145] that aim at shifting the input distributions of the photon ID BDT
in the simulation until their cumulative distribution function matches the ones
of data. Again, these corrections are derived from Z — ee events. It allows the
recovery of shower shape and isolation distributions as observed in data, and it
corrects the bias on the photon efficiency.

Then, from the reconstructed and corrected photons of the events, diphoton
pairs are formed. In addition to the requirements of the triggers on photons,
selection criteria are applied on the pr of the photons to recover a smoothly
falling background shape in the diphoton mass distribution: pr, /m,, > 1/3
and pr, /m,., > 1/4.

Vertices

To reach the highest precision in reconstructing the Higgs boson properties, all
information on the diphoton system needs to be precisely reconstructed. In
particular, any shift in the reconstructed vertex position is detrimental as it de-
grades the mass resolution of the diphoton system and would squander the
excellent energy resolution of the ECAL. A first set of primary vertices is recon-
structed for each event through a standard CMS algorithm [160]. Based on this
set of reconstructed vertices, a vertex identification algorithm was developed as
a common remedy for H — v~ analyses [145].

Because of additional collisions occurring at the same time, known as pile-up
collisions (PU), several primary vertices are reconstructed for a given event with a
common primary vertex reconstruction algorithm within the CMS collaboration.
Thus, a first BDT is trained to give a vertex-based score (the vertex identification
score vtxID), indicating its likelihood to be the primary vertex associated with the
diphoton system. The vtxID BDT takes as input variables related to the diphoton
topology in the detector as well as variables of the other tracks associated with
the vertex. A signal sample is built from H — vy MC samples with the primary
vertices closest to the true generated one, and the background sample consists
of any other primary vertices. After computation of the vtxID of each primary
vertex in H — ~+v analyses, the final vertex chosen for a given event is the one
with the highest vtxID score.

A second BDT defines the per-event probability that the chosen vertex is the
correct one (the vertex probability score vtxprob). The impact of the diphoton
vertex displacement on the m,., reconstruction is negligible compared to the
effects of the ECAL resolution if it is less than 10 mm away from its true posi-
tion. Therefore, the vtxprob BDT determines the probability that the selected
diphoton vertex is within 10 mm of the true vertex, i.e. the fraction of events
With |Az| = |Zejected — Zerue] < 10 MM where z.eq IS the position of the chosen
diphoton vertex and z,,. its true position. It is trained using the same signal and
background samples as the vtxID BDT, and it uses as inputs the pr of the dipho-
ton pair, the number of primary vertices, the three highest vtxID, the distance
between the chosen vertex and other candidates, and the number of converted
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photons.

The performance of the full vertex identification algorithm is validated by using
Z — up events from data and MC samples. As the algorithm is built around
photons, i.e. with no track information, it can be used on reconstructed muons
by withholding their track information and comparing the results of the algo-
rithm with the actual reconstructed vertex of the dimuon system. A reasonable
agreementis observed between data and MC simulations (see Fig. V.1), and scale
factors are computed to account for the remaining differences. These scale fac-
tors are computed as the ratio between the per-event probability computed in
data and MC samples for Z — pu events, and they are applied to H — vy MC
simulations as a function of the diphoton p+.
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Figure V.1 - Validation of the vertex identification algorithm on Z — upu events from
Ref. [145].

Jets

Jets are objects reconstructed from the imprint left in the detector by the shower
of particles originating from quarks or gluons. Indeed, they immediately frag-
ment and hadronise, so they cannot be observed directly. The reconstruction
of all particles present in these showers is essential as it impacts the inferred
properties of the initial parton. Jets are reconstructed from the set of particle
candidates clustered by the PF algorithm using the anti-kt algorithm [161] with
a radius parameter set to 0.4. Charged particles are removed from this clus-
tering step if they are not associated with the primary vertex identified with the
vtxID. This is to mitigate the contribution from particles produced by PU happen-
ing within the same bunch crossing. Corrections to the jet energy are derived
with respect to the jet type and its kinematic variables and are applied to jets
in data and MC simulations. In addition, measurements show that the energy
resolution of the jets in data is worse than in MC. This is taken into account by
smearing the jets pr in MC samples to match the jet energy resolution observed
in the data.
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V.3 Highlighting H — ~~ events

V.3.1 Collected data and MC simulations

Data samples

This analysis uses the full data set collected during the second data acquisition
period of the LHC, spanning three years from 2016 to 2018 at a centre-of-mass
energy of /s = 13 TeV. The integrated luminosity collected for each year is as fol-
lows: 35.9fb~'in 2016, 41.5fb~ ' in 2017 and 59.8 fb~! in 2018. This corresponds
to a total integrated luminosity of 137.2fb™". Data samples are blinded during
the design of the analysis so as not to bias ourselves by masking events with a
diphoton mass close to the mass of the H boson: m.., ¢ [115 GeV, 135 GeV].

Simulated samples

Monte Carlo programs are used to simulate specific physics processes arising in
the proton-proton collisions following matrix element calculations with a leading-
order (LO) or next-to-leading-order (NLO) description of QCD effects, depending
on the generator. The pp — v + jets and pp — 77 background processes are
generated with the MADGRAPH5_AMC@NLO [162, ] and SHERPA [164] generators
respectively. The background samples are used to define the analysis strategy
and train potential discriminates, but they are not used to do the final back-
ground estimation (as it is done directly from data sidebands). Samples describ-
ing processes with anomalous couplings of the H boson are generated with the
JHUGEN [165-167] program for different values of the a,, a5, A; or /\f” anoma-
lous coupling parameters. The SM productions of the H boson from gluon fusion
(ggH), vector boson fusion (VBF), or associated with a Z or W boson (VH), or a
tt pair (ttH) are described with the POWHEG [168-170] and MADGRAPH programs,
with a NLO generation. MADGRAPH is also used to generate samples used in the
signal modelling with alternative mass value hypotheses for the Higgs boson at
120 GeV and 130 GeV. The samples from POWHEG are favoured for the design of
the analysis strategy and the training of MVA methods as they have the benefit
of providing non-negative weights. It allows the comparison of NLO and LO de-
scriptions of the processes (see Section V.3.2). The NNPDF 3.0 (3.1) [17/1] parton
distribution functions are used for 2016 (2017 and 2018).

The PYTHIA [172] program is interfaced on all samples to include all particle de-
cays, to describe parton showering and hadronisation, and also to overlay ad-
ditional pileup events following the luminosity profile. All cross sections and
branching ratios are taken from the recommendations of the LHC CrossSection-
Working-Group [173]. These samples are processed through a GEANT4 [132, 133]
description of the CMS detector to simulate detector effects. Finally, corrections
described in Section V.2 are applied to correct MC simulations.
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V.3.2 Reweighting of JHU samples

The anomalous productions of the H boson are simulated using the dedicated
generator JHUGEN at LO QCD. To compare the deviations from an NLO genera-
tion, an SM sample is generated with JHUGEN by removing all anomalous contri-
butions. The JHUGEN (LO) and POWHEG (NLO) simulations are explicitly compared
after parton showering in the SM case, and discrepancies are found in kinematic
observables as demonstrated in Fig. V.2. For instance, a large deviation is found
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Figure V.2 - Comparison of the differences in event properties between the generation
of an SM sample at LO with JHUGEN and at NLO with POWHEG.

in the number of jets N, due to a lower number of jets produced at LO. This
has a significant impact on the dijet mass distribution as the combinatorial back-
ground is reduced. The two jets coming from the decay of the V boson are iden-
tified more frequently, resulting in a thinner dijet mass distribution. Another
difference is visible in the minimal angle between a jet and a photon min(AR;, ).
As less jets are generated, min(AR;, ) is higher in the JHUGEN case. The py of the
reconstructed intermediate vector boson (pTW'j) is also softer in the LO case.
Therefore, a reweighting of the JHUGEN samples is implemented to correct for
these discrepancies.

Toimplement a reweighting efficient on all BSM samples generated with JHUGEN,
the reweighting is computed from event properties that do not depend on the
BSM hypothesis, such as the number of jets N;. or the dijet mass m;;, as shown
in Fig. V.3. This reweighting is then applied to all JHUGEN samples to improve the
description of BSM processes. After numerous attempts, no set of variables has
proven capable of correcting all discrepancies between the JHUGEN and POWHEG
descriptions of the SM distributions. The best reweighting we reached is offered
by using the (mj;, N,.s) pair of distributions in two dimensions. An illustration of
some reweighting choices is shown in Fig. V.4 with examples both before (filled
histogram) and after reweighting (dashed histograms).
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Figure V.4 - Example of kinematic distributions of the VH process in the SM with NLO
QCD generation (POWHEG, filled histogram) and attempts at reweighting the SM sample

with LO generation (JHUGEN, dashed histograms).
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The goal of this reweighting is to get a better description of the BSM distribu-
tions to improve the definition of the categories defined in Section. V.5. These
categories are defined from the outputs of a multiclassifier DNN trained to en-
hance the discrimination of the different physics processes. Thus, the reweight-
ing is done on the DNN outputs directly to reach the optimal agreement between
the DNN distributions of both SM samples (LO and NLO). More details on this
reweighting are given in Section. V.5. In addition to the reweighting, a system-
atic uncertainty is derived to account for the effects of an imperfect reweighting
and is described in Section. V.6.4. A similar procedure is applied in the VBF and
V|pH parts of the analysis.

V.3.3 Phenomenology of V,_,H events and preselection

As mentioned in Section. V.1.1, the H — ~~ analysis is sensitive to the couplings
of the Higgs boson with electroweak gauge bosons through the VH and VBF
production modes of the Higgs boson. The HVV vertex can be clearly identified
from their Feynman diagram presented in Fig. V.5.

Figure V.5 - Feynman diagrams of the VH (left) and VBF (right) production modes of
the H boson.

The analysis is divided into orthogonal phase spaces. The first one is dedicated
to the VBF production, and two others depend on the final state of the VH
production (where V = Z or W). Indeed, with the production of a gauge bo-
son in the VH case, we can expect the vector boson to decay in two hadrons
(B(Z — qg) = 70%, B(W — qg) = 67%), in two leptons (B(Z — ¢¢) = 3.3% with
¢ =e,porr), in one lepton and one neutrino (B(W — ¢v) = 11%), or two neu-
trinos (B(Z — vv) = 20%). Events with at least one lepton are gathered as ViepH,
events with a significant missing transverse momentum correspond to VyetH,
and other events with at least two jets belong to the V,,4H phase space.

Since we are responsible for optimising the sensitivity in the V,,4H case, we aim
to define a way to extract V,,4H events from other processes. As such, during
the design of V,,4H strategy, we consider other SM productions of the H bo-
son as background, in addition to the QCD processes producing two photons in
their final state (yv + jets) or with misidentified photons (v + jets). This extrac-
tion is done through preselection of the events from their distinctive kinematic
features and by training a DNN (described in Section V.4) to classify events. The
preselection already provides a way to separate V,,4H events from other pro-
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duction modes of the SM. The V,,H part of the analysis requires leptons in its
final state, so we apply a veto on events with leptons. Contrary to the VBF phase
space, we expect two hadrons originating from the decay of a W or Z boson, so
the invariant mass of the dijet system mj; should be close to my, or m;. Thus,
we focus on the region m; < 250 GeV while the VBF part focuses on the region
where m; > 250 GeV. Additional requirements are introduced, following rec-
ommendations of physics groups of the CMS collaboration in charge of physics
object reconstruction, and the final set of requirements is given in Table V.2.

| Full V,4H preselection |

100 GeV < m,., < 180 GeV
P, /My, >1/3
P,/ My, > 1/4

ID, >0
n,| <25
pr; > 30GeV
mj; < 250 GeV

Table V.2 - Presentation of the preselection behind the definition of the signal region
for the V,4H case.

Examples of distributions showing discrimination potential are shown in Fig. V.6.
These discriminating features are particularly useful for the training of discrim-
inants such as DNN. Most of the diphoton features allow the discrimination
between Higgs and non-Higgs processes because the diphoton pair is more
boosted when coming from the decay of a Higgs boson. This results in a harder
pr spectrum for the photons (pr,, and pr,, ) and tighter differences in azimuthal
angles (A¢., ) or pseudorapidity (An.,,). Other variables allow the direct separa-
tion of the V,,4H process from all background processes, such as the dijet mass
mj (as already described) or the cos(6") property. The angle #” is defined as the
angle between the direction of the diphoton pair in the diphoton-dijet centre-of-
mass and the direction of the diphoton-dijet system in the lab frame. Given the
common origin of the dijet and diphoton systems in the V,,4H case, the cos(6)
is flat, while for other processes where the dijet and diphoton systems are not
correlated, the distribution is peaked at cos(#*) = —1 or 1.

Distributions comparing the different BSM scenarios are presented in Fig. V.7.
To allow for a fair comparison, the distributions from LO generation are com-
pared to an NLO generation in Fig. V.8 to distinguish effects from the order of
generation and effects due to different BSM hypotheses. A major difference
between samples with a BSM scenario and SM distribution is that the BSM sce-
narios describe loop-induced processes. It results in a much harder p spectrum
and more boosted reconstructed objects.
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Figure V.8 - Distributions of event variables of the VH process in the SM case to com-
pare the effect of using LO (JHUGEN) or NLO (POWHEG) computations to generate the
simulated sample.
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V.4 Machine learning for events discrimination

In addition to the dedicated preselection, a multiclassifier DNN is specifically
trained to identify events within the V,,4H phase space. Multiclassifiers are neu-
ral networks with multiple outputs representing the probability for an event to
belong to a given class. In our case, its role is to separate events into three
classes:

* V,.qH background: backgrounds to the VH hadronic production mode in-
clude resonant background from other SM production modes of the Higgs
boson or non-resonant background coming frompp — vy orpp — y+jets
processes. For the resonant background, the ggH sample is used, and
each background component (ggH, vy + jets, v + jets) is then mixed with
the same proportion (33% of the total background weights).

* V,.¢H SM-like signal: V,,4H events with couplings as expected in the SM.

* V,.qH BSM-like signal: V,_4H events displaying deviations from the ex-
pected couplings of the SM.

The three associated output probabilities given by the DNN are respectively
DNNpyg, DNN,,, and DNN,,, following the relation DNNy,, +DNN,;, +DNNg,, = 1.
As inputs to the network, we use the kinematic properties of the two photons
and the two jets with leading pt and features with high discrimination power
between the three considered classes. We base our selection of input features
on the V,,4H BDT developped for the STXS analysis [145] and extend them to
the following list: pr, /m,,, 1., 1D, , pr, /my, 1y, 1D, |An,. |, |Ady, | Py,
Njyr G50 BYag;, prj. My 05, btag,, my, Anjj|, min(AR;,), cos#*. Some of the most
discriminating features in the list of inputs are shown in Figs. V.6, V.8 and V.7.

1

The DNN is trained using Keras and its TensorFlow backend [91]. The training
is done with MC samples taking into account the productions v + jets, v, ggH,
VH 0+ and VH 0-. During the study of the reweighting procedure for JHUGEN
samples, we found that using a reweighting based on (pr.,.,, Nj.) before the
training of the DNN helped the network to improve its performance. The weights
of the events are used during the training to weight the categorical cross-entropy
loss accordingly, and the sum of the weights in each class is normalised to bring
the same contribution to the loss computation. A proportion of 25% of the total
number of events is kept for validation, i.e. to check for any overfitting while
training.

Multiple training setups are tested through the Hyperband algorithm [174] of
the Keras tuner [175] to determine which provides the best-performing net-
work. The Hyperband algorithm is an extension of the random search for the
optimal set of hyperparameters. It considers the finite amount of resources
available (e.g. training time, number of epochs, etc.) and relies on a tournament-
based search. The algorithm starts by providing a small number of resources,
forinstance, a few training epochs, to a large number of trainings with randomly
drawn hyperparameters configurations. After these few epochs, the algorithm
discards two-thirds of the worst-performing trainings based on the result of their
validation loss and continues training the best-performing one. Finally, only
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one training configuration remains and is designated as the winner of the ini-
tial bracket. Five brackets are formed, and the model with the lowest validation
loss among all brackets identifies the optimal set of hyperparameters. The Hy-
perband algorithm optimises hyperparameters among the number of neurons
for each layer of the network, the percentage of dropout while training, the slope
of the leakyReLU activation function, the batch size, and the learning rate. The
optimal values are found to be :

* Number of neurons: 512 (first layer), 128 (second layer), 32 (third layer)
* Dropout: 0.25

* Slope of leakyReLU: 0.0

*+ Batch size: 128

+ Learning rate: 10>

The performance of the optimised network is shown in Fig. V.9 with the eval-
uation of the three DNN outputs on samples belonging to the three different
classes. The GJet, Diphoton and ggH samples corresponds respectively to the
v + jets, vy + jets and ggH processes belonging to the background class. The VH
sample represents the V,,4H SM-like signal class. Finally, the VHOM sample is
describing events in the f,; = 1 hypothesis which constitute the V,,4H BSM-like
signal class. It illustrates the discrimination possibilities brought by the three
DNN scores. Figure V.10 shows the same evaluation from a different point of
view with the distributions of the three scores sample by sample and the 2D
histograms hinting at correlations between the three possible pairs of DNN out-
put. Furthermore, ROC curves are computed (see Fig. V.11) to probe the ability
of each DNN score to distinguish events coming from two different classes.

CMS Work in progress CMS Work in progress CMS Work in progress
) £ Glet el 1 Glet 0 Glet
@ 040 Diphoton | «© Diphoton Diphoton
J— T E 0.081- 0 et T geH

[ VH
[ VHOM

T VH
[ VHOM

1 WH
0 VHoM ]

g

0.8 1.0
DNNbkg

0 S =ss
0.0 0.2 0.4 0.6

o . . ,
0.0 0.2 0.4 0.6 0 1.0

8 1.0 0.8
DNNvh DNNbsm

Figure V.9 - Evaluation of the DNN outputs on samples from the three classes.

From several figures of merits inspecting the performance of the DNN (especially
Fig. V.10), it appears that the outputs of the DNN are strongly correlated. Thus,
rather than relying on a single score for each event, a better strategy to build
categories enriched in SM-like or BSM-like signal events is to rely on 2D cuts
on two of the three DNN outputs. Since their sum is one, constraints on two
of the DNN outputs are actually fixing the third one as well. We can see from
Fig. V.10 that events are already localised in distinct areas based on their class
in the plane (DNN,,, DNNy.,) in the 3rd column, offering good categorisation
possibilities. Fig. V.11 confirms this by showing that the background and BSM
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Figure V.10 - Evaluation of the DNN outputs sample by sample (one sample per row).
The first column shows the distributions of the three DNN scores for a given sample.
From the second to the fourth column, the distributions of the events of a given sample
in the three possible 2D planes formed by pairs of the DNN scores.
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Figure V.11 - ROC curves evaluating the performance of each DNN score in identifying
events belonging to the three possible pairs of classes.

scores of the DNN provide suitable identification for any pair of classes as the
maximal AUC is always from the ROC curve of the background or BSM score.

As a comparison, two DNN classifiers with a single output each were trained, the
first one to extract SM-like signal events and the second one to extract BSM-like
events. Their respective output score was used to build categories and optimise
them as described in the next section. This method showed 4% worst results on
the figure of merit described in Section V.5 (upper limit of f,3) after optimising
categories. In addition to having worst results, this method requires training two
DNNs instead of one multiclassifier, so the method is less relevant.

An additional test was performed by including the quark-gluon tag (qgtag) in-
formation of jets as inputs of the DNN multiclassifier. This score represents the
likelihood for the jet to originate from a quark (score close to 1) or from a gluon
(score close to 0). Since we target VH events where the gauge boson decays in
two quarks (and not in leptons), the qgtag of both jets is peaked at 1 as opposed
to the inclusive H+2jets production where the 2 jets tend to originate from gluon
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radiations. Thus, it provides additional discrimination information to the DNN.
And indeed, the area under the ROC curve computed over all classes, when train-
ing the DNN with the ggtag, improved by 2%. Unfortunately, for this iteration of
the analysis, we abandoned this additional discrimination because the system-
atic uncertainty on the quark-gluon tagger is not yet determined. However, we
recommend including it, if available, for the next iterations of DNN trainings in
the V,4H case.

V.5 Optimisation of analysis categories

The final results are extracted using a statistical test (described in Section V.6.1)
which scans values of the observables of interest and tests the compatibility of
data with the corresponding physics model. Hence the necessity to define cat-
egories targeting regions of the phase space where any difference between dif-
ferent models would be striking. Constructing categories allows the evaluation
of the separation of the different hypotheses by the statistical test, and then,
by improving the definition of the categories, we enhance the sensitivity of the
analysis. The regions sensitive to signal are built from the DNN outputs, but
before optimising these categories, the reweighting of the DNN ouptuts men-
tioned in Section. V.3.2 is applied. The effects of this reweighting are demon-
strated in Fig. V.12 by comparing it to a reweighting using physics variables. As
expected, the DNN distributions are recovered for the SM distributions, where
the reweighting on physics still shows significant deviations.

To increase our sensitivity to processes including anomalous couplings of the
Higgs boson to gauge boson, we define categories enriched in SM- and BSM-like
signal events in the V,,4H preselected phase space. The total number and defi-
nition of these categories are optimised to minimise the expected upper limit on
f,3 at 95% confidence level. This upper limit on the value of f,; is computed with
a likelihood ratio as a test statistic and following prescriptions from previous
Higgs boson searches at the LHC [176] and Cowan et al. [177]. When constrain-
ing only the f,; parameter, the number of expected signal events in category k
is parametrised as

HaySk = ta[(1 = fiz)se™ + Fras;?] (V.2)

with s;™ the expected number of SM-like signal events, s;* the number of events
in the hypothesis a; = 1, a, = 0, and y,, is the signal strength associated with a
given value of f,;. Under this decomposition, we can write the Poisson probabil-
ity for n, events to fall in category k, given the expected number of signal s, and
background b, events :

Ny
(/”Laask + bk) @ Hag Skt bi
nk!

P (”k|Ma35kv by, fa3> = (v.3)
Then, the negative log-likelihood (NLL) is defined, up to a normalisation factor,

as
Ncat

—InL (n|p,s, b, f3) = Z (12,5 + b)) — micIn (1,56 + by) - (vV.4)

k
The signal strength 4, is not known a priori, but its maximum likelihood esti-
mator fic, can be profiled from the NLL for each value of f,;. The estimator fi,,
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Figure V.12 - Comparison of the reweightings using physics variables (top row) and the
DNN outputs (bottom row) on the shapes of the DNN outputs for the background (left
column) and BSM classes (right column).

is the value of p,, for which the NLL is minimal, so it can be extracted from the
derivative of the NLL:

dinL
dfta,

cat nksk
0= s =0. V.5
Z ( o :ua35k + bk) ( )
Thus, for any value of f,;, we can use a test statistic g, entirely defined through

L (n|/:\La3S, bv f:93>
L (n|figssm, b, 0)

which test the compatibility between a given f,; hypothesis and the SM-only hy-
pothesis (a3 = 0 and thus f,; = 0). To estimate the expected upper limit on
f,; offered by a given configuration of categories, we build an Asimov data set
where the yield in each category assumes no contribution from BSM processes,
i.e. ny = p*s™ + by, where * is an ad hoc normalisation to compensate for the
low number of expected events. We use a value of ;" = 5 and keep it identical
to compare all categories configurations. As such, the value obtained for the ex-

pected upper limit of f,; is not the final expected upper limit provided through

Haz=Hla,

(v.6)

qr., (n) = —2In
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our analysis strategy but rather a relevant relative value for the classification
of configurations. Finally, the expected upper limit at 95% confidence level is
computed as the value of f,; for which

gr,(n") = &7 (1 -0.95), (V.7)

a.

where ¢ is the cumulative distribution function of the normal distribution [177].
The number of expected signal events, s*™ and s®, corresponding to SM and
BSM processes respectively, is taken as the number of events in the range m,., €
[122.5 GeV, 127.5 GeV| from their associated MC sample.

The expected number of background events, b, is computed from a maximum
likelihood fitto the m,, distribution in data sidebands, i.e. m,., ¢ [115 GeV, 135 GeV]
using a power-law model as illustrated in Fig. V.13. Then, the fitted function is
integrated over the range m.., € [122.5GeV, 127.5GeV] as well to estimate the
number of background events. In addition to this number of events from the
non-resonant background, we take into account events from the ggH process.

i —— Bkg fit
30 ¢ Data T

CMS |/||/0(k in_progress

1 1 n 1
120 140 160
My [GeV]

Figure V.13 - Example of background fit (red line) performed on the data sidebands
(black dots) entering a given category.

To find the optimal number and shape of categories to build from the DNN,,
and DNNy,,, scores, the (In(DNNy,,), DNN,) plane is filled with categories until
the improvement on the expected upper limit of f,; becomes negligible. It results
in eight categories, whose borders have been optimised to minimise the upper
limit on f,3, resulting in an upper limit of 0.253 for x* = 5. These categories are
presented in Fig. V.14.

As all categories do not bring the same sensitivity to the estimation of f,;, we
remove each category one by one, compute the new upper limit (with a missing
category) and compare it to the original value (with eight categories) to estimate
the impact of each category on the optimisation of the upper limit of f,;. Results
of this study are summarized in Table V.3.
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Figure V.14 - The categories are overlaid to the 2D distribution of the events as a func-
tion of their DNN scores. The 2D distributions represent different classes of the DNN
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and background from ggH process).

| Removed | BSM1 BSM2 BSM3 BSM4 SM1 SM2 SM3 SM4 |
IMPActon | L 129% 13% 2% < +1% +3% +15% +13% +8%
upper limit

Table V.3 - Impact of each category on the estimation of the upper limit of f,;.
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From the impact values, we discard the BSM4 category. The SM1 category is sen-
sitive because it mainly comprises BSM events, so the top of the SM1 category
is merged with the BSM2 and BSM3 categories. It creates a category collecting
events around the very sensitive BSM1 category. The bottom of category SM1 is
merged with SM2, and categories SM3 and SM4 are kept in the same position.

The optimal categorisation is presented through Figs. V.15 and V.16. Five cate-
gories are left: two enriched in BSM-like signal events (called BSM1 and BSM2)
and three enriched in SM-like events (SM1, SM2 and SM3). As some of the cate-
gories are chosen to be adjacent, nine boundaries are needed to build the five
categories, creating a 9D optimisation problem. The optimal set of selection cri-
teria gives the lowest expected upper limit on f,; from the procedure described
above. Figure V.15 shows the values of the expected limit of f,; when scanning
the possible boundaries for the definition of the SM1 (left) and SM2 categories
(right). The optimal categories are overlaid to the 2D distributions of events from
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Figure V.15 - Projection of the 9D optimisation in 2D planes containing the lowest up-
per limit on f,3 (white star). The heatmaps show the values of f,3 when scanning the
requirements on the DNN scores for category SM1 (cut3 and cut4 on the left) and for
category SM2 (cut5 and cut6 on the right).

the three different classes in Fig. V.16. The lowest upper limit on f,; at 95% con-
fidence level is 0.227 for * = 5, and the expected yield in each category is sum-
marised in Table V.4.

V.6 Statistical inference and results

V.6.1 Inference procedure

The statistical methods used to extract the expected and observed results of the
analysis are widespread in analyses of the ATLAS and CMS experiments [176].
These methods rely on the definition of a test statistic, which acts as the figure
of merit assessing the compatibility between two hypotheses. A hypothesis rep-
resents a physics model, and in our particular context, the two hypotheses (or
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Figure V.16 - Final categories after the optimisation procedure. The categories are over-
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Vi.qH category | SM-like  BSM-like Background/GeV |

BSM1
BSM2
SM1
SM2
SM3

0.18
0.62
2.10
3.67
491

3.26
3.57
1.57
1.62
1.92

0.33
1.69
2.37
16.44
83.59

Table V.4 - Estimated yield from each DNN class in the three optimised categories de-
fined with the DNN scores. Values for the background are given in number of events
per GeV within the 5 GeV mass region of interest.
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models) we want to compare are the standard model and the model described in
Section V.1, where any of the couplings (apart from a;) is nonzero. As described
in Section V.5, categories are built from the kinematics of the events (indirectly
as they are transformed to more discriminating features with the DNN) since it
differs significantly between the two hypotheses.

The test statistic used to extract the final value and uncertainties of the f,; quan-
tities is defined in a similar fashion to what is described in Section V.5. Each
f,; is scanned one by one by fixing all the others to 0. However, by taking into
account the potential interference between the scanned fraction terms (f =
(12, F3, Fa1, f,\1 )) and the a; term, as described in Eq. V.1, the expected number of
signal events in each category includes an additional term compared to Eq. V.2:

se=(1— fa,)sk + s + 24/ 1, s,'(”t sgn(a (V.8)

int .

with sEM (s;") the expected number of SM-like (BSM-like) signal events, and s is
the effective number of signal event emerging from the interaction of the am-
plitudes related to the a; and a; terms. Systematic uncertainties are added as
nuisance parameters @ that potentially impact the event yields in each of the
categories: s, — s,(0), b, — b,(0). This effect propagates to the probability of
data events to fall in a given category P(n, | i s,(0), b, (0), f) as defined in Eq. V.3.
Constraints can be applied to the effects of systematic uncertainties by including
a probability distribution function of the uncertainty p(6;) to the likelihood

cat nuls

L(n|us(6 HP ny | s (0 Hp (V.9)

Thus, the test statistic, defined as a likelihood ratio, takes the form

g (n) = —2AIn £ = —1n L0 115(6).b(6). F) (V.10)
c (n | 71s(6), b(8), f)

where the hat symbol denotes the maximum likelihood estimator of the corre-
sponding variables, i.e. their value is the most compatible one with data, and the
denominator is actually the global maximum of the likelihood function.

In the diphoton decay channel, we expect a peaked signal in the diphoton mass
distribution atthe H boson mass (my) over a smoothly falling background. There-
fore, the signal and background contributions are parameterised in each cat-
egory as a function of the diphoton mass. The modelling of background and
signal distributions are described in the following Sections V.6.2 and V.6.3, re-
spectively. These modelling techniques were developed over previous H — v~
analyses such as Ref. [145], so a short description of the methods is given before
describing their application to the V,.4H categories. Once models are designed
in each category, the likelihood ratio evaluates the compatibility of the data dis-
tribution over the diphoton mass with the combination of the background and
signal models simultaneously over all categories. The likelihood ratio is scanned
along each f,; parameter one by one (fixing other BSM contributions to 0), and
for each vaIue of the f,;, the signal strength, my, and systematic uncertainties are

air

profiled and taken as their maximum likelihood estimator. In order to get the
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expected results of the analysis, the statistical test is performed on an Asimov
data set which consists of a simulation where the maximum likelihood estima-
tor of each parameter is equal to its expected value. In our case, it means that
in the Asimov data set, the signal strength is set to 1, the H boson mass to its
most precise value of 125.38 GeV [17], systematic uncertainties to their expected
value and all the BSM f,; are set to 0.

V.6.2 Background modelling

Standard procedure for H — ~~ analyses at CMS experiment

The modelling of the background distribution as a function of m_, relies on the
data sidebands and is not based on MC simulations. Since itis an effective model
based on empirical fits, data from all years are merged. The background model
fit is performed with different families of functions to find the optimal descrip-
tion of the distribution. These families and their parameters p; (and g; when
needed) are listed below for a given order N:

« Exponentials: fy(x) = 2V, p; %>
« Power-laws: fy(x) = SV, p;x™9
» Bernstein polynomials: fy(x) = > p; (V) x'(1 — x)¥™

« Laurent polynomials: fy(x) = 32V, p; x i (C1Y0-1)

To check the goodness-of-fit obtained with each function, an F-test [178] is com-
puted from each fit and only functions passing a loose requirement on this test
are kept as candidates for the final fit procedure. Since these functions can fit
any distribution as their order N increases, i.e. there is a risk of overfitting data
with high-order functions. To prevent this, functions in each family are fitted
in increasing order, and a negative log-likelihood is computed at each order,
NLLY.. It is then compared to the negative log-likelihood of the next order as
2ANLLET = 2(NLLE™ — NLLE) should have a y? distribution with m degrees
of freedom, where m is the difference in degrees of freedom of functions of or-
der N + 1 and N. In the tested families of functions, m = 1 or 2 as they either
have N or 2N parameters at order N. A p-value is computed to compare which
hypothesis (order N or order N + 1) data are describing better

p-value = P <2NLL,5}’t > 2ANLLG Xﬁ) :

where P is the probability density function associated with a x* distribution with
m degrees of freedom. For a p-value lower than 0.1, the procedure continues
and tests following orders but for a p-value above 0.1, the higher order function
is considered overfitting the data sidebands.

To account for the uncertainty on the final choice of background model among
the remaining candidates, they are added as a discrete nuisance parameter to
the final fit [179]. Then when scanning the likelihood ratio in the final fit to data,
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the likelihood is computed for each of the background-model-candidates func-
tions with the order determined from the modelling in each category and the
minimal value is retained. It means that the final likelihood is actually an en-
velope of all profiles obtained for each background model. Thus, the shape of
the final likelihood is broader than with a single fit, so it is a conservative way of
taking into account the uncertainty of the background model.

Application to V, 4H categories

The above procedure is applied to all V,,4H categories described in Section V.5
and is shown in Fig. V.17 for data events from the mass sidebands. Between 5
and 7 background models are selected in each category, and the order of each
function is fixed for the final fit. All of these functions are fitted in the final like-
lihood ratio scan, and the best fit is combined with the signal model defined in
the next section.

V.6.3 Signal modelling

Standard procedure for H — v~ analyses at CMS experiment

A signal model is built from MC samples as a function of m_, in each category,
for each year, and separately for events where the right vertex (RV) or the wrong
vertex (WV) is selected. This decomposition allows the computation of a com-
bined signal model mixing the contribution from each process depending on
the physics scenario (typically, in our case, how the f,; observables are mixing
each BSM contribution). The last division, depending on the correctness of the
selected diphoton vertex, allows the computation of the fraction of events with
correctly identified primary vertex (RV fraction) and to include an uncertainty on
its value (in Table V.6).

These numerous signal models are fitted with a sum of one to five Gaussian
functions. An F-test [178] is performed to identify the optimal number of Gaus-
sian functions and their parameters to fit the signal distribution. The models
representing RV and WV are summed, and the mixture between the two is fitted
in each category from MC simulation to get the fraction of RV association.

The dependency of these signal models on my is determined by parameterising
the models as functions of important parameters, namely: the total normali-
sation N, the cross section o, the branching ratio B, the product of selection
efficiency and acceptance € x A, the RV fraction. The dependence on my of the
cross section and branching ratio is taken from Ref. [173] while for every other
parameter, a polynomial dependence is assumed. To obtain the latter, the sig-
nal models are derived for three different my samples (my = 120 GeV, 125 GeV,
and 130 GeV) and the relevant parameters are fitted with an order 2 polynomial
as a function of my. This allows interpolating the signal model for any value of
my. This way, my remains floating around the best estimate during the final fit,
and no assumption is made on its true value. Since the MC simulations describ-
ing different H boson mass are available only for SM signals, the dependency of
the signal model on my is kept identical for BSM processes.
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Finally, signal models are summed over the three data taking years weighted by
their recorded luminosity to give the signal model of each signal process in each
category that is used in the global likelihood ratio scan.

Application to V,_4H categories

Results of the identification of the optimal number of Gaussian functions to
model some of the signal processesinthe V,.4H categories are shown in Figs. V.18
and V.19. Figure V.18 shows the difference in signal distribution for the same
process in the same category but with different vertex identification scenarios.
The top row corresponds to events where the wrong vertex is associated with
the diphoton pair. As mentioned already, it results in a worse mass resolution
with more spread Gaussian functions compared to the right vertex identification
shown on the bottom row. The number of Gaussian functions and the contribu-
tion of each Gaussian function to the signal model is shown in Fig. V.19 for some
signal processes targeted by the different categories. The maximum number of
Gaussian functions allowed in the fit is limited to 5 to avoid overfitting, but it is
rarely a constraint as a good description of the signal (x*/n(dof) ~ 1) is already
achieved with fewer Gaussian functions.

The parameterisation of the signal models as a function of my are illustrated in
Fig. V.20 for the SM WH process in the SM3 category. Three fits are performed
with the signal model corresponding on the my = 120 GeV, 125 GeV, or 130 GeV
hypotheses, allowing the determination of the evolution of the N,,, 0, B, € x A,
and RV fraction parameters as function of my (see left plot of Fig. V.20). From
this evolution, a smooth interpolation of the signal models is derived over the
potential range of the H boson mass (right plot of Fig. V.20).

The combination of the signal models of all signal processes for the three data-
taking yearsis shown in Fig.V.21 for each of the V, ,4H categories. A resolution on
the m,, peak of approximately 1.3% is achieved. The signal models are also com-
bined per year for all signal processes in all categories, as reported in Fig. V.22.
The resolution per year is closer to 1.6% and is consistent for the three years.

V.6.4 Systematic uncertainties

As mentioned already in Section V.6.2, the systematic uncertainty associated
with the background modelling on data sidebands is taken into account by the
discrete profiling method [179]. Systematic uncertainties impacting the signal
model are addressed differently if they affect the shape of the m. ., distribution
or just the eventyield. In the latter case, the uncertainty is added as a log-normal
deviation on the eventyield. However, if an uncertainty is modifying the m. ., dis-
tribution shape, it is included in the signal model as a nuisance parameter, po-
tentially changing the parameters of the model and causing migration of events
between categories.

These systematic uncertainties were derived for previous H — v+ analyses [145],
and their implementation in this analysis is mostly unchanged. Two sources of
uncertainty are expected to bring most of the impactin V,4H categories: the un-
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certainty on the jet energy scale and smearing corrections and the uncertainty
coming from the reweighting of JHUGEN samples. The first one is evaluated by
using the p; balance of jets with Z boson and photonsinZ — ee, Z — puu and
v+ jets events, as well as the pr balance between jets in dijet and multijet events.
When propagating the uncertainty on the jet energy scale to the final result, an
impact on the category yield of up to 22% can be observed. The uncertainty
on the reweighting has an impact between 7% and 25% depending on the cate-
gory and is detailed in a dedicated section after the description of the common
systematic uncertainties for the H — v~ analyses of the CMS collaboration.

Theoretical uncertainties

Theoretical predictions are needed to use the correct cross section, branching
ratio, efficiency and acceptance in each category. Thus, uncertainties in these
predictions lead to variations in the global normalisation of the event yield of
the categories and also to the migration of events. A summary of theoretical
uncertainties and their impact is reported in Table V.5.

Experimental uncertainties

Experimental uncertainties can impact the energy scale of individual photons
and, thus, on the shape of the reconstructed mass of the diphoton system. A
summary of experimental uncertainties impacting the shape of the m,_., distri-
bution is given in Table V.6. If the uncertainty affects only the event yield, it is
described in Table V.7

Study of the uncertainty on the reweighting of JHUGEN BSM samples

The uncertainty on the reweighting of the JHUGEN BSM samples is implemented
to account for the imperfection in the reweighting since, for a perfect match
with an NLO sample, the generation of additional jets would be needed. To
estimate this uncertainty, we compare the final reweighting of JHUGEN samples
to alternative reweighting with other sets of variables. The final reweighting is
done from the outputs of the DNN since the kinematic categories are built from
these outputs. Several other reweightings were tested, and this final reweighting
is compared to the best reweighting of the DNN output distributions we would
reach using a set of physics variables.

To make sure that we are not also including variations due to the expected dif-
ference in the kinematics of SM and BSM samples, the reweighting from physics
variables is selected from variables with distributions that are model-independent
(the comparison is shown in Fig. V.7). Thus, we use a 2D reweighting based on
the physics variables (m;, N..s) as mentioned in Section V.3.2. The derivation
procedure of this systematic uncertainties is summarised in Fig. V.23 and is done
in two steps:

1. the comparison of the reweightings is done by computing the ratios, Rgy
and Rgsy, of the DNN, distributions obtained after reweighting (m;;, N)
and reweighting (DNNy,,, DNNy,) applied on the SM and BSM samples.

V.6 Statistical inference and results | 147



148

Uncertainty

Impact

QCD scale uncertainty: arises from
variations of the renormalisation and
factorisation scales when computing
the expected SM cross section. Fol-
lowing recommendations from LHC
Cross Section Working Group [173].

Overall normalisation varies between
0.5% and 15%. Migration of events
around 1%.

ggH contamination: theoretical pre-
dictions for gluon fusion are less reli-
able in a regime where the Higgs bo-
son is produced in association with
jets.

Impact on the signal strength by
about 2%.

qqH signal fraction: similar to ggH
contamination but for VBF produc-
tion. The uncertainty reflects also
the migration of events to the region
mj; < 250 GeV.

Uncertainty of at most 8% in the SM
prediction for cross section measure-
ment.

Parton density functions: accounts
for the uncertainty on which partons
are most likely to initiate high en-
ergy events from proton-proton colli-
sions [173, 1.

Overall normalisation uncertainty be-
tween 1% and 5%. Migration of
events less than 1%.

QCD coupling constant: propaga-
tion of the uncertainty on the value
of the strong interaction coupling
as [180].

Impact on overall normalisation be-
low 2.6%.

H — ~~ branching fraction: un-
certainty on the value of the H — ~~
branching fraction [173].

Uncertainty on the SM prediction of
2%.

Underlying event and parton
shower uncertainty: propagation of
the uncertainty on the parameters
used for MC generation.

Normalisation uncertainty around 5%
(up to 30% for high-pr, categories).
Migration between 1% and 16%.

Table V.5 - Theoretical uncertainties
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Uncertainty

Impact

Photon energy scale and resolu-
tion: uncertainty on the correction of
the photon energy scale described in
the photon definition of Section V.2.

Uncertainty on the energy scale be-
tween 0.05% and 3%.

Non-linearity of photon energy
scale: uncertainty taking into ac-
count differences in the linearity of
the photon energy scale between
data and simulation.

Uncertainty on the energy scale be-
tween 0.2%.

Shower shape corrections: uncer-
tainty on the correction of the shower
shape described in the photon defini-
tion of Section V.2.

Uncertainty on the energy scale from
0.01% to 0.15%.

Non-uniformity of light collection:
uncertainty from the model of light
collection as a function of emission
depth for a given ECAL crystal.

Uncertainty on the energy scale be-
tween 0.07% and 0.25%.

Modelling of material in front of
the ECAL: covers the imperfect mod-
elling of electromagnetic showers
arising from the material upstream of
the ECAL.

Uncertainty on the energy scale be-
tween 0.02% and 0.05% for central
photons, less than 0.24% in the end-
cap.

Vertex assignment: incorrect mod-
elling of the underlying event leads to
an uncertainty on the fraction of pri-
mary vertex correctly assigned.

Fraction of RV and WV in categories
can vary by +2%.

Table V.6 - Experimental uncertainties impacting the shape of the m,, distribution.
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Uncertainty

Impact

Integrated luminosity: uncertainty
observed by the CMS luminosity mon-
itoring.

Uncertainties of 2.5%, 2.3%, and 2.5%
on the integrated luminosity for 2016,
2017, and 2018.

PhotonIlD BDT score: propagation
of the uncertainty of the inputs on
the training of the quantile regression
correction described in Section V.2.

Impact on category yield below 3%.

Per-photon energy resolution: un-
certainty on the per-photon resolu-
tion coming from the energy regres-
sion step.

Impact on category yield below 5%.

Trigger efficiency: uncertainty on
the efficiency of the trigger selection
measured with the tag-and-probe
method.

Impact on category yield below 1.4%.

Photon preselection: account for
the difference between preselection
efficiency in data and in simulation.

Impact on category yield below 1%.

Pileup jet identification: uncer-
tainty on the PU jet classification out-
put score.

Impact on category yield around 1%.

Table V.7 - Experimental uncertainties impacting the event yields.
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2. the difference observed in the BSM case is compensated by the one ob-
served in the SM case by computing the ratio Rgsy/Rsm. For a perfect
reweighting, this ratio should be one. The deviation of this ratio to one is
taken as systematic uncertainty (+10). This systematic uncertainty is also
symmetrised around one (—10).

This uncertainty brings a shift between 7% and 25% on the expected number
of BSM signal events, so it is one of the dominating systematic uncertainties in
the V,,qH categories. While being included in the final analysis, the reweighting
of the JHU samples based on DNN outputs and its associated uncertainty is not
included at the current stage of preliminary results presented in this section.
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Figure V.23 - Decomposition of the derivation of the systematic uncertainty on
reweighting of JHUGEN BSM samples. The top distributions show the effects of reweight-
ings computed from the DNN outputs (solid histogram) or physics variables (dashed his-
togram) on the shape of the background (left) and BSM (right) outputs of the DNN. These
reweightings are applied to SM (green) and BSM (orange) simulated events. The ratios
below highlight the difference between the difference of the two reweightings, i.e. they
are the ratio between the dashed histograms and the filled ones. Finally, the uncertainty
is presented at the bottom as the +1¢ curve and is determined from the difference of
reweightings on BSM samples compensated by the difference of reweightings on SM
samples, i.e. orange over green from the ratio plot just above.
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V.6.5 Results

Results of the analysis are extracted by scanning the binned likelihood ratio
—2AIn £ defined in Section V.6.1 for each parameter of interest (f,,, f,3, a1, f,\zlv).
The value of the likelihood function is computed from a fit of the combination
of the background and signal models defined through Sections V.6.2 and V.6.3
andincluding the systematic uncertainties described in Section V.6.4 as nuisance
parameters. The combination of signal and background models for the V,4H
categories over the three years is shown in Fig. V.24. The total signal and back-
ground models for all categories are also included in the figure. These com-
binations give a visual representation of the relative contribution of expected
signal events compared to the background received in each category. While the
expected signal yield in the V,4H categories is relatively small (compared to in-
clusive categories, for instance), Fig. V.24 show that some of these categories
have a promising signal purity.

Thefitis performed with a common framework of the CMS experiment and is fit-
ting simultaneously all categories of all production modes with the three years
of data. Through the precise modelling of each signal process, this analysis is
sensitive to the effective cross section fractions emerging from anomalous cou-
plings of the H boson with gauge bosons f,,, f.3, a1, f,\zf. This thesis focuses on
the expected results for the f,; parameter. These results are extracted by fit-
ting the likelihood ratio to an Asimov data set assuming the SM-only hypothesis
(signal strengths are set to 1, my, to 125.38 GeV, systematic uncertainties to their
expected value and f,; are set to 0).

The results presented here are preliminary and may be subject to change as, for
instance, the V|,,H and Vgt H categories are being integrated into the common
analysis. To increase the sensitivity of the analysis, at least with respect to the
SM background, production modes where categories were not optimised have
default categories defined as in the STXS analysis [145].

Expected yields

The expected yields in categories optimised for this analysis are reported in Ta-
bles V.8 and V.9. Categories with the "AC" prefix are optimised and integrated
to target a good sensitivity of the global analysis to anomalous couplings. Cat-
egories without this prefix are the STXS categories optimised on the SM-only
signal yield versus background and thus provide some sensitivity to the effects
of anomalous couplings. Table V.8 details yields for categories targeting the VH
production mode while Table V.9 focuses on the VBF production. These tables
include only the SM signals, hence the low purity in categories expecting contri-
bution from BSM signals.
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Figure V.24 - Combination of signal plus background models in categories of the V,,4H
production mode and also shown when combining all categories (bottom right). The
fit is performed on the blinded data, and the 68% (green) and 95% (yellow) bands are
determined using toy MC simulations.

V.6 Statistical inference and results

153



154

SM 125 GeV Higgs boson expected signal
Analysis categories Total Production Mode Fractions o,  S/S+B
VH (GeV)
AC_VHADH_BSM_Tag0 2.7 27.0% 1.57 0.21
AC_VHADH_BSM_Tag1 7.9 31.6% 1.65 0.17
AC_VHADH_SM_Tag0 17.0 50.8% 1.63 0.13
AC_VHADH_SM_Tag1 37.0 36.4% 1.77 0.06
AC_VHADH_SM_Tag2 98.5 17.2% 1.64 0.04
VH_MET_Tag0 1.9 98.4% 2.00 0.46
VH_MET_Tag1 3.0 95.4% 2.03 0.37
VH_MET_Tag2 5.1 85.3% 1.98 0.19
WH_LEP_PTV_0_75_Tag0 | 1.8 99.2% 1.80 0.45
WH_LEP_PTV_0_75_Tag1 | 4.1 98.0% 1.92 0.19

Table V.8 - Expected event yields for categories targeting the VH production mode.
Results are separated by: total expected event yield in the category (Total), fraction of
signal events coming from the VH SM production, resolution on the m,., peak (o),
and estimation of the purity of the category as S/S+B where S and B are the number of
expected SM signal and background events within +1o of my.

SM 125 GeV Higgs boson expected signal
Analysis categories Total Production Mode Fractions o,  S/S+B
VBF (GeV)
AC_GGH_Tag0 117.6 42.9% 1.89 0.06
AC_GGH_Tag1 54.2 27.3% 1.79 0.04
AC_VBF_BSM_Tag0 | 5.3 28.1% 149 0.35
AC_VBF_BSM_Tag1 | 26.1 70.6% 1.71 0.0
AC_VBF_SM_Tag0 77.0 78.0% 1.79 0.36

Table V.9 - Expected event yields for categories targeting the VBF production mode.
Results are separated by: total expected event yield in the category (Total), fraction of
signal events coming from the VBF SM production, resolution on the m. ., peak (o),
and estimation of the purity of the category as S/S+B where S and B are the number of
expected SM signal and background events within +1o of my.
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Anomalous couplings

Expected results on f,; are obtained by scanning values of the f,; parameter
and setting other f,; to 0 as a first approach, as a simultaneous scan can also be
considered. The likelihood profile is provided in Fig. V.25, and the expected con-
straints on f,; are reported in Table V.10. Figure V.25 describes three likelihood
scans performed over three different sets of categories. The green one does not
include the V,,4H and VBF categories; only the categories for other production
modes are taken into account, so it corresponds to the categories targeting the
ggH, ttH, V| ,,H, and VyerH production modes. For these production modes,
the definition of the categories of the STXS is used. These categories are de-
fined to probe the complete phase space of production of the Higgs boson. In
particular, some of these categories target events with a high reconstructed py
for the H boson, and they already bring some sensitivity to the measurement
of f,3. The blue curve is the likelihood scan, including VBF categories. They are
optimised to enhance the sensitivity to anomalous couplings, so they bring a
significant contribution in constraining f,;. Finally, the additional improvement
in sensitivity brought by the V,,4H categories is demonstrated through the black
curve. We defined and optimised these categories to discern effects from the
anomalous contribution as well, and the high purity of some of the categories
helps constrain further possible values of f,;. The constrains at 68% and 95%
confidence level (CL) are extracted for —2A In £ values reaching 0.99 or 3.84 re-
spectively. Thus, values outside of the dashed lines on Fig. V.25 correspond to
the ranges expected to be excluded at the 95% CL. From these projections, if the
unblinded data are compatible with an SM-only hypothesis, the analysis will be
able to rule out the pure CP-odd hypothesis (|f,3| = 1) and set tight constraints
on the possible values of f,;.

The sensitivity of this analysis can be compared to anomalous coupling analy-
ses already performed for other decay channels of the H boson. In particular,
two analyses studied the full data set collected by the CMS experiment during
the three years of the Run2 inthe H — ZZ [27] and H — 77 [154] decay chan-
nels. The H — 77 analysis also includes combined results with the H — ZZ
channel. The three sets of expected results are extracted from Refs. [27, ]
and reported in Table V.11. As the study of anomalous couplings through the
H — v~ decay channel shows comparable sensitivity, its combination with the
results of these two analyses could tighten the constraints set on the values of
anomalous couplings.

V.7 Conclusion

This last chapter describes the strategy and expected results for the analysis of
the Higgs boson anomalous couplings with electroweak gauge bosons using the
Higgs boson decay in two photons and the full Run2 data set recorded by the
CMS experiment. In particular, a focus is given to my involvement in the design
of the analysis strategy targeting the V, ,4H production mode of the Higgs boson.
While following a common global approach of preselecting events, producing
a discriminant, and optimising categories, the strategy relies on non-standard
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Figure V.25 - Likelihood scan of the f,3 parameter. Different configurations are shown
to compare improvements brought by the optimised categories for the VBF and V, ,4H
production modes. In green, the likelihood is computed without the VBF and V,4H
categories. In blue, the VBF categories are included. The final likelihood scan using all
categories (including V,,4H ones) is represented by the black curve.

Parameter Expected constraints
68% CL 95% CL
fis [-1.7,1.3] x 107* [-4.0,3.3] x 107*

Table V.10 - Expected constraints on f,; at 68% and 95% CL.
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Analvsis Expected intervals for f,3
y 68% CL 95% CL
H— 7z [-8.1,8.1] x 10~* [-41.2,412] x 107*
H— 77 [-0.6,0.6] x 10~* [-23, 23] x107*
Combined [-0.5,0.5] x 10~* [-21, 21 x107*

Table V.11 - Expected constraints on f,3 at 68% and 95% CL for anomalous couplings
analysesintheH — ZZ [27]and H — 77 [154] decay channels.

steps. | developed and trained a multiclassifier DNN to classify events between
SM-like, BSM-like, and background-like classes. | also demonstrated that using a
mulitclassifier improved the sensitivity to f,; while training only one DNN, com-
pared to a more standard approach of training n-1 binary classifiers to separate
events between n classes. Then, from the output scores of the DNN, | imple-
mented a way to extract an estimator on the upper limit of f,;. It allows the
optimisation of the number, shape and definition of categories to enhance the
final sensitivity of the analysis.

Finally, after combining the V,,4H categories to the common framework, | ex-
tracted the expected results on f,; by applying common statistical inference
steps and using the optimised categories for the V,,4H process. The expected
results are computed with different sets of categories, and they show that the
ViagH categories bring additional constraints to the expected results of f,;5. The
sensitivity of the analysis is comparable to anomalous couplings analyses tar-
geting other decay channels, and thus, promising results with tight constraints
on the anomalous couplings are expected from the unblinded fit to data.

V.7 Conclusion

157



158



Conclusion

With this thesis, | have presented my contribution to enhancing the H — ~v
analysis of the CMS experiment, notably by proposing deep learning methods at
different steps of the global analysis framework. | have also described my partic-
ipation in the timing calibration of the CMS detector in the context of its future
upgrades through the development of a simulation framework to investigate
monitoring and correction possibilities of the high-precision clock distribution.

The general theoretical context regarding the SM and the current experimen-
tal status of the Higgs boson properties are briefly covered by the first chapter
of this thesis, allowing an introduction of the motivations for particle collider
experiments and how they deepen our knowledge of fundamental laws of the
Universe. The particular experimental context of this thesis, relying on data of
proton-proton collisions produced by the LHC and recorded by the CMS exper-
iment, is described in Chapter Il. This description also covers upgrades planned
for the CMS detector to adapt to a high-luminosity phase of the LHC. In particu-
lar, the CMS detector will rely on the timing information of particles to mitigate
the effects of a harsher data-taking environment. In this context, the simula-
tion framework described in Section. 1.3, pyDDMTD, provides a description of
a DDMTD based monitoring of the clock to control the jitter introduced in the
distribution chain and ensure a precise synchronisation of all detector compo-
nents. From the results of simple simulation studies, a basic DDMTD based
solution could already bring some corrections of the jitter with frequency com-
ponents above 10 Hz. The pyDDMTD simulation tool could now be used to inves-
tigate and compare different correction strategies based on DDMTD systems.

My contributions to the H — ~~ analysis of the CMS experiment are presented
in Chapters IV and V. Since they employ uncommon machine learning methods,
a general introduction to deep learning is provided in Chapter lll. Indeed, Chap-
ter IV introduces a method based on advanced deep learning models: GANSs.
This GAN is implemented to generate misidentified photons from events of a
control region in data to produce an accurate background sample for the H —
~v~ analysis. An evaluation strategy was defined to assess the performance of
the GAN, and the GAN is shown to learn how to generate convincing misidenti-
fied photons whose properties are correctly correlated with the rest of the event.
A comparison study between the GAN-based method and the method used in
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the last published H — v~ analyses shows that BDTs trained with the GAN sam-
ple perform better in separating background and signal events for the H — ~~
analysis.

Finally, this thesis presents preliminary results of an H — ~~ analysis studying
the couplings of the Higgs boson with the weak gauge bosons (Z and W) to deter-
mine if there is any contribution from anomalous couplings not expected by the
SM and in particular CP-odd couplings. Small anomalous couplings could indi-
cate a new source of CP-violation in the SM and signify that a fraction (f,3) of the
observed signal events have a CP-odd behaviour. The complete Run 2 dataset
is analysed, corresponding to 137fb™* of data collected with the CMS detector
in proton-proton collisions with a centre-of-mass energy of /s = 13TeV. My
contribution to this analysis concerns the design of the analysis strategy target-
ing events with a production of the Higgs boson in association with a Z or W
boson which decays hadronically. This strategy includes a DNN multiclassifier,
which relies on the properties of the events to class them as background, SM-
like signal or anomalous-like signal. The preliminary results are reported, with
expected constraints on f,; of [—0.17 x 1072,0.13 x 107°] at the 68% confidence
level. Therefore, tight constraints can be expected for the final results.
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