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Résumé

Résumé

0.1 Introduction
Récemment, les avancées dans le matériel de calcul, e.g., la vitesse des cartes graphiques

(GPU), ont profondément supporté le grand succès de l’apprentissage profond, en particulier des
réseaux de neurones profonds (DNNs). Ces derniers sont des algorithmes de calcul très com-
plexes, qui se composent de nombreux éléments appelés couches, dont chacune contient un grand
nombre de paramètres et d’opérations, pour pouvoir imiter dans quelque sens le fonctionnement
neurologique du cerveau humain. Les DNNs sont devenus la référence dans l’état de l’art con-
cernant une large palette de cas d’usages tels que la vision par ordinateur [1], [2], le traitement
du langage naturel [3], les mécanismes en oeuvre pour la voiture autonome [4] ou la robotique au
sens large [5]. Ces performances exceptionnelles sont d’une part liées aux avancées dans le do-
maine des algorithmes d’optimisation, et d’autre part soutenues par l’augmentation substantielle
de la complexité des réseaux de neurones. Ce dernier point se retrouve au travers divers éléments
de dimensionnement de la topologie du réseau, sa profondeur (i.e., le nombre des couches), sa
largeur (i.e., la nombre de neurones de chaque couche), le nombre de branches et l’hétérogénéité
de connexions entre les couches...

Actuellement, la majorité de déploiement des DNNs repose sur l’informatique déporté (cloud
computing) où des serveurs reçoivent les données brutes issues de capteurs, en vue de les traiter à
l’aide de plateformes matérielles puissantes dédiées, typiquement, des GPUs. Cependant, porter
l’inférence des DNNs au plus proche des capteurs semble de nos jours de plus en plus pertinent,
notamment pour des raisons d’efficacité énergétique, de préservation de la vie privée, de latence de
calcul et même lié aux problèmes de limitation de bande passante. Dans ce contexte, il est néces-
saire de faire face aux obstacles liés à la grande taille des DNNs, en particulier concernant le coût
mémoire et la charge conséquente de calculs qui se trouve dépasser souvent la capacité matérielle
disponible dans les systèmes embarqués. Cela attire une grande attention sur le traitement effi-
cace des DNNs. Différentes approches ont été proposées, en fonction des besoins en termes de
versatilité du système, des tâches d’inférence ciblées, du budget matériel disponible (mémoire et
complexité de calculs) et du niveau de la performance algorithmique en usage concret. Une des
approches consiste à considérer la topologie de l’architecture du réseau comme une boîte noire
en se focalisant uniquement sur l’accélération des noyaux de calcul et/ou sur l’optimisation du
flot de données au sein des processeurs, en vue d’atteindre le meilleur niveau de d’efficacité én-
ergétique de calcul (exprimé en TOPs/W). Par ailleurs, les travaux récents abordent également
la parcimonie au sein des DNNs, i.e., pour mieux profiter des paramètres/activations ayant une
valeur nulle. Enfin, d’autres travaux se focalisent sur des plateformes de calcul qui permettent de
supporter des architectures de réseaux impliquant différents types de précisions de calculs. Malgré
le fait que ces approches peuvent servir à une large palette de DNNs dans diverses applications,
ce avec une amélioration prometteuse en terme de consommation énergétique et d’efficacité de
calcul, le niveau d’efficacité est toujours limité à cause des contraintes inhérentes à l’architecture
elle-même. En effet, du fait du surparamétrage lié au grand nombre de paramètres et d’opérations
des DNNs, ce qui cause une forte redondance dans les poids du réseau et implique de facto le
phénomène de sur-apprentissage. En outre, puisque les architectures de DNNs sont conçues tout
d’abord pour les applications logicielles sans avoir une perspective matérielle, un effort consid-
érable est souvent nécessaire au niveau de la phase d’implémentation matérielle. Toutes ces raisons
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nous mène à un besoin identifié en co-conception matérielle-algorithmique afin de pouvoir déblo-
quer le niveau d’efficacité tout en renforçant le compromis entre la performance algorithmique
et l’efficacité énergétique de calculs. Cette approche a ouvert la voie à un champs de recherches
portant sur l’optimisation de la conception d’architectures de réseaux dédiées ainsi que la com-
pression d’architectures pré-existantes en vue de leur intégration sous contraintes. Cet axe de
recherche a notamment pour objectif final la conception de puces micro-électroniques dédiées à
des applications spécifiques (i.e., Application-Specific Integrated Circuits, ASICs).

Figure 1: Compromise matérielle-algorithmique de différentes plateformes d’accélération de
DNNs. (∗): Die micrographe de l’accélérateur générique Eyeriss [6]. (∗∗): Die micrographe
d’un chip de 4.53µW dédié pour la vérification de voix et le keyword spotting [7].

La Figure 1 présente une taxonomie des plateformes d’accélération de DNNs, en fonction
de l’ordre de grandeur des ressources matérielles, du niveau de performance algorithmique et du
degré de reprogrammabilité/versatilité. Les plateformes génériques comme les GPUs/TPUs ou
les nano-workstation permettent le déploiement d’une large gamme d’applications, ce avec une
haute performance algorithmique et un support de calcul générique permettant la programma-
tion de n’importe quelle type d’architecture de réseau. Cependant, ce type de plateforme requiert
typiquement un budget élevé en mémoire (i.e., >100Mb) et nécessite un niveau élevé de puis-
sance (i.e., ∼1-10W). A l’opposé, une méthodologie de conception type ASIC permet de satisfaire
au mieux les différentes contraintes matérielles applicatives extrêmes dans un contexte de sys-
tème embarqué (i.e., ∼10-100µW, ∼10kb-1Mb), mais au sacrifice de la versatilité algorithmique.
Par ailleurs, à l’interface des deux types de dispositifs précédents, on constate l’émergence de
processeurs compacts dédiés à l’IA, exhibant un niveau de reprogrammabilité relativement élevé
permettant le déploiement d’une diversité d’architectures, sous des contraintes matérielles restant
limitées (i.e., ∼10-100mW, ∼10Mb).

Dans le cadre particulier de cette thèse, nous visons à améliorer encore le compromis algorithmique-
matériel des accélérateurs de DNNs de type ASIC, en utilisant les méthodes les plus avancées à
l’état de l’art pour la compression de DNNs et de conception des modèles efficaces.

Dans la littérature scientifique, il est possible d’identifier deux grandes classes de méthodolo-
gies de conception de réseaux compacts. La première consiste à dimensionner directement une

2
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architecture compacte lors de sa conception. Cette architecture neuronale peut s’appuyer sur des
blocs élémentaires efficaces comme montrés par les modèles de MobileNet [8] ou ShuffleNet [9],
soit automatiquement en utilisant la recherche d’architectures (NAS) proposée par [10]. Par oppo-
sition, il est aussi possible de compresser un modèle existant pour réduire sa taille mémoire ainsi
que la complexité de calcul. Premièrement, la quantification (paramètres et données, i.e., des poids
et des activations) [11], [12], [13] semble un levier essentiel pour le portage frugal d’architectures.
Ensuite, l’élagage [14], [15], [16] est une autre technique utile à la simplification algorithmique,
qui vise à retirer des opérations de calculs, des poids ou des activations au sein de la topologie.
La forme de l’élagage peut se faire d’une manière statique [16], ou bien dynamique en prenant en
compte les caractéristiques des données en entrée [17], [18]. Par ailleurs, la factorisation est une
technique consistant à décomposer chaque tenseur de poids du DNNs en plusieurs sous-tenseurs
de tailles plus petites [19], [20]. Enfin, pour réduire spécifiquement le nombre de paramètres
du modèle, les travaux récents [21], [22] introduisent un modèle auxiliaire de plus petite taille
générant à la volée les poids du modèle principal. A noter que le chapitre 2 de cette thèse détaille
ces différents leviers algorithmiques en vue d’obtenir des modèles très compacts.

Dans ce manuscrit, nous avons choisi la quantification comme étant la technique pivot et cen-
trale, permettant de réduire la complexité du portage matériel d’une topologie de réseau. Tandis
que la plupart des travaux de l’état de l’art ne se focalisent que sur la quantification des poids et
des activations, nous proposons une approche plus globale permettant de s’assurer de l’absence de
couches non quantifiées présentes dans les DNNs modernes tel que la normalisation (typiquement
la Batch Normalization, BN [23]) et les connexions résiduelles [24]. Ce choix s’appuie notam-
ment sur l’hypothèse d’une plateforme matérielle n’embarquant que des opérateurs de calculs à
arithmétique réduite. Ces propositions sont présentées au travers de différents chapitres de cette
thèse, du Chapitre 3 au Chapitre 6 et en combinaison avec des blocs de convolution compacts
(Chapitre 5 et Chapitre 6). L’objectif de ce travail réside dans l’amélioration des compromis entre
performance algorithmique et efficacité en mémoire/calcul, tout en favorisant un haut niveau de
compatibilité matérielle des topologies investiguées. Enfin, dans le Chapitre 7, nous présentons
une ouverture sur des travaux préliminaires portant sur la compression de DNNs exploitant l’usage
de modèles auxiliaires et des générateurs automatiques de nombres pseudo-aléatoires (PRNG).

0.2 Co-conception matérielle-algorithmique des réseaux de neurones
0.2.1 Quantification des poids avec égalisation de l’histogramme des poids

La conception des modèles à faible précision est une approche qui vise à réduire la précision des
poids et des activations de 32-bit à 8-bit voire bien en deçà. Cela permet de réduire avantageuse-
ment à la fois le besoin de mémoire et aussi la complexité de calcul pour l’implémentation des
MACs (Multiply and Accumulate) dédiés. Il existe deux façons de quantifier un réseau, soit la
quantification post-entraînement soit l’usage d’opération de quantification lors de l’entrainement.
En général, la seconde technique fournit de biens meilleurs niveaux de performances algorith-
miques, en appliquant directement des opérations de quantification aux valeurs latentes dans leur
représentation flottantes (pour les poids et les activations) lors de la phase d’apprentissage. Cela a
pour effet de forcer le comportement du réseau à s’adapter en prenant en compte les effets causés
par la faible précision de calcul. Pour augmenter encore la performance de ces modèles dits quan-
tifiés, il est possible d’ajuster la fonction de quantification, ce pendant cette phase d’entraînement.
Les paramètres de la quantification peuvent donc s’adapter sous la minimisation de l’erreur de
quantification estimée [13], [25], ou bien d’une fonction de coût associée à la tâche d’inférence
ciblée [26].

Le Chapitre 3 présente une nouvelle méthode d’entraînement s’appuyant sur une quantification
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Résumé

Figure 2: Quantification linéaire symmétrique avec une distribution uniforme lorsque n-quantiles
(q−i,qi) sont symmétriques and coincident avec les seuils de quantification.

linéaire symétrique des poids. Concrètement, la fonction de quantification linéaire symétrique est
paramétrée par un facteur d’échelle s qui définit le pas entre des seuils de quantification. En par-
tant du constat que les méthodes de quantification présentes dans l’état de l’art n’exploitent pas au
mieux tous les niveaux de quantification disponibles (pouvant causer une limitation de l’efficacité
algorithmique), notre méthode appelée Histogram-Equalized Quantization (HEQ), réalise une
mise à jour de s en fonction de statistiques tirées sur la distribution des poids flottants de façon à
forcer les poids dans leurs vues quantifiées suivent une distribution plus uniforme. Par conséquent,
HEQ cherche en quelque sorte à maximiser l’entropie des poids quantifiés, de sorte à profiter au
maximum de tous les niveaux de quantifications disponibles. Figure 2 présente la condition pour
avoir une équi-distribution entre n niveaux de quantification, cela équivaut à forcer la coïncidence
entre les seuils de quantification et les n-quantiles (i.e., n−1 points qui partionnent l’histogramme
des poids flottants en n morceaux égaux). Prenant en compte cette condition, nous proposons une

approximation de s en fonction de n-quantiles, i.e., s = 4
(n−1)2 ∑

n−1
2

i=1 (∣q−i∣+qi). Cette approche est
générique et a l’avantage d’être compatible avec la plupart des architectures de DNNs. Les résul-
tats expérimentaux ont réussi à démontrer que HEQ permet d’obtenir des performances d’état de
l’art voire au delà. A noter que cette technique HEQ est utilisée pour entraîner divers types de
réseaux présenté dans cette thèse, allant de réseaux à précision mixte (Chapitre 4) à des modèles
compacts intégrant des couches récurrentes (Chapitre 6).

0.2.2 DNNs à précision mixte pour multi-tâche non-corrélé
Comme mentionné précédemment, les accélérateurs propres à une application sont strictement
limités en terme de la flexibilité. Concrètement, ces accélérateurs sont conçus spécifiquement
pour ne servir qu’à une seule tâche ou à un certain nombre de tâches corrélées telles que la détec-
tion du visage et la localisation de repères faciaux [27]. Dans un contexte où nous avons besoin
de réaliser des tâches non supposément corrélées telles que la classification et la compression des
images, il est difficile de concevoir une seule et même architecture de DNN dans un contexte de
ressources restreintes (e.g., mémoire, calcul). Le Chapitre 4 vise à proposer une architecture aug-
mentant d’une part la versatilité applicative d’accélérateurs dédiés à une application, et d’autre
part améliorer le compromis algorithmique-architecture (Figure 3). Dans ce cas, deux tâches al-
gorithmiques partagent une unique architecture d’encodeur, dont les poids peuvent être mis à jour
en fonction de la tâche d’inférence ciblée.
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Figure 3: Description schématique de l’encodeur multi-tâche à précision mixte, du classificateur
binarisé et du décodeur flottant pour la reconstruction d’image entière à partir des vecteurs de
compression par blocs.

L’élément clé dans ce chapitre est donc une structure dite d’encodeur qui se trouve être à pré-
cision mixte, conçu et dimensionné de façon précise. Cette topologie à précision mixte, construit
manuellement, intègre des poids quinaires (5 niveaux), ternaires (3 niveaux) et binaires ainsi que
des activations entre 1 et 2bit. Puisque les premières couches sont cruciales pour extraire directe-
ment des informations discriminantes à partir de données en entrée, plus de précision y est accordé
de façon à mieux guider l’entraînement du modèle vers un haut niveau de performance. En plus
de l’usage de la méthode HEQ (en Chapitre 3), cette topologie exploite une nouvelle fonction de
quantification des activations hautement compatible avec une implémentation matérielle (i.e., po-
sition du bit de poids fort). Ensuite, nous adressons l’obstacle des normalisations par batch dans
le contexte de la quantification, en proposant une approximation en puissance de 2 équivalente à
un déplacement de bit (bitshift). L’ensemble de ces propositions favorise de manière notable la
compatibilité matérielle de l’encodeur pour une implémentation de type RTL. Dans une configu-
ration où l’encodeur requiert une taille de mémoire de seulement 1Mb, nous obtenons un taux de
prédictions correctes de 87.5% sur la base de données Cifar10. D’un autre côté, nous démontrons
aussi qu’il est possible d’utiliser cette architecture d’encodeur pour compresser des images par
blocs tout en assurant une reconstruction de l’image entière à l’aide de notre décodeur PURENET.
Concrètement, PURENET peut rendre les images presque sans artéfacts de blocs, ce sous un flux
de données très faible, surpassant certaines méthodes existantes sous la contrainte d’un bitrate
constant par bloc.

0.2.3 Réseaux de neurones résiduels avec les portes logiques et factorisation de con-
volution compacte

Malgré le fait que les méthodes de compression de DNNs ont obtenu des résultats exceptionnels, la
compatibilité des modèles compressés reste une question ouverte. Une des raisons est que la méth-
ode de compression ne prend pas –pleinement– en compte la correspondance entre l’algorithme
et son implémentation en matérielle. Une autre raison est liée à l’architecture du modèle à com-
presser elle-même. Un exemple concret de cette limitation est l’implémentation matérielle des
connexions résiduelles (e.g., ResNet [24]) lorsque le modèle est fortement quantifié.

Par ailleurs, dans les Chapitre 5 et 6, nous proposons des architecture intégrant des chemins
résiduels compacts, dont les connexions se font uniquement à l’aide de portes logiques comme
OU, MUX et/ou des opérations compatibles avec le matériel comme le bitshift ou le bitcount (Fig-
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Figure 4: Le bloc résiduel élémentaire avec des portes logiques OU, MUX et l’opération bitshift.

ure 4). En détail, il s’agit d’un multiplexeur 2 vers 1, dont les entrées I0 et I1 correspondent à deux
chemins de calculs et dont le signal de contrôle binaire S est issu d’une unité de calcul TGAP
agissant directement sur l’entrée X. Cette structure est proposée en particulier pour des couches
de convolution 2D utilisées au sein d’architectures de réseau pour des tâches de classification
d’images dans le Chapitre 5 ainsi que pour des couches de convolution 3D dans le Chapitre 6.

En parallèle, et pour réduire drastiquement la taille du modèle, nous proposons en outre une
factorisation de convolution similaire à celle présentée dans ResNext [28], consistant à effectuer
une convolution par groupe 3× 3 entre deux convolution 1× 1. Cependant, cette factorisation
n’inclut ni les activations ni les normalisations. Enfin, afin de réduire encore le besoin en mémoire,
nous utilisons une structure d’automate cellulaire permettant de générer à la volée la matrice des
poids de la deuxième convolution 1×1. Cette combinaison de couches, adossée aux méthodes de
quantification déjà mentionnées permet une réduction drastique de la taille des réseaux ciblés, les
rendant plus fortement compatibles avec des systèmes embarqués contraints. Les résultats expéri-
mentaux reportés dans ce manuscrit confirment l’intérêt de cette optimisation conjointe, exploitant
différents leviers de conception de topologies, et ce pour divers types de couches de réseau (con-
volution 2D/3D, Long Short-Term Memory, LSTM).

0.2.4 Génération des poids de DNNs avec des modèles auxiliaire et PRNG

Le Chapitre 7 se concentre sur des travaux préliminaires portant sur une approche de compression
des DNNs exploratoire, davantage en rupture par rapport à l’état de l’art ainsi que les chapitres
précédents de cette thèse. Le concept général de cette approche est présenté dans la Figure 5, dont
les poids WWW du modèle principal ne sont pas directement stockés dans la mémoire, mais générés à
la volée à partir de la sortie d’un modèle auxiliaire qui prend quant à lui en entrée des séquences
aléatoires issues d’un PRNG (Pseudo-Random Number Generator). Deux déclinaisons de cette ap-
proche sont rapportés, pour les couches entièrement connectées et pour les couches de convolution
2D. Les résultats expérimentaux de ce chapitre démontrent qu’il est possible de réduire le besoin
de mémoire via cette approche, cependant, le surcoût calculatoire associé peut y être un frein.
C’est pourquoi cette approche requiert encore à l’heure actuelle davantage d’investigations scien-
tifiques, notamment s’agissant de son couplage avec les techniques de quantification, d’élagage
dynamique ou de mécanismes d’attention.
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Figure 5: Génération des poids d’une couche à l’aide d’un modèle auxiliaire et générateur automa-
tique de nombres pseudo-aléatoire (PRNG).

0.3 Conclusion et ouvertures
Ce manuscrit aborde donc la question du portage de l’inférence s’appuyant sur les techniques

d’apprentissage profond, au sein des systèmes embarqués à fortes contraintes matérielles, et béné-
ficiant d’une conception dédiée. Pour cela, il s’est tout d’abord agit d’analyser ce qui se fait dans
le domaine des puces d’accélération de réseaux de neurones, et leurs spécifications, en particulier
leur consommation en mémoire, en puissance et leur niveau requis en termes de versatilité ap-
plicative. Ces propriétés sont mentionnées en lien avec les méthodes d’optimisation tant au niveau
de l’implémentation matérielle qu’au niveau de la conception algorithmique. L’importance de la
conception conjointe entre l’algorithme et le matériel a pu être –encore une fois– démontré, no-
tamment grâce au déploiement concret des techniques de quantification étendues à l’architecture
dans son ensemble (y compris concernant les étages de normalisation, les connexions résiduelles
et les couches récurrentes). Ces propositions algorithmiques, compatibles avec un portage matériel
frugal, sont appliquées sur des architectures neuronales légères (factorisation de convolutions et
usage de poids générés à la volée) dans le but d’obtenir des modèles certes compacts mais restant
efficaces. Enfin, ce manuscrit propose une étude préliminaire sur l’utilisation de modèles auxili-
aires couplés à des PRNGs pour réduire la taille en mémoire des réseaux.

Différentes perspectives sont proposées tout au long de ce manuscrit pour continuer à améliorer
nos contributions. Au vu du travail de cette thèse mais aussi des avancées récentes de l’état de l’art
à ce sujet, il est désormais indéniable que les méthodes de quantification jouent un rôle crucial dans
la co-optimisation des réseaux de neurones en vue de leur portage sur cible matérielle. La littéra-
ture scientifique semble s’accorder sur le fait de l’importance d’adapter les fonctions de quantifi-
cation au cours de l’entraînement du modèle afin d’en augmenter sa capacité de représentation
des données. Réduire le gap entre le modèle flottant et le modèle quantifié reste une probléma-
tique importante, pouvant être abordé notamment en utilisant une quantification à précision mixte,
ou bien des connexions résiduelles à précision plus élevée pour mieux préserver la propagation
de l’information au travers du réseau. Par ailleurs, un point très peu abordé dans ce travail est
l’apprentissage par distillation des connaissances [29] qui semble cependant être aussi une voie
prometteuse et pertinente à explorer pour ce problème.

La recherche automatique d’architecture (Neural Architecture Search, NAS) est un des champs
de recherche les plus actifs en apprentissage profond actuellement. Et pour cause, ces algorithmes
ont pour tâche de permettre la conception et l’optimisation automatique des architectures, avec le
moins d’intervention humaine dans la boucle. Les avancées dans ce domaine viennent d’ouvrir la
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possibilité d’effectuer ces procédures de NAS avec un coût plus abordable que par le passé [30],
dépassant les solution issues d’un dimensionnement à la main. Les blocs et les modèles efficaces
proposés dans ce manuscrit peuvent donc bien évidemment s’intégrer dans le cadre d’un algo-
rithme de NAS, permettant d’élargir l’espace de recherche et de trouver le modèle le plus optimal
pour une tâche donnée, sous contraintes matérielles. En outre, et par rapport aux travaux dévelop-
pés dans cette thèse, nous pouvons également envisager d’utiliser des approches de NAS pour
optimiser l’architecture du modèle auxiliaire (cf. Chapitre 7).

Par ailleurs, le partage des poids [31], [32] est aussi un levier algorithmique encore assez
peu exploré pour réduire la redondance des paramètres de réseaux. A noter que le partage de
paramètres peut s’établir à trois niveaux: à l’intérieur d’une même couche, entre les couches d’un
réseau ou même entre différents réseaux. Dans le cadre de ce manuscrit, une extension possible
s’appuierait plutôt sur le deuxième niveau, en utilisant une seule et unique base de filtres convo-
lutifs pour une variété de réseaux auxiliaires. D’un autre côté, un partage de poids entre réseaux
peut être avantageux, typiquement en ce qui concerne un accélérateur multi-tâche (cf. Chapitre 4),
en vue de réduire le besoin mémoire total nécessaire au stockage des paramètres pour toutes les
tâches à adresser.

Enfin, au regard des résultats présentés dans ce manuscrit, il est difficile de remettre en cause
l’intérêt confirmé de combiner les différents leviers algorithmiques de l’état de l’art en vue d’atteindre
les meilleurs compromis performances/conso pour un portage matériel d’un réseau de neurones
profond. Cela nécessite non seulement une conception conjointe entre l’approche de compression
et l’architecture du réseau, mais aussi d’adapter en conséquence la procédure d’apprentissage et
les moyens de contournement utilisés pour limiter les effets du sur-apprentissage.
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1
Introduction

Recent advances in computational hardware platforms have greatly supported the remarkable suc-
cess of Deep Learning (DL) and Deep Neural Networks (DNNs) in the last few years. Nowadays,
DNNs have complex architecture that embeds a huge number of parameters and complex oper-
ations, in a sense to mimic the ability of human brain on extracting the relevant features from
the data. The performance of DNN models have been improving rapidly and can be typically ob-
served based on the start-of-the-art prediction accuracy on ImageNet [33] benchmark: from 63.3%
in 2012 (AlexNet [1]) to 90.88% in 2021 (CoAtNet-7 [34]), i.e., 25% after only a decade. Along
with the improvement of optimization algorithms, this remarkable improvement also relies on a
common rule of thumb: scale up the model in terms of depth (i.e., the number of layers), width
(i.e., the number of feature maps), the number of branches and skip connections. Such break-
through performance of DNNs results in an explosion of artificial intelligence (AI) applications
in different fields, including computer vision [1], [2], machine translation [3], speech recogni-
tion [35], self-driving cars [4] or robotics [5], without mentioning all data analysis use cases [36].

Although the mainstay deployment of DNNs is sending raw sensory data to cloud or server
equipped by generic-purpose and robust graphics processing units (GPUs), pushing DNN infer-
ence to the edge (e.g., smartphone, wearable devices, sensors) is increasingly demanded, for the
reason of energy-efficiency, privacy, latency or even limited bandwidth. However, this time we
have to deal with several hardware-related overheads of these resource-constrained systems. The
first key bottleneck is the memory-related cost. Modern DNNs have hundreds up to billions of
parameters: AlexNet contains 60M while CoAtNet-7 has up to 2.4G weights. Generally, each
weight is represented using floating-point (32b) representation, this means that the on-chip mem-
ory requirement to store the whole model, at the time of writing this thesis, is much larger than
1Gb. These numbers simply do not fit on-chip storage of low-power embedded systems, which
typically contain 1-10Mb of memory size. Consequently, off-chip costly DRAM accesses is re-
quired, which causes stringent impacts in terms of energy efficiency and latency.

Another key bottleneck is the computational cost, measured by both the number of opera-
tions and the complexity of each operations. For instance, ResNet-50 [24] takes 3.9G Multiply-
ACcumulate (MAC) operations to process a single 224×224 image. Running this model with data
from a much higher resolution camera thus requires a huge computation throughput which is far
beyond the capacity of embedded systems. Moreover, since the DNNs conventionally contain
floating-point 32-bit weights and activations, they also consume a large amount of computational
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resources. Concretely, a 32b MAC requires hundreds of Xilinx FPGA slices [37], hence dis-
advantageously increasing the footprint area and the energy consumption to perform the whole
computation.

Despite the aforementioned challenges, the field of efficient DNN processing has drawn great
attention in the last few years. Depending on the versatility, the targeted applications, the available
hardware resources and the expected level of algorithmic performance, different approaches have
been proposed. One approach is to treat DNN model as a black box and only focus on accelerating
the kernel computation and/or optimizing the dataflow of accelerator platforms to achieve the high-
est tera-operations per second per watt (TOPS/W) as the main efficiency Figure of Merit [38], [6].
Recent works also focus on the sparsity of the models, i.e., efficiently treating the computations
of zero-valued weights and activations [39]. Although this option can serve for general-purpose
DNN processing with promising improvement in terms of energy and computational efficiency
while preserving the algorithmic performance, the efficiency is still strictly upper-bounded by the
architecture of the models. Indeed, one of the main reasons for the robustness of DNN is due to
its over-parameterization with an increasingly huge number of parameters and operations. The
models usually exhibit redundant computations and large overfitting, i.e., they are biased by small
variations of the training examples and do not well generalize on unseen data. Moreover, since the
original model architectures are firstly designed only for software application without hardware
specification perspective, it requires considerable efforts on the implementation stage. Therefore,
jointly optimizing the DNN algorithm with hardware implementation perspective is ubiquitous to
unblock the efficiency limitation and boost the hardware-algorithm trade-offs. This approach has
created a large space for researches on DNN compression and efficient model architecture design,
mainly related to the design of Application-Specific Integrated Circuits (ASICs) for a certain range
of targeted tasks.

Figure 1.1 depicts the order of required budget versus algorithmic performance-genericity
level of different DNN processing platform. Despite the ability of serving for a wide range of ap-
plications with highest algorithmic quality and generic computational support for different types
of DNNs, general-purpose platforms such as large GPU/TPUs and nano-workstations require a
large amount of memory (i.e., ∼100Mb), power consumption (i.e., ∼1-10Mb or even more) and
large-sized footprint area. On the other hands, ASIC designs, including generic DNN accelera-
tors such as Eyeriss [6] and application-specific DNN accelerators such as the voice processing
system in [7], can better fulfill the resource-constrained devices, however, this is achieved by sac-
rificing the scalability as well as the application-versatility of the system. Concretely, generic
DNN chips with regrogrammability/reconfigurability can be modified to adapt to different DNN
architectures or applications, while ensuring a lower power (i.e., ∼10-100mW) and memory (i.e.,
∼10Mb) requirement compared to GPUs/TPUs or nano-workstation. In the most extreme case,
application-specific accelerators, with a highest level of hardware-algorithm customization, are
specifically designed for some targeted tasks. They achieve a lowest power consumption level
(i.e., ∼ 10−100µW) and smallest memory budget (i.e., ∼10kb-1Mb), by sacrificing even the re-
configurability while optimizing both hardware and DNN algorithms according to the estimated
complexity of the targeted tasks. In this thesis, we aim at improving the hardware-algorithmic
trade-offs of DNN-based ASIC accelerators, by leveraging different model compression and effi-
cient architecture design methods.

Model quantization is a relevant approach to compress the model by reducing the precision of
model’s weights and/or activations from the original 32-bit encoding to 8-bit [40] or less [41], [12].
This way, compared to the full-precision model, we advantageously reduce the memory-related
cost so as the computational complexity, the power consumption and footprint.
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Figure 1.1: Typical hardware-algorithmic trade-offs of different DNN processing platforms. (∗):
Die micrograph of Eyeriss DNN accelerator [6]. (∗∗): Layout of the 4.53µW accelerator enabling
both speaker verification and keyword spotting [7].

Network pruning is another relevant approach to alleviate the hardware overheads by reducing
the number of operations, operands and weights in DNNs. This approach is proposed based on
the observation that DNNs usually exhibits sparsity and redundancy, and the models are largely
overfitted with a densely-connected architecture. The pruned network contains less parameters
and operations compared to its densely-connected counterpart, and in the most general case can
be accelerated by sparse-aware matrix calculator [42], [43].

Efficient architecture design aims at alleviating the hardware-expensive of canonical models,
mainly the convolutional layers, by introducing alternative architectures leveraging less parame-
ters and computations [8], [9] or favoring the feature maps reuse [44]. Beyond the aforementioned
hand-crafted designs, recent works turn to Neural Architecture Search (NAS [10]) enabling us
to automatically searching for the best architecture given some hardware-related constraints (i.e.,
model size, number of MACs, energy or latency).

These model compression methods and efficient architecture design schemes will be discussed
later in detail in Chapter 2.

1.1 Problematic
Despite tremendous progress with remarkable results in the last few years, there still exists

many shortcomings for the design of hardware-aware DNNs and model compression methods for
ASIC-based platforms. For instance, most of the model compression methods focus on existing
large models to achieve extremely high compression rates, however, the compressed network may
not be easily implemented from a hardware point of view. In some cases, the additional elements
introduced by the compression procedure may result in a considerable deficiency of the DNN pro-
cessing. A practical question has been proposed: should we continue to use this paradigm, or is it
better to firstly propose a new hardware-compliant, light-weight model architecture to which we
further apply compression methods at a moderate rate?

There is another issue that is more related to the applicability of the ASIC designs. Currently,
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most of ASIC accelerators are dedicated to a single task (e.g., image classification), or some cor-
related tasks (e.g. face detection and alignment) thanks to the feature-sharing property of these
applications. An open question is whether an application-specific accelerator can be used to deploy
DNN processing of uncorrelated tasks such as the mid-level image classification and the low-level
image compression, while always capping hardware constraints. Since the task’s complexity and
the computational complexity of these uncorrelated tasks are different, it is a real challenge to
build a single hardware-constrained model topology that can fulfill the required algorithmic per-
formance of both tasks.

This thesis makes use of network quantization as one of the key model compression technique
for the design of hardware-compliant DNNs. Although obtaining excellent performance, the hard-
ware compatibility of some previously proposed quantizers is still questionable. Besides, how
to determine the optimal precision of weights/activations of every layers is challenging. More-
over, most of existing works only focus on the quantization of model’s weights and activations,
while there is a lack of attention to other key elements in modern DNNs such as the Batch Nor-
malization (BN) and the skip connections. For low-precision accelerators, these operations may
introduce new hardware overheads even though the weights and activations are all quantized.

Beyond network acceleration techniques that are well studied like quantization and pruning,
there are rooms for proposing new research directions, for example the use of weight-generation
network [21] and online-generated weights. The works in this thesis attempt to answer all the
aforementioned questions and pave the way to future research directions.

1.2 Contributions and Thesis Outline
This thesis explores the design of light-weight DNNs taking advantages of a hardware-algorithm

co-optimization to perform on-chip image/video processing. To this end, we firstly propose a novel
linear symmetric quantization for weights, so-called Histogram-Equalized Quantization (HEQ), to
favor more information-carrying capacity in the quantized weights. This quantization scheme is
then applied to obtain the ternary and quinary weights in our proposed models. We also replace
the hardware-expensive BN by the bit-shift approximation for low-precision fully-quantized neu-
ral networks. Moreover, we introduce two novel logic-gated residual connections using the OR
and the Multiplexer gates, allowing to perform the skip connections with negligible implementa-
tion cost while keeping a homogeneous bit-width of intermediate data. To reduce furthermore the
model size and the computational cost, we also propose a light-weight convolutional factorization
which leverages on-line generated weights via Cellular Automaton. These hardware-algorithmic
enablers, when combined together, enable us to design hardware-compatible networks with model
size and computational cost fitting embedded systems. Finally, we explore the use of weight gen-
eration networks along with Pseudo Random Number Generator (PRNG) to compress the weights
of DNNs. This thesis is organized as follows:

Chapter 2 presents a background of Deep Learning, the current DNN accelerators and the model com-
pression/acceleration landscape. It first introduces the key concepts of the DNNs, including
basic components such as layers and operations, existing model architectures, datasets and
training systems that we used in this thesis. Next, we survey some common types of DNN
accelerators, focusing on the compromise between hardware resources and algorithmic flex-
ibility. Next, we provide a non-exhaustive list of related works in model compression and ac-
celeration techniques, involving quantization, pruning, efficient architecture design/search,
weight kernel decomposition and weight generation network...

Chapter 3 proposes a novel quantization method favoring the uniform distribution between output lev-
els to increase the information-carrying capacity of the quantized weights, namely Histogram-
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Equalized Quantization (HEQ). It automatically adjusts the step size of the quantization
mapping during the training process based on the statistics of the real-valued proxy weights,
such that the resulting quantized values are more equally distributed. This weight equaliza-
tion scheme can be considered as a regularizer applied indirectly to the quantized weights.
We provide experimental results to demonstrate the effectiveness of this adaptive QAT
method compared to SOTA weight quantization schemes.

Chapter 4 shows that a compact DNN-based ASIC design can still serve for two uncorrelated appli-
cations: image classification and patch-based compression. The central proposition of this
chapter is a mixed-precision, fully-quantized encoder topology making use of the proposed
HEQ and binary networks along with the hardware-friendly Half-Wave Most-Significant-
Bit (HWMSB) activation quantization and Bit-Shift Normalization. The reconstruction of
full-resolution image is performed remotely by a dedicated decoder. Several simulation
are carried out to show the possible degree of application-versatility for a compact neural
network architecture towards ASIC designs. It also highlights the relevance of a careful
hardware/algorithm co-design to reach the best compromise between hardware implemen-
tation complexity and algorithmic performance.

Chapter 5 firstly tackles the hardware mapping of the skip connections in the context of quantized neu-
ral networks. It typically introduces new residual networks of n-bit activations, whose skip
connections can be easily implemented by integer operations, bitshift and logic gates (MUX,
OR) rather than floating-point arithmetic hardware. Besides, we also propose a light-weight
convolution factorization leveraging fixed-“random” weights which are generated on-the-fly
via a Cellular Automaton. These hardware-compliant architectures, when combined with
the proposed HEQ and other quantization techniques, enable an efficient model which may
achieve better model size-accuracy trade-offs compared to previous works, while offering
a better implementation compatibility. This also highlights the importance of a co-design
of the model architecture and the compression techniques in improving the efficiency of
compact neural networks.

Chapter 6 extends the proposed model architecture in Chapter 5 for embedded video inference. We
first propose a Conv3D-LSTM model architecture, whose the convolutional part is a 3D ver-
sion of the light-weight model in Chapter 5. In particular, to obtain a fully-binarized model,
we also propose a method for quantizing both weights and hidden values of the Long Short-
Term Memory (LSTM) layers. To the best of our knowledge, this is one of the first works
on fully quantizing the LSTM for video classification. In order to alleviate severe perfor-
mance degradation, we present a multi-stage training algorithm which gradually replace
full-precision components of the model by their corresponding quantized version, then fine-
tune the model to recover the performance level. Simulation results show the possibility of
designing extremely low-precision Conv3D-LSTM model for embedded video processing.

Chapter 7 exploits the possibility of compressing DNNs through the use of a weight generation net-
work, which transforms the random embedding issued from PRNG to the primary model’s
parameters. We present two examples of the weight generation network for the case of
Fully-Connected and 2D Convolution layers. These preliminary results show that it is pos-
sible to obtain a significant compression rate, however, the additional computational cost is
a major downside and needs to be addressed by integrating other compression techniques
such as quantization or dynamic pruning into the weight generation model.

Chapter 8 summarizes the thesis problematic and contributions before discussing possible extensions
that are not fully addressed through this thesis, as well as future direction for DNN com-
pression/ acceleration towards efficient embedded inference.
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2
Background

In this chapter, we first introduce some basic notions of Deep Learn-
ing, from the common layers to the complex model architectures and
the learning process. We also present the datasets as well as the
Deep Learning frameworks used throughout this thesis. We then pro-
vide a review on current DNN accelerators which can be categorized
into three classes based on their application-versatility and flexi-
bility. Finally, we systematically present state-of-the-art hardware-
algorithm enablers facilitating embedded DNN processing.
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Chapter 2. Background

2.1 Overview of Deep Neural Networks
Neural network (NN) is a biologically-inspired computation algorithm which emulates the

functionality of the brain for learning and solving problems. Figure 2.1 shows the typical scheme
of a simple neural networks. The basic element in NN is neuron. Each neuron receives the
input signals from predecessor neurons, performs computations on those signals and generates
an output. This output may then branch out and connect to several successor neurons. Each
connection is characterized by a weight corresponding to the scaling factor applied to the input
signal. In the most popular case, neuron’s computation consists of a weighted sum of the inputs
followed by a nonlinear activation function. Neurons are organized into layers. Generally, neurons
in the same layer share the same type of operation and are not connected. The neurons in the input
layer receive signals from the input data, propagates them to the neurons in the hidden layers of
the model, before ultimately reaching the output layer with the desired outcomes to the user. The
number of neurons (i.e., dimensionality) in each layer defines the width while the number of hidden
layers gives the depth of the model. A model is considered as deep neural network (DNN) if the
number of hidden layers is large (e.g., typically more than three). Modern deep neural networks
may have up to thousands of layers.

Figure 2.1: Example of a simple neural networks with 2 hidden layers. Neuron’s computation
involves applying a nonlinear activation function f to the weighted sum of the input values.

The NN depicted in Figure 2.1 contains only fully-connected layers, where each neuron in
a layer is connected to all neurons of the previous layer. Depending on the nature of data, it is
necessary to introduce different types of layer such as the 2D Convolution to extract the local cor-
relation of signals, or a recurrent neural networks (RNN) to keep track long-term dependencies.
Designing the model architecture consists of determining the number of layers, dimensionality
of each layer, type of layers and connections between layers, type of activation functions... This
architecture remains unchanged when the model learns to perform a given task. At the beginning,
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these weights are randomly initialized but during the learning process or training, they are ad-
justed in response to some learning stimulus. The training of DNNs is a difficult task and deeply
depends on the initialization of the parameters and the model architecture as well. Concretely, due
to the non-convex optimization nature of the training process, an initial point can allows for the
model to converge or not. Advanced initialization techniques such as [45] and [46] consider the
impact of activation functions and the layer’s dimensionality to define the statistics of the random
initialization.

2.1.1 Layers
Let us consider a layer with index l which performs a linear operation h followed by a nonlinear
activation function f . Denote XXX l the input of the layer, WWW l the layer’s kernel and bbbl the layer’s
bias, the output XXX l+1 can be described as follows:

XXX l+1 = f (ZZZl+1) = f (h(XXX l,WWW l)+bbbl) (2.1)

The transformation ZZZl+1 = h(XXX l,WWW l)+bbbl , where ZZZl+1 is termed as the pre-activation, defines
the layer type and in general, it can be equivalently represented under the form of a matrix-to-
vector multiplication where the weight WWW l can be organized into a transformation matrix. For the
sake of simplicity, in the following subsections, we omit the bias bbbl and only focus on the opera-
tion h(XXX l,WWW l) of the common layers.

Fully connected (Dense) layer

Let us consider a fully connected (FC) layer which takes the input xxxl ∈Rnl and outputs xxxl+1 ∈Rnl+1 .
The weight matrix of this FC layer is WWW l ∈Rnl×nl+1 , corresponding to nlnl+1 learnable parameters.
The following equation describes the linear operation h(xxxl,WWW l) of this layer:

h(xxxl,WWW l) =WWW T
l xxxl (2.2)

Since this layer performs nl+1 projections of support size nl , the number of MAC operations is
therefore nlnl+1. This way, each output unit is a weighted sum of all input features. The dense
layer is often used at the end the model, where the high-level features are already extracted and
we want to combine them to obtain the final output of the network.

Convolutional layers

Convolutional layers make use of the convolution in place of the linear operation h. In practice,
this specialized operation is employed to process the data having a grid-like topology such as
image (with 2-D grid of pixels) or video (with 3-D time-space grid). It consists in sliding a fil-
ter (or filter kernel) along all positions of the data and compute the dot products with the local
units. Mathematically speaking, the discrete convolution can be represented as a multiplication by
a block-circulant matrix, where the matrix is very sparse (i.e. many entries are equal to zero since
the kernel size is smaller than that of the image) and has several entries constrained to be equal to
the others. This operation is desired because it allows to keep track where the local features appear
inside the data while using the same parameter for all locations. A neural network consisting of
convolutional layers is generally termed as Convolutional Neural Network (CNN).

The 2D convolutional (Conv2D) layer is used in the context of images, where the input XXX l is a
3D tensor XXX l ∈RHl×Vl×Cl , with Cl denotes the number of input channels (or feature maps), Hl and Vl
are respectively the height and the width of the input feature maps. The weight tensor (also called
kernel) WWW l ∈Rh×v×Cl×Cl+1 is a 4D tensor where h×v represents the filter size and Cl+1 denotes the
number of output channels. This kernel contains hvClCl+1 learnable parameters. Each unit of the
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pre-activation ZZZl+1 ∈RHl+1×Vl+1×Cl+1 is then computed as follows:

Zl+1,i, j,c =
cl

∑
k=1
(WWW l,∶,∶,k,c ∗XXX l,∶,∶,k)(i, j) =

cl

∑
k=1

h

∑
m=1

w

∑
n=1

Wl,m,n,k,cXl,i+m, j+n,k (2.3)

where Hl+1×Vl+1 is the spatial resolution of the output feature maps and ∗ denotes the convolution.
Each output feature map is connected to all input channels in a fully-connected manner similar to
the case of FC layer (Figure 2.2a). The number of MACs of this Conv2D layer is Hl+1Vl+1Cl+1hvCl .
To reduce the number of parameters and MAC operations due to this dense connection scheme,
the grouped convolution (GConv) has been introduced, in which the computation of each output
channel only relates to the input channels within the group. Figure 2.2b depicts a grouped convo-
lution where the connection pattern is defined in a structured manner. In the more general case,
the group structure can be defined randomly or through the learning process [47], [48].

The 3D convolution (Conv3D [49]) is another type of convolutional layers where the kernel
slides in three dimensions as opposed to two dimensions in the case of Conv2D. One example use
case is video processing where each sample contains several contiguous frames in time. Therefore,
it is necessary to expand the convolution along the temporal direction to learn the spatio-temporal
features.

(a) Regular convolution (b) Grouped convolution

Figure 2.2: Computational relationship between input and output channel maps in the case of a
2D convolution with 8 input channels and 4 output channels. a) regular convolution with dense
connection; b) structurally grouped convolution with sparser connections. The number of connec-
tions is reduced by a factor equal to the number of groups (g = 2).

Depthwise and separable convolution layers

In the case of depthwise convolution (DWConv) layer, the spatial convolution is separately per-
formed on one channel at a time, therefore there is no information mixture across different input
channels. Given the input tensor XXX l ∈ RHl×Vl×Cl , a depthwise convolution layer with the depth
multiplier dm contains the kernel WWW l ∈Rh×v×Cl×dm . The output of this layer is computed as follows:

• Split the input into Cl individual channels. Each channel can be considered as a 3D tensor
of size Hl ×Vl ×1.

• Convolve each input channel XXX l,∶,∶,c with the corresponding depthwise kernel WWW l,∶,∶,c,∶ to ob-
tain dm output channels.

• Concatenate these outputs along the channel dimension to obtain a single output of dmCl
feature maps.
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Depthwise separable convolution (DSConv [50]) consists of a depthwise convolution with the
depth multiplier dm = 1 followed by a 1×1 (pointwise) convolution mapping the number of chan-
nels from Cl to Cl+1. It is proposed by hypothesizing that the spatial correlation and the cross-
channel correlation of the regular convolution can be separable. In this case, the depthwise convo-
lution is used to extract the spatial features while the pointwise convolution ensures the correlation
between all input channels. Compared to the regular Conv2D, this DSConv layer contains only
hvCl +ClCl+1 parameters and requires only Hl+1Vl+1Clhv+Hl+1Vl+1Cl+1Cl MACs.

Pooling layers

Pooling is a way to downsample the output of the convolutional layer. Typically, the pooling
function summarizes the data over a whole neighborhood by using the statistical features of that
region. For example, the max pooling operation takes the maximum value over a window whereas
the average pooling outputs the average value within that window. Since the maximum value and
the average value do not change if we shuffle the values within a window, these pooling operations
helps to obtain the feature representation that is invariant to small translations of the input. This
property is useful in some context, for example image recognition, where we only need to know
the presence of some certain features rather than their exact location. Moreover, the cascade of
convolution and pooling layers allows to learn compact representation of the data with more gen-
eral and abstract features. Since the pooling reduces the dimensionality of the data, it also helps to
decrease the computational cost as well as the memory needs to store data for the deeper layers.
More concretely, the spatial resolution of data is gradually decreased using pooling layers while
the number of channels is generally increased along the depth dimension of a CNN.

Normalization layers

Modern deep neural networks has complex architectures with several layers. This also makes
their training difficult because the distribution of the layer’s inputs may easily change with the
parameter update during training. Besides, since the input features may have different ranges, the
network is biased towards the features of higher numerical values. Normalizing the layer inputs is
a relevant approach to resolve these aforementioned issues and accelerate the learning process.

Batch Normalization (BN [23]) is the first introduced and also the most common type of
normalization in deep learning. It standardizes the inputs to a layer for every mini-batch during
the training procedure, using the statistics mean and variance of every feature in the mini-batch.
Consider a mini-batch of size M. Denote XXX(m) as the input tensor of the sample m (1 ≤ m ≤M),
and x(m)i is a feature. During the training phase, the BN transform can be described as follows

µi =
1
M

M

∑
m=1

x(m)i (2.4)

σ
2
i =

1
M

M

∑
m=1
(x(m)i −µi)

2
(2.5)

y(m)i = γi
x(m)i −µi
√

σ2
i +ε

+βi (2.6)

where µi and σ
2
i are respectively the mean and the variance of the feature computed over the

current mini-batch. The scale γi and bias βi are learnable parameters which make sure that the
transformation can represent the identity transform, hence preserving the representation power of
the network. The constant ε is a small positive value to avoid dividing by zero. At inference time,
the BN layer normalizes its input features using the moving mean E[xi] and the moving variance
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Var[xi] recorded during the training process. These statistics are observed over all mini-batches
of the training data set and fixed during inference. Therefore, at inference time, the BN simply
corresponds to a linear transform applied to each input feature

y(m)i =
γi

√
Var[xi]+ε

x(m)i +(βi−
γiE[xi]

√
Var[xi]+ε

) (2.7)

In pratice, if the BN is used after a Conv2D layer, the statistics µi and σ
2
i are separately computed

on every channel, i.e., x(m)i is a 2D feature map. If the BN is used after the FC layer, these statistics
are independently computed for every single neuron.

The use of BN has significantly eased the training of DNNs. One of the most popular hypoth-
esis for BN’s success is that it allows smoothing the optimization landscape [51]. Additionally,
in order to keep the distribution of the intermediate values stable, the model only needs to learn
the parameters β and γ rather than the whole weights and biases of several layers. As a result,
BN reduces layer interdependence and simplifies the job of the optimizer. Note that, while BN
computes the mean and the variance across the batch dimension, other techniques have also been
proposed which normalize the features in a batch-independent manner. For example, Layer Nor-
malization [52] computes the mean and the variance along all hidden units of the layer, while
Instance Normalization [53] computes these statistics independently for each feature map and
Group Normalization [54] operates in a group-wise manner. Besides these feature normalization
techniques, [55] proposes to normalize the weights as a reparameterization to improve the opti-
mizability of the network. In the scope of this thesis, we make use of the BN as the preference
choice of model’s normalization.

2.1.2 Activation functions
If a neural network only contains linear layers such as fully-connected layers and convolutional
layers, then it can be equivalently constructed by using only a single linear layer. Therefore,
it is necessary to insert the non-linearity between the linear operations, in order to improve the
representation power of the model and establish a nonlinear mapping between the input and the
output, which is generally the behavior of most systems in nature, including the brain. In neural
networks, this non-linearity is introduced by using the element-wise activation function. The
notion of activation comes from the biological inspiration of neuron: if the weighted sum of
the input signals and the bias exceeds a certain threshold, the neuron is activated and outputs
a response. Generally speaking, an activation function is a scalar, non-linear, monotonic and
differentiable function.

Common continuous activation functions can be loosely divided into two categories: saturated
functions and non-saturated functions. Intuitively, the graph of saturated functions stays within a
horizontal band, while the graph of unbounded counterparts does not. Apart from these continu-
ous functions, recent works also make use of quantized/discrete mappings to obtain low-precision
DNNs satisfying hardware-related constraints.

Saturated activation functions

One of the most popular activation function is the sigmoid function:

σ(x) =
1

1+e−x (2.8)

The sigmoid function is a continuous function with the output value bounded in the interval (0,1).
One noticeable property of this function is that it works in linear regime around the zero while
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saturating (with vanishing gradient) when it comes far from the zero area. This hardens the learn-
ing process and limits the use of sigmoid function in deep neural networks, except for the output
layer. Besides, its computation is also complicated as it leverages the exponential function.

To simplify the computation of the sigmoid, an approximated version called hard sigmoid has
been proposed:

hardsigmoid(x) =Clip(αx+0.5,0,1) (2.9)

where the Clip function is defined as Clip(x,a,b) =max(a,min(x,b)) with a < b are two clipping
thresholds. The constant α controls the slope of the linear regime.

Hyperbolic tangent (or tanh) is another popular bounded activation function:

tanh(x) =
ex−e−x

ex+e−x (2.10)

This function is also differentiable everywhere and has output range between −1 and 1. Compared
to the case of sigmoid, the hyperbolic tangent function has a linear regime around the zero but
with a greater slope, while the saturation region is larger. This strengthens the vanishing gradient
problem when input values come far from the zero point. Similar to the case of sigmoid, this
function has a simplified version called hard tanh defined as follows

hardtanh(x) =Clip(αx,−1,1) (2.11)

Softsign is another saturated activation function that is used in this thesis

softsign(x) =
x
∣x∣+1

(2.12)

Non-saturated activation functions

One of the main drawback of these aforementioned saturated functions is that they allow to easily
activate the neuron (with a nonzero output value) while do not well preserving the magnitude of
the input signal, making it difficult to learn high relevant feature representations. To address these
issues, the Rectifier Linear Unit (ReLU) has been introduced

ReLU(x) =max(x,0) (2.13)

which applies the identity to positive arguments while zeroing out all negative values. This way,
the positive-part function lets positive input pass without modulating it, hence preserving the mag-
nitude (hence the importance) of the features. The negative input is cut down, keeping the neuron
inactivated and hence helping the model to learn the presence of some features within the data.
Another benefit of ReLU is that both the function itself and its derivatives are computationally
inexpensive compared to the previous saturated counterparts.

However, since the gradient of the negative part is strictly zero, ReLU function is also prone to
the gradient vanishing problem. The LeakyReLU [56] (or LReLU) has been proposed to resolve
this issue, by introducing a small slope (typically α = 0.01) for the negative part and therefore
sacrificing the sparsity of the output

LReLU(x;α) =

⎧⎪⎪
⎨
⎪⎪⎩

x if x ≥ 0,
αx otherwise.

(2.14)

Furthermore, [46] introduces the Parametric ReLU (PReLU) which learns the slope parameter α

rather than fixing it.
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Quantized activation functions and the Straight-Through Estimator (STE)

Although there exists a biological inspiration that human brain stores information in a discrete
form [57], [58], quantized activation functions are mainly used in modern DNNs for the reason of
hardware efficiency within restricted computational resources. Clearly, moving from full-precision
representations to low-precision values allows to drastically reduce both the memory requirement,
latency and computational complexity.

One of the most popular quantized activation functions is the binary sign function:

sign(x) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if x ≥ 0,
−1 otherwise.

(2.15)

It is easy to see that the derivative of this piece-wise constant function is zero almost every-
where, making it inappropriate to be used in the neural networks. Concretely, due to the chain
rule, the gradient of the cost function with respect to the weights and activations before the sign
operation are also zero, preventing the model from learning. One of the most popular approach to
address this issue is using the Straight-Through Estimator (STE) technique [59]. Concretely, STE
firstly chooses a continuous approximation for the discrete mapping, then replaces the almost-
everywhere-zero derivative of the quantization function with the derivative of this approximation.
In the case of the sign function, we choose the clipped identity (hardtanh in Eq. 2.11 with α = 1)
as its approximation (Figure 2.3a). The STE derivative of the sign function is computed as follows

∂ sign(x)
∂x

=

⎧⎪⎪
⎨
⎪⎪⎩

1 if ∣x∣ ≤ 1,
0 otherwise.

(2.16)

which allows the gradient to pass through in the clipping range [−1,1] (see Figure 2.3b). Al-
though this STE derivative does not allow to obtain the exact gradient with respect to the cost
function, [60] proves that the resulting coarse gradient still provides a descent direction for min-
imizing the cost. In that context, it is noteworthy mentioning that the hyperbolic tangent and the
softsign can be considered as soft approximations of the sign function.

Another well-known binary activation function is the heaviside

heaviside(x) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if x ≥ 0,
0 otherwise

(2.17)

which promotes the sparsity (like ReLU) as it throws away all negative values. This function can
be approximated by the hard sigmoid function (cf. Eq. 2.9) with the slope α = 0.5. The STE
gradient of this function is defined as follows

∂heaviside(x)
∂x

=

⎧⎪⎪
⎨
⎪⎪⎩

1 if ∣x∣ ≤ 1,
0 otherwise

(2.18)

where we still keep the derivative equal to 1 in the clipping range [−1,1] rather than 0.5, allowing
to pass through the gradient without decreasing its magnitude (hence slowing down the parameter
update).

2.1.3 Loss function and regularization for DNNs

Denote YYY (1),YYY (2)...YYY (N) ∈ RnL the set of a DNN’s output associated to a training dataset of N
samples, where nL is the dimensionality of the output layer. In the supervised learning, each
training sample is associated with a target output ŶYY

(i)
. The per-example loss function ℓ measures
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(a) Sign function (b) STE derivative

Figure 2.3: Sign function and its approximated derivative using STE technique. a) the clipped
identity is considered as a continuous approximation of the sign function. b) STE derivative of the
sign function allowing the gradient to pass through within the clipping range [−1,1].

the difference between the predicted output YYY (i) and the target ŶYY
(i)

corresponding to that input.
The goal of the learning algorithm is to reduce the empirical risk Lsup computed as the average
loss over the training datasets:

Lsup =
1
N

N

∑
i=1

ℓ(YYY (i),ŶYY
(i)
) (2.19)

The following loss function are commonly used to train the DNNs:

• Euclidean distance: this loss is commonly used for regression rather than classification. In
this case, the empirical risk is also called as Mean Squared Error (MSE).

ℓ(YYY (i),ŶYY
(i)
) =

nL

∑
j=1
(Y (i)j −Ŷ (i)j )

2 (2.20)

• Cross-entropy: this is one of the most common choice for classification problems. This
loss requires that the output of the model is normalized in the range of [0,1] to represent the
predicted probability, by setting the output activation function as the softmax in the case of
multi-class classification or the sigmoid in the case of binary classification.

ℓ(YYY (i),ŶYY
(i)
) = −

nL

∑
j=1
(Ŷ (i)j log(Y (i)j )+(1−Ŷ (i)j )log(1−Y (i)j )) (2.21)

• Squared hinge loss: this loss is used for maximum-margin classification (e.g., for support
vector machines [61]). Unlike the cross-entropy loss, the squared hinge loss does not require
that the final output is normalized in [0,1]. Denote yi as the class label of the i-th training
example. The squared hinge loss imposes a safety margin (typically one) between the score
of the correct category and the incorrect ones as follows:

ℓ(YYY (i),ŶYY
(i)
) =∑

j≠yi

[max(0,Y (i)j −Ŷ (i)yi
+1)]

2
(2.22)
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(a) Heaviside function (b) STE derivative of the Heaviside function

Figure 2.4: Heaviside function and its approximated derivative using STE technique. a) the hard
sigmoid is considered as a continuous approximation of the Heaviside function. b) STE derivative
of the Heaviside function allowing the gradient to pass through within the clipping range [−1,1].

Note that, minimizing the empirical risk is not the only goal of the learning procedure. As
previously mentioned, the generalizability is also an important aspect when training the model.
Typically, an over-parameterized model may rapidly achieve a very good performance on training
set, while predicting poorly on unseen data. It is thus crucial to apply regularization techniques to
force the model to learn only the most representative features, or to reduce the generalization gap.
In both cases, this can be done through the use of data augmentation [62], or dropout techniques
[63], [64]. Another choice is to add a penalty term P to the objective function that we aim at
minimizing, where P may be a function of the weights or activations. Generally, the objective
function can be expressed as follows

L = Lsup+λP (2.23)

where λ is the hyper-parameter defining the relative contribution of the regularization term.

2.1.4 Learning procedure
Most of the learnable parameters of the network, except for scales and offsets in the Batch Nor-
malization, are randomly initialized before being adjusted during the learning process, based on
the minimization of the lost function on the training set. For this purpose, we make use of gra-
dient descent, a first-order iterative algorithm for finding the local minimum of a differentiable
function, by moving in the opposite direction of the gradient (exact or approximated). Since the
training set usually contains a large number of examples, the computation of the cost function
and its partial gradients over all examples is very expensive. Such a complete pass of the whole
training set through the gradient descent algorithm is called an epoch. In practice, at every epoch,
we randomly divide the training set of N examples into several non-overlapping mini-batches of
size M, then successively taking the loss and gradients over a single mini-batch at every iteration
(or step). This ways, the parameter M controls the compromise between the accuracy of the com-
puted gradient (hence the stability of the training) and the generalization of the network (due to
the stochasticity added to the learning process).

A typical gradient descent-based NN training process includes 3 stages: forward propagation,
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error back-propagation and weight update [65]. In the forward propagation, we takes a mini-batch
of inputs, compute the network’s output for every samples, and obtain the mini-batch empirical
risk based on those outputs and the given labels. In the error back-propagation, we compute the
partial gradients of the loss function with respect to the weights using the chain rule [66]. Finally,
once all partial gradients are estimated, the weights are updated using information of the gradient
computed at the current iteration or accumulated so far through the learning.

Forward propagation

Considering a mini-batches of size M including the set of input data {XXX(i)0 } and the corresponding

target set {ŶYY
(i)
}, the forward propagation processes the input data through all layers of the neural

networks to obtain the set of output {YYY (i)}. The loss function L computes the average error on
these M examples as follows:

L =
1
M

M

∑
i=1

ℓ(YYY (i),ŶYY
(i)
)+λP (2.24)

Figure 2.5a depicts the computational graph of a simple neural network. Note that it is nec-
essary to store intermediate values of the networks, (e.g. ZZZ1,XXX1,ZZZ2 in Fig. 2.5a) for later use in
gradient computation.

Error back-propagation

Based on the loss function which measures the difference between the predicted outputs and the
targets, the learning process computes the partial gradients of the loss w.r.t the weights WWW l of layer
l, denoted as ∂L

∂WWW l
. The term back-propagation or backward pass comes from the fact that these

gradients are derived using the chain rule of calculus, i.e., passing values backwards through the
network to estimate how the loss is affected by each weight. Figure 2.5b illustrates the backward
pass of the network. From the Equation 2.1 that describes relationship between the input XXX l and
output XXX l+1 of a layer, we can derive the gradients w.r.t the kernel WWW l , the bias bbbl and the input XXX l
of that layer:

∂L
∂WWW l

=
∂L

∂XXX l+1

∂XXX l+1

∂WWW l
=

∂L
∂XXX l+1

⊙
∂ f (ZZZl+1)

∂ZZZl+1

∂ZZZl+1

∂WWW l
(2.25)

∂L
∂bbbl
=

∂L
∂XXX l+1

∂XXX l+1

∂bbbl
=

∂L
∂XXX l+1

⊙
∂ f (ZZZl+1)

∂ZZZl+1
(2.26)

∂L
∂XXX l
=

∂L
∂XXX l+1

∂XXX l+1

∂XXX l
=

∂L
∂XXX l+1

⊙
∂ f (ZZZl+1)

∂ZZZl+1

∂ZZZl+1

∂XXX l
(2.27)

where ⊙ denotes the element-wise multiplication since the nonlinear activation function f is ap-
plied element-wise. Given the gradient w.r.t the output ∂L

∂XXX l+1
, we can compute the gradient w.r.t

the learnable parameters Xl,Bl and the input Xl of that layer. This way, the gradient can be back-
wardly propagated from the output layer to the first layer, allowing us to compute the gradients
w.r.t all parameters of the network. The term ∂ f (ZZZl+1)

∂ZZZl+1
justifies the need of storing the values of

the pre-activations (e.g., ZZZ1 and ZZZ2 in Fig. 2.5b) while ∂ f (ZZZl+1)
∂ZZZl+1

and ∂ZZZl+1
∂XXX l

require the storage of the
hidden units XXX l . This also implies that the training has increased the storage requirements com-
pared to the inference which consists only the DNN processing (forward pass) to obtain the output.

Weight update and different gradient descent variants

As mentioned before, the gradients w.r.t the weights are used to determine the minimization di-
rection of the loss function. Different gradient descent-based algorithm (also called optimizers)
share the same principle in forward and backward pass, and only differs from each other in the
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(a) Forward propagation.

(b) Backward propagation.

(c) Weight update.

Figure 2.5: Three stages of a typical gradient descent iteration.
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weight update strategy. In general, there are two kinds of optimizers based on the way the gradient
is used: non-accumulated gradient-based optimizer and accumulated gradient-based optimizer.

• Non-accumulated gradient-based optimizer This is the simplest kind of optimizer, where
the descent direction is determined by only using the gradient at the current iteration. Prob-
ably the most popular algorithm is Stochastic Gradient Descent (SGD [67]). Denote W [t]l

and ( ∂L
∂Wl
)
[t]

as the weight of the layer indexed l and its gradient at the iteration t. Let us
denote also the small constant η as the learning rate which defines how much the weight
will be moved along the gradient-descent direction. The weight update of the SGD can be
described as follows

W [t+1]
l =W t

l −η (
∂L
∂Wl
)

[t]
(2.28)

• Accumulated gradient-based optimizers Learning with SGD may be slow due to the high
variance of the gradient computed over a small number of examples. Moreover, the SGD
treats all parameters (or directions) in the parameter space equally with the same learning
rate, while in practice, the loss function is often more sensitive to some directions and less
sensitive to others. Therefore, different variants have been proposed to accelerate the learn-
ing, reduce the unstable effect due to the mini-batches and even offer a flexible learning rate
to each direction/parameter based on the recorded history of the gradient. Let us denote also
the variable ∆W [t]l as a moving record of the gradient w.r.t the weight Wl at the iteration t,
and κ is its updating function. The weight update process of an accumulated gradient-based
optimizer can be generally described as follows

∆W [t]l = κ
⎛

⎝
∆W [t−1]

l ,(
∂L
∂Wl
)

[t]⎞

⎠
(2.29)

W [t+1]
l =W t

l −∆W [t]l (2.30)

Well-known accumulated gradient-based optimizers include Nesterov momentum [68], Ada-
Grad [69], RMSProp [70] and Adam [71]. While the Nesterov momentum optimizer only
makes use of the exponentially decaying moving average as the only recorded history of the
gradient, the others additionally introduce a second-order accumulated squared gradient to
properly adjust the learning rate regarding direction in the parameter space.

2.1.5 Datasets
In this section, we present the datasets used to test the performance of our model compression
techniques as well as the proposed model architectures. In details, we make use of MNIST [72],
CIFAR-10/100 [73], STL-10 [74] for image classification; DIV2K [75] for image compression;
and Jester Dataset V1 [76] for hand gesture recognition.

MNIST dataset is a large collection of handwritten digits with 60000 training examples and
10000 test examples. The images are grayscale and have a fixed size of 28× 28. There are 10
classes, corresponding to digits from 0 to 9. This dataset is relatively simple and small with low
dimensionality and less variations to learn, making it easy to train the model up to the conver-
gence. Moreover, it does not require a complex network architecture to obtain a high accuracy.
Therefore, this dataset is more appropriate for prototyping a new idea to see if it works, rather than
verifying its effectiveness or comparing it with state-of-the-art methods.

CIFAR-10 and CIFAR-100 are datasets containing tiny RGB images of size 32× 32. Each
dataset consists of 60000 images in total. CIFAR-10 contains 10 classes, each class has 5000
training images and 1000 test images. CIFAR-100 contains 100 classes, each class contains 500
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images for training and 100 images for testing. In particular, the 100 classes in the CIFAR-100
are grouped into 20 superclasses. Although having properties of a toy dataset (in the sense of
small-sized images and small number of examples), these datasets still offer space for testing
novel network architectures and competition between different models, with state-of-the-art per-
formance of 99.01% accuracy on CIFAR-10 [77] and 89.46% [78] on CIFAR-100.

STL-10 is an image dataset derived from ImageNet, containing 100000 unlabeled images
along with 13000 labeled images from 10 object classes. These annotated images are partitioned
into 5000 images for training and 8000 images for testing. Each image is an RGB image with the
resolution of 96×96. Although more popularly used for unsupervised feature learning and self-
taught learning, STL-10 can still be considered as one competitive image classification dataset,
with the state-of-the-art accuracy of 95.48% [79].

DIV2K is a well-known image dataset firstly introduced for the image super-resolution chal-
lenge NTIRE2017 [80]. It contains 1000 images with diverse scenes, contents and resolution. The
DIV2K dataset is divided into 800 for training, 100 for validation and 100 for testing. The images
are of high quality with low noise and have 2K pixels on at least one of the two axes. Since the
100 testing images are not publicly available, we only make use of 900 images for evaluating the
performance of models in Chapter 4. The images are then cropped and resized to meet the target
resolution in our image compression task.

The Jester Dataset V1 is a video classification dataset including 148092 labeled video clips
of humans performing basic, pre-defined hand gestures in front of a laptop camera or webcam.
The clips belong to 27 classes of human hand gestures, and splitted into training, validation and
test set with a ratio of 8 ∶ 1 ∶ 1. The video clips have diverse lengths and spatial resolutions. Since
the labels of the test set are not publicly available, we evaluate our model in Chapter 6 using the
validation examples. This dataset is the current largest-scale benchmark for hand gesture recogni-
tion, allowing to build models learning spatio-temporal features (e.g., using Conv3D and recurrent
layers like LSTM).

2.1.6 Overfitting and training tricks

In practice, a dataset is divided into three parts: training set, validation set, and test set. The train-
ing set is used to train the model while the validation set is used to monitor the generalizability of
the model on the unseen data during the training process. Unlike these two parts, the test set is
usually unknown and then annotated using the trained model. Note that in some cases the dataset
only contains two parts (e.g. CIFAR-10/100), the test set and the validation set are the same. The
model’s generalizability is usually measured by the difference between the model’s performance
on the training and the validation data, and this is popularly termed as the generalization gap. If
the training set and the validation are both drawn from the same distribution, it is expected that
a well-trained model achieve a high performance on the training set while the generalization gap
is small. If the model performs much better on the training set than on the validation set, it is
called overfitted. This overfitting phenomenon can be explained by an over-parameterized design
causing the model to be biased by small variations of the training set that are not present in the
validation set.

While the most direct approach is design a more compact neural network, there exists several
training tricks to alleviate the overfitting issue. One common approach is applying some regu-
larization techniques (e.g., ℓ1,ℓ2 penalty) to the model’s weights/activations during the training.
Another model-related approach is Dropout [63], which randomly shuts down a portion of neurons
at every learning iteration. Data augmentation is also a relevant approach to reduce the general-
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ization gap, which increases the diversity of the training set and reinforces the learning of only
relevant features rather than the biased ones. Typically, in the case of image classification, this
can be done by adding synthetically modified data obtained through random translation, zooming,
rotation or noise addition.

2.1.7 Neural Network Architectures
In this part, we give an overview of different types of neural networks, from Multi-Layer Percep-
tron (MLP) to Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNN).

Multi-Layer Perceptron (MLP)

A MLP contains only fully connected layers, each followed by a non-linear activation function.
The major computation in MLP is the matrix-vector multiplication, in which the matrix is dense
since every output unit is connected to all input units. Therefore, when working with high-
dimensional data, the MLP will contains a large number of parameters. This model architecture
is more relevant for data without grid-like topology or local correlation. Therefore, in modern
DNNs, an MLP is mainly used at the end of the feature extractor for the sake of combining high-
level relevant features. Some models even alleviate the parameter-heaviness of MLP by leveraging
the parameter-free pooling layers.

Convolutional Neural Networks (CNNs)

As a simplest definition, a CNN is a neural network that contains at least one convolutional layer.
As mentioned in the section 2.1.1, the convolution is a favorable operation for processing data
having local-correlation nature like time series, images or video. Concatenating several convolu-
tional layers enables the neural network to learn more complex features from the local structure
of data. Therefore, in CNN, the convolutional layers are usually plugged in the first part of the
model to form a so-called feature extractor. During the last few years, CNNs have been remark-
ably successful in various practical applications. One of the main reason for this success is the
tremendous progress of CNN architectures. Since most of the advances in model architectures
are originally focused on image-related benchmark before being applied to other data (e.g., time
series or video), it is reasonable to see the development path of convolutional networks through
the lens of 2D CNNs.

AlexNet [1] (2012) is well-known because of drawing first attentions to the use of CNN-based
solution for the ImageNet challenge. In details, AlexNet contains 5 Conv2D layers and 3 fully-
connected (dense) layers. Some of the Conv2D layers are followed by a max pooling. The first
two Conv2D layers have large-sized kernels of respectively 11×11 and 5×5, while the three latter
make use of only 3×3 kernels. It employs the ReLU activation function in place of the traditional
choices sigmoid and tanh. AlexNet consists of 61M parameters and requires 724M MACs for
each inference.

VGGNet [81] (2014) attempt to improve the performance of AlexNet by increasing the number
of convolutional layers (hence the depth) of the model. Instead of using large kernel sizes like
AlexNet, [81] suggests that a stack of several 3×3 convolutional layers can enlarge the receptive
field as well, while incorporating more nonlinearity into the model and decreasing the number of
parameters and MACs. The popular version with 16 layers, i.e. VGG16 (cf. Fig. 2.7), consisting
of 13 convolutional layers and 3 dense layers, has 138M learnable parameters and requires 15.5G
MACs for each inference.

The trend of making the model deeper has given rise to a question regarding its impact on
the learning. If a model has a suitable depth, adding more layers to it may leads to higher train-
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Figure 2.6: AlexNet architecture. Note that this figure is originally introduced in [1].

Figure 2.7: VGG16 [81] architecture.

ing error rather than overfitting, due to the gradient vanishing/exloding problem. To address this
issue, [24] introduces ResNet, a network architecture with the identity mapping or residual/skip
connection (Figure 2.8). Apart from ensuring the gradient flow, the skip connections also increase
the representation power of the model by favoring the feature reuse. ResNet-50 contains 49 convo-
lutional layers and 1 fully-connected layer but has only 25.5M learnable parameters and requires
3.9G MACs per inference. Compared to VGG16, ResNet-50 is smaller-sized and less computa-
tionally expensive while offering higher algorithmic performance (i.e. 95.3% vs 92.64% accuracy
on CIFAR-10). This has motivated the design of later efficient CNN architectures by leveraging
more branches and skip connections to increase the representation power of the model. However,
a drawback of ResNet and its variants is that during inference, it requires the simultaneous storage
of several intermediate feature maps, hence increasing the cache memory needs with respect to its
corresponding plain model counterpart.

Figure 2.8: A general residual block.

ResNext [28] additionally introduces another dimension into the CNN configuration, namely
cardinality - the size of the set of transformations inside each residual block. In details, they
propose a building block consisting of two 1× 1 convolutions and a grouped 3× 3 convolution
inserted in-between (Figure 2.9). Here the cardinality is defined through the number of groups.

30



2.1. Overview of Deep Neural Networks

Figure 2.9: Building block of ResNext [82].

SqueezeNet [82] is one of the first work focusing on the design of an efficient CNN architec-
ture with fewer parameters but on-par accuracy compared to existing models. The building block
of SqueezeNet is called "Fire module" (Figure 2.10), which consists of a 1× 1 convolution for
squeezing the channel dimension, and an expansion stage with 1×1 and 3×3 convolutions con-
catenated together. SqueezeNet has shown promising results, achieving an equivalent accuracy to
AlexNet with 50× fewer parameters.

Figure 2.10: Fire module in the SqueezeNet [82].

[83] originally introduces the notion of attention residual learning for image classification
task that mainly relies on an Attention Module demonstrated in Figure 2.11. The key element
of this module relies on the soft mask branch M(XXX) with output values range from [0,1] which
works as a feature selector. The transformation branch T(XXX) is simply a cascade of convolutional
layers. [84] proposes a channel-wise feature attention mechanism through the so-called Squeeze-
and-Excitation (SE) block (Figure 2.12). In details, the channel-wise attention branch of SE block
consists of a squeeze step which collects global information of each channel separately, and an
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excitation step capturing channel-wise dependencies to re-calibrate the features accordingly.

Figure 2.11: Residual Attention block [83].

Figure 2.12: Squeeze-and-Excitation (SE) block [84]. Note that this figure is originally introduced
in [84].

It is noteworthy mentioning that all of these aforementioned network architectures are manu-
ally designed and often requires significant efforts along with expert knowledge. The development
path of CNN architectures also gives a hint about the potential design scheme for building blocks
of CNNs: embrace several branches and connections between different operations. However, such
complex model architectures rely on a vast design space while human knowledge is limited. This
has motivated a novel paradigm for automatically designing DNN architectures, namely Neural
Architecture Search (NAS [10]). In a NAS-based framework, each component of the model is
chosen under the global perspective of the network, e.g., building an optimal DNN architecture
with highest performance within a given computational budget. More details about NAS is dis-
cussed in section 2.3.1.

Recurrent neural networks (RNNs)

Recurrent neural networks is a class of neural networks to process sequential data, allowing us to
exhibit long-term dependencies. These models are commonly used for various tasks, including
speech/video recognition, natural language processing or image captioning. The term recurrent
comes from the fact that the output of this layer is computed by taking into account the prior
elements within the sequence. Just as convolutional layers share the same parameters across spatial
position, recurrent layers share the same weights across different time steps, forcing the learned
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features to be independent to the temporal position.

Figure 2.13: An example of recurrent neural network. This model receives the sequential input
data xxx and combines it with the hidden state hhh which is passed through the time, to obtain the
output yyy. Left: the folded graph represents the whole neural network. Right: the unrolled graph
depicts the whole computation graph, allowing us to see the information flow in the forward pass
and also the gradient propagation in backward pass.

Figure 2.13 depicts a recurrent layer which processes sequential inputs xxx0,xxx1...xxxt and outputs
yyy0,yyy1...yyyt . This recurrent network can be represented by recurrent connection from the hidden
state hhh of the previous time step, or by an unrolled computation graph, where each node is related
to one time instance. The simplest form of RNN is firstly proposed in [85] to handle sequences of
vector as follows:

hhht = σh (WWW h[xxxt ,hhht−1]+bbbh) (2.31)

yyyt = σy (WWW yhhht +bbby) (2.32)

where [., .] is the vector concatenation, WWW h,WWW y,UUUh are the weight matrices, bbbh,bbby are the biases
and σh,σy are activation functions. The particular problem of recurrent networks is the vanish-
ing/exploding gradient w.r.t the weight matrices due to their sharing across the temporal dimen-
sion. One of the most relevant approaches to address this issue is to propose more complex RNN
architecture with internal gates to adaptively gather information over a long duration. One of the
most popular gated RNNs is the Long Short-Term Memory (LSTM [86]) depicted in Figure 2.14
which can be described as follows:

iiit = sigmoid (WWW i.[xxxt ,hhht−1]+bbbi
) (2.33)

fff t = sigmoid (WWW f .[xxxt ,hhht−1]+bbb f
) (2.34)

ooot = sigmoid (WWW o.[xxxt ,hhht−1]+bbbo
) (2.35)

c̃cct = tanh (WWW c.[xxxt ,hhht−1]+bbbc
) (2.36)

ccct = fff t ⊙ccct−1+ iiit ⊙ c̃cct (2.37)

hhht = ooot ⊙ tanh(ccct) (2.38)

where iiit ,ooot , fff t ,ccct are the input, gate, forget gates and the cell memory, respectively. The cell
memory state ccct has a linear self-connection controlled by the forget gate fff t . This mechanism
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Figure 2.14: Computational graph of the LSTM cell.

enable the model to learn how long to remember the information from the past and when to clear
these past states. Assuming that xxxt ∈ Rnl and hhht ∈ Rnl+1 , then the LSTM consists of four weight
matrices of size nl+1 × (nl +nl+1). In the case where both input and output sequences are high-
dimensional, this will result in a memory bottleneck. To reduce the complexity and the cost of
LSTM, other lighter variants have been proposed, including the Gated Recurrent Unit (GRU) or
the recent STAckble Recurrent (STAR) cell [87]. Other works overcome this memory burden by
exploiting the sparsity [88], [89], or decomposing the weight tensors [90] of the LSTM.

It is noteworthy mentioning that all RNNs mentioned above is dedicated to the processing of
1D sequences by a fully-connected manner. This restricts their utilization in DNNs which aim
at extracting spatio-temporal features (i.e. in the case of video processing). To handle this type
of data, [91] proposed ConvLSTM which integrates the convolutions into the input-to-state and
state-to-state transitions. Although ConvLSTM can capture the long-term spatio-temporal depen-
dencies, this ability comes with a significantly increased computational complexity and memory
burdens. Therefore, ConvLSTM is not a preferable choice for video processing compared to the
standard yet effective 3D CNN-LSTM architectures. Besides, similar to the case of CNNs, recent
works has also been leveraged the NAS framework in order to search for novel RNN architec-
tures [92], [93].

2.1.8 Deep learning frameworks
Deep Learning frameworks provide abstractions of all neural network’s elements such as layers,
activation functions and basic computational operations along with tools for data pre-processing
and the learning procedure, therefore practitioners only need to write the code describing the net-
work architectures and the ML workflow.

Throughout this thesis, we utilize the TensorFlow [94] framework as the baseline development
tool for building models, preparing data, optimizing the networks and sometimes customizing an
element in the ML workflow. However, since the model compression techniques like quantization
generally require additional operations inside the layers, we need another framework with com-
plementary abstraction for developing such algorithms or customizing existing operations/layers.
To this end, we make use of the Larq framework [95] which is an open-source Python library
built upon Tensorflow for training low-precision DNNs. Compared to other basic Deep Learning
frameworks, Larq provides a key abstraction called quantizer which defines the way how real-
valued input is transformed into discrete output. It also allows the definition of the STE gradient
(see section 2.1.2) for the backward propagation. They also provides customized quantized layers
integrating the use of those quantizers for obtaining the low-precision input and the weight as well
(Figure 2.15).
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Figure 2.15: Computation graph of a typical quantized layer in Larq. In details, the quantization
is done through the input_quantizer and kernel_quantizer arguments.

2.2 DNN accelerators
The increasing number of large-scale datasets and tremendous advances of computing hard-

ware has empowered the success of AI and especially Deep Learning (DL). Reciprocally, the
exceptional development of DL with complex DNNs requires specialized hardware to support and
accelerate these increasingly complex algorithms during both training and inference time. We can
categorize AI accelerators into 3 classes based on their application-versatility: general-purpose
accelerators, AI-dedicated programmable accelerators and application-specific accelerators.

2.2.1 General-Purpose Accelerators (GPA)
A general-purpose accelerator, as it is termed, can serve for different type of computations and
tasks. As the most versatile computing core with widespread availability and recently increas-
ing performance, the Central Processing Units (CPUs) are also employed for AI-based process-
ing [96], [97]. Modern CPUs are equipped with multi-core parallelism [98] and SIMD (single
instruction, multiple data) technique, which allows to perform the MAC operations that domi-
nate the processing of DNNs. Current accelerations over CPU platforms can be done by opti-
mizing graph-based frameworks [99], [100], [97] which map DNN computations onto CPU ex-
ecution, or by reducing cache misses and re-arrange data throughput in an architecture-friendly
manner [101], [102].

Graphical Processing Units (GPUs), thank to their great capability to handle parallel com-
puting, have been one of the major factors enabling the development of DL. While desktop and
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server GPUs are mainly used for training without power constraints, mobile and edge GPUs are
mostly used for inference for the reason of latency or privacy. Nowadays, several smartphones
are equipped with GPU-based neural engines for smart applications, for example iPhone 13 with
A15 Bionic engine [103], or Samsung with Exynos [104]. Besides, embedded GPUs like NVIDIA
Jetson Nano [105] also target low-power inference application at the edge.

While GPU still remains the first choice for DNN processing, FPGA-based accelerator has re-
cently drawn much research attention. Compared to CPUs and GPUs, FPGAs are more flexible in
terms of architecture, and can be customized to perform any desired operations and meet resource
constraints as well. In order to improve the performance and the energy efficiency of FPGA-based
accelerators, current techniques may focus on the computation unit level, loop unrolling level and
system level. At the computation unit level, the designs aim at increasing the peak performance,
by simplifying the calculation with low-precision arithmetic [106], [107], using fast convolution
algorithm [108] or increasing the working frequency [109]. The loop unrolling designs target the
high level of parallelism during processing [108], [110], or optimize the data transfer [111]. At the
system level, designs may fuse layers together to avoid the intermediate data transfer and alleviate
the costly access of external memory [112].

2.2.2 AI-Dedicated Accelerators (AIDA)
While the above hardware platforms that can support any kinds of computations, AI-dedicated
accelerators (AIDA) [113], [108], [114], [115] partly sacrifice the computation-versatility in their
design by a higher level of hardware customization to improve the processing efficiency of differ-
ent AI algorithms, in particular DNNs. Early approaches [116], [6] consider memory hierarchy
as one of the key points in the design of energy-efficient AI accelerators and propose dataflow
schemes that increase the data reuse. These works has motivated the development of dataflow-
aware AI chips in the industry [117], [118]. [119] presents an unified NN processor which can
support different types of NN models and accelerate the MAC operation in frequency domain
based on the block-circulant algorithm [120].

Emerging approaches improve the efficiency of accelerators by leveraging three main fea-
tures: low-precision computation, sparsity, and computation-in-memory (CIM). [121] presents a
DNN accelerator that can support variable weight precision from 1 to 16 bit. [122] then proposes a
CNN-based AI processor with static random access (SRAM)-CIM unit macro with multi-precision
weights/activations. [123] introduces an SRAM-based all-digital CIM macro to handle multi-bit
MAC operations of different CNN architectures. Besides low-precision computation, exploiting
sparsisty of DNN’s weights and activations is another way to increase the efficiency of accel-
erators. [124] presents an energy-efficient neural processing unit (NPU) incorporating a feature
map zero-skipping mechanism to improve computation efficiency. [125] combines zero skipping
and weight compression to minimize memory access and computation of an application-versatile
accelerator.

2.2.3 Application-Specific Accelerators (ASA)
If the targeted task is well defined, we can reduce furthermore the power consumption and compu-
tation cost of accelerators. Compared to those aforementioned AI-dedicated chips, these application-
specific accelerators (ASA) even requires a higher level of customization in response to the spe-
cific usage and a careful design for every element of the DNN model leveraging hardware-algoritm
co-optimization. Besides, the efficiency of these ASAs also comes at the cost of limited recon-
figurability and programmability. For instance, [126] proposes an always-on low-power processor
for both face detection and face recognition featuring shared layer and ternary quantization. [127]
presents a 184µW real-time hand gesture recognition system with an edge-CNN core to extract
hand feature features from the edge data. [128] proposes a voice activity detector featuring a
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sparsity-aware time-domain CNN feature extractor combined with a binary neural network-based
classifier. [7] proposes a 4.53µW accelerator enabling both speaker verification and keyword spot-
ting sharing most of the network’s binarized parameters. [27] proposes a multi-task CNN acceler-
ator that can serve for both face detection and alignment.

The remarkable hardware/algorithm trade-offs of these above ASAs are crucially based on
the proper definition of the use case scenario and hence the application complexity, allowing us
to better estimate the computational complexity of the DNN algorithm. Through a fine-grained
analysis of every element in the DNN model, we can leverage hardware-algorithmic enablers such
as efficient DNN architectures and model compression techniques, to design an ASA that meet
the target resource constraints. Nevertheless, it is noteworthy mentioning that ASAs are limited
in terms of application and scalability, i.e., only supporting a task or certain correlated tasks as
previously demonstrated.

Figure 2.16: Power versus computational speed of different DNN accelerator platforms. Note that
this figure is originally introduced in [129].

2.2.4 Discussion
The three classes of DNN accelerators offer different levels of computation throughput, power con-
sumption, versatility and scalability. Figure 2.16 depicts the power versus computation speed of
different accelerator platforms, including CPUs, GPUs, FPGAs and ASICs. Despite their ubiqui-
tousness and maturity, CPUs and GPUs has major drawbacks in efficiency. Although FPGA-based
processors require lower power consumption than CPUs and GPUs, they still has lower compu-
tational efficiency compared to ASIC designs. It is clearly demonstrated that GPAs stay in the
less optimal zone with lower TOPs/W zone. On the other hands, ASIC designs -mostly relating to
AIDAs- mainly stay close to higher TOPs/W lines.

Note that, apart from this dynamic power consumption which is proportional to the number of
tera operations per second (#TOPs) by the factor 1

FTOPs/W
, there exists a static power consumption

Pstatic deeply depending to the choice of platform and its corresponding technology (e.g., type of
transistors, frequency ...). The total power consumption can be thus described as follows

Ptotal = Pstatic+
#TOPs
FTOPs/W

(2.39)

Figure 2.17 depicts the total power consumption of these DNN accelerators as a function of the
number of tera operations per second. Although GPUs and AIDAs has higher TOPs/W thank to
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their optimized computational cell, their static power is several orders higher than that of ASAs. As
a result, for compact models with small #TOPs, ASAs have lower power consumption than GPU
and AIDA platforms. This makes ASAs favorable as a target inference platform in our works,
with the objective being improve the application-versatility as well as the hardware-algorithmic
trade-offs.

Figure 2.17: The total power consumption of different platforms as a function of #TOPs.

2.3 DNN hardware-algorithmic enablers state-of-the-art
As discussed in section 2.1.7, Deep Neural Networks, in particular Convolutional Neural Net-

works, contains a huge number of weights and requires intensive computations, thus hindering
their deployment in resource-constraint edge devices. Therefore, it is necessary to design compact
models -regarding the memory and computational requirement- without significantly degrading
the inference performance of the model. This has motivated researches on efficient model design
and network compression, with tremendous progress in the last few years.

2.3.1 Efficient architecture designs

The simplest way for matching CNNs with hardware-related constraints and accelerating the in-
ference is to design light-weight architecture from the beginning, rather than compressing existing
well-known model to obtain small model. The success of small-sized CNNs such as SqueezeNet
[82], MobileNet [8] and ShuffleNet [9] has demonstrated the crucial role of the network architec-
ture as well as the opportunities of designing more efficient CNNs towards embedded inference.
As mentioned in section 2.1.7, the networks can be designed specifically by human intuition and
experience, or automatically by NAS [10]. Therefore, the efficient model designs are can be di-
vided based on these two approach. Since the convolutional layers are the major factor causing
the huge number of MAC operations in modern CNNs, most of the works focus on simplyfing
the structure of the convolution layers, either by a simpler convolution layer or a cell combining
several light-weight convolution layers.
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Hand-crafted model designs

The output of the regular convolution is a combination of spatial and cross-channel correlation
between all input channels. Early works [130] propose to factorize the standard d×d convolution
into a stack of d × 1 (horizontal) and 1× d (vertical) convolution. However, this approach still
has some drawbacks such that the efficiency gain is limited when the kernel size d is small, and
some types of features (e.g. diagonal edges) are not suitable for being decomposed into 1D fea-
tures. However, the idea of using these 1D spatial convolutions are then employed in ACNet [131],
which replaces each 3×3 convolution at the training time by an Asymmetric Convolutional Block
(ACB) of 3×3, 3×1 and 1×3 convolution layers, and their outputs are summed up to obtain the
output of the block. At inference time, each ACB can be equivalently represented by a single
3×3 convolutional layer, therefore, if the model is small-sized, this scheme is a promising way to
ease the training and improve the model’s performance. Other works focus on reducing the cost
introduced by the cross-channel correlation. For example, MobileNet V1 [8] makes use of the
depthwise separable convolution (DSConv) (cf. section 2.1.1) including a depthwise and a point-
wise convolutions. Note that each convolution layer is followed by a Batch Normalization (BN)
and a ReLU activation. [132] reduces furthermore the cost of DSConv by inverting the order of
the pointwise and depthwise convolution then performing a low-rank approximation of the point-
wise matrix. Besides, grouped convolution [28] is another way to reduce the dense connection
between input and output channels (cf. section 2.1.1 and Figure 2.2b). Unlike the original version
where the groups are unchanged and structurally partitioned, [48] learns the group structure by an
end-to-end manner, adding more flexibility into the model. However, in hardware implementation,
this introduces additional cost and efforts to encode the resulting unstructured connections. [133]
dynamically selects the input channels for each group based on the saliency of all input channels.

Another approach for designing light-weight CNNs is to build an optimal computation cell
including efficient convolutions (GConv, DWConv, DSConv) and skip connections (Add or Con-
catenation), inspired from the success of SqueezeNet [82]. The simple DSConv in MobileNet V1
is then replaced by a residual block in MobileNet V2 [134], where the residual mapping consists of
two pointwise convolutions and a DWConv inserted in-between (Figure 2.18). ShuffleNet V1 [9]
introduces a normal block (Figure 2.19a) when the block’s output has the same dimension with
the input, and a reduction block (Figure 2.19b) when using convolution layer with strides of 2.
Unlike MobileNet V2, the two regular 1×1 convolutions in the residual branch are replaced by
the group-wise version to reduce furthermore the number of parameters and MACs. Moreover, to
alleviate the side effects due to the use of grouped convolutions, a channel shuffle mechanism is
inserted after the first grouped pointwise layer. ShuffleNet V2 [44] returns with the standard point-
wise convolutions in the residual branch, besides an additional channel splitting at the beginning
of the normal block. The output of the two branches are concatenated to obtain the block’s output
(Figure 2.20).

These aformentioned CNN architectures are designed taking into account the model size/accuracy
and computational cost/accuracy trade-offs. The common point in their basic building blocks is
the proper combination between light-weight convolution (GConv, DWConv, DSConv) to ensure
both spatial correlation and cross-channel correlation like in standard convolution while not af-
fecting the training of the network. This task requires expert knowledge as well as considerable
effort on empirically choosing the configuration for each element in the blocks.

Neural architecture search (NAS)

Despite the success of manually-designed CNN architectures, building an optimal model is a chal-
lenging task and limited by human knowledge as well. An alternative approach is to automatically
searching for efficient neural network architectures with limited human intervention. In general, a
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Figure 2.18: The building residual block of the MobileNet V2 [134]. The parameter t is the
expansion factor for increasing the number of intermediate channels.

(a) Normal building block. (b) Reduction building block

Figure 2.19: Building blocks of ShuffleNet V1.
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(a) Normal building block. (b) Reduction building block

Figure 2.20: Building blocks of ShuffleNet V2.

NAS consists of three main parts: search space, search algorithm and the performance evaluator.
The early work of [10] figures out that neural networks can be represented by strings issued from
an RNN controller, then using the accuracy of the sampled RNN as a reward signal to update the
controller. Since the number of network samples in the search space grows exponentially if we
search for every element’s configuration along with their inter-connections, it is crucial to restrict
the search space, i.e. adding some human preliminary definition into the network architecture.

One of the popular approach for restricting the search space is to pre-define the overall CNN
architecture as a stack of basic cells repeated many times but with different weights, then we
only need to search for the optimal cell architecture. Besides the time-consuming reinforcement
learning-based approach like [92], DARTS [93] proposes a gradient descent-based search algo-
rithm, where the search space can be parameterized by a set of continuous variables representing
the possibility of choosing one operation between intermediate data in the network (Figure 2.21).
This idea is then improved by SNAS [135] and P-DARTS [136]. It is clear to see that the optimal
cells found by these methods has complex structures and cannot be easily explained based on hu-
man knowledge.

Unlike the aforementioned cell-based approaches which mainly rely on the connections inside
the cells, other works focus more on the global architecture and pay more attention to the hyper-
parameters (e.g. depth, width) of the cells. MnasNet [137] decomposes the model into several
blocks, where each block is a stack of repeated identical cells. This way, the search space is factor-
ized into several per-block sub search space consisting of the convolutional operation (ConvOp)
and hyperparameters such as kernel size, skip operations, number of output filters and the number
of repeat times. Since the ConvOp is chosen from basic convolutions and existing architecture
(e.g. MobileNet block [134], SE block [84]), the resulting cell architecture is quite close to exist-
ing model architecture. ProxylessNAS [138] then proposes a binary-gated DARTS-based method
for learning both parameters and architectures. Moreover, it also incorporates a latency-aware reg-
ularization to drive the search towards different targeted hardware platforms. EfficientNet [139]
firstly applies a similar approach like [137] but with FLOPS-aware objective to find a mobile-size
baseline architecture, then scales this model by a small grid search over expansion factor for net-
work depth, width, and resolution. Besides latency or FLOPS, existing works also make use of
other hardware-aware metrics such as energy consumption [140] or area [141].
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(a) Normal cell. (b) Reduction cell.

Figure 2.21: Optimal cells learned by DARTS on CIFAR-10. Note that the operations are charac-
terized by colors. c{k−1} and c{k−2} are outputs of the two previous cells.

2.3.2 Model compression techniques
While efficient model design directly creates a compact neural network to meet the hardware-
related specifications from the beginning, model compression techniques mainly aim at compress-
ing a given model architecture to alleviate the memory and computation overheads. In practice,
the linear operations Z = h(W,X) in Equation 2.1 , e.g. convolution or matrix-vector multiplica-
tion, dominate the number of MACs as well as contributes most of the model’s weights. There-
fore, compressing the model generally relies on applying additional operations to the weights W
and/or the input data X of each layer. Based on the goal of these additional operations, we have
identified five classes of compression approaches as depicted in Figure 2.22. More concretely,
network quantization makes use of quantization mappings q1,q2 to reduce the bitwidth of the
weights/activations. Network pruning aims at reducing the number of parameters and layer in-
terconnections, which can be equivalently represented by an element-wise multiplication between
the weight matrix and a fixed binary mask M. Dynamic network also simplifies the computational
graph by dynamically choosing a small portion of input data during the feed-forward, but this time
the binary mask is computed based on the input data itself rather than a fixed pattern. Low-rank
decomposition splits tensor weights into more smaller ones via a linear transformation h1. Fi-
nally, weight generation networks leverage auxiliary small-sized models g(W,Ω) to generate the
weights of the main model.

Quantization

One of the most prominent approach in DNN compression is network quantization which attempts
to reduce the precision of the data representation in DNNs from the conventional full-precision
32b to 8b or less, hence advantageously reducing the memory requirements as well as the com-
putational complexity for hardware implementation and acceleration. This method consists of
applying the nonlinear quantization mappings to different objects of a DNN during the entire
back-propagation procedure: weights (W), activations (A), gradient (G) or even update (U). Since
this thesis mainly leverages model compression approaches for embedded inference, we will focus
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Figure 2.22: Taxonomy of model compression approaches. The central operation causing the
hardware-related bottleneck of DNNs is the linear operation ZZZ = h(WWW ,XXX) (e.g. matrix multipli-
cation or convolution). Compression techniques consists of applying additional operations to the
operand XXX and WWW in order to lighten this operation or simply reduce the model size.

only on the quantization of W and A. In Figure 2.22, the quantization is depicted by applying the
mapping q1 and q2 to the weight tensor W and the input data X , respectively.

The quantization is defined by a projection which maps full-precision values in a continuous
space onto low-precision values in a discrete space. If the quantization thresholds and the resulting
quantized values are non-uniformly spaced, it is called non-uniform quantization. This can be done
by either using a logarithmic representation [142], entropy-based clustering [143], code-book [11]
or learnable approach [144]. These constraint-free mappings increase the representation power of
the quantized values and allow better capturing the distributions of the full-precision inputs, hence
limiting the performance degradation due to the quantization. However, non-uniform quantization
schemes are typically difficult to be implemented and deployed on hardware, since they usually
requires additional modules to store and access quantized values as well as computing the matrix-
vector multiplication between quantized values. For this reason, designing uniform (or linear)
quantization is still the de-facto choice thank to its simplicity and hardware compatibility. In this
case, the quantization mapping can be described as follows:
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xq = q(x) = s Clip(⌊
x
s
⌉,α,β) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

s⌊ x
s ⌉ if α ≤ ⌊ x

s ⌉ ≤ β ,

sα if ⌊ x
s ⌉ < α,

sβ if ⌊ x
s ⌉ > β

(2.40)

where x is full-precision value, s is the scaling factor defining the quantization step size, α,β
are the integers defining the clipping range [α,β ]. The factor s outside of the Clip function
aims at keeping the initial dynamic range of the input value x. In some case, in order to obtain
straightforward integer values, we can use the integer version without s. This mapping requires
log2(xmax−xmin+1) bits to represent each quantized values. When the clipping range is symmetric
with respect to the origin, i.e. −α = β , the mapping is called symmetric quantization. Otherwise,
it is called asymmetric quantization. Choosing the clipping range deeply depends on the quanti-
zation object in order to fully capture all discrete values. For example, since the distribution of
weights usually has symmetric "bell curve" shape, it is better to choose a symmetric range, while
quantizing ReLU activation strictly requires a non-negative clipping range with α = 0. More im-
portantly, how to define the step size s plays a crucial role in the resulting quantized values. If the
step size is too small, most of the quantized values stay near the clipping range. On the other side,
a large step size may results in the dominance of low-magnitude discrete levels. In pratice, these
parameters can be determined based on data distribution [145] or gradient-based techniques [26].

Inserting the quantization into the forward pass will certainly modify the output of the model
and causes performance degradation, it is thus crucial to determine the quantized weights/activations
such that the degradation is limited as much as possible. This recovery process can be done
after the training of the full-precision model [146], [147], namely Post-Training Quantization
(PTQ), or during the training with the quantization inserted in the forward pass [148], [149], [26],
namely Quantization-Aware Training (QAT). Although being more hardware-expensive and time-
consuming at training time, QAT generally offers better algorithmic performance with limited
to negligible loss compared to PTQ method. As this thesis focus on improving the hardware effi-
ciency/algorithmic performance trade-offs at inference time, we mainly focus on QAT approaches.
Unfortunately, the round function ⌊.⌉ is a piece-wise flat operator, its derivative is thus almost ev-
erywhere zero, preventing the model from learning. To circumvent this issue, the mainstream
approach in literature [145], [150], [151] is to use a coarse gradient based on the STE scheme
(see section 2.1.2). Intuitively, STE ignores the rounding operation (or any other quantized opera-
tions like ceil ⌈.⌉, floor ⌊.⌋ or sign) and approximates it with an identity which allows the gradient
flows to pass through the quantization during backward pass, i.e. ∂ ⌊x⌉

∂x = 1. Consequently, the STE
derivative of the uniform quantization mapping in Equation 2.40 can be computed as follows:

∂xq

∂x
=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

s
∂ ⌊ x

s ⌉
∂x if α ≤ ⌊ x

s ⌉ ≤ β ,
∂ sα

∂x if ⌊ x
s ⌉ < α,

∂ sβ

∂x if ⌊ x
s ⌉ > β

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if α ≤ ⌊ x
s ⌉ ≤ β ,

0 if ⌊ x
s ⌉ < α,

0 if ⌊ x
s ⌉ > β

(2.41)

which is equivalent to a clipped identity. Figure 2.23 demonstrates a gradient descent iteration
of a quantized neural networks (QNNs) using STE scheme. During forward pass (Figure 2.23a),
the weights W0 and W1 do not directly participate in the matrix multiplication, but rather their
quantized version q1(W0) and q1(W1). Therefore, they are also called proxy weights. The gradi-
ents of the cost function w.r.t the weights are computed using the chain rule and STE to bypass
the quantization operations applied to both weights and activations (Figure 2.23b). Finally, the
proxy weights are adjusted, hence updating the quantized weights (Figure 2.23c). Apart from the
STE-based methods, [152] also uses pulse shapes like rectangle or triangle to better approximate
the impulse derivative of the quantization mapping at discontinuous points. [153] introduces a dif-
ferentiable soft approximation of the uniform quantization which is gradually sharpened during
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(a) Forward propagation.

(b) Backward propagation.

(c) Weight update.

Figure 2.23: Three stages of a STE-based gradient descent iteration of a quantized neural network.
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the learning process, aiming at providing more accurate gradients compared to the STE-based ap-
proaches. [154] alleviates the quantizer’s gradient vanishing problem by using a gradually-adjusted
blending between the proxy weights and the quantized weights in forward pass which gives rise
to non-zero gradients w.r.t the proxy weights in backward pass. [155] represents the weights as a
learnable probability distribution over the discrete space from which the quantized weights can be
sampled. Despite remarkable progress in recent years, these STE-free approaches require a higher
level of customization during the learning procedure compared to the baseline STE, therefore STE
still remains the most popularly used approach.

In the most extreme case, model’s weights and activations can be represented by only 1-bit as
proposed in Binarized Neural Networks (BNNs [12]) using the previously mentioned Sign (Equa-
tion 2.15) or Heaviside functions (Equation 2.17). [156] then even demonstrates that these BNNs
can be compressed furthermore since the binarized kernels of each layer tend to distribute over
a small subset rather than the whole binarized space. Figure 2.24 illustrates the power consump-
tion versus computation throughput of accelerators of different precisions. It is clearly shown that
binary and ternary precision dominate the higher TOPs/W zone. With this in mind, extremely
low-precision ASAs may achieve a higher TOPs/W, allowing to increase furthermore the gain in
terms of power consumption. Despite several hardware-related benefits, using ultra low-precision
quantization may significantly reduce the algorithmic performance of the model, especially if the
task requires more complex information (e.g. object detection or image compression). Besides,
the role of every layer in the model changes accordingly to their positions as well as the model ar-
chitecture. This gives rise to another important question: how to determine the optimal bit-width
for every layer’s weights and activations in the model for a certain task? Existing works ad-
dress this challenge by estimating the layer’s contribution level to the model’s performance [157]
or gradient-based optimization [158] or NAS-based approach [159], [160]. Nevertheless, these
methods often require a large amount of time and additional computation overheads for the search
of proper bitwidth.

Figure 2.24: Power versus Computation Speed of different DNN accelerator platforms based on
precision. Note that this figure is originally introduced in [129].

It is noteworthy mentioning that most of existing works mainly focus on the quantization of
weights and activations in DNNs while ignoring other elements such as BN and skip connections.
This may results in other hardware bottlenecks, in particular for hardware platforms supporting
only low-precision integer computations.
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Pruning

DNNs are typically over-sized and exhibits overfitting, in which only a portion of neurons and
weights is important, while the rest has limited impact to the output of the models. This has
motivated the core idea of model pruning: remove irrelevant operations, neurons and weights to
improve the hardware-algorithm compromise [14]. This operation can be described by an element-
wise multiplication between the weight tensor W with a binary mask M in Figure 2.22. Originally,
given a pre-trained DNN, a typical model pruning procedure consists in performing pruning and
fine-tune to obtain a final pruned model. To determine which parameters to be removed, some
evaluation criterion is employed. [161] and later [162] believe that magnitude can be used to mea-
sure the relative importance of weights by arguing that smaller weights tend to produce weak
activations. [163] empirically observes that ℓ2-norm allows better pruning results than ℓ1-norm.
Besides, [164] quantifies the importance by directly approximating the impact of pruned weights
to the loss function.

Once the pruned parameters are identified and removed, it is crucial to retrain the model to
recover its performance. The whole pruning and fine-tuning process can be performed recursively
or one-shot. [162] shows that iterative pruning may achieves better results than one-shot counter-
parts. [15] later proposes an iterative method to identify the remaining parameters within a DNN
which allows to learn faster while achieving on-par accuracy with the original network. Compared
to the time-consuming iterative approach, one-shot pruning [16], [165] is more training-efficient
which proposes to prune the model once at initialization prior to the training.

According to the pruned structure, we can categorize CNN pruning techniques into two kinds:
non-structured pruning and structured pruning. The first kind mainly relies on the notion of weight
pruning [161], i.e. zeroing unimportant individual connection without considering the structure of
the pruned weights. This allows a high level of flexibility but results in irregular structures which is
not favorable in hardware implementation. Concretely, the pruned weights will be simply consid-
ered as zero values to be consistent with the hardware, hence discarding memory and computation
benefits offered by the pruning. Therefore, we need to introduce extra modules to store and read
the position of the remaining weights, leading to problems on memory access and cache. Although
recent accelerator platforms also focus on the sparse multiplication, it still requires a considerable
effort on hardware design. For these reasons, applying structured pruning [166] is the preferable
option thank to its hardware compatibility. To avoid common ambiguity in the taxonomy of struc-
tured pruning methods, let us remind the Conv2D layer (cf. section 2.1.1) with 4D weight tensor
of size h×w×Cl ×Cl+1 where h, w, Cl , Cl+1 are the dimensions of the l-th weight tensor along the
axes of spatial height, spatial width, channel (i.e. input channels) and filters (i.e. output chan-
nels), respectively. Channel pruning [167], [166], [165] aims at removing the input channels from
Cl to a desired number C′l (0 ≤C′l ≤Cl) by discarding the corresponding channels of the weight ten-
sor. On the other hand, filter pruning [162], [168], [169] involves removing the number of output
channels from Cl+1 to C′l+1 (0 ≤C′l+1 ≤Cl+1) by zeroing out the corresponding filters. Subsequently,
these removed feature maps result in a channel pruning in the next convolutional layers and the
architecture of the pruned model is also modified. Since the channel pruning has less damage to
the CNN structure than the filter-wise approach, it may naturally offer a compact model with less
performance degradation. However, in terms of hardware mapping, the filter pruning provides
higher pruning rate while being more compliant with the implementation. Concretely, using a
filter pruning approach, we can obtain a compact model with conventional CNN structure that is
compatible with off-the-shell deployment platforms. Whereas in the case of channel pruning, we
still need additional modules to store the indices of the pruned channels.
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Dynamic networks

Dynamic neural networks adapt their architectures or weights based on the input during the in-
ference stage. It is biologically inspired from the belief that the brain process information in a
dynamic way [170] depending on the given information itself. Compared to the static counterpart,
dynamic networks exhibit several favorable properties such as an increasing representation power
due to the enlarged parameter/computation space [171], better interpretability [172] and especially
hardware efficiency [173], [17], [18]. If targeting efficient inference, dynamic networks adjust the
computational graph (i.e. along the axes of depth or width) such that small sub-networks are used
for easy input sample while more complex ones are dedicated to difficult inputs. It is desirable
that paying attention to the input sample to adapt the processing/inference can boost the learning
efficiency and enable us reducing the average inference cost.

In the same vein as static pruning (c.f. section 2.3.2), dynamic pruning [17], [18] aims at
reducing the number of computations in CNNs by using a variable subset of convolution weights.
However, unlike the case of static pruning where the pruning patterns are fixed and data-agnostic
for all input samples, dynamic pruning adapt the pruned weights in an input-dependent manner.
Figure 2.22 depicts a case of dynamic pruning where the binary mask M(XXX) is a function of the
input sample XXX . [17] proposes a dynamic channel pruning scheme taking only a subset of input
channels to generate the partial sum of the output and decides whether to discard or keep the com-
putations in the rest of input channels. [174] makes use of an assistance model to adaptively predict
the pruned filters for every input. Model’s depth is another dimension to be explored in dynamic
networks, which proposes to either exit early if the output prediction has high confidence [173] or
skip residual blocks based on the feature maps of previous layers [175].

In terms of hardware efficiency, both dynamic pruning and dynamic depth do not reduce the
memory requirements for storing the model, since all parameters are necessary for later access
once the selection is done. On the contrary, it needs extra memory for the storage of selector
network. The advantages of dynamic networks mainly relate to the computational reduction, this
under the constraint that the computation cost of selector network is negligible compared to that
of the main network.

Weight tensor decomposition

Weight tensor decomposition aim at factorizing the weight tensor of each layer into smaller ten-
sors, hence reducing the model size as well as the number computations. This operation is illus-
trated in Figure 2.22 by decomposing the weight tensor W into three smaller tensors W1, W2 and
W3. Early works propose to use Singular Value Decomposition (SVD [19]) or Principal Compo-
nent Analysis (PCA [176]) to take advantages of the redundancy within the convolutional weight
tensor by clustering filters then forcing the weight-sharing in their approximations. [177] then
presents a cross-filter low-rank approximation which decomposes the canonical h×w Conv2D
layer with Cl+1 output channels into another h×w Conv2D layer with only m output channels
(m≪ Cl+1) followed by a pointwise convolution projecting these m channels into Cl+1 output
channels. In particular, [178] and later [20] propose a unified framework for low-rank decomposi-
tion and filter pruning by inserting a regularized coefficient matrix into the normal convolutional
layer. Recently, advanced tensor decomposition techniques, including tensor train [179] and tensor
ring [180], have attracted much attention and become an active line of research. Besides, common
convolutional blocks such as DSConv [50] or the bottleneck design in ResNet [24] can be equiva-
lently expressed as light-weight decompositions of the weight tensor.

Unlike pruned or dynamic networks, low-rank decomposed models only involve primitive op-
erations which can be implemented by of-the-shell architectures at inference time. The drawback
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of these approaches is that they introduces additional hyperparameters (i.e. the ranks) that need
to be carefully chosen, and the original model need to be trained under low-rank regularization in
order to obtain a better compression rate. Beside, since the decomposition increases the model’s
depth with stacks of linear layers, the model is more prone to gradient vanishing, hence compli-
cating the training.

Weight generation networks

In canonical DNNs, each layer contains weight tensors to convert the raw inputs to some de-
sired representations via a linear transformation (called primary operation). If both inputs and
outputs are high-dimensional tensors, the weight tensors will contain a considerable amount of
parameters, causing memory-related overheads especially for memory-constrained systems. An
unconventional approach to cumbersome this issue is to generate the layer’s weights from a much
smaller-sized neural network inside the layer, termed as weight-generation networks or weight net.
This idea is illustrated in the Figure 2.22 by an auxiliary function g(Ω,X) with parameter Ω and
a dependency of the input X . Hypernetworks [21] originally uses a commonly-shared small net-
work to generate the weights for all layers in the main network, allowing to reduce the number of
learnable parameters while achieving acceptable accuracy level. Whereas [21] introduces a static
generation approach, [181] proposes to dynamically generate the main layer’s weights taking into
account the layer’s input. In the same vein, [182] then makes use of the input activation to generate
one filter for each spatial position. WeightNet [22] incorporates an input-specific weight net with
grouped fully-connected layer to generate the weights of the main convolutional layer.

Unlike previously mentioned model compression schemes which may reduce both model size
as well as computational complexity, weight nets can only target the model size, since they also
introduce extra computation for generating the main model’s weights. For the sake of efficiency,
this additional computational cost must be negligible compared to that of the original model, hence
limiting the design space of the weight nets. From the practical deployment point of view, such
limitations are undesirable, in particular for systems with constrained computational capacity. Ta-
ble 2.1 summarizes the impact of those presented model compression techniques to the memory
requirement and the computational cost during DNN inference.

Table 2.1: Qualitative comparison of the impact of hardware-algorithmic enablers to memory and

computation costs during DL inference. : reduced; : increased; – : unchanged.

Method

Metrics On-chip
memory

Feature-related
memory

#MACs
MAC

complexity

Efficient architecture designs –
Quantization –
Pruning –
Dynamic network –
Tensor decomposition –
Weight generation network – –
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2.3.3 Training trick for compact models: Knowledge Distillation
The lack of representation power makes training compact DNNs much more difficult to learn
highly relevant features directly from the input data. Knowledge distillation is a training trick
aiming at using the knowledge from a larger model as an extra supervision to guide the learning
of a smaller one, thus easing the training of this small model. This approach is deeply inspired by
the way the teacher explains complex notions to the student using simple analogies. The larger
DNN is therefore also called as the teacher while the smaller DNN is termed the student. The
student network is commonly chosen as a smaller-sized network compared to the teacher, which
can be built by reducing the width [183] and the depth [184]; quantizing [29] or pruning [185] the
teacher model; or using light-weight compact model [186]. Different types of information from
the teacher network can be used as the knowledge to be distilled to the student network, including
the output logits [187], the intermediate features [29] or even the weights [188].

Along with the rapid development of efficient DNN architecture design and model compres-
sion techniques, knowledge distillation has drawn considerable attention in the last few years. In
the context of compact efficient DNNs where training the model is a real challenge, knowledge
distillation offers a great trick to ease the learning process and better retain the model’s perfor-
mance. Therefore, combining these model compression approaches in a knowledge distillation
training framework should be a promising line of future research.

2.4 Conclusion
Throughout this chapter, we have provided an insightful overview about Deep Learning, DNN

accelerator platforms and hardware-algorithmic enablers for embedded DL inference. Section 2.1
briefly introduces the basic notions of Deep Learning, from the commonly used layers to the
complex model architectures. As DNNs are generally over-parameterized, they usually exhibit
overfitting. This indicates that there exists a room for improving the model’s hardware efficiency
while reducing the generalization gap.

Section 2.2 surveys current DNN accelerators which can be categorized into three classes
based on their application-versatility. Although general-purpose platform like CPUs, GPUs and
FPGAs are considered as the de-facto accelerator for executing DNNs thanks to their high level
of maturity, their power inefficiency is a major downside. This has motivated the development of
more efficient platforms dedicated only to DNN processing. In the most extreme case, when the
application is well defined and the computational complexity could be upper-bounded, the DNN
model could be designed by integrating some hardware implementation perspective. Indeed, this
hardware-algorithm co-optimization is a promising research line in the aforementioned room of
efficiency improvement, especially when it is empowered by the tremendous progress of DNN
architecture designs and model compression techniques.

Section 2.3 provides an overview about the hardware-algorithms enablers towards efficient
DNNs. It is worth mentioning that although these techniques are presented separately, they can be
combined together to reduce furthermore the hardware implementation cost, as they are comple-
mentary to each other. Indeed, while model compression techniques like quantization, pruning or
tensor decomposition are mainly used to compress existing large model architectures, the imple-
mentation of the resulting model is still questionable. Another direction consists of proposing a
hardware-compliant DNN topology on which we apply model compression techniques to reduce
furthermore the memory and computation costs. This thesis is placed in the same vein by leverag-
ing the quantization as the pivotal approach throughout the conception of the DNN architectures
and their later compression to meet the constrained resource budget of an ASIC design.
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3
Histogram-Equalized Quantization (HEQ) for

low-precision weighted networks

As mentioned in the previous chapter, model quantization is one of
the most relevant approaches for designing compact DNNs enabling
efficient hardware implementation and deployment. This chapter will
start by reviewing the state-of-the-art quantization-aware training
techniques allowing to train the DNNs with low-precision weights.
In particular, we focus on the case of linear symmetric quantization
due to its simplicity and hardware compatibility. Adjusting the quan-
tization mapping according to the data or to the model loss seems
mandatory to enable a high accuracy in the context of quantized
neural networks. In the same vein, this chapter present Histogram-
Equalized Quantization (HEQ), an adaptive framework which auto-
matically adapts the quantization thresholds using a unique step size
optimization. HEQ is then evaluated on multiple datasets and DNN
architectures. We empirically show that HEQ may achieve state-
of-the-art performances while being more hardware-compliant com-
pared to previous works.
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3.1 Context

Figure 3.1: Quantization frameworks in increasing order of data availability, training cost and also
algorithmic performance.

Designing low-precision networks [189] is a promising area of research aiming at reducing the
bit width to represent weights and activations, thus reducing the overall computational complexity
and memory-related costs, as well as easing the implementation on resource-constrained devices
to perform inference at the edge. The advantages of quantization have been demonstrated on sev-
eral resource-efficient low-precision CNN accelerators [121], [190], [191], [192], [193].

In pratice, the quantization of a model depends on several factors: the availability of data
(i.e., labeled and unlabeled data), the affordable training cost, the algorithmic complexity, and the
desired level of performance. Based on these elements, we can loosely categorize existing quanti-
zation frameworks into four classes as depicted in Figure 3.1. In the most restricted case, the quan-
tization can be done without back-propagation nor data access [194], however, this comes at the
cost of significant performance loss while still maintaining a high-precision network (e.g. ≥ 6-bit)
that limits its benefits compared to the full-precision network counterpart. Post-training quantiza-
tion [146] is also a backpropagation-free approach, but it requires a small portion of data (i.e., not
necessarily labeled) to calibrate the quantization mapping for activations. These two approaches
allow to accelerate the deployment while alleviating privacy concerns regarding the data. How-
ever, in the case where we have full access to the training data, Quantization-aware training (QAT)
is needed if the algorithmic performance and the hardware efficiency are both crucial. Advanta-
geously, QAT enables us to preserve the performance of quantized models and avoid unacceptable
accuracy degradation due to the limited precision. QAT usually consists in using real-valued prox-
ies of the model weights that are on-the-fly quantized during the forward pass while being updated
during the backward pass [148]. As such, the full-precision weights of the model is learned to
adapt the model behavior accordingly to the quantization process. While the baseline QAT ap-
proaches apply a fixed quantization mapping which remains unchanged during the training, more
advanced methods argue that the quantization mapping should be also adjusted along with the
model’s parameters as this enables a better performance level. Nevertheless, these adaptive QAT
methods may require a higher complexity in designing the quantization and the learning procedure.
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Choosing the quantization mapping is another important question. Although several nonlinear
quantization mappings [195], [142] and [196] have demonstrated remarkable algorithmic perfor-
mances, they are not fully compliant with a simple hardware implementation. On the contrary,
a linear symmetric mapping [25] naturally matches off-the-shell hardware, making it a more rel-
evant and reasonable choice for model quantization. However, its lack of flexibility makes the
adaptation of linear symmetric quantization an open question so far.

As mentioned before, this thesis targets the hardware-algorithm compromise of DNN accel-
erators that can be deployed for an long-term period, therefore we make use of QAT methods as
the pivotal element for building compact DNNs with highly acceptable algorithmic performance.
In this section, we present a novel QAT method which efficiently adjusts the linear symmetric
mappings to obtain the quantized model with very low-precision weights.

3.2 State of the art in linear symmetric quantization

Figure 3.2: An example of the linear symmetric quantization where the step size s defines the
quantization thresholds. Here the quantization outputs could be encoded by a 3-bit representation.

Figure 3.2 typically depicts an element-wise linear symmetric quantization, in which the
thresholds are derived from a unique step size s. The calibration of this scaling factor plays a
key role and we state that it is likely intractable to find the optimal a priori value, given that it
deeply depends on the model topology, its initialization, the inference task and the training pro-
cedure. Therefore, using an adjustable scaling factor during the training has demonstrated to be
more favorable because of taking into consideration the evolution of weight/activation layer-wise
distributions. Existing methods on optimizing these parameters can be divided into three groups:
quantization error minimization methods, task loss gradient-based methods, and statistics-based
methods.

3.2.1 Quantization error minimization methods
Ternarization with only 3 output values can be considered as the extreme case of the linear sym-
metric quantization. Ternary Weight Network (TWN [197]) finds the ternary mapping that aims at
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minimizing the mean squared error between the floating-point weights and their ternarization. This
allows them to approximate the optimal threshold (i.e., s

2 ) in the case of a symmetric ternarization:

s
2
= 0.7

∑
n
i=1 ∣Wi∣

n
(3.1)

where the term ∑n
i=1 ∣Wi∣

n computes the mean absolute value of the full-precision proxy weights of
the layer. Similarly, [198] seeks to optimize the step size s of a general k-bit quantization under the
minimization of the quantization error and proposes an iterative approach to obtain the filter-wise
step size. In the same vein, [25] generates a simulated gradient ∇s = −α

2d to find the near-optimal
s, where the descent direction d is determined by comparing the quantization errors at s (middle
point, d = 0), s

2 (left point, d = −1) and 2s (right, d = 1). However, even when the quantization
error is minimized, it is difficult to ensure that the output of a deep, complex model with cascade
of quantized layers is still coherent with that of the full-precision original counterpart.

3.2.2 Task loss gradient-based methods

Learning the quantization mapping under the task loss minimization perspective is a recently pro-
moted approach. Back to the case of ternarization, [199] presents the ternarization under a residual
framework in which the proxy weights and the step size are jointly learned under the task loss
backpropagation. Furthermore, in a general k-bit linear symmetric quantization, [200] derives an
STE gradient of step size with respect to the loss. Based on this work, [201] and [202] take advan-
tage of bitwidth-dependent regularizations to optimize the layer-wise bit allocation given a target
model size or a computational budget. Although learning the step size to directly optimize the task
loss seem to be the most reasonable choice, the coarse gradient obtained might likely result in a
sub-optimal performance and also an unstable training if its magnitude is not carefully controlled.

3.2.3 Statistics-based methods

The case of TWN shows an example of using the statistics of the full-precision proxy weights (in
this case is the mean absolute value) to determine the value of the step size. [203] reviews the
ternary quantization under the learnable framework, and sets the threshold using the maximum
absolute value of proxy weights, i.e., s

2 = 0.05×max(∣W ∣i). Similarly, DoReFa [145] makes use of
the maximum absolute value to normalize the proxy weights before the quantization.

In this chapter, we also leverage the statistics of the proxy weights to adjust the quantization
mapping during training. Concretely, we claim that –in most cases– a proper low-bit quantiza-
tion scheme should cover all the available data representation space, somehow maximizing the
entropy of the weights [204]. Based on this hypothesis, [205] presents a 2-bit quantization meth-
ods for recurrent models where the step size equals to a constant multiple of the mean value of
the proxy weights. Similarly, [206] determines the thresholds of 3-value and 4-value quantiza-
tions according to the mean and the standard deviation of the proxy weights. However, these
approaches are not generic and applied only to under 3-bit quantization. On the contrary, our
proposed method –Histogram-Equalized Quantization (HEQ)– automatically adjusts the step size
of an n-value quantization according to its n-quantiles such that the resulting quantized values are
more balanced, without any further regularization. We empirically show that our method provides
a better accuracy than previous methods on different topology variants, from the baseline plain
model to residual networks.
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3.3 Linear symmetric quantization and the unbalanced histogram
This chapter focuses on the linear symmetric quantization to a restricted range of odd n > 2

discrete values. We consider the mapping g ∶R→ [[−1,+1]] applied to the weight w as:

g(w;s) =
2

n−1
Clip(⌊

w
s
⌉ ,

1−n
2

,
n−1

2
) , (3.2)

where [[−1,+1]] is discretized with an output step size of 2
n−1 , s is the input step size and Clip(x;a,b)=

min(max(x,a),b) with a < b. While existing works usually keep the range of floating values by
the factor s outside of the clipping function, here we use the 2

n−1 scale factor so that all the quan-
tized values are explicitely shrunk in the interval [−1,+1]. During backpropagation, we use the
straight-through-estimated (STE [59]) gradient ∂g

∂w = 1{∣x∣≤1} to update the proxy weights.

This formulation thus depends on the definition of s that deeply impacts on the model accu-
racy. Let us consider Ternary Weight Networks (TWN) [197] as the baseline where s = 2τ

∑n
i=1 ∣Wi∣

n ,
with a fixed norm factor τ = 0.7. Although the optimal s may change depending on the data
distribution, this method cannot be applied to higher precisions and the predefined τ limits the
adaptability of the quantizer. Similarly, DoReFa [145] forces the real values into the range of
[−1,+1] by a mapping adapted to the data, but the thresholds remain fixed. Fig. 3.3 depicts the
histogram of proxy weights (blue bars) and quantized weights (horizontal green lines) in the case
of 3-value (Figs. 3.3c, 3.3e) and 5-value (Figs. 3.3d, 3.3f) quantization whose initialization (from
full-precision model) is shown in Figs. 3.3a and 3.3b, respectively. We can observe that in both
cases of TWN (Fig. 3.3c) and DoReFa (Fig. 3.3d), the proxy weights are mainly concentrated
around zero and the distributions between thresholds (vertical green lines) are unbalanced. In
particular, the quinary weights (3-bit) in Fig. 3.3d can be approximated by only 3 values (2-bit).
Consequently, the quantized weights fail to exploit all available values which may cause the model
to be sub-optimal. This motivates the use of a proper quantizer favoring the balance of quantized
weights.

3.4 Histogram-Equalized Quantization (HEQ)
To resolve the aforementioned unbalance between quantized values, we propose HEQ to au-

tomatically adjust s during training. Assuming that a properly scaled quantizer should optimize
the balanced use of available discrete values in the data representation space, we iteratively tune s
based on the histogram of the proxy weights to equi-distribute quantized weights.

In Fig. 3.4 we denote {(qi,q−i)}i∈[[1, n−1
2 ]]

as n−1 points which divide the histogram of weights
into n intervals with equiprobabilities (namely n-quantiles). Observing that the weights distribu-
tion may change during the training procedure but with a median value that usually stays around
zero, we assume that these quantiles are symmetrically distributed around zero, i.e. q−i ≈ −qi with
qi > 0 or ∣qi∣ = qi.

In order to equalize the histogram bins of quantized values, we thus re-estimate and update s at
the beginning of each epoch, such that the resulting thresholds used by the quantization function
(see Fig. 3.4) are getting closer to these quantiles. Therefore, s can be approximated by a weighted
sum of the quantiles such that qi approximately coincides with (2i−1)s

2 . Concretely, we assume that
the sum of the absolute value of n-quantiles is approximately equal to that of the thresholds:

n−1
2

∑
i=1
(∣q−i∣+qi) = 2

n−1
2

∑
i=1

(2i−1)s
2

, (3.3)

from which we can derive the following updating formula:
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(a) Full-precision model. (b) Full-precision model.

(c) TWN-Ternary weights (d) DoReFa-quinary weights

(e) HEQ-ternary weights (f) HEQ-quinary weights

Figure 3.3: Weight distributions of 2 layers (in 2 columns) after training of: full-precision model
(1st line), existing ternary-weight and quinary-weight model (2nd line), and our proposed HEQ
method (3rd line) along with quantization thresholds.
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3.4. Histogram-Equalized Quantization (HEQ)

Figure 3.4: Symmetric linear quantization with histogram bin equalization when n-quantiles
(q−i,qi) are symmetrical and coincide with the quantized thresholds.

s =
4∑

n−1
2

i=1 (∣q−i∣+qi)

(n−1)2
. (3.4)

This approach has the great advantage of being generic, compatible with almost all use cases re-
gardless the quantization level, the position of the layer and its type (with a possible extension to
an even n). To maintain the stability of the model during optimization, we compute and update
s only at the beginning of each epoch. The formal training procedure is detailed in Algorithm 1.
The proxy weight distributions obtained after a training stage that are reported in Figs. 3.3e and
3.3f clearly demonstrate that HEQ provides a more balanced distribution of quantized weights.

Algorithm 1 Training QNN with Histogram-Equalized Quantization (HEQ)

Input: Initial proxy weights {Wl}
L
l=1 and training dataset

Output: Optimized {Wl}
L
l=1, {sl}

L
l=1

// B, I, L: #batches, #epochs, #layers
// Wl: full-precision proxy weights of the lth layer,
// sl: quantization step size used at the lth layer.

1: for i = 1 to I do
2: for l = 1 to L do
3: Find n-quantiles of layer l
4: Compute and update sl (Eq. 3.4)
5: end for
6: for b = 1 to B do
7: Forward pass using {g(Wl;sl)}

L
l=1 (Eq. 3.2)

8: Backward pass and update {Wl}
L
l=1

9: end for
10: end for
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3.5 Experiments
HEQ has been evaluated on the CIFAR-10 dataset [73] with 32×32 RGB images and using the

VGG-Small model like in [196]. A combination of a scale-invariant random crop (performed on
all-sided 4-pixel padded images) combined with a random horizontal flip is used for data augmen-
tation. Initial proxy weights are from a pre-trained full-precision network. Motivated by Hardware
considerations, a 2-bit activation scheme as detailed in DoReFa [145] has been used. Our model is
trained during 100 epochs with a small batch size of 50 to favor exploration. The learning rate is
set to 10−3 during the first 50 epochs, then exponentially rescaled by a factor of 0.9 at each epoch.
Finally, a very last epoch with a larger batch size of 100 and a smaller learning rate of 10−5 is per-
formed for fine-tuning. Fig. 3.5 allows a comparison between TWN [197] and our HEQ method
with respect to the resulting weight distributions. While the zero values dominate all layers in the
case of TWN, our method reduces the variance and limits the number of weights at 0 to nearly
1/3 as shown in Fig. 3.5. The number of −1 values slightly dominates as more proxy weights
are concentrated on the negative side. The effect of HEQ on increasing the information-carrying
capacity of the quantized weights is clearly demonstrated in Figure 3.6, with nearly maximized en-
tropy values in the case of HEQ-ternary and HEQ-quinary. On the other hand, quantized weights
trained by TWN and especially DoReFa-quinary have significant lower entropy. Fig. 3.7 depicts
the variation of s during training in both ternary and quinary cases. It shows that the evolution of
s depends on the layer and has different convergence values.

Figure 3.5: Comparison of the ternary-weight distribution using TWN and our HEQ method.

Table 3.1 reporting the average accuracy of each configuration over 5 realizations, demon-
strates the competitiveness of HEQ compared to the state-of-the-art quantization methods. For
instance, when quantizing both weights (W) and activations (A) into 2-bit, we obtain 93.51% ac-
curacy while having only 3 values {−1,0,+1} over 4 values possible like LQ [196] and LLSQ [25].
Compared to the full-precision model, we observe mostly no degradation in the case of quinary
weights (n = 5) and even a gain with septenary weights (n = 7). Moreover, while other works
give rise to a full-precision scaling factor besides the integer weights which demands the fusion
into Batch Normalization [207] (BN) for later hardware implementation, our models trained with
HEQ-ternary and HEQ-quinary obtain directly integer values 0,±1 (logical operations) and ±0.5
(bitshifts) which is already compatible for an easy hardware deployment.
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(a) Ternary quantization.

(b) Quinary quantization.

Figure 3.6: Information entropy of the quantized weights of different layers in VGG-Small on
CIFAR-10. The entropy reaches its maximum value when all the quantized levels have equi-
probabilities.
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(a) Ternary quantization. (b) Quinary quantization.

Figure 3.7: Evolution of the step size s during training.

Table 3.1: Comparison with the state-of-the-art low-precision quantization methods on CIFAR-10.

Method HW-Compatibility Bitwidth W/A Accuracy(%)

TWN [197] + 2/32 92.56

STTN [208] + 2/2 92.93

TRQ [199] + 2/2 91.2

LQ [196] -
2/32 93.8

2/2 93.50

LLSQ [25] + 2/2 93.31

FP32 baseline 32/32 93.68

HEQ-ternary ++ 2/2 93.51

HEQ-quinary ++ 3/2 93.66

HEQ-septenary + 3/2 93.75

3.6 Conclusion and Perspective
In this chapter, we presented a novel approach for quantizing weights in DNNs which is termed

as HEQ. This is an adaptive QAT method which allows to adjust the linear symmetric quantiza-
tion mappings according to the statistics of the proxy weights. During the training process, the
step size is adjusted as a linear combination of the n-quantiles of the proxy weights, such that the
quantized levels are approximately equalized. From an information theory point of view, HEQ
seeks to maximize the information entropy of the quantized weights. The advantages of HEQ
mainly rely on its simplicity and genericity which can be applied to different quantization levels.
Besides, the process of adjusting the step size of HEQ is more training-efficient, as it can be done
at the beginning of each epoch, rather then at every backpropagation iteration like existing works.
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3.6. Conclusion and Perspective

We empirically show that the models trained with our HEQ can achieve state-of-the-art accuracy
on different datasets at low bitwidth, while being more hardware-compliant compared to previous
methods. Moreover, throughout this thesis, we employ HEQ to train the quantized models with
quinary and ternary weights in Chapter 4 and Chapter 5. The results obtained on these chapters
also demonstrate the effectiveness of HEQ as a generic quantization approach that can be applied
to different types of DNN architectures.

From a more general point of view, it is noteworthy mentioning that we can seek other dis-
tributions for the quantized values. In some cases, we can use another regularization to obtain
non-uniform quantized distribution of a general (linear or nonlinear) quantization mapping. One
straightforward example is the quantization of ReLU activations where the balanced distribution
between activation values may harden the learning of most discriminant features. In that case,
a long-tailed distribution dominated by zero values is more likely suitable. Back to the case of
weight quantization, since the trained full-precision weights are usually assumed to follow gaus-
sian distribution, we may also seek a Gaussian quantized histogram in the means of minimizing
quantization error. Moreover, since most of the proxy weights have small magnitude, we can adopt
a mixed-precision quantization scheme which coarsely quantizes near-zero values by low bitwidth,
but finely represents high-magnitude values with more bits. This can be done by a learnable en-
tropy coding, or a pre-determined low-bit representation for the sake of hardware compatibility.
Those aforementioned extensions may be addressed in our future works.
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4
Mixed-precision Deep Neural Networks for image

classification and patch-based compression

Even if ASAs have proven to be a relevant choice for integrating in-
ference at the edge, they are often limited in terms of versatility. In
this chapter, we demonstrate that an application-specific NN acceler-
ator dedicated to image processing can be applied to multiple tasks
of different levels: image classification and compression, while re-
quiring a very limited hardware. The key component is a reconfig-
urable, mixed-precision encoder that are properly designed leverag-
ing hardware-compliant quantization and pruning techniques.
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Chapter 4. Mixed-precision Deep Neural Networks for image classification and patch-based
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4.1 ASIC designs: energy efficiency versus flexibility
In section 2.2 we have overviewed different classes of DNN accelerators: GPA, AIDA, and

ASA. Indeed, the choice of DNN inference platform deeply depends on the targeted applications
(level of versatility and programmability), the available power consumption of the system, the
complexity of the inference task and its required quality of service (e.g. level of accuracy). While
GPAs such as CPU, GPU or FPGA can serve for different type of computations, AIDA and ASA
platforms are specifically designed for DNN processing and more related to ASIC design. How-
ever, these two classes still differ from each other in terms of design patterns, scalability and power
consumption level.

AIDAs are relatively generic hardware platforms dedicated to multi-purpose DNNs with the
highest TOPS/W as the main Figure of Merit. Recent works improve the performance and en-
ergy efficiency of AIDAs by focusing on three main key points: reconfigurability, sparsity and
weights bitwidth. Within the scope of a reconfigurable platform, we can cite [38], a deep neural
architecture enabling highly reconfigurable patterns while targeting a wide range of models with a
limited power budget of 479mW. Some other works also introduce specific architectures that limit
data movement in CNN. [6] proposed Eyeriss - a spatial architecture with row-stationary dataflow
that takes advantage of local data reuse mechanism even exhibiting a lower overall chip power
consumption of 278mW. On the other hand, [39] handles sparsity with binary maps and arrays
for nonzero values, skipping null activations to reach a power consumption of only 155mW. Vari-
able bitwidth computations allow good trade-offs between accuracy and memory/power budgets
as depicted in [121] that presents a DNN accelerator supporting variable weights bitwidth preci-
sion from 1 to 16 bits, with a power consumption ranging from 3.2mW to 297mW (depending
on the master clock frequency and power supply). [209] proposed a computing-in-memory neural
network processor efficiently dealing with sparsity and weight storage on SRAM. [191] presents
a resource-efficient architecture for BNN inference accelerator, processing blocks in an output-
oriented manner while skipping redundant operations.

While AIDA platforms can be used to deployed different DNN architectures for different ap-
plications, ASAs are dedicated to only certain tasks, considering both the hardware specifications
and the algorithm perspectives proposing co-optimized designs. This promotes compact network
topology design with improved power consumption efficiency while capping algorithmic loss of
accuracy. For instance, [210] proposed an accelerator optimized for binary-weights CNN with a
power consumption of 895µW. Using quantization technique in both analog and digital domain,
Kim et al. [126] proposed an always-on face recognition processor integrated with a CMOS image
sensor (CIS) consuming about 620µJ per inference. [211] even proposed a sub-10µW QQVGA
imager enabling both motion detection with background estimation and face recognition using
XOR-based edge extraction combined with a SVM. [212] proposed a QQVGA imager which can
operate on convolution mode with ternary-weighted filters and Haar-like detection mode, under
less than 206µW. [27] presented a CNN-based accelerator that can serve for both face detection
and facial landmarks localization. More recently, [190] presented a digital Binary Neural Network
(BNN) chip achieving a power consumption of 5.6mW. Low-precision CNN processors were also
applied to real-time object detection task in [213] and [214]. In particular, [214] adopted a mixed
data flow for each layer along with an intra-layer mixed weights precision quantization, in which
the weights were decomposed to a dense binary kernel and a sparse 8-bit kernel in order to im-
prove the accuracy/compression ratio trade-offs.

Those aforementioned examples of AIDAs and ASAs has demonstrated the key difference be-
tween these two classes in terms of power consumption at the expense of application-versatility.
By sacrificing the flexibility to target only specific tasks with fine-grained hardware-algoritm co-
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design, ASAs can advantageously limit the power consumption in the order of 1mW or even below.
However, the downside of ASAs is that they only support a certain task or some correlated tasks
such as face detection and facial landmarks localization. If the applications require different levels
of feature processing, e.g., classification and compression, it is difficult to design a single model
topology that can successfully handle both of them within resource-constrained budget.

Motivations:
Taking into consideration ASIC design issues, the work in this chapter has a dual purpose:

• increase the application-versatility of an Image and Signal Processor, dedicated to classifi-
cation and compression;

• improve the hardware efficiency and algorithmic performances trade-off (i.e. inference and
reconstruction accuracy).

To this end, we propose a hardware-compliant mixed-precision encoder and its decoder coun-
terpart. The main advantage of the proposed encoder topology is that it can be declined for both
HW-light embedded inference (Figure 4.1, a) path) and image compression tasks (Figure 4.1, b)
path) with proper weights trained separately for each application. Indeed, for each task, the mixed-
precision quantized encoder will load the corresponding weights (thanks to its reconfigurability)
to process and output discriminant patterns as a latent binary representation of the data. From this
binary coding, we can thus either use directly a classifier to perform the embedded inference or a
remote decoder network (PURENET) for image recovery (see Figure 4.2).

Contributions:

1. We introduce a mixed-precision encoder design with reconfigurability that may serve for
both image compression and classification. It is noteworthy to mention here the proposed
HEQ framework (c.f., chapter 3) is applied it to the quinary and ternary weights in the
encoder. Besides, the Batch Normalization obstacle is successfully replaced by a layer-
shared Bit-Shift operation. We also propose a Half-wave Most-Significant-Bit (HWMSB)
function for 2-bit activation with favorable hardware compatibility.

2. We propose a novel decoder called PURENET that takes as input the patch-based binary
measurements from the quantized encoder. To our knowledge, this work presents one of the
first low-precision quantized encoder for patch-based image compression. Our experiments
show that image decompression can be performed without block artifacts at low bitrate.

The rest of this chapter is divided as follows: Section 4.2 presents related works, Section 4.3
details our nonlinear quantized encoder design, including details of proposed algorithmic enablers.
Section 4.4 describes the network topology of the Decoder for image reconstruction. Finally, Sec-
tion 4.5 presents simulation results on both image classification and image compression tasks.

4.2 Related works
Weights and activations quantization, connectivity pruning and alternatives to the Fully Con-

nected layer bottleneck are usually used as common techniques to facilitate the implementation of
an Artificial Neural Network in terms of hardware mapping. For the sake of avoiding redundancy
(c.f., see 2.3), here we will only discuss about specific problematic regarding mixed-precision
topologies, the crucial but hardware-unfriendly use of BN in QNNs, and the alternatives to the FC
layer bottleneck. Apart from algorithmic enablers for inference, the last part of this section depicts
previous works on image reconstruction from patch-based compression.
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Figure 4.1: The joint framework for both image classification and image embedded compression
and remote decompression.

Figure 4.2: Schematic description of our framework involving neural network topology parts.

66



4.2. Related works

4.2.1 Model quantization
Mixed-precision DNNs

Existing works usually adopt a fixed-precision strategy to all layers in the DNNs, either to simplify
the design space, or to easily evaluate the proposed quantization methods compared to state-of-
the-art. However, the role of every layer in the model changes accordingly to their positions as
well as the model architecture and the targeted task itself. Therefore, it is more reasonable to
adopt a mixed-precision topologies to DNNs which allows to prioritize important layers at higher
precision. This way, the design space of mixed-precision DNNs falls between full-precision 32-bit
networks and binarized networks, where the optimal topology enables the best trade-offs between
hardware efficiency and algorithmic performance. The mixed-precision topology has different
levels of granularity: filter-wise [160], i.e., each filter in a layer has a different bit-width, or layer-
wise [215] where the precision changes from one layer to another.

Assigning the optimal bit-width for every components in DNN is basically a searching prob-
lem. As a result, the optimal mixed-precision strategy can be found under the framework of NAS
based on Reinforcement Learning approach [215], [216], or DARTS approach [160], [201]. Be-
sides, [217] propose a Hessian-based framework to measure the sensitivity of layers to the quan-
tization, enabling the bit-width selection for each layer in DNNs. Although obtaining promising
results, these methods introduces additional shortcomings in terms of training cost and computa-
tional overheads.

In our work, we also have a mixed-precision approach in order to improve the harware/algorithm
trade-offs. However, for the sake of simplicity, the mixed-precision topology presented in this
chapter still relies on a hand-crafted design which manually assigns higher precision to weights
and the activations of the first layers, as they are crucial to extract meaningful information from
the data.

Batch Normalization in Quantized Neural Networks (QNNs)

An important issue about QNNs is that they generally fail to properly converge without Batch
Normalization (BN) [218]. However this property becomes an obstacle for efficiently deploy-
ing QNNs in embedded systems, because the affine transform of BN at inference stage is still
an expensive operation from the hardware point of view. Due to the crucial role of BN during
the training process, there is no surprise that previous works either kept BN in full precision or
avoided to use it. [219] proposed to fuse the batch normalization parameters into the kernel and
bias of BNNs and perform an Addition with the 9b equivalent bias. Riptide [220] even approx-
imated the variance of the BN and the scale terms of XNOR-Nets by bitshift operations, and
combined them to embed both the magnitudes of weights and normalizations. Another scheme is
Sign Comparison which absorbs the BN into the Sign function by an equivalent comparison be-
tween the pre-activation and the bias obtained after training [221], [222]. However, both of these
two approaches still kept the presence of the bias which surely introduced an additional module in
terms of hardware implementation. Besides, these specific schemes can only be applied in the case
of activation binarization, otherwise in the case where BN is followed by a multi-bit quantization,
they are no more applicable.

In this work, we propose a BitShift-based Normalization (BSN) that approximates the affine
transform of the whole BN layer at testing time by a single power-of-2 rescaling, without the in-
troduction of additional biases. Due to the crucial role of BN in the training of QNNs, we still
leverage BN to train the quantized model from scratch, then replace all BN layers by BSNs before
fine-tuning the model to recover the performance degradation.
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4.2.2 Alternatives to the Fully Connected layer (CNN bottleneck)
Traditional deep CNN architectures consist of a convolutional block followed by one or many
Fully Connected (FC) layers to perform the classification. Although it has shown the success on
various datasets, these FC layers, in particular the very first FC layer (CNN bottleneck), often hold
a huge percentage of model’s parameters. For resource-constrained applications, this becomes a
main limitation for the CNN deployment. Besides, these FC layers are also a factor that is prone to
overfitting. There exists several methods replacing the first FC layer to achieve a better efficiency.
Global average pooling is first introduced in [223] that outputs only one value per feature map.
In the same perspective, [224] proposed a 3D convolution in which only local feature maps are
combined to get the prediction for each class. Both these two approaches dramatically reduces
the number of parameters while achieving a competitive performance compared to FC-based clas-
sifier. They all demonstrate that the FC layers exhibit redundancy and can be replaced with an
acceptable loss of accuracy and generalization of the model. Indeed, both global average pool-
ing and 3D convolutions are just a formulation of linear transformation with reduced support size
compared to a dense support of FC. However, while the difference between these classifiers and
FC-based classifiers is not significant in the context of full-precision models, there may be a clear
gap in the specific case of quantized neural networks.

Another direction to reduce the number of parameters of FC layers is to use a fixed transform
whose weight parameters are predefined. The deployment of such a model with fixed parameters
is more suitable for devices with limited resources. [225] shows that any fixed orthogonal matrix
can be used to efficiently replace a learnable FC. Even if it does not reduce the total number of op-
erations, they demonstrate that a Hadamard matrix can improve the efficiency in terms of hardware
implementation. Besides, the use of pseudo-random deterministic projections can also be a good
alternative because they preserve the linear separability while being hardware-implementable, this
without additional memory needs [226].

In this work, we propose an alternative to the first FC layer with input data of shape H ×W ×C
and output of C hidden units. Our idea basically consists in using a depthwise convolution (DW-
Conv) of kernel size H ×W followed by an FC layer without activation in-between. Later experi-
ments show that this approach achieves highly competitive results.

4.2.3 Autoencoder for patch-based image compression
Patch-based (or block-based) encoding is preferred to its full-resolution counterpart, as it reduces
the processing complexity and storage-related costs. Besides standards such as JPEG [227], there
exists a lot of other patch-based compression schemes, from dimensionality reduction using block-
based Compressed Sensing (BCS) [228], [229] to deep learning-based approaches [230]. In the
BCS framework, the high-dimensional image is divided into non-overlapping patches which are
then projected separately onto a low-dimensional space via a common projection matrix, therefore
we can consider it as a linear encoding scheme. The reconstruction of the entire image from these
patch-based measurements can be done using iterative algorithms [231], [232] or recent learning-
based methods [233], [234]. On the other hand, neural network-based algorithms have been used
as an alternative approach for image compression. Toderici et al. firstly introduced a Long Short-
Term Memory (LSTM)-based autoencoder [235] enabling a patch-based 32×32 thumbnails com-
pression at variable compression rates, which encodes the residual error between the current re-
construction and the original image at each iteration. This framework was then developed and
applied to full-resolution image compression [236] with the intensive use of an LSTM-based en-
tropy coder to capture long-term dependencies of patches. Having the same perspective, [237]
introduced a progressive encoding scheme exploiting dependencies between adjacent patches. Al-
though achieving favorable results at shallow compression rates, these Recurrent Neural Network
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(RNN)-based autoencoders are not suitable for being deployed in resource-constrained systems
due to their complexity and hardware incompatibility. Also, these methods are not purely patch-
based as they make use of spatial coherence between adjacent regions to –more efficiently– encode
every patch and alleviate the block artifacts. [238] and [239] proposed deep learning image com-
pression techniques while adapting the region-based bitrate accordingly to the local content of
image. Note that even if such an adaptive bit allocation would improve the overall performances,
it does not fit within our hardware-restricted and patch-by-patch compression framework. Ensem-
ble learning is recently deployed in [240] which uses several networks of the same structure but
different parameters, and a network is selected when encoding each image block before signaling
to the decoder.

QNNs for image compression: Quantizing the weights and activations has been showing ex-
cellent results on semantic tasks such as image classification and object detection. However, repre-
senting the weights and activations using a low precision causes a considerable loss of information
at pixel level, which prevents QNNs from achieving good performances for image compression
or super resolution. This explains the absence of quantized models for these pixel-level tasks in
the related state-of-the-art. We can only cite some works of [241] and [242] that are dedicated
to super resolution. In the case of image compression, the role of pixel-level information is more
crucial in encoding image data, hence there exists hardly no prior works on quantized models for
this task. However, in this work, we use the same quantized encoder topology for patch-based
image compression as the one designed for image classification. We show that even with such an
encoder, the reconstruction is still guaranteed by the proposed PURENET decoder with almost no
block artifacts at the equivalent bit-rate of 0.25 bits-per-pixel (bpp).

4.3 Nonlinear quantized encoder
Our proposed framework first targets inference for always-on embedded systems. To ease fair

comparisons with state-of-the-art approaches, we use the basic but reproducible CIFAR-10 image
classification dataset [73]. Even though a practical application may differ for final sizing of the
topology, CIFAR-10 is generally deployed to benchmark both algorithm and hardware designs
[219], [221], [191], [222], [243]. Based on literature reviews related to network quantization and
the VGG model [81], we took the VGG-7 model for the sake of simplicity as the pivotal element
for constructing our topology variants. Note that all the reported contributions here are compatible
with other kinds of neural networks architectures such as ResNet [24], MobileNet [8], ...

Table 4.1: NQE topology with details on layer inputs and kernels precision.

Layer Input shape Weight shape Input precision Weight precision
Conv layer 32×32×3 3×3×3×F 8 3

Conv layer 2 32×32×F 3×3×F ×F 1 3
Conv layer 3 16×16×F 3×3×F ×2F 2 2
Conv layer 4 16×16×2F 3×3×2F ×2F 1 2
Conv layer 5 8×8×2F 3×3×2F ×4F 2 1

Group Conv (G = 4) 8×8×4F 3×3×F ×4F 1 1

Bottleneck
Depthwise Conv 4×4×4F 4×4×1×4F

1 1
FC 1×1×4F 4F ×4F

FC 4F 4F ×10 1 1

Figure 4.3 depicts our hand-crafted mixed-precision network topology integrating all proposed
algorithmic enablers for the image classification task. The model is divided into 5 main modules,

69



Chapter 4. Mixed-precision Deep Neural Networks for image classification and patch-based
compression

with 3 Convolution blocks, 1 Bottleneck layer and 1 output Classifier. In this specific setting
(i.e. the baseline model), a multi-bit quantization scheme for both activations and weights is
already applied to the first two convolutional modules, i.e. Quinary weights Quantization (QQ)
for the first, Ternary weights Quantization (TQ) for the second and Binary weights Quantization
(BQ) [12] for all the rest. Since the first conv layers are crucial to extract meaningful features and
preserve core information from input data, therefore more bits for them leads the network to better
performance trade-offs. We notice that the QQ and TQ are obtained using the proposed HEQ
framework (c.f., chapter 3) with n = 5 and n = 3, respectively. Note that the very first conv layer
additionally embeds channel-wise biases to properly enable image dynamics feature extraction.
We also put HWMSB activations (c.f., Section 4.3.1) at the end of the first two convolutional
blocks and the heaviside activation at the end of the third block, as having zero values –instead
of signed ones– helps learning to discriminate better data features. The first non-convolutional
layer is the bottleneck which holds the half of model’s parameters in its baseline format (i.e. a
FC layer). This first FC is thus replaced by a depthwise convolution followed by a far smaller
FC (c.f., Section 4.3.4). These first fours blocks constitute together what is denoted a Nonlinear
Quantized Encoder (NQE). The final block as for it, is a classifier composed of one single FC.
From a top-level system view, the NQE will perform the image compression over non-overlapped
32×32 patches while in classification mode it is combined with the last-stage classifier. We also
want to stress that applying 2× 2 MaxPooling (MP2) on a binarized tensor results in a tensor
with almost all ones, confusing the training procedure when choosing the argmax positions during
backpropagation. However, applying MP2 over quantized values is more hardware-friendly than
over full-precision values. In Figure 4.3, MP2 are thus put after HWMSB but before Heaviside
keeping in mind that from the hardware point of view (i.e.only for feedforward pass) this last
order can be reversed. Note that details of the layer weights and input configuration are described
in Table 4.1.

Figure 4.3: Topology of the Nonlinear Quantized Encoder (NQE) + Classifier. F in red stands
for the hyperparameter corresponding to the size scale of the feature map (i.e. the number of the
feature map of the first convolution module). GC stands for Group-wise Convolution of 4 groups.

4.3.1 Half-Wave Most-Significant-Bit (HWMSB) activation
To compensate additional hardware needs when using more bits for intermediate values, we pro-
pose to simply extract the position of the most significant bit of the income value. This operation
advantageously embeds two wanted features, namely log2 dynamic range compression and intrin-
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sic requantization. Its original real-valued function mapped in the [−1,+1] range can be defined
as:

f (x) =
⎧⎪⎪
⎨
⎪⎪⎩

sign(x) min(4+log2(∣x∣)
3 ,1) if x ≥ 1

8 ,
8x
3 otherwise.

(4.1)

The MSB quantization function and its Straight-Through-Estimated (STE [59]) gradient are then
described as follow:

q(x) =
⎧⎪⎪
⎨
⎪⎪⎩

sign(x) min( ⌊4+log2(∣x∣)⌋
3 ,1) if ∣x∣ ≥ 1

8 ,

0 otherwise.
(4.2)

∂q(x)
∂x

=

⎧⎪⎪
⎨
⎪⎪⎩

1
3∣x∣ log2 if 1

8 ≤ ∣x∣ ≤ 1,
8
3 if ∣x∣ < 1

8 .
(4.3)

When this MSB is followed by a ReLU activation, only positive values can be passed and nega-
tive values are zeroed out. We call this combination as Half-wave Most-Significant-Bit (HWMSB)
activation. Unlike the MSB function, the HWMSB activation has only 4 possible output values
{0,1/3,2/3,1}, therefore it needs only 2 bits to represents the output data. Another advantage of
HWMSB compared to MSB is that attenuating negative values improves the learning as ReLU
does in several topologies. Table 4.2 reports the value mapping between the decimal, naive binary
representations and the outputs. The first significant bit is assigned to the third bit on the right of
the point. We call this the reference position, which is determined by the integer bias of 4. If the
input is multiplied by a power-of-2 factor before the MSB, we can absorb this multiplication into
the MSB by just shifting the reference position accordingly. Note that this quantization scheme
differs from existing logarithmic quantizations such as [244] on these two points, first it has the
integer bias of 4 and it also zeroes out negative values. Note that the normalization factor (here, 3
to keep the dynamic in the wanted range) can be assigned independently to this scheme.

Table 4.2: 2-bit HWMSB input-output mapping with naive binary representation
(sign+magnitude)

Input Output

Decimal Binary Decimal Binary

x < 0.125 x.000xx/ 1.xxxxx 0 0.00

0.125 ≤ x < 0.25 0.001xx 1/3 0.01

0.25 ≤ x < 0.5 0.01xxx 2/3 0.10

x ≥ 0.5 0.1xxxx 3/3 0.11

4.3.2 Layer-shared BitShift-based Normalization (BSN)
BN keeps a crucial role to QNNs, especially BNNs, as these networks fail to well converge with-
out a proper rescaling. However, BN is not tractable for Deep Learning in highly constrained
embedded systems, since at inference time, it consists of one full-precision addition and multipli-
cation per scalar, which is a computational-demanding operation. A quantized BN from scratch
is definitely not as robust as the standard BN as it is difficult to estimate the appropriate scaling
factor, and unfortunately involves a significantly lower network’s accuracy (e.g. much larger than
1%).
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BN replacement by a single BitShift: The straightforward option considered here is we
still employ the standard BN to train the model from scratch and then simplify all BN affine
transforms by a single BitShift approximation, with later retraining in order to update the weights
accordingly. This two-step training procedure allows preserving its accuracy performances with a
high simplification of the final hardware implementation. We thus approximate the scale constants
of BN layers obtained after first training in a power-of-2 fashion, that advantageously corresponds
to the bitshift operation. After the training stage, BN layer has properly estimated batch statistics
µ and σ

2, respectively representing the moving mean and the moving variance. Let us recall that
at the inference stage, the BN consists in processing the input x to provide the output y as follows:

y = γ
x−µ
√

σ2+ε
+β ≡ γ̂x+ β̂ (4.4)

where –using the same notations as in [218]– γ̂ =
γ√

σ2+ε
and β̂ = β −

γµ√
σ2+ε

are equivalent to a
scale and an offset (i.e. channel-shared additional weight and bias if applied after 2D convolution,
and unit-shared if applied after 1D Dense layer, therefore we have a vector of different γ̂ for each
BN). Concretely, in our framework, we choose the 0.9-quantile value from these scales at each
layer, denoted as γ̃ , to serve as the unique scale for all the BSNs, approximating it as follows:

y = 2⌊log2∣γ̃ ∣⌋x (4.5)

Note that the experimentally chosen 0.9-quantile is considered as it is a good trade-off be-
tween the maximum value that may explode the dynamic range along with the gradient, and the
minimum value that may slow down the gradient update of previous layers. After replacing all BN
layers of the model by this single BSN transform, we train again the network one more time. Note
that for all the BSNs, we can get rid of the bias β̂ as it does not improve the inference in general,
at the expense of additional computations for hardware mapping.

Hardware implementation of BSN: Generally, having only one bitshift-based scale replac-
ing the whole BN layer considerably reduces the computational complexity in all cases, regardless
its following quantization. While needing only 4 bits to store the bitshift scale, all input data will
share a common bitshift operation, that is much cheaper than affine transforms of different scales
and biases, even if theses parameters are quantized. Moreover, in the context of our model topol-
ogy where we have either HWMSB, Sign or Heaviside quantization after the BSN, this becomes
more advantageous. Clearly, the single bitshift keeps the sign of data unchanged, therefore, it
has no impact to the results of the later Sign or Heaviside quantization. Consequently, the BSNs
followed by Sign or Heaviside quantization do not need to be explicitly implemented. Similarly,
we can also get rid of the final BSN as it does not change the order of the output layer’s logit
prediction. In addition, the bitshift scale of BSN can be intrinsically fused into the HWMSB by
just shifting the reference position of the HWMSB accordingly.

4.3.3 Pre-defined pruning with Group-wise Convolution (GC)
Inspired by ShuffleNet [9] and justified by the advantages of a structurally pre-defined pruning, we
propose to perform convolutions of CNN in a Group-wise manner instead of an all-channel-fully-
connected conventional topology (see Figure 4.4). This group-wise pruning is only applied to the
last convolutional layer of the NQE, as it contains most of the parameters. A Group-Convolution
reduces the parameters and the number of MACs by a factor equal to the number of groups. Con-
sequently, it also reduces the memory needed for intermediate values. Compared to unstructural
pruning scheme, a predefined structural pruning like the Group Convolution may be embedded
directly to the hardware platform, without the need of additional memory to save the connection
positions. In our model, the number of groups is set to 4.
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Figure 4.4: Example of Group-wise convolution with a 4-channel input divided into 2 groups and
8-channel output. The intermediate values are also divided into two groups, and each convolution
is performed with a kernel that takes only two input channels from the corresponding group. These
output channels are then structurally shuffled.

4.3.4 Compression of the bottleneck dense layer

In our NQE, the first affine transform performed after conv modules has an input of shape 4×4×4F
and outputs 4F hidden units. In the case of a dense layer, it will contain 256F2, i.e. almost 50%
of the model’s parameters. Even though the weights are binary, it still requires a large percent-
age of the total memory needs. Therefore, replacing this bottleneck layer while preserving the
model’s performance is crucial for improving the overall efficiency. In this work, we propose to
firstly use a depthwise convolution of kernel size 4×4, to transform the 3D tensor into a vector
of length 4F . Formally, this depthwise convolution is equivalent to a block-diagonally connected
layer, with only 4×4×4F = 64F learnable parameters. Then we have a square learnable FC layer
with size 4F , therefore holding only 16F2 parameters. Since there are no activation between these
two sub-layers, this approach is equivalent to decomposing the fully dense matrix into two sub-
matrices, one for only spatial operation (depthwise convolution), the other for the combination of
channels (dense layer). Consequently, the total number of parameters is 16F2+64F , which is very
small compared to the initial 256F2 parameters of the FC version of the bottleneck. In Figure 4.3,
these two layers are surrounded by a yellow rounded rectangle, denoting that they form together
an alternative to the bottleneck dense layer.

4.4 Image reconstruction from patch-based quantized measurements
with PURENET

Figure 4.5 shows the proposed combination of an image patch-based encoder with a full-frame
decoder. The large image is first divided into small patches of size 32×32 and then processed by
the NQE to obtain a binary representation for each patch independently. The Patch-based Upsam-
ling (PU) module will learn to increase the spatial resolution of these codes from 1×1 (vector) to
16×16 (i.e. half of the final full-resolution). These patches are then aggregated together to form
proxy feature maps at 1

2 ×
1
2 full-resolution, which are then processed by the Refinement module

to obtain the final reconstruction. The term PURENET hereafter denotes for the Patch-based Up-
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Figure 4.5: The patch-based encoding with Full-Resolution PURENET decoder. Compressed bi-
nary codes are vector of length 256, corresponding to the bitrate of 0.25bpp. Note that without the
Patches Aggregation (PA), this topology may still be applied to the decoding of patches indepen-
dently. This variant without PA is denoted as patch-independent PURENET (PI-PURENET).

sampling and REfinement NETwork.

Upsampling module: In details, the Upsampling model contains 4 blocks of Transpose Con-
volution + BN + ReLU (CBR). Each Transpose Convolution (ConvT) is of kernel size 3×3 and
strides of 2. Figure 4.6 depicts the topology of this module. In PURENET, the Upsampling module
is independently applied to every patch, so that the information of each patch is properly preserved
and do not mix with the neighborhood. We observe that aggregating the patches before the final
2×2 upsampling is an appropriate trade-off between alleviating the block artifacts and limiting the
color errors due to the mixture of patches.

Figure 4.6: PU: The Patch-based Upsampling performed using 4 CBRs (ConvT + BN + ReLU),
all with a kernel size of 3×3 and a stride of 2.

Refinement module: After aggregating all patches, we obtain a tensor of half resolution of
the original image. The Refinement stage (Figure 4.7) then allows smoothing the image, hence
removing unwanted block-artifacts. Each patch is now reconstructed by using not only its own
information but also its neighbors. In particular, this Refinement model makes use of several
Residual-Concatenation (RC) blocks before the final upsampling in order to reach the original
resolution. Each RC block consists of 2 CBRs, with feature maps fusion inserted in-between that
concatenates the RC input with the output of the first CBR and an add-skip connection at the
output. Once the last upsampling is performed, the image feature maps pass through a last RC
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block followed by a self-attention like mechanism. In this sub-module, each of the two branches
contains a CBR with pointwise (1×1) convolution, and one branch has a softmax activation at the
end to normalize the response of the pixels across the channel dimension. The two branches are
then combined together by an element-wise multiplication, before outputting an RGB image for
the final reconstruction. To demonstrate the impact of the Refinement module, we denote also the
Block-Based Decoder (BBD) which contains the PU and an additional CBR with a stride of 2 for
a neighborhood-independent reconstruction of patches.

Figure 4.7: RE: Refinement model architecture with Residual and Concatenation (RC) Block. The
parameter n = 32 denotes the number of feature maps.

PURENET training: We adapt a two-stage training procedure for PURENET. Firstly, we
train the NQE with the patch-independent PURENET (i.e. PURENET without the Patches Ag-
gregation, PI-PURENET) so that the NQE learns to compress 32×32 patches. After this stage, we
obtain patch-based binary codes for each image which are then used as the input of PURENET in
the second training stage. Finally, the pre-trained PI-PURENET is used to initialize the weights
of corresponding modules (Patch-based Upsampling and Refinement) in the full-resolution mode
(PURENET).

4.5 Simulation results
In this section, we target a configuration such that the memory budget for embedded classi-

fication is only approximately of 1Mb (with naive weights encoding), by choosing F = 64. Note
that if we encode the quinary (2.32b) and ternary (1.58b) weights properly with an entropy coder,
the on-chip memory may even be reduced to a sub-1Mb budget (which is not dealt in the scope
of this work). All the software implementations of this work have been done in Python using a
Tensorflow2 backend.

4.5.1 Image classification on CIFAR-10

In order to train our models, we apply the same data augmentation scheme as proposed in [245],
i.e. a 4-sided 4-pixel padding followed by a random crop with random horizontal flip in order to
provide 32×32 images. For classification task, the models are trained with a batch size of 50 using
a squared hinge loss and the Adam optimizer [71]. 100 epochs are performed for the first training
with standard BN and then 120 epochs for the fine-tuning stage, with BSN. The learning rate is
initialized at 10−3 and decreased with an exponential decay with the rate of 0.8. The reported
average accuracies are over 3 realizations for each point.
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Effect of the bottleneck alternative

To highlight the efficiency of the proposed alternative to the dense layer, we conduct a study on
the impact of different types of bottleneck. We compare our proposition with two other settings.
The first option is a canonical Fully Connected denoted as LFC, i.e. a Learnable dense layer with
binary weights (256F2 bits). The second option is the same FC layer but with fixed weights (i.e.
not trained) following a zero-mean Rademacher distribution (RCS), followed by a small FC layer
of binary weights from 4F to 4F (16F2 bits), denoted as (RCS)+FC. This second option needs 16
less bits to store the weights compared to the LFC, since the Rademacher matrix can be generated
on-chip with a pseudo random generator. Table 4.3 reports our results, clearly demonstrating that
a large LFC layer of 256F2 consumes more than 50% of the overall memory in all cases. When
the model size is small, this parameter-heaviness is crucial to improve the model’s performance,
explaining why the gap between LFC and its two alternatives is more important at F = 32 (more
than 1%). On the contrary, its two alternatives contribute only around 6% of the overall memory.
The proposed DWConv+FC obtains much higher inference accuracy, while increasing by just a
tiny amount the memory budget compared to RCS+FC (< 10kb).

Memory vs Accuracy curves

Apart from the 1Mb model, we also report the accuracy for different feature map sizes (Fig-
ure 4.8). It shows that our mixed-precision outperforms FPNN (VGG7 with full-precision) and
BNN (VGG7 with binarized weights and input activations) at iso-memory. It even exhibits a large
gap, as it provides an efficient design to capture enough discriminant information, compared to the
loss due to either a full binarization (BNN) or a ”too tiny size” (FPNN).

Figure 4.8: Memory-accuracy curves of different model’s precision (floating-point, binary and
ours mixed-precision).

4.5.2 Comparison with prior works
Table 4.4 provides a comparison with state-of-the-art CNN accelerators that have been recently
demonstrated including both BNN and mixed-precision based designs. To measure the compu-
tational complexity, we make use of two bitwidth-aware metrics called MAC×bit [246] and Bit-
Operations (BOPs [247]). For a relative complex dataset like CIFAR-10, a multi-bit quantization
accelerator is proved to be more robust than a binarized accelerator. An important question has
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thus arisen: how to design such a mixed-precision architecture with higher accuracy while lower-
ing memory needs, computational complexity and simplifying hardware implementation? While
the two mixed-precision designs in [222] and [243] obtain an accuracy larger than 90%, they also
contain large on-chip memory of nearly 30 and 19Mb along with sub-1G MAC×bit and BOPs,
which generally overpass the capacity of resource-constrained ASICs. On the other hand, BNN-
based designs obtain lower accuracy at lower on-chip memory. For instance, the binary NQE
(sharing the same model architecture but with all binary weights/activations) obtains only 82.40%
accuracy with a tiny budget of both memory and computation, while our mixed-precision NQE
topology achieves 87.48% accuracy in average, while requiring only 1Mb of weight parameters
as well as under-0.3G MAC×bit and BOPs. This improvement of 5% demonstrates the significant
contribution of the mixed-precision topology to the overall performance. Compared to the re-
ported design with the nearest accuracy [219], our design requires 2.4× less on-chip memory and
3.5× less BOPs, with a 1.4% higher accuracy. Furthermore, the BSN offers a great relaxation for
a future hardware implementation compared to the alternative approaches to handle normalization
layers.

Table 4.5: VGA image compression comparison between different methods at the bitrate of
0.25bpp (0.2423bpp for CAEM-PSNR and 0.2459bpp for CAEM-SSIM).

Method

Metrics Block-based
encoder

Block-based
decoder

PSNR
(dB)

MS-SSIM

JPEG Yes Yes 19.82 0.7610

JPEG2000 No No 24.24 0.9057

WD-TV3D Yes No 19.67 0.7255

RCAE No No 22.45 0.8959

CAEM-PSNR No No 25.33 0.9437

CAEM- MS-SSIM No No 24.19 0.9640

2.5 BBD (Ours) Yes Yes 20.51 0.7900

PI-PURENET (Ours) Yes Yes 20.58 0.7964

PURENET (Ours) Yes No 20.76 0.8136

4.5.3 Full-frame image compression

In this section we only focus on the reconstruction of images with a VGA resolution (480×640).
To this end, each image is divided into 15×20 non-overlapping patches of 32×32 pixels to apply
the NQE compression scheme.

VGA images dataset

We employ the DIV2K dataset [75] which includes 800 images for training and 100 validation
images for testing. In order to meet the target resolution and because the original dataset provides
a large variety of image resolutions, the images are cropped accordingly to the target height/width
ratio and then resized with a Lanczos kernel with radius of 3. Then we extract all non-overlapping
patches of size 32×32, obtaining 240k patches for the training of NQE.
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NQE training

The NQE is trained with the PI-PURENET decoder using a batch size of 100, during 60 epochs
with the standard BN, and then with 30 epochs after replacing BN by BSN. To train this auto-
encoder structure, we used the Mean Square Error (MSE) loss with the Adam optimizer.

PURENET training

The PURENET decoder is then trained (with a fixed NQE) in 30 epochs with a small batch size
of 1 (mainly due to computational resources limitations). To obtain a proper convergence of the
decoder, the learning rate is initialized at 0.001 and then rescaled by 0.95 at each epoch after the
fifth epoch. We then freeze the Patch-based Upsampling module and fine-tune the Refinement
with a batch size of 2 during 30 epochs. The learning rate is also initialized at 0.001 and then
rescaled with the same factor 0.95 after the 10th epoch.

Comparison with state-of-the-art methods

We compare NQE - PURENET with different methods: JPEG [227] and JPEG2000 [248] which
are patch-based standard image compression techniques (i.e. using an entropy coder after a spar-
sifying transform), one BCS encoding with regularization-based iterative method for decoding
consisting in a L1-regularization on a 2D-Daubechies Wavelet Dictionary applied to 3D image gra-
dients (denoted WD-TV3D, inspired from [232] and giving better results than a basic TV [249]);
the end-to-end learning based methods using Recurrent Convolutional AutoEncoder [236] called
RCAE and the Context-Adaptive Entropy Model ( [250]) optimized with Peak-Signal-to-Noise
Ratio (CAEM-PSNR) or with MultiScale Structural SIMilarity metric [251](CAEM- MS-SSIM),
both dedicated to full-resolution image compression; the Block-Based Decoder (BBD); our NQE
with PURENET for patches reconstruction, namely NQE- PI-PURENET. We notice that for WD-
TV3D, we apply the same Rademacher matrix to all non-overlapping patches of size 32×32, every
measurement is 5-bit uniformly quantized in the range of [-3σ , 3σ ], where σ = 0.5√

1024
is the es-

timated standard deviation of the measurements distribution. Besides, CAEM compression rate
changes from one image to another, therefore we choose the quality level which allows the average
bit-rate close to 0.25bpp.

Image quality evaluation

The average PSNR and MS-SSIM performances over the 100 test images are reported in Ta-
ble 4.5 while the reconstructed images are displayed in Figures 4.9 to 4.14. It clearly shows that
our NQE-PURENET framework delivers better compression quality compared to JPEG and WD-
TV3D in both cases patch-based or full-resolution reconstruction, with higher average PSNR/MS-
SSIM and better image quality. However, when comparing this method with JPEG2000 and end-
to-end learning methods (RCAE, CAEM-PSNR and CAEM- MS-SSIM) which achieve higher
PSNR/MS-SSIM thanks to their specific design for this task, we clearly observe the lack of finest
details, for example the lion’s eye and the castle in the third and the fourth columns. This lack can
be easily explained as a direct consequence of the quantized nature of the NQE.

Effect of the Refinement module

Compared to the BBD and PI-PURENET, the PURENET slightly improves the PSNR but signif-
icantly the MS-SSIM, which is easily explainable with respect to the noticeable enhancement in
terms of visual quality. We can see the block artifacts in BBD and PI-PURENET, as they do not
take into account the surrounding context of each patch. On the contrary, the PURENET success-
fully renders the smoothness between patches thanks to several convolutional layers which will
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broaden the information propagation from neighboring patches. This explains why it has MS-
SSIM much higher (i.e. 0.0172 compared to PI-PURENET and 0.2136 compared to BBD).

4.6 Conclusion and Perspective
This work presents a mixed-precision CNN topology which is compliant with a ASIC de-

sign, enabling to perform both low-complexity image classification and embedded patch-based
compression. The reported results demonstrate the possible degree of versatility in terms of appli-
cation use cases for a specific neural network architecture targeting an ASIC design. Numerically
speaking, our NQE exhibits a 87.48% accuracy for CIFAR-10 while requiring 1Mb of memory and
whose weights and activations are quantized with a mixed-precision approach. In addition, Batch
Normalization layers are replaced by layer-shared BitShift Normalisations, in order to further ease
a possible hardware implementation. In terms of image compression, our PURENET architecture
typically deals with patch-based binary coding to perform a collaborative reconstruction, provid-
ing images with a relatively high rendering quality at a bitrate of only 0.25bpp. Besides, PSNR
and MS-SSIM metrics are better than relevant alternatives such as JPEG and BCS compression
schemes. The proposed approach shows a good quality of service versus its computational com-
plexity, especially for an embedded patch-based image compression. Aforementioned results all
confirm the advantage of an algorithm/hardware co-design to reach the best trade-off between
hardware implementation complexity and algorithmic accuracy. Additionally, it also demonstrate
that the HEQ framework presented in the previous chapter can be used to efficiently train mixed-
precision QNNs targeting different applications.

For future works, we may seek to find the mixed-precision topology using gradient-based neu-
ral architecture search or an input-driven dynamic approach. The model architecture itself can be
derived from efficient building blocks of existing light-weight models, with residual connections
for improving representation power. Regarding the compression task, a direct extension may in-
volve the use of quantized RNN units to extend NQE compression and classification capabilities
to frame sequences, not only still images. Another approach may also be using ensemble learning
like [240] (thanks to the reconfigurability) to enhance the compression quality. In other respects
and to improve the performances of the NQE, its topology would also benefit from the use of skip
connections so as self-attention mechanisms. More concretely, since the current PURENET treats
every pixel equally without considering whether the pixel is at the border of the patch, it would
be more difficult to ensure both fine-grained details and block artifact removing at the same time.
One possible solution for this is to introduce a spatial attention mechanism only focusing on patch
border pixels.

81



Chapter 4. Mixed-precision Deep Neural Networks for image classification and patch-based
compression

23.42/0.9061

24.93/ 0.9414 24.36/ 0.9412

22.79/ 0.9082 21.36/ 0.8906

20.68/ 0.7847 19.57/ 0.7880

Figure 4.9: Image compression results at 0.25bpp on the test image indexed 801 of the DIV2K
validation dataset. From top to bottom: Original image, JPEG2000, CAE-PSNR, WD-TV3D,
CAE, our BBD, NQE- PI-PURENET and NQE- Full-Resolution PURENET along with the cor-
responding PSNR/ MS-SSIM values under each image.

82



4.6. Conclusion and Perspective
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Figure 4.10: Image compression results at 0.25bpp on the test image indexed 804 of the DIV2K
validation dataset. From top to bottom: Original image, JPEG2000, CAE-PSNR, WD-TV3D,
CAE, our BBD, NQE- PI-PURENET and NQE- Full-Resolution PURENET along with the cor-
responding PSNR/ MS-SSIM values under each image.
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Figure 4.11: Image compression results at 0.25bpp on the test image indexed 809 of the DIV2K
validation dataset. From top to bottom: Original image, JPEG2000, CAE-PSNR, WD-TV3D,
CAE, our BBD, NQE- PI-PURENET and NQE- Full-Resolution PURENET along with the cor-
responding PSNR/ MS-SSIM values under each image.
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Figure 4.12: Image compression results at 0.25bpp on the test image indexed 865 of the DIV2K
validation dataset. From top to bottom: Original image, JPEG2000, CAE-PSNR, WD-TV3D,
CAE, our BBD, NQE- PI-PURENET and NQE- Full-Resolution PURENET along with the cor-
responding PSNR/ MS-SSIM values under each image.
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Figure 4.13: Image compression results at 0.25bpp on the test image indexed 876 of the DIV2K
validation dataset. From top to bottom: Original image, JPEG2000, CAE-PSNR, WD-TV3D,
CAE, our BBD, NQE- PI-PURENET and NQE- Full-Resolution PURENET along with the cor-
responding PSNR/ MS-SSIM values under each image.
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Figure 4.14: Image compression results at 0.25bpp on the test image indexed 894 of the DIV2K
validation dataset. From top to bottom: Original image, JPEG2000, CAE-PSNR, WD-TV3D,
CAE, our BBD, NQE- PI-PURENET and NQE- Full-Resolution PURENET along with the cor-
responding PSNR/ MS-SSIM values under each image.
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5
Hardware-aware Residual Networks with

logic-gated skip connections and light-weight
convolutional factorization

Applying model compression techniques to existing large DNNs may
achieve remarkable performance, however, their hardware imple-
mentation is still questionable. In this chapter, we propose a more
hardware-compliant approach for designing compact residual neu-
ral networks, by integrating the quantization perspective into the skip
connections. We will start by presenting our proposed logic-gated
residual building blocks, which allows to implement the skip con-
nections with negligible hardware costs while obtaining higher ac-
curacy than the plain model counterpart. To reduce furthermore the
model size, we also propose a light-weight convolutional factoriza-
tion leveraging on-line generated weights via a Cellular Automaton.
The results show that our models obtain better hardware-algorithm
trade-offs at low memory budget compared to state-of-the-art.
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5.1 Context

Figure 5.1: Two common strategy of compressing the models: obtain an extremely high compres-
sion rate on existing large model, and obtain a moderate compression rate on efficiently compact
models. The latter results in compressed models with better hardware-algorithm trade-offs.

Model compression techniques have achieved tremendous progress in the last few years. Pre-
vious works mainly apply these techniques to existing large models and evaluate the results as a
compromise between the algorithmic performance (e.g., accuracy) and the compression rate. For
instance, [252] reduces the size of VGG-16 up to 49× almost without no loss of accuracy. More
recently, [253] even obtains a significant compression rate of 590× in VGG-16, with an accuracy
loss of 3.4% on CIFAR-10. [254] then reduces the size of ResNet-18 model by 214.9× at the ex-
pense of 3.49% accuracy on CIFAR-10. Unfortunately, the implementation of these compressed
models may still faces several challenging problems that degrade their hardware efficiency. One
of the main issues relies on the hardware compatibility of these model compression methods. A
typical example is the case of unstructured pruning which requires additional modules for han-
dling the remaining weights of the model. Another example is the entropy coding in [253] or the
Huffman coding in [252] that are not favorable from a hardware point of view.

The second issue that limits the efficiency of model compression techniques is the DNN
model itself. Indeed, existing model architectures like VGG-16, ResNet-18 are typically over-
parameterized to improve accuracy in different applications without considering the hardware con-
text. This results in complex operations such as normalization, residual connections and attention
mechanism while model compression methods mainly focus on the MAC operation. Moreover,
these large models imply an extremely high compression ratio to obtain low-sized models, as a
result, this strategy usually exhibits significant accuracy loss as mentioned above. The recent de-
velopment of compact DNN designs (e.g., MobileNet, ShuffleNet) and NAS-based models has
given rise to a question: is it better to apply model compression methods to an efficiently-designed
model? In the context of quantized neural networks, [255] has demonstrated that it is better to
quantize a slim model (i.e., less channels) with a moderately low bit-width, rather than quantizing
a fat model with an extremely low precision. This result can be qualitatively illustrated with the
line polar graphs in Figure 5.1, where the original model size and the compression rate determine
the strategy of compressing DNN models, while the model size/complexity and the accuracy de-
picts the hardware-algorithm compromise of the compressed model. In a more general case, we
argue that the original uncompressed model itself should be considered as a “hyper-parameter”
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and jointly optimized with the model compression technique.

Although quantization methods have been mainly applied to a wide range of DNN topologies,
their usage is mainly focused on reducing the weight and activation bit widths. On the other hand,
the element-wise addition in the case of skip connections (ResNet [24]) is still performed using
a full-precision like in [256], [257] and [258]. The reason is that apart from improving feature
map reusability, these full-precision additions are mostly used to handle the gradient vanishing
and mismatching issues, which seem to be even more crucial in the context of quantized models.
However, it results in additional costs with respect to the corresponding hardware implementation.

In this section, we focus on the compression of those skip connections in QNNs, including the
residual addition and the attention-like multiplication [259], such that these residual connections
can be implemented by only integer operations and MUX gates rather than 32-bit arithmetic hard-
ware. In details, section 5.2 investigates the possibility of using OR and MUX gates in the case of
1-bit Heaviside activations. This 1-bit MUX-OR residual mechanism is then generalized into the
case of n-bit in section 5.3. To improve the efficiency of the model, we replace the costly regular
Conv2D by a light-weight factorization including two pointwise layers and a grouped convolution
inserted in-between. In particular, the weight matrix of the second pointwise convolution is gen-
erated on-the-fly via a Cellular Automaton, enabling reducing furthermore the on-chip memory.

5.2 Logic-gated Residual Neural Networks

5.2.1 Skip connections with OR and MUX gates

Figure 5.2: Models with the plain block (11-hidden layer VGG [81]-variant), OR-gated block and
MUX-OR gated block.

Fig. 5.2 depicts the proposed model design with 3 consecutive convolution blocks with dif-
ferent variants: plain block (denoted as VGG-11), OR block (ORNet-11) and MUX-OR block
(MUXORNet-11), where F denotes the basis number of convolutional output feature maps. All
the activations are binarized using the Heaviside function H(x) = 1{x>0} where 1 is the indicator
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Table 5.1: OR gate and its arithmetical operation

x1 x2 x1∨x2 Heaviside(x1+x2)

0 0 0 0

0 1 1 1

1 0 1 1

1 1 1 1

function. The logical OR operation between two binary inputs is arithmetically performed as:

x1∨x2 =Heaviside(x1+x2) (5.1)

which is demonstrated in Table 5.1. The MUX-OR block additionally embeds an attention-alike
branch (called MUX branch) along with the OR skip connection. This MUX branch is composed
of a channel-wise Thresholded Global Average Pooling (TGPA) that corresponds to a Global
Average Pooling (GPA) followed by the (re)binarization T(x) = 1{x>0.5m}, where m is set to the
maximum of the GPA’s outputs in full-precision model and to 1 in quantized model. When de-
ploying the quantized model, this operation can be basically implemented via a bit-count followed
by a comparison with a threshold level equal to half the number of pixels. Concretely, the OR-
skip connection will be performed for each input feature map channel that has more zeros than
ones. Otherwise, the MUX will simply keep the straightforward output of the second Convolution-
BatchNorm-Heaviside (CBH) module. One interesting aspect of such a MUX-skip connection is
that it favors to balance the number of 1 with respect to the number of 0 throughout the networks,
this without any other specific regularization. In terms of hardware deployment, while existing ap-
proaches with 32-bit additions and multiplications require hundreds of Xilinx FPGA slices [37], a
1-bit OR only costs a single slice and consumes much less energy [260].

5.2.2 Experimental results
In this section, we evaluate the aforementioned Neural Network topology variants using the pro-
posed HEQ (c.f., chapter 3) with ternary weights on STL-10 dataset [74] of 96×96 RGB images.
To limit the overfitting, we used the following data augmentation scheme: random crop from all-
sided 12-pixel padded images combined with random horizontal flips and cutouts of 32×32 pixel
patches [261]. All the parameters of the quantized model are initialized from its pre-trained full-
precision network counterpart, in which all Heaviside functions are replaced by ReLU. We set
F = 64 instead of 128 in VGG-7, resulting in smaller-sized model.

Table 5.2: Comparison with the state-of-the-art low-precision quantization methods on STL-10
dataset.

Model Training Regularization
# params.

(M)
Bitwidth

W/A
Acc.
(%)

VGG-7 LSQ [200]
#params×bit [201]

4.57
2.5/8 83.6

#MACs×bit [202] 2.2/8 83.8

VGG-11

HEQ None 3.14 2/1

83.34

ORNet-11 83.82

MUXORNet-11 84.17
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Table 5.2 summarizes the performance of our proposed models compared to previous work
[202] which uses the LSQ [200] method to jointly adapt the step size and the layer-wise bitwidths
under a model size-based [201] or a MAC×bit-based regularization. Note that we only took into
account the number of convolution parameters for the sake of a fair comparison. While the plain
baseline obtains only 83.3% accuracy, ORNet-11 achieves 83.8% and the MUXORNet-11 even
achieves up to 84.2%, i.e. a noticeable improvement without increasing the overall model size
and with a negligible extra cost of 2-input MUX, OR gates and thresholded bitcounts.

Figure 5.3 shows the impact of the OR gate and the MUX-OR mechanism on the distribution
of 0 and 1 intermediate values in 3 blocks of the proposed OR-Net and MUXOR-Net. At the
output of the second Heaviside in each block, the activations are dominated by zero values. The
OR connection increases the number of 1 values and thus makes the activation’s distribution more
balanced. On the other hand, the MUX-OR mechanism only performs the OR connection if the
corresponding input channel of the block has more zeros than ones, therefore the distribution at the
output of the MUX gate is slightly more unbalanced towards zero values. This is more favorable
in terms of feature learning, since a too balanced activation’s distribution may likely harden the
extraction of meaningful features from the data.

In terms of model size, all our 3 model variants contain less parameters at lower precision com-
pared to [202]. However, the proposed ORNet-11 optimized by HEQ already achieves the same
level of accuracy while MUXORNet-11 even obtains a better accuracy (0.37%). These results
demonstrate the effectiveness of HEQ on different DNN designs, from VGG-like to the proposed
ORNet and MUXORNet. It also shows the possibility of compressing the skip connections via
logic gates in order to significantly simplify the hardware mapping of more sophisticated ternar-
ized neural network topologies than VGG-like. In particular, the proposed MUX-OR mechanism
allows to advantageously increase the representation power and ease the learning of the model,
while advantegeously keeping the dynamic range of the low-precision activations. Therefore, in
the next section, we make use of this MUX-OR mechanism and propose a general formulation in
the case of n-bit activations.

5.3 Compact CNN with light-weight convolutional factorization
Our goal here is to reduce the overall hardware needs required to run a model implemented

in resource-constrained devices (e.g., for ASIC design) while still ensuring an acceptable accu-
racy. Unlike several works focusing on large models to achieve extremely high compression
rates [252], [262], we first propose a hardware-compliant model architecture to which we further
apply efficient quantization methods.

In this section, we present the compact MOGNET model architecture which combines:

• quantized residual modules with a Multiplexer-based skip mechanism and,

• a custom factorization of convolution layers that uses on-line generated weights.

Indeed, a Cellular Automaton (CA) is used to automatically generate the weights of a pointwise
convolution in each factorized-CNN block, thus reducing parameter-related storage requirements.
Moreover, we introduce a novel training framework to obtain the ternary weights in our model
which favors the balance between 3 discrete levels.

Figure 5.4 describe the MOGNET architecture that uses integer-only MACs and hardware-
compliant operations such as 1-bit Bitshifts and 2-input multiplexers. The following description
yet presents MOGNET from its algorithmic view point, i.e. with computations done in a real-
valued domain but with relevant hardware-equivalent specializations. In this section, we first
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(a) OR block 1 (b) MUX-OR block 1

(c) OR block 2 (d) MUX-OR block 2

(e) OR block 3 (f) MUX-OR block 3

Figure 5.3: Impact of the OR gate and the MUX-OR mechanism on the distribution of 0 and 1
intermediate values in 3 blocks of the proposed OR-Net and MUXOR-Net.
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focus on our custom MUX Residual Block (MRB), then on our convolution layer factorization
(CFLOG).

Figure 5.4: Top-level architecture description of MOGNET with Convolutional Factorization
Leveraging On-line Generated weights (CFLOG) and MUX Residual Block (MRB). The final
1×1 convolution is followed by Batch Normalization (BN) prior to a Global Average Pooling
(GAP). Here n,m are the parameters controlling the number of output feature maps and the latent
dimension in CFLOG, MP stands for 2×2 Max Pooling and g-GConv is Grouped Convolution
with g groups.

5.3.1 MUX-Residual Block (MRB)
We denote k as the quantization bitwidth of the activations throughout the network. Indeed, a k-bit
Quantized Rectified Linear Unit (QReLU) is defined so that for any input, the outputs are in the
set {0, 1

2k−1 ,
2

2k−1 , ...1}:

QReLU(x;k) =
⎧⎪⎪
⎨
⎪⎪⎩

1
2k−1⌊(2

k −1)x⌉ if k > 1,
1{x>0} if k = 1.

(5.2)

For the backward pass, we compute the gradient using the Straight-Through-Estimator strat-
egy (STE, [59]) ∂QReLU

∂xxx = 1{∣xxx∣≤1}. As the Addition y = x1 + x2 of two unsigned k-bit activations
x1, x2 will increase the dynamic range by 1-bit, we make use of the following Bitshift software
description inside the MRB, to keep y always at k-bit:

Bitshift(y;k) =
⎧⎪⎪
⎨
⎪⎪⎩

1
2k−1⌊

(2k−1)y
2 ⌋ if k > 1,

⌈
y
2⌉ if k = 1.

(5.3)

Due to the specific use of this function for the add-type connection, we adopt a completely-
passed-through gradient ∂Bitshift

∂yyy = 1. For k > 1, this rescaling can be implemented by a 1-bit bit-
shift, while in the specific case of k = 1, the combination of the addition and the bitshift can be
replaced by an appropriate single OR gate. Let us denote I0,I1 ∈ Rh×w×n as the output of the
Bitshift operation and the second QReLU where h,w,n are the height, width and number of chan-
nels; S ∈ {0,1}1×1×n as the binary control signal. The MRB core element is MUX which can be
mathematically described as:
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MUX(I0,I1;S) = I1⊙S+ I0⊙(1−S) (5.4)

where ⊙ is a channel-wise multiplication. The control signal S embeds a parameter-free chan-
nel attention which consists in a Thresholded Global Average Pooling (TGAP). TGAP simply
corresponds to a channel-wise Global Average Pooling (GAP) followed by a binarization T(x) =
1{x>0.5m}, where m is set to the maximum of the GAP’s outputs in the full-precision representation
and to 1 in the quantized model which is the maximum possible value of quantized activations.
For the hardware deployment, this last operation can be implemented via an integer accumulation
followed by an integer-to-integer comparison. This way, the input of each MRB will automatically
control the operation of the Multiplexer module in a channel-wise manner. Concretely, MRB will
perform the Additional connection for each input feature map that is dominated by small values.
Otherwise, the MRB will simply keep the straightforward output of the second QReLU. One in-
teresting aspect of this MUX-skip connection is that it favors the balance between the number of
large-valued data with respect to the number of small-valued data throughout the networks, this
without any other regularization strategy.

5.3.2 Convolution factorization leveraging CA-generated weights

Figure 5.5: CFLOG description with CA-generated weights.

The use of PRNG in DNNs

As previously mentioned in section 2.1, DNN’s parameters are randomly initialized before be-
ing adjusted during the learning process. However, it is not necessarily to learn all parameters
to obtain a good performance. [263] indicates that in some classification tasks, it is possible to
use neural networks with fixed random weights in the first layer and trainable weights in the next
layers, as they are still able to preserve the distance between the latent representation of differ-
ent classes. [264] then shows that a randomized NN can be used as a hand-crafted prior in some
inverse problems. These theoretical results open a great possibility of alleviating the memory bur-
den in DNN implementation, by leveraging PRNG such as LFSR or CA to generate on-the-fly the
fixed random weights.
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[265] enable the generation of random states given an initialization and update rule func-
tion. Hence, this repetitive structure is commonly used for generating on-the-fly sets of random
vectors [266], or computing in random representations [267]. In MOGNET, we leverage CA
to generate part of weight parameters of our model, consequently reducing the overall model
memory-related footprint.

Light-weight convolution factorization

To further reduce the on-chip memory and the computational complexity of the model, we replace
all regular convolutions (except the first and the last layers, cf. Fig. 5.4) by a light-weight factoriza-
tion consisting of 2 pointwise layers and a grouped convolution (Fig. 5.5), namely CFLOG. Unlike
the building block in ResNext [28], we do not use any nonlinearity (e.g. normalization, activation)
between these layers. Moreover, to further reduce the model size, the last pointwise convolution’s
weights are fixed during training and generated in real-time by a CA given a certain seed. The first
pointwise convolution embeds the input feature into low-dimension m <Ci, the number of input
channels. The grouped conv layer performs g groups of convolutions and also outputs m feature
maps. Finally, these feature maps are sequentially projected back to a high-dimensional space of
Co channels (Co = n in CFLOG, n, m) thanks to a CA-generated kernel. As depicted in Fig. 5.5,
this kernel is formed by concatenating all states obtained when evolving a Co-cell CA during m
update states. In this work, we consider Wolfram’s rule 30 for the local evolution function between
states. We choose m = Ci

2 that gives the following compression rate (CR) between the number of
trainable parameters (#pr) of CFLOG and that of the regular convolution:

CR =
Cim+ 32m2

g

32CiCo
=

Ci

Co
(

1
18
+

1
4g
) (5.5)

Table 5.3: Training and optimization settings

Dataset CIFAR-10 CIFAR-100

Optimizer
Adam [71]

(β1 = 0.9,β2 = 0.999)
Adam

(β1 = 0.9,β2 = 0.999)

Initial learning rate (LR) 10−3 10−3

Batch size 50 50

First stage epoch 180 250
First stage

LR schedule
Exponentially decay
after 120-th epoch

Exponentially decay
after 150-th epoch

Second stage epoch 150 250
Second stage
LR schedule

Exponentially decay
after 80-th epoch

Exponentially decay
after 150-th epoch

Rate of LR decay 0.9 0.9

5.3.3 Experiments
Experimental settings

We implemented all the proposed elements using the TensorFlow library and CellPylib [268] pack-
age. The quantized models are first initialized from their full-precision counterparts being trained
on CIFAR-10 and CIFAR-100 [73] datasets from scratch, where ReLU and Linear activations re-
place our QReLU and BitShift. Then, we train the quantized models through a 2-stage procedure:
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first train quantized weights with full-precision activations and second, fine-tune the quantized
weights with all quantized activations. We apply the simple data augmentation scheme for train-
ing: random crop from all-sided 4-pixel padded images combined with random horizontal flips.
Table 5.3 details the training and optimization setting used to derive our experimental results.

Experimental results

We evaluate the performance of our models in comparison with recent state-of-the-art model com-
pression techniques: Stacking Low-dimensional Binary Filters (SLBF [254]) on ResNet (RN)-18
and VGG-16 [81]; Efficient Tensor Decomposition (ETD [179]) on RN-20 and RN-32. Table 5.4
reports the model size, the activation precision as well as the accuracy of different methods and
models. It demonstrates that for n = 128 and g = 4, MOGNET achieves the highest accuracy level
on CIFAR-10, while having lower model size and 3-bit only activations. Moreover, at the same
configuration, MOGNET outperforms other methods on CIFAR-100 with a clear gap of nearly
1% (67.89→ 68.80%) at the similar weight-related memory. We can mention the impact of the
hyperparameter k on the model performance, with a significant degradation when decreasing the
activation precision to 1-bit or 2-bit. Figure 5.6 additionally reports accuracy versus model size
curves of various considered models/hyperparameters. On both two datasets, MOGNET stays in
the optimal top-left zone implying low on-chip memory requirements with high accuracy. How-
ever, when increasing the model size (n > 128), MOGNET curves fall under that of SLBF-RN18.
This last result means that MOGNET, with its limited depth, is more relevant to target extremely
low-sized (< 2Mb) models.

Table 5.4: Comparison of different network compression methods on CIFAR-10 and CIFAR-100.

Method
Model

Activation
Bitwidth

(k)

CIFAR-10 CIFAR-100
Model size

(Mb)
Acc (%)

Model size
(Mb)

Acc (%)

SLBF [254]

RN-18 32 1.67 91.70 1.72 67.89

VGG-16 32 1.84 89.24 1.89 62.88

ETD [179]

RN-20 32 1.94 91.47 3.80 67.36

RN-32 32 2.54 91.96 2.83 67.17

Ours
(n=128, g=8)

1

1.13

87.60

1.22

59.30

2 90.81 65.88

3 91.31 66.83

Ours
(n=128, g=4)

1

1.72

88.99

1.76

61.27

2 91.16 66.55

3 92.12 68.80
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(a) CIFAR-10.

(b) CIFAR-100.

Figure 5.6: Test accuracy of different compression method-model couplings. Our models are with
3-b activations.
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5.4 Conclusion
In this chapter, we discussed about the advantage of a co-design between the DNN architec-

ture and the model compression method. In particular, we focus on the hardware implementation
of residual connections in the context of QNNs, and figure out that these operations should be
also taken into consideration to fully exploit the benefits of low-precision networks. We started
by 1-bit skip connections with the hardware-friendly OR and MUX gates, which may obtain a
clear gain over the plain architecture counterpart in terms of accuracy. These building blocks are
then generalized into a case of n-bit activation in the proposed MOGNET. To boost the efficiency
of the MOGNET, we also make use of a streamlined convolutional factorization which leverages
CA-generated weights. Experimental results show that given tiny memory budget (e.g., sub-2Mb),
MOGNET can achieve higher accuracy with a clear gap up to 1%, at a similar or even lower model
size compared to recent state-of-the-art methods. Additional, MOGNET also limits the digital dy-
namic range using 3-bit (or lower) quantized activations for integer-only MACs. This result thus
demonstrates the benefit of hardware-algorithm co-optimization which efficiently integrates the
implementation perspective into the design of model architectures.

It is noteworthy pointing out that the architecture of MOGNET is not optimized, with manually
settings for the depth, the width, the type of building blocks and the bitwidth of weights/activations.
A possible extension is to search for a more efficient architecture under the NAS framework. On
the other hand, we may seek a dynamic convolutional building block which adaptively process the
input channels on a group manner based on the channel-wise statistics.

100



6
From image to video: Binarized Conv3D-LSTM

model for efficient video inference

Long Short-Term Memory (LSTM) and 3D convolution (Conv3D)
show impressive results for many video-based applications but re-
quire large memory and intensive computing. Motivated by re-
cent works on hardware-algorithmic co-design towards efficient in-
ference, we propose a compact binarized Conv3D-LSTM architec-
ture called BILLNET, compatible with a highly resource-constrained
hardware. Firstly, BILLNET proposes to factorize the costly stan-
dard Conv3D by two pointwise convolutions with a grouped convo-
lution in-between. Secondly, BILLNET enables binarized weights
and activations via a 3D MUX-OR-gated residual architecture sim-
ilar to the architecture proposed in Chapter 5. Finally, to efficiently
train BILLNET, we propose a multi-stage training strategy enabling
to fully quantize LSTM layers. Experiments show that BILLNET can
obtain high accuracy with extremely low memory and computational
budgets compared to existing efficient Conv3D models.
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6.1 Context
Video recognition has recently drawn substantial attention due to the success of several Deep

Neural Networks (DNNs) [269], [270], [271] and the increasing number of large-scale video
datasets [272], [273], [76]. Compared to other tasks like image classification that only relies
on spatial data, video recognition is much more complex since it also requires extracting the un-
derlying temporal features in the time direction. Among existing model architectures for spatio-
temporal pattern recognition, Conv3D [49] and Recurrent Neural Networks (RNNs), e.g. LSTM
[86], have demonstrated to be relevant for learning latent spatio-temporal representations. How-
ever, these model components exhibit hardware-related drawbacks such as large memory require-
ments so as a high computational complexity. For instance, Conv3D expands the convolution
kernel to the time direction for capturing local temporal features, therefore increasing both the lo-
cal memory and computational needs by an order of magnitude compared to Conv2D. On the other
hands, LSTM is computationally expensive because of its stateful nature, i.e., computing the cur-
rent features taking into account previous states. Consequently, designing a hardware-compliant
Conv3D-LSTM model for embedded inference applications remains a significant challenge.

Motivated by the need for efficient video inference, recent works have been focusing on the de-
sign of light-weight architectures [274], [275] or hardware-aware network pruning [276]. Another
approach to accelerate the computation during inference and further reduce the hardware-related
costs consists in lowering the bitwidth of model’s weights and activations [150]. Even though
significant works on Quantization Aware Training (QAT) [12], [26] have been done in recent
years, they are mostly focused on the quantization of feed-forward Convolutional Neural Networks
(CNNs). On the contrary, training fully quantized models that embed recurrent layers like LSTMs
remains an important issue. Indeed, quantizing the hidden states of LSTM involves a quantization
error that is accumulated throughout the data sequence due to its recurrent nature, hence implying
an overall accuracy degradation. It may explain why existing approaches [277], [278] are limited
to the use of quantization regarding the LSTM weights while keeping activations in a floating-
point representation.

This work thus aims at demonstrating that a fully-quantized model can also be deployed for
video-based inference. To this end, we propose a hardware-compliant Conv3D-LSTM architecture
called BILLNET on which binarization techniques are applied to further reduce the model size as
well as the computational costs. Our main contributions are then:

• A compact Binarized Conv3D-LSTM model architecture with a MUX-OR skip connection
mechanism,

• A multi-stage training procedure that provides a fully quantized BILLNET with bitshift
normalization (removing additional biases related to batch normalization).

6.2 Related works
Residual connections for video inference
Residual learning such as element-wise addition [24] and attention mechanism [83], [84] is firstly
introduced in 2D CNNs in order to increase network expressivity, favor feature reuse while easing
the back-propagation for deeper models. Since Conv3D has become a more preferable option for
video recognition than its 2D counterpart, it is straightforward that 3D CNNs should adopt residual
architecture paradigms like element-wise addition [279], [280] and attention mechanisms [281]
to improve model performance. However, it is noteworthy mentioning that these skip connec-
tion operations are mostly performed using full-precision arithmetic, which results in additional
hardware-related costs, especially in the context of fully-quantized models (targeting a dedicated
hardware mapping). In our work, we thus introduce a 3D quantized MUX layer with an OR-gated
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connection that allows integrating both an element-wise additional connection and a channel-wise
attention-like mechanism, while keeping a binarized data representation. This is an extension of
the proposed 2D MUX-OR mechanism in Chapter 5.

Efficient 3D CNN architecture

Several works have recently proposed alternative architectures to alleviate the parameter-heaviness
of Conv3D. [282], [283] partly replace Conv3D by 2D convolutions. [284] proposes different vari-
ants for the 3D residual block by separating 3×3×3 kernels with 1×3×3 spatial convolutions and
3×1×1 temporal convolutions. On the other hand, [285] processes the temporal features with-
out parameters and multiply-accumulate (MAC) operations by shifting part of the channels along
the time dimension. Finally, [274] converts various well-known resource-efficient 2D CNNs such
as MobileNet [8], ShuffleNet [9] to 3D CNNs. In this Chapter, BILLNET uses a 3D version of
the factorization previously proposed in Chapter 5, including 2 pointwise layers and a grouped
Conv3D, without nonlinearity (i.e., activation) inserted in-between. Note that, all layers in this
factorization are learnable.

Network quantization

Network quantization [150] reduces the bitwidth of weights and/or activations. In the most ex-
treme case, Binarized Neural Networks (BNNs) [12] restrict both weights and activations to a
1-bit representation using Sign function, this ways reducing the costly full-precision MACs to bit-
wise operations (i.e., using XNOR gates). Despite tremendous progress during the last few years,
there still exists a lack of efforts on model quantization for video inference. Recently, [286] adap-
tively selects the per-frame optimal bitwidth, conditioned on input data. [287] proposes a binary
3D CNN constraining weight and activation values to 0 or 1. Besides, existing approaches [288],
[278], [289], [89] mostly focus on the compression of LSTM for language or speech models only.
To the best of our knowledge, there is no prior works on fully-quantized LSTM in the context of
video inference. Our work tries to fill in this gap by proposing a multi-stage training algorithm to
provide a fully-quantized Conv3D-LSTM model.

6.3 BILLNET
Figure 6.1 depicts the top-level view of BILLNET that involves integer-only MACs and bit-

wise operations such as 2-input multiplexers and OR gates. This model takes as input a sequence
of 16 frames with a spatial resolution of 96×128. BILLNET contains a spatio-temporal feature
extractor with a Conv3D part to extract spatio-temporal features between adjacent frames, and a
LSTM part to keep track longer-term temporal dependencies. In this section, we first focus on
the 3D Convolution Factorization (CF), then on the custom 3D MUX-OR Residual (MOR) block,
finally on the LSTM weights and activations quantization.

6.3.1 Conv 3D Factorization

The core building block of BILLNET is a light-weight factorization, namely CF, consisting of 2
pointwise layers (filter size: 1×1×1) and a g-grouped convolution (filter size: 3×3×3). Unlike
the building block of 3D ResNext in [279], there is no nonlinearity (e.g., normalization, activation)
between these layers. The number of output channels Co of each CF is defined by the parameter
n (i.e., Co ∈ {n,2n,4n}). Note that, the number of channels in low dimension of every CF is set to
Ci/2.
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Figure 6.1: Top-level architecture description of BILLNET with Convolutional Factorization (CF)
and MUX-OR Residual (MOR) Block. Here n is the parameters controlling the number of out-
put feature maps, g-GConv is Grouped Convolution with g groups, MP and GAP stand for Max
Pooling and Global Average Pooling.
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6.3.2 3D MUX-OR Residual (MOR) block

In BILLNET, we binarize all the activations using the Heaviside function H(x) = 1{x>0}, where
1 is the indicator function. During the backward pass, the Straight-Through-Estimated gradient
(STE [290]) ∂H

∂xxx = 1{∣xxx∣≤1} is used. For the sake of genericity, we then define the Clipped Identity:

Clip(y) =max(−1,min(1,y)) (6.1)

with STE gradient ∂Clip
∂yyy = 1. Concretely, applying this function to the sum of x1,x2 will obtain

the same binary output {0,1} as performing the logical OR operation, i.e., Clip(x1+x2) = x1∨x2.
Therefore, we employ the Clipped Identity to keep the data in binary representation. Let us denote
I0,I1 ∈ RT×h×w×n as the output of this OR operation and the second Heaviside where T,h,w,n
are the time steps, height, width and number of channels; S ∈ {0,1}T×1×1×n as the binary control
signal. The 2-MUX layer can be described as:

MUX(I0,I1;S) = I1⊙S+ I0⊙(1−S) (6.2)

where ⊙ is a channel-wise multiplication. The control signal S embeds a parameter-free chan-
nel attention through a Thresholded Global Average Pooling (TGAP). TGAP simply consists of
a channel-wise Average Pooling (AP) with filter size and strides of 1×h×w, followed by a bina-
rization T(x) = 1{x>0.5m} where m is first set to the maximum of the layer-wise AP’s tensor outputs
for the full-precision mode, then being replaced by 1 for the final quantized model version (see
section 6.4). When deploying the quantized model, this operation can be implemented via a bit-
count followed by an integer-to-integer comparison. This architecture allows the input of each
MOR to control the operation of the MUX gate in a channel-wise manner. In details, if the input
feature map is dominated by zero values, the OR skip-connection will be performed (Fig. 6.2a).
Otherwise, the MUX gate will simply keep the output of the second Heaviside (Fig. 6.2b). Conse-
quently, this mechanism intrinsically balances zero and one latent values throughout the network,
this without any additional regularization.

6.3.3 Fully-quantized LSTM

LSTM [86] is commonly used because of its capability to capture long-term dependencies within
sequences. The basic structure of a cell in LSTM can be described as follows:

it = sigmoid (W i.[xt ,ht−1]+bi
) (6.3)

ft = sigmoid (W f .[xt ,ht−1]+b f
) (6.4)

ot = sigmoid (W o.[xt ,ht−1]+bo
) (6.5)

c̃t = tanh (W c.[xt ,ht−1]+bc
) (6.6)

ct = ft ⊙ct−1+ it ⊙ c̃t (6.7)

ht = ot ⊙ tanh(ct) (6.8)

Eqs. 6.3- 6.6 defines the input gate, forget gate, output gate and candidate memory, respectively.
Temporal information is transferred along time steps via ct and ht (Eqs. 6.7- 6.8).
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(a) Case of an input dominated by zeros.

(b) Case of an input dominated by ones.

Figure 6.2: The operation of the channel-wise MUX gate with feature maps extracted during
inference of a test sample. The TGAP is implemented by a bitcount followed by an integer-to-
integer comparison, where the threshold is equal to one half of the spatial resolution ( 6×8

2 = 24).
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LSTM weight binarization

Let us denote ni, no as the dimension of input and output sequences, therefore we have [xt ,ht−1] ∈

Rni+no . In order to simplify the hardware mapping, all biases are removed. Since the projections
will increase the dynamic range of the data, the weight binarization of LSTMs are done with a
scaling factor as follows:

SSign(w) =
3

√
ni+no

Sign(w) (6.9)

The scaling factor 3√
ni+no

is chosen as a compromise between scaling the propagated gradients
of the activation functions and matching the bipolar distributions of the later quantized sign and
heaviside activations. During backward pass, we still employ the same STE gradient as [12]. This
scheme is applied to all 4 kernels of the LSTM layers.

LSTM activation quantization

Whereas quantizing weights is almost straightforward, it becomes much more complex in the case
of activations in LSTM due to its internal structure. We replace all sigmoid activations in Eqs. 6.3-
6.5 by the Heaviside function like in 6.3.2 and tanh in Eq. 6.6 by a strict Sign. Since the addition
in Eq. 6.7 will increase the dynamic range of data, we will keep ct values within {−1,0,+1} by
using the already introduced Clipped Idendity (Eq. 6.1). Consequently, the tanh activation applied
to the ternary ct in Eq. 6.8 is simply removed, which allows obtaining the output ht in a ternary
representation {−1,0,1}. Figure 6.3 depicts the computational graph of the proposed Quantized
LSTM (QLSTM) according to the aforementioned scheme. To better visualize the quantization
aspect, we also display the dynamic of internal intermediate values along the connection lines.

Figure 6.3: Computational graph of the proposed Quantized LSTM.

6.4 Multi-stage quantization training algorithm
This work targets a fully-quantized model, including weights, quantizations, hidden states of

LSTM and even the Batch Normalizations (BN [23]). In order to limit the model performance
degradation, we apply a multi-stage training procedure in which, we iteratively replace elements
of BILLNET by its corresponding quantized version, intrinsically fine-tuning the model to retain
the accuracy.

1st stage: Training full-precision model. We firstly train the 32-bit model with ReLU activa-
tions in Conv3D part and use it as a proper model initialization.

2nd stage: Quantizing all weights. We keep the full-precision activations and binarize weights
using Sign [12] for the Conv3D part and SSign for the LSTMs (c.f. 6.3.3). Similarly, for the last
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Dense layer which reduces the dimension of data from 4m to #classes, we also apply a Scaled
Ternarization (STern) to its weights:

STern(w) =
1
√

4m
Tern(w) (6.10)

where the Tern function is originally introduced in [13]. It is worth mentioning that in hardware
implementation, we can simply get rid of these scaling factors, since they do not affect the results
of the later Sign/ Heaviside activations and the Argmax operations.

3rd stage: Quantizing Conv3D activations. In this stage, we replace all ReLU by the Heavi-
side activations while keeping the LSTM activations at full-precision.

4th stage: Removing BNs. The full-precision affine transform of BN remains an obstacle
for model hardware deployment, in particular for 3D CNNs where the data is 4D tensors with an
additional temporal dimension. Therefore, we approximate the scaling factors of BN layers in a
power-of-2 fashion, which advantageously corresponds to the bitshift operation. Denoting µ,σ2

as the moving mean and the moving variance of BN after the second stage, at inference time, the
BN processes the input x to provide the output y as follows:

y = γ
x−µ
√

σ2+ε
+β ≡ γ̂x+ β̂ (6.11)

where γ̂ =
γ√

σ2+ε
and β̂ = β −

γµ√
σ2+ε

are equivalent to the scale and the offset vectors. We replace
all BN layers by the following offset-free BitShift Normalization (BSN):

y = 2⌊log2∣γ̂ ∣⌉x (6.12)

Note that in BILLNET, each BN layer is followed by a Heaviside activation. When replacing the
BN by BSN, since the equivalent scaling factors are always positive, they will simply keep the sign
of data unchanged, therefore, they have no impact to the outcomes of the later Heaviside function.
Consequently, all BSNs in BILLNET do not need to be explicitly implemented. Unlike the BSN
in Chapter 4, we keep different scaling factors for different channels instead of using a unique
scaling. This allows to retain more representation power for the quantized model and thus reduce
the accuracy degradation.

5th stage: Quantizing LSTM activations. Finally, we replace the sigmoid and tanh used
in the LSTM layers (as discussed in subsection 6.3.3). The model is now fully quantized with
mostly all weights and activations are binarized, except for the ternary output of the QLSTMs and
the ternary weights of the last Dense layer.

6.5 Experiments
6.5.1 Settings
Data pre-processing: We consider 16-frame sequences with a resolution of 96×128 for training
and testing. The Jester Dataset V1 [76] is a large-scale hand gesture recognition dataset com-
posed of video clips with a variable number of frames (from 12 to 70). In particular, most of the
sequences have between 30-40 frames. Therefore, in order to properly fit the target temporal di-
mension of 16, we first apply a 2× temporal down-sampling for sequences of more than 24 frames.
This allows us to capture all the hand gestures from end to end. In addition, if the resulting video
contains less than 16 frames, we symmetrically repeat the first and the last frames, otherwise, we
randomly select the initial time index for the first frame.
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Training stages: To train the models, we employ the Adam optimizer [291] and the standard
Categorical Cross-Entropy (CCE) loss, with a mini-batch size of 40. For each stage, the learning
rate firstly remains unchanged, before being exponentially decayed during the last 50 epochs, with
a fixed decay rate of 0.85. Table 6.1 shows more details about the training procedure and the
settings for each training stage.

Table 6.1: Training and optimization settings of BILLNET

Taining stage
Initialized

learning rate
Epochs

Exponentially
decay

Decay rate

First stage 5×10−4 100 After 50-th epoch 0.85

Second stage 3×10−4 80 After 30-th epoch 0.85

Third stage 3×10−4 80 After 30-th epoch 0.85

Fourth stage 2×10−4 80 After 30-th epoch 0.85

Fifth stage 1×10−6 80 After 30-th epoch 0.85

Hardware-related metrics: We measure the model hardware efficiency in terms of the mem-
ory cost using weight-related memory (model size), and the computational complexity using Bit-
OPerations (BOPs [247]). This allows us to assess the number of parameters and MACs along
with the precision of weights and activations. Conventionally, we assume that each full-precision
weight and activation requires 32 bits.

6.5.2 Results
We denote the proposed model with n = 32k as BILLNET k×. Figure 6.4 reports the evolution of
the accuracy and train/test losses. Each training stage (denoted from S1 to S5) allows retaining the
accuracy despite introducing quantization effects, even if the remaining gap is significant when
quantizing the LSTM activations (S5). Figure 6.5 depicts the accuracy/efficiency compromise of
BILLNET and 3D efficient models from [274]. Since [274] does not show the model size and the
number of GBOPs for Jester dataset, we compute these values based on their trained models and
code (publicly available 1).

It is clear that all quantized versions (S2 to S5) of BILLNET stay on the optimal top-left cor-
ner, enabling various types of hardware/accuracy compromises. Table 6.2 reports the performance
of BILLNET 2× with the specific configuration of g=4 and m=n/2 compared to other resource-
efficient models. Please note that since BILLNET does not reduce the temporal dimension (except
for the first convolution) in order to cap the inference output latency, the full-precision (S1) model
involves a higher computational cost than MobileNet and ShuffleNet versions. However, when
quantizing the weights and activations, we can advantageously reduce the weight-related memory
and computational complexity with at least one order of magnitude. In particular, compared to a
3D-MobileNet V1, the weight-quantized BILLNET 2× (S2) provides a higher accuracy (+0.8%)
with a significantly smaller model size (1%) and lower computation needs in terms of #GBOPs
(17%). Besides, GBOP reduction between S3 and S4 (8.53→ 6.39 GBOPs) shows that it is crucial
to replace the BNs by bitshifts, to fully benefit from a hardware simplification in practice. The
quantization of LSTM activations has limited impacts on the total number of GBOPs while signif-
icantly decreasing the performance from S4 to S5 (3.78% loss). However, it is still highly relevant

1https://github.com/okankop/Efficient-3DCNNs
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considering a dedicated hardware mapping, designed to handle only bit-wise and bit-count opera-
tions.

Figure 6.6 exhibits a class-temporal response of size 8×27 for a Pulling Two Fingers In gesture
example. It can be easily observed that the most highlighted zones in this map highly correlate to
the temporal positions of the most informative frames of the input video. Besides, similar classes
(along the vertical axis) such as Pulling Hand In and Sliding Two Fingers In also exhibit high val-
ues at the same columns. This demonstrates the learning capability of our spatio-temporal feature
extractor although being fully quantized at binary/ternary precision.

(a) CCE loss. (b) Accuracy metric (Acc.).

Figure 6.4: Training curves (CCE loss and accuracy) of BILLNET 2× throughout all 5 training
stages.

Table 6.2: Comparison of resource-efficient models on Jester hand gesture dataset, weight-related
memory (model size), and bitwidth-aware computational complexity (GBOPs). Results reported
here are for BILLNET with g=4, n=64 and m=32.

Model Model size (Mb) Comp. (GBOP) Acc. (%)

3D-ShuffleNet V1 [274] 31.04 119.25 92.27

3D-ShuffleNet V2 [274] 42.56 106.09 91.96

3D-MobileNet V1 [274] 106.56 141.02 90.81

3D-MobileNet V2 [274] 42.24 243.18 93.34

BILLNET 2× -S1 32.23 718.89 92.18

BILLNET 2× -S2 1.01 24.54 91.64

BILLNET 2× -S3 1.01 8.53 88.33

BILLNET 2× -S4 1.01 6.39 87.75

BILLNET 2× -S5 1.01 6.34 83.97
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(a) Memory vs. Acc.

(b) Comp. cost vs. Acc.

Figure 6.5: Weight memory (Mb) and computational costs (GBOPs ∼ 109 BOPs [247]) versus
Top-1 Accuracy. Edge-less stars are for BILLNET with g=2 and m=n, edged stars are for m=n/2
and g = n

16 (with n ∈ {64,128}).
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Figure 6.6: Class-temporal BILLNET output responses for a Jester test sample labeled as a Pulling
Two Fingers In gesture. Highlighted time/class positions with maximum values correlate to the
most informative frames of the input video. Besides, similar classes (Pulling Hand In, Sliding Two
Fingers In) also exhibit high values at the same columns.
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6.6 Conclusion and Perspectives
In this chapter, we introduced a hardware-tiny model for video inference called BILLNET,

which involves binary/ternary weights and activations. BILLNET integrates 3D MUX-OR skip
connections and a Conv3D factorization to limit the memory and computation needs. Thanks to
a 5-stage training procedure, BILLNET offers different hardware-algorithmic trade-offs with sig-
nificantly reduced model size and #GBOPs (together with its inherent arithmetic simplifications),
while providing an on-par accuracy compared to previously published compact models. More
importantly, we aim at designing a hardware-compliant network suitable for later implementation
on FPGA or ASIC-based platforms. For this purpose, the fully-quantized BILLNET (S5) can fit a
hardware supporting only bit-wise and bit-count operations.

Our future works is to revise the last training stage approach to reduce the accuracy loss due
to LSTM activations quantization. This can be done by gradually adjusting the sigmoid and the
tanh activation functions inside the LSTM layers, such that these functions become more sharpen
during the training and at the end they converge to the Heaviside and the Sign, respectively. This
may likely ease the training while reducing the mismatching effect due to the use of STE gradi-
ent. Another option consists in using the knowledge distillation training to force the training of
quantized LSTM to emulate its full-precision version.
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7
Model compression via weight generation network

and PRNG

Unlike previous chapters which deeply relate to the quantization as
the main compression technique, in this chapter, we mainly aim at
reducing memory needs via the use of weight generation network
and PRNG. It may enable reducing as well the number of memory
accesses and the overall computational complexity but to a lesser
extent. This approach is a more exploratory work compared to pre-
vious chapters. We propose to take advantages of a PRNG in order
to indirectly produce Primary Model (PM) weights –in an on-line
fashion– when shaped through the weight generation network. Be-
sides, the possible interest of hardware implementations of such a
topology component highly relates to the complexity of involved gen-
erative models and the type of PRNG.
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7.1 Hypernetworks: a bridge between random input and DNN weights
In section 2.3.2 we have reviewed different model compression techniques, including weight

generation networks, also termed as hypernetworks [21]. These are auxiliary model which aims
at generating the weights of layers in the primary/main network rather than directly outputting the
prediction for a specific task. The weight generation process in a layer may be done in a dynamic
fashion, i.e. taking into account the information of the input data of that layer [22], [181]. On
the other hand, static weight generation [21], [292] consists in applying a transform mapping the
layer’s low-dimensional embedding to the weight’s high-dimensional space. For instance, [21]
makes use of learnable embedding which are optimized along with other parameters of the hyper-
network. On the contrary, [292] draws the embedding from a uniform/gaussian distribution.

In this chapter, we also present some preliminary studies on the static weight generation with
pseudo-randomly generated embeddings. Generally speaking, this proposes to use a PRNG (e.g.,
Cellular Automaton) combined with a hypernetwork to reduce the overall memory footprint of the
primary model (PM). Figure 7.1a illustrates a standard layer with input data XXX , output data YYY and
layer weights WWW . The following equation describes the linear operation of this layer:

YYY = h(XXX ;WWW) (7.1)

The operation h() of this layer may be either of fully-connected, convolution or any kind of layers
and the PM layer weights WWW have to be saved in memory. Figure 7.1b presents the static weight
generation mechanism where layer weights WWW are not stored in-situ but generated from a hyper-
network. The PRNG generates on-the-fly the sequences of embedding zzz of low dimensionality
which are fed into the hypernetwork which contains learnable parameters ΩΩΩ. This weight genera-
tion network (or weight net for short) is therefore learned (through ΩΩΩ, depending on zzz) to produce
proper weights WWW used by the primary model for the targeted task. It is required that the size of ΩΩΩ

is much smaller than that of WWW in order to efficiently compress the overall model and alleviate the
memory bottleneck. Another specification is that the additional operations related to the hyper-
network g(ΩΩΩ,ZZZ) should be of low computational complexity as well, so that it does not increase
much top-level hardware implementation costs. The output of this layer is described as follows

YYY = h(g(ΩΩΩ,zzz),XXX) (7.2)

Assuming that zzz ∈ Rdz and XXX ∈ RdW (when the weight WWW is vectorized), where dz≪ dW . It is
easily to see that a direct linear projection from Rdz to RW requires dzdW parameters, which is dz

times higher than the size of WWW . Therefore, it is necessary that the PM weights WWW are partitioned
into several sub-weights WWW i, each of them are generated from the hypernetwork g(WWW i,zzzi) given a
embedding zzzi in a sequential fashion, hence easing the hardware implementation. This also im-
plies a dependence between these sub-weights as they share a single hypernetwork. Concretely,
in the case of FC layer, the 2D weight matrix WWW is partitioned into several 1D projection vector,
wheareas for Conv2D, the 4D weight tensor may be partitioned into a collection of 3D filters.
It is noteworthy pointing out that the weight net can be learned to fulfill various requirements,
being adapted to the layer type and the input/output shapes. It is widely compatible from basic
Dense layers, Convolutional layers to RNNs, making the approach highly generic compared to
other state-of-the-art of model compression approaches.

Using weight generation network may introduces several advantages:

• Conventional models require the storage of all weights in memory and usually represents
the main bottleneck preventing DNNs from being deployed in tiny low-memory systems.
Besides this, when model size is large, one usually needs additional DRAM to save memory
but being costly in terms of power consumption related to weights loading.
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(a) A standard layer in the primary model.

(b) The same layer with weights generated from a hypernetwork.

Figure 7.1: A standard layer where the weights WWW is stored in memory, and the corresponding
layer with weight generation network.

• This power consumption reduction is expected to cover the additional costs introduced by
generating and performing g(). In particular, when the operations of f () and g() are
both linear, it enables to change their order of execution, i.e., performing f () in the low-
dimensional latent space. Consequently, this results in a reduction of the overall number of
operations, the power consumption and the latency as well.

• Furthermore, on top of this, we can still apply other model compression techniques such as
quantization, pruning or dynamic networks to the hypernetwork which allows us to reduce
more drastically hardware latency during the processing/inference.

In this chapter, we present some propositions for the hypernetwork to generate the weights of
FC and Conv2D layers in an on-line fashion. We also discuss about the choices of the PRNG and
the configurations of the hypernetworks.

117



Chapter 7. Model compression via weight generation network and PRNG

7.2 Practical Weight generation network designs
7.2.1 Weight generation network for FC layer
In Figure 7.2, we have the description of one possible proposition applied to a simple PM Dense
layer in combination with a “Vanilla” weight generation network, namely WeightGenNet FC. A
typical Dense layer is characterized by nl input neurons and nl+1 output neurons, meaning that it
receives input yyy ∈ Rnl and outputs yyy ∈ Rnl+1 . Here for convenience, we get rid of bias parameters
knowing that they can be easily fused into the kernel matrix WWW . The layer operation h(., .) is a
matrix-to-vector multiplication as follows:

yyy = h(WWW ,xxx) =WWW T xxx (7.3)

where WWW ∈ Rnl×nl+1 . The number of parameters in this case is nlnl+1. We can say that the kernel
matrix stands for nl+1 projections with the support size of nl . If both input and output are in a
high-dimensional space, we thus need a large memory to store these weight parameters.

WeightGenNet FC proposes a basic solution to reduce memory needed for storing the param-
eters of FC layers. The PRNG will generate on-the-fly nl+1 pseudo-randomly generated vectors
zzzi, i = 1. . .nl+1, each has length of m≪ nl+1. These values may be floating points or fixed points
(even binary values). Each vector zzzi is then fed into a hypernetwork whose operation g(., .) is also
equivalent to a Dense layer with m input neurons and nl output neurons, with a nonlinear oper-
ation σ() (e.g., normalization and/or nonlinear activation). This model, with the kernel matrix
ΩΩΩ ∈Rni×m, is learned to convert each random vector zzzi into a projection of the main kernel matrix
WWW . The whole nl+1 projections will be performed in the same manner from different embeddings.
This way, the main kernel matrix WWW is on-line generated from a much smaller kernel matrix ΩΩΩ

with only mnl learnable parameters. Denoting each 1D projection vector as w̃wwi ∈Rni , the following
equation describes how these vector are generated from the hypernetwork

w̃wwi = g(ΩΩΩ,i ) = σ(ΩΩΩzzzi) (7.4)

The whole main layer’s kernel matrix W can be represented as follows:

WWW =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w̃wwT
1

w̃wwT
2

...

w̃wwT
nl+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7.5)

This ways, the output can be generated on-the-fly with the term w̃wwT
i xxx. Each element of y is com-

puted from each embedding zzzi generated from the PRNG. This on-line processing strategy is de-
picted in Figure 7.2, where the elements in red stand for the current “iteration” including random
embedding generation – projection weights computation – output computation. The benefit of this
realization is that we no further need to store all nlnl+1 parameters of the main layer weights WWW .
Instead, we only need to keep in memory the smaller sized matrix ΩΩΩ containing mnl parameters.
The ratio between the number of learnable parameters in WeightGenNet FC and regular FC is

CRparams =
mnl

nlnl+1
=

m
nl+1

(7.6)

Choosing a small number of m≪ nl+1 results in a low compression rate or the reduction in
high memory needs. The number of MACs of a standard Dense layer is nl+1nl and that of this
“Vanilla” hypernetwork Dense layer is nlmnl+1+nlnl+1, where the additional term nlmni is due to
nl+1 times reuse of the projection matrix ΩΩΩ. The MAC ratio is thus:
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CRMAC =
nlmnl+1+nlnl+1

nlnl+1
= 1+m (7.7)

Figure 7.2: Fully-connected layer with weight generated network.

This ratio is unfortunately high, even with a small number of m. This, in terms of computa-
tional complexity becomes indeed the main obstacle of our realization. However, as mentioned in
the second benefits of our invention, when both main operation f () and auxiliary operation g()
are linear operators (i.e. not involving activation functions), we have the possibility of changing
their order of execution, so that the main operation f () can be performed in the latent space of
low dimension. In details, from the equation above, if σ(x) = x, the output of this layer can be
computed as follows:

yyy =
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T xxx (7.8)

In this formulation, the input data xxx is firstly projected into a latent space of dimension m by the
function f̃ (ΩΩΩ,xxx) =ΩΩΩ

T xxx = ỹyy. Then the result ỹyy is sequentially projected by nl+1 vectors zzzi that are
generated on-the-fly, to obtain the final output yyy. Figure 7.3 describes how this formulation can
be implemented in practice. This way, the number of MACs is reduced to mnl +mnl+1. In other
words, this linear mode is equivalent to a learned Dense layer of m output units (i.e. function f̃
in Fig. 7.3) followed by another Dense layer composed of the concatenation of nl+1 embedding
vectors generated by the PRNG (i.e., function g̃ in Fig. 7.3).
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Figure 7.3: The equivalent processing of the proposed FC layer with weight generation network,
where σ(x) = x.

The ratio between the number of MACs of this processing mode of WeightGenNet FC and
that of the standard FC layer is:

CRMAC =
mnl +mnl+1

nlnl+1
=

m
nl
+

m
nl+1

(7.9)

When m≪ ni and m≪ no which is the common settings, we may likely obtain a ratio smaller
than 1, i.e. we even reduce the number of MACs. This illustrates the benefits of constructing
simple linear operations g() inside the auxiliary generative model, so that we can reduce both the
memory needs and the complexity at the same time. We also notice that this mode is able to be
established if and only if there is no nonlinearity in the weight generation network. It somehow
corresponds to a layer factorization with a part of the weights being fixed and on-line generated.

7.2.2 Conv2D layer with weight generation network
A conventional Conv2D layer indexed l takes input XXX ∈RHl×Vl×Cl and computes output Y ∈RHl+1×Vl+1×Cl+1 .
Here we also get rid of the bias parameters for convenience. The PM weight tensor is W ∈
Rh×v×Cl×Cl+1 , meaning that we have Cl+1 filters WWW i, i = 1...co, each kernel has ci filters WWW [i] ∈
Rh×v×Cl , i = 1. . .Cl+1. The ith output channel is computed as follows:

YYY [i] = XXX ∗WWW [i] (7.10)

The number of parameters of a conventional 2D Convolutional layer is hvClCl+1 and the num-
ber of MACs is Hl+1Vl+1Cl+1hvCl . When the number of input channels Cl and output channels
Cl+1 are high, both memory needs and computation complexity become the main bottleneck for
the deployment of this layer.

In Figure 7.4 we present a hypernetwork for generating on-the-fly the weight filters of the
Conv2D layer, namely WeightGenNet Conv2D. Each random vector ρi is fed into a weight gen-
eration network that is bounded by the gray box. This weight net includes m basis filters FFF[k] ∈
Rh×v×m, k = 1...m, and a dense matrix DDD ∈RCl×m. The process of generating on-line a filter WWW [i] is
as follows:
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1. First, the current embedding zzzi is convolved with m basis filters FFF[k], k = 1...m. This can be
equivalently represented by a pointwise convolution (PWConv) where the basis filter FFF[k]
plays the role of the “image” to be convolved. Each PWConv outputs a single intermediate
filter F̃FFk ∈Rh×v as follows

F̃FF[k] =
m

∑
h=1

FFF[k,h]z[i,h] (7.11)

2. Second, we concatenate all the intermediate filters together to form a 3D tensor, then apply
a nonlinear operation σ1() to this tensor to obtain F̃ i ∈Rh×v×m.

3. Finally, we apply a PWConv with the weight matrix DDD ∈ RCl×m to F̃FF . The result is then
passed through a nonlinear operation σ2() to obtain the filter WWW [i] of the PM Conv2D layer.
The kernel j in the filter i, i.e., WWW [i, j], is obtained as follows

WWW [i, j] = σ2 (
m

∑
k=1

Dk, jF̃FFk) (7.12)

Figure 7.4: WeightGenNet Conv2D and the processing of on-line generating a convolutional filters
for the PM.

All Cl+1 filters are produced on-the-fly from Cl+1 random embeddings zzzi, in the same manner
described above. This way, all the main layer weights WWW are generated on-line from the hy-
pernetwork of m2hv+mCl parameters, which is much smaller than the size of conventional 2D
Convolutional layer. The number of MAC operations according to this process is (hvm2+hvClm+
Hl+1Vl+1hvCl)Cl+1, which includes an additional cost of generation weights (uvm2 + uvcim)co.
The ratio between the number of MACs operation of this specific implementation and that of the
conventional 2D Convolutional layer is:

CRMAC =
(hvm2+hvClm+Hl+1Vl+1hvCl)Cl+1

Hl+1Vl+1hvClCl+1
= 1+

m2

Hl+1Vl+1Cl
+

m
Hl+1Vl+1

(7.13)

In general, we have m <Cl , therefore this ratio mainly depends on the spatial size Hl+1×Vl+1
of the output. When the spatial size of data is high, this ratio becomes smaller and the additional
operation cost becomes negligible.
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There are several options for the nonlinear operations σ1() and σ2(). We can choose nonlinear
activation functions like softsign, tanh, or a normalization. In later experiment, we let σ1(x) = x
(linear activation) and σ2() be the layer normalization [52].

Similarly to the case of weight generation network in FC layer, when both σ1(x) = x and
σ2(x) = x, we can exhibit a linear processing mode that is more compact in terms of complexity.
Indeed, the whole process to compute on-line an output map YYY [i] can be described as follows:

YYY [i] =
Cl

∑
j=1

XXX [ j] ∗WWW [i, j] =
Cl

∑
j=1

XXX [ j] ∗
m

∑
k=1

Dk, jF̃FFk =
Cl

∑
j=1

m

∑
k=1

Dk, jXXX [ j] ∗ F̃FFk (7.14)

As the term F̃FFk does not depend on the index j, we can permute the order of summations

YYY [i] =
m

∑
k=1

F̃FFk ∗
⎛

⎝

Cl

∑
j=1

Dk, jXXX [ j]
⎞

⎠
=

m

∑
k=1

m

∑
h=1

FFF[k,h]z[i,h] ∗
⎛

⎝

Cl

∑
j=1

Dk, jXXX [ j]
⎞

⎠
(7.15)

Similarly, as the term i,h does not depend on the index k, we can exchange the order of sum-
mations

YYY [i] =
m

∑
h=1

⎧⎪⎪
⎨
⎪⎪⎩

z[i,h][
m

∑
k=1

FFF[k,h] ∗(
Cl

∑
j=1

Dk, jXXX [ j])]
⎫⎪⎪
⎬
⎪⎪⎭

(7.16)

The operation ∑Cl
j=1 Dk, jXXX [ j] corresponds to a PWConv with Cl input channels and m output

channels. The operation ∑m
k=1 FFF[k,h]∗ stands for applying a h× v Conv2D with m input channels

and also m output channels to the output of the previous PWConv, where each convolution filter
is the collection of all 2D tensor Fk,h across the column h. Finally, the operation {zi,h[.]} is
equivalent to another PWConv layer with m input channels and 1 output channels, but this time
the parameters of the PWConv zi,h is fixed and provided by the PRNG. The whole equivalent
processing is depicted in Figure 7.5, which is similar to the proposed factorization in Chapter 5, but
with a regular Conv2D instead of a GConv2D. This way, we can alleviate the increasing number
of operations due to the conversion of random embeddings into convolution filters. Moreover, the
number of MACs is even reduced compared to the conventional 2D Convolutional layer. This
again demonstrates the benefits of designing simply linear generative model g(). Indeed, the total
number of MACs of this linear mode is Hl+1Vl+1mCl +Hl+1Vl+1m2hv+Hl+1Vl+1Cl+1m. The ratio
between the number of MACs of this process and that of the regular Conv2D layer is

CRMAC =
Hl+1Vl+1mCl +Hl+1Vl+1m2hv+Hl+1Vl+1Cl+1m

Hl+1Vl+1hvClCl+1
=

m
hvCl+1

+
m2

ClCl+1
+

m
hvCl

. (7.17)

The ratio between the number of learnable parameters of the proposed hypernetwork and that of
the conventional layer is:

CRparams =
m2hv+mCl

hvClCl+1
=

m2

ClCl+1
+

m
hvCl+1

. (7.18)

In practice, we select m≪Cl and m≪Cl+1 to obtain a high compression rate in terms of both
parameters and MACs. More specifically, both the filters FFF[k] and the dense coefficients DDD can be
quantized, or pruned, enabling further memory needs and computation complexity reduction.
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Figure 7.5: The equivalent processing of the proposed WeightGenNet Conv2D layer when σ1(x) =
x and σ2(x) = x. It is similar to the convolutional factorization in Chapter 5, except for the regular
Conv2D instead of the GConv2D.

7.3 Experiments
7.3.1 MLP on MNIST

Setting

We reshape 28× 28 gray-scale images in MNIST to 784-dimensional vectors. The MLP archi-
tecture consists of 3 hidden FC layers of n units and a Softmax output layer. Each FC layers is
followed by a BN and a ReLU activation. The PM model complexity thus depends on the hy-
perparameter nreg. Throughout this experiment, we term the MLP with regular FC layers of nreg
hidden units as Regular MLP - nreg.

To evaluate the proposed FC layer with weight net, we replace all 3 hidden FC layers with
the WeightGenNet FC layers of nwn output units and m-dimensional embeddings. This model
is termed as WeightGenNet MLP - nwn-m. The PRNG generates 32-b random embeddings of
gaussian distribution and all other parameters are full-precision values. Here we choose Softsign
function as the linear operation of the WeightGenNet FC, i.e., σ(x) = softsign(x) = x

∣x∣+1 . Here we
choose nwn = 256 and m = 16.

All models are trained during 100 epochs with a batch size of 100, using Adam optimizer
over the binary cross-entropy loss function. The parameter nreg can be set to have the same PM
architecture, i.e., nreg = 256, or to have the same number of learnable parameters as WeightGenNet
FC, which gives rise to nreg = 29. We also note that the number of MACs in the case of Weight-
GenNet MLP is computed based on the linear processing mode (i.e., Fig. 7.3). Each result have
been obtained after 5 realizations and taking the average accuracy.

Results

From Table 7.1, we can see a marginal gain (0.16%) when introducing the Softsign nonlinearity
into WeightGenNet MLP. This comes as a cost of increasing the #MACs from 0.036M to 5.643M.
Compared to the Regular MLP - 29 having the same #params, WeightGenNet MLP with Softsign
obtain an accuracy gain of 0.44%. However, at the same PM architecture, Regular MLP - 256 has
a 0.87% higher accuracy while consuming more than 13.5× #params. The huge computational
cost of WeightGenNet MLP points out that the proposed hypernetwork is not efficiently designed,
and more compact architecture can be proposed to reduce the additional #MACs.
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Table 7.1: MNIST classification results with the proposed WeightGenNet FC layers.

Model
Regular MLP

(nreg = 29)
Regular MLP
(nreg = 256)

WeightGenNet MLP
WeightGenNet MLP

+ Softsign

Accuracy (%) 97.27 98.58 97.55 97.71

#params (×106) 0.025 0.336 0.025 0.025

#MACs (×106) 0.025 0.335 0.036 5.643

7.3.2 VGG-7 on CIFAR-10

Settings

The proposed WeightGenNet Conv2D is benchmarked on CIFAR-10 dataset using a VGG-7 ar-
chitecture, by “2×(128−C3)+MP2+2×(256−C3)+2×(512−C3)+MP2+512−FC+10−FC+
Softmax”, where 128−C3 denotes for the 3×3 Conv2D layer with 128 output feature maps. We
term this model as Regular VGG-7. To evaluate the impact of the proposed hypernetwork on 2D
convolution, we replace all the regular Conv2D layers (except for the first one) with the Weight-
GenNet Conv2D, namely WeightGenNet VGG-7, where the dimension of the embeddings are
also scaled with the number of output feature maps in the PM, i.e., 32,64,128. Similarly to the
case of on-line generated weights in Section 5.3.2, the PRNG is a Cellular Automaton following
Wolfram rule 30 as the evolution rule, with a random initialization. The length of each sequence
is m, and the number of time steps is Cl+1. Note that all the basis filters FFF and dense matrices DDD
are binarized using the Sign function. To add a nonlinearity into the hypernetwork, we employ
the Layer Normalization (LN) [52] as the σ2() function while keeping σ1(x) = x. Note that the
on-chip memory and #MACs are only computed over convolution layers. We use the following
data augmentation scheme: add 4 pixels each side, randomly crop a 32×32 image and apply hor-
izontal flip. Models are trained using Adam optimizer during 150 epochs with batch size of 50.
The learning rate is initialized and kept at 10−3 during the first 50 epochs, then divided by 10 after
every 25 epochs.

Results

As reported in Table 7.2, the Regular VGG-7 obtains 93.12% accuracy, but contains up to 146
Mb of on-chip memory, and 0.608 Giga-MAC (GMAC) operations. Having the same PM archi-
tecture, the WeightGenNet VGG-7 achieves 91.15% accuracy, i.e., a degradation of 1.97%. This
comes at the benefit of using only 0.37Mb on-chip memory and 0.099 GMACs, corresponding
to a reduction of 197.8× and 6.14× in terms of on-chip memory and #MACs. When using Layer
Normalization, WeightGenNet VGG-7 performs slightly better, with a small gain of 0.11% at the
cost of doubling the #MACs compared to that of the Regular VGG-7. However, these operations
are with binary weights, so it consumes much less energy and is much simpler to be implemented
compared to the case of 32b-representation. These results demonstrate the effectiveness of our
realization compared to state-of-the-art conventional layer.

7.4 Discussion
7.4.1 Configurations of the PRNG
The role of PRNG in our framework is to supply embeddings to the weight generation networks
that further convert them to PM layer weights. This component relies on both the algorithmic and
hardware aspect of the proposed weight net. For example, both WeightGenNet FC and Weight-
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Table 7.2: CIFAR-10 classification results with the proposed WeightGenNet Conv2D.

Model Regular VGG-7 WeightGenNet VGG-7
WeightGenNet VGG-7 +

Layer Normalization

Accuracy (%) 93.12 91.15 91.26

On-chip Memory (Mb) 146 0.37 0.37

#MACs (×109) 0.608 0.099 1.299

GenNet Conv2D in the previous section have the equivalent linear processing including a linear
combination with the embeddings issued from PRNG. In this specific case, these vectors are pre-
ferred to be uncorrelated to avoid redundant information in the hypernetwork, hence improving
the primary model’s performance. In terms of hardware implementation, we would like to use
simple PRNG whose computation cost is negligible. There are following options for PRNGs:

• Type of generators: Pseudo random generators of type LFSR or Cellular Automata (CA);
bit sequence distribution, sequence pseudo-random shuffling. . .

• Sequence settings: prefixed initialization or time-stamped pseudo-random initialization;
structural and/or not structural; 1D (coefficients) or 2D (maps, cf. 2D CA); 1-bit (binary)
or multiple-bit (combining bits to equivalent data representation, e.g., integers, floating
points. . . ).

• Enabled topology learning: the rule of sequence generation (e.g., when using CA) may be
learned during the learning procedure of the main task to both define best initializations and
internal logical functions. This possible learning can be considered in the framework of
Neural Architecture Search (Figure 7.6).

Figure 7.6: Jointly optimizing the hypernetwork g() and its parameters ΩΩΩ and the configuration
of the PRNG (e.g., generation rule, random seed, dimension of embeddings).
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7.4.2 Weight generation network architecture
The role of weight net in our framework is to convert sequence of embeddings into layer weights.
The design requirements are: minimizing hardware implementation complexity, versatility and
high memory efficiency (i.e., upscaling factor denoted CR in previous sections). This can be ob-
tained by increasing furthermore the level of factorization and the parameter-sharing inside the
hypernetwork to reduce the number of operations of the weight generation network.

7.4.3 Application

Figure 7.7: Compiler for generic DNN accelerators to handle two functional modes (linear versus
nonlinear) of the weight generation networks with PRNG.

The use of weight net is applicable to various layer types and PM architectures. It proposes
an alternative way to reduce memory needs related to model weights while limiting algorithmic
degradation of the main inference task. Designing smart devices with highly accurate inference
capabilities while being Hardware-frugal is now a trending topic. The proposed WeightGen-
Net framework definitively has the advantage of being highly generic in that context because
of enabling a novel approach to compress DNN models using hypernetworks with PRNG em-
beddings. As the hypernetwork is learned within a unified framework with the inference task,
this can be applied to a wide range of applications, from classification, regression to data com-
pression/reconstruction. Regarding hardware implementation, it maps well for AIDA and ASA
platforms.

When mapping the proposed WeightGenNet with PRNG to AIDA platforms, the implementa-
tion requires a model architecture description interpreter, a compiler (Figure 7.7) and a specific
PRNG. Firstly, the model architecture description and interpreter enables a compilation stage to
target multiple types of PM’s layer operation f () and weight generation architectures g(). Next,
the compiler receives description of the weight generation network g(), the PM’s layer opera-
tion description f (), the learnable weights description ΩΩΩ, and the PRNG’s configuration (e.g.,
sequence length m, random seed, evolution rule...). It embeds a Nonlinear Operation Analyzer
that analyzes the linearity characteristics of the hypernetwork from the description of g(). If g()
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contains nonlinearity, it will drive the computation flow in a standard linear flow mode (in blue).
Otherwise, an Operation Decomposer will analyze the given information of f () and g() to deter-
mine the latent operation f̃ () and the PRNG operation g̃(). Concretely, f̃ () corresponds to the first
FC layer in the linear processing mode of WeightGenNet FC in Fig. 7.3. On the other hand, f̃ ()
consists of the first two layers in the linear mode of WeightGenNet Conv2D in Fig. 7.5. In general,
this latent operation aims at mapping the data dimension to the latent dimension m. On the other
hand, the PRNG operation g̃() corresponds to the last FC with online-generated weights which
maps the data from the latent dimension to the desired output dimension. The compiler then drives
the computation flow in this linearly optimized mode. Finally, the generation of pseudo random
sequences zzz with PRNG can be performed on the targeted execution chip in an optimized fashion
thanks to the compiler and given programmable configurations (for example using a reconfigurable
CA that is directly implemented in a specific hardware circuit, e.g., using In-Memory Computing).
This last consideration is compliant with both nonlinear flow and linearly-optimized flow.

7.5 Conclusion and Perspective
In this chapter, we address an emerging model compression technique using weight generation

networks, which mainly aim at alleviating the parameter-heaviness of DNNs. We present a static
framework for generating on-the-fly the PM’s weights with the random embeddings issued from
the PRNG such as Cellular Automaton. Concretely, we propose two weight generation network
architectures for the FC and the Conv2D layers, namely WeightGenNet FC and WeightGenNet
Conv2D, along with the corresponding linear processing mode when the weight net does not con-
tains any nonlinear operation. Preliminary results show that the models containing the proposed
WeightGenNet layers can obtain a significant compression rate compared to the model with reg-
ular layers. However, the additional computational cost is a major downside of this framework.
To address this issue, it is crucial to embeds other compression techniques such as quantization
and dynamic pruning to the weight generation network. We also discuss about some possible
optimizations for the PRNG’s configuration and the weight net architecture under the NAS per-
spective. It is noteworthy pointing out that this static weight generation framework can be properly
mapped to common DNN accelerators such as AIDAs or ASAs, to serve for different applications.

For future works, we have identified some promising dynamic weight generation architectures
which feature the weight-sharing [31] between the hypernetworks of different layers. This can
drastically reduce the on-chip memory needed for storing the whole model. Moreover, the gener-
ation of the layer’s embeddings can also be done in a dynamically manner by using the input data
itself. A further step is to adopt a dynamic pruning strategy to the weight net, which adaptively
provides the pruning patterns for each filters in the Conv2D layer. Another approach is to search
for the optimal architecture of the weight net given some hardware-related budgets such as model
size or #MACs.
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8
Thesis Conclusion & Perspectives

8.1 Thesis summary
In this thesis, we have addressed the problem of designing deep neural network algorithms en-

abling efficient on-chip image/video processing in the context of ASIC design. We have reviewed
current deep learning accelerators and the popular approaches for building compact DNNs such as
efficient architecture design, quantization, pruning, tensor decomposition and weight generation
network. We have next introduced novel hardware-compliant methods for quantizing different
components in DNNs involving not only the weight and the activations but also the batch normal-
ization and the skip connections. These quantization methods, when combined with a light-weight
convolutional factorization leveraging on-line generated weights, allow us to drastically reduce
memory needs and computational costs to perform DNN inference while facilitating hardware
implementation. Finally, we have also presented some preliminary studies on the weight genera-
tion network with random layer embedding issued from PRNGs, which enables us to alleviate the
parameter-heaviness of DNNs.

8.2 Summary of the Contributions
All the contributions presented throughout this thesis mainly rely on the co-design of DNN

architecture and model compression approaches, with a hardware implementation perspective for
compact ASIC accelerators towards efficient embedded image/video inference. In details, we have
focused on:

• Low-precision weighted networks (Chapter 3): among the state-of-the-art DNN com-
pression techniques, model quantization has emerged as one of the most relevant approaches
allowing to reduce not only the feature-related and on-chip memory, but also the compu-
tation cost and hardware complexity. Unlike previous weight quantization methods that
mainly rely on the minimization of the quantization error or the task loss, we have proposed
a novel adaptive QAT framework, namely HEQ, using statistics (i.e., n-quantiles) of the
proxy weights. Specifically, in the context of linear symmetric quantization, HEQ automat-
ically adjusts the step size parameter to equalize the histogram of the quantized weights,
and thus, maximizing their information entropy. Experimental results have demonstrated
that HEQ can achieve state-of-the-art results on low-precision DNNs, while offering a bet-
ter hardware and training compatibility compared to previous works. Furthermore, HEQ
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can also be considered as a regularization approach which constraints the quantized weights
distribution to be uniform, while easing the optimization process of QNNs. Note that, any
other distributions could also be used instead in our framework. The effectiveness and ver-
satility of HEQ have also been demonstrated through different model architectures in the
next chapters.

• Resource-constrained, mixed-precision encoder for image classification and patch-based
compression (Chapter 4): the downside of resource-constrained, application-specific ac-
celerators are the low level of flexibility and application-versatility. In Chapter 4, we have
demonstrated that it is possible to design an ASIC NN accelerator that can be applied to
two uncorrelated tasks such as image classification and compression. In particular, we
have presented a light-weight reconfigurable quantized encoder featuring fine-grained de-
sign, with a hand-crafted mixed-precision topology, the HWMSB activation quantization,
and the hardware-compliant BSN. Besides, we have also demonstrated that the proposed
quantized encoder can be used to compress image patch-by-patch while the reconstruc-
tion can be performed remotely, by a dedicated full-frame decoder namely PURENET.
Through the experimental results, we aim at highlighting the important role of a fine-grained
hardware-algorithmic co-design in improving the efficiency and the application- versatility
of resource-constrained ASIC platforms.

• Hardware-aware Residual Networks with logic-gated skip connections and light-weight
convolutional factorization (Chapter 5): in Chapter 5 we have addressed a scientific ques-
tion about the efficient way to apply model compression techniques, in particular quantiza-
tion. Although achieving remarkable compression rates, the hardware implementation of
some previous quantization techniques is still questionable. On the other hand, while quan-
tized networks have low-precision weights/activations, somehow it is still ignoring other
components such as the BN or the skip connections, resulting in additional costs with re-
spect to the targeted low bit-width hardware implementation. Based on these statements,
novel logic-gated residual building blocks (e.g., OR block, MUX-OR block and MRB) have
been presented, allowing to perform the skip connection with the streamlined AND, OR,
MUX gates and bitshift operation. In addition, we have also proposed a light-weight convo-
lutional factorization leveraging Cellular Automaton-generated weights, to reduce further-
more the hardware requirements for DNN inference. Experimental results show the great
interest of the proposed methods in terms of hardware-algorithmic trade-offs (on-chip mem-
ory needs and implementation complexity/compatibility), especially in the context of DNN
accelerators with extremely low resource budget and integer-only computation support.

• Efficient video inference with Binarized Conv3D-LSTM model (Chapter 6): despite the
tremendous progress of model compression techniques in the recent years, they are mainly
applied to image-related applications. In Chapter 6, we have addressed the need for efficient
video inference, by proposing a fully-binarized Conv3D-LSTM model containing only bit-
wise and integer computations. Besides the Conv3D part which presents a 3D version of
the proposed MUX-OR block and light-weight factorization in Chapter 5, we also introduce
a multi-stage training scheme to fully quantize the LSTM layers with only 1-bit weights
and binary/ternay hidden units. Experimental results have hightlighted the advantages of
the proposed quantized model in terms of both on-chip memory and computational cost.
From a implementation point of view, a fully binarized Conv3D-LSTM model can greatly
fit low-power ASIC accelerators supporting only bit-wise and integer operations.

• Model compression via weight generation network and PRNG (Chapter 7) apart from
previous chapters which consider quantization as the pivotal model compression technique,
in Chapter 7, we have investigated the possibility of circumventing the parameter-heaviness
of DNNs using weight generation network and PRNG. In particular, two different weight
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generation networks along with their linear processing mode have been proposed to stati-
cally transforming random embeddings from PRNGs into the weights of FC and the Conv2D
layers in an on-line fashion. Preliminary results have demonstrated the promising results of
this weight generation framework, especially when combined with other model compression
methods such as quantization or dynamic pruning.

8.3 Perspectives
As mentioned at the end of the previous chapters, the different contributions discussed in

this manuscript can be extended in various ways, and used as a starting point to explore other
hardware-algorithmic co-optimization methods, in combination with neural architecture search,
training trick such as knowledge distillation, and other model compression frameworks such as
pruning and dynamic networks. This section will present our perspectives in a more synthesized
manner regarding the presented hardware-algorithm DNN enablers.

Quantization is the main model compression used throughout this thesis. Our work and state-
of-the-art methods has demonstrated that using the statistics of the proxy weights is an effective
way to adjust the quantization mapping during training in a versatile manner. Although HEQ has
shown its capability in the means of maximizing the information entropy, we believe that another
non-uniform distribution can also be adopted to adjust the quantizers, in particular when quan-
tizing the activations. Besides, a promising approach is to target an intra-layer mixed-precision
strategy for layer’s weights. This idea consists of quantizing the dominant near-zero proxy weights
with low bit-width, while dedicating more precision for the minority long-tailed values [214]. In
this case, the bit-width may be learned with an entropy coding, or manually designed. Moreover,
the additional bit-width for long-tailed distribution can be represented as a residual term [199],
which can be dynamically assigned to only “difficult” input data. Apart from the design of adaptive
quantization mapping, another research line that should be explored to enhance the performance
of extremely low-precision DNNs, especially BNNs, is to introduce high-precision shortcuts to
alleviate disastrous information loss [293], [29]. Although significantly reducing the performance
degradation between the full-precision and the low-precision models, this approach introduces
additional full-precision operations which may be the major bottleneck if the implementation plat-
form only supports low-precision computations. This opens a room for improvements, mostly
regarding the design of shortcut branches and the hardware-compliant skip connections that are
inference-efficient.

Neural Architecture Search is currently one of the most active research area in deep learning
which allows to automatically design DNN architectures. Recent advances in NAS [30] allow to
perform the search in a more acceptable training cost, thus making it practical to be widely adopted
in a resource-constrained context. Compact model design, including quantized neural networks,
can be naturally plugged into the NAS frameworks to find the optimal model architecture within a
given hardware budget. Since all the proposed model architectures in this thesis are manually de-
signed, a direct extension is to use learning-based or an input-driven dynamic approach to improve
the efficiency of these hand-crafted models, e.g., searching for the optimal width/depth [139] or
bit-width for each layer [215]. Concretely, the mixed-precision topology as well as the topology
in Chapter 4 can be optimally found given on-chip memory/BOP budget. On the other hand, we
can also search for different variants of the logic-gated residual blocks proposed in Chapter 5 and
Chapter 6. This search may cover different components of the models: type of logic gates (e.g.,
OR, AND, MUX), type of main branch transformation (e.g., Conv2D, DWConv, PWConv, effi-
cient convolution cell), architecture of the attention branch, the width or the depth of the model.
It may also be adopted to find the efficient architecture of the weight generation network in Chap-
ter 7. If the cost of performing NAS is considerable, one option is to consider architectures found
by hardware-aware NAS as a starting point for the baseline model, before modifying its structures
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regarding specifications in hardware implementation.

Weight-sharing [31], [32] is another algorithmic enabler to circumvent the parameter redun-
dancy of DNNs. Considering the case of 2D convolution for images, a highly abstract feature is
learned through a cascade of lower-level features which may be simply the result of some basis
type of filtering such as edge extraction or average. Based on this observation, it is able to favor
a commonly-shared filter base in CNNs as demonstrated in existing approaches. This weight-
sharing may be established at different levels: intra-model or inter-model. In our thesis, a possible
extension regarding the first level consists of using a unique filter base for all weight generation
networks of different convolutional layers. On the other hand, an inter-model weight-sharing may
be advantageously introduced in a reconfigurable multi-task ASIC accelerator (eg Chapter 4), al-
lowing us to store only a small portion of weights instead of the whole set of parameters for each
application.

From a hardware point of view, the proposed algorithmic enablers throughout this thesis will
certainly have impacts on at least one of the following resource constraints: memory, computa-
tional capability, energy consumption, latency and footprint. Although we can explicitly quantify
the memory needs and the computational complexity of the models, it is still not clear what is
the quantitative impact of those propositions in terms of energy or latency, since it also depends
on the deployment platform. This suggests us an important question about the target hardware
implementation, whether it is a conventional ASIC design, or an emerging compute-in-memory
architecture (e.g. SRAM, RRAM). At least, we can leverage some prior modelling (e.g. [294]) or a
simulation framework (e.g. NeuroSim [295]) to benchmark and evaluate DNN-based accelerators
on proposed compact models, hence obtaining a more complete picture of the hardware-related
benefits.

Finally, based on our work and the current trend in developing advanced model compression
algorithms, we believe that a combination approach is promising to boost the efficiency of DNNs.
This involves not only the co-design of a unified model compression framework (e.g., pruning-
quantization-hypernetwork) and the baseline model architectures, but also the learning procedure,
where training trick (e.g., knowledge distillation) can be applied to ease the learning and reduce
the generalization gap.
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Deep Neural Networks hardware-algorithmic enablers
for compact ASIC design towards embedded im-
age/video processing
Conception de réseaux de neurones profonds pour le
traitement embarqué d’image/vidéo, compatible avec
une architecture micro-électronique frugale

Résumé
Les réseaux de neurones profonds (DNNs) sont devenus la solution de référence
pour diverses applications requérant de l’inférence sur des données. Porter ce
type d’algorithmes au sein de systèmes embarqués, pour des applications dites
d’intelligence artificielle, constitue un défi pour des raisons liées à l’efficacité én-
ergétique, la préservation de la vie privée, la latence de calcul et des probléma-
tiques de bande passante. Or les performances exceptionnelles de DNNs sont
principalement liées au fait du haut niveau de complexité des architectures de cal-
cul, exploitant un grand nombre de paramètres, mais limitant de facto leur potentiel
déploiement au sein des systèmes fortement contraints. Le développement des
DNNs nécessitent également des plateformes de calculs dédiées pour cela, lors
des phases d’entrainement et d’inférence. Le choix de cet accélérateur matériel
dépend par conséquent de la tâche ciblée et du budget disponible, surtout concer-
nant la consommation. Dans un contexte où le cas d’usage est bien défini pour
une application à basse consommation, la conception d’un dispositif spécifique
dédié à une application précise est un choix pertinent, permettant d’atteindre de
meilleurs compromis entre la performance algorithmique et l’efficacité énergétique.
La clé de ce type d’accélérateur réside dans une conception conjointe matérielle-
algorithmique. Cette thèse aborde donc le problème de conception des DNNs com-
pacts pour le traitement embarqué d’image/vidéo, compatible avec une architecture
micro-électronique frugale. Ce manuscrit se focalise sur la généralisation des tech-
niques de quantification comme approche centrale pour compresser des réseaux
exploitant les dernières avancées en termes de conception de DNNs (mécanismes
d’attention, connexions résiduelles, réseaux récurrents et poids non appris), per-
mettant de réduire considérablement le besoin de mémoire et de calcul, tout en
facilitant son implémentation matérielle. En outre, cette thèse relate également une
étude exploratoire portant sur la génération des poids de DNNs via des réseaux
annexes pour réduire le nombre de paramètres utiles au niveau système.

Mots-clés : Apprentissage profonds, Quantification des DNNs, Réseaux
récurrents, Réseaux auxiliaires, Classification d’image, Compression d’image.

Abstract
Deep Neural Networks (DNNs) have become the state-of-the-art solution for diverse
applications in the last few years. As a result, pushing DNN inference to the edge
devices for smart applications is increasingly demanded, for the reason of energy-
efficiency, privacy, latency and limited bandwidth. Unfortunately, their excellent per-
formances are mainly due to complex computational architectures involving a huge
number of parameters and operations, causing several hardware-related overheads
when deployed in resource-constrained systems. The choice of DNN accelerator
deeply depends on the targeted task and the available resource budget, especially
power consumption. In the context where the targeted task is well-defined for a low-
power application, an application-specific accelerator (ASIC) is the most relevant
choice in the means of achieving the best compromise between algorithmic per-
formance and hardware efficiency, by featuring fine-grained hardware-algorithmic
co-design in response to the complexity of the task and the available hardware bud-
get. In this thesis, we address the problem of designing hardware-compliant DNNs
for compact application-specific accelerators towards embedded image/video pro-
cessing. We mainly focus on the generalization of model quantization as the pivotal
approach to compress DNN with advanced features such as attention-like mecha-
nisms, residual connections, recurrent layers and fixed weights. It enables to drasti-
cally reduce the memory needs and the computational costs, while easing hardware
implementation. Besides, we also present some exploratory studies on weight gen-
eration networks to alleviate the parameter-heaviness of DNNs.

Keywords : Deep Learning, Quantization-Aware Training, Recurrent Neural
Networks, Mixed-Precision, Image/Video classification, Image compression, ASIC.
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