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1 Abstract 
Bioimage analysis workflows have transformed dramatically over the last years, accelerated 

by the emergence of deep learning. Indeed, once thought impossible challenges like 3D 

segmentation of complex microscopy-data or data-driven multidimensional microscopy, also 

called Smart Microscopy, seem now reachable, and new imaging modalities are breaking 

records in both resolution and acquisition speed.  

 

This shift brings along a variety of new software platforms and tools, as well as the 

requirement of dedicated computing resources like GPUs. Plagued by the absence of a 

common framework for these tools, however, tedious data management, complex 

orchestration and painful integration of new technologies have become a reality and currently 

restrict these advanced, distributed bioimage workflows to a limited set of few programming 

experts.  

 

Additionally, most existing methods are still limited in their real-time capabilities and are 

usually restricted to off-line analysis workflows, where analysis happens after the acquisition, 

limiting emerging smart workflows, where the analytical result can influence the acquisition. 

  

This PhD thesis introduces a new open-source software framework that acts as a middleman 

between users and bioimage applications: Arkitekt. Arkitekt allows for the visual and user-

friendly design of modern bioimage workflows, orchestrating existing popular bioimage 

software locally or remotely in a reliable, efficient and in real-time. It interfaces with popular 

interactive visualization and analysis software, like ImageJ and Napari, but also easily 

integrates developer scripts and acquisition software. 

 

This thesis is organized in 4 major subsections. After a general introduction of bioimage 

analysis history and a detailed review of the modern analysis workflows it fully describes the 

main features of Arkitekt. It then illustrates and validates Arkitekt and its capabilities on 

representative advanced bioimage workflows and discusses its limits and potentials. 

  



2 Introduction 
This introduction serves three purposes. First it gives the reader an understanding of how the 

current landscape of bioimage analysis and their methods is shaped, how the methods of the 

past got us here, and how new methods continue to evolve it. Then it elicits the challenges 

users of the analysis methodologies face, together with the solutions that have been proposed 

and the challenges they meet and fail to meet. Finally, it explains the reasons to develop a new 

software platform aiming to overcome these challenges. 

2.1 How images shape science 

Biology, like every other discipline of science, is fundamentally grounded in the analysis of 

data. Understanding the mechanisms of life, from the level of ecosystems down to the 

molecular machinery within cells, relies on our ability to draw meaningful conclusions from 

complex datasets. We measure enzyme activity in a biochemical assay, track animal behavior 

in an ecological study, or visualize the dynamic interactions of proteins within a living cell. 

 

The process of data analysis in biology is therefore not a mere afterthought or a peripheral 

aspect of the scientific endeavor. Rather, it is an integral part of the scientific method itself, 

underpinning each step from the formulation of the hypothesis to the design of experiments, 

to the interpretation of results, and ultimately the generation of new knowledge. It allows us 

to discern patterns, identify relationships, and make inferences about the biological 

phenomena we are studying. 

 

It comes as no surprise then that tied to the evolution and emergence of new analytical 

methodology, we see groundbreaking biological insights follow: Western blots enabled us to 

identify the role of the protein tau in Alzheimer's disease (Goedert et al. 1992), while the 

discovery of the polymerase chain reaction aided in deciphering some forms of hereditary 

breast cancer (Wooster et al. 1994). 

 

One field of analysis in biology, however, has played, and continues to play one of the most 

important roles for advances in scientific discoveries: images. 

 

Images allow us to map features of a biological system into a two- or three-dimensional 

context. Whereas most biological studies require the extraction and often the alteration of the 

studied elements from their native context, images can capture the precise spatial 



organization and dynamics of the elements in their native environment. They allow us, to our 

own visual sense to perceive and analyze the scale of our biology: may it be from satellite 

images that monitor blooming patterns of the rainforest, to full body MRIs of a human. 

 

Unparalleled in their significance are images of the intricate scales and the minute 

organization of our life that remain invisible to our naked eye. They are only revealed when 

using the tools of microscopy. These bioimages are integral to whole fields of biology like 

cellular or molecular biology and facilitate research aiming to understand how the complex 

cellular machinery works. They help to decipher how well-timed events that occur in the 

millimeter to sub-micrometer range can determine disease and health, growth and decay.  

 

None of this would be possible without our continued efforts in pushing the limits of 

microscopy and the analysis of its bioimages, furthering our quest to resolve time and space 

ever so better. It is through the development of these methods that extend our own senses, 

that we are able to explore our microscopic world, revealing the fabric of live. 

 

 
Figure 1 The scales of biology and sciences and our preferred means of looking at them. 

.  

 

  



2.2 A brief and highly selective history of bioimage acquisition 

and analysis 

This chapter will focus on some aspects of the history of microscopic bioimage analysis, and 

how it has continued to evolve over the course of its history. It will delve into how scientists 

orchestrated their work with the images they produced with their microscopes, and how the 

analysis methods they developed changed our understanding of what a bioimage can reveal.  

 

This chapter should by no means be considered a full picture of the history of bioimage 

analysis but aspires more to be a testament and an homage to how the methods of a selective 

few, became the methods for everyone. 

2.2.1 The beginning of microscopy 

The earliest recorded experiments with microscopy date back to the 17th century and to 

names like Galileo Galilei, who with his ‘ochiollino’ (wink) built one of the first compound lights 

microscope (Strano 2009). Another pioneer, Robert Hooke, in his 1665 work Micrograph, was 

one of the first to reproduce the images of charcoaled vegetables he saw with his bare eye in 

minute sketches, depicting probably for the first time the intricate spatial organization of 

“cells”, a term he later coined (Hooke 1665) 

 

In similar efforts Antonie van Leeuwenhoek, improved 

on original designs of the microscope and with this 

very high magnification microscopes build around the 

1670s, applied it to various fields of observational 

biology like depicted populations of bacteria in water 

bodies (Egerton 1968). His collected body of work 

awards him the honorary common title to be the first 

microbiologist.  

 

What unified the analytical process of these early 

microscopists, is their efforts to depict and describe 

the image they observed with eyes, trying to relate their 

size and shape with objects in the real world. 

Leeuwenhoek in his work even mentioned rudimentary 
Figure 2 Leeuwenhoek’s first depiction of 
charcoaled vegetables (adapted from the original 
publication in1665). 



scales that he engraved in copper and using his beard hair was able to measure establishing 

the first morphometry in microscopy. (Davis 2020) 

2.2.2 Staining for human interpretation 

Another early milestone in the microscopic analysis of bioimage data was the introduction of 

advanced staining techniques in the early 1900, that enable scientists to selectively target and 

label structures and make them visible in their microscopic images. Building on the Golgi 

staining method, Ramon y Cajal used advanced silver nitrate staining techniques to stain 

collections of brain tissue, which he then traced and systematically compared. This not only 

gave evidence for the neuron doctrine, which established the neuron as the building block of 

brain tissue, but also describing neuronal features such as dendrite cell body and axons. 

(Garcia-Lopez, Garcia-Marin, and Freire 2010) 

 

Staining was one of the first ways scientists were able to selectively highlight specific 

structures of interest in their samples, providing new interpretability to bioimage data and 

establishing a technique that set the foundation for the segmentation of the bioimage into 

labeled subregions.   

2.2.3 The first bioimages 

With the advent of photography in the form daguerrography in the late 19 hundreds, it did not 

take long for pioneering work of scientists to use it in conjunction with microscopy and create 

so called micrographs. (Woodward 1876) 

 

Photomicrography allowed for the capture and preservation of specific microscopic views, 

which could then be shared, reviewed, and studied in ways that live viewing through a 

microscope could not permit. These micrographs brought a level of objectivity to microscopy. 

Prior to its invention, scientists had to rely on their drawings and descriptions to document 

microscopic observations, which were inherently subjective and prone to human errors. 

Photographic images provided a more accurate and reliable record of what was observed 

under the microscope. These were arguably the first bioimages. 

2.2.4 Going beyond light 

Trying to overcome the limitations of Light microscopy which is inherently limited in its 

resolution to a few hundreds of nanometers by the diffraction, the 20th century saw the advent 

of new modalities in microscopy. The electron microscope invented by Ernst Ruska and Max 



Knoll in 1938, allowed scientists to go beyond the diffraction of light to and monitor biology 

with unprecedented nanometric scales. (Knoll and Ruska 1932). 

 

Their method of sending a beam of electron through a biological sample and measuring the 

changes in absorption through a oscillograph (Ruska 1987) however, not only ushered in a 

new era of nanoscale biology, but also had long lasting effects on our understanding of what 

constitutes an image. Whereas previously images were generated as a capture of a 2D plane 

at a single moment in time, these techniques broadened our understanding of an image to 

that of continuously acquired scan of a two 2D sample. 

 

Albeit it has become quite normal to think of an MRI, or a picture of an electron microscope 

as an image, this represented a conceptually new idea: An Image, resulted from a 

reinterpretation of data that was acquired in a different context (e.g., a time series of voltage 

fluctuations in scanning electron microscopy), becomes reinterpreted as a 2D image. 

2.2.5 Fluorescence Microscopy 

Even though limited by its resolution, light microscopy continued to be a method of choice to 

monitor our biology, mostly due to its versatility and compatibility with monitoring living 

organism, something that electron microscopy could not enable due to its fixation protocols.  

A long and well known phenomena fluorescence, furthered the abilities of light microscopy in 

the 1940s and 50s through pioneering techniques, like the fluorescence microscope 

pioneered by Ellinger and Hirt (Renz 2013), as well as the first fluorescently labeled antibodies 

against pneumococci (Coons et al. 1942). These techniques helped create one of the most 

important methods of modern microscopy:  immuno- and later direct (genetically encoded) 

fluorescence. 

 

Fluorescence provides the microscopist with a wide array of benefits: selectively highlight 

structures with high contrast even in the most crowded neighborhoods, discerning the 

expression pattern of proteins over time, just to name two. It also provided the biological 

foundation for multi-dimensional, multi-channel bioimages, where each channel could 

highlight a different biological feature in the same spatial and temporal context. 



2.2.6 Digital Microscopy 

The first digital image was created in 1957 by Russell Kirsch and his team at the National 

Bureau of Standards (now the National Institute of Standards and Technology, or NIST). This 

image was a digital scan of a photograph of Kirsch's 3-month-old son, Walden (Kirsch 1978). 

The photograph was scanned using a device called a drum scanner, which Kirsch and his team 

had built. The scanner used a photomultiplier tube to detect the light reflected off the 

photograph as it was rotated on the drum scanner. This light was then converted into an 

electrical signal, which was digitized and stored on magnetic tape.  

 

Kirsch's work was groundbreaking because it was the first time an image had been digitally 

scanned and stored in a computer. This laid the foundation for the development of digital 

imaging and image processing techniques that have become so ubiquitous in modern 

bioimage analysis. This development continued throughout the 90s when digital detectors 

(photomultipliers and CCD cameras) completely transformed microscopy from analog to 

digital, allowing brightfield and fluorescence microscopy images to be collected 

instantaneously and with higher and higher sensitivity. In parallel, microscopes became 

motorized and controllable by computers to perform automated tasks. Flows of digital 

multidimensional images started to be collected, waiting to be analyzed and interpreted. The 

digital revolution had started. 

2.2.7 Going 3D 

Another concept of 1957 would set out to revolutionize the field of microscopy in the coming 

years: the confocal scanning microscopy (Minsky, 1957). It combined the coherent, focusable 

light of lasers and simple optical elements such as the pinhole, to dramatically improve on the 

sectioning abilities in light microscopy.  

 

Whereas previously images were generated as a capture of a 2D plane at a single moment in 

time, this, and other developments slowly evolved the discipline of microscopy to capture our 

biological in all its 3 dimensions.  

2.2.8 Image Processing 

In the years after the digitalization of images, computer aided more and more in the analysis. 

During the 1960s, the Jet Propulsion Laboratory (JPL) led the development of digital image 

processing for the purpose of enhancing images of the moon for the Ranger and Lunar Orbiter 



programs. The techniques developed here laid the groundwork for many of the digital image 

processing methods used today. 

 

Processing allowed humans to better make sense of their data, by enhancing human 

perceivable metrics of the data such as contrast or rendering data in new angles and 

projections. The coming years saw a burst of new methodologies, and soon techniques like 

denoising and Fourier image analysis became standards when dealing with bioimages. How 

ubiquitous signal processing has become is probably best exemplified by the maximum 

intensity projection, a technique developed by Wallis for nuclear imaging (Wallis et al. 1989). 

It now represents a universal tool in the analysis toolbox of modern bioimage scientist. 

 

Image Processing however was not only limited to making images more human interpretable 

but could also be used to augment the image computationally. One milestone in this regard 

was deconvolution microscopy which allowed for the first time to digitally improve the 

resolution taking into account the image formation process and digitally reassigning 

diffracted light to its original place. (Sibarita 2005) 

 

2.2.9 Computer Vision 

Working with image processing algorithms to establish the detection of edges in images, Larry 

Roberts in 1965 laid the groundwork for the field of computer vision (Roberts 1963). Computer 

vision gave new interpretability and objective to the bioimage world, as it established a 

methodology for the computer to automatically detect complex structures and separate and 

divide biological structures into interpretable segments, without human intervention and bias. 

 

In parallel, another brainchild of Marvin Minsky,  the “Perceptron,” (“Perceptrons", Marvin 

Minsky 1969), provided a mathematical model foundational to modern neural networks and 

was starting to shape the field of artificial intelligence. 

 

Developing in parallel, these two fields found a beautiful marriage in the 1980s when Yan 

LeCun applied the first convolution neuronal net to the detection of postal codes (LeCun et al. 

1989). His technique would (with due time) revolutionize the modern computer vision, and 

provide the foundation for modern deep learning algorithms such as Stardist (Weigert et al. 

2020) or Cellpose (Stringer et al. 2021), which are now providing fully automated segmentation 

algorithms. 



2.2.10 Super Resolution Techniques 

The recent years are a perfect illustration of interdisciplinarity in microscopy. With the 

integration of processing, optics, and chemistry, it became possible to overcome the physical 

barrier of the diffraction limit, which limits the resolution of an image: any image of an 

arbitrarily small source of light imaged using a lens-based microscope won’t render a point 

but a point spread function (PSF), usually an Airy pattern, with a central peak of minimal width 

of ~200–300 nm. 

 

The super-resolution revolution was ushered in by STED (acronym for stimulated emission 

depletion) (Hell and Wichmann 1994), which both exploited photophysical properties of the 

fluorophores and the ability of optical elements to minutely shape the lasers’ wavefront and 

therefore its illumination spot, to reduce the effective excitation spot and hence improve the 

spatial resolution. STED stood as a pure opto-chemical approach to break this diffraction limit 

but soon other techniques came about that added a variety of computational postprocessing 

to enhance resolution. SIM (Structured Illumination Microscopy) (Gustafsson 2000) soon 

utilized specially crafted illumination pattern to enable Moiré`s method, while SMLM (Single 

Molecule Localization Microscopy) techniques exploited fluorescence properties to 

stochastically activate a subset of fluorophores and break the diffraction limit by digitally 

localizing isolated fluorescent molecules (Rust, Bates, and Zhuang 2006; Betzig et al. 2006) 

(Sharonov and Hochstrasser 2006).  

 

Accounting for the tremendous impact of these techniques, the combined efforts of these 

pioneers resulted in the Nobel prize for chemistry in 2014 (“The Nobel Prize in Chemistry 

2014”). The continuous development of these methods not only enables us today to 

structurally monitor our biological data in the nanometer and recently Angstrom range 

(Reinhardt et al. 2023), but also brings about new ways of tracking and analyzing molecules 

and their pathway and cascade inside the cell. 

 

 

 

 

 

 

  



2.3 Bioimage Analysis today 

Analysis and acquisition methodologies have changed our understanding of biology and let 

us dive every deeper into the scales of our biology. They pushed the boundaries of what 

images can portray and how we (and increasingly computers) can use to interpret their 

content. 

 

This section describes where these methods and others have brought us, and what modern 

bioimage analysis looks like. It will explore what a bioimage today is in practice, and how most 

users organize data and metadata. It will then give an overview of the elements of modern 

bioimage analysis, how we orchestrate these elements and the tools that are used to facilitate 

them. This section aims to provide a descriptive overview of this current state, trying to cover 

the wide spectrum of bioimage analysis practice as done by (self-described) non-experts and 

experts alike.  

 

Given the sparse set of descriptive literature on this subject, this section builds on the finding 

of three large scale community surveys of the bioimage analysis world. A survey performed 

in 2020 by the Center for Open Bioimage Analysis (COBA), which surveyed 484 scientist 

spanning various categories of professional familiarity with bioimage analysis in the US 

(Jamali et al. 2021).  A 2021 online survey (Schmidt et al. 2022a) interviewing 204 participants 

of various analysis expertise with geographic focus on Germany. And finally  a survey 

conducted by Sivagurunathan and colleagues which elaborates and updates the results by 

Jamali for the year 2022 (Sivagurunathan et al. 2023). It should be noted here that these 

surveys are subject to their biases in selection (first and foremost the bias of geographic 

selection to the global west), they however provide a unique user perspective on the current 

landscape.  

  



 

2.3.1 What is a bioimage? 

Before diving into the modern analytical process of images it is important to understand what 

bioimages today are, exploring not only what we image but also how we store the image data 

and its biological context. 

2.3.1.1 About Data 

Bioimages today constitute a wide range of different data that range from a snapshot of a cell 

culture acquired on a bright-field microscope, over 3D point scanned volumes on a STED 

fluorescence microscope, to multidimensional data acquired with a light-sheet fluorescent 

microscope and the reconstructions of localization events in single molecule localization 

microscopy.  

 

Given this wide range of analytical data, it is hard to define all-encompassing features of this 

data. An almost universal denominator of bioimage data today however is that it is digital. 

Another common denominator is the emphasis on the multidimensionality of the data, be it 

multi-channel 2D images (X, Y, C) or time-series of 3D stacks (X, Y, Z, T). 

 

According to the most recent survey, the most analyzed type of data today is 2D labeled 

fluorescence cells (Sivagurunathan et al. 2023) and most research data is acquired using 

confocal fluorescence microscopy (Schmidt et al. 2022a). Interestingly, and showing the 

dynamic nature of what modern bioimage analysis is applied to, this already represents a shift 

with regards to the 2021 survey, where brightfield non-fluorescent cells field images 

represented most data (Jamali et al. 2021). 

 

Even though 2D acquisitions of fluorescent cells are the most common processed datatype, 

3D acquisitions are becoming a standard (with the third axis establishing the Z-axis). Time 

lapse microscopy (2D+T or 3D+T) is also very common to capture the dynamics of biological 

processes. 



 

 
Figure 3 The techniques of microscopy that produce the bioimage data of today stratified according to the EDAM Bioimaging 
Ontology (Kalaš et al. 2020), with highlighted “top techniques” according to the 2021 Research Data Infrastructure Questionnaire 
(item: “Imagine you had to choose ONE Method as the single most important method”). 

 

2.3.1.1.1 Storage 

Image storage today is facilitated through image file formats. For most users only apparent 

through their respective file-ending such as .JPG or .TIF image, file formats describe a 

computer understandable protocol of how to save the image to organized binary data (a binary 

file) and how to reconstruct the image back from this binary data.  

 

The binary storage of images needs to include a step of discretizing the original signal in 

computer readable byte-arrays, a process called rasterization. While this step varies from file 

format to file format and a description thereof is out of the scope of this thesis, for the most 

part this discretization will yield a byte array where each value in the array represents the 



intensity at one pixel or voxel in the image. As this byte array then represents the whole (or a 

subset of the) image in one linear sequence, and additional saved parameter, the shape 

determines during reconstructing the image, where to break a line or column.  

 

While sparse image formats exist (Potocek et al. 2020), this raw byte-array representation of 

the original image is predominantly dense, meaning every original pixel intensity gets assigned 

a value in the byte array, even when this value is a zero value. As this dense representation of 

an image can be costly in terms of storage, modern image file formats often use some form 

of compression. Compression of image data is facilitated through algorithms that compress 

the original raw image either lossy or lossless. Lossless algorithms exploit symmetries (e.g. a 

long sequence of zeros) in the original data to compress all of the information into the smaller 

byte array and on decompression will yield an exact replica of the original data. Lossy 

algorithms, on the other hand, use heuristics such as averaging or frequency filtering to 

compress the image further, losing the exact information stored in the array, but trying to yield 

an adequate representation of the image on reconstruction. 

 

 
Figure 4 Image Format protocol on the example of the JPEG Container Format/Protocol, transitioning an in-memory image from 
Python (here a matplotlib image) through the container format to Java (here FIJI). 

 

While a big subset of the world’s photographic images is stored using lossy compression 

(using for-example lossy algorithms in the JPEG format), dedicated scientific image formats 

are designed to use lossless compression, conserving all the original raw information. The 



TIFF (Tagged Image File Format) standard is a widely used open image file format for 

scientific images and uses performant lossless compression. While JPEF and TIFF provide 

open standards for image storage, most commercial microscopes provide their own 

dedicated file format for image storage (Nikon’s “.nd”, or Leicas “.lif”). 

2.3.1.2 About Metadata 

A bioimage today not only includes the raw data of the image, the information at the pixel 

level, but also an ever-increasing set of information that describes the original raw data, its 

acquisition and processing parameters. This set of information is referred to as meta-data 

(emphasizing its relationship of describing the data), a term coined by Jack. E Myers in 1969 

(Greenberg 2009). 

 

Metadata has always been an integral part of a scientific bioimage, as it puts the image back 

into the real-world (biological) context. Today, it is widely understood that maintaining 

metadata is important to ensure the scientific integrity of the data (Schmidt et al. 2022b). 

Metadata storage and the organization and standardization of the metadata can vary and is 

highly dependent on the scientific lab practicing it. This section will briefly go into common 

forms of metadata storage management, as practiced today. 

 

 
Figure 5 Common Metadata according to the REMBI classification for recommended metadata in bioimage data (Sarkans et al. 
2021). 



2.3.1.2.1 Storage 

Metadata storage is facilitated through some orthogonal approaches that will be described 

here:  

2.3.1.2.1.1 Contained 

Contained metadata storage is a form of metadata that is inherently linked to the original data 

and will stay with the original file on standard file operations like copying or moving. 

 

Filenames 

The most common form of metadata includes simple filename descriptions like 

“yesterdays_experiment” or more complex filename schemes like 

“HEPG2_soSPIM448_T1_S3” (Schmidt et al. 2022b) 

 

Metadata Containers 

Metadata containers are dedicated areas inside the container format for the file, that are 

reserved for the storage of metadata. Examples include descriptive headers in TIFF files, that 

can include metadata about the original acquisition, or the OME (Open Microscopy 

Environment) XML headers (Goldberg et al. 2005) that are implemented in a lot of 

(commercial) file formats for microscopy data storage (e.g. LIF, NDI).   

2.3.1.2.1.2 Associated Metadata 

Associated Metadata is metadata that lives outside of the context of the data and is only 

associated by reference with the original file. 

 

Directory 

Directory based associated metadata, uses the nested structure of directories, to associate 

metadata with the files. This strategy is commonly implemented for example through a user 

generated CSV or Excel File in the same directory that describes properties of the images 

within the same directory (e.g. which antibodies where used, and in which concentration), and 

represents the most common additional metadata type (Schmidt et al. 2022a). Directory 

associated metadata can also include machine generated files like configuration files 

describing the acquisition parameters in “ini”, “json”, “yaml” formats.  

 

Database 

Associated metadata can also be stored completely apart from the binary data and the 

directory structure, in a database with a reference to original file. This scenario is often used 



when search functionality is desired to restructure, explore and recontextualize the original 

image data according to its metadata, or when accumulating and archiving a lot of data and 

metadata. The OMERO-Server Project (Allan et al. 2012) is an important example in this space. 

2.3.1.2.2 Schemas 

Orthogonal to the types of storage, metadata management can be categorized around its 

efforts to standardize the metadata and how it allows a structured retrieval from the storage 

through a shared mental concept, a schema. A schema outlines the organization of the data 

(for example in a database), indicating how data entities relate to one another and the types 

of data that can be stored in each field. 

2.3.1.2.2.1 No Schema (Schemaless) 

At this level, there is no formal structure or standardization applied to the metadata. Metadata 

may be applied inconsistently or not at all, and there is no formal way to query or analyze it. 

This approach is often applied in scenarios, where data is considered highly ephemeral, like 

figuring out experimental conditions or acquisition parameters. 

2.3.1.2.2.2 Implicit Schema 

At this level, metadata is structured but not well standardized and the schema is not explicitly 

defined or enforced. For example, users might agree to always include certain information 

(like Timepoint with a T) in a certain format in the filenames, but there's no system in place to 

enforce this or to manage or migrate changes to the schema. Implicit schemas often rely on 

key-value-based semantics, where a key (e.g. Timepoint = T) is followed by a value (the actual 

value = 1). (Schmidt et al. 2022a). This approach heavily relies on user discipline and 

communication. 

2.3.1.2.2.3 Explicit Schema 

In an explicit schema, the metadata schema is explicitly defined and enforced. A common 

example is the OME (Goldberg et al. 2005) standard in microscopy files that defines a strict 

schema for which information is stored in which part of the header files. An explicit schema 

can offer powerful querying and analysis capability and is often designed to be machine 

interpretable. Explicit schemas vary in their scope of applicability: some schemas are 

established on the lab basis (file naming schemes), the application (application-specific 

metadata) or are decided and communicated globally (Allan et al. 2012). 

 



 
Figure 6 Schema and Storage with common examples, as well as their implications for transportability (how easy is it to move 
metadata with data), searchability (how easy is it to explore metadata), machine-readability (how easy is it for a machine to 
automatically inspect the metadata) and flexibility of information (how easy is it to convey a complex idea in metadata). 

2.3.1.2.3 Ontologies 

While schemas provide a structure to data and metadata, they do not establish what a specific 

relationship or datum inside this structure means. An ontology brings interpretability to this 

structure, allowing to establish a shared vocabulary and a high-level representation to model 

the domain.  

 

This dichotomy is best exemplified by looking at a key-value pair in a filename: “Sample-

Cortex_Fluorophore -GFP”. The schema describes the sample field and the antibody field (with 

values Cortex and GFP), while the ontology would assign meaning to the property Fluorophore 

and its value GFP. The word GFP finds its equivalent in the ontology as the abbreviation for 

Green Fluorescent Protein, a well-known fluorophore. If the order of values were to be switched 

to “Sample-GFP_ Fluorophore -Cortex”, the filename would still be schematically correct, but 

ontological non-sensical (as “Cortex” is not an antibody).  

 

Ontologies just as schemas are often implicit and require human interpretation (e.g. when 

decerning that GFP is indeed referring to Green Fluorescent Protein and not Green Friendly 

Postman). There exists however common efforts to provide a more standardized approach to 

ontologies: The Protein Data Bank (Berman et al. 2000) allows to map a unique protein 

identifier in a scheme to their large protein identification databank which can provide 



additional information like the protein size, its dominant chains etc. A collection of this and 

other ontologies are provided European Molecular Biology Laboratory (EMBL), which aims to 

establish a unified interface for biological ontologies (“Ontology Lookup Service”, EMBL).  

 

As the linkage of schema attributes to these wider ontologies often requires human 

intervention, efforts to link the metadata more deeply and machine readable to the 

corresponding ontologies have been made. These developments are commonly put under the 

umbrella term of “semantic web” (Lan et al. 2022) and rely on formats such as the “Resource 

Description Framework” (“RDF 1.2 Schema”, W3C), a metadata storage format that stores not 

only the metadata, but also inline describes the linkage to another web-resource that can take 

linked attribute, and expand it with additional metadata.  

2.3.1.3 Annotations 

Falling outside of the classical definition of metadata and data are additional data-structures 

that make up a modern bioimage, such as a region of interest (ROI) or labels in a segmentation 

mask. These annotations neither fall into the category of data and or metadata as they can 

act both like data when regarded as a subset (a sample) of the data chosen for analysis or 

processing, but also as metadata when providing information about the data — specifying 

which portion of the data is best described under a set of metadata. 

 

 
Figure 7 Annotations: A non-exhaustive list about the annotation types that can be associated with images through labels and regions 
of interests. 



2.3.2 How do we analyze? 

Most, if not all, bioimaging data is subjected to processing and analysis. (Schmidt et al. 

2022b). This section will introduce the most common steps in this analysis, and how they are 

conceptually organized. 

2.3.2.1 Steps in the analysis 

Dealing with biological image data can be conceptually divided broadly into a few descriptive 

steps, listed below. These steps are often used to give a mental model of scientific analysis 

as a whole and find usage in training resources and within scientific publications to categorize 

their analysis. (Kalaš et al. 2019) 

´ 

● Acquisition: This involves capturing images using imaging techniques, such as 

transmission light microscopy, fluorescence microscopy, confocal microscopy, 

electron microscopy, but importantly to be considered an analytical method also can 

also include some steps of preprocessing like converting a 2D timeseries of voltage 

signals into a 2D image.  

● Visualization: This step includes visualization of the original or processed data to 

make it interpretable for the human. Often this step informs the sequence of steps to 

be undertaken afterwards. 

● Processing: This stage includes operations like noise reduction, contrast 

enhancement, image normalization or deconvolution. The goal of processing is to 

improve the quality of the acquired images and prepare them for subsequent analysis 

or visualization. 

● Segmentation: This step involves algorithms that separate the image into interpretable 

regions: This can include simple algorithms like binarization (Background – 

Foreground), but also more complex routines which divide the image into regions or 

objects of interest, such as organs, cells, or specific organelles within a cell. 

● Quantitative and Statistical Analysis: Once objects of interest have been identified and 

segmented, quantitative measurements can be made. This could include measuring 

the size, shape, or intensity of objects, counting the number of objects, tracking objects 

over time, etc. It can also involve statistically analyzing the measurements to draw 

conclusions. This might involve comparing measurements between different 

biological conditions, or treatments, over time.  

 



It is important to note that in this mental model, some analytical steps that use the same 

algorithm can conceptually fall into different categories. E.g. a thresholding algorithm can be 

used as a processing step when cutting unwanted background out of the original image for 

further processing or segmentation, but can also serve in a segmentation step to separate a 

labeled structure from the surrounding signal (e.g. in a SUSHI image where a die is used to 

stain the extracellular space) (Tønnesen, Inavalli, and Nägerl 2018). 

2.3.2.2 Analysis Organization 

The analysis of bioimage data is critical and often represents the most complex and time 

consuming step when dealing with bioimage data (Schmidt et al. 2022b)  As it almost always 

represents multi-step procedure (including aforementioned steps in various combinations) 

two terms have emerged to describe its organization: analysis pipeline or bioimage workflow.  

 

Both terms emphasize the transformative aspect of the analysis, as a bioimage or its 

quantitative metadata (such as a region of interest) is being transformed in various steps to 

yield an analytical result.  As a distinction, the term pipeline often is used in scenarios where 

data moves from an ingest point through the pipeline to become an output, whereas in a 

workflow data can also conditional split in its analysis path or bring back analytical insights 

onto an earlier step. (Miura et al., n.d.) This distinction however finds incohesive applications 

in the scientific literature (Paul-Gilloteaux et al. 2021).   

 

Recently the term bioimage workflow has gained more traction (Paul-Gilloteaux et al. 2021) as 

it emphasizes this non-linearity of the analysis of biological images:  analytical steps often 

diverge on an on-channel basis (e.g. apply filtering only on a foreground channel) or require 

user-input or iterative interaction with the data. 

 

Workflows are often visualized as a connected graph of nodes, where nodes represent 

bioimage tasks, that get wired together by their respective input data and output data, 

providing an easy visual interpretation of the processes and steps involved. Paul-Gilloteaux 

expands on the idea of nodes, establishing them as components which can be part of a larger 

collection. A component in their terminology represents a dedicated bioimage algorithm that 

is part of a software package/tool, which in turn can contain multiple components (Paul-

Gilloteaux et al. 2021). Their efforts to establish a common workflow ontology now resulted 

in a web-platform “The BioImage Informatics Index ”, where users can share their and find 

other workflows based on an established terminology that creates the Edam Bioimaging 

Ontology (Kalaš et al. 2019). 



 
Figure 8 Exemplary common bioimage workflows color coded by their conceptual steps. 

 

2.3.2.2.1 Level of Automation 

It is to note that bioimage workflows today are by no means an automated process as a vast 

majority of its analytical steps are only done partially automated (Schmidt et al. 2022a). Some 

biological data analysis does even rely entirely on visual inspection (Schmidt et al. 2022a). 

Broadly the level of automation of the steps and the workflow can be categorized as follows: 

 

Visual Inspection: This type of analysis step does not require any manipulation of or higher 

interaction with the data and the analytical insight is gained only by inspecting the sample 

(e.g. when counting cells under a light microscope). 

Manual: Manual analysis encompasses processes that require a high involvement of human 

interaction with the data, and where automation has no measurable effect on the analysis 

step. This is found such as image annotation (ROI marking), interactive segmentation (e.g. 

delineating an axon), and extraction of features of interest. 

Partially Automated: In partially automated analysis, automation is becoming more important, 

however, it often requires a circle of Inspect and Adjust following the automated process. 

Often this is found in settings of image processing; especially when it is combined with human 

insight to enable a segmentation. An example is image binarization that is performed by 

manipulating a threshold intensity level. 



Fully Automated: In a fully automated setting no human involvement is needed. Often these 

are basic data management steps (conversion, projection) or on the opposite of the analytical 

spectrum highly involved computer vision steps where for example neural networks classify 

cells or tissues. 

 

 
Figure 9 The previous workflows color coded for the level of automation present at each step.  

  



2.3.3 The analytical toolbox  

Bioimage workflows of today are facilitated by a range of software tools. Following the 

categories of a conceptual bioimage workflow, this section discusses the tools that are 

commonly utilized in modern workflows. The selection of tools in this section is based on 

their appearance in two of the most comprehensive recent surveys on the usage of modern 

bioimage analysis tools performed in 2020 (Jamali et al. 2021) and 2021 (Schmidt et al. 2022).  

 

It is to note that most tools discussed in this section provide different modules that defy a 

definite categorization into one of these categories, so their organization should be rather 

regarded as what their primary initial focus has been, or for which step users today primarily 

choose the software solution. 

2.3.3.1 Tools for Acquisition and Preprocessing 

Every analysis starts with the acquisition of raw (image) biological data. Tools in this space 

are generally dedicated acquisition tools and are generally highly interactive and provide 

feedback to explore the biological sample in real-time. These tools seldom provide advanced 

processing but often come with a set of basic functionalities such as a projection algorithm, 

which also puts them often at the start of the analysis pipeline. Workflows that rely solely on 

Visual Inspection (10% of analysis workflows) also often end here (Sivagurunathan et al. 

2023). 

2.3.3.1.1 Commercial Microscopy Software 

Most biological data is acquired on commercial microscopes (Sivagurunathan et al. 2023) 

using commercial control software. Beyond purely optical microscopes that are used for 

example for histology in hospitals, professional scientific microscopes are predominantly 

sold by four major companies: Nikon, Zeiss, Leica, and Olympus. Each provides its own 

custom microscope control software. Their software packages are specially catered to 

microscopy beginners and provide user-friendly access to basic functionality. 

2.3.3.1.2 General Purpose Software 

MetaMorph (Molecular Devices) and LabVIEW (National Instruments) (Bitter, Mohiuddin, and 

Nawrocki 2006) are the two biggest vendors of commercial non-brand specific microscope 

control software. MetaMorph provides a dedicated solution for multidimensional acquisition 

and visualization of microscopic data and is extensible via .NET (Bill, Wagner 2023) powered 

plugins. It also provides a graphical automation suite called “Journals” that allows for the 

composition of custom internal functions during an acquisition. LabVIEW on the other hand 



is focused on a highly modular approach, and users can make use of its visual programming 

language “G” to build dedicated user interface fit for their specific microscopy needs. It should 

be noted here that Molecular Devices has as of June 2023 announced to discontinue their 

development for MetaMorph and will not issue new licenses. 

2.3.3.1.3 Open-source microscopy  

Open-source microscopy or Open-microscopy describes tools that allow general non-brand 

specific microscope control utilizing open-source libraries. (Hohlbein et al. 2022)Micro-

Manager, a standalone app that fits as a plugin into the wider ImageJ ecosystem, is probably 

the most utilized solution in this space. With a variety of new software packages being 

published in the last years such as Pycro-Manager (Pinkard et al. 2021), python microscope 

(Susano Pinto et al. 2021) or ImSwitch (Moreno et al. 2021), open-source microscopy is 

currently experiencing a renaissance and there now exists fully open-source solutions to 

interact with microscope ranging from Scanning to Light-sheet microscopy. Due to their open 

nature, these tools generally allow for more low-level hardware access and are often installed 

in situations where new microscope techniques are pioneered. (Hohlbein et al. 2022) 

 

 
Figure 10 Popular Microscopy control software labeled according to their license-status as well as their accessibility for non-expert 
users through graphical user-interfaces. 



2.3.3.2 Tools for Image Analysis  

Tools in the image processing category are highly interactive and provide some form of 

visualization to facilitate the “Inspect-Adjust” circle. 

2.3.3.2.1 ImageJ/FIJI (GUI) 

ImageJ is by far the most utilized software package for image analysis in general and could 

easily be discussed in the other sections, as it sees a wide application across all bioimaging 

steps. Developed by Mathews Rasband in 1997 (named NIH Image at this point), it 

represented one of the first solutions to point and click image analysis and has continued to 

involve over the past decades. (Schneider, Rasband, and Eliceiri 2012) 

 

ImageJ comes with a graphical user interface that allows easy search and menu access to all 

registered commands and opens images and their processed results in separate windows to 

allow for easy comparison between the raw and processed data. A testament to its usability, 

the core interface of ImageJ has almost not changed in the past 25 years (Schneider, 

Rasband, and Eliceiri 2012) and most biologists today feel at least somewhat familiar with it. 

Additionally, it stands as the entry point technology for most image analysis tutorials and 

courses available (Jamali et al. 2021). 

 

Packaged in its major distribution FIJI, a bundled “batteries-included” version of ImageJ with 

various plugins preinstalled, its citations currently exceed more than 6000 a year. A number 

that probably grossly misrepresents its actual usage, given that Google Scholar search for 

(“ImageJ OR Fiji/ImageJ”) in 2022 alone yields more than 40000 results (retrieved June 2023). 

 

ImageJ’s popularity established its status as the gold-standard framework for image analysis 

and it stands as the de-facto standard platform for integrating other image analysis tools. 

(Schneider, Rasband, and Eliceiri 2012)This is arguable due to its extensive plugin ecosystem 

and its macro extensions system, providing two major ways of extending its functionality, 

which fit the needs of modern bioimage scientists: 

 

Macros: 

Macros represent sharable pieces of code that are interpreted at runtime in the ImageJ 

environment and are often used for project specific routine automations. Due to quality-of-life 

features such as the Macro Recorder, the Macro Code Editor, and ImageJ’s ability to 

automatically generate user interface elements for macros, they provide a small barrier of 

entry to let user automate their respective analysis and create new bioimage workflows. 



Advanced processing features such as pixel-based transforms are also possible with macros 

but are often hindered by their interpreted nature yielding very not ideal performance when 

dealing with large datasets. 

 

Plugins: 

Plugins are Java-based modules that can be installed with minimal effort through one of the 

update sites of ImageJ or through drag-n-drop installation into the plugins folder in the ImageJ 

directory. They often represent more generic solutions to image analysis (like new algorithms, 

or dedicated user interface (UI) elements) and can be easily integrated in the wider ImageJ 

ecosystem. 

 
Figure 11 The ImageJ ecosystem with its major axis of expandability. 

 

ImageJ stands as one of the most actively maintained projects in open-source image analysis. 

It provides a foundational framework for other software projects such as Trackmate (Tinevez 

et al. 2017) or SpineJ (Levet et al. 2020), that offer additional features on top of ImageJ that 

are not included in the standard distribution such as cell tracking or dendritic spine  

segmentation. As dedicated Java plugins, they package their own dependencies and are even 

able to integrate some deep learning algorithms e.g. CellPose (Stringer et al. 2021) into the 

ImageJ ecosystem. 



2.3.3.2.2 Processing Scripts 

Ranking as the second most utilized methodology after ImageJ are script-based analysis 

tools (including the later mentioned analysis and quantitative analysis scripts). Indeed 

approximately 3 out of 4 participants of the 2023 survey reported using computational 

libraries and scripts for analyzing their images at least sometimes (Sivagurunathan et al. 

2023). 

 

Even though there are solutions of script-based analysis for compiled languages a vast 

majority of these scripts are written in interpreted languages such as Python (Van Rossum 

and Drake Jr, 1995) and MATLAB (Inc, 2022). In general usage, MATLAB supersedes Python 

in the latest survey amongst non-expert-users, while Python is more frequently used in the 

expert space (Schmidt et al. 2022b).  

 

While MATLAB does not provide a package manager to install additional packages and comes 

with a lot of its functionality built in, or distributed by software modules called Addons 

(“Mattlab Add-Ons", 2023), Pythons popularity is driven by its extensibility, as it boasts a wide 

ecosystem of scientific libraries that users interact with (Sivagurunathan et al. 2023). 

 

 
Figure 12 Python ecosystem of scientific libraries, ordered by core libraries (center) and libraries that are most utilized in the 
respective image analysis steps. 



2.3.3.3 Tools for Segmentation  

Segmentation and its mother field computer vision today probably represent the most active 

field of continuous change and development in the analytical toolbox. (Meijering 2020) 

2.3.3.3.1 Imaris  

Imaris is a software solution developed by Bitplane and designed for 3D and 4D image 

visualization and analysis(“Imaris”, Bitplane). Core features of Imaris are its (proprietary) 

computers visions algorithms that allow for 3D segmentation of microscopy data and its 

ability to track movement and changes over time, useful for dynamic processes like cell 

migration or division. Imaris can quantify various parameters from segmented and tracked 

structures for statistical analysis, all within an interactive user experience. Imaris currently 

represents the second most utilized analysis software, which could also be partly due to the 

selection bias of mainly neuroscientists and cell biologists in the original survey (Schmidt et 

al. 2022b). Due to its high price-tag is often found in imaging facilities where users share a 

common workspace. 

2.3.3.3.2 Ilastik 

Ilastik (Berg et al. 2019) is an open-source python-based software with a graphical user 

interface, designed for the interactive and automated analysis of large and complex biological 

images. It integrates classic machine learning algorithms, such as random forests, but also 

dedicated neuronal nets such as Stardist (Weigert et al. 2020), to facilitate image processing 

steps including pixel classification, object classification, but also quantitative analysis steps 

such as cell tracking. 

2.3.3.3.3 Machine Learning Scripts  

An increasing set of Machine Learning applications and scripts provide another core utility in 

the segmentation of biological data, with an approximately 2-fold increase in the peer-

reviewed papers published with the terms ‘deep/machine learning/artificial intelligence’ (Fig 

S8) during the period of 2020 to 2022 (Sivagurunathan et al. 2023). 

 

With basic understanding of programming becoming an essential skill in a lot of scientific 

disciplines, exposure to code has become more widespread. Exemplified by the popularity of 

projects like ZeroCost4DL (von Chamier et al. 2021) interactive and well documented code 

has become a popular approach to share machine learning scripts and applications with a 

wider public.  

 



Most of these scripts run within interactive environments like Jupyter Notebooks (Kluyver et 

al. 2016) which has become the de facto standard to share machine analysis scripts in 

Python. Tools often bundle code together with plots and tables, making them less “scary” for 

newcomers and entry level programmers. (Meijering 2020) 

 
Figure 13 The Jupyter notebook environment and its core features of interactive code cells that are inline combined with 
documentation and plots. 

2.3.3.4 Tools for Quantitative Analysis 

Tools that are used for quantitative analysis, focus on integrating the information gained from 

previous steps and extracting statistically interpretable meaning from them. As such, most 

aforementioned tools provide modules for quantitative analysis.  

 

Dedicated tools in this space often provide features to deal with long traces of tabular data, 

describing ROIs items or traced intensity profiles. While the analysis of this data happens 

primarily automatically, some basic functionality to inspect the data and to validate the 

methodology through plotting is often provided. 

2.3.3.4.1 Cell Profiler 

CellProfiler (Carpenter et al. 2006) is an open-source software for designing quantitative 

analysis pipelines of biological images. It comes with a comprehensive graphical user 

interface to design workflows with a wide range of processing and segmentation algorithms 

out of the box. 

 



A core feature of Cell profiler, that warrants its categorization as a quantitative analysis tool, 

is its inclusion of a wide battery of quantitative analysis algorithms to enable the 

measurement of phenotypes from images automatically. Here its functionality often 

complements ImageJ processing capabilities, which can be integrated into its pipelines. 

(Dobson Ellen et al. 2021).  It can analyze and provide detailed morphological measurements 

of individual cells in large image collections, which can be used in a wide range of applications, 

including profiling genetic perturbations, drug responses, and high-throughput, high-content 

screening assays (Kamentsky et al. 2011). 

2.3.3.4.2 Excel 

While often discarded as a tool for statistical analysis and plotting, data sheet oriented 

software such as Excel (Microsoft Excel, Microsoft Cooperation) is a commonly used tool for 

quantitative analysis of 1D tabular signals, such as histograms or line plots previously 

extracted from a bioimage. 

2.3.3.4.3 Quantitative Analysis Scripts 

Quantitative Analysis Scripts provide the last pillar for script-based analysis. While they are 

often underpinned by the same software stack of MATLAB and Python, quantitative analysis 

scripts are also often based on programming languages that focus on gaining and interpreting 

the statistical insights, such as the R programming language (“R: The R Project” , 2023). 

Comprehensive software repositories like Bioconductor (Gentleman et al. 2004) in the R 

ecosystem, provide dedicated solutions like EBImage for image analysis and processing (Oleś 

et al. 2023). 

 

2.3.3.5 Tools for Visualization 

2.3.3.5.1 Napari 

Napari (Sofroniew et al. 2022) is an open-source, multi-dimensional image viewer for Python. 

It has gained traction in the expert bioimage space especially because of its ability to visualize 

large scale, multi-dimensional images, interactively rendering 3D data with GPU acceleration. 

(“3rd Napari Survey Report” , Napari Developers, 2022)  

 

A native Python solution, Napari is often integrated into Python-based analysis scripts, where 

analytical results need to be displayed interactively to inspect. To this end, Napari provides 

different types of layers for different types of data including images, points, lines, shapes. This 



layered approach to data is useful for overlaying annotations or segmentations on top of 

image data. 

 

A recent addition to the bioimage world, Napari’s user group is growing rapidly and having 

made no appearance in the 2021 survey, is already surveyed as the 10 most utilized software 

for image analysis.  Recently efforts have been made to establish Napari as a wider Python-

based analysis hub (“Npe2”, 2023).  It supports a plugin ecosystem, allowing users to extend 

its functionality for their specific use cases, and comes with a central repository to make these 

plugins easily discoverable. 

2.3.3.5.2 Web-Based Tools 

Web-based visualization software solutions like Viv (Manz et al. 2022), webKnossos 

(Boergens et al. 2017) or Google’s Neuroglancer (“Neuroglancer”,2023) provide new means 

of visualizing datasets in the browser without prior installation. They serve as fast 

visualization solutions for publicly available data, facilitating a quick look on the dataset. 

(Manz et al. 2022) and are often integrated in larger ecosystems of web-based analysis: Viv 

provides the visualization for Vitessce (M. S. Keller et al. 2021), a framework for multi-modal 

and spatially resolve single-cell  data, and webKnossos, (the platform) integrates features for 

the annotation of large scale connectomics data. Almost 30 per cent of users do currently use 

web-based tools for their analysis (Schmidt et al. 2022b). 

  

 
  



2.4 The State of the Art  

Having gained an understanding of the modern bioimage analysis and their tools, this section 

will now introduce some exemplary analysis workflows of the bioimage analysis today, which 

could potentially shape the landscape of bioimage analysis of tomorrow. These workflows 

represent state-of-the-art image analysis tools, that exemplify and stand for some wider 

trends in the image analysis world. 

2.4.1 More Data faster 

Even though most of today’s analysis is done on 2D, our biological systems are mostly 3D. So, 

it comes as no surprise that we see an undeniable trend to image our biology in 3D. High-

resolution 3D imaging was long powered by confocal microscopy. However, its nature of being 

a scanning technique did not permit to capture the fourth component of a dynamic biological 

system at highest fidelity: time. Additionally, as it is a highly invasive technique using visible 

light, it becomes toxic to the living. While spinning disk confocal microscopy (Petráň et al. 

1968) allowed partially to overcome the speed constrain, and multi-photon microscopy (Denk, 

Strickler, and Webb 1990) drastically reduced the toxicity issue in depth, aspects of this 

problem long persisted. 

 

Today breakthrough technologies like Light-Sheet Microscopy (“Method of the Year 2014” 

2015; Huisken et al. 2004), break this time and toxicity limitation, and have allowed the 

scientific community to witness biological results at ever increasing temporal resolutions and 

uncover for example cell movement patterns in developing zebrafish (P. J. Keller et al. 2008). 

As scientist push the frontiers, for example in calcium imaging of neuronal populations (P. J. 

Keller, Ahrens, and Freeman 2015), when monitoring larger and larger volumes neuronal in 

less and less time, they are looking more and more towards advanced image processing and 

visualization techniques to support their analysis. 

 

For example, even the best detectors are physically limited by noise, especially when capturing 

data fast, with limited number of photons. Denoising the low signal-to-noise ratio data has 

therefore become a standard in modern analysis workflows (Li et al. 2021), powered 

predominantly by classical model-based approaches, that, for example,  exploit repetitive 

signal patterns (Kervrann and Boulanger 2006). Recently, also deep learning algorithms such 

as CARE (Weigert et al. 2018), a supervised general purpose solution for image denoising, or 

DeepCAD (Li et al. 2021), an unsupervised solution for denoising of calcium imaging data, 

showed impressive and very promising results. 



 

Now that the size of bioimage data datasets easily exceed the Gigabytes or sometimes even 

Terabytes, but computer RAM memory remains in the gigabytes, new forms of visualization 

and data management are being investigated, and find solutions in tools like Napari where 

lazy-loading capabilities have been developed  (Yang et al. 2022). A long existing and familiar 

practice in large-scale map visualizations (“Google Maps”, Alphabet), lazy loading refers to a 

programming paradigm where the actual retrieval of a datapoint becomes delayed until the 

exact moment when it is needed.  Often this technique gets combined with out-of-core 

techniques, where only a chunk (i.e., just one timepoint in a 5,000 timepoints long image 

series) of the data gets loaded into memory and the rest of the data stays out-of-core, that is 

not in RAM but on the hard disk.  

 

The size of the new datasets has led to the integration and the new development of software 

packages like Zarr (Miles et al. 2020), HDF5 (The HDF Group 2000) and dask (Rocklin 2015), 

which provide chunked storage and lazy computation for multidimensional data respectively. 

Accounting for the trend to more data, these new techniques are now shaping to be the 

foundation of the next-generation image storage formats (Moore et al. 2023). 

2.4.2 Automated Analysis 

Even though a lot of the analysis is still relying on human annotation and visual inspection 

(Schmidt et al. 2022b), there is an undeniable trend towards automated and machine-driven 

analysis. The reasons for this are plentiful, but often quoted arguments mention 

reproducibility and reduction of human bias. One continued field of innovation in automation, 

is a field where automation has always played a major part: disciplines that process high data 

volumes. 

 

High-content screening is one typical example here that finds its application in streamlining 

drug discovery processes. It employs automated microscopy and analysis to collect 

quantitative data from a large collection of biological samples, that are then analyzed to 

gather detailed information about the samples in their experimental condition (Shariff et al. 

2010). This can include assessing the effect of the administered drug component on cell 

morphology or distribution. 

 

Historically, a field of mainly 2D cell culture analysis, more recently we see efforts to bring 

high-content screening applications to the third dimensions (Beghin et al. 2022) to more 

closely monitor and screen higher-order biological systems such as spheroids or organoids 



(“Method of the Year 2017", 2018). Through the assessment of organization of these in-vitro 

3D cell aggregates scientists hope to more closely study the drug’s effects on the histological 

organizations of organs or cancerous tumors (Krausz et al. 2013), which could in turn help to 

reduce the 90% failure rate of pre-clinical drugs (Sun et al. 2022). 

 

In order to facilitate the involved analysis pipelines, these applications now heavily rely on 

deep learning for cell segmentation (Weigert et al. 2020) or for detecting specific cellular 

events, such as progression through the cell cycle (Kusumoto et al. 2021). They also use and 

investigate more integrated data-management and visualization solutions, such a CellProfiler 

Analyst (T. R. Jones et al. 2008). 

 

Faced with massive data loads some of these automated workflows require new forms of 

parallel computing that bring computation from single computer to multiple machines or even 

computation clusters (Teodoro et al. 2013). 

2.4.3 Smart microscopy 

Breaking with the concept of the analysis workflow as a unidirectional stream, from 

acquisition to insights, a set of new techniques, termed “Smart Microscopy”, have recently 

gained traction, as they enable the loop back of analytical insight onto the ongoing acquisition 

(Strack 2020) Through them, scientists can overcome physical or experimental tradeoffs in 

the acquisition process, for example by selectively informing and guiding the microscope to 

monitor smaller regions or by changing the framerate mid-acquisition.  

 

As one example in this space stands AutoPilot, a light-sheet microscopy framework that 

continuously adapted to measured image quality changes while scanning a Drosophila 

melanogaster specimen by adjusting illumination angles to the detection path (Royer et al. 

2016). Another example, this time in single molecule localization microscopy, could show how 

smart adjustment to the laser intensity based on the analytically reported molecule density 

could optimize the acquisition speed and efficiency (Kechkar et al. 2013). 

 

Smart microscopy also enables more biologically informed workflows, that triggered by some 

biological events can change acquisition parameters to capture the information of interest 

more closely. This event-driven microscopy has seen recent applications for example in event 

triggered STED microscopy, where it helped to overcome its limitations of temporal resolution, 

by only selectively monitoring a region of interest, if a calcium event was detected (Alvelid et 

al. 2022). It also showed its potential when using deep learning algorithms to detect divisions 



events in an experimental study of mitochondrial proliferation, facilitating a more content 

enriched acquisition when subsequently adjusting acquisition speed (Mahecic et al. 2022). 

 

These workflows are bringing the analysis ever closer to the microscope, necessitating real-

time performances of the algorithms and the capacity to take control over the microscope. 

They also increasingly interface with robotic devices that can control experimental conditions 

such as fixation during the acquisition or drug delivery (Almada et al. 2019). 

  



2.5 Challenges of running today’s workflows  

These exemplary workflows make use of the state-of the art methodology and are pushing 

the limits of analytical methods. To have a true impact beyond the original experiments they 

and other methodologies however must be applied and adapted to new problem sets. 

 

This section will now go into the challenges of adapting and orchestrating modern bioimage 

analysis, its workflows, and the reasons why they are, at this point, still limited to a set of 

experts. 

2.5.1 Fragmentation of Tools and Hardware 

When inspecting today’s image analysis workflows closely one unifying feature becomes 

evident: they include multiple analytical steps that are handled by dedicated tools tailored to 

their solutions. Be it standalone deep learning algorithms for denoising in calcium-imaging 

workflows, highly specialized 3D visualization tools like Napari, or dedicated acquisition tools 

in smart-microscopy. The state-of-the-art of the discipline continues to specialize and focus 

on more single-purpose tools than general solutions, and solutions for specific problems are 

more often implemented and distributed as separated tools than integrated into a wider 

solution such as ImageJ.  

 

While ImageJ is still predominantly the go to solution for established and beginner image 

analysis, this set of new tools are emerging and gaining traction amongst the expert space 

because they overcome long standing challenges in the ImageJ ecosystem. Solutions like the 

aforementioned Napari (Sofroniew et al. 2022), but also Cell Profiler (Carpenter et al. 2006) or 

Ilastik (Berg et al. 2019) provide unique features that are hard to find in ImageJ. Another 

accelerator for this transition to dedicated expert tools is that machine learning methods are 

currently the most actively developed subfield of image analysis and are developed in Python 

rather than Java (Meijering 2020). 

 

Even though there are efforts to bridge some of the technology back into the Java-Space, such 

as DeepImageJ (Gómez-de-Mariscal et al. 2021) for model inference, general adoption of 

these methods still remains low, and it is questionable if complex state-of the-art AI models 

will find easy translation especially when relying on Python based pre- and post-processing 

for training. 

 



Illustrating the potential long-lasting effect of this transition also in the non-expert space is 

the fact that, both Napari and CellProfiler spike almost the same interest as ImageJ for 

learning material in the non-expert demographic (Sivagurunathan et al. 2023). 

 

This fragmentation of the tools space is further accentuated by a need for more specialized 

hardware, such that in modern workflows tools do no longer share the same computational 

environment, but rather are distributed amongst different hardware: Deep-Learning tasks 

profit from a powerful GPU, while big-volume processing is parallelizable on a computational 

cluster. 

 

Both trends render modern bioimage analysis workflows more and more distributed in nature. 

Instead of consolidating solutions into one general solution, tools become more scattered 

and users wanting to orchestrate these new tools into bioimage workflows must face the new 

challenges of dealing with multiple tools.  

2.5.2 Interoperability: The need for patchwork 

In the absence of an overarching ecosystem such as ImageJ to ensure the interoperability of 

the methods by providing data primitives for images, region-of-interests, tables and more, 

modern workflows need to find new means of ensuring the interoperability of the participating 

tools in a workflow.  

 

Expert workflows often ensure this by relying on establishing a complex patchwork of 

conversion helpers that ensure the compatibility of outputs and inputs in a workflow. This can 

include for example the conversion of bioimage data into the corresponding file format, that 

can be read by each participating app, as well as little helper scripts that convert region-of-

interest formats (e.g., from Java to Napari).  

Even when these scripts are shared, they are not easily translatable by non-experts as these 

scripts are often specifically tailored to the exact tools and datatypes of the microscopes that 

were used in the original methods. When transitioning to other datatypes they can cause 

cryptic bugs for the new user or even more viciously can lead to dangerous silent conversion 

errors, where image information is cut due to a faulty data-type conversion introducing bias 

into the analysis (e.g. when converting a 16bit image to an 8bit image). 

 

Accounting for the need of more interoperable file-formats, open file formats have been 

developed, and are getting more wildly adapted into the tools. OME-Tiff (Besson et al. 2019) 



is probably the most widely used format here and extends the TIFF format with the OME 

Metadata, to propagate also the complete metadata through the analysis steps.   

 

However, with the previously discussed OME-NGFF (Moore et al. 2023) a new competing 

format for the big-data era has entered this space, potentially furthering the interoperability 

problematic. 

2.5.3 Orchestration: The difficulty of bridging applications and devices 

(in real-time) 

The feasibility of an analytical workflow that includes multiple tools, depends on how easy it 

is to orchestrate and manage the participating steps that are involved in a timely and 

coordinated manner. This necessitates being able to move interoperable data from one tool 

to another tool efficiently and schedule tasks on the right tool at the right time. 

 

In a framework like ImageJ, where tools can share the same memory, this task can be handled 

through the framework and easily orchestrated through click-based transformations 

(Process1 -> Menu -> Process2) of the original data or automatically through simple 

automation scripts. In a fragmented multi-tool environment however, no overarching instance 

exists that can be used to schedule and move data, and these management steps must be 

performed manually or through dedicated automation scrips on the operating system level or, 

when apps span multiple computer environments, on the network-level.  

 

Both automatic approaches, however, are often out of reach for beginners and even when the 

potential users are proficient enough, they require the orchestrated tools to be written so that 

their functionality can be called from the outside, say through a command line interface. For 

the most part, this orchestration step therefore happens manually and involves tedious data 

management steps of moving data around and manually starting and closing applications.  

 

To minimize the impact of the data management in these involved workflows, modern 

analytical steps are often done in batches. This batch analysis however does not only increase 

the time to have feedback on the biological data and hinders the iteration on finding the right 

parameters for each analysis step, but inherently conflicts with some modern bioimage 

workflows as illustrated in the example of Smart Microscopy.  

 



Workflows in this space are no longer unidirectional analysis flows and require the wiring back 

of analytical insights during the acquisition, something that orchestration needs to account 

for: a datum needs to be processed directly after it being produced in a stream-like manner. 

 

 
Figure 14 Streaming Analysis vs Batch Analysis 

 

Streams are a more inclusive idea about data than batches and take into account the aspect 

of data production. They can be generally divided into two categories: unbounded and bounded 

stream. An unbounded stream has no defined start or end as data items are constantly arriving 

and need to be analyzed: this scenario is the mentioned real-time scenario where data needs 

to be analyzed as it is being produces by the microscope in an ongoing acquisition. A bounded 

stream on the other hand, such as a finished acquisition, has a defined start and end and 

analysis can be run on the complete stream. Batch analysis is only feasible for bounded 

streams or when unbounded streams become windowed (buffering for example 5 items) into 

a bounded stream. 

 



 
Figure 15 Streaming analysis vs batch analysis compared to their time to feedback vs their total time needed to process. In batch 
analysis the time to feedback is equivalent with the total time, in a streaming analysis setting the time to Feedback is reduced as 
indicated. 

 

Albeit a common theme in modern big-data analytics is the cloud, where real-time analytics 

of customer data have become paramount, streaming analysis is rarely adopted in bioimage 

analysis. This finds its explanation in the fact that the orchestration of real-time tasks comes 

with additional pitfalls, such as the necessity to handle analytical bottlenecks (a situation 

where one task is taking considerably longer than the others and causes the analysis flow to 

perform suboptimal or even to fail). 

 

Modern Smart Workflows in the expert space therefore need to often account for the 

complexity of integrating real-time information back onto the microscope by tightly integrating 

all necessary analytical steps on the microscope. They implement custom software 

schedulers in their tool packages that utilize concurrent programming patterns account for the 

management of timely events inside the acquisition workflow. This style of programming 

relies strongly on threaded and parallel execution and is not part of the standard bioimage 

analysists toolbox, which currently restricts this type of workflows to advanced programming 

users (Levet et al. 2021). 

 

Accounting for these limitations, solutions like CyberSco.PY (Chiron et al. 2022) were able to 

create usable non-programming interfaces to smart workflows by allowing users to graphical 

embed conditional event paths in the acquisition logic. However, their approach still requires 



tightly integrating the methodology in the microscope and falls short when analytical insight 

should inform decisions on connected robotics, such as illustrated in the discussed 

NanoJFluidics strategy (Almada et al. 2019). Thus, modern real-time, multi-hardware, multi-

tool workflow orchestration is currently reserved for experts and specific applications. 

 

2.5.4 Usability: The challenge of implementing GUIs  

One core feature that developers can rely on when developing a tool inside ImageJ 

ecosystems is its integration of simple programming interfaces to easily create dedicated 

user interfaces, for the non-expert audiences of a tool. This integration enables an easy 

developer experience for a key contributor to the usability of their tool: an easy-to-use 

graphical user interface (GUI). 

 

Well-designed interfaces can help to provide simple solutions to complex problems and they 

represent the number one request of users to tool creators, in order to make their tools more 

successful (Jamali et al. 2021). This is also a shared believe with developers that would agree 

that providing GUI would advance the usability of their software (Jamali et al. 2021). 

 

As more and more developers choose to develop outside of this framework however, they 

need to provide their own solution to the graphical user interface. Even though modern 

libraries interfacing for example with the Qt Framework (“Qt” , The Qt Company) have made 

the process of creating a usable UI a lot easier, it remains a challenging task, that is often 

outside of the experience comfort-zone of the standard bioimage developer (Cardona and 

Tomancak 2012). Very rarely are developers familiar with concepts of event loops or threaded 

execution, that are necessary for making responsive and interactive GUIs. 

 

Additionally, ministering to the non-expert group is often an afterthought in the development 

of a new methodology, and developers underestimate the time involvement in maintaining a 

quality graphical application. In the fast-moving field of science, this type of commitment 

however is not universally rewarded. This holds especially true in teams that are not primarily 

focused on method development, but rather on finding new scientific insights. Thus 

developers typically will not follow the professional software engineering practices necessary 

for production-grade software. (Levet et al. 2021). 

 

Recently new developer tools like “magicgui” (“Magicgui”) are trying to tackle this gap in easy 

GUI tools, by auto-generating user interface from code annotations, and help to bridge code 



without a lot of UI boilerplate to the users. They remain however tightly specific to the Python 

and QT Ecosystem and overarching usability facilitating solutions are still lacking.  

 
Figure 16 The magicgui type annotation "magic" 

2.5.5 Portability: The difficulty of installing apps.  

Another core contingent problem of composing multi-tool, multi-computer workflows is that 

of having to install the required tools on their respective hardware and porting the working 

solution off the computer of the developer to the new computer of the user. In the absence of 

a universal plugin framework like ImageJ, which allows users to simple install analytical 

plugins through drag-n-drop into the filesystem, tool developers need to come up with their 

own bundling solution to package the newly developed tool and its dependencies into an 

installable component. 

 

This process, which does not only include bundling the code but potentially the interpreter and 

external hardware-specific dependencies, represents a long-standing challenge in many 

programming languages (Lex Fridman 2022). In the ImageJ and Java space this problem was 

solved with well-established tools for app packaging that bundle source code together with 

its execution runtime the Java Runtime Environment (Arnold, Gosling, and Holmes 2005). 

 

Python, the major language for new tool development, lacks a cohesive industry standard by 

design (Lex Fridman 2022) solutions and through its nature as a glue language between 

outside dependencies such as C-bindings for NumPy or Numcodecs, or CUDA for accelerated 

computing on the GPU, requires high levels of tinkering to package them reliably (“Python 

Packaging User Guide”, 2023). 

 



This process gets even more complexified as new hardware architectures, such as the new 

Apple Silicon or RISC-V CPUs find wider application. Even established and well-maintained 

tools like Napari, struggle with this process currently, and as of June 2023 the bundled stable 

version of Napari neither works on a new M2 Mac, nor reliably on the GPU of an Ubuntu 22.04 

System. 

 

Multiplying the challenge of deploying only one tool in a workflow by the number of included 

tools in some workflow, the true scope of the problematic becomes evident. These challenges 

of portability lead to a wider trend where users interested in a new methodology often are lead 

to multi-month or multi-year journey of adapting the method and sometimes even reproducing 

the original result (Laine et al. 2021).  

 

To overcome this issue that plagues not only the field of bioimage analysis but stands as a 

more general problem in software engineering, some tool developers are looking more and 

more into containerizing their applications. Containerized applications represent applications 

that live in a self-contained and sandboxed space, on the host operating system that behaves 

like a virtual machine. Contrary to running an application in virtual machines however, they are 

generally smaller, less resource intensive to maintain and can be more easily managed (da 

Veiga Leprevost et al. 2017).  

 

Sparked in the early 2010s through Docker (“Docker” 2022), containerized applications have 

since seen rapid adaption in the software development space and are topping the list of “most 

important technology” in surveys on StackOverflow for years (“Stack Overflow Developer 

Survey 2023”, StackOverflow). 

 

In the bioimage space especially the build-once-deploy-anywhere paradigm of containers has 

seen a lot of interest: developing a containerized application includes a build-step, that 

bundles all dependencies of an application inside the container, freezing them in time. This 

means that this contained application is almost guaranteed to work on other machines, 

including also other platforms (e.g. running a container on Mac, Windows and Linux.   

 



 
Figure 17 Comparison of the strategies of installation of a software project, all outside dependencies provide potential sources of 
interoperability issues as they depend on the adequate environment control of the user. 

 

There now exists a variety of software projects like Stardist (Weigert et al. 2020) that provide 

prebuilt containers to facilitate easy installation of their packages, and projects like Bio 

Containers (da Veiga Leprevost et al. 2017) are trying to further standardize their creation, 

making them more applicable to the bioimage analysis world. 

 

While this transition to containerized applications will surely have a great impact on the 

portability of analysis tools, they do not represent a one-size fits all solutions. Highly 

interactive software such as GUI tools can as of now (June 2023) not be run in containers, 

and tools that need low-level hardware access, such as acquisition software, are generally not 

compatible with the sandbox concept of containers. 

2.5.6 Reliability and Sustainability: The fragility of distributed systems 

Reliability (the workflow can perform consistently well) and Sustainability (the workflow will 

continue to work reliably in the long term) are core features of a scientific analysis workflow, 

as they ensure the integrity of the methodology and reproducibility in the future. This holds 

especially true for scenarios that involve automated acquisitions and high throughput of data, 

such as found in the example of High Content Screening. 

 

To assess for a reliability in any workflow that composes multiple tools, the orchestration and 

every tool should be considered to represent a potential point of failure. If tools share the same 



framework, such as if all of them are ImageJ plugins, potential error sources lie mainly within 

the framework, as most of the underpinning software logic is provided by the framework.  

 

In a distributed setting, however, each of the tool’s underbelly is contributing separately to the 

error probability, which can render distributed system less reliable, if the tools themselves are 

not programmed to account for every eventuality. Given the general instable nature of new 

methodology, and the illustrated additional problematic of having to reinvent the wheel to 

develop the tools, this renders modern multi-tool workflows inherently less reliable. 

 

In parallel, multi-tool environments also affect the general sustainability of these workflows. 

Even a minute update to one tool might unexpectedly render the entire pipeline unusable, if it 

breaks the programming interface that was used to facilitate making these tools 

interoperable.  

 

 
Figure 18 Reliability and Sustainability Problems in workflows governed by a common framework vs distributed workflows 
spanning multiple tools. Each box representing a unit of code that can potentially cause an error. 

 

2.5.7 Interactivity: The lack of immediate feedback 

As most analytical questions today are only partially automatable, some of the analytical 

steps require the user to fine-tune the parameters to yield sensible experimental results. The 

scope of this Inspect Adjust circle can expand and span multiple analysis steps: A denoising 

algorithms parameters may influence a subsequent cell segmentation, that then in turn 

influences the quantitative logic that measures each cell’s volume.  

 

Finetuning these parameters in a unified system such as ImageJ can become trivial, especially 

when utilizing automated systems like the CLIJ2-Assistent (Haase et al. 2020), that allows for 

easy propagation of parameter changes through multiple image steps. In a distributed setting 



they however necessitate a high level of real-time orchestration and interoperability between 

the applications, which currently does not exist. 

  

2.5.8 Data Management:  Inaccessible, scattered data 

Even when it is possible to perfectly pipe the tools together and orchestrate the workflow, a 

core challenge of modern image analysis is the data management (Schmidt et al. 2022a). 

Scientific analysis is only translatable to new projects if it can conserve and adapt to the 

challenges of data handling in these projects. It is not only important for the user to be able 

to visualize and inspect the data throughout the workflow, but equally finding means for 

exploring and recontextualizing the data once the original workflow has been run. Seldom 

does a scientific analysis end when the original question that created the analysis workflow 

has been answered, and data needs to be reprocessed to account for potential biases or to 

explore new scientific ideas. This exploration is only feasible if data is managed in a safe and 

standardized way (Wilkinson et al. 2016).  

 

Unfortunately, data management in microscopy today is an immensely challenging task, as in 

distributed multi-tool workflow environments data gets lost in different folders, or on different 

hard drives (Tedersoo et al. 2021). Also as microscopy data management does not only 

include managing binary image files, but also necessitates the inclusion of metadata to further 

categorize and explain the datasets, today’s vast array of organizational metadata storage 

(filenames, excel sheets,..) render metadata management reportedly still highly challenging, 

especially for beginners (Sarkans et al. 2021). Especially aggravating to this reality is the fact 

that many of today’s developer tools do not correctly propagate metadata when performing 

IO operations, i.e. when python script reading an OME-TIFF-file with metadata saves it as a 

vanilla TIFF without any additional metadata (Mitchell et al. 2022). 

 

 How widespread the negative impact of the data management problematic is, gets 

emphasized as scientists quote  No time to search and data lost, as the top two reasons when 

they decline data sharing, a pillar for good scientific practice (Tedersoo et al. 2021). 

 

Accounting for this reality, the  “The FAIR Guiding Principles for Scientific Data Management 

and Stewardship” (Wilkinson et al. 2016) intends to provide guidelines to improve on today’s 

challenges of data management by emphasizing the Findability, Accessibility, Interoperability, 

and Reuse of digital assets. Their proposed principles emphasize machine-actionability, i.e., 

the capacity of computational systems to find, access, interoperate, and reuse data with none 



or minimal human intervention. Hereby they account for the increasing calls to provide and 

automate the process of feeding data into more central repositories that can be used to train 

larger machine-learning models or meta-analysis. (Nogare et al. 2023) 

 

Unfortunately, this data sharing to a wider public also still remains highly challenging with only 

a small percentage of bioimage users having shared data in a public repository (Schmidt et 

al. 2022a), even though archives like Bioimage Archive (Hartley et al. 2021) provide readily 

available solutions to publish scientific data in any format. One of the leading causes  for the 

non-adoption, is that researchers are concerned about the security of their shared data and 

the misuse of the data without their consent (Tenopir et al. 2015). 

 

OMERO-Server (Allan et al. 2012) has been around for almost a decade trying to account for 

the data management needs and challenges of a lab, and provides a readily available solution 

that addresses core aspects of FAIR data management. Backed by a relational database for 

metadata storage and a file-storage solution based on OME-Tiff, it tightly integrates with 

software like CellProfiler that can extract, transform, and load data back into the server, 

conserving he metadata in the process.  

 

However, as OMERO-Server needs intensive administration and a trained audience that 

understands its storage solutions, it is seldomly integrated as a primary data backbone in a 

bioimage workflow, and for the most part often represents a storage solution for already 

processed data, limiting its general potential (Schmidt et al. 2022b). 

2.5.9 Provenance: Ensuring data integrity 

A core premise of the scientific method is to ensure transparency in how data was generated 

and analyzed. This necessitates the bundling of information which transformation were 

applied to the data at which point, and how parameters of the methodology were set: 

provenance. Provenance is a crucial piece of scientific information, as it enables to uncover 

potential biases and error in the methodology. Meta-studies relying on this information could 

for example show that in the Journal of Cell Biology, 10% of accepted papers contained 

inappropriate manipulation of image data (Martin and Blatt 2013).  

 

The Method sections often describe their workflows in plain English, simply listing the 

transactions that happened to the images. They however often omit reporting specific 

parameters to the used algorithms, as well as the logic of the conversion scripts they 



employed for interoperability reasons. While probably mostly accidental omissions, sometime 

this information is withheld deliberately, to manipulate and deceive (Martin and Blatt 2013).  

 

Recently, efforts in finding and establishing techniques have been spearheaded by 

organizations like  QUAREP (Quality Assessment and Reproducibility for Instruments & 

Images) (Fallisch 2023) (Boehm et al. 2021) and more wider software solutions like logging 

data transformations on a blockchain (Jaquet-Chiffelle, Casey, and Bourquenoud 2020) and 

cryptographical hashing of transactions inside the image (“Overview - C2PA” 2023.) are being 

developed. However, they lack wider application inside bioimage analysis. 

 

Provenance is not only important for the scientific method, but also required for the accurate 

integration of processed data into the training set for a machine learning algorithm. Only when 

transformations can be accounted for, is an accurate classification possible. As image 

modalities of today’s bioimages are so diverse, the lack of protocol and documentation of 

methodology arguably stands as one of the biggest challenges in deep learning for bioimage 

data (Meijering 2020). 

2.5.10 Discoverability: The lack of common repositories 

Another core challenge of modern workflows is the discoverability of the software. Tools not 

only need to be available, but users need to be able to reliably discover them and find their 

respective implementations. However, while the quantity of tools is constantly increasing, 

non-expert users stated that they are overwhelmed with the variety of new tools being created 

and call for more ‘common repositories” (Sivagurunathan et al. 2023).  

 

Accounting for this need recently projects like the Image.SC Forums are trying to provide an 

entry point to get users into touch with more image analysis tools and are partnering and 

advertising open-source projects in dedicated subforums. They now provide a much-needed 

global discussion space for image analysis. Another community effort  the “Bioimage model 

zoo” (Ouyang et al. 2022) is trying to advertise dedicated deep learning models for image to 

image translation tasks such as segmentation. 

 

 

  



2.6 Proposed Solutions  

As illustrated in the last section, modern image analysis workflows seem to be plagued by 

their increasingly distributed nature and the lack of common framework such as ImageJ to 

rely on for basic functionality. Each of the mentioned problems has led to the design and 

implementation of dedicated software tools that were mentioned alongside the 

corresponding problematic. 

 

However, recently the scientific community has seen more tools and software emerge that try 

to find overarching solutions to this problem. This section will now introduce some of the 

generic solutions in this space that try to tackle the problem of modern workflow management 

in a wider scope, as well as explore dedicated tools that were developed for the bioimage 

world. This section will also contrast them directly with challenges they aim and fail to solve. 

  



2.6.1 General Purpose Workflow Managers 

Lack of workflow orchestration management is not a problem unique to bioimage analysis 

but found in a variety of scientific and business scenarios. General Purpose Workflow 

Managers are software solutions that emerged to tackle common problems faced in these 

scenarios and facilitate the easy orchestration of software workflows that span multiple, 

distributed tools. Generally, they have found their application in highly automatable workflows 

in bioinformatics or data analytics. Three major platforms, that have seen their application in 

bioimage analysis, are discussed here. 

 

2.6.1.1 KNIME 

 

 
Figure 19 The KNIME software design 

 

KNIME (Konstanz Information Miner) (Berthold et al. 2009) is an open-source general-purpose 

workflow management software, that was created to provide a modular and open data 

processing platform for the Java ecosystem. It allows for the easy integration of different data 

loading, processing, analysis, and visualization modules without the focus on any application 

area. It comes with a general-purpose design, and its visual programming interface has seen 

a broad application in the data analysis world. KNIME comes with a vast set of built-in 

modules to handle transformations of tabular data and provides support for transformations 



image data, for example through calling ImageJ macros, or running external Python addons 

or scripts. KNIME is also available as KNIME hub, which is a cloud-based paid version of the 

KNIME ecosystems, which is not discussed here. 

2.6.1.1.1 Benefits 

Usability 

KNIME allows for the easy design of complex analytical pipeline through its visual 

programming interface. These workflows can span multiple internal tools such as table 

readers, table manipulations tools or additional installable plugins such as ImageJ macros. 

KNIME boasts a comprehensive documentation. (“KNIME Community Hub”) and users can 

rely on a vast selection of bridged tools for their data analysis need. 

2.6.1.1.2 Limitations 

Interoperability 

Even though KNIME provides support for ImageJ, its interoperability with the wider bioimage 

ecosystem is highly limited. While it can run ImageJ1 macros, and ImageJ2 plugins, its tight 

integration does not allow for the usage of external plugins in the pipelines. Other software 

integrations like being able to run CellProfiler pipelines on the images, remain highly 

experimental and are currently unmaintained (“Knime-Bridge”, 2015). 

 

Orchestration 

KNIME’s workflow are easily designed analytical pipelines that are optimized for larger batch 

and post-hoc analysis. As such the interface focuses on extract, transform and load 

operations and provides no comprehensive tools for the orchestration of real-time events 

during a workflow. This renders KNIME unusable for modern Smart Microscopy workflows. 



2.6.1.2 Galaxy 

 
Figure 20 The Galaxy software design 

Galaxy is an open-source platform that provides a web-based interface for computational 

research, primarily used in fields such as bioinformatics and genomics. The platform uses a 

cloud-based model but can also be installed locally, catering to users with varied 

computational skills. The Galaxy project provides a publicly hosted instance, that allows users 

to use the projects computational resources, to facilitate their workflows. 

 

Galaxy incorporates a wide array of bioinformatics tools through their abstraction of Tools 

and allows complex data analsis workflows via a visual programming editor. Tools can 

represent a variety of different software (CLI, Python script, Docker Container) that are 

wrapped with a Wrapper file, describing the inputs and outputs of the tool and which command 

should be executed when invoking this tool in a workflow. When executing a task in a workflow 

the Tool and their respective inputs are send to an executor, that runs the tools on its 

computing environment. These environments can for example constitute software containers, 

a connected SLURM Cluster (Yoo, Jette, and Grondona 2003) or remote computers that are 

addressed through a federated (server-to-server) protocol (“Pulsar”, Galaxy Project). Galaxy 

also provides a robust and extensible data management system based on files and allows for 

data import from prominent genomics databases and local storage. 

 



2.6.1.2.1 Benefits 

Reproducibility & Portability 

Galaxy Tools can run on a variety of different technologies such as running directly on the 

server or on a computational cluster. A common approach however is the containerization of 

complex software requirements in docker containers that are then executed by the Galaxy 

server on a connected docker instance. As such these tools can be easily ported from one 

Galaxy instance to another and analysis workflows yield highly reproducible results. 

 

Provenance: 

Galaxy ensures automatic workflow provenance by maintaining comprehensive logs of all 

analyses step in a workflow, enabling the easy repetition and sharing of workflows. This 

provenance information is however not linked directly to the processed data and needs to be 

shared separately. 

 

Data Management: 

Galaxy comes with support for file-based data management, organized into user spaces. Files 

can be inspected on the website with basic image viewing capabilities (not including 

multidimensional or 3D visualization of data), and maintained with associated metadata, 

predominantly in form of key-value pairs (“Metadata” , Galaxy Project.). 

2.6.1.2.2 Limitations 

Usability: 

Once set up, the web interface of galaxy is tailored to non-programmers and the visual 

interface allows for easy creation of workflows. Setting up the galaxy server however requires 

extensive configuration management and expert knowledge in deploying complex multi 

service web environments. 

 

Interactivity and Orchestration: 

Galaxy analysis workflows are designed for a particular style of command-line based data 

analysis. It is therefore not designed to support stateful user interaction (e.g. when waiting for 

user input) nor real-time communication between workflow steps, limiting highly interactive 

or smart workflows. 

 



2.6.1.3 Nextflow 

 
Figure 21 The Nextflow software design 

Nextflow (Di Tommaso et al. 2017) is an open-source data analysis workflow tool developed 

by “Seqara Labs”. It is designed to handle computational data pipelines in a reproducible and 

reusable way, irrespective of the infrastructure used to execute them. These pipelines are 

scripted through Nextflow’s dedicated workflow language, a domain specific language (DSL), 

built on Groovy (“Groovy Reference Documentation”, Apache Groovy), that uses the dataflow 

programming paradigm to transform, filter and combine data. This paradigm uses the 

conceptual abstraction of data as a stream, which moves from one analysis process to 

another, while these processes run independently from another. When workflows are 

executed, processes can be run through various executors that can take the process script 

code and execute them in software containers, or schedule them directly on high performance 

compute clusters. 

2.6.1.3.1 Benefits: 

Orchestration 

Nextflow’s dataflow programming paradigm allows for the design of highly efficient 

computing pipelines, as tasks can run and process data autonomously and in parallel on their 

dedicated compute resources, when data arrives, eliminating the need for intense script-

based orchestration. 

 



Reproducibility 

Nextflow can rely heavily on containerized software for execution, and all execution info 

including the process code is contained inside the workflow scripts. This design decision 

renders the whole analysis pipeline highly reproducible. 

2.6.1.3.2 Limitations: 

Usability 

Nextflow does not come provided with a graphical user interface and relies entirely on 

programming in its own workflow language to create an image analysis pipeline. Users need 

to be therefore familiar with the scripting language, as well as the command line interfaces 

for their requested tools to create a workflow. 

 

Interactivity 

Similar to Galaxy, Nextflow does not allow for real-time interactive workflows, as tools need 

to be runnable inside docker containers. 

 

 

  



2.6.2 Dedicated Solutions 

While the general solutions provide some alleviation to the problem of workflow and data 

management, their lack of focus on the bioimage analysis space hinders their general 

adoption. Accounting for this need, more dedicated solutions have been developed and will 

be discussed in this section. 

2.6.2.1 ImJoy 

 
Figure 22 The ImJoy software design 

 

ImJoy (Ouyang et al. 2019) is a computational platform originally designed to allow users to 

easily share, and deploy deep learning-powered application. It comprises a standalone web 

application that represents a central hub that in turn connects to analysis plugins. These 

plugins can represent, for example, Python scripts on a local or remote machine or hosted in 

the cloud on “Binderhub” (Jupyter et al. 2018), but also code running directly inside the users 

browser (Rossberg 2019). ImJoy then allows the user to design linear workflows spanning 

multiple plugins, which they can then run on uploaded data. The platform has since grown into 

a comprehensive platform adding support for plotting (ImJoy graph) or a complete virtualized 

desktop (ImJoy desktop), which provides browser-based access to common bioimage 

analysis apps. One of these apps is ImageJ.JS, an ImageJ variant trans-compiled to 

WebAssembly (Rossberg 2019) and JavaScript. 



 

2.6.2.1.1 Benefits 

Usability 

ImJoy provided one of the first solutions to easily share deep learning applications in the field 

of bio-image analysis. Through some example plugins, it was able to show how Deep Learning 

tasks can be easily handled in the browser and cloud without the need for a software 

installation. 

 

Interoperability 

ImJoy, also comes with support for an extensive list of bioimage applications and can 

interface with software solutions like KNIME, ImageJ.JS and open platforms such as 

Bioimage Model Zoo. Most solution can be used fully interactively in the workflows (e.g., for 

marking region-of-interests). Additionally, it provides an extensible plugin system, that allows 

the easy integration of developer scripts in its workflows.  

2.6.2.1.2 Limitations 

Data Management 

One of the core limitations of the ImJoy platform for modern workflows is that it does not 

natively support forms of data or metadata management. Users need to handle their data 

separately, ensuring the correct propagation of their data, while developers need to define 

serializable objects that can be passed through the socket connection between the web app 

and its plugin.  

 

Orchestration 

ImJoy ‘s visual workflow system allows for step-by-step pipelines that can transform the data. 

Non-linear workflows however, that require more complex sorting of the data, are only 

possible through utilizing the ImJoy programming interface. Outside of its original focus, 

ImJoy was not designed for user-friendly, real-time analysis, even though its underlying 

architecture could support it. Plugins like a pycro-manager (Pinkard et al. 2021) plugin, that 

enables streaming images to the WebUI and even controlling the microscope, exist 

(“Interactive Microscopy Control”) but require a complex setup and are currently limited to be 

run on the same machine. 

 

Reliability, Sustainability  



As the ImJoy developers switch the established web model of server and client around (ImJoy 

Webapp acts as server, and Plugins as clients) (“ImJoy RPC”, 2023), they often need to find 

ways to break out of the security sandbox of modern browsers that heavily restrict 

communications that can be initiated from a browser app. Since its inception these 

restrictions have only gotten more and more, which as of 2023 renders the stable ImJoy 

website unusable for some browsers (tested on Chrome 114.0.5735.106 in June 2023, 

Windows, Linux). Additionally, as it relies on the browser as a central hub, accidental browser 

or app closure can terminate the workflow and lead to unpredictable outcomes like 

continuation of tasks on plugins. 

2.6.2.2 BioimageIT 

 
Figure 23 The BioimageIT software design 

BioimageIT (Prigent et al. 2022) is an analysis and visualization software that runs as a 

standalone app and connects to a local Docker instance to run analysis software in 

containerized applications. Users can ingest data from various sources including OMERO-

Server as well a local TIFF Files and build linear pipelines transforming the images in their 

passage through containers or through Python-based plugins, termed “runners” that run in 

dedicated Anaconda (“Anaconda”, Anaconda Inc.) environments. Containers can be 

implemented in their desired programming language and define their input and outputs 

through a dedicated configuration file that is compliant with the Galaxy Wrapper format, as 

well as metadata files, that helps to organize the tools within the BioImageIT interface. 

2.6.2.2.1 Benefits 

Portability 



Through its reliance on containerization of bioimage tasks in Docker containers, BioimageIT 

can create fully reproducible environments for bioimage tasks, that are frozen in time and are 

guaranteed to work predictably across different execution environment. Containers are easily 

installed, akin to ImageJ plugin, through drag and drop. 

 

Data Management and Provenance 

BioimageIT includes a dedicated data management solution that provides abstractions for 

data transformations on a set of data. A data pipeline is contained within an Experiment, and 

then each step of processing will create a container (a Dataset) that stores one processing 

step and its contained data points (Data) from raw-data to the end of the pipeline. Additionally, 

each container can save key-value based metadata attached to the files. A log of the data 

processing is exportable. 

2.6.2.2.2 Limitations 

Data management 

Although being able to handle and organize data according to the metadata, BioimageIT is 

restricted to image files as data points and currently does not provide dedicated support for 

annotations like ROIs or Labels on the Images themselves, which restrict its ability to explore 

and model more complex relations in the data. 

 

Orchestration 

Bioimage IT is not designed for real-time analysis, and analysis tasks are not executed 

concurrently but rather subsequently. Bioimage ITs execution model of a container task is 

implemented through putting data into a volume, spinning up the docker container, calling the 

command line interface of the tool, and then taking the processed data from the volume. This 

design lends itself to batch analysis, but inherently incurs performance penalties when 

processing data in real-time, as all three steps can take seconds to perform. 

 

Interactivity 

A core limitation of the execution model of docker containers in the Bioimage IT model is that 

it does not allow for human in the loop type analytical flows, where user interaction on a datum 

is needed. 

  



 

2.7 The objective of this thesis 

As seen in this introduction, modern bioimage workflows are shaping what the future of 

bioimage analysis will look like and are already helping to uncover new biological insights. 

 

However, the world of modern bioimage analysis also experiences an increasing set of 

challenges, that even though manageable by experts, increase the disparity between the 

expert and non-expert world, restricting the true potential of modern workflows to a limited 

selection of scientists. While there is an increasing set of solutions to aspects of this 

overarching problem, there is a need for a more holistic approach that truly democratizes 

modern bioimage workflows to a wider public. 

 

The objective of this thesis was to therefore explore solutions to the common bioimage 

problems of today, account for them in a software platform design and lastly implement a 

sound backbone for the image analysis workflows of today and tomorrow. 

 

To validate the results of the developmental process and test for the applicability of the 

platform, this thesis will use three exemplary modern bioimage workflows to illustrate its 

potential and limitations. 

 

 

  



3 Design and Implementation 
This chapter will now delve into the design and implementation of Arkitekt, the software 

framework and platform, that was developed in the course of this PhD to address the 

challenges of modern bioimage analysis.  It will first explain the leading design decision of 

the Arkitekt framework, and then explain and justify the implementation strategies in more 

detail. 

3.1 Leading Concepts 

A leading design decision for Arkitekt, is to not reinvent the wheel and utilize the features of 

bioimage analysis tools that already exist. Arkitekt is therefore designed as a sound backbone 

that enables interconnecting a variety of apps seamlessly in workflows through an easy 

interface, offloading computation to these apps and the hardware they run on.  

 

Hence, the Arkitekt platform acts as a middleman between the users and the bioimage 

applications and utilizes remote connections to bridge the apps that can be located anywhere 

in the lab or cloud. Arkitekt with its Interface then represents a simple to use abstraction layer 

and graphical user interface for the users to remotely do work on connected apps.  

 

Additionality, Arkitekt is meant to act as a workflow scheduler, that takes simple to create but 

powerful real-time workflows and schedules them on the ecosystem of apps that it connects 

to. 

 

Arkitekt was also designed as a multi-user data hub, providing central storage for all the data 

and metadata needs of modern biology labs, including images, quantitative metadata and 

annotations. It was also planned to enable social features such as comments and notes and 

collaborative data exploration while ensuring means for provenance and data integrity. 

 

Lastly, Arkitekt was devised as a framework, that developers can use to create, run and share 

their analysis scripts and software with the wider community.  



 
Figure 24: The leading design concepts of the Arkitekt framework 

  



 

3.2 Concepts in Detail 

The following section describes the core design features of Arkitekt more closely and gives 

a more detailed explanation of their underpinning implementation on the software side. 

3.2.1 Arkitekt the Middleman 

Arkitekt’s core design lets it stand as a zero-functionality platform. Zero functionality means 

that the platform, despite its hundreds of thousands of lines of code, does not offer any 

functionality of actual image analysis. Rather it stands as providing a secure foundation to 

build applications (tools) with and to provide features to make them interoperable and execute 

safely and reliably in overarching workflows.  

 

Rather than imposing specific implementations of common image analysis procedures as 

building blocks in workflows through the platform, users of the platform are invited to use the 

specific implementations that a tool chose to enable on the platform. 

 

Arkitekt itself acts only as a broker and central repository for this functionality, taking care of 

calling the apps and their functionality in a reliable manner and ensuring the integrity of the 

call, as well as providing a common interface to all the lab-wide functionality. 

 

To this end, and to ensure the later discussed data features, Arkitekt is implemented as a 

server system that is installed on a central instance (be it a laptop, desktop computer or 

cluster of computers) and that advertised itself as an endpoint, that all bioimage applications 

can connect to. These connections are at the heart of the Arkitekt platform, as they provide a 

secure way for communicating tasks and data amongst the connected apps and follow 

protocols of established advanced programming interfaces (APIs) such as GraphQL, S3 and 

OpenID (more in On Open, and On Secure). Following the design principle of a middleman, the 

Arkitekt platform relies entirely on the connected applications to interface with users and 

indeed does not even provide a non-expert facing web interface itself. All user interactions 

happen through a dedicated orchestrating and managing app named Orkestrator (see On 

Interfaces), which is easily installed on any hardware. 

 

 



 
Figure 25 Arkitekt the middleman: Arkitekt establishes itself as an intermediary between apps, and only forwards 
requests amongst apps. Apps can choose to assign work to other apps (scheduling apps) and process work for other 
apps (providing apps), by telling Arkitekt which functionality they provide. Apps never communicate directly but always 
through Arkitekt, which keeps track of tasks, data and which apps are available for routing and assignment.. 

 

To ensure maintainable software packages and emphasizes separation of concern, Arkitekt 

is built around a suite of smaller software modules and servers, so called microservices 

(“Microservices”, Martin Fowler 2014), that each is responsible to enable an aspect of the 

functionality of the Arkitekt platform. These modules can operate completely standalone but 

work together to enable the whole platform. This was a design choice to enable developers to 

easily deploy additional plugins (such as new data storage solutions besides Mikro) into this 

ecosystem, but enable also enable them able to pick and choose core functionality like 

authentication and authorization. 



 
Figure 26 Arkitekt microservice design stratified amongst the supporting technology layer, its implemented web services, and the 
API layer that it provides. 

3.2.2 Sensible Abstractions 

A core challenge in the design of both the user as well as the programmatic interface of 

Arkitekt was to find a set of sensible abstractions. These abstractions needed to be both 

easily understood and memorized by a user, that wants to make use of a simple workflow 

spanning just two apps on the same computer, but also provide enough flexibility and 

debuggability for an export user that needs to run a complex analytical workflow spanning 

microscopes and multiple lab computers. 

   



Another requirement for these abstractions was also to abstract complex implementation 

details away, like which specific hardware a specific bioimage task is set to be executed on 

and to establish a more general user-friendly terminology for universal bioimage workflows. 

 

To this end, Arkitekt is developed around a set of abstractions, which closely mimic 

terminology in everyday language describing workflows akin to the work of the EDAM ontology 

(Kalaš et al. 2019). They are designed to help users in discovering the functionality they want 

to use in their workflow, as well as designing them and eventually executing them. 

 

The following section explains these terms in more detail. 

3.2.2.1 Nodes 

 
Figure 27 The Arkitekt node concept. Nodes constitute abstract bioimage tasks, which are defined by their name and a description 
of their algorithmic processing as well as their Inputs and Outputs (declared as ports on the left and right respectively following the 
pattern of data type plus label). Arkitekt uses a hashing algorithm to uniquely and universally, identify the node based on this 
definition. 

 

Nodes represent the core abstraction of functionality in Arkitekt:  following the idea of a node 

in a workflow and the component idea (Paul-Gilloteaux et al. 2021) they represent a conceptual 

bioimage functionality, e.g., Show an Image, Acquire an Image Stack, Segment Cells, 

Deconvolve, etc. and describe a step of data transformation. They are defined through inputs 

and outputs for each task, as well as a description of its processing. Importantly for the 

conceptual idea in Arkitekt, nodes are implementation agnostic and rather represent a 

conceptual bioimage task, a protocol of transformation. 

 



Apps can then state to provide an implementation of this specific functionality: a Template. 

Arkitekt will internally link this Template to the Node it represents. This abstraction allows 

multiple Apps to provide the same functionality by implementing the same Node. For example, 

both ImageJ and Napari can choose to state that they can visualize images and mark ROIs, 

which will then internally represent two Templates on a given Node. By letting users think about 

Nodes, not Templates (definition over implementation), the usage and their orchestration in 

workflows can stay conceptual, universal, and sharable, and only on deployment and 

execution of workflows their Arkitekt instance will map them to real world implementations 

on the connected Apps. 

 
Figure 28 A visual representation of the Arkitekt Node-Template Abstraction, Nodes represent abstract notions of a bioimage tasks, that are 
linked to real-world implementations of tasks on connected bioimage apps: Templates. Templates are not only defined uniquely for the 
implementing application but also for its version number, the person who is using the application and optionally which instance of the app is 
being used on (e.g., Fiji of Experimenter A on their private laptop and Fiji of Experimenter A on their lab computer). When choosing to do the 
bioimage tasks the Task request will then be mapped to one or more of the connected templates (more in Reservation and Templates) 

 

To adjust to the reality of bioimage functionality and how data gets produced or altered, Nodes 

fall into two broad subcategories: Stream Nodes and Functional Nodes.  

 

A Functional Node on task assignment, will execute, give back the results and then stop 

executing. Examples of such Nodes are processing steps like deconvolution that takes two 

images (image and PSF) and gives back the deconvolved image.  

 



A Stream Node on the other hand, can continue executing after giving back the first result, and 

therefore establish a stream of data. One example of this is an Acquisition Node which on 

invocation starts a microscope time-lapse that continuously produces images or a Stream 

Folder Content Node which watches a folder for changes in files, that then will be automatically 

uploaded for further processing. 

 

Stream Nodes are at the heart of streaming workflows, as they can establish the primary data 

stream over time (More on this in the Workflow section).  

 

 
Figure 29 Nodes closely follow conventions found in functional programming. A Function Node is equivalent to a function in programming: 
Inputs represent the arguments and Outputs represent the returns values of a function. A Stream Node is equivalent to an iterator that yields 
the outputs. This resemblance ensures that developers can easily think how they can both provide functionality to the platform (registering a 
function) and to call functionality of Arkitekt in a familiar way (calling functions). 

 

By closely staying with the idea of functions: Arkitekt’s design of Nodes and Templates enables 

additional abstractions: Nodes can have specific testcases or benchmarks attached, which 

can then be tested against all of the implementations (e.g. which Template is the fasted to 

run, or which segmentation model provides the best result for a specific dataset). 

3.2.2.2 Workflows 

Workflows are Arkitekt’s abstraction for a bioimage analysis pipeline or workflow. Similar to 

classic visualizations in the bioimage literature they are visualized as a graph that is 



composed of Nodes orchestrating multiple bioimage analysis functionality together. They can 

represent simple batch-like linear analysis workflows (i.e. Acquire -> Deconvolve -> Segment -

> Visualize) but can also be used to create more diverging workflows based on analytical 

outcomes and complex real-time workflows such as closed loop microscopy experiments 

(e.g. Acquire 2D -> Analyze -> If Analysis Condition=True -> 3D Acquire) 

 

To facilitate the non-expert design of these workflows they can be designed graphically with 

the help of the Orkestrator UI. The user selects corresponding Nodes for each Task that he 

wants to perform in his analysis and wires them together in order to manipulate and transform 

the Data Stream.  

The Data Stream is the core abstraction in Arkitekt’s implementation of bioimage workflows 

and represents a pipeline of transformations, combinations (with other Data Streams) and 

filters of data as they happen over time. 

 
Figure 30 An Arkitekt workflow that lets a user mark various Rectangular ROIs on an image (for example in ImageJ) and calculates 
the Area of the ROI for each, giving back the output to the user invoking this workflow. 

 

This approach to pipeline design is borrowing concepts from dataflow based programming  

(Dennis and Misunas 1974) and reactive programming, a conceptual style of programming 

that has gained traction in managing both complex UI interactions and in managing 

distributed systems (Shibanai and Watanabe 2018). The design and its approach to 

parallelism is often and probably best explained with the metaphor of multiple marbles falling 

down a marble play (“RxMarbles” ).    

 

Marbles in this metaphor represent singular events (a datum) such as an image produced by 

a microscope, or an event detected on a sensor. Nodes in the metaphor represent building 

blocks that the marbles (the data) pass through. These building blocks can for example: alter 

the marble stream (transform a marble into another marble), filter it (taking marbles off the 

track), delay the marbles for a moment or combine marbles from different tracks together to 

form a new stream. Through simple placement of these building blocks even complex time 

orchestration can be facilitated. 



 

For classic use-cases and workflows, this abstraction is visually equivalent to batch-based 

pipelines, where images get transformed step by step until the result data is achieved. 

However, this abstraction also allows to design highly concurrent workflows, where data is 

processed on the fly by multiple apps independently and recombined to then follow a common 

path. It can also be used to feedback data back as an input to an earlier task. To enable these 

advanced forms of real-time orchestration, Arkitekt provides a set of predefined helper Nodes 

derived from reactive programming, to help orchestrate the flow of data in time (e.g. how long 

to buffer data or when to merge data from two event detectors together).  

 

 

 
Figure 31 A highly involved Arkitekt workflow that makes heavy use of the integrated helper Nodes. This workflow was designed to 
represent an partially automated analysis pipeline where a user on an image of neuronal cells wants to extract both the length of the 
axon and the corresponding soma are of each cell, by marking the respective instance. Here marked ROIS are filtered through the 
filter helper node and according to their shape are passed to different analysis functions extracting both length (based on the 
intensity trace along the line ROI) and area (purely based on ROI Features). Then the streams of ROIs are merged (zip + flatten) and 
when done with the workflow (buffer complete), the list of rows (corresponding to each cell), are used to create a table. 

 

Another core feature of Workflows in Arkitekt is that they become themselves Nodes, as they 

act on some inputs and yield or return. This not only ensures the integration of sub-workflows 

in bigger workflows, but has the real-world advantages, of using workflows just as another 

functionality of a connected App. As such, when wanting to use a specific Worfklow, users will 

need to deploy the workflow on a connected app, which in turn will create a Template for this 

Node. When now calling this Node, the App will become a scheduler for this Workflow, making 

sure to call the mentioned Nodes and connected applications according to the Workflow’s 

blueprint (more in On Scheduling).   

  



 

3.2.2.3 Reservations and Provisions 

Workflows (and Nodes) in Arkitekt are universal in the sense that they stay fully conceptual 

(using Nodes not Templates) and can be easily shared between different Arkitekt instances 

with a completely different underlying landscape of connected Apps. The design of Arkitekt 

therefore needed to strictly distinguish between planning and execution of a workflow. 

Building on the abstractions Node and Template, Arkitekt therefore introduces abstractions 

that correspond to the actual usage of functionality: Reservation and Provision. Building on the 

middleman paradigm, they represent a contract of use between users and Arkitekt on one side 

as well as Arkitekt and the app on the other side. 

 

When users want to run a bioimage Task (like convolution), they first need to reserve the 

functionality. This is analogous to booking a service; they're telling the system that they want 

to use a specific feature. If they have a preference, they can also specify, where they want the 

task to be executed (e.g., which connected App should do the work), or which collection of 

Apps it should be parallelized upon. Reservations in this way represent a contract between the 

user and the platform: Arkitekt will give the user direct feedbacks and inform if the desired 

apps become online or disconnected because of a shutdown or failure. 

 

On the other side, all connected apps receive Provisions as an implicit contract between the 

app and Arkitekt. When receiving a provision, the app can decide to spin up a worker (more in 

section: concurrency), and tell Arkitekt that the provision contract is active, or if the app cannot 

spin up a worker (maybe because of resource constraints or because the user running the app 

does not currently want to enable this functionality) mark the contract inactive. Arkitekt will 

integrate the information of all linked up Provisions for one Reservation and then in turn 

establish the state of the Reservation.  



 
 
Figure 32 Experimenter A wants to show an image on their Napari instance, and consequently reserves the functionality just liking it 
up to one provision of the implementation on their napari. Experimenter B does not care about which app performs their request and 
has a lot of images to deconvolve, they therefore parallelize their requests on multiple apps (even using ImageJ instances connected 
under Experimenter As account if they so allow). 

 

The Provision and Reservation strategy also applies to workflows, as they are as previously 

described just Nodes that rely on the functionality of other Nodes when executing. As such, 

when reserving a Workflow, the created linked Provision of the workflow will on provision check 

its blueprint for Nodes and in turn reserve them (linking them to its own Provision). This 

process establishes a dependency graph of the workflow and ensures that on App failure 

within the workflow, the information gets propagated to the user wanting to use the workflow. 

 



 
Figure 33 An exemplary dependency graph created through the reservation of a deployed workflow on a scheduling app (here running inside 
an Arkitekt plugin). 

 

Establishing both Provisions and Reservations as abstractions on top of the connections 

between apps, ensures that problems that arise in distributed systems, such as outages in 

connections or failed workers, can be handled transparently for the user. 

They closely map to programmatic abstraction inside the Arkitekt design (see on Arkitekt as 

a distributed system). 



3.2.3 Data Management 

In addition to establishing itself as a hub for lab-wide functionality, a core design decision for 

Arkitekt was that it should provide an integrated data-management solution, that was easy to 

use and automates tedious data organization. Two main design challenges needed therefore 

to be addressed: 

 

Inter-application Data Management: Build as a distributed system with multiple apps on 

different computers within the lab, automated workflows necessitate the moving of datasets 

from one app to another over network connections. This transfer needs to also include 

transitioning binary data and metadata of images to open formats, that are fit for the 

information interchange of multiple programming languages. 

 

Central Data Management: Arkitekt needed a solution for central research data management. 

Data should not only move between applications but be stored in a central place, that ought 

to provide easy retrieval and management of the data. 

 

To this end, the Arkitekt platform comes provided with a standalone service (Mikro) for data 

management in microscopy, that addresses both scenarios by acting as a hub for the apps to 

store and retrieve data from when running in a workflow, storing the binary data centrally in an 

object storage MinIO (“MinIO”, Minio 2023) and feeding the metadata into a relation database 

PostgreSQL (Rowe and Stonebraker 1987). 

3.2.3.1 Data Model 

Mikro comes with a wide range of relational data types that support the data structures of 

modern image analysis. At its core, it supports bioimages through its model of Image, a 5D 

data container that supports multi-dimensional images (X, Y, Z, Time and Channels). These 

images can then be associated with metadata through Mikro’s datatype of Views, which 

allows the selective association of specific coordinates inside the data such as Channel 0, or 

Timepoint T to metadata. The metadata models of Mikro are extensive and closely mimic 

primitives provided by the OMERO model (Goldberg et al. 2005) providing, models for 

Channels, Antibodies, Objectives, Positions (on Stages), Timepoints (in Eras), Instruments and 

more. 

 



Additionally, its model accounts for annotations such as regions of interest (ROIs), or labels 

on segmentation masks, as well as generated data tables. All data types are completely 

relatable amongst them and make up the Data Graph of the platform. 

 

The Mikro data-management design is adopted to work with multiple-users and beyond 

standard social features like comments and mentions allows for collaborative access to 

datasets in real-time such as in interactive online sessions where region-of-interests are 

marked by multiple parties.  

 

 

 
Figure 34 Organization of the Data Graph within Mikro, (selected models) to highlight the microscopy metadata organization 
respecting multidimensional (multi-position, multi-timepoint data) metadata through the view model (n-dimensional selection of 
image stack), 

 

Once a datum is imported, metadata is organized and maintained exclusively in the relational 

database. If Datums undergo transformation through Nodes (e.g. deconvolution of an Image), 

a reference of the inputs and outputs is kept and associated with the image (more in On 

Provenance). 



3.2.3.2 Big data functionality 

To ensure the fitness of the platform for massive datasets as found in light-sheet microscopy 

and single molecule localization microscopy, binary data management is relying on the Zarr  

(Miles et al. 2020) standard and is packaged for lazy data loading over the network, which 

means even terabyte datasets that are store on the central storage, can be visualized with 

little latency remotely. An experimental on-the-fly OME-NGFF (Moore et al. 2021) conversion 

is also supported. For tabular data, Arkitekt uses the open parquet/pyarrow (“Apache 

Parquet”) standard to again provide lazy-loaded access to massive data sheets. 

3.2.3.3 Inter-application Data Management 

For inter-application data management, Arkitekt uses a pass-by-reference approach, where no 

data is copied on the assignment of a Task but only a reference of the datum passed to and 

retrieve from the executing apps. This approach was taken to facilitate a lightweight 

messaging protocol that only passes small message payloads and to ensure that apps have 

full autonomy on how to access data in their preferred way. Apps can conditionality not 

retrieve items if they become no longer necessary during execution, or only download the 

chunk of data they will work on. This also completely separates concerns of the data and task 

assignment (the rekuest and mikro microservice are completely standalone). 

 

 
Figure 35 Data passing by reference inside a workflow. Rekuest sends Task requests to the applications (here acquire and Stardist 
segmentation), including simple parameters such as numbers and strings (JSON serializable types) inside the requests, the 
microscope then saves the image directly on the Mikro service and retrieves a unique string (an ID) back, that then it passes on again 
to the rekuest service. Rekuest then sends the message to the scheduler, which routes and schedules a new task, returning it to 
Rekuest. Rekuest then forwards the serialized request on to the app retrieving the corresponding image back from the servers. This 
app then processes it, uploads the processed image, and gives the id back to request, continuing the circle Mikro supports single-
writer, multiple reader parallelism in operations so the file, can be consumed by many workers simultaneously. 



3.2.3.4 Data Provenance  

As Arkitekt was designed around the concept of Nodes that transform data, it was an early 

design decision that the data solution attached to the platform should use this information to 

establish data provenance and integrity. 

 

To that end, the platform establishes a universal provenance mechanism through associating 

the bioimage Task (which becomes the assigned workload to a Template on a specific App), 

with the data that is being created throughout its lifetime. Each task on Arkitekt platform is 

assigned a (globally) unique id on creation. When associating this id with all data that are 

created during the lifetime of a task, the platform is able to link the original task (and its 

parameters) with the created data. 

 

This allows the user to retrieve and inspect which parameters were used to create a specific 

datapoint (e.g. which PSF and how many iterations were used to deconvolve an image). In 

addition, as executing workflows is equivalent to assigning a Task to a node that then in turn 

assigns Task to other nodes, it allows the user to find all data associated with a workflow. 

 

Task identifiers rely on the UUID4 (Leach, Salz, and Mealling 2005) standard, which renders 

collisions errors with other task ids neglectable, and provides a way of verifying data integrity 

outside of the original context (e.g. when storing a workflow run file with all tasks separate to 

the original data). 

 
Figure 36 Provenance. Tasks and their respective parameters are stored and assigned by the rekuest service and passed to the 
“Acquire” Template on “Micro-Manager”, the microscope acquires the image, and the original task id is associated with the new 
image automatically (inferred from the current context of the task). The mikro service now associates the task id with the image. 
This design ensures low coupling and allows third party services to also include data provenance.  

  



3.2.4 Easy Interfaces 

Arkitekt was designed to provide a unified user-friendly interface for assigning work on apps, 

managing data on the central storage, and creating and running workflows with apps spanning 

the entire lab. It was also an important feature for this interface to provide real-time feedback 

about the current state of workflows and data. However, this interface should not hinder the 

user from exploring their data in their favorite dedicated tools such as ImageJ and Napari, 

which themselves should act gateways to interact with the Arkitekt platform. 

 

To this end, Arkitekt comes provided with Orkestrator. Orkestrator represents the main 

interface for the Arkitekt platform and can be either accessed via the browser or as a 

standalone desktop application that auto-discovers Arkitekt servers in the local network. 

Orkestrator allows for most common data management tasks. It comes with basic exploratory 

visualization capabilities, like visualizing 3D image stacks, and provides the user interface to 

both schedule work on apps as well as design workflows and installing plugins. As Orkestrator 

is just another Arkitekt enabled App it also exposes functionality that can be integrated in an 

Arkitekt workflow. 

 

This section will briefly illustrate major points of interaction with the Orkestrator interface, 

explaining its main panes of interaction and which use-case they were adapted for. 



3.2.4.1 Dashboard  

 
Figure 37 The Arkitekt Dashboard. 

Building off the abstraction of Nodes and Reservations, the Dashboard is the Users main 

entry-point to explore the current state of all applications that are connected to the Arkitekt 

platform and search for functionality they might want to use. Here reserved functionality 

(including deployed workflows) of the user is monitorable, indicating which apps are 

currently active or need to be started in order for a workflow to run successfully. 



3.2.4.2 Data  

 
Figure 38 The Arkitekt Data Pane. 

In the Data Pane, users can explore their data with advanced filtering. helping them to find and 

explore the relationship between their datapoints. It allows users to search and create 

arbitrary data links between two data points through drag-n-drops, which can be used to create 

training dataset (Contexts). When selecting a datum in addition to standard functionality such 

as comment or delete, tasks can be directly assigned by choosing additional functionality that 

the user reserved contextually respecting the inputs of the functionality (e.g. when selecting 

an image, only reserved nodes will appear that can take an image as an input). To allow the 

easy integration of new bioimage files, users can always drag and drop files into the data 

pane. 



 
Figure 39 An Arkitekt detail pane. 

In the detail pane of a datum (here an Image), its metadata as well as comments and its 

relations to other data (here a derived segmented image) can be explored and/or send to 

connected active Reservations/Nodes (lower right). The detail pane also provides some 

primitive visualization for the datum on the right, streaming actual raw data to the Orkestrator 

interface and rendering it with different color maps. 



3.2.4.3 Workflow Design  

 
Figure 40 The Arkitekt workflow design pane 

In the Workflow design pane, users can create Workflows utilizing all the available functionality 

through a visual editor, that allows for drag-and-drop organization and interlinking of Nodes.  

During the design process, users can inspect the Nodes’ documentation, specify which node 

parameters will have defaults (upper right) and which will be global parameters of the 

workflow. They can adjust which Templates the node will map to (lower right) and set 

advanced parameters like the parallelization strategy. 

 



3.2.4.4 Workflow Execution 

 
Figure 41 The Arkitekt workflow run pane 

While a Workflow is being run, users can inspect a Workflow in the Workflow Run Interface, 

and asses its current state of progress or error. Data that is being produced during a workflow 

run, is also directly accessible in real-time, while events (like tasks finishing) are being tracked 

here. Users can replay a whole workflow, as well as inspect bottlenecks through the waterfall 

diagram (not displayed here). Workflow runs can also easily be exported and be embedded 

on any website. 



3.2.4.5 Plugins 

 
Figure 42 The Arkitekt Plugin Pane 

 

Arkitekt comes with an integrated plugin system utilizing docker containers (see on 

Extensible). Users can use the Plugin Pane to discover and install plugins from GitHub, start 

and stop them interactively, manage their accessible resources (such as GPUs), as well as 

inspecting potential errors directly, visualizing for example the command line output. 

  



3.2.5 Task Management 

Set to deal to make applications interoperate, that share no common execution environment, 

may run on different computers and hardware and can potentially be written in different 

programming languages, Arkitekt needs to perform as a central agency in a distributed 

system. Dealing with such a system, can, when done right, lead to a fault-tolerant and highly 

performant environment, however, itself introduces a set of potential errors that need to be 

addressed.  

 

To address these potential errors, Arkitekt adapts features from the Actor Programming 

Model (Hewitt, Bishop, and Steiger 1973) and treats the participating apps as independent 

Actors, that execute completely autonomously, but can communicate with each other through 

messages. Arkitekt task management relies here on a principle akin to the real-world task 

management in a team with remote workers. A supervisor or manager (a scheduler), assigns 

a task via email to a remote worker (the actor) telling them to do the assigned task and give 

the result back referencing the original email/message.  

 

This section will now delve into how Arkitekt handles the communication and execution of 

tasks on a connected app, and it schedules these tasks when orchestrating a workflow. 

3.2.5.1 Task Scheduling 

3.2.5.1.1 Communication 

When scheduling tasks on another connected app, one aspect is crucial for a successful call: 

a communication protocol that reliably communicates the task to and updates from the 

executing app. This requires a form of bi-directional communication between the participating 

apps.  

 

In the design of Arkitekt, various decentralized protocols (Direct Communication, Peer-to-Peer 

Networks) for this message delivery were explored but discarded in favor of the Message 

Broker Design. In this centralized system, the Rekuest service of the Arkitekt Platform 

facilitates communication between clients. Clients, such as the scheduling app, send 

messages to Rekuest and Rekuest in turn routes these messages to the appropriate 

destinations (other bioimage apps).  Rekuest only acts as a broker and ensures reliable 

message delivery adhering to routing rules for the messages (Arkitekt’s Provision and 

Reservations), which can for example route messages to another app if the preferred 

application fails. Additionally, it also acts as a central finite state machine, tracking the 



progress of the task during its lifecycles: updates from the bioimage apps are being persisted 

directly into the database. 

 

Given that now a single point of failure, the broker needs to constitute a highly reliable piece 

of software. The Rekuest service routing is hence based on an industry standard message 

broker: RabbitMQ (“RabbitMQ”, RabbitMQ 2023.). The introduced abstractions Reservations 

and Provisions directly to worker queue paradigm in RabbitMQ (with Reservations representing 

Topics, and Provisions: Worker Queues).  While applications can choose to directly utilize the 

RabbitMQ client libraries to listen to messages, in the default setting Arkitekt proxies the 

protocol through websocket connections, ensuring reconnection (see Reliability). 

 

This design decision was taken to be in line with Arkitekt’s middleman approach and trying to 

easily support different programming languages with “dumb” clients that could communicate 

utilizing a simple protocol over open standards.  

 
Figure 43 The rekuest message broker design. Task gets assigned to the Reservation, which forwards the request to the RabbitMQ 
(1) queue and creates a new task in the database with state “Created”(3), depending on the reservation being marked as a 1 to 1 
reservation (mapping only to one app) or a 1 to many reservation (mapping to multiple apps), the task gets routed to dedicated 
worker, which now publishes updates on  the execution of task A  to the broker, which routes the message back to the scheduling 
app and persists the state to database updating (2) the finite state machine. 



3.2.5.1.2 Execution 

Once a task is communicated with an app, the app needs to make sure to execute the Task 

and in turn communicate the result back to the original sender. Importantly, to support Arkitekt 

design decision to fully support interactive applications, the execution of a Task needed to 

support two orthogonal types of code execution: 

 

Synchronous Execution: This classic execution model is defined by top-down sequential 

execution of each code element, blocking on each request. This is the standard execution 

model in most scientific scripts.  

 

Asynchronous / Concurrent Execution: Some tasks like marking region-of-interests on an 

image loaded into a GUI, require user input and therefore will not terminate immediately. They 

require some form of concurrent execution as otherwise a blocking call would cause the GUI 

to become unresponsive. This is often handled through threading or concurrent programming 

as the main app needs to stay in control of listening for events (such as a button being 

pressed). 

 

 
Figure 44 Synchronous vs Asynchronous Execution, as illustrated through the interaction between orchestrating code (which would 
receive task from the Rekuest service, and or manage the event loop of the graphical user interface), and the execution of two tasks 
that depend on some code part of the orchestrating code to be run. In synchronous computing the control and lead are given to the 
corresponding task and only returned on finishing, in asynchronous computing control stays with the orchestrating code and tasks 
will only be given interruptible access to the computing resources, which can lead to more performant code if tasks can be executed 
in parallel.  

 

Additionally, Arkitekt’s execution model needed to account for the fact that a wide variety of 

bioimage tasks need to be cancellable, to ensure full control over the execution (e.g., when 

cancelling an ongoing acquisition). 

 



To support this dynamic execution policy, Arkitekt adopts design principles from async/await 

programming (Syme, Petricek, and Lomov 2011), wrapping them in its own abstraction where 

necessary (e.g. when cancellation is not fully supported by the programming language). As 

async/await is not a commonly used abstraction in scientific programming, user-defined 

functions are automatically wrapped (in thread pools) abstracting this introduced paradigm 

completely away and ensuring a familiar interface for the programmer. 

3.2.5.2 Workflow Orchestration 

The scheduling of tasks in a workflow requires not only a scheduler, that can handle task 

assignment, but also an orchestrating entity, an orchestrator, that keeps track of the state of 

the workflow and directs inputs and outputs. Arkitekt here double downs on the everything is 

an app principle and allows for every app to become a scheduler and orchestrator of a 

workflow, bridging it as a new template to the platform. As such, workflow orchestrators 

become Actors and follow the same principle of receiving messages with a task with inputs 

for the workflow and yielding the results as messages. The scheduling actor makes sense of 

the logic of the interconnected nodes of the workflows and calls apps according to the plan, 

keeps track of the events happening in a workflow and given the current state, makes 

decisions of calling other apps.   

 

To facilitate this design, the orchestrating apps track all events happing in their workflow in 

an event loop and record their processing in a Run. A Run represents a complete record of 

what currently happens and happened during a workflow execution.  

If a data event originating from another node returns or the initial assignment is redirected to 

another node inside the workflow, the scheduler can decide to schedule/assign the task in 

two different ways: remotely or locally. 

 

In remote assignment, the Arkitekt platform becomes a middleman for the request, that means 

the task travels through the network to Arkitekt and then from there on, to another connected 

app. This type of assignment is the default and takes advantage of Arkitekt features that 

ensure reliability and automatic parallelism. However, this approach incurs network latencies 

in the task scheduling. 

 

In local assignment, the scheduling app can decide to call its own Nodes directly, without any 

network request and no added latency. This type of assignment is useful for scenarios where 

an Arkitekt workflow is designed to manage in-memory transformations of data (e.g. 



downloading data from the server, running multiple separate ImageJ plugins in memory, 

before uploading the data to the central server). 

 

When designing the workflow, this strategy can be chosen on on-node basis and users can 

construct workflows with both types of assignment interchangeably.  

3.2.6 Ecosystem integration 

A leading design idea of Arkitekt was to integrate with the current bioimage analysis system 

from the get-go to facilitate an easy inclusion of the software and its functionality. To this end, 

Arkitekt comes distributed with installable applications that wrap major bioimage software 

(Napari, ImageJ, Pycro-Manager, Imswitch) as well as a set of plugins that wrap deep learning 

functionality (Care and Stardist). This section will describe the integrations for the two major 

software platforms: ImageJ and Napari, and lastly will list some tools that have some 

functionality bridged to the platform. 

3.2.6.1 ImageJ 

Arkitekt comes provided with an installable application MikroJ that acts as a bridge between 

the Arkitekt platform and a local custom ImageJ installation of the user. This bridge is 

implemented with the help of the  PyImageJ (Rueden et al. 2022) libraries which enable direct 

interfacing with the ImageJ Programming Interface and shared memory access to ImageJ 

data primitives from python. While direct ImageJ support through a dedicated ImageJ plugin 

interface was considered as a design option, this path of integration was chosen to focus on 

the stability of the client and to easily integrate the local execution of in-memory workflows. 

With Arkitekt’s support for local workflow execution, users can easily create workflows that 

then in turn bridge ImageJ Macros or Plugins in any Arkitekt workflow. 



 
Figure 45 The conceptual design of the MikroJ wrapper app that integrates with ImageJ. Here a Run-Z-Color Code Node, that runs 
an ImageJ macro to color code a z-stack, was designed and then deployed through the Arkitekt web interface, and is now registered 
as a Template in the MikroJ app. This workflow here uses build in functionality of the PyImageJ library to convert the “Image” that is 
stored on the Arkitekt platform to an ImagePlus primitive (now in ImageJ memory), runs the macro, and upload the resulting 
ImagePlus again to the Arkitekt platform.  

3.2.6.2 Napari 

Arkitekt’s software design was heavily inspired by steps taken in the Napari (Sofroniew et al. 

2022) community to ensure the easy visualization of large-scale datasets in the terabyte 

range. As such, it became an early design idea to include Napari as a major visualization 

solution in the Arkitekt framework, and to support its ability to lazily load data from the 

platform. 

 

Mikro-Napari is a Napari plugin that bridges core Napari functionality to the Arkitekt 

framework, exposing them as Nodes in workflows, but also allowing to use Napari directly to 

explore datasets and dataset relationships in its own GUI. It takes advantage of the Napari 

technology stack of dask (Rocklin 2015) and Zarr (Miles et al. 2020) to visualize terabyte big 

images that are lazily streamed from the Arkitekt server, mark region-of-interests on the 



images collaboratively and in real-time (syncing new ROIS directly to other instances of 

Napari). Additionality it can use the associated metadata of images to recontextualize them 

in visualizations such as visualizing a multi-position multi-timepoint acquisition in one large 

“meta”-image, spanning multiple datasets. 

 
Figure 46 The mikro-napari plugin. Through the creation of lazy loaded dask arrays that are shaped according to the metadata from 
the mikro subservice, Napari can directly access terabyte big datasets, recontextualizing images in their original microscopy stage 
context (respecting the real physical coordinates of the acquired Image on the Stage). 

Napari comes with easy and accessible programming primitives and a comprehensive API for 

creating additional UI Elements (Widgets), that can interact deeply with the underlying viewer. 

Building on this strong foundation, Mikro-Napari comes provides with a set of interaction and 

feedback nodes that can be integrated in Arkitekt workflows to facilitate Inspect Adjust Circles.  



 
Figure 47 Example Mikro-Napari UI Nodes as they might be used in an Arkitekt Workflow. The Stream ROI generator hooks into the 
Napari ROI Layer events and streams path ROIs (here a path along a histological structure). This path ROI can then be utilized inside 
an Arkitekt Plugin( here to straighten the image along the path) and the result of this straightening is displayed directly to the user 
by creating a popup inside the napari environment, letting them immediately inspect their result. 

  



3.2.6.3 Additional Tools 

Popular bioimage tools have already been ported to Arkitekt, find their mention here. 

 

  

Tool Original 

Publication 

Bridged 

Application 

GitHub Link Type Functionality 

CARE (Weigert et 

al. 2018) 

kare https://github.com/jhnnsrs/kare Plugin Denoising 

Stardist (Weigert et 

al. 2020) 

segmentor https://github.com/jhnnsrs/segmentor Plugin Segmentation 

Pycro-

Manager 

(Pinkard et 

al. 2021) 

Mikro-

manager 

https://github.com/jhnnsrs/mikro-

manager 

App Miscroscopy 

Control 

Imswitch (Moreno et 

al. 2021) 

mikro-

imswitch 

https://github.com/jhnnsrs/mikro-

imswitch 

App Microscopy 

Control 

Napari (Sofroniew 

et al. 2022) 

mikro-

napari 

https://githu.com/jhnnsrs/mikro-

napari 

App Visualization 

PyCudaDecon - dekon https://githu.com/jhnnsrs/dekon Plugin Deconvolution 

Gucker - gucker https://githu.com/jhnnsrs/gucker App File Watcher 

Bioformats (Goldberg 

et al. 2005) 

omero https://githu.com/jhnnsrs/omero Plugin File 

Conversion 

PyImageJ/Fiji (Rueden et 

al. 2022) 

mikroj https://githu.com/jhnnsrs/mikroj App Processing 

Stdlib - stdlib https://githu.com/jhnnsrs/stdlib Plugin Processing 

Renderfarm - renderfarm https://githu.com/jhnnsrs/renderfarm Plugin Video/Image 

export 

Kommunity - kommunity https://githu.com/jhnnsrs/kommunity Plugin Notification 

system 



3.2.7 Reliability and Sustainability 

3.2.7.1 Reliability 

Modern workflows need to run stable and reliably. In a setting with distributed apps that 

connect to the platform via potentially unstable network connections, reliability becomes a 

key concern when not adequately addressed.  

 

Arkitekt’s design therefore tries to account for various potential pitfalls in the communication 

and recovery from errors that can emerge during Task assignments and Workflow runs, 

through strategies of reconnection and rerouting of tasks. These strategies are closely linked 

to the Arkitekt concepts of Reservation and Provision and find their explanation below. 

 
Figure 48: Illustration of the various potential points of failure in communication and execution in the Arkitekt system. Failure points 
in green are recoverable, while failures in system critical parts of the platform are marked red. 

  



3.2.7.2 Sustainability 

Sustainable bioimage workflows rely on an easily maintainable chain of dependencies. While 

Arkitekt workflows are designed to be universal and allow the easy swap out of an underlying 

app (e.g. when updating to a newer version or the regression to an older version when said 

update breaks the workflow), the sustainable implementation of any app is inherently reliant 

on Arkitekt’s ecosystem of libraries and this implementation can only be as sustainable as 

they are sustainably designed. 

 

Arkitekt’s design therefore emphasizes high modularity and low coupling to ensure the easy 

maintainability of its software stack. This holds especially true for the client interfaces, which 

represent the major point of interaction for the developers. Its library stack is comprised of 

various single purpose libraries, each unit-tested for their respective purpose, that can be 

bundled independently if a specific feature of the platform is not required for this specific 

application (e.g. when the app does not need to include features of microscopy data, but 

rather acts on other datatypes).  

 

 
Figure 49 The Arkitekt python library ecosystem, with their dependency chains. Each of the items represent separate python modules 
that are hosted on PyPI (with its source-code on GitHub) and can be installed standalone if desired.  

  



3.2.8 Extensibility 

A core benefit of the ImageJ platform is its integration of plugins and macros that allow for 

the installation and extensions of itself through additional methods and tools in a user-friendly 

way. Given their wide adoption and respective popularity, a set design goal was to provide 

similar primitives in the Arkitekt framework. 

 

Arkitekt workflows conceptually overlap with macros, as they are mainly used for automation 

and small scripts). Plugins, providing the actual algorithmic backbone of a workflow, are 

finding their equivalent in Arkitekt Apps. As installation, and especially maintenance of various 

applications on a computing resource however is a tedious job, Arkitekt needed to provide a 

plugin system that allows the user-friendly installation and management of integrated apps. 

 

Building upon the everything is an app paradigm, an Arkitekt plugin is nothing more than an 

application that runs virtualized in the same execution environment as Arkitekt. As such, the 

developmental approach to a plugin is the same as when developing a standalone Arkitekt 

application, and developers can use arbitrary outside dependencies such as CUDA in their 

developmental application. In an additional build step (using for example the arkitekt cli (see 

on Developer Experience), the application will then be bundled with its dependencies into a 

docker container, and in a second step can be published on an associated git repository.  

On the other side, users can then easily point to the publish GitHub Repository and through a 

one-step installation process, accepting the requested rights of the application (see on 

Secure), install the application in their local Arkitekt instance. Arkitekt will then consider this 

containerized application just as any other application, and its Nodes (exposed functions) are 

available in workflows, and can be called from any other app. To ensure easy upgrade and 

maintenance of these integrated apps, Arkitekt will regularly check the repository for updates. 

 

 
Figure 50 Arkitekt plugin building and installation process on the example of the included segmentor plugin, illustrating both the 
developer path to an Arkitekt Plugin as well as the user path of installing said plugin. 

  



3.2.9 Open Platform 

Arkitekt was designed to be open and expandable. Building on the middleman approach, it 

was an early design decision to establish Arkitekt as a framework, rather than a tool. This 

entailed for Arkitekt to adapt a developer first or API first (Garvey 2023)approach. These 

approaches both describe an approach to software design that seeks to first establish a 

comprehensive open API design before implementing features that are hidden away from 

developers (e.g. Product Features that are not accessible from the outside). In developing this 

API, it was paramount to adopt open standards that are widely used and that fit well for the 

Arkitekt paradigm of lab-wide task assignment and scientific data exploration. 

 

Arkitekt therefore exposes all its functionality through a set of GraphQL APIs. GraphQL is an 

API protocol developed by Facebook to facilitate a one-stop-shop and developer-friendly 

retrieval and manipulation of data with a high level of relationships, such as their friendship 

graphs (“GraphQL” , GraphQL). It was designed to overcome issues in other API protocols 

such as REST, where when trying to explore highly relational data, dedicated and separately 

orchestrated requests to the backend needed to be performed. 

 

 
Figure 51 The Mikro GraphQL advanced programming interface which allows for the structured retrieval of associated metadata and 
relational information. 

 

 

To ensure modularity, each service of the Arkitekt platform exposes its own GraphQL API, with 

API methods and data models that are specific to its use case. Users can explore all of the 

APIs functionality in an online playground, built on GraphQL, that supports the design of a data 



query with autocompletion of available properties as well as a full side-by-side documentation 

of available relationships. As GraphQL provides a typed schema of its relationships, users can 

rely on code generation libraries such a graphql-codegen or turms, to map their query directly 

into typed JavaScript/Typescript and Python code and appreciate type-safety at each level of 

interaction with the platform. 

  



3.2.10 Developer Experience 

Given the vast challenges that developers face when developing applications today, Arkitekt 

is not only focused on making existing tools interoperable but was designed to create a 

bespoke developer experience, trying to minimize the friction when developing image analysis 

scripts and bringing them easily from a local setup to a published application. 

 

Arkitekt therefore provides a comprehensive Python and Typescript client, that enables the 

developer to both use functionality of the platform and to add to it. The client libraries have 

been designed to reflect why the respective developer might have chosen the programming 

language. 

3.2.10.1 Python 

The Python library in Arkitekt is the most comprehensive client library of the Arkitekt 

framework. It provides convenient methods to access all the functionality of the platform. 

Developers can easily call Arkitekt connected apps through a simple use call, or as Arkitekt 

concept of Nodes closely resembles functions and generators in Python, adapt their own 

function to be run on the platform by decorating them with one line of code (@register). The 

client then helps to automatically infer the inputs and outputs from the function and its type 

annotations, creating an Arkitekt Template and Node respectively. When running the app, the 

same client library handles the connection logic (handling authorization, authentication and 

automatic reconnect) and ensures a seamless transition of the function to the Arkitekt 

platform. 

Once the functionality is connected to Arkitekt, developers and users alike can use highly 

customizable, autogenerated and user-friendly widgets on the WebUI to interact with the 

function (similar to the experience provided by Magicgui (“Magicgui”). Importantly they can 

also directly use their newly provided functionality in Arkitekt Workflows. 



 
Figure 52 Side by side comparison between a Galaxy Tool Wrapper vs Arkitekt’s inline code approach. 

 

The Arkitekt python client is backed by popular libraries of the scientific stack, to ensure 

familiar developer access to image data (accessible through numpy) and data tables (through 

pandas). Additionality Arkitekt’s facilitates common integration patterns of application with 

the platform in two run modes. 

3.2.10.1.1 Script Mode 

Script mode was designed for integrated development with the Arkitekt platform, and to take 

a project from early development to a published, easily installable, and reproducible 

application without extensive programming knowledge. To this end, the Python package 

comes with a command line interface reminiscent of tools like conda (“Anaconda”, Anaconda 

Inc.), that can be used to control every stage of app development. 

 

It enables patterns like hot-module-replacement (an application (used in a workflow) can be 

replaced by a new version through a simple save), scaling (scaling the application to multiple 



instances to automatically parallelize) and bundling (packaging the app to a docker container 

that then can be installed on any other Arkitekt services). 

3.2.10.1.2  Plugin Mode 

In plugin mode, the Arkitekt does not directly control the lifecycle of the application but rather 

provides easy ways to integrate Arkitekt functionality as a plugin in a bigger application. It is 

the default when an application wants to provide Arkitekt functionality conditionally but would 

still work separately from it or when it needs other packaging strategies. Example use-cases 

include graphical user interface applications, such as the Mikro-Napari napari plugin. 

3.2.10.2 JavaScript/ Typescript 

JavaScript (with its typed dialect Typescript) is the most utilized programming language in 

the world (“Stack Overflow Developer Survey”, StackOverflow). It dominates the web where in 

conjunction with HTML and CSS, where it is the primary language to design websites. Web 

frameworks like React (“React”), that are built on top of JavaScript, allow for easier integration 

of interactive elements in modern websites and have emerged as the standard for modular 

Figure 53 Arkitekt Script Mode, which allows for the easy development and transition of python function into the arkitekt 
ecosystem, complete with hot-module replacement, automatic widget creation and deployment. 



web development. As such Arkitekt itself is built around this technology and utilizes React for 

creating its main web-interface Orkestrator. 

 

To facilitate the easy development of additional custom websites that can interact with the 

Arkitekt platform, and to allow developers to easily create new forms of visualization inside 

the Arkitekt ecosystem, Arkitekt comes provided with a comprehensive Typescript client that 

enables webapps to interact with the Arkitekt services and use its functionality easily. Through 

the “@jhnnsrs/arkitekt” package, developers can easily use provided UI elements to connect 

their webpage to a locally running or remote Arkitekt server. They can then rely on a 

comprehensive library with interfaces like the python client, to provide functionality to the 

platform as well as use Arkitekt connected functionality in their webapp.  

  



3.2.11 Security 

A core concern in the development of the platform was to provide an interface for sharing and 

accessing data, following principles of FAIR (Mitchell et al. 2022) data management. This 

required not only to open Arkitekt to one user and his connected apps, but establishing 

Arkitekt as a multi-tenant/multi-user platform that allows fast sharing with users within and 

outside of the lab.  

 

With opening the platform to multiple users and potentially the wider web, comes the burden 

of authenticating users (Authentication) as well as managing the respective permissions of 

the user (Authorization). Only through a secure implementation of these security mechanisms 

users can rest assured that colleagues or unauthenticated attackers do not accidentally, or 

maliciously, manipulate their data. 

 

Additionally, as Arkitekt was designed to provide a framework to deal with highly unstable 

environments, such as new analysis scripts, or plugins that are installed from GitHub 

repository, it needed to ensure that these scripts do not perform actions outside their original 

intent. (e.g., accidentally deleting data instead of creating new data). 

Arkitekt therefore adapts the OAuth2 Standard (Hardt 2012)  (in conjunction with OpenID 

connect), with signed JSON Web Tokens (M. Jones, Bradley, and Sakimura 2015) to ensure 

Authentication and Authorization on both the Application and User Level. This adoption means 

that when a user is requesting to use an app with the current server, the server will ask the 

user to authenticate itself and then in a second step authorizes the app’s request for 

permissions (“scopes”), ensuring a double layer of protection. 



 
Figure 54 The problem of trust, illustrating the double authentication mechanisms that Arkitekt introduces. vs unmitigated strategies 
where apps and users lack an identification mechanism. Here malicious apps try to access restricted sensitive user data or interfere 
with other  user data respectively. 

Arkitekt’s security protocol is implemented within the standalone service lok, that can be used 

to provide authentication to other third-party applications, seeking to interface with the 

platform. Its function is highly interconnected within the platform and its services, as for 

example the concept of Oauth2 clients provides the core foundation for the Arkitekt concept 

of Apps.    

 
Figure 55 The Authentication flow exemplified by Napari requesting access to the platform,  



3.2.12 Portability & Installation 

Arkitekt was conceptualized to be easily installable by non-experts on a single computer, but 

also to be adaptably deployed on multiple computers on an institute level or in the cloud. This 

required Arkitekt to support a variety of underlying hardware and their abstractions (eg, x86-

64Bit architecture vs arm64 bit, headless server install vs GUI installation).  

 

Arkitekt was hence written as a cloud-native microservice platform (“What Is Cloud Native”, 

Google Cloud 2023) based on containerization software, which yielded an inherently cross-

platform software that is especially suited for the cloud and institute deployments. It can 

easily be deployed and scaled to multiple instances on the cloud through Kubernetes 

(“Kubernetes Documentation", Kubernetes), the industry standard for cloud-native 

applications. 

 

The non-expert installation, however, stood as a core challenge of the Arkitekt platform, as 

there is not a big ecosystem of software tools that aid in bridging cloud native applications to 

consumer devices like a Windows Machine or Mac Desktops. To overcome this, Arkitekt 

comes provided with a small cross platform application that acts as both the installer and 

admin interface for the Arkitekt platform: Konstruktor. Konstruktor can be easily installed 

through its installer provided for all major operating systems (Linux, Mac, Windows) and its 

main purpose is to thinly wrap Docker Desktop for non-expert users.  

 

Docker Desktop (“Docker Desktop” 2023) is an application that enables the local installation 

and management of containerized applications and is targeted toward developers. With 

Konstruktor, users will be guided through an installation wizard, and once installed can use 

Konstruktor to start, stop and update the platform. Additionally, Konstruktor provides a one-

stop-shop solution to also easily install other open-source community projects like Jupyterhub  

(“Project Jupyter” n.d.) on the machine alongside Arkitekt. 



 
Figure 56 The Konstruktor installation management software, that abstracts the underlying underbelly of the arkitekt platform. 
Users will only ever have to interface with the Konstruktor interface to install and maintain the platform. 

3.2.13 Administrability 

Arkitekt aims to be installable in different configurations from a single one-laptop 

development setup to a system that connects apps on a whole institutional level and 

interfaces with cluster resources. Additionally, it was designed to provide the flexibility to 

allow for the modular transition of the platform to be hosted outside of the lab (e.g. storing 

the binary data on an S3 server on the AWS Cloud.).  

 

With a system potentially scattered in multiple different locations, Arkitekt needed to provide 

a user-friendly, easy and safe way for users and their apps to automatically detect the desired 

configuration and to seamlessly retrieve the locations of all platform modules, without any 

level of manual interventions (such as noting down IP-addresses). 

 

Arkitekt’s design also needed to account for larger deployments that often require additional 

fine-grained control over which users can access which resources (e.g., which users will be 

able to access a SLURM cluster) or which feature set of an application is available (e.g., 

restricting student-accounts to a teaching version of a larger software package). 

 

To facilitate this administrative top-down configuration of the connected applications, Arkitekt 

establishes the “Fakts” protocol, which aims to automate this process. In this protocol a local 

beacon advertises a configuration endpoint over the network that then all apps can 

automatically discover and connect to, to retrieve their respective configuration automatically. 

Facilitating fine grained control, administrative users can then define arbitrary complex 

routing rules which configuration fits best for the connecting user on the application and the 

location, and automatically send these parameters to the apps. 



 
Figure 57 The Fakts protocol: A beacon advertises the Fakts endpoint to all apps in the network through a UPD broadcast, apps can 
then choose to connect to the connected endpoint by providing a manifest, will be exchanged for a unique token (if the user allows 
this app to connect) This token can then in the future be used to retrieve a configuration specific platform feature such as which 
services the app should connect to but also app specific configuration like if the app should allow advanced features.  

 

 

  



4 Validation 
Having thoroughly discussed the implementation details of the Arkitekt platform in the last 

section, this section now validates this implementation on a selection of modern bioimage 

workflows. 

 

It will introduce three workflows, representative of the wider trends in the analysis of bioimage 

data, that have been chosen to validate the implementation of the Arkitekt platform, 

introducing methods and results inline. 

4.1 Workflow I: Bridging the ecosystem: 

 
Figure 58 An exemplary Arkitekt workflow bridging multiple bioimage apps 

 

In this example, Arkitekt is applied to a representative workflow in the scenario of More Data 

Faster. Here a workflow was designed for the analysis pipeline of a publicly available dataset,  

Tribolium (Weigert et al. 2018). In this workflow, the noisy fluorescence image stack was 

visualized in Napari, and a user prompted to define region of interests. The marked ROIS 

where then streamed through the pipeline, cropped from the original image and denoised 

through the CARE deep-learning-based denoiser. They were then projected and binarized 



using OTSU auto-thresholding via python scripts running as Arkitekt plugins, and finally 

analyzed through the Particle Analyzer of Fiji. The quantifications returned from the Particle 

Analyzer were then wired back to the user in Napari and visualized on the web-interface. 

Arkitekt and the orchestrated tools were run on a single Linux desktop computer, but in an 

additional step the whole environment was transferred to a windows machine. 

4.1.1 Methods 

4.1.1.1 Installation 

Docker Desktop V20.04 was installed on a desktop computer (Windows 10, Nvidia GPU 

2080Ti, Intel i9 CPU, 1TB SSD). The Arkitekt installer (Konstruktor) was download from its 

GitHub Repository (https://github.com/jhnnsrs/konstruktor) and started. The platform was 

installed following its guided installer, choosing a single user setup, with docker virtualization 

The Arkitekt service was started, and Konstruktor instructed to advertise the Arkitekt 

installation on the network. 

4.1.1.2 Workflow Specific Installation 

After installation, both the OMERO conversion plugin (https://github.com/jhnnsrs/omero), the 

Standard Processing plugin (https://github.com/jhnnsrs/std), as well as the CARE algorithm 

plugin (https://github.com/jhnnsrs/kare) and the remote workflow scheduling plugin Reaktor 

(https://github.com/jhnnsrs/reaktor) were installed via the “Plugin Pane” from their respective 

GitHub repositories and started as virtualized internal containers managed by the platform. 

The MikroJ app was downloaded from its repository (https://github.com/jhnnsrs/mikroj)  and 

installed and configured to point to a previously installed instance of Fiji/ImageJ (Schindelin 

et al. 2012).  Napari (Sofroniew et al. 2022) 4.17 was installed on the system and the Mikro-

Napari plugin installed through the interactive code terminal inside the napari environment, via 

a subprocess call (necessary step as the plugin was not yet available on the napari-plugin hub 

page). All apps were connected, and the user authenticated with the platform. 

4.1.1.3 Data Preparation 

The original CARE dataset (Weigert et al. 2018) Tribolium, was downloaded from  its data 

repository (https://publications.mpi-cbg.de/publications-sites/7207/) and unzipped. A new 

Dataset was created through the Orkestrator UI and the images contained in the dataset were 

uploaded through drag-and-drop. For the batch conversion of the raw data to the Mikro 

internal Image format, the Convert File Node was searched and reserved  on the Web UI, directly 



linking it to the OMERO Conversion App. All image files in the dataset were selected using 

multiselect and converted through drop-drown and Convert File (Batch) assignment. 

4.1.1.4 Model Preparation  

The converted images of the original dataset were inspected through the Arkitekt web-

interface, and three corresponding images of low and high signal-to-noise ratio were 

associated by dragging one over the other, labeling them as “ground-truth” in same Context ( 

“CARE training set”) inside the popover Associate Dialog. The CARE App provided Node Train 

CARE model was reserved and run directly from the drop-down menu of the newly created 

Context, specifying the “ground-truth” relation as the training relation. The progress of the 

training was inspected on the WebUI.  

4.1.1.5 Workflow Design 

The workflow as shown below was designed on the Arkitekt design pane, exported, and 

deployed through the web interface on the Reaktor scheduling app, specifying Segment 

denoised ROIS as the new Node title. The exported workflow is given in its JSON 

representation in the annex. 

 

 
Figure 59 The constructed workflow  

4.1.1.6 Workflow Run 

The deployed workflow Segment denoised ROIS Node was reserved through the web interface. 

MikroJ and Napari were started and put into provide mode, as the state changes of the 



workflow were observed on the web-interface. The workflow was then started on the web-

interface, by right clicking on a low signal-to-noise ratio image in the dataset and selecting the 

Segment denoised ROIS assignment. During execution, ROIs were subsequentially marked on 

the opened ROI layer in Napari, selecting perceived areas of varying cell density. The loop 

backed results table in Napari was inspected. 

4.1.1.7 GraphQL query generation: 

The GraphQL Interface Page on the local Mikro instance was visited and the query below was 

designed in the interactive environment. 

 

 
Figure 60 The GraphQL Query that was designed to retrieve all tables their corresponding images and rectangular Rois. 

4.1.1.8 Workflow Portability Preparation 

The designed workflow was exported on the web interface and the saved JSON file containing 

the serialized workflow was transferred to another computer (Ubuntu 22.04, Intel i7, 512 GB 

SSD). The installation procedure was performed as described the Konstruktor installer build 

for the Ubuntu environment. Arkitekt, its plugins, as well as the data and CARE model were 

prepared according to their respective sections. The transferred JSON file was imported on 

the web-interface and saved as a new local workflow. The workflow was then deployed and 

run in the same way, as described in the respective sections. 



4.1.2 Results 

4.1.2.1 Arkitekt makes bioimage analysis ecosystem interoperable. 

This modern offline analysis workflow, demonstrates how Arkitekt allows to combine different 

bioimage processing, analysis, and visualization functionalities, including a deep-learning 

restoration algorithm (CARE), all on one single computer, without any expert setup, advanced 

configuration, or programming scripts. It ensured the full interoperability and transfer of 

Images, Tables and ROIs between two major bioimage platforms: ImageJ and Napari. No 

workflow specific interoperability scripts needed to be programmed and the user could use 

their existing Napari and ImageJ installations. 

4.1.2.2 Arkitekt enables interactive uninterrupted workflows. 

This workflow shows how the asynchronous workflow scheduling employed in Arkitekt, 

enables highly reactive workflows for interactive Inspect and Adjust Circles. Here it illustrated 

this on the example of a common in-workflow task of marking ROIs in a graphical user 

interface. Due to the real-time nature of the analysis workflows, users can inspect the 

analytical result directly in the original software, without having to manually launch and 

inspect the analytical outcome on the participating apps. Once started, this whole workflow 

was completely handled within Napari, without any interrupts, such as the necessity to interact 

with outside apps or even Arkitekt itself. Arkitekt here immersed the user in an interactive 

experience and enabled them to focus on the analytical insight rather than the orchestration.  

4.1.2.3 Arkitekt enables simple analysis data and metadata management. 

This workflow illustrates how easily Arkitekt passes a variety of different bioimage data types 

and their associated metadata from one platform to the other. Here Arkitekt kept track of the 

relationship between original images, marked ROIs, cropped images, filtered analysis of the 

cropped images, as well as all the quantifications associated with these images. This 

relationship graph could be easily explored on the Arkitekt frontend or exported for further 

statistical analysis.  

 

Analytical workflows often require revisiting the data or the analysis strategy to uncover 

potential sources of biases or to check for correlations that weren’t thought of in the original 

workflow. To illustrate this a scenario in the results, a common analytical scenario was 

devised:   

 



Checking that the region of interests that were marked by the user share similar dimensions and 

therefore metrics as cell density are interpretable.  

 

As Arkitekt built a linked data graph, respecting the transformations during the workflow 

execution, it can be revisited to gain new insights on the data. This exploration can happen 

both on the graphical interface as well as with help of a statistical GraphQL query (Figure Panel 

2), that describes the traversal through the relationship tree and retrieves the wanted data. 

 
Figure 61 The programmatic retrieval of the ROI dimension information based on the re-exploration of the data-graph. The GraphQL 
query as illustrated in the lower left panel was constructed to retrieve the information, in short starting from the original table (queried 
by its unique ID in the database (1)), the origins of the merged table are explored (2), the linked image origins are then recursively 
explored and filtered for ROI derived  images (3), then for this Image its ROI origins are queried for its dimensions in height and width. 
Running this query against the mikro service results in the structured response on the lower right. 

4.1.2.4 Arkitekt enables easy sharing of workflows. 

In this example, Arkitekt illustrated its ability to create sharable and universal workflows that 

can run on varying hardware. Here a workflow was transferred from its original computer 

environment to a new hardware and software environment, through the export of a universal 

interpretable workflow description file. 



 
Figure 62 The Arkitekt Workflow transmission between to different Arkitekt instances. The same workflow runs with GPU support 
on a Windows Machine, and for the lack of a CUDA enabled GPU, runs without GPU support on the Ubuntu machine. 

4.1.2.5 Arkitekt enables simplified deep learning training and inference 

This example illustrates Arkitekt capabilities as a hub for deep learning. Here, beyond 

providing integrated inference on a trained model within an Arkitekt workflow, a neural net was 

installed and trained without any advanced configuration or folder-based data management, 

all within the Arkitekt interface. The installation of the GPU enabled deep-learning app CARE 

was easily handled through a guided installation process from the plugin interface, by pointing 

it to a GitHub repository and granting the plugins permissions. Then a training dataset was 

generated through Arkitekt’s interface for selection and interlinking data via drag-n-drop. This 

interlinking paradigm yields a graph-like training dataset (a Context) that can contain arbitrary 

directed relations between any data on the platform such  as Image is ground-truth for Image 

or Roi is ground-truth for Image . 

This Context was then assigned in another simple step to the CARE Training Node, and GPU 

accelerated deep learning training commenced, with progress of the training being 

inspectable live on the Arkitekt interface. The resulting Model was then easily added in 

workflows for inference. Other deep learning models and app are easily supported in a similar 

fashion to the here described and only need to provide an adapted Train Node (selecting their 

desired relations) as well as a Predict Node (relevant Code parts in the annex). 

 

  



4.2 Workflow II: Real-time Distributed Analysis 

 
Figure 63 The streaming analysis workflow, with the employed parallelization amongst 5 Computers (1 acquisition computer, 3 
analysis computers and 1 visualization laptop) 

In this second example, Arkitekt’s was adapted to orchestrate a fully automated acquisition 

and analysis workflow, illustrating how its streaming analysis paradigm can ensure reliable 

real-time analysis. It shows Arkitekt’s capability to perform live (i.e. during the acquisition) 

quantitative monitoring of liver spheroids using soSPIM microscopy controlled by commercial 

acquisition software (“MetaMorph", Molecular Devices”) and a simple analysis pipelines 

including the popular deep-learning-based Stardist 3D segmentation algorithm (Weigert et al. 

2020). This workflow was based on a constant remote monitoring of a user-defined directory, 

checking for new image files. New images were then sent through an analytical pipeline, 

spanning file-conversion and metadata retrieval, deep learning-based nuclei segmentation, 3D 

visualization, and the display of the results (here the number of nuclei and their average 

volume) on a web dashboard. Powered by Arkitekt’s inherent parallelization and multi 

hardware support, the analysis workload was parallelized amongst 3 GPU workstations to 

keep up with the acquisition. 

4.2.1 Material and Methods: 

4.2.1.1  Installation 

Docker Desktop V20.04 was installed on a desktop computer (Ubuntu 22.04, Nvidia GPU 

2080Ti, Intel i9, 1TB SSD). The Arkitekt installer (Konstruktor) was download from its GitHub 

Repository (https://github.com/jhnnsrs/konstruktor) and started. The platform was installed 

following its guided installer, choosing a single user setup, with docker virtualization The 

Arkitekt service was started, and Konstruktor instructed to advertise the Arkitekt installation 



on the network. The Tailscale virtual private network client was installed on the same machine, 

added to a shared private virtual network according to their documentation (Tailscale 2023) 

4.2.1.2 Sample Preparation: 

Jewell Preparation: 

JeWell were prepared as thoroughly described in Grenci et al. (Grenci et al. 2022) and 

Beghin et al (Beghin et al. 2022). 

 

Spheroid Culture 

HEP-G2 cells stably expressing H2B-eGFP fusion protein were maintained in DMEM media 

(11965092, Invitrogen) supplemented with 10% FBS (10082147, Invitrogen), 1% GlutaMAX 

(35050061, Invitrogen), 1% penicillin-streptomycin (15070063, Invitrogen), and 1% Sodium 

Pyruvate (11360070, Invitrogen) at 37 °C and 5% CO2. After being trypsinized, the cells were 

suspended in complete DMEM media supplemented with 20% FBS, 1% GlutaMAX, 1% 

penicillin-streptomycin, and 1% Sodium Pyruvate. The cell suspension was adjusted to 0.5 × 

10^6 cells per ml. Next, 1 ml of cell suspension was placed into a 120 µm opening JeWell plate 

for 10 min to allow for cell adhesion and to get approximately 80 cells per JeWell. The excess 

cell suspension was removed, and the plate was gently washed once with DPBS (14190250, 

Invitrogen). After the wash, 2 ml of complete DMEM media was added to the plate. The cells 

were then cultured for 3 days at 37°C and 5% CO2. 

 

Fixation 

On the third day, the cells were fixed for 20 min in 4% paraformaldehyde (28906, ThermoFisher 

Scientific) at room temperature.  

4.2.1.3 Acquisition preparation 

The fixed samples were mounted under a Nikon Ti2 inverted microscope (“ECLIPSE Ti2 

Series", Nikon), equipped with a 60X objective (WI 1.27NA, Nikon). The microscope, the 

motorized stages, and the Multi-Dimensional Acquisition (MDA) process were controlled by 

MetaMorph software (Molecular Devices). A dedicated home-made plugin was integrated into 

MetaMorph to allow for the control of the soSPIM beam steering unit and therefore the sample 

illumination as previously described (Galland et al. 2015) (Beghin et al. 2022). MetaMorph was 

configured to run a multi-timepoint (30 timepoints every 20min), multi-position (20 selected 

positions) acquisition of the samples (60 z-steps, 1µm step-size), utilizing a set of Journals 

for automated position correction as previously described (Beghin et al. 2022). The multi-

timepoint acquisition was chosen to simulate a timelapse experiment on live samples but 



allowing for the assessment of the reproducibility of the analytical pipeline. MetaMorph was 

instructed to put the resulting TIFF image stacks into a specific folder on the acquisition 

machine.  

4.2.1.4 Workflow specific installation 

After installation, the OMERO conversion plugin (https://github.com/jhnnsrs/omero), the 

Standard Processing plugin (https://github.com/jhnnsrs/std) the Stardist segmentation plugin 

(https://github.com/jhnnsrs/segmentor) and the remote workflow scheduling plugin Reaktor 

(https://github.com/jhnnsrs/reaktor) were installed via the “Plugin Pane” from their respective 

GitHub repositories and started as virtualized internal containers managed by the platform. 

Gucker, the Arkitekt enabled file watcher app, was installed through its installer 

(https://github.com/jhnnsrs/gucker) on the microscope computer (Windows 10, Intel-i5,  

specs) and pointed to the output directory of MetaMorph. Gucker was connect to Arkitekt 

through its GUI and authenticated with the platform. 

 

Napari was installed on a portable desktop computer (MacBook Air M2, 2023) and the Mikro-

Napari plugin installed as described in the previous workflow. The Notebook was configured 

to share the same virtual private network as the desktop and microscope computer utilizing 

Tailscale. 

 

Docker Desktop was installed on two additional GPU-powered computers (both Windows 10, 

i7 Nvidia GPU 2080TI, 500GB SSD) and two instances of the CARE app were run through the 

terminal call of docker run –t jhnnsrs/segmentor arkitekt run easy, which downloaded and 

started the plugin, the Fakts connection link in the terminal was followed, and the app 

authorized on the platform. 

4.2.1.5 Data Preparation 

A previously trained Stardist3D model (Beghin et al. 2022) was zipped and uploaded through 

drag and drop on Arkitekt’s web interface. The Node Package Mode”, was reserved and the 

uploaded zip archive, was converted into an Model, specifying the model type as TensorFlow 

and its name as “Stardist soSPIM” on assignation. 

4.2.1.6 Workflow Preparation 

The below workflow was created through the Orkestrator workflow interface, setting the 

uploaded “Stardist soSPIM” model as default for the Stardist prediction node. The Convert to 



Images Node was given a position tolerance of40µm to merge motion corrected positions 

together. The workflow was deployed and reserved.  

 
Figure 64 The designed workflow for real time monitoring. 

4.2.1.7 Workflow Run 

The workflow was run, specifying a newly created dataset as the input. The MetaMorph 

acquisition was started on the microscope computer. During the acquisition, the workflow 

was monitored both on the Arkitekt web dashboard, back on the acquisition computer, as well 

as through inspecting the streamed segmentations on Napari, from the remote laptop. Napari 

was occasionally switched on and off, and moved to different networks, under assessment of 

the workflow still running. 

4.2.1.8 Performance Measurement 

For input/output performance measurements in a separate workflow run, the Maximum 

Intensity Projection Node was pointed to a reimplementation of the original functionality 

running in a standalone app on the Arkitekt platform computer. This implementation utilized 

the same API calls, but console logged the elapsed time for the IO heavy operation of 

downloading the image stack to memory, performing the intensity projection, and uploading 

the image stack again to the platform. All 120 (20 positions, 6 timepoints) measurements 

were analyzed in a separate Python script, performing normality checks (Shapiro-Wilk test) 

with SciPy (Virtanen et al. 2020) and subsequently analyzed for mean and standard deviation 

via NumPy (Harris et al. 2020) 



4.2.2 Results 

4.2.2.1 Arkitekt enables analytical workflow spanning multiple hardware. 

Analytical tasks such as acquisition and deep learning have vastly different hardware 

requirements, that are often not achievable on a single computer. Moreover, as acquisitions 

are very sensitive when dealing with long-term fast multidimensional acquisitions, it is 

preferable to avoid doing any compute intensive operations on the acquisition computer, to 

avoid any risk of crash. Arkitekt here circumvents these problems by offloading specific tasks 

to the hardware that they were designed for: The acquisition was performed on a standard 

desktop Windows machine with specific hardware drivers tailored to the microscopy, while 

the deep learning task could benefit from GPU-acceleration on dedicated hardware, which was 

readily available in the lab. The task of monitoring was handled by a third remote laptop, which 

could change location with the experimenter.  

4.2.2.2 Arkitekt brings analytical live insights to commercial microscopy. 

Modern bioimage workflow rely heavily on commercial microscope software to manage the 

acquisition. These software packages seldom provide a level of feedback or visualization for 

higher order analytical insights. In this example, Arkitekt while being completely agnostic of 

the control software (here MetaMorph), circumvents this limitation by streaming files from a 

shared folder to the platform, offloading the computation to other apps and wiring the results 

directly back to the acquisition computer or any other remote computer, enabling immediate 

live analysis and inspection of the results. 

4.2.2.3 Arkitekt supports integration of variably organized metadata. 

In this workflow, Arkitekt facilitates the dynamical ingestion and combination two popular 

formats of metadata into a unified schema in its database:  

 

1. Through the included OMERO conversion, it extracts the contained OME XML metadata 

which contains the position of the acquired image on the stage (as X, Y, Z coordinates). 

2. Non-contained metadata about the specific relative timepoint (T1, T2, T3 etc.) in the 

experiment were ingested through information provided inside the filename through a 

regular expression.  

 

Here, Arkitekt’s non rigidity in ingesting and combining metadata allowed to capture and save 

a complete view on the acquired biological data in context. 



4.2.2.4 Arkitekt can handle modern data loads of large scale bioimage experiments. 

In this workflow Arkitekt handles the data throughput of large-scale image data (microscope 

producing 260MB of image data every 20seconds), with minimal latency overhead. The 

Stardist segmentation algorithm is compute bound and cannot be used as a reliable indicator 

for the input-output (IO) performance and the platform overhead. The IO heavy Maximum 

Intensity Projection operation consistently performed a stack projection in around 573ms (+- 

0.32ms). This time includes loading the 260MB image stack into RAM, performing the 

operation and reuploading the new image stack to the platform. 

4.2.2.5 Arkitekt ensures reliable and observable execution of workflows. 

This multi-hour, multi-position workflow, demonstrates the general reliability of the platform. 

During its execution, the workflow was easily monitored on the web interface in real-time, 

inspecting the transition of datapoints through the analytical pipeline. As the Napari laptop 

shared the same network than the analysis computer, this monitoring could also happen 

remotely. As the Napari Visualization Node was marked as non-essential on workflow creation, 

its connection errors (forced disconnects), did not affect the overall acquisition. 

4.2.2.6 Arkitekt uncovers and eliminates analytical bottlenecks through 

parallelization. 

This workflow illustrates Arkitekt ability to utilize its built-in multi-worker paradigm to 

parallelize analytical workloads on multiple machines. In a previous non-parallelized run, the 

3D Stardist segmentation task was uncovered as the core bottleneck and limiting factor for 

the real-time analysis to keep up with the acquisition interval: Segmentation took around 1.5 

minutes, while the microscope produced images every 20 seconds. This insight was 

facilitated entirely through the inspection of autogenerated waterfall diagrams in the Arkitekt 

run interface.  

 

To eliminate this bottleneck in the illustrated run of the workflow, the node was instructed to 

parallelize on two additional computers inside the lab, linking up two more connected 

templates representing apps on the additional computers, to the segmentation node. The 

illustrated waterfall diagram then indicated the compensation of the bottleneck. While in this 

run this linking up was done prior to the workflow run, new templates/workers can also be 

linked up during the execution, when bottlenecks become evident. 

 



 
Figure 65 The Arkitekt Waterfall diagram, as inspectable on the WebUI inside Arkitekt, but trimmed for the first hour for clarity. The 
Predict Stardist node is unfolded showing all tasks, illustrating the processing time for each assigned task. The processing time 
corresponds from the time interval of assignation till the task is finished. As the node was parallelized 3fold, bars overlap, however 
as task length is still increasing, this node needs to be considered as bottleneck for the analysis, which is only compensated by the 
acquisition pause (processing could continue and catch up).  



4.3 Workflow III: Smart Microscopy 

 
Figure 66 A conceptual overview of the Smart Microscopy workflow 

 

To illustrate Arkitekt readiness for Smart Microscopy, a simple but powerful no-code example 

of a Smart Microscopy workflow was designed to perform the 3D live monitoring of cell 

clusters with a 40X objective, while scanning a large field of view with a 20X objective. In this 

workflow, the Micro-Manager open-source software (Edelstein et al. 2014)  was used for the 

multidimensional acquisition. The user interactively set up a grid of positions on large sample 

area (2.61mm x 2.61mm, corresponding to 4*4 stage positions) containing living fluorescent 



cells placed under an inverted microscope, with a 20X magnification objective. All the defined 

positions were then acquired at 20X magnification every 30 minutes for 24 hours. For every 

acquired 20X magnification image, nuclei were automatically segmented on a remote 

computer using Stardist (Weigert et al. 2020) algorithm, and cell clusters computed with 

DBSCAN algorithms (Ester et al. 1996) with certain properties were identified and marked. 

When one or more of such identified clusters were detected, the ROIs central coordinates and 

dimensions were translated to stage coordinates and sent back to the microscope. 3D stacks 

of these positions (25 planes, 0.5µm step size) were then collected at higher magnification 

(40X) on a well-adjusted ROI fitting the cell clusters size. After all the positive events were 

detected, acquired in 3D high-resolution and displayed on the web-interface, the next image 

was acquired at 20X magnification. 

4.3.1 Material Methods 

4.3.1.1 Installation 

Docker Desktop V20.04 was installed on a desktop computer (Ubuntu 22.04, Nvidia GPU 

2080Ti, Intel i9, 1TB SSD). The Arkitekt installer Konstruktor was download from its GitHub 

Repository (https://github.com/jhnnsrs/konstruktor) and started. The platform was installed 

following its guided installer, choosing a single user setup, with docker virtualization The 

Arkitekt service was started, and Konstruktor instructed to advertise the Arkitekt installation 

on the network. The Tailscale virtual private network client was installed on the same machine, 

and the machine added to the shared private virtual network according to their documentation 

(Tailscale 2023) 

4.3.1.2 Workflow Specific Installation 

After installation, the Standard Processing plugin (https://github.com/jhnnsrs/std), as well as 

the Stardist segmentation plugin (https://github.com/jhnnsrs/segmentor) and the remote 

workflow scheduling plugin Reaktor (https://github.com/jhnnsrs/reaktor) were installed via 

the “Plugin Pane” respective GitHub repositories and started as virtualized internal containers 

managed by the platform. Mikro-Manager was installed on the microscope computer through 

the installer hosted on (https://github.com/jhnnsrs/mikro-manager) and pointed to a 

previously installed instance of Micro-Manager (Edelstein et al. 2014) (nightly version of 

30.06.2023)(https://download.micro-manager.org/nightly/2.0/Windows/MMSetup_64bit_ 

2.0.1_20230630 .exe). All apps were connected, and authenticated with the platform. 



4.3.1.3 Sample Preparation 

Cell Culture 

HEP-G2 cells stably expressing H2B-eGFP fusion protein were maintained in DMEM media 

(11965092, Invitrogen) supplemented with 10% FBS (10082147, Invitrogen), 1% GlutaMAX 

(35050061, Invitrogen), 1% penicillin-streptomycin (15070063, Invitrogen), and 1% Sodium 

Pyruvate (11360070, Invitrogen) at 37 °C and 5% CO2.  

 

Preparation 

Cells were seeded at 30.000 cell/mL concentration on 18 mm round coverslips the day before 

the experiment and maintained under culture medium. On the experimental day, the existing 

media on the 18 mm round coverslips with the HEP-G2 cells was replaced with a fresh batch 

of Flourobrite DMEM (A1896701, Gibco) media, fortified with 10% FBS and 1% GlutaMAX. 

During imaging cells were maintained at a constant temperature of 37 degrees Celsius and 

CO2 levels were maintained at 5%.  

4.3.1.4 Microscope Preparation 

A Nikon Ti2 inverted microscope, was equipped with a thermal chamber and CO2 airflow. The 

Micro-Manager installation was instructed to load the corresponding device drivers and 

configuration groups for the SP2. The separately installed Mikro-Manager was configured to 

point to the correct configuration groups, mapping objectives (20X and 40X) as well as the 

main stages (X, Y, Z) and auto-focus stage.  

 

On the day of the experiment both 40x (Plan APO 40x/0.95, Nikon) and 20x (Plan API 20x/0.5, 

Nikon) objectives were installed. Automated pixel size calibrations were performed utilizing 

sparse cells on the mounted coverslips as guiding stars, through the integrated Micro-

manager plugin. In total, 16 positions on the coverslip were selected with the help of the Micro-

Manager Grid-Position manager. When the sample was mounted, the offset of the objective 

with the Perfect Focus System offset was noted. (“T-PFS Perfect Focus Unit", Nikon). 

4.3.1.5 Workflow Preparation 

The below workflow was created on the Arkitekt web-interface. It represents the logic of the 

acquisition of a single position and consequent cluster monitoring on this position. The 

workflow was deployed on the “Reaktor” scheduling app, naming the new Node “Image 

Clusters on Position”. 



 
Figure 67 The single position workflow as designed on the Arkitekt platform. Most properties here are set global to allow for 
maximum flexibility when using the workflow for testing out potential parameters for DBSCAN density-based cell clustering. 

A second workflow, now representing the wider multi-position acquisition was created, 

utilizing the just created primary workflow as a Node. The workflow was deployed, setting 

“Stream Multi Position Clusters” as Node name. 

 
Figure 68 The overarching workflow, which enables the multi-position, multi-timepoint acquisition of the workflow 

4.3.1.6 Workflow Run 

Mikro-Manager was started, connected, and authenticated with the Arkitekt platform. The 

Mikro-Manager Set Objective PSF-Offset Node was reserved and run two times, setting each 

objective’s previously noted offset. The workflow Node Stream Multi Position Clusters was 

reserved and started on the Arkitekt web interface, providing the following parameters as 

input:  Stage: Newly Created Stage, Acquire 3D Objective: 40X, Acquired 2D Objective: 20X, Eps: 



100 pixel, MinSize: 3, Iterations: 24, IterationSleep: 20 minutes). The streamed output was 

monitored on the Arkitekt web interface and on the Stage Detail Pane, which automatically 

displayed new positions and images. 

4.3.2 Results 

4.3.2.1 Arkitekt enables no-code smart microscopy workflows. 

In this exemplary workflows Arkitekt shows its capabilities as a no-code smart microscopy 

platform, providing modular building blocks spanning deep-learning segmentation and cluster 

algorithm-based event detection. None of the Nodes in this example, had to be specifically 

crafted for this workflow but utilized standard bioimage analysis methods. It is also worth 

noting that only one Node needs replacement to extend the workflow to account for other 

biological events (e.g., detecting large cells instead of clusters).  

4.3.2.2 Arkitekt enables exploration of biology at different scales 

In this workflow, Arkitekt demonstrates its fitness for the acquisition and exploration of 

biological samples at different scales. The integration of the microscope data with respective 

meta-data (e.g. Position on Stage, or Image pixel size) fully models the data graph of the Mikro 

service which can now be used to put all acquired data in full spatio-temporal context. Each 

40X data item can be inspected for example for its position on the sample space and the ROI 

of the cluster that informed the position. Instead of all metadata being barely understandable 

key-value pairs, Arkitekt allows its exploration through relational linkage. 



 
Figure 69 Arkitekt’s constructed data graph, as explorable through links and renders on the web interface.  

The clusters are not only explorable in their spatial context but as Arkitekt kept track of their 

positions and informed a new acquisition based on the current centroid of the cluster, 

clusters are easily monitored over time and in 3D. 

 

 
Figure 70 A exemplary time selection of a tracked cluster visualized using Napari (Plasma colormap) in 3D. This rendering was 
performed without any postprocessing by using the “Recontextualize Positions” Node, that merges neighboring positions by a 
given threshold (40µm) together into a new position. That then can be visualized as a timeseries directly in Napari. 

4.3.2.3 Arkitekt interfaces with open-source Microscopy 

This workflow shows Arkitekt ability to interface with open-source microscopy platforms, 

such as Micro-Manager. The here demonstrated Mikro-Manager app wraps Micro-manager 

through Pycro-Manager (Pinkard et al. 2021) on the microscope, necessitating the 

implementation of only a few convenience methods for the acquisition such as Acquire 2D 



and Acquire 3D (complete code in annex). As Arkitekt takes control of the time orchestration 

of the workflow, no complex higher-level features of the Micro-Manager platform such as the 

multidimensional acquisition are needed. Users can however fully rely on interactive 

functionality inside Micro-Manager to setup positions, explore the coverslip, or set acquisition 

settings. 

 

  

Figure 71 The protocols used to integrate open-source microscopy software, in this workflow Pycro-manager was used, which talk 
to the Java interface that in turn tasks to the MMcore interface written in C++ that then controls the microscope hard. For direct 
python-based access to the microscope, another popular software tool “Imswitch” could have also been used. As either software 
chooses to expose their respective acquire 2D implementation, this workflow can be run on both software platforms 
interchangeably. 



4.3.2.4 Arkitekt reduces analytical burden. 

A core challenge in microscopy workflows that monitor the dynamics in large cell populations 

is to find the right trade-off between the wanted spatial and temporal resolution of the 

acquisition. Higher spatial resolution (e.g. through a different objective) conflicts with high 

temporal resolution as the field of view is now smaller. Here we illustrate how Arkitekt can be 

used to alleviate this tradeoff. In a comparable scenario to this workflow, that does not use a 

guided acquisition technique, samples would have to be imaged at a much higher time 

interval, limiting for example the ability to track cell movement. In addition, such an experiment 

would occupy a significantly larger storage space, increasing the analytical burden.  

Comparing the two approaches, the adaptive strategy excels in a few regards. It saves a 

tremendous amount of disk-space (2,546 GB vs 50 GB), it drastically saves time (23.8 min 

FOV vs 8.2 min per entire field of view) and reduces light induces toxicity on the surrounding 

cells. 

 
Figure 72 Comparison of a classic 40X monitoring strategy, were the same field of FOV is being monitored, vs the smart workflow strategy.  
The smart-workflow strategy panel displays two potential scenarios with high and low cluster density, and their respective time and space 
burdens. 

  



5 Discussion 
This work established Arkitekt software platform as a possible solution to the overarching 

challenges of modern bioimage analysis workflows. It showed its capabilities as a highly 

adaptive open-source framework for modern bioimage analysis in demonstrating its features 

on three exemplary workflows: combining multiple bioimage apps and scripts interactively, 

providing real-time distributed analysis in a multi-dimensional microscopy framework, and its 

applicability as a scheduler for Smart Microscopy. 

 

Arkitekt addresses the concerns and challenges of modern bioimage workflows through a 

holistic open-source framework approach. As compared to the young body of literature, 

Arkitekt stands out due to its capability to establish interoperability via its computational and 

data backbone that seamlessly connects multiple bioimage apps and scripts, tailored to the 

scientist’s specific need. It also provides a unique set of features to orchestrate these tools 

interactively and in real-time, allowing advanced data flow and facilitating human in the loop 

analysis. These features are enabled through a set of user-friendly abstractions that allows 

non-experts to easily design parallelizable and universal workflows visually, without having to 

worry about the underlying hardware. 

 

In accordance with the principles of FAIR (Wilkinson et al. 2016) it employs strategies to 

address the needs of modern scientific data and metadata management, providing the user 

with the ability to explore their data-graph programmatically and in usable interfaces.  

 

Accounting for the challenges of the developers, building our modern bioimage tools, Arkitekt 

provides easily integrated features to create responsive and usable interfaces for their tools. 

It allows developers of tools to fully rely on the libraries and hardware they deem necessary 

and gives them full flexibility to build them as standalone dedicated apps or integrated plugins 

a la ImageJ. 

 

The Arkitekt platform is now fully operational and comes with a well packaged set of 

supporting libraries and an emerging interactive online documentation.  Indeed, Arkitekt is 

already employed outside of its original lab environment, powering the analysis in an 

integrated solution for light-sheet organoid screening. A standalone microscope and analysis 

setup, ORGANOSCREEN, integrates analysis workflows akin to the Workflow, extending them 

to new biological questions such as cell division event detection. It additionally integrates 



phenotypic classification of the acquired data, and feeds the now structured data to an 

external dedicated big-data analytics database.  

 
Figure 73 The ORGANOSCREEN platform, with Arkitekt orchestrating the automated analysis pipeline. 

 

However, as an early-stage build, and given Arkitekt’s development in the scope of a doctoral 

thesis, this last section will now address some core limitations in the design and 

implementation of the framework. It will then further shed light on potential future applications 

and extensions to the Arkitekt platform. 

5.1 Limitations 

5.1.1 Maintenance 

A question that every new software solution especially in the sciences needs to face is that of 

maintenance. Arkitekt’s maintenance is currently hinging on the support of the author of this 

thesis, which even though committed to providing support, will not be able to stem the 

maintenance alone. However, given Arkitekt’s highly modular design, some of its supporting 

libraries have already seen community support and acceptance and are openly being 

developed as open-source projects with little maintenance effort.  

5.1.2 Yet another framework 

One of the core critique points of the Arkitekt platform is that, even though it tries to aim to 

provide a unified framework for modern analysis, it could just further the fragmentation of 

tools in this space by providing yet another protocol to make workflows interoperable. It only 



serves its purpose, if it or a future implementation sees a wider adoption in the community. 

This adoption relies on the feasibility of Arkitekt for advanced workflows which in turn relies 

on the availability of tools that are interoperable with the platform. Even though Arkitekt’s set 

design goal is to make the tool developer experience as enjoyable and flexible as possible, it 

so far has only seen improvement and iteration through feedback from a selective few inside 

the lab and our collaborators and could benefit tremendously from a wider integration of 

opinions that would shape the developer experience.  

 

5.1.3 On programming support 

Even though Arkitekt is written with an open API that is reliant on open web standards, which 

are supported by almost any programming language, client libraries that transfer the data and 

establish the scheduling in their respective programming paradigm need to be implemented 

by the respective programming language. This includes the transfer protocol powered by Zarr 

(Miles et al. 2020) and the dedicated actor provision model of Arkitekt. These protocols follow 

open, documented standards but lack widespread adoption in other programming languages. 

As such, dedicated client libraries for the Arkitekt platform are currently only developed for 

Python and JavaScript/Typescript, with plans for making a client in Rust (Matsakis and Klock 

II 2014). First class programming support for both C++ and Java islacking in Arkitekt’s current 

iteration, limiting widespread deep support for other bioimage analysis software. 

5.1.4 On latency 

One of the core limitations of Arkitekt and the source of latency in distributed workflow 

execution is the performance of the broker, who is responsible for routing messages to the 

different apps and needs to handle the most requests per second. Arkitekt uses RabbitMQ for 

routing, which itself introduces only small latency (~10ms under normal load). However, this 

routing is protected by the WebSocket API, that in addition to authenticating the request also 

currently persist the message into the database directly. This increases the cumulative 

latency in task assignment to the range of 50ms per task, depending on the network 

connection. For some bioimage workflows, such as in calcium event detection in neuronal 

populations or molecule tracking in single-molecule localization microscopy, where events 

need to be detected and reacted upon with millisecond precision, this latency becomes a 

critical bottleneck and renders the distributed workflow scheduling unperforming. Even though 

local workflow execution can circumvent this latency problem, these workflows are then 

limited to the set of tasks that are implemented in the software. Other lower latency protocols 



for remote task assignment are theoretically feasible (e.g. using ZeroMQ (“ZeroMQ”)), but are 

currently not implemented, establishing this latency as a core limitation for true millisecond 

real-time performance. 

5.2 Perspectives 

Arkitekt is not a finished development and is constantly iterated on, aiming to make it 

adaptable to new scenarios of bioimage analysis. While at the time of writing, this adaptation 

to the scenarios is discarded in favor of sustainability improvements such as bug-fixing and 

documentation, a few perspectives for the platform feel worthwhile exploring. 

5.2.1 New Containerization Opportunities 

Just like docker revolutionized the containerization of applications in the last decade, one 

technology is poised to provide a similar paradigm shift in this decade. WebAssembly 

(Rossberg 2019) originally emerged out of the need to provide efficient computation to the 

browser beyond JavaScript, and stands as an intermediary programming language that other 

languages can compile to. It enables sandboxed execution environments but also lower-level 

hardware access and is shaping to become a new solution for containerized applications. As 

such, it does not suffer from some container hurdlers, like cold starts, that limited the older 

technologies applicability to real-time workflows. Integration of the Web Assembly standard 

could therefore push Arkitekt to become a more reproducible and performant software 

solution, enabling containerized and reproducible environment, even when interfacing with 

microscopes. 

5.2.2 Graphical Database management 

Arkitekt currently employs the relational PostgreSQL (Rowe and Stonebraker 1987) database 

for its metadata storage. This provides an industry standard and reliable storage solution. 

However, as this metadata is considerably highly relational, a call for other database systems 

like graph databases could be justified. These database types, implemented for example in 

Neo4J (“Neo4j Graph Database"), can alleviate performance bottlenecks when highly 

relational data queries are executed against the database. Indeed, they were a core alternative 

consideration to the relation database type deployed in Arkitekt, but decided against as the 

developing community has not settled on a universal querying interface. Should these 

database types however find more widespread adoption, they would clearly warrant 

integration and could help uncover new highly relational insights in the connected network of 

microscopy data.  



5.2.3 Extending to other Domains 

This first iteration of Arkitekt provides data types to work with microscopy data. However, 

following the modular design decision of Arkitekt, only the Mikro service of the platform was 

specifically developed for microscopy data. The rest of the platform, including task 

assignment, workflow scheduling, authentication and authorization, app bundling, are 

standalone modules that can provide the power of real-time workflows to other data settings. 

One potential application could be the world of behavioral experiments that encounter a 

similar problem to the setting of Smart Microscopy: In closed loop experiments, analytical 

insights of the animals behavioral need to be fed back onto the ongoing experiment. A broad 

software arsenal in this space like Bonsai (Lopes et al. 2015) and more recently Autopilot 

(Saunders and Wehr 2019) have already shown the merit of applying reactive and distributed 

workflows in these settings, and can also integrate deep learning algorithms i.e. for pose 

estimation  (Mathis et al. 2018). Joining efforts in finding a unifiable solution to both worlds 

could spark new experimental ideas, such as combining behavior-driven (e.g., through pose 

estimation) and neuronal-event-driven (e.g., through calcium imaging in vivo) closed loop 

experiments. 

5.2.4 The Supergraph 

Arkitekt in its current iteration relies on multiple API Endpoints per module that can be queried 

separately through their respective client. As discussed, this was a deliberate design decision 

to let developers separate concerns and develop apps that specifically focus on their given 

problem set. However, the exploration of scientific data is inherently highly relational and with 

the trends towards more multi-modal data, and given the call for more comprehensive and 

automated ontologies, Arkitekt could benefit from a more universal outward facing data API. 

One potential direction this could take is the Supergraph approach pioneered in projects like 

Wundergraph (“Wundergraph”, 2023) and Apollo Supergraph (“The Supergraph: A New Way to 

Think about GraphQL”, Apollo Team). This approach uses a federated protocol that merges 

multiple GraphQL Schemas and endpoints together in one unified accessible schema, that 

can then be used to retrieve highly related information or information storage in ontologies in 

one go, using the similar accessible Syntax of a GraphQL.  



 
Figure 74 The GraphQL Supergraph with two different services (here Mikro and the fictional Behavioral service). Both services can 
stand and develop completely standalone but can be merged to a unified and inspectable service. 

5.2.5 Large Language Model Integration 

ChatGPT (“ChatGPT”, OpenAI) has dramatically reshaped our perceptions of what modern 

Natural Language Processing (NLP) networks are capable of. Recently, it and other Large 

Language Models have gained even more traction with their new ability to yield executable 

code, which can establish a Language-Machine Interface without any programming expertise. 

Recent discourse highlights the potential benefits of integrating intelligent agents more 

closely with microscopes to enable sophisticated interactions via language (Carpenter, Cimini, 

and Eliceiri 2023). However, despite their advanced capabilities, these models are not yet 

adept at understanding complex multi-layer systems programming, as employed in 

microscope control software. They excel at integrating with high-level interfaces, like NumPy 



or Pandas, and when automating routine tasks. Arkitekt Nodes, with their well-documented 

interfaces to tools, could serve as a crucial interaction layer for Large Language Models to 

interface with hardware, providing an orthogonal additional way of automation to workflows, 

and enabling conversational microscopy. 

 
Figure 75 A conceptual integration of large language models into the Arkitekt ecosystem. 

 

5.3 Concluding Remarks 

The disciplines of modern microscopy and bioimage analysis have never been more exciting 

and are continuing to shape our understanding of what images of our biology can convey. 

Their methods and workflows allow us to delve ever deeper into the scales of our biology, 

uncovering new insights left and right, disobeying long-thought laws on the way. 

 

However, in this flourishing field, the gap between developers and end-users is ever increasing, 

limiting the tools’ full ability to advance the field they were designed to serve: biology. 

 

Integrative solutions like ImJoy (Ouyang et al. 2019), BioImageIT (Prigent et al. 2022) and 

potentially Arkitekt will help in democratizing these tools, bringing them to wider audiences. 

Conceivably being disregarded as convenience methods, they serve a common goal: to further 

the collaborative nature of science and to bridge today’s methods of a selective few, to 

methodologies for everyone. 
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a b s t r a c t

We present a computational framework to simultaneously perform image acquisition,
reconstruction, and analysis in the context of open-source microscopy automation. The
setup features multiple computer units intersecting software with hardware devices and
achieves automation using python scripts. In practice, script files are executed in the acqui-
sition computer and can perform any experiment by modifying the state of the hardware
devices and accessing experimental data. The presented framework achieves concurrency
by using multiple instances of ImSwitch and napari working simultaneously. ImSwitch is a
flexible and modular open-source software package for microscope control, and napari is a
multidimensional image viewer for scientific image analysis.
The presented framework implements a system based on file watching, where multiple

units monitor a filesystem that acts as the synchronization primitive. The proposed solu-
tion is valid for any microscope setup, supporting various biological applications. The only
necessary element is a shared filesystem, common in any standard laboratory, even in
resource-constrained settings. The file watcher functionality in Python can be easily inte-
grated into other python-based software.
We demonstrate the proposed solution by performing tiling experiments using the

molecular nanoscale live imaging with sectioning ability (MoNaLISA) microscope, a high-
throughput super-resolution microscope based on reversible saturable optical fluorescence
transitions (RESOLFT).
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Specifications table

Hardware name Sync-Scope
Subject area Biological sciences
Hardware type Imaging tools
Closest commercial analog MetaMorph, Molecular Devices
Open source license GNU General Public License (GPL)
Cost of hardware 2.000–4.000 EUR
Source file repository https://zenodo.org/record/7561142

Hardware in context

Microscopy is a powerful tool for cell biology. Still, it becomes costly and time-consuming when pushed towards high
throughput, such as when imaging extended areas for a prolonged time. Therefore, microscopy automation is an increasing
area of interest in biological imaging [1] and high-throughput screening [2,3] applications. However, automation imposes
multiple challenges from the hardware and software integration side, particularly regarding computational efficiency and
workload distribution. Most solutions often rely on commercial software and hardware, making it difficult to adapt to dif-
ferent microscopy modalities and extend support to new applications.

Open-source software and hardware solutions for microscopy automation are relatively new, and most either rely on
commercial microscopes [4,5] or are tailored to a specific technique [6–10]. Different general solutions have been proposed,
such as Pycromanager [11], AutoScanJ [12], and MicroMator [13]. They interface with lManager [14], a well-established
open-source software package with extensive driver support, distributed as an ImageJ [15] plugin. However, lManager pre-
sents limitations as the complexity of the microscopy modalities increases. Some examples are controlling multiple cameras
independently, synchronizing multiple hardware devices, performing simultaneous image acquisition and reconstruction, or
controlling specialized devices such as spatial light modulators or point detectors. Python-based software alternatives have
been developed [16–19], making debugging and contributing more convenient in contrast to Java.

Sample-adaptive automation methods for image acquisition have been recently proposed [20,21], in which experiments
and image analysis are combined to achieve fast, directed imaging by adapting to events in the sample of interest. Further-
more, microscopy automation in high-throughput imaging has been implemented using a custom-made low-cost micro-
scope [22]. Imaging extended sample areas by tiling has been previously achieved through microscope automation in
light-sheet [23,24] and STED [25] microscopy.

Several microscopy modalities require a reconstruction algorithm to turn the acquired data into final images. Techniques
such as single-molecule localization microscopy (SMLM) [26–28], parallelized RESOLFT [29–32], structured illumination
microscopy (SIM) [33,34], super-resolution optical fluctuation imaging (SOFI) [35], universal live-cell super-resolution
microscopy (SRRF) [36], among others, require reconstructions algorithms to output a high-resolution image from the
experimentally-acquired series of raw images. Furthermore, light field microscopy (LFM) [37], Fourier ptychography micro-
scopy (FPM) [38], and lens-free on-chip microscopy [39] require computational algorithms to generate microscopy images
by gathering information from different sources, such as the angle of the illumination light. However, the reconstruction pro-
cedure is often performed sequentially after all image data is acquired. This can be a limiting factor if the users need a rapid
answer to adapt imaging schemes, optimize sample preparation or perform time-consuming experiments. Multiple efforts
have been placed to accelerate the reconstruction process using a Graphics Processing Unit (GPU) [40–43]. Nevertheless,
these techniques would greatly benefit from distributing computational resources and scheduling the experimental tasks
in real time.

Image analysis of data in real-time is a promising direction, with solutions like ImJoy [44], BioImageIT [45], and cell pro-
filer [46]. They implement several algorithms and plugins, which can, in principle, be applied to data acquired directly from
the microscope. However, combining these pipelines with the entire experimental acquisition scheme, for example, using
their output as active feedback on the acquisition, reminds a challenge. Therefore, a general open-source framework that
integrates image acquisition, reconstruction, visualization, and data analysis and flexibly adapts to different microscopy
modalities is still missing.

Here we present a framework to simultaneously perform image acquisition, reconstruction, and analysis using ImSwitch
[19] and napari [47]. On the one hand, ImSwitch is an open-source software solution for controlling microscopes, adaptable
to different levels of complexity. It includes image acquisition and reconstruction modules, where the experimental images
can be visualized in real-time. On the other hand, napari is a community-driven image viewer with multiple plugins for
image analysis and is widely used in the microscopy field. Our solution is based on the simple concept of file watching,
where different units monitor a filesystem searching for new files to process and add the arriving items into a queue.
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The solution doesn’t require implementing any client–server-based approach, which relieves the burden of using a cen-
tralized server in terms of complexity, security, and dependency on other software packages. We provide a scripting engine
in python that enables microscopy automation of any experiment designed by the user. The experiments are orchestrated
remotely by creating and editing the scripts and adding them to the acquisition unit queue. However, the list of microscope
commands is executed directly in the acquisition unit instead of running independent hardware orders through function
calls over a network, which would limit the experiment’s time resolution. Security is not a concern since the computer units
are assumed to be in the same laboratory or institute, or remotely shared with specific and known users. The proposed
framework can even be implemented without an internet connection, either by using multiple computers or running all
the instances on the same machine, just by having a local or remote filesystem.

We provide the design files containing the main functionality of the file watcher as well as its integration with napari and
ImSwitch. Furthermore, it can be easily implemented in other python-based software [16–18] both for acquisition and
reconstruction. For example, the user can develop their own python scripts for image reconstruction and add them to the
workflow by including the file watcher model.

The imaging data and metadata are fetched from ImSwitch and saved into either Zarr or HDF5 files, and the reconstructed
images are then saved in both OME-Zarr and Tiff. OME-Zarr is an implementation of the Zarr format using the Open Micro-
scopy Environment (OME) specifications [48]. Zarr can store chunks of data in a directory tree, which is highly beneficial for
access times in a shared filesystem. The chunk retrieval time was compared to HDF5 and Tiff, and proven to be less sensitive
to data location. This is the main reason we used Zarr for our experiments when using different physical computers. We have
implemented a napari plugin that orchestrates the ImSwitch experiments and displays the images as layers. The plugin dis-
plays the metadata of each file to enable experimental reproducibility.

Increasing the microscope throughput is a common challenge in super-resolution microscopy. In SMLM, studies have
shown how illuminating the sample with uniform illumination [49,50] increases the field of view up to 200 � 200 lm2.
Using parallelized illumination and specialized optics [30,51] in RESOLFT, up to 130 � 130 lm2 was reached. These
approaches can be combined with tiling to extend the throughput further. We apply the proposed framework to tiling
super-resolution images using the molecular nanoscale live imaging with sectioning ability (MoNaLISA) [31], a microscope
based on the concept of reversible saturable optical fluorescence transitions (RESOLFT) [52–54]. The microscope setup aims
at parallelizing the illumination using patterned light to extend the field of view (FOV) and achieve faster recordings. Our
approach provides a general framework that can be applied to a variety of microscopy techniques and experiments to
increase the throughput not only in acquisition but also in reconstruction and analysis.

We have focused on parallelizing the acquisition and reconstruction tasks by distributing the computational workload in
different units, further increasing the throughput of the technique. We have performed two experiments that encompass
tiling and timelapse imaging to extend the microscope throughput further. We imaged actin cytoskeleton and mitochondria
in human epithelial cells and other cells of increased morphological complexity, such as neurons. The proposed solution
extends the recording to multiple cells and can be applied to whole sample screening in theory. As proof of principle, we
recorded a FOV of 160x160lm2 from 5x5 tiles of 38x38lm2. The experiment was performed using a Python script executed
in ImSwitch, which follows two steps: (1) widefield-based user registration of the focus in each tile, and (2) automatic
RESOLFT imaging. The registration was needed to compensate for movement and tilt of the sample respect to the stage.
We added overlap between the tiles so that the reconstructed images could be aligned in a post-processing step, reducing
the constrain of stage precision in (x, y).

Hardware description

We present a file-based synchronization framework to simultaneously perform image acquisition, reconstruction, and
analysis in microscopy applications. Fig. 1 exemplifies a typical microscope automation procedure using the proposed frame-
work, where three units are synchronized to perform high-throughput imaging of a neuronal cell by tiling. One cycle consists
of (1) imaging a FOV (i.e., tile) using a microscope and the acquisition unit, which will generate the raw data; (2) reconstruct-
ing the raw data into a final image of the tile; and (3) visualizing the image as a napari layer and post-processing. The cycle is
concurrently performed multiple times. Essentially, the units will run independently (see Fig. 1 timeline) to extend the FOV
by repeating the cycle for each tile. All the tiles will then be stitched to build the final image, thus expanding the micro-
scope’s throughput. The execution is handled using python scripts, which contain all the commands to perform the exper-
iments, acquire data in each tile, move the stage between each tile, and collect the user parameters from the GUI.

It is important to remark that the presented approach is not limited to a specific number of units, and multiple units can
run on the same physical computer. Each implementation will depend on two factors: the performance and specifications of
the computers and the requirements of the experimental acquisition and data reconstruction applications (CPU usage, RAM
occupied, and time of processing). For example, in microscopy applications where the recorded images are large, the recon-
struction process might allocate a significant portion of the RAM and result in computer freezing, compromising the exper-
iments. In this case, using separate computers for each unit is beneficial to maximize the resources. Then, the acquisition will
not be affected by delays in the reconstruction unit.

If the resources of the computer allow, the framework can run on the same computer. This can be implemented either
with the same unit for acquisition, reconstruction, and analysis using multithreading or by distributing the three tasks to
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different units. We chose the latter approach because it offers two benefits with respect to the first. Firstly, it is compatible
with multiple software for data acquisition and image reconstruction. For example, the framework can use ImSwitch for
acquisition and a Python script for reconstruction using the File Watcher python file provided (Design Files). Secondly, mul-
tiple microscopes (acquisition units) can delegate to the same unit for image reconstruction, which can be beneficial in
microscope facilities and laboratories.

Each of the presented units serves a different task: acquisition, reconstruction, and orchestration. Firstly, the acquisition
unit features an ImSwitch instance with the control module – imcontrol. This unit will perform experiments on the micro-
scope by controlling hardware devices and storing the imaging data (raw data) and experimental metadata in disk or RAM.
Each experiment is represented by a python script file and is executed in the scripting module of ImSwitch – imscripting. The
scripts have access to the custom-designed and exported Application Programming Interface (API), which can be easily
extended to include new functionality. In practice, scripts can automate the microscope by changing the state of any hard-
ware device and accessing the resulting data. Secondly, the reconstruction unit features an ImSwitch instance with the
reconstruction module – imreconstruct. This module is designed for those microscopy applications that require signal-
processing algorithms to generate the final images from the raw data (e.g., n frames are reconstructed into one image).
Finally, the orchestrator instance features a napari instance with the napari-file-watcher plugin. The plugin provides basic
script editing functionality and displays the new reconstructed images as napari layers for further analysis. The user per-
forms experiments using the script editing module in the orchestrator graphical user interface (GUI) and visualizes the
incoming data as image layers.

Fig. 1. General framework for simultaneous experiment acquisition, image reconstruction, and visualization using multiple computational units. The
microscope experiments are performed in the acquisition unit by executing python scripts, which are created and distributed by the orchestrator unit. The
user specifies the acquisition parameters in the scripts, such as number of tiles and laser powers. The recorded data is saved on disk (raw data), which acts
as a queue for the image reconstruction unit. The image reconstruction unit turns the acquired raw data into tiles in a parallelized manner (see timeline in
the top left corner) and can be visualized and post-processed in the orchestrator unit. Repeating this cycle gives an image of a neuron with an increased FOV.
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The benefit of using napari for image analysis is that the reconstructed data can be post-processed by one of the available
plugins in the napari hub (for example, image segmentation). Users can also develop plugins and contribute to the broader
community. Image reconstruction is separated from visualization to cover those applications where raw data require special-
ized scripts for reconstruction that are not distributed as napari plugins.

The proposed solution can be extended to other experimental applications by simply designing different scripts, for
example, performing a 3D stack or timelapse imaging. A complete list of API functions for scripting is available in the readthe-
docs documentation of ImSwitch, as well as instructions on adding new functionality (https://imswitch.readthedocs.io/en/
stable/). It also contains a detailed description of the experimental metadata of ImSwitch and how to load it, the GUI com-
ponents, and information on how to expand ImSwitch to multiple microscopy modalities and hardware devices. Further-
more, the framework can be generalized to other low-cost computing devices, such as Raspberry Pi, Arduino, and Jetson
Nano. The only requirement is a shared file system and a python software package for image reconstruction and file
watching.

The software pipeline is described in Fig. 2. The user interacts with the orchestrator unit, which is implemented as a
napari plugin (napari-file-watcher) and contains two widgets (Fig. 2a). The ImSwitch scripting widget implements an editor
that the user can use to define experiments and adjust imaging parameters. Once the script is finalized, it is added to the
shared filesystem (FS). The second widget, the File watcher, displays the experimental results as napari layers (already recon-
structed). The user can post-process the images using existing napari plugins or develop other processing pipelines on top.

Scripts in FS? Add to queue
YES

NO

wait pollTime

File watcher logic
wait pollTime

YESNO

Acquisition unit (ImSwitch imcontrol)

File watcher widget Acquisition engine

Execute script in ImSwitch

sigScriptExecutionFinished.emit()

sigNewFiles received

Add iles to queue

runScript()Files to execute?end

Watcher frame widget

Reconstruction unit (ImSwitch imreconstruct)

YESNO

Reconstruct images

sigExecutionFinished.emit()

sigNewFiles received

Add iles to queue

sigReconstruct.emit()
images to

reconstruct?
end

Reconstruction engine

ImSwitch scripting widget File watcher widget

Orchestrator unit (napari)

De ine experiment as a Python script

Add script to shared ile system (FS)

Start

sigNewFiles received

Display images as layers

post-processing (optional)

Visualize resultsStart experiment

FolderScript (.py ile)

Reconstructed data
(.zarr & .tiff iles)Raw data (.zarr ile)

Fig. 2. Software pipeline using multiple units. a. The orchestrator is an instance of napari with the napari-file-watcher plugin. The user interacts with the
orchestrator unit by defining experiments as python scripts, which are then added to the filesystem using the ImSwitch scripting widget. Once the
reconstructed images are received, they are displayed as napari layers available for post-processing. b. The logic for each file watcher in Python. It
periodically monitors a filesystem (FS), adds the incoming files to a queue and sends them using the sigNewFiles signal. c. The acquisition unit is an instance
of ImSwitch. The file watcher widget displays and tracks the new files in each folder. Whenever new files are in the FS, it adds them to a queue and executes
them sequentially. After every execution, the signal sigScriptExecutionFinished is called. d. The reconstruction unit is also an instance of ImSwitch, featuring
the imreconstruct module. The workflow is similar to the acquisition, with the difference that the files are raw images that are reconstructed with an image
processing algorithm. The reconstruction function is not called directly but through the sigReconstruct signal instead. This choice is due to the architecture of
the imreconstruct module. Solid lines represent direct connections, and dotted lines are calls using python signals.
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Each unit implements the file watcher thread (Fig. 2b) to monitor a folder periodically (pollTime) until new files arrive.
Then, it adds the files to a queue and sends them using the signal sigNewFiles. This signal is connected to the main engine in
each unit so that files are processed. We provide the file for the file watcher thread so that it can be used by other python
software in any of the units.

The acquisition and reconstruction units are similar (Fig. 2c-d). Each of them implements a file watcher thread that mon-
itors a folder selected by the user and then adds the files to a queue. Each file is processed sequentially, and a signal is emit-
ted when each execution is finalized. The acquisition unit deals with python scripts that execute the experiments (runScript)
and emits the signal sigScriptExecutionFinished. The reconstruction handles raw images that are reconstructed, followed by
emitting the signal sigExecutionFinished.

The user can select between saving the raw images in Zarr or HDF5 files in the acquisition unit. The metadata is also
included as an attribute (ImSwitchData) and contains all the experimental details needed for reproducibility. The reconstruc-
tion unit saves the data in both TIFF and Zarr files.

The file watcher functionality is implemented in the model layer of ImSwitch, and the orchestrator as an independent
plugin distributed in the napari hub. The widgets can be easily applied to other python software packages and monitor
any file extension added to the initialization function, providing generalization to multiple applications. A logger file is writ-
ten into the folder once the experiment is finalized. It contains information about the computer name and starting date, all
the files processed, and the time between arrival and end of execution of each item. Therefore, the performance of each com-
puter can be easily evaluated for different reconstruction algorithms and experimental applications using resource monitor
software, such as the Resource Manager in Windows.

Design files summary

Design file name File type Open source license Location of the file

Computer framework: Fig. 1.eps Figure Creative Commons
Attribution 4.0
International

Zenodo:
https://zenodo.org/record/7561142

Automation pipeline: Fig. 2.eps Figure Creative Commons
Attribution 4.0
International

Zenodo

Timelapse tiling script: tiling.py Python
script

Creative Commons
Attribution 4.0
International

Zenodo

Selective tiling script incl. registration:
timelapse.py

Python
script

Creative Commons
Attribution 4.0
International

Zenodo

Napari-file-watcher plugin: napari-file-
watcher.zip

Python
software

GNU General Public
License (GPL)

Zenodo and https://www.napari-hub.
org/plugins/napari-file-watcher
release v0.1.1

File watcher model: FileWatcher.py Python
software

GNU General Public
License (GPL)

Zenodo

File watcher ImSwitch acquisition widget:
WatcherWidget (ImSwitch imcontrol).
zip

Python
software

GNU General Public
License (GPL)

Zenodo

File watcher ImSwitch reconstruction
widget: WatcherFrame (ImSwitch
imreconstruct).zip

Python
software

GNU General Public
License (GPL)

Zenodo

Tiling widget: TilingWidget (ImSwitch
imcontrol).zip

Python
software

GNU General Public
License (GPL)

Zenodo

ImSwitch version (ImSwitch-2.0.0.zip) Python
software

GNU General Public
License (GPL)

Zenodo and https://github.com/
kasasxav/ImSwitch release v2.0.0
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Bill of materials summary

Designator Component Number Cost per unit -
currency

Total cost -
currency

Source of
materials

Material
type

Acquisition
unit

Dell Precision 5820
MT

1 2.500€ 2.500€ Dell

Reconstruction
unit

HP Workstation Z2
Mini G3

1 1.500€ 1.500€ Hewlett-
Packard

Build instructions

The requirements to implement the framework using different computers are a microscope with a workstation (acquisi-
tion) and a second computer to perform the reconstructions in real-time. If the acquisition computer is powerful enough,
both units can be executed in the same machine as well. The orchestrator can often be included in the acquisition or recon-
struction computers because it requires a minimumworkload. The user can implement real-time image analysis pipelines on
top of the visualized images using napari plugins in the orchestrator unit.

ImSwitch must be installed in both the acquisition and reconstruction units and napari with the napari-file-watcher plu-
gin in the orchestrator unit. This section provides a detailed description of the installation procedure and how to set up the
framework for experimental orchestration. We recommend that the user or developer reads the ImSwitch online documen-
tation to check for device compatibility.

ImSwitch installation and configuration

We have released a new version of ImSwitch (v2.0.0) that supports the features presented in this article, which is included
in the Python Package Index (PyPI). Therefore, the only necessary steps in order to install ImSwitch are to install conda and
run the following commands:

conda create -n imswitch-env
conda activate imswitch-env
pip install imswitch
imswitch

After installing ImSwitch, a configuration folder is generated in ‘‘Documents” > ‘‘ImSwitchConfig”. A standard procedure is
to add the setup file containing the hardware device list and software widgets to display in ‘‘imcontrol_setups” folder (see
more in the documentation). Upon installation, there is already a list of example files, and upon initialization, the user
can choose one of the available options. After ImSwitch is initialized, the setup file to load can be changed in ‘‘Tools” > ‘‘Pick
hardware setup. . .”.

The widget with the functionality for the file watcher needs to be included in the ‘‘availableWidgets” by the end of the
setup file as ‘‘Watcher”. Fig. 3 shows the ImSwitch GUI in the acquisition unit for the microscope that we employed in the
experimental part of this work (see Validation and Characterization).

The file ‘‘config”> ‘‘modules” contains a list of the GUI modules to be displayed. We recommend only having ‘‘imcontrol”
and ‘‘imscripting” in the acquisition unit and ‘‘imreconstruct” in the reconstruction unit.

Fig. 4 shows the reconstruction unit ImSwitch GUI. The reconstruction module is implemented for parallelized RESOLFT
strategies. However, different modules can be implemented and added to ImSwitch. It is also possible to use other software
reconstruction alternatives and implement the File Watcher widget, similar to how it is developed in the napari plugin.

Napari installation

Napari is available in PyPI as well. Therefore, to install napari:

conda create -n napari-env
conda activate napari-env
pip install napari
napari

After napari is installed, the plugin ‘‘napari-file-watcher” needs to be installed. The plugin can be installed from ‘‘Plugins”>
‘‘Install/Uninstall Plugins. . .”. The GUI is shown in Fig. 5.
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Fig. 3. ImSwitch GUI, acquisition unit. The GUI implements different widgets for the control of devices (‘‘Device control widgets”) and experimental
acquisition (‘‘Detector and image settings”). The ‘‘Data storage and recording” module saves data into disk or memory. The file watcher and other specialized
widgets are implemented in ‘‘File watcher and optional widgets”.

Fig. 4. ImSwitch GUI, reconstruction unit. The raw data is displayed in the ‘‘Raw data loading widgets” section, and the reconstructed data is in the
‘‘Reconstructed data visualization” module. The reconstruction algorithm parameters can be set in ‘‘Reconstruction algorithm settings”.
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Operation instructions

Before starting the experiments, all units must be synchronized by setting up the file watchers. The user selects the
filesystem folder, and folders for scripting and reconstruction are then automatically created. The following steps should
be followed to set up the experimental framework:

1. In the acquisition unit, the scripting folder can be selected by clicking on the ‘‘Browse” button and then check the ‘‘Watch
and run” box.

2. The best practice is to have a disk in the acquisition unit that can be shared over the network. This can be easily done in
Windows by opening File Explorer and right-clicking on the disk of interest, and then ‘‘Properties” > ‘‘Sharing” > ‘‘Advanced
Sharing” > ‘‘Permissions”. The user used in the reconstruction unit should be added here. However, other shared storage
options are also possible, as long as both the acquisition and reconstruction units have writing access to the filesystem.

3. In the acquisition unit, in the recording settings widget (bottom left of the GUI), the user can select the folder where the
experimental data will be saved, which will be a folder in the shared disk. Also, select Zarr as the file extension.

4. In the reconstruction unit, in the bottom-left corner and the widget ‘‘File Watcher,” the data folder should be selected, and
then check the ‘‘Watch and run” box.

5. The reconstructed data will be saved in a folder named ‘‘rec” inside the data folder. Select that folder in the file watcher
widget of the ‘‘napari-file-watcher” plugin, and then press ‘‘Watch and run.”

6. Finally, select the scripting folder (same as in 1.) from the scripting widget in the ‘‘napari-file-watcher” plugin, write
scripts or open existing ones, and then start the experiment by pressing ‘‘Add”.

The script can access any API exported function, and new functions can be easily added using the @APIExport decorator in
any controller. A list of the accessible functions is shown on the documentation page. Fig. 6 shows an example script for per-
forming timelapse imaging of N = 10 lapses in the (x,y,z) coordinates. Each of the lapses is a scan-based experiment that
saves the raw data on disk.

The scripting engine is in charge of executing the files in the acquisition unit (imscripting). It also has a GUI, which we
display in Fig. 7. It provides basic script editing functionality and the possibility to run and stop experiments. The GUI
can be helpful first to test, debug and implement the experimental scripts locally before using the full framework. After
the scripts are implemented, the orchestrator unit will be used to adapt the scripts further and send them to the acquisition
unit.

Fig. 5. Napari GUI and the napari-file-watcher plugin, orchestrator unit. The plugin contains two widgets: ‘‘ImSwitch Scripting” for editing and creating
execution scripts and the ‘‘File Watcher” waits for new images to be displayed.
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Fig. 6. Timelapse ImSwitch automation script. N = 10 lapses are executed in the (x,y,z) stage position coordinates. The ImSwitch API is exported and
accessible with the ‘‘api.imcontrol” call.

Fig. 7. ImSwitch GUI in acquisition unit, imscripting module for editing and executing scripts. The scripts can be loaded in ‘‘Filesystem browser”, edited, and
executed in the ‘‘Script editing” section, and a ‘‘Console” is implemented for debugging purposes.
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Validation and characterization

In order to validate and characterize the proposed framework, we have used the MoNaLISA [31] microscope. MoNaLISA is
a parallelized RESOLFT method that offers a large FOV (up to 50x50lm2) with an increased speed (0.3–1.3 Hz). We chose two
use cases related to timelapse and tiling images of extended regions for different biological structures: mitochondria and
actin in U2OS and neuronal cells. The main focus is to automate the acquisition using scripts and increase the microscope
throughput by distributing the acquisition and reconstruction workload using different devices.

Observing mitochondrial dynamics with super-resolution microscopy

MoNaLISA has been previously employed to study mitochondria dynamics in U2OS cells [31,32,55]. Mitochondria is a
highly dynamic organelle and demands an equally fast imaging strategy to follow its movements over the cell. Therefore,
throughput in this biological application means (1) the possibility of acquiring multiple frames with a minimum delay
caused by the computational acquisition and reconstruction and (2) observing the dynamics in multiple cells to acquire sta-
tistical relevance. Previously, to keep the temporal resolution, experiments were first performed, and the data were recon-
structed and analyzed offline. However, there will be a delay until the user receives substantial feedback, such as whether
the selected cells presented relevant dynamics. Visualization of experimental data in real-time is also crucial in the case of
drug treatment when the administration of a drug needs to happen at a specific moment during the acquisition. Our
approach can be beneficial to perform adaptive imaging, adjusting imaging parameters based on the analysis of the data [21].

The use case presented involves observing cell dynamics with super-resolution details, such as visualizing the outer
membrane compartment in an extended region by performing a cyclic time-lapse experiment. In particular, extending
the FOV can be obtained using a motorized stage that moves from tile to tile performing one acquisition at each position.
If this procedure is repeated (here ten times), the cell dynamics can be observed in the entire extended area. In order to
maintain the stability of the focus during the movement, a focus lock strategy is implemented following previously-
published instructions [25]. The focus lock keeps the focus automatically over time by using the cover glass reflection
and successfully adjusts to the 2x2 tiling movement.

The experimental design and results are shown in Fig. 8. A script contains the experimental instructions to be sent to the
microscope. In this case, we perform a MoNaLISA scan in every tile and save the files on the hard drive. In between scans, the
motorized stage moves to the following area. We use the digital outputs of a data analog card (NIDAQ PCI 6371) to synchro-
nize hardware devices (e.g., lasers and stage axis) with the camera (externally triggered) using a pulse scheme optimized for
RESOLFT imaging. The script can successfully wait for the end of the scan by using exported signals in the imscriptingmodule
of ImSwitch.

By combining MoNaLISA with the presented multiunit framework, higher throughput can be achieved by distributing the
reconstruction workload (limited mainly by the RAM usage) and improving the computation time while keeping the lateral
and temporal resolution introduced by the technique.

Selective tiling in neurons and U2OS cells with a user-driven approach

As a second application, we extended the FOV of the MoNaLISA microscope by applying the proposed framework in tiling
experiments to achieve higher throughput. We imaged extended sample regions of neurons and U2OS cells. Neurons are
highly polarized cells that communicate with each other via specialized sites called synapses, which occur along neuritic
processes such as axons and dendrites. These processes grow from the cell body and expand over large areas with high mor-
phological and functional complexity relevant to synaptic organization and transmission [51]. Therefore, tiling in super-
resolution microscopy is a method that can highly benefit neuronal imaging by massively expanding the FOV [25].

We developed a tiling script that interacts with the user in order to perform selective tiling. The script consists of two
steps. Firstly, user-driven registration of focus and tiles is performed, with the possibility of annotating the tiles that can
be skipped because they do not contain biological information. Secondly, the microscope performs automatic tiling of the
selected tiles, performing a MoNaLISA scan in each position (Fig. 9a). The stage moves automatically between the tiles,
and the script interacts with the user through a dedicated widget (TilingWidget).

The MoNaLISA optical setup used has a field of view of 38 � 38 lm2 and collects the raw data by scanning the sample
with piezoelectric actuators (3-axis NanoMax stage from Thorlabs). To move in between fields of view, we employed the
stepper motors of the stage controlled through USB and integrated into ImSwitch using the BSC203Manager (which calls
the python library thorlabs-apt-devices), and a 14 % overlap between tiles. The raw data consist of a stack of 324 frames
and the acquisition time is 8 ms per frame (2.6 s per image), and we added an extra time of 1 s after each stage movement
to prevent from drift. Because of the tilt between the sample and the stage, the z position was slightly different for each tile,
which is why we added a widefield-based registration. This process could be further improved by characterizing the tilt or
automatically finding the focus in each tile. We used the Fiji plugin MosaicJ for stitching the images [56].

We performed 5x5 tiles (Fig. 9b) to extend the FOV from 38 � 38 lm2 (Fig. 9c) to 160 � 160 lm2 (Fig. 9d-e) while keeping
the super-resolution features introduced by the microscope (Fig. 9f-h).
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Furthermore, we extracted the reconstruction time of the remote unit from the logger files. The logger files contain infor-
mation about the processing computer and the time of execution of each file. We displayed the reconstruction time for 200
acquisitions in Fig. 9i. The total reconstruction time ranged between 25 and 45 s when using an external unit and 7–10 s if
the unit ran on the same computer as the acquisition machine.

Evaluation of acquisition and reconstruction latency and resources

The system can be employed either by using multiple computers or running ImSwitch instances within the same
machine. In order to evaluate whether multiple computers are necessary, the workload of each process needs to be assessed
for each application. In Table 1. we characterize the occupied resources of the acquisition and reconstruction units in terms
of RAM, CPU usage, and computation time for the proposed use cases. We have done so by using the Resource Monitor in
Windows for the RAM and CPU usage and the datetime python library directly in ImSwitch to precisely compute the timings.

Results show that CPU usage is always low and close to idle (control) since our experiments use digital triggering from an
external data acquisition card. Also, the raw data is directly saved on a hard drive. CPU usage would be higher in the case of
microscopy modalities that require software triggering or real-time image processing. In our use cases, the RAM is the lim-
iting factor, occupying > 30 GB in total (especially in the reconstruction unit). Therefore, using a separate computer for the
reconstruction unit is beneficial for computers with less available memory. In our proof of concept, the reconstruction time
would then increase from 7 to 10 s to 30–50 s. This could be further improved using higher-speed networks or higher-
performance devices for computation or optimizing the Zarr data saving (e.g., chunk size).

Fig. 8. Cyclic time-lapse imaging of mitochondria in U2OS cells in a 2x2 (A, B, C, D) tile array. a The acquisition script (timelapse-tiling.py) drives the
microscopy automation acquisition by calling ImSwitch functions. Concurrent processing enables subsequent acquisition and reconstruction of the image
tiles. b Cyclic timelapse images are performed by imaging each of the tiles and sequentially repeating the procedure. Scale bar 5 lm. c-d The super-
resolution features can be observed during a prolonged time (10 super-resolved frames) for each tile independently in U2OS cells expressing OMP25-
rsEGFP2. A zoom-in visualizes the dynamics of selected areas in both confocal and MoNaLISA modalities. Scale bars 0.5 lm and 5 lm, respectively.
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Fig. 9. Selective tiling for extending the FOV to 160x160lm2 (25x25 tiles). a The focus positions are registered by the user using a widefield laser and an
ImSwitch widget. The user can skip the tile, thus adapting to the image content. The microscope then performs selective tiling by imaging only the selected
areas. b-c Schematic of the tiling scheme, including 14 % overlap, and visualization of a single tile (38x38lm2). d-e Imaging the actin cytoskeleton of U2OS
cells and primary hippocampal neurons expressing actinChromobody-rsEGFP2. Scale bar 20 lm. f-h zooming in Tile 1 in the U2OS cells (d), and comparison
between confocal and MoNaLISA. Scale bars 5 lm and 0.5 lm, respectively. i Reconstruction time of 200 executions using a remote instance. Each color
represents a different experiment, and each data point is a single image acquisition (or tile). The values were extracted from the logger files for all the
experiments performed using the framework (200 acquisitions).
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The reconstruction time is always more extensive than the acquisition time. Therefore, the user performing image recon-
struction using the GUI manually would impose an evident bottleneck. This is why, previously, the reconstruction was usu-
ally performed after the entire acquisition had finished. By distributing the resources and using multiple units for acquisition
and reconstruction, the tasks can be performed simultaneously without compromising the temporal resolution of the
microscope.

By characterizing the requirements of each microscope application, this framework could be extended to low-cost com-
puting devices for both acquisition and reconstruction, such as Raspberry Pi and Jetson Nano.

To conclude, we have designed and developed a new framework for simultaneously performing acquisition, reconstruc-
tion, and visualization for microscope automation. The solution is implemented using the ImSwitch and napari software
packages and is easily generalizable to other software. We validated the performance by applying it in the context of
super-resolution microscopy and the distribution of computation resources to achieve higher throughput. We performed til-
ing and timelapse experiments to observe mitochondria and actin in U2OS cells and actin in primary neurons.
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Abstract

Significance: Stimulated emission depletion (STED) microscopy has been used to address a
wide range of neurobiological questions in optically well-accessible samples, such as cell culture
or brain slices. However, the application of STED to deeply embedded structures in the brain of
living animals remains technically challenging.

Aim: In previous work, we established chronic STED imaging in the hippocampus in vivo but
the gain in spatial resolution was restricted to the lateral plane. In our study, we report on extend-
ing the gain in STED resolution into the optical axis to visualize dendritic spines in the hippo-
campus in vivo.

Approach: Our approach is based on a spatial light modulator to shape the focal STED light
intensity in all three dimensions and a conically shaped window that is compatible with an objec-
tive that has a long working distance and a high numerical aperture. We corrected distortions
of the laser wavefront to optimize the shape of the bottle beam of the STED laser.

Results: We show how the new window design improves the STED point spread function and
the spatial resolution using nanobeads. We then demonstrate the beneficial effects for 3D-STED
microscopy of dendritic spines, visualized with an unprecedented level of detail in the hippo-
campus of a living mouse.

Conclusions: We present a methodology to improve the axial resolution for STED microscopy
in the deeply embedded hippocampus in vivo, facilitating longitudinal studies of neuroanatomi-
cal plasticity at the nanoscale in a wide range of (patho-)physiological contexts.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
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1 Introduction

The hippocampus is a deeply embedded brain region, which plays a critical role in encoding new
memories. In the hippocampus, as elsewhere in the mammalian brain, pyramidal neurons receive
most of their excitatory synaptic input at dendritic spines, which are small protrusions in the
postsynaptic membrane that house the postsynaptic signaling machinery including glutamate
receptors. Structural and functional plasticity of dendritic spines is a fundamental neurobiolog-
ical process that underlies all higher brain functions, such as memory, thought, and action,1,2

whereas spine dysfunction is closely associated with neuropsychiatric and neurodegenerative
disorders, such as autism and Alzheimer’s disease.3
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Two-photon fluorescence microscopy provides high depth penetration and optical sectioning
in turbid media,4 making it the standard technique for imaging in acute brain slices5,6 and
intact brains.7–9 Over the last 20 years, it has transformed our understanding of the structure
and function of dendritic spines in mouse brain.10

Until now, most in vivo studies of dendritic spines have been limited to superficial layers of
the cortex (somatosensory, motor, visual cortex),11–13 mainly because of the challenge to opti-
cally reach more deeply embedded structures. For example, the hippocampus is more than 1 mm
below the cortical surface of the mouse brain. Only a few groups have ventured into imaging
hippocampal spines in vivo, relying either on surgical resection of the overlaying cortex14,15 or
a microendoscope with a gradient-index lens.16

However, 2-photon microscopy is a diffraction-limited approach, which offers at best a spa-
tial resolution of around 350 nm laterally and 1 μm axially, falling substantially short of visu-
alizing several key neuro-anatomical structures and spaces, including spine necks, axon shafts,
astroglial processes, and synaptic clefts, whose sizes can range well below 100 nm. As a con-
sequence, there is a great need to develop and improve super-resolution imaging techniques that
could be applied to deeply embedded regions, such as the hippocampus. Among the various
super-resolution methods, stimulated emission depletion (STED) microscopy17 is currently the
only one that has been successfully applied in vivo,18–22 notably in the hippocampus.23

STED microscopy is based on laser-scanning microscopy (such as confocal or 2-photon
microscopy), where a Gaussian laser beam is focused to a small spot generating the fluorescence
signal used to construct the image. In addition, there is a second laser (the STED laser), which
exerts the opposite effect, namely it de-excites molecules by the process of stimulated emission.
By spatially shaping the focal STED intensity like a donut,17 it is possible to suppress the spon-
taneous fluorescence in the peripheral region of the focal spot, narrowing down the effective
point spread function (PSF) in the XY plane by up to an order of magnitude.24 By delivering
STED light also above and below the focal region (a profile referred to as “bottle beam”),
it becomes possible to constrict the fluorescence along the optical axis as well.25,26

In STED microscopy, spatial resolution and signal-to-noise ratio (SNR) of the images cru-
cially depend on the quality of the PSF of the STED beam.27 Yet, maintaining a high-quality PSF
inside light scattering brain tissue poses several challenges. This problem is particularly evident
in the context of in vivo imaging, where a variety of biological and mechanical constrains stand
in the way of ensuring sufficiently good optical conditions for STED imaging. Notably, long
working distance water immersion objectives typically used for in vivo imaging are not optimal
for STED. Indeed, the effective STED resolution scales nonlinearly with the numerical aperture
(NA) of the objective lens.28 Hence, oil or glycerin immersion lens are typically preferred, offer-
ing high NA up to 1.49 at the expense of limited working distance. In addition to gain optical
access to the brain, most studies rely on implanting a cranial window29 in which a small part of
the skull is replaced by a coverslip. Consequently, the mechanical stability of the cranial window
attachment as well as of the brain itself are crucial, since any vibrations stemming from muscle
contractions, pulmonary breathing, and blood pulsations can produce motion artefacts and
diminish image quality.

The bottle beam PSF used for the axial gain in resolution is particularly sensitive to optical
aberrations and misconfigurations in the beam path. Notably, the modified cranial window used
to image the hippocampus15,24 reduced the effective NA, which prevented the use of a bottle
beam profile for 3D-STED in our previous study based on a cylindrically shaped “hippocampal
window.”23 In this paper, we propose the use of a conically shaped window, specifically designed
to maintain the bottle beam profile, while minimizing the size of the surgical resection of the
overlaying cortex.

2 Material and Methods

2.1 2-Photon STED Microscope

Imaging was performed using a custom-built upright laser-scanning fluorescence microscope,
as previously described.23,27,30 In brief, the 2-photon excitation beam (100 fs, 80 MHz, 900 nm)
was provided by a femtosecond titanium:sapphire laser (Tsunami, Spectra-Physics), pumped by
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a high power continous wave diode pumped solid state laser (Millennia EV 15, Spectra-Physics),
sent through a Pockels cell (302 RM, Conoptics) to control the excitation power. The STED
beam (592 nm, 700 ps, 80 MHz) was provided by another pulsed laser (Katana 06 HP,
NKT Photonics) whose power was adjustable using a half-wave plate and a polarization beam
splitter. Both lasers were synchronized and temporally overlapped using commercial electronics
(“Lock-to-clock,” Model 3930 and 3931, Spectra-Physics).

The STED beam was passed via a spatial light modulator (SLM) (3D module, Abberior
Instruments) to modulate the wavefront in a way that a donut or bottle beam intensity distribution
of the STED light is achieved in the focal plane. Half and quarter-wave plates (λ∕2 and λ∕4)
were used to produce a left-handed circular polarization at the entrance pupil of the objective.
Both 2-photon excitation and STED beams were combined using a long-pass dichroic mirror
(DCSPXRUV—T700, AHF). Appropriate lens combinations were used to conjugate the SLM
on a telecentric scanner (Yanus IV, TILL Photonics), which was then imaged on the back focal
plane of the objective (CFI Apo NIR 60× W, NA 1.0, Nikon) mounted on a z-focusing piezo
actuator (Pifoc 725.2CD, Physik Instrumente). This objective provided a working distance of
2.8 mm, sufficient to bridge the physical distance between the surface of the brain and the deeply
embedded hippocampus, while still offering a relatively high NA conducive for high-resolution
imaging.

The epifluorescence signal was descanned, separated from the incident beams using a long-
pass dichroic mirror (580 DCXRUV, AHF) and detected by an avalanche photodiode (SPCM-
AQRH-14-FC, Excelitas) with appropriate notch (594S-25, Semrock) and bandpass filters
(680SP-25, 520-50, Semrock) along the emission path. Signal detection and hardware control
were performed via a data acquisition card (PCIe-6259, National Instruments) and the Imspector
software (Abberior Instruments).

To visualize and prealign the donut or bottle PSFs, a pellicle beam splitter (BP145B1,
Thorlabs) was flipped into the beam path to detect the signal reflected by gold beads
(150 nm Gold nanospheres, Sigma Aldrich) using a photomultiplier tube (MD963, Excelitas).
In the following, 2D-STED, z-STED, and 3D-STED will refer to images acquired using a pure
donut, a pure bottle beam or a combination of the two beams, respectively. Optical resolution
was assessed by imaging fluorescent beads (yellow–green fluorescent beads, 40 or 170 nm in
diameter, Invitrogen) immobilized on glass slides.

2.2 Animal Experimentation

We used adult female and male transgenic mice (Thy1 −Htg∕þ, 3 to 12 months old) where a
subset of hippocampal neurons was fluorescently labeled with YFP.31 Heterozygous mice were
used with sparse yet robust cytosolic labeling well adapted for high contrast superresolution
imaging. The mice were group-housed by gender at a 12/12 h light/dark cycles. All procedures
were in accordance with the Directive 2010/63/EU of the European Parliament and approved by
the Ethics Committee of Bordeaux under agreement number 8899.

2.3 Hippocampal Window Implantation

Chronic hippocampal windows were implanted as described previously14,15,23,32 to provide opti-
cal access to the Stratum oriens and Stratum pyramidale of the CA1 region of the hippocampus.
In brief, mice were anesthetized with isoflurane (2%) and received intraperitoneal injections of
analgesic (buprenorphine, 0.05 mg∕kg) and anti-inflammatory drugs (dexamethasone,
0.2 mg∕kg) to minimize brain swelling during the surgical procedure. The mouse scalp was
shaved in the surgical region, and the mouse was placed into a stereotaxic frame with a heating
pad. Lidocaine was locally applied prior to the removal of the skin and periosteum above the
skull. A 3-mm-diameter craniotomy was performed above the right or left hemisphere using a
dental drill (anteroposterior −2.2 mm; mediolateral +1.8 mm). The dura was carefully removed
using fine forceps before aspiring the somatosensory cortex above the hippocampus using a
vacuum pump connect to 29 G blunt needle. The overlying alveus was carefully peeled away
to expose the surface of the hippocampus. A custom-made metal tube sealed with a coverslip
(#1) on the bottom side (both 3 mm in diameter) was inserted into the craniotomy and tightly
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fixed to the skull with acrylic glue. Since our objective lens does not have a correction collar, this
coverslip offers a good compromise between the thick #1.5 H coverslip, necessitating strong
correction of spherical aberration with the SLM, and the thin #0 coverslip, which can be too
fragile for cranial window implantation. Once in place, the hippocampal window was fixed using
ultraviolet light curable dental cement.

2.4 In Vivo Imaging

After the surgery, mice received analgesics for 2 days (buprenorphine, 0.05 mg∕kg, intraper-
itoneal injection) and be allowed to recover for at least 4 weeks before starting imaging sessions.
During these sessions, mice were anesthetized under 4% isoflurane prior to be transferred to a
custom-made 3D printed tiltable frame, based on ear bars and nose fixations, incorporating a
mask delivering 1.5% to 2% isoflurane at 0.2 L∕min O2. The eyes were protected with ointment
(bepanthen) and body temperature was maintained using a heating pad with anal probe. Imaging
of CA1 pyramidal neurons was performed at 10 to 30 μm depth to avoid scare tissue at the
surface while limiting optical aberrations steaming from the sample.19,27 Typical image size was
20 × 20 μm2 in XY with a pixel size of 20 nm, z stacks typically extended over 4 μm with
a z-step size of 100 nm. Images were acquired with a 20 μs pixel dwell time, whereas excitation
and STED laser powers were in the range of 10 to 20 mW after the objective lens. With these
acquisition settings, no signs of phototoxicity were visible.

3 PSF Computation

The PSF of the STED beam was calculated using vectorial diffraction theory by Richard and
Wolf,33,34 which makes it possible to calculate the electromagnetic field (E) in an arbitrary point
P close to the focal region of a high NA (NA ≥ 0.7) objective, based on the Debye integral35,36

EQ-TARGET;temp:intralink-;e001;116;415EðPÞ ¼ −
ikf
2π

ZZ
Ω

AðsÞ
sz

eiks:Rdsx dsy; (1)

where k is the wavenumber, f the objective focal length, Ω the solid angle of the exit pupil from
the focal spot, s the unit vector along each ray from the objective pupil to the focal volume, AðsÞ
the complex amplitude of the incident laser beam after the objective and R the position vector of
point Pðx; y; zÞ.

Considering the geometry depicted in Fig. 1(a), the diffraction integral can be expressed,
in spherical coordinates, as36,37

EQ-TARGET;temp:intralink-;e002;116;298

Eðx; y; zÞ ¼ C
Z

α

0

Z
2π

0

Bðθ;φÞPðθ;φÞeiðMðθ;φÞþΦðθ;φÞÞek0n1ðx cos φ sin θ1þy sin φ sin θ1Þ

eik0n3z cos θ3eik0ðn3d cos θ3−n1ðtþdÞ cos θ1Þ sin θdθ dφ; (2)

where C is a constant, k0 the wavenumber in the vacuum, α ¼ arcsinðNA∕nÞ the marginal ray
angle, nl and θl the refractive indices and incident angle in the (1) immersion media, (2) the
coverslip, and (3) the sample, respectively, d the depth in the sample, t the thickness of the
coverslip, Bðθ;φÞ the amplitude profile of the incident beam, P the polarization state of
the electromagnetic field in the focal region, Mðρ;φÞ the phase profile of the input beam, cor-
responding in our case to the phase mask used to shape the STED beam, and Φðθ;φÞ the wave-
front distortion with respect to the Gaussian reference sphere, which describes the optical
aberrations in the system. Note that the second and third exponential terms correspond to the
aberrations induced along the optical path through the coverslip and the biological sample.37

Although passing through an aplanatic objective, the incident plane wave transforms into a
spherical wave converging to the focal point. Therefore, assuming a Gaussian profile of the input
beam, the amplitude distribution after the objective can be expressed as

EQ-TARGET;temp:intralink-;e003;116;94Bðθ;φÞ ¼ B0e
−ρ2

w2
ffiffiffiffiffiffiffiffiffiffiffi
cos θ

p
; (3)
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where B0 is a constant, w the beam waist, ρ ¼ f sin θ the cylindrical coordinate on the exit pupil
of the objective lens, and

ffiffiffiffiffiffiffiffiffiffiffi
cos θ

p
the apodization term ensuring energy conservation while

the beam pass through the objective. In addition, the objective transforms the input left-handed
circular polarization P0ðθ;φÞ ¼ ð1; i; 0Þ, classically used in STED microscopy, through tight
focalization, which can be described as

EQ-TARGET;temp:intralink-;e004;116;259Pðθ;φÞ ¼ R−1
φ ½Pð3Þ�−1I ð2ÞPð1ÞLθ1RφP0; (4)

whereRφ is the rotation matrix around z axis, Lθ describe the change in electric field as it passes

through the objective,PðiÞ corresponds to the coordinate system rotation in medium l, and I ð2Þ is
the matrix describing the effect of the coverslip medium, considered as a stratified medium of
two interfaces

EQ-TARGET;temp:intralink-;e005;116;177Rφ ¼
0
@ cos φ sin φ 0

− sin φ cos φ 0

0 0 1

1
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@ cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

1
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sin θl 0 cos θl

1
A; I ð2Þ ¼

0
@ Tð2Þ

p 0 0

0 Tð2Þ
s 0

0 0 Tð2Þ
p

1
A; (6)

where Tð2Þ
s;p is the transmission coefficient in the coverslip (see37 for complete derivation).

Fig. 1 (a) Schematic representation of the propagation of a light wave focused by a high NA objec-
tive used to calculate the PSF in the vicinity of the focus. (b) Refraction angles within the coverslip.
Due to the refractive index mismatch, each interface decreases transmission and induces
spherical aberrations. (c) STED beam (top, fire LUT) and effective fluorescence (bottom, green
LUT) PSFs in XY plane (square panels, image size 1 × 1 μm2) and XZ plane (rectangle panels,
image size 1 × 2.5 μm2), for the different configurations used in this paper (2-photon only,
2D-STED, z-STED and 3D-STED). The dashed line indicates the focus position.
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Finally, in the case of left-handed circular polarization

EQ-TARGET;temp:intralink-;e007;116;489
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1
CA: (7)

In the context of STED microscopy, the PSF of the STED beam is spatially shaped
[Fig. 1(c)—top profiles] using specific phase masks Mðθ;φÞ, that can be expressed as

EQ-TARGET;temp:intralink-;e008;116;340

Mðθ;φÞ ¼

8>>><
>>>:

0 No phase mask − Gaussian beam;

φ Vortex phase mask − Donut beam;�
π for θ ≤ θM

0 for θM ≤ θ ≤ α
Ring phase mask − Bottle beam;

(8)

where θM ¼ a sinðrmask

rpupil
sin αÞ is the angle between the optical axis and the ray passing through

the edge of the π-phase ring of the phase mask of radius rmask on the objective output pupil of
radius rpupil [Fig. 2(d)—top panel].

The focal intensity can be calculated as the squared modulus of the electric field

EQ-TARGET;temp:intralink-;e009;116;210I ¼ jEj2 ¼ jExj2 þ jEyj2 þ jEzj2: (9)

Finally, the effective PSF [Fig. 1(c)—bottom profiles] is calculated as38

EQ-TARGET;temp:intralink-;e010;116;164Ieffðx; y; zÞ ¼ I2Pe
−ln 2ISTED

Isat ; (10)

where Iexc and ISTED are the excitation and STED beams, respectively, and Isat is the saturation
intensity, which describes the de-excitation rate of the molecules by the STED beam.

Fig. 2 (a) Schematic of the hippocampal cranial window and its effect on the focused beam,
notably the clipping of the outer optic rays. Numerical simulation of the STED beam XY (middle
panels) and XZ (bottom panels) profiles calculated for the different phase masks (top panels)
used in STED microscopy: Donut (b) effective donut in presence of hippocampal window (c) bottle
beam (d) effective bottle beam in presence of hippocampal window and (e) same with adjusted
phase mask radius (rmask ¼ 0.33r pup) enabling the retrieval of the (f) bottle profile. Image size:
5 × 5 μm2.
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4 Results and Discussion

4.1 Impact of the Cranial Window

The chronic hippocampal window used here was originally developed to image pyramidal neu-
rons in the hippocampus by 2-photon microscopy14,15,32 using a 0.8 NA objective. In this case,
the specific geometry of the window, a metal cylinder sealed with a coverslip, limited the angle of
the marginal rays transmitted through the window [Fig. 2(a)]. Indeed, to reach the hippocampus
surface, the implanted cylinder and holder has a height (h) of 2.23 mm and an inner diameter (r)
of 2.6 mm, which corresponds to a maximum opening angle of 30.2 deg and hence an effective
NA of 0.67. Although such an NA can be acceptable for 2-photon imaging, albeit at the expense
of reduced spatial resolution (notably axial resolution because of extended excitation PSF),
it is prohibitive for STED microscopy. Indeed, beyond the NA limitation, the elimination of
the marginal rays by the window design has a dramatic effect on the STED-PSF, rendering it
useless, even counterproductive, for improving the STED axial resolution.

To further investigate this effect on the STED PSF and the resulting effective fluorescence
PSF, we modified the calculation to consider the effect of the cranial window. We introduced
an additional amplitude mask Tðρ;φÞ in Eq. (2), which models the additional aperture stop at
the entrance of the window leading to the clipping of the outer rays after the objectives. The
diffraction integral can be expressed as
EQ-TARGET;temp:intralink-;e011;116;501

Eðx; y; zÞ ¼ C
Z

α

0

Z
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Tðθ;φÞBðθ;φÞPðθ;φÞeiðMðθ;φÞþΦðθ;φÞÞek0n1ðx cos φ sin θ1þy sin φ sin θ1Þ
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with

EQ-TARGET;temp:intralink-;e012;116;428TðθÞ ¼
�
1 for θ ≤ θc transmitted rays;
0 for θc ≤ θ ≤ α blocked region;

(12)

where θc is the angle between the optical axis and the marginal ray of the cranial window on
the output pupil of the objective.

Figures 2(b)–2(f) displays the results of these simulations. In Figs. 2(b) and 2(c), looking at
the donut beam, the effect of the reduced NA is easily visible through a clear elongation of the
profile. Yet, the presence of the cranial window does not change the geometry of the phase mask
(it remains a vortex) and hence the symmetry of the PSF. Therefore, even if suboptimal, this
configuration still permits superresolution imaging. In Fig. 2(d), in contrast, the bottle beam is
dramatically degraded in the presence of the cranial window. In Fig. 2(e), in the case of the ring
phase mask, the outer rays (with 0 phase—blue area in the phase mask) are not passing through
the hippocampal window, whereas the inner rays (with π phase—red area in the phase mask)
remain unaffected. This prevents destructive interference to happen in the focus and hence the
formation of the central zero that is required for suppressing the fluorescence in the periphery of
the fluorescence PSF while leaving the central region unaffected. In Fig. 2(e), note that by simply
adjusting the ring radius on the phase mask, one could effectively retrieve a correct bottle beam
profile. Yet, this does not solve the issue of the elongated shape [see panel (d) and (f)] due to the
limited effective NA, which results in decreased axial resolution.

4.2 New Cranial Window Design and Experimental Validation

To retrieve a usable bottle beam and to achieve a substantial STED gain in spatial resolution in
all three dimensions, we designed a new cranial window, or hippocampal porthole. Although
increasing the radius of the conical window is possible [Fig. 3(a)], retrieving the full NAwould
require implanting a cylinder with a diameter of 5.1 mm into in the mouse brain, which is
prohibitive in terms of the amount of cortical volume that would have to be surgically removed
(about 45 mm3 of cortex). Instead, we chose to modify the geometry of the window. Using a
conical shape [Fig. 3(b), see Supplementary Fig. S1 (3D drawing)] makes it possible to benefit
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from the full nominal NA of the objective, while minimizing the amount of tissue that needs to
be resected to expose the hippocampus, reducing it to about 14 mm3, which is less than
one third.

We first validated this cranial window geometry ex vivo, by placing gold nanoparticles on a
poly-L-lysine coated coverslip, the same that we had used in the cranial window for in vivo
imaging, and imaged them either through the cylinder (old window) or conical (new window)
porthole without implantation on the head of the animal. This illustrates experimentally the
impact of the cranial window design on the PSF of the STED beam.

Figure 3 clearly illustrates the effect of the two different cranial window designs on the STED
PSF. Beyond the reduction of the NA, the old cylindrical window seriously degrades the shape of
the bottle beam, obliterating the central intensity minimum, which is a must for STED micros-
copy. By contrast, the new conical cranial window design permits the generation of improved
donut and bottle beam shapes. With the new design, the NA is limited by the optical design of
the objective, and not the geometry of the optical access.

4.3 In Vivo 3D-STED Imaging in the Hippocampus

To visualize the gain in resolution in live conditions, fluorescence beads (diameter: 170 μm)
were attached to the coverslip using poly-L-lysine prior to be grafted into the animal.
Imaging the fluorescent beads through the old and new window designs makes it possible
to quantify and compare the gain in resolution between them. Figure 4 displays images in
XY and XZ direction of the fluorescent beads visualized through the cranial window. Note that
the look-up table is adjusted between images for better visualization.

Table 1 reports the axial and lateral resolution obtained experimentally using the two differ-
ent windows together with the theoretical resolution obtained from numerical simulations. In this
table, the spatial resolution is estimated as the full-width at half maximum (FWHM) of the PSF.
Beyond the resolution, we quantified the maximum number of counts on the detector as a mea-
sure of image brightness (and thus SNR), which is strongly affected by the window geometry.
Comparing our simulations with the experimental results, we normalized the number of counts in
the simulated image with the value obtained from 2-photon images acquired with the new cranial
window (which is expected to yield the highest number of counts).

Fig. 3 Schematic of the (a) old and (b) new hippocampal windows (top panels). The conical shape
makes it possible to use the full NA of the objective while minimizing the cortical volume that needs
to be removed. STED beam PSFs (bottom panels) in XY (2 × 2 μm2) and XZ (2 × 8 μm2) planes
experimentally measured, using gold nanoparticles attached to the coverslip, and imaged through
the new (top panel) and old (bottom panel) cranial window designs, demonstrating the recovery of
the appropriate bottle beam shape. In the right panels, the radius of the phase mask has been
adjusted using the SLM.
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The 2-photon PSFs are slightly improved by the new cylindrical window, yielding a modest
but clear improvement in spatial resolution. In contrast, the 3D-STED performance is greatly
affected by the type of window design. With the old cylindrical window, the effective PSF is very
similar to the 2-photon PSF but with a strongly reduced signal, as expected from the absence of
a zero in the bottle beam profile, diminishing the excitation of molecules without yielding of a
gain in spatial resolution. In contrast, the new conical window permits a significant constriction
of the fluorescent spot, while largely preserving the signal level.

Having established this proof of principle, we validated this modified hippocampal window
on biological samples by imaging fluorescently labeled neurons in living transgenic mice.
Figure 5(a) shows a segment of dendrite in the Stratum radiatum of the CA1 region in the hippo-
campus of a living mouse. Notably, the fine morphological features, including the hallmark
cup-like shapes of spine heads and the ultrathin neck regions, connecting the spine head with
the dendrite, can be appreciated with unprecedentedly high image quality in an in vivo setting.
Figures 5(b) and 5(c) show a volume rendering of the same segment of dendrite qualitatively
illustrating the gain in resolution and anatomical fidelity that can be achieved by our improved
approach.

Finally, we also quantified neck diameters of the dendritic spines using a semiautomatic
software,39 which was specifically designed for morphometric analysis of superresolution
images of dendritic spines. The results are summarized in Table 2 and are consistent with the
published literature based on electron microscopy or STED imaging in brain slices.40–42

Fig. 4 Effective fluorescence PSF in 2-photon and 3D-STED obtained by imaging the fluorescent
nanoparticles attached below the coverslip in the old cylindrical and new conical cranial window
implanted above the hippocampus of an adult mice. XY image size: 1.5 × 1.5 μm2 and XZ image
size 1.5 × 4 μm2.

Table 1 Spatial resolution (estimated as FWHM of the PSF) and maximum number of counts
obtained in 2-photon and STED with the two different cranial window geometries. Mean ± SD
from 10 fluorescent beads in 2 different samples prepared from the same batch.

XY resolution (nm) Z resolution (nm) Imax (No. of counts)

2-photon STED 2-photon STED 2-photon STED

Cylindrical Simu 472 456 2831 2788 60 17

window Exp 470� 10 430� 20 2800� 150 2500� 500 50� 20 20� 15

Conical Simu 344 81 1244 285 158 138

window Exp 350� 8 80� 10 1200� 100 310� 40 158� 8 110� 10
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5 Conclusion

In this paper, we propose and validate a modified hippocampal window design, which makes
full use of the NA of a long-working distance objective. Although this new design by itself
already increases the spatial resolution and optical sectioning of 2-photon microscopy, it is
essential for STED microscopy. Notably, it can preserve the bottle beam shape needed for
3D-STED microscopy. We illustrate the benefit of this new cranial window design by visualizing
dendritic spines, greatly improving STED image quality, rendering it comparable to the state of
the art in brain slice preparations. Combined with state-of-the-art adaptive optics approaches,20,43

Fig. 5 (a) Image of a YFP-labeled segment dendrite in the S. radiatum of a Thy1 − Htg∕þ mouse,
lying about 30 μm below the surgically created surface. Image size 5 × 11 μm2. (b), (c) 3D render-
ing of the same segment of dendrite obtained with 2-photon and 3D-STED imaging, respectively.
Image size 5 × 3.2 × 3.2 μm3. Panels (b) and (c) are still images from videos, 2-photon (Video 1)
and STED (Video 2) (Video 1, MP4, 18 MB [URL: https://doi.org/10.1117/1.NPh.10.4.044402.s1]),
(Video 2, MP4, 21 MB [URL: https://doi.org/10.1117/1.NPh.10.4.044402.s2]).

Table 2 Average spine morphological parameters measured by 2-photon and 3D-STED micros-
copy. Mean ± SD from 23 spines collected from 3 mice.

Spine neck with (μm)

Spine neck length (μm) Spine head volume (μm3)Lateral Axial

2-photon 0.45� 0.05 1.5� 0.4 0.7� 0.3 0.4� 0.2

3D-STED 0.17� 0.03 0.39� 0.08 0.8� 0.3 0.1� 0.1
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this hippocampal window design will pave the way for 3D nanoscale imaging deep within the
hippocampus of live mouse.

Our new approach improves the achievable spatial resolution for nanoscale imaging of neuro-
anatomical structures and compartments (e.g., the extracellular space between brain cells44,45),
enabling longitudinal investigations into how their dynamics may underpin the ability of neurons
and their networks to adapt themselves to ever-changing environmental conditions in health
and disease.
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