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Résumé: La principale motivation de cette thése est le besoin de simulations numériques
efficaces des écoulements de gaz dans les canaux serpentins des piles & combustible & mem-
brane échangeuse de protons. Nous considérons les modéles de Poisson et de Stokes dans un
domaine 2D composé de plusieurs longues sections rectangulaires droites et de plusieurs
coudes. Afin d’accélérer la résolution et de réduire les coiits de calcul, nous proposons
des modeles 0D (un profil parabolique fixe pour I’équation de Poisson et 1’écoulement de
Poiseuille pour les équations de Stokes), et nous résolvons par éléments finis le modéle 2D
dans les coudes. Afin d’atteindre la tolérance souhaitée de 'erreur entre la solution exacte
et la solution approchée provenant du modéle couplé 0D /2D, nous devons surmonter un
double défi : comment détecter la position appropriée de l'interface entre les modéles 0D et
2D et comment controler 'erreur de discrétisation dans les coudes. Pour cela, nous avons
développé des estimateurs d’erreur a posteriori basés sur la reconstruction de flux équilibré
dans les sous-domaines ol la méthode des éléments finis est appliquée. Dans le mod-
¢le couplé 0D/2D pour Poisson, les estimations donnent une borne supérieure calculable
garantie globale de la norme d’énergie de la solution. Dans le modéle couplé 0D /2D pour
Stokes, les estimations donnent une borne supérieure garantie globale pour I'erreur H1 en
vitesse et I'erreur L2 en pression sur le domaine entier. Dans ce dernier cas, I'estimateur
fait intervenir la constante inf-sup qui est en général inconnue (dans nos cas de test, elle
est cependant connue qu’elle est trés petite), ce qui rend 'estimateur pas complétement
calculable en pratique. Nous avons également étudié l'influence de la constante inf-sup
sur l'eflicacité des estimations d’erreur a posteriori et nous avons poursuivi quelques idées
pour construire de nouveaux estimateurs garantis indépendants de la constante inf-sup.
Des bornes inférieures globales pour 'erreur sont également dérivées pour les modéles de
Poisson et de Stokes. Les estimateurs proposés peuvent étre scindés en deux parties :
une premiére indiquant I’erreur due a la position de l'interface et une seconde indiquant
lerreur due a la discrétisation. A l'aide de ces estimateurs, un algorithme est proposé
pour choisir la position de l'interface et effectuer un raffinement adaptatif du maillage afin
d’équilibrer les deux sources d’erreur et d’atteindre la précision souhaitée. Les estimateurs
et 'algorithme adaptatif sont validés numériquement.







Title: A posteriori error analysis for certain problems related to fuel cell simulations.
Keywords: A posteriori error estimate, mixed dimensional coupling, adaptive algorithm,
Finite Element Method, FreeFEM.

Abstract: The main motivation of this thesis is the need for efficient numerical simu-
lations of the gas flows in the serpentine channels of the proton-exchange membrane fuel
cells. We consider Poisson and Stokes models in a 2D domain which is composed of several
long straight rectangular sections and several bends. In order to speed up the resolution
and to reduce the computational costs, we propose 0D models (a fixed parabolic pro-
file for Poisson equation and Poiseuille flow for Stokes equations), and we apply a finite
element resolution for the 2D model in the bends. In order to achieve the desired toler-
ance of the error between the exact solution and the approximated solution coming from
the 0D /2D coupled model, we have to overcome a double challenge: how to detect the
suitable position of the interface between the 0D and 2D models and how to control the
discretization error in the bends. For this purpose, we have developed a posteriori error
estimators based on equilibrated flux reconstruction in the subdomains where the finite
element method is applied. In the coupled 0D /2D model for Poisson, the estimates give
a global guaranteed computable upper bound of the energy norm of the solution. In the
coupled 0D /2D model for Stokes, the estimates give a global guaranteed upper bound for
the Hl-error in velocity and the L2-error in pressure on the whole domain. In the latter
case, the estimator involves the inf-sup constant which is in general unknown (in our test
cases, it is known to be very small though), thus making the estimator not completely
computable in practice. We have also studied the influence of the inf-sup constant on
the efficiency of a posteriori error estimates and we have pursued some ideas to construct
new guaranteed estimators which are independent of the inf-sup constant. Global lower
bounds for the error are also derived for Poisson and Stokes model. The proposed esti-
mators can be split into two parts: a first one indicating the error due to the position of
the interface and a second one indicating the error due to the discretization. Using these
estimators, an algorithm is proposed to choose the interface position and to make adap-
tive mesh refinement in order to balance the two sources of the error and to achieve the
desired accuracy. The estimators and the adaptive algorithm are validated numerically.
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Introduction

The present work is motivated by models of the serpentine cathode-anode flow channels in
Proton Exchange Membrane Fuel Cells (PEMFC), cf. [51]. A quite acceptable model pro-
posed to describe the flow distribution in these channels is the steady-state incompressible
Navier-Stokes equations (but in function of the application more complete and complex
models can be adopted, as the compressible and/or unsteady equations) and one hurdle is
to make efficient computations in these very stretched rectangular regions linked by rela-
tively small bends. To have an idea of these channels, one can see layers 1 and 7 of Figure
at page . In particular, we deal with the 2D cross—sectional area (when the plate is
sliced parallel to the channels). Since the numerical resolution implies a high computation
complexity, in this thesis we want to propose an approach to simplify its resolution based
on the geometry of channels and overall based on error estimates which can be used to
choose a compromise between reduced time of computation and accuracy. In this thesis we
focus on the Poisson and Stokes equations to lay a foundation in view of a generalization
to the incompressible Navier-Stokes. Following typical boundary conditions in PEMFC,
cf. for example [81], we choose the Poiseuille flow as boundary conditions on the inlet and
outlet boundaries of the channel, and no-slip boundary condition on the wall.

In order to speed up the computations, the idea is to split the resolution as follows:
in the rectangular regions of the domain, the flow is approximated by simple analytical
solutions, namely the Poiseuille flow which is accurate if the flow is sufficiently far from the
bends (we call this 0D model), in the bend regions we keep the original governing equations
and approximate them by the finite element (FE) method (we call this the 2D model). We
refer to this as the 0D /2D model. There exists different ways to derive a coupled model.
In [42,/43,/63|, 0D/3D coupling is obtained for the time dependent Navier-Stokes system
by assuming the dominance of the axial velocity and integrating the governing equations
on a section. In [46] and in [57] an asymptotic analysis is used to get respectively the
0D/3D and 0D /2D coupled simplified models for time dependent Navier-Stokes equations.
A 0D/2D coupled model for Poisson equation is derived in [70] and [59] by the asymptotic
analysis. In the thesis we derive the 0D model using the asymptotic analysis. Indeed,
we work with the domain €2, which is one serpentine of the channel, as showed in Figure
[1.3] at page knowing that we can iterate the ideas developed in €2 for all the other
serpentines (as we show e.g. in Section . So, the stretched rectangular portion of the
domain €2, which we call in this thesis €' and refer to it as the 0D domain, cf. Fig.
the solution is approximated by a simple explicit expression (the analogue of the Poiseuille
velocity). In the remaining part of the domain, denoted by Q= O\ and referred to it
as the 2D domain, we approximate the solution of the Poisson or Stokes equation (the 2D
model) using the FE method. The 0D and 2D domains are separated by an interface ~.
For the Poisson 0D /2D model the coupling condition on the interface ~ is the continuity of
the velocity, while for the Stokes 0D /2D model we find a quite natural coupling condition
which is derived from the variational formulation, that is the continuity of the normal av-
erage force on the interface v with an appropriate weight. For numerical implementation,
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also a simpler coupling condition is explored, which gives similar numerical results. After
coupling, we observe that the error between "0D /2D simplified model" and "original 2D
non simplified model" is affected by the mesh size and the position of the interface so, the
error between the "original 2D non simplified model" and the "0D /2D simplified model" is
due to the discretization error and the error that comes from the position of the interface.
We want to extend the area where we want to impose 0D model and since we do not know
the exact solution of the Poisson and Stokes equations, we have studied an a posteriori
estimator in order to get a computable upper bound for the error between the proposed
simplified 0D /2D model and the original non coupled 2D model.

In order to study the error between the exact solution of a partial differential equation
(PDE) and the approximated numerical solution we have two main estimations of the error
which are very important in numerical analysis. The first one is represented by a priori
estimation of the error while the second one is named by a posteriori error estimation. A
priori estimation is qualitative while a posteriori estimation is quantitative. In general,
the main goal of using a priori estimation is to prove the optimal order of convergence
for the error under quite smooth hypothesis. For example in [68]| the authors prove the
optimal convergence of the error in H' — norm and sub-optimal order of convergence in
L? —norm for linear elliptic interface problems. In [62], a priori estimation is used in order
to reduce the rate of convergence for the discontinuous Galerkin method when applied to
the Poisson problem. There is many articles which deal with a priori error estimation such
as [10,124,25,/50,/67]. A limit of a priori error estimation is the dependence of the upper
bound of the error on the exact solution which is unknown and consequently we get an
uncomputable upper bound. In reality the exact solution is unknown and sometimes it is
singular, e.g. as in L-shaped domains, then using a priori analysis can not help to use
adaptive strategies in order to obtain an optimal convergence and for this reason we need
to study a posterori error estimation. As we do not know the exact solution, a posteri-
ori error estimation gives a computable upper bound of the numerical error between the
exact and the approximated solution and this upper bound depends on known quantities
only, such as the approximated solution and the data of the problem, some remarkable
works in this subject are done by Verfiirth |74], Ainsworth and Oden [1]|, Babuska and
Strouboulis [8], Neittaanmiki and Repin [58|, Han [48], or Repin [64]. A posteriori error
estimation is widely used in FE discretization methods, some pioneer works are done by
Babuska and Rheinboldt [4-7,9]. Among all these a posteriori error estimators we will
focus in the thesis on so-called equilibrated fluz. The main concepts of the equilibrated
fluxes estimates is related to Prager—Synge equality |61] and the hypercircle method as in
Synge |69]. There are many research studies about equilibrated fluxes estimators such as
Repin [66], Destuynder and Métivet |30, Luce and Wohlmuth [55], Ladevéze and Leguil-
lon [54], Korotov 53|, Vejchodsky [72], or Braess and Schoberl [16], Fierro and Veeser [41].

We propose an a posteriori error analysis for the coupled Poisson equation, then we
extend it for the coupled steady Stokes equations, and the perspective is to enlarge the
analysis for a coupled steady incompressible Navier-Stokes system. The main contribution
in our study is that we adapt the approach of Vohralik et al. [39,/78] in the context of
the coupled 0D /2D model in order to detect the suitable position of the interface between
0D and 2D model and also to adapt the mesh for the FE 2D model in the bend. The
approach of Vohralik et al. is based on a flux/stress reconstruction on a whole domain
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where a PDE is discretized with a numerical method. In this work, we introduce a new
definition of the reconstructed flux/stress oy, in order to be able to estimate the error of the
discretization for the 2D model but also for the choice of the interface position. Indeed,
we have divided the estimator into two parts, the first contribution estimates the error
caused by the position of the interface and another contribution is related to the FE error
in the 2D domain. The main contributions this PhD thesis are specified in the following
paragraph.

Thesis contributions

For a posteriori error we separate the estimator into two types: the first type comes from
the error due to the position of the interface and the second type comes from the error of
the numerical discretization in the 2D domain. The idea is to use these contributions in
order to determine a suitable position of the interface and a suitable mesh, according to
some tolerance.

The first goal is to device coupling models fot the Poisson and Stokes equations using
asymptotic analysis as in [|45]59,[70].

The derivation of a posteriori error estimator depends on the flux reconstruction which
is introduced by Vohralik et al. [28,32,38,,39,60]. The second goal is to introduce a new
definition of the flux reconstruction o; to be defined on the whole domain €2 which is
computed in a way for the 0D model and in another way for the 2D model in a similar
way of Vohralik et al. in order to introduce the estimator which inform us about the error
about coupling and discretizing.

Finally, the third goal, that is deeply related to the previous goal, is to prove the relia-
bility (upper bound for the error by the estimator) and the efficiency (lower bound for the
error by the estimator), if it is possible, of the proposed estimators. We remark that the ef-
ficiency has to be global in what concerns the error produced by the 0D /2D coupling: once
we choose an interface to make the coupling problem, that impacts the solution globally.

Throughout the thesis we also pay attention to validate the estimators numerically and
to design adaptive algorithms to use them successfully.

Plan of the Thesis

We have three chapters and these chapters are constructed as the following.

Chapter 1. In this chapter we present the context, we consider a polygonal domain
Q and we talk about the physical model, the derivation of the coupled 0D /2D of Poisson
and Stokes equations. Moreover we give a general presentation about equilibrated a poste-
riort error estimators on a simple and standard model where there is no coupling condition.

Chapter 2. In this chapter we deal with the Poisson equation on the polygonal do-

main 2. We introduce a first attempt of the definition of the flux reconstruction of the
coupled 0D/2D model, and this estimator is called "simple a posteriori estimator". We
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prove the guaranteed upper bound (reliability) of the estimator, but the lower bound (ef-
ficiency) seems impossible to be proved and we explain the reason. So, we introduce a
second definition of the flux reconstruction with gives to us a guaranteed upper bound
and a lower bound (efficiency) of the error between the coupled 0D /2D model and the 2D
non coupled model. We make a numerical comparison between the two estimators of the
two fluxes. We make adaptation of the mesh in order to get an optimal convergence or to
improve the convergence of the error and estimator. At the end of this chapter we present
briefly an extension of this work for multiple channels (with many interfaces and coupling).

Chapter 3. In this chapter we consider the Stokes equation. Here, a new problematic
is added: the Stokes problem involves the 8 constant, that is the constant in the inf-
sup condition that ensures that the Stokes problem is well-posed, and this constant is
in general in the equilibrated error estimators. The value of this constant is in general
unknown, but we know that for long strechted channels this value is small. We define a
stress reconstruction for the 0D/2D Stokes model in order to get "a simple a posteriori
estimator and we prove the guaranteed upper bound estimate (reliablity), but the lower
bound (efficiency) is not proved for the first stress reconstruction. We also introduce a
second stress reconstruction and we prove the global upper bound and the local lower
bound (local efficiency) but we have assumed that ||Q ‘ < CR? where () is the domain
related to 2D model and R represents the width of the inlet in the channel. Since the
estimators of the coupled 0D /2D stokes model depends on the inf-sup constant, we will
consider instead the 2D non coupled Stokes equation and we will introduce a new idea to
develop an estimator for which we have proved the upper and lower bounds for the non
coupled 2D Stokes equation that is independent of the inf-sup condition. The study that
we make is for the non coupled Stokes equation to prove the (upper and lower) bounds of
the error without the usage of the value 8 of the inf-sup condition and it is applicable for
the coupled 0D /2D Stokes model (but due to time restriction we did not make it). At the
end of this chapter we have made a section related to conclusion and perspectives.

16



1. Context and model problems

1.1. Physical model and its simplifications

Fuel cell is an electrochemical device that converts the chemical energy of reactants into
electricity and heat. In this study we focus on a Ballard NEXA 2-D PEMFC (Proton
Exchange Membrane Fuel Cells), as in . It can be seen from Figure that a single
cell consists of 7 individual layers: 1) cathode gas supply channel, 2) cathode gas diffusion
layer (GDL), 3) cathode catalyst layer, 4) membrane, 5) anode catalyst layer, 6) anode
gas diffusion layer (GDL) and 7) anode gas supply channel. The actual geometry form of
cathode gas channel is represented in Figure [1.2

: , [l

2 3.4, 5 6 7 :

Figure 1.1.: Stucture of a single cell of of PEMFC stack
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1. Context and model problems

Figure 1.2.: Actual geometry form of cathode gas supply channel

A complete model of PEMFC should take into account several complex interconnected
phenomena described by several branches of physics and chemistry, such as electrochem-
istry, flow in porous media, multiphase flow. The present thesis is only concerned by a
small part of this rich physics: modeling the gas flow in the cathode channels of PEMFC.
In particular, we exclude from our study the gas diffusion layer and the membrane elec-
trode assembly. In real PEMFC, the unavoidable water from humidified gas streams and
electrochemical reactions, leads to gas-liquid two-phase flow in the flow channels of fuel
cell. As a first approximation, one can assume though a single phase (gas) flow.

More drastic simplifying assumptions can be found in the literature, such as:

e The gas in the cathode channels is modelled as a Newtonian fluid with constant
viscosity p.

e The fluid is supposed incompressible, i.e. the density p is constant and the velocity
u satisfies V - u = 0, cf. [51]. We note however that the case of variable density is
also considered in this article.

e Parabolic profiles are assumed for the inlet and outlet velocities of the fluid, cf. .

e As mentioned above, a single phase flow is assumed (no liquid water in the channel).

e The flow is laminar, since typically it low Reynolds number: Re < 250, as detected

in [12).
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1.1. Physical model and its simplifications

Geometrical simplifications

In addition to the physical assumptions listed above, we shall make here some drastic
geometrical simplifications. Most notably, the geometrical setting considered in the thesis
is always 2D. More specifically, we shall mostly consider the 2D domain €2 depicted in
Figure , representing a typical portion of the whole cathode gas channel (although, in
some simulations, we will also deal with more complicated domains as depicted in Figure
[I.3 on the right, representing the whole channel, reassembling the entire cathode channels
in Figure . As seen at Figure [1.3] we shall always assume that our domains €2 are
polygonal, although the real geometry of the cathode channel can have some curved parts,
cf. Figure . A possible adaptation of our techniques to the case of curved boundary
will be only briefly outlined in Appendix [D] but is mostly out of the scope of the present
thesis.

r‘wn:l
(0, R)

P I Q

(0,0)

[‘\\.\'.1 L5 IH

I‘l\llf
(L= Lgi=Wi= )

Figure 1.3.: Computational domain €2 (on the left) representing a portion of the whole
cathode channel (on the right).

Let us explain some geometrical notations in relation to the domain 2 from Figure [1.3
We denote by I'j, the inlet border where the inlet parabolic profile is imposed on the
velocity, I'oyt the same for the outlet border, and 'y, the portion of 9 corresponding
to the wall of the channel where the no slip condition v = 0 is imposed on the velocity.
We have thus T'y.n = 09\ (I‘in U Fout). In all the numerical experimental measurements
below (unless stated otherwise) we shall use the following geometrical parameters: R =
0.5, L1 =5.1, Ly = 0.3 and W = 0.9, cf. Figure[[.3

Navier-Stokes equations for the gas flow in the cathode channel

In view of the above mentioned physical and geometrical assumptions, the gas flow can be
described by the incompressible steady (time independent) Navier-Stokes equations in the
2D domain Q of Figure [L.3}

plu-Viu—pAu+Vp=0 in Q,

divu =0 in €,

u; = S(y), upg =0 on Iy, (1.1)
up =-=S(y+ W+ R), up =0 on Ty,

u=20 on Fwall-
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1. Context and model problems

with 6
u

S(y) = 3 y(B—y) (1.2)
Here R and W are some lengths detected in Figure u = (u1,u2) represents the fluid
velocity vector (em - s~!) and p the pressure. S(y) is the parabolic Poiseuille profile with
the average velocity ugy, i.e. the unique quadratic polynomials vanishing at y = 0 and
y = R, and having the average ug, over the interval (0, R).

The following physical parameters are proposed in [51]: the density is given by p = pair =

1.031401 kg-m~3, the dynamic viscosity is given by pt = ptair = 2.018 X107  kg-m~1-s71,

and the average velocity is taken as ug, = 0.1 cm - s71.

The characteristic feature of flows in the domains like those in Figure is that they
can be very accurately described by a simple expression, i.e. the Poiseuille flow, in the
long straight portions of the channels, cf. the flow depiction at Figure (a solution to
the Stokes equations is plotted there, but qualitatively the Navier-Stokes solution looks
the same). If one wants to approximate such a flow numerically, by the finite element
method, one can do the computations only in the bent portions of the channel, while
imposing the Poiseuille profile in the straight portions. The crucial question is then where
to put the interface between the two portions. This is indeed the central theme of the
present thesis. We shall not attempt here to answer this question in the case of non-linear
incompressible Navier-Stokes equations above. We shall content ourselves with the simpler
linear governing equations — the scalar Poisson equation and Stokes system. Hopefully,
our results can be adapted to the Navier-Stokes case, and then to more complicated models
(variable density and viscosity, coupling with the gas diffusion layer, etc).

1.2. Derivation of simplified models for Poisson and Stokes
equations

In this section, we consider the boundary value problems for Poisson and Stokes equations
posed in a domain €2 as depicted in Figure We shall refer to the problem with original
governing equation as the 2D model, and shall introduce a simplified 0D model in a portion
of the whole domain. The latter will be referred to as the 0D model since the solution there
will be given by simple expressions involving at most 1 scalar parameter. The coupling of
these two models will be referred to as 0D /2D model.

The geometrical notation for 0D /2D coupling are presented at Figure We denote
by Q' the subdomain where the 0D models will be set, and by Q the subdomain where
the original governing equations (the 2D model) will be kept. The two subdomains are

separated by the interface v := Q' N Q, which is taken to be a vertical line placed at the
horizontal coordinate x = z.. Thus, Q = Q' U~y U Q.

For both Poisson and Stokes problems, the goal is take the subdomain Q' as big as
possible in order to reduce the computational cost while not compromizing the overall
accuracy, since a numerical approximation (using finite elements) is needed only in Q.
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1.2. Derivation of simplified models for Poisson and Stokes equations

(0, R)

{0, 0) JI—‘l LQ H/'

I out

Figure 1.4.: Representation of the global domain €2 splitted in two regions: region Y (where
the 0D model is proposed), region 2 (where the 2D model is proposed) and
the interface

1.2.1. Derivation of the simplified 0D/2D model of Poisson

We begin with a derivation of a 0D /2D coupled model for the very simple problem involving
the Poisson equation. Let us consider the boundary value problem for a scalar function u
on domain {2 from Figure[1.3

—Au = f, in (1.3a)
U = Uip, on Iy, (1.3b)
U = Uout, on Loy, (13C)
u=20 on Fwall' (13d)
where
12“&0 "
uin = 5(y),  Uous =Sy +W+R), [=—m=-5(y)

with S(y) defined by . Here, ug, is a positive parameter measuring the average of u
on the inflow /outflow. The formulas for ui, and ueyt represent thus quadratic polynomials
vanishing at the junctions of I'y, /oy and I'wan and having the prescribed average ug,. The
inflow /outflow are chosen to mimic the boundary conditions of the more physical case of
Navier-Stokes equations . The expression for the constant right-hand side f is chosen
in a consistent manner with the inflow profile, as will be seen below.

The weak formulation of system is represented by finding u € H ;(Q) such that:

(Vu, Vo)a = (f,v)a Vv € HY(S), (1.4)

where

H}(Q) :={uc H(Q); u=0 on 09},
Hgl(Q) ={uec H(Q); u=u, on 09},

Uin on Iy,

Ug = § Uout ON Lout,

0 on Iyan,
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1. Context and model problems

and (-, -) denote the L?-scalar product.

We have plotted in Figure an approximate solution to problem obtained by
a standard finite element approximation with Py continuous elements on a mesh of size
h =~ 0.02. We observe that this solution has indeed a very simple form in the rectangular
region between the inflow and the bent region. Our goal is thus to determine explicitly
this form.

Figure 1.5.: The approximate numerical solution uy for the Poisson problem on €2 1}

Simplified Model

Using techniques in [45] and in [70], we want to derive 0D model on Q' = (0,z) x (0, R)
which is represented in Figure where x,, is the abscissa of the interface . We have
R << L; and we consider that U = ug, is the characteristic dimension for the u (this
is its average on the inflow). Let us introduce € = L% as R << L;. Let us consider the
dimensionless quantities:

- U - x . Yy

u = -, xr = -, = =

U L' YR

then, let us substitute the quantities w = Uu, x = L1Z, y = Ry, in system (1.3]) that
gives the following system:

—(20%u+ 02;u) = f for Z,§ € (0,1), (1.5)

with f = %2 f =12 (since U = uqy). Now, let € — 0 and recover the variables with
dimensions by substituting @ = {7, & = £-, § = % and in system (L.5) to get

2 .

—0yu=f in . (1.6)

From equation 1) and by integrating twice we get u(y) = —%yz + c1y + ¢y for some
constants c;(z) and cao(z) depend of x only. From boundary condition (1.3d]) of system

1) we fix the constants as u = 0 for y = 0 and y = R to get ¢o = 0 and ¢; = %2 thus

R
u(z,y) = 6ugy (RI;;J)?/. Finally our simplified model in €’ gives

!/

u =l (x,y) = GquM =S(y) in Q. (1.7)

22



1.2. Derivation of simplified models for Poisson and Stokes equations

Coupled Model

Let us introduce the simplified 0D model in €, the non simplified 2D model in  and let
~ be the interface between € and Q such that Q@ = Q' UQU~. Let I” C I'yan be the wall
of @ and T' C Tyan be the wall of Q. The coupled domain is represented in Figure
The simplified model is:

u'=58(y) in Q. (1.8)

The non simplified model in 2 is to find @ such that:

At =f in €,
i_ g
fi[/ (y)7 on 77 (19)
U = Uout, on Fout7
=0 on T.
The coupling condition is thus
u' =14 on7. (1.10)
The variational formulation of system |b is : Find u € H, ;(Q) such that
(V@ Vo)g = (f,0)g V&€ Hy (%) (1.11)
where,
H)(Q):={ue H(Q); @=1, on 0Q}
and
S(y) on 7,
ag =\ Uout on Pout;
0 on T

1.2.2. Discretization of the 0D/2D model for Poisson

Let 7;, be a triangular mesh on  regular in the sense of [29] . Introduce the FE spaces
V= {0, continuouson Q s.t: wp|x € Pp(K) VK € Tp)},

V7= {v, €V}, such that: vp|yg = iy},

f/hO:: {v, € V,, such that: Vnlag = 0},

where P, (K) is the set of polynomials of degree < k on a triangle K € 7. Now, we
discretize the problem u above as: find @, € V7 , such that

(Vﬁh, Vf)h)ﬁ = (f, f)h)(z Yoy, € f/}? (1.12)

Then the approximated solution on the whole € is reconstructed as
Vi OF
u = { wma (1.13)

up, in Q.
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1. Context and model problems

A numerical illustration

In this section, we numerically test the 0D /2D model for the Poisson equation using the
finite elements of degree K = 2. We explore the error in the energy norm between the
approximated solution uj, defined by (1.13), and the solution u to (1.4

IV (uf, = w)lla-: (1.14)

with respect to different positions of the interface . The exact solution w is in fact
unknown, and we replace it by a reference solution, i.e. a finite element approximation on
a sufficiently fine mesh on Q.

Let us fix a mesh size of Q by h &~ 0.08, h ~ 0.04 and h ~ 0.02, we want to see
the variation of the energy norm between the simplified approximated solution w; and
the reference solution u, with respect to different positions of the interface i.e. x, €
[0.1, L1 — 0.1] and for each mesh sizes as it is showed in Figure

o7

0.08 J«
— I ¥ (uf-u)l], for h=0.08 |
0.05 + & 3 o |
||V [un u}||“for h=0.04 b

11 ¥ (ug-u)ll,, for h=0.02

5

0.04

0.03 [ S e R e P A H:‘-"-‘-‘-"‘-’_'Mé;"

i
hi

0.0z = o o * x
b0z ._rw:?esem??%mm-m:ﬁ{mmﬁmm:aJ

[]OI-”-” ¥

0 i 2 3 4 5 5
Pasition of Interface x_
Figure 1.6.: The variation of the coupled error ||Vu; — Vul|q with respect to different

positions of the interface z, and for each mesh size h ~ 0.08, h ~ 0.04 and
h =~ 0.02.

We see from Figure that the error of the coupled 0D/2D model is affected by the
position of the interface. As the position of the interface becomes near the bend region as
the error ||Vuj — Vul|o becomes bigger.

1.2.3. Derivation of the simplified 0D/2D model of Stokes
We now want to derive a simplified coupled 0D/2D model for the Stokes equation, i.e.

equations ((1.1)) with p = 0. To simplify the notations, we redefine p/u as p. We thus
consider the following problem for the velocity v and the pressure p on domain §2 as in
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1.2. Derivation of simplified models for Poisson and Stokes equations

Figure [I.3}

—Au+Vp=0 in Q, ( )

divu=0 in €, ( )

up =S(y), ua=0 on TIjy, (1.15¢)

u =-S{y+W+R), up=0 on TIoy, ( )
(1.15¢)

u=0 on Fwall-

If p is a solution of system ([1.15]), then p 4 ¢ is also a solution. So, let us fix this constant

¢ by the condition
/ p=0. (1.16)
Q

The weak formulation of system (1.15)) is represented by finding (u,p) € H;(Q) x L3(9),
cf the notations below, such that:

(Vu,Vo)g — (V-v,p)o =0 Vv e [H(Q)]?, (117)
—(V-u,q)q =0 Vg € L%(Q). '
System ([1.17)) is well posed [47] due to the inf-sup condition:
inf sup  LVVR g (1.18)

geL3(©) vermi ()2 14llalVolle

We have plotted in Figure an approximate solution to problem obtained by a
standard Taylor-Hood finite element approximation (i.e. using Py continuous elements for
the velocity, and P; continuous elements for the pressure) on a mesh of size h ~ 0.02. We
observe that this solution has indeed a very simple form in the rectangular region between
the inflow and the bent region. The velocity vector is horizontal there and its profile is
independent of x. The pressure is an affine function of z. Our goal is thus to determine
explicitly the expressions giving velocity and pressure there.

Notations

Let us define the following notations.

o L§(Q) ={f € L*(Q); [ f =0}

(S(y>7 0) on Fina
® Ug = (_S(y+W+R)7O) on I_‘outa
(0, 0) on  yan-

HY(Q) :={ue [H' ()% u=u, on 9Q}.

[HE(Q))? :={uec [HY(Q)]*} u=0 on 00Q}.

H(div,Q) :={u € [L3(Q)]* V-ue L*Q)}.

(u,v)q = [quv.
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1. Context and model problems

(a) The approximate velocity up

(b) The approximate pressure py,

Figure 1.7.: A numerical approximation for velocity and pressure given by Stokes problem

[TCI5) on ©.

Simplified Model

We want to impose a simplified 0D model on ' = (0,z,) x (0, R) which is represented
in Figure @ , where z is the abscissa of the interface y. We have R << L; and we
consider that Uy << Uy, where U is the characteristic dimension for horizontal velocity
and Uj is the characteristic dimension for vertical velocity. Let us introduce the following

relations: € = L% as R << L1, Uy = ug, where ug, is the average velocity, Uy = eU; and

the characteristic dimension for pressure II = %. So, let us consider the dimensionless
quantities:

- U1 - uz x
Ulza, u2:av Lla

=N
Il
g}
Il
=l
=
Il
el

then, let us substitute the quantities w1 = Uiy, wuo = Ustie, ==L, y=Ry, p=
IIp in system ([1.15)) that gives the following system:

— (20241 + 025ii1) + Ozp = 0
Ogp = €033 + 207;1n i (0,1)2. (1.19)

Ozliy + 8@;712 =0

Now, let ¢ — 0 and recover the variables with dimensions by substituting u; = o
Uy =2, T=1,J= % and p = {; in system (1.19) to get:
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1.2. Derivation of simplified models for Poisson and Stokes equations

—82,u1 + Op =0 (1.20a)
dyp =0 in Q. (1.20b)
Oguq + Gyug =0 (1.20C)
Eq. (1.20bf) gives
p=p(x)

so that implies that 8§yu1 is a function of x only. Thus, 8§yu1 is constant for
any fixed x, so that u;(x,y) is a quadratic polynomial of y with coefficients depending on
x. Since uj should vanish at ¥y = 0 and y = R, we see that u; should be proportional
to y(R — y) with the coefficient of proportionality dependent on x. Substituting this to
(1.20a) gives

ui(w,9) = —3y(R—9) L (x)

dx
Substituting this to ([1.20c|) gives

1 d’p
—iy(R - y)@(:v) + Oyua(x,y) =0
Take any x, integrate this in y from 0 to R, and observe fOR Oyusz(x,y)dy = uz(x, R) —

ug(x,0) = 0. This implies ;%2 =0, ie.
p=—-Px+e

with some constants P and e. It also means that d,us = 0, hence us = 0 due to the
boundary conditions on y = 0. Finally, imposing the average of u; at any given x to be
Uay gives u; = S(y) as defined by , and we identify the pressure gradient as P = %
Our simplified model in Q' is thus

ui(z,y) = S(y) (1.21a)
uz(x,y) =0 in (. (1.21b)
p(z,y) =— 13:2“% +c (1.21c)

with some ¢ € R.

Coupled Model

Let us introduce the simplified 0D model in €, the non simplified 2D model in  and let
~ be the interface between € and Q such that Q = Q' UQU~. Let I” C I'yan be the wall
of ¥ and f‘wan C I'wan be the wall of Q. The coupled domain is represented in Figure
The simplified model in € is:

uy(z,y) = S(y),
ub(z,y) =0, in (1.22)
P(z,y) = =P+ cor,

with S(y) the Poiseuille profile (1.2)), P = IQR# and cq some constant to be determined.
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1. Context and model problems

In ©, we keep the original governing equations: find @ and p such that:

~AU+Vp=0 in Q,

divi=0 in Q,

i = S(y), i =0 on 7, (1.23)
u =—-S(y+ W+ R), iy =0 on Dout,

u=0 on f‘wau.

Note that we have already assumed here the coupling condition for the velocity on the
interface
uy=1u1 and uhb=1s on . (1.24)

Remark that if p is a solution of system (1.23)), then p + K is also a solution of system
(1.23) in Q for any K € R. Let p° € L%(Q) be a particular unique solution of system (1.23).

The existence and uniqueness of (@, p°) € [H'(Q)]? x L3(Q2) as a weak solution of system
(1.23) is related to the inf-sup condition, cf. [47, Theorem 5.1, page 80]. More specifically,

this solution is characterized by: find (@, p") € H;(Q) x L3(9) such that

(Va, Vi) — (V- 5,p%)g =0 Vo€ [H} (D)2, (1.25)
—(V - 1,4)g =0 Vg € L3 (Q), '
where ~ . B
H)(Q):={ae[H'(Q)* a=a, on 00}
and
(5(y),0) on 7,
g =1 (=S(y+ W + R),0) on Tuy,
(0,0) on Tyan.
The general solution for the pressure in ([1.23)) is then given by
p=1"+cq (1.26)

with the constant cg to be determined.
So, for the moment we have two additive constants: co/ in (1.23) and cg in (1.26). To

eliminate one of these constants, we propose the following coupling condition

/(Vu' —p'Dn-S(y)n = /(Vﬁ —phn - S(y)n. (1.27)

o

Physically, this reflects the continuity of the normal force on both sides of «, taking the
average with the weight S(y). Mathematically, eq. makes perfect sense for (u,p) €
H;(Q) x L2(€2) since implies that (Vi — pI) € H(div,Q)? so that its normal trace
on 7 is well defined. The multiplication by S(y) in may seem somewhat arbitrary.
We shall see however that this equation comes from a natural variational formulation of
the coupled problem, cf. the paragraph below. Moreover, it is this coupling condition that
allows us to develop the reliable and efficient a posteriori error bounds in Chapter 3.
Adding to the coupling condition above the requirement that the integral of pressure

over all of 2 is 0, i.e.
/ p'—i—[ﬁ:() (1.28)
’ Q
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1.2. Derivation of simplified models for Poisson and Stokes equations

closes the system of equations. We have now two scalar equations for two additive constants
cor and cg. This enables us to define the unique solution to the coupled system (1.22))—
([T23)~(T.27)—(T.28).

Remark 1.1. We have also considered a slightly simpler alternative to the coupling condi-
tion (1.27)), which consists in imposing that the average pressure is the same on both sides

of the interface y:
/ P = / b (1.29)
v gl

The coupled system (1.22)—(1.23)—(1.29) —(1.28)) also allows us to define a unique solution
on 0 and works well in practice, cf. the numerical results below. However, mathematically,
1s not satisfactory since p is by definition in LZ(Q) so that it does not necessarily
have a trace on 7.

A variational characterization of the coupled problem ([1.22)—(1.23)—(1.27))—(1.28))

We present here another derivation of the coupled problem, starting from a variational
problem taking into account the essential features of the solution predicted by the asymp-
totic analysis, and leading to the coupling condition together with the simplified
model . We start by recalling that the asymptotic analysis suggests that the velocity
in ' can be approximated by an expression of the form (a(x)S(y),0) with S(y) given by
and some «(x), and the pressure in €' can be approximated by a function of x only.
Let us introduce the spaces of functions on ) that satisfy these constraints on Q':

Ve ={ve [H (Q?:vlg = (B(x)S(y),0) with 8 € H'(0,2,)}, (1.30)
M?® ={q€ L3 : qlos = x(z) with x € L*(0,z,)}, (1.31)
and restrict the variational formulation (|1.17)) of the Stokes problem to produce a plausible

approximation to the velocity and pressure, simplified on Q'. We thus search for (u®, p®) €
V¢ x M? such that u = ug on 02 and

(Vus, Vo) — (V- 05, p%)g =0 VYo € VSN [H(Q))]?, (1.32)
—(V-u®,¢%)qg =0 Vq® € M?. '
This produces indeed the coupled solution introduced above.
Lemma 1.2. Problem (1.32)) has the unique solution which is given by
s u' on
s on,
b= { D on Q. (1.34)

with o', @, p', p given by (1.22)~(T.23)~(T.27) (T.28).

Proof. Let (u®,p®) € V¥ x M*® be a solution to (1.32)) veryfying «® = uy on 09, u® =
(a(x)S(y),0) on £, and p* = w(x) on Q. Take the test function ¢° in the second equation

of as
¢ (z,y) = x(x) = —(x) on¢
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1. Context and model problems

and ¢°* =V -u® on Q. Note that q° € M? since

R x
/qS:/ S(y)dy/Wa/(:v)dx+/~v-usz/v-usz/ ug = 0.
Q 0 0 Q Q onN

The second equation of ([1.32]) now gives

Ly
0= (V-u’ g’ = v
0

R 2
av S uav
o [T sty [ ol @Pde (90, Vi) = o IV

hence a(x) = const = 1 (by boundary conditions on I'y,) and V - u* = 0 on €. Thus
u® = (S(y),0) on .

The first equation of with any test function v* of the form 3(x)S(y) on ' can be
now written as

R ! 2 o o R o / s s\ . S S . —
/0 S/ (y)2dy /0 B()dz /0 S(y)dy /0 7(2)8 (2)dz + (Vus, Vo) g — (V- 0%, p*)g = 0

Taking 8 = 0 gives immediately div(Vu® — p°I) = 0 on Q. On the other hand, taking
B € H}0,,) and v* = 0 on Q gives

P/OI7 B(x)dx — /Ox7 m(x)B' (x)dx =0

since —S"(y) = P. Hence 7' = —P on (0,z,). We have thus proven that (u?, p®) is of the
form 1' on ) and satisfies 1' on 2. Now, taking any test function v*® € V* with
v® = S(y) on Q' and integrating by parts on €’ and on Q gives

1w = pnl - 500) =0
Y

which is equivalent to the coupling condition . Thus, (u®,p®) can be represented as
(L.33)-(1.34) with ', @,p’, p given by (1.22)(L.23)-(L.27)(L.28).

Vice-versa, let v/, @, p’,p be given by (1.22)—(1.23)—(1.27)—(1.28). Combining them in
(u®,p®) as in 7, we see immediately u® € V?, p* € M* and div(Vu’® —p°I) = 0,
V -u® =0 on both " and 2. Taking any v* € V* of the form S(x)S(y) on ', we observe

(Vu®, V') — (V- v°,p%)q = B(zy) /[(Vus)n —p’n]-S(y) =0
v

by integration by parts on €’ and on Q, and the coupling condition ((1.27]). This means
that (u®,p®) satisfies (1.32]). [

1.2.4. Discretization of the 0D/2D model for Stokes

Let 75, be a regular triangular mesh on Q in the sense of [29]. Introduce the FE spaces
Vii={vn = (v}, v}) continuous on € s.t.  wu|x € Po(K) VK € Ty},

th:: {v, € Yh s.t. Uh|3() = ’fbg},

V:,?:: {vp, €V}, s.t. Uh|6fl = 0}, .

My:={qn continuouson Q st. qp|x € P1(K)VK €T, and [5qn =0},
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1.2. Derivation of simplified models for Poisson and Stokes equations

Now, we discretize 1} as: find uy € f/hg, }32 € Mj, such that

(Vﬂh, V’f)h)ﬁ — (V : @hvﬁg)ﬁ =0 V'IN}h € ‘Z}_S, (1 35)
—(V - tp,qn)g =0 Vqn € My,
set
Ph = Ph + Ca, (1.36)
and couple it with the approximation on €’
uy(z,y) = S(y),
ub(z,y) =0, in (1.37)
p%(xay) = —Pzx +CQ’ hs
through the conditions
/(Vu' —ppD)n - S(y)n = /(Vﬂh —pnl)n - S(y)n, (1.38)
¥ ¥

|+ /Q P =0. (1.39)

Note that pj, is different from p’ since cq j # cqr. Then the approximate solution on the
whole ) is reconstructed as

s u on

u = { o (1.40)
s p}, on

Ph = { ]32 on Q. (141)

A numerical illustration

In this section, we numerically test the 0D /2D model for the Stokes equations. We explore
the error in the energy norm between the approximated velocity uj and pressure pj, defined
by and respectively, and the exact velocity and pressure given by ,
with respect to different positions of the interface v. We shall report thus the following
quantities:

IV(uj, —u)llo and [|pj —pllo (1.42)

The exact solution (u,p) is in fact unknown, and we replace it by a reference solution, i.e.
a finite element approximation on a sufficiently fine mesh on , using continuous Py /Py
finite elements for velocity /pressure.

Let us fix a mesh size of Q by h = 0.064, h =~ 0.032 and h =~ 0.016, we want to see
the variation of the energy norm between the simplified approximated solution wj and
the reference solution u, i.e. ||Vuj — Vul|q and the variation of the L?norm between
the simplified approximated solution pj and the reference solution p, i.e. ||p; — p||q with
respect to different positions of the interface i.e. x, € [0.1,L; — 0.1] and for each mesh
sizes as it is showed in Figure [I.§

We see from Figure that the error of the coupled 0D/2D model is affected by the
position of the interface. As the position of the interface becomes near the bend region as
the errors ||Vuj — Vul|q and ||p} — p||a become bigger.

31



1. Context and model problems
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Figure 1.8.: The variation of the coupled errors ||Vuj — Vu||g and ||p;, — p||o with respect
to different positions of the interface x, and for each mesh size h ~ 0.064,
h == 0.032 and h =~ 0.016.

Remark 1.3. As announced in Remark the coupling condition can be replaced
i practice by another one . The results produced by the two variants are indeed
very close one to another. This is reported in Figure[1.9. We plot there the pressure error
llp;, — pllo produced by the two variants on meshes of size h =~ 0.064, as function of the
position of interface y. Note the velocity approximation uj is not affected by the choice of
the coupling condition, so that there is no need to compare the velocity errors.

0.25
02
0.15
01 WA TN
0.05
0
0 1 2 3 4 5 6

Position of Interface x_

Figure 1.9.: The variation of ||p; — p||o using the two coupling conditions. Red: condition

(1.29); blue: condition ([1.27)).

1.3. A posteriori error Estimation

The main core of the thesis (Chapters 2 and 3) will be devoted to the construction of a
posteriori error estimators for the coupled 0D /2D models for Poisson and Stokes equation,
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1.3. A posteriori error Estimation

as derived in the preceding section, using finite elements to discretize the original 2D
equation on the “not simplified" subdomain €. These estimators will in particular take
into account the “modeling" error due to the replacement of the original problem by the
coupled 0D /2D model. Prior to presenting our estimators for coupled problems, let us
give here a general background about a posterior: error estimation in the context of usual
boundary value problems.

A posteriori error estimators are obtained from some computable quantities on the
patches of the mesh elements or on the mesh elements themselves. These computable local
quantities on the mesh element K are denoted by ng, which represent a local estimators
on K and usually depends on the numerical computable solution uj, quantify the local
discretization error. Now, the global estimator 7 is defined by

i Y ik (143

KeTy

Let us denote the exact solution by u and the approximated solution by uy, then among
the desirable properties for the optimal a posteriori error estimator 7, we can cite:

i) guaranteed upper bound, which represents the global reliability in which we
have a fully computable upper bound, that depends on the approximated solution
up, of the numerical error between the exact and the approximated solution i.e.
there exists a (known) constant C' > 0 which is independent from the exact solution
u, from the approximate solution u; and from the mesh size h such that

lu —up|| < Cn+ osc (1.44)

where osc are the data oscillations, measures the discretization error of some data
function f € L%*(Q). When C = 1 the a posteriori error estimator is called an
guaranteed estimator.

ii) local efficiency, at which the local estimator 1y gives a local lower bound for the
actual error up to a generic constant i.e. there exists a constant ¢ > 0, which does
not depend on u and wuy, such that

cni < Hu|w;< — Up),, HWK +osqy, (1.45)

where the patch wg is a collection of elements K that share the same vertex a.
Here, Uy, Uhly and 0sc|,  represent the restriction of the exact solution u, the
approximated u;, and the data oscillation osc on the patch wg respectively. Usually,
the constant ¢ is unknown.

iii) asymptotic exactness, the efficiency index which is the ratio ﬁ tends to one

u—up
as we refine the mesh.
n

e | (1.46)
[l — wa

iv) robustness, where the previous properties are independent from the parameters
of the problem i.e. the constants C, ¢ and the efficiency index do not depend on
the parameters of the problem and their variation.
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1. Context and model problems

v) low computational cost, where the computation of ) can be done locally in order
to obtain a low computational cost.

Optimally, an estimator should satisfy and with constants C' and ¢ very close
to 1 as much as possible. From this we obtain two things, the estimator is a good approx-
imation of the exact error i.e. n & ||u — up|| and the estimator detects locally where the
error is big across the mesh 7, which is important in adaptive mesh refinement algorithms.
Usually, the norm ||-|| in Properties i) to iii) is the energy norm of the associated problem.

In order to study Properties i) to v), for linear elliptic PDEs problems, we refer the
reader to the following works [2,20,[23}34-36,58,(64} 74,/77]. There are many types of a
posteriori error but the most known estimator is the explicit residual estimates, which
is introduced initially by Babuska and Rheinboldt in [4}/7,|9]. Many studies verified that
these explicit residual estimators satisfy the properties i) as in [3], ii) as in 73] for Stokes
and [74] for Poisson equation, iv) as in [75,|76] for the reaction-diffusion and convection-
diffusion equations, and they satisfy in general the property v). The constant C' in the
upper bound in i) is in general not known for the residual error estimators, although
there are some explicit estimates for it in the literature, eg. Carstensen and Funken [21],
Carstensen and Klose 22|, and in Veeser and Verfiirth [71]. Certainly, we cannot hope
that C = 1. The residual error estimators are thus said to be reliable and not guaranteed.
There are many other types of a posterior: error estimates such as equilibrated residual
estimates as Ainsworth and Oden [1], Averaging estimates as Zienkiewicz—Zhu [84] and
Carstensen |18,/19], Functional a posteriori error estimates as Neittaanméki and Repin [58]
and Repin [64], hierarchical estimates as Bank and Smith |11] and finally geometric a
posteriori error estimates as Castro- Diaz and Hecht in [26] or Frey and Alauzet [44].
Among all the techniques, we focus on the guaranteed because the constants in upper
bound is known and it allows us to estimate error knowing the magnitude of the error. In
this thesis we will focus on so-called equilibrated fluxes estimates.

Equilibrated fluxes estimators

Fluxes of the solution u are usually the gradient of u i.e —Vu (in Poisson problems for
example) and are sometimes stresses quantities i.e Vu—pl (where u represents the velocity
and p represents the pressure in the Stokes problems for example). The idea of reconstruc-
tion of fluxes from the approximated finite element solution u; comes from the fact that
we want to reconstruct a flux which satisfies the properties of the exact flux —Vu since,
for example in Poisson equation —Awu = f on the domain 2, the approximated flux —Vuy,
does not belong to H(div,) and —Auy, # f while Vu belongs to H(div,2) space and
V - (=Vu) = f, where H(div,) is the space which contains vector functions in L?()
and its divergence also belong to L2(€). For this reason we make a reconstructed flux oy,
which belongs to H (div, ) and get an estimation of the actual error |[Vu — Vuy,||g. These
estimators represents the norm between the fluxes of the finite element solution u;, and the
reconstructed ones oy, i.e ||Vup, + o -

The idea of equilibrated fluxes estimates is related to Prager—Synge equality [61] and the
hypercircle method as Synge [69]. Their are many research studies about equilibrated fluzes
estimators such as Repin [66|, Destuynder and Métivet [30], Luce and Wohlmuth [55], Lade-
veéze and Leguillon [54], Korotov [53|, Vejchodsky [72], or Braess and Schoberl [16], Fierro
and Veeser [41]. The robust with respect to the polynomial degree is proved by Braess et
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1.4. An a posteriori error estimator for the non coupled 2D Poisson Model

al. in |14]. This distinguishes them from the other types of estimates.
In the next section we will explain the idea of equilibrated fluxes estimators using the
Vohralik techniques in [39] .

1.4. An a posteriori error estimator for the non coupled 2D
Poisson Model

In order to understand better some ideas of the technique of equilibrated fluxes for a
posteriori error estimation, we will give a simple theoretical analysis and some numerical
illustration in the case of a Poisson problem with Neumann boundary condition. We make
the flux reconstruction by similar strategies as |39] giving “pedagogical" motivation for it.
We shall contend ourselves here with a simpler proof of the efficiency, without attempting
to prove the “p-robustness".

Let us consider the problem posed in domain Q € R? with d = 2 or 3:

—Au=f in Q,
ou
%—O on 0f).

We suppose f € L?(Q) and Q a bounded polygonal /polyhedral domain. Note that we
prefer to treat here the problem with Neumann boundary conditions since they turn out
to be slightly simpler with respect to the a posteriori analysis than the Dirichlet ones (the
changes that should be made in the Dirichlet case are outlined at the end of the section, see
Remark . The solution u is defined up to an additive constant. To make the solution
unique, we impose [, u = 0.

Let T be a regular mesh on 2 consisting of triangles/tetrahedra. Let V} be the usual
[P, finite element space on this mesh (the space of continuous functions on € given by
poynomials of degree < k on every K € 7Tp,). The discrete problem is to find uj, € V} such

that for any v, € V3,
/Vuh ‘V’Uh = / fvh. (1.47)
Q Q

Our goal is to provide an a posteriori estimate for [|[Vu — Vuy||q. First of all, we note the
following bound: for any o € H(div, ) such that dive = f on Q, 0 -n = 0 on 09, we
have

|Vu — Vuplla < |lo + Vup|la- (1.48)

Indeed, setting e = u — up
HVU - vuh”%l = (vu - vuh) VC) = (f7 6) - (vuhv ve) = (le g, 6) - (vuhv ve)

= (=0 = Vup, Ve) < lo + Vun|[al|Vell,

so that the announced estimate follows by dividing on both sides by [|[Vu—Vuy | = || Vel q.
Let us emphasize that holds for any « flux » ¢ with dive = f, and the idea of what
follows is to give a recepee to construct such a flux in a way easily implementatble on a
computer. Another thing to keep in mind is that this o should be kept as close as possible
to —Vuy, in order to minimize the over-prediction of the error in . Let us start from
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1. Context and model problems

the observation that there is an ideal flux (of no practical use) given by 4% = —Vu. For
this flux, (1.48)) is a trivial identity. This o'4°?! satisfies

O_ldeal — —VU,

: ideal
dive =f,

oideal .y — 0on 0.

Now, let us introduce the localized version of ¢'d¢a! : 5% = —(Vu)1)® where 1)¢ is the Py
finite element basis function (the hat function) associated to any mesh node a. This o
satisfies on the patch w® = supp(¢?)

0% = —(Vu)y*onw?®,
dive® = fyp* — Vu - Vip® onw?,
0% -n = 0ondw®.
Note that
Uldeal _ Z 7% on
a

since ), 1® =1 (we imply the summation over all the mesh nodes in such expressions).
Let us discretize the problem for ¢*. We do it first on a very formal level. We introduce
some finite element space ¥ C H(div,w®) and seek for oj € ¥f such that

op ~ —(Vup)y® onw?, (1.49)
divoy ~ fy* — Vuy, - Vip® onw?, (1.50)
oy -n = 0ondw®. (1.51)

We define then
on =Y of. (1.52)

Both (1.49)) and (1.50)) introduce some approximations with respect to the exact %, most
notably w is replaced by uy there. But the role of these approximations is quite different
from to . In the case of , replacing u by up does not affect our primary
goal, i.e. to construct a flux with dive = f. Indeed, if were satisfied exacly, then
one would have

divon, = divef = f> 9= Vuy-V <Z¢a> = f. (1.53)

We want thus to satisfy as accurately as possible. In our final construction
will be imposed almost exactly with the small modification that f will be replaced by a
piecewise polynomial approximation f; (otherwise, it would be impossible to satisfy
since div oy is piecewise polynomial).

On the other hand, cannot be made precise even in principle since (Vup)y® ¢
H(div,w*). We want however to make the difference between of and —(Vuy)y* as small
as possible, in order to minimize the over-prediction of the error in .
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1.4. An a posteriori error estimator for the non coupled 2D Poisson Model

Motivated by the discussion above, we give now the precise formulation for of in ((1.49)—
(1.51)): find of € X such that

0% = arg min s + (Vun) 9o (1.54)
s¢ €58
div g = Tlge (fy@ — Vuy, - Vi)

where ¢ € H(div,w®) incorporates already the boundary conditions (1.51)) and is given
by

b ={on € H(div,w?"),on|x € RT,(K) VK € w® [[o]]F - np onany facet inside w®, o, - n = 0 on 0w}

and
Q%ZdiVZZ:{QhGLQ(W“),quEPp(K) VK €', and qh=0}

with P, (K') the set of polynomials of degree < p on K. Here RT,,(K) is the set of Raviart-
Thomas (vector-valued) finite elements on a cell K which is defined by

RT,(K) := P,(K)* + 2P, (K) (1.55)

where, P,(K') represents the set of homogeneous polynomials of degree p on K. Note also
that the constraint fwa gn = 0 is introduced in Qf in accordance with oj, - n = 0ondw® in
the definition of ¥}. Let us summarize some important properties of the Raviart-Thimas
space used here after.

Remark 1.4. The space RT)(K) is characterized by the following properties.

e RT,(K) contains all the vector-valaued polynomial functions of degree < p (plus
other things).

o Let Ty,..., g be the sides of OK, «,...,aq any polynomials of degree < p on
Do, ..., g respectively, and B any polynomial of degree < p on K such that E?:o fFi o =
[ B. Then there exists v € RT,(K) such that

vy-n=o;only, 1=0,...,d
divy = fon K.

We now give the Euler-Lagrange equations that give the solution to (1.54)): find o} € 3¢
and pf € Q4 such that for all 7, € ¢ and ¢, € Q}

/ on - Th —i—/ pp div Ty, = —/ (Vup)p® - 1, (1.56)

[ andivai= [ (100 = Tun-9o)an (1.57)

Existance of the solution to this problem is given by the following well-known result.
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1. Context and model problems

Lemma 1.5. Consider the problem: find oy, € 3¢ and py, € Q% such that for all 7, € X¢

and g € Qf
/Uh-Th+/ phdiVTh:—/ F -,
we w® w®

/ qn div oy, = Gay,.
we w

This problem has the unique solution for any given F € L2(w“)d and G € L*(w®). More-
over,
1
ha
The proof of this Lemma can be found in several textbooks on mixed finite element
methods. The prefactors with the powers of the mesh size h, stem from a rescaling from
a reference patch configuration. The flux reconstruction oy, is thus defined by (1.52)) with
of given by (1.56)—(1.57) and the a posteriori error estimator is defined by ||os + Vuy||q,

cf. (1.48).

Theorem 1.6. Assume p > k.The error estimator ||oy, + Vuy||o with o), defined by (1.56)-
— satisfies

lonllZe + hall div onllZe + 25 lpallGe < CUFIZ + eI GlIZ)-

|Vu — Vuplla < |lon + Vup||q + h.o.t. (1.58)

llon + Vup|la < Cl|Vu — Vug|lq + h.o.t. (1.59)

with C' depending only on the mesh reqularity and on polynomial degrees k and p, and
h.o.t. standing for higher order terms, i.e. the contributions of order o(h¥), at least if f is
sufficiently smooth, and thus negligible. More specifically,

hot. <C S h%|f - full
KeT,

where f|k is the orthogonal projection of f|k on the space Pp(K) of polynomials of degree
<pon K.

Proof. The upper estimate ((1.58)) is aready almost proved, cf. . However, we do
not have exactly divoy, = f, but rather diveoy, = f; with f; described in the statement
above. To see this, we recall which is valid for piecewise P, polynomials g; under
the constraint fwa gn = 0. In fact, is satisfied with g, = 1 as well. Indeed,

/ divep =0= / (fY* = Vuy - Vi)
since of - n = 0 on dw* and thanks to (1.47) with vy = % Thus, (1.57) is valid for any

piecewise [P, polynomial g5 without constraints. We can also write it separately on any
mesh cell K € T}, since ¢, are discontinuous:

/qhdiVUZ:/ qn(fY* — Vuy, - V), Vg, € Py (K).
K K

Summing this over all the vertices a gives, cf (1.53)),

/thiVUh:/ anf, Yan € Pp(K)
K K
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so that divoy, = f, on K. We now modify the proof of ((1.48): introducing éx as the mean
ofe=u—u,on K

IVu = V[, = (Vu — Vup, Ve) = (f = fn,€) + (fa,€) — (Vun, Ve)

=(f— fn,e) + (divop,e) — (Vuy, Ve) = Z (f = fne —éx)rx — (on + Vuy, Ve)
KeTy,

1 _
DR ATESAINDD hTHe—eKH%Hr lon + Vup| ol Vel
KeT, KeT, K

This proves ((1.58)) since |le — éx||x < Chkl|Ve|lx. We turn now to (1.59). We want to
prove first its localized version

log, + (Vup)p|lwe < OV (u = un)llwe + Chall f = frllwe- (1.60)
To this end, introduce o}, € X7 by
j, = op, + (Vun)p® +cn

with ¢p to be specified shortly. The idea is to recast the problem — in terms of
ot 4+ (Vuy)y® since this is our quantity of interest now. Note that (Vuy)1® is a polynomial
of degree < k on any mesh cell K, so that (Vuy )Yk € RT,(K) provided p > k. However,
(Vup)y® € ¢ since the normal derivatives of uj, jump accross the mesh facets. We want
thus to add a correction c; to compensate these jumps. We set ¢, as a piecewise polynomial
on the mesh on w® with ¢,|x € RT,(K ) for any cell K € w®, ¢ -n = 0 on dw®, and
[[en]lF - np = —[[Vup]]pyp® - np on any F' € F* where F* denotes the set of mesh facets
inside w®. We achieve this by setting on any side F' € F® of any cell K € w®

on = %[[Vuh]]sz“ . (1.61)

Here ¢p, should be understood as ¢;|x and n should be understood as the unit normal
looking outside of K. Note that [[Vuy]]py® - n is a polynomial of degree < k on any facet
F', so that can be indeed prescribed provided p > k. Prescription of ¢; on 0K does
not fully determine ¢, on K. But the details of the construction of ¢, are not important.
We should only insure that

enllx + hall diven |l < Cv hallenllox (1.62)

which can be done by constructing c¢j, first on the reference element and then rescaling.

Now, (|1.56)-(1.57)) can be rewritten as

/ 52-7'h+/ pZdiVTh:/ Ch * Th, (1.63)
wa wa w(l

/a gndivaoyp = Z /K(f+Auh)¢“qh+ Z /thdivch. (1.64)

Kew? Kewe

Lemma [1.5] gives

6812 < © (uchuia P2 A2 Y udivchu%) |

Kewe Kewe
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Thus, in view of (1.61)) and (1.62)),

lof + (Vup) )2 < C ( S ohklf + Auplk + D e (V] -wH%) . (1.65)

Kew® FeFe

We are now going to bound the two terms in using Verfurth’s technique of bubble
functions. Introducing a bubble function bx on K (a polynomial such that bx = 0 on
OK and ||bg||zec(x) = 1) and using an appropriate inverse inequality (i.e. a bound on
polynomials which can be proved by equivalence of norms and scaling), we get

| fat+Aup|% < C/K(chrAuh)QbK < Cllf—fh|!K|!fh+AuhHK+C/K(chrAUh)(erAUh)bK

We recall that f = —Aw in a weak sense and intergrate by parts

/K(fh+Auh)(f+Auh)bK:/

(= Au—un)) (fit g )b = / V)V ((fo + Ay )brc)
K K

<V (u = up) | IV (fn + Dun) | & 0k || oo (i) + IV (0 — up) [ [ fr + Aup || & | VOE | oo (1)
o
< 19 = w)llicl i+ Aunllx
K
using some some inverse inequalities and ||b || z(x) = 1. Thus,
C
[fn + Aup k < EHV(U —up)|x +Cllf = fallx

and
bl fo+ Aupllx < ClIV(u —up)l|x + Chi| f — fullk- (1.66)

Similarly, for any mesh facet F' shared by two cells K1, K, we introduce a bubble function
br (a polynomial on Ki, K3 such that by = 0 on 9(K;1 U Ka) and ||bp||fe(k,uK,) = 1)-
Let also Ilg, denote a natural extension of polynomials from F' to K;. In the same spirit
as before,

IIVun]] - nrlf < C/ ([Vun]] - nr)* bp = C/ [V (un = W)l - np) ([Vun]] - nr) br
F F

- ¢ Z ) (7 ) ) i () )

2
= C; [/K Vi(up —u) -V (g, ([[Vup]] - nr) br) + /K A (up —u) (g, ([Vup]] - nr) bp)| -

We remark
g, ([Vun]] - nr) bellg, < C\/hF 1[[Vun]] - nrllp

IV (g, ([[Vup)] - np) bp) g, < \/77 I[[Vun]] - nrll z

and conclude

C
[[[Vur]] - nrllp < \/T—FHV(U —up)|l g0k, + CVIrE|f 4 Aup| koK, -
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In view of ([1.66)), this gives
Vhe[[[Vur]] - nrellp < C|V(u —un)llkyuk, + Chellf = frllkur,- (1.67)

Substituting (1.66) and (1.67)) into (1.65) gives (1.60]).
It remains to sum ([1.60|) over all the nodes a:

> (0 + (Vup)y?)

a

||Uh + VuhHQ =

Q

<D llof + (V) oo
<O IV —up)lws +C Y hallf = frllws-

This yields (1.59) since each patch w® contains a bounded number of mesh cells K. Here
are the details for the h.o.t.:

2
(Zhauf—fh\wa) <O Y B - flk <O Y BRI - ful

a Kewe KeTy,

with C depends on the maximum of the constants where the patches intersect. |

Remark 1.7. The proofs above are not optimal with respect to the polynomial order p.
Our constants do depend (in principle) on p. But it can be in fact proven that they are
p-independent, cf. the article by Braess et al. [14] and the subsequent papers by Vohralik
and Ern.

Remark 1.8. All the above can be easily applied to the case of Dirichlet boundary condi-
tions for the PDE —Au = f. The flux o, will be still defined as the sum of local contribution

, each of which is defined by f, but one should adapt the definitions of
X4 and Qf there. If the patch w® does not touch the boundary O or interescts it in only

one point (or an edge in 3D), then nothing changes. However if |0w® N 0| > 0 then one
should not prescribe op, - n = 0 on this common part of dw® and ) in the definition of
4. Note that we still have oy, - n = 0 on the remaining part of Ow®. Accordingly, we no
longer have fwa divoy, = 0 for o, € X¢ on such a patch w®. Thus there is no need for
the constraint fwa qn = 0 in the definition of Qp. Once the definitions of X3 and Q} are
modified accordingly, all the estimates above remain valid in the Dirichlet case.

1.4.1. Numerical Results

The goal here is to validate the upper bound estimator in (1.58) of a posteriori error to the
L-shaped domain Q = (—1,1) x (=1,1)\[0,1] x [—1,0] of the following Poisson problem

—Au = fin{)

U = Ue on OF)

with the exact solution w. written, in polar coordinates, as

ue(r,0) = 13 sin(20/3). (1.68)
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1. Context and model problems

We remark that we consider here § € (0,37/2). The corresponding source term f = 0.

The exact solution u, given by li is singular, u € H 1‘*'%_6(9) for any € > 0 only, with
the gradient exploding at the corner (0,0). Since f = 0, then h.o.t. = 0 in the estimator

in (1.58)) and we get
HVU—VU}LHQ < ||O'h—|—Vuh||Q. (1.69)

Let V}, be the usual P; finite element space on the uniform triangulation mesh 7j of this
L-shaped Q. For every element K € T;, we plot in Figure the Elementwise errors
IV (u—wup)||x (left) and Equilibrated fluxes estimators ||of, + Vuy |k (right).

it [

EEm

i iz

Figure 1.10.: Elementwise errors ||V (u — up)||x (left) and Equilibrated fluxes estimators
llon + Vup| ik (right) for up in P; finite element space.

Now let V3, be the usual P, finite element space on the uniform triangulation mesh 7j of
this L-shaped Q. For every element K € T, we plot in Figure the Elementwise errors
IV (u—wup)||x (left) and Equilibrated fluxes estimators ||oj, + Vuy |k (right).

Figure 1.11.: Elementwise errors ||V (u — up)||x (left) and Equilibrated fluxes estimators
llon + Vup| i (right) for up in Ps finite element space.

EEEEE

In the Figure and Figure [I.11], we see that the Elementwise errors ||V (u — up)| x
(left) and Equilibrated fluxes estimators ||oy, + Vuy | x (right) are distributed equivalently
in a way that the error and the estimator have the biggest values in the triangles which
are concentrated at the corner. For this reason we should introduce an adaptive algorithm
to refine the mesh more at the triangles where the estimator ||oy, + Vuy ||k is big in order
to obtain an optimal convergence. The results for this example using adaptive algorithm
are introduced in the Appendix [A]
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2. A posteriori estimator for the coupled
0D /2D Poisson equation

In this chapter we are going to talk about a posteriori error of the approximated solution uj
defined in - - ) for the coupled 0D /2D model of the Poisson equation ([1.3))
on Q =/ U v U which is represented in Figure u We will introduce two possibilities
of reconstructing the flux o on Q of the coupled 0D/2D model. In Section we will
construct the first attempt of defining the flux reconstruction where the upper bound is
guaranteed (reliability of the estimator) while the lower bound (efficiency of the estimator)
is not satisfied (or it is very difficult to be proved). In Section we will construct the
second attempt of defining the flux reconstruction where the upper bound (reliability of the
estimator) and the lower bound (efficiency of the estimator) are guaranteed and proved. In
Section [2.3] we have made an adaptive algorithm that enables us to choose a good position
for the 1nterface ~ and to optimize the mesh on .
Let us recall first some basic notions related to the technique of equilibrated fluxes.

Definition 2.1 (Flux o). Let u be the solution of system then, we denote the flur by
o :=—Vu.

Theorem 2.2 (Properties of weak solution of system (1.4). Let u be solution of system
and let o be defined as in Definition . Then, u € Hgl(Q), o € H(div,Q) and
V o= f with f = 12“‘“’.

Proof. See Theorem 7.1.3 in [78]. [

Remark 2.3 ( Propertleb of approximate solution uj). Let u; be the approzimated solution

given by (-) (-) Then, uj, € H) (), —Vuj ¢ H(div,Q) and V- (=Vuj) # f

m general.

This remark tells us that the straightforward flux approximation —Vuj does not retain
the properties of the flux 0. We want thus to construct another flux, named oy, starting
from wu;j such that oy, € H(div,Q) and V-0, = f. This will be achieved in the next section,
cf. Theorem 2.2

2.1. A simple a posteriori estimator with guaranteed upper
bound only

2.1.1. Flux reconstruction

Let uj be the approximate solution given by (1.8} . - . Ideally, we could look for
a flux oideal € ¥§t ¢ H(div, Q) such that:

o i argmin ||V} + vnl20) (2.1)

NS h
divup=f on Q
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

taking Z% as the RT}, space on € and (=Vu/) on €. Computing oideal would be too

costly, so we localize this minimization to the patches of each node of the mesh on Q.
This can be done in a completely standard way at the interior nodes, cf. for example
the exposition in Section [[.4] Note in particular that this localization relies on the finite
element discretization of the governing equation at these nodes. The construction is also
standard at the nodes on the wall part of the boundary and on the outflow, cf. Remark
and relies on the observation that the stress can be kept free on these parts of the
boundary. On the contrary, we have a non standard situation at the nodes on the interface
~. Indeed, in order to preserve continuity of the normal component, we should have there
op-n = —Vu'-n = 0on+, as if this is a part of the boundary where the Neumann conditions
are imposed. But this is not the case: Dirichlet boundary conditions are prescribed at these
nodes in the finite element discretization. Our way to circumvent this problem is to enlarge
the patch attached to the interface ~, as explained below.

For each vertex a €  we consider a patch w® to be the collection of all triangles that

share this vertex a. Let V; be the vertices of 5\*7 Our notations are shown in Figure ﬂ

Figure 2.1.: Simplified region ~Q’ , vertices a; of patches w® at the interface v in the non
simplified region €2

Let

o= Y

a; €y

as in Figure

Lin 04 . \Q

Figure 2.2.: Patch w” which represents the union of all patches of vertices located on -y
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2.1. A simple a posteriori estimator with guaranteed upper bound only

We introduce the partition of unity:

Io=1o + 14

=1o + Z (0

a : vertices in

=To+ > ¢+ Y, ¢

agcy a€cVy
——
1[)"/;:
= ]lﬂ’ + IW + E ¢a’

a€Vy

where, ¥ and 17 are IP; finite element functions. In particular, ¥)* is the hat function for
any mesh node excluding those in v. By construction ¢ is 1 on v and 0 on all nodes not
on 7.

Now, we replace U}Ldeal by

O'h:O'g—l- Z U%—F(—VU’)]IQ/ =65+ 0, (2.2)
aeVy
where, 0/ = —Vu/ in ¥ see equation (|1.8), and &}, is defined by
Ghi=0o) + Y of. (2.3)
aeVy

For each a € V;, we define of, € ¥¢ by

op = argmin  ||v, + ¥ Vip|| 12 ()
Ve,

div UZ:HQ% <¢af—vwa~w2h>
and UZ € ZZ by

o : ¥ SAvar
o) = ar%ZHéIEHL [[vg, + VTV || L2 () (2.4)

diva:HQZ w-fvw-vah>

Where,
Case 1: a in an internal node of Q
Y4 :={op € RI,(K)VK e w* 0p,-n=0 on Ow}
QZ = {qh S LQ(w“),thK GNIPk(K),VK € w?, fw“ qgn = O}
Case 2: a on the wall of Q\~y
¥4 = {0} € RTH(K) VK € w0, -n=0 on 0w\Q}
Qft = {an € L*(w"), anlx € Px(K),VK € w"}
Case 3: a =7
Y)Y == {o} € RT}(K) VK € w,0,-n =0 on 0w\0Q and oy-n = (-Vu') -n =
0 on ~}
Z = {qh S Lz(uﬂ),qh\;{ S Pk(K),VK S uﬂ}
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

Ige is the L?(w,)-orthogonal projection and HQZ is the L?(w?)-orthogonal projection. We
remark that the minimization problems above are equivalent to the following variational
problems. Find UZ € EZ and T‘Z € Qz such that

(O‘Z,’Uh)w'y - (TZ, Vvp)wr = (=0"Vip, vp)wr Yo, € EZ, (2.5)

(v : O-Z7 Qh)uf’ == (lp,yf - Vf(p’y : Vf"ha Qh)oﬂ th € QZ? .
And for all vertices a € V}, find of € X% and r} € @} such that:

(o, vp)we — (1), V- vp)we = = (*Vip,vp)pe Yoy, € 37, (2.6)

(V-op,qn)we = (WO f = Vi - Vi, qp)we Vg € QF,

Proposition 2.4. Let op, defined by equation and O‘Z by equation (2.4) . We have
op = o) + Zaev;g op, then V - oy, = Ilg, (f) = f on Q and consequently V - op = f on
where, f = 121%# and Qp, = Py (Tp).

Proof. 65, € H(div,Q) as all the individual components o) and of belong to H(div, Q) for

all a € V}, since by extension we can go from H (div,w?) and H(div,w?®) to H(div, ), and

op, is the sum of all these components. Now, to show that V - g = f in Q, we will deal

with the following three cases:

Case 1: a is internal node of Q:

Va € V; we have: (V -0}, qn)we = (VOf — VY* - Vi, qp)ye for all g, € QF, then we have
e @ = 0 and we have (V- 0f,1),c = 0 as off -n = 0 on Jw* and using the divergence

theorem. From Eq , we have (Viy,, Viy)g = (f,0n)g for all 7y, € f/,? so, let us take

the following particular cases for the test function o € V}? :
o If we take ¥, = 9%, then (Viy, - V%, 1)5 = (f9%, 1)4 since 9, = ¢% € V) as a is
an internal node of €.
Let us define Qp(w?®) := {qn € L*(w®);qn € Pi(K) VK € w®}, then for all a € V} we
have (V- of,qn)we = (V*f — Vi, - VY, qp)we for all ¢, € Qp(w®) and not only for the
vector-valued function with zero mean value.
Case 2: a is on wall of Q\v:
We have (V- 0§, qn)we = (*f — V* - Viip, qp)we for all g, € QF = Qp(w?).
Case 3: a =1:
We have (V -0}, qn)wr = (W7 f — VY7 - Vi, gy for all g, € Q) = Qp(w?).

Let now ¢, € Qp, = Pk(’ﬁl) then,
(V-6 )y = (v-az,qh) n (vwz az>,q~h)~
Q

Q acVy

- ((W vy vah,qh> Y (w“f —vye vah,qh> ~
Q

Q@ aevy

<f<w 3 ) -V VT + Y w‘I),qh)Q

acVy aeVy

<f]1§2 — Vi, - V(1g), (ih)
= (f.dn)g

Q
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2.1. A simple a posteriori estimator with guaranteed upper bound only

Since V - (RTx(K)) = Qu(K) = Py(K) for all K € T, we get V-6, = I, (f) = f
where, Ilg, is the L?(Q)-orthogonal projection onto @, and finally, we get

V-opr=Ff on .

2.1.2. Reliability of the a posteriori error estimate based on (2.2]

We adapt here a general result about the reliability of equilibrated flux a posteriori error
estimates.

Theorem 2.5 (A general a posterior error estimate). Let u be the weak solution defined by

system . Let uj be given by @)77 and oy, the flux reconstruction (2.2)).

Recalling Ty, the mesh on Q, define VK € Ty, the local flux estimator np i = ||Vup+ 64| k-
Then,

IVu—ui)llh < Y nix (2.7)
KeTy
Proof. First, u —uj € H} (), thus as
[|Vo|| = sup(Vv, Vo) Yo € Hi(Q)
$EH;(Q),[|Vel|=1,

then,
IV (u—uj)|| = sup(V(u—u}), Vo) Vo € Hy().
PEH(Q),||Ve||=1,

Now, let ¢ € H}(2) and ||V¢|lq = 1 be fixed. Then, by using the weak formulation

, we get:
(V(u—up), Vo)a = (f,¢)a — (Vui, Vo)a.

Now, adding and subtracting (op, Vé)q where, o5, = 6 + o’ we get:
(V(u—=1u;),Vo)a = (V(u—uj) + on — o, Voo
= (V(u—up), Vé)a + (on, Vo) — (0, Vd)a
= (f;9)a — (Vui,, Vo) — (V- on, d)a — (on, Vo)
=(f =V on ¢)a— (Vup, +on, Vo)
= —(Vu‘; + op, V(ZS)Q
_(Vu/ + OJ) V(b)Q’ - (vah + &ha V(b)ﬂ
—(Vay, + 61, Vo)g
Z nr k|| Vol x

KeT,

(2 n%,K)é( ) kuﬁ)%

KeTy, KeTy,

IN

IN

< (X o) 19l

KeTy,
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

So,
1
(Vi ve) < (X )
Q KeTy,
then,
1
IV (u — )l = sup(V(u — uf), V) < ( 3 n%,K)z.
GEHI(9).|IVol|=1 P
Finally,

2.1.3. Lack of efficiency

We report here on our attempt to establish the efficiency of the a posteriori error estimate
of following the lines of Ern and Vohralik in [39]. We shall see that this leads to some
unsolvable issues, indicating that the flux reconstruction introduced in Section does
not lead to an efficient error indicator.

We want thus to see if we can show that these estimators give a "local" lower bound for
the error ||V (u — u‘;)||%2 up to a generic constant only depending on the shape-regularity
parameter. To be able to make this lower bound, we will introduce the following two
lemmas. Let us introduce a new domain ' C Q' and w? C §, as shown in Figure
below, where the abscissa x2 < x, and x, is very near to zs.

Figure 2.3.: The coupled 0D /2D domain with new local domain w’ C )
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2.1. A simple a posteriori estimator with guaranteed upper bound only

Lemma 2.6. Let u be the exact solution on the whole domain Q defined by (1.4). Let uj,

be the approximate solution on  defined by @77. Let ~ be the interface
between the 2D and 0D models at x = x> 0 as being shown in the Figure . Here we

want to distinguish between the following two cases.

o Case 1: if the vertex a € v we have the patch w7 = Uye,w® as shown in Figure @

Proof.

Let vV € H}(w?) solves:
(Vr7,Vo)ur = — (' Viag, VO)ur + (7 f — Vb7 - Viig, v)wr, Yo € HE (w?), (2.8)

where,
— HY W) :={v e H' (w);v =0 on dw’ NN},
- w’y = Zae'y wa'

Then, there exists a positive constant C’W(%) > 0 which depends on shape reqularity
and mesh size h such that:

R S
[|Vr7|ler < O (h) |V (u = ud)]|wriw (2.9)

where, W' C Q' such that W' = [x2, ] x [0, R] and x2 is very near to x~ such that:
|y — 22| > 0.

Case 2: if a € Q\’y =V, we have the patch w® be collection of all elements that
intersect with this vertex a.
Let r* € H} (w?) solves:

(V1 Vo)ur = —(*Vit, v)on + (W f — VI - Viig, v}, Yo € HE (W),  (2.10)

where,
— HNw?) := {v € H'(w"); (v,1)pa = 0} for alla € V" =ViNQ,
— HNw?) :={v € H'(w);v =0 on dw* NN } for all a € V™ =V} N 0.

Then, there exists a positive constant Ceont pr > 0 only depending on shape regu-
larity such that:
||Vra|]wa < Ocont7pp||V(u — ah)Hwa. (2.11)

e Case 1: for a € v, we have 7 = Zaey 1¥® is a polynomial of degree 1 and
equal to 1 on v and 0 on all nodes not on 7.
Let us define U by:

P’ on w7,

U'=4{9 on o= [x2, 4] x [0, R],
0 on .
Where, x is the abscissa of v which represents the interface at = x, and 23 <
and 0(z,y) := % We have that W' is continuous on 7 since:

o \I]F|x:aﬁ - wv‘w’y = 1’

- \IJFLUZI; = 0(1‘7,:1/) =2 .

Tny—T2
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

50

Ur is also continuous at 2 and finally it is continuous on Q' Uw?. As 77 € H}(w?)
solves equation ([2.8]) then,

IV ||y =sup  (V7r7, V) .
vEH ! (W),
IVellya=1

Let v € H}(w”) and ||Vv||,» = 1, then v can be extended to £’ by any v' € H(Q')
such that v'|, = v|, and v = 0 on 9Q\y and ||Vv||or = 1 or ||Vv||q = ¢ where, ¢
is a constant.

B v on w7,
v= ! !
v on Q.

Now, o € H'(wY U ) so,

(VI V) oy = —(4"Viig, V) + (07 f — VY - Vg, 0)or
= —(¥"Viip, Vv)ur + (wa — VT - Vi, )y — (Vu/, V(\I;F@))w/ + (fa \Ilrﬁ)w’
= (£, 070)r + (£, 01 0) s — (Viin, V(0))ur — (VW, V(E'D))
= (£, 9D priw — (V3 V(ED)) U

Since W't € Hi (wY Uw’) then, we can extend by zero outside w” Uw’ to integrate

on ).

= (Vui, V(T79)) o
- (V’LLZ, V(\I}F{;))

|
A~ A/
<
RS
b
S
i
(S
~— ~—

wYUw’

< IV (u = @) | [V (@7 0) [ + [V (1 = )| [V (00)] ]

Next, [[V(¢70)[|lwr = [[VET0 + 9TV 0llur <[V oo wr [[0]lwr 4 [[97loowr [V |wn
Now, using Friedrichs inequality, we get:

HUHw7 S CF7W’th’YHV’UHw'Y.

Where, h.~ is the diameter of w”.Then

V@) v < [[V0]lor (CF,mhmkuoo,m n WHW)
— CF’w’Y hw’*/va’YHoo’w"/ + ].

and HV(Q’U’)HW/ = ||V9”/ "‘HV”/Hw’ < HVHHOO,LU’HU,HM + HQHOO,w’HVU/Hw“



2.1. A simple a posteriori estimator with guaranteed upper bound only

Now, using Friedrichs inequality we get:
V]| < Crur ot |[VV ||
where, h,, is the diameter of w’. Then
IV < 19 Cras ol 98l + B
< Cruwho ||V |sow + 1.
Finally,

VI ||or < <Cp,mhw«/|lvw7]|oo,m + 1) |V (u— tp)]||wr

i (CF’w’hw'HV@Hoo,w' * 1) 1V (1 = ')

AsfO(z) = 2222 then 0 (z) = —— and hy = /(2 — 22)2 + R2 50, by ||0'| 0o =

Ty—12’ Ty —T2
%%m\/(xv —x9)2 4+ R2 ~ /2 if 2, — x5 = R, we also have hor [V |00 w,, = 2
where h is the mesh size. Finally, there exists a positive constant CW(%) > 0 which
depends on the mesh size h and the shape regularity such that:

R S
197l < € () 1900 = )l (2.12)

e Case 2: for a € Q\v =V}, we have 9 is a polynomial of degree 1 and equal to 1
on vertex a and 0 on all other nodes. Here we will proceed in a similar way of |39].
We have r¢ € H}(w?) solves equation (2.10] then,

[|Vr?||wa =sup (Vr?, Vv)ya.
veH (w?),
[[Vol|ya=1

Let v € H(w?) and ||Vv]|ye = 1, then

(Vr®, Vu)ye = —=(*Vip, VU)o + (W f — VO - Vg, v)4a
= _(vahv ¢avv)wa + (f? wav>w“ - (Vfbha Vwa?})wa
= (f: ¢av)w“ - (V{Lh, V(wav))wa'

But, y% € H& (w®) so, it can be extended by 0 outside w® to be defined on whole
Q. Then,

(Vre,Vou)wa = (f, %) — (Vui, V(")) ye

Ja — (Vuj, V(§*v))we
Juws — (Vg V(§"0)) e
V(u—up), V(@v))we

< V(= up)[|wa ||V (1%0) |
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

Now, splitting the cases a € V/™ and a € V§*.

Ifae V,i”t: use Poincaré inequality on the patch w® as v, e 1= (”’i)““ =0:
[lv = vwallwe < Cpuwahwe||Vol|we.

If a € V§*: use Friedrichs inequality on the patch w® :

[V]|we < Cruwahwe|[Vol|we
and using ||Vvl||ge =1 and |[¢)*||sowe = 1 we get:

[IV(@*0)||wa = ||V 0 + 9*Vl|pa
< IV |oowe | [0]|we + (|9 |oowa [V wa

< [[Volue (ch,wahwauwuoo,wa n HWIIoo,wa)

<1+ Cpruwahye ‘ |v¢a||007wa

where,
Cpuwe if ac V,i"t,
Cpruwe = , ot
CF7wa lf a 6 Vh .
Then,
V7 [we < (14 CpRwahwel [V |oowa ) [V (w0 — uf,)] |
< max (1 + CPF,w“hwa||v¢aH00,w“) IV (u — up)|we,
aeVy
S0,

IV7]we < Ceont, PPV (U = uf,)[|uwe,
where, Ceont,pr = maxaey;{l + Cprwehye| [V ||owe } and for "nice" meshes
hea ||V ||sowas = 2 see |39, Remark 3.24].
[ |

Let us assume that the following theorem which is showed in |14, Theorem 7] is applicable
for the patch w” and that is an essential result for the next results.

Theorem 2.7. Let us define w :=w?, RT(K) = {7 :7(x) = qx + sk, qx € (Pr)? sk €
Py} and RT]_fLO(w) ={7 € La(w) : 7|k € RT}(K),VK € w,7-n=0 on dw}. Let r be the
residual which is defined by

(ryv) :== /7‘ v+ /rv

withri € Py(K) andrg € Pp(E). If (r,1) = 0, then there exists a constant C' independent
of k and mesh size h such that

inf olle < Cl|r W)/R*-
vertt () Il 7l ia )R]
div(o)=r
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2.1. A simple a posteriori estimator with guaranteed upper bound only

Remark 2.8. We will not take care about if Theorem [2.7 can be proved or not since even
if we suppose that Theorem [2.7] can be proved, we will not be able to prove the efficiency
according to Theorem [2.10 below since the constant of the efficiency depends on the mesh
size. The drawback of the first suggestion of the reconstructed flux is that this C,, and
consequently the efficiency, depends on the mesh size h. If we try to improve this constant
of efficiency to be independent from the mesh size by taking out the big patch w7 and define
many patches that are centered at each node a € v as we did for each patch with nodes a
located in the wall of Q\’y, then we will loose the compatibility condition in the definition
of the stress reconstruction in system @ In this study we have only proved the upper
bound which is good in order to deduce later that the error depends on the position of the
interface and on the discretization.

Corollary 2.9. We will distinguish between the following two cases:

o Case 1: if a €~y and we deal with the patch w”: let 7,/ = YV, and g7 = Y7 f —
VY - Viay. Let TV = Ugny29K. Suppose that 7)|x € Sp(K) and g7|x € Qn(K)
for all K € T where, ¥, = RT}, = RT},(Tp) N H(dlv Q) and Qp, = Py(T).
Let ¥ € H}(w") solves equation @) and let ah be the solution of system (-) and
if we suppose that Theorem- 2.7 (below) can be verified, then there ezists a positive
real number C, > 0 that depends only on the shape reqularity such that:

lloh + 7h |l < Catl |V

o Case 2: if a € Q\’y =V, and we deal with the patch w®: let 77 = Y*Vuy and
=Yf =V - Viy,. Let T* = Ugniay20K. Suppose that 77|k € Xp(K) and
%Ik € Qu(K) for all K € T® where, ¥, = RT}, = RTx(Ty) N H(div,Q) and
Qn =Pi(Tr). Let r* € HX (w®) solves equation and let o be the solution of
system @, then there exists a positive real number C2, > 0 that depends only on
the shape regularity such that:

lloh + Thllwe < C t”vrana

Proof. e Case 1: for a € v, we have T7 = Ugn,2p K. Let &, be the set of all edges in
T7 and let us define the jump by [[v]] = (v)|, — (), if e € Slzlnt’fy and [[v]] = v,
ife e 5th,7 where, E;Z"t’y and 52”’7 be the interior and exterior edges respectively
in the patch w7.

[[Vr]|wy =sup  {—=(¥"Vig, Vv)ur + (7 f — V7 - Vg, v)or }
veH} (W),
Vo]l =1

= sup {—(T;Z, vv)ww + (g“’, U)(,ﬂ}
vEH (W),
IVollury=1

= sup {Z (1), Vo) + (97, v) K }
veH (W), KT

Vo]l =1

= sup {Z -7, nel], v)e + Z (V-1 +9",v)k}
veEH} (W), GEE’Y KeTv

Vo]l =1
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

o4

We have
o) + 1) ||lr =inf o + 7
H h hHw“Y onex], H h hHuﬂ
Vvp=g"7
Let §) = o) + 7 then,
v Y 18 _
17+ 73l = Il =inf [l
Vv, =(V-r) 497, VKET?

Where, X} (77) is a broken version of ¥}. Now, by supposing that in [14, Theorem
7] is applicable to our patch w? (i.e. if we suppose that Theorem below can be
proved), then there exists some positive constant C}, > 0 only depending on shape
regularity parameter such that:

||UZ +TZHm < C;tHVTWHwV-

Case 2: for a € Q\y = Vi, we have T% = Ugna)20K. Let & be the set of all

edges in Ty, , let & be the set of all edges in patch w® and let us define the jump
by [[o]] = (v),)le = (v, )e if € € £ and [[v]] = v, if e € ™. So

197 lue = sup_{= (0" Vitn, Vo) + (W f = V- Vg, v}
vEH, (w?),
[[Vollpa=1
=sup {—(73, Vv)wa + (g%, v)wa }
veH ] (w?),
HVUHwa:l

=sup { Y —(7, Vo) + (9% v)k}
vEH} ("), KeTa

HVUHwa:l

=sup {D (-7 nell,v)e+ D (V-7 + g% v)k}.

vEH, (W), ccga KeTe

[[Vol|pa=1
We have

o+ llue = 0 [fen -+ 72 lus.
V- =g*
Let 63 = o} + 77 then,
o + 7|y = |[0¢]| e = inf vl wa -
ok + 75 |we = [0k ]w < S l[vnlw

Voop |k =(V- 12 +9%) |k, VKET*

Where, £§(7*) is a broken version of X%. Now, [14, Theorem 7| is applicable to
our patch w,, so there exists some positive constant C2 > 0 only depending on
shape regularity parameter such that:

1o + it e < ColIVT e
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Theorem 2.10. (Local Efficiency) Let u be the exact solution on the whole domain

defined by . Let uj, be the approximate solution on Q defined by @77 .
Let Gy, defined as in (2.3). Let (¢'Viy)),, € Sp(K) and (VY7 -Viy,)|,, € Qu(K) VK € T7.
Let (anth)‘K S Eh<K) and (vwa . Vﬂh)“( S Qh(K) VK € T¢ where, ¥y, = R} =
RT},(T;) N H(div, Q) and Qp, = Pi(Tp).

Then, if K C w”

- : R :
IV + i < ChComsor 3 19 ut)n + CAC, (1) IV (0= ) i, (213
a€Vy

and if K C Q\w? then,

Vil + ol < C2Ceont.pr Y [V (= )| |ue-
a€Vy

Proof. We have oy, = JZ|K "‘ZaeVK UZ\K where, Vi represents the vertices of the triangle
K. Then,

IV +6nllx = || Y (0*Vian + of)|x + (7 Vin + 07)| x| x
a€Vy

< > WOV 4 0nlwe + |18y Vil + 07w
a€Vk

Thanks to Corollary 2.9 and Lemma [2.6] we have:
19V in + 03" ||we < CHlIVIwe < CCoont, PPV (1 = n)||ue

and

~ R S
1679 + 0l < CHITP e < CHC, () 1900 = uf)lrs

Finally,

o i R .
¥+ 3nllic < C2Comipe 3 1V = i)l + CHCy () 1900 = )
a€Vy

Conclusion. From Theorem we conclude that we can not prove the efficiency since
the constant C (%) in (2.13) depends on the mesh size. In order to be able to prove the
efficiency we will build a new flux reconstruction in the Section [2.2].

2.1.4. Numerical results using the flux reconstruction ([2.2]

We will take in this section RT = RT, and P, = Po. We have obtained in Theorem [2.5]
that ||V (u—u3)|3 < dKeT, 17%71( and we want to plot the error:

Error :=||V(u—uj)||la = \/HV(U - “ﬁ)”?)’l +{V(u - th)H%
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

Estimator := Z 77% K
KeTh

with respect to different positions of interface v which has the position z = z, in a way

that z, goes form the position very near to the inlet i.e. z, = J;Ey = 0.1 to the position

very near to the corner of the channel i.e. z, = mf, = L1 —0.02 = 5.08 where, xiy and x%c
are located in Figure [2.4] below.

and the estimator:

rwall

Fiu Q2

(0,0) i f
xr 4 Mol
ki qull {

]- out

. v : " o _f
Figure 2.4.: Direction of the interface v from position z = 2% to z = x5

For fixed mesh size h = 0.07, we plot the error and the estimator in the Theorem [2.5] for
different positions of the interfaces and we obtain the graph in Figure [2.5

0.16

014 - [

012 f S— &
‘ =—Error

—=— Estimator |

01

0.08

0.06 -

0.04

0.02 —

Position of Interface x_

Figure 2.5.: Error on Q and Estimator on € in Theoremﬁ for mesh size h = 0.07
Now, let us decrease the mesh size to h = 0.02 and plot the error and the estimator in

the Theorem for different positions of the interface and the graph is obtained in Figure
2.0l
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2.1. A simple a posteriori estimator with guaranteed upper bound only

0.25 ]
0.2 - [}
Error | {
0.15 ; @
¥ —<— Estimator | b
A ol
0.05F
&
0 . ; ! ;
0 1 2 3 4 5 6

Position of Interface x_

Figure 2.6.: Error on © and Estimator on € for Theorem ﬁ for mesh size h = 0.02

In Figure and Figure [2.6] we see that the error and the estimator become much
bigger as the interface becomes near to the corner and this is due to the dominance of the
2D affects in the corner. We must specify some tolerance in order to detect the suitable
position of the interface. For this reason for a fixed mesh size, we want to see the variation
between the reconstructed approximated flux O’Z and the approximated flux —Vay, on the
domain w? i.e. [|o} + (Vi) ||wywith respect to different positions of the interface where
w? is showed in the Figure 2.3
Let us take the mesh size h = 0.08 and plot ||o}) + (V)] ||y with respect to different
positions of the interface in the Figure 2.7 below with base-10 logarithmic scale on the
y-axis. Now, let us fix the position of the interface at z, = 4. We plot in Figure the
estimator on w? with respect to different mesh sizes. We find that ||o) 4 (Vp)1, ||~ takes
the values between 1.2 x 10~* and 4.5 x 10~ for different mesh sizes which is approximately
of the same tolerance 10™* (but not constant). Finally, ||o] 4+ (V)] ||wr can be taken
as an estimator for the position of the interface but it can be improved to be constant
for different mesh sizes when we fix the position of the interface x,. This improvement is
done if we introduce a new definition of reconstructing the flux which will be studied in
the following section.

o7



2. A posteriori estimator for the coupled 0D /2D Poisson equation

—=— Estimator on w’

10-10 %

a 1 2 3 4 5 6
Paosition of Interface x_

Figure 2.7.: ||o) + (V)] ||or w.r.t. different positions of x- for mesh size h ~ 0.08

45 &

4

3 —=— Estimator on w’

35 &
3
257+
2

1.5
.

1
0 001 002 003 004 005 006 007 008 008

Mesh Size

Figure 2.8.: ||} + (V)] ||or w.r.t. different mesh sizes for a fixed interface at z, = 4

The drawbacks of this definition of the flux are the following

e We can not prove the efficiency (lower bound).

e For fixed position of the interface, we find that ||o) 4+ (V)] |, vary a little
bit for different mesh sizes.

These drawbacks will be solved in the following section by introducing the new definition
of the flux reconstruction.
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2.2. A posteriori estimator with guaranteed upper and lower (efficiency) bounds

2.2. A posteriori estimator with guaranteed upper and lower
(efficiency) bounds

In this section we will make a new partition of unity of {2 and we will introduce a posteriori
error indicator with guaranteed reliability and provable efficiency. We will make a new
definition of the flux reconstruction in a way that we can prove the reliability and the
efficiency of a posteriori error estimator. We have to introduce two lemmas in order to be
able to prove the global efficiency. We note that this approach is more expensive but more
accurate.

2.2.1. A posteriori error indicator

We now introduce the a posteriori error indicator with guaranteed reliability and provable
efficiency. Let the position of the interface x, € [0.1,L; — R]. To this end, consider the
continuous function on €, named 7, defined on rectangular portion [0,z + R] x [0, R] of
the channel by

1, for z<ux,

P(z) = %, for z €[z, 2y + R] (2.14)
0, for z>x2,+R

and extended by 0 everywhere else. Here, z is the z-coordinate of the interface v and we
assume that z, + R is still in the rectangular portion of the channel. We also introduce a
piecewise affine (on mesh 7}) version of 1)7:

71’;{(5”) — Z Y (a)Y®(x) forx € Q (2.15)
a:all the nodes of Ty,

and ¢Z =1 on €, where 9? is a hat function i.e. a polynomial of degree 1 that takes the
value 1 at the node a and 0 on the other nodes different from a. Note the partition of
unity on €2

L=y + Y (147 (a)p™ (2.16)

aeVy

Recalling that V; represents all vertices that belongs to Q\fy ie Vi = Vh\V,Z where V,Z
represents the vertices located at 7, we define then the flux on whole Q = QU Q' U~ as

on=o]+ 3 (1— ¢ (a)of + (~Va') Lo (2.17)

acVy
We will divide the flux into two fluxes. The first flux is defined on Q' by
o =-Vu (2.18)
and the second flux is defined on € by
oh=o)+ Y (1—v¢7(a)o}, (2.19)
aeVy

where of is defined on all patches w® = supp(¢#) N Q for all nodes a € V; as follows:
o € X and pf € Qf such that for all 7, € X and ¢, € Qf,

/ oy Th — / phdivry, = —/ (Vap)p® - 1, (2.20)
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2. A posteriori estimator for the coupled 0D /2D Poisson equation
/ gndivey = / (fv® — Vay, - Vi) gp. (2.21)
w® we

Similarly, o) is defined on the patch w? = supp(¢;)) N Q as follows: o) € X and p) € Q)
such that for all 73, € EZ and ¢, € Qz

/ O'z “Th —/ pZdiVTh = —/ (Vﬂhﬁbz “Th, (2.22)
w?Y wY w?Y

/ grdive) = / (fY] — Vi, - V] )ap. (2.23)

Where,
Case 1: a in an internal node of O
X4 = {oy € RT}(w*),0,-n=0 on 0w’}
Q4 = {an € L*(w"), g, € Pu(K),YVK € W’ [, . qn = 0}
Case 2: a on the wall of Q\y
%0 .= {o}, € RT(w*),0,-n=0 on dw™\9Q}
Qs == {qn € L*(w"), g, € Pr(K),VK € w}
Case 3: on the wall v
¥} :={on € RT(w"),0,-n=0 on 4 and op-n=(-Vu')-n=0 on ~}
Q) = {an € L*(W"), an|x € Px(K),VK € w7}
with 4 := 0wY\9Q = dw” N L.

Proposition 2.11. We have 6}, := UZ+Za6VZ(1—@Zﬂ(a))Ug on Q, then V-a5, = g, (f) =
f on Q and consequently V - o, = f on Q, where Qp = ]P’k(’f?l)

Proof. &5, € H(div, Q) as all the individual components o] and of belong to H(div, ()
for all vertices a € Q\7, since by extension we can go from H(div,w") and H(div,w®) to
H (div, Q), and &y, is the sum of all these components. We will deal with the following
three cases.

Case 1: a is internal node of §.

We have (V- 0f, gn)we = (f1* — Vb - Viip, g )wa for all g, € QF, then we have [ , g, =0
and we have (V- of,1),e = 0 as of - n = 0 on dw* and using the divergence theorem.
But from weak formulation |) (Vay, Vip)g = (f,0n)g for all 0, € V3,0, = 0 on o0
so, let us take U, = ¥ as a test function, then (Vay, - Vi, 1) = (f¥% 1)g. So, for
all internal nodes a, we have (V - o}, qp)we = (V*f — Vay, - Vi, qp)we for all ¢, € QF
and not only for the vector-valued function with zero mean value. So we can redefine
Q% :={qn € L*(w*); q, € Pr(K) VK € w}

Case 2: a is on wall of Q\I':

We have (V- o}, qn)we = (W f — V* - Viiy, qp)we for all ¢, € QF = Qn(w?).

Case 3: on wall ~:

We have (V -0}, qn)wr = (U f — VU - Vg, q)w for all g, € Q) = Qp(w?).
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2.2. A posteriori estimator with guaranteed upper and lower (efficiency) bounds

Let now ¢, € Qp, = Pk(ﬁl) then,

(V-6nan)g=(V-0)dn)g+ Z (1 =9¢7(a)(V - 05, an)g

aeVy
= (foy = VUL - Vin,@n)g+ Y (1=97() (0*f = Vo - Vin, 4n)
aeVy
<f (Wp + > (A= v7(@)y") — Vg - V(i) + > (1 =17 (a))y?), ch) )
acVy a€V; Q

(f]lQ — VUh V( ) )Q
= (/,

Since V- (RT}(K)) = Qn(K) = Px(K) for all K € Tn, we get V- &5, = Ig, (f) = f where,
Ilg, is the L2()-orthogonal projection onto Qp, and finally, we get

V'&hZf on Q

2.2.2. Main theorem and the proof

Theorem 2.12. Let u be the weak solution defined by system , Let uj and oy, defined
as in f and respectively, then we have the upper bound with constant 1

|IVu — Vui|la < |lon + Vui |l (2.24)

and the lower bound
HathVuhHQ CHVU—VU}L”Q (2.25)

with a constant C' depending only on the mesh reqularity.

Proof. The proof of (2.24)) is completely standard. We verify indeed that oj, € H(div, ),
divoy, = f on €2, set e = u — ug, observe e € H&(Q) and do the usual calculation

Vu — Vui |3 = (Vu — Vui, Ve)a = (f,e)q — (Vus, Ve)q = (divoy, e)q — (Vus, Ve)q
= (—on = Vuj, Ve)a < [on + Vupllal|Vello

hence ([2.24]). The proof of ([2.25)) is organized in several steps.

Step 1: error caused by the interface, prior to discretization. Let us begin with a
“continuous ” version of our “simplified ” problem: we search for @ on 2 such that

— A= finQ, (2.26a)
U on v,
=40  onTyau, (2.26D)

Uout on Loyt ,

61



2. A posteriori estimator for the coupled 0D /2D Poisson equation

and set

s u' on ,
u prd - ~
2 on §Q.

We want to study ||Vu—Vu®||q which is the error introduced by the interface itself, without
discretizing the problem on Q. More precisely, we want to relate it to the continuous
version of |0} + (Vay)y) [|wv. We thus introduce the continuous version of ¢}: find o7 €
H,(div,w?),p? € L*(w") with H,(div,w?) := {7 € H(div,w?) : 7-n =0 on v} such that

/ ol 17 — / pldivr” = —/ (Va) -7 V77 e Hy(div,w?) (2.27a)
w? w? w?Y
/ q"dive” = fq Vq? € L*(w") (2.27Db)
wY wY
Let us prove
o7 + Vi, < C||Vu - Vu'|q. (2.28)
//./ '//(_ol][‘._\\\‘\
'\\\ Nl — r 5
Y TR b \J([\/\

. . . . ’y
Figure 2.9.: Description of w” and wp,

Let w}, = supp(¢?) N Q with vz = Ow}, N {xz = z,, + R}(In Figure wr, is the square
region where its boundary is composed of the interface v, yg and the wall of 2). In Lemma
below we show that there exists § € H'(w}) such that

Af =0 in w},
VO-n=-Vu-nonvy
VO -n=0on~g
0=0 onfﬂ@w%

We have then
HveHwE < ClHVﬂ ’ n”*1/2,'y
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2.2. A posteriori estimator with guaranteed upper and lower (efficiency) bounds

with C; > 0 which does not depend on R, as proved in Lemma The norm || - [|_y /2,5
is defined in the same Lemma. Recalling that f = —div(Va), we see that implies
div(c” + Vi) = 0 a.e. on w?. Let 7¢ € H(div,w”) defined by 7¢ = V6 on w}, and 7 =0
on w \ w% (note that wlv{ C w”, where the patch w? is described in Figure as a patch
with the blue boundary) so that divr® = 0 on w?. Now set 77 = 07 + V@ + 7¢ and observe
that divr? =0 a.e. on w” and 77 -n =0 on v since 67 -n =0 and 7°-n = Vu-n on 7.
We can thus use this 77 as the test function in and since fm pYdivr? = 0, we get

/ (67 +Va)- (67 +Viu+1° =0.
wY
Hence, by Cauchy-Schwartz,

lo7 + Vallwr < (17w = [VO]ly-

Thus,
HO"Y‘FV'IIHW’Y < ClHV’LNL'n”,l/Qﬁ. (229)

Now, we return to bound the error ||[Vu — Vu®||q from below. Denoting by [.] the jump on
7, we have the jump [V(u—u®)-n]=Vii-n on v as Vu'-n = 0 on v, then for all v € H}(2)

/QV(u—us)-VU:L[V(u—uS)-n]v:[YVﬁ-nv.

Since @ =QUQ U~, A(u—u®) =0o0n 2, v=0on I and by integration by parts

0= / Al — )

/Auu)v+ [ A=
/V Vv—/ma(u_a)vds—i- V(u—u’)-Vv—/ Mvds

871 Q/ a9/ 8%

/Vu—u) Vo — V(u—1a) - nvds+ | V(u—1u) Vo— V(u—u) nvds
o) o o
/Vu—u Vv—/[V(u—us)-n]v.

Now, from Lemma m below we know that Vi € HY/?(y) Jv € H'(Q) vanishing on 90
i.e. v € H}() such that v), = 1 and such that

IVolle < Cllnll1/2,y

with C9 independent of geometrical parameters. We can take v = 6 in w%, with 6 the
solution of Lemma [2.14] and extend it to all the domain e.g. defining v as the mirror image
of 6 to the left of v in . We have thus Vn € H1/2('y)

[ v = [ V=) Vo < V@ u)lall Volla < Calllz
i

V(u—u)la

that implies
IV - n|[—1/2, < Cof[Vu = Vu|lo.

Coming back to (2.29)) and using this latter inequality, we get the desired estimate (2.28)
with C' = C1Cs.
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

Step 2: error caused by the interface, adding the discretization in 2. Here we prove
that
lon + (Van)p ||, < CUV(@ = an)lly + 11V (u—u)llg - (2.30)

This can be viewed as a discrete analogue of . The proof is based on Theorem 1.2
of [37], but the latter cannot be applied directly due to a mismatch in boundary conditions:
O'Z is required to vanish on both + and %, while wz vanishes only on 7. To circumvent
this difficulty, we enlarge w? to w?™ by adding to w? its mirror image with respect to ~.
Similarly, we extend ¢}, 4y, 0} from w? to ¢)"™, @}, o™ on w?™ as functions symmetric
with respect to 7. Let 4™ denote the mirror image of 4. Theorem 1.2 of [37] can be
formulated on w?™ as

min v, + VA < C(Wr™ ™ min v+ Val| .
vh € H(div,w™) 1 RTy | BV o < O ve igmmy | Wl
divvy = 1/12’mf - szml -Vap divv = f

vy -n=0onyUy™

(2.31)
where C(w?™,¢)"™) < C(|[¥)™ ||oo + Cp||VY)"™|lsc) with Cp the Poincaré constant of
the space H'(w?™) under the constraint of functions vanishing on ¥ U 4™, i.e. ||v|w,rm <
Cp||Vv||wrm for all v € HY(w?™) with v = 0 on 4 U 5™ (note that these constraints are
imposed on the part of dw”™ where wh’m vanishes). By our geometrical assumptions, Cp
is of order R and ||V} ||oc < % so that C'(w™™, ;") < C. Comparing with the definition
of o) we see that the minimum on the left-hand side of is attained on o™ (note in
particular that ah’m -n =0 on v by symmetry). In order to identify the minimum on the
other side, we introduce 67 € H,(div,w?), p7 € L?(w?) such that

/ o7+ / prdivr? = — Vay, - 77 V77 e H,(div,w?), (2.32a)
wY wY

wY

/ ¢ dive? = fq Vq? € LA(W). (2.32b)
wY wY

We see then that the minimum on the right-hand side of (2.31) is attained on 67", which
is the mirror extension of 67 to w”™. Going back in (2.31) to the subdomain w? of w?™
and using the symmetry gives

lon + (Vin)tp| o < ClI6Y + Vgl -
This entails by the triangle inequality
o + (Van)pp| o < CUI67 = 070 + llo7 + Vall, + [-Va+ Vi) (2:33)

To bound the first term in the right hand side of (2.33)), we take the difference between
(2.27) and (2.32)) setting 77 = o7 — ¢7. Noting that div 77 = 0, this yields

lo” = &7,» < C|IVii — Vg, (2.34)

The second term in the right side of (2.33)) is bounded by ([2.28). Finally, (2.33) gives
[©-30).

Step 3: discretization error inside Q. We have at all the nodes a of the mesh 7j,
loh + (Vap) ) [we < ClIVE = Vi [|oe (2.35)

This well known estimate follows, for example, from Theorem 1.2 of [39] applied on each
patch w?.
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2.2. A posteriori estimator with guaranteed upper and lower (efficiency) bounds

Step 4: putting everything together. From definition of oy, see (2.17), (2.18) and the
partition of unity (2.16)) we obtain on every mesh element K € Ty,

164 + Vinll i < |Jog + (Vi) || + > (1 =97 (a) lof + (Vi) ® ||
aeVy

where o) and of are extended by 0 outside of their domains of definitions w” and w®
respectively. The number of non-zero terms in the sum above is thus uniformly bounded
by a constant that depends only on the regularity of the mesh. Taking the squares on both
sides of the inequality above leads to

151 + V|| % < C | |lo} + (Vi ¢hHK + Z o + (Vi) |1
acVy

Taking the sum over K € Tj, noting o’ + Vu/ = 0 on €, and then using the bounds (2-30),

(2.35)) leads to

lon + Vui g < C [ [lof + (Van)w |2, + D llof + (Van)we|2.
aGV*

IN

CIVu—u)|G+ Vi - Vin|Z, + > Vi~ Vi
acVy

< C (IV(u—w)lg + Vi - Vill3)

since the number of possible overlaps between the different patches w? and w?® is uniformly
bounded. By integration by parts,

/Q(Vu —Va) - (Vu— V) = /(Au — Aa)(a —ap) + /~ (Vu—Va) - -n(a—ap) =
Hence

IV (= up)llg = ||V (=) || g+ V (w—@) + V(i — )3 = |V (u— g+ Vi = Vil ,

so that
low + Vup g < C IV (u—uj)llg

ie. [225).

Lemmas for principal theorem.

We recall here two well-known lemmas, needed for the proof of Theorem and give
their proofs for completeness of exposition. Let H,(vy), with s € {—5, 5} be the spaces of
functions (distributions) on «y of the form

n= an sin (kgy> ) (2.36)

k>1
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

with the norm
1/2

s, =D I;nk <Zr> . (2.37)

k>1

Lemma 2.13. For any n € H(;Ol/Q(’y), let  be the solution to
A0 =0 on w}
VO-n=mnonvy
VO -n=0 on~g
0 =0 on Cyey N Ow}

Then,
196]l, < Cullnll—1/2

with C1 > 0 which does not depend on R and ||n||_y /2, is defined in (2.37).

Proof. For any n € H&)l/ 2 () written as |i the solution 6 is given by

9 — an sin (lmy) cosh (1g T (1 — 2, — R))

= R =% sinh(k)

The result follows by direct calculations. We have

1/2

Hnufl/m = an Gy

k>1

and want to prove that

196ll, < Callnll-1/2-

Let us begin with the calculation of ||V9||w72:
o sin (57y) km
— = ——"—Lginh | —(zr—2y— R
Ox gnk sinh (k) AR (@ =2 )

and

i_z Cs(fih >osh<’g<$_%_m>.

Then, we have [|V6]2, = [ 222, +H 7:2@1(A)><(B>,where

- ()
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2.2. A posteriori estimator with guaranteed upper and lower (efficiency) bounds

and
k k ? k k 2
(B) = ||sin <£y> sinh (];:(a: — Ty — R)) w}:— Ccos (];ry) cosh (g(x — Xy — R)) .
Let us begin the calculation with (B):
. [ km ) km 2 km km 2
(B) = ||sin <Ry> sinh <R(;E — Xy — R)) . + ||cos (Ry> cosh <R(x — Xy — R)> .

Wr

Ty +R
/ / T sin (y> sinh? <]; (x — 2y — R)> + cos? (Zy) cosh? <kg(1: — Ty — R)> dxdy
k oy +R k
:/o st(};r >dy/gcW sinh? <g(x—:n7—R)> dx
R k Ty +R k
+/0 cos? <};Ty> dy/x ’ cosh? <g(:1c — Zy — R)) dx

~

Now, we will use that cosh? —sinh? = 1, then
R zy+R
k
(B) = /0 sin? <gy> dy /I; sinh? (Zr(a: — Ty — R)) dx
R v+ R
k g km
—1—/ 0082<gy)dy/$w 1+smh2<R(z—x7 R))dl’
= R/ cos ( >dy
zy+R k R k k
+ /I; sinh? (g(:c — Ty — R)) da;/o sin? (éry) + cos? (I;Ty) dy
R zy+R
k k
= R/ (1 — sin? <7Ty> )dy + R/ T sinh? <7T(x — Ty — R)> dx
0 R - R

v

R R R
= R§ +R (— + smh(2k7r)) .

Let us see that fo sin ( y)dy = & £ and fﬂ:”—FRsmh2 (%(xV—G—R—x)) de = —& +

m Slnh<2kﬂ').
R R 2km
. krm 1 —cos ( y)
2 R
—_— d = B —

_R_L[R g (2 "_R
T2 2% rRY)], "2
where we have used that sin(2k7) = 0, and for the other integral we have:

Ty+R Ty +R
/ T sinh? (IZT(JC — Xy — R)) dx = / ’ ; (cosh <QZT (x — 2y — R)) ) dx
R

vy Y
1[ R . (2= “th R R ,
! [%W iuh ( oy RN = g GO 2k —
R R .
=5t I sinh(2km)
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

Then,
2

R
(B) = - sinh(2k)

and finally

2 R2 R2
V@Q—E:‘] B) = Mk inh(2k7) = e
| Hw;’% k:>1( ) x (B) kz; <sinh(k:7r)> A O (2ker) ;nk 2km tanh (k)

Lemma 2.14. Introduce the space Hiy(7y) as in the preceding lemma. For anyn € H0162 (),
let 8 be the solution to
A0 =0 on w)

0=mnon-y
0 =0 on g and on (%J]%ﬁfwall

Then,
IV6]l;, < Collnlh oy

with Cy > 0 which does not depend on R.

Proof. For any 7 € H%Q(’y) written as 1) by direct calculation the solution 6 is given
by
sinh (57 (2, + R — 7))

— (T R
b= an S (Ry> sinh(k)

k>1

In this case we recall that the norm is

1/2

km
||TI||1/2,7 = 277/% (2>

k>1

and that we want to prove

Hveng < CQH”Hl/Q,'y'

Let us begin with the calculation of [V :

—k7r sin (%) km
had | _
Z TR sinh (k) MR (@ + R —a)

and

00 k cos (%y) km
g TP ARY) —2)).
oy l;”’“ R smb(kr) O < gt R x)>

68



2.2. A posteriori estimator with guaranteed upper and lower (efficiency) bounds

Then, we have HVGHEJ HaZH + H

= > k>1(A) x (B), where
YR

(4) = (”‘“kg >
~ \ sinh(kn)

and
2 2
(B) = ||sin <kgy) cosh <kg($7 +R— x)> w}{—%— cos (ﬁy) sinh <kg(:1:7 +R— x)) "
Let us begin the calculation with (B):
k k 2 k k ?
(B) = ||sin (éry) cosh (g(% +R— x)) " + ||cos <I§y> sinh <I§($7 +R - x)) .

zy+R
/ / ! sin <y> cosh? <k]:_1) (zy+ R — x)) + cos? <kgy> sinh? (I{g(acW +R— x)) dxdy
Ty+R
:/ sin? (kj% )dy/ T cosh? <k;%(x7+R—x)> dx

0 Ty
R z~y+R

+/ cos? <k;ry> dy/ T sinh? (lg(azﬂy +R— x)) dx

0 T

Y
Now, we will use cosh? —sinh? = 1, then

R Ty +R
(B) = / sin? <IZT > dy/ T + sinh? (
0 T

~

R zy+R
k
+/ cos? (Wy> dy/ ’ sinh2<
0 R T

~

R zy+R R
k k k k
R/O sin? <£y> dy + /x; sinh? <}§(w7 +R - x)) dyc/o sin? (}:y> + cos? (gy> dy
R Ty +R
R/ sin? <k7Ty> dy + R/ T sinh? <k:7r(1:7 +R-— x)> dx
0 R T R

,y
R R R

@7+R—x0dx

=T »F

@w+R—x0dx

Since, we have fOR sin? (%’Ty) dy = % (same calculation as before) and

Ty +R k zy+R 1 2%k
/z; sinh? (];T(a;Y + R — x)) dx = /x ’ 3 (cosh <R7T( ) )
L
2

~

=——= + R sinh(2k),

ot (2 )| = = S o) — s - e

2 dkrm

Ty

2

R
(B) = yp sinh(2km).
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and finally,

2
Vo2, = Z(A) x (B) = Z Ui i sinh(2k7) = Zn 2_ kT __
Wh sinh(kr) | 4kr 2 £~ " tanh(kr)

k>1 k>1

km
e kg o= Gl

=

2.2.3. Numerical results using the flux reconstruction (2.17))

We have a 0D /2D model for the Poisson equation and in the following we want to define a
suitable interface estimator 7”7 for the interface to be able to detect the suitable position of
the interface v according to this estimator. We will see that this estimator 7" is depending
only on the position of the interface and independent of the mesh size of the mesh. We
will see that more the tolerance of 17 is small, more the interface will be placed toward
the inlet. For this purpose we will begin with the uniform refinement. We will take in this
section RT), = RT5 and P, = Ps.

Uniform Refinement and Estimator of the Interface

First of all, we fix the mesh size, then we change the position of the interface to obtain
the graphs of the error |[Vu — V3 ||q and estimator ||y, + Vuj ||q in with respect to
different positions of interface in Figure [2.10] We take the mesh sizes h ~ 0.08, h ~ 0.04
and h ~ 0.02 by making a quasi-uniform mesh refinement. In the proofs we suppose that
the position z., of the interface must be located in the interval z., € [0.1, L; — R] and here
— R = 4.6, see Figure[I.4] but in order to see what happens also after the upper bound
for the interface position, that is Ly — R, we take z, € [0, L1 —0.02]. So we conclude from
Figure that as 2, becomes near the corner as the estimator and error become bigger.
For a fixed mesh size h =~ 0.08 , we want to see the variation between the reconstructed
approximated flux Uz and the approximated flux —Vay, on the domain w?” ie. n? =
o} + (V)] || with respect to different positions of the interface where w? is defined
in Figure @* We plot 17 = ||o) + (Vag)) ||~ with respect to different positions of the
interface in the Figure below with base-10 logarithmic scale on the y-axis and for
fixed mesh size h =~ 0.08.
For fixed position of interface at x, = 4, we plot in Figure the estimator on w? w.r.t.
different mesh sizes to find that 7 = |0} + (Vin)1] ||~ is about 6.6 x 107 for all different
mesh sizes which is constant and, consequently, this flux is better than previous flux since
in the previous flux we don’t have that n” = [|o}] + (V)] || is constant for different
mesh sizes. Finally, let us define 0" := ||o} + (Vi) || as an estimator for the position
of the interface which depends only on the position of the interface.
For a fixed mesh size h ~ 0.08, we want to compare the above estimator Estimatorl :=
n = ||o}) + (Vip)y) ||wy with another proposed estimator for the interface Indicator2 :=
|V (@, —u')i) || by plotting them with respect to different positions of the interface in
Figurebelow where now =, € [0.1, L1 —0.02], see Figure , then we see that they are
approximately the same and this verified our choice of Estimatorl to be a good estimator
for the position of the interface. Now, if we fix the interface at x, = 4, after making
uniform refinement we see that the error distribution in Figure [2.12D] and the estimator

70



0.12

01

0.08

0.06

0.04

0.02

2.2. A posteriori estimator with guaranteed upper and lower (efficiency) bounds

8
] Vlu-up) I,
7 F
oy, + vyl
1 2 3 4 5
Position of Interface x_
I
(a) h =~ 0.08
012
04
0.08
0.08
0.04
0.02
0

0.06

0.04

— £ - 5
Il V),

— 7 u?
|| o, * v up |[ﬂ

L

1 2 3 4
Paosition of Interface x_

(b) b~ 0.04

e || V{-1}) I,

5
o, + Vuglly

J

1 2 3

4

Position of Interface x_
I

(c) h ~0.02

Figure 2.10.: Error and Estimator w.r.t. different positions of the interface for different

mesh sizes h

71



2. A posteriori estimator for the coupled 0D /2D Poisson equation

i
J-in

5

2 3 4
Position of Interface x_

(b) h ~ 0.08

Patch w”
/ |
0
Patch "
(a) Local Patches
2105
6.7 (1%
N
6.68 \
& Y = ?;.rT onw’
6.66 N
\
6.64 %
\
6.62 N
A Y
\\\
6.6 My
b
~
b8
6.58 s
0 0.02 0.04 0.06 0.08
Mesh Size
(c)zy =4

Figure 2.11.: Estimator on w” w.r.t the interface position x, and w.r.t mesh sizes h

72

0.1




2.2. A posteriori estimator with guaranteed upper and lower (efficiency) bounds

distribution in Figure are of biggest value near the corners and this is due to the
singularities in the corners. The mesh should be thus refined there. In the next section,
we will propose an adaptive algorithm both for the interface placement and for the mesh
refinement.

10°
| Estimator 1
!—IndicatorZ_
go\!alue
. . 7
, B e
:9" mU.UDE Lea ]
]
£
w
w1
10°¢
i
0 1 2 3 4 5 6
Position of Interface x_ . A . .
' (b) Distribution of error with mesh size
(a) Estimator and indicator on w? w.r.t z, h=0.08 for z, =4
'Ewalu? ;
J
a1 011geEa
i
I
(c) Distribution of estimator with mesh
size h=0.08 for z., = 4
Figure 2.12.: estimators on w” and distribution of estimator and error on €2
Let us define on 2 the error e := [|[V(u —uj)l|q,, the estimator n := [|oy, + Vuj|| and
the index of efficiency I := £. If we fix the interface position z, = 4 (e.g.) and make a

quasi-uniform refinement, we find the order of convergence is about 0.7 as in the Table 2.1}
We see that the convergence is not optimal and it is normal since u ¢ H?(2) (we have a
singular solution). One strategy to try to improve the rate of convergence is to make a
local mesh refinement as Section 2.3

2.2.4. Numerical comparison between the two fluxes

In this section we are going to make a comparison between the two estimators developed in
this chapter. The first flux which is defined in 1) will be denoted by 051 = 5',1;1 + 0’ and
consequently the first estimator will be denoted by o' := ZKe’fh 771%1, x Where np, k=

HVﬁh—i—&El ||k The second flux which is defined in (2.17)) will be denoted by a,f 2= &52 +o’
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

h e ‘ n ‘ 1 ‘ order of convergence
0.0760918 | 0.0288059 | 0.037627 | 1.30623 -
0.0400266 | 0.018209 | 0.0236558 | 1.29913 0.713991
0.0223199 | 0.0115984 | 0.0148648 | 1.28162 0.772254

Table 2.1.: Order of convergence.

and consequently the second estimator will be denoted by nf2 := ZKei’h 77%2 x Where

ey Kk = ||V + 5;}:2HK- First of all, the estimator 71 does not guarantee the efficiency
(lower bound) while the second one 72 guarantee the efficiency. Now, let us make a uniform
mesh refinement and plot the two estimators 1 and 2 and the error ||Vu— Vu;[|q with
respect to different positions x, of the interface v and for mesh size h ~ 0.08 as shown
in Figure Here we consider that x, € [0,L; — 0.02] to be able to see the better
estimator although that we suppose z, € [0, L1 — R], with R = 0.5, to be able to define the
flux since if x- exceeds Ly — R = 4.6 position, then the flux will not belong to H(div, §2).
We observe that the estimators n'' and n¥? are equivalent until the position Ty = 4
of the interface v. To see more what happen between z, = 4 and z, = L; — 0.02 we
have introduced Figure In Figure we see that the estimators ' and n2 are
equivalent until the position x, = 4.6 ( this is the point where we must not exceed it when
we consider the second flux o} > where we have guaranteed efficiency) and for this reason

we will make the comparison between the local estimators 7717 := [|o} *7 + (Vi )y 7 ||n

and nf27 = HGEQ’V + (Vﬂh)lb?ﬁ‘ |o» on the interface patch w? for the two fluxes. For this
purpose let us fix o, = 4 and plot in Figure the variation of ™1 and n¥' with respect
to different mesh sizes.

0.16 T T T

0.14 -
5 s =

02 —o— ||Vu-vull,

0.1 —=— Estimator 5"+ i

0.08 - ~— Estimator -r;Fz |

Position of Interface x _

Fa

Figure 2.13.: Error and estimators 71 and 72 w.r.t different interface positions .,
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Mesh size

Figure 2.15.: Comparison between the two local estimators n¥'1"Y and n¥27 with respect to
different mesh sizes

From Figure we deduce that the estimator 717 is greater than n27 and %27
is constant with respect to different mesh sizes which is very important to take it as the
estimator for detecting the position of interface  since it is independent from the mesh
size and it depends only on the position of the interface as showed in Figure The
fact that the efficiency is guaranteed when we take 052 defined in and all the above
numerical results about the comparison between the two fluxes detect that the best choice
of the definition of the flux is 052 that is defined in .
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

2.3. Adaptive algorithms

2.3.1. Adaptive mesh refinement: “hopt” strategy

It is classical to use the a posteriori error estimate to refine the mesh, by marking certain
mesh elements as contributing the most to the error, and then splitting them into smaller
elements. However, we do all our numerical experiments in the FreeFEM software [49]
which does not provide the possibility to produce a new regular mesh by refining some
marked elements of the old mesh. Instead, FreeFEM provides a function adapmesh that
produces a new mesh of the entire domain which respects (approximately) the given dis-
tribution of the local element sizes. We thus need to design a mesh refinement algorithm
compatible with the FreeFEM meshing capabilities.

To introduce our mesh adaptive algorithm, referred to as “hopt",E] let us characterize
the mesh T, of Q by the mesh size distrubution h(z) such that h(z) at a point z inside a
triangle K € Ty, is approximately equal to hg. Moreover, we have the simplified error on
Q = QUQ U~ which is defined in @I} by

u—uifta > = infly ~ [ 1) @) dx (2.39)

where uj is the approximated solution of the coupled 0D/2D model which is defined in
, some a priori unknown c(x) and the order parameter ¢ chosen once for all. This
is reasonable for example for P; FEM with § = 1, ¢(x) ~ |D?ul(z), i.e. the norm of the
second order derivatives at x, provided w is sufficiently smooth. Note also that the number
of DOFs is approximately given in 2D case by

dx
Npor ~ / T
a h*(x)
since a triangle of size h(z) occupies the area of order h%(z). Let us imagine first that we

know ¢(x) and we want to construct an optimal mesh (with the minimal possible Npor) to
achieve a given error tolerance, i.e. |u — up| | o = tol. This is a constrained minimization

problem for the mesh size distribution h(z):

min _ / ;lix
he L2(9) o h*(z)
Jo W (z)c?(z) dx = tol?

The minimum is achieved on a stationary point of the Lagrangian
dx
Lk = | —— + ) </ R (2)P (x dxtol2>
(N = [ g A e

with h € L?(Q) and A € R. Taking the variations yields

2 d

—/ M + )\/ 20h Y z)w(x)A(z)dx = 0, Yo =v(z)
a hi(x) )
so that the optimal mesh size distribution is
tol'/? 1

(fiy 21641 () dX)l/(Qé) (c(z))/(+D)

hopt (r) =

! Another mesh adaptive algorithm is proposed in Appendix
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2.3. Adaptive algorithms

Of course, ¢(x) is not known in practice. But, on a given mesh ﬁ, we have a posteriori
error estimates with provable upper bound (2.24)) and lower bound ([2.25)) and thus ||Vu —
Vui||3 ~ > oKeT, n?% where the total estimator 7 is defined by 7? := |loy, + Vuj||3 =

o + VﬂhH% =Y KeT, n% and let us reinterpret this in the form li

Z / B2 (z)c? () dx ~ Z 0%

- JK =
KeTy, KeTy,

This suggests to approximate ¢(z) on any triangle K € T by

K
c(z)  ———= forz e K.
hie VK]
This gives
6/(6+1
hopt () = tol'/ hK/( + )|K|1/(25+2) -
opt\ L) = 2/(6+1) 3 —26/(6+1) /(641 1/(25) 771/(6+1) orxr .
(ZKETh Nk by | K[0/(0+ )) I
(2.39)

Now, rather then trying to achieve the target tolerance, let us adapt the mesh by aiming to
diminish the current error estimate Ry, times (i.e. set tol = Est /Ryo)) with given Ry > 1
on each iteration of the algorithm. So, the “hopt” algorithm is

1. Choose ¢ and R

2. Given the mesh 7, and the estimator 7, set current desired tolerance to

1/2

tol =

> nk

Rtol KeT;,

3. Set hnew as the Po-FE function on the current mesh by hnew = hopt using (2.39))

4. Generate the new mesh through the FreeFEM function adaptmesh with parameters
hpew and IsMetric=1

Note: We make mesh adaptation "hopt" (6 = 1 and Ry, = 4) to obtain the new total
estimator 17. We have chosen 0 = 1 and Ry, = 4 since it is the best choice and you can see
the explanation in Appendix A at the end of the thesis’s report.

Let us see in the next subsection how we couple this mesh refinement with a suitable choice
of interface ~.

2.3.2. Algorithms for the interface placement and the 2D model mesh
optimization

In this section we will choose a suitable interface position and make an adaptive refinement
to achieve the optimal convergence. We deal with the following Steps.

Step 0: Choices of parameters
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

Fix the tolerances tol(n) and tol(n?) for the total estimator n = ||o, + Vuj ||o on © and for
the interface estimator 17 := ||, + Viipy))||wr on w? respectively in order to control the
number of times of adapting the mesh until we achieve that the total estimator n < tol(n)
and to detect the suitable interface position in a way to get n7 < tol(n?).

Step 1: Detection of the Interface

Fix the position of the interface v at abscissa x, = L1 — R (since the corner is located at
x = L, see Figure and we solve the 0D /2D problem with very coarse mesh to save
the computational time cost as the detection of the position of the interface is independent
from the discretization. Then we denote uj the 0D/2D solution and we compute the flux
o) on w” and the estimator 77 = ||o} + V) || on w?. If 7 > tol(n) then we redefine
the abscissa 2, as 2, = x, — dx, with éz = 0.1 and we restart Step 1 until 7 < tol(n?).

Step 2: Adapting the mesh

Once the suitable interface « is placed (see Step 1), we make mesh adaptivity as in
Algorithm (1] until we obtain n < tol(n). If we reach a MaxLevelRef of refinement, we
stop adaptation even if n > tol(n).

This approach is summarized as Algorithm [I] page Using this algorithm we notice
that the mesh adaptation following the global estimator 7, in line [13] of Algorithm
produces a refinement near the interface also. The rate of convergence is not optimal,
so that we change the strategy to perform the mesh adaptivity: for adaptivity (once the
interface is placed), we take the standard equilibrated estimator in € as in [39], that is
defined by n¥ := HUX + VﬁhHQ where O';L/ = Eaevh oy, recalling that V, represents the

set of all vertices on the mesh of the domain .

1: Fix a tolerance for the global estimator in the meshed domain €, named tol()
Fix a tolerance for the estimator of the interface position, named tol(n?) := atol(n)
for some « €]0, 1].
Fix a step for moving the interface position, named dz > 0
Fix a maximum level of refinements for the “hopt” algorithm named MaxLevelRef
Fix the interface position near the corner at coordinate xy = L — R, see Figure
Fix a coarse mesh in {2 and compute the coupled solution and n7.
while 7” > tol(n?) and z, >0 do

Redefine z, = z, — éx

Compute the coupled solution and n”
10: end while
11: Compute 7, set Level=0
12: while 7 > tol(n) and Level< MaxLevelRef do
13:  Make adaptive refinement following “hopt” on € using nv
14:  Update Level4+=1
15:  Compute the coupled solution, the error and n on the new mesh
16: end while
17: return Coupled solution and z

Algorithm 1: Detect the interface position and adapt the mesh.

o

An alternative way to make adaptivity (once the interface is placed) is to try to use a
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reasonable part of our estimator of Theorem Indeed, our estimator is defined by

n=6n+Vinlg= e} + Y (1—v (@)oo + Vi, [+ > (1—¢(a)y"
GLEV}L\V'Y CLGVh\VW

=1

o]l

= llo] + Vi) + Y A= (a)of+Vi, [ > @ —v @) || |

Vi\V) Vi\V)

O’EZ: 171/)2 Q

So we can split the estimators of the coupled model into two types: the first one related
to the interface position, that is

"= |loy + Vgl .
and the second one related to the mesh refinement, that is
D= o) + Vi (1 — )| - (2.40)

The algorithm will be the same as Algorithm [1| but we use 7 instead of . Let’s call
this algorithm Algorithm 2

2.3.3. Numerical results with Algorithm 1 and Algorithm 2

In this section we make a numerical comparison between the two algorithms presented in
the previous section, named Algorithm 1 and Algorithm 2. The fixed parameters for
all the simulations are: dz = 0.1, MaxLevel Ref = 20. We consider three different tests:
test 1 where we choose tol(n) = le — 2, test 2 where we choose tol(n) = le — 3 and test 3
where we choose tol(n) = le — 4.

Test 1: tol(n) = 10~%:

We run the two algorithms for different values of @ = 0.1,0.25,0.5, the idea is that we
want to achieve a reasonable tolerance for 1”7 such that this contribution will be a smaller
order or at most the same order of the local contributions of nV (for Algorithm 1) or of nP
(for Algorithm?2) for the last level of refinement giving the desired final accuracy.

Let us take a = 0.1. In Table we see the convergence of the error e and the estimator
1 with respect to the dof obtained from the adaptive refined mesh. Let us notice that the
interface position is 27 = 4.4. We show also the index of efﬁciency 7, named Index, and
the convergence rate, named Rate, in Table 2.2 In the Table [2.2a] we see the results for
Algorithm 1 and in Table 2.2b] for Algorithm 2. The two adaptatlons are very similar
and give quite same results: the optimal rate of convergence is restored and the given
accuracy for n reached.

Concerning Algorithml, in Figure We plot the initial mesh (Figure correspond-
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Dof e i Index | Rate
84 0.149679 0.170874 1.1416 -
302 | 0.0516935 | 0.0654847 | 1.26679 | 0.830
417 | 0.0295903 | 0.0358232 | 1.21064 | 1.72
814 | 0.0132612 | 0.0156466 | 1.17988 | 1.19
2395 | 0.00479483 | 0.00567086 | 1.1827 | 0.94
(a) Results using Algorithm 1
Dof Error i Index | Rate
84 0.149679 0.170874 1.1416 -
302 | 0.0511889 | 0.0647278 | 1.26449 | 0.838
436 | 0.0258347 | 0.0309826 | 1.19926 | 1.86
1141 | 0.010464 0.0126444 | 1.20837 | 1.03
2942 | 0.00394587 | 0.00466495 | 1.18224 | 1.02

Table 2.2.: Error e and estimator n w.r.t. degrees of freedom Dof for oo = 0.1

ing to 84 Dof, the distributions of the error e, estimator 1 and the standard equilibrated

(b) Results using Algorithm 2

estimator nV (respectively in figure [2.16b} [2.16¢ and [2.16d]).

In Figure [2.17| we plot the mesh coming from the first refinement level (with 302 Dof) with
the distributions of e,  and 1V and in Figure we plot the mesh coming from the last
refinement level (that is a 4 refinement level with 2395 Dof) and the usual distributions.
For this latter refinement Figure [2.19) shows a zoom in one of the two corners where the

most important refinement is performed.

80




2.3. Adaptive algorithms
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(a) Mesh 7;(0) as an
initial mesh before (b) Distribution of error on the mesh
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(d) Distribution of standard non-

(c) Distribution of estimator on the coupled equilibrated estimator nV
mesh 72(0) on mesh 71(0)

Figure 2.16.: Distribution of coupled error and estimator on the mesh ’71(0) of Q with
Dofs—84 using Algorithm 1 where, tol(n) = 1072 and a = 0.1
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(a) Mesh 7~’h(1) for the
first adapting.
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il

By UMEMQQ0S

41075
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(c) Distribution of estimator on the
mesh 72(1)
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(b) Distribution of error on the mesh
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(d) Distribution of usual non-coupled
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Figure 2.17.: Distribution of coupled error and estimator on the mesh 72(1) of Q with
Dofs=302 using Algorithm 1 where, tol(n) = 1072 and o = 0.1
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(a) Mesh ’72(4) for the
fourth adapting.
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(c) Distribution of estimator on the
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2.3. Adaptive algorithms

(b) Distribution of error on the mesh

[

(d) Distribution of usual non-coupled
estimator on the mesh 771(4)

Figure 2.18.: Distribution of coupled error and estimator on the mesh 7;(4) of  with
Dofs=2395 using Algorithm 1 where, tol(n) = 1072 and a = 0.1
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- bl

(a) Corner of the mesh 771(4) (b) Distribution of error on the corner of the mesh 7;(4)

i

[

(c) Distribution of estimator on the corner of the mesh
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(d) Distribution of usual non-coupled estimator on the cor-
ner of the mesh 771(4)

Figure 2.19.: Distribution of coupled error and estimator on the corner of the mesh 7;(4)
of Q with Dofs=2395 using Algorithm 1 where, tol(n) = 1072 and a = 0.1
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We do the same plots for Algorithm 2 : see Figure for the initial mesh and
distributions for e, n and n”, see Figure for the first refinement level, Figure for
the last level of refinement and Figure for the zoom in the corner.

(a) Mesh 71(0) as an
initial mesh before (b) Distribution of error on the mesh

adapting. 771(0)
oValue

)

e 1998

i

(c) Distribution of estimator on the (d) Distribution of the estimator n for
mesh ﬁ(o) mesh 72(0)

Figure 2.20.: Distribution of coupled error and estimator on the mesh 771(0) of  with
Dofs=84 using Algorithm 2 where, tol(n) = 1072 and a = 0.1
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Figure 2.21.: Distribution of coupled error and estimator on the mesh 771(1) of Q with
Dofs=302 using Algorithm 2 where, tol(n) = 1072 and o = 0.1
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Figure 2.22.: Distribution of coupled error and estimator on the mesh 72(4) of Q with
Dofs=2942 using Algorithm 2 where, tol(n) = 1072 and o = 0.1
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2. A posteriori estimator for the coupled 0D /2D Poisson equation
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Figure 2.23.: Distribution of coupled error and estimator on the corner of the mesh 72(4)
of Q with Dofs=2942 using Algorithm 2 where, tol(n) = 1072 and a = 0.1
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For both cases the conclusions are the same :

2.3. Adaptive algorithms

in general the distribution of the error

e and the estimator n are locally almost the same, and after refining we see local contri-
butions of e and n that appear also near the interface, meanwhile both distributions of
nY and nD do not detect error near the interface but moreover an important error in the
corners where we have singularity. Making refinements following 1V and nD we verify a
real decreasing of the error and the desired rate of convergence expected for a smooth test

case.

In Table [2.3|and [2.4] one can see the convergence for the cases respectively with o = 0.25
and « = 0.5. The behaviors of both algorithms are practically the same, the difference is

that the interface position chosen is 7 = 4.5 and 7 = 4.6 respectively.

Dof e n Index | Rate
88 0.126743 0.147801 | 1.16615 -
301 | 0.0486227 | 0.0606712 | 1.2478 | 0.779
542 0.023844 0.0285502 | 1.19737 | 1.211
1272 | 0.00927946 | 0.0113015 | 1.21791 | 1.106
3462 | 0.0033839 | 0.00412536 | 1.21911 | 1.007
(a) Results using Algorithm 1
Dof Error n Index | Rate
88 0.126743 0.147801 | 1.16615 -
297 | 0.0474781 | 0.0590356 | 1.24343 | 0.807
451 | 0.0243649 | 0.0299052 | 1.22739 | 1.597
1143 | 0.0102187 | 0.0123655 | 1.21009 | 0.934
2973 | 0.00369422 | 0.00444173 | 1.20235 | 1.079

Table 2.3.: Error e and estimator n w.r.t. degrees of freedom Dof for oo = 0.25

(b) Results using Algorithm 2
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

Dof e i Index | Rate
88 0.117868 0.13842 1.17436 -
360 | 0.0452827 0.057106 1.2611 | 0.679
616 | 0.0234623 0.028229 | 1.20317 | 1.224
1117 | 0.0103151 | 0.0123804 | 1.20022 | 1.38
2986 | 0.00412791 | 0.00512294 | 1.24105 | 0.93

(a) Results using Algorithm 1
Dof Error i Index | Rate
88 0.117868 0.13842 1.17436 -
360 | 0.0452499 0.057064 | 1.26108 | 0.679
490 0.024088 0.0287519 | 1.19362 | 2.045
1308 | 0.0095169 | 0.0113945 | 1.19729 | 0.945

3142 | 0.00378678 | 0.00472758 | 1.24844 | 1.051

(b) Results using Algorithm 2

Table 2.4.: Error e and estimator n w.r.t. degrees of freedom Dof for a = 0.5

Test 2: tol(n) = 1073:

We run the two algorithms for @ = 0.1, the idea is that we want to achieve a reasonable
tolerance for n? such that this contribution will be a smaller order or at most the same
order of the local contributions of v (for Algorithm1) or of n® (for Algorithm2) for the
last level of refinement giving the desired final accuracy.
In Table [2.5] we see the convergence of the error e and the estimator 7 with respect to the
dof obtained from the adaptive refined mesh. Let us notice that the interface position is
Y = 4.2. We show also the index of efficiency g, named Index, and the convergence rate,
named Rate, in Table In the Table we see the results for Algorithm 1 and in
Table 2.5D] for Algorithm 2. The two adaptations are very similar and give quite same
results: the optimal rate of convergence is restored and the given accuracy for n reached.

Concerning Algorithm1, in Figure we plot the initial mesh (Figure correspond-
ing to 84 Dof, the distributions of the error e, estimator 1 and the standard equilibrated
estimator 1V (respectively in figure [2.24b| [2.24c| and [2.24d)).
In Figure We plot the mesh coming from the first refinement level (with 282 Dof) with
the distributions of e, 7 and ¥ and in Figure we plot the mesh coming from the last
refinement level (that is a 6 refinement level with 25474 Dof) and the usual distributions.
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2.3. Adaptive algorithms

Dof e n Index | Rate
84 0.162116 0.183071 1.12926 -
282 0.0548775 0.0700119 | 1.27579 | 0.894
595 0.0269704 0.0325629 | 1.20735 | 0.951
1018 0.0112737 0.0133638 | 1.18539 | 1.168
2857 | 0.00395291 | 0.00473887 | 1.19883 | 1.015
7321 | 0.00134209 | 0.00157586 | 1.17418 | 1.147
25474 | 0.000394305 | 0.000478341 | 1.21312 | 0.982
(a) Results using Algorithm 1
Dof Error n Index Rate
84 0.162116 0.183071 1.12926 -
282 0.0548775 0.070012 1.27579 | 0.8944
529 0.0282411 0.0342134 | 1.21148 | 1.0560
986 0.0123483 0.0148866 | 1.20556 | 1.328
2177 | 0.00502207 | 0.00596826 | 1.18841 | 1.135
5992 | 0.00162056 | 0.00188328 | 1.16212 | 1.117
21726 | 0.000457287 | 0.000550204 | 1.20319 | 0.98

Table 2.5.: Error e and estimator n w.r.t. degrees of freedom Dof for o = 0.1

(b) Results using Algorithm 2

We do the same plots for Algorithm 2 : see Figure for the initial mesh and
distributions for e, n and n”, see Figure for the first refinement level, Figure for
the last level of refinement

For both cases the conclusions are the same as before :

in general the distribution of

the error e and the estimator 7 are locally almost the same, and after refining we see local
contributions of e and n that appear also near the interface, meanwhile both distributions
of nV and nP do not detect error near the interface but moreover an important error in
the corners where we have singularity. Making refinements following 1V and n® we verify
a real decreasing of the error and the desired rate of convergence expected for a smooth

test case.
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2. A posteriori estimator for the coupled 0D /2D Poisson equation
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Figure 2.24.: Distribution of coupled error and estimator on the mesh ’72(0) of Q with
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Dofs=84 using Algorithm 1 where, tol(n) = 1073 and a = 0.1



(a) Mesh 771(1) for the
first adapting.

i

(c) Distribution of estimator on the
mesh '7~7L(1)

2.3. Adaptive algorithms
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(b) Distribution of error on the mesh

7
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(d) Distribution of usual non-coupled
estimator on the mesh 771(1)

Figure 2.25.: Distribution of coupled error and estimator on the mesh 72(1) of Q with
Dofs=282 using Algorithm 1 where, tol(n) = 1072 and o = 0.1

93



2. A posteriori estimator for the coupled 0D /2D Poisson equation
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(a) Mesh ’72(6) for the (b) Distribution of error on the mesh

first adapting. 771(6)
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(c) Distribution of estimator on the (d) Distribution of usual non-coupled
mesh 7756) estimator on the mesh 771(6)

Figure 2.26.: Distribution of coupled error and estimator on the mesh ’72(6) of Q with
Dofs=25474 using Algorithm 1 where, tol(n) = 107 and a = 0.1
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Figure 2.27.: Distribution of coupled error and estimator on the mesh 771(0) of  with
Dofs=84 using Algorithm 2 where, tol(n) = 1073 and a = 0.1
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2. A posteriori estimator for the coupled 0D /2D Poisson equation
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initial mesh before (b) Distribution of error on the mesh
adapting. 771(1)
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(c) Distribution of estimator on the (d) Distribution of the estimator n” on
mesh 72(1) the mesh 71(1)

Figure 2.28.: Distribution of coupled error and estimator on the mesh 72(1) of Q with
Dofs=282 using Algorithm 2 where, tol(n) = 1072 and o = 0.1
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Figure 2.29.: Distribution of coupled error and estimator on the mesh 72(6) of Q with
Dofs=21726 using Algorithm 2 where, tol(n) = 1072 and a = 0.1
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

Test 3: tol(n) = 10~

We run the two algorithms for o = 0.1, the idea is that we want to achieve a reasonable
tolerance for n” such that this contribution will be a smaller order or at most the same
order of the local contributions of v (for Algorithm1) or of nP (for Algorithm2) for the
last level of refinement giving the desired final accuracy.

In Table we see the convergence of the error e and the estimator n with respect to the
dof obtained from the adaptive refined mesh. Let us notice that the interface position is
27 = 3.8. We show also the index of efficiency g, named Index, and the convergence rate,
named Rate, in Table In the Table we see the results for Algorithm 1 and in
Table for Algorithm 2. The two adaptations are very similar and give quite same
results: the optimal rate of convergence is restored and the given accuracy for 7 reached.

Dof e n Index Rate
98 0.154895 0.176161 1.13729 -
347 0.0532323 0.0667582 | 1.25409 | 0.844
512 0.0260445 0.0315484 1.21133 | 1.837
1269 0.0104203 0.0126315 1.2122 1.009
2721 0.00384351 | 0.00457943 | 1.19147 | 1.307
8388 0.00120907 | 0.0014192 | 1.17379 | 1.0272
27531 | 0.000331174 | 0.000390075 | 1.17786 | 1.0895
106473 | 8.18902e-05 | 9.98675e-05 | 1.21953 | 1.033

(a) Results using Algorithm 1
Dof Error n Index Rate
98 0.154895 0.176161 1.13729 -
347 0.0532323 0.0667582 | 1.25409 | 0.8447
520 0.0255367 0.030641 1.19988 | 1.815
1495 0.00976458 0.0119389 | 1.22268 | 0.9103

3114 0.00359059 | 0.00425519 | 1.1851 | 1.3634
9427 0.0010187 0.00118431 | 1.16257 | 1.1373
34872 | 0.000254918 | 0.000299412 | 1.17454 | 1.0590
142309 | 5.95169e-05 | 7.7972e-05 | 1.31008 | 1.0343

(b) Results using Algorithm 2

Table 2.6.: Error e and estimator n w.r.t. degrees of freedom Dof for o = 0.1

Concerning Algorithm 1, in Figure we plot the initial mesh (Figure corre-
sponding to 98 Dof, the distributions of the error e, estimator n and the standard equili-
brated estimator 1V (respectively in figure 2.30b} [2.30c| and [2.30d]).

In Figure we plot the mesh coming from the first refinement level (with 347 Dof) with
the distributions of e, n and ¥ and in Figure we plot the mesh coming from the last
refinement level (that is a 7 refinement level with 106473 Dof) and the usual distributions.
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oValue ” oValue
e i
{13 i 5
[ |18 13 .||‘||-'/~; b5
ml N2enlilb |l lgsplllo

i i

c) Distribution of estimator on the d) Distribution of usual non-coupled
p
mesh fh(O) estimator on the mesh 7~h(0)

Figure 2.30.: Distribution of coupled error and estimator on the mesh 72(0) of Q with
Dofs=98 using Algorithm 1 where, tol(n) = 10~% and a = 0.1
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

101/8032
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(a) Mesh ’7~‘h(1) for the (b) Distribution of error on the mesh
first adapting. ’7;(1)
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(c) Distribution of estimator on the (d) Distribution of usual non-coupled
mesh 72(1) estimator on the mesh 771(1)

Figure 2.31.: Distribution of coupled error and estimator on the mesh 72(1) of Q with
Dofs=347 using Algorithm 1 where, tol(n) = 107* and o = 0.1
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(a) Mesh 771(7) for the (b) Distribution of error on the mesh
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Figure 2.32.: Distribution of coupled error and estimator on the mesh ’7~;L(7) of Q with
Dofs=106473 using Algorithm 1 where, tol(n) = 10~% and o = 0.1
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

We do the same plots for Algorithm 2 : see Figure for the initial mesh and
distributions for e, n and n”, see Figure for the first refinement level, Figure for

the last level of refinement
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Figure 2.33.: Distribution of coupled error and estimator on the mesh 72(0) of Q with
Dofs=98 using Algorithm 2 where, tol(n) = 10~% and a = 0.1
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(a) Mesh 771(1) as an
initial mesh before
adapting.
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(c) Distribution of estimator on the
mesh 72(1)

2.3. Adaptive algorithms

(b) Distribution of error on the mesh

fi

(d) Distribution of usual non-coupled
estimator on the mesh 7;(1)

Figure 2.34.: Distribution of coupled error and estimator on the mesh 771(1) of Q with
Dofs=347 using Algorithm 2 where, tol(n) = 107* and o = 0.1
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Figure 2.35.: Distribution of coupled error and estimator on the mesh 771(7) of  with
Dofs=142309 using Algorithm 2 where, tol(n) = 10~* and a = 0.1
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2.4. Poisson problem on a channels with several straight sections

For both cases the conclusions are the same as before : in general the distribution of
the error e and the estimator 7 are locally almost the same, and after refining we see local
contributions of e and n that appear also near the interface, meanwhile both distributions
of nV and nP do not detect error near the interface but moreover an important error in
the corners where we have singularity. Making refinements following 1V and n® we verify
a real decreasing of the error and the desired rate of convergence expected for a smooth
test case.

2.4. Poisson problem on a channels with several straight
sections

In this section we will introduce more channels with more corners to generalize the previous
study about coupling 0D /2D and determine the suitable positions of the interfaces for the
whole channel and study a posteriori error for the whole domain €.

Let us now consider the whole domain €2 with more channels as in Figure [2.36

Inlet I
(0,0)

Outlet I

Figure 2.36.: New Domain 2 with more channels

As before we will take a very simple Poisson equation on the whole domain €. Let us
recall it:

—Au=f, in Q, (2.41a
U = Uijn, on Finv (

Uout on Foutv (2410

U = 0, on Fwall; (2.41(1

12uUq0 _ buaw

where, f = =55, uin = “55* (R — y)y and uout = —6;%‘5” (y +3W + 3R) (y +3W + ZR).
The weak formulation of system 1' is: Find v € H, ;(Q) such that:
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

(Vu, Vo)g = (f,v)a Vv € HY (), (2.42)
where,
HY Q) :={uec H(Q); u=0 on 0Q},
Hy(Q):={uec H(Q); u=wu; on 00}
and

U= Uy on Iy,
Ug = § U= Upyt ON Lout,

u=20 on TI.

2.4.1. Coupled System
)

Let us introduce the simplified model as simplified 0D models in DY domains and the non

simplified 2D models in Dg) domains such that 2 = <U2'721Dgi)) U <U?:1Dg)> as in Figure
Let ’yy) and ’yg) be the inlet and outlet interfaces of Déi) domains respectively and
let T be the wall of Dg) domains. Let Dy = U?:1D§) which is the collection of regions

where have 2D models are dominance and D; = Uzlegi) be collection of regions where
we have 0D models as in Figure 2.37]
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2.4. Poisson problem on a channels with several straight sections

Inlet I Di“ Dgl]
L
p®
|—
ng D:im I Dgz:
n®
D IU%:,) Do
m
(_)111,19[,' Di” Dgﬁ]

Figure 2.37.: Coupled 0D /2D model in the whole domain 2
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

The simplified 0D models ugi) are defined on each domain Dy) by:

ugi):Poiseuille(z‘) in Dgi). (2.43)

The non simplified models in each Déi) consists to find @ in Déi) such that:

—Aa® = 2y, in DY,
i = ) =y, on 9y, (2.44)
ol = uffut = ugiﬂ), on *yg), '
a =0, on T,

where, uz(;) and Ugt are the inlet and the outlet respectively in the domains Dg).

We have the continuity coupled conditions on the inlet fy%i) of the domain Dgi) :

ﬁ(i):ugi) on ’yy). (2.45)

We have the continuity coupled conditions on the outlet véi) of the domain Déi):

ﬂ(i):ugiﬂ) on yéi). (2.46)

Let us consider the variational formulation of system (2.44): Find () € H, ;(Déi)) such
that:

(va®, va@)Déﬂ = ( f,f;(i))Déi) vo® e HL(DS) (2.47)
where,
Hy(DY) = {a® e H'(DY)); a =& on a(DY)}
and
W0 =) on 40
) = {30 —ufl, i on o)
i =0 on I,

Let 7~;l<i> be a regular triangular mesh on Dg). Introduce the FE spaces

. f/}fi):: {f;}(j) continuous on Déi) such that: ?7}(5)|D(i) € Pk(ﬁi))},
2
o V.= {17,(:) IS ffh(z) such that: 6;Li)|8(D(i)) = ﬂ;i)},
2

h,g* ™

° ‘25283: {’D,(j) € f/h(z) such that: ?7}(:)|8(D(i)) =0}.
’ 2

Now, we discretize the problem of system (2.47)) above as: find ﬂ,(f) € f/h(ig), such that

(v&ﬁ?,Vﬁ,‘f’)DS) = (f, 17,(5))[)5@ va,) e V. (2.48)

Then the approximate solution on the whole €2 is reconstructed as

@) 1y P
wp=4 Myl (2.49)
w;” in D,
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2.4. Poisson problem on a channels with several straight sections

2.4.2. A posteriori error estimates

In this section we are going to study a posteriori error estimator for whole domain 2 i.e.
Q will be as in Figure [2.36] We will introduce the flux reconstruction for all the coupled
0D/2D model in the whole domain 2 as in Figure We will detect the positions of all
these interfaces in Figure by introducing the interfaces estimators n7 for all interfaces
v as we did in Section [2.2]

Definition 2.15 (Flux o). Let u be the solution of system then, we denote the flux
by: 0 = —Vu.

Proposition 2.16 (Properties of weak solution of system (2.42). Let u be solution of

system and let o be defined as in Defonition . Then, u € Hgl(Q), o € H(div,)
and V-0 = f.

Proposition 2.17 ( Propertles of approximate solution uj)). Let uj be the approzimate

solution defined by (2.48 (-) Then uj, € H) (), —=Vu; ¢ H(div,Q) and V-(—Vu}) #

f in general.

Stress Reconstruction

Let uj be the approximate solution defined by (12.48])-(2.49)). We look for stress o3, € ¥, C
H(div, Q) such that:

oideal .— argmin  ||Vuj + vnllr2(0)- (2.50)
VR €D,

divup=Ilg, (f)=fon Q

In practice, X will be RT}, on Dg) and H (div, D(i)) on D( and Qh will be Pk(T(z))

Dg) and L2(D§i)) on Dgi). Computing oj as the solution of oideal would be too
(i )

costly, so we localize this minimization. For each vertex a € Dg )\(71 U ,)é )) we consider a

patch w((li) to be the collection of all triangles that share this vertex a i.e. w((li) = supp(z/;c(f)),

where @Z)C(Li) is a hat function i.e. a polynomial of degree 1 that takes the value 1 at the

(0

node a and 0 on the other nodes different from a in the mesh 771(1) of the domain D
Let V,(fi be the Vertices of Dg)\( @y ’y(z)). Let wgzl) = supp(z/z,(;)%) and w%) = sgpp(w,(:lm')
where 1/1,(:)71 and 1&55)72 are a posteriori error indicators for the two interfaces ’yy) and 'yél)
respectively, they are a piecewise affine (on mesh 72(1)) version of 1/1%) and @Z),(Yi) respectively
and they are defined in a similar way of a posteriori error indicator in (2.15)). For example,
if we take the domain Dgl) in Figure then, our notations are shown in Figure [2.38

The inlet and outlet interfaces 'yg) and 721) of Dél) are located at x = :cgll) and y = yé

respectively. We can now define a posteriori error indicators 1/1,(11,)71 and 1/),(11%2 by:

1/}(1) (1‘ y) _ Za:all the nodes of 7~'h(1> ’(71)( )1/)( )(I y) for (X’Y) © Dé1)7
Ry VY for (x,y) € D§1),
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

where, @bél) is a hat function associated to the node a and
1, for z< wgll),

W, p .
(1)(37 y) = %, for ze [a;(vl),a:gll) + R],

0, for x> xgl) + R.

Similarly,

1
w(l) (.ilf Z/) _ Za:amll the nodes of 7~'h(1) ’(Y2)( )w( )(:L' y) for (X’Y) © Dé )7
hyy2 \*s 1 for (x,y) € D§2),

where
1, for y<y'y,
1 W, p
W ) = ¢ vetE gy e D)y 4 R,
0, for y> y%) + R.
inlet: 4" bi by

R R AR ESES
"Es:.’s:mssa e

'J-J
W

R W

outlet: 3

Figure 2.38.: Patches w ) in the inlet of Dél) on interface 'yﬁl) and w_1) in the outlet of
1 2

(1)

Dél) on interface vy

Let N be the total number of 2D domains i.e. we have the 2D domains Dg) for i =
1...N. '
In a similar way we can introduce w,h , 72, wh " and w’(i)w for all 4 = 1... N then, we
introduce the partition of unity:

N4+1
Lo = Z ]lD(” + Z]ID“
N+1 _ _
=3ty + Z (v, + i+ T (- @ - wQ@)ut?).

a€ V}(LZ)*

Let us recall that zp((f) is the hat function for any mesh node a in Déi) excluding those in

7@ and ’yéi) and V}(Lil includes the vertices of Dg)\( @y o)) )) Now, we replace U;Ldeal
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2.4. Poisson problem on a channels with several straight sections

(2.50) by:

N N+1
n= 3 (et ot 2 (=000 — e d@)oll )10+ 3 (-9 10

=1 aevy’,

]132 0D1
(2.51)
where for each a € V,(Lz?k, we define a,(;) (Z) . by
a,(j)a = arg min tha + D Vuh I, (@)
7 vh)aezil a’

divel, =11 ) ("’31)"0 ‘W)'WS))
h,a

on the interface ’y§ ) we define (7,(1)7 € EEL )% by
U}(l»)% = ars min( Hvi(z?n + 1/}}(11271VNEZ)|’L2(0J§?)

Vn/y ey

dval?) =11 (wi’,%-f—V%f’é%l‘V“g))
"/

h’yl

and on the interface fyé) we define U,(l)7 € E,(l )w by
() . : (4) (1) ) _
Yh,ya Ezh 2
N R TR
h,v2

where,
)

Case 1: @ in an internal node of Dg

Z‘,(f)a = {op € RTk(wC(f)) op-n=0 on ﬁwc(f)},

QY = {an € L), anlic € Pu(K). VK € i), [ ) an = 0}.
Case 2: a on the wall of Dé )\(*yfi) U *yéi))

Ega ={op € RTk(wC(L)) op-n=0 on Owc(f)\(?(Déi))},

( = {qn € L2(w¢(1 ), qrn|x € Pr(K),VK € w((f)}.

Case 3: azw?

El(j,)'yl = {op € RTk(w,(Yil)),ah ‘n=0 on &u%)\@(Déi)) and op-n = (—Vugi)) ‘n o=

0 on 4"},
Q;Z’)% =A{q € L2(wgll)),qh];< € Pp(K),VK € wgﬁ)}.
Cased: a = ’yél)

22)72 i={on € RTk(w”(m)) op-n=0 on aw%)\a(pgi)) and o} -n = (_vugi-i-l)) n =
Q)

0 on 7'},
Q) = {an € L2(WY), aulxc € Pe(K), YK € Wi},
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

HQ(U is the Lz(wé)) orthogonal projection, HQ(,) is the L?(w ()) orthogonal projection
71
(i) ()

and HQSLQ is the L2(w§2)) orthogonal projection. But o}, 0}~ and J,(;’)W defined above

is equivalent to:
: () (@) (4) (4) )
Find Opy € Ehm and Ty € th such that:

(4)

(07(1,'271 ) (z) - (?”h'yl V- vh) u) = (- ()Vué)ﬂfh) <z> Yoy, € Z()

h’Yl’

(2.52)
(V-0 Ll,qw = 07 - vl - val )i Yan € Q) .
Find J(ZZ/ € E( ) , and 7“}(:;)72 € Q;Z)w such that:
(o3, Uh), (0 ~ (i) V- vn), o = (= W), o) SO YUn € EEL)W (259
(V- 0y tn) o = (U8 f Vi) Vg an) 0 Yan € Q). |
And for all vertices a € V,(lil, find a,(j)a € Eg)a and T}(ll)a € Q;Z)a such that:
O-hlaavh &) = (Thg VU)o = a Uh s UR) ) VUR hiw
Okt = O Vo) = = VT w0 Von €Ty
(V'U;(f,zp%)wg) — @ f = vyl val? ) ol Va, € Qﬁf)a

Proposition 2.18. Let oy be defined by equation . We have on 2D domains:

N
o= (a;,fzﬂ fol 4+ 3 (1- 40 (a) - plia ))gg;ﬁw

i=1 aGV}(Li)

Sk

then
Do
V- Op "~ = f]lD2

and consequently V - op, = f on Q.

Proof. The proof is an adaptation of the proof in Proposition [2.11} [

A general a posteriori error estimate
Theorem 2.19 (A general a posterior error estimate). Let u be the solution of . Let
uy be defined as in f and oy, is reconstructed as in . We define

5,(f)—0h —I—Gh + Za,‘izonD Vi=1...N,

aGV}(:)*
and the Fluz estimator by: n() := HVuh +5 n |- Then,
2
IV (u — aﬁ?)HD(i) <y Vi=1...N, (2.55)
2
n® < C||V(u— a,(j))HDy) Vi=1...N, (2.56)
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2.4. Poisson problem on a channels with several straight sections

N l
1V (u—uj)||a < (2.57)
i< (269
and
N
<Z(77(2))2) < |V (u = up)lla (2.58)
=1

with constants C and C" depending only on the mesh reqularity.

Proof. The first two inequalities (the upper bound and the lower bound (2.57))

are exactly of the same proof of Theorem [2.12] Now, let us begin with the third in-

equality that represents the reliability of a posteriori error estimator. We will

begin with the calculation of ||V (u — uj)||q. First, u — uj, € HJ(Q), thus as ||Vo|| =
sup (Vu, V) Vv € Hi(Q), then

pEH (Q):||Vel|=1

IV (u = uj)|lo = sup(V(u—uf), Vo) Vo € Hy(Q).
e HY ()] V|=1

Now, let ¢ € HE(Q) and ||Vé||q = 1 be fixed. Then, by using the weak formulation (2.42)),
we get:

(V(u—wup), Vo)a = (f, ¢)a — (Vui, Vo)a.
Now, adding and subtracting (op,, Vé)q we get:
(V(u—up), Vo)a = (f, ¢)a — (Vui, Vo)a + (o, Vd)a — (on, Vi)a
= (f,9)a — (Vu3, Vo)o — (V- on, d)a — (on, Vo)
=(f =V on¢)a— (Vuj +on, Voo
—(Vuj + op, Vo)a
< ||Vup + anllal|Vélla = || Vuy, + onlla, since we have ||Vo|lq = 1.

Finally

1V (u = up)lléy < IV + onlld

N+1
= Z Hvul V“l H2 @ +Z”v“h +Uh HQ
=1
N o
_ZHV% +a| D(z) => ()"
=1

The proof of the last inequality (2.58)) which represents the efficiency on the whole domain
2 can be done in a similar way of the proof of the lower bound ([2.25)) to get the result. W

2.4.3. Numerical Results

In a similar way as in Section We will introduce the interfaces estimator 17%) =

||a}(i71 + Vuh @D,ﬁn I o and 1772 : ||crh T Vuh wh | W) to determine according to some

tolerance tolG, the sultable positions of the interfaces ’yy) and ’yéi) which represent the
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

inlet and the outlet of each Déi) domains for all t =1... V.
In order to determine the suitable positions of the interfaces we will have the following
explanation about the steps that we will make them in the Algorithm. The steps are:

e Stepl: We will fix some tolerance tolG as a tolerance for the interfaces estimator

77%) and 77%) for all ¢ = 1... N in order to detect the suitable positions of the

interfaces ”yy) and ”y@ according to this tolerance tolG in a way that we have

T]S,il) < tolG and 77%) < tolG.

e Step2: We will fix the first interface 751) and the last one ygN) near to the inlet and
outlet of the channel respectively as you see in the Figure [2.37] where N = 6 here
and we will fix the other interfaces, 'ygi) fori=2...N and 'yéi) fori=1...N—1,
at the middle of each rod of the horizontal and vertical channels in a way that
we keep a very small distance § between each two interfaces véi) and 'yyﬂ) for
i=1...N —1 as you see in the Figure 2.37 where N = 6.

o Step3: We will consider a very coarse mesh 7~;L(i) for each domain Dg) and we will
begin moving the interfaces towards the corners of the domain in a way that while

7]%) < tolG, we move the first interface ’yy) towards the corner of Dg) and while

n,(y? < tolG, we move the second interface 'yéi) towards the corner of Dg) in a way
that we must keep in mind that the interfaces must be always away from the corner

by distance R to be able to define the fluxes of the interfaces.

According to what we explained before, we will have the following algorithm.

e [ix a tolerance tolG.

o Fix 'yg) and ’yéN) near the inlet and outlet.

e Fix nyH) and 'yg) fori=1... N —1 at the middle of each rod with a small
distance § between them

e Consider a very coarse mesh 7~;L(i) for each domain Dg).

e Calculate the local fluxes US)% (@)

h772
7]%) and n%) on w%) and w%) respectively for ¢ =1... V.

and o and consequently the local estimators

for (i=1...N)do
while (7]%) < % or 7]%) < %) do
1. Translate the positions of 'yy) and 'yéi) toward same corner by step 0.01

2. Calculate ﬁg), a}(i)%, a,(f)vz, 17%? and 77%) on the new domain Dgi)

end

end
Algorithm 2: Algorithm to fix the interfaces positions
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2.4. Poisson problem on a channels with several straight sections

Now, let us consider our non coupled domain €2 as in Figure 2.36] By applying the
Algorithm |2| we want to detect the suitable positions of the interfaces of domains Déi)
for i = 1...N, where N = 6 as you see in Figure 2:37] The positions of the interfaces
which are related to tolG are detected by applying the following tests.

Testl: tolG =10"*

Let us fix tolG = 1074, then according to Algorithm [2| we get the following results

Interface Interface | Interface
at x= at y=

NS 4.5

NS -0.955

42 -1.045

2 4.505

43 2.695

A3 -3.355

NS -3.445

e 2.695

) 4.505

AP -5.755

0 -5.845

A6 45

Figure 2.39.: Locations of 2D domains in coupled 0D /2D model in the whole domain €2 for
tolG = 10~*

After fixing the positions of the interfaces according to the Algorithm [2] we will begin
making a uniform refinement of each mesh 771(1) and we are going to calculate ||V (u —
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2. A posteriori estimator for the coupled 0D /2D Poisson equation
= (1) () L (@) _ 7@

] 9, and the indices [/, = —L~——
w g v E=a) e

. 2

1' of a posteriori error on each domain Dg) forall i = 1...N where N = 6. The

results are in the following table. We conclude from the table below that the indices of

in order to validate the reliability

and the estimator on each 2D domain D,

(@)

efficiency on all 2D domains D,

(4)

are approximately one. We have verified that the error

converge for uniform refinement.

Dg) Mesh Size | ||V (u — &g)) HD&” n® Ie(;)f
DV | 0.128447 0.0348902 0.0441934 | 1.26664
0.0657565 0.0219497 0.0286776 | 1.30652
0.0350784 0.0134795 0.0177497 | 1.31679
D% | 0.128371 0.0351082 0.0454093 | 1.29341
0.0672227 0.0242147 0.0305191 | 1.26035
0.0339791 0.0139611 0.0182626 | 1.3081
D% | 0.130102 0.0351905 0.0453916 | 1.28088
0.06679 0.0217905 0.0200811 | 1.33458
0.0353895 0.0139509 0.017943 | 1.28616
D | 0.131167 0.0348834 | 0.0452092 | 1.20601
0.0671029 0.0220007 0.0202808 | 1.3309
0.0358843 0.014183 0.0181425 | 1.27917
D% | 0.128371 0.0349467 0.045467 | 1.30104
0.0676512 0.0219677 0.0288138 | 1.31165
0.0353213 0.0143505 0.0181906 | 1.2676
D | 0.131624 0.0338941 0.0440533 | 1.29973
0.0645722 0.0211543 0.0281654 | 1.33143
0.0323899 0.0139266 0.0178176 | 1.27939
Now, we are going to calculate ||V(u —u;)|lo, n = Zfil (n(i))2> * and the indices
Iy = m in order to validate the reliability (2.57) of a posteriori error on the

total domain 2. We conclude from the table below that the total index of efficiency on the
whole domain 2 is approximately one. We have verified that the error and the estimator
on the whole domain €2 converge for uniform refinement.

Mesh Size | ||[V(u —u})|la n Iosr

0.128447 0.085295 0.110124 | 1.29109
0.0657565 0.0543791 0.0712771 | 1.31074
0.0350784 0.0342387 0.0441366 | 1.28909
0.0178413 0.0208386 0.0279421 | 1.34088

We have made a uniform refinement for the mesh ’72(1) of the domain Dél). We plot
the distribution of the error and estimator on Dél) for different mesh sizes. For mesh size
h =~ 0.128447 in Figure for mesh size h =~ 0.0657 in Figure [2.41] and for mesh size
h =~ 0.03507 in Figure We deduce that the error and estimator take the greatest

values at the corner and this is due to the singularity of the solution at the corner.

116



2.4. Poisson problem on a channels with several straight sections

iy i

i

(a) Distribution of error (b) Distribution of estimator

Figure 2.40.: Distribution of error and estimator on Dél) for h ~ 0.128

[ fiidr

i

(a) Distribution of error (b) Distribution of estimator

Figure 2.41.: Distribution of error and estimator on Dél) for h =~ 0.06

i

(a) Distribution of error (b) Distribution of estimator

Figure 2.42.: Distribution of error and estimator on Dél) for h ~ 0.03
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

Test2: tolG =1073
Now, let us fix tolG = 1073, then according to Algorithm [2| we get the following results:

Interface | Interface
Interface

at x— at y=
AU 48
NS -0.665
+2 -1.335
NS 4.805
A3 2.395
+3) -3.065
~ -3.735
NS 2.395
) 4.805
A3 -5.465
L0 -6.135
~+36) 48

Figure 2.43.: Locations of 2D domains in coupled 0D /2D model in the whole domain 2 for
tolG = 1073

By compering Figure when we take tolG = 10~* and Figure when we take
tolG = 1073, we observe that as the positions of the interfaces in Figure are more near
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2.4. Poisson problem on a channels with several straight sections

to the corner than the interfaces in Figure and thus as the tolerance tolG increases,
the interfaces become closer to the corner.
After fixing the positions of the interfaces according to the Algorithm (2| we will begin

making a uniform refinement of each mesh 72(@') and we are going to calculate ||V (u —
~ (1) ) () T (@) _ n()
iy, )HDS)’ n') and the indices 1., = uT

” in order to validate the reliability
()
Dy

lb of a posteriori error on each domain Dg

results are in the following table

forall i = 1...N where N = 6. The

DY) | Mesh Size | [V(u— @) oo | 0 11
DV | 0.128288 0.0344023 0.0451638 | 1.31281
0.0680391 0.0215762 0.0286248 | 1.32669
0.0347673 0.0139428 | 0.0178793 | 1.28233
D | 0.124877 0.0347746 0.0446278 | 1.28335
0.0811391 0.021578 0.0283973 | 1.31603
0.0355952 0.0136941 0.0177217 | 1.29411
DY | 0.127817 0.0346032 0.0439119 | 1.26901
0.0811391 0.0216188 | 0.0285536 | 1.32078
0.0332432 0.0138587 | 0.0177595 | 1.28146
DSV | 0.128356 0.0349473 0.0441883 | 1.26442
0.0680527 0.021489 0.0283808 | 1.32113
0.0343932 0.0142785 | 0.0178729 | 1.25174
D% | 0.126115 0.0345202 0.0450778 | 1.30584
0.0652866 0.0230787 | 0.0281297 | 1.21886
0.0346837 | 0.0137955 0.0177264 | 1.28494
DY | 0.126088 0.034324 0.0440049 | 1.28205
0.0667871 0.0213494 | 0.0281837 | 1.32011
0.0370029 0.0138759 0.018034 | 1.29966

We conclude from the above table that, although we change the tolerance of the estimator
of the interface i.e. tolG, we still have that the indices of efficiencies on all 2D domains
Dg) are approximately one. We have verified that the error and the estimator on each 2D

domain Dg)

we must make an adaptive refinements as we did in Section for each 2D domain D;i).

converge for uniform refinement. In order to obtain the optimal convergence

iy (n(”)2> 2

Ifs = m in order to validate the reliability |i of a posteriori error on the

Now, we are going to calculate ||V(u —u})||lo, n = and the indices

total domain €.

Mesh Size | ||[V(u — u})|la n Iosr

0.128288 0.0847469 0.108999 | 1.28617
0.0680391 0.0533806 0.0695175 | 1.3023
0.0347673 0.0340807 0.0436809 | 1.28169

We have made a uniform refinement for the mesh 770(1) of the domain Dél). We plot the

(1)

distribution of the error and estimator on D, for different mesh sizes. For mesh size
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2. A posteriori estimator for the coupled 0D /2D Poisson equation

h = 0.128447 in Figure for mesh size h ~ 0.0657 in Figure and for mesh size
h =~ 0.03507 in Figure We deduce that the error and estimator take the greatest

values at the corner and this is due to the singularity of the solution at the corner.

fitie e

(IR T

L i

(a) Distribution of error (b) Distribution of estimator

Figure 2.44.: Distribution of error and estimator on Dél) for h ~ 0.128

(a) Distribution of error (b) Distribution of estimator

Figure 2.45.: Distribution of error and estimator on Dél) for h =~ 0.06
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2.4. Poisson problem on a channels with several straight sections

(a) Distribution of error (b) Distribution of estimator

Figure 2.46.: Distribution of error and estimator on Dél) for h =~ 0.03
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3. A posteriori estimator for the coupled
0D /2D Stokes equation

In this chapter we are going to talk about a posterior: error estimation for the coupled
0D /2D model of the Stokes equation on Q = Q' UyUQ which is represented in Figure
Recall that this coupled solution is denoted as (uj,p;) and defined by —
in Section We will introduce two possibilities of reconstructing the flux o;, on € of
the coupled 0D/2D model. In Section we will construct the first attempt of defining
the flux reconstruction where the upper bound is guaranteed ( reliability of the estimator)
while the lower bound (efficiency of the estimator) is not satisfied (or it is very difficult
to be proved). In Section , we will make a new stress reconstruction where we proved
the reliability of the estimator and efficiency of the estimator. In Section we make a
conclusion and perspectives.

We recall that the variational formulation of is . Let us also list here some
important definitions and properties.

Definition 3.1 (Stress o). Let (u,p) be the solution of system then, we denote the
stress by: o := Vu —pl.

Remark 3.2 (Properties of weak solution of system (1.17)). Let (u,p) be solution of system

and let o be defined as in Definition . Then, u € [Hy(Q)]?, o € [H(div,Q)]* and
V.o0=0.

Proof. The proof is quite standard, see |78, Theorem 7.1.3] |

Proposition 3.3 (Properties of approximate solution (uj,p;)). Let (uj,p;) be the ap-

prozimate solution (u) (-) then, ui € [Hy()]?, Vuj, — p;l ¢ [H(div,Q)]* and
V- (Vuj —piI) # 0 in general.

Now, our aim is to reconstruct a flux, oy, € [H(div,Q)]?, such that oy, is close to Vuj —ps I
so that ||o, — Vuj + pp 1|, is as small as possible and V - o5, = 0.

3.1. A simple a posteriori estimator with guaranteed upper
bound only

3.1.1. Sress Reconstruction

Let uj and pj be the approximate solution (1.40)—(1.41). We shall adapt to this approx-
imation of the solution to Stokes equations the flux reconstruction presented in Section
in the context of the Poisson equation. We recall the definitions of patches of mesh

elements introduced there: V; for the set of vertices on ﬁ\f’y, w® for the patch of mesh
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3. A posteriori estimator for the coupled 0D /2D Stokes equation

elements around a node a € Vy, w? = {J,,c, Wa, as in the Figure We also recall the
partition of unity

lo=1lg+¢7+ > ¢
aeVy

where 1 is the hat function for any mesh node excluding those in v, and %7 is 1 on +, 0
on all nodes not on ~.
Now, we define the stress reconstruction as

O’h:O'Z-I- Z aﬂ—i—(Vu’—p’I)]lQ/:&h—i—a’, (3.1)
aeVy

where, the simplified model (u/,p’) is defined on €' by (1.22)) and &}, is defined by

Gho=o) + Y of, (3.2)
a€Vy
where for each a € V}
sh= g llof— 0" (Vin— D)l

h h’

divof=Ilga | (Var, ﬁhl)-V¢a>

and

o) = argmin  ||v;) — (Vg — ppl)||p2 (-
v €Dy,

dive) =11~ | (Vip—pnl) Vi
h Qh

Here the spaces are chosen in the following cases.

Case 1: a is an internal node of

X4 = {oy € RTZ(w*),0,-n=0 on 0w}

Qf = {an € [L2 (W), an), € [P2(K)]*, VK € w?, [, qn = 0}

Case 2: a on the wall of Q\y

%0 = {o}, € RTp(w?),0,-n=0 on 0w \0Q}

Q5 = {an € [L*(W")]*, qn),, € [P2(K)]*, VK € v}

Case 3: a =7

%) :={on € RIz(w?),0,-n=0 on 0w\9Q and o4 -n= (V' —pI)n on ~}
b= {an € [L2(W)P, an),, € [P2(K))? VK € w7}

Ige is the L?(w®)-orthogonal projection and HQZ is the L?(w?)-orthogonal projection.

O'Z and o7 defined above is equivalent to: Find O'Z € EZ and TZ € QZ such that:

(O-Zv vh)w’Y + (TZ7 V- ’Uh)w“/ = (1/17(v17,h - ﬁhI)7 vh)uﬂ Yoy, € EZ) (33)
(V-on,qn)wr = (Vap — pul) - VY, q)un Yan € Q.

And for all vertices a € V}, find off € X¢ and r} € @} such that:
(o5, vn)we + (15, V - Up)we = (WY (Vap — prl), vn)we Yo € X, (3.4)
(V-opqn)ws = ((Vip — prl) - VY, qp)we Van € Q.
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3.1. A simple a posteriori estimator with guaranteed upper bound only

Proposition 3.4. Let oy, be defined by equation . We have &y, = UZ+ZaEV; oy, then
V.-o,=0 on Q and consequently V - o, = 0 on €.

Proof. &j, € H(div, Q) as all the individual components o) and of belong to H(div, Q) for
all a € V}, since by extension we can go from H(div,w") and H (div,w*) to H(div, Q), and
o, is the sum of all these components. We will deal with the following three cases:

Case 1: a is internal node of Q:

Va € Vi we have: (V-0f,qn)we = (V(Un — Prl) - VY, qn)we for all g, € QF, then we have
fwa grn = 0 and we have (V- 0f,€;)we = 0 as of - n = 0 on dw* and using the divergence
theorem. Now, from system ), we have (Vi — ppl, Vup)g = 0 for all v, € f/ho as
(Prl,Vup)g = (Pn, V - vp)g s0, let us take two test functions:

a ~
o if we take v} = (7’% ), then ((Vay, — prl) - Vip®, e1) = 0 since vj € V)2,

o if we take v} = ( 0 ), then ((Viay, — prl) - VY*, e2) = 0 since v} € f/,?

wCL
So, for all a € V;; we have (V - o}, qn)we = (Vip — prl) - VY, qp)we for all g, € Qp(w®)
and not only for the vector-valued function with zero mean value, where, Qp(w?) := {qn, €
[L2(w)]?;5qn € [Po(K)]? VK € w?}.

Case 2: a is on wall of Q\7:

We have (V- o, qn)we = (Vip — prl) - VY, qn)we for all g, € Qf = Qn(w?).

Case 3: a =1:

We have (V- 0}, qn)wr = (Vin — prl) - VY7, qn ) for all g, € Q) = Qp(w?).

Let now ¢ be in Qp, = P2(7}), then

(V- 6n,dqn)g = (V'UZ,%>Q+ <V'(Z h)s (ih>

aeVy

Q
(V(ap —prl) - V7, dh) ( Vi, — prl) - V©, §h> ~
aeVy Q

acVy

(
<(Vuh —prD) - V(Y + > YY) ,Qh
(
0

Since V- (RT2(K)) = Qn(K) = P2(K) for all K € Th, we get V - &5, = Ig, (0) = 0 where,
Ilg, is the L?(2)-orthogonal projection onto @ and finally, we get

V-.-op=0 on €.

3.1.2. Reliability of the a posteriori error estimate based on (3.1

We can study now posterior error estimate. We will prove here the guaranteed upper
bound. The lower bound is difficult to be proved and the reason is explained in Section
[2.1.3] for the Poisson problem.
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3. A posteriori estimator for the coupled 0D /2D Stokes equation

p; € L3(9) defined by (1.40)(1.41)) and we reconstruct the stress oy, as in (3.1

Theorem 3.5 (A general a posterior error estimate). Let (u,p) be the weak solution defined
by system . Let (u3,p;) and the stress oy, defined as in the previous remark. Let T
be the mesh on then VI € Ty, define the stress estimator

As in the previous section, we start from the coupled approximate solution uj € H, gl(Q),
i

nrx = ||Vay — prd — op| k-
and the divergence estimator
S IV - anl|x
’ B

Then

1V (u = uj)|[§ < Z Mk + Z MK

KeTy, KeTh,
s 1 2 % 2 %
lp = phlle < 3 Z ek | + Z nD,K :
KeTy, KeT,

Proof. Let us start with ||V (u — u3)||. Now let us introduce s defined by

{Find s € [Hgl(Q)]2 with V.s=0 such that: (3.5)

(Vs,Vv)g = (Vup, Vo)g Yo € [HF(Q))? with V.v=0.
Then,
IV (u—ui) I = IV (u=s+s—uj)[[§ = [V (u=s)|[4+HV (s—uj,) [ 4+2(V (u—5), V(s—uj) ),

but, u —s € [H}(Q)]?, V-u =0 and V-5 = 0, then V- (u — s) = 0 so, substituting
v =u— s in system (3.5) we get (V(u —s),V(s —u}))o = 0 and hence

IV (= up)[|§ = IV (u—s+s—up)l[§ = |IV(u—s)[[§+]|V(s = up)I[5 -
:;A :ZB

Now, we begin with A := ||V (u — s)||4. By definition we have:
[|IV(u—9)||la =sup(V(u—s),Ve).
$€[Hy ()]
V=0,
[IVolla=1
So, let ¢ € [HY(Q))?, V-6 = 0 and ||[V¢|lo = 1 be fixed, then by system (1.17) and
system (3.5)), we get (V(u — 5),Vo)a = —(Vu;,Vd)g. We also use (pj,V - ¢)o = 0 and
(PiI,Vo)a = (p;,V - ¢) =0since V- ¢ =0, then
(V(u=1s),Vo)a = =(Vuy, Vo)
—(Vup, Vo) + (pi1, Vo) + (on, Vo)a — (on, Vo)
—(on, Vo)a+ —(Vup — ppl — on, Vo)o
=(x) =()
We observe that: () = —(o3,, Vo)o = — (o, Vo)y — (Gr, Vo)g

= (V- 0/,?5)9’ - <‘7l Ny, Pagy + (V- 0n,9)g — (0 - ng, D) aq
(0 gy D aqy + (V- ny d)g — (Gh - 1y D) oy
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3.1. A simple a posteriori estimator with guaranteed upper bound only

where ng and ng are the outward unit normal to €’ and Q respectively. Since ¢ = 0 on
O, (G - g, ) g = (On - gy, P)y = (0} - ng, ) and since o) € ¥}, o)) -n = (Vu' —p'In
on vy 80, (Gh - Ng, P)se = (VU — p'Ing, ¢)y = —(0’ - nqy, $), since ng = —ng on v and
(0" -nar, Plaqy = (0" - nqy, )y as ¢ = 0 on 9N. Using Proposition we get

(%) = —(0 Ny, @)y + (V- 0n,0)g + (o' Ny, d)y = (V-04,0)5 = 0. Moreover, we remark
that:

() = =(Vup — ppI — o, Vd)a
= —(Vu' —pT—0,Ve)y — (Vin — pn — 51, Vo)gq
= —(Vay, —ppl — 64, Vo)
== Y (Vin — pnl — 64, V)i

KeTy,
< Y Vin — prl — 64l x|Vl &
KeTy,
<> rkllVel[k-
KeTy,

In conclusion we have

(V(u—15),Vé)a = () + (x) < > nrkl| Vol
KeT,

1 1 1
2

< (X ) (T velix) = (X ak) 190l

KeTy, KeTy, KeTy

Then,

[

IV(u—s)la=sup (V(u—3). V)< sup (Zn%,K)2|rv¢ua

$EH () PpEHL(Q) .
v-¢0:0, V~¢0:07 KETn
[IVollo=1 [IVell=1
1
2
2
= ( Z 77F,K>
KeTs,

So, A=|V(u—=s)ll} < Yiep; Mhx:
Now, let us estimate B := ||V (s — u3)||3. We recall that, system (3.5) s is equivalent to:

Find (s,w) € [Hgl(Q)]2 x L2(Q) such that:
(Vs,Vo)g — (V-v,w)q = (Vui, Vo)o Vv € [HJ(Q)]?,
—(V-8,9)a=0 Vqe LiQ).

Since, uj € [Hgl(ﬂ)]z and s € [Hgl(Q)]Q, we have s — u € [H{(2)]? and since V-5 =0 on
Qand V-u; =0 on Q', then

IV(s = ui)llg = (V(s—u}), V(s—uj))a = (V-(s—u}), w)e = —(V-uj,, w)e < [|V-@n|5][w]lo-
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3. A posteriori estimator for the coupled 0D /2D Stokes equation

Now, we will rely on the inf-sup condition to estimate ||w||q:

inf sup M =5>0

a€ L) vermp (o [alll[Voll

Since w € L3(9), B < SUPye[H1 ()2 W, so that:

1 (w,V-v)q 1 (V(s —up), Vo)o _ 1 s
wllo < = A 17 e s 3lIVis —un)lle,
[Jwl] B ety 11V0] B wermi 2 N2 BH (s —up)ll
V-
hence, ||V (s — )HQ < wHV(S — up)lla;

1
|[V-tn || Vean|l% 2
Thus: [|V(s — u})[lo < 1720 — (Zm % K)
It all together gives:

IVuw—u)lla=A+B< > nx+ Y. hx
KeT;, KeTy,

Now, we will deal with ||p — pj} || through the inf-sup condition:

geL] (Q)ve[Hl )2 HqHHVvH
] V-
SHICG p—= pi S L%(Q)a we have 6 S Supve[Hé(Q)]Q m and thUS Hp — pi‘Q S
1 (p—p3,V-v)0
B SUPvelHy (@) ~ Vol

For v € [H}(Q)]?, we have ||Vv]|q is bounded since €2 is bounded, so let us take ¢ = it
then 1
lp—pille< - sup (p—pi, V- da
Pocimr
[IVolla=

Now, fix ¢ € [H}(Q)]? with ||[V¢|lq = 1, then the weak solution in the first equation of

system ((1.17) gives:
(. V- 9o = (Vu,Vo)a.

We have, (p7,V - ¢)a = (p;,1, Vé)q then, add and subtract (o4, Vo) as well as (Vuj, Vo)
and using Green theorem we get;:

(p—pp, V- d)a = (Vu,Vo)o — (b}, V - d)a — (Vup, Vo)a + (Vup, Vé)a — (on, Vo)a + (o, Vé)a
(V(u—up),Vo)o + (Vuj, —pil —on, Vo)a + (on, Vo)a.

Let us add and subtract s defined in system (3.5), we get
(V(u—=u;),Vo)a = (V(u—5),V)a + (V(s — uj), Vo)a.

Let us split ¢ in a divergence free contribution: ¢ = ¢ + ¢ ¢, where ¢¢ is the solution
of:

Find ¢¢ € [HY(Q))? with V-¢c =0 such that:
(Voo, Vu)a = (Vo,Vu)g Vv € [HE(Q))? with V-v=0.
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3.1. A simple a posteriori estimator with guaranteed upper bound only

Let ¢ne = ¢ — ¢¢, then (Véne, Vv) = 0 for all v € [HE(Q)]? and V - v = 0, and, since
pc € [HEH(Q))? and V - ¢¢ = 0, using (Véne, Voo )a = 0, we have
IVol1& = IV (¢ — de + )|t = [V (e + de) [
= [IVonclld + [IVoelld + 2(Vone, Voo = [[Voncellg + [Vl &

Now, we have

(p—ppV-9)a= (-1, V- dnc)a
= (V(u—up),Vonc)a + (Vup, —pjd — on, Vone)a + (on, Vone)a

N

~~

Zy Z3 Z3

Let us estimate Z;:

Z1 = (V(u—u3),Vonc)a = (V(u—s), Vone)a+(V(s—ui), Vénc)a, but u—s € [H} (Q2))2
and V - (u— s) = 0, then by the definition of ¢nc we gain, (V(u — s), Vénc)a = 0 and
hence

Z1 = (V(s —up), Vone)a < [[V(s — up)llel[Voncello

1
s s ||Vﬁh”~ 2
< |IV(s —up)llallVolla = IV(s —uj)lla < ———L = > nhx] -

Then,

Let us estimate Zs:

Zy = (Vui, = pil — o, Vonc)a < Y |Vin —pnl — nllx|[Voncllx = > nrkllVéncllx

KeT, KeTy
: , : :
< < T n%,K) IVenclly < ( 3 n%,K) IVoncllo < ( T n%,K) 1Vall = ( T m%,K) .
KeT, KeTs, KeTh KeTn

Then,

Finally, let us observe that Z3 = (o, Vénc)a = (%) = 0, where (%) is computed in page
[127] where can have ¢n¢ instead of ¢ because V - ¢ = 0 in the prove and we only need
¢nc = 0 on 9N and this is satisfied since ¢ and ¢¢ belong to [HE(2)]? and ¢ne = ¢ — ¢c.
So,

1 1

2 2

(p—pi,V-¢)Q:Zl+Zg+Z;s§<Zn%,K> +<ZU%,K> :
KeT, KeTy,

Then,
1 1 CR 2
2 2
lb-pilla <t s (p-pV-dha< ( 5 n%),K) +( ) n%,K) |
Boeimy 2 A\ = B\ =
IVello=1 KeETn KeTh
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3. A posteriori estimator for the coupled 0D /2D Stokes equation

Finally,

1 1
2 2
Bllp - pilla < ( 3 m) +(Z m) .

KeT, KeT,

t

3.1.3. Local Efficiency

As our study in the previous Chapter in Section we have explained why we can not
be able to prove the local efficiency and you can see the reason in Remark [2.8]

3.1.4. Numerical Results

We will take in this section RT}, = RT5, P, = Py for the velocity and P, = IP; for the
pressure. Moreover, the inf-sup constant S is unknown for the domain of interest, so we
fix a value 8 = 0.5 in this section taking into account that it could be small for stretched
domains. For a more detailed discussion about 3, see Section and Appendix [C] We
have obtained in Theorem [3.5] that

IV(u—up)la < D nbuc+ Y b

KeTn KeTy,
s 1 2 % 2 %
lp = phlle < 3 Z ek | + Z DK :
KeTy KeTy

We plot the velocity error ErrorU := ||V (u — u})||o = \/||V(u —u)|[3 4+ [|V(u—ap)]|2,

the velocity estimator EstimatorU := \/ > KeT, e+ KeT, n% i, the pressure error

ErrorP := ||p — pj||o and the pressure estimator EstimatorP := é{ (ZKeTh 7712?,1() +

1
3
} with respect to different positions of interface v which has the position

(ZKei’h n%),K)

xr = x, in a way that x, goes form the position very near to the inlet i.e. z, = :U’7 = 0.1 to

the position very near to the corner of the channel i.e. z, = 9:5 = L; —0.02 = 5.08 where,

xﬁy and x{ are located in Figure .
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3.1. A simple a posteriori estimator with guaranteed upper bound only
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Figure 3.1.: Direction of the interface + from the the position ZL',ZY to the position xi:

For a quasi-uniform mesh with mesh size h =~ 0.07, we plot the error and the estimator
for velocity u and pressure p in the Theorem for different positions of the interfaces
and we obtain the graph in Figure [3.2)for velocity and the graph in Figure [3.3| for pressure.
Now, let us decrease the mesh size to h =~ 0.04 and plot the error and the estimator in the
Theorem [3.5] for different positions of the interface and the graph is obtained in Figure [3.4]

for velocity and Figure for pressure.
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Figure 3.2.: Error on € and Estimator on  for velocity u for a mesh size h ~ 0.07
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Figure 3.3.: Error on © and Estimator on § for pressure p for a mesh size h ~ 0.07
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Figure 3.4.: Error on © and Estimator on  for velocity u for a mesh size h ~ 0.04
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Figure 3.5.: Error on  and Estimator on Q) for pressure p for a mesh size h =~ 0.04

In Figures [3:2H3.5] we see that the errors and the estimators become much bigger as the
interface becomes near to the corner and this is due to the dominance of the 2D affects
in the corner. We must specify some tolerance in order to detect the suitable position
of the interface. We will introduce an error indicator similar to Indicator2 in Section
[2:273) to detect the suitable position of the interface. To detect such interface we choose to
introduce these two indicators on a region w? for the velocity and the pressure which are

defined respectively by

i = [V (@n — )y ||, (3.6)

np = (Bn — )y |l (3.7)

where w? as in Figure We plot 1/, and n), defined in and (3.7) with respect to
different positions of the interface v for a mesh size h =~ 0.07 in Figure[3.6] We see that we
can deduce a suitable interface position once a tolerance for these indicators is fixed. Now,
let us fix the position of the interface at x, = 4 (others interface positions are possible,
but the behavior would be the same). We plot in Figure the indicator of velocity ng
and in Figure of the pressure 7}, with respect to different mesh sizes. We find that
773 takes values between 1.19754e¢ — 06 and 3.39165e — 06 for different mesh sizes which is
approximately of the same tolerance 1075 (but not constant) and 7}, takes values between
2.71508e — 06 and 9.27647e — 06 for different mesh sizes which is approximately of the same
tolerance 1075 (but not constant).
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3.1. A simple a posteriori estimator with guaranteed upper bound only

Now, let us define the total indicator for the velocity and pressure on w” by

7=/ () + (np)?. (3.8)

We plot 17 defined in with respect to different positions of the interface v for a
mesh size h ~ 0.07 in Figure We plot in Figure the total estimators 7? on w?
with respect to different mesh sizes. We find that 17 takes values between 2.96745¢ — 06
and 9.87705e¢ — 06 for different mesh sizes which is approximately of the same tolerance
107% (but not constant). Finally, n” can be taken as an indicator for the position of the
interface but it can be improved to be constant for different mesh sizes when we fix the
position of the interface x.. This improvement is done if we introduce a new definition of
reconstructing the flux which will be studied in the following section.

0 1 2 3 4 5 6
Position of Interface XT

Figure 3.6.: Indicators 1/, and n}, on w7 in semilogy scale with respect to different positions
of the interface
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Figure 3.7.: Indicator n” on w? in semilogy scale with respect to different positions of the
interface
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Figure 3.8.: Indicator 7/, w.r.t. different mesh sizes for a fixed interface at z, = 4
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Figure 3.9.: Indicator n}, w.r.t. different mesh sizes for a fixed interface at z, =4
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Figure 3.10.: Indicator 7 w.r.t. different mesh sizes for a fixed interface at x, = 4

To conclude the section, we want to plot the errors of velocity and pressure on €’ which
are represented by:
IV (u =), (3.9)

(> = ")le- (3.10)

The graph for the errors on ' with respect to different positions of the interface is repre-
sented in Figure by the velocity and pressure errors on ' given by and
respectively. We deduce from Figure that the errors of the velocity and pressure on €/
become more bigger when the interface position moves towards the corners of the domain.
We also see that our indicator 7 in Figure [3.7] detects that the suitable position of the
interface is at x = 3 and we conclude from Figure that our indicator reasonable since
the error of the velocity and pressure on €’ begin its sharp increasing at z, & 3 also.
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Figure 3.11.: Errors of the velocity and pressure on €' in semilogy scale with respect to
different positions of the interface

Conclusions We have verified in this section that the errors and the estimators of
pressure and velocity become much bigger near the corner. We have introduced an indicator
in order to find a suitable position of the interface. The drawbacks of this definition of the
flux are that we can not prove the efficiency (lower bound) and that for a fixed position of
the interface, we find that the estimator 7, which is defined in , vary a little bit for
different mesh sizes. These drawbacks will be solved in the following section by introducing
the new definition of the flux reconstruction.

3.2. A posteriori estimator with upper and lower bounds

In this section we will make a new partition of unity of 2 and we will make a new definition
of the stress reconstruction in order to be able to introduce an a posterior: error analysis
with guaranteed reliability and provable efficiency as we did for Poisson in Section [2.2

3.2.1. A posteriori error indicator

We now introduce the a posteriori error indicator with guaranteed reliability and provable
efficiency. Let the position of the interface z, € [0.1,L; — R]. To this end, consider the
continuous function on €, named 7, defined on rectangular portion [0,z + R] x [0, R] of
the channel by
1, for z<uz,
P (x) = LJFIE_I, for z € [z, 2y + R] (3.11)
0, for z>x,+R

and extended by 0 everywhere else. Here, z is the z-coordinate of the interface v and we
assume that z., + R is still in the rectangular portion of the channel. We also introduce a
piecewise affine (on mesh 7) version of ¢7:

Yp(z) = ¢l (a)(z) forx € Q (3.12)

acVy

and ¢ = 1 on €, where ¢ is a hat function i.e. a polynomial of degree 1 that takes
the value 1 at the node a and 0 on the other nodes different from a and V), represents all
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3.2. A posteriori estimator with upper and lower bounds

vertices that belongs to . Note the partition of unity on €
L=+ Y (1= (a)",

aeVy

recalling that V; represents all vertices that belongs to Q \ 7. We define then the stress on
whole Q = QU Q' U~ as

on =0y + > (1=9"(a)of + (Vu' —p'T)lg. (3.13)

acVy

We will divide the stress into two stresses. The first stress is defined on €’ by

oy, =Vu' —phI (3.14)
and the second stress is defined on 2 by
Gh=0p)+ > (1—=4(a))of. (3.15)
aeVy

Here o}, is defined on all patches w® = supp(wg)ﬁﬁ for all nodes a € V; as follows: oj € X%
and pi € Q4 such that for all 7, € ¥ and ¢, € Qf

/ oty + / pidivr, = / (Vi — ) - 7, (3.16)

/ gudivof, = / (Vi — pud) - Vo) g (3.17)

Similarly, o) is defined on the patch w” = supp(¢;)) N Q as follows: o) € ¥} and p) € Q)
such that for all 73, € ZZ’O and g, € Q)

/ O'Z < Th + / pZdiVTh = / (Vay, — ﬁhf)wz < Th, (3.18)
wY w?Y wY

/ grdive) = / (Van, — prl) - V) ) qn. (3.19)

To fix the approximation spaces let us consider the following cases.
Case 1: g in an internal node of £
¢ :={op, € [RIL(w")]*,opn =0 on Ow’}
Qf = {an € [L* (W), anlK € [P1(K)]?, VK € w?, [ o qn =0}
Case 2: a on the wall of Q\ v
20 = {op, € [RTa(w))?,o,n =0 on 0w\ N}
Qf = {an € [L*(W")]*, aulx € [P1(K)]*, VK € v}
Case 3: a =7
) ={o € [RI(w")]*,o,n =0 on duw?\ 8Q~ and opn = (Vu' —p,I)n on ~}
570 = {o}, € [RTa(w")]?,opn =0 on 9w\ dQ and on ~}
Q) = {an € [L*(W"), anlx € [P1(K)]?, VK € w7}

Lemma 3.6. We have 63, := o] + Zaev;(l —7(a))of on Q, then V- &, = 0 on Q and
consequently V - op, =0 on €.

Proof. Straightforward computations give the result as we did before in the proof of
Proposition Page [125] [ |
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3. A posteriori estimator for the coupled 0D /2D Stokes equation

3.2.2. Main theorem and the proof

Theorem 3.7. Let (u,p) be the weak solution defined by . Let (u3,p;) and oy, defined
as in - and respectively. Let us define the local fluz estimator by

nrx = ||Vip — prd — onllx
and the local divergence estimator by:

s Il
’ g

Then, we have the upper bounds for velocity and pressure

HV Al
IV (u—up)lfE < IV, = pil —onllg + "% = Y wb + ) nbxs  (3.20)

KE’Th KETh
. 3 2
Ip = rilla < 3 S nkr | D nbx]| ¢ (3.21)
KeT, KeT,
and the lower bound is
IV uj, = pid — onl|g < C|Vu— pI — (Vuj, — pi D)3 (3.22)

with a constant C' depending only on the mesh regularity.

Proof. The proof of the reliability (3.20) and (3.21]) is completely the same of the proof
of Theorem since we have used the conditions o, € H(div,2) and V - g, = 0 and
the stress o defined by also satisfies these conditions. Now, the proof of is
organized in several steps.

Step 1: error caused by the interface, prior to discretization. Let us begin with a
“continuous ” version of our “simplified ” problem: we search for (%, p) on € such that

—AG+Vp=0inQ
divii = 0 in

~ / ~ ~
U=1u Oon Y,U = Ugy 0N I'ppand @ =0 on T'yqy.

Moreover:
u = u', on
| @, on
and ) )
b= Dh» on~Q
p, on {2
with

5= [

Here, p® is just an auxiliary tool: the theorem is about p; and not p®. We want to study
|Vu — pI — (Vu® — p°I)||q which is the error introduced by the interface itself, without
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3.2. A posteriori estimator with upper and lower bounds

discretizing the problem on Q. More precisely, we want to relate it to the continuous
version of ||} — (Vay, — ppl))||wv. We thus introduce the continuous version of ¢)): find
o7 € H(div,w?)?,p? € L*(w")? with w? = supp(¢)}) N Q such that ¥n = —p)n on v and
for all 77 € H(div,w")?,q" € L?(w?)? with 77n = 0 on v

/ ol .77 —l—/ pldivrY = / (Va—pI)-17, (3.23a)
wY wY w?
/ ¢ dive” = 0. (3.23b)
wY

We want to prove
\Va —pl — 07|, < C||Vu—pl —Vu®+p°I] . (3.24)
To this end, let w), = supp(¥7)NQ with yp = Ow},N{x = z,+R}. Introduce § € Hl(w%)Q:
A =0 on w},
VO -n=[Vu®—p°lln on vy
VO-n=0onn~g

6 = 0 on the wall

Here, [Vu® — p®I] stands for the jump on 7. Let 7¢ € H (div, w7)2 defined by 7¢ = V#
on wj and 7¢ = 0 on w? \ w}, (note that w}, C w?) so that divr® = 0 on w”. Now set
77 =07 — (Va — pI) + 7¢ and observe that divr” =0 a.e. on w” and 77n = 0 on v. We
can thus use this 77 as the test function in . Since fm pTdivr? = 0, this gives

/ (67 = (Va—pI))- (6" = (Va—pl)+71°) =0
wY
so that

lo” = (Vi =pDler < 7w = [VOlug,-
We prove in Lemma [2.13]

VOl < Crll[Vu® = p*IInll-1/2,

with C1 > 0 which does not depend on R and the norm || - ||_; /5 defined in the Lemma.
Thus,
lo7 = (Vi = pI)|ler < CLl[[Ve® = p™I]nf| /2,

Now, we return to bound the error |Vu — Vu®||q from below. To this end, observe that
Alu—u®) = V(p—p°)=01in Q, div(u —v®) =0in Q, u —u®* = 0 on 0N, and [(V(u—
u®) — (p— p®)I)n] = [Vu® — p°I|n on 7. By integration by parts

[ a=w)= =)0 o= [0 ~pIn-v.

Y

By Lemma [2.14] ¥n € H/2(y) Jv € H'(Q) vanishing on 99 such that v = 1 and
|y

IVl < Callnll1/2,y
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3. A posteriori estimator for the coupled 0D /2D Stokes equation

with C5 that does not depend on the geometrical parameters. It suffices to take v = 0 from
Lemma on w), and as the mirror image of 6 to the left of . We have thus Vn € H 1/2 (7)

[ 196 =500 < ol 1910 = ) = (0= )
.
so that
[1Vu* —pLlnl| 1/, < CallVu — pI — (Vu® ~ p*T)lla
and finally (3.24]) is obtained with C = C1C5.
Step 2: error caused by the interface, adding the discretization. We want now to
discretize (3.24)), i.e. to prove

loy, — (Vi — ppD)Yp lor < C (IVu = pI — (Vo' —p*I)|lo + [|Va — pI — (Vg — prl)|lwr)

(3.25)
We repeat the trick with the mirror image, i.e. introduce w?" as in Poisson case. A small
technical difficulty is now that o}'n # 0 on . We have rather 7n = —p}n on 7. We take
this into account by introducing p” = p;% and

e up" as the function on W™, symmetric wrt v, and @}’ = @y, on w7;
e pi' as the function on w™™, antisymmetric wrt v, and p;* = py — p” on w?;

- : . . - y ap?
e 03" as the function on w7, antisymmetric wrt «y, and 63" = O'Z — O'Z on w? where

&f: is the solution to 1}1} with @, = 0, pp, = —p” (note in particular that

p'n =0 on 7).

We introduce a "semi-discrete" version of the flux ¢7: find 67 € H(div,w?)?, p¥ € L?(w?)
such that 67n = —pjn on v and V77 € H(div,w?)?,Vg" € L*(w?)? with 77 -n =0 on v

/ o7 T+ / prdivr? = / (Vay —ppl) - 77, (3.26a)
wY wY wY
/ Qdive? =0 . (3.26b)
WY

We then extend it, similar as above
e 6™ as the function on w?™, antisymmetric wrt v, and 6™ = 67 4+ p'I on wW".

We then identify the minimums in Theorem 1.2 of |37], applied on w™™ with these ;" and
6™ . Using the symmetry and the fact that the terms with p” cancel out, we arrive at

loy, = (Vin = ppl) ¥y oy < Cll67 = (Viin — prl)llwr-
This entails by the triangle inequality
lop = (Vin=prl )¢y ller < C (167 = 0™ |lwr + llo" = (Vi = pI)|lwr + (V@ = BI) — (Vin — pd)||wr)

We can now derive ([3.25)) as in Poisson case.
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3.2. A posteriori estimator with upper and lower bounds

Step 3: discretization error inside Q. We have at all the nodes a of the mesh 7j,
loh — (Van — ppl)Y||lwe < C|[Va = pI = (Vg — pal)[fwe (3.27)

This is completely standard and can be proven by using Theorem 1.2 of [37] on w®.

Step 4: putting everything together. Using the partition of unity and (3.25)), (3.27) we
arrive at (cf. the details in Poisson case)

llon = (Vui, = ph D& = llon — (Vi — prd) I

< C (IVu—pI = (Vu' = p DI + IV — I = (Vi — n]) 3)

<C (IVa = Va'llg +llp = pl13 + IV — Va3 + 15— all? )

Observe that we have

s 1 s ~ e
Ip—p*[1 < EIIW — Vurl|3 + (p — r)3 |9 (3.28)

where 3 is the inf-sup constant for Q and (-) q= ﬁ J& - denotes the average over Q. Indeed,

taking any o € [H{(Q)])? as a test function in (1.23) and (1.17), we get

(Vit, Vi)g — (V- 5,p%)g = 0

and

(Y, Vi) — (V- 8,p)g = 0

then using the above two weak formulations, we get

/Q(p —p" = (p—p%)g)dive = /Q(p —p*)divd = /Q(Vu — Vi) - V4. (3.29)

Indeed,

/Q(P—ps—<p—1vs>@)divf)Z/Q(p—ps—’;2| Q(p—ps)) divo

Z/Q(p—ps)divﬁ—@/@(p—ps)/ﬁdivﬁ

Now, we have [ dive = [,o7-n=0as & € [H}(Q)]% then

/§2<p—ps—<p—ps>@> div@:/ﬁ(p—ps)divﬁ,

but for any ¢ € LZ(Q)

- v ) ~
6||qllg</(p—ﬁ)divf) sup &V Vg
Q vermp@e 1VOlla
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3. A posteriori estimator for the coupled 0D /2D Stokes equation

Since inf geL2(S) SUPGe[HL ()2 | (Y 0)a = 3> 0, then for any ¢ € L2(2), we have

|Q||QHVUHQ

(Q7 V- ﬁ)ﬁ

BHQHQ < sup _ (3.30)
setip 1Vl
and noting that
lp—p°lIZ = llp — p° — (p— P51 + lip — g 113, (3.31)

since

0ol o o) Gy o)
Upror ) fo-r)

and (p — p*)g = (p — Pn)g- Indeed, [Q(p*)g = — | () = QU (Pr)g-
We also have

. 1 R . ~\2 -
15— pally < (BQHW—W 12+ (p— )2 mr) lp-plg (332)
Indeed, we have
15 = Bulle, < lIp = Blle, + Il — il (3.33)

Now let us bound [|p — p||g, we have (p — p* — (p — p*)q) € L3(2) and using (3.30) and
(3.29) we get

(p—p°—(p—p"g V- 0)4

Blp—p" — -1l < sup

Se[HL ()] V9|
Vu—-Vua,V
= sup ( i, Vi) < [[Vu — Vi g.
semip  [Volla

Then, 3
Bl —p° — (0 — 1°)al5 < IIVu — Va3,

Now, using (B.31) and [|(p — p)a 2 = |9(p — )2, we have
B2<pr5||g - |fz|<pzah>g) < |Vu - Vi,

then
lp — Bl < QIIW—VﬂII%JrIQKp—ﬁh%-

Finally, we get (3.28) i.e.
1

5 1 - ~ - 2
b — il < (anw vl + 9 ph%) . (3.34)
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3.2. A posteriori estimator with upper and lower bounds

Now, we substitute (3.34)) in (3.33) we get (3.32).

Now, assuming that $ is uniformly bounded from below and incorporating it in the con-

stants C. Using (3.28)) and (3.32))

lon—(Vui=pi0) I < € (IVu =Vl + 1Va = Vanl3 + lp = phl + 0 — a3 + (= 503 19
(3.35)

Let us introduce a divergence free reconstruction s, of 4y, ie. divs, = 0 on (2 and
sn € HE(2) such that
[Vsn — Vip|lg < Cf div | g. (3.36)

We have
(Vu — V', Vi — Vsp)g = (Vu — Vu' — (p — p*)I, Vit — Vsp)g = 0,

so that

IVu— Va3 + Vi — Vsil3 = [|Vu— Vsall2 < (IIVu— Vgl + Ol divanllg)* . (3.37)

Hence, using 1) adding and subtracting Vs, in ||V — V|2, using 1) and 1)

we get

lon = (Vi = pDIIE < C (IVu = Vil + || divanld + Ip = pilid + (= 513 191)

(3.38)
We also have || divay|q = ||divugllo = [[div(e — uj)|le < [[V(u — uj)|lo . Hence, it
remains to deal with (p — ﬁh)é\fl!.
To this end, let us take a function v;, € H}(Q)? such that Vilg € V. and
v, = S(y)non-~. (3.39)

The coupling condition ((1.38) entails

[ ¥ = =0 i =0

which can be rewritten as
/ (p—pp)o divvy, + / (p— Pn)g divvy, = / (Vu —Vu3) - Vvy,
/ Q Q

_/Q/ (p—pﬁz_<P—p;z>Q/)divVh—/Q(p—pi—(p—ﬁhm)divvh'

—/ divvh—ﬁdivvh—/S(y)—ua\,R
’ Q v

Ua R ((p = Pn)g — (P — Ph)oy) < CUIVu = Vuilla + llp — pill) [ Vvalle.

Observe that

thus,

Since |Q|(p — P + |V |(p — p),) oy = 0 we have

(p—Dr)o— (P —Dha = ||g,’|<p — Ph)g-
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3. A posteriori estimator for the coupled 0D /2D Stokes equation

Hence

€]

D S s Vv
(o=l < €y (19 = Vil + o = )

Uay R
Now, we want to minimize ||Vvy|q under the constraint (3.39). The minimum can be
identified with the solution to Poisson equation on Q' and the discrete approximation to
Poisson equation on €. Using the Lemma in Chapter 2 about the traces in H*/2 and
a FE interpolation on {2 gives

IVl < Cllonlli/2, < Ctay
Hence ~
215 €2
(p— ph)Q‘Q’ < Cﬁ

Assuming that |S~2| < CR? and substituting this into (3.38) gives the desired lower estia-
mate.

(IVu = Vi |[& + Il = phlI)

Remark 3.8. The assumption |Q| < CR? in the previous proof is reasonable since the last
aim from coupling the domain into 0D /2D coupled model is to put the interfaces as much as
possible near the corners of the domain where we have 2D model is more dominance. After
fizing the interfaces ,as much as possible near the corners, we can achieve the assumption
Q| < CR?. If we want to be far from the corners such that the assumption |Q < CR? is
not satisfied, then we need to add that the constant C' in Theorem[3.7 depends on the mesh

12|

regularity and on the factor .

3.2.3. Numerical Results

We have a 0D /2D model for the Stokes model and in the following we will use Appendiix
in order to approximate 3 since it is unknown for us. We will make a comparison
between the coupled 0D /2D Stokes model and the non-coupled 2D Stokes model in order
to see that our simplified model is good. We will also observe that our § is around 0.123
which is very small and it gives a big index of efficiency for pressure. We also observe that
the index of efficiency becomes smaller as 8 becomes near 1 and for this reason we will
make a new study and change the L?—norm of pressure to H~'—norm and make a new
study of a posteriori error in order to get a good index of efficiency. Let us define the

estimator of velocity in (3.20]) by

1
IV - w8 2
w = (196 -7 - ol + 5
and the estimator of pressure in (3.21)) by
1 V-uillg
e = 5 (190 = i - o+ 502 ), (3.40)

These estimators 7y and np depend on the inf-sup constant 5 and we want to take different
values of 8 € [0,1] in order to prove that the index of efficiency becomes near to 1 when
8 becomes near 1 which is not our case since we have a long channel and we know that

B ~ 0.123. Let us define the index of efficiency for the velocity Iy := Wufﬁ, the index
h
: - np ; - nu+np
of efficiency for pressure Ip := =R and the total efficiency I := Va=vus To+tTo—pila”
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3.2. A posteriori estimator with upper and lower bounds

Comparison between the coupled 0D/2D Stokes and the non-coupled 2D Stokes

Now, we want to make the comparison between the coupled 0D/2D model and the 2D
non-coupled model of Stokes on the portion domain Q := Q' U~y UQ (i.e. see Figure .
First, we will approximate 8 using the strategy in Appendix in order to find that
B ~ 0.123 for our domain 2. Then, We will make a uniform refinement and compare the
error and the estimator of the coupled 0D/2D model and non-coupled model of Stokes
in order to validate that the problem of large index of pressure comes from the fact that
the domain has a long channel (where § is small) and does not come from our proposed
simplified 0D /2D model.

Now, by making the uniform refinement, the non-coupled Stokes model gives the following
results.

Mesh Size | ||[V(u —u})|la | nu lp—pille | np Iy Ip I
0.125139 0.0931641 0.541811 | 0.0151024 | 0.600682 | 5.81566 | 39.7739 | 10.5526
0.0648431 | 0.065334 0.396398 | 0.0109697 | 0.436303 | 6.06725 | 39.7737 | 10.913
0.0345792 | 0.0380296 0.2728 0.0056509 | 0.303376 | 7.17337 | 53.6863 | 13.1907

and the coupled 0D /2D Stokes model with z, = 4.5 gives the following results.

Mesh Size | ||[V(u—u)|la | nu lp—pille | np Iy Ip I

0.120389 0.0911146 0.568324 | 0.0160873 0.627702 | 6.23747 | 39.0185 | 11.1568
0.0635345 | 0.0660111 0.407955 | 0.0121931 0.448857 | 6.18009 | 36.8126 | 10.9561
0.0320899 | 0.0416264 0.261487 | 0.00529808 | 0.290947 | 6.28176 | 54.9155 | 11.7728

If we compare the above results in the tables, we see that the coupled 0D /2D Stokes model
and the non coupled Stokes model have approximately the same results and this suggests
that the index of efficiency of the pressure comes from the geometry of the domain since
the estimator of pressure is multiplied by the big factor % in (3.40). Now, let us try to
see what happen if 8 becomes near 1. We expect that the index of efficiency must become
better.

Different values of 3 for coupled 0D/2D Stokes

Now let us make a quasi-uniform refinement, fix the interface position at x, = 4 and the
mesh size h = 0.08 in order to see the variation of the total index I with respect to different
values of 3 where 8 € [0,1] and the data are showed in the following table. We observe
from the table that the total index of efficiency I becomes very closed to 1 when 5 becomes
near 1 as seen in the table below.
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3. A posteriori estimator for the coupled 0D /2D Stokes equation

B 1 IVu—=uple | v lp —pille | np I

0.1 | 0.074236 0.543022 | 0.096732 5.90379 | 37.7077
0.2 | 0.074236 0.274892 0.096732 1.60002 10.9665
0.3 | 0.074236 0.186957 | 0.096732 0.766265 | 5.57545
0.4 | 0.074236 0.144009 | 0.096732 0.462043 | 3.54483
0.5 | 0.074236 0.118994 | 0.096732 0.315559 | 2.54172
0.6 | 0.074236 0.102886 | 0.096732 0.232924 | 1.96417
0.7 | 0.074236 0.0918186 | 0.096732 0.181257 | 1.59723
0.8 | 0.074236 0.0838571 | 0.096732 0.146529 | 1.34754
0.9 | 0.074236 0.0779302 | 0.096732 0.121903 | 1.16884
1 0.074236 0.0733976 | 0.096732 0.103705 | 1.03588

From the above table we can see that the index of efficiency becomes better when 8 €
[0.6,1]. Now, let us consider the following two cases in order to see that as the interface
position becomes near the corner as the error and the estimator becomes bigger.

Case 1: 8 =0.7

First of all, we fix the mesh size and we change the position of the interface to obtain
the graphs of the error |Vu — Vuj ||q and estimator 7y in (3.20)) with respect to different
positions of interface in Figure and the graphs of the error ||p — pj || and estimator
np in with respect to different positions of interface in Figure We take the
mesh sizes h =~ 0.06, h =~ 0.03 by making a quasi-uniform mesh refinement. In the proofs
we suppose that the position z, of the interface must be located in the interval z, €
[0.1,L; — R] and here Ly — R = 4.6 (see Figure but in order to see what happens
after the interface position z, = L1 — R, we take x, € [0, L; — 0.02]. We conclude from
Figure and Figure that as the interface position becomes near the corner as the
estimator and error of the velocity and pressure become bigger.

Case 2: =1

Now, let us consider # = 1 and fix a mesh size, then we change the position of the interface
to obtain the graphs of the error ||[Vu — Vuj|lq and estimator 7y in (3.20) with respect
to different positions of interface in Figure and the graphs of the error ||p — pj||q and
estimator np in with respect to different positions of interface in Figure We
take the mesh sizes h =~ 0.06, h =~ 0.03 by making a quasi-uniform mesh refinement. We
conclude from Figure and Figure that as the interface position becomes near the
corner as the estimator and error of the velocity and pressure become bigger.
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3.2. A posteriori estimator with upper and lower bounds
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Figure 3.12.: Error and Estimator ny of the velocity w.r.t. different positions of the inter-
face for different mesh sizes h and for § = 0.7
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Figure 3.13.: Error and Estimator np of the pressure w.r.t. different positions of the inter-
face for different mesh sizes h and for § = 0.7
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Figure 3.14.: Error and Estimator ny of the velocity w.r.t. different positions of the inter-
face for different mesh sizes h and for 5 =1
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Figure 3.15.: Error and Estimator np of the pressure w.r.t. different positions of the inter-
face for different mesh sizes h and for 5 =1
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3.3. Conclusion and perspectives

Now, let us fix the interface at x4 = 4 and 3 = 0.7, then we want to make a successive
uniform refinement and compare the errors and the estimators of the velocity and pressure
in order to see the convergence of the error and the estimator and calculate the indices as
it is shown in the following table. We conclude from the table that we have a convergence
for the error and estimator and the estimator is good as the indices are near one but we
do not have an optimal convergence since we have singularity in the corners of the domain
and to achieve the optimal convergence we must make mesh adaptation as we did in the
Poisson.

Mesh Size | ||[V(u —u})|la | nu lp—pilla | np Iy Ip I

0.0821206 | 0.074236 0.0999717 | 0.096732 0.20101 1.34667 | 2.07801 | 1.76046
0.0386236 | 0.0459076 0.0696881 | 0.0606603 | 0.140202 | 1.51801 | 2.31127 | 1.96955
0.0194314 | 0.0303558 0.0486253 | 0.0379088 | 0.0977843 | 1.60185 | 2.57946 | 2.14474
0.0115897 | 0.00618741 0.0333611 | 0.00559242 | 0.0670828 | 5.39176 | 11.9953 | 8.52677

We suppose that the last Indices are big since we do not have exact solution and we have
a reference solution.

New estimator with good index of efficiency

In Appendix [C| we make a new study for the non-coupled 2D Stokes model in order to
obtain a posteriori estimates which does not depend on 3. Instead of 8 we have a Cy,
constant (see Theorem in Appendix and we estimate numerically this constant,
that is Cy;,, = 1. In this case, repeating the same numerical tests, we find that the total
index is equal to 1.03588, that is the same index for the previous study with g = 1.

3.3. Conclusion and perspectives

In this thesis we developed a numerical methodology in view to propose efficient and ac-
curate simulations for the gaz dynamic in the cathod bipolar plate present in a PEMFC
(see Figure page [18). In the multi-physical PEMFC model [12], we focused only on
the fluidic domain model. Moreover, the domain of the bipolar plate was considered as a
2D domain, as showed in Figure page [105] In this domain, it was reasonable, as first
attempt of a quite realistic study, to consider the Stokes equation, because we supposed
that [12]| the gaz is ideal, the gaz flow is incompressible (even more: the density constant)
and laminar and that the fluid is only in the gaz phase. Another important assumption
was that the channels of the plate are considered without curved bend, in the sens that
the corners of the bend are modelised by a polygonal boundary (cf. Figure page .

The starting idea of the presented work was to make a simplification in the resolution
of the equation of interest in the bipolar plate, relying on the specific geometry of the
channels of the plate. This simplification had to make a faster resolution with respect to
a classical numerical computation on the whole domain, meanwhile we had to be able to
control the error to calibrate a suitable accuracy. So that, we splitted the domain of the
plate in a part where an analytical computation was possible and in a part where a nu-
merical resolution was needed. Throughout the thesis, the analytical resolution was called
“OD model” and the numerical one was called “2D model”, which was the Finite Element
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3. A posteriori estimator for the coupled 0D /2D Stokes equation

method. The goal was to make a posteriori estimates for the energetic norm of the dis-
cretization error of the coupled model to be able to drive the choice of the interface position
between the 0D and the 2D model and the choice of an adapted mesh, for a given tolerance.

Even if the purpose was to deal with the Stokes equation, we started with the Poisson
equation to fix some main ideas. In this first part, we choose a simple coupling condition
(continuity of the solution) at the interface, and we developed a guaranteed error estimator
in order to choose the interface postion and an adapted mesh in fonction of a suitable tol-
erance. For this error estimator we proved the reliability and the efficiency. The originality
of this work was a new contribution of the estimator, called n”, built in order to guide
the choice of the interface position (for a given tolerance for accuracy). The mathematical
hurdle was to prove the efficiency. Numerical tests confirmed theoretical results and an
adaptive algorithm was proposed to restore an optimal rate of convergence. This work is
actually submitted to a journal.

In a second part, we dealt with the Stokes equation. We proposed a similar approach as
the one for the Poisson equation and we obtained a guaranteed error estimator with proved
reliability and efficiency. In this case, we propose a sort of natural variational coupled con-
dition, which represent a continuity condition of the average of the stress at interface This
new coupled model is essential to verify the efficiency. Here the problem was that in the
estimator (see T heorem page there is the inf-sup constant §, indeed there is %
This 8 depends on the domain geometry and it is in general unknown, but it is known
that it could be very small if the domain is stretched, and this is the case of the channel
of the bipolar plate. The problem does not come from the 0D /2D approach, but is more
general, the estimator is not very good for our domain since we have the factor % that
gives an over estimation once 3 is small and far from 1. An idea to solve this problem is to
deal with the dual norm for the error for pressure instead of the L?-norm. We try this way
to estimate for the case of Stokes equation for the non-coupled problem, and this led to a
posteriori estimates without 8. We remark that another constant is in the estimate, but
it can be approximated numerically, so we get the order of magnitude of the theoretical
constant, that is for the problem of interest equal to 1. Finally that the upper bound in
this case is guaranteed with constant equal to 1 and the estimator is completely known.

This work has many perspectives. First of all, we could extend the study of Stokes
equation to the incompressible Navier-Stokes equation, we could use the Newton method
to make the linearalization of the non linear term, and we can try also the compressible
Navier-Stokes equation assuming that the density p is linear. Secondly, in order to deal
with real channels, we can extend the study for real bends that is take into account a
curved boundary for corners. In this sense, we can develop the theoretical study [56] in
Appendix (D] in order to deal with the curved boundary by making a boundary correction.
The numerical part in Appendix gives a better a postriori error estimation for our
curved domain as shown in the Figure [D.2] Thirdly, we could calibrate the mathematical
model in the whole and real domain to the realistic physical model for the PEMFC as
in [51].
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A. Appendix A: Adaptive algorithms in
FreeFEM

Let us consider a mesh adaptation strategy on the example of Poisson problem in the
Numerical Results section [[.4.1]
—Au = finQ2

U = Ue on OF)
with the exact solution u,. written, in polar coordinates, as
ue(r,0) = r%sin(29/3)

discretized with Py finite elements. We shall call uj the FE solution on a mesh 7; and
suppose that we have an a posteriori error estimator g, K € Ty s.t.

2 2
lu—unlio~ Y nk (A1)
KeTy,
where 1% := |lon + Vup||% and oy, is the reconstructed approximated flux which can be

defined as Vohralik did in [39]. Our goal is to compare several adaptive strategies.

A.1l. Adaptive algorithm via Dorfler marking

We fix # € (0,1). On a given mesh, we mark certain triangles to be refined, i.e. introduce
the subset 7;ZM by

dYomk =0 Y nk

KeTM KeTy

keeping in 7;LM the triangles with highest estimators. In the original Dérfler’s algorithm,
one would split the marked triangles into smaller triangles and leave the unmarked triangles
essentially unchanged. Under FreeFEM, we cannot do exactly that. Rather, we should
introduce the desired sizes of the new mesh and then “adaptmesh” will try to construct the
mesh with approximately these cell sized. In this spirit, we set hpew as the Py FE function
on the current mesh by

1 M
et i = whi, for K'E T,
hi, otherwise

where R > 1 is the fixed parameter (the refining factor). Then we give this hpey to
FreeFEM function adaptmesh with IsMetric=1.

The command for the mesh adaptation in FreeFEM is
Th = adaptmesh(Th, NewMeshh, IsMetric=1, keepbackvertices=0, nbvx=1000000);
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Here, NewMeshh is the Py FE function containing hpew. According to the FreeFEM docu-
mention, the section on option IsMetric=1, “if only one function (i.e. NewMeshh) is given,
then it represents the isotropic mesh size at every point." We choose keepbackvertices=0,
because the alternative keepbackvertices=1 works slightly worse.

A.2. Adaptive algorithm “hopt”

To introduce an alternative adaptive algorithm, let us characterize any imaginable mesh
Tr, by the meshsize distrubution h(x) such that h(z) at a point x inside a triangle K € Ty,
is approximately equal to hx. Moreover, suppose that the the FEM error on such a mesh
is

lu — uh]%Q = /QhQ‘s(x)cQ(x) dx (A.2)

with some a priori unknown c¢(z) and the order parameter 0 chosen once for all. This is
reasonable for example for P; FEM with § = 1, ¢(z) ~ |D?ul(z), i.e. the norm of the
second order derivatives at x, provided w is sufficiently smooth. Note also that the number
of DOFs is approximately given in 2D case by
dx
Npor ~ [ 5=
o h?(z)

since a triangle of size h(z) occupies the area of order h%(z). Let us imagine first that we
know ¢(z) and we want to construct an optimal mesh (with the minimal possible Npor) to
achieve a given error tolerance, i.e. |u—upl; o = tol. This is a constrained minimization
problem for the mesh size distribution h(zx):

) / dx
min -
h€ L2(Q) a h*(z)
Jo W (z)c?(z) dx = tol?

The minimum is achieved on a stationary point of the Lagrangian

LX) = | h;i(’;) + A </Q W2 (2)2 () dx—tol2>

with h € L?(Q) and \ € R. Taking the variations yields

_ M 20-1( Vo (2)2(2) dx — o — o(x
/th'»(m) +)‘/925h (x)v(2)c*(z) dx =0, Vo =wv(z)

so that the optimal mesh size distribution is

toll/? 1

o) = (foy 261 () dx) V) (o)) M/ O+D)

Of course, c(x) is not known in practice. But, on a given mesh 7y, we have a posteriori

error estimates of the form (A.1). Let us reinterpret this in the form (A.2)),

Z /Kh%(x)cQ(x)dXN Z n%.

KeTy, KeTy
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A.3. Numerical comparisons

This suggests to approximate ¢(z) on any triangle K € T, by

NK
c(z)  —— forz € K.
he VK]
This gives
/(641
oo () = toll/d hlg( + )|K|1/(25+2) . K
ot = 2/(6+1) 3 —26/(8+1) | 715 /(54-1 e 771/(6+1) o .
(ZKeTh Nk hi | KC[o/(0F )) K
(A.3)

Now, rather then trying to achieve the target tolerance, let us adapt the mesh by aiming to
diminish the current error estimate Ry, times (i.e. set tol = Est /Ryo)) with given Ry > 1
on each iteration of the algorithm. So, the “hopt” algorithm is

1. Given the mesh Ty, set current desired tolerance to
1/2

tol =

1 2
Rtol Z K

KeTh

2. Set hnew as the Py FE function on the current mesh by hnew = hopt using (A.3)).

3. Give this hpew to FreeFEM function adaptmesh with IsMetric=1. Redo the same
on the new mesh.

A.3. Numerical comparisons

We do the usual L-shape test using P FEM and the equilibrated flux a posteriori estimators
with RTy fluxes. We have compared the following algorithms:

e The original implementation, i.e. using adaptmesh with IsMetric=0 (15 iterations),
e “Dorfler” algorithm with 6 = 0.8, R = 4 (18 iterations),

e “hopt” algorithm with § =1, Ry, = 4 (8 iterations),

e “hopt” algorithm with § = 1.5, Ry, = 5 (10 iterations),

e “hopt” algorithm with 6 = 2, Ry, = 5 (13 iterations).

We have tried to achieve the error below 10~4 with all the strategies, did not always succeed
(either the mesh became too heavy, or encountered some mesh generation problems, or
other). This is why the number of iteration differs from one variant to another. Any way,
when we look at Errors vs. DOFs, all the methods look roughly similar in Figure (A.1)).
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A. Appendix A: Adaptive algorithms in FreeFEM

—1 I
10 e~ Original
—m—  Daorfler
. e hoptd=1
10 3 - h{;pt. 6 =1:b
; —+— hopt § =2
2 107
=
[
10_5 L I L | —
10% 10° 10 10°
DOFs

Figure A.1.: Errors with respect to degrees of freedom DOFs

The same if we look at the estimators in Figure (A.2]).

1071 | —o—  Original
—m—  Dorfler
—8— hoptd=1
10-2 ——hopt d = 1.5
é +— hopt 6 =2
=
= 1073
-t

10? 10° 10* 10°
DOFs

Figure A.2.: Estimators with respect to degrees of freedom DOFs
Rather surprisingly, we can conclude that all the approaches give the meshes of more or

less the same quality. Hence, to distinguish between the variants, we can now look at the
evolution of the error on iterations in Figure (A.3)).

154



A.3. Numerical comparisons

101 | o]
—e—  Original
L B ~m—  Dorfler ]
o 5, o hoptd=1
107 ¢ \.\. ——hopt d = 1.5
; —+— hopt § =2
wn )
5 ®
= 1070 >
= 1.‘\.:‘
10-4} * \\ X LS
- \ \( \\ l_\.
:b N
: %
1075k
0 5 10 15

iteration number

Figure A.3.: Errors with respect to number of iterations

And the winner is: “hopt” algorithm with § = 1, Ry, = 4.
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B. Appendix B: Approximation of the
inf-sup constant using
Crouzeix-Raviart FE for the velocity

Let 73, be a sequence of regular meshes indexed by A — 0, on a convex polygon €). Let

"
ﬁ — inf sup M
peQvev |Ipllo.0lv]1,0

and di
By, = inf sup —(ph’ v oo
PrhEQh vy eV, lonllo.olvn 1,0

where V = H}(Q)4, Q = L3(9), V}, is the P; non-conforming Crouzeix-Raviart FE space
on Ty (Vi £ V), and @, C @ the Py discontinuous FE space on Ty,.

Lemma B.1. We have 85, > 8 on every Ty, and
lim B, = 3.
h—0 Bh 5
Proof. To prove B, > (3, introduce the standard interpolation to Crouzeix-Raviart FE by

YoeV let In(v)=wv, €V, besuchthat /vh:/v
E E

on all the facets of the mesh FE € &;,. This implies

VKGE:/ dith(v):/ divv
K K
and |1 (v)|1,0 < |v]1,0. Thus, for any p, € Qp, and any v € V

(ph,diVIh(U))Q _ (ph,diV’U)Q S (ph,diVU)Q
Iprlloolln(W)Le — lslloelr(@)ie = lpelloalvlie

i.e. for any pp € Qp

(pp, divop)a (pp, div I (v))a (pp,divo)g
>s > ———— 2
0.2lln(W)1,0 ~ vev lIpulloelviie

sup T =
wneVi IPnlloolvnlie = vev llpnl

Taking the inf over p;, € Qp, gives B, = B.
To go further, let us first assume that inf in the definition of § is achieved on some
p € HYQ), ie.

.
3p € HY(Q) N Quwith||plog =1 and = sup 292
veV |U|1,Q
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B. Appendix B: Approximation of the inf-sup constant using Crouzeix-Raviart FE for the velocity

Actually the sup above is also achieved on v € V' such that
(Vo,Vw)q = (p,divw)q YweV
ie. v € H?(RQ), [v)20 < Clp

1,Q

—Av=Vpon 2, ©=0onodf.
Take pp € Qp, as the orthogonal projection of p on @), then
1o — Bl < Chlpli,0

Note that the supremum in
(Pn, div vp)o
sup ————
’l}hEVh ‘vhh,ﬂ

is achieved on vy, € V}, such that
(Vf)h, th)g = (ﬁh,div wh)Q Ywy, € V3.
Taking any wp, € Vi, we get by IPP element by element

(Vo,Vwy)q = (p, divwp,)a + E;h /E(Vv —pl)n - [wp)].

Hence

(V(In(©)=n), Vwn)o = (V(I1(0)=0), Vwn)o+(p—ph, divws o+ Y /(Vﬁ—]ﬂ)n'[wh]-
peg, VE
Taking wy, = I;,(0) — Uy, and using [[wp]=0 on every E € &,, and [v]2 0 < C|p|1,0, we get
[0 = tnl1,0 < C(|0 = In(0) 1,0 + [P = Prlloo + hlV]2,0 + hlp[10) < Cih|plio-
All this leads to

(Pr,divop)a  |onlie _ [0lue +Cihlplia B+ Cih|plia
sup <

onevi, IBlloglonlie — lBrlloe = 1—=Chlpha ~ 1—Chlpha’
Thus sic h] |
+ C1h|pl1,0
BLPr —F7
1 - Chlplia

so that we get limy,_,g 8;, =  as announced, and morever the error |G, — | is of order h.

In the general case, i.e. without supposing that the inf in the definition of ( is
achieved on some p € H'(Q), we still have the same convergence result (without order of
convergence). Indeed, by the density of H' in L%, we have Ve > 0

5 di
Ip- € H'(Q) N Qwith ||p:lloo =1 and sup (b=, dive)o <B+e.

veV |U‘17Q
By the same arguments as above we get then

b+e+ Clh’ﬁs
1— Ch|ﬁ5|1,9

1,0

B < Br <

so, by takin e sufficiently small, and then h sufficiently small, we obtain (3, arbitrarily close
to 5. |
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Numerical experiments To calculate 3;, numerically, we note that 8 = \/Amin Wwhere Amin
is the smallest (non-zero) eigen value of the Shur complement

S = ByA; ' B}

where By, is the discretization of the operator div and Ay, is the discretization of —A with
0 boundary conditions. Note that the eigen problem (with M} the mass matrix)

Sp = AMpp

can be rewritten as the generalized eigen problem

(oo™ ) () =2(05) (5)

We programmed this problem in FreeFem, noting that the matrix on the LHS is not sym-
metric, and the matrix on the RHS is not positive definite. Nevertheless, the FreeFEM
function EigenValue with option sym=true seems to work. It gives the following approxi-
mations to J on rectangles (0, L) x (0, 1):

L\p

1 | 0.49458

2 1 0.389852
4 10.218723
8 10.112451
16 | 0.0566144
32 1 0.0284483

We observe indeed 5 — 0 as L — oo like § ~ % This is consistent with observations (both
theoretical and numerical) from |27].
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C. Appendix C: On LBB dependence of
the a posteriori error estimates a la
Vohralik

Consider the problem posed in a domain Q € R? with d =2 or 3:
—Au+Vp=f inQ

divu=0 1in
u=0 on 9df

We suppose f € L?(Q) and Q a bounded polygonal /polyhedral domain. The pressure p is
defined up to an additive constant. To make the solution unique, we impose fQ p=0.
Let Tp be a regular mesh on € consisting of triangles/tetrahedral. Let V}, be the usual
Py finite element space on this mesh (the space of continuous functions on € given by
polynomials of degree < k on every K € 7). The functions in V}, are supposed to vanish
on the boundary of 2. Let moreover M}, be the usual P;_; finite element space on the same
mesh. The discrete problem is to find up € V;, and pp € My such that for any vy, € Vj,
qn € My

/Vuh-VUh—/phdivvh:/fvh, (C.1)
Q Q Q

/ qn divuy, = 0.
Q

Several a posteriori error estimates are available for the problem above [33,/73,80]. We are
interested in the estimates based on equilibrated fluxes as in the course by Vohralik [79],
that have the form:

1
3
|IVu — Vup|la < <H0h—|—Vuh—phI||%+ ]divuh%) + h.o.t., (C.2)

1

@|
1 1 .

0.0 < BHUh + Vup, — prllla + @H div uplo + h.o.t., (C.3)

P — pn

where o}, is the equilibrated flux reconstruction (a computable approximation to —Vu-+pI),
found in practice by solving local problems in Raviart-Thomas spaces on mesh element
patches around each node, and h.o.t. stands for higher order terms which are negligible, at
least when f and the solution are regular enough. The attractive feature of this estimator
is that it provides a guaranteed upper bound of the error in the natural norms and this
estimate contains explicit constants, namely the inf-sup (LBB) constant

g =p(02)= inf sup M
0€L3(@) veri () lallellVollo
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C. Appendix C: On LBB dependence of the a posteriori error estimates a la Vohralik

The downside is that § is difficult to evaluate in practice. Moreover, 5(€2) can be very
small if © is very elongated (such as long channels), cf. [27,|31]. In this appendix, we
propose an alternative estimator, indeed this estimate:

||Vu — Vuh”g
||V(p—ph)”—1,n

1
(llon + Vup, — ppl||§ + Chiy |l divug[|§) 2 + hoo.t. (C.4)
lon + Vun — pullle + Caioll div up|la + h-o.t. (C.5)

VAS/A

which is LBB-free, i.e. does not involve the LBB constant §(2), but involves instead
a constant Cly;,, which will be proven to depend only on the mesh regularity, and thus
independent of ). We do not attempt here to evaluate Cy;, theoretically. We provide
instead some numerical tests which suggest that Cy;, is close to 1 (the constant Cg;, can
be defined in fact through by a maximazation problem over patches of mesh elements
around a node, and then numerically approximated by discretizing these problems).

Apart from the dependence on the LBB constant, the main differences between the
original estimates f and the new ones f is in the treatment of the
error in pressure. It is no longer measured in the traditional L?(Q) norm. Following [82],
we adopt here the H~1(2) norm of the pressure gradient, that is:

Vp,v
IVpl o= sup VBY
vEHL(Q) [v1,0

(C.6)
Note that, if a good approximation of 5 = 3(f2) is available, one can return to the original
error measure via the bound ||p—pp|la < %HV(p —pn)|l-1,0- The new estimate gives
then a sharper upper bound than the old one if 5 << 1. Moreover, the H™"(€2) norm
of the pressure gradient can be used for certain other quantities of interest. For example,
if one is interested in the pressure on a subdomain w C €2 and w is of simple form so that
f(w) can be assumed known, then one calculates easily ||p — pplw < %HV@ —pr)ll-1.0-
A previous work [52] is important but it treats only with Crouzeix-Raviart spaces. [65]
introduces the idea of employing LBB constants on subdomains, rather than on the whole
Q.

The main goal of the appendix is to get red of the inf-sup constant 5. This appendix is
organized as follows: firstly, we give an informal motivation and derivation of our estimator
which does not contain the inf-sup constant 5. Then, we prove the reliability and efficiency
of the estimates. Finally, we approximate the constant Cgy;, in f numerically.
For completeness, we describe in Appendix our approach to this evaluation, following
mostly [27].

C.1. Informal derivation of the estimator

First of all, we note the following bound: for any o € Hg;, (Q)¢ such that dive = f on €,
and any s € H}(Q)¢ with divs = 0, we have

IVu — Vup |3 < |lo+ Vauy, — prI||3 + |Vun — V|3 (C.7)

Indeed,
IVu = Vunl§y, = [Vu = Vuj & + [ Vup =V |G (C.8)
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C.1. Informal derivation of the estimator

where u% is the H}-orthogonal projection of uy, to the subspace of H&(Q)d of divergence-
free functions, i.e. u) € Z = {v € H(Q)? : divv = 0}. Setting e = u — u) we observe
e € Z and (V(up, —ul), Ve)o = 0. Hence,

IVellg = (V(u—up), Ve)o = (Vu—pl, Ve)o—(Vuy—ppl, Ve)o = (f,e)o—(Vup—ppl, Ve)o
= (divo,e), — (Vup —ppl,Ve)g = —(0 + Vuy, — ppl, Ve)q

so that | V(u—u))|la < [lo+ Vup —prl||q. Moreover, ||Vu,—Vul || < ||Vuy, — V|| since
“2 is the best divergence-free approximation to uy. This establishes as a consequence
to (C.8).

The idea of what follows is to give a recipe to construct ¢ with dive &~ f in a way easily
implementable on a computer, and also to construct s € Z, on the theoretical level only
(the divergence-free reconstruction s here is not meant to be computed in practice, it is
only an auxiliary theoretical notion that helps to bound one of the contributions to the
error through a constant Cy;,,, which will be evaluated numerically once for all). Another
thing to keep in mind is that this ¢ should be kept as close as possible to —Vuy, + ppl,
and s should be kept as close as possible to uy, in order to minimize the over-prediction
of the error in .

We start by choosing a good candidate for the flux o. An ideal flux (of no practival
use) would be ¢id¢8l = —Vy + pI. Now, let us introduce the localized version of ¢g'dea! :
0% = (=Vu + pI)y* where ¢ is the P; finite element basis function (the hat function)
associated to any mesh node a. This ¢ satisfies on the patch w® = supp(¢?)

0% = (=Vu+ pl)y* onw®

dive® = f-¢* 4+ (=Vu+ pl) - Vyp* onw*®
c%-n=0o0ndw\ 0N

Note that o'd¢dl = 3~ 5% on Q since >, ¥* = 1 (we imply the summation over all the
mesh nodes in such expressions).
Let us discretize the problem for o®. Introduce the FE spaces

Yy ={on € Haiv(w?), 01|k € RTL(K) VK € w®, op-n=0o0n0w”\ 00}

and

Q) =divyy = {qh € Lz(wa),qhm € Py(K) VK €w®, and/

gn = 0 if @ is an interior node}
wa

Here Py (K) is the set of polynomials of degree < k on K, and RT,(K) is the set of Raviart-
Thomas (vector-valued) finite elements on a cell K. Note that ¢ C Hg;y(w®), which is the
natural space for ¢®. Note also that the boundary conditions for ¢ are already encoded
in the definition of X%. The constraint fwa qn = 0 is introduced in @ in accordance with
op-n =0 on dw® in the definition of X¢. This happens on the internal nodes only.

Now, an approximation to o can be constructed as oj, € X} such that

T = arg min Ik = (=Vup + prI)y* e (C.9)
T en?
div 7yt = Pga (f - * + (=Vun + prl) V)
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C. Appendix C: On LBB dependence of the a posteriori error estimates a la Vohralik

The Euler-Lagrange equations for the solution to (C.9) are as follows: find of € 3¢ and
7 € QF such that for all 7, € X¢ and xj, € Qf

/ op i Th +/ iy - div Ty, = / (=Vup + ppd)Y® : (C.10)

[ aivo = [ (0 (<Fun+ D) V) 1)

Existence of the solution to this problem is well-known, cf. |78, Theorem 6.64]. Finally,
the flux reconstruction is defined as

on=>» of (C.12)

Let us turn now to the divergence free velocity reconstruction s mimicking the above
construction of the flux oj,. The ideal candidate for s would be si9€! = 4. Let us introduce
the localized version of s'9¢8l : 5@ = y4)%. This s* satisfies on the patch w® = supp(¢®)
div s* = u - Vi)* onw®
s* = 0on dw"
Note that s'deal =3~ 5% on Q. Let us “discretize" the problem for s (we put “discretize"
in quotes since the “discrete" version s7 of s* will be a solution to a PDE, used only in

theory but not constructed in practice). We thus introduce s§ € Hj(w®) such that

sf = arg min IV (th — upth®)]|we (C.13)
¢ € H} (w®)
divty =up - Vyp©

The Euler-Lagrange equations for this problem read: find s¢ € Hg(w?) and p¢ € LE(w?)
such that

/ Vsp -Vt —|—/ phdivt = / V(upy®) - Vt, VYt e Hi(w) (C.14)

/a qdivsf = /a(uh -VY*)gq, Vg€ Li(w®) (C.15)

This probelm is a weak formulation of Stokes equations on w®. It is thus well-posed. The
velocity reconstruction sy is now defined by

sp = Z s (C.16)
a
with s* given by (C.14)—(C.15)). It is indeed divergence-free, since

divsy, =Y divsy =u, -V (Z w) =0 (C.17)
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C.2. LBB-free a posteriori error estimates

C.2. LBB-free a posteriori error estimates

Lemma C.1. Let up, € Vj, and s¢ € H} (w®) be given by f. Then
[V (5% — upth®)||we < Caipl| /1 div up]|we (C.18)
with Cgiry > 0 depending only on the mesh reqularity and the polynomial degree k.

Proof. Introducing the new unknown 8§ = s — up)®, the problem (C.14)—(C.15) can be

rewritten as

V- Vit + / pidivt =0, Vte H}(w?) (C.19)

wae

/ qdiv % = —/ q*divuy, Vg€ L3(w) (C.20)

It is thus clear that if divu, = 0 on w® then 57 = 0 by uniqueness of the solution to f
, which is the weak formulation of the usual Stokes equations. Thus, it is sufficient
to consider the case divuy # 0, and, by homogeneity |[v/%®divup||we = 1, diam(w?) = 1.
The statement now follows by maximizing

D (un, w*) = [|V34]|wa

under these constraints. This maximum is indeed attained since it is taken over a bounded
set in a finite dimensional space and ® is a continuous function of u; and w?. |

Remark C.2. We do not attempt here to give a theoretical bound for édiv- However, our
numerical experiments suggest that it is close to 1.95 in the case k = 2, cf. Section [C-2.1]
We conjecture Cgpy < 2.

Lemma C.3. Let uy € V), and s§ € Hj(w®) be given by f. Then, for any
cell K € Ty, and taking the sums over all the nodes a, it holds

1D Vsh = und®) % < Coe D IV (s — unt®) % (C.21)

with 0 < Cipy < V/d+ 1 depending only on the mesh reqularity and the polynomial degree
k.

Proof. The bound with Ciyy = vd + 1 follows easily from the inequality between
the mean and the quadratic mean, taking into account that there are at most (d+ 1) nodes
that contribute into the sum on a given cell K. In fact, the optimal value of Cjy; is smaller
than v/d + 1. Otherwise, if it were equal to v/d + 1, there would exist a mesh, a cell K,
and uy such that corresponding 57 are the same on K for all the vertices a of K. This is
impossible. |

Lemma C.4 (Poincaré-Wirtinger inequality with the optimal constant from [13]). For
any K € Ty, andies any v € H'(K) such that Jru=0, there holds

hx
Jullx < 7”VU||K (C.22)
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C. Appendix C: On LBB dependence of the a posteriori error estimates a la Vohralik

Theorem C.5. The error estimator ||oy, +Vuy| o with oy, defined by (C.10)-(C.11)-(C.12)
satisfies

: i1
IVu — Vup|la < (|lon + Vu, — pul | + Coip || divun||d)? + = oscr, (f) (C.23)

. 1
IV(p = pr)ll-1.0 < |lon + Vup — prl|lo + Caspl| div up |l + = oscr;, (f) (C.24)

with Cgiy = CyiyCint the combination of constants from constant from and (C.21))

(oser, (1))? = > Billf —TEfII%

KeTh

where HfL is the orthogonal projection on the space of (discontinues) piecewise polynomials
of degree < k on mesh Ty,.
Moreover, we have the local lower bounds on any K € Ty,

CIVu = Vupllwg + IV(P = pa)ll-10x +05cux (f))  (C.25)
C||Vu — Vupl| x (C.26)

lon + Vur, — prl||x

NN

| div up | &
and the global lower estimate
lon +Vun —prlllo+ || divuslle < C([Vu—Vurllo+ [V (p = pr)ll-1,0 + 0scr, () (C.27)

In the last 3 inequalities C' > 0 stand for constants depending only on the mesh reqularity.
The oscillations osc are defined as

(08cr, ()2 = > h2lfo" = I (Fo™) 1%

a€Vy
and similarly for oscy, with the sum over the vertices of K.

Remark C.6. If f is sufficiently smooth, then oscr, (f) is of order hk*2 and oser, (f) is
of order h**t1. They can be thus neglected in comparison with other terms, which are of
order h*.

Proof. The upper estimate (C.23)) is already almost proved, cf. (C.7) and Lemma
However, we do not have exactly divoy, = f — Vpy, but rather dive, = fr, — Vp, with

fn described in the statement above. To see this, we recall which is valid for all
piecewise Py polynomials g, if a is a boundary node. If a is interior node, then is
valid only under the constrait fwa qn, = 0. However, is also satisfied with ¢, = e;,
i.e. the i-th vector of the canonical basis of R%. Indeed,

/a eidivoy, =0 = /a(f'%baei—vuh :V(Ye;)+pp div(ye;)) = /a(f'¢a€i+(—vuh+ph1)'V(Wlei))

since ofin = 0 on Ow® and thanks to (C.1) with v, = ¥%e;. Thus, (C.11) is valid for any
piecewise P, polynomial xj, without constraints. We can also write it separately on any
mesh cell K € T}, since xj, are discontinuous:

/ i - divod = / Xt - (0% + (—=Vun + pul) - Vo©), Vn € Bo(K)
K K
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C.2. LBB-free a posteriori error estimates

Summing this over all the vertices a gives, cf ((1.53)),

[ondivan= [ et o e ma)

K K

so that div oy, = fp on K. We now modify the proof of (C.7): introducing éx as the mean
ofe=u—son K

IVu = Vs||§ = (Vu—Vs,Ve) = (f = fu€) + (fn — Vpn.e) — (Vs, Ve)

= (f—fn,e)+(diveop —Vpp,e) —(Vs, Ve) = Z (f—fne—€x)k — (on+ppl+ Vs, Ve)
KeTy,

1
2

1 _
< D2 mklf - £l ZhTHe—eKH%( + llon + Vs + prl|al[Vella
KeTy, KeTy

This proves |i since |le — éx||x < h—KHVeHK and
V(s —un)llo < Cai|| div unllo
with Cy;v = intédw.To prove the last bound, we recall Lemma

IV (s —un)llFe = 1D V(sh —unt®)||% < Chy Z IV (sf, — uny®)|I
a
sum this over all K € T, and use Lemma [C]]

[V (s— uh) 1ntZ:Hv Sh Uhi/)a)Hwa 1ntcde/awa’divuh‘ _CQthw”dlvuhHQ

(C.28)
To prove the upper bound for the error in pressure (C.24)), we take any v € H} () with
IVv||q = 1 and decompose
v=z4+w

where z is divergence-free, ie. z € Z = {v € HO(W)d : dive = 0}, and w is in the
orthogonal complement of Z, i.e. w € Z+ = {r € H}(W)?: (Vr,Vz)o =0 Vze Z}. We
have then ||[Vw|q < 1 since

IVwlig, = (Vw, Vo + Vz)a = (Vw, Vo)a < [|[Vulla[Volle = [[Vwllo

Using again divz = 0, w € Z* and the variational formulation of the Stokes equations, we
get

[Vo=m)v==[o-mdve=— [ Vu:vor [ foo- [ Voew

_/QVS3vw+/g(f—fh)‘w+/9(diVUh—Vph)'w
— [(Fun=99):Vut [ (£ p)w [ o0+ Tun—pu)- Vo

N[

1 _
< [Vur=Vslal| Vwllo+lon+Vur—pallla|Vwlot | > bilf — falk > hTHw—wKII%
KeTy, KeTy,
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C. Appendix C: On LBB dependence of the a posteriori error estimates a la Vohralik

with @wg the average of w on K. Using (C.28), Lemma[C.4} and ||[Vw||q < 1, we arrive at
. 1
/ V(p—pn) v < Cal divup|a + ||on + Vup — prllja + ;oscfrh(f)
Q

This gives by the the definition of the H~! norm of V(p — p;) as the supremum
over all v € H}(Q) with |v];. o = 1.

We turn now to the lower bounds. Thanks to Theorem 7 of [15], in the 2D case, for any
interior node a, there exists a matrix-valued field ¢§ on w® such that ¢f|x € (RTj(K))? on
all the mesh triangles in w?, cjn = 0 on dw?®,

divep|lg =rgonall K C w?,  [[c}]]|[en = rgonall E € F¢
where F% denotes the set of mesh facets inside w® and rg,rg are the residuals
ri = Hqe (fY*) + (Aup — Vpr)¥®,  rE = [[Vuy — ppl]]ry®.

Moreover,

ZKC afKTK'U—l_ZEG}-afKTK.U
" « = sup =
[[Hl("-’ )/R}Z] veEH (wa)/R HVUHW“

Ik llwe < Clrl

Setting
T = Ug + (Vuh —phI)wa + ¢,

we see that 7, € X and div 7, = 0. Using this 7, in (C.10]) as a test function leads to

ok + (Vup — prl)Y®||lwe < Cllepllwe < C
sup Jooa Mqa (fU) = fY)0 + X S (f + Dup = Vpu)v® v+ Y pere [pl[Vun — prlllpy® - v
vE[H (we)/R]2 [Vol|ya

Recalling that f = —Awu + Vp and integrating by parts, we conclude

o (g (f9*) = f* o(V(u—up) = (p— pr)) : V(3
o (Fun-pDyielle < ¢ sup oMU O oVl Z ) ~ 0 =)D T
ve[H (o) /R]2 [VUlwe
< Clhall fo* =T (YY) oo + 1V (e = up)flwa + [[p = pa) | -100)  (C-29)

since ||v|lye < Che||Vv||wa for any v € [H'(w®)/R]? by Poincaré inequality, and conse-
quently ||V (¢%0)||we < [[VU||wa + %HUHW < C||Vul[we. The orthogonal projector Ilga
above can be replaced with Hfbfl since the test functions v are orthogonal to constants.
The same bound holds for the nodes a on the boundary 92 by a straiforward adap-
tation of the proof in [15] (one should replace then H'(w®)/R by the subspace of H*(w?®) of
functions vanishing on dw® N 9Q). In the 3D case, the same holds by Theorem 2.3 of [40].
Thus, holds in all the cases of interest.

We can now establish : take any K € T, and sum , squared on both sides, over
all the vertices a of K. To deal with the pressure error, we need the following observation

Yo Ve =) <@+ DIV =)l (C.30)

a: vertices of K
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C.2. LBB-free a posteriori error estimates

Indeed, for any 1 > 1 and any node a there exists v* € H}(w?) such that

Vo l1we = IV = pn)|<1we and [V = pu)l21 we < 0(V(p = pr), V)

Extending all these functions by 0 outside of their respective domains, we can write (as-
suming the summation over d + 1 vertices of K, denoted by a)

S IVE =)l 1w <0 VP —pn)- Vo

WK

=n [ V-pn) > V" <nIV(p—pn)ll 1wk

Z Vo®

WK

[NIES

<IV(p = pr)ll-1.wx (d + 1) (Z IV(p— ph)H2—1,wa>

Passing to the limit n — 1 gives (C.30)). This establishes (C.25|).
The other local lower estimate (C.26)) is trivial since

I diveup|| = || div(u = up)|x < VA|V(u—up)llx

Summing over all the nodes of the mesh and dealing again with the pressure error
in a manner similar to (C.30), replacing (d + 1) by a constant C related to the maximum
number of overlaps between patches w!” which depends only on the mesh regularity, gives
the global lower estimate ((C.27)). |

C.2.1. A numerical evaluation of the constant Cy;, in Lemma .

In this section we want to evaluate the constant Cg;, in Lemma [C.I] Let w® be a patch
of elements around a node of the mesh 7, and V3, (w®) the restriction of the velocity finite
element space Vj, on w®. As suggested by formulation —, the first task in evalu-
ating the constant C’div on w® is to construct a basis of a subspace of Vj(w®) complementary
to the subspace of divergence-free functions. To this end, we construct the matrix D of
the bilinear form

D(un, vp) = / 0 (div ) (divop)
wa
on the natural basis of Vj,(w?) and solve the eigen-value problem
Du; = \u;

We then select only the positive eigen-values, say A1, ..., Ay, with the corresponding eigen-
vectors u; representing the finite element functions wy; € Vj,(w®), which form a basis for
the orthogonal complement to the kernel of the bilinear form D. We can normalize uy, ; so
that D(uh’i, uh,j) = (5”

We now introduce a fine mesh 7; on w® splitting every element of w® into R x R

smaller triangles, cf. Flg. We then discretize problem (C.19)-(C.20) as: find
87 € Vi (w"), pj, € Qj,(w”) such that

/a V5. Tty + /ap% divi,=0 Vit; € Vi(w? (C.31)

/a qj, div 3% = — /a 'lbaq}*l div up, til S Qﬁ(w“) (C.32)
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C. Appendix C: On LBB dependence of the a posteriori error estimates a la Vohralik

Figure C.1.: Introduce a fine mesh on patch w®

where V; (w®) C Hj(w®), Q; (w*) C L3(w®) are (respectively) P, and Py finite elements on

mesh 7;. The constant égiv in inequality 1) on w® is approximated be the maximum
of
oa . aa
fwa Vsﬁ : Vs’~Z

fwa Yo (div uh)2
over the span of {up1,...,upa}. To find this maximum, we solve (C.31)) for every up =
upi, @ =1,..., M. Denoting the obtained solutions by §% . it remains to form the matrix

A of size M x M byA;; = fwa V§%i : Vé%j and to calculate the largest eigen-value of A.
It gives the maximum of the ratio above.
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D. Appendix D: Curved Boundary

An important limitation of all the a posteriori error estimates developed so far in this
thesis, is that they apply only to the finite element approximation in polygonal domains.
Dealing with problems posed in domains with curved boundaries is of course also very
important. In this appendix, we rely on a finite element discretization in such domains
proposed in the Master thesis of Claire Marin [56] and designed having in mind the ease
of implementation in FreeFEM. The hypothesis is that the mesh is composed of triangular
elements with straight edges (which is the only mesh type available in FreeFEM), and
the boundary conditions on the approximated polygonal boundary are deduced from the
actual boundary conditions on the exact boundary thanks to a Taylor expansion. This
approach is very close to Boundary-Value Corrections method of [17]. We present here
the main results on the a priori error analysis from [56] for the Dirichlet-Poisson problem.
Then we test numerically an equilibrated flux a posteriori estimator making a comparison
between the boundary correction model and the model without boundary correction. We
do not have any theoretical justification for our a posteriori estimator, but we observe that
it describes the error of the finite element approximation very accurately if the boundary
correction trick was used to compute this approximation.

D.1. A Priori Error

D.1.1. Notations

Let Q be a bounded domain in R? with a smooth boundary 9. We consider the Poisson
problem which is: find u € H?(f) satisfying

—Au=f in Q
{ u=g on O (D.1)

where f € L?(Q2) and g € H%((?Q) We introduce a triangular mesh 7 on €2 such that the
nodes at the boundary are all on 92 while the boundary edges are not. The triangulation
is supposed to be a classical one, with straight sides. Then, in general, the boundary edges
do not match exactly 9Q2. Let ; be the domain formed by the mesh, i.e. :

m — UKG'ThK

and a mapping ¢ : R? — R? that associates for each x;, € 9 to a point ¢(z) = = € IQ
and then, the gap function § defined by §(xy) = ¢(zn) — zn, Vo, € OQ.
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D. Appendix D: Curved Boundary

We suppose that ¢ is a C?> mapping and we consider a PP, finite elements to approximate
the problem. we will introduce the first order corrections on 9€2j in order to have optimal
convergence :

Vap € 0,  u(zp) = g(d(xp)) — 6(xn) - Vu(xy).

Let V}, be the space of (continuous) piecewise Py polynomial functions on 7y, and V} the
subspace of V}, containing the functions that vanish on 9€);,. Now, we want to find up € V3

such that
th Vuy, - Vo, dQ) = th f’l)h dQ, Yoy, € Vho

| (D.2)
fth (up + 0 - Vup)v, dT = fth (go @) AT, Vo, €V,

Discretization

We will do a Taylor expansion of order [ < k near the boundary, with [ € N. Let {7}
be triangular mesh of 2 with the mesh size h. Let €2;, be the domain formed by the mesh,
iLe. Qp = Uker, K., let ’7;5’ be the set of triangles that intersects the boundary 02, and
let &, be the set of boundary edges. We suppose that {7} is :

Hypothesis 1 : regular We suppose that there exists a constant C such that, for all
h >0 and for all T € Ty,

Hypothesis 2 : Quasi-uniform There exists a constant C' depending on €2 such that

min > Ch.
TeT, PT =

We consider the following problem : find uj € V} such that :

Vuy - Vo, A= [ fo, dQ, Yo, € V2
Qp, Qp,

o°
/ E #55 vy dI' = / (gop)up, AT, Vv, € V3
oy, S o,

|s|<!

Here s = (s1,s2) is a couple of non-negative integers, |s| = s1 + s2, s! = s1lsal, O%up =
A3y, oo s

W and 0° = (51,52)5 = 51 152 2,

We suppose that all the generic constants C are different from an equation to another
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D.2. A Posteriori Error

and depend on the mesh regularity only. We are going to put the theorem about the
optimal order of convergence of H' error semi-norm of u — uy, for an appropriate order of
approximation of the boundary and order of the finite elements.

Theorem D.1. Let u be the solution of the problem , and up, the solution of the
problem (D-3). Assume that u € HFYH Q)N WHL2(Q), k > 1> & — 2. There exists a
constant C' depending only on the regularity of the mesh and the domain Q0 such that for h
small enough :

k
|u—up \Hl(ﬂh) < Ch™|u ‘Hk“(Q)OWH'LOO(Q) )

where we denote by || g1 (yrwirieo(q) the quantity || pger gy + | Ui q)-

Now, we want to put the theorem about the optimal order of convergence of L? norm of
U — Up,.

Theorem D.2. Assume that the solution u of the problem (D.3)) is in H*1(Q), and

> g — %. There exists a constant C' depending only on the reqularity of the mesh and the

domain Q) such that for h small enough :

| w—=unll2q,) < Ch* | 1 (@) w10 (@)
Proof. See |56). u

Now, let us present the numerical part of a posteriroi error using the idea of Claire for
defining the approximated solution uy, as in (D.3))

P2 finite elements

Now, we want to implement the scheme . We remark that the Dirichlet boundary
conditions are imposed in FreeFEM-++ via penalization even in standard situation of
FEM on a polygonal domain. So, the simplest way to implement in FreeFEM++- is to find
uy, € V3, such that for all vy, € Vj,

fon dQ—l—i/ (god)vy, dI', (D.4)

1
Vup -V dQ+/ (uh+5-Vuh)vh dF:/
o (5,973

Qp € Qp

with € < 1.

In the following figures, we compare the method (D.4]) with the results without doing
any approximation of the boundary, that is to say by implementing :

1 1
Vuh . V’Uh dQ2 + - / UK VR dl' = f’Uh dQ + - / (g @) ([))Uh dr. (D.5)
Q & Joqy, Q € Joqy,
D.2. A Posteriori Error
The weak formulation of system (D.1)) is:
Find u € H, () such that:
(Vu, Voo = (f,v)a Yo € HYH(Q) (D.6)
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D. Appendix D: Curved Boundary

Where,
124,
="
H(Q):={uec H(Q); u=0 on 090}
1 - 1 . —
Hy Q) :={ue H(Q); u=g on 00}
and

U= Uy on i,
g=QU="1Upt On Doy,
u=20 on Wall,

Let up, be the approximate solution defined as in scheme (D.2). We look for stress
op € Xy C H(div, Q) such that:

o = argmin  [|Vuy + vall12(q) (D7)
VpED

)

div vp=Ilg, (f)=fon Q

In practice, ¥ will be RT} on Q and and @, will be P1(7,) on €. Computing oy, as
the solution of eq : U}Ldeal would be too costly, so we localize this minimization. For
each vertex a € {2 we consider a patch w, to be the collection of all triangles that share
this vertex a. Now, relies on the partition of unity by the hat functions 1), and finds the
following local minimizers:

op, = argmin ||t Vuy, + vpl|12(0,) (D.8)
vheE‘;L,
div vy =Tlgg (Y]~ Vita Vun)

Let V,, be the set of vertices of the mesh T,

oh= Y of (D.9)

a€Vy

Conjecture D.3 (A general a posterior error estimate). Let u be the weak solution defined
by system . When we make approximation of the curved boundary, we define up as
m , and when we do not make approrimation of the curved boundary, we define uy,

as in ) and oy, defined as . VK € Ty, define:

o Flux estimator: np k = ||Vu, + op||k

o Total estimator n? := ZKeTh 77}%“1{
Then,

1V (u = un)lf < n* (D.10)
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D.3. Numerical results

D.3. Numerical results

Let us consider the following problem:

in Q

—Au=f
on 0N

u=4g

Where Q is defined in the Figure below, f =1, R = 0.7, R, = 1 and

u=1u on I,
g=qu=1ue on Doy,
u=0 on Wall,
2442 2442 R2in(R1)—R2In(R R2—R1?
Ue :A—l—Bl"(m;y ) _ (& Zy ) where, A = 2in(B1) Rln( 2and B = & =
4ln(R—;) 4ln(R—?)

-ru it

Figure D.1.: Domain 2 with curved boundary

Now, we will compare the error and estimator in between taking wuj, as solution of
non correction boundary in scheme ) and between the solution of corrected boundary
in scheme . We conclude from this comparison in Figure that the correction of
the boundary gives less error and estimator than the non corrected one. Also, when we
do not make the correction of the boundary, then the estimator is less that the error as
you see in Figure and this contradicts the posterior error estimation in Theorem
To see more the results we introduce the data for non corrected boundary in the table
below and as you see the estimator is less than the error which lead to index of efficiency
Index = - = 0.8.

Error

Mesh size | Error n Index

0.0469192 | 0.000262393 | 0.000221949 | 0.845865
0.0232701 | 9.1345e-05 7.9358e-05 0.868773
0.0126408 | 3.20462e-05 | 2.81435e-05 | 0.878215
0.00702287 | 1.12396e-05 | 9.92078e-06 | 0.882665

While when we make the correction of the boundary, we get that the error is less than
the estimator which lead to index of efficiency Index = gl = 1.019 as you see in the
following table
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D. Appendix D: Curved Boundary

Mesh size | Error 7 Index
0.0469192 | 5.8102e-05 | 5.9233e-05 | 1.01947
0.0232701 | 1.31804e-05 | 1.33805e-05 | 1.01518
0.0126408 | 3.56757e-06 | 3.6359e-06 | 1.01916
0.00702287 | 8.9232e-07 | 9.09405e-07 | 1.01915
107
10 === S

10

i L

—2— EstimatarCorraction
-~ — ErrorNonCorrection

£+— ErrorCorrection
— 1 — EstimatorNonCorrection

0.005 001 0015 002 0025 003 0035 004 0045 005

Mesh Size

Figure D.2.: Errors and Estimator for the corrected boundary and the non corrected one

We conclude from the above results that the correction of the boundary for the curved
domains is important since without making this correction we obtain an estimator 7 less
than the error ||u — uy| which does not confirm what we have in Theorem while
after making the correction of the boundary as in , the estimator 1 becomes greater
than the error |u — upllg which confirm the Theorem and the index of efficiency
improved from Index = = = 0.8 (when we do not make correction of the boundary) to

Index =
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