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Titre: Analyse d’erreur a posteriori pour certains problèmes liés aux simulations de piles
à combustible.

Mots Clés: Estimation d’erreur a posteriori, couplage dimensionnel mixte, algorithme
adaptatif, Méthode des Éléments Finis, FreeFEM.

Résumé: La principale motivation de cette thèse est le besoin de simulations numériques
efficaces des écoulements de gaz dans les canaux serpentins des piles à combustible à mem-
brane échangeuse de protons. Nous considérons les modèles de Poisson et de Stokes dans un
domaine 2D composé de plusieurs longues sections rectangulaires droites et de plusieurs
coudes. Afin d’accélérer la résolution et de réduire les coûts de calcul, nous proposons
des modèles 0D (un profil parabolique fixe pour l’équation de Poisson et l’écoulement de
Poiseuille pour les équations de Stokes), et nous résolvons par éléments finis le modèle 2D
dans les coudes. Afin d’atteindre la tolérance souhaitée de l’erreur entre la solution exacte
et la solution approchée provenant du modèle couplé 0D/2D, nous devons surmonter un
double défi : comment détecter la position appropriée de l’interface entre les modèles 0D et
2D et comment contrôler l’erreur de discrétisation dans les coudes. Pour cela, nous avons
développé des estimateurs d’erreur a posteriori basés sur la reconstruction de flux équilibré
dans les sous-domaines où la méthode des éléments finis est appliquée. Dans le mod-
èle couplé 0D/2D pour Poisson, les estimations donnent une borne supérieure calculable
garantie globale de la norme d’énergie de la solution. Dans le modèle couplé 0D/2D pour
Stokes, les estimations donnent une borne supérieure garantie globale pour l’erreur H1 en
vitesse et l’erreur L2 en pression sur le domaine entier. Dans ce dernier cas, l’estimateur
fait intervenir la constante inf-sup qui est en général inconnue (dans nos cas de test, elle
est cependant connue qu’elle est très petite), ce qui rend l’estimateur pas complètement
calculable en pratique. Nous avons également étudié l’influence de la constante inf-sup
sur l’efficacité des estimations d’erreur a posteriori et nous avons poursuivi quelques idées
pour construire de nouveaux estimateurs garantis indépendants de la constante inf-sup.
Des bornes inférieures globales pour l’erreur sont également dérivées pour les modèles de
Poisson et de Stokes. Les estimateurs proposés peuvent être scindés en deux parties :
une première indiquant l’erreur due à la position de l’interface et une seconde indiquant
l’erreur due à la discrétisation. A l’aide de ces estimateurs, un algorithme est proposé
pour choisir la position de l’interface et effectuer un raffinement adaptatif du maillage afin
d’équilibrer les deux sources d’erreur et d’atteindre la précision souhaitée. Les estimateurs
et l’algorithme adaptatif sont validés numériquement.
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Title: A posteriori error analysis for certain problems related to fuel cell simulations.
Keywords: A posteriori error estimate, mixed dimensional coupling, adaptive algorithm,
Finite Element Method, FreeFEM.

Abstract: The main motivation of this thesis is the need for efficient numerical simu-
lations of the gas flows in the serpentine channels of the proton-exchange membrane fuel
cells. We consider Poisson and Stokes models in a 2D domain which is composed of several
long straight rectangular sections and several bends. In order to speed up the resolution
and to reduce the computational costs, we propose 0D models (a fixed parabolic pro-
file for Poisson equation and Poiseuille flow for Stokes equations), and we apply a finite
element resolution for the 2D model in the bends. In order to achieve the desired toler-
ance of the error between the exact solution and the approximated solution coming from
the 0D/2D coupled model, we have to overcome a double challenge: how to detect the
suitable position of the interface between the 0D and 2D models and how to control the
discretization error in the bends. For this purpose, we have developed a posteriori error
estimators based on equilibrated flux reconstruction in the subdomains where the finite
element method is applied. In the coupled 0D/2D model for Poisson, the estimates give
a global guaranteed computable upper bound of the energy norm of the solution. In the
coupled 0D/2D model for Stokes, the estimates give a global guaranteed upper bound for
the H1-error in velocity and the L2-error in pressure on the whole domain. In the latter
case, the estimator involves the inf-sup constant which is in general unknown (in our test
cases, it is known to be very small though), thus making the estimator not completely
computable in practice. We have also studied the influence of the inf-sup constant on
the efficiency of a posteriori error estimates and we have pursued some ideas to construct
new guaranteed estimators which are independent of the inf-sup constant. Global lower
bounds for the error are also derived for Poisson and Stokes model. The proposed esti-
mators can be split into two parts: a first one indicating the error due to the position of
the interface and a second one indicating the error due to the discretization. Using these
estimators, an algorithm is proposed to choose the interface position and to make adap-
tive mesh refinement in order to balance the two sources of the error and to achieve the
desired accuracy. The estimators and the adaptive algorithm are validated numerically.

Codes AMS: 65N15; 65N30 ; 65N50.
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Introduction

The present work is motivated by models of the serpentine cathode-anode flow channels in
Proton Exchange Membrane Fuel Cells (PEMFC), cf. [51]. A quite acceptable model pro-
posed to describe the flow distribution in these channels is the steady-state incompressible
Navier-Stokes equations (but in function of the application more complete and complex
models can be adopted, as the compressible and/or unsteady equations) and one hurdle is
to make efficient computations in these very stretched rectangular regions linked by rela-
tively small bends. To have an idea of these channels, one can see layers 1 and 7 of Figure
1.1 at page 17. In particular, we deal with the 2D cross–sectional area (when the plate is
sliced parallel to the channels). Since the numerical resolution implies a high computation
complexity, in this thesis we want to propose an approach to simplify its resolution based
on the geometry of channels and overall based on error estimates which can be used to
choose a compromise between reduced time of computation and accuracy. In this thesis we
focus on the Poisson and Stokes equations to lay a foundation in view of a generalization
to the incompressible Navier-Stokes. Following typical boundary conditions in PEMFC,
cf. for example [81], we choose the Poiseuille flow as boundary conditions on the inlet and
outlet boundaries of the channel, and no-slip boundary condition on the wall.

In order to speed up the computations, the idea is to split the resolution as follows:
in the rectangular regions of the domain, the flow is approximated by simple analytical
solutions, namely the Poiseuille flow which is accurate if the flow is sufficiently far from the
bends (we call this 0D model), in the bend regions we keep the original governing equations
and approximate them by the finite element (FE) method (we call this the 2D model). We
refer to this as the 0D/2D model. There exists different ways to derive a coupled model.
In [42, 43, 63], 0D/3D coupling is obtained for the time dependent Navier-Stokes system
by assuming the dominance of the axial velocity and integrating the governing equations
on a section. In [46] and in [57] an asymptotic analysis is used to get respectively the
0D/3D and 0D/2D coupled simplified models for time dependent Navier-Stokes equations.
A 0D/2D coupled model for Poisson equation is derived in [70] and [59] by the asymptotic
analysis. In the thesis we derive the 0D model using the asymptotic analysis. Indeed,
we work with the domain Ω, which is one serpentine of the channel, as showed in Figure
1.3 at page 19, knowing that we can iterate the ideas developed in Ω for all the other
serpentines (as we show e.g. in Section 2.4). So, the stretched rectangular portion of the
domain Ω, which we call in this thesis Ω′ and refer to it as the 0D domain, cf. Fig. 1.4,
the solution is approximated by a simple explicit expression (the analogue of the Poiseuille
velocity). In the remaining part of the domain, denoted by Ω̃ = Ω\Ω′ and referred to it
as the 2D domain, we approximate the solution of the Poisson or Stokes equation (the 2D
model) using the FE method. The 0D and 2D domains are separated by an interface γ.
For the Poisson 0D/2D model the coupling condition on the interface γ is the continuity of
the velocity, while for the Stokes 0D/2D model we find a quite natural coupling condition
which is derived from the variational formulation, that is the continuity of the normal av-
erage force on the interface γ with an appropriate weight. For numerical implementation,
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also a simpler coupling condition is explored, which gives similar numerical results. After
coupling, we observe that the error between "0D/2D simplified model" and "original 2D
non simplified model" is affected by the mesh size and the position of the interface so, the
error between the "original 2D non simplified model" and the "0D/2D simplified model" is
due to the discretization error and the error that comes from the position of the interface.
We want to extend the area where we want to impose 0D model and since we do not know
the exact solution of the Poisson and Stokes equations, we have studied an a posteriori
estimator in order to get a computable upper bound for the error between the proposed
simplified 0D/2D model and the original non coupled 2D model.

In order to study the error between the exact solution of a partial differential equation
(PDE) and the approximated numerical solution we have two main estimations of the error
which are very important in numerical analysis. The first one is represented by a priori
estimation of the error while the second one is named by a posteriori error estimation. A
priori estimation is qualitative while a posteriori estimation is quantitative. In general,
the main goal of using a priori estimation is to prove the optimal order of convergence
for the error under quite smooth hypothesis. For example in [68] the authors prove the
optimal convergence of the error in H1 − norm and sub-optimal order of convergence in
L2−norm for linear elliptic interface problems. In [62], a priori estimation is used in order
to reduce the rate of convergence for the discontinuous Galerkin method when applied to
the Poisson problem. There is many articles which deal with a priori error estimation such
as [10, 24, 25, 50, 67]. A limit of a priori error estimation is the dependence of the upper
bound of the error on the exact solution which is unknown and consequently we get an
uncomputable upper bound. In reality the exact solution is unknown and sometimes it is
singular, e.g. as in L-shaped domains, then using a priori analysis can not help to use
adaptive strategies in order to obtain an optimal convergence and for this reason we need
to study a posterori error estimation. As we do not know the exact solution, a posteri-
ori error estimation gives a computable upper bound of the numerical error between the
exact and the approximated solution and this upper bound depends on known quantities
only, such as the approximated solution and the data of the problem, some remarkable
works in this subject are done by Verfürth [74], Ainsworth and Oden [1], Babuška and
Strouboulis [8], Neittaanmäki and Repin [58], Han [48], or Repin [64]. A posteriori error
estimation is widely used in FE discretization methods, some pioneer works are done by
Babuška and Rheinboldt [4–7, 9]. Among all these a posteriori error estimators we will
focus in the thesis on so-called equilibrated flux. The main concepts of the equilibrated
fluxes estimates is related to Prager–Synge equality [61] and the hypercircle method as in
Synge [69]. There are many research studies about equilibrated fluxes estimators such as
Repin [66], Destuynder and Métivet [30], Luce and Wohlmuth [55], Ladevèze and Leguil-
lon [54], Korotov [53], Vejchodský [72], or Braess and Schöberl [16], Fierro and Veeser [41].

We propose an a posteriori error analysis for the coupled Poisson equation, then we
extend it for the coupled steady Stokes equations, and the perspective is to enlarge the
analysis for a coupled steady incompressible Navier-Stokes system. The main contribution
in our study is that we adapt the approach of Vohralik et al. [39, 78] in the context of
the coupled 0D/2D model in order to detect the suitable position of the interface between
0D and 2D model and also to adapt the mesh for the FE 2D model in the bend. The
approach of Vohralik et al. is based on a flux/stress reconstruction on a whole domain
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where a PDE is discretized with a numerical method. In this work, we introduce a new
definition of the reconstructed flux/stress σh, in order to be able to estimate the error of the
discretization for the 2D model but also for the choice of the interface position. Indeed,
we have divided the estimator into two parts, the first contribution estimates the error
caused by the position of the interface and another contribution is related to the FE error
in the 2D domain. The main contributions this PhD thesis are specified in the following
paragraph.

Thesis contributions

For a posteriori error we separate the estimator into two types: the first type comes from
the error due to the position of the interface and the second type comes from the error of
the numerical discretization in the 2D domain. The idea is to use these contributions in
order to determine a suitable position of the interface and a suitable mesh, according to
some tolerance.

The first goal is to device coupling models fot the Poisson and Stokes equations using
asymptotic analysis as in [45,59,70].

The derivation of a posteriori error estimator depends on the flux reconstruction which
is introduced by Vohralik et al. [28, 32, 38, 39, 60]. The second goal is to introduce a new
definition of the flux reconstruction σh to be defined on the whole domain Ω which is
computed in a way for the 0D model and in another way for the 2D model in a similar
way of Vohralik et al. in order to introduce the estimator which inform us about the error
about coupling and discretizing.

Finally, the third goal, that is deeply related to the previous goal, is to prove the relia-
bility (upper bound for the error by the estimator) and the efficiency (lower bound for the
error by the estimator), if it is possible, of the proposed estimators. We remark that the ef-
ficiency has to be global in what concerns the error produced by the 0D/2D coupling: once
we choose an interface to make the coupling problem, that impacts the solution globally.

Throughout the thesis we also pay attention to validate the estimators numerically and
to design adaptive algorithms to use them successfully.

Plan of the Thesis

We have three chapters and these chapters are constructed as the following.

Chapter 1. In this chapter we present the context, we consider a polygonal domain
Ω and we talk about the physical model, the derivation of the coupled 0D/2D of Poisson
and Stokes equations. Moreover we give a general presentation about equilibrated a poste-
riori error estimators on a simple and standard model where there is no coupling condition.

Chapter 2. In this chapter we deal with the Poisson equation on the polygonal do-
main Ω. We introduce a first attempt of the definition of the flux reconstruction of the
coupled 0D/2D model, and this estimator is called "simple a posteriori estimator". We
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prove the guaranteed upper bound (reliability) of the estimator, but the lower bound (ef-
ficiency) seems impossible to be proved and we explain the reason. So, we introduce a
second definition of the flux reconstruction with gives to us a guaranteed upper bound
and a lower bound (efficiency) of the error between the coupled 0D/2D model and the 2D
non coupled model. We make a numerical comparison between the two estimators of the
two fluxes. We make adaptation of the mesh in order to get an optimal convergence or to
improve the convergence of the error and estimator. At the end of this chapter we present
briefly an extension of this work for multiple channels (with many interfaces and coupling).

Chapter 3. In this chapter we consider the Stokes equation. Here, a new problematic
is added: the Stokes problem involves the β constant, that is the constant in the inf-
sup condition that ensures that the Stokes problem is well-posed, and this constant is
in general in the equilibrated error estimators. The value of this constant is in general
unknown, but we know that for long strechted channels this value is small. We define a
stress reconstruction for the 0D/2D Stokes model in order to get "a simple a posteriori
estimator and we prove the guaranteed upper bound estimate (reliablity), but the lower
bound (efficiency) is not proved for the first stress reconstruction. We also introduce a
second stress reconstruction and we prove the global upper bound and the local lower
bound (local efficiency) but we have assumed that

∥∥∥Ω̃∥∥∥ ≤ CR2 where Ω̃ is the domain
related to 2D model and R represents the width of the inlet in the channel. Since the
estimators of the coupled 0D/2D stokes model depends on the inf-sup constant, we will
consider instead the 2D non coupled Stokes equation and we will introduce a new idea to
develop an estimator for which we have proved the upper and lower bounds for the non
coupled 2D Stokes equation that is independent of the inf-sup condition. The study that
we make is for the non coupled Stokes equation to prove the (upper and lower) bounds of
the error without the usage of the value β of the inf-sup condition and it is applicable for
the coupled 0D/2D Stokes model (but due to time restriction we did not make it). At the
end of this chapter we have made a section related to conclusion and perspectives.
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1. Context and model problems

1.1. Physical model and its simplifications

Fuel cell is an electrochemical device that converts the chemical energy of reactants into
electricity and heat. In this study we focus on a Ballard NEXA 2-D PEMFC (Proton
Exchange Membrane Fuel Cells), as in [83]. It can be seen from Figure 1.1 that a single
cell consists of 7 individual layers: 1) cathode gas supply channel, 2) cathode gas diffusion
layer (GDL), 3) cathode catalyst layer, 4) membrane, 5) anode catalyst layer, 6) anode
gas diffusion layer (GDL) and 7) anode gas supply channel. The actual geometry form of
cathode gas channel is represented in Figure 1.2.

Figure 1.1.: Stucture of a single cell of of PEMFC stack [83]
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1. Context and model problems

Figure 1.2.: Actual geometry form of cathode gas supply channel [83]

A complete model of PEMFC should take into account several complex interconnected
phenomena described by several branches of physics and chemistry, such as electrochem-
istry, flow in porous media, multiphase flow. The present thesis is only concerned by a
small part of this rich physics: modeling the gas flow in the cathode channels of PEMFC.
In particular, we exclude from our study the gas diffusion layer and the membrane elec-
trode assembly. In real PEMFC, the unavoidable water from humidified gas streams and
electrochemical reactions, leads to gas-liquid two-phase flow in the flow channels of fuel
cell. As a first approximation, one can assume though a single phase (gas) flow.

More drastic simplifying assumptions can be found in the literature, such as:

• The gas in the cathode channels is modelled as a Newtonian fluid with constant
viscosity µ.

• The fluid is supposed incompressible, i.e. the density ρ is constant and the velocity
u satisfies ∇ · u = 0, cf. [51]. We note however that the case of variable density is
also considered in this article.

• Parabolic profiles are assumed for the inlet and outlet velocities of the fluid, cf. [81].

• As mentioned above, a single phase flow is assumed (no liquid water in the channel).

• The flow is laminar, since typically it low Reynolds number: Re < 250, as detected
in [12].
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1.1. Physical model and its simplifications

Geometrical simplifications

In addition to the physical assumptions listed above, we shall make here some drastic
geometrical simplifications. Most notably, the geometrical setting considered in the thesis
is always 2D. More specifically, we shall mostly consider the 2D domain Ω depicted in
Figure 1.3, representing a typical portion of the whole cathode gas channel (although, in
some simulations, we will also deal with more complicated domains as depicted in Figure
1.3 on the right, representing the whole channel, reassembling the entire cathode channels
in Figure 1.2). As seen at Figure 1.3, we shall always assume that our domains Ω are
polygonal, although the real geometry of the cathode channel can have some curved parts,
cf. Figure 1.2). A possible adaptation of our techniques to the case of curved boundary
will be only briefly outlined in Appendix D, but is mostly out of the scope of the present
thesis.

Figure 1.3.: Computational domain Ω (on the left) representing a portion of the whole
cathode channel (on the right).

Let us explain some geometrical notations in relation to the domain Ω from Figure 1.3.
We denote by Γin the inlet border where the inlet parabolic profile is imposed on the
velocity, Γout the same for the outlet border, and Γwall the portion of ∂Ω corresponding
to the wall of the channel where the no slip condition u = 0 is imposed on the velocity.
We have thus Γwall = ∂Ω\

(
Γin ∪ Γout

)
. In all the numerical experimental measurements

below (unless stated otherwise) we shall use the following geometrical parameters: R =
0.5, L1 = 5.1, L2 = 0.3 and W = 0.9, cf. Figure 1.3.

Navier-Stokes equations for the gas flow in the cathode channel

In view of the above mentioned physical and geometrical assumptions, the gas flow can be
described by the incompressible steady (time independent) Navier-Stokes equations in the
2D domain Ω of Figure 1.3:

ρ(u · ∇)u− µ∆u+∇p = 0 in Ω,

div u = 0 in Ω,

u1 = S(y), u2 = 0 on Γin,

u1 = −S(y +W +R), u2 = 0 on Γout,

u = 0 on Γwall.

(1.1)
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1. Context and model problems

with
S(y) =

6uav
R2

y(R− y) (1.2)

Here R and W are some lengths detected in Figure 1.3, u = (u1, u2) represents the fluid
velocity vector (cm · s−1) and p the pressure. S(y) is the parabolic Poiseuille profile with
the average velocity uav, i.e. the unique quadratic polynomials vanishing at y = 0 and
y = R, and having the average uav over the interval (0, R).

The following physical parameters are proposed in [51]: the density is given by ρ = ρair =
1.031401 kg·m−3, the dynamic viscosity is given by µ = µair = 2.018×10−5 kg·m−1·s−1,
and the average velocity is taken as uav = 0.1 cm · s−1.

The characteristic feature of flows in the domains like those in Figure 1.3 is that they
can be very accurately described by a simple expression, i.e. the Poiseuille flow, in the
long straight portions of the channels, cf. the flow depiction at Figure 1.7 (a solution to
the Stokes equations is plotted there, but qualitatively the Navier-Stokes solution looks
the same). If one wants to approximate such a flow numerically, by the finite element
method, one can do the computations only in the bent portions of the channel, while
imposing the Poiseuille profile in the straight portions. The crucial question is then where
to put the interface between the two portions. This is indeed the central theme of the
present thesis. We shall not attempt here to answer this question in the case of non-linear
incompressible Navier-Stokes equations above. We shall content ourselves with the simpler
linear governing equations — the scalar Poisson equation and Stokes system. Hopefully,
our results can be adapted to the Navier-Stokes case, and then to more complicated models
(variable density and viscosity, coupling with the gas diffusion layer, etc).

1.2. Derivation of simplified models for Poisson and Stokes
equations

In this section, we consider the boundary value problems for Poisson and Stokes equations
posed in a domain Ω as depicted in Figure 1.3. We shall refer to the problem with original
governing equation as the 2D model, and shall introduce a simplified 0D model in a portion
of the whole domain. The latter will be referred to as the 0D model since the solution there
will be given by simple expressions involving at most 1 scalar parameter. The coupling of
these two models will be referred to as 0D/2D model.

The geometrical notation for 0D/2D coupling are presented at Figure 1.4. We denote
by Ω′ the subdomain where the 0D models will be set, and by Ω̃ the subdomain where
the original governing equations (the 2D model) will be kept. The two subdomains are
separated by the interface γ := Ω′ ∩ Ω̃, which is taken to be a vertical line placed at the
horizontal coordinate x = xγ . Thus, Ω = Ω′ ∪ γ ∪ Ω̃.

For both Poisson and Stokes problems, the goal is take the subdomain Ω′ as big as
possible in order to reduce the computational cost while not compromizing the overall
accuracy, since a numerical approximation (using finite elements) is needed only in Ω̃.
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1.2. Derivation of simplified models for Poisson and Stokes equations

Figure 1.4.: Representation of the global domain Ω splitted in two regions: region Ω′ (where
the 0D model is proposed), region Ω̃ (where the 2D model is proposed) and
the interface γ

1.2.1. Derivation of the simplified 0D/2D model of Poisson

We begin with a derivation of a 0D/2D coupled model for the very simple problem involving
the Poisson equation. Let us consider the boundary value problem for a scalar function u
on domain Ω from Figure 1.3:

−∆u = f, in Ω, (1.3a)
u = uin, on Γin, (1.3b)
u = uout, on Γout, (1.3c)
u = 0 on Γwall. (1.3d)

where
uin = S(y), uout = S(y +W +R), f =

12uav
R2

= −S′′
(y)

with S(y) defined by (1.2). Here, uav is a positive parameter measuring the average of u
on the inflow/outflow. The formulas for uin and uout represent thus quadratic polynomials
vanishing at the junctions of Γin/out and Γwall and having the prescribed average uav. The
inflow/outflow are chosen to mimic the boundary conditions of the more physical case of
Navier-Stokes equations (1.1). The expression for the constant right-hand side f is chosen
in a consistent manner with the inflow profile, as will be seen below.

The weak formulation of system (1.3) is represented by finding u ∈ H1
g (Ω) such that:

(∇u,∇v)Ω = (f, v)Ω ∀v ∈ H1
0 (Ω), (1.4)

where
H1

0 (Ω) := {u ∈ H1(Ω); u = 0 on ∂Ω},
H1
g (Ω) := {u ∈ H1(Ω); u = ug on ∂Ω},

ug =


uin on Γin,

uout on Γout,

0 on Γwall,
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1. Context and model problems

and (· , ·) denote the L2-scalar product.
We have plotted in Figure 1.5 an approximate solution to problem (1.3) obtained by

a standard finite element approximation with P2 continuous elements on a mesh of size
h ≈ 0.02. We observe that this solution has indeed a very simple form in the rectangular
region between the inflow and the bent region. Our goal is thus to determine explicitly
this form.

Figure 1.5.: The approximate numerical solution uh for the Poisson problem on Ω (1.3).

Simplified Model

Using techniques in [45] and in [70], we want to derive 0D model on Ω′ = (0, xγ)× (0, R)
which is represented in Figure 1.4, where xγ is the abscissa of the interface γ. We have
R << L1 and we consider that U = uav is the characteristic dimension for the u (this
is its average on the inflow). Let us introduce ϵ = R

L1
as R << L1. Let us consider the

dimensionless quantities:

ũ =
u

U
, x̃ =

x

L1
, ỹ =

y

R
,

then, let us substitute the quantities u = Uũ, x = L1x̃, y = Rỹ, in system (1.3) that
gives the following system:

−(ϵ2∂2x̃x̃ũ+ ∂2ỹỹũ) = f̃ for x̃, ỹ ∈ (0, 1), (1.5)

with f̃ = R2

U f = 12 (since U = uav). Now, let ϵ → 0 and recover the variables with
dimensions by substituting ũ = u

U , x̃ = x
L1

, ỹ = y
R and in system (1.5) to get

−∂2yyu = f in Ω′. (1.6)

From equation (1.6) and by integrating twice we get u(y) = −12uav
2R2 y

2 + c1y + c2 for some
constants c1(x) and c2(x) depend of x only. From boundary condition (1.3d) of system
(1.3), we fix the constants as u = 0 for y = 0 and y = R to get c2 = 0 and c1 = 6uav

R , thus
u(x, y) = 6uav

(R−y)y
R2 . Finally our simplified model in Ω′ gives

u′ := u′(x, y) = 6uav
(R− y)y

R2
= S(y) in Ω′. (1.7)
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1.2. Derivation of simplified models for Poisson and Stokes equations

Coupled Model

Let us introduce the simplified 0D model in Ω′, the non simplified 2D model in Ω̃ and let
γ be the interface between Ω′ and Ω̃ such that Ω = Ω′ ∪ Ω̃ ∪ γ. Let Γ′ ⊂ Γwall be the wall
of Ω′ and Γ̃ ⊂ Γwall be the wall of Ω̃. The coupled domain is represented in Figure 1.4.
The simplified model is:

u′ = S(y) in Ω′. (1.8)

The non simplified model in Ω̃ is to find ũ such that:
−∆ũ = f in Ω̃,

ũ = S(y), on γ,

ũ = uout, on Γout,

ũ = 0 on Γ̃.

(1.9)

The coupling condition is thus

u′ = ũ on γ. (1.10)

The variational formulation of system (1.9) is : Find ũ ∈ H1
g (Ω̃) such that

(∇ũ,∇ṽ)Ω̃ = (f, ṽ)Ω̃ ∀ṽ ∈ H1
0 (Ω̃) (1.11)

where,

H1
g (Ω̃) := {ũ ∈ H1(Ω̃); ũ = ũg on ∂Ω̃}

and

ũg =


S(y) on γ,

uout on Γout,

0 on Γ̃.

1.2.2. Discretization of the 0D/2D model for Poisson

Let T̃h be a triangular mesh on Ω̃ regular in the sense of [29] . Introduce the FE spaces
Ṽh:= {ṽh continuous on Ω̃ s.t: vh|K ∈ Pk(K) ∀K ∈ T̃h)},
Ṽ g
h := {vh ∈ Ṽh such that: vh|∂Ω̃ = ũg},
Ṽ 0
h := {vh ∈ Ṽh such that: vh|∂Ω̃ = 0},

where Pk(K) is the set of polynomials of degree ⩽ k on a triangle K ∈ T̃h. Now, we
discretize the problem (1.11) above as: find ũh ∈ Ṽ g

h , such that

(∇ũh,∇ṽh)Ω̃ = (f, ṽh)Ω̃ ∀ṽh ∈ Ṽ 0
h . (1.12)

Then the approximated solution on the whole Ω is reconstructed as

ush =

{
u′ in Ω′,

ũh in Ω̃.
(1.13)
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1. Context and model problems

A numerical illustration

In this section, we numerically test the 0D/2D model for the Poisson equation using the
finite elements of degree k = 2. We explore the error in the energy norm between the
approximated solution ush, defined by (1.13), and the solution u to (1.4)

∥∇(ush − u)∥Ω. (1.14)

with respect to different positions of the interface γ. The exact solution u is in fact
unknown, and we replace it by a reference solution, i.e. a finite element approximation on
a sufficiently fine mesh on Ω.

Let us fix a mesh size of Ω̃ by h ≈ 0.08, h ≈ 0.04 and h ≈ 0.02, we want to see
the variation of the energy norm between the simplified approximated solution ush and
the reference solution u, with respect to different positions of the interface i.e. xγ ∈
[0.1, L1 − 0.1] and for each mesh sizes as it is showed in Figure 1.6.

Figure 1.6.: The variation of the coupled error ||∇ush − ∇u||Ω with respect to different
positions of the interface xγ and for each mesh size h ≈ 0.08, h ≈ 0.04 and
h ≈ 0.02.

We see from Figure 1.6 that the error of the coupled 0D/2D model is affected by the
position of the interface. As the position of the interface becomes near the bend region as
the error ||∇ush −∇u||Ω becomes bigger.

1.2.3. Derivation of the simplified 0D/2D model of Stokes

We now want to derive a simplified coupled 0D/2D model for the Stokes equation, i.e.
equations (1.1) with ρ = 0. To simplify the notations, we redefine p/µ as p. We thus
consider the following problem for the velocity u and the pressure p on domain Ω as in

24



1.2. Derivation of simplified models for Poisson and Stokes equations

Figure 1.3:

−∆u+∇p = 0 in Ω, (1.15a)
div u = 0 in Ω, (1.15b)

u1 = S(y), u2 = 0 on Γin, (1.15c)
u1 = −S(y +W +R), u2 = 0 on Γout, (1.15d)

u = 0 on Γwall. (1.15e)

If p is a solution of system (1.15), then p+ c is also a solution. So, let us fix this constant
c by the condition ∫

Ω
p = 0. (1.16)

The weak formulation of system (1.15) is represented by finding (u, p) ∈ H1
g(Ω)×L2

0(Ω),
cf the notations below, such that:{

(∇u,∇v)Ω − (∇ · v, p)Ω = 0 ∀v ∈ [H1
0 (Ω)]

2,

−(∇ · u, q)Ω = 0 ∀q ∈ L2
0(Ω).

(1.17)

System (1.17) is well posed [47] due to the inf-sup condition:

inf
q∈L2

0(Ω)
sup

v∈[H1
0 (Ω)]2

(q,∇ · v)Ω
||q||Ω||∇v||Ω

= β > 0. (1.18)

We have plotted in Figure 1.7 an approximate solution to problem (1.15) obtained by a
standard Taylor-Hood finite element approximation (i.e. using P2 continuous elements for
the velocity, and P1 continuous elements for the pressure) on a mesh of size h ≈ 0.02. We
observe that this solution has indeed a very simple form in the rectangular region between
the inflow and the bent region. The velocity vector is horizontal there and its profile is
independent of x. The pressure is an affine function of x. Our goal is thus to determine
explicitly the expressions giving velocity and pressure there.

Notations

Let us define the following notations.

• L2
0(Ω) = {f ∈ L2(Ω);

∫
Ω f = 0}.

• ug =


(S(y), 0) on Γin,

(−S(y +W +R), 0) on Γout,(
0, 0
)

on Γwall.

• H1
g(Ω) := {u ∈ [H1(Ω)]2; u = ug on ∂Ω}.

• [H1
0 (Ω)]

2 := {u ∈ [H1(Ω)]2; u = 0 on ∂Ω}.

• H(div,Ω) := {u ∈ [L2(Ω)]2; ∇ · u ∈ L2(Ω)}.

• (u, v)Ω =
∫
Ω uv.
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1. Context and model problems

(a) The approximate velocity uh

(b) The approximate pressure ph

Figure 1.7.: A numerical approximation for velocity and pressure given by Stokes problem
(1.15) on Ω.

Simplified Model

We want to impose a simplified 0D model on Ω′ = (0, xγ) × (0, R) which is represented
in Figure 1.4, , where xγ is the abscissa of the interface γ. We have R << L1 and we
consider that U2 << U1, where U1 is the characteristic dimension for horizontal velocity
and U2 is the characteristic dimension for vertical velocity. Let us introduce the following
relations: ϵ = R

L1
as R << L1, U1 = uav where uav is the average velocity, U2 = ϵU1 and

the characteristic dimension for pressure Π = U1L1
R2 . So, let us consider the dimensionless

quantities:

ũ1 =
u1
U1
, ũ2 =

u2
U2
, x̃ =

x

L1
, ỹ =

y

R
, p̃ =

p

Π
,

then, let us substitute the quantities u1 = U1ũ1, u2 = U2ũ2, x = L1x̃, y = Rỹ, p =
Πp̃ in system (1.15) that gives the following system:


−(ϵ2∂2x̃x̃ũ1 + ∂2ỹỹũ1) + ∂x̃p̃ = 0

∂ỹp̃ = ϵ4∂2x̃x̃ũ2 + ϵ2∂2ỹỹũ2 in (0, 1)2.

∂x̃ũ1 + ∂ỹũ2 = 0

(1.19)

Now, let ϵ → 0 and recover the variables with dimensions by substituting ũ1 = u1
U1

,
ũ2 =

u2
U2

, x̃ = x
L1

, ỹ = y
R and p̃ = p

Π in system (1.19) to get:
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1.2. Derivation of simplified models for Poisson and Stokes equations

−∂2yyu1 + ∂xp = 0 (1.20a)

∂yp = 0 in Ω′. (1.20b)
∂xu1 + ∂yu2 = 0 (1.20c)

Eq. (1.20b) gives
p = p(x)

so that (1.20a) implies that ∂2yyu1 is a function of x only. Thus, ∂2yyu1 is constant for
any fixed x, so that u1(x, y) is a quadratic polynomial of y with coefficients depending on
x. Since u1 should vanish at y = 0 and y = R, we see that u1 should be proportional
to y(R − y) with the coefficient of proportionality dependent on x. Substituting this to
(1.20a) gives

u1(x, y) = −1

2
y(R− y)

dp

dx
(x)

Substituting this to (1.20c) gives

−1

2
y(R− y)

d2p

dx2
(x) + ∂yu2(x, y) = 0

Take any x, integrate this in y from 0 to R, and observe
∫ R
0 ∂yu2(x, y)dy = u2(x,R) −

u2(x, 0) = 0. This implies d2p
dx2

= 0, i.e.

p = −Px+ e

with some constants P and e. It also means that ∂yu2 = 0, hence u2 = 0 due to the
boundary conditions on y = 0. Finally, imposing the average of u1 at any given x to be
uav gives u1 = S(y) as defined by (1.2), and we identify the pressure gradient as P = 12uav

R2 .
Our simplified model in Ω′ is thus

u1(x, y) = S(y) (1.21a)
u2(x, y) = 0 in Ω′. (1.21b)

p(x, y) = −12uav
R2

x+ c (1.21c)

with some c ∈ R.

Coupled Model

Let us introduce the simplified 0D model in Ω′, the non simplified 2D model in Ω̃ and let
γ be the interface between Ω′ and Ω̃ such that Ω = Ω′ ∪ Ω̃ ∪ γ. Let Γ′ ⊂ Γwall be the wall
of Ω′ and Γ̃wall ⊂ Γwall be the wall of Ω̃. The coupled domain is represented in Figure 1.4.
The simplified model in Ω′ is:

u′1(x, y) = S(y),
u′2(x, y) = 0, in Ω′

p′(x, y) = −Px+ cΩ′ ,
(1.22)

with S(y) the Poiseuille profile (1.2), P = 12uav
R2 and cΩ′ some constant to be determined.
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1. Context and model problems

In Ω̃, we keep the original governing equations: find ũ and p̃ such that:

−∆ũ+∇p̃ = 0 in Ω̃,

div ũ = 0 in Ω̃,

ũ1 = S(y), ũ2 = 0 on γ,

ũ1 = −S(y +W +R), ũ2 = 0 on Γout,

ũ = 0 on Γ̃wall.

(1.23)

Note that we have already assumed here the coupling condition for the velocity on the
interface

u′1 = ũ1 and u′2 = ũ2 on γ . (1.24)

Remark that if p̃ is a solution of system (1.23), then p̃+K is also a solution of system
(1.23) in Ω̃ for any K ∈ R. Let p0 ∈ L2

0(Ω̃) be a particular unique solution of system (1.23).
The existence and uniqueness of (ũ, p0) ∈ [H1(Ω̃)]2 × L2

0(Ω̃) as a weak solution of system
(1.23) is related to the inf-sup condition, cf. [47, Theorem 5.1, page 80]. More specifically,
this solution is characterized by: find (ũ, p0) ∈ H1

g(Ω̃)× L2
0(Ω̃) such that{

(∇ũ,∇ṽ)Ω̃ − (∇ · ṽ, p0)Ω̃ = 0 ∀ṽ ∈ [H1
0 (Ω̃)]

2,

−(∇ · ũ, q̃)Ω̃ = 0 ∀q̃ ∈ L2
0(Ω̃),

(1.25)

where
H1
g(Ω̃) := {ũ ∈ [H1(Ω̃)]2; ũ = ũg on ∂Ω̃}

and

ũg =


(S(y), 0) on γ,

(−S(y +W +R), 0) on Γout,

(0, 0) on Γ̃wall.

The general solution for the pressure in (1.23) is then given by

p̃ = p0 + cΩ̃ (1.26)

with the constant cΩ̃ to be determined.
So, for the moment we have two additive constants: cΩ′ in (1.23) and cΩ̃ in (1.26). To

eliminate one of these constants, we propose the following coupling condition∫
γ
(∇u′ − p′I)n · S(y)n =

∫
γ
(∇ũ− p̃I)n · S(y)n. (1.27)

Physically, this reflects the continuity of the normal force on both sides of γ, taking the
average with the weight S(y). Mathematically, eq. (1.27) makes perfect sense for (ũ, p̃) ∈
H1
g(Ω̃)× L2(Ω̃) since (1.25) implies that (∇ũ− p̃I) ∈ H(div, Ω̃)2 so that its normal trace

on γ is well defined. The multiplication by S(y) in (1.27) may seem somewhat arbitrary.
We shall see however that this equation comes from a natural variational formulation of
the coupled problem, cf. the paragraph below. Moreover, it is this coupling condition that
allows us to develop the reliable and efficient a posteriori error bounds in Chapter 3.

Adding to the coupling condition above the requirement that the integral of pressure
over all of Ω is 0, i.e. ∫

Ω′
p′ +

∫
Ω̃
p̃ = 0 (1.28)
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1.2. Derivation of simplified models for Poisson and Stokes equations

closes the system of equations. We have now two scalar equations for two additive constants
cΩ′ and cΩ̃. This enables us to define the unique solution to the coupled system (1.22)–
(1.23)–(1.27)–(1.28).

Remark 1.1. We have also considered a slightly simpler alternative to the coupling condi-
tion (1.27), which consists in imposing that the average pressure is the same on both sides
of the interface γ: ∫

γ
p′ =

∫
γ
p̃ (1.29)

The coupled system (1.22)–(1.23)–(1.29)–(1.28) also allows us to define a unique solution
on Ω and works well in practice, cf. the numerical results below. However, mathematically,
(1.29) is not satisfactory since p̃ is by definition in L2(Ω̃) so that it does not necessarily
have a trace on γ.

A variational characterization of the coupled problem (1.22)–(1.23)–(1.27)–(1.28)

We present here another derivation of the coupled problem, starting from a variational
problem taking into account the essential features of the solution predicted by the asymp-
totic analysis, and leading to the coupling condition (1.27) together with the simplified
model (1.22). We start by recalling that the asymptotic analysis suggests that the velocity
in Ω′ can be approximated by an expression of the form (α(x)S(y), 0) with S(y) given by
(1.2) and some α(x), and the pressure in Ω′ can be approximated by a function of x only.
Let us introduce the spaces of functions on Ω that satisfy these constraints on Ω′:

V s = {v ∈ [H1(Ω]2 : v|Ω′ = (β(x)S(y), 0) with β ∈ H1(0, xγ)}, (1.30)

M s = {q ∈ L2
0(Ω : q|Ω′ = χ(x) with χ ∈ L2(0, xγ)}, (1.31)

and restrict the variational formulation (1.17) of the Stokes problem to produce a plausible
approximation to the velocity and pressure, simplified on Ω′. We thus search for (us, ps) ∈
V s ×M s such that u = ug on ∂Ω and{

(∇us,∇vs)Ω − (∇ · vs, ps)Ω = 0 ∀vs ∈ V s ∩ [H1
0 (Ω)]

2,

−(∇ · us, qs)Ω = 0 ∀qs ∈M s.
(1.32)

This produces indeed the coupled solution introduced above.

Lemma 1.2. Problem (1.32) has the unique solution which is given by

us =

{
u′ on Ω′,

ũ on Ω̃,
(1.33)

ps =

{
p′ on Ω′,

p̃ on Ω̃.
(1.34)

with u′, ũ, p′, p̃ given by (1.22)–(1.23)–(1.27)–(1.28).

Proof. Let (us, ps) ∈ V s ×M s be a solution to (1.32) veryfying us = ug on ∂Ω, us =
(α(x)S(y), 0) on Ω′, and ps = π(x) on Ω′. Take the test function qs in the second equation
of (1.32) as

qs(x, y) = χ(x) =
uav
R
α′(x) onΩ′
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1. Context and model problems

and qs = ∇ · us on Ω̃. Note that qs ∈M s since∫
Ω
qs =

∫ R

0
S(y)dy

∫ xγ

0
α′(x)dx+

∫
Ω̃
∇ · us =

∫
Ω
∇ · us =

∫
∂Ω
ug = 0.

The second equation of (1.32) now gives

0 = (∇·us, qs)Ω =
uav
R

∫ R

0
S(y)dy

∫ xγ

0
α′(x)2dx+(∇·us,∇·us)Ω̃ =

u2av
R

∥α′∥2(0,xγ)+∥∇·us∥2
Ω̃

hence α(x) = const = 1 (by boundary conditions on Γin) and ∇ · us = 0 on Ω̃. Thus
us = (S(y), 0) on Ω′.

The first equation of (1.32) with any test function vs of the form β(x)S(y) on Ω′ can be
now written as∫ R

0
S′(y)2dy

∫ xγ

0
β(x)dx−

∫ R

0
S(y)dy

∫ xγ

0
π(x)β′(x)dx+ (∇us,∇vs)Ω̃ − (∇ · vs, ps)Ω̃ = 0

Taking β = 0 gives immediately div(∇us − psI) = 0 on Ω̃. On the other hand, taking
β ∈ H1

0 (0, xγ) and vs = 0 on Ω̃ gives

P

∫ xγ

0
β(x)dx−

∫ xγ

0
π(x)β′(x)dx = 0

since −S′′(y) = P . Hence π′ = −P on (0, xγ). We have thus proven that (us, ps) is of the
form (1.22) on Ω′ and satisfies (1.23) on Ω̃. Now, taking any test function vs ∈ V s with
vs = S(y) on Ω′ and integrating by parts on Ω′ and on Ω̃ gives∫

γ
[(∇us)n− psn] · S(y) = 0

which is equivalent to the coupling condition (1.27). Thus, (us, ps) can be represented as
(1.33)–(1.34) with u′, ũ, p′, p̃ given by (1.22)–(1.23)–(1.27)–(1.28).

Vice-versa, let u′, ũ, p′, p̃ be given by (1.22)–(1.23)–(1.27)–(1.28). Combining them in
(us, ps) as in (1.33)–(1.34), we see immediately us ∈ V s, ps ∈M s and div(∇us− psI) = 0,
∇ · us = 0 on both Ω′ and Ω̃. Taking any vs ∈ V s of the form β(x)S(y) on Ω′, we observe

(∇us,∇vs)Ω − (∇ · vs, ps)Ω = β(xγ)

∫
γ
[(∇us)n− psn] · S(y) = 0

by integration by parts on Ω′ and on Ω̃, and the coupling condition (1.27). This means
that (us, ps) satisfies (1.32). ■

1.2.4. Discretization of the 0D/2D model for Stokes

Let T̃h be a regular triangular mesh on Ω̃ in the sense of [29]. Introduce the FE spaces
Ṽh:= {vh = (v1h, v

2
h) continuous on Ω̃ s.t. vh|K ∈ P2(K) ∀K ∈ T̃h},

Ṽ g
h := {vh ∈ Ṽh s.t. vh|∂Ω̃ = ũg},
Ṽ 0
h := {vh ∈ Ṽh s.t. vh|∂Ω̃ = 0},
M̃h:= {qh continuous on Ω̃ s.t. qh|K ∈ P1(K) ∀K ∈ T̃h and

∫
Ω̃ qh = 0},
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1.2. Derivation of simplified models for Poisson and Stokes equations

Now, we discretize (1.25) as: find ũh ∈ Ṽ g
h , p̃0h ∈ M̃h such that{

(∇ũh,∇ṽh)Ω̃ − (∇ · ṽh, p̃0h)Ω̃ = 0 ∀ṽh ∈ Ṽ 0
h ,

−(∇ · ũh, q̃h)Ω̃ = 0 ∀q̃h ∈ M̃h,
(1.35)

set
p̃h = p̃0h + cΩ̃,h (1.36)

and couple it with the approximation on Ω′
u′1(x, y) = S(y),
u′2(x, y) = 0, in Ω′

p′h(x, y) = −Px+ cΩ′,h,
(1.37)

through the conditions∫
γ
(∇u′ − p′hI)n · S(y)n =

∫
γ
(∇ũh − p̃hI)n · S(y)n, (1.38)∫

Ω′
p′h +

∫
Ω̃
p̃h = 0. (1.39)

Note that p′h is different from p′ since cΩ′,h ̸= cΩ′ . Then the approximate solution on the
whole Ω is reconstructed as

ush =

{
u′ on Ω′,

ũh on Ω̃,
(1.40)

psh =

{
p′h on Ω′,

p̃h on Ω̃.
(1.41)

A numerical illustration

In this section, we numerically test the 0D/2D model for the Stokes equations. We explore
the error in the energy norm between the approximated velocity ush and pressure psh, defined
by (1.40) and (1.41) respectively, and the exact velocity and pressure given by (1.15),
with respect to different positions of the interface γ. We shall report thus the following
quantities:

∥∇(ush − u)∥Ω and ∥psh − p∥Ω (1.42)

The exact solution (u, p) is in fact unknown, and we replace it by a reference solution, i.e.
a finite element approximation on a sufficiently fine mesh on Ω, using continuous P⊭/P⊮
finite elements for velocity/pressure.

Let us fix a mesh size of Ω̃ by h ≈ 0.064, h ≈ 0.032 and h ≈ 0.016, we want to see
the variation of the energy norm between the simplified approximated solution ush and
the reference solution u, i.e. ||∇ush − ∇u||Ω and the variation of the L2-norm between
the simplified approximated solution psh and the reference solution p, i.e. ||psh − p||Ω with
respect to different positions of the interface i.e. xγ ∈ [0.1, L1 − 0.1] and for each mesh
sizes as it is showed in Figure 1.8.

We see from Figure 1.8 that the error of the coupled 0D/2D model is affected by the
position of the interface. As the position of the interface becomes near the bend region as
the errors ||∇ush −∇u||Ω and ||psh − p||Ω become bigger.
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1. Context and model problems

Figure 1.8.: The variation of the coupled errors ||∇ush−∇u||Ω and ||psh− p||Ω with respect
to different positions of the interface xγ and for each mesh size h ≈ 0.064,
h ≈ 0.032 and h ≈ 0.016.

Remark 1.3. As announced in Remark 1.1, the coupling condition (1.27) can be replaced
in practice by another one (1.29). The results produced by the two variants are indeed
very close one to another. This is reported in Figure 1.9. We plot there the pressure error
∥psh − p∥Ω produced by the two variants on meshes of size h ≈ 0.064, as function of the
position of interface γ. Note the velocity approximation ush is not affected by the choice of
the coupling condition, so that there is no need to compare the velocity errors.

Figure 1.9.: The variation of ||psh− p||Ω using the two coupling conditions. Red: condition
(1.29); blue: condition (1.27).

1.3. A posteriori error Estimation

The main core of the thesis (Chapters 2 and 3) will be devoted to the construction of a
posteriori error estimators for the coupled 0D/2D models for Poisson and Stokes equation,
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1.3. A posteriori error Estimation

as derived in the preceding section, using finite elements to discretize the original 2D
equation on the “not simplified" subdomain Ω̃. These estimators will in particular take
into account the “modeling" error due to the replacement of the original problem by the
coupled 0D/2D model. Prior to presenting our estimators for coupled problems, let us
give here a general background about a posteriori error estimation in the context of usual
boundary value problems.

A posteriori error estimators are obtained from some computable quantities on the
patches of the mesh elements or on the mesh elements themselves. These computable local
quantities on the mesh element K are denoted by ηK , which represent a local estimators
on K and usually depends on the numerical computable solution uh, quantify the local
discretization error. Now, the global estimator η is defined by

η2 :=
∑
K∈Th

η2K (1.43)

Let us denote the exact solution by u and the approximated solution by uh, then among
the desirable properties for the optimal a posteriori error estimator η, we can cite:

i) guaranteed upper bound, which represents the global reliability in which we
have a fully computable upper bound, that depends on the approximated solution
uh, of the numerical error between the exact and the approximated solution i.e.
there exists a (known) constant C > 0 which is independent from the exact solution
u, from the approximate solution uh and from the mesh size h such that

∥u− uh∥ ≤ Cη + osc (1.44)

where osc are the data oscillations, measures the discretization error of some data
function f ∈ L2(Ω). When C = 1 the a posteriori error estimator is called an
guaranteed estimator.

ii) local efficiency, at which the local estimator ηK gives a local lower bound for the
actual error up to a generic constant i.e. there exists a constant c > 0, which does
not depend on u and uh, such that

cηK ≤
∥∥∥u|ωK

− uh|ωK

∥∥∥
ωK

+ osc|ωK
, (1.45)

where the patch ωK is a collection of elements K that share the same vertex a.
Here, u|ωK

, uh|ωK
and osc|ωK

represent the restriction of the exact solution u, the
approximated uh and the data oscillation osc on the patch ωK respectively. Usually,
the constant c is unknown.

iii) asymptotic exactness, the efficiency index which is the ratio η
∥u−uh∥ tends to one

as we refine the mesh.
η

∥u− uh∥
→ 1 (1.46)

iv) robustness, where the previous properties are independent from the parameters
of the problem i.e. the constants C, c and the efficiency index do not depend on
the parameters of the problem and their variation.
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1. Context and model problems

v) low computational cost, where the computation of η can be done locally in order
to obtain a low computational cost.

Optimally, an estimator should satisfy (1.44) and (1.45) with constants C and c very close
to 1 as much as possible. From this we obtain two things, the estimator is a good approx-
imation of the exact error i.e. η ≈ ∥u− uh∥ and the estimator detects locally where the
error is big across the mesh Th, which is important in adaptive mesh refinement algorithms.
Usually, the norm ∥·∥ in Properties i) to iii) is the energy norm of the associated problem.

In order to study Properties i) to v), for linear elliptic PDEs problems, we refer the
reader to the following works [2, 20, 23, 34–36, 58, 64, 74, 77]. There are many types of a
posteriori error but the most known estimator is the explicit residual estimates, which
is introduced initially by Babuška and Rheinboldt in [4, 7, 9]. Many studies verified that
these explicit residual estimators satisfy the properties i) as in [3], ii) as in [73] for Stokes
and [74] for Poisson equation, iv) as in [75, 76] for the reaction-diffusion and convection-
diffusion equations, and they satisfy in general the property v). The constant C in the
upper bound in i) is in general not known for the residual error estimators, although
there are some explicit estimates for it in the literature, eg. Carstensen and Funken [21],
Carstensen and Klose [22], and in Veeser and Verfürth [71]. Certainly, we cannot hope
that C = 1. The residual error estimators are thus said to be reliable and not guaranteed.
There are many other types of a posteriori error estimates such as equilibrated residual
estimates as Ainsworth and Oden [1], Averaging estimates as Zienkiewicz–Zhu [84] and
Carstensen [18,19], Functional a posteriori error estimates as Neittaanmäki and Repin [58]
and Repin [64], hierarchical estimates as Bank and Smith [11] and finally geometric a
posteriori error estimates as Castro- Díaz and Hecht in [26] or Frey and Alauzet [44].
Among all the techniques, we focus on the guaranteed because the constants in upper
bound is known and it allows us to estimate error knowing the magnitude of the error. In
this thesis we will focus on so-called equilibrated fluxes estimates.

Equilibrated fluxes estimators

Fluxes of the solution u are usually the gradient of u i.e −∇u (in Poisson problems for
example) and are sometimes stresses quantities i.e ∇u−pI (where u represents the velocity
and p represents the pressure in the Stokes problems for example). The idea of reconstruc-
tion of fluxes from the approximated finite element solution uh comes from the fact that
we want to reconstruct a flux which satisfies the properties of the exact flux −∇u since,
for example in Poisson equation −∆u = f on the domain Ω, the approximated flux −∇uh
does not belong to H(div,Ω) and −∆uh ̸= f while ∇u belongs to H(div,Ω) space and
∇ · (−∇u) = f , where H(div,Ω) is the space which contains vector functions in L2(Ω)
and its divergence also belong to L2(Ω). For this reason we make a reconstructed flux σh
which belongs to H(div,Ω) and get an estimation of the actual error ∥∇u−∇uh∥Ω. These
estimators represents the norm between the fluxes of the finite element solution uh and the
reconstructed ones σh i.e ∥∇uh + σh∥Ω.
The idea of equilibrated fluxes estimates is related to Prager–Synge equality [61] and the
hypercircle method as Synge [69]. Their are many research studies about equilibrated fluxes
estimators such as Repin [66], Destuynder and Métivet [30], Luce and Wohlmuth [55], Lade-
vèze and Leguillon [54], Korotov [53], Vejchodský [72], or Braess and Schöberl [16], Fierro
and Veeser [41]. The robust with respect to the polynomial degree is proved by Braess et
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1.4. An a posteriori error estimator for the non coupled 2D Poisson Model

al. in [14]. This distinguishes them from the other types of estimates.
In the next section we will explain the idea of equilibrated fluxes estimators using the
Vohralik techniques in [39] .

1.4. An a posteriori error estimator for the non coupled 2D
Poisson Model

In order to understand better some ideas of the technique of equilibrated fluxes for a
posteriori error estimation, we will give a simple theoretical analysis and some numerical
illustration in the case of a Poisson problem with Neumann boundary condition. We make
the flux reconstruction by similar strategies as [39] giving “pedagogical" motivation for it.
We shall contend ourselves here with a simpler proof of the efficiency, without attempting
to prove the “p-robustness".

Let us consider the problem posed in domain Ω ⊂ Rd with d = 2 or 3:

−∆u = f in Ω,

∂u

∂n
= 0 on ∂Ω.

We suppose f ∈ L2(Ω) and Ω a bounded polygonal/polyhedral domain. Note that we
prefer to treat here the problem with Neumann boundary conditions since they turn out
to be slightly simpler with respect to the a posteriori analysis than the Dirichlet ones (the
changes that should be made in the Dirichlet case are outlined at the end of the section, see
Remark 1.8). The solution u is defined up to an additive constant. To make the solution
unique, we impose

∫
Ω u = 0.

Let Th be a regular mesh on Ω consisting of triangles/tetrahedra. Let Vh be the usual
Pk finite element space on this mesh (the space of continuous functions on Ω given by
poynomials of degree ⩽ k on every K ∈ Th). The discrete problem is to find uh ∈ Vh such
that for any vh ∈ Vh ∫

Ω
∇uh · ∇vh =

∫
Ω
fvh. (1.47)

Our goal is to provide an a posteriori estimate for ∥∇u−∇uh∥Ω. First of all, we note the
following bound: for any σ ∈ H(div,Ω) such that div σ = f on Ω, σ · n = 0 on ∂Ω, we
have

∥∇u−∇uh∥Ω ⩽ ∥σ +∇uh∥Ω. (1.48)

Indeed, setting e = u− uh

∥∇u−∇uh∥2Ω = (∇u−∇uh,∇e) = (f, e)− (∇uh,∇e) = (div σ, e)− (∇uh,∇e)

= (−σ −∇uh,∇e) ⩽ ∥σ +∇uh∥Ω∥∇e∥Ω,

so that the announced estimate follows by dividing on both sides by ∥∇u−∇uh∥Ω = ∥∇e∥Ω.
Let us emphasize that (1.48) holds for any « flux » σ with div σ = f , and the idea of what
follows is to give a recepee to construct such a flux in a way easily implementatble on a
computer. Another thing to keep in mind is that this σ should be kept as close as possible
to −∇uh, in order to minimize the over-prediction of the error in (1.48). Let us start from
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the observation that there is an ideal flux (of no practical use) given by σideal = −∇u. For
this flux, (1.48) is a trivial identity. This σideal satisfies

σideal = −∇u,

div σideal = f,

σideal · n = 0on ∂Ω.

Now, let us introduce the localized version of σideal : σa = −(∇u)ψa where ψa is the P1

finite element basis function (the hat function) associated to any mesh node a. This σa

satisfies on the patch ωa = supp(ψa)

σa = −(∇u)ψa onωa,

div σa = fψa −∇u · ∇ψa onωa,

σa · n = 0on ∂ωa.

Note that
σideal =

∑
a

σa onΩ

since
∑

a ψ
a = 1 (we imply the summation over all the mesh nodes in such expressions).

Let us discretize the problem for σa. We do it first on a very formal level. We introduce
some finite element space Σah ⊂ H(div, ωa) and seek for σah ∈ Σah such that

σah ≈ −(∇uh)ψa onωa, (1.49)

div σah ≈ fψa −∇uh · ∇ψa onωa, (1.50)

σah · n = 0on ∂ωa. (1.51)

We define then
σh =

∑
a

σah. (1.52)

Both (1.49) and (1.50) introduce some approximations with respect to the exact σa, most
notably u is replaced by uh there. But the role of these approximations is quite different
from (1.49) to (1.50). In the case of (1.50), replacing u by uh does not affect our primary
goal, i.e. to construct a flux with div σ = f . Indeed, if (1.50) were satisfied exacly, then
one would have

div σh =
∑
a

div σah = f
∑
a

ψa −∇uh · ∇

(∑
a

ψa

)
= f. (1.53)

We want thus to satisfy (1.50) as accurately as possible. In our final construction (1.50)
will be imposed almost exactly with the small modification that f will be replaced by a
piecewise polynomial approximation fh (otherwise, it would be impossible to satisfy (1.50)
since div σah is piecewise polynomial).
On the other hand, (1.49) cannot be made precise even in principle since (∇uh)ψa ̸∈
H(div, ωa). We want however to make the difference between σah and −(∇uh)ψa as small
as possible, in order to minimize the over-prediction of the error in (1.48).
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Motivated by the discussion above, we give now the precise formulation for σah in (1.49)–
(1.51): find σah ∈ Σah such that

σah = arg min
sah ∈ Σa

h
div sah = ΠQa

h
(fψa −∇uh · ∇ψa)

∥sah + (∇uh)ψa∥ωa (1.54)

where Σah ∈ H(div, ωa) incorporates already the boundary conditions (1.51) and is given
by

Σah = {σh ∈ H(div, ωa), σh|K ∈ RTp(K) ∀K ∈ ωa, [[σh]]F · nF on any facet insideωa, σh · n = 0on ∂ωa}

and

Qah = divΣah =

{
qh ∈ L2(ωa), qh|K ∈ Pp(K) ∀K ∈ ωa, and

∫
ωa

qh = 0

}
with Pp(K) the set of polynomials of degree ⩽ p on K. Here RTp(K) is the set of Raviart-
Thomas (vector-valued) finite elements on a cell K which is defined by

RTp(K) := Pp(K)2 + xP̃p(K) (1.55)

where, P̃p(K) represents the set of homogeneous polynomials of degree p on K. Note also
that the constraint

∫
ωa qh = 0 is introduced in Qah in accordance with σh · n = 0on ∂ωa in

the definition of Σah. Let us summarize some important properties of the Raviart-Thimas
space used here after.

Remark 1.4. The space RTp(K) is characterized by the following properties.

• RTp(K) contains all the vector-valaued polynomial functions of degree ⩽ p (plus
other things).

• Let Γ0, . . . ,Γd be the sides of ∂K, α0, . . . , αd any polynomials of degree ⩽ p on
Γ0, . . . ,Γd respectively, and β any polynomial of degree ⩽ p on K such that

∑d
i=0

∫
Γi
αi =∫

K β. Then there exists γ ∈ RTp(K) such that

γ · n = αi onΓi, i = 0, . . . , d

div γ = β onK.

We now give the Euler-Lagrange equations that give the solution to (1.54): find σah ∈ Σah
and pah ∈ Qah such that for all τh ∈ Σah and qh ∈ Qah∫

ωa

σah · τh +
∫
ωa

pah div τh = −
∫
ωa

(∇uh)ψa · τh, (1.56)

∫
ωa

qh div σ
a
h =

∫
ωa

(fψa −∇uh · ∇ψa)qh. (1.57)

Existance of the solution to this problem is given by the following well-known result.
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Lemma 1.5. Consider the problem: find σh ∈ Σah and ph ∈ Qah such that for all τh ∈ Σah
and qh ∈ Qah ∫

ωa

σh · τh +
∫
ωa

ph div τh = −
∫
ωa

F · τh,∫
ωa

qh div σh =

∫
ωa

Gqh.

This problem has the unique solution for any given F ∈ L2(ωa)d and G ∈ L2(ωa). More-
over,

∥σh∥2ωa + h2a∥ div σh∥2ωa +
1

h2a
∥ph∥2ωa ⩽ C(∥F∥2ωa + h2a∥G∥2ωa).

The proof of this Lemma can be found in several textbooks on mixed finite element
methods. The prefactors with the powers of the mesh size ha stem from a rescaling from
a reference patch configuration. The flux reconstruction σh is thus defined by (1.52) with
σah given by (1.56)–(1.57) and the a posteriori error estimator is defined by ∥σh +∇uh∥Ω,
cf. (1.48).

Theorem 1.6. Assume p ⩾ k.The error estimator ∥σh+∇uh∥Ω with σh defined by (1.56)-
(1.57)-(1.52) satisfies

∥∇u−∇uh∥Ω ⩽ ∥σh +∇uh∥Ω + h.o.t. (1.58)

∥σh +∇uh∥Ω ⩽ C∥∇u−∇uh∥Ω + h.o.t. (1.59)

with C depending only on the mesh regularity and on polynomial degrees k and p, and
h.o.t. standing for higher order terms, i.e. the contributions of order o(hk), at least if f is
sufficiently smooth, and thus negligible. More specifically,

h.o.t. ⩽ C

√∑
K∈Th

h2K∥f − fh∥2K

where fh|K is the orthogonal projection of f |K on the space Pp(K) of polynomials of degree
⩽ p on K.

Proof. The upper estimate (1.58) is aready almost proved, cf. (1.48). However, we do
not have exactly div σh = f , but rather div σh = fh with fh described in the statement
above. To see this, we recall (1.57) which is valid for piecewise Pp polynomials qh under
the constraint

∫
ωa qh = 0. In fact, (1.57) is satisfied with qh = 1 as well. Indeed,∫

ωa

div σah = 0 =

∫
ωa

(fψa −∇uh · ∇ψa)

since σah · n = 0 on ∂ωa and thanks to (1.47) with vh = ψa. Thus, (1.57) is valid for any
piecewise Pp polynomial qh without constraints. We can also write it separately on any
mesh cell K ∈ Th since qh are discontinuous:∫

K
qh div σ

a
h =

∫
K
qh(fψ

a −∇uh · ∇ψa), ∀qh ∈ Pp(K).

Summing this over all the vertices a gives, cf (1.53),∫
K
qh div σh =

∫
K
qhf, ∀qh ∈ Pp(K)
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so that div σh = fh on K. We now modify the proof of (1.48): introducing ēK as the mean
of e = u− uh on K

∥∇u−∇uh∥2Ω = (∇u−∇uh,∇e) = (f − fh, e) + (fh, e)− (∇uh,∇e)

= (f − fh, e) + (div σh, e)− (∇uh,∇e) =
∑
K∈Th

(f − fh, e− ēK)K − (σh +∇uh,∇e)

⩽
√∑
K∈Th

h2K∥f − fh∥2K

√∑
K∈Th

1

h2K
∥e− ēK∥2K + ∥σh +∇uh∥Ω∥∇e∥Ω.

This proves (1.58) since ∥e − ēK∥K ⩽ ChK∥∇e∥K . We turn now to (1.59). We want to
prove first its localized version

∥σah + (∇uh)ψa∥ωa ⩽ C∥∇(u− uh)∥ωa + Cha∥f − fh∥ωa . (1.60)

To this end, introduce σ̃ah ∈ Σah by

σ̃ah = σah + (∇uh)ψa + ch

with ch to be specified shortly. The idea is to recast the problem (1.56)-(1.57) in terms of
σah+(∇uh)ψa since this is our quantity of interest now. Note that (∇uh)ψa is a polynomial
of degree ⩽ k on any mesh cell K, so that (∇uh)ψa|K ∈ RTp(K) provided p ⩾ k. However,
(∇uh)ψa ̸∈ Σah since the normal derivatives of uh jump accross the mesh facets. We want
thus to add a correction ch to compensate these jumps. We set ch as a piecewise polynomial
on the mesh on ωa with ch|K ∈ RTp(K ) for any cell K ∈ ωa, ch · n = 0 on ∂ωa, and
[[ch]]F · nF = −[[∇uh]]Fψa · nF on any F ∈ Fa where Fa denotes the set of mesh facets
inside ωa. We achieve this by setting on any side F ∈ Fa of any cell K ∈ ωa

ch =
1

2
[[∇uh]]Fψa · n. (1.61)

Here ch should be understood as ch|K and n should be understood as the unit normal
looking outside of K. Note that [[∇uh]]Fψa · n is a polynomial of degree ⩽ k on any facet
F , so that (1.61) can be indeed prescribed provided p ⩾ k. Prescription of ch on ∂K does
not fully determine ch on K. But the details of the construction of ch are not important.
We should only insure that

∥ch∥K + ha∥ div ch∥K ⩽ C
√
ha∥ch∥∂K (1.62)

which can be done by constructing ch first on the reference element and then rescaling.
Now, (1.56)-(1.57) can be rewritten as∫

ωa

σ̃ah · τh +
∫
ωa

pah div τh =

∫
ωa

ch · τh, (1.63)∫
ωa

qh div σ̃
a
h =

∑
K∈ωa

∫
K
(f +∆uh)ψ

aqh +
∑
K∈ωa

∫
K
qh div ch. (1.64)

Lemma 1.5 gives

∥σ̃ah∥2ωa ⩽ C

(
∥ch∥2ωa + h2a

∑
K∈ωa

∥f +∆uh∥2K + h2a
∑
K∈ωa

∥ div ch∥2K

)
.

39



1. Context and model problems

Thus, in view of (1.61) and (1.62),

∥σah + (∇uh)ψa∥2ωa ⩽ C

( ∑
K∈ωa

h2K∥f +∆uh∥2K +
∑
F∈Fa

hF ∥[[∇uh]] · nF ∥2F

)
. (1.65)

We are now going to bound the two terms in (1.65) using Verfurth’s technique of bubble
functions. Introducing a bubble function bK on K (a polynomial such that bK = 0 on
∂K and ∥bK∥L∞(K) = 1) and using an appropriate inverse inequality (i.e. a bound on
polynomials which can be proved by equivalence of norms and scaling), we get

∥fh+∆uh∥2K ⩽ C

∫
K
(fh+∆uh)

2bK ⩽ C∥f−fh∥K∥fh+∆uh∥K+C

∫
K
(fh+∆uh)(f+∆uh)bK .

We recall that f = −∆u in a weak sense and intergrate by parts∫
K
(fh+∆uh)(f+∆uh)bK =

∫
K
(−∆(u−uh))(fh+∆uh)bK =

∫
K
∇(u−uh)·∇ ((fh +∆uh)bK)

⩽ ∥∇(u− uh)∥K∥∇(fh +∆uh)∥K∥bK∥L∞(K) + ∥∇(u− uh)∥K∥fh +∆uh∥K∥∇bK∥L∞(K)

⩽
C

hK
∥∇(u− uh)∥K∥fh +∆uh∥K

using some some inverse inequalities and ∥bK∥L∞(K) = 1. Thus,

∥fh +∆uh∥K ⩽
C

hK
∥∇(u− uh)∥K + C∥f − fh∥K

and
hK∥fh +∆uh∥K ⩽ C∥∇(u− uh)∥K + ChK∥f − fh∥K . (1.66)

Similarly, for any mesh facet F shared by two cells K1,K2, we introduce a bubble function
bF (a polynomial on K1,K2 such that bF = 0 on ∂(K1 ∪K2) and ∥bF ∥L∞(K1∪K2) = 1).
Let also ΠKi denote a natural extension of polynomials from F to Ki. In the same spirit
as before,

∥[[∇uh]] · nF ∥2F ⩽ C

∫
F
([[∇uh]] · nF )2 bF = C

∫
F
([[∇ (uh − u)]] · nF ) ([[∇uh]] · nF ) bF

= C
2∑
i=1

∫
∂Ki

(∇ (uh − u) · n)ΠKi ([[∇uh]] · nF ) bF

= C

2∑
i=1

[∫
Ki

∇ (uh − u) · ∇ (ΠKi ([[∇uh]] · nF ) bF ) +
∫
Ki

∆(uh − u) (ΠKi ([[∇uh]] · nF ) bF )
]
.

We remark
∥ΠKi ([[∇uh]] · nF ) bF ∥Ki

⩽ C
√
hF ∥[[∇uh]] · nF ∥F

∥∇ (ΠKi ([[∇uh]] · nF ) bF )∥Ki
⩽

C√
hF

∥[[∇uh]] · nF ∥F

and conclude

∥[[∇uh]] · nF ∥F ⩽
C√
hF

∥∇(u− uh)∥K1∪K2 + C
√
hF ∥f +∆uh∥K1∪K2 .
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1.4. An a posteriori error estimator for the non coupled 2D Poisson Model

In view of (1.66), this gives√
hF ∥[[∇uh]] · nF ∥F ⩽ C∥∇(u− uh)∥K1∪K2 + ChF ∥f − fh∥K1∪K2 . (1.67)

Substituting (1.66) and (1.67) into (1.65) gives (1.60).
It remains to sum (1.60) over all the nodes a:

∥σh +∇uh∥Ω =

∥∥∥∥∥∑
a

(σah + (∇uh)ψa)

∥∥∥∥∥
Ω

⩽
∑
a

∥σah + (∇uh)ψa∥ωa

⩽ C
∑
a

∥∇(u− uh)∥ωa + C
∑
a

ha∥f − fh∥ωa .

This yields (1.59) since each patch ωa contains a bounded number of mesh cells K. Here
are the details for the h.o.t.:(∑

a

ha∥f − fh∥ωa

)2

⩽ C
∑
a

∑
K∈ωa

h2K∥f − fh∥2K ⩽ C
∑
K∈Th

h2K∥f − fh∥2K .

with C depends on the maximum of the constants where the patches intersect. ■

Remark 1.7. The proofs above are not optimal with respect to the polynomial order p.
Our constants do depend (in principle) on p. But it can be in fact proven that they are
p-independent, cf. the article by Braess et al. [14] and the subsequent papers by Vohralik
and Ern.

Remark 1.8. All the above can be easily applied to the case of Dirichlet boundary condi-
tions for the PDE −∆u = f . The flux σh will be still defined as the sum of local contribution
(1.52), each of which is defined by (1.56)–(1.57), but one should adapt the definitions of
Σah and Qah there. If the patch ωa does not touch the boundary ∂Ω or interescts it in only
one point (or an edge in 3D), then nothing changes. However if |∂ωa ∩ ∂Ω| > 0 then one
should not prescribe σh · n = 0 on this common part of ∂ωa and ∂Ω in the definition of
Σah. Note that we still have σh · n = 0 on the remaining part of ∂ωa. Accordingly, we no
longer have

∫
ωa div σh = 0 for σh ∈ Σah on such a patch ωa. Thus there is no need for

the constraint
∫
ωa qh = 0 in the definition of Qh. Once the definitions of Σah and Qah are

modified accordingly, all the estimates above remain valid in the Dirichlet case.

1.4.1. Numerical Results

The goal here is to validate the upper bound estimator in (1.58) of a posteriori error to the
L-shaped domain Ω = (−1, 1)× (−1, 1)\[0, 1]× [−1, 0] of the following Poisson problem

−∆u = f inΩ

u = ue on ∂Ω

with the exact solution ue written, in polar coordinates, as

ue(r, θ) = r
2
3 sin(2θ/3). (1.68)
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1. Context and model problems

We remark that we consider here θ ∈ (0, 3π/2). The corresponding source term f = 0.
The exact solution ue given by (1.68) is singular, u ∈ H1+ 1

2
−ϵ(Ω) for any ϵ > 0 only, with

the gradient exploding at the corner (0, 0). Since f = 0, then h.o.t. = 0 in the estimator
in (1.58) and we get

∥∇u−∇uh∥Ω ⩽ ∥σh +∇uh∥Ω. (1.69)

Let Vh be the usual P1 finite element space on the uniform triangulation mesh Th of this
L-shaped Ω. For every element K ∈ Th we plot in Figure 1.10 the Elementwise errors
∥∇(u− uh)∥K (left) and Equilibrated fluxes estimators ∥σh +∇uh∥K (right).

Figure 1.10.: Elementwise errors ∥∇(u − uh)∥K (left) and Equilibrated fluxes estimators
∥σh +∇uh∥K (right) for uh in P1 finite element space.

Now let Vh be the usual P2 finite element space on the uniform triangulation mesh Th of
this L-shaped Ω. For every element K ∈ Th we plot in Figure 1.11 the Elementwise errors
∥∇(u− uh)∥K (left) and Equilibrated fluxes estimators ∥σh +∇uh∥K (right).

Figure 1.11.: Elementwise errors ∥∇(u − uh)∥K (left) and Equilibrated fluxes estimators
∥σh +∇uh∥K (right) for uh in P2 finite element space.

In the Figure 1.10 and Figure 1.11 , we see that the Elementwise errors ∥∇(u − uh)∥K
(left) and Equilibrated fluxes estimators ∥σh +∇uh∥K (right) are distributed equivalently
in a way that the error and the estimator have the biggest values in the triangles which
are concentrated at the corner. For this reason we should introduce an adaptive algorithm
to refine the mesh more at the triangles where the estimator ∥σh +∇uh∥K is big in order
to obtain an optimal convergence. The results for this example using adaptive algorithm
are introduced in the Appendix A.
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2. A posteriori estimator for the coupled
0D/2D Poisson equation

In this chapter we are going to talk about a posteriori error of the approximated solution ush
defined in (1.8)–(1.12)–(1.13) for the coupled 0D/2D model of the Poisson equation (1.3)
on Ω = Ω′ ∪ γ ∪ Ω̃ which is represented in Figure 1.4. We will introduce two possibilities
of reconstructing the flux σh on Ω of the coupled 0D/2D model. In Section 2.1, we will
construct the first attempt of defining the flux reconstruction where the upper bound is
guaranteed (reliability of the estimator) while the lower bound (efficiency of the estimator)
is not satisfied (or it is very difficult to be proved). In Section 2.2, we will construct the
second attempt of defining the flux reconstruction where the upper bound (reliability of the
estimator) and the lower bound (efficiency of the estimator) are guaranteed and proved. In
Section 2.3 we have made an adaptive algorithm that enables us to choose a good position
for the interface γ and to optimize the mesh on Ω̃.

Let us recall first some basic notions related to the technique of equilibrated fluxes.

Definition 2.1 (Flux σ). Let u be the solution of system (1.4) then, we denote the flux by
σ := −∇u.

Theorem 2.2 (Properties of weak solution of system (1.4)). Let u be solution of system
(1.4) and let σ be defined as in Definition 2.1. Then, u ∈ H1

g (Ω), σ ∈ H(div,Ω) and
∇ · σ = f with f = 12uav

R2 .

Proof. See Theorem 7.1.3 in [78]. ■

Remark 2.3 (Properties of approximate solution ush). Let ush be the approximated solution
given by (1.8)–(1.12)–(1.13). Then, ush ∈ H1

g (Ω), −∇ush /∈ H(div,Ω) and ∇ · (−∇ush) ̸= f
in general.

This remark tells us that the straightforward flux approximation −∇ush does not retain
the properties of the flux σ. We want thus to construct another flux, named σh, starting
from ush such that σh ∈ H(div,Ω) and ∇·σh = f . This will be achieved in the next section,
cf. Theorem 2.2.

2.1. A simple a posteriori estimator with guaranteed upper
bound only

2.1.1. Flux reconstruction

Let ush be the approximate solution given by (1.8)–(1.12)–(1.13). Ideally, we could look for
a flux σideal

h ∈ ΣΩ
h ⊂ H(div,Ω) such that:

σideal
h := argmin

vh∈ΣΩ
h ,

div vh=f on Ω

||∇ush + vh||L2(Ω) (2.1)
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

taking ΣΩ
h as the RTk space on Ω̃ and (−∇u′) on Ω′. Computing σideal

h would be too
costly, so we localize this minimization to the patches of each node of the mesh on Ω̃.
This can be done in a completely standard way at the interior nodes, cf. for example
the exposition in Section 1.4. Note in particular that this localization relies on the finite
element discretization of the governing equation at these nodes. The construction is also
standard at the nodes on the wall part of the boundary and on the outflow, cf. Remark
1.8, and relies on the observation that the stress can be kept free on these parts of the
boundary. On the contrary, we have a non standard situation at the nodes on the interface
γ. Indeed, in order to preserve continuity of the normal component, we should have there
σh·n = −∇u′·n = 0 on γ, as if this is a part of the boundary where the Neumann conditions
are imposed. But this is not the case: Dirichlet boundary conditions are prescribed at these
nodes in the finite element discretization. Our way to circumvent this problem is to enlarge
the patch attached to the interface γ, as explained below.

For each vertex a ∈ Ω̃ we consider a patch ωa to be the collection of all triangles that
share this vertex a. Let V∗

h be the vertices of Ω̃\γ̄. Our notations are shown in Figure 2.1.

Figure 2.1.: Simplified region Ω′, vertices ai of patches ωai at the interface γ in the non
simplified region Ω̃

Let

ωγ =
⋃
ai∈γ

ωai

as in Figure 2.2.

Figure 2.2.: Patch ωγ which represents the union of all patches of vertices located on γ
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2.1. A simple a posteriori estimator with guaranteed upper bound only

We introduce the partition of unity:

1Ω = 1Ω′ + 1Ω̃

= 1Ω′ +
∑

a : vertices in Ω̃

ψa

= 1Ω′ +
∑
a ∈ γ

ψa︸ ︷︷ ︸
ψγ :=

+
∑
a ∈ V∗

h

ψa

= 1Ω′ + ψγ +
∑
a ∈ V∗

h

ψa,

where, ψa and ψγ are P1 finite element functions. In particular, ψa is the hat function for
any mesh node excluding those in γ. By construction ψγ is 1 on γ and 0 on all nodes not
on γ.
Now, we replace σideal

h by

σh = σγh +
∑
a∈V∗

h

σah + (−∇u′)1Ω′ = σ̃h + σ′, (2.2)

where, σ′ = −∇u′ in Ω′, see equation (1.8), and σ̃h is defined by

σ̃h := σγh +
∑
a∈V∗

h

σah. (2.3)

For each a ∈ V∗
h, we define σah ∈ Σah by

σah := argmin
vah∈Σ

a
h,

div vah=ΠQa
h

(
ψaf−∇ψa·∇ũh

)||vah + ψa∇ũh||L2(ωa)

and σγh ∈ Σγh by

σγh := argmin
vγh∈Σ

γ
h,

div vγh=Π
Q
γ
h

(
ψγ ·f−∇ψγ ·∇ũh

)||vγh + ψγ∇ũh||L2(ωγ) (2.4)

Where,
Case 1: a in an internal node of Ω̃

Σah := {σh ∈ RTk(K) ∀K ∈ ωa, σh · n = 0 on ∂ωa}
Qah := {qh ∈ L2(ωa), qh|K ∈ Pk(K),∀K ∈ ωa,

∫
ωa qh = 0}

Case 2: a on the wall of Ω̃\γ
Σah := {σh ∈ RTk(K) ∀K ∈ ωa, σh · n = 0 on ∂ωa\∂Ω̃}
Qah := {qh ∈ L2(ωa), qh|K ∈ Pk(K),∀K ∈ ωa}

Case 3: a = γ

Σγh := {σh ∈ RTk(K) ∀K ∈ ωγ , σh · n = 0 on ∂ωγ\∂Ω̃ and σh · n = (−∇u′) · n =
0 on γ}
Qγh := {qh ∈ L2(ωγ), qh|K ∈ Pk(K),∀K ∈ ωγ}
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

ΠQa
h

is the L2(ωa)-orthogonal projection and ΠQγ
h

is the L2(ωγ)-orthogonal projection. We
remark that the minimization problems above are equivalent to the following variational
problems. Find σγh ∈ Σγh and rγh ∈ Qγh such that{

(σγh, vh)ωγ − (rγh,∇ · vh)ωγ = (−ψγ∇ũh, vh)ωγ ∀vh ∈ Σγh,

(∇ · σγh, qh)ωγ = (ψγf −∇ψγ · ∇ũh, qh)ωγ ∀qh ∈ Qγh,
(2.5)

And for all vertices a ∈ V∗
h, find σah ∈ Σah and rah ∈ Qah such that:{

(σah, vh)ωa − (rah,∇ · vh)ωa = −(ψa∇ũh, vh)ωa ∀vh ∈ Σah,

(∇ · σah, qh)ωa = (ψaf −∇ψa · ∇ũh, qh)ωa ∀qh ∈ Qah,
(2.6)

Proposition 2.4. Let σh defined by equation (2.2) and σγh by equation (2.4) . We have
σ̃h = σγh +

∑
a∈V∗

h
σah, then ∇ · σ̃h = ΠQh

(f) = f on Ω̃ and consequently ∇ · σh = f on Ω

where, f = 12uav
R2 and Qh = Pk(T̃h).

Proof. σ̃h ∈ H(div, Ω̃) as all the individual components σγh and σah belong to H(div, Ω̃) for
all a ∈ V∗

h, since by extension we can go from H(div, ωγ) and H(div, ωa) to H(div, Ω̃), and
σ̃h is the sum of all these components. Now, to show that ∇ · σh = f in Ω, we will deal
with the following three cases:
Case 1: a is internal node of Ω̃:
∀a ∈ V∗

h we have: (∇ · σah, qh)ωa = (ψaf −∇ψa · ∇ũh, qh)ωa for all qh ∈ Qah, then we have∫
ωa qh = 0 and we have (∇ · σah, 1)ωa = 0 as σah · n = 0 on ∂ωa and using the divergence

theorem. From Eq (1.12), we have (∇ũh,∇ṽh)Ω̃ = (f, ṽh)Ω̃ for all ṽh ∈ Ṽ 0
h so, let us take

the following particular cases for the test function ṽh ∈ Ṽ 0
h :

• If we take ṽh = ψa, then (∇ũh · ∇ψa, 1)Ω̃ = (fψa, 1)Ω̃ since ṽh = ψa ∈ Ṽ 0
h as a is

an internal node of Ω̃.

Let us define Qh(ωa) := {qh ∈ L2(ωa); qh ∈ Pk(K) ∀K ∈ ωa}, then for all a ∈ V∗
h we

have (∇ · σah, qh)ωa = (ψaf − ∇ũh · ∇ψa, qh)ωa for all qh ∈ Qh(ω
a) and not only for the

vector-valued function with zero mean value.
Case 2: a is on wall of Ω̃\γ:
We have (∇ · σah, qh)ωa = (ψaf −∇ψa · ∇ũh, qh)ωa for all qh ∈ Qah = Qh(ω

a).
Case 3: a = γ:
We have (∇ · σγh, qh)ωγ = (ψγf −∇ψγ · ∇ũh, qh)ωγ for all qh ∈ Qγh = Qh(ω

γ).

Let now q̃h ∈ Qh = Pk(T̃h) then,

(∇ · σ̃h, q̃h)Ω̃ =

(
∇ · σγh, q̃h

)
Ω̃

+

(
∇ · (

∑
a∈V∗

h

σah), q̃h

)
Ω̃

=

(
(ψγf −∇ψγ · ∇ũh, q̃h

)
Ω̃

+
∑
a∈V∗

h

(
ψaf −∇ψa · ∇ũh, q̃h

)
Ω̃

=

(
f(ψγ +

∑
a∈V∗

h

ψa)−∇ũh · ∇(ψγ +
∑
a∈V∗

h

ψa), q̃h

)
Ω̃

=

(
f1Ω̃ −∇ũh · ∇(1Ω̃), q̃h

)
Ω̃

= (f, q̃h)Ω̃
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2.1. A simple a posteriori estimator with guaranteed upper bound only

Since ∇ · (RTk(K)) = Qh(K) = Pk(K) for all K ∈ T̃h, we get ∇ · σ̃h = ΠQh
(f) = f

where, ΠQh
is the L2(Ω̃)-orthogonal projection onto Qh and finally, we get

∇ · σ̃h = f on Ω̃.

■

2.1.2. Reliability of the a posteriori error estimate based on (2.2)

We adapt here a general result about the reliability of equilibrated flux a posteriori error
estimates.

Theorem 2.5 (A general a posterior error estimate). Let u be the weak solution defined by
system (1.4). Let ush be given by (1.8)–(1.12)–(1.13) and σh the flux reconstruction (2.2).
Recalling T̃h the mesh on Ω̃, define ∀K ∈ T̃h the local flux estimator ηF,K := ||∇ũh+ σ̃h||K .
Then,

||∇(u− ush)||2Ω ≤
∑
K∈T̃h

η2F,K (2.7)

Proof. First, u− ush ∈ H1
0 (Ω), thus as

||∇v|| = sup
ϕ∈H1

0 (Ω),||∇ϕ||=1,

(∇v,∇ϕ) ∀v ∈ H1
0 (Ω)

then,
||∇(u− ush)|| = sup

ϕ∈H1
0 (Ω),||∇ϕ||=1,

(∇(u− ush),∇ϕ) ∀ϕ ∈ H1
0 (Ω).

Now, let ϕ ∈ H1
0 (Ω) and ||∇ϕ||Ω = 1 be fixed. Then, by using the weak formulation

(1.4), we get:
(∇(u− ush),∇ϕ)Ω = (f, ϕ)Ω − (∇ush,∇ϕ)Ω.

Now, adding and subtracting (σh,∇ϕ)Ω where, σh = σ̃ + σ′ we get:

(∇(u− ush),∇ϕ)Ω = (∇(u− ush) + σh − σh,∇ϕ)Ω
= (∇(u− ush),∇ϕ)Ω + (σh,∇ϕ)Ω − (σh,∇ϕ)Ω
= (f, ϕ)Ω − (∇ush,∇ϕ)Ω − (∇ · σh, ϕ)Ω − (σh,∇ϕ)Ω
= (f −∇ · σh, ϕ)Ω − (∇ush + σh,∇ϕ)Ω
= −(∇ush + σh,∇ϕ)Ω
= −(∇u′ + σ′,∇ϕ)Ω′ − (∇ũh + σ̃h,∇ϕ)Ω̃
= −(∇ũh + σ̃h,∇ϕ)Ω̃
≤
∑
K∈T̃h

ηF,K ||∇ϕ||K

≤
( ∑
K∈T̃h

η2F,K

) 1
2
( ∑
K∈T̃h

||∇ϕ||2K
) 1

2

≤
( ∑
K∈T̃h

η2F,K

) 1
2

||∇ϕ||.
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

So, (
∇(u− ush),∇ϕ

)
Ω

≤
( ∑
K∈Th

η2F,K

) 1
2

,

then,

||∇(u− ush)||Ω = sup
ϕ∈H1

0 (Ω),||∇ϕ||=1

(∇(u− ush),∇ϕ) ≤
( ∑
K∈T̃h

η2F,K

) 1
2

.

Finally,

||∇(u− ush)||2Ω ≤
∑
K∈T̃h

η2F,K .

■

2.1.3. Lack of efficiency

We report here on our attempt to establish the efficiency of the a posteriori error estimate
of (2.7) following the lines of Ern and Vohralik in [39]. We shall see that this leads to some
unsolvable issues, indicating that the flux reconstruction introduced in Section 2.1.1 does
not lead to an efficient error indicator.

We want thus to see if we can show that these estimators give a "local" lower bound for
the error ||∇(u − ush)||2Ω up to a generic constant only depending on the shape-regularity
parameter. To be able to make this lower bound, we will introduce the following two
lemmas. Let us introduce a new domain ω′ ⊂ Ω′ and ωγ ⊂ Ω̃, as shown in Figure 2.3
below, where the abscissa x2 < xγ and xγ is very near to x2.

Figure 2.3.: The coupled 0D/2D domain with new local domain ω′ ⊂ Ω′
1
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2.1. A simple a posteriori estimator with guaranteed upper bound only

Lemma 2.6. Let u be the exact solution on the whole domain Ω defined by (1.4). Let ush
be the approximate solution on Ω defined by (1.8)–(1.12)–(1.13). Let γ be the interface
between the 2D and 0D models at x = xγ > 0 as being shown in the Figure 2.3. Here we
want to distinguish between the following two cases.

• Case 1: if the vertex a ∈ γ we have the patch ωγ = ∪a∈γωa as shown in Figure 2.3.
Let rγ ∈ H1

∗ (ω
γ) solves:

(∇rγ ,∇v)ωγ = −(ψγ∇ũh,∇v)ωγ + (ψγf −∇ψγ · ∇ũh, v)ωγ ,∀v ∈ H1
∗ (ω

γ), (2.8)

where,

– H1
∗ (ω

γ) := {v ∈ H1(ωγ); v = 0 on ∂ωγ ∩ ∂Ω},
– ψγ =

∑
a∈γ ψ

a.

Then, there exists a positive constant Cγ(Rh ) > 0 which depends on shape regularity
and mesh size h such that:

||∇rγ ||ωγ ≤ Cγ

(
R

h

)
||∇(u− ush)||ωγ∪ω′ , (2.9)

where, ω′ ⊂ Ω′ such that ω′ = [x2, xγ ]× [0, R] and x2 is very near to xγ such that:
|xγ − x2| > 0.

• Case 2: if a ∈ Ω̃\γ = V∗
h, we have the patch ωa be collection of all elements that

intersect with this vertex a.
Let ra ∈ H1

∗ (ω
a) solves:

(∇ra,∇v)ωa = −(ψa∇ũh, v)ωa + (ψaf −∇ψa · ∇ũh, v)ωa , ∀v ∈ H1
∗ (ω

a), (2.10)

where,

– H1
∗ (ω

a) := {v ∈ H1(ωa); (v, 1)ωa = 0} for all a ∈ V int
h = V∗

h ∩ Ω̃,

– H1
∗ (ω

a) := {v ∈ H1(ωa); v = 0 on ∂ωa ∩ ∂Ω̃ } for all a ∈ Vext
h = V∗

h ∩ ∂Ω̃.

Then, there exists a positive constant Ccont,PF > 0 only depending on shape regu-
larity such that:

||∇ra||ωa ≤ Ccont,PF||∇(u− ũh)||ωa . (2.11)

Proof. • Case 1: for a ∈ γ, we have ψγ =
∑

a∈γ ψ
a is a polynomial of degree 1 and

equal to 1 on γ and 0 on all nodes not on γ.
Let us define ΨΓ by:

ΨΓ =


ψγ on ωγ ,

θ on ω′ = [x2, xγ ]× [0, R],

0 on Ω′\ω′.

Where, xγ is the abscissa of γ which represents the interface at x = xγ and x2 < xγ
and θ(x, y) := x−x2

xγ−x2 . We have that ΨΓ is continuous on γ since:

– ΨΓ|x=x+γ = ψγ |xγ = 1,

– ΨΓ|x=x−γ = θ(xγ , y) =
xγ−x2
xγ−x2 = 1.

49



2. A posteriori estimator for the coupled 0D/2D Poisson equation

ΨΓ is also continuous at x2 and finally it is continuous on Ω′∪ωγ . As rγ ∈ H1
∗ (ω

γ)
solves equation (2.8) then,

||∇rγ ||ωγ = sup
v∈H1

∗(ω
γ),

||∇v||ωγ=1

(∇rγ ,∇v)ωγ .

Let v ∈ H1
∗ (ω

γ) and ||∇v||ωγ = 1, then v can be extended to Ω′ by any v′ ∈ H1(Ω′)
such that v′|γ = v|γ and v′ = 0 on ∂Ω′\γ and ||∇v||Ω′ = 1 or ||∇v||Ω′ = c where, c
is a constant.

ṽ =

{
v on ωγ ,

v′ on Ω′.

Now, ṽ ∈ H1(ωγ ∪ Ω′) so,

(∇rγ ,∇v)ωγ = −(ψγ∇ũh,∇v)ωγ + (ψγf −∇ψγ · ∇ũh, v)ωγ

= −(ψγ∇ũh,∇v)ωγ + (ψγf −∇ψγ · ∇ũh, v)ωγ − (∇u′,∇(ΨΓṽ))ω′ + (f,ΨΓṽ)ω′

= (f, ψγv)ωγ + (f,ΨΓṽ)ω′ − (∇ũh,∇(ψγv))ωγ − (∇u′,∇(ΨΓṽ))ω′

= (f,ΨΓṽ)ωγ∪ω′ − (∇ush,∇(ΨΓṽ))ωγ∪ω′

Since ΨΓṽ ∈ H1
0 (ω

γ ∪ ω′) then, we can extend by zero outside ωγ ∪ ω′ to integrate
on Ω.

(∇rγ ,∇v)ωγ = (f,ΨΓṽ)Ω − (∇ush,∇(ΨΓṽ))ωγ∪ω′

=
(
∇u,∇(ΨΓṽ)

)
Ω
−
(
∇ush,∇(ΨΓṽ)

)
ωγ∪ω′

=
(
∇u,∇(ΨΓṽ)

)
ωγ∪ω′ −

(
∇ush,∇(ΨΓṽ)

)
ωγ∪ω′

= (∇(u− ush),∇(ΨΓṽ))ωγ∪ω′

= (∇(u− ũh),∇(ψγ ṽ))ωγ + (∇(u− u′),∇(θv′))ω′

≤ ||∇(u− ũh)||ωγ ||∇(ψγv)||ωγ + ||∇(u− u′)||ω′ ||∇(θv′)||ω′

Next, ||∇(ψγv)||ωγ = ||∇ψγv+ψγ∇v||ωγ ≤ ||∇ψγ ||∞,ωγ ||v||ωγ + ||ψγ ||∞,ωγ ||∇v||ωγ

Now, using Friedrichs inequality, we get:

||v||ωγ ≤ CF,ωγhωγ ||∇v||ωγ .

Where, hωγ is the diameter of ωγ .Then

||∇(ψγv)||ωγ ≤ ||∇v||ωγ

(
CF,ωγhωγ ||∇ψγ ||∞,ωγ + ||ψγ ||∞,ωγ

)
= CF,ωγhωγ ||∇ψγ ||∞,ωγ + 1

and ||∇(θv′)||ω′ = ||∇θv′ + θ∇v′||ω′ ≤ ||∇θ||∞,ω′ ||v′||ω′ + ||θ||∞,ω′ ||∇v′||ω′ .
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2.1. A simple a posteriori estimator with guaranteed upper bound only

Now, using Friedrichs inequality we get:

||v′||ω′ ≤ CF,ω′hω′ ||∇v′||ω′ ,

where, hω′ is the diameter of ω′. Then

||∇(θv′)||ω′ ≤ ||∇v′||ω′

(
CF,ω′hω′ ||∇θ||∞,ω′ + ||θ||∞,ω′

)
≤ CF,ω′hω′ ||∇v||∞,ω′ + 1.

Finally,

||∇rγ ||ωγ ≤
(
CF,ωγhωγ ||∇ψγ ||∞,ωγ + 1

)
||∇(u− ũh)||ωγ

+

(
CF,ω′hω′ ||∇θ||∞,ω′ + 1

)
||∇(u− u′)||ω′ .

As θ(x) = x−x2
xγ−x2 , then θ′(x) = 1

xγ−x2 and hω′ =
√
(xγ − x2)2 +R2 so, hω′ ||θ′||∞,ω′ =

1
xγ−x2

√
(xγ − x2)2 +R2 ≈

√
2 if xγ − x2 = R, we also have hωγ ||∇ψγ ||∞,ωγ1

≈ R
h ,

where h is the mesh size. Finally, there exists a positive constant Cγ(Rh ) > 0 which
depends on the mesh size h and the shape regularity such that:

||∇rγ ||ωγ ≤ Cγ

(
R

h

)
||∇(u− ush)||ωγ∪ω′ (2.12)

• Case 2: for a ∈ Ω̃\γ = V∗
h, we have ψa is a polynomial of degree 1 and equal to 1

on vertex a and 0 on all other nodes. Here we will proceed in a similar way of [39].
We have ra ∈ H1

∗ (ω
a) solves equation (2.10) then,

||∇ra||ωa = sup
v∈H1

∗(ω
a),

||∇v||ωa=1

(∇ra,∇v)ωa .

Let v ∈ H1
∗ (ω

a) and ||∇v||ωa = 1, then

(∇ra,∇v)ωa = −(ψa∇ũh,∇v)ωa + (ψaf −∇ψa · ∇ũh, v)ωa

= −(∇ũh, ψa∇v)ωa + (f, ψav)ωa − (∇ũh,∇ψav)ωa

= (f, ψav)ωa − (∇ũh,∇(ψav))ωa .

But, ψav ∈ H1
0 (ω

a) so, it can be extended by 0 outside ωa to be defined on whole
Ω. Then,

(∇ra,∇v)ωa = (f, ψav)Ω − (∇ush,∇(ψav))ωa

= (∇u,∇(ψav))Ω − (∇ush,∇(ψav))ωa

= (∇u,∇(ψav))ωa − (∇ush,∇(ψav))ωa

= (∇(u− ush),∇(ψav))ωa

≤ ||∇(u− ush)||ωa ||∇(ψav)||ωa
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

Now, splitting the cases a ∈ V inth and a ∈ Vexth .
If a ∈ V inth : use Poincaré inequality on the patch ωa as vωa := (v,1)ωa

|ωa| = 0:

||v − vωa ||ωa ≤ Cp,ωahωa ||∇v||ωa .

If a ∈ Vexth : use Friedrichs inequality on the patch ωa :

||v||ωa ≤ CF,ωahωa ||∇v||ωa

and using ||∇v||ωa = 1 and ||ψa||∞,ωa = 1 we get:

||∇(ψav)||ωa = ||∇ψav + ψa∇v||ωa

≤ ||∇ψa||∞,ωa ||v||ωa + ||ψa||∞,ωa ||∇v||ωa

≤ ||∇v||ωa

(
CPF,ωahωa ||∇ψa||∞,ωa + ||ψa||∞,ωa

)
≤ 1 + CPF,ωahωa ||∇ψa||∞,ωa

where,

CPF,ωa :=

{
Cp,ωa if a ∈ V inth ,

CF,ωa if a ∈ Vexth .

Then,

||∇ra||ωa ≤
(
1 + CPF,ωahωa ||∇ψa||∞,ωa

)
||∇(u− ush)||ωa

≤ max
a∈V∗

h

(
1 + CPF,ωahωa ||∇ψa||∞,ωa

)
||∇(u− ush)||ωa ,

so,
||∇ra||ωa ≤ Ccont,PF ||∇(u− ush)||ωa ,

where, Ccont,PF = maxa∈V∗
h
{1 + CPF,ωahωa ||∇ψa||∞,ωa } and for "nice" meshes

hωa ||∇ψa||∞,ωa ≈ 2 see [39, Remark 3.24].
■

Let us assume that the following theorem which is showed in [14, Theorem 7] is applicable
for the patch ωγ and that is an essential result for the next results.

Theorem 2.7. Let us define ω := ωγ, RTk(K) := {τ : τ(x) = qK + sKx, qK ∈ (Pk)2, sK ∈
Pk} and RT k−1,0(ω) := {τ ∈ L2(ω) : τ |K ∈ RTk(K), ∀K ∈ ω, τ · n = 0 on ∂ω}. Let r be the
residual which is defined by

⟨r, v⟩ :=
∑
K∈ω

∫
K
rKv +

∑
E∈ω

∫
E
rEv

with rK ∈ Pk(K) and rE ∈ Pk(E). If ⟨r, 1⟩ = 0, then there exists a constant C independent
of k and mesh size h such that

inf
σ∈RTk

−1,0(ω),

div(σ)=r

||σ||ω ≤ C||r||[H1(ω)/R]∗ .

52



2.1. A simple a posteriori estimator with guaranteed upper bound only

Remark 2.8. We will not take care about if Theorem 2.7 can be proved or not since even
if we suppose that Theorem 2.7 can be proved, we will not be able to prove the efficiency
according to Theorem 2.10 below since the constant of the efficiency depends on the mesh
size. The drawback of the first suggestion of the reconstructed flux is that this Cγ, and
consequently the efficiency, depends on the mesh size h. If we try to improve this constant
of efficiency to be independent from the mesh size by taking out the big patch ωγ and define
many patches that are centered at each node a ∈ γ as we did for each patch with nodes a
located in the wall of Ω̃\γ, then we will loose the compatibility condition in the definition
of the stress reconstruction in system (2.6). In this study we have only proved the upper
bound which is good in order to deduce later that the error depends on the position of the
interface and on the discretization.

Corollary 2.9. We will distinguish between the following two cases:

• Case 1: if a ∈ γ and we deal with the patch ωγ: let τγh = ψγ∇ũh and gγ = ψγf −
∇ψγ · ∇ũh. Let T γ = ∪K∩γ ̸=∅K. Suppose that τγh |K ∈ Σh(K) and gγ |K ∈ Qh(K)

for all K ∈ T γ where, Σh = RTk = RTk(T̃h) ∩H(div, Ω̃) and Qh = Pk(T̃h).
Let rγ ∈ H1

∗ (ω
γ) solves equation (2.8) and let σγh be the solution of system (2.5) and

if we suppose that Theorem 2.7 (below) can be verified, then there exists a positive
real number C1

st > 0 that depends only on the shape regularity such that:

||σγh + τγh ||ωγ ≤ C1
st||∇rγ ||ωγ .

• Case 2: if a ∈ Ω̃\γ = V∗
h and we deal with the patch ωa: let τah = ψa∇ũh and

ga = ψaf − ∇ψa · ∇ũh. Let T a = ∪K∩{a}≠∅K. Suppose that τah |K ∈ Σh(K) and
ga|K ∈ Qh(K) for all K ∈ T a where, Σh = RTk = RTk(T̃h) ∩ H(div, Ω̃) and
Qh = Pk(T̃h). Let ra ∈ H1

∗ (ω
a) solves equation (2.10) and let σah be the solution of

system (2.6), then there exists a positive real number C2
st > 0 that depends only on

the shape regularity such that:

||σah + τah ||ωa ≤ C2
st||∇ra||ωa .

Proof. • Case 1: for a ∈ γ, we have T γ = ∪K∩γ ̸=∅K. Let Eγh be the set of all edges in
T γ and let us define the jump by [[v]] = (v|K)|e −(v|K′)|e if e ∈ E int,γh and [[v]] = v|e
if e ∈ Eext,γh where, E int,γh and Eext,γh be the interior and exterior edges respectively
in the patch ωγ .

||∇rγ ||ωγ = sup
v∈H1

∗(ω
γ),

||∇v||ωγ=1

{−(ψγ∇ũh,∇v)ωγ + (ψγf −∇ψγ · ∇ũh, v)ωγ}

= sup
v∈H1

∗(ω
γ),

||∇v||ωγ=1

{−(τγh ,∇v)ωγ + (gγ , v)ωγ}

= sup
v∈H1

∗(ω
γ),

||∇v||ωγ=1

{
∑
K∈T γ

−(τγh ,∇v)K + (gγ , v)K}

= sup
v∈H1

∗(ω
γ),

||∇v||ωγ=1

{
∑
e∈Eγ

h

⟨[[−τγh · ne]], v⟩e +
∑
K∈T γ

(∇ · τγh + gγ , v)K}.
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

We have
||σγh + τγh ||ωγ = inf

vh∈Σγ
h,

∇·vh=gγ

||vh + τγh ||ωγ

Let δγh = σγh + τγh then,

||σγh + τγh ||ωγ = ||δγh||ωγ = inf
vh∈Σγ

h(T
γ),

∇·vh|K=(∇·τγh+g
γ)|K ,∀K∈T γ

||vh||ωγ

Where, Σγh(T
γ) is a broken version of Σγh. Now, by supposing that in [14, Theorem

7] is applicable to our patch ωγ (i.e. if we suppose that Theorem 2.7 below can be
proved), then there exists some positive constant C1

st > 0 only depending on shape
regularity parameter such that:

||σγh + τγh ||ωγ ≤ C1
st||∇rγ ||ωγ .

• Case 2: for a ∈ Ω̃\γ = V∗
h, we have T a = ∪K∩{a}̸=∅K. Let Eh be the set of all

edges in T̃h , let Eah be the set of all edges in patch ωa and let us define the jump
by [[v]] = (v|K )|e − (v|K′ )|e if e ∈ E inth and [[v]] = v|e if e ∈ Eexth . So

||∇ra||ωa = sup
v∈H1

∗(ω
a),

||∇v||ωa=1

{−(ψa∇ũh,∇v)ωa + (ψaf −∇ψa · ∇ũh, v)ωa}

= sup
v∈H1

∗(ω
a),

||∇v||ωa=1

{−(τah ,∇v)ωa + (ga, v)ωa}

= sup
v∈H1

∗(ω
a),

||∇v||ωa=1

{
∑
K∈T a

−(τah ,∇v)K + (ga, v)K}

= sup
v∈H1

∗(ω
a),

||∇v||ωa=1

{
∑
e∈Ea

h

⟨[[−τah · ne]], v⟩e +
∑
K∈T a

(∇ · τah + ga, v)K}.

We have
||σah + τah ||ωa = inf

vh∈Σa
h,

∇·vh=ga

||vh + τah ||ωa .

Let δah = σah + τah then,

||σah + τah ||ωa = ||δah||ωa = inf
vh∈Σa

h(T
a),

∇·vh|K=(∇·τah+g
a)|K ,∀K∈T a

||vh||ωa .

Where, Σah(T a) is a broken version of Σah. Now, [14, Theorem 7] is applicable to
our patch ωa, so there exists some positive constant C2

st > 0 only depending on
shape regularity parameter such that:

||σah + τah ||ωa ≤ C2
st||∇ra||ωa .

■

54



2.1. A simple a posteriori estimator with guaranteed upper bound only

Theorem 2.10. (Local Efficiency) Let u be the exact solution on the whole domain Ω
defined by (1.4). Let ush be the approximate solution on Ω defined by (1.8)–(1.12)–(1.13).
Let σ̃h defined as in (2.3). Let (ψγ∇ũh)|K ∈ Σh(K) and (∇ψγ ·∇ũh)|K ∈ Qh(K) ∀K ∈ T γ.
Let (ψa∇ũh)|K ∈ Σh(K) and (∇ψa · ∇ũh)|K ∈ Qh(K) ∀K ∈ T a where, Σh = RTk =

RTk(T̃h) ∩H(div, Ω̃) and Qh = Pk(T̃h).
Then, if K ⊂ ωγ

||∇ũh+ σ̃h||K ≤ C2
stCcont,PF

∑
a∈Vk

||∇(u−ush)||ωa +C1
stCγ

(
R

h

)
||∇(u−ush)||ωγ∪ω′ , (2.13)

and if K ⊂ Ω̃\ωγ then,

||∇ũh + σ̃h||K ≤ C2
stCcont,PF

∑
a∈Vk

||∇(u− ũh)||ωa .

Proof. We have σ̃h|K = σγh |K+
∑

a∈VK
σah|K where, VK represents the vertices of the triangle

K. Then,

||∇ũh + σ̃h||K = ||
∑
a∈Vk

(ψa∇ũh + σah)|K + (ψγ∇ũh + σγh)|K ||K

≤
∑
a∈VK

||ψa∇ũh + σh
a||ωa + ||ψγ∇ũh + σγh||ωγ

Thanks to Corollary 2.9 and Lemma 2.6, we have:

||ψa∇ũh + σh
a||ωa ≤ C2

st||∇ra||ωa ≤ C2
stCcont,PF ||∇(u− ũh)||ωa

and

||ψγ∇ũh + σh
γ ||ωγ ≤ C1

st||∇rγ ||ωγ ≤ C1
stCγ

(
R

h

)
||∇(u− ush)||ωγ∪ω′

Finally,

||∇ũh + σ̃h||K ≤ C2
stCcont,PF

∑
a∈Vk

||∇(u− ũh)||ωa + C1
stCγ

(
R

h

)
||∇(u− ush)||ωγ∪ω′

■

Conclusion. From Theorem 2.10, we conclude that we can not prove the efficiency since
the constant Cγ

(
R
h

)
in (2.13) depends on the mesh size. In order to be able to prove the

efficiency we will build a new flux reconstruction in the Section 2.2 .

2.1.4. Numerical results using the flux reconstruction (2.2)

We will take in this section RTk = RT2 and Pk = P2. We have obtained in Theorem 2.5
that ||∇(u− ush)||2Ω ≤

∑
K∈T̃h η

2
F,K and we want to plot the error:

Error := ||∇(u− ush)||Ω =
√
||∇(u− u′1)||2Ω′

1
+ ||∇(u− ũh)||2Ω̃
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

and the estimator:
Estimator :=

√∑
K∈T̃h

η2F,K

with respect to different positions of interface γ which has the position x = xγ in a way
that xγ goes form the position very near to the inlet i.e. xγ = xiγ = 0.1 to the position
very near to the corner of the channel i.e. xγ = xfγ = L1 − 0.02 = 5.08 where, xiγ and xfγ
are located in Figure 2.4 below.

Figure 2.4.: Direction of the interface γ from position x = xiγ to x = xfγ

For fixed mesh size h = 0.07, we plot the error and the estimator in the Theorem 2.5 for
different positions of the interfaces and we obtain the graph in Figure 2.5.

Figure 2.5.: Error on Ω and Estimator on Ω̃ in Theorem 2.5 for mesh size h = 0.07

Now, let us decrease the mesh size to h = 0.02 and plot the error and the estimator in
the Theorem 2.5 for different positions of the interface and the graph is obtained in Figure
2.6.
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2.1. A simple a posteriori estimator with guaranteed upper bound only

Figure 2.6.: Error on Ω and Estimator on Ω̃ for Theorem 2.5 for mesh size h = 0.02

In Figure 2.5 and Figure 2.6, we see that the error and the estimator become much
bigger as the interface becomes near to the corner and this is due to the dominance of the
2D affects in the corner. We must specify some tolerance in order to detect the suitable
position of the interface. For this reason for a fixed mesh size, we want to see the variation
between the reconstructed approximated flux σγh and the approximated flux −∇ũh on the
domain ωγ i.e. ||σγh +(∇ũh)ψγh||ωγwith respect to different positions of the interface where
ωγ is showed in the Figure 2.3.
Let us take the mesh size h ≈ 0.08 and plot ||σγh + (∇ũh)ψγh||ωγwith respect to different
positions of the interface in the Figure 2.7 below with base-10 logarithmic scale on the
y-axis. Now, let us fix the position of the interface at xγ = 4. We plot in Figure 2.8 the
estimator on ωγ with respect to different mesh sizes. We find that ||σγh+(∇ũh)ψγh||ωγ takes
the values between 1.2×10−4 and 4.5×10−4 for different mesh sizes which is approximately
of the same tolerance 10−4 (but not constant). Finally, ||σγh + (∇ũh)ψγh||ωγ can be taken
as an estimator for the position of the interface but it can be improved to be constant
for different mesh sizes when we fix the position of the interface xγ . This improvement is
done if we introduce a new definition of reconstructing the flux which will be studied in
the following section.
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

Figure 2.7.: ||σγh + (∇ũh)ψγh||ωγ w.r.t. different positions of xγ for mesh size h ≈ 0.08

Figure 2.8.: ||σγh + (∇ũh)ψγh||ωγ w.r.t. different mesh sizes for a fixed interface at xγ = 4

The drawbacks of this definition of the flux are the following

• We can not prove the efficiency (lower bound).

• For fixed position of the interface, we find that ||σγh + (∇ũh)ψγh||ωγ vary a little
bit for different mesh sizes.

These drawbacks will be solved in the following section by introducing the new definition
of the flux reconstruction.
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2.2. A posteriori estimator with guaranteed upper and lower
(efficiency) bounds

In this section we will make a new partition of unity of Ω and we will introduce a posteriori
error indicator with guaranteed reliability and provable efficiency. We will make a new
definition of the flux reconstruction in a way that we can prove the reliability and the
efficiency of a posteriori error estimator. We have to introduce two lemmas in order to be
able to prove the global efficiency. We note that this approach is more expensive but more
accurate.

2.2.1. A posteriori error indicator

We now introduce the a posteriori error indicator with guaranteed reliability and provable
efficiency. Let the position of the interface xγ ∈ [0.1, L1 − R]. To this end, consider the
continuous function on Ω, named ψγ , defined on rectangular portion [0, xγ +R]× [0, R] of
the channel by

ψγ(x) =


1, for x < xγ
xγ+R−x

R , for x ∈ [xγ , xγ +R]
0, for x > xγ +R

(2.14)

and extended by 0 everywhere else. Here, xγ is the x-coordinate of the interface γ and we
assume that xγ +R is still in the rectangular portion of the channel. We also introduce a
piecewise affine (on mesh T̃h) version of ψγ :

ψγh(x) =
∑

a:all the nodes of T̃h

ψγ(a)ψa(x) for x ∈ Ω̃ (2.15)

and ψγh = 1 on Ω′, where ψa is a hat function i.e. a polynomial of degree 1 that takes the
value 1 at the node a and 0 on the other nodes different from a. Note the partition of
unity on Ω

1 = ψγh +
∑
a∈V∗

h

(1− ψγ(a))ψa. (2.16)

Recalling that V∗
h represents all vertices that belongs to Ω̃\γ i.e V∗

h = Vh\Vγh where Vγh
represents the vertices located at γ, we define then the flux on whole Ω = Ω̃ ∪ Ω′ ∪ γ as

σh = σγh +
∑
a∈V∗

h

(1− ψγ(a))σah + (−∇u′)1Ω′ . (2.17)

We will divide the flux into two fluxes. The first flux is defined on Ω′ by

σ′ = −∇u′ (2.18)

and the second flux is defined on Ω̃ by

σ̃h = σγh +
∑
a∈V∗

h

(1− ψγ(a))σah, (2.19)

where σah is defined on all patches ωa = supp(ψah) ∩ Ω̃ for all nodes a ∈ V∗
h as follows:

σah ∈ Σah and pah ∈ Qah such that for all τh ∈ Σah and qh ∈ Qah∫
ωa

σah · τh −
∫
ωa

pahdivτh = −
∫
ωa

(∇ũh)ψa · τh, (2.20)

59
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ωa

qhdivσah =

∫
ωa

(fψa −∇ũh · ∇ψa)qh. (2.21)

Similarly, σγh is defined on the patch ωγ = supp(ψγh) ∩ Ω̃ as follows: σγh ∈ Σγh and pγh ∈ Qγh
such that for all τh ∈ Σγh and qh ∈ Qγh

∫
ωγ

σγh · τh −
∫
ωγ

pγhdivτh = −
∫
ωγ

(∇ũh)ψγh · τh, (2.22)

∫
ωγ

qhdivσγh =

∫
ωγ

(fψγh −∇ũh · ∇ψγh)qh. (2.23)

Where,
Case 1: a in an internal node of Ω̃

Σah := {σh ∈ RTk(ω
a), σh · n = 0 on ∂ωa}

Qah := {qh ∈ L2(ωa), qh|K ∈ Pk(K), ∀K ∈ ωa,
∫
ωa qh = 0}

Case 2: a on the wall of Ω̃\γ
Σah := {σh ∈ RTk(ω

a), σh · n = 0 on ∂ωa\∂Ω̃}
Qah := {qh ∈ L2(ωa), qh|K ∈ Pk(K), ∀K ∈ ωa}

Case 3: on the wall γ
Σγh := {σh ∈ RTk(ω

γ), σh · n = 0 on γ̃ and σh · n = (−∇u′) · n = 0 on γ}
Qγh := {qh ∈ L2(ωγ), qh|K ∈ Pk(K),∀K ∈ ωγ}
with γ̃ := ∂ωγ\∂Ω̃ = ∂ωγ ∩ Ω̃.

Proposition 2.11. We have σ̃h := σγh+
∑

a∈V∗
h
(1−ψγ(a))σah on Ω̃, then ∇·σ̃h = ΠQh

(f) =

f on Ω̃ and consequently ∇ · σh = f on Ω, where Qh = Pk(T̃h).

Proof. σ̃h ∈ H(div, Ω̃) as all the individual components σγh and σah belong to H(div, Ω̃)
for all vertices a ∈ Ω̃\γ, since by extension we can go from H(div, ωγ) and H(div, ωa) to
H(div, Ω̃), and σ̃h is the sum of all these components. We will deal with the following
three cases.
Case 1: a is internal node of Ω̃.
We have (∇ · σah, qh)ωa = (fψa−∇ψa · ∇ũh, qh)ωa for all qh ∈ Qah, then we have

∫
ωa qh = 0

and we have (∇ · σah, 1)ωa = 0 as σah · n = 0 on ∂ωa and using the divergence theorem.
But from weak formulation (1.12), (∇ũh,∇ṽh)Ω̃ = (f, ṽh)Ω̃ for all ṽh ∈ Vh, ṽh = 0 on ∂Ω̃
so, let us take ṽh = ψa as a test function, then (∇ũh · ∇ψa, 1)Ω̃ = (fψa, 1)Ω̃. So, for
all internal nodes a, we have (∇ · σah, qh)ωa = (ψaf − ∇ũh · ∇ψa, qh)ωa for all qh ∈ Qah
and not only for the vector-valued function with zero mean value. So we can redefine
Qah := {qh ∈ L2(ωa); qh ∈ Pk(K) ∀K ∈ ωa}
Case 2: a is on wall of Ω̃\Γ:
We have (∇ · σah, qh)ωa = (ψaf −∇ψa · ∇ũh, qh)ωa for all qh ∈ Qah = Qh(ω

a).
Case 3: on wall γ:
We have (∇ · σγh, qh)ωγ = (ψγhf −∇ψγh · ∇ũh, qh)ωγ for all qh ∈ Qγh = Qh(ω

γ).
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Let now q̃h ∈ Qh = Pk(T̃h) then,(
∇ · σ̃h, q̃h

)
Ω̃
=
(
∇ · σγh, q̃h

)
Ω̃
+
∑
a∈V∗

h

(1− ψγ(a))
(
∇ · σah, q̃h

)
Ω̃

=
(
fψγh −∇ψγh · ∇ũh, q̃h

)
Ω̃
+
∑
a∈V∗

h

(1− ψγ(a))
(
ψaf −∇ψa · ∇ũh, q̃h

)
Ω̃

=

(
f
(
ψγh +

∑
a∈V∗

h

(1− ψγ(a))ψa
)
−∇ũh · ∇(ψγh +

∑
a∈V∗

h

(1− ψγ(a))ψa), q̃h

)
Ω̃

=
(
f1Ω̃ −∇ũh · ∇(1Ω̃), q̃h

)
Ω̃

= (f, q̃h)Ω̃.

Since ∇ · (RTk(K)) = Qh(K) = Pk(K) for all K ∈ T̃h, we get ∇ · σ̃h = ΠQh
(f) = f where,

ΠQh
is the L2(Ω̃)-orthogonal projection onto Qh and finally, we get

∇ · σ̃h = f on Ω̃.

■

2.2.2. Main theorem and the proof

Theorem 2.12. Let u be the weak solution defined by system (1.4). Let ush and σh defined
as in (1.12)–(1.13) and (2.17) respectively, then we have the upper bound with constant 1

∥∇u−∇ush∥Ω ⩽ ∥σh +∇ush∥Ω (2.24)

and the lower bound
∥σh +∇ush∥Ω ⩽ C∥∇u−∇ush∥Ω (2.25)

with a constant C depending only on the mesh regularity.

Proof. The proof of (2.24) is completely standard. We verify indeed that σh ∈ H(div,Ω),
divσh = f on Ω, set e = u− ush, observe e ∈ H1

0 (Ω) and do the usual calculation

∥∇u−∇ush∥2Ω = (∇u−∇ush,∇e)Ω = (f, e)Ω − (∇ush,∇e)Ω = (divσh, e)Ω − (∇ush,∇e)Ω

= (−σh −∇ush,∇e)Ω ⩽ ∥σh +∇uh∥Ω∥∇e∥Ω

hence (2.24). The proof of (2.25) is organized in several steps.

Step 1: error caused by the interface, prior to discretization. Let us begin with a
“continuous ” version of our “simplified ” problem: we search for ũ on Ω̃ such that

−∆ũ = f in Ω̃ , (2.26a)

ũ =


u′ on γ ,
0 on Γwall ,

uout on Γout ,

(2.26b)
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

and set

us =

{
u′ on Ω′,

ũ on Ω̃.

We want to study ∥∇u−∇us∥Ω which is the error introduced by the interface itself, without
discretizing the problem on Ω̃. More precisely, we want to relate it to the continuous
version of ∥σγh + (∇ũh)ψγh∥ωγ . We thus introduce the continuous version of σγh: find σγ ∈
Hγ(div, ωγ), pγ ∈ L2(ωγ) with Hγ(div, ωγ) := {τ ∈ H(div, ωγ) : τ · n = 0 on γ} such that∫

ωγ

σγ · τγ −
∫
ωγ

pγdivτγ = −
∫
ωγ

(∇ũ) · τγ ∀τγ ∈ Hγ(div, ωγ) (2.27a)∫
ωγ

qγdivσγ =

∫
ωγ

fqγ ∀qγ ∈ L2(ωγ) (2.27b)

Let us prove
∥σγ +∇ũ∥ωγ ≤ C ∥∇u−∇us∥Ω . (2.28)

γRγ

Ω′

Ω̃

ωγR ωγ

Figure 2.9.: Description of ωγ and ωγR

Let ωγR = supp(ψγ) ∩ Ω̃ with γR = ∂ωγR ∩ {x = xγ +R}(In Figure 2.9, ωγR is the square
region where its boundary is composed of the interface γ, γR and the wall of Ω̃). In Lemma
2.13 below we show that there exists θ ∈ H1(ωγR) such that

∆θ = 0 in ωγR

∇θ · n = −∇ũ · n on γ

∇θ · n = 0 on γR

θ = 0 on Γ̃ ∩ ∂ωγR
We have then

∥∇θ∥ωγ
R
⩽ C1∥∇ũ · n∥−1/2,γ
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with C1 > 0 which does not depend on R, as proved in Lemma 2.13. The norm ∥ · ∥−1/2,γ

is defined in the same Lemma. Recalling that f = −div(∇ũ), we see that (2.27b) implies
div(σγ +∇ũ) = 0 a.e. on ωγ . Let τ c ∈ H(div, ωγ) defined by τ c = ∇θ on ωγR and τ c = 0
on ωγ \ ωγR (note that ωγR ⊂ ωγ , where the patch ωγ is described in Figure 2.9 as a patch
with the blue boundary) so that divτ c = 0 on ωγ . Now set τγ = σγ +∇ũ+ τ c and observe
that divτγ = 0 a.e. on ωγ and τγ · n = 0 on γ since σγ · n = 0 and τ c · n = ∇ũ · n on γ.
We can thus use this τγ as the test function in (2.27) and since

∫
ωγ p

γdivτγ = 0, we get∫
ωγ

(σγ +∇ũ) · (σγ +∇ũ+ τ c) = 0.

Hence, by Cauchy-Schwartz,

∥σγ +∇ũ∥ωγ ⩽ ∥τ c∥ωγ = ∥∇θ∥ωγ
R
.

Thus,
∥σγ +∇ũ∥ωγ ⩽ C1∥∇ũ · n∥−1/2,γ . (2.29)

Now, we return to bound the error ∥∇u−∇us∥Ω from below. Denoting by [.] the jump on
γ, we have the jump [∇(u−us) ·n]=∇ũ ·n on γ as ∇u′ ·n = 0 on γ, then for all v ∈ H1

0 (Ω)∫
Ω
∇(u− us) · ∇v =

∫
γ
[∇(u− us) · n]v =

∫
γ
∇ũ · nv.

Since Ω = Ω̃ ∪ Ω′ ∪ γ, ∆(u− us) = 0 on Ω, v = 0 on ∂Ω and by integration by parts

0 =

∫
Ω
∆(u− us)v

=

∫
Ω̃
∆(u− ũ)v +

∫
Ω′

∆(u− u′)v

=

∫
Ω̃
∇(u− ũ) · ∇v −

∫
∂Ω̃

∂(u− ũ)

∂n
v ds+

∫
Ω′

∇(u− u′) · ∇v −
∫
∂Ω′

∂(u− u′)

∂n
v ds

=

∫
Ω̃
∇(u− ũ) · ∇v −

∫
∂Ω̃

∇(u− ũ) · nv ds+
∫
Ω′

∇(u− u′) · ∇v −
∫
∂Ω′

∇(u− u′) · nv ds

=

∫
Ω
∇(u− us) · ∇v −

∫
γ
[∇(u− us) · n]v.

Now, from Lemma 2.14 below we know that ∀η ∈ H1/2(γ) ∃v ∈ H1(Ω) vanishing on ∂Ω
i.e. v ∈ H1

0 (Ω) such that v|γ = η and such that

∥∇v∥Ω ⩽ C2∥η∥1/2,γ
with C2 independent of geometrical parameters. We can take v = θ in ωγR, with θ the
solution of Lemma 2.14 and extend it to all the domain e.g. defining v as the mirror image
of θ to the left of γ in Ω′. We have thus ∀η ∈ H1/2(γ)∫

γ
∇ũ · nη =

∫
Ω
∇(u− us) · ∇v ⩽ ∥∇(u− us)∥Ω∥∇v∥Ω ⩽ C2∥η∥1/2,γ∥∇(u− us)∥Ω

that implies
∥∇ũ · n∥−1/2,γ ⩽ C2∥∇u−∇us∥Ω.

Coming back to (2.29) and using this latter inequality, we get the desired estimate (2.28)
with C = C1C2.
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Step 2: error caused by the interface, adding the discretization in Ω̃. Here we prove
that ∥∥σγh + (∇ũh)ψγh

∥∥
ωγ ≤ C(∥∇(ũ− ũh)∥ωγ + ∥∇(u− us)∥Ω . (2.30)

This can be viewed as a discrete analogue of (2.28). The proof is based on Theorem 1.2
of [37], but the latter cannot be applied directly due to a mismatch in boundary conditions:
σγh is required to vanish on both γ and γ̃, while ψγh vanishes only on γ̃. To circumvent
this difficulty, we enlarge ωγ to ωγ,m by adding to ωγ its mirror image with respect to γ.
Similarly, we extend ψγh, ũh, σ

γ
h from ωγ to ψγ,mh , ũmh , σ

γ,m
h on ωγ,m as functions symmetric

with respect to γ. Let γ̃m denote the mirror image of γ̃. Theorem 1.2 of [37] can be
formulated on ωγ,m as

min
vh ∈ H(div, ωγ,m) ∩ RTk

divvh = ψγ,m
h f −∇ψγ,m

h · ∇ũmh
vh · n = 0on γ̃ ∪ γ̃m

∥∥vh + ψγ,mh ∇ũmh
∥∥
ωγ,m ⩽ C(ωγ,m, ψγ,mh ) min

v ∈ H(div, ωγ,m)
divv = f

∥v +∇ũmh ∥ωγ,m

(2.31)
where C(ωγ,m, ψγ,mh ) ⩽ C(∥ψγ,mh ∥∞ + CP ∥∇ψγ,mh ∥∞) with CP the Poincaré constant of
the space H1(ωγ,m) under the constraint of functions vanishing on γ̃ ∪ γ̃m, i.e. ∥v∥ωγ,m ⩽
CP ∥∇v∥ωγ,m for all v ∈ H1(ωγ,m) with v = 0 on γ̃ ∪ γ̃m (note that these constraints are
imposed on the part of ∂ωγ,m where ψγ,mh vanishes). By our geometrical assumptions, CP
is of order R and ∥∇ψγh∥∞ ⩽ C

R so that C(ωγ,m, ψγ,mh ) ⩽ C. Comparing with the definition
of σγh we see that the minimum on the left-hand side of (2.31) is attained on σγ,mh (note in
particular that σγ,mh · n = 0 on γ by symmetry). In order to identify the minimum on the
other side, we introduce σ̂γ ∈ Hγ(div, ω

γ), p̂γ ∈ L2(ωγ) such that∫
ωγ

σ̂γ · τγ +
∫
ωγ

p̂γ div τγ = −
∫
ωγ

∇ũh · τγ ∀τγ ∈ Hγ(div, ω
γ) , (2.32a)∫

ωγ

qγ div σ̂γ =

∫
ωγ

fqγ ∀qγ ∈ L2(ωγ) . (2.32b)

We see then that the minimum on the right-hand side of (2.31) is attained on σ̂γ,m, which
is the mirror extension of σ̂γ to ωγ,m. Going back in (2.31) to the subdomain ωγ of ωγ,m

and using the symmetry gives∥∥σγh + (∇ũh)ψγh
∥∥
ωγ ⩽ C ∥σ̂γ +∇ũh∥ωγ .

This entails by the triangle inequality∥∥σγh + (∇ũh)ψγh
∥∥
ωγ ⩽ C(∥σ̂γ − σγ∥ωγ + ∥σγ +∇ũ∥ωγ + ∥−∇ũ+∇ũh∥ωγ ). (2.33)

To bound the first term in the right hand side of (2.33), we take the difference between
(2.27) and (2.32) setting τγ = σγ − σ̂γ . Noting that div τγ = 0, this yields

∥σγ − σ̂γ∥ωγ ≤ C ∥∇ũ−∇ũh∥ωγ . (2.34)

The second term in the right side of (2.33) is bounded by (2.28). Finally, (2.33) gives
(2.30).

Step 3: discretization error inside Ω̃. We have at all the nodes a of the mesh T̃h
∥σah + (∇ũh)ψa∥ωa ⩽ C∥∇ũ−∇ũh∥ωa (2.35)

This well known estimate follows, for example, from Theorem 1.2 of [39] applied on each
patch ωa.
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Step 4: putting everything together. From definition of σh, see (2.17), (2.18) and the
partition of unity (2.16) we obtain on every mesh element K ∈ T̃h

∥σ̃h +∇ũh∥K ≤
∥∥σγh + (∇ũh)ψγh

∥∥
K
+
∑
a∈V∗

h

(1− ψγ(a)) ∥σah + (∇ũh)ψa∥K

where σγh and σah are extended by 0 outside of their domains of definitions ωγ and ωa

respectively. The number of non-zero terms in the sum above is thus uniformly bounded
by a constant that depends only on the regularity of the mesh. Taking the squares on both
sides of the inequality above leads to

∥σ̃h +∇ũh∥2K ≤ C

∥∥σγh + (∇ũh)ψγh
∥∥2
K
+
∑
a∈V∗

h

∥σah + (∇ũh)ψa∥2K

 .

Taking the sum over K ∈ T̃h, noting σ′+∇u′ = 0 on Ω′, and then using the bounds (2.30),
(2.35) leads to

∥σh +∇ush∥
2
Ω ≤ C

∥∥σγh + (∇ũh)ψγh
∥∥2
ωγ +

∑
a∈V∗

h

∥σah + (∇ũh)ψa∥2ωa


≤ C

∥∇(u− us)∥2Ω + ∥∇ũ−∇ũh∥2ωγ +
∑
a∈V∗

h

∥∇ũ−∇ũh∥2ωa


≤ C

(
∥∇(u− us)∥2Ω + ∥∇ũ−∇ũh∥2Ω̃

)
since the number of possible overlaps between the different patches ωγ and ωa is uniformly
bounded. By integration by parts,∫
Ω̃
(∇u−∇ũ) · (∇ũ−∇ũh) = −

∫
Ω̃
(∆u−∆ũ)(ũ− ũh) +

∫
∂Ω̃

(∇u−∇ũ) · n(ũ− ũh) = 0 .

Hence

∥∇(u− ush)∥
2
Ω =

∥∥∇(u− u′)
∥∥2
Ω′+∥∇(u− ũ) +∇(ũ− ũh)∥2Ω̃ = ∥∇(u− us)∥2Ω+∥∇ũ−∇ũh∥2Ω̃ ,

so that
∥σh +∇ush∥

2
Ω ≤ C ∥∇(u− ush)∥Ω ,

i.e. (2.25).
■

Lemmas for principal theorem.

We recall here two well-known lemmas, needed for the proof of Theorem 2.12, and give
their proofs for completeness of exposition. Let Hs

00(γ), with s ∈ {−1
2 ,

1
2} be the spaces of

functions (distributions) on γ of the form

η =
∑
k⩾1

ηk sin

(
kπ

R
y

)
, (2.36)
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with the norm

∥η∥s,γ =

∑
k⩾1

R

2
η2k

(
kπ

R

)2s
1/2

. (2.37)

Lemma 2.13. For any η ∈ H
−1/2
00 (γ), let θ be the solution to

∆θ = 0 on ωγR

∇θ · n = η on γ

∇θ · n = 0 on γR

θ = 0 on Γ̃wall ∩ ∂ωγR
Then,

∥∇θ∥ωγ
R
⩽ C1∥η∥−1/2,γ

with C1 > 0 which does not depend on R and ∥η∥−1/2,γ is defined in (2.37).

Proof. For any η ∈ H
−1/2
00 (γ) written as (2.36), the solution θ is given by

θ =
∑
k⩾1

ηk sin

(
kπ

R
y

)
cosh

(
kπ
R (x− xγ −R)

)
kπ
R sinh(kπ)

The result follows by direct calculations. We have

∥η∥−1/2,γ =

∑
k⩾1

η2k
R2

2kπ

1/2

and want to prove that

∥∇θ∥ωγ
R
⩽ C1∥η∥−1/2,γ .

Let us begin with the calculation of ∥∇θ∥ωγ
R
:

∂θ

∂x
=
∑
k⩾1

ηk
sin
(
kπ
R y
)

sinh(kπ)
sinh

(
kπ

R
(x− xγ −R)

)
and

∂θ

∂y
=
∑
k⩾1

ηk
cos
(
kπ
R y
)

sinh(kπ)
cosh

(
kπ

R
(x− xγ −R)

)
.

Then, we have ∥∇θ∥2
ωγ
R
=
∥∥ ∂θ
∂x

∥∥2
ωγ
R
+
∥∥∥∂θ∂y∥∥∥2ωγ

R

=
∑

k≥1(A)× (B), where

A =

(
ηk

sinh(kπ)

)2
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and

(B) =

∥∥∥∥sin(kπR y

)
sinh

(
kπ

R
(x− xγ −R)

)∥∥∥∥2
ωγ
R

+

∥∥∥∥cos(kπR y

)
cosh

(
kπ

R
(x− xγ −R)

)∥∥∥∥2
ωγ
R

.

Let us begin the calculation with (B):

(B) =

∥∥∥∥sin(kπR y

)
sinh

(
kπ

R
(x− xγ −R)

)∥∥∥∥2
ωγ
R

+

∥∥∥∥cos(kπR y

)
cosh

(
kπ

R
(x− xγ −R)

)∥∥∥∥2
ωγ
R

=

∫ R

0

∫ xγ+R

xγ

sin2
(
kπ

R
y

)
sinh2

(
kπ

R
(x− xγ −R)

)
+ cos2

(
kπ

R
y

)
cosh2

(
kπ

R
(x− xγ −R)

)
dxdy

=

∫ R

0
sin2

(
kπ

R
y

)
dy

∫ xγ+R

xγ

sinh2
(
kπ

R
(x− xγ −R)

)
dx

+

∫ R

0
cos2

(
kπ

R
y

)
dy

∫ xγ+R

xγ

cosh2
(
kπ

R
(x− xγ −R)

)
dx

Now, we will use that cosh2− sinh2 = 1, then

(B) =

∫ R

0
sin2

(
kπ

R
y

)
dy

∫ xγ+R

xγ

sinh2
(
kπ

R
(x− xγ −R)

)
dx

+

∫ R

0
cos2

(
kπ

R
y

)
dy

∫ xγ+R

xγ

1 + sinh2
(
kπ

R
(x− xγ −R)

)
dx

= R

∫ R

0
cos2

(
kπ

R
y

)
dy

+

∫ xγ+R

xγ

sinh2
(
kπ

R
(x− xγ −R)

)
dx

∫ R

0
sin2

(
kπ

R
y

)
+ cos2

(
kπ

R
y

)
dy

= R

∫ R

0
(1− sin2

(
kπ

R
y

)
)dy +R

∫ xγ+R

xγ

sinh2
(
kπ

R
(x− xγ −R)

)
dx

= R
R

2
+R

(
−R

2
+

R

4kπ
sinh(2kπ)

)
.

Let us see that
∫ R
0 sin2

(
kπ
R y
)
dy = R

2 and
∫ xγ+R
xγ

sinh2
(
kπ
R (xγ +R− x)

)
dx = −R

2 +
R
4kπ sinh(2kπ): ∫ R

0
sin2

(
kπ

R
y

)
dy =

∫ R

0

1− cos
(
2kπ
R y
)

2

=
R

2
− 1

2

[
R

2kπ
sin

(
2kπ

R
y

)]R
0

=
R

2
,

where we have used that sin(2kπ) = 0, and for the other integral we have:∫ xγ+R

xγ

sinh2
(
kπ

R
(x− xγ −R)

)
dx =

∫ xγ+R

xγ

1

2

(
cosh

(
2kπ

R
(x− xγ −R)

)
− 1

)
dx

=
1

2

[
R

2kπ
sinh

(
2kπ

R
(x− xγ −R)

)]xγ+R
xγ

− R

2
=

R

4kπ
(sinh(0)− sinh(−2kπ))− R

2

= −R
2
+

R

4kπ
sinh(2kπ).
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Then,

(B) =
R2

4kπ
sinh(2kπ)

and finally

∥∇θ∥2ωγ
R
=
∑
k⩾1

(A)× (B) =
∑
k⩾1

(
ηk

sinh(kπ)

)2 R2

4kπ
sinh(2kπ) =

∑
k⩾1

η2k
R2

2kπ tanh(kπ)

⩽
1

tanh(π)

∑
k⩾1

η2k
R2

2kπ
:= C2

1∥η∥2−1/2,γ .

■

Lemma 2.14. Introduce the space Hs
00(γ) as in the preceding lemma. For any η ∈ H

1/2
00 (γ),

let θ be the solution to
∆θ = 0 on ωγR

θ = η on γ

θ = 0 on γR and on ∂ωγR ∩ Γ̃wall

Then,
∥∇θ∥ωγ

R
⩽ C2∥η∥1/2,γ

with C2 > 0 which does not depend on R.

Proof. For any η ∈ H
1/2
00 (γ) written as (2.36), by direct calculation the solution θ is given

by

θ =
∑
k⩾1

ηk sin

(
kπ

R
y

)
sinh

(
kπ
R (xγ +R− x)

)
sinh(kπ)

.

In this case we recall that the norm is

∥η∥1/2,γ =

∑
k⩾1

η2k

(
kπ

2

)1/2

and that we want to prove

∥∇θ∥ωγ
R
⩽ C2∥η∥1/2,γ .

Let us begin with the calculation of ∥∇θ∥ωγ
R
:

∂θ

∂x
=
∑
k⩾1

ηk
−kπ
R

sin
(
kπ
R y
)

sinh(kπ)
cosh

(
kπ

R
(xγ +R− x)

)

and
∂θ

∂y
=
∑
k⩾1

ηk
kπ

R

cos
(
kπ
R y
)

sinh(kπ)
sinh

(
kπ

R
(xγ +R− x)

)
.
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Then, we have ∥∇θ∥2
ωγ
R
=
∥∥ ∂θ
∂x

∥∥2
ωγ
R
+
∥∥∥∂θ∂y∥∥∥2ωγ

R

=
∑

k⩾1(A)× (B), where

(A) =

(
ηk

kπ
R

sinh(kπ)

)2

and

(B) =

∥∥∥∥sin(kπR y

)
cosh

(
kπ

R
(xγ +R− x)

)∥∥∥∥2
ωγ
R

+

∥∥∥∥cos(kπR y

)
sinh

(
kπ

R
(xγ +R− x)

)∥∥∥∥2
ωγ
R

.

Let us begin the calculation with (B):

(B) =

∥∥∥∥sin(kπR y

)
cosh

(
kπ

R
(xγ +R− x)

)∥∥∥∥2
ωγ
R

+

∥∥∥∥cos(kπR y

)
sinh

(
kπ

R
(xγ +R− x)

)∥∥∥∥2
ωγ
R

=

∫ R

0

∫ xγ+R

xγ

sin2
(
kπ

R
y

)
cosh2

(
kπ

R
(xγ +R− x)

)
+ cos2

(
kπ

R
y

)
sinh2

(
kπ

R
(xγ +R− x)

)
dxdy

=

∫ R

0
sin2

(
kπ

R
y

)
dy

∫ xγ+R

xγ

cosh2
(
kπ

R
(xγ +R− x)

)
dx

+

∫ R

0
cos2

(
kπ

R
y

)
dy

∫ xγ+R

xγ

sinh2
(
kπ

R
(xγ +R− x)

)
dx

Now, we will use cosh2− sinh2 = 1, then

(B) =

∫ R

0
sin2

(
kπ

R
y

)
dy

∫ xγ+R

xγ

1 + sinh2
(
kπ

R
(xγ +R− x)

)
dx

+

∫ R

0
cos2

(
kπ

R
y

)
dy

∫ xγ+R

xγ

sinh2
(
kπ

R
(xγ +R− x)

)
dx

= R

∫ R

0
sin2

(
kπ

R
y

)
dy +

∫ xγ+R

xγ

sinh2
(
kπ

R
(xγ +R− x)

)
dx

∫ R

0
sin2

(
kπ

R
y

)
+ cos2

(
kπ

R
y

)
dy

= R

∫ R

0
sin2

(
kπ

R
y

)
dy +R

∫ xγ+R

xγ

sinh2
(
kπ

R
(xγ +R− x)

)
dx

= R
R

2
+R

(
−R

2
+

R

4kπ
sinh(2kπ)

)
.

Since, we have
∫ R
0 sin2

(
kπ
R y
)
dy = R

2 (same calculation as before) and∫ xγ+R

xγ

sinh2
(
kπ

R
(xγ +R− x)

)
dx =

∫ xγ+R

xγ

1

2

(
cosh

(
2kπ

R
(xγ +R− x)

)
− 1

)
dx

=
1

2

[
−R
2kπ

sinh

(
2kπ

R
(xγ +R− x)

)]xγ+R
xγ

− R

2
=

−R
4kπ

(sinh(0)− sinh(2kπ))− R

2
= −R

2
+

R

4kπ
sinh(2kπ),

then,

(B) =
R2

4kπ
sinh(2kπ).
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and finally,

∥∇θ∥2
ωΓ
R
=
∑
k⩾1

(A)× (B) =
∑
k⩾1

(
ηk

kπ
R

sinh(kπ)

)2
R2

4kπ
sinh(2kπ) =

1

2

∑
k⩾1

η2k
kπ

tanh(kπ)

⩽
1

tanh(π)

∑
k⩾1

η2k
kπ

2
:= C2

2∥η∥21/2,γ .

■

2.2.3. Numerical results using the flux reconstruction (2.17)

We have a 0D/2D model for the Poisson equation and in the following we want to define a
suitable interface estimator ηγ for the interface to be able to detect the suitable position of
the interface γ according to this estimator. We will see that this estimator ηγ is depending
only on the position of the interface and independent of the mesh size of the mesh. We
will see that more the tolerance of ηγ is small, more the interface will be placed toward
the inlet. For this purpose we will begin with the uniform refinement. We will take in this
section RTk = RT2 and Pk = P2.

Uniform Refinement and Estimator of the Interface

First of all, we fix the mesh size, then we change the position of the interface to obtain
the graphs of the error ∥∇u−∇ush∥Ω and estimator ∥σh+∇ush∥Ω in (2.24) with respect to
different positions of interface in Figure 2.10. We take the mesh sizes h ≈ 0.08, h ≈ 0.04
and h ≈ 0.02 by making a quasi-uniform mesh refinement. In the proofs we suppose that
the position xγ of the interface must be located in the interval xγ ∈ [0.1, L1 −R] and here
L1 −R = 4.6, see Figure 1.4, but in order to see what happens also after the upper bound
for the interface position, that is L1 −R, we take xγ ∈ [0, L1 − 0.02]. So we conclude from
Figure 2.10 that as xγ becomes near the corner as the estimator and error become bigger.
For a fixed mesh size h ≈ 0.08 , we want to see the variation between the reconstructed
approximated flux σγh and the approximated flux −∇ũh on the domain ωγ i.e. ηγ :=
||σγh + (∇ũh)ψγh||ωγ with respect to different positions of the interface where ωγ is defined
in Figure 2.11a. We plot ηγ = ||σγh+(∇ũh)ψγh||ωγ with respect to different positions of the
interface in the Figure 2.11b below with base-10 logarithmic scale on the y-axis and for
fixed mesh size h ≈ 0.08.
For fixed position of interface at xγ = 4, we plot in Figure 2.11c the estimator on ωγ w.r.t.
different mesh sizes to find that ηγ = ||σγh+(∇ũh)ψγh||ωγ is about 6.6×10−5 for all different
mesh sizes which is constant and, consequently, this flux is better than previous flux since
in the previous flux we don’t have that ηγ = ||σγh + (∇ũh)ψγh||ωγ is constant for different
mesh sizes. Finally, let us define ηγ := ||σγh +(∇ũh)ψγh||ωγ as an estimator for the position
of the interface which depends only on the position of the interface.
For a fixed mesh size h ≈ 0.08, we want to compare the above estimator Estimator1 :=
ηγ = ||σγh +(∇ũh)ψγh||ωγ with another proposed estimator for the interface Indicator2 :=
||∇(ũh − u′)ψγh||ωγ by plotting them with respect to different positions of the interface in
Figure 2.12a below where now xγ ∈ [0.1, L1−0.02], see Figure 1.4, then we see that they are
approximately the same and this verified our choice of Estimator1 to be a good estimator
for the position of the interface. Now, if we fix the interface at xγ = 4, after making
uniform refinement we see that the error distribution in Figure 2.12b and the estimator
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(a) h ≈ 0.08 (b) h ≈ 0.04

(c) h ≈ 0.02

Figure 2.10.: Error and Estimator w.r.t. different positions of the interface for different
mesh sizes h
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(a) Local Patches (b) h ≈ 0.08

(c) xγ = 4

Figure 2.11.: Estimator on ωγ w.r.t the interface position xγ and w.r.t mesh sizes h
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distribution in Figure 2.12c are of biggest value near the corners and this is due to the
singularities in the corners. The mesh should be thus refined there. In the next section,
we will propose an adaptive algorithm both for the interface placement and for the mesh
refinement.

(a) Estimator and indicator on ωγ w.r.t xγ
(b) Distribution of error with mesh size

h=0.08 for xγ = 4

(c) Distribution of estimator with mesh
size h=0.08 for xγ = 4

Figure 2.12.: estimators on ωγ and distribution of estimator and error on Ω

Let us define on Ω the error e := ∥∇(u− ush)∥Ω, the estimator η := ∥σh +∇ush∥ and
the index of efficiency I := e

η . If we fix the interface position xγ = 4 (e.g.) and make a
quasi-uniform refinement, we find the order of convergence is about 0.7 as in the Table 2.1.
We see that the convergence is not optimal and it is normal since u ̸∈ H2(Ω) (we have a
singular solution). One strategy to try to improve the rate of convergence is to make a
local mesh refinement as Section 2.3.

2.2.4. Numerical comparison between the two fluxes

In this section we are going to make a comparison between the two estimators developed in
this chapter. The first flux which is defined in (2.2) will be denoted by σF1

h = σ̃F1
h +σ′ and

consequently the first estimator will be denoted by ηF1 :=
∑

K∈T̃h η
2
F1,K

where ηF1,K :=

||∇ũh+σ̃F1
h ||K . The second flux which is defined in (2.17) will be denoted by σF2

h = σ̃F2
h +σ′
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h e η I order of convergence

0.0760918 0.0288059 0.037627 1.30623 -
0.0400266 0.018209 0.0236558 1.29913 0.713991
0.0223199 0.0115984 0.0148648 1.28162 0.772254

Table 2.1.: Order of convergence.

and consequently the second estimator will be denoted by ηF2 :=
∑

K∈T̃h η
2
F2,K

where
ηF2,K := ||∇ũh + σ̃F2

h ||K . First of all, the estimator ηF1 does not guarantee the efficiency
(lower bound) while the second one ηF2 guarantee the efficiency. Now, let us make a uniform
mesh refinement and plot the two estimators ηF1 and ηF2 and the error ∥∇u−∇ush∥Ω with
respect to different positions xγ of the interface γ and for mesh size h ≈ 0.08 as shown
in Figure 2.13. Here we consider that xγ ∈ [0, L1 − 0.02] to be able to see the better
estimator although that we suppose xγ ∈ [0, L1−R], with R = 0.5, to be able to define the
flux since if xγ exceeds L1 −R = 4.6 position, then the flux will not belong to H(div,Ω).
We observe that the estimators ηF1 and ηF2 are equivalent until the position xγ = 4
of the interface γ. To see more what happen between xγ = 4 and xγ = L1 − 0.02 we
have introduced Figure 2.14. In Figure 2.14 we see that the estimators ηF1 and ηF2 are
equivalent until the position xγ = 4.6 ( this is the point where we must not exceed it when
we consider the second flux σF2

h where we have guaranteed efficiency) and for this reason
we will make the comparison between the local estimators ηF1,γ := ||σF1,γ

h +(∇ũh)ψF1,γ
h ||ωγ

and ηF2,γ := ||σF2,γ
h +(∇ũh)ψF2,γ

h ||ωγ on the interface patch ωγ for the two fluxes. For this
purpose let us fix xγ = 4 and plot in Figure 2.15 the variation of ηF1 and ηF1 with respect
to different mesh sizes.

Figure 2.13.: Error and estimators ηF1 and ηF2 w.r.t different interface positions xγ
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Figure 2.14.: Error and estimators ηF1 and ηF2 w.r.t different interface positions xγ

Figure 2.15.: Comparison between the two local estimators ηF1,γ and ηF2,γ with respect to
different mesh sizes

From Figure 2.15 we deduce that the estimator ηF1,γ is greater than ηF2,γ and ηF2,γ

is constant with respect to different mesh sizes which is very important to take it as the
estimator for detecting the position of interface γ since it is independent from the mesh
size and it depends only on the position of the interface as showed in Figure 2.11b. The
fact that the efficiency is guaranteed when we take σF2

h defined in (2.17) and all the above
numerical results about the comparison between the two fluxes detect that the best choice
of the definition of the flux is σF2

h that is defined in (2.17).
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2.3. Adaptive algorithms

2.3.1. Adaptive mesh refinement: “hopt” strategy

It is classical to use the a posteriori error estimate to refine the mesh, by marking certain
mesh elements as contributing the most to the error, and then splitting them into smaller
elements. However, we do all our numerical experiments in the FreeFEM software [49]
which does not provide the possibility to produce a new regular mesh by refining some
marked elements of the old mesh. Instead, FreeFEM provides a function adapmesh that
produces a new mesh of the entire domain which respects (approximately) the given dis-
tribution of the local element sizes. We thus need to design a mesh refinement algorithm
compatible with the FreeFEM meshing capabilities.

To introduce our mesh adaptive algorithm, referred to as “hopt",1 let us characterize
the mesh T̃h of Ω̃ by the mesh size distrubution h(x) such that h(x) at a point x inside a
triangle K ∈ T̃h is approximately equal to hK . Moreover, we have the simplified error on
Ω = Ω̃ ∪ Ω′ ∪ γ which is defined in (1.14) by

|u− ush|21,Ω ≈ |u− ũh|21,Ω̃ ≈
∫
Ω̃
h2δ(x)c2(x) dx (2.38)

where ush is the approximated solution of the coupled 0D/2D model which is defined in
(1.13), some a priori unknown c(x) and the order parameter δ chosen once for all. This
is reasonable for example for P1 FEM with δ = 1, c(x) ∼ |D2u|(x), i.e. the norm of the
second order derivatives at x, provided u is sufficiently smooth. Note also that the number
of DOFs is approximately given in 2D case by

NDOF ∼
∫
Ω̃

dx

h2(x)

since a triangle of size h(x) occupies the area of order h2(x). Let us imagine first that we
know c(x) and we want to construct an optimal mesh (with the minimal possible NDOF) to
achieve a given error tolerance, i.e. |u− ũh|1,Ω̃ = tol. This is a constrained minimization
problem for the mesh size distribution h(x):

min
h ∈ L2(Ω̃)∫

Ω̃ h
2δ(x)c2(x) dx = tol2

∫
Ω̃

dx

h2(x)
·

The minimum is achieved on a stationary point of the Lagrangian

L(h, λ) =

∫
Ω̃

dx

h2(x)
+ λ

(∫
Ω̃
h2δ(x)c2(x) dx− tol2

)
with h ∈ L2(Ω̃) and λ ∈ R. Taking the variations yields

−
∫
Ω̃

2v(x) dx

h3(x)
+ λ

∫
Ω̃
2δh2δ−1(x)v(x)c2(x) dx = 0, ∀v = v(x)

so that the optimal mesh size distribution is

hopt(x) =
tol1/δ(∫

Ω̃ c
2/(δ+1)(x) dx

)1/(2δ) 1

(c(x))1/(δ+1)
·

1Another mesh adaptive algorithm is proposed in Appendix A.
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Of course, c(x) is not known in practice. But, on a given mesh T̃h, we have a posteriori
error estimates with provable upper bound (2.24) and lower bound (2.25) and thus ∥∇u−
∇ush∥2Ω ≈

∑
K∈T̃h η

2
K where the total estimator η is defined by η2 := ∥σh + ∇ush∥2Ω =

∥σ̃h +∇ũh∥2Ω̃ =
∑

K∈T̃h η
2
K and let us reinterpret this in the form (2.38),

∑
K∈T̃h

∫
K
h2δ(x)c2(x) dx ∼

∑
K∈T̃h

η2K ·

This suggests to approximate c(x) on any triangle K ∈ T̃h by

c(x) ≈ ηK

hδK
√
|K|

forx ∈ K.

This gives

hopt(x) =
tol1/δ(∑

K∈Th η
2/(δ+1)
K h

−2δ/(δ+1)
K |K|δ/(δ+1)

)1/(2δ)

h
δ/(δ+1)
K |K|1/(2δ+2)

η
1/(δ+1)
K

forx ∈ K.

(2.39)
Now, rather then trying to achieve the target tolerance, let us adapt the mesh by aiming to
diminish the current error estimate Rtol times (i.e. set tol = Est /Rtol) with given Rtol > 1
on each iteration of the algorithm. So, the “hopt” algorithm is

1. Choose δ and Rtol

2. Given the mesh T̃h and the estimator η, set current desired tolerance to

tol =
1

Rtol

∑
K∈Th

η2K

1/2

3. Set hnew as the P0-FE function on the current mesh by hnew = hopt using (2.39)

4. Generate the new mesh through the FreeFEM function adaptmesh with parameters
hnew and IsMetric=1

Note: We make mesh adaptation "hopt" (δ = 1 and Rtol = 4) to obtain the new total
estimator η. We have chosen δ = 1 and Rtol = 4 since it is the best choice and you can see
the explanation in Appendix A at the end of the thesis’s report.

Let us see in the next subsection how we couple this mesh refinement with a suitable choice
of interface γ.

2.3.2. Algorithms for the interface placement and the 2D model mesh
optimization

In this section we will choose a suitable interface position and make an adaptive refinement
to achieve the optimal convergence. We deal with the following Steps.

Step 0: Choices of parameters
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Fix the tolerances tol(η) and tol(ηγ) for the total estimator η = ∥σh+∇ush∥Ω on Ω and for
the interface estimator ηγ := ||σγh +∇ũhψγh||ωγ on ωγ respectively in order to control the
number of times of adapting the mesh until we achieve that the total estimator η ⩽ tol(η)
and to detect the suitable interface position in a way to get ηγ ⩽ tol(ηγ).

Step 1: Detection of the Interface
Fix the position of the interface γ at abscissa xγ = L1 − R (since the corner is located at
x = L1, see Figure 1.4) and we solve the 0D/2D problem with very coarse mesh to save
the computational time cost as the detection of the position of the interface is independent
from the discretization. Then we denote ush the 0D/2D solution and we compute the flux
σγh on ωγ and the estimator ηγ = ||σγh +∇ũhψγh||ωγ on ωγ . If ηγ > tol(η) then we redefine
the abscissa xγ as xγ = xγ − δx, with δx = 0.1 and we restart Step 1 until ηγ ≤ tol(ηγ).

Step 2: Adapting the mesh
Once the suitable interface γ is placed (see Step 1), we make mesh adaptivity as in
Algorithm 1 until we obtain η ≤ tol(η). If we reach a MaxLevelRef of refinement, we
stop adaptation even if η > tol(η).

This approach is summarized as Algorithm 1, page 78. Using this algorithm we notice
that the mesh adaptation following the global estimator η, in line 13 of Algorithm 1,
produces a refinement near the interface also. The rate of convergence is not optimal,
so that we change the strategy to perform the mesh adaptivity: for adaptivity (once the
interface is placed), we take the standard equilibrated estimator in Ω̃ as in [39], that is
defined by ηV :=

∥∥σVh +∇ũh
∥∥
Ω̃

where σVh =
∑

a∈Vh
σah, recalling that Vh represents the

set of all vertices on the mesh of the domain Ω̃.

1: Fix a tolerance for the global estimator in the meshed domain Ω̃, named tol(η)
2: Fix a tolerance for the estimator of the interface position, named tol(ηγ) := αtol(η)

for some α ∈]0, 1[.
3: Fix a step for moving the interface position, named δx > 0
4: Fix a maximum level of refinements for the “hopt” algorithm named MaxLevelRef
5: Fix the interface position near the corner at coordinate xγ = L−R, see Figure 1.4
6: Fix a coarse mesh in Ω̃ and compute the coupled solution and ηγ .
7: while ηγ > tol(ηγ) and xγ > 0 do
8: Redefine xγ = xγ − δx
9: Compute the coupled solution and ηγ

10: end while
11: Compute η, set Level=0
12: while η > tol(η) and Level≤ MaxLevelRef do
13: Make adaptive refinement following “hopt” on Ω̃ using ηV

14: Update Level+=1
15: Compute the coupled solution, the error and η on the new mesh
16: end while
17: return Coupled solution and xγ

Algorithm 1: Detect the interface position and adapt the mesh.

An alternative way to make adaptivity (once the interface is placed) is to try to use a
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2.3. Adaptive algorithms

reasonable part of our estimator of Theorem 2.12. Indeed, our estimator is defined by

η = ∥σ̃h+∇ũh∥Ω̃ =

∥∥∥∥∥∥∥∥∥∥∥
σγh +

∑
a∈Vh\Vγ

h

(1− ψΓ(a))σah +∇ũh

ψγh + ∑
a∈Vh\Vγ

h

(1− ψγ(a))ψa


︸ ︷︷ ︸

=1

∥∥∥∥∥∥∥∥∥∥∥
Ω̃

=

∥∥∥∥∥∥∥∥∥∥∥∥
σγh +∇ũhψγh +

∑
Vh\Vγ

h

(1− ψγ(a))σah︸ ︷︷ ︸
σD
h
:=

+∇ũh

 ∑
Vh\Vγ

h

(1− ψΓ(a))ψa


︸ ︷︷ ︸

1−ψγ
h

∥∥∥∥∥∥∥∥∥∥∥∥
Ω̃

,

So we can split the estimators of the coupled model into two types: the first one related
to the interface position, that is

ηγ :=
∥∥σγh +∇ũhψγh

∥∥
ωγ ,

and the second one related to the mesh refinement, that is

ηD :=
∥∥σDh +∇ũh(1− ψγh)

∥∥
Ω̃
. (2.40)

The algorithm will be the same as Algorithm 1 but we use ηD instead of ηV . Let’s call
this algorithm Algorithm 2

2.3.3. Numerical results with Algorithm 1 and Algorithm 2

In this section we make a numerical comparison between the two algorithms presented in
the previous section, named Algorithm 1 and Algorithm 2. The fixed parameters for
all the simulations are: δx = 0.1, MaxLevelRef = 20. We consider three different tests:
test 1 where we choose tol(η) = 1e− 2, test 2 where we choose tol(η) = 1e− 3 and test 3
where we choose tol(η) = 1e− 4.

Test 1: tol(η) = 10−2:
We run the two algorithms for different values of α = 0.1, 0.25, 0.5, the idea is that we
want to achieve a reasonable tolerance for ηγ such that this contribution will be a smaller
order or at most the same order of the local contributions of ηV (for Algorithm 1) or of ηD

(for Algorithm2) for the last level of refinement giving the desired final accuracy.

Let us take α = 0.1. In Table 2.2 we see the convergence of the error e and the estimator
η with respect to the dof obtained from the adaptive refined mesh. Let us notice that the
interface position is xγ = 4.4. We show also the index of efficiency η

e , named Index, and
the convergence rate, named Rate, in Table 2.2. In the Table 2.2a we see the results for
Algorithm 1 and in Table 2.2b for Algorithm 2. The two adaptations are very similar
and give quite same results: the optimal rate of convergence is restored and the given
accuracy for η reached.
Concerning Algorithm1, in Figure 2.16 we plot the initial mesh (Figure 2.16a) correspond-
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

Dof e η Index Rate
84 0.149679 0.170874 1.1416 -
302 0.0516935 0.0654847 1.26679 0.830
417 0.0295903 0.0358232 1.21064 1.72
814 0.0132612 0.0156466 1.17988 1.19
2395 0.00479483 0.00567086 1.1827 0.94

(a) Results using Algorithm 1
Dof Error η Index Rate
84 0.149679 0.170874 1.1416 -
302 0.0511889 0.0647278 1.26449 0.838
436 0.0258347 0.0309826 1.19926 1.86
1141 0.010464 0.0126444 1.20837 1.03
2942 0.00394587 0.00466495 1.18224 1.02

(b) Results using Algorithm 2

Table 2.2.: Error e and estimator η w.r.t. degrees of freedom Dof for α = 0.1

ing to 84 Dof, the distributions of the error e, estimator η and the standard equilibrated
estimator ηV (respectively in figure 2.16b, 2.16c and 2.16d).
In Figure 2.17 we plot the mesh coming from the first refinement level (with 302 Dof) with
the distributions of e, η and ηV and in Figure 2.18 we plot the mesh coming from the last
refinement level (that is a 4 refinement level with 2395 Dof) and the usual distributions.
For this latter refinement Figure 2.19 shows a zoom in one of the two corners where the
most important refinement is performed.
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2.3. Adaptive algorithms

(a) Mesh T̃ (0)
h as an

initial mesh before
adapting.

(b) Distribution of error on the mesh
T̃ (0)
h

(c) Distribution of estimator on the
mesh T̃ (0)

h

(d) Distribution of standard non-
coupled equilibrated estimator ηV

on mesh T̃ (0)
h

Figure 2.16.: Distribution of coupled error and estimator on the mesh T̃ (0)
h of Ω̃ with

Dofs=84 using Algorithm 1 where, tol(η) = 10−2 and α = 0.1
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

(a) Mesh T̃ (1)
h for the

first adapting.
(b) Distribution of error on the mesh

T̃ (1)
h

(c) Distribution of estimator on the
mesh T̃ (1)

h

(d) Distribution of usual non-coupled
estimator on the mesh T̃ (1)

h

Figure 2.17.: Distribution of coupled error and estimator on the mesh T̃ (1)
h of Ω̃ with

Dofs=302 using Algorithm 1 where, tol(η) = 10−2 and α = 0.1
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2.3. Adaptive algorithms

(a) Mesh T̃ (4)
h for the

fourth adapting.
(b) Distribution of error on the mesh

T̃ (4)
h

(c) Distribution of estimator on the
mesh T̃ (4)

h

(d) Distribution of usual non-coupled
estimator on the mesh T̃ (4)

h

Figure 2.18.: Distribution of coupled error and estimator on the mesh T̃ (4)
h of Ω̃ with

Dofs=2395 using Algorithm 1 where, tol(η) = 10−2 and α = 0.1
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

(a) Corner of the mesh T̃ (4)
h (b) Distribution of error on the corner of the mesh T̃ (4)

h

(c) Distribution of estimator on the corner of the mesh
T̃ (4)
h

(d) Distribution of usual non-coupled estimator on the cor-
ner of the mesh T̃ (4)

h

Figure 2.19.: Distribution of coupled error and estimator on the corner of the mesh T̃ (4)
h

of Ω̃ with Dofs=2395 using Algorithm 1 where, tol(η) = 10−2 and α = 0.1
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2.3. Adaptive algorithms

We do the same plots for Algorithm 2 : see Figure 2.20 for the initial mesh and
distributions for e, η and ηD, see Figure 2.21 for the first refinement level, Figure 2.22 for
the last level of refinement and Figure 2.23 for the zoom in the corner.

(a) Mesh T̃ (0)
h as an

initial mesh before
adapting.

(b) Distribution of error on the mesh
T̃ (0)
h

(c) Distribution of estimator on the
mesh T̃ (0)

h

(d) Distribution of the estimator ηD for
mesh T̃ (0)

h

Figure 2.20.: Distribution of coupled error and estimator on the mesh T̃ (0)
h of Ω̃ with

Dofs=84 using Algorithm 2 where, tol(η) = 10−2 and α = 0.1
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

(a) Mesh T̃ (1)
h for the

first adapting.
(b) Distribution of error on the mesh

T̃ (1)
h

(c) Distribution of estimator on the
mesh T̃ (1)

h

(d) Distribution of the estimator ηD for
mesh T̃ (1)

h

Figure 2.21.: Distribution of coupled error and estimator on the mesh T̃ (1)
h of Ω̃ with

Dofs=302 using Algorithm 2 where, tol(η) = 10−2 and α = 0.1
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2.3. Adaptive algorithms

(a) Mesh T̃ (4)
h for the

fourth adapting.
(b) Distribution of error on the mesh

T̃ (4)
h

(c) Distribution of estimator on the
mesh T̃ (4)

h

(d) Distribution of the estimator ηD on
the mesh T̃ (4)

h

Figure 2.22.: Distribution of coupled error and estimator on the mesh T̃ (4)
h of Ω̃ with

Dofs=2942 using Algorithm 2 where, tol(η) = 10−2 and α = 0.1
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

(a) Corner of the mesh T̃ (4)
h (b) Distribution of error on the corner of the mesh T̃ (4)

h

(c) Distribution of estimator on the corner of the mesh
T̃ (4)
h

(d) Distribution of ηD on the corner of the mesh T̃ (4)
h

Figure 2.23.: Distribution of coupled error and estimator on the corner of the mesh T̃ (4)
h

of Ω̃ with Dofs=2942 using Algorithm 2 where, tol(η) = 10−2 and α = 0.1

88



2.3. Adaptive algorithms

For both cases the conclusions are the same : in general the distribution of the error
e and the estimator η are locally almost the same, and after refining we see local contri-
butions of e and η that appear also near the interface, meanwhile both distributions of
ηV and ηD do not detect error near the interface but moreover an important error in the
corners where we have singularity. Making refinements following ηV and ηD we verify a
real decreasing of the error and the desired rate of convergence expected for a smooth test
case.

In Table 2.3 and 2.4 one can see the convergence for the cases respectively with α = 0.25
and α = 0.5. The behaviors of both algorithms are practically the same, the difference is
that the interface position chosen is xγ = 4.5 and xγ = 4.6 respectively.

Dof e η Index Rate
88 0.126743 0.147801 1.16615 -
301 0.0486227 0.0606712 1.2478 0.779
542 0.023844 0.0285502 1.19737 1.211
1272 0.00927946 0.0113015 1.21791 1.106
3462 0.0033839 0.00412536 1.21911 1.007

(a) Results using Algorithm 1
Dof Error η Index Rate
88 0.126743 0.147801 1.16615 -
297 0.0474781 0.0590356 1.24343 0.807
451 0.0243649 0.0299052 1.22739 1.597
1143 0.0102187 0.0123655 1.21009 0.934
2973 0.00369422 0.00444173 1.20235 1.079

(b) Results using Algorithm 2

Table 2.3.: Error e and estimator η w.r.t. degrees of freedom Dof for α = 0.25
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

Dof e η Index Rate
88 0.117868 0.13842 1.17436 -
360 0.0452827 0.057106 1.2611 0.679
616 0.0234623 0.028229 1.20317 1.224
1117 0.0103151 0.0123804 1.20022 1.38
2986 0.00412791 0.00512294 1.24105 0.93

(a) Results using Algorithm 1
Dof Error η Index Rate
88 0.117868 0.13842 1.17436 -
360 0.0452499 0.057064 1.26108 0.679
490 0.024088 0.0287519 1.19362 2.045
1308 0.0095169 0.0113945 1.19729 0.945
3142 0.00378678 0.00472758 1.24844 1.051

(b) Results using Algorithm 2

Table 2.4.: Error e and estimator η w.r.t. degrees of freedom Dof for α = 0.5

Test 2: tol(η) = 10−3:
We run the two algorithms for α = 0.1, the idea is that we want to achieve a reasonable
tolerance for ηγ such that this contribution will be a smaller order or at most the same
order of the local contributions of ηV (for Algorithm1) or of ηD (for Algorithm2) for the
last level of refinement giving the desired final accuracy.
In Table 2.5 we see the convergence of the error e and the estimator η with respect to the
dof obtained from the adaptive refined mesh. Let us notice that the interface position is
xγ = 4.2. We show also the index of efficiency η

e , named Index, and the convergence rate,
named Rate, in Table 2.5. In the Table 2.5a we see the results for Algorithm 1 and in
Table 2.5b for Algorithm 2. The two adaptations are very similar and give quite same
results: the optimal rate of convergence is restored and the given accuracy for η reached.
Concerning Algorithm1, in Figure 2.24 we plot the initial mesh (Figure 2.24a) correspond-

ing to 84 Dof, the distributions of the error e, estimator η and the standard equilibrated
estimator ηV (respectively in figure 2.24b, 2.24c and 2.24d).
In Figure 2.25 we plot the mesh coming from the first refinement level (with 282 Dof) with
the distributions of e, η and ηV and in Figure 2.26 we plot the mesh coming from the last
refinement level (that is a 6 refinement level with 25474 Dof) and the usual distributions.
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2.3. Adaptive algorithms

Dof e η Index Rate
84 0.162116 0.183071 1.12926 -
282 0.0548775 0.0700119 1.27579 0.894
595 0.0269704 0.0325629 1.20735 0.951
1018 0.0112737 0.0133638 1.18539 1.168
2857 0.00395291 0.00473887 1.19883 1.015
7321 0.00134209 0.00157586 1.17418 1.147
25474 0.000394305 0.000478341 1.21312 0.982

(a) Results using Algorithm 1
Dof Error η Index Rate
84 0.162116 0.183071 1.12926 -
282 0.0548775 0.070012 1.27579 0.8944
529 0.0282411 0.0342134 1.21148 1.0560
986 0.0123483 0.0148866 1.20556 1.328
2177 0.00502207 0.00596826 1.18841 1.135
5992 0.00162056 0.00188328 1.16212 1.117
21726 0.000457287 0.000550204 1.20319 0.98

(b) Results using Algorithm 2

Table 2.5.: Error e and estimator η w.r.t. degrees of freedom Dof for α = 0.1

We do the same plots for Algorithm 2 : see Figure 2.27 for the initial mesh and
distributions for e, η and ηD, see Figure 2.28 for the first refinement level, Figure 2.29 for
the last level of refinement

For both cases the conclusions are the same as before : in general the distribution of
the error e and the estimator η are locally almost the same, and after refining we see local
contributions of e and η that appear also near the interface, meanwhile both distributions
of ηV and ηD do not detect error near the interface but moreover an important error in
the corners where we have singularity. Making refinements following ηV and ηD we verify
a real decreasing of the error and the desired rate of convergence expected for a smooth
test case.
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

(a) Mesh T̃ (0)
h as an

initial mesh before
adapting.

(b) Distribution of error on the mesh
T̃ (0)
h

(c) Distribution of estimator on the
mesh T̃ (0)

h

(d) Distribution of usual non-coupled
estimator on the mesh T̃ (0)

h

Figure 2.24.: Distribution of coupled error and estimator on the mesh T̃ (0)
h of Ω̃ with

Dofs=84 using Algorithm 1 where, tol(η) = 10−3 and α = 0.1
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(a) Mesh T̃ (1)
h for the

first adapting.
(b) Distribution of error on the mesh

T̃ (1)
h

(c) Distribution of estimator on the
mesh T̃ (1)

h

(d) Distribution of usual non-coupled
estimator on the mesh T̃ (1)

h

Figure 2.25.: Distribution of coupled error and estimator on the mesh T̃ (1)
h of Ω̃ with

Dofs=282 using Algorithm 1 where, tol(η) = 10−3 and α = 0.1
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

(a) Mesh T̃ (6)
h for the

first adapting.
(b) Distribution of error on the mesh

T̃ (6)
h

(c) Distribution of estimator on the
mesh T̃ (6)

h

(d) Distribution of usual non-coupled
estimator on the mesh T̃ (6)

h

Figure 2.26.: Distribution of coupled error and estimator on the mesh T̃ (6)
h of Ω̃ with

Dofs=25474 using Algorithm 1 where, tol(η) = 10−3 and α = 0.1
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(a) Mesh T̃ (0)
h as an

initial mesh before
adapting.

(b) Distribution of error on the mesh
T̃ (0)
h

(c) Distribution of estimator on the
mesh T̃ (0)

h

(d) Distribution of the estimator ηD on
the mesh T̃ (0)

h

Figure 2.27.: Distribution of coupled error and estimator on the mesh T̃ (0)
h of Ω̃ with

Dofs=84 using Algorithm 2 where, tol(η) = 10−3 and α = 0.1
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

(a) Mesh T̃ (1)
h as an

initial mesh before
adapting.

(b) Distribution of error on the mesh
T̃ (1)
h

(c) Distribution of estimator on the
mesh T̃ (1)

h

(d) Distribution of the estimator ηD on
the mesh T̃ (1)

h

Figure 2.28.: Distribution of coupled error and estimator on the mesh T̃ (1)
h of Ω̃ with

Dofs=282 using Algorithm 2 where, tol(η) = 10−3 and α = 0.1
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(a) Mesh T̃ (6)
h for the

fourth adapting.
(b) Distribution of error on the mesh

T̃ (6)
h

(c) Distribution of estimator on the
mesh T̃ (6)

h

(d) Distribution of the estimator ηD on
the mesh T̃ (6)

h

Figure 2.29.: Distribution of coupled error and estimator on the mesh T̃ (6)
h of Ω̃ with

Dofs=21726 using Algorithm 2 where, tol(η) = 10−3 and α = 0.1
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

Test 3: tol(η) = 10−4:
We run the two algorithms for α = 0.1, the idea is that we want to achieve a reasonable
tolerance for ηγ such that this contribution will be a smaller order or at most the same
order of the local contributions of ηV (for Algorithm1) or of ηD (for Algorithm2) for the
last level of refinement giving the desired final accuracy.
In Table 2.6 we see the convergence of the error e and the estimator η with respect to the
dof obtained from the adaptive refined mesh. Let us notice that the interface position is
xγ = 3.8. We show also the index of efficiency η

e , named Index, and the convergence rate,
named Rate, in Table 2.6. In the Table 2.6a we see the results for Algorithm 1 and in
Table 2.6b for Algorithm 2. The two adaptations are very similar and give quite same
results: the optimal rate of convergence is restored and the given accuracy for η reached.

Dof e η Index Rate
98 0.154895 0.176161 1.13729 -
347 0.0532323 0.0667582 1.25409 0.844
512 0.0260445 0.0315484 1.21133 1.837
1269 0.0104203 0.0126315 1.2122 1.009
2721 0.00384351 0.00457943 1.19147 1.307
8388 0.00120907 0.0014192 1.17379 1.0272
27531 0.000331174 0.000390075 1.17786 1.0895
106473 8.18902e-05 9.98675e-05 1.21953 1.033

(a) Results using Algorithm 1
Dof Error η Index Rate
98 0.154895 0.176161 1.13729 -
347 0.0532323 0.0667582 1.25409 0.8447
520 0.0255367 0.030641 1.19988 1.815
1495 0.00976458 0.0119389 1.22268 0.9103
3114 0.00359059 0.00425519 1.1851 1.3634
9427 0.0010187 0.00118431 1.16257 1.1373
34872 0.000254918 0.000299412 1.17454 1.0590
142309 5.95169e-05 7.7972e-05 1.31008 1.0343

(b) Results using Algorithm 2

Table 2.6.: Error e and estimator η w.r.t. degrees of freedom Dof for α = 0.1

Concerning Algorithm 1, in Figure 2.30 we plot the initial mesh (Figure 2.30a) corre-
sponding to 98 Dof, the distributions of the error e, estimator η and the standard equili-
brated estimator ηV (respectively in figure 2.30b, 2.30c and 2.30d).
In Figure 2.31 we plot the mesh coming from the first refinement level (with 347 Dof) with
the distributions of e, η and ηV and in Figure 2.32 we plot the mesh coming from the last
refinement level (that is a 7 refinement level with 106473 Dof) and the usual distributions.
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(a) Mesh T̃ (0)
h as an

initial mesh before
adapting.

(b) Distribution of error on the mesh
T̃ (0)
h

(c) Distribution of estimator on the
mesh T̃ (0)

h

(d) Distribution of usual non-coupled
estimator on the mesh T̃ (0)

h

Figure 2.30.: Distribution of coupled error and estimator on the mesh T̃ (0)
h of Ω̃ with

Dofs=98 using Algorithm 1 where, tol(η) = 10−4 and α = 0.1
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

(a) Mesh T̃ (1)
h for the

first adapting.
(b) Distribution of error on the mesh

T̃ (1)
h

(c) Distribution of estimator on the
mesh T̃ (1)

h

(d) Distribution of usual non-coupled
estimator on the mesh T̃ (1)

h

Figure 2.31.: Distribution of coupled error and estimator on the mesh T̃ (1)
h of Ω̃ with

Dofs=347 using Algorithm 1 where, tol(η) = 10−4 and α = 0.1
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(a) Mesh T̃ (7)
h for the

seven adapting.
(b) Distribution of error on the mesh

T̃ (7)
h

(c) Distribution of estimator on the
mesh T̃ (7)

h

(d) Distribution of usual non-coupled
estimator on the mesh T̃ (7)

h

Figure 2.32.: Distribution of coupled error and estimator on the mesh T̃ (7)
h of Ω̃ with

Dofs=106473 using Algorithm 1 where, tol(η) = 10−4 and α = 0.1
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

We do the same plots for Algorithm 2 : see Figure 2.33 for the initial mesh and
distributions for e, η and ηD, see Figure 2.34 for the first refinement level, Figure 2.35 for
the last level of refinement

(a) Mesh T̃ (0)
h as an

initial mesh before
adapting.

(b) Distribution of error on the mesh
T̃ (0)
h

(c) Distribution of estimator on the
mesh T̃ (0)

h

(d) Distribution of usual non-coupled
estimator on the mesh T̃ (0)

h

Figure 2.33.: Distribution of coupled error and estimator on the mesh T̃ (0)
h of Ω̃ with

Dofs=98 using Algorithm 2 where, tol(η) = 10−4 and α = 0.1
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(a) Mesh T̃ (1)
h as an

initial mesh before
adapting.

(b) Distribution of error on the mesh
T̃ (1)
h

(c) Distribution of estimator on the
mesh T̃ (1)

h

(d) Distribution of usual non-coupled
estimator on the mesh T̃ (1)

h

Figure 2.34.: Distribution of coupled error and estimator on the mesh T̃ (1)
h of Ω̃ with

Dofs=347 using Algorithm 2 where, tol(η) = 10−4 and α = 0.1
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

(a) Mesh T̃ (7)
h as an

initial mesh before
adapting.

(b) Distribution of error on the mesh
T̃ (7)
h

(c) Distribution of estimator on the
mesh T̃ (7)

h

(d) Distribution of usual non-coupled
estimator on the mesh T̃ (7)

h

Figure 2.35.: Distribution of coupled error and estimator on the mesh T̃ (7)
h of Ω̃ with

Dofs=142309 using Algorithm 2 where, tol(η) = 10−4 and α = 0.1
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2.4. Poisson problem on a channels with several straight sections

For both cases the conclusions are the same as before : in general the distribution of
the error e and the estimator η are locally almost the same, and after refining we see local
contributions of e and η that appear also near the interface, meanwhile both distributions
of ηV and ηD do not detect error near the interface but moreover an important error in
the corners where we have singularity. Making refinements following ηV and ηD we verify
a real decreasing of the error and the desired rate of convergence expected for a smooth
test case.

2.4. Poisson problem on a channels with several straight
sections

In this section we will introduce more channels with more corners to generalize the previous
study about coupling 0D/2D and determine the suitable positions of the interfaces for the
whole channel and study a posteriori error for the whole domain Ω.
Let us now consider the whole domain Ω with more channels as in Figure 2.36.

(0, 0)

Figure 2.36.: New Domain Ω with more channels

As before we will take a very simple Poisson equation on the whole domain Ω. Let us
recall it:

−∆u = f, in Ω, (2.41a)
u = uin, on Γin, (2.41b)
u = uout, on Γout, (2.41c)
u = 0, on Γwall, (2.41d)

where, f = 12uav
R2 , uin = 6uav

R2 (R− y)y and uout = −6uav
R2

(
y + 3W + 3R

)(
y + 3W + 2R

)
.

The weak formulation of system (2.41) is: Find u ∈ H1
g (Ω) such that:
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

(∇u,∇v)Ω = (f, v)Ω ∀v ∈ H1
0 (Ω), (2.42)

where,

H1
0 (Ω) := {u ∈ H1(Ω); u = 0 on ∂Ω},

H1
g (Ω) := {u ∈ H1(Ω); u = ug on ∂Ω}

and

ug =


u = uin on Γin,

u = uout on Γout,

u = 0 on Γ.

2.4.1. Coupled System

Let us introduce the simplified model as simplified 0D models in D(i)
1 domains and the non

simplified 2D models inD(i)
2 domains such that Ω =

(
∪7
i=1D

(i)
1

)
∪
(
∪6
i=1D

(i)
2

)
as in Figure

2.37. Let γ(i)1 and γ
(i)
2 be the inlet and outlet interfaces of D(i)

2 domains respectively and
let Γ(i) be the wall of D(i)

2 domains. Let D2 = ∪6
i=1D

(i)
2 which is the collection of regions

where have 2D models are dominance and D1 = ∪7
i=1D

(i)
1 be collection of regions where

we have 0D models as in Figure 2.37.
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2.4. Poisson problem on a channels with several straight sections

Figure 2.37.: Coupled 0D/2D model in the whole domain Ω
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

The simplified 0D models u(i)1 are defined on each domain D(i)
1 by:

u
(i)
1 = Poiseuille(i) in D

(i)
1 . (2.43)

The non simplified models in each D(i)
2 consists to find ũ(i) in D(i)

2 such that:
−∆ũ(i) = 12uav

R2 , in D
(i)
2 ,

ũ(i) = u
(i)
in = u

(i)
1 , on γ

(i)
1 ,

ũ(i) = u
(i)
out = u

(i+1)
1 , on γ

(i)
2 ,

ũ(i) = 0, on Γ(i),

(2.44)

where, u(i)in and u(i)out are the inlet and the outlet respectively in the domains D(i)
2 .

We have the continuity coupled conditions on the inlet γ(i)1 of the domain D(i)
2 :

ũ(i) = u
(i)
1 on γ

(i)
1 . (2.45)

We have the continuity coupled conditions on the outlet γ(i)2 of the domain D(i)
2 :

ũ(i) = u
(i+1)
1 on γ

(i)
2 . (2.46)

Let us consider the variational formulation of system (2.44): Find ũ(i) ∈ H1
g (D

(i)
2 ) such

that:
(∇ũ(i),∇ṽ(i))

D
(i)
2

= (f, ṽ(i))
D

(i)
2

∀ṽ(i) ∈ H1
0 (D

(i)
2 ) (2.47)

where,

H1
g (D

(i)
2 ) := {ũ(i) ∈ H1(D

(i)
2 ); ũ(i) = ũ(i)g on ∂(D

(i)
2 )}

and

ũ(i)g =


ũ(i) = u

(i)
in = u

(i)
1 on γ

(i)
1 ,

ũ(i) = u
(i)
out = u

(i+1)
1 on γ

(i)
2 ,

ũ(i) = 0 on Γ(i).

Let T̃ (i)
h be a regular triangular mesh on D(i)

2 . Introduce the FE spaces

• Ṽ
(i)
h := {ṽ(i)h continuous on D

(i)
2 such that: ṽ

(i)
h |

D
(i)
2

∈ Pk(T̃
(i)
h )},

• Ṽ
(i)
h,g := {ṽ(i)h ∈ Ṽ

(i)
h such that: ṽ

(i)
h |

∂(D
(i)
2 )

= ũ
(i)
g },

• Ṽ
(i)
h,0 := {ṽ(i)h ∈ Ṽ

(i)
h such that: ṽ

(i)
h |

∂(D
(i)
2 )

= 0}.

Now, we discretize the problem of system (2.47) above as: find ũ(i)h ∈ Ṽ
(i)
h,g , such that

(∇ũ(i)h ,∇ṽ
(i)
h )

D
(i)
2

= (f, ṽ
(i)
h )

D
(i)
2

∀ṽ(i)h ∈ Ṽ
(i)
h,0 . (2.48)

Then the approximate solution on the whole Ω is reconstructed as

ush =

{
u
(i)
1 in D(i)

1

ũ
(i)
h in D(i)

2

. (2.49)
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2.4. Poisson problem on a channels with several straight sections

2.4.2. A posteriori error estimates

In this section we are going to study a posteriori error estimator for whole domain Ω i.e.
Ω will be as in Figure 2.36. We will introduce the flux reconstruction for all the coupled
0D/2D model in the whole domain Ω as in Figure 2.37. We will detect the positions of all
these interfaces in Figure 2.37 by introducing the interfaces estimators ηγ for all interfaces
γ as we did in Section 2.2

Definition 2.15 (Flux σ). Let u be the solution of system (2.42) then, we denote the flux
by: σ := −∇u.

Proposition 2.16 (Properties of weak solution of system (2.42)). Let u be solution of
system (2.42) and let σ be defined as in Defonition 2.15. Then, u ∈ H1

g (Ω), σ ∈ H(div,Ω)
and ∇ · σ = f .

Proposition 2.17 (Properties of approximate solution ush)). Let ush be the approximate
solution defined by (2.48)–(2.49). Then ush ∈ H1

g (Ω), −∇ush /∈ H(div,Ω) and ∇·(−∇ush) ̸=
f in general.

Stress Reconstruction

Let ush be the approximate solution defined by (2.48)–(2.49). We look for stress σh ∈ Σh ⊂
H(div,Ω) such that:

σideal
h := argmin

vh∈Σh,
div vh=ΠQh

(f)=fon Ω

||∇ush + vh||L2(Ω). (2.50)

In practice, Σh will be RTk on D
(i)
2 and H(div, D

(i)
1 ) on D

(i)
1 and Qh will be Pk(T̃

(i)
h ) on

D
(i)
2 and L2(D

(i)
1 ) on D

(i)
1 . Computing σh as the solution of (2.50): σideal

h would be too
costly, so we localize this minimization. For each vertex a ∈ D

(i)
2 \(γ(i)1 ∪ γ(i)2 ) we consider a

patch ω(i)
a to be the collection of all triangles that share this vertex a i.e. ω(i)

a = supp(ψ(i)
a ),

where ψ(i)
a is a hat function i.e. a polynomial of degree 1 that takes the value 1 at the

node a and 0 on the other nodes different from a in the mesh T̃ (i)
h of the domain D

(i)
2 .

Let V(i)
h,∗ be the vertices of D(i)

2 \(γ(i)1 ∪ γ(i)2 ). Let ω(i)
γ1 = supp(ψ(i)

h,γ1
) and ω(i)

γ2 = supp(ψ(i)
h,γ2

)

where ψ(i)
h,γ1

and ψ
(i)
h,γ2

are a posteriori error indicators for the two interfaces γ(i)1 and γ
(i)
2

respectively, they are a piecewise affine (on mesh T̃ (i)
h ) version of ψ(i)

γ1 and ψ(i)
γ2 respectively

and they are defined in a similar way of a posteriori error indicator in (2.15). For example,
if we take the domain D

(1)
2 in Figure 2.37 then, our notations are shown in Figure 2.38.

The inlet and outlet interfaces γ(1)1 and γ
(1)
2 of D(1)

2 are located at x = x
(1)
γ1 and y = y

(1)
γ2

respectively. We can now define a posteriori error indicators ψ(1)
h,γ1

and ψ(1)
h,γ2

by:

ψ
(1)
h,γ1

(x, y) =

{∑
a:all the nodes of T̃ (1)

h

ψ
(1)
γ1 (a)ψ

(1)
a (x, y) for (x,y) ∈ D

(1)
2 ,

1 for (x,y) ∈ D
(1)
1 ,
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

where, ψ(1)
a is a hat function associated to the node a and

ψ(1)
γ1 (x, y) =


1, for x < x

(1)
γ1 ,

x
(1)
γ1

+R−x
R , for x ∈ [x

(1)
γ1 , x

(1)
γ1 +R],

0, for x > x
(1)
γ1 +R.

Similarly,

ψ
(1)
h,γ2

(x, y) =

{∑
a:all the nodes of T̃ (1)

h

ψ
(1)
γ2 (a)ψ

(1)
a (x, y) for (x,y) ∈ D

(1)
2 ,

1 for (x,y) ∈ D
(2)
1 ,

where

ψ(1)
γ2 (x, y) =


1, for y < y

(1)
γ2 ,

y
(1)
γ2

+R−y
R , for y ∈ [y

(1)
γ2 , y

(1)
γ2 +R],

0, for y > y
(1)
γ2 +R.

Figure 2.38.: Patches ω
γ
(1)
1

in the inlet of D(1)
2 on interface γ(1)1 and ω

γ
(1)
2

in the outlet of

D
(1)
2 on interface γ(1)2

Let N be the total number of 2D domains i.e. we have the 2D domains D(i)
2 for i =

1 . . . N .
In a similar way we can introduce ψ(i)

γ1 , ψ(i)
γ2 , ψ(i)

h,γ1
and ψ

(i)
h,γ2

for all i = 1 . . . N then, we
introduce the partition of unity:

1Ω =
N+1∑
i=1

1
D

(i)
1

+
N∑
i=1

1
D

(i)
2

=

N+1∑
i=1

1
D

(i)
1

+

N∑
i=1

(
ψ
(i)
h,γ1

+ ψ
(i)
h,γ2

+
∑

a ∈ V(i)
h,∗

(
1− ψ(i)

γ1 (a)− ψ(i)
γ2 (a)

)
ψ(i)
a

)
.

Let us recall that ψ(i)
a is the hat function for any mesh node a in D

(i)
2 excluding those in

γ
(i)
1 and γ

(i)
2 and V(i)

h,∗ includes the vertices of D(i)
2 \(γ(i)1 ∪ γ(i)2 ). Now, we replace σideal

h in
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2.4. Poisson problem on a channels with several straight sections

(2.50) by:

σh =
N∑
i=1

(
σ
(i)
h,γ1

+ σ
(i)
h,γ2

+
∑
a∈V(i)

h,∗

(
1− ψ(i)

γ1 (a)− ψ(i)
γ2 (a)

)
σ
(i)
h,a

)
1
D

(i)
2︸ ︷︷ ︸

+
N+1∑
i=1

(
−∇u(i)1

)
1
D

(i)
1︸ ︷︷ ︸

σD2
h σD1

(2.51)
where for each a ∈ V(i)

h,∗, we define σ(i)h,a ∈ Σ
(i)
h,a by

σ
(i)
h,a := argmin

v
(i)
h,a∈Σ

(i)
h,a,

div v
(i)
h,a=Π

Q
(i)
h,a

(
ψ
(i)
a ·f−∇ψ(i)

a ·∇ũ(i)h

)||v(i)h,a + ψ(i)
a ∇ũ(i)h ||

L2(ω
(i)
a )

on the interface γ(i)1 we define σ(i)h,γ1 ∈ Σ
(i)
h,γ1

by

σ
(i)
h,γ1

:= argmin
v
(i)
h,γ1

∈Σ(i)
h,γ1

,

div v
(i)
h,γ1

=Π
Q
(i)
h,γ1

(
ψ
(i)
h,γ1

·f−∇ψ(i)
h,γ1

·∇ũ(i)h

)||v(i)h,γ1 + ψ
(i)
h,γ1

∇ũ(i)h ||
L2(ω

(i)
γ1

)

and on the interface γ(i)2 we define σ(i)h,γ2 ∈ Σ
(i)
h,γ2

by

σ
(i)
h,γ2

:= argmin
v
(i)
h,γ2

∈Σ(i)
h,γ2

,

div v
(i)
h,γ2

=Π
Q
(i)
h,γ2

(
ψ
(i)
h,γ2

·f−∇ψ(i)
h,γ2

·∇ũ(i)h

)||v(i)h,γ2 + ψ
(i)
h,γ2

∇ũ(i)h ||
L2(ω

(i)
γ2

)

where,
Case 1: a in an internal node of D(i)

2

Σ
(i)
h,a := {σh ∈ RTk(ω

(i)
a ), σh · n = 0 on ∂ω

(i)
a },

Q
(i)
h,a := {qh ∈ L2(ω

(i)
a ), qh|K ∈ Pk(K),∀K ∈ ω

(i)
a ,
∫
ω
(i)
a
qh = 0}.

Case 2: a on the wall of D(i)
2 \(γ(i)1 ∪ γ(i)2 )

Σ
(i)
h,a := {σh ∈ RTk(ω

(i)
a ), σh · n = 0 on ∂ω

(i)
a \∂(D(i)

2 )},
Q

(i)
h,a := {qh ∈ L2(ω

(i)
a ), qh|K ∈ Pk(K),∀K ∈ ω

(i)
a }.

Case 3: a = γ
(i)
1

Σ
(i)
h,γ1

:= {σh ∈ RTk(ω
(i)
γ1 ), σh · n = 0 on ∂ω

(i)
γ1 \∂(D

(i)
2 ) and σh · n = (−∇u(i)1 ) · n =

0 on γ
(i)
1 },

Q
(i)
h,γ1

:= {qh ∈ L2(ω
(i)
γ1 ), qh|K ∈ Pk(K),∀K ∈ ω

(i)
γ1 }.

Case4: a = γ
(i)
2

Σ
(i)
h,γ2

:= {σh ∈ RTk(ω
(i)
γ2 ), σh · n = 0 on ∂ω

(i)
γ2 \∂(D

(i)
2 ) and σh · n = (−∇u(i+1)

1 ) · n =

0 on γ
(i)
2 },

Q
(i)
h,γ2

:= {qh ∈ L2(ω
(i)
γ2 ), qh|K ∈ Pk(K),∀K ∈ ω

(i)
γ2 }.
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Π
Q

(i)
h,a

is the L2(ω
(i)
a )-orthogonal projection, Π

Q
(i)
h,γ1

is the L2(ω
(i)
γ1 )-orthogonal projection

and Π
Q

(i)
h,γ2

is the L2(ω
(i)
γ2 )-orthogonal projection. But σ(i)h,a, σ

(i)
h,γ1

and σ
(i)
h,γ2

defined above

is equivalent to:
Find σ(i)h,γ1 ∈ Σ

(i)
h,γ1

and r(i)h,γ1 ∈ Q
(i)
h,γ1

such that:(σ
(i)
h,γ1

, vh)ω(i)
γ1

− (r
(i)
h,γ1

,∇ · vh)ω(i)
γ1

= (−ψ(i)
γ1 ∇ũ

(i)
h , vh)ω(i)

γ1

∀vh ∈ Σ
(i)
h,γ1

,

(∇ · σ(i)h,γ1 , qh)ω(i)
γ1

= (ψ
(i)
γ1 f −∇ψ(i)

γ1 · ∇ũ(i)h , qh)ω(i)
γ1

∀qh ∈ Q
(i)
h,γ1

.
(2.52)

Find σ(i)h,γ2 ∈ Σ
(i)
h,γ2

and r(i)h,γ2 ∈ Q
(i)
h,γ2

such that:(σ
(i)
h,γ2

, vh)ω(i)
γ2

− (r
(i)
h,γ2

,∇ · vh)ω(i)
γ2

= (−ψ(i)
γ2 ∇ũ

(i)
h , vh)ω(i)

γ2

∀vh ∈ Σ
(i)
h,γ2

,

(∇ · σ(i)h,γ2 , qh)ω(i)
γ2

= (ψ
(i)
γ2 f −∇ψ(i)

γ2 · ∇ũ(i)h , qh)ω(i)
γ2

∀qh ∈ Q
(i)
h,γ2

.
(2.53)

And for all vertices a ∈ V(i)
h,∗, find σ(i)h,a ∈ Σ

(i)
h,a and r(i)h,a ∈ Q

(i)
h,a such that:{

(σ
(i)
h,a, vh)ω(i)

a
− (r

(i)
h,a,∇ · vh)ω(i)

a
= −(ψ

(i)
a · ∇ũ(i)h , vh)ω(i)

a
∀vh ∈ Σ

(i)
h,a,

(∇ · σ(i)h,a, qh)ω(i)
a

= (ψ
(i)
a f −∇ψ(i)

a · ∇ũ(i)h , qh)ω(i)
a

∀qh ∈ Q
(i)
h,a.

(2.54)

Proposition 2.18. Let σh be defined by equation (2.51). We have on 2D domains:

σD2
h =

N∑
i=1

(
σ
(i)
h,γ1

+ σ
(i)
h,γ2

+
∑
a∈V(i)

h,∗

(
1− ψ(i)

γ1 (a)− ψ(i)
γ2 (a)

)
σ
(i)
h,a

)
1
D

(i)
2

then
∇ · σD2

h = f1D2

and consequently ∇ · σh = f on Ω.

Proof. The proof is an adaptation of the proof in Proposition 2.11. ■

A general a posteriori error estimate

Theorem 2.19 (A general a posterior error estimate). Let u be the solution of (2.42). Let
ush be defined as in (2.48)–(2.49) and σh is reconstructed as in (2.51). We define

σ̃
(i)
h = σ

γ
(i)
1
h + σ

γ
(i)
2
h +

∑
a∈V(i)

h,∗

σa,ih on D
(i)
2 ∀i = 1 . . . N,

and the Flux estimator by: η(i) := ||∇ũ(i)h + σ̃
(i)
h ||

D
(i)
2

. Then,

||∇(u− ũ
(i)
h )||

D
(i)
2

≤ η(i) ∀i = 1 . . . N, (2.55)

η(i) ≤ C||∇(u− ũ
(i)
h )||

D
(i)
2

∀i = 1 . . . N, (2.56)
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||∇(u− ush)||Ω ≤
( N∑
i=1

(
η(i)
)2) 1

2

, (2.57)

and ( N∑
i=1

(
η(i)
)2) 1

2

≤ C ′||∇(u− ush)||Ω (2.58)

with constants C and C ′ depending only on the mesh regularity.

Proof. The first two inequalities (the upper bound (2.55) and the lower bound (2.55))
are exactly of the same proof of Theorem 2.12. Now, let us begin with the third in-
equality (2.57) that represents the reliability of a posteriori error estimator. We will
begin with the calculation of ||∇(u − ush)||Ω. First, u − ush ∈ H1

0 (Ω), thus as ||∇v|| =
sup

ϕ∈H1
0 (Ω):||∇ϕ||=1

(∇v,∇ϕ) ∀v ∈ H1
0 (Ω), then

||∇(u− ush)||Ω = sup
ϕ∈H1

0 (Ω):||∇ϕ||=1

(∇(u− ush),∇ϕ) ∀ϕ ∈ H1
0 (Ω).

Now, let ϕ ∈ H1
0 (Ω) and ||∇ϕ||Ω = 1 be fixed. Then, by using the weak formulation (2.42),

we get:
(∇(u− ush),∇ϕ)Ω = (f, ϕ)Ω − (∇ush,∇ϕ)Ω.

Now, adding and subtracting (σh,∇ϕ)Ω we get:

(∇(u− ush),∇ϕ)Ω = (f, ϕ)Ω − (∇ush,∇ϕ)Ω + (σh,∇ϕ)Ω − (σh,∇ϕ)Ω
= (f, ϕ)Ω − (∇ush,∇ϕ)Ω − (∇ · σh, ϕ)Ω − (σh,∇ϕ)Ω
= (f −∇ · σh, ϕ)Ω − (∇ush + σh,∇ϕ)Ω
= −(∇ush + σh,∇ϕ)Ω
≤ ∥∇ush + σh∥Ω∥∇ϕ∥Ω = ∥∇ush + σh∥Ω, since we have ∥∇ϕ∥Ω = 1.

Finally

||∇(u− ush)||2Ω ≤ ∥∇ush + σh∥2Ω

=

N+1∑
i=1

∥∇u(i)1 + (−∇u(i)1 )∥2
D

(i)
1

+

N∑
i=1

∥∇ũ(i)h + σ̃
(i)
h ∥2

D
(i)
2

=
N∑
i=1

∥∇ũ(i)h + σ̃
(i)
h ∥2

D
(i)
2

=

N∑
i=1

(
η(i)
)2
.

The proof of the last inequality (2.58) which represents the efficiency on the whole domain
Ω can be done in a similar way of the proof of the lower bound (2.25) to get the result. ■

2.4.3. Numerical Results

In a similar way as in Section 2.2.3, we will introduce the interfaces estimator η(i)γ1 :=

∥σ(i)h,γ1 +∇ũ(i)h ψ
(i)
h,γ1

∥
ω
(i)
γ1

and η(i)γ2 := ∥σ(i)h,γ2 +∇ũ(i)h ψ
(i)
h,γ2

∥
ω
(i)
γ2

to determine according to some

tolerance tolG, the suitable positions of the interfaces γ(i)1 and γ
(i)
2 which represent the
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inlet and the outlet of each D(i)
2 domains for all i = 1 . . . N .

In order to determine the suitable positions of the interfaces we will have the following
explanation about the steps that we will make them in the Algorithm. The steps are:

• Step1: We will fix some tolerance tolG as a tolerance for the interfaces estimator
η
(i)
γ1 and η

(i)
γ2 for all i = 1 . . . N in order to detect the suitable positions of the

interfaces γ(i)1 and γ
(i)
1 according to this tolerance tolG in a way that we have

η
(i)
γ1 < tolG and η(i)γ2 < tolG.

• Step2: We will fix the first interface γ(1)1 and the last one γ(N)
2 near to the inlet and

outlet of the channel respectively as you see in the Figure 2.37 where N = 6 here
and we will fix the other interfaces, γ(i)1 for i = 2 . . . N and γ(i)2 for i = 1 . . . N − 1,
at the middle of each rod of the horizontal and vertical channels in a way that
we keep a very small distance δ between each two interfaces γ(i)2 and γ

(i+1)
1 for

i = 1 . . . N − 1 as you see in the Figure 2.37 where N = 6.

• Step3: We will consider a very coarse mesh T̃ (i)
h for each domain D(i)

2 and we will
begin moving the interfaces towards the corners of the domain in a way that while
η
(i)
γ1 < tolG, we move the first interface γ(i)1 towards the corner of D(i)

2 and while
η
(i)
γ2 < tolG, we move the second interface γ(i)2 towards the corner of D(i)

2 in a way
that we must keep in mind that the interfaces must be always away from the corner
by distance R to be able to define the fluxes of the interfaces.

According to what we explained before, we will have the following algorithm.

• Fix a tolerance tolG.

• Fix γ(1)1 and γ(N)
2 near the inlet and outlet.

• Fix γ(i+1)
1 and γ(i)2 for i = 1 . . . N − 1 at the middle of each rod with a small

distance δ between them

• Consider a very coarse mesh T̃ (i)
h for each domain D(i)

2 .

• Calculate the local fluxes σ(i)h,γ1 and σ(i)h,γ2 and consequently the local estimators

η
(i)
γ1 and η(i)γ2 on ω(i)

γ1 and ω(i)
γ2 respectively for i = 1 . . . N .

for (i = 1 . . . N) do
while (η(i)γ1 < tolG

3 or η(i)γ2 < tolG
3 ) do

1. Translate the positions of γ(i)1 and γ(i)2 toward same corner by step 0.01

2. Calculate ũ(i)h , σ(i)h,γ1 , σ
(i)
h,γ2

, η(i)γ1 and η(i)γ2 on the new domain D(i)
2

end
end

Algorithm 2: Algorithm to fix the interfaces positions
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2.4. Poisson problem on a channels with several straight sections

Now, let us consider our non coupled domain Ω as in Figure 2.36. By applying the
Algorithm 2, we want to detect the suitable positions of the interfaces of domains D(i)

2

for i = 1 . . . N , where N = 6 as you see in Figure 2.37. The positions of the interfaces
which are related to tolG are detected by applying the following tests.
Test1: tolG = 10−4

Let us fix tolG = 10−4, then according to Algorithm 2, we get the following results

Interface Interface
at x=

Interface
at y=

γ
(1)
1

4.5

γ
(1)
2

-0.955

γ
(2)
1

-1.045

γ
(2)
2

4.505

γ
(3)
1

2.695

γ
(3)
2

-3.355

γ
(4)
1

-3.445

γ
(4)
2

2.695

γ
(5)
1

4.505

γ
(5)
2

-5.755

γ
(6)
1

-5.845

γ
(6)
2

4.5
The positions of the interfaces related to tolG = 10−4 are located as in Figure 2.39.

Figure 2.39.: Locations of 2D domains in coupled 0D/2D model in the whole domain Ω for
tolG = 10−4

After fixing the positions of the interfaces according to the Algorithm 2, we will begin
making a uniform refinement of each mesh T̃ (i)

h and we are going to calculate ∥∇(u −
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

ũ
(i)
h )∥

D
(i)
2

, η(i) and the indices I(i)eff = η(i)

∥∇(u−ũ(i)h )∥
D

(i)
2

in order to validate the reliability

(2.55) of a posteriori error on each domain D
(i)
2 for all i = 1 . . . N where N = 6. The

results are in the following table. We conclude from the table below that the indices of
efficiency on all 2D domains D(i)

2 are approximately one. We have verified that the error
and the estimator on each 2D domain D(i)

2 converge for uniform refinement.

D
(i)
2 Mesh Size ∥∇(u− ũ

(i)
h )∥

D
(i)
2

η(i) I
(i)
eff

D
(1)
2 0.128447 0.0348902 0.0441934 1.26664

0.0657565 0.0219497 0.0286776 1.30652
0.0350784 0.0134795 0.0177497 1.31679

D
(2)
2 0.128371 0.0351082 0.0454093 1.29341

0.0672227 0.0242147 0.0305191 1.26035
0.0339791 0.0139611 0.0182626 1.3081

D
(3)
2 0.130102 0.0351905 0.0453916 1.28988

0.06679 0.0217905 0.0290811 1.33458
0.0353895 0.0139509 0.017943 1.28616

D
(4)
2 0.131167 0.0348834 0.0452092 1.29601

0.0671029 0.0220007 0.0292808 1.3309
0.0358843 0.014183 0.0181425 1.27917

D
(5)
2 0.128371 0.0349467 0.045467 1.30104

0.0676512 0.0219677 0.0288138 1.31165
0.0353213 0.0143505 0.0181906 1.2676

D
(6)
2 0.131624 0.0338941 0.0440533 1.29973

0.0645722 0.0211543 0.0281654 1.33143
0.0323899 0.0139266 0.0178176 1.27939

Now, we are going to calculate ∥∇(u − ush)∥Ω, η :=

(∑N
i=1

(
η(i)
)2) 1

2

and the indices

Ieff = η
∥∇(u−ush)∥Ω

in order to validate the reliability (2.57) of a posteriori error on the
total domain Ω. We conclude from the table below that the total index of efficiency on the
whole domain Ω is approximately one. We have verified that the error and the estimator
on the whole domain Ω converge for uniform refinement.

Mesh Size ∥∇(u− ush)∥Ω η Ieff
0.128447 0.085295 0.110124 1.29109
0.0657565 0.0543791 0.0712771 1.31074
0.0350784 0.0342387 0.0441366 1.28909
0.0178413 0.0208386 0.0279421 1.34088

We have made a uniform refinement for the mesh T̃ (1)
h of the domain D

(1)
2 . We plot

the distribution of the error and estimator on D(1)
2 for different mesh sizes. For mesh size

h ≈ 0.128447 in Figure 2.40, for mesh size h ≈ 0.0657 in Figure 2.41 and for mesh size
h ≈ 0.03507 in Figure 2.42. We deduce that the error and estimator take the greatest
values at the corner and this is due to the singularity of the solution at the corner.
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2.4. Poisson problem on a channels with several straight sections

(a) Distribution of error (b) Distribution of estimator

Figure 2.40.: Distribution of error and estimator on D(1)
2 for h ≈ 0.128

(a) Distribution of error (b) Distribution of estimator

Figure 2.41.: Distribution of error and estimator on D(1)
2 for h ≈ 0.06

(a) Distribution of error (b) Distribution of estimator

Figure 2.42.: Distribution of error and estimator on D(1)
2 for h ≈ 0.03
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

Test2: tolG = 10−3

Now, let us fix tolG = 10−3, then according to Algorithm 2, we get the following results:

Interface Interface
at x=

Interface
at y=

γ
(1)
1

4.8

γ
(1)
2

-0.665

γ
(2)
1

-1.335

γ
(2)
2

4.805

γ
(3)
1

2.395

γ
(3)
2

-3.065

γ
(4)
1

-3.735

γ
(4)
2

2.395

γ
(5)
1

4.805

γ
(5)
2

-5.465

γ
(6)
1

-6.135

γ
(6)
2

4.8
The positions of the interfaces related to tolG = 10−3 are located as in Figure 2.43

Figure 2.43.: Locations of 2D domains in coupled 0D/2D model in the whole domain Ω for
tolG = 10−3

By compering Figure 2.39 when we take tolG = 10−4 and Figure 2.43 when we take
tolG = 10−3, we observe that as the positions of the interfaces in Figure 2.43 are more near
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2.4. Poisson problem on a channels with several straight sections

to the corner than the interfaces in Figure 2.39 and thus as the tolerance tolG increases,
the interfaces become closer to the corner.
After fixing the positions of the interfaces according to the Algorithm 2, we will begin
making a uniform refinement of each mesh T̃ (i)

h and we are going to calculate ∥∇(u −
ũ
(i)
h )∥

D
(i)
2

, η(i) and the indices I(i)eff = η(i)

∥∇(u−ũ(i)h )∥
D

(i)
2

in order to validate the reliability

(2.55) of a posteriori error on each domain D
(i)
2 for all i = 1 . . . N where N = 6. The

results are in the following table

D
(i)
2 Mesh Size ∥∇(u− ũ

(i)
h )∥

D
(i)
2

η(i) I
(i)
eff

D
(1)
2 0.128288 0.0344023 0.0451638 1.31281

0.0680391 0.0215762 0.0286248 1.32669
0.0347673 0.0139428 0.0178793 1.28233

D
(2)
2 0.124877 0.0347746 0.0446278 1.28335

0.0811391 0.021578 0.0283973 1.31603
0.0355952 0.0136941 0.0177217 1.29411

D
(3)
2 0.127817 0.0346032 0.0439119 1.26901

0.0811391 0.0216188 0.0285536 1.32078
0.0332432 0.0138587 0.0177595 1.28146

D
(4)
2 0.128356 0.0349473 0.0441883 1.26442

0.0680527 0.021489 0.0283898 1.32113
0.0343932 0.0142785 0.0178729 1.25174

D
(5)
2 0.126115 0.0345202 0.0450778 1.30584

0.0652866 0.0230787 0.0281297 1.21886
0.0346837 0.0137955 0.0177264 1.28494

D
(6)
2 0.126088 0.034324 0.0440049 1.28205

0.0667871 0.0213494 0.0281837 1.32011
0.0370029 0.0138759 0.018034 1.29966

We conclude from the above table that, although we change the tolerance of the estimator
of the interface i.e. tolG, we still have that the indices of efficiencies on all 2D domains
D

(i)
2 are approximately one. We have verified that the error and the estimator on each 2D

domain D(i)
2 converge for uniform refinement. In order to obtain the optimal convergence

we must make an adaptive refinements as we did in Section 2.3. for each 2D domain D(i)
2 .

Now, we are going to calculate ∥∇(u − ush)∥Ω, η :=

(∑N
i=1

(
η(i)
)2) 1

2

and the indices

Ieff = η
∥∇(u−ush)∥Ω

in order to validate the reliability (2.57) of a posteriori error on the
total domain Ω.

Mesh Size ∥∇(u− ush)∥Ω η Ieff
0.128288 0.0847469 0.108999 1.28617
0.0680391 0.0533806 0.0695175 1.3023
0.0347673 0.0340807 0.0436809 1.28169

We have made a uniform refinement for the mesh T̃ (1)
h of the domain D

(1)
2 . We plot the

distribution of the error and estimator on D
(1)
2 for different mesh sizes. For mesh size
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2. A posteriori estimator for the coupled 0D/2D Poisson equation

h ≈ 0.128447 in Figure 2.44, for mesh size h ≈ 0.0657 in Figure 2.45 and for mesh size
h ≈ 0.03507 in Figure 2.46. We deduce that the error and estimator take the greatest
values at the corner and this is due to the singularity of the solution at the corner.

(a) Distribution of error (b) Distribution of estimator

Figure 2.44.: Distribution of error and estimator on D(1)
2 for h ≈ 0.128

(a) Distribution of error (b) Distribution of estimator

Figure 2.45.: Distribution of error and estimator on D(1)
2 for h ≈ 0.06
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2.4. Poisson problem on a channels with several straight sections

(a) Distribution of error (b) Distribution of estimator

Figure 2.46.: Distribution of error and estimator on D(1)
2 for h ≈ 0.03
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3. A posteriori estimator for the coupled
0D/2D Stokes equation

In this chapter we are going to talk about a posteriori error estimation for the coupled
0D/2D model of the Stokes equation (1.15) on Ω = Ω′∪γ∪Ω̃ which is represented in Figure
1.4. Recall that this coupled solution is denoted as (ush, p

s
h) and defined by (1.40)-(1.41)

in Section 1.2.4. We will introduce two possibilities of reconstructing the flux σh on Ω of
the coupled 0D/2D model. In Section 3.1, we will construct the first attempt of defining
the flux reconstruction where the upper bound is guaranteed ( reliability of the estimator)
while the lower bound (efficiency of the estimator) is not satisfied (or it is very difficult
to be proved). In Section 3.2, we will make a new stress reconstruction where we proved
the reliability of the estimator and efficiency of the estimator. In Section 3.3 we make a
conclusion and perspectives.

We recall that the variational formulation of (1.15) is (1.17). Let us also list here some
important definitions and properties.

Definition 3.1 (Stress σ). Let (u, p) be the solution of system (1.17) then, we denote the
stress by: σ := ∇u− pI.

Remark 3.2 (Properties of weak solution of system (1.17)). Let (u, p) be solution of system
(1.17) and let σ be defined as in Definition 3.1. Then, u ∈ [H1

g (Ω)]
2, σ ∈ [H(div,Ω)]2 and

∇ · σ = 0.

Proof. The proof is quite standard, see [78, Theorem 7.1.3] ■

Proposition 3.3 (Properties of approximate solution (ush, p
s
h)). Let (ush, p

s
h) be the ap-

proximate solution (1.40)–(1.41) then, ush ∈ [H1
g (Ω)]

2, ∇ush − pshI /∈ [H(div,Ω)]2 and
∇ · (∇ush − pshI) ̸= 0 in general.

Now, our aim is to reconstruct a flux, σh ∈ [H(div,Ω)]2, such that σh is close to ∇ush−pshI
so that ∥σh −∇ush + pshI∥Ω is as small as possible and ∇ · σh = 0.

3.1. A simple a posteriori estimator with guaranteed upper
bound only

3.1.1. Sress Reconstruction

Let ush and psh be the approximate solution (1.40)–(1.41). We shall adapt to this approx-
imation of the solution to Stokes equations the flux reconstruction presented in Section
2.1.1 in the context of the Poisson equation. We recall the definitions of patches of mesh
elements introduced there: V∗

h for the set of vertices on Ω̃\γ̄, ωa for the patch of mesh
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3. A posteriori estimator for the coupled 0D/2D Stokes equation

elements around a node a ∈ V∗
h, ω

γ =
⋃
ai∈γ ωai as in the Figure 2.2. We also recall the

partition of unity

1Ω = 1Ω′ + ψγ +
∑
a ∈ V∗

h

ψa,

where ψa is the hat function for any mesh node excluding those in γ, and ψγ is 1 on γ, 0
on all nodes not on γ.

Now, we define the stress reconstruction as

σh = σγh +
∑
a∈V∗

h

σah + (∇u′ − p′I)1Ω′ = σ̃h + σ′, (3.1)

where, the simplified model (u′, p′) is defined on Ω′ by (1.22) and σ̃h is defined by

σ̃h := σγh +
∑
a∈V∗

h

σah, (3.2)

where for each a ∈ V∗
h

σah := argmin
vah∈Σ

a
h,

div vah=ΠQa
h

(
(∇ũh−p̃hI)·∇ψa

)||vah − ψa(∇ũh − p̃hI)||L2(ωa)

and

σγh := argmin
vγh∈Σ

γ
h,

div vγh=Π
Q
γ
h

(
(∇ũh−p̃hI)·∇ψγ

)||vγh − ψγ(∇ũh − p̃hI)||L2(ωγ).

Here the spaces are chosen in the following cases.
Case 1: a is an internal node of Ω̃
Σah := {σh ∈ RT2(ω

a), σh · n = 0 on ∂ωa}
Qah := {qh ∈ [L2(ωa)]2, qh|K ∈ [P2(K)]2,∀K ∈ ωa,

∫
ωa qh = 0}

Case 2: a on the wall of Ω̃\γ
Σah := {σh ∈ RT2(ω

a), σh · n = 0 on ∂ωa\∂Ω̃}
Qah := {qh ∈ [L2(ωa)]2, qh|K ∈ [P2(K)]2,∀K ∈ ωa}
Case 3: a = γ

Σγh := {σh ∈ RT2(ω
γ), σh · n = 0 on ∂ωγ\∂Ω̃ and σh · n = (∇u′ − p′I)n on γ}

Qγh := {qh ∈ [L2(ωγ)]2, qh|K ∈ [P2(K)]2,∀K ∈ ωγ}
ΠQa

h
is the L2(ωa)-orthogonal projection and ΠQγ

h
is the L2(ωγ)-orthogonal projection.

σγh and σah defined above is equivalent to: Find σγh ∈ Σγh and rγh ∈ Qγh such that:{
(σγh, vh)ωγ + (rγh,∇ · vh)ωγ = (ψγ(∇ũh − p̃hI), vh)ωγ ∀vh ∈ Σγh,

(∇ · σγh, qh)ωγ = ((∇ũh − p̃hI) · ∇ψγ , qh)ωγ ∀qh ∈ Qγh.
(3.3)

And for all vertices a ∈ V∗
h, find σah ∈ Σah and rah ∈ Qah such that:{

(σah, vh)ωa + (rah,∇ · vh)ωa = (ψa(∇ũh − p̃hI), vh)ωa ∀vh ∈ Σah,

(∇ · σah, qh)ωa = ((∇ũh − p̃hI) · ∇ψa, qh)ωa ∀qh ∈ Qah.
(3.4)
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Proposition 3.4. Let σh be defined by equation (3.1). We have σ̃h = σγh+
∑

a∈V∗
h
σah, then

∇ · σ̃h = 0 on Ω̃ and consequently ∇ · σh = 0 on Ω.

Proof. σ̃h ∈ H(div, Ω̃) as all the individual components σγh and σah belong to H(div, Ω̃) for
all a ∈ V∗

h, since by extension we can go from H(div, ωγ) and H(div, ωa) to H(div, Ω̃), and
σ̃h is the sum of all these components. We will deal with the following three cases:
Case 1: a is internal node of Ω̃:
∀a ∈ V∗

h we have: (∇ · σah, qh)ωa = (∇(ũh − p̃hI) · ∇ψa, qh)ωa for all qh ∈ Qah, then we have∫
ωa qh = 0 and we have (∇ · σah, ei)ωa = 0 as σah · n = 0 on ∂ωa and using the divergence

theorem. Now, from system (1.35 ), we have (∇ũh − p̃hI,∇vh)Ω̃ = 0 for all vh ∈ Ṽ 0
h as

(p̃hI,∇vh)Ω̃ = (p̃h,∇ · vh)Ω̃ so, let us take two test functions:

• if we take v1h =

(
ψa

0

)
, then ((∇ũh − p̃hI) · ∇ψa, e1) = 0 since v1h ∈ Ṽ 0

h ,

• if we take v2h =

(
0
ψa

)
, then ((∇ũh − p̃hI) · ∇ψa, e2) = 0 since v2h ∈ Ṽ 0

h .

So, for all a ∈ V∗
h we have (∇ · σah, qh)ωa = ((∇ũh − p̃hI) · ∇ψa, qh)ωa for all qh ∈ Qh(ω

a)
and not only for the vector-valued function with zero mean value, where, Qh(ωa) := {qh ∈
[L2(ωa)]2; qh ∈ [P2(K)]2 ∀K ∈ ωa}.
Case 2: a is on wall of Ω̃\γ:
We have (∇ · σah, qh)ωa = ((∇ũh − p̃hI) · ∇ψa, qh)ωa for all qh ∈ Qah = Qh(ω

a).
Case 3: a = γ:
We have (∇ · σγh, qh)ωγ = ((∇ũh − p̃hI) · ∇ψγ , qh)ωγ for all qh ∈ Qγh = Qh(ω

γ).
Let now q̃h be in Qh = P2(Th), then

(∇ · σ̃h, q̃h)Ω̃ =

(
∇ · σγh, q̃h

)
Ω̃

+

(
∇ · (

∑
a∈V∗

h

σah), q̃h

)
Ω̃

=

(
(∇(ũh − p̃hI) · ∇ψγ , q̃h

)
Ω̃

+
∑
a∈V∗

h

(
(∇ũh − p̃hI) · ∇ψa, q̃h

)
Ω̃

=

(
(∇ũh − p̃hI) · ∇(ψγ +

∑
a∈V∗

h

ψa), q̃h

)
Ω̃

=

(
(∇ũh − p̃hI) · ∇(1Ω̃), q̃h

)
Ω̃

= 0.

Since ∇· (RT2(K)) = Qh(K) = P2(K) for all K ∈ T̃h, we get ∇· σ̃h = ΠQh
(0) = 0 where,

ΠQh
is the L2(Ω̃)-orthogonal projection onto Qh and finally, we get

∇ · σ̃h = 0 on Ω̃.

■

3.1.2. Reliability of the a posteriori error estimate based on (3.1)

We can study now posterior error estimate. We will prove here the guaranteed upper
bound. The lower bound is difficult to be proved and the reason is explained in Section
2.1.3 for the Poisson problem.
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3. A posteriori estimator for the coupled 0D/2D Stokes equation

As in the previous section, we start from the coupled approximate solution ush ∈ H1
g (Ω),

psh ∈ L2
0(Ω) defined by (1.40)–(1.41) and we reconstruct the stress σh as in (3.1)

Theorem 3.5 (A general a posterior error estimate). Let (u, p) be the weak solution defined
by system (1.17). Let (ush, p

s
h) and the stress σh defined as in the previous remark. Let T̃h

be the mesh of Ω̃, then ∀K ∈ T̃h define the stress estimator

ηF,K := ||∇ũh − p̃hI − σ̃h||K .
and the divergence estimator

ηD,K :=
||∇ · ũh||K

β
.

Then

||∇(u− ush)||2Ω ≤
∑
K∈T̃h

η2F,K +
∑
K∈T̃h

η2D,K

||p− psh||Ω ≤ 1

β

{( ∑
K∈T̃h

η2F,K

) 1
2

+

( ∑
K∈T̃h

η2D,K

) 1
2

}
.

Proof. Let us start with ||∇(u− ush)||. Now let us introduce s defined by{
Find s ∈ [H1

g (Ω)]
2 with ∇ · s = 0 such that:

(∇s,∇v)Ω = (∇uh,∇v)Ω ∀v ∈ [H1
0 (Ω)]

2 with ∇ · v = 0.
(3.5)

Then,

||∇(u−ush)||2Ω = ||∇(u−s+s−ush)||2Ω = ||∇(u−s)||2Ω+||∇(s−ush)||2Ω+2(∇(u−s),∇(s−ush))Ω,

but, u − s ∈ [H1
0 (Ω)]

2, ∇ · u = 0 and ∇ · s = 0, then ∇ · (u − s) = 0 so, substituting
v = u− s in system (3.5) we get (∇(u− s),∇(s− ush))Ω = 0 and hence

||∇(u− ush)||2Ω = ||∇(u− s+ s− ush)||2Ω = ||∇(u− s)||2Ω︸ ︷︷ ︸
=:A

+ ||∇(s− ush)||2Ω︸ ︷︷ ︸
=:B

.

Now, we begin with A := ||∇(u− s)||2Ω. By definition we have:

||∇(u− s)||Ω = sup
ϕ∈[H1

0 (Ω)]2

∇·ϕ=0,
||∇ϕ||Ω=1

(∇(u− s),∇ϕ).

So, let ϕ ∈ [H1
0 (Ω)]

2, ∇ · ϕ = 0 and ||∇ϕ||Ω = 1 be fixed, then by system (1.17) and
system (3.5), we get (∇(u − s),∇ϕ)Ω = −(∇ush,∇ϕ)Ω. We also use (psh,∇ · ϕ)Ω = 0 and
(pshI,∇ϕ)Ω = (psh,∇ · ϕ) = 0 since ∇ · ϕ = 0, then

(∇(u− s),∇ϕ)Ω = −(∇ush,∇ϕ)Ω
= −(∇ush,∇ϕ)Ω + (pshI,∇ϕ)Ω + (σh,∇ϕ)Ω − (σh,∇ϕ)Ω
= −(σh,∇ϕ)Ω︸ ︷︷ ︸

=(∗)

+−(∇uh − pshI − σh,∇ϕ)Ω︸ ︷︷ ︸
=(∗∗)

We observe that: (∗) = −(σh,∇ϕ)Ω = −(σ
′
,∇ϕ)Ω′ − (σ̃h,∇ϕ)Ω̃

= (∇ · σ′
, ϕ)Ω′ − ⟨σ′ · nΩ′ , ϕ⟩∂Ω′ + (∇ · σ̃h, ϕ)Ω̃ − ⟨σ̃h · nΩ̃, ϕ⟩∂Ω̃

= −⟨σ′ · nΩ′ , ϕ⟩∂Ω′ + (∇ · σ̃h, ϕ)Ω̃ − ⟨σ̃h · nΩ̃, ϕ⟩∂Ω̃,
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where nΩ′ and nΩ̃ are the outward unit normal to Ω′ and Ω̃ respectively. Since ϕ = 0 on
∂Ω, ⟨σ̃h · nΩ̃, ϕ⟩∂Ω̃ = ⟨σ̃h · nΩ̃, ϕ⟩γ = ⟨σγh · nΩ̃, ϕ⟩γ and since σγh ∈ Σγh, σ

γ
h · n = (∇u′ − p′I)n

on γ so, ⟨σ̃h · nΩ̃, ϕ⟩∂Ω̃ = ⟨(∇u′ − p′I)nΩ̃, ϕ⟩γ = −⟨σ′ · nΩ′ , ϕ⟩γ since nΩ̃ = −nΩ′ on γ and
⟨σ′ · nΩ′ , ϕ⟩∂Ω′ = ⟨σ′ · nΩ′ , ϕ⟩γ as ϕ = 0 on ∂Ω. Using Proposition 3.4 we get
(∗) = −⟨σ′ ·nΩ′ , ϕ⟩γ +(∇ · σ̃h, ϕ)Ω̃+ ⟨σ′ ·nΩ′ , ϕ⟩γ = (∇ · σ̃h, ϕ)Ω̃ = 0. Moreover, we remark
that:

(∗∗) = −(∇ush − pshI − σh,∇ϕ)Ω
= −(∇u′ − p

′
I − σ

′
,∇ϕ)Ω′ − (∇ũh − p̃hI − σ̃h,∇ϕ)Ω̃

= −(∇ũh − p̃hI − σ̃h,∇ϕ)Ω̃
= −

∑
K∈T̃h

(∇ũh − p̃hI − σ̃h,∇ϕ)K

≤
∑
K∈T̃h

||∇ũh − p̃hI − σ̃h||K ||∇ϕ||K

≤
∑
K∈T̃h

ηF,K ||∇ϕ||K .

In conclusion we have

(∇(u− s),∇ϕ)Ω = (∗) + (∗∗) ≤
∑
K∈T̃h

ηF,K ||∇ϕ||K

≤
( ∑
K∈T̃h

η2F,K

) 1
2
( ∑
K∈T̃h

||∇ϕ||2K
) 1

2

≤
( ∑
K∈T̃h

η2F,K

) 1
2

||∇ϕ||Ω.

Then,

||∇(u− s)||Ω = sup
ϕ∈H1

0 (Ω)
∇·ϕ=0,

||∇ϕ||Ω=1

(∇(u− s),∇ϕ)Ω ≤ sup
ϕ∈H1

0 (Ω)
∇·ϕ=0,
||∇ϕ||=1

( ∑
K∈T̃h

η2F,K

) 1
2

||∇ϕ||Ω

=

( ∑
K∈T̃h

η2F,K

) 1
2

So, A = ||∇(u− s)||2Ω ≤
∑

K∈T̃h η
2
F,K .

Now, let us estimate B := ||∇(s− ush)||2Ω. We recall that, system (3.5) s is equivalent to:
Find (s, w) ∈ [H1

g (Ω)]
2 × L2

0(Ω) such that:
(∇s,∇v)Ω − (∇ · v, w)Ω = (∇ush,∇v)Ω ∀v ∈ [H1

0 (Ω)]
2,

−(∇ · s, q)Ω = 0 ∀q ∈ L2
0(Ω).

Since, ush ∈ [H1
g (Ω)]

2 and s ∈ [H1
g (Ω)]

2, we have s− ush ∈ [H1
0 (Ω)]

2 and since ∇ · s = 0 on
Ω and ∇ · ush = 0 on Ω

′ , then

∥∇(s− ush)∥
2
Ω = (∇(s−ush),∇(s−ush))Ω = (∇·(s−ush), w)Ω = −(∇·ush, w)Ω ≤ ||∇·ũh||Ω̃||w||Ω.
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Now, we will rely on the inf-sup condition to estimate ||w||Ω:

inf
q∈L2

0(Ω)
sup

v∈[H1
0 (Ω)]2

(q,∇ · v)Ω
||q||||∇v||

= β > 0

Since w ∈ L2
0(Ω), β ≤ supv∈[H1

0 (Ω)]2
(w,∇·v)Ω
||w||||∇v|| , so that:

||w||Ω ≤ 1

β
sup

v∈[H1
0 (Ω)]2

(w,∇ · v)Ω
||∇v||

=
1

β
sup

v∈[H1
0 (Ω)]2

(∇(s− ush),∇v)Ω
||∇v||

≤ 1

β
||∇(s− ush)||Ω,

hence, ∥∇(s− ush)∥
2
Ω ≤ ||∇·ũh||Ω̃

β ||∇(s− ush)||Ω,

Thus: ||∇(s− ush)||Ω ≤ ||∇·ũh||Ω̃
β =

(∑
K∈T̃h

||∇·ũh||2K
β2

) 1
2

.

It all together gives:

||∇(u− ush)||2Ω = A+B ≤
∑
K∈T̃h

η2F,K +
∑
K∈T̃h

η2D,K .

Now, we will deal with ||p− psh||Ω through the inf-sup condition:

inf
q∈L2

0(Ω)
sup

v∈[H1
0 (Ω)]2

(q,∇ · v)Ω
||q||||∇v||

= β > 0.

Since p − psh ∈ L2
0(Ω), we have β ≤ supv∈[H1

0 (Ω)]2
(p−psh,∇·v)Ω
||p−psh||||∇v||

and thus ||p − psh|Ω ≤
1
β supv∈[H1

0 (Ω)]2
(p−psh,∇·v)Ω

||∇v|| .
For v ∈ [H1

0 (Ω)]
2, we have ||∇v||Ω is bounded since Ω is bounded, so let us take ϕ = v

||∇v|| ,
then

||p− psh||Ω ≤ 1

β
sup

ϕ∈[H1
0 (Ω)]2

||∇ϕ||Ω=1

(p− psh,∇ · ϕ)Ω.

Now, fix ϕ ∈ [H1
0 (Ω)]

2 with ||∇ϕ||Ω = 1, then the weak solution in the first equation of
system (1.17) gives:

(p,∇ · ϕ)Ω = (∇u,∇ϕ)Ω.

We have, (psh,∇ · ϕ)Ω = (pshI,∇ϕ)Ω then, add and subtract (σh,∇ϕ) as well as (∇ush,∇ϕ)
and using Green theorem we get:

(p− psh,∇ · ϕ)Ω = (∇u,∇ϕ)Ω − (psh,∇ · ϕ)Ω − (∇ush,∇ϕ)Ω + (∇ush,∇ϕ)Ω − (σh,∇ϕ)Ω + (σh,∇ϕ)Ω
= (∇(u− ush),∇ϕ)Ω + (∇ush − pshI − σh,∇ϕ)Ω + (σh,∇ϕ)Ω.

Let us add and subtract s defined in system (3.5), we get

(∇(u− ush),∇ϕ)Ω = (∇(u− s),∇ϕ)Ω + (∇(s− ush),∇ϕ)Ω.

Let us split ϕ in a divergence free contribution: ϕ = ϕC + ϕNC , where ϕC is the solution
of: {

Find ϕC ∈ [H1
0 (Ω)]

2 with ∇ · ϕC = 0 such that:
(∇ϕC ,∇v)Ω = (∇ϕ,∇v)Ω ∀v ∈ [H1

0 (Ω)]
2 with ∇ · v = 0.
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Let ϕNC := ϕ − ϕC , then (∇ϕNC ,∇v) = 0 for all v ∈ [H1
0 (Ω)]

2 and ∇ · v = 0, and, since
ϕC ∈ [H1

0 (Ω)]
2 and ∇ · ϕC = 0, using (∇ϕNC ,∇ϕC)Ω = 0, we have

||∇ϕ||2Ω = ||∇(ϕ− ϕc + ϕc)||2Ω = ||∇(ϕNC + ϕc)||2Ω
= ||∇ϕNC ||2Ω + ||∇ϕc||2Ω + 2(∇ϕNC ,∇ϕc)Ω = ||∇ϕNC ||2Ω + ||∇ϕc||2Ω.

Now, we have

(p− psh,∇ · ϕ)Ω = (p− psh,∇ · ϕNC)Ω
= (∇(u− ush),∇ϕNC)Ω︸ ︷︷ ︸

Z1

+(∇uh − pshI − σh,∇ϕNC)Ω︸ ︷︷ ︸
Z2

+(σh,∇ϕNC)Ω︸ ︷︷ ︸
Z3

Let us estimate Z1:
Z1 = (∇(u−ush),∇ϕNC)Ω = (∇(u−s),∇ϕNC)Ω+(∇(s−ush),∇ϕNC)Ω, but u−s ∈ [H1

0 (Ω)]
2

and ∇ · (u − s) = 0, then by the definition of ϕNC we gain, (∇(u − s),∇ϕNC)Ω = 0 and
hence

Z1 = (∇(s− ush),∇ϕNC)Ω ≤ ||∇(s− ush)||Ω||∇ϕNC ||Ω

≤ ||∇(s− ush)||Ω||∇ϕ||Ω = ||∇(s− ush)||Ω ≤
||∇ · ũh||Ω̃

β
=

( ∑
K∈T̃h

η2D,K

) 1
2

.

Then,

Z1 ≤
( ∑
K∈T̃h

η2D,K

) 1
2

.

Let us estimate Z2:

Z2 = (∇ush − pshI − σh,∇ϕNC)Ω ≤
∑
K∈T̃h

||∇ũh − p̃hI − σ̃h||K ||∇ϕNC ||K =
∑
K∈T̃h

ηF,K ||∇ϕNC ||K

≤
( ∑
K∈T̃h

η2F,K

) 1
2

||∇ϕNC ||Ω̃ ≤
( ∑
K∈T̃h

η2F,K

) 1
2

||∇ϕNC ||Ω ≤
( ∑
K∈T̃h

η2F,K

) 1
2

||∇ϕ||Ω =

( ∑
K∈T̃h

η2F,K

) 1
2

.

Then,

Z2 ≤
( ∑
K∈T̃h

η2F,K

) 1
2

Finally, let us observe that Z3 = (σh,∇ϕNC)Ω = (∗) = 0, where (∗) is computed in page
127 where can have ϕNC instead of ϕ because ∇ · ϕ = 0 in the prove and we only need
ϕNC = 0 on ∂Ω and this is satisfied since ϕ and ϕC belong to [H1

0 (Ω)]
2 and ϕNC = ϕ−ϕC .

So,

(p− psh,∇ · ϕ)Ω = Z1 + Z2 + Z3 ≤
( ∑
K∈T̃h

η2D,K

) 1
2

+

( ∑
K∈T̃h

η2F,K

) 1
2

.

Then,

||p− psh||Ω ≤ 1

β
sup

ϕ∈[H1
0 (Ω)]2

||∇ϕ||Ω=1

(p− psh,∇ · ϕ)Ω ≤ 1

β

( ∑
K∈T̃h

η2D,K

) 1
2

+
1

β

( ∑
K∈T̃h

η2F,K

) 1
2

.
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Finally,

β||p− psh||Ω ≤
( ∑
K∈T̃h

η2D,K

) 1
2

+

( ∑
K∈T̃h

η2F,K

) 1
2

.

■

3.1.3. Local Efficiency

As our study in the previous Chapter in Section 2.1.3, we have explained why we can not
be able to prove the local efficiency and you can see the reason in Remark 2.8.

3.1.4. Numerical Results

We will take in this section RTk = RT2, Pk = P2 for the velocity and Pk = P1 for the
pressure. Moreover, the inf-sup constant β is unknown for the domain of interest, so we
fix a value β = 0.5 in this section taking into account that it could be small for stretched
domains. For a more detailed discussion about β, see Section 3.2.3 and Appendix C. We
have obtained in Theorem 3.5 that

||∇(u− ush)||2Ω ≤
∑
K∈T̃h

η2F,K +
∑
K∈T̃h

η2D,K ,

||p− psh||Ω ≤ 1

β

{( ∑
K∈T̃h

η2F,K

) 1
2

+

( ∑
K∈T̃h

η2D,K

) 1
2

}
.

We plot the velocity error ErrorU := ||∇(u − ush)||Ω =
√
||∇(u− u′)||2Ω′ + ||∇(u− ũh)||2Ω̃,

the velocity estimator EstimatorU :=
√∑

K∈T̃h η
2
F,K +

∑
K∈T̃h η

2
D,K , the pressure error

ErrorP := ||p − psh||Ω and the pressure estimator EstimatorP := 1
β

{(∑
K∈T̃h η

2
F,K

) 1
2

+(∑
K∈T̃h η

2
D,K

) 1
2

}
with respect to different positions of interface γ which has the position

x = xγ in a way that xγ goes form the position very near to the inlet i.e. xγ = xiγ = 0.1 to
the position very near to the corner of the channel i.e. xγ = xfγ = L1 − 0.02 = 5.08 where,
xiγ and xfγ are located in Figure 3.1.

130



3.1. A simple a posteriori estimator with guaranteed upper bound only

Figure 3.1.: Direction of the interface γ from the the position xiγ to the position xfγ .

For a quasi-uniform mesh with mesh size h ≈ 0.07, we plot the error and the estimator
for velocity u and pressure p in the Theorem 3.5 for different positions of the interfaces
and we obtain the graph in Figure 3.2 for velocity and the graph in Figure 3.3 for pressure.
Now, let us decrease the mesh size to h ≈ 0.04 and plot the error and the estimator in the
Theorem 3.5 for different positions of the interface and the graph is obtained in Figure 3.4
for velocity and Figure 3.5 for pressure.

Figure 3.2.: Error on Ω and Estimator on Ω̃ for velocity u for a mesh size h ≈ 0.07

Figure 3.3.: Error on Ω and Estimator on Ω̃ for pressure p for a mesh size h ≈ 0.07
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Figure 3.4.: Error on Ω and Estimator on Ω̃ for velocity u for a mesh size h ≈ 0.04

Figure 3.5.: Error on Ω and Estimator on Ω̃ for pressure p for a mesh size h ≈ 0.04

In Figures 3.2-3.5, we see that the errors and the estimators become much bigger as the
interface becomes near to the corner and this is due to the dominance of the 2D affects
in the corner. We must specify some tolerance in order to detect the suitable position
of the interface. We will introduce an error indicator similar to Indicator2 in Section
2.2.3 to detect the suitable position of the interface. To detect such interface we choose to
introduce these two indicators on a region ωγ for the velocity and the pressure which are
defined respectively by

ηγU := ||∇(ũh − u′)ψγh||ωγ , (3.6)

ηγP := ||(p̃h − p′)ψγh||ωγ , (3.7)

where ωγ as in Figure 2.2. We plot ηγU and ηγP defined in (3.6) and (3.7) with respect to
different positions of the interface γ for a mesh size h ≈ 0.07 in Figure 3.6. We see that we
can deduce a suitable interface position once a tolerance for these indicators is fixed. Now,
let us fix the position of the interface at xγ = 4 (others interface positions are possible,
but the behavior would be the same). We plot in Figure 3.8 the indicator of velocity ηγU
and in Figure 3.9 of the pressure ηγP with respect to different mesh sizes. We find that
ηγU takes values between 1.19754e− 06 and 3.39165e− 06 for different mesh sizes which is
approximately of the same tolerance 10−6 (but not constant) and ηγP takes values between
2.71508e−06 and 9.27647e−06 for different mesh sizes which is approximately of the same
tolerance 10−6 (but not constant).
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Now, let us define the total indicator for the velocity and pressure on ωγ by

ηγ :=
√
(ηγU )

2 + (ηγP )
2. (3.8)

We plot ηγ defined in (3.8) with respect to different positions of the interface γ for a
mesh size h ≈ 0.07 in Figure 3.7. We plot in Figure 3.10 the total estimators ηγ on ωγ

with respect to different mesh sizes. We find that ηγ takes values between 2.96745e − 06
and 9.87705e − 06 for different mesh sizes which is approximately of the same tolerance
10−6 (but not constant). Finally, ηγ can be taken as an indicator for the position of the
interface but it can be improved to be constant for different mesh sizes when we fix the
position of the interface xγ . This improvement is done if we introduce a new definition of
reconstructing the flux which will be studied in the following section.

Figure 3.6.: Indicators ηγU and ηγP on ωγ in semilogy scale with respect to different positions
of the interface γ
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Figure 3.7.: Indicator ηγ on ωγ in semilogy scale with respect to different positions of the
interface γ

Figure 3.8.: Indicator ηγU w.r.t. different mesh sizes for a fixed interface at xγ = 4
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Figure 3.9.: Indicator ηγP w.r.t. different mesh sizes for a fixed interface at xγ = 4

Figure 3.10.: Indicator ηγ w.r.t. different mesh sizes for a fixed interface at xγ = 4

To conclude the section, we want to plot the errors of velocity and pressure on Ω′ which
are represented by:

||∇(u− u′)||Ω′ , (3.9)

||(p− p′)||Ω′ . (3.10)

The graph for the errors on Ω′ with respect to different positions of the interface is repre-
sented in Figure 3.11 by the velocity and pressure errors on Ω′ given by (3.9) and (3.10)
respectively. We deduce from Figure 3.11 that the errors of the velocity and pressure on Ω′

become more bigger when the interface position moves towards the corners of the domain.
We also see that our indicator ηγ in Figure 3.7 detects that the suitable position of the
interface is at xγ = 3 and we conclude from Figure 3.11 that our indicator reasonable since
the error of the velocity and pressure on Ω′ begin its sharp increasing at xγ ≈ 3 also.
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Figure 3.11.: Errors of the velocity and pressure on Ω′ in semilogy scale with respect to
different positions of the interface γ

Conclusions We have verified in this section that the errors and the estimators of
pressure and velocity become much bigger near the corner. We have introduced an indicator
in order to find a suitable position of the interface. The drawbacks of this definition of the
flux are that we can not prove the efficiency (lower bound) and that for a fixed position of
the interface, we find that the estimator ηγ , which is defined in (3.8), vary a little bit for
different mesh sizes. These drawbacks will be solved in the following section by introducing
the new definition of the flux reconstruction.

3.2. A posteriori estimator with upper and lower bounds

In this section we will make a new partition of unity of Ω and we will make a new definition
of the stress reconstruction in order to be able to introduce an a posteriori error analysis
with guaranteed reliability and provable efficiency as we did for Poisson in Section 2.2.

3.2.1. A posteriori error indicator

We now introduce the a posteriori error indicator with guaranteed reliability and provable
efficiency. Let the position of the interface xγ ∈ [0.1, L1 − R]. To this end, consider the
continuous function on Ω, named ψγ , defined on rectangular portion [0, xγ +R]× [0, R] of
the channel by

ψγ(x) =


1, for x < xγ
xγ+R−x

R , for x ∈ [xγ , xγ +R]
0, for x > xγ +R

(3.11)

and extended by 0 everywhere else. Here, xγ is the x-coordinate of the interface γ and we
assume that xγ +R is still in the rectangular portion of the channel. We also introduce a
piecewise affine (on mesh T̃h) version of ψγ :

ψγh(x) =
∑
a∈Vh

ψγ(a)ψa(x) for x ∈ Ω̃ (3.12)

and ψγh = 1 on Ω′, where ψa is a hat function i.e. a polynomial of degree 1 that takes
the value 1 at the node a and 0 on the other nodes different from a and Vh represents all
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vertices that belongs to Ω̃. Note the partition of unity on Ω

1 = ψγh +
∑
a∈V∗

h

(1− ψγ(a))ψa,

recalling that V∗
h represents all vertices that belongs to Ω̃ \ γ. We define then the stress on

whole Ω = Ω̃ ∪ Ω′ ∪ γ as

σh = σγh +
∑
a∈V∗

h

(1− ψγ(a))σah + (∇u′ − p′I)1Ω′ . (3.13)

We will divide the stress into two stresses. The first stress is defined on Ω′ by

σ′h = ∇u′ − p′hI (3.14)

and the second stress is defined on Ω̃ by

σ̃h = σγh +
∑
a∈V∗

h

(1− ψγ(a))σah. (3.15)

Here σah is defined on all patches ωa = supp(ψah)∩Ω̃ for all nodes a ∈ V∗
h as follows: σah ∈ Σah

and pah ∈ Qah such that for all τh ∈ Σah and qh ∈ Qah∫
ωa

σah · τh +
∫
ωa

pahdivτh =

∫
ωa

(∇ũh − p̃hI)ψ
a · τh, (3.16)∫

ωa

qhdivσah =

∫
ωa

((∇ũh − p̃hI) · ∇ψa) qh. (3.17)

Similarly, σγh is defined on the patch ωγ = supp(ψγh) ∩ Ω̃ as follows: σγh ∈ Σγh and pγh ∈ Qγh
such that for all τh ∈ Σγ,0h and qh ∈ Qγh∫

ωγ

σγh · τh +
∫
ωγ

pγhdivτh =

∫
ωγ

(∇ũh − p̃hI)ψ
γ
h · τh, (3.18)∫

ωγ

qhdivσγh =

∫
ωγ

(
(∇ũh − p̃hI) · ∇ψγh

)
qh. (3.19)

To fix the approximation spaces let us consider the following cases.
Case 1: a in an internal node of Ω̃

Σah := {σh ∈ [RT2(ω
a)]2, σhn = 0 on ∂ωa}

Qah := {qh ∈ [L2(ωa)]2, qh|K ∈ [P1(K)]2, ∀K ∈ ωa,
∫
ωa qh = 0}

Case 2: a on the wall of Ω̃ \ γ
Σah := {σh ∈ [RT2(ω

a)]2, σhn = 0 on ∂ωa \ ∂Ω̃}
Qah := {qh ∈ [L2(ωa)]2, qh|K ∈ [P1(K)]2, ∀K ∈ ωa}

Case 3: a = γ

Σγh := {σh ∈ [RT2(ω
γ)]2, σhn = 0 on ∂ωγ \ ∂Ω̃ and σhn = (∇u′ − p′hI)n on γ}

Σγ,0h := {σh ∈ [RT2(ω
γ)]2, σhn = 0 on ∂ωγ \ ∂Ω̃ and on γ}

Qγh := {qh ∈ [L2(ωγ)]2, qh|K ∈ [P1(K)]2, ∀K ∈ ωγ}

Lemma 3.6. We have σ̃h := σγh +
∑

a∈V∗
h
(1 − ψγ(a))σah on Ω̃, then ∇ · σ̃h = 0 on Ω̃ and

consequently ∇ · σh = 0 on Ω.

Proof. Straightforward computations give the result as we did before in the proof of
Proposition 3.4 Page 125. ■
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3. A posteriori estimator for the coupled 0D/2D Stokes equation

3.2.2. Main theorem and the proof

Theorem 3.7. Let (u, p) be the weak solution defined by (1.17). Let (ush, p
s
h) and σh defined

as in (1.40)–(1.41) and (3.13) respectively. Let us define the local flux estimator by

ηF,K := ||∇ũh − p̃hI − σ̃h||K

and the local divergence estimator by:

ηD,K :=
||∇ · ũh||K

β
.

Then, we have the upper bounds for velocity and pressure

||∇(u− ush)||2Ω ≤ ||∇ush − pshI − σh||2Ω +
||∇ · ush||2Ω

β2
=:

∑
K∈T̃h

η2F,K +
∑
K∈T̃h

η2D,K , (3.20)

||p− psh||Ω ≤ 1

β


∑
K∈T̃h

η2F,K

 1
2

+

∑
K∈T̃h

η2D,K

 1
2

 , (3.21)

and the lower bound is

||∇ush − pshI − σh||2Ω ⩽ C∥∇u− pI − (∇ush − pshI)∥2Ω (3.22)

with a constant C depending only on the mesh regularity.

Proof. The proof of the reliability (3.20) and (3.21) is completely the same of the proof
of Theorem 3.5 since we have used the conditions σh ∈ H(div,Ω) and ∇ · σh = 0 and
the stress σh defined by (3.13) also satisfies these conditions. Now, the proof of (3.22) is
organized in several steps.

Step 1: error caused by the interface, prior to discretization. Let us begin with a
“continuous ” version of our “simplified ” problem: we search for (ũ, p̃) on Ω̃ such that

−∆ũ+∇p̃ = 0 in Ω̃

div ũ = 0 in Ω̃

ũ = u′ on γ, ũ = uout on Γoutand ũ = 0 on Γwall.

Moreover:

us =

{
u′, on Ω′

ũ, on Ω̃

and

ps =

{
p′h, on Ω′

p̃, on Ω̃

with ∫
Ω̃
p̃ =

∫
Ω̃
p̃h.

Here, ps is just an auxiliary tool: the theorem is about psh and not ps. We want to study
∥∇u − pI − (∇us − psI)∥Ω which is the error introduced by the interface itself, without
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3.2. A posteriori estimator with upper and lower bounds

discretizing the problem on Ω̃. More precisely, we want to relate it to the continuous
version of ∥σγh − (∇ũh − p̃hI)ψ

γ
h∥ωγ . We thus introduce the continuous version of σγh: find

σγ ∈ H(div, ωγ)2, pγ ∈ L2(ωγ)2 with ωγ = supp(ψγh) ∩ Ω̃ such that σγn = −p′hn on γ and
for all τγ ∈ H(div, ωγ)2, qγ ∈ L2(ωγ)2 with τγn = 0 on γ∫

ωγ

σγ · τγ +
∫
ωγ

pγdivτγ =

∫
ωγ

(∇ũ− p̃I) · τγ , (3.23a)∫
ωγ

qγdivσγ = 0. (3.23b)

We want to prove

∥∇ũ− p̃I − σγ∥ωγ ≤ C ∥∇u− pI −∇us + psI∥Ω . (3.24)

To this end, let ωγR = supp(ψγ)∩Ω̃ with γR = ∂ωγR∩{x = xγ+R}. Introduce θ ∈ H1(ωγR)
2:

∆θ = 0 on ωγR

∇θ · n = [∇us − psI]n on γ

∇θ · n = 0 on γR

θ = 0 on the wall

Here, [∇us − psI] stands for the jump on γ. Let τ c ∈ H (div, ωγ)2 defined by τ c = ∇θ
on ωγR and τ c = 0 on ωγ \ ωγR (note that ωγR ⊂ ωγ) so that divτ c = 0 on ωγ . Now set
τγ = σγ − (∇ũ − p̃I) + τ c and observe that divτγ = 0 a.e. on ωγ and τγn = 0 on γ. We
can thus use this τγ as the test function in (3.23). Since

∫
ωγ p

γdivτγ = 0, this gives∫
ωγ

(σγ − (∇ũ− p̃I)) · (σγ − (∇ũ− p̃I) + τ c) = 0

so that
∥σγ − (∇ũ− p̃I)∥ωγ ⩽ ∥τ c∥ωγ = ∥∇θ∥ωγ

R
.

We prove in Lemma 2.13

∥∇θ∥ωγ
R
⩽ C1∥[∇us − psI]n∥−1/2,γ

with C1 > 0 which does not depend on R and the norm ∥ · ∥−1/2,γ defined in the Lemma.
Thus,

∥σγ − (∇ũ− p̃I)∥ωγ ⩽ C1∥[∇us − psI]n∥−1/2,γ .

Now, we return to bound the error ∥∇u − ∇us∥Ω from below. To this end, observe that
∆(u − us) − ∇(p − ps) = 0 in Ω, div(u − us) = 0 in Ω, u − us = 0 on ∂Ω, and [(∇(u −
us)− (p− ps)I)n] = [∇us − psI]n on γ. By integration by parts∫

Ω
(∇(u− us)− (p− ps)I) · ∇v =

∫
γ
[∇us − psI]n · v.

By Lemma 2.14, ∀η ∈ H1/2(γ) ∃v ∈ H1(Ω) vanishing on ∂Ω such that v|γ = η and

∥∇v∥Ω ⩽ C2∥η∥1/2,γ
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3. A posteriori estimator for the coupled 0D/2D Stokes equation

with C2 that does not depend on the geometrical parameters. It suffices to take v = θ from
Lemma on ωγR and as the mirror image of θ to the left of γ. We have thus ∀η ∈ H1/2(γ)∫

γ
[∇us − psI]n · v ⩽ C2∥η∥1/2,γ∥∇(u− us)− (p− ps)I∥Ω

so that
∥[∇us − psI]n∥−1/2,γ ⩽ C2∥∇u− pI − (∇us − psI)∥Ω

and finally (3.24) is obtained with C = C1C2.

Step 2: error caused by the interface, adding the discretization. We want now to
discretize (3.24), i.e. to prove

∥σγh − (∇ũh− p̃hI)ψ
γ
h∥ωγ ⩽ C (∥∇u− pI − (∇us − psI)∥Ω + ∥∇ũ− p̃I − (∇ũh − p̃hI)∥ωγ )

(3.25)
We repeat the trick with the mirror image, i.e. introduce ωγ,m as in Poisson case. A small
technical difficulty is now that σγhn ̸= 0 on γ. We have rather σγn = −p′hn on γ. We take
this into account by introducing pγ = p′h|γ and

• ũmh as the function on ωγ,m, symmetric wrt γ, and ũmh = ũh on ωγ ;

• p̃mh as the function on ωγ,m, antisymmetric wrt γ, and p̃mh = p̃h − pγ on ωγ ;

• σ̃mh as the function on ωγ,m, antisymmetric wrt γ, and σ̃mh = σ̃γh − σ̃
pγ

h on ωγ where
σ̃p

γ

h is the solution to (3.18)–(3.19) with ũh = 0, p̃h = −pγ (note in particular that
σ̃mh n = 0 on γ).

We introduce a "semi-discrete" version of the flux σγ : find σ̂γ ∈ H(div, ωγ)2, p̂γ ∈ L2(ωγ)
such that σ̂γn = −p′hn on γ and ∀τγ ∈ H(div, ωγ)2,∀qγ ∈ L2(ωγ)2 with τγ · n = 0 on γ∫

ωγ

σ̂γ · τγ +
∫
ωγ

p̂γ div τγ =

∫
ωγ

(∇ũh − p̃hI) · τγ , (3.26a)∫
ωγ

qγ div σ̂γ = 0 . (3.26b)

We then extend it, similar as above

• σ̂m as the function on ωγ,m, antisymmetric wrt γ, and σ̂m = σ̂γ + pγI on ωγ .

We then identify the minimums in Theorem 1.2 of [37], applied on ωγ,m with these σ̃mh and
σ̂m. Using the symmetry and the fact that the terms with pγ cancel out, we arrive at

∥σγh − (∇ũh − p̃hI)ψ
γ
h∥ωγ ⩽ C∥σ̂γ − (∇ũh − p̃hI)∥ωγ .

This entails by the triangle inequality

∥σγh−(∇ũh−p̃hI)ψγh∥ωγ ⩽ C (∥σ̂γ − σγ∥ωγ + ∥σγ − (∇ũ− p̃I)∥ωγ + ∥(∇ũ− p̃I)− (∇ũh − p̃hI)∥ωγ )

We can now derive (3.25) as in Poisson case.
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3.2. A posteriori estimator with upper and lower bounds

Step 3: discretization error inside Ω̃. We have at all the nodes a of the mesh T̃h

∥σah − (∇ũh − p̃hI)ψ
a∥ωa ⩽ C∥∇ũ− p̃I − (∇ũh − p̃hI)∥ωa (3.27)

This is completely standard and can be proven by using Theorem 1.2 of [37] on ωa.

Step 4: putting everything together. Using the partition of unity and (3.25), (3.27) we
arrive at (cf. the details in Poisson case)

∥σh − (∇ush − pshI)∥2Ω = ∥σ̃h − (∇ũh − p̃hI)∥2Ω̃

⩽ C
(
∥∇u− pI − (∇us − psI)∥2Ω + ∥∇ũ− p̃I − (∇ũh − p̃hI)∥2Ω̃

)
⩽ C

(
∥∇u−∇us∥2Ω + ∥p− ps∥2

Ω̃
+ ∥∇ũ−∇ũh∥2Ω̃ + ∥p̃− p̃h∥2Ω̃

)
Observe that we have

∥p− ps∥2
Ω̃
≤ 1

β̃2
∥∇u−∇us∥2

Ω̃
+ ⟨p− p̃h⟩2Ω̃|Ω̃| (3.28)

where β̃ is the inf-sup constant for Ω̃ and ⟨·⟩Ω̃ = 1
|Ω̃|

∫
Ω̃ · denotes the average over Ω̃. Indeed,

taking any ṽ ∈ [H1
0 (Ω̃)]

2 as a test function in (1.23) and (1.17), we get

(∇ũ,∇ṽ)Ω̃ − (∇ · ṽ, ps)Ω̃ = 0

and
(∇u,∇ṽ)Ω̃ − (∇ · ṽ, p)Ω̃ = 0

then using the above two weak formulations, we get∫
Ω̃
(p− ps − ⟨p− ps⟩Ω̃) div ṽ =

∫
Ω̃
(p− ps) div ṽ =

∫
Ω̃
(∇u−∇ũ) · ∇ṽ. (3.29)

Indeed, ∫
Ω̃
(p− ps − ⟨p− ps⟩Ω̃) div ṽ =

∫
Ω̃

(
p− ps − 1

|Ω̃|

∫
Ω̃
(p− ps)

)
div ṽ

=

∫
Ω̃
(p− ps) div ṽ − 1

|Ω̃|

∫
Ω̃
(p− ps)

∫
Ω̃
div ṽ

Now, we have
∫
Ω̃ div ṽ =

∫
∂Ω̃ ṽ · n = 0 as ṽ ∈ [H1

0 (Ω̃)]
2, then∫

Ω̃

(
p− ps − ⟨p− ps⟩Ω̃

)
div ṽ =

∫
Ω̃
(p− ps) div ṽ,

but for any q ∈ L2
0(Ω̃)

β̃∥q∥Ω̃ ≤
∫
Ω̃
(p− p̃) div ṽ sup

v∈[H1
0 (Ω̃)]2

(q,∇ · ṽ)Ω̃
||∇ṽ||Ω̃

.
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3. A posteriori estimator for the coupled 0D/2D Stokes equation

Since infq∈L2
0(Ω̃) supṽ∈[H1

0 (Ω̃)]2
(q,∇·ṽ)Ω̃

||q||Ω̃||∇ṽ||Ω̃
= β̃ > 0, then for any q ∈ L2

0(Ω̃), we have

β̃∥q∥Ω̃ ≤ sup
ṽ∈[H1

0 (Ω̃)]2

(q,∇ · ṽ)Ω̃
||∇ṽ||Ω̃

(3.30)

and noting that

∥p− ps∥2
Ω̃
= ∥p− ps − ⟨p− ps⟩Ω̃∥

2
Ω̃
+ ∥⟨p− ps⟩Ω̃∥

2
Ω̃

(3.31)

since(
p− ps − ⟨p− ps⟩Ω̃, ⟨p− ps⟩Ω̃

)
Ω̃

=

∫
Ω̃

(
p− ps − 1

|Ω̃|

∫
Ω̃
(p− ps)

)(
1

|Ω̃|

∫
Ω̃
(p− ps)

)
=

(∫
Ω̃
p− ps −

∫
Ω̃
p− ps

)(
1

|Ω̃|

∫
Ω̃
(p− ps)

)
= 0

and ⟨p− ps⟩Ω̃ = ⟨p− p̃h⟩Ω̃. Indeed, |Ω̃|⟨ps⟩Ω̃ = −|Ω′|⟨p′h⟩Ω′ = |Ω̃|⟨p̃h⟩Ω̃.
We also have

∥p̃− p̃h∥Ω̃ ≤
(

1

β̃2
∥∇u−∇us∥2

Ω̃
+ ⟨p− p̃h⟩2Ω̃ |Ω̃|

) 1
2

+ ∥p− p̃h∥Ω̃. (3.32)

Indeed, we have
∥p̃− p̃h∥Ω̃ ≤ ∥p− p̃∥Ω̃ + ∥p− p̃h∥Ω̃. (3.33)

Now let us bound ∥p − p̃∥Ω̃, we have
(
p − ps − ⟨p − ps⟩Ω̃

)
∈ L2

0(Ω) and using (3.30) and
(3.29) we get

β̃
∥∥p− ps − ⟨p− ps⟩Ω̃

∥∥
Ω̃
≤ sup

ṽ∈[H1
0 (Ω̃)]2

(
p− ps − ⟨p− ps⟩Ω̃,∇ · ṽ

)
Ω̃

||∇ṽ||Ω̃

= sup
ṽ∈[H1

0 (Ω̃)]2

(
∇u−∇ũ,∇ṽ

)
Ω̃

||∇ṽ||Ω̃
≤ ∥∇u−∇ũ∥Ω̃.

Then,
β̃2
∥∥p− ps − ⟨p− ps⟩Ω̃

∥∥2
Ω̃
≤ ∥∇u−∇ũ∥2

Ω̃
.

Now, using (3.31) and ∥⟨p− ps⟩Ω̃∥
2
Ω̃
= |Ω̃|⟨p− p̃h⟩2Ω̃, we have

β̃2
(
∥p− ps∥2

Ω̃
− |Ω̃|⟨p− p̃h⟩2Ω̃

)
≤ ∥∇u−∇ũ∥2

Ω̃
,

then
∥p− p̃∥2

Ω̃
≤ 1

β̃2
∥∇u−∇ũ∥2

Ω̃
+ |Ω̃|⟨p− p̃h⟩2Ω̃.

Finally, we get (3.28) i.e.

∥p− p̃∥Ω̃ ≤
(

1

β̃2
∥∇u−∇ũ∥2

Ω̃
+ |Ω̃|⟨p− p̃h⟩2Ω̃

) 1
2

. (3.34)

142



3.2. A posteriori estimator with upper and lower bounds

Now, we substitute (3.34) in (3.33) we get (3.32).
Now, assuming that β̃ is uniformly bounded from below and incorporating it in the con-
stants C. Using (3.28) and (3.32)

∥σh−(∇ush−pshI)∥2Ω ≤ C
(
∥∇u−∇us∥2Ω + ∥∇ũ−∇ũh∥2Ω̃ + ∥p− p′h∥2Ω′ + ∥p− p̃h∥2Ω̃ + ⟨p− p̃h⟩2Ω̃ |Ω̃|

)
.

(3.35)
Let us introduce a divergence free reconstruction sh of ũh, i.e. div sh = 0 on Ω̃ and
sh ∈ H1

0 (Ω̃) such that
∥∇sh −∇ũh∥Ω̃ ≤ C∥ div ũh∥Ω̃. (3.36)

We have

(∇u−∇us,∇ũ−∇sh)Ω̃ = (∇u−∇us − (p− ps)I,∇ũ−∇sh)Ω̃ = 0,

so that

∥∇u−∇ũ∥2
Ω̃
+ ∥∇ũ−∇sh∥2Ω̃ = ∥∇u−∇sh∥2Ω̃ ⩽

(
∥∇u−∇ũh∥Ω̃ + C∥ div ũh∥Ω̃

)2
. (3.37)

Hence, using (3.35), adding and subtracting ∇sh in ∥∇ũ−∇ũh∥2Ω̃, using(3.37) and (3.36)
we get

∥σh − (∇ush − pshI)∥2Ω ≤ C
(
∥∇u−∇ush∥2Ω + ∥ div ũh∥2Ω̃ + ∥p− psh∥2Ω′ + ⟨p− p̃h⟩2Ω̃ |Ω̃|

)
.

(3.38)
We also have ∥ div ũh∥Ω̃ = ∥ div ush∥Ω = ∥ div(u − ush)∥Ω ≤ ∥∇(u − ush)∥Ω . Hence, it
remains to deal with ⟨p− p̃h⟩2Ω̃|Ω̃|.
To this end, let us take a function vh ∈ H1

0 (Ω)
2 such that vh|Ω̃ ∈ Ṽ

h
and

vh = S(y)n on γ. (3.39)

The coupling condition (1.38) entails∫
Ω
(∇(u− ush)− (p− psh)I) · ∇vh = 0

which can be rewritten as∫
Ω′

⟨p− p′h⟩Ω′ divvh +

∫
Ω̃
⟨p− p̃h⟩Ω̃ divvh =

∫
Ω
(∇u−∇ush) · ∇vh

−
∫
Ω′

(
p− p′h −

〈
p− p′h

〉
Ω′

)
divvh −

∫
Ω̃

(
p− psh − ⟨p− p̃h⟩Ω̃

)
divvh.

Observe that
−
∫
Ω′

divvh =

∫
Ω̃
divvh =

∫
γ
S(y) = uavR

thus,

uavR
(
⟨p− p̃h⟩Ω̃ −

〈
p− p′h

〉
Ω′

)
⩽ C(∥∇u−∇ush∥Ω + ∥p− psh∥Ω)∥∇vh∥Ω.

Since |Ω̃|⟨p− p̃h⟩Ω̃ + |Ω′|⟨p− p′h⟩Ω′ = 0 we have

⟨p− p̃h⟩Ω̃ − ⟨p− p′h⟩Ω′ =
|Ω|
|Ω′|

⟨p− p̃h⟩Ω̃.
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Hence

⟨p− p̃h⟩Ω̃ ⩽ C
|Ω′|
|Ω|

(∥∇u−∇ush∥Ω + ∥p− psh∥Ω)
∥∇vh∥Ω
uavR

.

Now, we want to minimize ∥∇vh∥Ω under the constraint (3.39). The minimum can be
identified with the solution to Poisson equation on Ω′ and the discrete approximation to
Poisson equation on Ω̃. Using the Lemma 2.14 in Chapter 2 about the traces in H1/2 and
a FE interpolation on Ω̃ gives

∥∇vh∥Ω ⩽ C∥vh∥1/2,γ ⩽ Cuav

Hence

⟨p− p̃h⟩2Ω̃|Ω̃| ⩽ C
|Ω̃|
R2

(∥∇u−∇ush∥2Ω + ∥p− psh∥2Ω)

Assuming that |Ω̃| ⩽ CR2 and substituting this into (3.38) gives the desired lower estia-
mate.

Remark 3.8. The assumption |Ω̃| ⩽ CR2 in the previous proof is reasonable since the last
aim from coupling the domain into 0D/2D coupled model is to put the interfaces as much as
possible near the corners of the domain where we have 2D model is more dominance. After
fixing the interfaces ,as much as possible near the corners, we can achieve the assumption
|Ω̃| ⩽ CR2. If we want to be far from the corners such that the assumption |Ω̃| ⩽ CR2 is
not satisfied, then we need to add that the constant C in Theorem 3.7 depends on the mesh
regularity and on the factor |Ω̃|

R2 .

■

3.2.3. Numerical Results

We have a 0D/2D model for the Stokes model and in the following we will use Appendiix
B in order to approximate β since it is unknown for us. We will make a comparison
between the coupled 0D/2D Stokes model and the non-coupled 2D Stokes model in order
to see that our simplified model is good. We will also observe that our β is around 0.123
which is very small and it gives a big index of efficiency for pressure. We also observe that
the index of efficiency becomes smaller as β becomes near 1 and for this reason we will
make a new study and change the L2−norm of pressure to H−1−norm and make a new
study of a posteriori error in order to get a good index of efficiency. Let us define the
estimator of velocity in (3.20) by

ηU :=

(
||∇ush − pshI − σh||2Ω +

||∇ · ush||2Ω
β2

) 1
2

and the estimator of pressure in (3.21) by

ηP :=
1

β

(
||∇ush − pshI − σh||Ω +

||∇ · ush||Ω
β

)
. (3.40)

These estimators ηU and ηP depend on the inf-sup constant β and we want to take different
values of β ∈ [0, 1] in order to prove that the index of efficiency becomes near to 1 when
β becomes near 1 which is not our case since we have a long channel and we know that
β ≈ 0.123. Let us define the index of efficiency for the velocity IU := ηU

∥∇u−∇ush∥Ω
, the index

of efficiency for pressure IP := ηP
∥p−psh∥Ω

and the total efficiency I := ηU+ηP
∥∇u−∇ush∥Ω+∥p−psh∥Ω

.
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Comparison between the coupled 0D/2D Stokes and the non-coupled 2D Stokes

Now, we want to make the comparison between the coupled 0D/2D model and the 2D
non-coupled model of Stokes on the portion domain Ω := Ω′ ∪ γ ∪ Ω̃ (i.e. see Figure 1.4).
First, we will approximate β using the strategy in Appendix B. in order to find that
β ≈ 0.123 for our domain Ω. Then, We will make a uniform refinement and compare the
error and the estimator of the coupled 0D/2D model and non-coupled model of Stokes
in order to validate that the problem of large index of pressure comes from the fact that
the domain has a long channel (where β is small) and does not come from our proposed
simplified 0D/2D model.
Now, by making the uniform refinement, the non-coupled Stokes model gives the following
results.

Mesh Size ∥∇(u− ush)∥Ω ηU ∥p− psh∥Ω ηP IU IP I

0.125139 0.0931641 0.541811 0.0151024 0.600682 5.81566 39.7739 10.5526
0.0648431 0.065334 0.396398 0.0109697 0.436303 6.06725 39.7737 10.913
0.0345792 0.0380296 0.2728 0.0056509 0.303376 7.17337 53.6863 13.1907

and the coupled 0D/2D Stokes model with xγ = 4.5 gives the following results.

Mesh Size ∥∇(u− ush)∥Ω ηU ∥p− psh∥Ω ηP IU IP I

0.120389 0.0911146 0.568324 0.0160873 0.627702 6.23747 39.0185 11.1568
0.0635345 0.0660111 0.407955 0.0121931 0.448857 6.18009 36.8126 10.9561
0.0320899 0.0416264 0.261487 0.00529808 0.290947 6.28176 54.9155 11.7728

If we compare the above results in the tables, we see that the coupled 0D/2D Stokes model
and the non coupled Stokes model have approximately the same results and this suggests
that the index of efficiency of the pressure comes from the geometry of the domain since
the estimator of pressure is multiplied by the big factor 1

β in (3.40). Now, let us try to
see what happen if β becomes near 1. We expect that the index of efficiency must become
better.

Different values of β for coupled 0D/2D Stokes

Now let us make a quasi-uniform refinement, fix the interface position at xγ = 4 and the
mesh size h ≈ 0.08 in order to see the variation of the total index I with respect to different
values of β where β ∈ [0, 1] and the data are showed in the following table. We observe
from the table that the total index of efficiency I becomes very closed to 1 when β becomes
near 1 as seen in the table below.
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3. A posteriori estimator for the coupled 0D/2D Stokes equation

β ∥∇(u− ush)∥Ω ηU ∥p− psh∥Ω ηP I

0.1 0.074236 0.543022 0.096732 5.90379 37.7077
0.2 0.074236 0.274892 0.096732 1.60002 10.9665
0.3 0.074236 0.186957 0.096732 0.766265 5.57545
0.4 0.074236 0.144009 0.096732 0.462043 3.54483
0.5 0.074236 0.118994 0.096732 0.315559 2.54172
0.6 0.074236 0.102886 0.096732 0.232924 1.96417
0.7 0.074236 0.0918186 0.096732 0.181257 1.59723
0.8 0.074236 0.0838571 0.096732 0.146529 1.34754
0.9 0.074236 0.0779302 0.096732 0.121903 1.16884
1 0.074236 0.0733976 0.096732 0.103705 1.03588

From the above table we can see that the index of efficiency becomes better when β ∈
[0.6, 1]. Now, let us consider the following two cases in order to see that as the interface
position becomes near the corner as the error and the estimator becomes bigger.
Case 1: β = 0.7
First of all, we fix the mesh size and we change the position of the interface to obtain
the graphs of the error ∥∇u−∇ush∥Ω and estimator ηU in (3.20) with respect to different
positions of interface in Figure 3.12 and the graphs of the error ∥p − psh∥Ω and estimator
ηP in (3.21) with respect to different positions of interface in Figure 3.13. We take the
mesh sizes h ≈ 0.06, h ≈ 0.03 by making a quasi-uniform mesh refinement. In the proofs
we suppose that the position xγ of the interface must be located in the interval xγ ∈
[0.1, L1 − R] and here L1 − R = 4.6 (see Figure 1.4) but in order to see what happens
after the interface position xγ = L1 − R, we take xγ ∈ [0, L1 − 0.02]. We conclude from
Figure 3.12 and Figure 3.13 that as the interface position becomes near the corner as the
estimator and error of the velocity and pressure become bigger.
Case 2: β = 1
Now, let us consider β = 1 and fix a mesh size, then we change the position of the interface
to obtain the graphs of the error ∥∇u − ∇ush∥Ω and estimator ηU in (3.20) with respect
to different positions of interface in Figure 3.14 and the graphs of the error ∥p− psh∥Ω and
estimator ηP in (3.21) with respect to different positions of interface in Figure 3.15. We
take the mesh sizes h ≈ 0.06, h ≈ 0.03 by making a quasi-uniform mesh refinement. We
conclude from Figure 3.14 and Figure 3.15 that as the interface position becomes near the
corner as the estimator and error of the velocity and pressure become bigger.
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3.2. A posteriori estimator with upper and lower bounds

(a) h ≈ 0.06 (b) h ≈ 0.03

Figure 3.12.: Error and Estimator ηU of the velocity w.r.t. different positions of the inter-
face for different mesh sizes h and for β = 0.7

(a) h ≈ 0.06 (b) h ≈ 0.03

Figure 3.13.: Error and Estimator ηP of the pressure w.r.t. different positions of the inter-
face for different mesh sizes h and for β = 0.7
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3. A posteriori estimator for the coupled 0D/2D Stokes equation

(a) h ≈ 0.06 (b) h ≈ 0.03

Figure 3.14.: Error and Estimator ηU of the velocity w.r.t. different positions of the inter-
face for different mesh sizes h and for β = 1

(a) h ≈ 0.06 (b) h ≈ 0.03

Figure 3.15.: Error and Estimator ηP of the pressure w.r.t. different positions of the inter-
face for different mesh sizes h and for β = 1
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3.3. Conclusion and perspectives

Now, let us fix the interface at xγ = 4 and β = 0.7, then we want to make a successive
uniform refinement and compare the errors and the estimators of the velocity and pressure
in order to see the convergence of the error and the estimator and calculate the indices as
it is shown in the following table. We conclude from the table that we have a convergence
for the error and estimator and the estimator is good as the indices are near one but we
do not have an optimal convergence since we have singularity in the corners of the domain
and to achieve the optimal convergence we must make mesh adaptation as we did in the
Poisson.

Mesh Size ∥∇(u− ush)∥Ω ηU ∥p− psh∥Ω ηP IU IP I

0.0821206 0.074236 0.0999717 0.096732 0.20101 1.34667 2.07801 1.76046
0.0386236 0.0459076 0.0696881 0.0606603 0.140202 1.51801 2.31127 1.96955
0.0194314 0.0303558 0.0486253 0.0379088 0.0977843 1.60185 2.57946 2.14474
0.0115897 0.00618741 0.0333611 0.00559242 0.0670828 5.39176 11.9953 8.52677

We suppose that the last Indices are big since we do not have exact solution and we have
a reference solution.

New estimator with good index of efficiency

In Appendix C we make a new study for the non-coupled 2D Stokes model in order to
obtain a posteriori estimates which does not depend on β. Instead of β we have a Cdiv
constant (see Theorem C.5 in Appendix C) and we estimate numerically this constant,
that is Cdiv ≈ 1. In this case, repeating the same numerical tests, we find that the total
index is equal to 1.03588, that is the same index for the previous study with β = 1.

3.3. Conclusion and perspectives

In this thesis we developed a numerical methodology in view to propose efficient and ac-
curate simulations for the gaz dynamic in the cathod bipolar plate present in a PEMFC
(see Figure 1.2 page 18). In the multi-physical PEMFC model [12], we focused only on
the fluidic domain model. Moreover, the domain of the bipolar plate was considered as a
2D domain, as showed in Figure 2.36 page 105. In this domain, it was reasonable, as first
attempt of a quite realistic study, to consider the Stokes equation, because we supposed
that [12] the gaz is ideal, the gaz flow is incompressible (even more: the density constant)
and laminar and that the fluid is only in the gaz phase. Another important assumption
was that the channels of the plate are considered without curved bend, in the sens that
the corners of the bend are modelised by a polygonal boundary (cf. Figure 2.36 page 105).

The starting idea of the presented work was to make a simplification in the resolution
of the equation of interest in the bipolar plate, relying on the specific geometry of the
channels of the plate. This simplification had to make a faster resolution with respect to
a classical numerical computation on the whole domain, meanwhile we had to be able to
control the error to calibrate a suitable accuracy. So that, we splitted the domain of the
plate in a part where an analytical computation was possible and in a part where a nu-
merical resolution was needed. Throughout the thesis, the analytical resolution was called
“0D model” and the numerical one was called “2D model”, which was the Finite Element
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3. A posteriori estimator for the coupled 0D/2D Stokes equation

method. The goal was to make a posteriori estimates for the energetic norm of the dis-
cretization error of the coupled model to be able to drive the choice of the interface position
between the 0D and the 2D model and the choice of an adapted mesh, for a given tolerance.

Even if the purpose was to deal with the Stokes equation, we started with the Poisson
equation to fix some main ideas. In this first part, we choose a simple coupling condition
(continuity of the solution) at the interface, and we developed a guaranteed error estimator
in order to choose the interface postion and an adapted mesh in fonction of a suitable tol-
erance. For this error estimator we proved the reliability and the efficiency. The originality
of this work was a new contribution of the estimator, called ηγ , built in order to guide
the choice of the interface position (for a given tolerance for accuracy). The mathematical
hurdle was to prove the efficiency. Numerical tests confirmed theoretical results and an
adaptive algorithm was proposed to restore an optimal rate of convergence. This work is
actually submitted to a journal.

In a second part, we dealt with the Stokes equation. We proposed a similar approach as
the one for the Poisson equation and we obtained a guaranteed error estimator with proved
reliability and efficiency. In this case, we propose a sort of natural variational coupled con-
dition, which represent a continuity condition of the average of the stress at interface This
new coupled model is essential to verify the efficiency. Here the problem was that in the
estimator (see Theorem 3.7 page 138) there is the inf-sup constant β, indeed there is 1

β .
This β depends on the domain geometry and it is in general unknown, but it is known
that it could be very small if the domain is stretched, and this is the case of the channel
of the bipolar plate. The problem does not come from the 0D/2D approach, but is more
general, the estimator is not very good for our domain since we have the factor 1

β that
gives an over estimation once β is small and far from 1. An idea to solve this problem is to
deal with the dual norm for the error for pressure instead of the L2-norm. We try this way
to estimate for the case of Stokes equation for the non-coupled problem, and this led to a
posteriori estimates without β. We remark that another constant is in the estimate, but
it can be approximated numerically, so we get the order of magnitude of the theoretical
constant, that is for the problem of interest equal to 1. Finally that the upper bound in
this case is guaranteed with constant equal to 1 and the estimator is completely known.

This work has many perspectives. First of all, we could extend the study of Stokes
equation to the incompressible Navier-Stokes equation, we could use the Newton method
to make the linearalization of the non linear term, and we can try also the compressible
Navier-Stokes equation assuming that the density ρ is linear. Secondly, in order to deal
with real channels, we can extend the study for real bends that is take into account a
curved boundary for corners. In this sense, we can develop the theoretical study [56] in
Appendix D in order to deal with the curved boundary by making a boundary correction.
The numerical part in Appendix D.3 gives a better a postriori error estimation for our
curved domain as shown in the Figure D.2. Thirdly, we could calibrate the mathematical
model in the whole and real domain to the realistic physical model for the PEMFC as
in [51].
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A. Appendix A: Adaptive algorithms in
FreeFEM

Let us consider a mesh adaptation strategy on the example of Poisson problem in the
Numerical Results section 1.4.1

−∆u = f inΩ

u = ue on ∂Ω

with the exact solution ue written, in polar coordinates, as

ue(r, θ) = r
2
3 sin(2θ/3)

discretized with Pk finite elements. We shall call uh the FE solution on a mesh Th and
suppose that we have an a posteriori error estimator ηK , K ∈ Th s.t.

|u− uh|21,Ω ≈
∑
K∈Th

η2K (A.1)

where η2K := ∥σh + ∇uh∥2K and σh is the reconstructed approximated flux which can be
defined as Vohralik did in [39]. Our goal is to compare several adaptive strategies.

A.1. Adaptive algorithm via Dörfler marking

We fix θ ∈ (0, 1). On a given mesh, we mark certain triangles to be refined, i.e. introduce
the subset T M

h by ∑
K∈T M

h

η2K ⩾ θ

∑
K∈Th

η2K


keeping in T M

h the triangles with highest estimators. In the original Dörfler’s algorithm,
one would split the marked triangles into smaller triangles and leave the unmarked triangles
essentially unchanged. Under FreeFEM, we cannot do exactly that. Rather, we should
introduce the desired sizes of the new mesh and then “adaptmesh” will try to construct the
mesh with approximately these cell sized. In this spirit, we set hnew as the P0 FE function
on the current mesh by

hnew|K =

{
1
RhK , forK ∈ T M

h

hK , otherwise

where R > 1 is the fixed parameter (the refining factor). Then we give this hnew to
FreeFEM function adaptmesh with IsMetric=1.

The command for the mesh adaptation in FreeFEM is
Th = adaptmesh(Th, NewMeshh, IsMetric=1, keepbackvertices=0, nbvx=1000000);
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A. Appendix A: Adaptive algorithms in FreeFEM

Here, NewMeshh is the P0 FE function containing hnew. According to the FreeFEM docu-
mention, the section on option IsMetric=1, “if only one function (i.e. NewMeshh) is given,
then it represents the isotropic mesh size at every point." We choose keepbackvertices=0,
because the alternative keepbackvertices=1 works slightly worse.

A.2. Adaptive algorithm “hopt”

To introduce an alternative adaptive algorithm, let us characterize any imaginable mesh
Th by the meshsize distrubution h(x) such that h(x) at a point x inside a triangle K ∈ Th
is approximately equal to hK . Moreover, suppose that the the FEM error on such a mesh
is

|u− uh|21,Ω ≈
∫
Ω
h2δ(x)c2(x) dx (A.2)

with some a priori unknown c(x) and the order parameter δ chosen once for all. This is
reasonable for example for P1 FEM with δ = 1, c(x) ∼ |D2u|(x), i.e. the norm of the
second order derivatives at x, provided u is sufficiently smooth. Note also that the number
of DOFs is approximately given in 2D case by

NDOF ∼
∫
Ω

dx

h2(x)

since a triangle of size h(x) occupies the area of order h2(x). Let us imagine first that we
know c(x) and we want to construct an optimal mesh (with the minimal possible NDOF) to
achieve a given error tolerance, i.e. |u− uh|1,Ω = tol. This is a constrained minimization
problem for the mesh size distribution h(x):

min
h ∈ L2(Ω)∫

Ω h
2δ(x)c2(x) dx = tol2

∫
Ω

dx

h2(x)
.

The minimum is achieved on a stationary point of the Lagrangian

L(h, λ) =

∫
Ω

dx

h2(x)
+ λ

(∫
Ω
h2δ(x)c2(x) dx− tol2

)
with h ∈ L2(Ω) and λ ∈ R. Taking the variations yields

−
∫
Ω

2v(x) dx

h3(x)
+ λ

∫
Ω
2δh2δ−1(x)v(x)c2(x) dx = 0, ∀v = v(x)

so that the optimal mesh size distribution is

hopt(x) =
tol1/δ(∫

Ω c
2/(δ+1)(x) dx

)1/(2δ) 1

(c(x))1/(δ+1)

Of course, c(x) is not known in practice. But, on a given mesh Th, we have a posteriori
error estimates of the form (A.1). Let us reinterpret this in the form (A.2),∑

K∈Th

∫
K
h2δ(x)c2(x) dx ∼

∑
K∈Th

η2K .
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A.3. Numerical comparisons

This suggests to approximate c(x) on any triangle K ∈ Th by

c(x) ≈ ηK

hδK
√
|K|

forx ∈ K.

This gives

hopt(x) =
tol1/δ(∑

K∈Th η
2/(δ+1)
K h

−2δ/(δ+1)
K |K|δ/(δ+1)

)1/(2δ)

h
δ/(δ+1)
K |K|1/(2δ+2)

η
1/(δ+1)
K

forx ∈ K.

(A.3)
Now, rather then trying to achieve the target tolerance, let us adapt the mesh by aiming to
diminish the current error estimate Rtol times (i.e. set tol = Est /Rtol) with given Rtol > 1
on each iteration of the algorithm. So, the “hopt” algorithm is

1. Given the mesh Th, set current desired tolerance to

tol =
1

Rtol

∑
K∈Th

η2K

1/2

2. Set hnew as the P0 FE function on the current mesh by hnew = hopt using (A.3).

3. Give this hnew to FreeFEM function adaptmesh with IsMetric=1. Redo the same
on the new mesh.

A.3. Numerical comparisons

We do the usual L-shape test using P2 FEM and the equilibrated flux a posteriori estimators
with RT2 fluxes. We have compared the following algorithms:

• The original implementation, i.e. using adaptmesh with IsMetric=0 (15 iterations),

• “Dörfler” algorithm with θ = 0.8, R = 4 (18 iterations),

• “hopt” algorithm with δ = 1, Rtol = 4 (8 iterations),

• “hopt” algorithm with δ = 1.5, Rtol = 5 (10 iterations),

• “hopt” algorithm with δ = 2, Rtol = 5 (13 iterations).

We have tried to achieve the error below 10−4 with all the strategies, did not always succeed
(either the mesh became too heavy, or encountered some mesh generation problems, or
other). This is why the number of iteration differs from one variant to another. Any way,
when we look at Errors vs. DOFs, all the methods look roughly similar in Figure (A.1).
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Figure A.1.: Errors with respect to degrees of freedom DOFs

The same if we look at the estimators in Figure (A.2).

Figure A.2.: Estimators with respect to degrees of freedom DOFs

Rather surprisingly, we can conclude that all the approaches give the meshes of more or
less the same quality. Hence, to distinguish between the variants, we can now look at the
evolution of the error on iterations in Figure (A.3).
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A.3. Numerical comparisons

Figure A.3.: Errors with respect to number of iterations

And the winner is: “hopt” algorithm with δ = 1, Rtol = 4.
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B. Appendix B: Approximation of the
inf-sup constant using
Crouzeix-Raviart FE for the velocity

Let Th be a sequence of regular meshes indexed by h→ 0, on a convex polygon Ω. Let

β = inf
p∈Q

sup
v∈V

(p,div v)Ω
∥p∥0,Ω|v|1,Ω

and
βh = inf

ph∈Qh

sup
vh∈Vh

(ph,div vh)Ω
∥ph∥0,Ω|vh|1,Ω

where V = H1
0 (Ω)

d, Q = L2
0(Ω), Vh is the P1 non-conforming Crouzeix-Raviart FE space

on Th (Vh ̸⊂ V ), and Qh ⊂ Q the P0 discontinuous FE space on Th.

Lemma B.1. We have βh ⩾ β on every Th and

lim
h→0

βh = β.

Proof. To prove βh ⩾ β, introduce the standard interpolation to Crouzeix-Raviart FE by

∀v ∈ V let Ih(v) = vh ∈ Vh be such that

∫
E
vh =

∫
E
v

on all the facets of the mesh E ∈ Eh. This implies

∀K ∈ Th :

∫
K
div Ih(v) =

∫
K
div v

and |Ih(v)|1,Ω ⩽ |v|1,Ω. Thus, for any ph ∈ Qh and any v ∈ V

(ph, div Ih(v))Ω
∥ph∥0,Ω|Ih(v)|1,Ω

=
(ph, div v)Ω

∥ph∥0,Ω|Ih(v)|1,Ω
⩾

(ph,div v)Ω
∥ph∥0,Ω|v|1,Ω

i.e. for any ph ∈ Qh

sup
vh∈Vh

(ph,div vh)Ω
∥ph∥0,Ω|vh|1,Ω

⩾ sup
v∈V

(ph,div Ih(v))Ω
∥ph∥0,Ω|Ih(v)|1,Ω

⩾ sup
v∈V

(ph, div v)Ω
∥ph∥0,Ω|v|1,Ω

⩾ β.

Taking the inf over ph ∈ Qh gives βh ⩾ β.
To go further, let us first assume that inf in the definition of β is achieved on some

p̄ ∈ H1(Ω), i.e.

∃p̄ ∈ H1(Ω) ∩Qwith ∥p̄∥0,Ω = 1 and β = sup
v∈V

(p̄,div v)Ω
|v|1,Ω
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B. Appendix B: Approximation of the inf-sup constant using Crouzeix-Raviart FE for the velocity

Actually the sup above is also achieved on v̄ ∈ V such that

(∇v̄,∇w)Ω = (p̄,divw)Ω ∀w ∈ V

i.e. v̄ ∈ H2(Ω), |v̄|2,Ω ⩽ C|p̄|1,Ω

−∆v̄ = ∇p̄ on Ω, v̄ = 0 on ∂Ω.

Take p̄h ∈ Qh as the orthogonal projection of p̄ on Qh then

∥p̄h − p̄∥ ⩽ Ch|p̄|1,Ω

Note that the supremum in

sup
vh∈Vh

(p̄h,div vh)Ω
|vh|1,Ω

is achieved on v̄h ∈ Vh such that

(∇v̄h,∇wh)Ω = (p̄h,divwh)Ω ∀wh ∈ Vh.

Taking any wh ∈ Vh, we get by IPP element by element

(∇v̄,∇wh)Ω = (p̄, divwh)Ω +
∑
E∈Eh

∫
E
(∇v̄ − p̄I)n · [wh].

Hence

(∇(Ih(v̄)−v̄h),∇wh)Ω = (∇(Ih(v̄)−v̄),∇wh)Ω+(p̄−p̄h,divwh)Ω+
∑
E∈Eh

∫
E
(∇v̄−p̄I)n·[wh].

Taking wh = Ih(v̄)− v̄h and using
∫
E [wh]=0 on every E ∈ Eh, and |v̄|2,Ω ⩽ C|p̄|1,Ω, we get

|v̄ − v̄h|1,Ω ⩽ C(|v̄ − Ih(v̄)|1,Ω + ∥p̄− p̄h∥0,Ω + h|v̄|2,Ω + h|p̄|1,Ω) ⩽ C1h|p̄|1,Ω.

All this leads to

sup
vh∈Vh

(p̄h,div vh)Ω
∥p̄h∥0,Ω|vh|1,Ω

=
|v̄h|1,Ω
∥p̄h∥0,Ω

⩽
|v̄|1,Ω + C1h|p̄|1,Ω

1− Ch|p̄|1,Ω
=
β + C1h|p̄|1,Ω
1− Ch|p̄|1,Ω

.

Thus
β ⩽ βh ⩽

β + C1h|p̄|1,Ω
1− Ch|p̄|1,Ω

so that we get limh→0 βh = β as announced, and morever the error |βh − β| is of order h.
In the general case, i.e. without supposing that the inf in the definition of β is

achieved on some p̄ ∈ H1(Ω), we still have the same convergence result (without order of
convergence). Indeed, by the density of H1 in L2, we have ∀ε > 0

∃p̄ε ∈ H1(Ω) ∩Qwith ∥p̄ε∥0,Ω = 1 and sup
v∈V

(p̄ε,div v)Ω
|v|1,Ω

⩽ β + ε.

By the same arguments as above we get then

β ⩽ βh ⩽
β + ε+ C1h|p̄ε|1,Ω

1− Ch|p̄ε|1,Ω
,

so, by takin ε sufficiently small, and then h sufficiently small, we obtain βh arbitrarily close
to β. ■

158



Numerical experiments To calculate βh numerically, we note that β =
√
λmin where λmin

is the smallest (non-zero) eigen value of the Shur complement

S = BhA
−1
h BT

h

where Bh is the discretization of the operator div and Ah is the discretization of −∆ with
0 boundary conditions. Note that the eigen problem (with Mh the mass matrix)

Sp = λMhp

can be rewritten as the generalized eigen problem(
Ah −Bh
Bh 0

)(
u
p

)
= λ

(
0 0
0 Mh

)(
u
p

)
We programmed this problem in FreeFem, noting that the matrix on the LHS is not sym-
metric, and the matrix on the RHS is not positive definite. Nevertheless, the FreeFEM
function EigenValue with option sym=true seems to work. It gives the following approxi-
mations to β on rectangles (0, L)× (0, 1):

L β
1 0.49458
2 0.389852
4 0.218723
8 0.112451
16 0.0566144
32 0.0284483

We observe indeed β → 0 as L→ ∞ like β ∼ 1
L . This is consistent with observations (both

theoretical and numerical) from [27].
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C. Appendix C: On LBB dependence of
the a posteriori error estimates à la
Vohralik

Consider the problem posed in a domain Ω ⊂ Rd with d = 2 or 3:

−∆u+∇p = f in Ω

div u = 0 in Ω

u = 0 on ∂Ω

We suppose f ∈ L2(Ω) and Ω a bounded polygonal/polyhedral domain. The pressure p is
defined up to an additive constant. To make the solution unique, we impose

∫
Ω p = 0.

Let Th be a regular mesh on Ω consisting of triangles/tetrahedral. Let Vh be the usual
Pk finite element space on this mesh (the space of continuous functions on Ω given by
polynomials of degree ⩽ k on every K ∈ Th). The functions in Vh are supposed to vanish
on the boundary of Ω. Let moreover Mh be the usual Pk−1 finite element space on the same
mesh. The discrete problem is to find uh ∈ Vh and ph ∈ Mh such that for any vh ∈ Vh,
qh ∈Mh ∫

Ω
∇uh · ∇vh −

∫
Ω
ph div vh =

∫
Ω
fvh, (C.1)∫

Ω
qh div uh = 0.

Several a posteriori error estimates are available for the problem above [33,73,80]. We are
interested in the estimates based on equilibrated fluxes as in the course by Vohralík [79],
that have the form:

∥∇u−∇uh∥Ω ⩽

(
∥σh +∇uh − phI∥2Ω +

1

β2
∥ div uh∥2Ω

) 1
2

+ h.o.t., (C.2)

∥p− ph∥0,Ω ⩽
1

β
∥σh +∇uh − phI∥Ω +

1

β2
∥ div uh∥Ω + h.o.t., (C.3)

where σh is the equilibrated flux reconstruction (a computable approximation to −∇u+pI),
found in practice by solving local problems in Raviart-Thomas spaces on mesh element
patches around each node, and h.o.t. stands for higher order terms which are negligible, at
least when f and the solution are regular enough. The attractive feature of this estimator
is that it provides a guaranteed upper bound of the error in the natural norms and this
estimate contains explicit constants, namely the inf-sup (LBB) constant

β = β(Ω) = inf
q∈L2

0(Ω)
sup

v∈H1
0 (Ω)d

(q,div v)

∥q∥Ω∥∇v∥Ω
.
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The downside is that β is difficult to evaluate in practice. Moreover, β(Ω) can be very
small if Ω is very elongated (such as long channels), cf. [27, 31]. In this appendix, we
propose an alternative estimator, indeed this estimate:

∥∇u−∇uh∥Ω ⩽
(
∥σh +∇uh − phI∥2Ω + C2

div∥ div uh∥2Ω
) 1

2 + h.o.t. (C.4)
∥∇(p− ph)∥−1,Ω ⩽ ∥σh +∇uh − phI∥Ω + Cdiv∥ div uh∥Ω + h.o.t. (C.5)

which is LBB-free, i.e. does not involve the LBB constant β(Ω), but involves instead
a constant Cdiv, which will be proven to depend only on the mesh regularity, and thus
independent of Ω. We do not attempt here to evaluate Cdiv theoretically. We provide
instead some numerical tests which suggest that Cdiv is close to 1 (the constant Cdiv can
be defined in fact through by a maximazation problem over patches of mesh elements
around a node, and then numerically approximated by discretizing these problems).

Apart from the dependence on the LBB constant, the main differences between the
original estimates (C.2)–(C.3) and the new ones (C.4)–(C.5) is in the treatment of the
error in pressure. It is no longer measured in the traditional L2(Ω) norm. Following [82],
we adopt here the H−1(Ω) norm of the pressure gradient, that is:

∥∇p∥−1,Ω = sup
v∈H1

0 (Ω)

(∇p, v)
|v|1,Ω

. (C.6)

Note that, if a good approximation of β = β(Ω) is available, one can return to the original
error measure via the bound ∥p−ph∥Ω ⩽ 1

β∥∇(p−ph)∥−1,Ω. The new estimate (C.5) gives
then a sharper upper bound than the old one (C.3) if β << 1. Moreover, the H−1(Ω) norm
of the pressure gradient can be used for certain other quantities of interest. For example,
if one is interested in the pressure on a subdomain ω ⊂ Ω and ω is of simple form so that
β(ω) can be assumed known, then one calculates easily ∥p− ph∥ω ⩽ 1

β(ω)∥∇(p− ph)∥−1,Ω.
A previous work [52] is important but it treats only with Crouzeix-Raviart spaces. [65]
introduces the idea of employing LBB constants on subdomains, rather than on the whole
Ω.
The main goal of the appendix is to get red of the inf-sup constant β. This appendix is
organized as follows: firstly, we give an informal motivation and derivation of our estimator
which does not contain the inf-sup constant β. Then, we prove the reliability and efficiency
of the estimates. Finally, we approximate the constant Cdiv in (C.4)–(C.5) numerically.
For completeness, we describe in Appendix our approach to this evaluation, following
mostly [27].

C.1. Informal derivation of the estimator

First of all, we note the following bound: for any σ ∈ Hdiv(Ω)
d such that div σ = f on Ω,

and any s ∈ H1
0 (Ω)

d with div s = 0, we have

∥∇u−∇uh∥2Ω ⩽ ∥σ +∇uh − phI∥2Ω + ∥∇uh −∇s∥2Ω (C.7)

Indeed,
∥∇u−∇uh∥2Ω = ∥∇u−∇u0h∥2Ω + ∥∇u0h−∇uh∥2Ω (C.8)
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where u0h is the H1
0 -orthogonal projection of uh to the subspace of H1

0 (Ω)
d of divergence-

free functions, i.e. u0h ∈ Z = {v ∈ H1
0 (Ω)

d : div v = 0}. Setting e = u − u0h we observe
e ∈ Z and (∇(uh − u0h),∇e)Ω = 0. Hence,

∥∇e∥2Ω = (∇(u−u0h),∇e)Ω = (∇u−pI,∇e)Ω−(∇u0h−phI,∇e)Ω = (f, e)Ω−(∇u0h−phI,∇e)Ω
= (div σ, e)Ω − (∇uh − phI,∇e)Ω = −(σ +∇uh − phI,∇e)Ω

so that ∥∇(u−u0h)∥Ω ⩽ ∥σ+∇uh−phI∥Ω. Moreover, ∥∇uh−∇u0h∥Ω ⩽ ∥∇uh−∇s∥2Ω since
u0h is the best divergence-free approximation to uh. This establishes (C.7) as a consequence
to (C.8).
The idea of what follows is to give a recipe to construct σ with div σ ≈ f in a way easily
implementable on a computer, and also to construct s ∈ Z, on the theoretical level only
(the divergence-free reconstruction s here is not meant to be computed in practice, it is
only an auxiliary theoretical notion that helps to bound one of the contributions to the
error through a constant Cdiv, which will be evaluated numerically once for all). Another
thing to keep in mind is that this σ should be kept as close as possible to −∇uh + phI,
and s should be kept as close as possible to uh, in order to minimize the over-prediction
of the error in (1.48).
We start by choosing a good candidate for the flux σ. An ideal flux (of no practival
use) would be σideal = −∇u + pI. Now, let us introduce the localized version of σideal :
σa = (−∇u + pI)ψa where ψa is the P1 finite element basis function (the hat function)
associated to any mesh node a. This σa satisfies on the patch ωa = supp(ψa)

σa = (−∇u+ pI)ψa onωa

div σa = f · ψa + (−∇u+ pI) · ∇ψa onωa

σa · n = 0on ∂ωa \ ∂Ω

Note that σideal =
∑

a σ
a on Ω since

∑
a ψ

a = 1 (we imply the summation over all the
mesh nodes in such expressions).
Let us discretize the problem for σa. Introduce the FE spaces

Σah = {σh ∈ Hdiv(ω
a), σh|K ∈ RTk(K) ∀K ∈ ωa, σh · n = 0on ∂ωa \ ∂Ω}

and

Qah = divΣah =

{
qh ∈ L2(ωa), qh|K ∈ Pk(K) ∀K ∈ ωa, and

∫
ωa

qh = 0 if a is an interior node
}

Here Pk(K) is the set of polynomials of degree ⩽ k on K, and RTp(K) is the set of Raviart-
Thomas (vector-valued) finite elements on a cell K. Note that Σah ⊂ Hdiv(ω

a), which is the
natural space for σa. Note also that the boundary conditions for σa are already encoded
in the definition of Σah. The constraint

∫
ωa qh = 0 is introduced in Qah in accordance with

σh · n = 0 on ∂ωa in the definition of Σah. This happens on the internal nodes only.
Now, an approximation to σa can be constructed as σah ∈ Σah such that

σah = arg min
τah ∈ Σa

h
div τah = PQa

h
(f · ψa + (−∇uh + phI)∇ψa)

∥τah − (−∇uh + phI)ψ
a∥ωa (C.9)
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The Euler-Lagrange equations for the solution to (C.9) are as follows: find σah ∈ Σah and
πah ∈ Qah such that for all τh ∈ Σah and χh ∈ Qah∫

ωa

σah : τh +

∫
ωa

πah · div τh =

∫
ωa

(−∇uh + phI)ψ
a : τh (C.10)

∫
ωa

χh · div σah =

∫
ωa

(fψa + (−∇uh + phI)∇ψa) · χh (C.11)

Existence of the solution to this problem is well-known, cf. [78, Theorem 6.64]. Finally,
the flux reconstruction is defined as

σh =
∑
a

σah (C.12)

Let us turn now to the divergence free velocity reconstruction s mimicking the above
construction of the flux σh. The ideal candidate for s would be sideal = u. Let us introduce
the localized version of sideal : sa = uψa. This sa satisfies on the patch ωa = supp(ψa)

div sa = u · ∇ψa onωa

sa = 0on ∂ωa

Note that sideal =
∑

a s
a on Ω. Let us “discretize" the problem for sa (we put “discretize"

in quotes since the “discrete" version sah of sa will be a solution to a PDE, used only in
theory but not constructed in practice). We thus introduce sah ∈ H1

0 (ω
a) such that

sah = arg min
tah ∈ H1

0 (ω
a)

div tah = uh · ∇ψa

∥∇(tah − uhψ
a)∥ωa (C.13)

The Euler-Lagrange equations for this problem read: find sah ∈ H1
0 (ω

a) and pah ∈ L2
0(ω

a)
such that ∫

ωa

∇sah · ∇t+
∫
ωa

pah div t =

∫
ωa

∇(uhψ
a) · ∇t, ∀t ∈ H1

0 (ω
a) (C.14)∫

ωa

q div sah =

∫
ωa

(uh · ∇ψa)q, ∀q ∈ L2
0(ω

a) (C.15)

This probelm is a weak formulation of Stokes equations on ωa. It is thus well-posed. The
velocity reconstruction sh is now defined by

sh =
∑
a

sah (C.16)

with sa given by (C.14)–(C.15). It is indeed divergence-free, since

div sh =
∑
a

div sah = uh · ∇

(∑
a

ψa

)
= 0 (C.17)
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C.2. LBB-free a posteriori error estimates

Lemma C.1. Let uh ∈ Vh and sah ∈ H1
0 (ω

a) be given by (C.14)–(C.15). Then

∥∇(sah − uhψ
a)∥ωa ⩽ C̃div∥

√
ψa div uh∥ωa (C.18)

with C̃div > 0 depending only on the mesh regularity and the polynomial degree k.

Proof. Introducing the new unknown ŝah = sah − uhψ
a, the problem (C.14)–(C.15) can be

rewritten as ∫
ωa

∇ŝah · ∇t+
∫
ωa

pah div t = 0, ∀t ∈ H1
0 (ω

a) (C.19)∫
ωa

q div ŝah = −
∫
ωa

qψa div uh ∀q ∈ L2
0(ω

a) (C.20)

It is thus clear that if div uh = 0 on ωa then ŝah = 0 by uniqueness of the solution to (C.19)–
(C.20), which is the weak formulation of the usual Stokes equations. Thus, it is sufficient
to consider the case div uh ̸= 0, and, by homogeneity ∥

√
ψa div uh∥ωa = 1, diam(ωa) = 1.

The statement now follows by maximizing

Φ(uh, ω
a) = ∥∇ŝah∥ωa

under these constraints. This maximum is indeed attained since it is taken over a bounded
set in a finite dimensional space and Φ is a continuous function of uh and ωa. ■

Remark C.2. We do not attempt here to give a theoretical bound for C̃div. However, our
numerical experiments suggest that it is close to 1.95 in the case k = 2, cf. Section C.2.1.
We conjecture Cdiv ⩽ 2.

Lemma C.3. Let uh ∈ Vh and sah ∈ H1
0 (ω

a) be given by (C.14)–(C.15). Then, for any
cell K ∈ Th, and taking the sums over all the nodes a, it holds

∥
∑
a

∇(sah − uhψ
a)∥2K ⩽ C2

int

∑
a

∥∇(sah − uhψ
a)∥2K (C.21)

with 0 < Cint <
√
d+ 1 depending only on the mesh regularity and the polynomial degree

k.

Proof. The bound (C.21) with Cint =
√
d+ 1 follows easily from the inequality between

the mean and the quadratic mean, taking into account that there are at most (d+1) nodes
that contribute into the sum on a given cell K. In fact, the optimal value of Cint is smaller
than

√
d+ 1. Otherwise, if it were equal to

√
d+ 1, there would exist a mesh, a cell K,

and uh such that corresponding ŝah are the same on K for all the vertices a of K. This is
impossible. ■

Lemma C.4 (Poincaré-Wirtinger inequality with the optimal constant from [13]). For
any K ∈ Th andies any u ∈ H1(K) such that

∫
K u = 0, there holds

∥u∥K ⩽
hK
π

∥∇u∥K (C.22)
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Theorem C.5. The error estimator ∥σh+∇uh∥Ω with σh defined by (C.10)-(C.11)-(C.12)
satisfies

∥∇u−∇uh∥Ω ⩽
(
∥σh +∇uh − phI∥2Ω + C2

div∥ div uh∥2Ω
) 1

2 +
1

π
oscTh(f) (C.23)

∥∇(p− ph)∥−1,Ω ⩽ ∥σh +∇uh − phI∥Ω + Cdiv∥ div uh∥Ω +
1

π
oscTh(f) (C.24)

with Cdiv = C̃divCint the combination of constants from constant from (C.18) and (C.21)

(oscTh(f))
2 =

∑
K∈Th

h2K∥f −Πkhf∥2K

where Πkh is the orthogonal projection on the space of (discontinues) piecewise polynomials
of degree ⩽ k on mesh Th.

Moreover, we have the local lower bounds on any K ∈ Th

∥σh +∇uh − phI∥K ⩽ C(∥∇u−∇uh∥ωK + ∥∇(p− ph)∥−1,ωK + õscωK (f)) (C.25)
∥ div uh∥K ⩽ C∥∇u−∇uh∥K (C.26)

and the global lower estimate

∥σh+∇uh−phI∥Ω+∥ div uh∥Ω ⩽ C(∥∇u−∇uh∥Ω+∥∇(p−ph)∥−1,Ω+õscTh(f)) (C.27)

In the last 3 inequalities C > 0 stand for constants depending only on the mesh regularity.
The oscillations õsc are defined as

(õscTh(f))
2 =

∑
a∈Vh

h2a∥fψa −Πk−1
h (fψa)∥2K

and similarly for õscωK with the sum over the vertices of K.

Remark C.6. If f is sufficiently smooth, then oscTh(f) is of order hk+2 and õscTh(f) is
of order hk+1. They can be thus neglected in comparison with other terms, which are of
order hk.

Proof. The upper estimate (C.23) is already almost proved, cf. (C.7) and Lemma C.1.
However, we do not have exactly div σh = f − ∇ph, but rather div σh = fh − ∇ph with
fh described in the statement above. To see this, we recall (C.11) which is valid for all
piecewise Pk polynomials qh if a is a boundary node. If a is interior node, then (C.11) is
valid only under the constrait

∫
ωa qh = 0. However, (C.11) is also satisfied with qh = ei,

i.e. the i-th vector of the canonical basis of Rd. Indeed,∫
ωa

ei·div σah = 0 =

∫
ωa

(f ·ψaei−∇uh : ∇(ψaei)+ph div(ψ
aei)) =

∫
ωa

(f ·ψaei+(−∇uh+phI)·∇(ψaei))

since σahn = 0 on ∂ωa and thanks to (C.1) with vh = ψaei. Thus, (C.11) is valid for any
piecewise Pk polynomial χh without constraints. We can also write it separately on any
mesh cell K ∈ Th since χh are discontinuous:∫

K
χh · div σah =

∫
K
χh · (fψa + (−∇uh + phI) · ∇ψa), ∀χh ∈ Pk(K)
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Summing this over all the vertices a gives, cf (1.53),∫
K
χh · div σh =

∫
K
χh · f, ∀χh ∈ Pk(K)

so that div σh = fh on K. We now modify the proof of (C.7): introducing ēK as the mean
of e = u− s on K

∥∇u−∇s∥2Ω = (∇u−∇s,∇e) = (f − fh, e) + (fh −∇ph, e)− (∇s,∇e)

= (f −fh, e)+ (div σh−∇ph, e)− (∇s,∇e) =
∑
K∈Th

(f −fh, e− ēK)K − (σh+phI+∇s,∇e)

⩽

∑
K∈Th

h2K∥f − fh∥2K

 1
2
∑
K∈Th

1

h2K
∥e− ēK∥2K

 1
2

+ ∥σh +∇s+ phI∥Ω∥∇e∥Ω

This proves (C.23) since ∥e− ēK∥K ⩽ hK
π ∥∇e∥K and

∥∇(s− uh)∥Ω ⩽ Cdiv∥ div uh∥Ω

with Cdiv = CintC̃div.To prove the last bound, we recall Lemma C.3:

∥∇(s− uh)∥2K = ∥
∑
a

∇(sah − uhψ
a)∥2K ⩽ C2

int

∑
a

∥∇(sah − uhψ
a)∥2K

sum this over all K ∈ Th, and use Lemma C.1

∥∇(s−uh)∥2Ω ⩽ C2
int

∑
a

∥∇(sah−uhψa)∥2ωa ⩽ C2
intC̃

2
div

∑
a

∫
ωa

ψa|div uh|2 = C2
intC̃

2
div∥ div uh∥2Ω

(C.28)
To prove the upper bound for the error in pressure (C.24), we take any v ∈ H1

0 (Ω) with
∥∇v∥Ω = 1 and decompose

v = z + w

where z is divergence-free, i.e. z ∈ Z = {v ∈ H1
0 (W )d : div v = 0}, and w is in the

orthogonal complement of Z, i.e. w ∈ Z⊥ =
{
r ∈ H1

0 (W )d : (∇r,∇z)Ω = 0 ∀z ∈ Z
}
. We

have then ∥∇w∥Ω ⩽ 1 since

∥∇w∥2Ω = (∇w,∇w +∇z)Ω = (∇w,∇v)Ω ⩽ ∥∇w∥Ω∥∇v∥Ω = ∥∇w∥Ω

Using again div z = 0, w ∈ Z⊥ and the variational formulation of the Stokes equations, we
get

∫
Ω
∇(p− ph) · v = −

∫
Ω
(p− ph) divw = −

∫
Ω
∇u : ∇w +

∫
Ω
f · w −

∫
Ω
∇ph · w

= −
∫
Ω
∇s : ∇w +

∫
Ω
(f − fh) · w +

∫
Ω
(div σh −∇ph) · w

=

∫
Ω
(∇uh −∇s) : ∇w +

∫
Ω
(f − fh) · w −

∫
Ω
(σh +∇uh − phI) · ∇w

⩽ ∥∇uh−∇s∥Ω∥∇w∥Ω+∥σh+∇uh−phI∥Ω∥∇w∥Ω+

∑
K∈Th

h2K∥f − fh∥2K

 1
2
∑
K∈Th

1

h2K
∥w − w̄K∥2K

 1
2
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with w̄K the average of w on K. Using (C.28), Lemma C.4, and ∥∇w∥Ω ⩽ 1, we arrive at∫
Ω
∇(p− ph) · v ⩽ Cdiv∥ div uh∥Ω + ∥σh +∇uh − phI∥Ω +

1

π
oscTh(f)

This gives (C.24) by the the definition of the H−1 norm of ∇(p − ph) as the supremum
over all v ∈ H1

0 (Ω) with |v|1,Ω = 1.
We turn now to the lower bounds. Thanks to Theorem 7 of [15], in the 2D case, for any

interior node a, there exists a matrix-valued field cah on ωa such that cah|K ∈ (RTk(K))2 on
all the mesh triangles in ωa, cahn = 0 on ∂ωa,

div cah|K = rK on allK ⊂ ωa, [[cah]]|En = rE on allE ∈ Fa

where Fa denotes the set of mesh facets inside ωa and rK , rE are the residuals

rK = ΠQa
h
(fψa) + (∆uh −∇ph)ψa, rE = [[∇uh − phI]]Fψ

a.

Moreover,

∥cah∥ωa ⩽ C∥r∥[[H1(ωa)/R]2]
∗ = C sup

v∈H1(ωa)/R

∑
K⊂ωa

∫
K rK · v +

∑
E∈Fa

∫
K rK · v

∥∇v∥ωa

Setting
τh = σah + (∇uh − phI)ψ

a + ch

we see that τh ∈ Σah and div τh = 0. Using this τh in (C.10) as a test function leads to

∥σah + (∇uh − phI)ψ
a∥ωa ⩽ C∥ch∥ωa ⩽ C

sup
v∈[H1(ωa)/R]2

∫
ωa(ΠQa

h
(fψa)− fψa)v +

∑
K⊂ωa

∫
K(f +∆uh −∇ph)ψa · v +

∑
E∈Fa

∫
E [[∇uh − phI]]Fψ

a · v
∥∇v∥ωa

Recalling that f = −∆u+∇p and integrating by parts, we conclude

∥σah+(∇uh−phI)ψa∥ωa ⩽ C sup
v∈[H1(ωa)/R]2

∫
ωa(ΠQa

h
(fψa)− fψa)v +

∫
ωa(∇(u− uh)− (p− ph)I) : ∇(ψav)

∥∇v∥ωa

⩽ C(ha∥fψa −Πk−1
h (fψa)∥ωa + ∥∇(u− uh)∥ωa + ∥p− ph)∥−1,ωa) (C.29)

since ∥v∥ωa ⩽ Cha∥∇v∥ωa for any v ∈ [H1(ωa)/R]2 by Poincaré inequality, and conse-
quently ∥∇(ψav)∥ωa ⩽ ∥∇v∥ωa + C

ha
∥v∥ωa ⩽ C∥∇v∥ωa . The orthogonal projector ΠQa

h

above can be replaced with Πk−1
h since the test functions v are orthogonal to constants.

The same bound (C.29) holds for the nodes a on the boundary ∂Ω by a straiforward adap-
tation of the proof in [15] (one should replace then H1(ωa)/R by the subspace of H1(ωa) of
functions vanishing on ∂ωa ∩ ∂Ω). In the 3D case, the same holds by Theorem 2.3 of [40].
Thus, (C.29) holds in all the cases of interest.
We can now establish (C.25): take any K ∈ Th and sum (C.29), squared on both sides, over
all the vertices a of K. To deal with the pressure error, we need the following observation∑

a: vertices of K

∥∇(p− ph)∥2−1,ωa ⩽ (d+ 1)∥∇(p− ph)∥2−1,ωK
(C.30)
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Indeed, for any η > 1 and any node a there exists va ∈ H1
0 (ω

a) such that

∥∇va∥1,ωa = ∥∇(p− ph)∥−1,ωa and ∥∇(p− ph)∥2−1,ωa ⩽ η(∇(p− ph),∇va)ωa

Extending all these functions by 0 outside of their respective domains, we can write (as-
suming the summation over d+ 1 vertices of K, denoted by a)∑

a

∥∇(p− ph)∥2−1,ωa ⩽ η
∑
a

∫
ωa

∇(p− ph) · ∇va

= η

∫
ωK

∇(p− ph) ·
∑
a

∇va ⩽ η∥∇(p− ph)∥−1,ωK

∥∥∥∥∥∑
a

∇va
∥∥∥∥∥
ωK

⩽ η∥∇(p− ph)∥−1,ωK (d+ 1)

(∑
a

∥∇(p− ph)∥2−1,ωa

) 1
2

Passing to the limit η → 1 gives (C.30). This establishes (C.25).
The other local lower estimate (C.26) is trivial since

∥ div uh∥K = ∥ div(u− uh)∥K ⩽
√
d∥∇(u− uh)∥K

Summing (C.29) over all the nodes of the mesh and dealing again with the pressure error
in a manner similar to (C.30), replacing (d+ 1) by a constant C related to the maximum
number of overlaps between patches ωF which depends only on the mesh regularity, gives
the global lower estimate (C.27). ■

C.2.1. A numerical evaluation of the constant C̃div in Lemma C.1.

In this section we want to evaluate the constant Cdiv in Lemma C.1. Let ωa be a patch
of elements around a node of the mesh Th and Vh(ωa) the restriction of the velocity finite
element space Vh on ωa. As suggested by formulation (C.19)-(C.20), the first task in evalu-
ating the constant C̃div on ωa is to construct a basis of a subspace of Vh(ωa) complementary
to the subspace of divergence-free functions. To this end, we construct the matrix D of
the bilinear form

D(uh, vh) =

∫
ωa

ψa (div uh) (div vh)

on the natural basis of Vh(ωa) and solve the eigen-value problem

Du⃗i = λiu⃗i

We then select only the positive eigen-values, say λ1, . . . , λM , with the corresponding eigen-
vectors u⃗i representing the finite element functions uh,i ∈ Vh(ω

a), which form a basis for
the orthogonal complement to the kernel of the bilinear form D. We can normalize uh,i so
that D(uh,i, uh,j) = δij .

We now introduce a fine mesh Th̃ on ωa splitting every element of ωa into R × R
smaller triangles, cf. FIg. C.1. We then discretize problem (C.19)-(C.20) as: find
ŝa
h̃
∈ Vh̃(ω

a), pah ∈ Qh̃(ω
a) such that∫

ωa

∇ŝa
h̃
· ∇th +

∫
ωa

pa
h̃
div th = 0 ∀th̃ ∈ Vh̃(ω

a) (C.31)∫
ωa

qh̃ div ŝ
a
h̃
= −

∫
ωa

ψaqh̃ div uh ∀qh̃ ∈ Qh̃(ω
a) (C.32)
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Figure C.1.: Introduce a fine mesh on patch ωa

where Vh̃(ω
a) ⊂ H1

0 (ω
a), Qh̃(ω

a) ⊂ L2
0(ω

a) are (respectively) P2 and P1 finite elements on
mesh Th̃. The constant C̃2

div in inequality (C.18) on ωa is approximated be the maximum
of ∫

ωa ∇ŝah̃ : ∇ŝa
h̃∫

ωa ψa (div uh)
2

over the span of {uh,1, . . . , uh,M}. To find this maximum, we solve (C.31) for every uh =
uh,i, i = 1, . . . ,M . Denoting the obtained solutions by ŝa

h̃,i
, it remains to form the matrix

A of size M ×M byAij =
∫
ωa ∇ŝah̃,i : ∇ŝ

a
h̃,j

and to calculate the largest eigen-value of A.
It gives the maximum of the ratio above.
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An important limitation of all the a posteriori error estimates developed so far in this
thesis, is that they apply only to the finite element approximation in polygonal domains.
Dealing with problems posed in domains with curved boundaries is of course also very
important. In this appendix, we rely on a finite element discretization in such domains
proposed in the Master thesis of Claire Marin [56] and designed having in mind the ease
of implementation in FreeFEM. The hypothesis is that the mesh is composed of triangular
elements with straight edges (which is the only mesh type available in FreeFEM), and
the boundary conditions on the approximated polygonal boundary are deduced from the
actual boundary conditions on the exact boundary thanks to a Taylor expansion. This
approach is very close to Boundary-Value Corrections method of [17]. We present here
the main results on the a priori error analysis from [56] for the Dirichlet-Poisson problem.
Then we test numerically an equilibrated flux a posteriori estimator making a comparison
between the boundary correction model and the model without boundary correction. We
do not have any theoretical justification for our a posteriori estimator, but we observe that
it describes the error of the finite element approximation very accurately if the boundary
correction trick was used to compute this approximation.

D.1. A Priori Error

D.1.1. Notations

Let Ω be a bounded domain in R2 with a smooth boundary ∂Ω. We consider the Poisson
problem which is: find u ∈ H2(Ω) satisfying

{
−∆u = f in Ω
u = g on ∂Ω

(D.1)

where f ∈ L2(Ω) and g ∈ H
3
2 (∂Ω). We introduce a triangular mesh Th on Ω such that the

nodes at the boundary are all on ∂Ω while the boundary edges are not. The triangulation
is supposed to be a classical one, with straight sides. Then, in general, the boundary edges
do not match exactly ∂Ω. Let Ωh be the domain formed by the mesh, i.e. :

Ωh = ∪K∈ThK

and a mapping ϕ : R2 → R2 that associates for each xh ∈ ∂Ωh to a point ϕ(xh) = x ∈ ∂Ω
and then, the gap function δ defined by δ(xh) = ϕ(xh)− xh, ∀xh ∈ ∂Ωh.
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xh

x = ϕ(xh)

δ(xh)

We suppose that ϕ is a C2 mapping and we consider a Pk finite elements to approximate
the problem. we will introduce the first order corrections on ∂Ωh in order to have optimal
convergence :

∀xh ∈ ∂Ωh, u(xh) ≃ g(ϕ(xh))− δ(xh) · ∇u(xh).

Let Vh be the space of (continuous) piecewise Pk polynomial functions on Th, and V 0
h the

subspace of Vh containing the functions that vanish on ∂Ωh. Now, we want to find uh ∈ Vh
such that 

∫
Ωh

∇uh · ∇vh dΩ =
∫
Ωh
fvh dΩ, ∀vh ∈ V 0

h∫
∂Ωh

(uh + δ · ∇uh)vh dΓ =
∫
∂Ωh

(g ◦ ϕ)vh dΓ, ∀vh ∈ Vh

. (D.2)

Discretization

We will do a Taylor expansion of order l ≤ k near the boundary, with l ∈ N. Let {Th}h
be triangular mesh of Ω with the mesh size h. Let Ωh be the domain formed by the mesh,
i.e. Ωh = ∪K∈ThK., let T b

h be the set of triangles that intersects the boundary ∂Ωh, and
let Eh be the set of boundary edges. We suppose that {Th}h is :

Hypothesis 1 : regular We suppose that there exists a constant C such that, for all
h > 0 and for all T ∈ Th,

hT
ρT

⩽ C.

Hypothesis 2 : Quasi-uniform There exists a constant C depending on Ω such that

min
T∈Th

ρT ⩾ Ch.

We consider the following problem : find uh ∈ Vh such that :

∫
Ωh

∇uh · ∇vh dΩ =

∫
Ωh

fvh dΩ, ∀vh ∈ V 0
h

∫
∂Ωh

∑
|s|⩽l

∂suh
s!

δs

 vh dΓ =

∫
∂Ωh

(g ◦ ϕ)vh dΓ, ∀vh ∈ Vh

. (D.3)

Here s = (s1, s2) is a couple of non-negative integers, |s| = s1 + s2, s! = s1!s2!, ∂suh =

∂|s|uh
∂xs1∂ys2

and δs = (δ1, δ2)
s = δ1

s1δ2
s2 .

We suppose that all the generic constants C are different from an equation to another
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and depend on the mesh regularity only. We are going to put the theorem about the
optimal order of convergence of H1 error semi-norm of u− uh for an appropriate order of
approximation of the boundary and order of the finite elements.

Theorem D.1. Let u be the solution of the problem (D.1), and uh the solution of the
problem (D.3). Assume that u ∈ Hk+1(Ω) ∩W l+1,∞(Ω), k ⩾ l ⩾ k

2 − 3
4 . There exists a

constant C depending only on the regularity of the mesh and the domain Ω such that for h
small enough :

|u− uh |H1(Ωh)
⩽ Chk |u |Hk+1(Ω)∩W l+1,∞(Ω) ,

where we denote by |u |Hk+1(Ω)∩W l+1,∞(Ω) the quantity |u |Hk+1(Ω) + |u |W l+1,∞(Ω).

Now, we want to put the theorem about the optimal order of convergence of L2 norm of
u− uh.

Theorem D.2. Assume that the solution u of the problem (D.3) is in Hk+1(Ω), and
l ⩾ k

2 −
1
4 . There exists a constant C depending only on the regularity of the mesh and the

domain Ω such that for h small enough :

∥u− uh ∥L2(Ωh)
⩽ Chk+1 |u |Hk+1(Ω)∩W l+1,∞(Ω)

Proof. See [56]. ■

Now, let us present the numerical part of a posteriroi error using the idea of Claire for
defining the approximated solution uh as in (D.3)

P2 finite elements

Now, we want to implement the scheme (D.2). We remark that the Dirichlet boundary
conditions are imposed in FreeFEM++ via penalization even in standard situation of
FEM on a polygonal domain. So, the simplest way to implement in FreeFEM++ is to find
uh ∈ Vh such that for all vh ∈ Vh∫

Ωh

∇uh ·∇vh dΩ+
1

ε

∫
∂Ωh

(uh + δ · ∇uh) vh dΓ =

∫
Ωh

fvh dΩ+
1

ε

∫
∂Ωh

(g◦ϕ)vh dΓ, (D.4)

with ε≪ 1.

In the following figures, we compare the method (D.4) with the results without doing
any approximation of the boundary, that is to say by implementing :∫

Ωh

∇uh · ∇vh dΩ+
1

ε

∫
∂Ωh

uhvh dΓ =

∫
Ωh

fvh dΩ+
1

ε

∫
∂Ωh

(g ◦ ϕ)vh dΓ. (D.5)

D.2. A Posteriori Error

The weak formulation of system (D.1) is:
Find u ∈ H1

g (Ω) such that:

(∇u,∇v)Ω = (f, v)Ω ∀v ∈ H1
0 (Ω) (D.6)
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Where,

f =
12uav
R2

H1
0 (Ω) := {u ∈ H1(Ω); u = 0 on ∂Ω}

,

H1
g (Ω) := {u ∈ H1(Ω); u = g on ∂Ω}

and

g =


u = uin on Γin,

u = uout on Γout,

u = 0 on Wall,

Let uh be the approximate solution defined as in scheme (D.2). We look for stress
σh ∈ Σh ⊂ H(div,Ω) such that:

σideal
h := argmin

vh∈Σh,
div vh=ΠQh

(f)=fon Ω

||∇uh + vh||L2(Ω) (D.7)

In practice, Σh will be RT1 on Ω and and Qh will be P1(Th) on Ω. Computing σh as
the solution of eq (D.7): σideal

h would be too costly, so we localize this minimization. For
each vertex a ∈ Ω we consider a patch ωa to be the collection of all triangles that share
this vertex a. Now, relies on the partition of unity by the hat functions ψa and finds the
following local minimizers:

σah := argmin
vh∈Σa

h,
div vh=ΠQa

h
(ψaf−∇ψa·∇uh)

||ψa∇uh + vh||L2(ωa) (D.8)

Let Vh be the set of vertices of the mesh Th

σh =
∑
a∈Vh

σah (D.9)

Conjecture D.3 (A general a posterior error estimate). Let u be the weak solution defined
by system (D.6). When we make approximation of the curved boundary, we define uh as
in (D.2), and when we do not make approximation of the curved boundary, we define uh
as in (D.5 ) and σh defined as (D.9) . ∀K ∈ Th define:

• Flux estimator: ηF,K := ||∇uh + σh||K

• Total estimator η2 :=
∑

K∈Th η
2
F,K

Then,

||∇(u− uh)||2Ω ≤ η2 (D.10)
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D.3. Numerical results

D.3. Numerical results

Let us consider the following problem:

{
−∆u = f in Ω
u = g on ∂Ω

Where Ω is defined in the Figure D.1 below, f = 1, R1 = 0.7, R2 = 1 and

g =


u = ue on Γin,

u = ue on Γout,

u = 0 on Wall,

ue = A+B ln(x2+y2)
2 − (x2+y2)

4 where, A =
R2

2ln(R1)−R2
1ln(R2)

4ln(
R1
R2

)
and B =

R2
2−R12

4ln(
R2
R1

)

Figure D.1.: Domain Ω with curved boundary

Now, we will compare the error and estimator in (D.10) between taking uh as solution of
non correction boundary in scheme (D.5 ) and between the solution of corrected boundary
in scheme (D.2). We conclude from this comparison in Figure D.2 that the correction of
the boundary gives less error and estimator than the non corrected one. Also, when we
do not make the correction of the boundary, then the estimator is less that the error as
you see in Figure D.2 and this contradicts the posterior error estimation in Theorem D.3.
To see more the results we introduce the data for non corrected boundary in the table
below and as you see the estimator is less than the error which lead to index of efficiency
Index = η

Error = 0.8.

Mesh size Error η Index
0.0469192 0.000262393 0.000221949 0.845865
0.0232701 9.1345e-05 7.9358e-05 0.868773
0.0126408 3.20462e-05 2.81435e-05 0.878215
0.00702287 1.12396e-05 9.92078e-06 0.882665

While when we make the correction of the boundary, we get that the error is less than
the estimator which lead to index of efficiency Index = η

Error = 1.019 as you see in the
following table
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Mesh size Error η Index
0.0469192 5.8102e-05 5.9233e-05 1.01947
0.0232701 1.31804e-05 1.33805e-05 1.01518
0.0126408 3.56757e-06 3.6359e-06 1.01916
0.00702287 8.9232e-07 9.09405e-07 1.01915

Figure D.2.: Errors and Estimator for the corrected boundary and the non corrected one

We conclude from the above results that the correction of the boundary for the curved
domains is important since without making this correction we obtain an estimator η less
than the error ∥u− uh∥Ω which does not confirm what we have in Theorem D.3 while
after making the correction of the boundary as in (D.4), the estimator η becomes greater
than the error ∥u− uh∥Ω which confirm the Theorem D.3 and the index of efficiency
improved from Index = η

Error = 0.8 (when we do not make correction of the boundary) to
Index = η

Error = 1.019 (when we make a correction of the boundary).
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