Dans le magnétisme hautement frustré, on pense généralement que des cristaux vierges sont nécessaires et que les impuretés sont des perturbations indésirables. Notre motivation ici est de prendre le point de vue opposé et d'utiliser les impuretés comme un outil pour concevoir les propriétés des aimants frustrés. Motivée par des expériences sur l'oxyde de pyrochlore de terre rare Er 2 Ti 2-x Sn x O 7 , l'idée est d'accorder l'hamiltonien de notre système via une dilution non magnétique x ; en d'autres termes, utiliser les impuretés comme bouton pour explorer les parties inconnues du diagramme de phase. Cette approche nous amène à la frontière entre la frustration géométrique et les lunettes de spin. Chapitre 1 explore la littérature sur le magnétisme frustré : Modèles paradigmatiques pour les aimants frustrés, travaux effectués sur les oxydes de pyrochlore purs (Er 2 Sn 2 O 7 et Er 2 Ti 2 O 7 ), verres de spin, liquides de spin classiques, techniques expérimentales, etc. Le formalisme numérique (simulations de Monte Carlo) pour sonder le magnétisme frustré est décrit dans le Chapitre 2 avec les détails algorithmiques. Dans le Chapitre 3, nous rapportons le diagramme de phase de Er 2 Ti 2-x Sn x O 7 pour 0 ≤ x ≤ 2, en utilisant le Monte classique -Simulations Carlo. Pour construire une théorie détaillée, nous extrayons des simulations la chaleur spécifique, la susceptibilité, le facteur de structure de diffusion des neutrons, les fluctuations microscopiques et la dynamique de spin. Nos calculs reproduisent la forme du diagramme de phase expérimental, avec une compétition entre les ordres antiferromagnétiques Γ 5 et Palmer-Chalker. Selon le type de désordre utilisé dans notre modèle, une phase intermédiaire de verre de spin a lieu où l'ordre magnétique disparaît. Une asymétrie prononcée en faveur de Γ 5 est observée, que nous expliquons en reliant cette dilution non magnétique au diagramme de phase générique du plus proche voisin sur le pyrochlore. Chapitre 4 est une extension phénoménologique du modèle de désordre quenched (utilisé au chapitre 3) aux liquides de spin classiques (liquide antiferromagnétique de Heisenberg et tensor spin liquide). Nous essayons d'établir une connexion de l'un à l'autre via le désordre éteint. Nous analysons les propriétés microscopiques et le facteur de structure dynamique pour notre modèle. Nous résumons nos découvertes et nos travaux futurs dans le Chapitre 5 avec une annexe à la fin.
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Abstract

In highly frustrated magnetism, it is usually believed that pristine crystals are necessary, and impurities are unwanted perturbations. Our motivation here is to take the opposing view, and use impurities as a tool to design the properties of frustrated magnets. Motivated by experiments on the rare-earth pyrochlore oxide Er 2 Ti 2-x Sn x O 7 , the idea is to tune the Hamiltonian of our system via non-magnetic dilution x; in other words, to use impurities as a knob to explore unknown parts of the phase diagram. This approach brings us at the frontier between geometric frustration and spin glasses.

Chapter 1 explores the literature on frustrated magnetism : Paradigmatic models for frustrated magnets, work done on pure pyrochlore oxides (Er 2 Sn 2 O 7 and Er 2 Ti 2 O 7 ), spin glasses, classical spin liquids, experimental techniques etc.

The numerical formalism (Monte Carlo simulations) to probe frustrated magnetism are outlined in Chapter 2 along with the algorithmic details.

In Chapter 3, we report the phase diagram of Er 2 Ti 2-x Sn x O 7 for 0 ≤ x ≤ 2, using classical Monte-Carlo simulations. To build a detailed theory, we extract from simulations the specific heat, susceptibility, neutron-scattering structure factor, microscopic fluctuations and spin dynamics. Our calculations reproduce the shape of the experimental phase diagram, with a competition between Γ 5 and Palmer-Chalker antiferromagnetic orders. Depending on the type of disorder used in our model, an intermediate spin-glass phase takes place where magnetic order disappears. A pronounced asymmetry in favor of Γ 5 is observed, that we explain when connecting this non-magnetic dilution to the generic nearest-neighbor phase diagram on pyrochlore.

Chapter 4 is a phenomenological extension of the quenched disorder model (used in chapter 3) to classical spin liquids(Heisenberg antiferromagnetic and tensor spin liquid). We try to establish a connection from one to the other via quenched disorder. We analyze the microscopic properties and the dynamical structure factor for our model.

We summarize our findings and future work in Chapter 5 along with an appendix at the end. represents the ground-state manifold. In the left panel, only a narrow and uniform band of states around the ground state manifold is accessible at low temperatures (blue region); there is no order by disorder here. In the right panel, however, a particular region has a bulge of accessible states at low temperatures. This is the place where soft modes allow low-energy excitations and the corresponding ground state is entropically selected via order-by-disorder. [START_REF] Lacroix | Introduction to frustrated magnetism : materials, experiments[END_REF] 1. [START_REF] Mizoguchi | Magnetic clustering, half-moons, and shadow pinch points as signals of a proximate coulomb phase in frustrated heisenberg magnets[END_REF] The A and B sites of pyrochlore materials A 2 B 2 Y 7 , forming their own interpenetrating pyrochlore structures. In this thesis, A sites are magnetic, B sites are non-magnetic and Y corresponds to oxygens. Figure taken from [START_REF] Gardner | Magnetic pyrochlore oxides[END_REF].

1.7 Classical ground-state phase diagram for a pyrochlore magnet with anisotropic exchange interactions in the limit J 3 < 0 and J 4 = 0. The blue, green, and red/yellow regions correspond to T 1 , T 2 , and E ground states respectively. The latter is divided into two colors because of thermal order-by-disorder selection, with ψ 2 (red) and ψ 3 (yellow) states. Points correspond to exchange parameters of Yb 2 Ti 2 O 7 , Er 2 Ti 2 O 7 and Er 2 Sn 2 O 7 . The grey dots in the center is the position of the tensor spin liquid (J 3 < 0 and J 1 = J 2 = J 4 = 0). The arrow indicates the asymptotic limit of the Heisenberg antiferromagnet at J 1 = J 2 > 0 and axis, while spins are canted by an angle θ T 1 . Figure from [START_REF] Yan | Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to yb 2 ti 2 o 7 , er 2 ti 2 o 7 , and er 2 sn 2 o 7[END_REF]. phases. The black circle denotes the manifold of E ground states. This manifold branches at the Ψ 2 states (black dots) to connect with three additional U [START_REF] Lacroix | Introduction to frustrated magnetism : materials, experiments[END_REF] manifolds which include the six Palmer-Chalker states with T 2 symmetry (red dots). Figure from [START_REF] Yan | Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to yb 2 ti 2 o 7 , er 2 ti 2 o 7 , and er 2 sn 2 o 7[END_REF].

J 3 = J 4 = 0.
1.12 Experimental phase diagram of Er 2 Ti 2-x Sn x O 7 as a function of non-magnetic dilution x showing the two ordered states with E symmetry (Ψ 2 or Ψ 3 , red) and with T 2 symmetry (Ψ 4 , green). A large part of chapter 3 will be dedicated to analyzing and understanding this phase diagram theoretically. Figure from [START_REF] Shirai | Dopinginduced quantum crossover in er 2 ti 2-x sn x o 7[END_REF].

1. [START_REF] Knolle | A field guide to spin liquids[END_REF] Example of (a) crystalline vs (b) amorphous structures.

1.14 Schematic representation of the free energy for a spin glass along an arbitrary line in phase space (labeled by x), showing the presence of many metastable states.

1.15 Schematic representation of the correlation function C(t, t ′ ) for a paramagnet (blue) and a spin glass (orange). The initial memory of the system is retained in a spin glass system whereas it is quickly forgotten in the case of a paramagnet. bond is shared between two loops. Each of these loops has a non-magnetic ion (B=Ti or Sn) at its center.

3.2 Classical ground-state phase diagram for a pyrochlore magnet with anisotropic exchange interactions displaying four distinct ordered phases (J 3 < 0 J 4 = 0).

Points correspond to published estimates of parameters for Yb 2 Ti 2 O 7 , Er 2 Ti 2 O 7 , and Er 2 Sn 2 O 7 [START_REF] Yan | Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to yb 2 ti 2 o 7 , er 2 ti 2 o 7 , and er 2 sn 2 o 7[END_REF]. We want to benchmark an uncorrelated model on the dotted line(with a man walking) in the parameter space. Figure adapted from [START_REF] Yan | Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to yb 2 ti 2 o 7 , er 2 ti 2 o 7 , and er 2 sn 2 o 7[END_REF]. All models order into Γ 5 . For each panel, the color scale goes from zero to the maximum of intensity. All models order into Γ 5 . For each panel, the color scale goes from zero to the maximum of intensity. 
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Chapter 1

Introduction "People need trouble-a little frustration to sharpen the spirit on, toughen it. Artists do; I don't mean you to live in a rat hole or gutter, but you have to learn fortitude, endurance.

Only vegetables are happy".-William Faulkner.

The study of order-disorder phenomena is a fundamental task of equilibrium statistical mechanics [START_REF] Plischke | Equilibrium Statistical Physics[END_REF]. Many studies have dealt with the ordered phases at low temperatures as well as the critical phenomena or hysteresis around phase transitions. However, beyond critical phenomena, there has also been particularly intense research in the understanding of frustrated models, either due to quenched disorder which may lead to spin glasses [START_REF] Binder | Spin glasses: Experimental facts, theoretical concepts, and open questions[END_REF], or due to geometric frustration, with the formation of fluid-like states of matter known as spin liquids [START_REF] Lacroix | Introduction to frustrated magnetism : materials, experiments[END_REF]. In spin liquids, spins fluctuate even down to zero temperature despite significant correlations. These fluctuations show exotic collective phenomena such as emergent gauge fields [START_REF] Knolle | A field guide to spin liquids[END_REF] and fractional particle excitations.

In this introduction, we will first cover the basics of frustrated magnetism, introduce the main theoretical models, and then present in detail the materials that will be studied in this thesis, namely Er 2 Ti 2 O 7 and Er 2 Sn 2 O 7 .

What is frustration ?

The elementary idea of frustration can be understood from the third law of thermodynamics, which states that the entropy of a system should be zero at absolute zero temperature. In other words, a system is a priori expected to order into a unique configuration. However, the main aspect of frustrated systems is that it is impossible to satisfy all interactions simultaneously. In some cases labeled as spin liquids, this competition prevents finding that unique ground state [START_REF] Lacroix | Introduction to frustrated magnetism : materials, experiments[END_REF].

Please note that in this thesis, we will focus on magnetic frustration, but since magnetic systems also serve as ideal experimental testing grounds for various theoretical models, frustration also has implications in protein folding [START_REF] Gianni | Fuzziness and frustration in the energy landscape of protein folding, function, and assembly[END_REF][START_REF] Jiang | Geometrical frustration as a potential design principle for peptide-based assemblies[END_REF], superconductivity [START_REF] Anderson | The resonating valence bond state in la2cuo4 and superconductivity[END_REF] ...

Experimental Intuition

How does it look like in experiments? The most common smoking gun of geometric frustration is probably the temperature dependence of magnetic susceptibility χ. Within mean-field theory, χ -1 has the following linear form at high temperature :

χ -1 = 1 c (T -Θ cw ), (1.1) 
where Θ cw is the Curie-Weiss temperature that measures the average magnitude of exchange interactions. When an unfrustrated system orders at a given transition temperature T c , we have 

T c ∼ |Θ cw |
f = |Θ cw | T c . (1.2) 
We have f ≃ 1 for unfrustrated systems, them being ferro-or antiferromagnetic. On the other hand, a relatively large value of f is a typical signature of frustration. f even goes to infinity for spin liquids since there is no transition, but is often limited to a finite large value in experiments because of perturbations such as quenched disorder, and dipolar interactions ... 1.1.2 Canonical frustrated models

Triangular lattice

One of the most famous models was first studied by Wannier [START_REF] Wannier | Antiferromagnetism. the triangular ising net[END_REF] back in 1950, where he considered antiferromagnetic (AFM) Ising spins on a triangular lattice. He showed that this spin model has a macroscopic degenerate ground state, i.e. a residual entropy as the system is cooled down to zero temperature. When minimizing the energy of each triangle, one sees easily that two out of the three spins cannot be antiferromagnetically aligned as shown in It is important to notice that this ensemble of ground states does not break any symmetry.

Spins are long-ranged correlated but they are not ordered and there is no phase transition at finite temperature in the Ising triangular antiferromagnet. 

Kagome lattice

Since the elementary brick of frustration is the triangle, it is possible to reproduce a similar physics by connecting the triangles by their corners; it results in the kagome lattice shown in Fig. 1.3. With Ising spins, this system is less constrained than the triangular network and presents an even higher residual entropy [START_REF] Syôzi | Statistics of Kagomé Lattice[END_REF].

Now, if we consider classical Heisenberg spins, the energy is minimized on each triangle when spins are mutually oriented at 120 • from each other. This ground state remains extensively degenerate, but thermal fluctuations select coplanar states [START_REF] Lacroix | Introduction to frustrated magnetism : materials, experiments[END_REF][START_REF] Chalker | Hidden order in a frustrated system: Properties of the heisenberg kagomé antiferromagnet[END_REF]. This selection mechanism is an example of order by disorder [START_REF] Villain | Order as an effect of disorder[END_REF] which will be discussed in the next section 1.1.3.

Pyrochlore lattice

The triangle is the elementary brick of frustration in two dimensions, but more complex geometries are available in three dimensions, in particular the tetrahedron with four spins The degeneracy of a classical ground state can be fragile since perturbations often lift this degeneracy in favor of an ordered state or a spin glass. But even in the absence of perturbations, thermal and/or quantum fluctuations can lift the degeneracy of the ground state manifold. The selection of an ordered phase by fluctuations is known as order by disorder [START_REF] Villain | Order as an effect of disorder[END_REF][START_REF] Shender | Anti-ferromagnetic garnets with fluctuation-like interacting sub-lattices[END_REF][START_REF] Chalker | Hidden order in a frustrated system: Properties of the heisenberg kagomé antiferromagnet[END_REF][START_REF] Sachdev | Kagome´-and triangular-lattice heisenberg antiferromagnets: Ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons[END_REF][START_REF] Christopher | Ordering due to disorder in a frustrated vector antiferromagnet[END_REF][START_REF] Zhitomirsky | Quantum order by disorder and accidental soft mode in er 2 ti 2 o 7[END_REF][START_REF] Savary | Order by quantum disorder in er 2 ti 2 o 7[END_REF][START_REF] Mcclarty | Order-by-disorder in the xy pyrochlore antiferromagnet[END_REF]. It was first studied on the two-dimensional frustrated Ising model on a domino lattice [START_REF] Villain | Order as an effect of disorder[END_REF]. At first glance, order by disorder appears to be a paradoxical concept because disorder, caused by fluctuations, tends to suppress order in the system. However, sometimes, fluctuations work in favor of a particular long-range ordered state, as illustrated in Fig. 1.5.

When the degeneracy of a ground-state manifold is accidental, i.e. when it is not protected by the Hamiltonian symmetry, fluctuations around certain ground states differ from others.

When this occurs, these particular ground states have a larger entropy (which usually corresponds to more soft modes) or lower zero-point energy for thermal and quantum fluctuations respectively. Focusing on classical systems, the system then has a tendency to be in a region of the ground-state manifold with the highest number of soft modes, which eventually lifts the ground-state degeneracy. Therefore, fluctuations trigger the selection of a particular ground state at low temperatures. In the left panel, only a narrow and uniform band of states around the ground state manifold is accessible at low temperatures (blue region); there is no order by disorder here. In the right panel, however, a particular region has a bulge of accessible states at low temperatures. This is the place where soft modes allow low-energy excitations and the corresponding ground state is entropically selected via order-by-disorder.

[1]

The pyrochlore lattice

This thesis will focus on the three-dimensional pyrochlore lattice which has been a major kingpin in the display of geometrical frustration. This is why it is important to understand the geometric and chemical structure of these systems, which is the purpose of this section. The standard pyrochlore lattice is made up of corner-sharing tetrahedra and is commonly observed in rare-earth pyrochlore oxides with a chemical formula A 2 B 2 O 7 [START_REF] Rau | Frustrated quantum rare-earth pyrochlores[END_REF]. The A site is occupied by a rare-earth ion and the B site is usually non-magnetic. Both A and B ions form their 

Generic nearest-neighbor model

Magnetism at the level of a single ion

The magnetic properties of the rare-earth ion A are modulated by the interplay between spin-orbit coupling and the crystal field due to the surrounding oxygens. This leads to immense variations of properties among the rare-earth oxides, which is one of the main reasons for their interest in frustrated magnetism. When the magnetic ion is a Kramers doublet, it can be effectively described by a spin-1/2 degree of freedom [START_REF] Ross | Quantum excitations in quantum spin ice[END_REF]:

[S µ , S ν ] = iϵ µνξ S ξ . (1.3)
When S µ transforms like a magnetic dipole. The real magnetic moment S µ of the material corresponds to a matrix transformation of S µ :

m µ i = 3 ν=1 g µν i S ν i (1.4)
where µ, ν ∈ {x, y, z}. The g µν i tensor represents the single-ion anisotropy, from Ising to Heisenberg passing by XY, and is discussed in Appendix A.

Anisotropy in exchange interactions

The most general model of nearest neighbor interactions compatible with the T d point group symmetry of the tetrahedron [START_REF] Curnoe | Quantum spin configurations in tb 2 ti 2 o 7[END_REF][START_REF] Mcclarty | Energetic selection of ordered states in a model of the er2ti2o7 frustrated pyrochlore XY antiferromagnet[END_REF][START_REF] Ross | Quantum excitations in quantum spin ice[END_REF] is :

H ex = ⟨ij⟩ J µν ij S µ i S ν j = t H tet ex [t] = t ⟨i,j⟩∈t S i J [t] ij S j , (1.5) 
where the sum on ⟨i, j⟩ runs over the six nearest-neighbor bonds within tetrahedron t. The Hamiltonian can be rewritten as a sum over all tetrahedra because we do not consider interactions beyond first neighbors. J

[t] ij is the 3 × 3 interaction matrix specific to bond ij. It can be shown that J

[t] ij is only a function of four independent parameters and that the interaction matrix is the same for all bonds in the lattice (modulo rotation symmetry) [START_REF] Curnoe | Quantum spin configurations in tb 2 ti 2 o 7[END_REF].

If we label the four spin sublattices within a tetrahedron from 0 to 3, one gets:

J 01 =        J 2 J 4 J 4 -J 4 J 1 J 3 -J 4 J 3 J 1        , J 02 =        J 1 -J 4 J 3 J 4 J 2 J 4 J 3 -J 4 J 1        , J 03 =        J 1 J 3 -J 4 J 3 J 1 -J 4 J 4 J 4 J 2        J 12 =        J 1 -J 3 J 4 -J 3 J 1 -J 4 -J 4 J 4 J 2        , J 13 =        J 1 J 4 -J 3 -J 4 J 2 J 4 -J 3 -J 4 J 1        , J 23 =        J 2 -J 4 J 4 J 4 J 1 -J 3 -J 4 -J 3 J 1       
, which are all equivalent up to rotation symmetry. Note that the (J 1 , J 2 , J 3 , J 4 ) parameters are not the first, second, third, and fourth nearest-neighbor couplings. They are anisotropic terms of the nearest-neighbor interaction matrix and can be understood as :

• J 1 : XY coupling with respect to the local bond frame.

• J 2 : Ising coupling with respect to the local bond frame.

• J 3 : symmetric off-diagonal exchange (present in dipolar interactions for example).

• J 4 : Dzyaloshinskii-Moriya coupling.

Order parameters

Considering a single tetrahedron, the Hamiltonian becomes a matrix of size 12x12 since we have 4 spins with three components for each spin. This Hamiltonian can then be diagonalized using irreducible representations (irreps) of

T d λ = { A 2 , E, T 1 , T 2 } [3]:
order definition in terms associated parameter of spin components ordered phases

m A 2 1 2 √ 3 (S x 0 + S y 0 + S z 0 + S x 1 -S y 1 -S z 1 -S x 2 + S y 2 -S z 2 -S x 3 -S y 3 + S z 3 ) "all in-all out" m E   1 2 √ 6 (-2S x 0 + S y 0 + S z 0 -2S x 1 -S y 1 -S z 1 + 2S x 2 + S y 2 -S z 2 + 2S x 3 -S y 3 + S z 3 ) 1 2 √ 2 (-S y 0 + S z 0 + S y 1 -S z 1 -S y 2 -S z 2 + S y 3 + S z 3 )   Ψ 2 and Ψ 3 m T 1,A       1 2 (S x 0 + S x 1 + S x 2 + S x 3 ) 1 2 (S y 0 + S y 1 + S y 2 + S y 3 ) 1 2 (S z 0 + S z 1 + S z 2 + S z 3 )       collinear FM m T 1,B       -1 2 √ 2 (S y 0 + S z 0 -S y 1 -S z 1 -S y 2 + S z 2 + S y 3 -S z 3 ) -1 2 √ 2 (S x 0 + S z 0 -S x 1 + S z 1 -S x 2 -S z 2 + S x 3 -S z 3 ) -1 2 √ 2 (S x 0 + S y 0 -S x 1 + S y 1 + S x 2 -S y 2 -S x 3 -S y 3 )       coplanar FM m T 2       1 2 √ 2 (-S y 0 + S z 0 + S y 1 -S z 1 + S y 2 + S z 2 -S y 3 -S z 3 ) 1 2 √ 2 (S x 0 -S z 0 -S x 1 -S z 1 -S x 2 + S z 2 + S x 3 + S z 3 ) 1 2 √ 2 (-S x 0 + S y 0 + S x 1 + S y 1 -S x 2 -S y 2 + S x 3 -S y 3 )       Palmer-Chalker (Ψ 4 )
Table 1.1: Order parameters m λ of the different irreps [START_REF] Yan | Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to yb 2 ti 2 o 7 , er 2 ti 2 o 7 , and er 2 sn 2 o 7[END_REF] expressed in terms of linear combinations of spin-components S i = (S x i , S y i , S z i ), in the global frame of the cubic crystal axes (H ex [Eq. (1.5)])

H tet ex ≡ 1 2 a A 2 m 2 A 2 + a E m 2 E + a T 2 m 2 T 2 + a T 1,A m 2 T 1,A +a T 1,B m 2 T 1,B + a T 1,AB m T 1,A • m T 1,B , (1.6) 
whose eigenvalues

a A 2 = -2J 1 + J 2 -2(J 3 + 2J 4 ) a E = -2J 1 + J 2 + J 3 + 2J 4 a T 2 = -J 2 + J 3 -2J 4 a T 1,A = 2J 1 + J 2 a T 1,B = -J 2 -J 3 + 2J 4 a T 1,AB = - √ 8J 3 (1.7)
are completely determined by the interaction parameters of H ex [Eq. (1.5)]; the corresponding eigenvectors m λ are order parameters given in Table 1.1. However, please note that Eq.

(1.6) is not fully diagonalized because we have a coupling term between the two T 1 irreps.

This coupling term can be eliminated by doing a simple coordinate transformation [START_REF] Yan | Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to yb 2 ti 2 o 7 , er 2 ti 2 o 7 , and er 2 sn 2 o 7[END_REF] :

m T 1,A ′ = cos θ T 1 m T 1,A -sin θ T 1 m T 1,B m T 1,B ′ = sin θ T 1 m T 1,A + cos θ T 1 m T 1,B (1.8) 
where

θ T 1 = 1 2 arctan √ 8J 3 2J 1 + 2J 2 + J 3 -2J 4
.

(1.9)

The resulting eigenvalues are

a T 1,A ′ = (2J 1 + J 2 ) cos 2 (θ T 1 ) -(J 2 + J 3 -2J 4 ) sin 2 (θ T 1 ) + √ 2J 3 sin(2θ T 1 ) a T 1,B ′ = (2J 1 + J 2 ) sin 2 (θ T 1 ) -(J 2 + J 3 -2J 4 ) cos 2 (θ T 1 ) - √ 2J 3 sin(2θ T 1 ) (1.10) 
Now, we can rewrite the hamiltonian H tet ex as :

H [T d ] ex = 1 2 a A 2 m 2 A 2 + a E m 2 E + a T 2 m 2 T 2 + a T 1,A ′ m 2 T 1,A ′ + a T 1,B ′ m 2 T 1,B ′ . (1.11)
It is important to notice that the constraint on the spin length (S = 1/2) is respected by the order parameters and can be expressed as [START_REF] Yan | Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to yb 2 ti 2 o 7 , er 2 ti 2 o 7 , and er 2 sn 2 o 7[END_REF] :

S 2 0 + S 2 1 + S 2 2 + S 2 3 = 1 S 2 0 + S 2 1 -S 2 2 -S 2 3 = 0 S 2 0 -S 2 1 + S 2 2 -S 2 3 = 0 S 2 0 -S 2 1 -S 2 2 + S 2 3 = 0 .
(1.12)

Classical Phase Diagram

Since the Hamiltonian of equation (1.5) can be expressed as a sum of individual tetrahedra, any state that minimizes the energy of each individual tetrahedron is the ground state of the system. In particular, since the spin configurations defined in Table 1.1 are all physical states, i.e. they respect the spin-unit length constraint of Eq.(1.12), it has been shown it was always possible to pave the entire pyrochlore lattice with the same spin configurations on all tetrahedra corresponding to the lowest eigenvalue of Eqs. (1.7) and (1.10) [START_REF] Yan | Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to yb 2 ti 2 o 7 , er 2 ti 2 o 7 , and er 2 sn 2 o 7[END_REF]. In other words, there always exist a classical q = 0 ground state for any given exchange interaction (J 1 , J 2 , J 3 , J 4 ). Please note that even if the spin configuration is the same for all tetrahedra, the spin orientation of the four pyrochlore sublattices might differ.

Many rare-earth pyrochlores are described by J 3 < 0 and J 4 ≈ 0 [START_REF] Guitteny | Anisotropic propagating excitations and quadrupolar effects in tb 2 ti 2 o 7[END_REF][START_REF] Savary | Order by quantum disorder in er 2 ti 2 o 7[END_REF][START_REF] Ross | Quantum excitations in quantum spin ice[END_REF], due to dipolar interactions and weak Dzyaloshinskii-Moriya coupling. In this limit, the classical ground state phase diagram was obtained in Ref. [START_REF] Yan | Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to yb 2 ti 2 o 7 , er 2 ti 2 o 7 , and er 2 sn 2 o 7[END_REF] as shown in Figure 1.7. Now, we will explore the phase diagram and its boundaries ahead. The classical state in this region has a finite magnetization with m 2 T 1,A ′ = 1 and is 6-fold degenerate because of time-reversal symmetry and the three equivalent cubic axes [START_REF] Yan | Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to yb 2 ti 2 o 7 , er 2 ti 2 o 7 , and er 2 sn 2 o 7[END_REF]. The magnetization is parallel to one of the three cubic axes, with spins canted away from this axis (see Fig. 1.8). A possible ground state is given below, with magnetization along the [001] axis.

S 0 = S sin θ T 1 / √ 2, sin θ T 1 / √ 2, cos θ T 1 S 1 = S -sin θ T 1 / √ 2, sin θ T 1 / √ 2, cos θ T 1 S 2 = S sin θ T 1 / √ 2, -sin θ T 1 / √ 2, cos θ T 1 S 3 = S -sin θ T 1 / √ 2, -sin θ T 1 / √ 2, cos θ T 1 (1.13)
where θ T 1 is given by Eq. (1.9) and S = 1/2. This state has been identified in Yb 2 Ti 2 O 7 [START_REF] Chang | Higgs transition from a magnetic coulomb liquid to a ferromagnet in yb2ti2o7[END_REF] and Yb 2 Sn 2 O 7 [START_REF] Yaouanc | Dynamical splayed ferromagnetic ground state in the quantum spin ice yb 2 sn 2 o 7[END_REF]. (

II) Antiferromagnet with E symmetry

The classical state in this region has zero magnetization with m 2 E = 1 and bears a continuous U(1) degeneracy parametrized by the angle θ E such that [START_REF] Yan | Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to yb 2 ti 2 o 7 , er 2 ti 2 o 7 , and er 2 sn 2 o 7[END_REF][START_REF] Champion | er 2 ti 2 o 7 : evidence of quantum order by disorder in a frustrated antiferromagnet[END_REF] m E = (cos θ E , sin θ E ) .

(1.14)

The spin configuration in this manifold is given by :

S 0 = S 2 3 cos(θ E ), 2 3 cos(θ E + 2π 3 ), 2 3 cos(θ E - 2π 3 
)

S 1 = S 2 3 cos(θ E ), - 2 3 cos(θ E + 2π 3 ), - 2 3 cos(θ E - 2π 3 
)

S 2 = S - 2 3 cos(θ E ), 2 3 cos(θ E + 2π 3 ), - 2 3 cos(θ E - 2π 3 
)

S 3 = S - 2 3 cos(θ E ), - 2 3 cos(θ E + 2π 3 ), 2 3 cos(θ E - 2π 3 
) .

(1.15)

with spins restricted to the local easy-plane of each sublattice (see Fig. The antiferromagnetic configurations with E symmetry are sometimes referred to as Γ 5 states.

The basis of the E irrep is formed by Ψ 2 and Ψ 3 states [START_REF] Poole | Magnetic ordering in the xy pyrochlore antiferromagnet er2ti2o7: a spherical neutron polarimetry study[END_REF].

(II.a) Non-coplanar antiferromagnet, Ψ 2 , with E symmetry

The Ψ 2 states are six-fold degenerate [START_REF] Champion | er 2 ti 2 o 7 : evidence of quantum order by disorder in a frustrated antiferromagnet[END_REF] and given by Eq. (1.15) with θ E = nπ 3 , n = 0, 1, 2, 3, 4, 5. They correspond to the ground state of Er 2 Ti 2 O 7 [START_REF] Champion | er 2 ti 2 o 7 : evidence of quantum order by disorder in a frustrated antiferromagnet[END_REF]. See The classical state in this region has zero magnetization with m 2 T 2 = 1 and is 6-fold degenerate [START_REF] Palmer | Order induced by dipolar interactions in a geometrically frustrated antiferromagnet[END_REF]. One of the six spin configurations is for example:

S 0 = S 1 √ 2 , - 1 √ 2 , 0 S 1 = S - 1 √ 2 , - 1 √ 2 , 0 S 2 = S 1 √ 2 , 1 √ 2 , 0 S 3 = S - 1 √ 2 , 1 √ 2 , 0 (1.16) 
This is called a Palmer-Chalker (PC) or Ψ 4 state [START_REF] Palmer | Order induced by dipolar interactions in a geometrically frustrated antiferromagnet[END_REF][START_REF] Poole | Magnetic ordering in the xy pyrochlore antiferromagnet er2ti2o7: a spherical neutron polarimetry study[END_REF] where the spins are coplanar and arranged in helical fashion in a common [START_REF] Marinari | General method to determine replica symmetry breaking transitions[END_REF] plane (see Fig. 1.10(c).). They correspond to the ground state of Er 2 Sn 2 O 7 [START_REF] Petit | Long-range order in the dipolar xy antiferromagnet er 2 sn 2 o 7[END_REF].

(IV) Boundary between Palmer-Chalker phase and E irrep phase

Before moving to the materials, we should briefly discuss the boundary between the Palmer-Chalker phase and E antiferromagnet as it will be of importance later in this thesis. This boundary appears when a E = a T 2 which implies J 1 = J 2 for the phase diagram with J 3 < 0 and J 4 = 0 [START_REF] Yan | Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to yb 2 ti 2 o 7 , er 2 ti 2 o 7 , and er 2 sn 2 o 7[END_REF]. It has been shown [START_REF] Yan | Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to yb 2 ti 2 o 7 , er 2 ti 2 o 7 , and er 2 sn 2 o 7[END_REF] soft modes around the ψ 2 states which are then selected via thermal order-by-disorder at finite temperature (see section 1.1.3). 

Er based pyrochlores

In this section, we shall present the two pyrochlore oxides, Er 2 Ti 2 O 7 [START_REF] Savary | Order by quantum disorder in er 2 ti 2 o 7[END_REF] and Er 2 Sn 2 O 7 [START_REF] Guitteny | Palmer-chalker correlations in the xy pyrochlore antiferromagnet er 2 sn 2 o 7[END_REF] which form an important part of chapter 3. Their exchange parameters [J 1 , J 2 , J 3 , J 4 ] have been parametrized in Refs. [START_REF] Savary | Order by quantum disorder in er 2 ti 2 o 7[END_REF][START_REF] Guitteny | Palmer-chalker correlations in the xy pyrochlore antiferromagnet er 2 sn 2 o 7[END_REF] and are given in Table 1.2 ion is a Kramers doublet with a substantial easy-plane anisotropy, and Er 2 Ti 2 O 7 is well described by Hamiltonian 1.5 [START_REF] Savary | Order by quantum disorder in er 2 ti 2 o 7[END_REF] There have been several studies on Er 2 Ti 2 O 7 in presence of structural disorder. For example, Maryasin and Zhitomirsky [START_REF] Maryasin | Order from structural disorder in the xy pyrochlore antiferromagnet er 2 ti 2 o 7[END_REF] studied the effect of non-magnetic dilution and weak bond disorder for the anisotropic XY pyrochlore antiferromagnet. They observed that a small amount of non-magnetic impurities in Er 2 Ti 2 O 7 stabilizes the Ψ 3 states instead of the Ψ 2 ones in the pure material. They also showed that order by structural disorder mechanism competes with the effect of thermal and quantum fluctuations. Andreanov and McClarty [START_REF] Andreanov | Order induced by dilution in pyrochlore xy antiferromagnets[END_REF] studied the effect of substituting nonmagnetic ions onto the magnetic sites in a pyrochlore XY model, for example, Er Ref. [START_REF] Shirai | Dopinginduced quantum crossover in er 2 ti 2-x sn x o 7[END_REF] also showed the evolution of long-range order upon non-magnetic dilution in Er 2 Ti 2-x Sn x O 7 . They found that the critical temperature decreases roughly linearly up to

x ≈ 1.7, with long-range order into the Γ 5 states (with E irrep). Above x = 1.7, T c starts to increase with the emergence of new Bragg peaks consistent with a Palmer-Chalker (Ψ 4 ) phase. 

Classical spin liquids on the pyrochlore lattice

Classical spin liquids have, at least theoretically, an infinite frustration parameter f (see Eq. 1.

2) [START_REF] Ramirez | Strongly geometrically frustrated magnets[END_REF]. A diversity of such spin liquids has been established on the pyrochlore lattice.

Here we shall introduce two specific spin liquids that will be central to chapter 4.

The Heisenberg antiferromagnet

On the classical phase diagram of Hamiltonian (1.5), the Heisenberg antiferromagnet (HAF) corresponds to the asymptotic limit J 1 = J 2 ≫ J 3 , on the boundary between the E and T 2 antiferromagnets (see Fig. 1.7). Taking J 1 = J 2 = 1 and J 3 = J 4 = 0 in the eigenvalues of Eqs. (1.7) and (1.10), we get :

a A 2 = -1 a E = -1 a T 2 = -1 a T 1,A = 3 a T 1,B = -1 (1.17)
The ground state of the classical HAF naturally includes all antiferromagnetic irreps, A 2 , E, T 2 , T 1,B . In other words, its ground state manifold can be written as a linear superposition of all of these irreps. It is extensively degenerate and the HAF is a well-known classical spin liquid that remains disordered for all temperatures [START_REF] Moessner | Properties of a classical spin liquid: The heisenberg pyrochlore antiferromagnet[END_REF][START_REF] Moessner | Low-temperature properties of classical geometrically frustrated antiferromagnets[END_REF][START_REF] Canals | Spin-liquid phase in the pyrochlore anti-ferromagnet[END_REF]. The classical HAF model has been realized in a few materials, such as NaCaNi 2 F 7 [START_REF] Zhang | Dynamical structure factor of the three-dimensional quantum spin liquid candidate nacani 2 f 7[END_REF].

The tensor spin liquid

On the opposite direction of the boundary between the E and T 2 antiferromagnets, at the center of the classical phase diagram in Fig. 1.7 where

J 1 = J 2 = J 4 = 0 and J 3 = -1,
we observe a so-called tensor spin liquid [START_REF] Owen Benton | A spin-liquid with pinch-line singularities on the pyrochlore lattice[END_REF]. Its name comes from the description of its ground-state manifold that requires an emergent tensor gauge field theory. Its peculiar nature appears in the form of pinch lines in its structure factor [START_REF] Owen Benton | A spin-liquid with pinch-line singularities on the pyrochlore lattice[END_REF].

Using Eqs. (1.7) and (1.10), the eigenvalues turn out to be :

a A 2 = 2 K a E = -1 K a T 2 = -1 K a T 1,A ′ = -1 K a T 1,B ′ = 2 K (1.18)
As expected for a point sitting in the center of the phase diagram of Fig. 1.7, the ground state energy is minimized by E, T 2 , T 1,A ′ irreps.

Quenched disorder and spin glasses

While most solids studied in condensed matter are crystalline as shown in In amorphous magnetic systems, the Hamiltonian is not invariant by translation anymore.

Spin-spin interactions are randomly distributed, following a given distribution characteristic of the model or material. Since it is not possible to satisfy all interactions in a system with random couplings, amorphous systems are also frustrated; not because of the geometry of the lattice, as considered so far in this chapter, but simply due to the structural disorder of the system. When the Hamiltonian parameters characterizing disorder do not change over time in response to changes in the magnetic degrees of freedom or other parameters, the system is said to be quenched. On the other hand, it is referred to as an annealed disorder if the random variables can be modified. In this thesis, we will focus on quenched disorder.

As a result of this frustration, magnetic moments become frozen in time at low temperatures, even if they remain spatially disordered. This is a spin glass [START_REF] Toulouse | Theory of the frustration effect in spin glasses: I[END_REF][START_REF] Mydosh | Spin Glasses[END_REF][START_REF] Nishimori | Statistical Physics of Spin Glasses and Information Processing: an Introduction[END_REF][START_REF] Binder | Spin glasses: Experimental facts, theoretical concepts, and open questions[END_REF] whose physics has been extensively studied in canonical systems such as the Edwards-Anderson model [START_REF] Edwards | Theory of spin glasses[END_REF],

the Sherrington-Kirkpatrick model [START_REF] Sherrington | Solvable model of a spin-glass[END_REF], the spherical model [START_REF] Kosterlitz | Spherical model of a spin-glass[END_REF], the trap model [START_REF] Monthus | Models of traps and glass phenomenology[END_REF] ... If we plot a free energy landscape of a spin glass system [START_REF] Heinz Hoffmann | The Statistical Physics of Energy Landscapes: From Spin Glasses to Optimization[END_REF], it turns out to be pretty random as illustrated in Fig 1 .14. Usually in most physical systems at low temperatures, if we leave the system relaxed for a long enough time, it wants to go to the lowest energy state. On the contrary, spin glass is quite interesting because it has a lot of low-energy states (valleys) but these low-energy states are separated from each other by large energy barriers (mountains).

These large energy barriers make it difficult for the system to transition from one state to another. A spin glass appears at low temperatures when the spins get stuck in a particular valley for a very long time. Now, the question one might ask is: How do we identify a spin glass? Spin glasses don't have a spatial order as the spins are randomly aligned so how do we define an order parameter?

One solution lies is to look at non-equilibrium dynamics [START_REF] Bouchaud | Out of equilibrium dynamics in spin-glasses and other glassy systems[END_REF]. This can be achieved by performing quenched dynamics and seeing how the spins relax in the system. To be more precise, firstly we define a two-time correlation function [START_REF] Parisi | The order parameter for spin glasses: a function on the interval 0-1[END_REF][START_REF] Bouchaud | Out of equilibrium dynamics in spin-glasses and other glassy systems[END_REF] C(t, t ′ ):

C(t, t ′ ) = 1 N N i=1 ⟨S i (t)S i (t ′ )⟩. (1.19)
Here, S i (t) and S i (t ′ ) are the orientations of spins at times t and t ′ respectively and N is the The initial memory of the system is retained in a spin glass system whereas it is quickly forgotten in the case of a paramagnet.

We can formalize the above by introducing a new quantity called as Edwards-Anderson spin glass parameter [START_REF] Edwards | Theory of spin glasses[END_REF] defined as:

q EA = lim t-t ′ →∞ lim t ′ →∞ C(t, t ′ ) (1.20)
If there is a plateau in the correlation function C(t, t ′ ), it fixes the value of q EA [START_REF] Bouchaud | Out of equilibrium dynamics in spin-glasses and other glassy systems[END_REF][START_REF] Cugliandolo | Real-time nonequilibrium dynamics of quantum glassy systems[END_REF]. The larger the value of q EA , the more glassy the system behaves. The emergence of this plateau in correlation function C(t, t ′ ) can be used to characterize the spin glass phase from other phases.

At a microscopic level, one can have various types of defects, such as e.g. magnetic dilution and magnetic stuffing, where a magnetic moment is, respectively, taken out and added to the crystalline structure, as illustrated in Fig. 1.16. These defects can be either accidental or controlled during the synthesis.

In this thesis, we will consider another kind of quenched disorder. All the magnetic ions 

Motivation of this thesis

Most of the literature on geometrically frustrated systems focuses on idealized homogeneous systems. However, realistic systems usually have local random amounts of impurities. Missing ions, dilution, or stuffing are not uncommon in rare-earth pyrochlores and can qualitatively alter a system's properties [START_REF] Ross | Lightly stuffed pyrochlore structure of single-crystalline yb 2 ti 2 o 7 grown by the optical floating zone technique[END_REF][START_REF] Takatsu | Quadrupole order in the frustrated pyrochlore tb 2+x ti 2-x o 7+y[END_REF].

In this thesis, we will study the interplay between geometric frustration and quenched disorder. Our goal is to use quenched disorder as a knob to tune the properties of frustrated magnets. First, we will present the methods used in this thesis in chapter 2. In chapter 3 we will focus on an experimentally motivated pyrochlore oxide series Er 2 Ti 2-x Sn x O 7 [START_REF] Shirai | Dopinginduced quantum crossover in er 2 ti 2-x sn x o 7[END_REF].

We will pay particular attention to generating a phase diagram of Er 2 Ti 2-x Sn x O 7 and see how the magnetic properties of Er 2 Ti 2-x Sn x O 7 evolve with x. In chapter 4 we will shift our focus to the two classical spin liquids presented in Section 1.4 and see if we can connect them via quenched disorder. Finally, we conclude with a discussion of the implications of these results and some thoughts about future directions.

Chapter 2

Numerical Methods

Introduction

The study of statistical properties of complex systems poses many hard problems that are difficult to solve just by analytical approaches. Therefore, numerical simulation techniques such as the Monte Carlo method [START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF][START_REF] Berg | Markov Chain Monte Carlo Simulations and Their Statistical Analysis[END_REF][START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF] are indispensable tools to gain a better understanding of complex systems like (spin) glasses, and more generally frustrated magnets.

We are aware of the fact that the magnetic dipoles of the atoms in materials are randomly oriented which results in zero macroscopic magnetic moment. However, in certain cases, such as iron, a magnetic moment is produced as a result of a preferred alignment of the electronic spins. This phenomenon is based on two fundamental but competing principles: energy minimization and entropy maximization [START_REF] Plischke | Equilibrium Statistical Physics[END_REF]. The mediator between these two elements is the temperature which determines the overall dominant term among the two. The Boltzmann distribution function (given below) for a given microstate k governs the relative importance of energy minimization and entropy maximization.

P (k) = exp( -E k ) k b T ) (2.1)
which is illustrated in Given the energy of each possible state k of the system, equation 2.1 gives the probability for the system to be in each possible state (at a given fixed temperature). The macroscopic quantities such as energy, specific heat, etc. can be calculated by doing a weighted summation over all the probabilities. Let's see it through an example:: for any arbitrary fixed state k, let's denote a physical observable O respectively. The expected values of O is given as :

< O >= k P (k)O k (2.2)
where O k is the value of observable O in the microstate k. The above equation seems quite intuitive but lacks practicality. Considering we have a macroscopic number N of classical SO(3) spins, it implies that there is an extensive number of different states. The statistical weight for the majority of configurations is very small and the statistically important configurations would be likely missed. The computations in this way are disconcerting and a waste of computing efforts. A better alternative would be to design a simulation that generates data over the representative states [START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF]. These representative states will constitute the appropriate proportions of different states. This is a form of a very popular statistical concept called biased sampling where we collect samples favouring some outcomes over others. In simple words:: generated frequency ≡ actual probability. In the next few sections, we explain the approach in detail.

Sampling procedure and the Metropolis Algorithm

The thermal average for an observable O(x) is defined in the canonical ensemble

< O >= 1 Z e -βH(x) O(x)dx (2.3)
where x is a position vector in the phase space, β = 1/k b T and the partition function Z is given by

Z = e -βH(x) dx (2.4)
where the normalized Boltzmann factor is

P (x) = 1 Z e -βH(x) (2.5)
This probability gives the statistical weight with which the configuration x occurs in the thermal equilibrium. We want to study the discrete case of the above equations, so equation 2.3 turns out to be of the following form [START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF]:

< O >= n i=1 e -βH(x i ) O(x i ) n i=1 e -βH(x i ) (2.6)
Taking n → ∞(n is the no. of states) would reduce equation 2.6 to equation 2.3. The issue in simple sampling is to overlook the important part of the probability distribution which lies outside the sampling region. So, we need a smarter technique to inculcate the important areas in the phase space. We would like to select points x i in the phase space with an associated probability, P(x i ). Now, we can rewrite equation 2.6 as

< O >= n i=1 e -βH(x i ) O(x i )/P (x i ) n i=1 e -βH(x i ) /P (x i ) (2.7)
Now, we can choose P(x i ) as e -βH(x i ) which would reduce equation 2.7 to a simpler averaging equation.

< O >= n i=1 O(x i ) n (2.8)
Till now, we have been able to reduce a probability distribution at the equilibrium of the infinite phase space to a representative distribution with a finite set of points from the phase space, x i . Now the question is: how to generate this representative distribution? This can be achieved by using the concept of Markov chain [START_REF] Alexander | Extension of the law of large numbers to quantities, depending on each other[END_REF] of successive states {x i }. Each successive state x i+1 is constructed from a preceding state x i via a transition probability W(x i →

x i+1 ). In order to implement this idea we need to impose a constraint called detailed balance [START_REF] Bridgman | Note on the principle of detailed balancing[END_REF][START_REF] Boltzmann | Further studies on the thermal equilibrium of gas molecules[END_REF][START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF].

P eq (x i )W (x i → x i ′ ) = P eq (x i ′ )W (x i ′ → x i ). (2.9) 
This equation ensures that we are in equilibrium implying the probability at arbitrary point x i in phase space is time-independent. Since P(x i ) ∼ e -βH(x i ) , we can compute the ratio of the transition probabilities since it is only dependent on the difference of the energies of the

two states (δH = H(x i ′ ) -H(x i )) W (x i → x i ′ ) W (x i ′ → x i ) = e -δHβ (2.10)
The process of engineering the Markov chain in the Metropolis algorithm scheme can be summarized as follows :

• Initialise with a random microstate i with energy E i .

• Perform a random change(spin flip) in the state i to create a state f .

• Accept or reject the move with the probability P acceptance = min(1,e -∆E/k b T ) where

∆E = E f -E i
A Monte Carlo simulation is built around these three steps. Starting with a random configuration, the above sequence should be performed multiple times to achieve an equilibrium distribution before starting to measure physical observables. After reaching equilibrium, we can start measuring observables and take an average at the end which gives us the expectation value of the observable. Metropolis [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF] algorithm employs importance(biased) sampling which helps in sampling statistically important microstates and increases the efficiency of the simulations.

Heatbath Method

In the Metropolis [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF] algorithm, a random update is based on the change of the energy that follows such configuration change. The acceptance rate thus decreases upon cooling and simulations might become difficult to thermalise at low temperatures. The heatbath [START_REF] Miyatake | On the implementation of the 'heat bath' algorithms for monte carlo simulations of classical heisenberg spin systems[END_REF][START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF] approach provides a better way to perform these local spin updates, where the new direction of a spin is drawn from a suitable probability distribution, such that the new configuration energy is automatically distributed according to a Boltzmann weight and is thus always accepted.

Let us assume n local-energy levels, (ε 1 , ε 2 , ε 3 , ε 4 , ......., ε n ) for a spin. Then the probability of finding the spin in the local energy level j is written as :

P j = e -ε j /kT i e -ε i /kT (2.11)
where k b and T denote respectively the Boltzmann constant and temperature. If a random number R in the range 0 < R < 1 falls into the region m-1 j=1

P j < R < m j=1 P j (2.12)
we can say that the spin is at level m. When the distribution of the energy levels is continuous, the spin state m is determined by the following equation:

R = m 1 djP j (2.13)
The Hamiltonian for our system is given in equation 1.5. Let us denote the local field vector for spin S i as:

H µ i = j J µν ij S ν j (2.14)
Then the local Hamiltonian associated with S i is written as

H ex,i = Hcos(θ) (2.15) 
where |S i | = 1 and |H i | = H. The probability [START_REF] Miyatake | On the implementation of the 'heat bath' algorithms for monte carlo simulations of classical heisenberg spin systems[END_REF] of finding the spin i in an element of solid angle dω = sin θ dθ dϕ is written as :

P (θ, ϕ) sinθdθdϕ = Ce -H ex,i /kT sinθdθdϕ (2.16)
where C denotes the normalization constant:

1/C = 2π 0 dϕ π 0 sinθdθe -H ex,i /kT (2.17)
Thus, θ and ϕ are determined by the following equations:

R = 2π 0 dϕ ′ θ 0 sinθ ′ dθ ′ P (θ ′ , ϕ ′ ) (2.18) R ′ = ϕ/2π (2.19)
where R and R' are random numbers both between 0 and 1. The energy does not depend on the azimuthal angle ϕ that's why it is chosen randomly on the interval [0,2π].

Solving equation (2.18), we obtain

cosθ = (1/HK)log[e HK (1 -R) + Re -HK ] (2.20) 
where K = J/k b T. After choosing θ and ϕ, we compute the vector components of the spin and rotate them to the global coordinate system as shown below :

       S x ′ i S y ′ i S z ′ i        := R(ΘΦΨ)        S x i S y i S z i        (2.21)
Finally, we obtain ( S x ′ i , S y ′ i , S z ′ i ) which is the new thermalized spin. Here, R(ΘΦΨ ) is the rotation matrix. for i in range(N):

4:

Calculate the effective field for a randomly chosen spin.

5:

Evaluate θ and ϕ from equation 2.19 and 2.20

6:
Compute the new orientation of the spin using θ and ϕ. 7: Collect the value of observables 8: Repeat Monte Carlo step for a sufficient number of times and average the accumulated change in observables over the number of spins and the number of Monte Carlo steps

Over-relaxation

To improve the efficiency of our simulation, we can use over-relaxation [START_REF] Creutz | Overrelaxation and monte carlo simulation[END_REF][START_REF] Frank | Overrelaxed heat-bath and metropolis algorithms for accelerating pure gauge monte carlo calculations[END_REF] techniques alongside other stochastic approaches. We start with calculating the effective interaction vector for a chosen spin from its neighbors and then precess about this vector by an angle θ, θ can either be random or π(extreme rotation), this is usually repeated N(∼ no. of spins) times. This algorithm when used together with a stochastic technique, e.g. Metropolis or

Heatbath (depending upon the problem), is quite efficient and vectorizes extremely well.

Additionally, it also helps to reduce autocorrelations between successive spin configurations.

Algorithm 2 Overrelaxation

1: Choose a spin at random. 2: Calculate the effective field for the selected spin. Let's call it n f ield 3: Rotate the selected spin in step 1 around n f ield to obtain a new precessed spin.

Averaging in quenched disorder systems

If a model Hamiltonian depends on random variables other than the regular degrees of freedom, the system is said to have quenched randomness. Usually, these random variables are kept fixed pertaining to one physical realization of the system(more on this later). Let's consider a doped material A x B 1-x , where a crystal is grown from a melt containing a fraction

x of A-atoms and a fraction 1-x of B-atoms. The exchange interactions J ij between spins depend on the type of atoms that are considered: J AA , J AB , or J BB , respectively. Let's denote the occupation variable c i = 1 if site i is occupied by an A-atom and c i = 0 if site i is occupied by a B-atom. We can write the associated Hamiltonian(considering only nearest-neighbor interactions) as follows [START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF] :

H {S i , c i } = - ij . {c i c j J AA + [c i (1 -c j ) + c j (1 -c i )]J AB + (1 -c i )(1 -c j )J BB } S i S j (2.22)
As we have seen before, the average of the spin configurations are weighted with the

Boltzmann factor e -H/kT but we need to associate a different distribution P (c i ) for our occupation variable c i . The choice of P (c i ) is dependent on the sample preparation in experiments. One can choose c i to be consistent with the concentration x in the material or with some built-in correlations reflecting 'chemical' short-range order. Therefore, an average of some observable A(S i ;c i ) (e.g. the magnetization) becomes [START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF] [⟨A(S i , c i )⟩] = dc i P (c i ) 1 Z(c i )

(S i ) T rA(S i , c i )e -H(S i ,c i )/kT
(2.23)

One needs to carry out a double average for a particular c i as seen from the above equation :

(i) thermal average is done via the importance sampling discussed before (ii) the disorder average [...] av = dc i P (c i )... which can be achieved by simple sampling.

The solution seems quite straightforward but we need to figure out the frequency of averaging with P (c i ) over the configurations c i of the quenched disorder variables. In experiments, measurements are carried out for a single probe since the observable quantities are 'selfaveraging' [START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF][START_REF] Wiseman | Lack of self-averaging in critical disordered systems[END_REF][START_REF] Bouchaud | Out of equilibrium dynamics in spin-glasses and other glassy systems[END_REF]. However, the same scheme cannot be applied to simulations since in numerical studies, one mostly considers systems of finite size (L). There is a significant sample-to-sample fluctuation in certain quantities(typically for the order parameter and its susceptibility) which causes a lack of self-averaging. In order to maneuver this, we require a quenched disorder averaging of around 10 2 ∼ 10 3 . Monte Carlo simulation of quenched disordered systems is a challenging task; due to the requirement of performing the double averaging procedure over both thermal disorder and quenched disorder, the demand for computer resources is enormous and the judgment of the accuracy is subtle, in particular, due to metastability and slow relaxation at low temperatures.

Parallel Tempering

The standard method to equilibrate systems with the quenched disorder at low temperatures relies on a slow cooling from high temperature to the temperature of interest. The Parallel tempering [START_REF] Marinari | Simulated tempering: A new monte carlo scheme[END_REF][START_REF] Hukushima | Exchange monte carlo method and application to spin glass simulations[END_REF][START_REF] Swendsen | Replica monte carlo simulation of spinglasses[END_REF] algorithm simulates M copies of the original system at different temperatures, with periodic exchanges based on a Metropolis criterion between neighboring temperatures. It is intended for simulating systems with large energy barriers like spin glasses. Replica-exchange [START_REF] Swendsen | Replica monte carlo simulation of spinglasses[END_REF] moves allow replicas to perform a random walk in temperature space, thereby efficiently overcoming energy barriers. Replicas at high temperatures improve algorithmic mixing, whereas replicas at low temperatures can reach equilibrium on a shorter time scale compared to typical simulations at a fixed low temperature. The performance of the Parallel tempering algorithm is highly dependent on its parameters, including the distribution of replicas in temperature space.

The swapping criterion is based on the detailed balance (equation 2.9). To elaborate, let's take M independent replicas of the system which are simultaneously simulated at different temperature values T 1 , T 2 , . . . , T M . The system of M-independent thermal replicas can be treated as an extended ensemble, X = (X 1 , X 1 ,......., X M ) and the partition function:

Z = M m=1 Z m (2.24)
where Z m is the partition function of the replica at temperature T m . The probability of a given configuration X :

W (X) = M m=1 w(X m , T m ) (2.25)
where

w(X m , T m ) = 1 Z m e -H(Xm) k b Tm (2.26)
is the probability of configuration X m in temperature T m .

The detailed balance equation for a configurational swap between two temperatures T k and T l can be written as :

W kl P kl→lk = W lk P lk→kl (2.27)
here, W kl = W(X = (X 1 , ....X k , X l , ....X m )) and P kl→lk represents the transition probability between X = (X 1 , ....X k , X l , ....X m ) and X' = (X 1 , ....X l , X k , ....X m ).

The swap between two replicas will be accepted by the following probability :

P accept = min(1, e -∆ ) (2.28) where ∆ = (E(X l ) -E(X k ))[ 1 k b T k -1 k b T l ] .
∆T must be small enough between the simulated temperatures for the configuration change to occur. If the configurations of thermal replicas k and l are to be exchanged, there must be an overlap between the probability distributions for 

Finite size scaling

One of the limitations that the spin models confront us with is the finite size of our lattice.

This results in a problem of recognizing the specific point at which the phase transition occurs. This should be at a theoretical point of divergence but we are limited by the size of the lattice under consideration and thus don't see this divergence. This effect is minimized by using periodic boundary conditions but would only be resolved if we were to consider an infinitely sized lattice as with the associated theoretical values for the phase transition.

It is thus necessary to use a construct that will allow us to extrapolate the respective theoretical value given the limited resources of a finite-sized lattice. There are two types of problems, associated with the finite lattice size : (i) errors due to the boundary conditions (ii) mismatch between the critical temperature T c and the temperature T c (L) where singularities are observed for the system with characteristic length scale L. We have to study T c (L) at different system sizes to predict the infinite lattice phase transition point T c (L = ∞) = T c . Finite-size scaling [START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF][START_REF] Binder | Critical properties from monte carlo coarse graining and renormalization[END_REF] theory is a powerful scheme to deduce the critical temperature and order parameters at thermodynamic limit.

The correlation length diverges at the critical temperature, ξ ∝ τ -ν , τ = |T -T c |/T c is the reduced temperature. At ξ = L, specific heat C and susceptibility χ exhibit a somewhat rounded peak in place of an expected true divergence. We are interested in the critical behavior of the system in the vicinity of the phase transition, which can be extracted from the singular part of the free energy. According to the finite size scaling theory [START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF] its size dependence is described by the scaling ansatz of the following form :

F (L, T, H) = L -(2-α)/ν F (τ L 1/ν , HL (γ+β)/ν ) (2.29)
where α, β, γ are the critical exponents. Differentiating F and setting H = 0 one gets the scaling form of various thermodynamic functions:

M (L, T ) ∼ L -β/ν M 0 (τ L 1/ν ) (2.30) χ(L, T ) ∼ L γ/ν χ 0 (τ L 1/ν ) (2.31) C(L, T ) ∼ L α/ν C 0 (τ L 1/ν ) (2.32)
where M 0 , χ 0 and C 0 are fixed scaling functions. At the phase transition (τ = 0), the size dependence reduces to a power law behavior :

M c (L) ∼ L -β/ν (2.33) χ c (L) ∼ L γ/ν (2.34) C c (L) ∼ L α/ν (2.35)
These functions are the first or second-order moments of the order parameter or energy.

Often, we face the problem of determining the transition temperature(from the peak in specific heat) in the first place, and we thus have to implement a different notion in order to ascertain the critical temperature accurately.

The critical temperature can be determined by using the Binder cumulant [START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF][START_REF] Binder | Critical properties from monte carlo coarse graining and renormalization[END_REF][START_REF] Binder | Finite size scaling analysis of ising model block distribution functions[END_REF]]

U L = 1 - ⟨M 4 ⟩ L 3⟨M 2 ⟩ L . (2.36)
for an order parameter M and a lattice of size L. In order to estimate critical temperature, one needs to use double precision to achieve considerable accuracy. We use two different system sizes ((L, L ′ )) and extract the intersection of U L , U L ′ , which gives us the critical temperature. The cumulants need to be collected in a temperature window containing the critical temperature. Therefore, an iterative process can be employed in order to narrow down the location of critical temperature.

Technical details of Monte Carlo simulations

Finally, we present the general flow of our MC simulations. All the simulations were done on the Curta cluster. The cluster has 2x Front-end interactive nodes, 336x compute nodes, 4x bigmem compute nodes, 4x visual nodes, and 4x GPU nodes.

We start with initiating n(suppose 100) Temperature(T) points in n CPU cores. For each T, we generate a random initial spin configuration. Starting deep in the paramagnetic phase, we cool down our spin configuration to the desired T value via simulated annealing, 0.2 10 6

MCS steps were executed for this process. Following that 0.2 10 6 MCS were performed to thermalize the system at temperature T , without storing data. This is followed by 10 Initialise random spin configurations at different temperatures between a required temperature range. 2: Perform simulated annealing to cool down the spin configurations to the required temperatures using heatbath. Simulate an adequate amount of MCS to achieve stable results. 

Landau-Lifshitz dynamics

As introduced previously, let us use the local field vector felt by spin S i :

H i = j Ĵij S j .
The equation of motion for this classical spin is given by the Landau-Lifschitz equation of motion [START_REF] Landau | The Classical Theory of Fields[END_REF]:

dS i dt = S i × H i (2.37)
Solving Eq. (2.37) analytically for all spins is impossible in the thermodynamic limit. This is why we shall use a numerical integration, namely the fourth-order Runge-Kutta method [START_REF] Runge | Ueber die numerische auflösung von differentialgleichungen[END_REF] where time is divided into equal time steps ∆t, making sure that the energy remains constant over time. It means that the Landau-Lifschitz dynamics take place in the microcanonical ensemble (constant energy) and that thermalization of the canonical ensemble thus necessarily comes from the initial seed configurations obtained from Monte Carlo simulations. Using dimensionless units, the numerical solution of equation (2.37) is :

S i (t + ∆t) = S i (t) + k 1,i 6 + k 2,i 3 + k 3,i 3 + k 4,i 6 (2.38) 
where the vectors k 1 , k 2 , k 3 , k 4 are defined as follow:

k 1,i = S i × H i ∆t (2.39) k 2,i = (S i + k 1,i 2 ) × (H i + k 1,i nn 2 )∆t (2.40) k 3,i = (S i + k 2,i 2 ) × (H i + k 2,i nn 2 )∆t (2.41) k 4,i = (S i + k 3,i ) × (H i + k 3,i nn )∆t (2.42)
where k p,i nn = j Ĵij k p,j for p = 1, 2, 3.

Structure Factors

The dynamical structure factor, as measured by neutron scattering, is [START_REF] Zhang | Dynamical structure factor of the three-dimensional quantum spin liquid candidate nacani 2 f 7[END_REF][START_REF] Taillefumier | Semiclassical spin dynamics of the antiferromagnetic heisenberg model on the kagome lattice[END_REF] :

S(q, ω) = µν (δ µν - q µ q ν q 2 ) × 1 2πN N i,j=1 ∞ -∞
dt e -iq•(r i -r j )+iωt ⟨s µ i (t)s ν j (0)⟩.

(2.43)

Here, q denotes the vector in reciprocal space, r i and r j are the position of spins in the lattice, w is the energy and N number of spins. The thermal average is done by Monte Carlo simulations while the time evolution relies on Landau-Lifschitz dynamics.

Chapter 3

Non-magnetic dilution in Er 2 Ti 2-x Sn x O 7

The rare earth pyrochlore structure is fairly common in nature and is also of significant interest for magnetic properties. The optimal pyrochlore formula is A 2 B 2 X 7 where A is a rare earth ion, B is usually a non-magnetic ion, and X is an anion such as oxygen. The rare earth metal pyrochlore oxides provide an intriguing platform for studying the interplay of geometric frustration and spin-orbit interaction. In recent times, progress has been observed in the synthesis of new rare-earth pyrochlores. These geometrical frustrated pyrochlore structures have attracted considerable attention over the past decades due to their exotic magnetic properties, e.g. spin ices, spin liquids, and noncollinear XY orders.

The two pyrochlore oxides, Er the idea is to tune the Hamiltonian of our system via non-magnetic dilution x; in other words, to use impurities as a knob to explore unknown parts of the phase diagram.

The organization of this chapter is as follows: first, we briefly introduce the different models which we considered to study Er 2 Ti 2-x Sn x O 7 . Then we present the results of our Monte Carlo simulations of the system. In particular, we present the specific heat, critical temperature, and subsequently the x -T (temperature) phase diagram. In the subsequent sections, we compare the structure factor and semi-classical spin dynamics calculations for the different models demonstrating the legitimacy of our theory. We also explore the specific heat dependence on chemical dilution x and the h -T phase diagram in the presence of magnetic field h. Finally, our findings, comparisons, predictions, and future directions are summarised in the last section.

Models

We assume that the magnetic ions Er 3+ are in stoichiometric proportions in the system, without any missing spins or stuffed impurities. In other words, the pyrochlore structure of the magnetic moments is conserved, and the structural disorder only comes from Ti 4+ and Sn 4+ . The main question is thus how to model the quenched, disordered, positions of these non-magnetic ions into the microscopic Hamiltonian.

Model 1: Correlated quenched disorder (CQD)

In this first model, we will induce chemical disorder by choosing the type of interaction depending on its local surroundings. It is impossible to perform robust ab initio estimates for a structurally disordered structure made of 4f magnetic ions. However, we can build a minimal model to extract the essential physics of the non-magnetic dilution.

The pyrochlore lattice is made of corner-sharing tetrahedra, but can also be seen as an ensemble of bond-sharing hexagons (see Fig 3.1). Each bond between two Er 3+ ions belongs to exactly two hexagons, and it is at the center of these hexagons that lie the non-magnetic ions. We shall fix the matrix coupling Ĵij of this bond between spins i and j based on the nature of these two neighboring non-magnetic ions, following the rules of 

Local environment Coupling parameters

Ti-Ti J 1 = 0.11 meV, J 2 = -0.06 meV, J 3 = -0.10 meV, J 4 = -0.003 meV Sn-Sn J 1 = 0.07 meV, J 2 = 0.08 meV, J 3 = -0.11 meV, J 4 = 0.04 meV Ti-Sn/Sn-Ti J 1 = 0.09 meV, J 2 = 0.01 meV, J 3 = -0.105 meV, J 4 = 0.0185 meV This model neglects the influence of further non-magnetic ions B and assumes a relatively simple variation of the matrix coupling when the bond is surrounded by both Ti and Sn.

But it has the notable merit (i) of accounting for the correlated nature of the disorder since the six bonds of a hexagon necessarily share the same non-magnetic ion B, and (ii) to include realistic values for coupling parameters, obtained by independent inelastic neutron scattering experiments on Er 2 Ti 2 O 7 [START_REF] Savary | Order by quantum disorder in er 2 ti 2 o 7[END_REF] and Er 2 Sn 2 O 7 [START_REF] Guitteny | Palmer-chalker correlations in the xy pyrochlore antiferromagnet er 2 sn 2 o 7[END_REF]. In order to implement this model in simulations, the algorithm will go as follows Algorithm 1. There are two interpenetrating pyrochlore lattices, A and B, made respectively of magnetic ions A=Er 3+ and of non-magnetic ions B=Ti 4+ or Sn 4+ .

2. For a given sample and a given dilution x, we randomly fix the nature of the nonmagnetic ions on the B pyrochlore lattice with the following probability: x/2 for Sn 4+

and (1 -x/2) for Ti 4+ ions.

3.

Once the quenched disorder is fixed, we go through each of the 3N bonds on the A pyrochlore lattice (where N is the number of Er magnetic moments) and check the nature of the two neighboring non-magnetic ions on the B pyrochlore lattice. We fix the matrix coupling Ĵij between spins i and j following the rules of Table 3.1. The Hamiltonian of this sample is now uniquely fixed.

4. We do Monte Carlo simulations for this sample and store the thermally averaged observables.

5. We repeat processes 2, 3 and 4 for quenched-disorder average.

Model 2 : No quenched disorder (NQD)

One of our motivations in this thesis is to see if we can use disorder, more precisely nonmagnetic dilution, as a knob to explore the pyrochlore phase diagram beyond pristine compounds. In other words, any A 2 B 2 O 7 material only gives access to a given point of the phase diagram in Fig. 3.2. Here we want to create a bridge between these scattered points, using the dilution x as a tuning variable, to access the physics in regions of the phase diagram that are otherwise inaccessible. But to check the validity of our approach, we need to know, at least theoretically, what these intermediate regions look like. This is why we introduce this second model without any quenched disorder. Now, x acts as a connecting parameter between the exchange parameters of Er 2 Ti 2 O 7 and Er 2 Sn 2 O 7 (see the dotted line with a walking man in Fig. 3.2). For a given x, all the bonds in the whole pyrochlore lattice have the same exchange parameters, given by:

J x = J ETO + J ESO -J ETO 2 x (3.1)
where ETO and ESO stand for Er 2 Ti 2 O 7 and Er 2 Sn 2 O 7 respectively. It gives:

J 1,x = -0.02x + 0.11 J 2,x = 0.07x -0.06 J 3,x = -0.005x -0.10 J 4,x = 0.0215x -0.003 (3.2)
Since this model has no disorder, simulations do not require disorder average and the Monte Carlo algorithm is as explained in chapter 2. 2. Then, for each coupling parameter {J 1,x , J 2,x , J 3,x , J 4,x } of each Er-Er bond in the pyrochlore lattice, we add a perturbations ∆ i,x with i = 1, 2, 3, 4. There are thus (4 × 3N ) = 12N random variables for each sample. This noise variable ∆ i,x is chosen randomly in the range [-α 0 J i,x ; +α 0 J i,x ]. In order to study different strengths of disorder, we consider three cases where α 0 = {0.1, 0.2, 0.3}.

3. We do Monte Carlo simulations for this sample and store the thermally averaged observables.

4. We repeat processes 2 and 3 for quenched-disorder average.

Technical aspects of simulations

The general algorithm was described in chapter 2 and present here only details of the simulations. We first start with a random spin configuration at high temperature and perform simulated annealing to the required finite temperature T. After that, we equilibrate for 2.10 5 MCS and omit the next 2.10 5 MCS for thermalization. We measured specific heat, susceptibility, neutron-scattering structure factor, and order parameters and also performed spin dynamics. The temperature range for our simulations was 10 

Results

We will now present the results for the three different models, and compare them together and with the experimental phase diagram in section 3.3. ,

a E = a T 2 ⇔ -J 1 + J 2 + 2J 4 = 0, (3.3) 
and then injecting the values of the coupling parameters of Eq. (3.2). We find x c = 1.323, which is consistent with simulations.

As explained in Fig. 1.11, there is always an enhancement of the ground-state degeneracy at the boundary x c between E and T 2 phases, with additional soft modes around the Ψ 2 states. This is why thermal order-by-disorder lifts the U(1) degeneracy of the ground states with E 

Model 1: Finite Size Scaling (FSS)

While quenched disorder might prevent long-range magnetic order, partial order might persist on finite length scale. This is why an order parameter might appear finite on small systems, but eventually vanishes in the thermodynamic limit (N → ∞, V → ∞ such that

N V = constant ).
To determine what happens in our CQD model, we perform finite-size scaling (FSS) analysis for different dilution x and different system sizes (L = 3, 4, 5, 6). We extract the saturated value of m E and m T 2 order parameters at low enough temperatures and compare its evolution with the scaling function

f (L) = a * L -b + c, (3.4) 
where a, b, and c are constants. We are particularly interested in the value of c since it gives the value of order parameters in the thermodynamic limit.

In Fig. 3.9 we show the m E (a,c,e,g) and m T 2 (b,d,f,h) order parameters for x = 0.4, 1.0, 1.5 and 1.8. The scaling functions (equation 3.4) are plotted in the inset. FSS at x = 0.4 and 1.8 show that the respective E and T 2 orders are quasi-saturated, confirming that a "small" amount of non-magnetic dilution is not enough to drastically modify the physics of Er But it is at x = 1.5 that the physics qualitatively changes. Here, both order parameters vanish in the thermodynamic limit (within numerical noise). To make sure we did not miss the appearance of another form of long-range order, we confirmed the absence of any forms of dipolar and quadrupolar orders and the absence of Bragg peaks in the structure factor at zero and finite wavevectors q (see section 3.4). When plotting the evolution of these order parameters in the thermodynamic limit as a function of x in Fig. 3.10, we see that the absence of long-range order persists between x = 1.2 and 1. 

Model 1: Spin Glass and Transition Temperature

Since the structure of the lattice is strongly disordered in this intermediate regime, the presence of a spin glass is a priori more likely. To prove that, we shall now consider the simulations of so-called replicas. For every realization of the lattice disorder, we run two thermally independent copies from Monte-Carlo simulations and compute the overlap field between these two replicas [START_REF] Ballesteros | Critical behavior of the three-dimensional ising spin glass[END_REF][START_REF] Ballesteros | Critical exponents of the three-dimensional diluted ising model[END_REF][START_REF] Marinari | General method to determine replica symmetry breaking transitions[END_REF]]

q i = s (1) i .s (2) 
i . The total overlap is the lattice average which gives the spin-glass susceptibility

q = 1 N i q i , (3.6) 
X q = V < q 2 >, (3.7) 
with V = 16L 3 (number of spins). These quantities are able to measure the apparition of a spin glass phase, and also to provide a precise estimate of the transition temperature T c .

Indeed, the specific heat is not a good quantity anymore to measure T c . Instead, we will prefer to use the fourth-order Binder cumulant [71]

U b = 3 2 - 1 2 < q 4 > < q 2 > 2 . (3.8) 
As usual, we denote thermal averages by ⟨O⟩ and disorder averages by O. The transition temperature is given by the crossing point of the Binder cumulants for multiple system sizes.

Our simulations confirm the establishment of a spin-glass phase in this intermediate regime.

In Fig. 3.11, we plot the Binder cumulants for different system sizes which allows us to determine the transition temperature, even in this region without long-range order. But it is not yet enough to describe the full phase diagram of our CQD model, because we do not know if there is order by disorder among the Γ 5 states. 

Model 1: Order by Disorder in the Γ 5 states

As explained in section 1.3.1, Er 2 Ti 2 O 7 is a famous instance of the order-by-disorder (ObD) mechanism. Its ground state has a U(1) degeneracy, lifted in favour of the Ψ 2 states in the pristine sample, while impurities are known to favour Ψ 3 states [START_REF] Maryasin | Order from structural disorder in the xy pyrochlore antiferromagnet er 2 ti 2 o 7[END_REF][START_REF] Andreanov | Order induced by dilution in pyrochlore xy antiferromagnets[END_REF][START_REF] Andrade | Cluster-glass phase in pyrochlore xy antiferromagnets with quenched disorder[END_REF]. To distinguish between Ψ 2 and Ψ 3 orders is not straightforward though. The order parameter m E = (m Ex , m Ey ) (see Table 1.1) only measures the presence of the U(1) manifold with E symmetry, and does not distinguish between states within this manifold.

This is why we measure the probability distribution P (m Ex , m Ey ) [START_REF] Andrade | Cluster-glass phase in pyrochlore xy antiferromagnets with quenched disorder[END_REF][START_REF] Zhitomirsky | Nature of finite-temperature transition in anisotropic pyrochlore er 2 ti 2 o 7[END_REF][START_REF] Lou | Emergence of u(1) symmetry in the 3d xy model with Z q anisotropy[END_REF][START_REF] Yan | Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to yb 2 ti 2 o 7 , er 2 ti 2 o 7 , and er 2 sn 2 o 7[END_REF], as plotted in Fig 3 .12 for different x values, and first focusing on low-temperature properties at T = 0.05 K. We naturally find Ψ 2 order for Er 2 Ti 2 O 7 at x = 0, with its six-fold degeneracy visible by the six arcs of higher intensity around the circle of (quasi-)saturated E order where

|m E | 2 = m 2 Ex + m 2 Ey = 1.
But as we increase the dilution to x = 0.3 , these six arcs shift by a π/6 angle to the Ψ 3 states. This shift to Ψ 3 is consistent with previous works with different kind of quenched disorder [START_REF] Maryasin | Order from structural disorder in the xy pyrochlore antiferromagnet er 2 ti 2 o 7[END_REF][START_REF] Andreanov | Order induced by dilution in pyrochlore xy antiferromagnets[END_REF][START_REF] Andrade | Cluster-glass phase in pyrochlore xy antiferromagnets with quenched disorder[END_REF], which strongly supports the idea that any form of quenched disorder reverses the ObD selection in Er 2 Ti 2 O 7 . While Ψ 3 order persists for x = 0.5 and 0.7, we recover the uniform U(1) manifold at x = 1. This is fairly uncommon as ObD is usually expected to lift the U(1) ground-state degeneracy of frustrated systems that are not protected by Hamiltonian symmetry. However, here, thermal fluctuations are apparently not strong enough to compete with such a large quenched disorder. We can maybe rationalize this phenomenon by the fact that ObD is related to soft modes; soft modes that may require a certain length scale to take place. In some systems, ObD is known to appear only for big enough systems [START_REF] Yan | Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to yb 2 ti 2 o 7 , er 2 ti 2 o 7 , and er 2 sn 2 o 7[END_REF]. The presence of ∼ 1/4 of Er 2 Sn 2 O 7 bonds that do not favour the U(1) manifold might prevent these soft modes to propagate on length scales that are sufficient for thermal fluctuations (i.e. entropy) to select either Ψ 2 or Ψ 3 states. Interestingly, the radius of the circular distribution at x = 1 is almost

|m E | = 1,
which is noticeably larger than the value of ∼ 0.7 found at low temperature in Fig. 3.9(c). Taken together, these data mean that almost all tetrahedra at x = 1 are in a spin configuration very close to one of the Γ 5 states with E symmetry; but it is not the same spin configuration across the lattice, which is why the overall spatial average gives |m E | ∼ 0.7. 

m 6 = m E cos(6Φ) where Φ = tan -1 (m Ey /m Ex ). (3.9) 
Positive (resp. negative) values of m 6 indicate Ψ 2 (resp. Ψ 3 ) orders. Fig. 3.13 shows that even if the low temperatures are always dominated by Ψ 3 , Ψ 2 persists at finite temperature for small dilution x. m 6 cannot differentiate between the two states for x ≥ 1, as expected from our analysis of Fig. 3.12.

Model 1: Spin-glass dynamics

Monte Carlo simulations have brought to light a spin-glass phase for 1.2 ≤ x ≤ 1.6. However, the effect of glassiness is most well-known in the dynamics of the system. This is why we shall conclude our analysis of the CQD model using Landau-Lifshitz dynamics (see section 2.9) and computing the autocorrelation function A(t) in Fig. 3.14(a).

A(t) = a,b,c,d 4 N i < S i (0).S i (t) > -4 N i < S i (t) > . 4 N i < S i (0) > 1 -( 4 N i < S i (0) >) 2 (3.10)
where ⟨O⟩ and O are respectively the thermal and disorder average, and (a, b, c, d) are the 4 sublattices of the pyrochlore lattice. Spin relaxation is very fast for the pristine samples (x = 0 and x = 2), as well as for x = 0.5. However, A(t) reaches a plateau at long time for x = 1 and 1.5. Indeed spin glasses usually support a fast and a slow (glassy) spin dynamics [START_REF] Bouchaud | Out of equilibrium dynamics in spin-glasses and other glassy systems[END_REF]. The fast one is characteristic of the standard relaxation of spins at equilibrium. But once this fast relaxation has taken place, we are left with the frozen magnetic degrees of freedom that form the spin glass phase. the value of A(t) on this plateau is known to be an approximate estimate of the Edwards-Anderson parameter q EA for spin-glasses (see Eq. 1.20) [START_REF] Bouchaud | Out of equilibrium dynamics in spin-glasses and other glassy systems[END_REF]. 

Model 3: Uncorrelated quenched disorder (UQD)

As explained in section 3.1.3, model 3 is not unique. It depends on the value of α 0 since the bond perturbation ∆ i is a random variable distributed uniformly in the range [-α 0 J i,x , α 0 J i,x ].

We performed simulations for three values of α 0 : 0.1, 0.2, 0.

For α 0 = 0.3, we recover a similar phase diagram as shown in Figure 3.15 for the CQD model. In particular, there is a spin-glass phase in the intermediate region. But since we can now tune the strength of quenched disorder, α 0 , we shall focus our efforts on α 0 = 0.1 and 0.2 and see how they deviate from the previous CQD model.

(i) α 0 = 0.2 Fig. 3. [START_REF] Anderson | The resonating valence bond state in la2cuo4 and superconductivity[END_REF] shows that E order persists up to x < 1.3, giving rise to T 2 order for x > 1.4.

This boundary is consistent with the one at x c = 1.323 for the disorder-free NQD model.

However, data at x = 1.3 and 1.4 show noticeable finite size effects; it is not clear if the E and T 2 orders persist in the thermodynamic limit in this region. that being said, if a spin-glass phase persists for α 0 = 0.2, it will be limited to a rather narrow window of dilution for x ∼ 1.3 -1.4, smaller than for α 0 = 0.3.

(ii) α 0 = 0.1

As for α 0 , Fig. 3.17 shows that E order persists up to x ≤ .3, giving rise to T 2 order for x ≥ 1.4. The m T 2 order parameter remains a bit noisy at low temperature for x = 1.4.

Nevertheless, we now have clear antiferromagnetic order (either E or T 2 ) for all values of dilution x. It means that by using the disorder strength α 0 , we could develop a microscopic model with quenched disorder but without any intermediate spin-glass phase. The resulting phase diagram for α 0 = 0.1 is shown in Fig. 3.18. We did not measure the order-by-disorder competition between Ψ 2 and Ψ 3 here. But based on Ref. [START_REF] Maryasin | Order from structural disorder in the xy pyrochlore antiferromagnet er 2 ti 2 o 7[END_REF], since we have the same finite amount of bond disorder (α 0 = 0.1) for all values of x > 0, we expect Ψ 3 order to dominate the Γ 5 region, except for the pristine sample at x = 0.

To benchmark simulations with experiments

Let us compare in Fig. 3.19 the phase diagrams of our three models (CQD, NQD and UQD) with the experimental one from Ref. [START_REF] Shirai | Dopinginduced quantum crossover in er 2 ti 2-x sn x o 7[END_REF]. The long-range ordered states are illustrated in Fig. 3.20 for convenience. First of all, we should point out that the transition temperature between simulations and experiments are off by a factor of approximately 2. This is a known artefact of using coupling parameters obtained by a quantum mean-field calculations in classical Monte Carlo simulations [START_REF] Yan | Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to yb 2 ti 2 o 7 , er 2 ti 2 o 7 , and er 2 sn 2 o 7[END_REF]. Our present theory is not claiming to reach this degree of precision. Our goal is rather to find a minimal model able to reproduce experiments semi-quantitatively, and especially how the physics of Er 2 Ti 2-x Sn x O 7 varies with dilution x. frustrated magnets via dilution.

Bridging the gap between rare-earth pyrochlores

The successful comparison between the different phase diagrams of Fig. nearby phases [START_REF] Jaubert | Are multiphase competition and order by disorder the keys to understanding yb 2 ti 2 o 7 ?[END_REF][START_REF] Yan | Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to yb 2 ti 2 o 7 , er 2 ti 2 o 7 , and er 2 sn 2 o 7[END_REF]. In that sense they offer a rich snapshot of the magnetic properties of a system, more subtle than simply the nature of magnetic order; here, order can be seen as a low-temperature selection within the phase space explored at intermediate temperature.

But since there is no broken symmetry by definition above T c , there is no relevant order parameter to compute. The structure factor S(q) is then the observable of choice to characterize magnetic correlations. Fortunately, the structure factors of Er 2 Ti 2 O 7 (x = 0)

and Er 2 Sn 2 O 7 (x = 2) are noticeably different (see Fig. 3.21). The latter form a diamond pattern with maxima at (0,0,2) characteristic of the Palmer-Chalker onset, while the former is essentially made of broad intensity peaks indicating short-range antiferromagnetic correlations, with maxima at [START_REF] Gardner | Magnetic pyrochlore oxides[END_REF][START_REF] Gardner | Magnetic pyrochlore oxides[END_REF]0). This contrast provides a qualitative way to compare the evolution of S(q) as a function of x between the three models: CQD, NQD and UQD. We will consider three different dilution values x = {0.5, 1.0, 1.5}. For The sake of completeness, we will plot three different temperatures at T < T c , T ≈ T c and T > T c . Since we already know that low-temperature data will be the same (except in the spin-glass regime), we will focus our discussion to T > T c .

Our main result is that the three models have essentially the same structure-factor evolution factor [START_REF] Canals | Spin-liquid phase in the pyrochlore anti-ferromagnet[END_REF]. It is the extensive entropy of this spin liquid that enables its properties (here its magnetic spin-spin correlations) to spread over vast regions of the phase diagram at finite temperature. But while it is understandable to see features of the spin liquid in the pristine NQD model without quenched disorder, it is remarkable to see these features persist in the two models with quenched disorder.

To conclude, we have shown in this section that the structure factor of our three models, with and without quenched disorder, evolves the same way as a function of x above T c .

In particular, non-trivial features such as the butterfly patterns, due to the proximity of 

In presence of a magnetic field h

In this final section about Er In this chapter we will first find the appropriate observables to study, and then analyse the evolution of the system as a function of dilution x.

Model

The two spin liquids will be labeled TSL for the tensor spin liquid and HAF for the Heisenberg antiferromagnet. The coupling parameters for the two spin liquids are :

J TSL :: (J 1 = 0.0K, J 2 = 0.0K, J 3 = -1.0K, J 4 = 0.0K) (4.1) 
J HAF ::

(J 1 = 1.0K, J 2 = 1.0K, J 3 = 0.0K, J 4 = 0.0K) (4.2)
Let us consider a simple form of quenched disorder here. There are N 2 tetrahedra for a pyrochlore lattice of N spins. We take x% of tetrahedra with J TSL couplings and the remaining (1 -x)% tetrahedra with J HAF couplings, randomly distributed across the lattice.

Monte Carlo simulations will be averaged over n ∼ 100 number of samples to ensure the disorder averaging. But first, let us remind the reader of the properties of the two pristine spin liquids [START_REF] Moessner | Properties of a classical spin liquid: The heisenberg pyrochlore antiferromagnet[END_REF][START_REF] Owen Benton | A spin-liquid with pinch-line singularities on the pyrochlore lattice[END_REF].

The tensor and Heisenberg-antiferromagnet spin liquids

In Figure 4.1 we plot the specific heat for the two spin liquids. As expected there is no phase transition down to T = 0.001 K. The spin liquids are actually so magnetically "disordered" that there are no Schottky-like peak that would mark a substantial loss of entropy. The two However, in spin liquids, excitations out of the ground state can be softer than quadratic, and replaced by quartic modes carrying an energy k B T /4. This is for example what happens around hexagonal plaquettes of spins in the HAF spin liquid on kagome, whose collective excitations (called weather-vane) are quartic in energy [START_REF] Chalker | Hidden order in a frustrated system: Properties of the heisenberg kagomé antiferromagnet[END_REF]. Extending this concept to the pyrochlore lattice where there are as many hexagons as spins, the zero-temperature specific heat becomes

C HAF v → 1 N (2N -N ) k B 2 + N k B 4 = 3 4 k b [T → 0 + ] (4.3) 
But these weather-vane excitations are a priori absent from the TSL. As a consequence, the specific heat of the HAF and TSL do not saturate to the same value as T → 0 + (see For a given spin liquid, the degrees of freedom of these irreps are allowed to fluctuate in the ground state, which is why the corresponding χ I T increases at low temperatures in Fig. 4.2.

For the other irreps, since they correspond to excited states, their fluctuations are suppressed at low temperature and the corresponding χ I T vanishes. Note that since T 1,A ′ is a linear combination of T 1,A and T 1,B , χ T 1,B T remains finite for both spin liquids. Hence the main difference between TSL and HAF takes place for A 2 and T 1,A fluctuations (see Fig. 4.2(a,c)).

In addition, only the E and T 2 irreps belong to the ground-state of both spin liquids.

With this in mind, let us now study what happens when we add quenched disorder to connect the TSL (x = 0) to the HAF (x = 1) (see definition in section 4.1).

Results

Specific heat

In Fig. 4.3, we plot the specific heat for x ∈ [0; 1]. We still do not observe any phase transition down to T = 0.001 K, as for the pristine systems. However, the value of the specific heat at zero temperature gradually decreases as x increases (see right panel). This evolution seems as T → 0 + . We fix α = -1/4 to respect the constraint that C v (x, T → 0 + ) goes from 1 at x = 0 to 3/4 at x = 1. This scaling function is quasi-independent of the quenched disorder x, which means that f (x, T ) ≈ f (T ) → 1 [T → 0 + ], and the specific heat scales linearly with x close to zero temperature. The overall outcome of this scaling law is that, up to an excellent approximation, each tetrahedron with J HAF coupling contributes equally to the appearance of quartic modes. Hence, as far as low-temperature excitations are concerned, the mixture of HAF and TSL tetrahedra is simply linear and the additional frustration due to quenched disorder is negligible. 

Order parameters and susceptibilities

As noticed previously, the only irreps belonging to both spin-liquid ground states are E and T 2 . One could imagine that frustration due the mixture of both types of tetrahedra (TSL and HAF) would prevent fluctuations outside of these two irreps (E and T 2 ). As explained in Fig. 1.11, this would give rise to Ψ 2 order. However, the absence of peaks in the specific heat does not support this scenario, as confirmed by a direct measure of the order parameters which are all zero (up to finite-size effects) (Fig. 4.5).

In absence of long-range order, the reduced magnetic susceptibility χT can be written as

χT ≡ 1 N N i,j=1 ⟨S i • S j ⟩. (4.5) 
In the appropriate units, spin liquids show a Curie-law crossover [START_REF] Jaubert | Topological-sector fluctuations and curie-law crossover in spin ice[END_REF] between the standard paramagnetic Curie law χ = 1/T and the low-temperature behavior χ = K/T , where K is the normalised integration of magnetic correlations in the spin-liquid ground state. While the standard magnetic susceptibility corresponds to the T 1,A irrep, the reduced susceptibility χ I T corresponds to the integration of degrees of freedom for a specific irrep I [START_REF] Owen Benton | A spin-liquid with pinch-line singularities on the pyrochlore lattice[END_REF]. The as opposed to the specific-heat scaling of Eq. 4.4, it is visibly not linear in x for most irreps: see e.g. how the spacing between the plateaux K A 2 (resp. K T 1A ) gets wider (resp. smaller) as x increases. We rationalise it as follows. In the HAF (x = 1), there are no ferromagnetic fluctuations corresponding to the T 1A irrep, which is why K T 1A = 0. As x starts to decrease, a small density of TSL tetrahedra appear in the system, but they are diluted and mostly disconnected from each other. It means ferromagnetic correlations are possible within each tetrahedron, but they can only persist over small length scales between connected cluster of TSL tetrahedra. As x keeps decreasing, two joint effects take place: (i) short-range ferromagnetic correlations linearly increase with the number of TSL tetrahedra, and (ii) To conclude, we should make sure that the system does not enter a spin glass. The absence of bump in the specific heat already suggested the absence of any substantial release of entropy expected if the system was freezing. This is confirmed by the spin-glass susceptibility χ spinglass in Fig. 4.7 where we don't see any rapid increase at low temperature for any dilution x.

As a running summary, we have shown that our model with quenched disorder does neither order nor freeze for any value of dilution x. Instead, it remains in a spin liquid regime for all

x, whose properties evolve continuously from TSL to HAF.

Structure Factor

To conclude this chapter, we will compare the evolution of both the equal-time S(q) and inelastic S(q, w) structure factors as a function of x. We use the Landau-Lifshitz dynamics for the latter, as explained in section 2.9, averaged over 1000 initial spin configurations obtained from Monte Carlo simulations at very low temperature in the spin liquid regime.

The structure factor is indeed the most quantitative observable, experimentally available, to describe the nature of a spin liquid. Emergent Coulomb gauge fields such as the HAF spin liquid at x = 1 appear as pinch-point singularities [START_REF] Canals | Spin-liquid phase in the pyrochlore anti-ferromagnet[END_REF][START_REF] Henley | The "coulomb phase" in frustrated systems[END_REF] that evolve into half-moon patterns when increasing the energy w [START_REF] Robert | Propagation and ghosts in the classical kagome antiferromagnet[END_REF][START_REF] Mizoguchi | Magnetic clustering, half-moons, and shadow pinch points as signals of a proximate coulomb phase in frustrated heisenberg magnets[END_REF][START_REF] Yan | Half moons are pinch points with dispersion[END_REF] (see Fig. 4.13). But more complex magnetic textures have different signatures, such as the tensor spin liquid at x = 0, famous for its pinch lines [START_REF] Owen Benton | A spin-liquid with pinch-line singularities on the pyrochlore lattice[END_REF] visible in Fig. 4.8. Pinch lines are extensions of pinch points for higher-rank spin liquids [START_REF] Benton | Topological route to new and unusual coulomb spin liquids[END_REF].

Turning on the dilution, we see that pinch lines have already smeared out for a small amount of disorder x = 0.2 (see Fig. On the other hand, even with a majority of TSL tetrahedra in the system, the contour of the HAF pinch points already starts to form at x = 0.4. Increasing the dilution then quickly brings the magnetic correlations closer to the ones of the HAF. Half-moon patterns appear at high energy for x = 0.6 (see Fig. different path between the two models, but the important fact is that both spin liquids only rigorously exist in the asymptotic limits J 1 = J 2 = 0 for the TSL and J 3 = 0 for the HAF.

For classical spins, any perturbations would lift the spin-liquid degeneracy. Hence, we must look for the reason elsewhere.

This is where it is useful to remember that, on one hand, the ground-state manifolds of the HAF is a linear combination of A 2 ⊕ E ⊕ T 1,B ⊕ T 2 states, as explained in section On the other hand, deviations from the TSL structure factor mostly come from tetrahedra where m T 1,B ′ ̸ = 0 and m A 2 ̸ = 0, which represents a fraction of the 3-dimensional T 1,B and the 1-dimensional A 2 subspaces within the 9-dimensional HAF manifold. There is an additional dimension of degrees of freedom that breaks TSL correlations with respect to HAF ones.

It means that at x = 1/2, when there is an equal number of TSL and HAF tetrahedra in the system, TSL correlations are more frequently broken than HAF ones when doing a spatial average over the entire system. Hence the structure factor at x = 0.5 would look more similar to the HAF one than the TSL one. As a result, the intermediate phase where the system is different from both spin liquids is at lower dilution, for x ∼ 0.2 -0.4. As a general rule of thumb, the spin liquid with highest residual entropy tends to dominate the phase diagram in presence of quenched disorder. Chapter 5

Conclusion

In this work, we have studied diverse frustrated systems on pyrochlore lattices. In highly frustrated magnetism, it is usually believed that pristine crystals are necessary, and impurities are unwanted perturbations. Our motivation here was to take the opposing view, and use In chapter 4, we extended this idea to spins liquids, by continuously diluting the tensor spin liquid (x = 0) into the Heisenberg antiferromagnet (x = 1). We find neither long-range order nor glassiness in simulations. But the challenge is that in absence of long-range order, we cannot rely on order parameters to measure the presence or absence of a given phase. This is why we had to find alternate solutions in the zero-temperature limit of the specific heat C v and reduced susceptibility χ I T of irrep I. The former offers a measure of the number of quartic modes in the system, which we find to evolve linearly with dilution x. The latter represents the integration of magnetic correlations for a given irrep, whose evolution with

x is not necessarily linear anymore, but remains monotonic. Taken together, these results indicate that we have build a model with a spin-liquid ground state for all values of dilution, and whose properties evolve continuously with x. This is further confirmed by the structure factors, but with a noticeable asymmetry in favour of the spin liquid with highest residual entropy.

As a conclusion, we believe our work in this thesis paves the way for a systematic use of quenched disorder, and in particular non-magnetic dilution, as a knob to tune the properties of frustrated magnets. The range of possibilities is gigantic with rare-earth pyrochlore and spinels alone. It offers a direct way to tune a spin liquid into order or vice-versa, and a platform to search for exotic properties in magnets. On a more fundamental level, with spin liquids as low-energy realizations of emergent gauge fields, it provides a framework to combine artificial gauge fields that might be difficult, nay impossible, to study at high energy.

Appendix A

A.1 g-tensor calculations

In the local coordinate frame, the magnetic moment is given as :

m α i = 3 β=1 g αβ local S β i (A.1)
which is connected to the spin-1/2 operator S α i via a g-tensor matrix given as : The g-tensor in global coordinates can be formulated by rotating g local : 

g local =       
g 0 =        g 1 g 2 g 2 g 2 g 1 g 2 g 2 g 2 g 1        g 1 =        g 1 -g 2 -g 2 -g 2 g 1 g 2 -g 2 g 2 g 1        (A.3) g 2 =        g 1 -g 2 g 2 -g 2 g 1 -g 2 g 2 -g 2 g 1        g 3 =        g 1 g 2 -g 2
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 33343537183839 Temperature dependence of specific heat C v for (a) 0 ≤ x ≤ 1 and (b) 1 < x ≤ 2 for the NQD model (no quenched disorder). The sharp peaks at x = {1.2, 1.4} are consistent with a first order transition, as confirmed by the discontinuous jump in the T 2 order parameter in Fig. 3.4(b). System size is L = 4. Temperature dependence of (a) m E and (b) m T 2 order parameters for the NQD model (no quenched disorder). The results are consistent with a continuous phase transition into Γ 5 order with E symmetry, and a discontinuous phase transition into Palmer-Chalker order with T 2 symmetry. System size is L = 4. Phase diagram for the NQD model without quenched disorder, showing the competition between Ψ 2 and Palmer-Chalker states. x is an interpolating parameter between the exchange parameters of Er 2 Ti 2 O 7 and Er 2 Sn 2 O 7 . The zero-temperature boundary is at x c = 1.323. 3.6 Temperature dependence of specific heat C v for (a) 0 ≤ x ≤ 1 and (b) 1.2 ≤ x ≤ 2 for the CQD model (correlated quenched disorder). System size is L = 4. Temperature dependence of (a) m E and (b) m T 2 order parameters for the CQD model (correlated quenched disorder). The results are consistent with Γ 5 order with E symmetry for x ≤ 1 and Palmer-Chalker order with T 2 symmetry for x ≥ Finite size scaling is necessary to clarify the situation for intermediate x values. System size is L = 4. Temperature dependence of the energy for the CQD model (correlated quenched disorder). A symmetry in the energy is observed at low temperatures between x=0.8 and x=2, centered at x=1.4. System size is L = 4. Temperature dependence of m E (a,c,e,g) and m T 2 (b,d,f,h) order parameter of the CQD model for x = {0.4, 1, 1.5, 1.8} and L = {3, 4, 5, 6, }. Inset: Finite-size scaling of the corresponding order parameter at very low temperature. The constant in the scaling function gives the value of the order parameter in the thermodynamic limit.3.10 Value of the parameter c vs x obtained from the finite size scaling analysis (see Eq. 3.4), showing the evolution of the two order parameters, m E and M T 2 , at very low temperature in the thermodynamic limit. There is a region without any long-range order between x = 1.2 and 1.6. 3.11 Binder cumulant U b for (a)x = {1.2, 1.3, 1.5, 1.6}, as defined in Eq. (3.8). The crossing of the curves gives the value of the transition temperature and the associated error bars. 3.12 Probability distribution P (m Ex , m Ey ) of the m E order parameter at T < T c (T = 0.05 K) for different x values and system size L = 10. A uniform E order would give a circle |m e | 2 = cst = m 2Ex + m 2 Ey , while Ψ 2 and Ψ 3 orders are given by the full and dashed radial lines respectively, as defined in section 1.2.3.(II.a,b).
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 3 [START_REF] Knolle | A field guide to spin liquids[END_REF] Clock-like order parameter m 6 as a function of T for L = 10 and several values of x where m 6 being positive (negative) for the Ψ 2 /Ψ 3 states. We clearly see a change in temperature for a given x, until Ψ 2 disappears.3.14 (a) Autocorrelation function A(t) of the CQD model at T = 0.05 K, as defined in Eq. 3.10), for several dilution x values. The decorrelation is fast for x = 0, 0.5, 2 while it reaches a plateau for x = 1 and 1.5. (b) q EA vs x which is analogous to the Edwards-Anderson spin glass parameter. 3.15 Phase diagram of the CQD model for Er 2 Ti 2-x Sn x O 7 obtained from classical Monte-Carlo simulations with Γ 5 (purple, pink and red), Palmer-Chalker (green) and spin-glass (white) phases. The Γ 5 phase is split into Ψ 2 and Ψ 3 orders because of order by disorder. In the region with noticeable disorder x ∈ [1.0; 1.2], the full U(1) manifold of the Γ 5 phase is recovered, albeit with a fintie fraction fraction of frozen magnetic degrees of freedom. 3.16 Temperature dependence of (a,c,e,g) m E and (b,d,f,h) m T 2 order parameters for the UQD model (uncorrelated quenched disorder) with α 0 = 0.2, for x = {1.2, 1.3, 1.4, 1.5} for system size L = {3, 4, 5, 6}. 3.17 Temperature dependence of (a,c,e,g) m E and (b,d,f,h) m T 2 order parameters for the UQD model (uncorrelated quenched disorder) with α 0 = 0.1, for x = {1.2, 1.3, 1.4, 1.5} for system size L = {3, 4, 5, 6}.3.18 Phase diagram of the UQD model for α 0 = 0.1 3.19 Phase diagrams for the three models studied in this thesis (a,b,c), compared to experiments on Er 2 Ti 2-x Sn x O 7 from Ref. [4] (d). The x-axis is always the dilution parameter x (or its equivalent as defined in section 3.1). All the ordered phases are antiferromagnetic, either with E (purple or red) or T 2 (green) symmetry. The white region in panel (a) is a spin glass. 3.20 Spin configurations of the antiferromagnetic ordered phases found in the phase diagrams of Fig. 3.19: (a) non-coplanar Ψ 2 , (b) coplanar Ψ 3 and (c) coplanar Palmer-Chalker (Ψ 4 ) states. Ψ 2 and Ψ 3 belong to the U(1) manifold of the Γ 5 states. 3.21 Structure factor S(q) obtained from classical Monte Carlo simulation for parameters of Er 2 Ti 2 O 7 (top) and Er 2 Sn 2 O 7 (bottom) at three different temperatures : T < T c , T ≈ T c and T > T c . 3.22 Structure factor S(q) obtained from classical Monte Carlo simulation for x = 0.5 at three different temperatures : T < T c , T ≈ T c and T > T c . The first, second and third row corresponds to the CQD, NQD and UQD models respectively.

xii 3 .

 3 [START_REF] Shender | Anti-ferromagnetic garnets with fluctuation-like interacting sub-lattices[END_REF] Structure factor S(q) obtained from classical Monte Carlo simulation for x = 1 at three different temperatures : T < T c , T ≈ T c and T > T c . The first, second and third row corresponds to the CQD, NQD and UQD models respectively.

3. 24 77 A. 1 82 A. 2

 24771822 Structure factor S(q) obtained from classical Monte Carlo simulation for x = 1.5 at three different temperatures: T < T c , T ≈ T c and T > T c . The first, second and third row corresponds to the CQD, NQD and UQD models respectively; the former form a spin glass below T c (no Bragg peaks), while the other two order into Palmer-Chalker. For each panel, the color scale goes from zero to the maximum of intensity. 3.25 Phase diagram of the CQD model in the presence of a magnetic field h in the [001] direction. The transition temperatures are obtained from the peak in specific heat. 4.1 Specific heat for the tensor spin liquid and Heisenberg antiferromagnet on a log-log scale. 4.2 Reduced susceptibilities χ I T for each irrep I and for both TSL and HAF. Temperature is in log scale. Degrees of freedom of a given irrep are allowed to fluctuate at low temperature if this irrep belongs to the ground state.4.3 Left: Specific-heat temperature dependence for x ∈ [0; 1] on a log-log scale, obtained from Monte Carlo simulations of the model with quenched disorder, as defined in section 4.1. Right: Zoom at low temperature of the same data on a linear scale. 4.4 Scaling function of the specific heat as T → 0 + (see Eq. 4.4) for α = -0.25,showing that the specific heat grows linearly with x.4.5 All order parameters, (a) mA 2 , (b) m E , (c) m T 1,A , (d) m T 1,B , (e) m T 2 ,are zero up to finite-size effects, for all values of x. In particular they are always bounded by the ones of the spin liquids at x = 0 or x = 1.4.6 Reduced susceptibilities χI T for each irrep I = {A 2 (a), E (b), T 1,A (c), T 1,B (d), T 2 (e)},as a function of the temperature T in log scale, and for different dilutions x. Simulations for T ≪ 0.01 could be difficult to thermalise, which explains the spurious data point at T = 0.001 in panel (b). 4.7 Temperature dependence of spin glass susceptibility for different x values. 4.8 Equal-time structure factor in the [HHL] plane (top) and energy cuts of the inelastic structure factor (bottom) for x = 0 (TSL, no quenched disorder). The left and right column in the bottom panels correspond to [HHL] and [H0L] planes respectively. The energies are marked in the lower left corner of each subplot. Pinch lines can be seen at energy E = 0.5 meV List of Figures xiii 4.9 Equal-time structure factor in the [HHL] plane (top) and energy cuts of the inelastic structure factor (bottom) for x = 0.2. The left and right column in the bottom panels correspond to [HHL] and [H0L] planes respectively. The energies are marked in the lower left corner of each subplot. Pinch lines have smeared out. 73 4.10 Equal-time structure factor in the [HHL] plane (top) and energy cuts of the inelastic structure factor (bottom) for x = 0.4. The left and right column in the bottom panels correspond to [HHL] and [H0L] planes respectively. The energies are marked in the lower left corner of each subplot. We are starting to see similarities with HAF spin liquid. 74 4.11 Equal-time structure factor in the [HHL] plane (top) and energy cuts of the inelastic structure factor (bottom) for x = 0.6. The left and right column in the bottom panels correspond to [HHL] and [H0L] planes respectively. The energies are marked in the lower left corner of each subplot. The structure factor possesses patterns reminiscent to the one of the HAF spin liquid, with broad pinch points at low energy that evolve into half-moon patterns at higher energy [5, 6, 7, 8]. 75 4.12 Equal-time structure factor in the [HHL] plane (top) and energy cuts of the inelastic structure factor (bottom) for x = 0.8. The left and right column in the bottom panels correspond to [HHL] and [H0L] planes respectively. The energies are marked in the lower left corner of each subplot. This structure factor is very similar to the one of the HAF spin liquid. The main difference is the finite thickness of the pinch points, most likely due to the length scale imposed by the presence of TSL tetrahedra in the system that break the HAF gauge field. 76 4.13 Equal-time structure factor in the [HHL] plane (top) and energy cuts of the inelastic structure factor (bottom) for x = 1 (HAF, no quenched disorder). The left and right column in the bottom panels correspond to [HHL] and [H0L] planes respectively. The energies are marked in the lower left corner of each subplot. Temperature dependence of m E (a,c,e,g) and m T 2 (b,d,f,h) order parameter for different x values with the finite size scaling on the inset. The constant in the scaling function gives the value of the order parameter in the thermodynamic limit. m T 2 vanishes for these x values. Temperature dependence of m E (a,c,e,g) and m T 2 (b,d,f,h) order parameter for different x values with the finite size scaling on the inset. The constant in the scaling function gives the value of the order parameter in the thermodynamic limit. m T 2 vanishes for these x values.
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 11 Figure 1.1: Characteristic inverse magnetic susceptibility of a geometrically frustrated antiferromagnet χ -1 vs temperature T showing that the transition temperature T c is much smaller than the Curie-Weiss temperature Θ cw . Adapted from[START_REF] Lacroix | Introduction to frustrated magnetism : materials, experiments[END_REF] 
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 1 Fig. 1.2 which results in a frustrated bond (in blue). As a consequence, the six states of Fig. 1.2 have the same, lowest possible, energy. It is possible to pave the entire triangular lattice with these states, and the local degeneracy results in the above-mentioned residual entropy.
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 12 Figure 1.2: Ising spins on a triangular lattice showing the six possible configurations for the antiferromagnetic ground state. Arrows indicate the spin direction. Blue lines denote the frustrated bonds, along which spins are parallel.
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 13 Figure 1.3: Kagome lattice composed of corner-sharing triangles
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 14 Figure 1.4: Pyrochlore lattice composed of corner-sharing tetrahedra
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 15 Figure1.5: Schematic diagram of the phase space of a frustrated magnet, where the solid line represents the ground-state manifold. In the left panel, only a narrow and uniform band of states around the ground state manifold is accessible at low temperatures (blue region); there is no order by disorder here. In the right panel, however, a particular region has a bulge of accessible states at low temperatures. This is the place where soft modes allow low-energy excitations and the corresponding ground state is entropically selected via order-by-disorder.[START_REF] Lacroix | Introduction to frustrated magnetism : materials, experiments[END_REF] 

Figure 1 . 6 :

 16 Figure 1.6: The A and B sites of pyrochlore materials A 2 B 2 Y 7 , forming their own interpenetrating pyrochlore structures. In this thesis, A sites are magnetic, B sites are non-magnetic and Y corresponds to oxygens. Figure taken from [2].

Figure 1 . 7 :

 17 Figure 1.7: Classical ground-state phase diagram for a pyrochlore magnet with anisotropic exchange interactions in the limit J 3 < 0 and J 4 = 0. The blue, green, and red/yellow regions correspond to T 1 , T 2 , and E ground states respectively. The latter is divided into two colors because of thermal order-by-disorder selection, with ψ 2 (red) and ψ 3 (yellow) states. Points correspond to exchange parameters of Yb 2 Ti 2 O 7 , Er 2 Ti 2 O 7 and Er 2 Sn 2 O 7 .The grey dots in the center is the position of the tensor spin liquid (J 3 < 0 and J 1 = J 2 = J 4 = 0). The arrow indicates the asymptotic limit of the Heisenberg antiferromagnet at J 1 = J 2 > 0 and J 3 = J 4 = 0. Figure adapted from[START_REF] Yan | Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to yb 2 ti 2 o 7 , er 2 ti 2 o 7 , and er 2 sn 2 o 7[END_REF] 

Figure 1 . 8 :

 18 Figure 1.8: Spin-configuration in the 4-sublattice non-collinear FM phase with T 1 symmetry, viewed slightly off the [110] axis. The magnetization is aligned with the [001] axis, while spins are canted by an angle θ T 1 . Figure from [3].

  1.9); it means that spins are orthogonal to their local [111] easy axes.

Figure 1 . 9 :

 19 Figure 1.9: Example of a spin configuration within the one-dimensional manifold of states transforming with the E irrep of T d . The yellow circles represent the local easy plane of each sublattice, perpendicular to the local [111] easy-axis. The U(1) manifold can be generated by a clockwise rotation of all spins around their respective local axes. These configurations are commonly called Γ 5 states.

Fig. 1 .

 1 10(a).(II.b) Coplanar antiferromagnet, Ψ 3 , with E symmetryThe Ψ 3 states are six-fold degenerate[START_REF] Champion | er 2 ti 2 o 7 : evidence of quantum order by disorder in a frustrated antiferromagnet[END_REF], with coplanar spins perpendicular to one of the cubic axes. They are given by Eq.(1.15) with θ E = nπ 3 + π 6 , n = 0, 1, 2, 3, 4, 5. See Fig.1.10(b).

Figure 1 . 10 :

 110 Figure 1.10: Spin configurations of antiferromagnetic orders: (a) non-coplanar Ψ 2 , (b) coplanar Ψ 3 and (c) coplanar Palmer-Chalker (Ψ 4 ) states. Ψ 2 and Ψ 3 belong to the U(1) manifold of the Γ 5 states.

Figure 1 . 11 :

 111 Figure 1.11: The structure of the ground state manifold at the boundary between PC and E phases. The black circle denotes the manifold of E ground states. This manifold branches at the Ψ 2 states (black dots) to connect with three additional U(1) manifolds which include the six Palmer-Chalker states with T 2 symmetry (red dots). Figure from[START_REF] Yan | Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to yb 2 ti 2 o 7 , er 2 ti 2 o 7 , and er 2 sn 2 o 7[END_REF].
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 112 Figure 1.12: Experimental phase diagram of Er 2 Ti 2-x Sn x O 7 as a function of non-magnetic dilution x showing the two ordered states with E symmetry (Ψ 2 or Ψ 3 , red) and with T 2 symmetry (Ψ 4 , green). A large part of chapter 3 will be dedicated to analyzing and understanding this phase diagram theoretically. Figure from [4].
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 1 13(a), the glass that we see in day-to-day life is amorphous (Fig 1.13(b)).

Figure 1 . 13 :

 113 Figure 1.13: Example of (a) crystalline vs (b) amorphous structures.

Figure 1 . 14 :

 114 Figure 1.14: Schematic representation of the free energy for a spin glass along an arbitrary line in phase space (labeled by x), showing the presence of many metastable states.

  number of spins. ⟨O⟩ and O are respectively the thermal and disorder averages of variable O; the latter is necessary to account for the broken translation symmetry of a spin glass. The value of C(t, t ′ ) varies between -1 to 1. Typically, in the case of a paramagnet, the correlation function C(t, t ′ ) decays very quickly (see Fig.1.15). On the contrary, C(t, t ′ ) approaches a plateau for a spin glass, which means that the spins are stuck for a very long time.

Figure 1 . 15 :

 115 Figure 1.15: Schematic representation of the correlation function C(t, t ′) for a paramagnet (blue) and a spin glass (orange). The initial memory of the system is retained in a spin glass system whereas it is quickly forgotten in the case of a paramagnet.

Figure 1 . 16 :

 116 Figure 1.16: Example of magnetic dilution (left) and stuffing (right) with respectively a missing and extra spin in the lattice.

  Fig 2.1, here k b is the Boltzmann constant.
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 21 Figure 2.1: Boltzmann probability distribution vs energy and temperature

Algorithm 1 bath 1 :

 11 Heat Initialize a configuration of N spins. 2: Performing a Monte Carlo step : 3:

2 . 3 Tempering 1 : 2 : 6 :

 23126 the temperatures T k and T l . Configuration swaps are typically performed between adjacent temperatures because the probability of a configuration exchange reduces as the temperature difference increases. The schematic diagram for PT algorithm is shown in Fig 2.Algorithm Parallel Initialize an arbitrary temperature set {T 1 , . . . , T i , . . . , T M }(M is even) in ascending order. Perform 50 MCS for all the temperature points. 3: Swap configurations between T i and T i+1 for i ∈ {1, 3, 5, M -1} with the probability mentioned above. 4: Repeat step 2. 5: Swap configurations between T i and T i+1 for i ∈ {2, 4, 6, M -2} with the probability mentioned above. Repeat steps 2-5 till the required number of MCS.

Figure 2 . 2 :

 22 Figure 2.2: Parallel Tempering scheme

3 :

 3 Perform equilibration to thermalize the spin configurations 4: Continue with (heath bath + overrelaxation :: 1 MCS) steps with Parallel Tempering.

Figure 2 . 3 :

 23 Figure 2.3: MCMC pipeline, Git : pjeena/Markov-chain-Monte-Carlo

Figure 3 . 1 :

 31 Figure 3.1: The smallest loop in the lattice encompasses 6 spins of Er ions and each Er-Er bond is shared between two loops. Each of these loops has a non-magnetic ion (B=Ti or Sn) at its center.

Figure 3 . 2 :

 32 Figure 3.2: Classical ground-state phase diagram for a pyrochlore magnet with anisotropic exchange interactions displaying four distinct ordered phases (J 3 < 0 J 4 = 0). Points correspond to published estimates of parameters for Yb 2 Ti 2 O 7 , Er 2 Ti 2 O 7 , and Er 2 Sn 2 O 7 [3]. We want to benchmark an uncorrelated model on the dotted line(with a man walking) in the parameter space. Figure adapted from [3].
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 131 Model 3: Uncorrelated quenched disorder (UQD) Finally, we shall introduce a third model as an alternative Hamiltonian to include quenched disorder, in order to see which one compares best to experiments. This UQD model can be seen as an Edwards-Anderson version of Hamiltonian (1.5), implemented as follows: For a given dilution x, we start from the disorder-free model NQD with a uniform interaction matrix whose coupling parameters are defined in Eqs. (3.2).

- 2 ≤

 2 T/J ≤ 1.0. System sizes, specified by the linear dimension L in units of the lattice constant and by the number of spins N s = 16.L 3 , are 3 ≤ L ≤ 10 and 432 ≤ N s ≤ 16000. Run lengths for data collection are 10 6 MCS and the results are averaged over a number of disorder realizations varying from 200 for L = 3 to 100 for L = 10.

3. 2 . 1

 21 Model 2: No quenched disorder (NQD) We shall start with the NQD model to serve as benchmark of the underlying physics in absence of quenched disorder. As explained previously and illustrated in Fig 3.2, x is here a variable in parameter space connecting Er 2 Ti 2 O 7 to Er 2 Sn 2 O 7 . All bonds in the lattice have the same coupling parameters given by Eq. (3.2).

Figure 3 . 3 :

 33 Figure 3.3: Temperature dependence of specific heat C v for (a) 0 ≤ x ≤ 1 and (b) 1 < x ≤ 2 for the NQD model (no quenched disorder). The sharp peaks at x = {1.2, 1.4} are consistent with a first order transition, as confirmed by the discontinuous jump in the T 2 order parameter in Fig. 3.4(b). System size is L = 4.
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 34 Figure 3.4: Temperature dependence of (a) m E and (b) m T 2 order parameters for the NQD model (no quenched disorder). The results are consistent with a continuous phase transition into Γ 5 order with E symmetry, and a discontinuous phase transition into Palmer-Chalker order with T 2 symmetry. System size is L = 4.
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 35 Figure 3.5: Phase diagram for the NQD model without quenched disorder, showing the competition between Ψ 2 and Palmer-Chalker states. x is an interpolating parameter between the exchange parameters of Er 2 Ti 2 O 7 and Er 2 Sn 2 O 7 . The zero-temperature boundary is at x c = 1.323.

3. 2 . 2 Figure 3 . 6 : 8 .

 22368 Figure 3.6: Temperature dependence of specific heat C v for (a) 0 ≤ x ≤ 1 and (b) 1.2 ≤ x ≤ 2 for the CQD model (correlated quenched disorder). System size is L = 4.
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 37 Figure 3.7: Temperature dependence of (a) m E and (b) m T 2 order parameters for the CQD model (correlated quenched disorder). The results are consistent with Γ 5 order with E symmetry for x ≤ 1 and Palmer-Chalker order with T 2 symmetry for x ≥ 1.8. Finite size scaling is necessary to clarify the situation for intermediate x values. System size is L = 4.
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 38 Figure 3.8: Temperature dependence of the energy for the CQD model (correlated quenched disorder). A symmetry in the energy is observed at low temperatures between x=0.8 and x=2, centered at x=1.4. System size is L = 4.

8 Figure 3 . 9 :

 839 Figure 3.9: Temperature dependence of m E (a,c,e,g) and m T 2 (b,d,f,h) order parameter of the CQD model for x = {0.4, 1, 1.5, 1.8} and L = {3, 4, 5, 6, }. Inset: Finite-size scaling of the corresponding order parameter at very low temperature. The constant in the scaling function gives the value of the order parameter in the thermodynamic limit.
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 310 Figure 3.10: Value of the parameter c vs x obtained from the finite size scaling analysis (see Eq.3.4), showing the evolution of the two order parameters, m E and M T 2 , at very low temperature in the thermodynamic limit. There is a region without any long-range order between x = 1.2 and 1.6.

6 Figure 3 . 11 :

 6311 Figure 3.11: Binder cumulant U b for (a)x = {1.2, 1.3, 1.5, 1.6}, as defined in Eq. (3.8). The crossing of the curves gives the value of the transition temperature and the associated error bars.
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 312 Figure 3.12: Probability distribution P (m Ex , m Ey ) of the m E order parameter at T < T c (T = 0.05 K) for different x values and system size L = 10. A uniform E order would give a circle |m e | 2 = cst = m 2 Ex + m 2 Ey , while Ψ 2 and Ψ 3 orders are given by the full and dashed radial lines respectively, as defined in section 1.2.3.(II.a,b).

Finally, the circular

  intensity disappears for x ≥ 1.3 since the m E order parameter simply fluctuates around zero. There is, however, a diffuse halo inside the circle which means that a measurable fraction of tetrahedra still bear Γ 5 order over short-length scale. It is worth noticing though that the fluctuations around m E = 0 are along the Ψ 2 radial lines. Keeping in mind the shape of the ground state manifold at the boundary between the E and T 2 phases in Fig. 1.11, we understand that in this parameter space, soft modes away from the Palmer-Chalker states favored by the Er 2 Sn 2 O 7 bonds tend precisely towards Ψ 2 states.
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 313 Figure 3.13: Clock-like order parameter m 6 as a function of T for L = 10 and several values of x where m 6 being positive (negative) for the Ψ 2 /Ψ 3 states. We clearly see a change in temperature for a given x, until Ψ 2 disappears.

Figure 3 . 14 :

 314 Figure 3.14: (a) Autocorrelation function A(t) of the CQD model at T = 0.05 K, as defined in Eq. 3.10), for several dilution x values. The decorrelation is fast for x = 0, 0.5, 2 while it reaches a plateau for x = 1 and 1.5. (b) q EA vs x which is analogous to the Edwards-Anderson spin glass parameter.
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 27 Model 1: Phase diagram of the CQD model After a detailed analysis in the previous sections, we report the phase diagram of the CQD model for Er 2 Ti 2-x Sn x O 7 in Fig 3.15. Here, the x-axis is the chemical dilution x and the y-axis is the critical temperature.
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 315 Figure 3.15: Phase diagram of the CQD model for Er 2 Ti 2-x Sn x O 7 obtained from classical Monte-Carlo simulations with Γ 5 (purple, pink and red), Palmer-Chalker (green) and spinglass (white) phases. The Γ 5 phase is split into Ψ 2 and Ψ 3 orders because of order by disorder.In the region with noticeable disorder x ∈ [1.0; 1.2], the full U(1) manifold of the Γ 5 phase is recovered, albeit with a fintie fraction fraction of frozen magnetic degrees of freedom.
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 5316 Figure 3.16: Temperature dependence of (a,c,e,g) m E and (b,d,f,h) m T 2 order parameters for the UQD model (uncorrelated quenched disorder) with α 0 = 0.2, for x = {1.2, 1.3, 1.4, 1.5} for system size L = {3, 4, 5, 6}.

5 Figure 3 . 17 :

 5317 Figure 3.17: Temperature dependence of (a,c,e,g) m E and (b,d,f,h) m T 2 order parameters for the UQD model (uncorrelated quenched disorder) with α 0 = 0.1, for x = {1.2, 1.3, 1.4, 1.5} for system size L = {3, 4, 5, 6}.

Figure 3 . 18 :

 318 Figure 3.18: Phase diagram of the UQD model for α 0 = 0.1

Figure 3 . 19 :Figure 3 . 20 :

 319320 Figure 3.19: Phase diagrams for the three models studied in this thesis (a,b,c), compared to experiments on Er 2 Ti 2-x Sn x O 7 from Ref. [4] (d). The x-axis is always the dilution parameter x (or its equivalent as defined in section 3.1). All the ordered phases are antiferromagnetic, either with E (purple or red) or T 2 (green) symmetry. The white region in panel (a) is a spin glass.

  3.19 supports the idea that non-magnetic dilution (either in experiments or in the UQD model) offers a bridge between compounds in parameter space (the NQD model), at least for the low-temperature ordered phases (Γ 5 or Palmer-Chalker) and the evolution of the transition temperature T c as a function of x. But what about intermediate temperatures above T c ? Spin correlations above T c are signature of both the onset of long-range order, and the proximity of other

Figure 3 . 21 :

 321 Figure 3.21: Structure factor S(q) obtained from classical Monte Carlo simulation for parameters of Er 2 Ti 2 O 7 (top) and Er 2 Sn 2 O 7 (bottom) at three different temperatures : T < T c , T ≈ T c and T > T c .

Figure 3 . 22 :

 322 Figure 3.22: Structure factor S(q) obtained from classical Monte Carlo simulation for x = 0.5 at three different temperatures : T < T c , T ≈ T c and T > T c . The first, second and third row corresponds to the CQD, NQD and UQD models respectively. All models order into Γ 5 . For each panel, the color scale goes from zero to the maximum of intensity.

2

 2 Ti 2-x Sn x O 7 , let us briefly consider the influence of magnetic field h ≤ 0.8 T along the [001] direction. Er 2 Sn 2 O 7 is known to support reentrance behavior in a field, but not Er 2 Ti 2 O 7 [97] 1 . Here we confirm this behavior for intermediate values of dilution x in the h -T phase diagram of Fig. 3.25. At low field h < 0.8 T, the transition temperature decreases with magnetic field h for x < 1, while it increases for x ≥ 1.5. Since

Figure 3 . 23 :

 323 Figure 3.23: Structure factor S(q) obtained from classical Monte Carlo simulation for x = 1 at three different temperatures : T < T c , T ≈ T c and T > T c . The first, second and third row corresponds to the CQD, NQD and UQD models respectively. All models order into Γ 5 . For each panel, the color scale goes from zero to the maximum of intensity.
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 324 Figure 3.24: Structure factor S(q) obtained from classical Monte Carlo simulation for x = 1.5 at three different temperatures: T < T c , T ≈ T c and T > T c . The first, second and third row corresponds to the CQD, NQD and UQD models respectively; the former form a spin glass below T c (no Bragg peaks), while the other two order into Palmer-Chalker. For each panel, the color scale goes from zero to the maximum of intensity.
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 3254 Figure 3.25: Phase diagram of the CQD model in the presence of a magnetic field h in the [001] direction. The transition temperatures are obtained from the peak in specific heat.
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 41 Figure 4.1: Specific heat for the tensor spin liquid and Heisenberg antiferromagnet on a log-log scale.

Fig. 4 .

 4 Fig. 4.1).Since they are spin liquids, all order parameters m I = 0. Nonetheless, the reduced susceptibility χ I T for each irrep I shows which irrep degrees of freedom fluctuates in the ground state (see Fig.4.2). According to Ref.[START_REF] Yan | Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to yb 2 ti 2 o 7 , er 2 ti 2 o 7 , and er 2 sn 2 o 7[END_REF] and chapter 1, the ground-state manifold of these spin liquids are formed by the combination of the following irreps:

Figure 4 . 2 :

 42 Figure 4.2: Reduced susceptibilities χ I T for each irrep I and for both TSL and HAF. Temperature is in log scale. Degrees of freedom of a given irrep are allowed to fluctuate at low temperature if this irrep belongs to the ground state.
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 434 Figure 4.3: Left: Specific-heat temperature dependence for x ∈ [0; 1] on a log-log scale, obtained from Monte Carlo simulations of the model with quenched disorder, as defined in section 4.1. Right: Zoom at low temperature of the same data on a linear scale.

Figure 4 . 4 :

 44 Figure 4.4: Scaling function of the specific heat as T → 0 + (see Eq. 4.4) for α = -0.25, showing that the specific heat grows linearly with x.

(a) mA 2

 2 (b) mE (c) mT 1 ,A (d) mT 1 ,B (e) mT 2

Figure 4 . 5 :

 45 Figure 4.5: All order parameters, (a) m A 2 , (b) m E , (c) m T 1,A , (d) m T 1,B , (e) m T 2 , are zero up to finite-size effects, for all values of x. In particular they are always bounded by the ones of the spin liquids at x = 0 or x = 1.
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 46 Figure 4.6: Reduced susceptibilities χ I T for each irrep I = {A 2 (a), E (b), T 1,A (c), T 1,B (d), T 2 (e)}, as a function of the temperature T in log scale, and for different dilutions x. Simulations for T ≪ 0.01 could be difficult to thermalise, which explains the spurious data point at T = 0.001 in panel (b).

  long-range ferromagnetic correlations become possible over larger clusters of connected TSL tetrahedra. According to Eq. 4.5, both effects contribute positively to the value of K T 1A which thus decreases faster than linearly in x (see Fig. 4.6(c)). The same argument can be applied to the A 2 irrep which is absent from the TSL ground state; and to the T 1B irrep which is quasi-absent from the TSL ground state. As a summary, the value of K I increases faster than linearly as one approaches the spin liquid where the irrep I is part of the ground state. When the irrep is present in both spin liquids (e.g. E and T 2 ), then the evolution of K I is closer to linear (see Fig. 4.6(b,e)).
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 47 Figure 4.7: Temperature dependence of spin glass susceptibility for different x values.

4 . 9 )

 49 , and have completely vanished at x = 0.4 (see Fig. 4.10).

  4.11), and the structure factors at x = 0.8 and x = 1 are essentially the same (see Figs.[START_REF] Shirai | Dopinginduced quantum crossover in er 2 ti 2-x sn x o 7[END_REF].12 and 4.13), except for the finite thickness of the pinch points. This thickness is most likely due to the length scale imposed by the presence of TSL tetrahedra in the system that break the HAF Coulomb gauge field beyond the mean distance between TSL tetrahedra. Dilution x thus opens a path between these two spin liquids with an intermediate phase that is qualitatively different from the TSL and HAF. This intermediate phase is, however, not in the middle of the phase diagram (x = 0.5) but rather shifted towards x ∼ 0.2 -0.4. As opposed to the asymmetry observed in the phase diagrams of chapter 3, there is no reason a priori for the HAF to dominate the TSL here. In the pristine models, the HAF and TSL models are connected by the J 1 = J 2 line of Fig.1.7. It might be possible to search for a

4. 2 .

 2 It means that deviations from the HAF structure factor mostly come from tetrahedra where m T 1,A ̸ = 0. It can happen in TSL tetrahedra, but it only represents a fraction of the 3-dimensional T 1,A ′ subspace within the 8-dimensional TSL manifold composed of E ⊕ T 1,A ′ ⊕ T 2 .

Figure 4 . 8 :

 48 Figure 4.8: Equal-time structure factor in the [HHL] plane (top) and energy cuts of the inelastic structure factor (bottom) for x = 0 (TSL, no quenched disorder). The left and right column in the bottom panels correspond to [HHL] and [H0L] planes respectively. The energies are marked in the lower left corner of each subplot. Pinch lines can be seen at energy E = 0.5 meV

Figure 4 . 9 :

 49 Figure 4.9: Equal-time structure factor in the [HHL] plane (top) and energy cuts of the inelastic structure factor (bottom) for x = 0.2. The left and right column in the bottom panels correspond to [HHL] and [H0L] planes respectively. The energies are marked in the lower left corner of each subplot. Pinch lines have smeared out.
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 410 Figure 4.10: Equal-time structure factor in the [HHL] plane (top) and energy cuts of the inelastic structure factor (bottom) for x = 0.4. The left and right column in the bottom panels correspond to [HHL] and [H0L] planes respectively. The energies are marked in the lower left corner of each subplot. We are starting to see similarities with HAF spin liquid.
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 411 Figure 4.11: Equal-time structure factor in the [HHL] plane (top) and energy cuts of the inelastic structure factor (bottom) for x = 0.6. The left and right column in the bottom panels correspond to [HHL] and [H0L] planes respectively. The energies are marked in the lower left corner of each subplot. The structure factor possesses patterns reminiscent to the one of the HAF spin liquid, with broad pinch points at low energy that evolve into half-moon patterns at higher energy [5, 6, 7, 8].
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 412 Figure 4.12: Equal-time structure factor in the [HHL] plane (top) and energy cuts of the inelastic structure factor (bottom) for x = 0.8. The left and right column in the bottom panels correspond to [HHL] and [H0L] planes respectively. The energies are marked in the lower left corner of each subplot. This structure factor is very similar to the one of the HAF spin liquid. The main difference is the finite thickness of the pinch points, most likely due to the length scale imposed by the presence of TSL tetrahedra in the system that break the HAF gauge field.

Figure 4 . 13 :

 413 Figure 4.13: Equal-time structure factor in the [HHL] plane (top) and energy cuts of the inelastic structure factor (bottom) for x = 1 (HAF, no quenched disorder). The left and right column in the bottom panels correspond to [HHL] and [H0L] planes respectively. The energies are marked in the lower left corner of each subplot.

  impurities as a tool to design the properties of frustrated magnets. Exhaustive studies have been done for the two pyrochlore oxides:: Er 2 Ti 2 O 7 and Er 2 Sn 2 O 7 . Motivated by experiments on the rare-earth pyrochlore oxide Er 2 Ti 2-x Sn x O 7[START_REF] Shirai | Dopinginduced quantum crossover in er 2 ti 2-x sn x o 7[END_REF], the idea was to tune the hamiltonian of our system via non-magnetic dilution x; in other words, to use impurities as a knob to explore unknown parts of the phase diagram. This approach brings us at the frontier between geometric frustration and spin glasses. We reported in chapter 3 the phase diagram of Er 2 Ti 2-x Sn x O 7 for 0 ≤ x ≤ 2, using classical Monte Carlo simulations for three different models. Our calculations reproduce the shape of the experimental phase diagram [4], with a competition between Γ 5 and Palmer-Chalker antiferromagnetic orders. Depending on the type of quenched disorder, an intermediate spinglass phase takes place where magnetic order disappears. As in experiments, a pronounced asymmetry in favor of Γ 5 is observed, due to the exchange parameters of Er 2 Sn 2 O 7 being closer to the E/T 2 phase boundary than Er 2 Ti 2 O 7 ones. In addition, above the transition temperature T c , the structure factors of the two models with quenched disorder closely follow the evolution expected for a pristine model connecting Er 2 Ti 2 O 7 to Er 2 Sn 2 O 7 in parameter space. Finally, in presence of a magnetic field h, we recovered in simulations with quenched disorder the apparition of reentrance expected when approaching Er 2 Sn 2 O 7 . All of these results put together strongly support the idea that non-magnetic dilution can be used to explore inaccessible regions in parameter space, by connecting the dots between pristine samples.

  , β are the local coordinates of the spin. Values of g xy and g z (
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 1221231 Figure A.1: Temperature dependence of m E (a,c,e,g) and m T 2 (b,d,f,h) order parameter for different x values with the finite size scaling on the inset. The constant in the scaling function gives the value of the order parameter in the thermodynamic limit. m T 2 vanishes for these x values.
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 2 Figure A.2: Temperature dependence of m E (a,c,e,g) and m T 2 (b,d,f,h) order parameter for different x values with the finite size scaling on the inset. The constant in the scaling function gives the value of the order parameter in the thermodynamic limit. m T 2 vanishes for these x values.
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  own pyrochlore structures which are interpenetrating with each other. Examples of diverse phenomena exhibited by A 2 B 2 O 7 materials are [22]: spin glass freezing in Y 2 Mo 2 O 7 [28], spin liquid state in Tb 2 Ti 2 O 7 [29], spin ice in Ho 2 Ti 2 O 7 [30] and Dy 2 Ti 2 O 7 [31], order by disorder in Er 2 Ti 2 O 7 [9, 26, 32, 33], anomalous Hall effect in Nd 2 Mo 2 O 7 [34], superconductivity in Cd 2 Re 2 O 7 [35], Kondo effect in Pr 2 Ir 2 O 7 [36] etc. The purpose of this section is to provide a broad introduction to the theoretical model of the pyrochlore lattice with classical Heisenberg spins, before moving to the specific materials, Er 2 Ti 2 O 7 and Er 2 Sn 2 O 7 .

Table 1 . 2 :

 12 Ti 2 O 7 [9] Er 2 Sn 2 O 7 [10] Interaction parameters of Hamiltonian (1.5) for Er 2 Ti 2 O 7 and Er 2 Sn 2 O 7 obtained by fitting inelastic neutron-scattering data at high field [9, 10].

	J 1	0.11 meV	0.07 meV
	J 2 -0.06 meV	0.08 meV
	J 3 -0.10 meV	-0.11 meV
	J 4 -0.003 meV	0.04 meV

that the ground states at this boundary can be schematically described by Fig 1.11. The U(1) degeneracy of the E phase (black circle) is enhanced by three additional U(1) degeneracies (red circles), connecting the ψ 2 states (black dots) to the Palmer-Chalker states (red dots). As a consequence, there is an enhancement of Er 2

  1.3.1 Er 2 Ti 2 O 7Initial works on Er 2 Ti 2 O 7 confirmed that the material crystallized in the cubic pyrochlore structure. Magnetic susceptibility and specific heat measurements showed that the system orders at T = 1.25 K[START_REF] Champion | er 2 ti 2 o 7 : evidence of quantum order by disorder in a frustrated antiferromagnet[END_REF][START_REF] Blöte | Heat-capacity measurements on rare-earth double oxides r2m2o7[END_REF][START_REF] Siddharthan | Ising pyrochlore magnets: Low-temperature properties, "ice rules," and beyond[END_REF], with neutron scattering establishing Er 2 Ti 2 O 7 as a canonical instance of quantum order by disorder[START_REF] Champion | er 2 ti 2 o 7 : evidence of quantum order by disorder in a frustrated antiferromagnet[END_REF][START_REF] Zhitomirsky | Quantum order by disorder and accidental soft mode in er 2 ti 2 o 7[END_REF][START_REF] Savary | Order by quantum disorder in er 2 ti 2 o 7[END_REF]. Its orders into the Ψ 2 states defined in Section 1.2.3, which belong to the E irrep with order parameter m E . The Er 3+

Table 3

 3 

.1. If the two ions are Ti (resp. Sn), we take the matrix coupling of Er 2 Ti 2 O 7 (resp. Er 2 Sn 2 O 7 ) as defined in Table 1.2. If the two ions are one Ti and one Sn, then we choose the average value of each term (J 1 , J 2 , J 3 , J 4 ).

Table 3 . 1 :

 31 Interaction bonds for the CQD model

2

  Ti 2 O 7and Er 2 Sn 2 O 7 . However, the m E order parameter noticeably drops at x = 1. This is easy to understand since roughly 1/4 of the bonds bear the coupling parameters of Er 2 Sn 2 O 7 , thus favoring T 2 order. It is actually somewhat surprising to see the Γ 5 order with E symmetry persists for such large values of disorder. We shall come back to that point in section 3.3.

Table A . 1 :

 A1 Table A.1) are derived from experiments on Er 2 Ti 2 O 7 , and Er 2 Sn 2 O 7 . Yb 2 Ti 2 O 7 Er 2 Ti 2 O 7 Er 2 Sn 2 O 7 Estimates of the components of the g-tensor in the local frame g local [Eq. (A.2)], taken from experiments.

	g xy	4.18	5.97	7.52
	g z	1.77	2.45	0.05

Reentrance is the property of a system to return from an ordered phase to a previously encountered less-ordered phase as a controlling parameter (here the magnetic field h) is continuously varied.
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