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Abstract

In highly frustrated magnetism, it is usually believed that pristine crystals are
necessary, and impurities are unwanted perturbations. Our motivation here is
to take the opposing view, and use impurities as a tool to design the properties
of frustrated magnets. Motivated by experiments on the rare-earth pyrochlore
oxide Er2Ti2−xSnxO7 , the idea is to tune the Hamiltonian of our system via
non-magnetic dilution x; in other words, to use impurities as a knob to explore
unknown parts of the phase diagram. This approach brings us at the frontier
between geometric frustration and spin glasses.
Chapter 1 explores the literature on frustrated magnetism : Paradigmatic
models for frustrated magnets, work done on pure pyrochlore oxides (Er2Sn2O7

and Er2Ti2O7), spin glasses, classical spin liquids, experimental techniques etc.
The numerical formalism (Monte Carlo simulations) to probe frustrated mag-
netism are outlined in Chapter 2 along with the algorithmic details.
In Chapter 3, we report the phase diagram of Er2Ti2−xSnxO7 for 0 ≤ x ≤ 2,
using classical Monte-Carlo simulations. To build a detailed theory, we extract
from simulations the specific heat, susceptibility, neutron-scattering structure
factor, microscopic fluctuations and spin dynamics. Our calculations reproduce
the shape of the experimental phase diagram, with a competition between Γ5 and
Palmer-Chalker antiferromagnetic orders. Depending on the type of disorder used
in our model, an intermediate spin-glass phase takes place where magnetic order
disappears. A pronounced asymmetry in favor of Γ5 is observed, that we explain
when connecting this non-magnetic dilution to the generic nearest-neighbor phase
diagram on pyrochlore.
Chapter 4 is a phenomenological extension of the quenched disorder model
(used in chapter 3) to classical spin liquids(Heisenberg antiferromagnetic and
tensor spin liquid). We try to establish a connection from one to the other via
quenched disorder. We analyze the microscopic properties and the dynamical
structure factor for our model.
We summarize our findings and future work in Chapter 5 along with an appendix
at the end.
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Dans le magnétisme hautement frustré, on pense généralement que des cristaux vierges sont
nécessaires et que les impuretés sont des perturbations indésirables. Notre motivation ici est
de prendre le point de vue opposé et d’utiliser les impuretés comme un outil pour concevoir
les propriétés des aimants frustrés. Motivée par des expériences sur l’oxyde de pyrochlore
de terre rare Er2Ti2−xSnxO7 , l’idée est d’accorder l’hamiltonien de notre système via une
dilution non magnétique x ; en d’autres termes, utiliser les impuretés comme bouton pour
explorer les parties inconnues du diagramme de phase. Cette approche nous amène à la
frontière entre la frustration géométrique et les lunettes de spin.
Chapitre 1 explore la littérature sur le magnétisme frustré : Modèles paradigmatiques
pour les aimants frustrés, travaux effectués sur les oxydes de pyrochlore purs (Er2Sn2O7 et
Er2Ti2O7), verres de spin, liquides de spin classiques, techniques expérimentales, etc.
Le formalisme numérique (simulations de Monte Carlo) pour sonder le magnétisme frustré
est décrit dans le Chapitre 2 avec les détails algorithmiques.
Dans le Chapitre 3, nous rapportons le diagramme de phase de Er2Ti2−xSnxO7 pour
0 ≤ x ≤ 2, en utilisant le Monte classique -Simulations Carlo. Pour construire une théorie
détaillée, nous extrayons des simulations la chaleur spécifique, la susceptibilité, le facteur
de structure de diffusion des neutrons, les fluctuations microscopiques et la dynamique de
spin. Nos calculs reproduisent la forme du diagramme de phase expérimental, avec une
compétition entre les ordres antiferromagnétiques Γ5 et Palmer-Chalker. Selon le type de
désordre utilisé dans notre modèle, une phase intermédiaire de verre de spin a lieu où l’ordre
magnétique disparaît. Une asymétrie prononcée en faveur de Γ5 est observée, que nous
expliquons en reliant cette dilution non magnétique au diagramme de phase générique du
plus proche voisin sur le pyrochlore.
Chapitre 4 est une extension phénoménologique du modèle de désordre quenched (utilisé
au chapitre 3) aux liquides de spin classiques (liquide antiferromagnétique de Heisenberg et
tensor spin liquide). Nous essayons d’établir une connexion de l’un à l’autre via le désordre
éteint. Nous analysons les propriétés microscopiques et le facteur de structure dynamique
pour notre modèle.
Nous résumons nos découvertes et nos travaux futurs dans le Chapitre 5 avec une annexe à
la fin.
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Chapter 1
Introduction

“People need trouble- a little frustration to sharpen the spirit on, toughen it. Artists do; I
don’t mean you to live in a rat hole or gutter, but you have to learn fortitude, endurance.
Only vegetables are happy”.- William Faulkner.

The study of order-disorder phenomena is a fundamental task of equilibrium statistical
mechanics [11]. Many studies have dealt with the ordered phases at low temperatures as
well as the critical phenomena or hysteresis around phase transitions. However, beyond
critical phenomena, there has also been particularly intense research in the understanding of
frustrated models, either due to quenched disorder which may lead to spin glasses [12], or
due to geometric frustration, with the formation of fluid-like states of matter known as spin
liquids [1]. In spin liquids, spins fluctuate even down to zero temperature despite significant
correlations. These fluctuations show exotic collective phenomena such as emergent gauge
fields [13] and fractional particle excitations.

In this introduction, we will first cover the basics of frustrated magnetism, introduce the
main theoretical models, and then present in detail the materials that will be studied in this
thesis, namely Er2Ti2O7 and Er2Sn2O7.

1.1 What is frustration ?

The elementary idea of frustration can be understood from the third law of thermodynamics,
which states that the entropy of a system should be zero at absolute zero temperature. In
other words, a system is a priori expected to order into a unique configuration. However,
the main aspect of frustrated systems is that it is impossible to satisfy all interactions
simultaneously. In some cases labeled as spin liquids, this competition prevents finding that
unique ground state [1].

Please note that in this thesis, we will focus on magnetic frustration, but since magnetic
systems also serve as ideal experimental testing grounds for various theoretical models,
frustration also has implications in protein folding[14, 15], superconductivity[16] ...

1
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1.1.1 Experimental Intuition

How does it look like in experiments? The most common smoking gun of geometric frustration
is probably the temperature dependence of magnetic susceptibility χ. Within mean-field
theory, χ−1 has the following linear form at high temperature :

χ−1 =
1

c
(T −Θcw), (1.1)

where Θcw is the Curie-Weiss temperature that measures the average magnitude of exchange
interactions. When an unfrustrated system orders at a given transition temperature Tc,
we have Tc ∼ |Θcw| which is characterized by a cusp or divergence in χ. Contrarily, in
geometrically frustrated systems nothing happens at the temperature scale set by interactions,
precisely because long-range order (LRO) is hindered by frustration (see Fig. 1.1). This is
why one can define a frustration ratio[17]

f =
|Θcw|
Tc

. (1.2)

We have f ≃ 1 for unfrustrated systems, them being ferro- or antiferromagnetic. On the
other hand, a relatively large value of f is a typical signature of frustration. f even goes to
infinity for spin liquids since there is no transition, but is often limited to a finite large value
in experiments because of perturbations such as quenched disorder, and dipolar interactions
...

Figure 1.1: Characteristic inverse magnetic susceptibility of a geometrically frustrated
antiferromagnet χ−1 vs temperature T showing that the transition temperature Tc is much
smaller than the Curie-Weiss temperature Θcw. Adapted from [1]



Chapter 1. Introduction 3

1.1.2 Canonical frustrated models

Triangular lattice

One of the most famous models was first studied by Wannier[18] back in 1950, where he
considered antiferromagnetic (AFM) Ising spins on a triangular lattice. He showed that this
spin model has a macroscopic degenerate ground state, i.e. a residual entropy as the system
is cooled down to zero temperature. When minimizing the energy of each triangle, one sees
easily that two out of the three spins cannot be antiferromagnetically aligned as shown in
Fig. 1.2 which results in a frustrated bond (in blue). As a consequence, the six states of Fig.
1.2 have the same, lowest possible, energy. It is possible to pave the entire triangular lattice
with these states, and the local degeneracy results in the above-mentioned residual entropy.
It is important to notice that this ensemble of ground states does not break any symmetry.
Spins are long-ranged correlated but they are not ordered and there is no phase transition at
finite temperature in the Ising triangular antiferromagnet.

Figure 1.2: Ising spins on a triangular lattice showing the six possible configurations for
the antiferromagnetic ground state. Arrows indicate the spin direction. Blue lines denote
the frustrated bonds, along which spins are parallel.

Kagome lattice

Since the elementary brick of frustration is the triangle, it is possible to reproduce a similar
physics by connecting the triangles by their corners; it results in the kagome lattice shown in
Fig. 1.3. With Ising spins, this system is less constrained than the triangular network and
presents an even higher residual entropy [19].

Now, if we consider classical Heisenberg spins, the energy is minimized on each triangle when
spins are mutually oriented at 120 ◦ from each other. This ground state remains extensively
degenerate, but thermal fluctuations select coplanar states[1, 20]. This selection mechanism
is an example of order by disorder[21] which will be discussed in the next section 1.1.3.

Pyrochlore lattice

The triangle is the elementary brick of frustration in two dimensions, but more complex
geometries are available in three dimensions, in particular the tetrahedron with four spins
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Figure 1.3: Kagome lattice composed of corner-sharing triangles

at equidistance from each other. This thesis will focus on the pyrochlore lattice made of
corner-sharing tetrahedra as shown in Fig. 1.4, which has the advantage of being realized in
a rich family of rare-earth oxides [22].

Figure 1.4: Pyrochlore lattice composed of corner-sharing tetrahedra

1.1.3 Order by Disorder(ObD)

The degeneracy of a classical ground state can be fragile since perturbations often lift
this degeneracy in favor of an ordered state or a spin glass. But even in the absence of
perturbations, thermal and/or quantum fluctuations can lift the degeneracy of the ground
state manifold. The selection of an ordered phase by fluctuations is known as order by
disorder [21, 23, 20, 24, 25, 26, 9, 27]. It was first studied on the two-dimensional frustrated
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Ising model on a domino lattice[21]. At first glance, order by disorder appears to be a
paradoxical concept because disorder, caused by fluctuations, tends to suppress order in the
system. However, sometimes, fluctuations work in favor of a particular long-range ordered
state, as illustrated in Fig. 1.5.

When the degeneracy of a ground-state manifold is accidental, i.e. when it is not protected
by the Hamiltonian symmetry, fluctuations around certain ground states differ from others.
When this occurs, these particular ground states have a larger entropy (which usually
corresponds to more soft modes) or lower zero-point energy for thermal and quantum
fluctuations respectively. Focusing on classical systems, the system then has a tendency to
be in a region of the ground-state manifold with the highest number of soft modes, which
eventually lifts the ground-state degeneracy. Therefore, fluctuations trigger the selection of
a particular ground state at low temperatures.

Figure 1.5: Schematic diagram of the phase space of a frustrated magnet, where the solid
line represents the ground-state manifold. In the left panel, only a narrow and uniform
band of states around the ground state manifold is accessible at low temperatures (blue
region); there is no order by disorder here. In the right panel, however, a particular region
has a bulge of accessible states at low temperatures. This is the place where soft modes
allow low-energy excitations and the corresponding ground state is entropically selected via
order-by-disorder.[1]

1.2 The pyrochlore lattice

This thesis will focus on the three-dimensional pyrochlore lattice which has been a major
kingpin in the display of geometrical frustration. This is why it is important to understand the
geometric and chemical structure of these systems, which is the purpose of this section. The
standard pyrochlore lattice is made up of corner-sharing tetrahedra and is commonly observed
in rare-earth pyrochlore oxides with a chemical formula A2B2O7 [22]. The A site is occupied
by a rare-earth ion and the B site is usually non-magnetic. Both A and B ions form their
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own pyrochlore structures which are interpenetrating with each other. Examples of diverse
phenomena exhibited by A2B2O7 materials are [22]: spin glass freezing in Y2Mo2O7[28], spin
liquid state in Tb2Ti2O7[29], spin ice in Ho2Ti2O7[30] and Dy2Ti2O7[31], order by disorder
in Er2Ti2O7[9, 26, 32, 33], anomalous Hall effect in Nd2Mo2O7[34], superconductivity in
Cd2Re2O7[35], Kondo effect in Pr2Ir2O7[36] etc. The purpose of this section is to provide a
broad introduction to the theoretical model of the pyrochlore lattice with classical Heisenberg
spins, before moving to the specific materials, Er2Ti2O7 and Er2Sn2O7.

Figure 1.6: The A and B sites of pyrochlore materials A2B2Y7, forming their own interpen-
etrating pyrochlore structures. In this thesis, A sites are magnetic, B sites are non-magnetic
and Y corresponds to oxygens. Figure taken from [2].

1.2.1 Generic nearest-neighbor model

Magnetism at the level of a single ion

The magnetic properties of the rare-earth ion A are modulated by the interplay between
spin-orbit coupling and the crystal field due to the surrounding oxygens. This leads to
immense variations of properties among the rare-earth oxides, which is one of the main
reasons for their interest in frustrated magnetism. When the magnetic ion is a Kramers
doublet, it can be effectively described by a spin-1/2 degree of freedom [37]:

[Sµ, Sν ] = iϵµνξS
ξ. (1.3)

When Sµ transforms like a magnetic dipole. The real magnetic moment Sµ of the material
corresponds to a matrix transformation of Sµ:

mµ
i =

3∑
ν=1

gµνi Sν
i (1.4)

where µ, ν ∈ {x, y, z}. The gµνi tensor represents the single-ion anisotropy, from Ising to
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Heisenberg passing by XY, and is discussed in Appendix A.

Anisotropy in exchange interactions

The most general model of nearest neighbor interactions compatible with the Td point group
symmetry of the tetrahedron [38, 39, 37] is :

Hex =
∑
⟨ij⟩

Jµν
ij S

µ
i S

ν
j =

∑
t

Htet
ex [t] =

∑
t

∑
⟨i,j⟩∈t

Si J
[t]
ij Sj , (1.5)

where the sum on ⟨i, j⟩ runs over the six nearest-neighbor bonds within tetrahedron t. The
Hamiltonian can be rewritten as a sum over all tetrahedra because we do not consider
interactions beyond first neighbors. J [t]

ij is the 3× 3 interaction matrix specific to bond ij.

It can be shown that J [t]
ij is only a function of four independent parameters and that the

interaction matrix is the same for all bonds in the lattice (modulo rotation symmetry) [38].
If we label the four spin sublattices within a tetrahedron from 0 to 3, one gets:

J01 =


J2 J4 J4

−J4 J1 J3

−J4 J3 J1

 , J02 =


J1 −J4 J3

J4 J2 J4

J3 −J4 J1

 , J03 =


J1 J3 −J4

J3 J1 −J4

J4 J4 J2



J12 =


J1 −J3 J4

−J3 J1 −J4

−J4 J4 J2

 , J13 =


J1 J4 −J3

−J4 J2 J4

−J3 −J4 J1

 , J23 =


J2 −J4 J4

J4 J1 −J3

−J4 −J3 J1

 ,

which are all equivalent up to rotation symmetry. Note that the (J1, J2, J3, J4) parameters
are not the first, second, third, and fourth nearest-neighbor couplings. They are anisotropic
terms of the nearest-neighbor interaction matrix and can be understood as :

• J1 : XY coupling with respect to the local bond frame.

• J2 : Ising coupling with respect to the local bond frame.

• J3 : symmetric off-diagonal exchange (present in dipolar interactions for example).

• J4 : Dzyaloshinskii-Moriya coupling.

1.2.2 Order parameters

Considering a single tetrahedron, the Hamiltonian becomes a matrix of size 12x12 since we
have 4 spins with three components for each spin. This Hamiltonian can then be diagonalized
using irreducible representations (irreps) of Td λ = { A2, E, T1, T2 } [3]:
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order definition in terms associated

parameter of spin components ordered phases

mA2
1

2
√
3
(Sx

0 + Sy
0 + Sz

0 + Sx
1 − Sy

1 − Sz
1 − Sx

2 + Sy
2 − Sz

2 − Sx
3 − Sy

3 + Sz
3) “all in-all out”

mE

 1
2
√
6
(−2Sx

0 + Sy
0 + Sz

0 − 2Sx
1 − Sy

1 − Sz
1 + 2Sx

2 + Sy
2 − Sz

2 + 2Sx
3 − Sy

3 + Sz
3)

1
2
√
2
(−Sy

0 + Sz
0 + Sy

1 − Sz
1 − Sy

2 − Sz
2 + Sy

3 + Sz
3)

 Ψ2 and Ψ3

mT1,A


1
2(S

x
0 + Sx

1 + Sx
2 + Sx

3 )

1
2(S

y
0 + Sy

1 + Sy
2 + Sy

3)

1
2(S

z
0 + Sz

1 + Sz
2 + Sz

3)

 collinear FM

mT1,B


−1
2
√
2
(Sy

0 + Sz
0 − Sy

1 − Sz
1 − Sy

2 + Sz
2 + Sy

3 − Sz
3)

−1
2
√
2
(Sx

0 + Sz
0 − Sx

1 + Sz
1 − Sx

2 − Sz
2 + Sx

3 − Sz
3)

−1
2
√
2
(Sx

0 + Sy
0 − Sx

1 + Sy
1 + Sx

2 − Sy
2 − Sx

3 − Sy
3)

 coplanar FM

mT2


1

2
√
2
(−Sy

0 + Sz
0 + Sy

1 − Sz
1 + Sy

2 + Sz
2 − Sy

3 − Sz
3)

1
2
√
2
(Sx

0 − Sz
0 − Sx

1 − Sz
1 − Sx

2 + Sz
2 + Sx

3 + Sz
3)

1
2
√
2
(−Sx

0 + Sy
0 + Sx

1 + Sy
1 − Sx

2 − Sy
2 + Sx

3 − Sy
3)

 Palmer-Chalker (Ψ4)

Table 1.1: Order parameters mλ of the different irreps [3] expressed in terms of linear
combinations of spin-components Si = (Sx

i , S
y
i , S

z
i ), in the global frame of the cubic crystal

axes (Hex [Eq. (1.5)])

Htet
ex ≡ 1

2

[
aA2 m

2
A2

+ aEm
2
E + aT2 m

2
T2

+ aT1,A
m2

T1,A

+aT1,B
m2

T1,B
+ aT1,AB

mT1,A
·mT1,B

]
, (1.6)

whose eigenvalues

aA2 = −2J1 + J2 − 2(J3 + 2J4)

aE = −2J1 + J2 + J3 + 2J4

aT2 = −J2 + J3 − 2J4

aT1,A
= 2J1 + J2

aT1,B
= −J2 − J3 + 2J4

aT1,AB
= −

√
8J3 (1.7)

are completely determined by the interaction parameters of Hex [Eq. (1.5)]; the corresponding
eigenvectors mλ are order parameters given in Table 1.1. However, please note that Eq.
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(1.6) is not fully diagonalized because we have a coupling term between the two T1 irreps.
This coupling term can be eliminated by doing a simple coordinate transformation [3] :

mT1,A′ = cos θT1 mT1,A
− sin θT1 mT1,B

mT1,B′ = sin θT1 mT1,A
+ cos θT1 mT1,B

(1.8)

where

θT1 =
1

2
arctan

( √
8J3

2J1 + 2J2 + J3 − 2J4

)
. (1.9)

The resulting eigenvalues are

aT1,A′ = (2J1 + J2) cos
2(θT1)− (J2 + J3 − 2J4) sin

2(θT1) +
√
2J3 sin(2θT1)

aT1,B′ = (2J1 + J2) sin
2(θT1)− (J2 + J3 − 2J4) cos

2(θT1)−
√
2J3 sin(2θT1) (1.10)

Now, we can rewrite the hamiltonian Htet
ex as :

H[Td]
ex =

1

2

[
aA2m

2
A2

+ aEm
2
E + aT2m

2
T2

+ aT1,A′m
2
T1,A′

+ aT1,B′m
2
T1,B′

]
. (1.11)

It is important to notice that the constraint on the spin length (S = 1/2) is respected by the
order parameters and can be expressed as [3] :

S2
0 + S2

1 + S2
2 + S2

3 = 1

S2
0 + S2

1 − S2
2 − S2

3 = 0

S2
0 − S2

1 + S2
2 − S2

3 = 0

S2
0 − S2

1 − S2
2 + S2

3 = 0 . (1.12)

1.2.3 Classical Phase Diagram

Since the Hamiltonian of equation (1.5) can be expressed as a sum of individual tetrahedra,
any state that minimizes the energy of each individual tetrahedron is the ground state of
the system. In particular, since the spin configurations defined in Table 1.1 are all physical
states, i.e. they respect the spin-unit length constraint of Eq.(1.12), it has been shown it
was always possible to pave the entire pyrochlore lattice with the same spin configurations
on all tetrahedra corresponding to the lowest eigenvalue of Eqs. (1.7) and (1.10) [3]. In other
words, there always exist a classical q = 0 ground state for any given exchange interaction
(J1, J2, J3, J4). Please note that even if the spin configuration is the same for all tetrahedra,
the spin orientation of the four pyrochlore sublattices might differ.

Many rare-earth pyrochlores are described by J3 < 0 and J4 ≈ 0 [40, 9, 37], due to dipolar
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interactions and weak Dzyaloshinskii-Moriya coupling. In this limit, the classical ground
state phase diagram was obtained in Ref.[3] as shown in Figure 1.7. Now, we will explore
the phase diagram and its boundaries ahead.

Figure 1.7: Classical ground-state phase diagram for a pyrochlore magnet with anisotropic
exchange interactions in the limit J3 < 0 and J4 = 0. The blue, green, and red/yellow regions
correspond to T1, T2, and E ground states respectively. The latter is divided into two colors
because of thermal order-by-disorder selection, with ψ2 (red) and ψ3 (yellow) states. Points
correspond to exchange parameters of Yb2Ti2O7, Er2Ti2O7 and Er2Sn2O7. The grey dots
in the center is the position of the tensor spin liquid (J3 < 0 and J1 = J2 = J4 = 0). The
arrow indicates the asymptotic limit of the Heisenberg antiferromagnet at J1 = J2 > 0 and
J3 = J4 = 0. Figure adapted from [3]

(I) Non-collinear ferromagnet (FM) with T1 symmetry

The classical state in this region has a finite magnetization with m2
T1,A′

= 1 and is 6-fold
degenerate because of time-reversal symmetry and the three equivalent cubic axes [3]. The
magnetization is parallel to one of the three cubic axes, with spins canted away from this
axis (see Fig. 1.8). A possible ground state is given below, with magnetization along the
[001] axis.
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S0 = S
(
sin θT1/

√
2, sin θT1/

√
2, cos θT1

)
S1 = S

(
− sin θT1/

√
2, sin θT1/

√
2, cos θT1

)
S2 = S

(
sin θT1/

√
2,− sin θT1/

√
2, cos θT1

)
S3 = S

(
− sin θT1/

√
2,− sin θT1/

√
2, cos θT1

)
(1.13)

where θT1 is given by Eq. (1.9) and S = 1/2. This state has been identified in Yb2Ti2O7[41]
and Yb2Sn2O7[42].

Figure 1.8: Spin-configuration in the 4-sublattice non-collinear FM phase with T1 symmetry,
viewed slightly off the [110] axis. The magnetization is aligned with the [001] axis, while
spins are canted by an angle θT1 . Figure from [3].

(II) Antiferromagnet with E symmetry

The classical state in this region has zero magnetization with m2
E = 1 and bears a continuous

U(1) degeneracy parametrized by the angle θE such that [3, 43]

mE = (cos θE, sin θE) . (1.14)
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The spin configuration in this manifold is given by :

S0 = S

(√
2

3
cos(θE),

√
2

3
cos(θE +

2π

3
),

√
2

3
cos(θE − 2π

3
)

)
S1 = S

(√
2

3
cos(θE), −

√
2

3
cos(θE +

2π

3
), −

√
2

3
cos(θE − 2π

3
)

)
S2 = S

(
−
√

2

3
cos(θE),

√
2

3
cos(θE +

2π

3
), −

√
2

3
cos(θE − 2π

3
)

)
S3 = S

(
−
√

2

3
cos(θE), −

√
2

3
cos(θE +

2π

3
),

√
2

3
cos(θE − 2π

3
)

)
. (1.15)

with spins restricted to the local easy-plane of each sublattice (see Fig.1.9); it means that
spins are orthogonal to their local [111] easy axes.

Figure 1.9: Example of a spin configuration within the one-dimensional manifold of states
transforming with the E irrep of Td. The yellow circles represent the local easy plane of each
sublattice, perpendicular to the local [111] easy-axis. The U(1) manifold can be generated
by a clockwise rotation of all spins around their respective local axes. These configurations
are commonly called Γ5 states.

The antiferromagnetic configurations with E symmetry are sometimes referred to as Γ5 states.
The basis of the E irrep is formed by Ψ2 and Ψ3 states [44].

(II.a) Non-coplanar antiferromagnet, Ψ2, with E symmetry

The Ψ2 states are six-fold degenerate [43] and given by Eq. (1.15) with θE = nπ
3 , n =

0, 1, 2, 3, 4, 5. They correspond to the ground state of Er2Ti2O7 [43]. See Fig. 1.10(a).

(II.b) Coplanar antiferromagnet, Ψ3, with E symmetry

The Ψ3 states are six-fold degenerate[43], with coplanar spins perpendicular to one of the
cubic axes. They are given by Eq. (1.15) with θE = nπ

3 + π
6 , n = 0, 1, 2, 3, 4, 5. See Fig. 1.10(b).
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(a) (b) (c)

Figure 1.10: Spin configurations of antiferromagnetic orders: (a) non-coplanar Ψ2, (b)
coplanar Ψ3 and (c) coplanar Palmer–Chalker (Ψ4) states. Ψ2 and Ψ3 belong to the U(1)
manifold of the Γ5 states.

(III) Palmer-Chalker states with T2 symmetry

The classical state in this region has zero magnetization with m2
T2

= 1 and is 6-fold degenerate
[45]. One of the six spin configurations is for example:

S0 = S

(
1√
2
,− 1√

2
, 0

)
S1 = S

(
− 1√

2
,− 1√

2
, 0

)
S2 = S

(
1√
2
,
1√
2
, 0

)
S3 = S

(
− 1√

2
,
1√
2
, 0

)
(1.16)

This is called a Palmer-Chalker (PC) or Ψ4 state [45, 44] where the spins are coplanar and
arranged in helical fashion in a common [100] plane (see Fig. 1.10(c).). They correspond to
the ground state of Er2Sn2O7 [46].

(IV) Boundary between Palmer-Chalker phase and E irrep phase

Before moving to the materials, we should briefly discuss the boundary between the Palmer-
Chalker phase and E antiferromagnet as it will be of importance later in this thesis. This
boundary appears when aE = aT2 which implies J1 = J2 for the phase diagram with J3 < 0

and J4 = 0 [3]. It has been shown [3] that the ground states at this boundary can be
schematically described by Fig 1.11. The U(1) degeneracy of the E phase (black circle) is
enhanced by three additional U(1) degeneracies (red circles), connecting the ψ2 states (black
dots) to the Palmer-Chalker states (red dots). As a consequence, there is an enhancement of
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Er2Ti2O7 [9] Er2Sn2O7 [10]

J1 0.11 meV 0.07 meV

J2 −0.06 meV 0.08 meV

J3 −0.10 meV −0.11 meV

J4 −0.003 meV 0.04 meV

Table 1.2: Interaction parameters of Hamiltonian (1.5) for Er2Ti2O7 and Er2Sn2O7 obtained
by fitting inelastic neutron-scattering data at high field [9, 10].

soft modes around the ψ2 states which are then selected via thermal order-by-disorder at
finite temperature (see section 1.1.3).

Figure 1.11: The structure of the ground state manifold at the boundary between PC and
E phases. The black circle denotes the manifold of E ground states. This manifold branches
at the Ψ2 states (black dots) to connect with three additional U(1) manifolds which include
the six Palmer-Chalker states with T2 symmetry (red dots). Figure from [3].

1.3 Er based pyrochlores

In this section, we shall present the two pyrochlore oxides, Er2Ti2O7[9] and Er2Sn2O7[10]
which form an important part of chapter 3. Their exchange parameters [J1, J2, J3, J4] have
been parametrized in Refs.[9, 10] and are given in Table 1.2
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1.3.1 Er2Ti2O7

Initial works on Er2Ti2O7 confirmed that the material crystallized in the cubic pyrochlore
structure. Magnetic susceptibility and specific heat measurements showed that the system
orders at T = 1.25 K [43, 47, 48], with neutron scattering establishing Er2Ti2O7 as a
canonical instance of quantum order by disorder [43, 26, 9]. Its orders into the Ψ2 states
defined in Section 1.2.3, which belong to the E irrep with order parameter mE . The Er3+

ion is a Kramers doublet with a substantial easy-plane anisotropy, and Er2Ti2O7 is well
described by Hamiltonian 1.5 [9]

There have been several studies on Er2Ti2O7 in presence of structural disorder. For example,
Maryasin and Zhitomirsky[49] studied the effect of non-magnetic dilution and weak bond
disorder for the anisotropic XY pyrochlore antiferromagnet. They observed that a small
amount of non-magnetic impurities in Er2Ti2O7 stabilizes the Ψ3 states instead of the Ψ2

ones in the pure material. They also showed that order by structural disorder mechanism
competes with the effect of thermal and quantum fluctuations. Andreanov and McClarty[50]
studied the effect of substituting nonmagnetic ions onto the magnetic sites in a pyrochlore
XY model, for example, Er2−xYixTi2O7 with a small dilution x of yttrium exhibiting a
second order phase transition from the thermally selected Ψ2 state into a Ψ3 state selected
by the quenched disorder. Andrade, Hoyos, Rachel, and Vojta[51] studied quenched disorder
on easy-plane pyrochlore antiferromagnets. They demonstrated that in XY pyrochlore
anti-ferromagnets, defects/impurities lead to fluctuating random fields destroying long-range
order which leads to a Cluster Glass phase beyond a critical level of randomness. Their
results match with experimental studies done on diluted Er2Ti2O7.

1.3.2 Er2Sn2O7

We now switch our focus to the chemically similar pyrochlore material, Er2Sn2O7. Here also
the Er3+ ion is a Kramers doublet with a substantial easy-plane anisotropy. But as opposed
to Er2Ti2O7 whose long-range order is particularly robust across samples and experiments,
the low-temperature properties of Er2Sn2O7 took some time to establish [52, 53, 46]. It is
only in 2017 that Refs. [46] and [4] established the presence of long-range order below 130
mK into the Palmer-Chalker states defined in Section 1.2.3. Its order parameter is thus mT2 .

1.3.3 Er2Ti2−xSnxO7

Ref. [4] also showed the evolution of long-range order upon non-magnetic dilution in
Er2Ti2−xSnxO7. They found that the critical temperature decreases roughly linearly up to
x ≈ 1.7, with long-range order into the Γ5 states (with E irrep). Above x = 1.7, Tc starts
to increase with the emergence of new Bragg peaks consistent with a Palmer-Chalker (Ψ4)
phase.
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Figure 1.12: Experimental phase diagram of Er2Ti2−xSnxO7 as a function of non-magnetic
dilution x showing the two ordered states with E symmetry (Ψ2 or Ψ3, red) and with
T2 symmetry (Ψ4, green). A large part of chapter 3 will be dedicated to analyzing and
understanding this phase diagram theoretically. Figure from [4].

1.4 Classical spin liquids on the pyrochlore lattice

Classical spin liquids have, at least theoretically, an infinite frustration parameter f (see
Eq. 1.2) [17]. A diversity of such spin liquids has been established on the pyrochlore lattice.
Here we shall introduce two specific spin liquids that will be central to chapter 4.

1.4.1 The Heisenberg antiferromagnet

On the classical phase diagram of Hamiltonian (1.5), the Heisenberg antiferromagnet (HAF)
corresponds to the asymptotic limit J1 = J2 ≫ J3, on the boundary between the E and T2

antiferromagnets (see Fig. 1.7). Taking J1 = J2 = 1 and J3 = J4 = 0 in the eigenvalues of
Eqs. (1.7) and (1.10), we get :

aA2 = −1

aE = −1

aT2 = −1

aT1,A
= 3

aT1,B
= −1

(1.17)
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The ground state of the classical HAF naturally includes all antiferromagnetic irreps, A2, E,
T2, T1,B . In other words, its ground state manifold can be written as a linear superposition
of all of these irreps. It is extensively degenerate and the HAF is a well-known classical spin
liquid that remains disordered for all temperatures [54, 55, 56]. The classical HAF model
has been realized in a few materials, such as NaCaNi2F7 [8].

1.4.2 The tensor spin liquid

On the opposite direction of the boundary between the E and T2 antiferromagnets, at the
center of the classical phase diagram in Fig. 1.7 where J1 = J2 = J4 = 0 and J3 = −1,
we observe a so-called tensor spin liquid [57]. Its name comes from the description of its
ground-state manifold that requires an emergent tensor gauge field theory. Its peculiar
nature appears in the form of pinch lines in its structure factor [57].

Using Eqs. (1.7) and (1.10), the eigenvalues turn out to be :

aA2 = 2 K

aE = −1 K

aT2 = −1 K

aT1,A′ = −1 K

aT1,B′ = 2 K

(1.18)

As expected for a point sitting in the center of the phase diagram of Fig. 1.7, the ground
state energy is minimized by E, T2, T1,A′ irreps.

1.5 Quenched disorder and spin glasses

While most solids studied in condensed matter are crystalline as shown in Figure 1.13(a),
the glass that we see in day-to-day life is amorphous (Fig 1.13(b)).

(a) (b)

Figure 1.13: Example of (a) crystalline vs (b) amorphous structures.

In amorphous magnetic systems, the Hamiltonian is not invariant by translation anymore.
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Spin-spin interactions are randomly distributed, following a given distribution characteristic
of the model or material. Since it is not possible to satisfy all interactions in a system with
random couplings, amorphous systems are also frustrated; not because of the geometry of
the lattice, as considered so far in this chapter, but simply due to the structural disorder of
the system. When the Hamiltonian parameters characterizing disorder do not change over
time in response to changes in the magnetic degrees of freedom or other parameters, the
system is said to be quenched. On the other hand, it is referred to as an annealed disorder if
the random variables can be modified. In this thesis, we will focus on quenched disorder.

As a result of this frustration, magnetic moments become frozen in time at low temperatures,
even if they remain spatially disordered. This is a spin glass [58, 59, 60, 12] whose physics
has been extensively studied in canonical systems such as the Edwards-Anderson model [61],
the Sherrington-Kirkpatrick model [62], the spherical model [63], the trap model [64] ... If
we plot a free energy landscape of a spin glass system [65], it turns out to be pretty random
as illustrated in Fig 1.14. Usually in most physical systems at low temperatures, if we leave
the system relaxed for a long enough time, it wants to go to the lowest energy state. On the
contrary, spin glass is quite interesting because it has a lot of low-energy states (valleys) but
these low-energy states are separated from each other by large energy barriers (mountains).
These large energy barriers make it difficult for the system to transition from one state to
another. A spin glass appears at low temperatures when the spins get stuck in a particular
valley for a very long time.

Figure 1.14: Schematic representation of the free energy for a spin glass along an arbitrary
line in phase space (labeled by x), showing the presence of many metastable states.

Now, the question one might ask is: How do we identify a spin glass? Spin glasses don’t have
a spatial order as the spins are randomly aligned so how do we define an order parameter?
One solution lies is to look at non-equilibrium dynamics [66]. This can be achieved by
performing quenched dynamics and seeing how the spins relax in the system. To be more
precise, firstly we define a two-time correlation function[67, 66] C(t, t′):
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C(t, t′) =
1

N

N∑
i=1

⟨Si(t)Si(t′)⟩. (1.19)

Here, Si(t) and Si(t′) are the orientations of spins at times t and t′ respectively and N is the
number of spins. ⟨O⟩ and O are respectively the thermal and disorder averages of variable
O; the latter is necessary to account for the broken translation symmetry of a spin glass.
The value of C(t, t′) varies between -1 to 1. Typically, in the case of a paramagnet, the
correlation function C(t, t′) decays very quickly (see Fig. 1.15). On the contrary, C(t, t′)
approaches a plateau for a spin glass, which means that the spins are stuck for a very long
time.

Figure 1.15: Schematic representation of the correlation function C(t, t′) for a paramagnet
(blue) and a spin glass (orange). The initial memory of the system is retained in a spin glass
system whereas it is quickly forgotten in the case of a paramagnet.

We can formalize the above by introducing a new quantity called as Edwards-Anderson spin
glass parameter[61] defined as:

qEA = lim
t−t′→∞

lim
t′→∞

C(t, t′) (1.20)

If there is a plateau in the correlation function C(t, t′), it fixes the value of qEA [66, 68]. The
larger the value of qEA, the more glassy the system behaves. The emergence of this plateau
in correlation function C(t, t′) can be used to characterize the spin glass phase from other
phases.

At a microscopic level, one can have various types of defects, such as e.g. magnetic dilution
and magnetic stuffing, where a magnetic moment is, respectively, taken out and added to
the crystalline structure, as illustrated in Fig. 1.16. These defects can be either accidental or
controlled during the synthesis.

In this thesis, we will consider another kind of quenched disorder. All the magnetic ions
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Figure 1.16: Example of magnetic dilution (left) and stuffing (right) with respectively a
missing and extra spin in the lattice.

shall remain in place on the pyrochlore lattice, but nonmagnetic ions will be randomly
placed. Due to the local variations in the crystalline electric field and superexchange path
between magnetic ions, spin-spin interactions will be randomly distributed, reminiscent of
an Edwards-Anderson model [61]

1.6 Motivation of this thesis

Most of the literature on geometrically frustrated systems focuses on idealized homogeneous
systems. However, realistic systems usually have local random amounts of impurities. Missing
ions, dilution, or stuffing are not uncommon in rare-earth pyrochlores and can qualitatively
alter a system’s properties [69, 70].

In this thesis, we will study the interplay between geometric frustration and quenched
disorder. Our goal is to use quenched disorder as a knob to tune the properties of frustrated
magnets. First, we will present the methods used in this thesis in chapter 2. In chapter
3 we will focus on an experimentally motivated pyrochlore oxide series Er2Ti2−xSnxO7[4].
We will pay particular attention to generating a phase diagram of Er2Ti2−xSnxO7 and see
how the magnetic properties of Er2Ti2−xSnxO7 evolve with x. In chapter 4 we will shift our
focus to the two classical spin liquids presented in Section 1.4 and see if we can connect
them via quenched disorder. Finally, we conclude with a discussion of the implications of
these results and some thoughts about future directions.



Chapter 2
Numerical Methods

2.1 Introduction

The study of statistical properties of complex systems poses many hard problems that are
difficult to solve just by analytical approaches. Therefore, numerical simulation techniques
such as the Monte Carlo method [71, 72, 73] are indispensable tools to gain a better
understanding of complex systems like (spin) glasses, and more generally frustrated magnets.

We are aware of the fact that the magnetic dipoles of the atoms in materials are randomly
oriented which results in zero macroscopic magnetic moment. However, in certain cases, such
as iron, a magnetic moment is produced as a result of a preferred alignment of the electronic
spins. This phenomenon is based on two fundamental but competing principles: energy
minimization and entropy maximization [11]. The mediator between these two elements is
the temperature which determines the overall dominant term among the two. The Boltzmann
distribution function (given below) for a given microstate k governs the relative importance
of energy minimization and entropy maximization.

P (k) = exp(
−Ek)

kbT
) (2.1)

which is illustrated in Fig 2.1, here kb is the Boltzmann constant.

21
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Figure 2.1: Boltzmann probability distribution vs energy and temperature

Given the energy of each possible state k of the system, equation 2.1 gives the probability
for the system to be in each possible state (at a given fixed temperature). The macroscopic
quantities such as energy, specific heat, etc. can be calculated by doing a weighted summation
over all the probabilities. Let’s see it through an example:: for any arbitrary fixed state k,
let’s denote a physical observable O respectively. The expected values of O is given as :

< O >=
∑
k

P (k)Ok (2.2)

where Ok is the value of observable O in the microstate k. The above equation seems quite
intuitive but lacks practicality. Considering we have a macroscopic number N of classical
SO(3) spins, it implies that there is an extensive number of different states. The statistical
weight for the majority of configurations is very small and the statistically important
configurations would be likely missed. The computations in this way are disconcerting and
a waste of computing efforts. A better alternative would be to design a simulation that
generates data over the representative states [71]. These representative states will constitute
the appropriate proportions of different states. This is a form of a very popular statistical
concept called biased sampling where we collect samples favouring some outcomes over
others. In simple words:: generated frequency ≡ actual probability. In the next few sections,
we explain the approach in detail.

2.2 Sampling procedure and the Metropolis Algorithm

The thermal average for an observable O(x) is defined in the canonical ensemble

< O >=
1

Z

∫
e−βH(x)O(x)dx (2.3)
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where x is a position vector in the phase space, β = 1/kbT and the partition function Z is
given by

Z =

∫
e−βH(x)dx (2.4)

where the normalized Boltzmann factor is

P (x) =
1

Z
e−βH(x) (2.5)

This probability gives the statistical weight with which the configuration x occurs in the
thermal equilibrium. We want to study the discrete case of the above equations, so equation
2.3 turns out to be of the following form [71]:

< O >=

∑n
i=1 e

−βH(xi)O(xi)∑n
i=1 e

−βH(xi)
(2.6)

Taking n → ∞(n is the no. of states) would reduce equation 2.6 to equation 2.3. The issue
in simple sampling is to overlook the important part of the probability distribution which
lies outside the sampling region. So, we need a smarter technique to inculcate the important
areas in the phase space. We would like to select points xi in the phase space with an
associated probability, P(xi). Now, we can rewrite equation 2.6 as

< O >=

∑n
i=1 e

−βH(xi)O(xi)/P (xi)∑n
i=1 e

−βH(xi)/P (xi)
(2.7)

Now, we can choose P(xi) as e−βH(xi) which would reduce equation 2.7 to a simpler averaging
equation.

< O >=

∑n
i=1O(xi)

n
(2.8)

Till now, we have been able to reduce a probability distribution at the equilibrium of the
infinite phase space to a representative distribution with a finite set of points from the phase
space, xi. Now the question is: how to generate this representative distribution? This can be
achieved by using the concept of Markov chain [74] of successive states {xi}. Each successive
state xi+1 is constructed from a preceding state xi via a transition probability W(xi →
xi+1). In order to implement this idea we need to impose a constraint called detailed balance
[75, 76, 71].

Peq(xi)W (xi → xi′) = Peq(xi′)W (xi′ → xi). (2.9)

This equation ensures that we are in equilibrium implying the probability at arbitrary point
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xi in phase space is time-independent. Since P(xi) ∼ e−βH(xi), we can compute the ratio of
the transition probabilities since it is only dependent on the difference of the energies of the
two states (δH = H(xi′)−H(xi))

W (xi → xi′)

W (xi′ → xi)
= e−δHβ (2.10)

The process of engineering the Markov chain in the Metropolis algorithm scheme can be
summarized as follows :

• Initialise with a random microstate i with energy Ei.

• Perform a random change(spin flip) in the state i to create a state f .

• Accept or reject the move with the probability Pacceptance = min(1,e−∆E/kbT ) where
∆E = Ef - Ei

A Monte Carlo simulation is built around these three steps. Starting with a random configu-
ration, the above sequence should be performed multiple times to achieve an equilibrium
distribution before starting to measure physical observables. After reaching equilibrium, we
can start measuring observables and take an average at the end which gives us the expectation
value of the observable. Metropolis [73] algorithm employs importance(biased) sampling
which helps in sampling statistically important microstates and increases the efficiency of
the simulations.

2.3 Heatbath Method

In the Metropolis [73] algorithm, a random update is based on the change of the energy that
follows such configuration change. The acceptance rate thus decreases upon cooling and
simulations might become difficult to thermalise at low temperatures. The heatbath[77, 71]
approach provides a better way to perform these local spin updates, where the new direction
of a spin is drawn from a suitable probability distribution, such that the new configuration
energy is automatically distributed according to a Boltzmann weight and is thus always
accepted.

Let us assume n local-energy levels, (ε1, ε2, ε3, ε4, ......., εn) for a spin. Then the probability
of finding the spin in the local energy level j is written as :

Pj =
e−εj/kT∑
i e

−εi/kT
(2.11)

where kb and T denote respectively the Boltzmann constant and temperature. If a random
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number R in the range 0 < R < 1 falls into the region

m−1∑
j=1

Pj < R <
m∑
j=1

Pj (2.12)

we can say that the spin is at level m. When the distribution of the energy levels is continuous,
the spin state m is determined by the following equation:

R =

∫ m

1
djPj (2.13)

The Hamiltonian for our system is given in equation 1.5. Let us denote the local field vector
for spin Si as:

Hµ
i =

∑
j

Jµν
ij S

ν
j (2.14)

Then the local Hamiltonian associated with Si is written as

Hex,i = Hcos(θ) (2.15)

where |Si| = 1 and |Hi| = H. The probability [77] of finding the spin i in an element of solid
angle dω = sin θ dθ dϕ is written as :

P (θ, ϕ) sinθdθdϕ = Ce−Hex,i/kT sinθdθdϕ (2.16)

where C denotes the normalization constant:

1/C =

∫ 2π

0
dϕ

∫ π

0
sinθdθe−Hex,i/kT (2.17)

Thus, θ and ϕ are determined by the following equations:

R =

∫ 2π

0
dϕ

′
∫ θ

0
sinθ

′
dθ

′
P (θ

′
, ϕ

′
) (2.18)

R′ = ϕ/2π (2.19)

where R and R’ are random numbers both between 0 and 1. The energy does not depend on
the azimuthal angle ϕ that’s why it is chosen randomly on the interval [0,2π].

Solving equation (2.18), we obtain

cosθ = (1/HK)log[eHK(1−R) +Re−HK ] (2.20)
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where K = J/kbT. After choosing θ and ϕ, we compute the vector components of the spin
and rotate them to the global coordinate system as shown below :


Sx′
i

Sy′

i

Sz′
i

 := R(ΘΦΨ)


Sx
i

Sy
i

Sz
i

 (2.21)

Finally, we obtain ( Sx′
i , Sy′

i , Sz′
i ) which is the new thermalized spin. Here, R(ΘΦΨ ) is the

rotation matrix.

Algorithm 1 Heat bath
1: Initialize a configuration of N spins.
2: Performing a Monte Carlo step :
3: for i in range(N):
4: Calculate the effective field for a randomly chosen spin.
5: Evaluate θ and ϕ from equation 2.19 and 2.20
6: Compute the new orientation of the spin using θ and ϕ.
7: Collect the value of observables
8: Repeat Monte Carlo step for a sufficient number of times and average the accumulated

change in observables over the number of spins and the number of Monte Carlo steps

2.4 Over-relaxation

To improve the efficiency of our simulation, we can use over-relaxation[78, 79] techniques
alongside other stochastic approaches. We start with calculating the effective interaction
vector for a chosen spin from its neighbors and then precess about this vector by an angle θ,
θ can either be random or π(extreme rotation), this is usually repeated N(∼ no. of spins)
times. This algorithm when used together with a stochastic technique, e.g. Metropolis or
Heatbath (depending upon the problem), is quite efficient and vectorizes extremely well.
Additionally, it also helps to reduce autocorrelations between successive spin configurations.

Algorithm 2 Overrelaxation
1: Choose a spin at random.
2: Calculate the effective field for the selected spin. Let’s call it nfield

3: Rotate the selected spin in step 1 around nfield to obtain a new precessed spin.

2.5 Averaging in quenched disorder systems

If a model Hamiltonian depends on random variables other than the regular degrees of
freedom, the system is said to have quenched randomness. Usually, these random variables
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are kept fixed pertaining to one physical realization of the system(more on this later). Let’s
consider a doped material AxB1−x, where a crystal is grown from a melt containing a fraction
x of A-atoms and a fraction 1-x of B-atoms. The exchange interactions Jij between spins
depend on the type of atoms that are considered: JAA, JAB, or JBB, respectively. Let’s
denote the occupation variable ci = 1 if site i is occupied by an A-atom and ci = 0 if
site i is occupied by a B-atom. We can write the associated Hamiltonian(considering only
nearest-neighbor interactions) as follows [71] :

H {Si, ci} = −
∑
ij

. {cicjJAA + [ci(1− cj) + cj(1− ci)]JAB + (1− ci)(1− cj)JBB}SiSj

(2.22)

As we have seen before, the average of the spin configurations are weighted with the
Boltzmann factor e−H/kT but we need to associate a different distribution P (ci) for our
occupation variable ci. The choice of P (ci) is dependent on the sample preparation in
experiments. One can choose ci to be consistent with the concentration x in the material or
with some built-in correlations reflecting ‘chemical’ short-range order. Therefore, an average
of some observable A(Si;ci) (e.g. the magnetization) becomes [71]

[⟨A(Si, ci)⟩] =
∫
dciP (ci)

1

Z(ci)

∑
(Si)

TrA(Si, ci)e
−H(Si,ci)/kT (2.23)

One needs to carry out a double average for a particular ci as seen from the above equation :
(i) thermal average is done via the importance sampling discussed before (ii) the disorder
average [...]av =

∫
dciP (ci)... which can be achieved by simple sampling.

The solution seems quite straightforward but we need to figure out the frequency of averaging
with P (ci) over the configurations ci of the quenched disorder variables. In experiments,
measurements are carried out for a single probe since the observable quantities are ‘self-
averaging’ [71, 80, 66]. However, the same scheme cannot be applied to simulations since
in numerical studies, one mostly considers systems of finite size (L). There is a significant
sample-to-sample fluctuation in certain quantities(typically for the order parameter and its
susceptibility) which causes a lack of self-averaging. In order to maneuver this, we require
a quenched disorder averaging of around 102 ∼ 103. Monte Carlo simulation of quenched
disordered systems is a challenging task; due to the requirement of performing the double
averaging procedure over both thermal disorder and quenched disorder, the demand for
computer resources is enormous and the judgment of the accuracy is subtle, in particular,
due to metastability and slow relaxation at low temperatures.
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2.6 Parallel Tempering

The standard method to equilibrate systems with the quenched disorder at low temperatures
relies on a slow cooling from high temperature to the temperature of interest. The Parallel
tempering[81, 82, 83] algorithm simulates M copies of the original system at different
temperatures, with periodic exchanges based on a Metropolis criterion between neighboring
temperatures. It is intended for simulating systems with large energy barriers like spin
glasses. Replica-exchange [83] moves allow replicas to perform a random walk in temperature
space, thereby efficiently overcoming energy barriers. Replicas at high temperatures improve
algorithmic mixing, whereas replicas at low temperatures can reach equilibrium on a shorter
time scale compared to typical simulations at a fixed low temperature. The performance
of the Parallel tempering algorithm is highly dependent on its parameters, including the
distribution of replicas in temperature space.

The swapping criterion is based on the detailed balance (equation 2.9). To elaborate, let’s
take M independent replicas of the system which are simultaneously simulated at different
temperature values T1, T2, . . . , TM . The system of M-independent thermal replicas can be
treated as an extended ensemble, X = (X1, X1,......., XM ) and the partition function:

Z =
M∏

m=1

Zm (2.24)

where Zm is the partition function of the replica at temperature Tm. The probability of a
given configuration X :

W (X) =
M∏

m=1

w(Xm, Tm) (2.25)

where
w(Xm, Tm) =

1

Zm
e

−H(Xm)
kbTm (2.26)

is the probability of configuration Xm in temperature Tm.

The detailed balance equation for a configurational swap between two temperatures Tk and
Tl can be written as :

WklPkl→lk =WlkPlk→kl (2.27)

here, Wkl = W(X = (X1, ....Xk, Xl, ....Xm)) and Pkl→lk represents the transition probability
between X = (X1, ....Xk, Xl, ....Xm) and X’ = (X1, ....Xl, Xk, ....Xm).

The swap between two replicas will be accepted by the following probability :

Paccept = min(1, e−∆) (2.28)
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where ∆ = (E(Xl)−E(Xk))[
1

kbTk
− 1

kbTl
] . ∆T must be small enough between the simulated

temperatures for the configuration change to occur. If the configurations of thermal replicas k
and l are to be exchanged, there must be an overlap between the probability distributions for
the temperatures Tk and Tl. Configuration swaps are typically performed between adjacent
temperatures because the probability of a configuration exchange reduces as the temperature
difference increases. The schematic diagram for PT algorithm is shown in Fig 2.2.

Algorithm 3 Parallel Tempering
1: Initialize an arbitrary temperature set {T1, . . . , Ti, . . . , TM}(M is even) in ascending

order.
2: Perform 50 MCS for all the temperature points.
3: Swap configurations between Ti and Ti+1 for i ∈ {1, 3, 5,M − 1} with the probability

mentioned above.
4: Repeat step 2.
5: Swap configurations between Ti and Ti+1 for i ∈ {2, 4, 6,M − 2} with the probability

mentioned above.
6: Repeat steps 2-5 till the required number of MCS.

Figure 2.2: Parallel Tempering scheme

In Figure 2.2, we see that several independent replicas are simulated in parallel at different
temperatures. At regular time intervals, exchanges of configurations of neighbored replicas
are attempted. An exchange between replicas is only accepted when the Metropolis criterion
is satisfied. The configuration C6 at temperature T6 has moved to a lower temperature T3

whereas configuration C1 at temperature T1 has moved to T4
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2.7 Finite size scaling

One of the limitations that the spin models confront us with is the finite size of our lattice.
This results in a problem of recognizing the specific point at which the phase transition
occurs. This should be at a theoretical point of divergence but we are limited by the size of
the lattice under consideration and thus don’t see this divergence. This effect is minimized
by using periodic boundary conditions but would only be resolved if we were to consider
an infinitely sized lattice as with the associated theoretical values for the phase transition.
It is thus necessary to use a construct that will allow us to extrapolate the respective
theoretical value given the limited resources of a finite-sized lattice. There are two types of
problems, associated with the finite lattice size : (i) errors due to the boundary conditions (ii)
mismatch between the critical temperature Tc and the temperature Tc(L) where singularities
are observed for the system with characteristic length scale L. We have to study Tc(L) at
different system sizes to predict the infinite lattice phase transition point Tc(L = ∞) = Tc.
Finite-size scaling[71, 84] theory is a powerful scheme to deduce the critical temperature and
order parameters at thermodynamic limit.

The correlation length diverges at the critical temperature, ξ ∝ τ−ν , τ = |T - Tc|/Tc is the
reduced temperature. At ξ = L, specific heat C and susceptibility χ exhibit a somewhat
rounded peak in place of an expected true divergence. We are interested in the critical
behavior of the system in the vicinity of the phase transition, which can be extracted from
the singular part of the free energy. According to the finite size scaling theory [71] its size
dependence is described by the scaling ansatz of the following form :

F (L, T,H) = L−(2−α)/νF (τL1/ν , HL(γ+β)/ν) (2.29)

where α, β, γ are the critical exponents. Differentiating F and setting H = 0 one gets the
scaling form of various thermodynamic functions:

M(L, T ) ∼ L−β/νM0(τL
1/ν) (2.30)

χ(L, T ) ∼ Lγ/νχ0(τL
1/ν) (2.31)

C(L, T ) ∼ Lα/νC0(τL
1/ν) (2.32)

where M0, χ0 and C0 are fixed scaling functions. At the phase transition (τ = 0), the size
dependence reduces to a power law behavior :
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Mc(L) ∼ L−β/ν (2.33)

χc(L) ∼ Lγ/ν (2.34)

Cc(L) ∼ Lα/ν (2.35)

These functions are the first or second-order moments of the order parameter or energy.
Often, we face the problem of determining the transition temperature(from the peak in
specific heat) in the first place, and we thus have to implement a different notion in order to
ascertain the critical temperature accurately.

The critical temperature can be determined by using the Binder cumulant[71, 84, 85]

UL = 1− ⟨M4⟩L
3⟨M2⟩L

. (2.36)

for an order parameter M and a lattice of size L. In order to estimate critical temperature,
one needs to use double precision to achieve considerable accuracy. We use two different
system sizes ((L,L′)) and extract the intersection of UL, UL′ , which gives us the critical
temperature. The cumulants need to be collected in a temperature window containing the
critical temperature. Therefore, an iterative process can be employed in order to narrow
down the location of critical temperature.

2.8 Technical details of Monte Carlo simulations

Finally, we present the general flow of our MC simulations. All the simulations were done
on the Curta cluster. The cluster has 2x Front-end interactive nodes, 336x compute nodes,
4x bigmem compute nodes, 4x visual nodes, and 4x GPU nodes.

We start with initiating n(suppose 100) Temperature(T) points in n CPU cores. For each T,
we generate a random initial spin configuration. Starting deep in the paramagnetic phase,
we cool down our spin configuration to the desired T value via simulated annealing, 0.2 106

MCS steps were executed for this process. Following that 0.2 106 MCS were performed to
thermalize the system at temperature T , without storing data. This is followed by 106 MCS
with Parallel Tempering. The data(energy, specific heat, order parameters, structure factors,
etc.) is collected after each MCS and is averaged over a number of MCS. This whole procedure
is replicated for a Ndisorder number of times and the final observables are averaged over
Ndisorder realizations. The full stack program was implemented in Python with subroutines
(for heatbath, overrelaxation) in FORTRAN and F2PY was used to connect the subroutines
in Python. The Parallel Tempering scheme was implemented via mpi4py[86, 87, 88, 89]
which is an MPI for Python. A schematic pipeline is shown in Figure 2.3

https://redmine.mcia.fr/projects/cluster-curta/wiki
https://numpy.org/doc/stable/f2py/
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Final Workflow

Algorithm 4 Complete algorithm to simulate pyrochlore lattice
1: Initialise random spin configurations at different temperatures between a required

temperature range.
2: Perform simulated annealing to cool down the spin configurations to the required

temperatures using heatbath.
3: Perform equilibration to thermalize the spin configurations
4: Continue with (heath bath + overrelaxation :: 1 MCS) steps with Parallel Tempering.

Simulate an adequate amount of MCS to achieve stable results.

Figure 2.3: MCMC pipeline, Git : pjeena/Markov-chain-Monte-Carlo

https://github.com/pjeena/Markov-chain-Monte-Carlo
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2.9 Landau-Lifshitz dynamics

As introduced previously, let us use the local field vector felt by spin Si: Hi =
∑

j ĴijSj .
The equation of motion for this classical spin is given by the Landau-Lifschitz equation of
motion [90]:

dSi

dt
= Si ×Hi (2.37)

Solving Eq. (2.37) analytically for all spins is impossible in the thermodynamic limit. This is
why we shall use a numerical integration, namely the fourth-order Runge-Kutta method [91]
where time is divided into equal time steps ∆t, making sure that the energy remains constant
over time. It means that the Landau-Lifschitz dynamics take place in the microcanonical
ensemble (constant energy) and that thermalization of the canonical ensemble thus necessarily
comes from the initial seed configurations obtained from Monte Carlo simulations. Using
dimensionless units, the numerical solution of equation (2.37) is :

Si(t+∆t) = Si(t) +
k1,i

6
+

k2,i

3
+

k3,i

3
+

k4,i

6
(2.38)

where the vectors k1,k2,k3,k4 are defined as follow:

k1,i = Si ×Hi ∆t (2.39)

k2,i = (Si +
k1,i

2
)× (Hi +

k1,i nn

2
)∆t (2.40)

k3,i = (Si +
k2,i

2
)× (Hi +

k2,i nn

2
)∆t (2.41)

k4,i = (Si + k3,i)× (Hi + k3,i nn)∆t (2.42)

where kp,i nn =
∑

j Ĵijkp,j for p = 1, 2, 3.

2.10 Structure Factors

The dynamical structure factor, as measured by neutron scattering, is [8, 92] :

S(q, ω) =
∑
µν

(δµν −
qµqν
q2

)

× 1

2πN

N∑
i,j=1

∫ ∞

−∞
dt e−iq·(ri−rj)+iωt⟨sµi (t)s

ν
j (0)⟩.

(2.43)

Here, q denotes the vector in reciprocal space, ri and rj are the position of spins in the
lattice, w is the energy and N number of spins. The thermal average is done by Monte Carlo
simulations while the time evolution relies on Landau-Lifschitz dynamics.



Chapter 3
Non-magnetic dilution in Er2Ti2−xSnxO7

The rare earth pyrochlore structure is fairly common in nature and is also of significant
interest for magnetic properties. The optimal pyrochlore formula is A2B2X7 where A is a
rare earth ion, B is usually a non-magnetic ion, and X is an anion such as oxygen. The rare
earth metal pyrochlore oxides provide an intriguing platform for studying the interplay of
geometric frustration and spin-orbit interaction. In recent times, progress has been observed
in the synthesis of new rare-earth pyrochlores. These geometrical frustrated pyrochlore
structures have attracted considerable attention over the past decades due to their exotic
magnetic properties, e.g. spin ices, spin liquids, and noncollinear XY orders.

The two pyrochlore oxides, Er2Ti2O7 [43, 93, 9, 26, 94, 95, 96] and Er2Sn2O7 [10, 97, 46, 4],
form the central pillars of this chapter. Er2Ti2O7 is an antiferromagnetic insulator with an
ordering temperature near TN ∼ 1.2 K, it undergoes a phase transition to a non-coplanar
Ψ2 antiferromagnetic ordered state. As for Er2Sn2O7, it was shown to order below 130 mK
in the Palmer-Chalker (Ψ4) configuration [46, 4].

An experimental study on a pyrochlore series Er2Ti2−xSnxO7[4] formed by the dilution of
non-magnetic(B:: Ti/Sn) ions using heat capacity, ac susceptibility, and neutron scattering.
This chapter explores a similar standpoint bridging a path between Er2Ti2O7 and Er2Sn2O7

via a chemical dilution parameter x. Motivated by the above experiments on Er2Ti2−xSnxO7,
the idea is to tune the Hamiltonian of our system via non-magnetic dilution x; in other
words, to use impurities as a knob to explore unknown parts of the phase diagram.

The organization of this chapter is as follows: first, we briefly introduce the different
models which we considered to study Er2Ti2−xSnxO7. Then we present the results of our
Monte Carlo simulations of the system. In particular, we present the specific heat, critical
temperature, and subsequently the x− T (temperature) phase diagram. In the subsequent
sections, we compare the structure factor and semi-classical spin dynamics calculations for
the different models demonstrating the legitimacy of our theory. We also explore the specific
heat dependence on chemical dilution x and the h − T phase diagram in the presence of
magnetic field h. Finally, our findings, comparisons, predictions, and future directions are
summarised in the last section.

34
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3.1 Models

We assume that the magnetic ions Er3+ are in stoichiometric proportions in the system,
without any missing spins or stuffed impurities. In other words, the pyrochlore structure of
the magnetic moments is conserved, and the structural disorder only comes from Ti4+ and
Sn4+. The main question is thus how to model the quenched, disordered, positions of these
non-magnetic ions into the microscopic Hamiltonian.

3.1.1 Model 1: Correlated quenched disorder (CQD)

In this first model, we will induce chemical disorder by choosing the type of interaction
depending on its local surroundings. It is impossible to perform robust ab initio estimates
for a structurally disordered structure made of 4f magnetic ions. However, we can build a
minimal model to extract the essential physics of the non-magnetic dilution.

The pyrochlore lattice is made of corner-sharing tetrahedra, but can also be seen as an
ensemble of bond-sharing hexagons (see Fig 3.1). Each bond between two Er3+ ions belongs
to exactly two hexagons, and it is at the center of these hexagons that lie the non-magnetic
ions.

Figure 3.1: The smallest loop in the lattice encompasses 6 spins of Er ions and each Er-Er
bond is shared between two loops. Each of these loops has a non-magnetic ion (B=Ti or Sn)
at its center.

We shall fix the matrix coupling Ĵij of this bond between spins i and j based on the nature
of these two neighboring non-magnetic ions, following the rules of Table 3.1. If the two ions
are Ti (resp. Sn), we take the matrix coupling of Er2Ti2O7 (resp. Er2Sn2O7) as defined in
Table 1.2. If the two ions are one Ti and one Sn, then we choose the average value of each
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term (J1, J2, J3, J4).

Table 3.1: Interaction bonds for the CQD model

Local environment Coupling parameters

Ti-Ti J1 = 0.11 meV, J2 = -0.06 meV, J3 = -0.10 meV, J4 = -0.003 meV

Sn-Sn J1 = 0.07 meV, J2 = 0.08 meV, J3 = -0.11 meV, J4 = 0.04 meV

Ti-Sn/Sn-Ti J1 = 0.09 meV, J2 = 0.01 meV, J3 = -0.105 meV, J4 = 0.0185 meV

This model neglects the influence of further non-magnetic ions B and assumes a relatively
simple variation of the matrix coupling when the bond is surrounded by both Ti and Sn.
But it has the notable merit (i) of accounting for the correlated nature of the disorder
since the six bonds of a hexagon necessarily share the same non-magnetic ion B, and (ii) to
include realistic values for coupling parameters, obtained by independent inelastic neutron
scattering experiments on Er2Ti2O7 [9] and Er2Sn2O7 [10]. In order to implement this model
in simulations, the algorithm will go as follows

Algorithm

1. There are two interpenetrating pyrochlore lattices, A and B, made respectively of
magnetic ions A=Er3+ and of non-magnetic ions B=Ti4+ or Sn4+.

2. For a given sample and a given dilution x, we randomly fix the nature of the non-
magnetic ions on the B pyrochlore lattice with the following probability: x/2 for Sn4+

and (1− x/2) for Ti4+ ions.

3. Once the quenched disorder is fixed, we go through each of the 3N bonds on the A
pyrochlore lattice (where N is the number of Er magnetic moments) and check the
nature of the two neighboring non-magnetic ions on the B pyrochlore lattice. We fix
the matrix coupling Ĵij between spins i and j following the rules of Table 3.1. The
Hamiltonian of this sample is now uniquely fixed.

4. We do Monte Carlo simulations for this sample and store the thermally averaged
observables.

5. We repeat processes 2, 3 and 4 for quenched-disorder average.

3.1.2 Model 2 : No quenched disorder (NQD)

One of our motivations in this thesis is to see if we can use disorder, more precisely non-
magnetic dilution, as a knob to explore the pyrochlore phase diagram beyond pristine
compounds. In other words, any A2B2O7 material only gives access to a given point of
the phase diagram in Fig. 3.2. Here we want to create a bridge between these scattered
points, using the dilution x as a tuning variable, to access the physics in regions of the phase
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diagram that are otherwise inaccessible. But to check the validity of our approach, we need
to know, at least theoretically, what these intermediate regions look like.

Figure 3.2: Classical ground-state phase diagram for a pyrochlore magnet with anisotropic
exchange interactions displaying four distinct ordered phases (J3 < 0 J4 = 0). Points
correspond to published estimates of parameters for Yb2Ti2O7, Er2Ti2O7, and Er2Sn2O7 [3].
We want to benchmark an uncorrelated model on the dotted line(with a man walking) in
the parameter space. Figure adapted from [3].

This is why we introduce this second model without any quenched disorder. Now, x acts as
a connecting parameter between the exchange parameters of Er2Ti2O7 and Er2Sn2O7 (see
the dotted line with a walking man in Fig. 3.2). For a given x, all the bonds in the whole
pyrochlore lattice have the same exchange parameters, given by:

Jx = JETO +
JESO − JETO

2
x (3.1)



Chapter 3. Non-magnetic dilution in Er2Ti2−xSnxO7 38

where ETO and ESO stand for Er2Ti2O7 and Er2Sn2O7 respectively. It gives:

J1,x = −0.02x+ 0.11

J2,x = 0.07x− 0.06

J3,x = −0.005x− 0.10

J4,x = 0.0215x− 0.003 (3.2)

Since this model has no disorder, simulations do not require disorder average and the Monte
Carlo algorithm is as explained in chapter 2.

3.1.3 Model 3: Uncorrelated quenched disorder (UQD)

Finally, we shall introduce a third model as an alternative Hamiltonian to include quenched
disorder, in order to see which one compares best to experiments. This UQD model can be
seen as an Edwards-Anderson version of Hamiltonian (1.5), implemented as follows:

Algorithm

1. For a given dilution x, we start from the disorder-free model NQD with a uniform
interaction matrix whose coupling parameters are defined in Eqs. (3.2).

2. Then, for each coupling parameter {J1,x, J2,x, J3,x, J4,x} of each Er-Er bond in the
pyrochlore lattice, we add a perturbations ∆i,x with i = 1, 2, 3, 4. There are thus
(4× 3N) = 12N random variables for each sample. This noise variable ∆i,x is chosen
randomly in the range [−α0 Ji,x ; +α0 Ji,x]. In order to study different strengths of
disorder, we consider three cases where α0 = {0.1, 0.2, 0.3}.

3. We do Monte Carlo simulations for this sample and store the thermally averaged
observables.

4. We repeat processes 2 and 3 for quenched-disorder average.

3.1.4 Technical aspects of simulations

The general algorithm was described in chapter 2 and present here only details of the
simulations. We first start with a random spin configuration at high temperature and
perform simulated annealing to the required finite temperature T. After that, we equilibrate
for 2.105 MCS and omit the next 2.105 MCS for thermalization. We measured specific heat,
susceptibility, neutron-scattering structure factor, and order parameters and also performed
spin dynamics. The temperature range for our simulations was 10−2 ≤ T/J ≤ 1.0. System
sizes, specified by the linear dimension L in units of the lattice constant and by the number
of spins Ns = 16.L3, are 3 ≤ L ≤ 10 and 432 ≤ Ns ≤ 16000. Run lengths for data collection
are 106 MCS and the results are averaged over a number of disorder realizations varying
from 200 for L = 3 to 100 for L = 10.
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3.2 Results

We will now present the results for the three different models, and compare them together
and with the experimental phase diagram in section 3.3.

3.2.1 Model 2: No quenched disorder (NQD)

We shall start with the NQD model to serve as benchmark of the underlying physics in
absence of quenched disorder. As explained previously and illustrated in Fig 3.2, x is here a
variable in parameter space connecting Er2Ti2O7 to Er2Sn2O7. All bonds in the lattice have
the same coupling parameters given by Eq. (3.2).

(a) (b)

Figure 3.3: Temperature dependence of specific heat Cv for (a) 0 ≤ x ≤ 1 and (b)
1 < x ≤ 2 for the NQD model (no quenched disorder). The sharp peaks at x = {1.2, 1.4} are
consistent with a first order transition, as confirmed by the discontinuous jump in the T2

order parameter in Fig. 3.4(b). System size is L = 4.

According to the specific heat in Fig. 3.3 and the evolution of the order parameters in Fig. 3.4,
the system orders into Γ5 states with E symmetry for 0 ≤ x ≤ 1.2 and into Palmer-Chalker
states with T2 symmetry for 1.4 ≤ x ≤ 2. The zero-temperature boundary between the two
phases can be determined exactly by computing the value xc where the energy eigenvalues
of the E and T2 irreps become degenerate (see Eqs. (1.7)),

aE = aT2 ⇔ −J1 + J2 + 2J4 = 0, (3.3)

and then injecting the values of the coupling parameters of Eq. (3.2). We find xc = 1.323,
which is consistent with simulations.

As explained in Fig. 1.11, there is always an enhancement of the ground-state degeneracy at
the boundary xc between E and T2 phases, with additional soft modes around the Ψ2 states.
This is why thermal order-by-disorder lifts the U(1) degeneracy of the ground states with E
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(a) (b)

Figure 3.4: Temperature dependence of (a) mE and (b) mT2 order parameters for the NQD
model (no quenched disorder). The results are consistent with a continuous phase transition
into Γ5 order with E symmetry, and a discontinuous phase transition into Palmer-Chalker
order with T2 symmetry. System size is L = 4.

symmetry, and entropically selects Ψ2 states in the left part of the phase diagram in Fig. 3.5.
In particular Ψ2 configurations are ground states at xc, and this order persists at finite
temperature for values just above xc. This is why the boundary between Ψ2 and Palmer-
Chalker phases bends towards larger values of x in the phase diagram of Fig. 3.5. It also
explains why simulation data in Figs. 3.3 and 3.4 are a bit more noisy at x = 1.4 than other
values, because this is where the competition between the two types of antiferromagnetic
orders is the strongest.

Figure 3.5: Phase diagram for the NQD model without quenched disorder, showing the
competition between Ψ2 and Palmer-Chalker states. x is an interpolating parameter between
the exchange parameters of Er2Ti2O7 and Er2Sn2O7. The zero-temperature boundary is at
xc = 1.323.
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3.2.2 Model 1: Correlated quenched disorder (CQD)

Now let us consider our first model with quenched disorder, where there are three types
of couplings depending on the neighboring non-magnetic ions: the coupling parameters of
Er2Ti2O7, of Er2Sn2O7, or the mean value between the two (see Table 3.1).

Some regions of the phase diagram are reminiscent of the NQD model (no quenched disorder)
studied in the previous section. In particular, the specific heat and order parameters confirm
the presence of E order for x ≤ 1 and T2 order for x ≥ 1.8 (see Figs. 3.6 and 3.7). But in the
intermediate range 1.2 ≤ x ≤ 1.6, both order parameters drop noticeably and the specific
heat presents no sharp peak, but a broad bump instead.

(a) (b)

Figure 3.6: Temperature dependence of specific heat Cv for (a) 0 ≤ x ≤ 1 and (b)
1.2 ≤ x ≤ 2 for the CQD model (correlated quenched disorder). System size is L = 4.

Despite substantial quenched disorder, the E order parameter reaches quasi-saturation at zero
temperature up to x ≲ 0.6 (see Fig. 3.7(a)). For a given tetrahedron, coupling parameters
for Er2Ti2O7 are the ones minimizing the energy of the Γ5 states with E symmetry. It means
that all the bonds in the system with different coupling parameters cost energy compared
to the pristine Er2Ti2O7. Since the number of such bonds increases approximately linearly
with x (as long as x is not too big), so should the ground state energy of the entire system.
This explains the regular spacing between the energy curves of Fig. 3.8 up to x ∼ 0.6− 0.8.

In addition, Fig. 3.8 underlines a symmetry of the energy curves at low temperatures between
x = 0.8 and x = 2, centered around x = 1.4. This suggests that our CQD model might
reach a maximum of frustration (both geometric and disorder induced) around x = 1.4, and
encourages us to further explore this intermediate region via finite size scaling.
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(a) (b)

Figure 3.7: Temperature dependence of (a) mE and (b) mT2 order parameters for the
CQD model (correlated quenched disorder). The results are consistent with Γ5 order with E
symmetry for x ≤ 1 and Palmer-Chalker order with T2 symmetry for x ≥ 1.8. Finite size
scaling is necessary to clarify the situation for intermediate x values. System size is L = 4.

Figure 3.8: Temperature dependence of the energy for the CQD model (correlated quenched
disorder). A symmetry in the energy is observed at low temperatures between x=0.8 and
x=2, centered at x=1.4. System size is L = 4.

3.2.3 Model 1: Finite Size Scaling (FSS)

While quenched disorder might prevent long-range magnetic order, partial order might
persist on finite length scale. This is why an order parameter might appear finite on small
systems, but eventually vanishes in the thermodynamic limit (N → ∞, V → ∞ such that
N
V = constant ). To determine what happens in our CQD model, we perform finite-size
scaling (FSS) analysis for different dilution x and different system sizes (L = 3, 4, 5, 6). We
extract the saturated value of mE and mT2 order parameters at low enough temperatures
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and compare its evolution with the scaling function

f(L) = a ∗ L−b + c, (3.4)

where a, b, and c are constants. We are particularly interested in the value of c since it gives
the value of order parameters in the thermodynamic limit.

In Fig. 3.9 we show the mE (a,c,e,g) and mT2 (b,d,f,h) order parameters for x = 0.4, 1.0, 1.5
and 1.8. The scaling functions (equation 3.4) are plotted in the inset. FSS at x = 0.4 and
1.8 show that the respective E and T2 orders are quasi-saturated, confirming that a “small”
amount of non-magnetic dilution is not enough to drastically modify the physics of Er2Ti2O7

and Er2Sn2O7. However, the mE order parameter noticeably drops at x = 1. This is easy to
understand since roughly 1/4 of the bonds bear the coupling parameters of Er2Sn2O7, thus
favoring T2 order. It is actually somewhat surprising to see the Γ5 order with E symmetry
persists for such large values of disorder. We shall come back to that point in section 3.3.

But it is at x = 1.5 that the physics qualitatively changes. Here, both order parameters
vanish in the thermodynamic limit (within numerical noise). To make sure we did not miss
the appearance of another form of long-range order, we confirmed the absence of any forms
of dipolar and quadrupolar orders and the absence of Bragg peaks in the structure factor
at zero and finite wavevectors q (see section 3.4). When plotting the evolution of these
order parameters in the thermodynamic limit as a function of x in Fig. 3.10, we see that the
absence of long-range order persists between x = 1.2 and 1.6. Finite-size scaling for other
values of x are given in Appendix A.

FSS analysis has thus shown that the competition between Er2Ti2O7 and Er2Sn2O7 coupling
parameters does not induce the co-existence of the two corresponding antiferromagnetic
phases, but rather destroys any form of long-range order over a reasonable part of the phase
diagram. We are now left with two possible scenarios for this intermediate regime: is it a
spin liquid or a spin glass? Or in other words, which frustration is the strongest in this
regime: geometric or quenched disorder?

3.2.4 Model 1: Spin Glass and Transition Temperature

Since the structure of the lattice is strongly disordered in this intermediate regime, the
presence of a spin glass is a priori more likely. To prove that, we shall now consider the
simulations of so-called replicas. For every realization of the lattice disorder, we run two
thermally independent copies from Monte-Carlo simulations and compute the overlap field
between these two replicas [98, 99, 100]

qi = s
(1)
i .s

(2)
i . (3.5)
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(a) x = 0.4 (b) x = 0.4

(c) x = 1.0 (d) x = 1.0

(e) x = 1.5 (f) x = 1.5

(g) x = 1.8 (h) x = 1.8

Figure 3.9: Temperature dependence of mE (a,c,e,g) and mT2 (b,d,f,h) order parameter of
the CQD model for x = {0.4, 1, 1.5, 1.8} and L = {3, 4, 5, 6, }. Inset: Finite-size scaling of
the corresponding order parameter at very low temperature. The constant in the scaling
function gives the value of the order parameter in the thermodynamic limit.

The total overlap is the lattice average

q =
1

N

∑
i

qi, (3.6)
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Figure 3.10: Value of the parameter c vs x obtained from the finite size scaling analysis
(see Eq. 3.4), showing the evolution of the two order parameters, mE and MT2 , at very low
temperature in the thermodynamic limit. There is a region without any long-range order
between x = 1.2 and 1.6.

which gives the spin-glass susceptibility

Xq = V < q2 >, (3.7)

with V = 16L3 (number of spins). These quantities are able to measure the apparition of
a spin glass phase, and also to provide a precise estimate of the transition temperature Tc.
Indeed, the specific heat is not a good quantity anymore to measure Tc. Instead, we will
prefer to use the fourth-order Binder cumulant [71]

Ub =
3

2
− 1

2

< q4 >

< q2 >
2 . (3.8)

As usual, we denote thermal averages by ⟨O⟩ and disorder averages by O. The transition
temperature is given by the crossing point of the Binder cumulants for multiple system sizes.

Our simulations confirm the establishment of a spin-glass phase in this intermediate regime.
In Fig. 3.11, we plot the Binder cumulants for different system sizes which allows us to
determine the transition temperature, even in this region without long-range order. But it is
not yet enough to describe the full phase diagram of our CQD model, because we do not
know if there is order by disorder among the Γ5 states.
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(a) x = 1.2 (b) x = 1.3

(c) x = 1.5 (d) x = 1.6

Figure 3.11: Binder cumulant Ub for (a)x = {1.2, 1.3, 1.5, 1.6}, as defined in Eq. (3.8). The
crossing of the curves gives the value of the transition temperature and the associated error
bars.

3.2.5 Model 1: Order by Disorder in the Γ5 states

As explained in section 1.3.1, Er2Ti2O7 is a famous instance of the order-by-disorder (ObD)
mechanism. Its ground state has a U(1) degeneracy, lifted in favour of the Ψ2 states
in the pristine sample, while impurities are known to favour Ψ3 states [49, 50, 51]. To
distinguish between Ψ2 and Ψ3 orders is not straightforward though. The order parameter
mE = (mEx ,mEy) (see Table 1.1) only measures the presence of the U(1) manifold with E
symmetry, and does not distinguish between states within this manifold.

This is why we measure the probability distribution P (mEx ,mEy) [51, 101, 102, 3], as plotted
in Fig 3.12 for different x values, and first focusing on low-temperature properties at T = 0.05

K. We naturally find Ψ2 order for Er2Ti2O7 at x = 0, with its six-fold degeneracy visible
by the six arcs of higher intensity around the circle of (quasi-)saturated E order where
|mE |2 = m2

Ex
+m2

Ey
= 1. But as we increase the dilution to x = 0.3 , these six arcs shift

by a π/6 angle to the Ψ3 states. This shift to Ψ3 is consistent with previous works with
different kind of quenched disorder [49, 50, 51], which strongly supports the idea that any
form of quenched disorder reverses the ObD selection in Er2Ti2O7.
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(a) x = 0.0 (b) x = 0.3
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(c) x = 0.5

(d) x = 0.7
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(e) x = 1.0 (f) x = 1.3
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(g) x = 1.5 (h) x = 1.7
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Figure 3.12: Probability distribution P (mEx ,mEy) of the mE order parameter at T < Tc
(T = 0.05 K) for different x values and system size L = 10. A uniform E order would give a
circle |me|2 = cst = m2

Ex
+m2

Ey
, while Ψ2 and Ψ3 orders are given by the full and dashed

radial lines respectively, as defined in section 1.2.3.(II.a,b).

While Ψ3 order persists for x = 0.5 and 0.7, we recover the uniform U(1) manifold at x = 1.
This is fairly uncommon as ObD is usually expected to lift the U(1) ground-state degeneracy
of frustrated systems that are not protected by Hamiltonian symmetry. However, here,
thermal fluctuations are apparently not strong enough to compete with such a large quenched
disorder. We can maybe rationalize this phenomenon by the fact that ObD is related to soft
modes; soft modes that may require a certain length scale to take place. In some systems,
ObD is known to appear only for big enough systems [3]. The presence of ∼ 1/4 of Er2Sn2O7

bonds that do not favour the U(1) manifold might prevent these soft modes to propagate
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on length scales that are sufficient for thermal fluctuations (i.e. entropy) to select either
Ψ2 or Ψ3 states. Interestingly, the radius of the circular distribution at x = 1 is almost
|mE | = 1, which is noticeably larger than the value of ∼ 0.7 found at low temperature in
Fig. 3.9(c). Taken together, these data mean that almost all tetrahedra at x = 1 are in a spin
configuration very close to one of the Γ5 states with E symmetry; but it is not the same spin
configuration across the lattice, which is why the overall spatial average gives |mE | ∼ 0.7.

Finally, the circular intensity disappears for x ≥ 1.3 since the mE order parameter simply
fluctuates around zero. There is, however, a diffuse halo inside the circle which means that
a measurable fraction of tetrahedra still bear Γ5 order over short-length scale. It is worth
noticing though that the fluctuations around mE = 0 are along the Ψ2 radial lines. Keeping
in mind the shape of the ground state manifold at the boundary between the E and T2

phases in Fig. 1.11, we understand that in this parameter space, soft modes away from the
Palmer-Chalker states favored by the Er2Sn2O7 bonds tend precisely towards Ψ2 states.

Figure 3.13: Clock-like order parameter m6 as a function of T for L = 10 and several
values of x where m6 being positive (negative) for the Ψ2/Ψ3 states. We clearly see a change
in temperature for a given x, until Ψ2 disappears.

The probability distribution P (mEx ,mEy) was a good way to get a snapshot of the Γ5 physics
at a given temperature and dilution x. But in order to finalise the phase diagram of the
CQD model, we shall use the pseudo-order parameter[101]

m6 = mE cos(6Φ) where Φ = tan−1(mEy/mEx). (3.9)

Positive (resp. negative) values of m6 indicate Ψ2 (resp. Ψ3) orders. Fig. 3.13 shows that
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even if the low temperatures are always dominated by Ψ3, Ψ2 persists at finite temperature
for small dilution x. m6 cannot differentiate between the two states for x ≥ 1, as expected
from our analysis of Fig. 3.12.

3.2.6 Model 1: Spin-glass dynamics

Monte Carlo simulations have brought to light a spin-glass phase for 1.2 ≤ x ≤ 1.6. However,
the effect of glassiness is most well-known in the dynamics of the system. This is why we
shall conclude our analysis of the CQD model using Landau-Lifshitz dynamics (see section
2.9) and computing the autocorrelation function A(t) in Fig. 3.14(a).

A(t) =
∑
a,b,c,d

4
N

∑
i < Si(0).Si(t) > − 4

N

∑
i < Si(t) > . 4N

∑
i < Si(0) >

1− ( 4
N

∑
i < Si(0) >)2

(3.10)

where ⟨O⟩ and O are respectively the thermal and disorder average, and (a, b, c, d) are the
4 sublattices of the pyrochlore lattice. Spin relaxation is very fast for the pristine samples
(x = 0 and x = 2), as well as for x = 0.5. However, A(t) reaches a plateau at long time for
x = 1 and 1.5. Indeed spin glasses usually support a fast and a slow (glassy) spin dynamics
[66]. The fast one is characteristic of the standard relaxation of spins at equilibrium. But
once this fast relaxation has taken place, we are left with the frozen magnetic degrees of
freedom that form the spin glass phase. the value of A(t) on this plateau is known to
be an approximate estimate of the Edwards-Anderson parameter qEA for spin-glasses (see
Eq. 1.20)[66].
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Figure 3.14: (a) Autocorrelation function A(t) of the CQD model at T = 0.05 K, as
defined in Eq. 3.10), for several dilution x values. The decorrelation is fast for x = 0, 0.5, 2
while it reaches a plateau for x = 1 and 1.5. (b) qEA vs x which is analogous to the
Edwards-Anderson spin glass parameter.

To make this observation quantitative, we extract the value of A(t) at long time (in practice,
at tlong = 2000) and plot it as a function of x in Fig. 3.14(b). Of course, one needs to be
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cautious when comparing results from Monte-Carlo simulations in the canonical ensemble
and Landau-Lifshitz dynamics in the microcanonical ensemble. But with that caveat in mind,
the results of Fig. 3.14(b) are remarkably consistent with the values of the antiferromagnetic
order parameters in Fig. 3.10 at the same temperature T = 0.05 K. The spin-glass order
parameter qEA starts rising at x ∼ 0.5− 0.6, precisely when the antiferromagnetic E order
becomes unsaturated (i.e. mE becomes noticeably smaller than 1). Then it reaches a
maximum around x ∼ 1.4 and drops back to 0 for x = 2. The region of glassiness in the
dynamics appears to be broader than in Monte Carlo simulations, but this is simply because
some regions of the phase diagram have a noticeable co-existence of antiferromagnetic order
(as measured by Monte Carlo simulations) and spin glass (as measured by spin dynamics).

3.2.7 Model 1: Phase diagram of the CQD model

After a detailed analysis in the previous sections, we report the phase diagram of the CQD
model for Er2Ti2−xSnxO7 in Fig 3.15. Here, the x-axis is the chemical dilution x and the
y-axis is the critical temperature.

Figure 3.15: Phase diagram of the CQD model for Er2Ti2−xSnxO7 obtained from classical
Monte-Carlo simulations with Γ5 (purple, pink and red), Palmer-Chalker (green) and spin-
glass (white) phases. The Γ5 phase is split into Ψ2 and Ψ3 orders because of order by disorder.
In the region with noticeable disorder x ∈ [1.0; 1.2], the full U(1) manifold of the Γ5 phase is
recovered, albeit with a fintie fraction fraction of frozen magnetic degrees of freedom.

One of the interesting outcomes of our CQD model is the emergence of spin glass behavior
in the intermediate region between the two competing antiferromagnetic regions, as con-
firmed from Monte-Carlo simulations at equilibrium and Landau-Lifschitz out-of-equilibrium
dynamics. Before further comparing this phase diagram to experiments, let us conclude our
analysis with the third model with the uncorrelated quenched disorder (UQD).
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3.2.8 Model 3: Uncorrelated quenched disorder (UQD)

As explained in section 3.1.3, model 3 is not unique. It depends on the value of α0 since the
bond perturbation ∆i is a random variable distributed uniformly in the range [−α0Ji,x, α0Ji,x].
We performed simulations for three values of α0: 0.1, 0.2, 0.3.

For α0 = 0.3, we recover a similar phase diagram as shown in Figure 3.15 for the CQD
model. In particular, there is a spin-glass phase in the intermediate region. But since we
can now tune the strength of quenched disorder, α0, we shall focus our efforts on α0 = 0.1
and 0.2 and see how they deviate from the previous CQD model.

(i) α0 = 0.2

Fig. 3.16 shows that E order persists up to x < 1.3, giving rise to T2 order for x > 1.4.
This boundary is consistent with the one at xc = 1.323 for the disorder-free NQD model.
However, data at x = 1.3 and 1.4 show noticeable finite size effects; it is not clear if the
E and T2 orders persist in the thermodynamic limit in this region. that being said, if a
spin-glass phase persists for α0 = 0.2, it will be limited to a rather narrow window of dilution
for x ∼ 1.3− 1.4, smaller than for α0 = 0.3.

(ii) α0 = 0.1

As for α0, Fig. 3.17 shows that E order persists up to x ≤ .3, giving rise to T2 order for
x ≥ 1.4. The mT2 order parameter remains a bit noisy at low temperature for x = 1.4.
Nevertheless, we now have clear antiferromagnetic order (either E or T2) for all values of
dilution x. It means that by using the disorder strength α0, we could develop a microscopic
model with quenched disorder but without any intermediate spin-glass phase. The resulting
phase diagram for α0 = 0.1 is shown in Fig. 3.18. We did not measure the order-by-disorder
competition between Ψ2 and Ψ3 here. But based on Ref. [49], since we have the same finite
amount of bond disorder (α0 = 0.1) for all values of x > 0, we expect Ψ3 order to dominate
the Γ5 region, except for the pristine sample at x = 0.

3.3 To benchmark simulations with experiments

Let us compare in Fig. 3.19 the phase diagrams of our three models (CQD, NQD and UQD)
with the experimental one from Ref. [4]. The long-range ordered states are illustrated in
Fig. 3.20 for convenience. First of all, we should point out that the transition temperature
between simulations and experiments are off by a factor of approximately 2. This is a known
artefact of using coupling parameters obtained by a quantum mean-field calculations in
classical Monte Carlo simulations [3]. Our present theory is not claiming to reach this degree
of precision. Our goal is rather to find a minimal model able to reproduce experiments
semi-quantitatively, and especially how the physics of Er2Ti2−xSnxO7 varies with dilution x.
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(a) x = 1.2 (b) x = 1.2

(c) x = 1.3 (d) x = 1.3

(e) x = 1.4 (f) x = 1.4

(g) x = 1.5 (h) x = 1.5

Figure 3.16: Temperature dependence of (a,c,e,g) mE and (b,d,f,h) mT2 order parameters
for the UQD model (uncorrelated quenched disorder) with α0 = 0.2, for x = {1.2, 1.3, 1.4, 1.5}
for system size L = {3, 4, 5, 6}.
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(a) x = 1.2 (b) x = 1.2

(c) x = 1.3 (d) x = 1.3

(e) x = 1.4 (f) x = 1.4

(g) x = 1.5 (h) x = 1.5

Figure 3.17: Temperature dependence of (a,c,e,g) mE and (b,d,f,h) mT2 order parameters
for the UQD model (uncorrelated quenched disorder) with α0 = 0.1, for x = {1.2, 1.3, 1.4, 1.5}
for system size L = {3, 4, 5, 6}.
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Figure 3.18: Phase diagram of the UQD model for α0 = 0.1

In that sense, our first main observations are the asymmetry of all four phase diagrams (in
experiments and simulations) with a large Γ5 region on the left; and a transition temperature
that first decreases with x before increasing in the T2 region. This can be explained by
the proximity of Er2Sn2O7 to the boundary (see Fig. 3.2). Indeed both CQD and UQD
models with quenched disorder follow the same asymmetry as the NQD model without
quenched disorder. Please note that the precise value of the boundary xc = 1.323 obtained in
Eq. (3.3) could easily be shifted to ∼ 1.7, as observed in experiments, by slightly modifying
the coupling parameters of Er2Sn2O7, within the error bars measured in Ref. [10]. Indeed
the proximity of Er2Sn2O7 to the E/T2 boundary means that xc is particularly sensitive to
its parametrisation. In any case, it means that the maximum of frustration (geometric +
quenched disorder) is not observed when the non-magnetic dilution is maximum (i.e. 50% of
Ti and 50% of Sn), but is instead determined by the underlying disorder-free phase diagram
of Fig. 3.2 for the pristine systems. This is an important result as it supports the idea of this
thesis; non-magnetic dilution can be used to explore regions of the phase diagram between
known pristine compounds that are inaccessible otherwise.

Another result is that experiments do not seem to find a spin glass intervening between
the Γ5 and Palmer-Chalker states [4]. It would probably be good for future experiments
to confirm this absence of out-of-equilibrium effects. But in that regard, the UQD model
of Fig. 3.19(c) would be more consistent than the one with correlated quenched disorder
(CQD) in Fig. 3.19(a). It suggests that even if the CQD model is qualitatively correct, the
approximation to consider only the two neighboring non-magnetic ions for each bond might
be too simplistic. Further non-magnetic neighbors might play a role, in which case the
crystal field environment around each bond will sustain a variety of minute deformations.
Since anisotropic superexchange between rare-earth ions are sensitive to such minute angle
deformations, the Er-Er bonds would then take a broader range of values. The similari-
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(a) Model 1 : Correlated Quenched Disorder (b) Model 2 : No Quenched Disorder

(c) Model 3 : Uncorrelated Quenched Disorder (α0 =
0.1)

(d) Experimental phase diagram[4]

Figure 3.19: Phase diagrams for the three models studied in this thesis (a,b,c), compared to
experiments on Er2Ti2−xSnxO7 from Ref. [4] (d). The x-axis is always the dilution parameter
x (or its equivalent as defined in section 3.1). All the ordered phases are antiferromagnetic,
either with E (purple or red) or T2 (green) symmetry. The white region in panel (a) is a
spin glass.

ties between our simulations and experiments, and the apparent absence of spin glass in
experiments, strongly suggests that these deformations should remain small though. In that
case, the apparently simpler UQD model appears to be more accurate to reproduce the
phase diagram of Er2Ti2−xSnxO7. And the absence of spin glass in simulations for α0 = 0.1

confirms that the exchange perturbations is expected to remain relatively small.

In conclusion, our simulations can semi-quantitatively reproduce the experimental phase
diagram Er2Ti2−xSnxO7. They explain its asymmetry and strongly support the idea that
a small, random, quenched disorder along a line in parameter space connecting the two
pristine compounds Er2Ti2O7 and Er2Sn2O7, is a good way to understand the influence
of non-magnetic dilution in rare-earth pyrochlore oxides. Now that our theory has been
benchmarked against experiments, let us explore how easy it is to tune the properties of
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(a) (b) (c)

Figure 3.20: Spin configurations of the antiferromagnetic ordered phases found in the phase
diagrams of Fig. 3.19: (a) non-coplanar Ψ2, (b) coplanar Ψ3 and (c) coplanar Palmer–Chalker
(Ψ4) states. Ψ2 and Ψ3 belong to the U(1) manifold of the Γ5 states.

frustrated magnets via dilution.

3.4 Bridging the gap between rare-earth pyrochlores

The successful comparison between the different phase diagrams of Fig. 3.19 supports the
idea that non-magnetic dilution (either in experiments or in the UQD model) offers a bridge
between compounds in parameter space (the NQD model), at least for the low-temperature
ordered phases (Γ5 or Palmer-Chalker) and the evolution of the transition temperature Tc as
a function of x. But what about intermediate temperatures above Tc ? Spin correlations
above Tc are signature of both the onset of long-range order, and the proximity of other
nearby phases [103, 3]. In that sense they offer a rich snapshot of the magnetic properties of
a system, more subtle than simply the nature of magnetic order; here, order can be seen as
a low-temperature selection within the phase space explored at intermediate temperature.

But since there is no broken symmetry by definition above Tc, there is no relevant order
parameter to compute. The structure factor S(q) is then the observable of choice to
characterize magnetic correlations. Fortunately, the structure factors of Er2Ti2O7 (x = 0)
and Er2Sn2O7 (x = 2) are noticeably different (see Fig. 3.21). The latter form a diamond
pattern with maxima at (0,0,2) characteristic of the Palmer-Chalker onset, while the former is
essentially made of broad intensity peaks indicating short-range antiferromagnetic correlations,
with maxima at (2,2,0). This contrast provides a qualitative way to compare the evolution of
S(q) as a function of x between the three models: CQD, NQD and UQD. We will consider
three different dilution values x = {0.5, 1.0, 1.5}. For The sake of completeness, we will plot
three different temperatures at T < Tc, T ≈ Tc and T > Tc. Since we already know that
low-temperature data will be the same (except in the spin-glass regime), we will focus our
discussion to T > Tc.

Our main result is that the three models have essentially the same structure-factor evolution
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Figure 3.21: Structure factor S(q) obtained from classical Monte Carlo simulation for
parameters of Er2Ti2O7 (top) and Er2Sn2O7 (bottom) at three different temperatures :
T < Tc, T ≈ Tc and T > Tc.

as a function of x (see Figs. 3.22, 3.23 and 3.24). At x = 0.5, there is some diffuse scattering
appearing between the broad peaks characteristic of Er2Ti2O7, but otherwise S(q) remains
quite similar to the one at x = 0. This is consistent with the idea developed in the previous
sections that, independently of the type of quenched disorder considered here – correlated or
not – a dilution of x = 0.5 is not enough to substantially change the properties of Er2Ti2O7.

Comparing x = 1 to x = 1.5, we see the emergence of butterfly patterns superimposed with
either the broad peaks of Er2Ti2O7 for x = 1 in Fig. 3.23, or the (deformed) diamond shapes
of Er2Sn2O7 for x = 1.5 in Fig. 3.24. Hence, the region 1 ≤ x ≤ 1.5 is where the system
changes from Er2Ti2O7 to Er2Sn2O7 physics, in agreement with the ground-state boundary
at xc = 1.323. The interesting point is that we can interpret these butterfly patterns as a
consequence of the proximity to this boundary. The boundary between E and T2 phases is
indeed adiabatically connected to the Heisenberg antiferromagnet (see Fig. 1.7), a classical
spin liquid of extensive entropy, and with characteristic butterfly patterns in the structure
factor [56]. It is the extensive entropy of this spin liquid that enables its properties (here its
magnetic spin-spin correlations) to spread over vast regions of the phase diagram at finite
temperature. But while it is understandable to see features of the spin liquid in the pristine
NQD model without quenched disorder, it is remarkable to see these features persist in the
two models with quenched disorder.

To conclude, we have shown in this section that the structure factor of our three models,
with and without quenched disorder, evolves the same way as a function of x above Tc.
In particular, non-trivial features such as the butterfly patterns, due to the proximity of
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Figure 3.22: Structure factor S(q) obtained from classical Monte Carlo simulation for
x = 0.5 at three different temperatures : T < Tc, T ≈ Tc and T > Tc. The first, second and
third row corresponds to the CQD, NQD and UQD models respectively. All models order
into Γ5. For each panel, the color scale goes from zero to the maximum of intensity.

the Heisenberg antiferromagnet, appear in all three models. Hence, with respect to (i)
the low-temperature long-range order for T < Tc, (ii) the non-monotonic evolution of the
transition temperature Tc and (iii) the spin-spin correlations at intermediate temperature for
T > Tc, we have been able to use non-magnetic dilution x as a tuning parameter between
Er2Ti2O7 and Er2Sn2O7.

3.5 In presence of a magnetic field h

In this final section about Er2Ti2−xSnxO7, let us briefly consider the influence of magnetic
field h ≤ 0.8 T along the [001] direction. Er2Sn2O7 is known to support reentrance behavior
in a field, but not Er2Ti2O7 [97]1. Here we confirm this behavior for intermediate values of
dilution x in the h− T phase diagram of Fig. 3.25. At low field h < 0.8 T, the transition
temperature decreases with magnetic field h for x < 1, while it increases for x ≥ 1.5. Since

1Reentrance is the property of a system to return from an ordered phase to a previously encountered
less-ordered phase as a controlling parameter (here the magnetic field h) is continuously varied.
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Figure 3.23: Structure factor S(q) obtained from classical Monte Carlo simulation for
x = 1 at three different temperatures : T < Tc, T ≈ Tc and T > Tc. The first, second and
third row corresponds to the CQD, NQD and UQD models respectively. All models order
into Γ5. For each panel, the color scale goes from zero to the maximum of intensity.

we have Palmer-Chalker order at low temperature for x ≥ 1.5, this antiferromagnetic state
must vanish at high field. It means there must be a magnetic field h0 above which the
transition temperature starts to decrease, until it eventually reaches Tc = 0. Our CQD
model thus reproduces the apparition of reentrance at finite dilution in Er2Ti2−xSnxO7.
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Figure 3.24: Structure factor S(q) obtained from classical Monte Carlo simulation for
x = 1.5 at three different temperatures: T < Tc, T ≈ Tc and T > Tc. The first, second and
third row corresponds to the CQD, NQD and UQD models respectively; the former form a
spin glass below Tc (no Bragg peaks), while the other two order into Palmer-Chalker. For
each panel, the color scale goes from zero to the maximum of intensity.
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Figure 3.25: Phase diagram of the CQD model in the presence of a magnetic field h in the
[001] direction. The transition temperatures are obtained from the peak in specific heat.



Chapter 4
Spin Liquid design

While the previous chapter was motivated by experiments on the competition between
the multiple long-range orders in Er2Ti2−xSnxO7 [4], here we want to further explore the
opportunity offered by quenched disorder in spin liquids, namely between the Heisenberg
pyrochlore antiferromagnet (HAF)[54] and a tensor spin liquid[57], which have been intro-
duced in Chapter 1. While it was possible to quantify the competition between Γ5 and
Palmer-Chalker states in Er2Ti2−xSnxO7 thanks to their order parameters, what happens for
spin liquids ? Does the overlap of manifold between the two spin liquids produce long-range
order ? Does the quenched disorder enforces a spin glass ? Or do we stabilise a new kind of
spin liquid ? In this chapter we will first find the appropriate observables to study, and then
analyse the evolution of the system as a function of dilution x.

4.1 Model

The two spin liquids will be labeled TSL for the tensor spin liquid and HAF for the Heisenberg
antiferromagnet. The coupling parameters for the two spin liquids are :

JTSL :: (J1 = 0.0K,J2 = 0.0K,J3 = −1.0K,J4 = 0.0K) (4.1)

JHAF :: (J1 = 1.0K,J2 = 1.0K,J3 = 0.0K,J4 = 0.0K) (4.2)

Let us consider a simple form of quenched disorder here. There are N
2 tetrahedra for a

pyrochlore lattice of N spins. We take x% of tetrahedra with JTSL couplings and the
remaining (1− x)% tetrahedra with JHAF couplings, randomly distributed across the lattice.
Monte Carlo simulations will be averaged over n ∼ 100 number of samples to ensure the
disorder averaging. But first, let us remind the reader of the properties of the two pristine
spin liquids [54, 57].

4.2 The tensor and Heisenberg-antiferromagnet spin liquids

In Figure 4.1 we plot the specific heat for the two spin liquids. As expected there is no phase
transition down to T = 0.001 K. The spin liquids are actually so magnetically “disordered”

62
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that there are no Schottky-like peak that would mark a substantial loss of entropy. The two

Figure 4.1: Specific heat for the tensor spin liquid and Heisenberg antiferromagnet on a
log-log scale.

specific heats do nevertheless differ as T → 0+. Classical Heisenberg spins usually possess
two quadratic degrees of freedom as T → 0+ due to harmonic oscillations in their local (x, y)
plane around their position of equilibrium. Equipartition tells us that each quadratic mode
contributes to kBT/2 in the energy, and thus kB/2 in the specific heat. With N spins, we are
left with 2N (kB/2) = N kB, which means a specific heat per spin of 1 (here kB = 1). For a
system of N classical Heisenberg spins, we cannot have more than 2N modes of excitations.
However, in spin liquids, excitations out of the ground state can be softer than quadratic,
and replaced by quartic modes carrying an energy kBT/4. This is for example what happens
around hexagonal plaquettes of spins in the HAF spin liquid on kagome, whose collective
excitations (called weather-vane) are quartic in energy [20]. Extending this concept to the
pyrochlore lattice where there are as many hexagons as spins, the zero-temperature specific
heat becomes

CHAF
v → 1

N

(
(2N −N)

kB
2

+N
kB
4

)
=

3

4
kb [T → 0+] (4.3)

But these weather-vane excitations are a priori absent from the TSL. As a consequence,
the specific heat of the HAF and TSL do not saturate to the same value as T → 0+ (see
Fig. 4.1).

Since they are spin liquids, all order parameters mI = 0. Nonetheless, the reduced suscepti-
bility χIT for each irrep I shows which irrep degrees of freedom fluctuates in the ground
state (see Fig. 4.2). According to Ref. [3] and chapter 1, the ground-state manifold of these
spin liquids are formed by the combination of the following irreps:
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• HAF :: A2 ⊕ E ⊕ T1,B ⊕ T2

• TSL :: E ⊕ T1,A′ ⊕ T2

(a) A2 (b) E

(c) T1,A (d) T1,B

(e) T2

Figure 4.2: Reduced susceptibilities χIT for each irrep I and for both TSL and HAF.
Temperature is in log scale. Degrees of freedom of a given irrep are allowed to fluctuate at
low temperature if this irrep belongs to the ground state.

For a given spin liquid, the degrees of freedom of these irreps are allowed to fluctuate in the
ground state, which is why the corresponding χIT increases at low temperatures in Fig. 4.2.
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For the other irreps, since they correspond to excited states, their fluctuations are suppressed
at low temperature and the corresponding χIT vanishes. Note that since T1,A′ is a linear
combination of T1,A and T1,B, χT1,B

T remains finite for both spin liquids. Hence the main
difference between TSL and HAF takes place for A2 and T1,A fluctuations (see Fig. 4.2(a,c)).
In addition, only the E and T2 irreps belong to the ground-state of both spin liquids.

With this in mind, let us now study what happens when we add quenched disorder to connect
the TSL (x = 0) to the HAF (x = 1) (see definition in section 4.1).

4.3 Results

4.3.1 Specific heat

In Fig. 4.3, we plot the specific heat for x ∈ [0; 1]. We still do not observe any phase transition
down to T = 0.001 K, as for the pristine systems. However, the value of the specific heat at
zero temperature gradually decreases as x increases (see right panel). This evolution seems

Figure 4.3: Left: Specific-heat temperature dependence for x ∈ [0; 1] on a log-log scale,
obtained from Monte Carlo simulations of the model with quenched disorder, as defined in
section 4.1. Right: Zoom at low temperature of the same data on a linear scale.

to be linear in x at the naked eye. To confirm this observation, we plot on fig. 4.4

f(x, T ) ≡ Cv(x, T )

1 + αx
(4.4)

as T → 0+. We fix α = −1/4 to respect the constraint that Cv(x, T → 0+) goes from 1 at
x = 0 to 3/4 at x = 1. This scaling function is quasi-independent of the quenched disorder x,
which means that f(x, T ) ≈ f(T ) → 1 [T → 0+], and the specific heat scales linearly with x
close to zero temperature. The overall outcome of this scaling law is that, up to an excellent
approximation, each tetrahedron with JHAF coupling contributes equally to the appearance
of quartic modes. Hence, as far as low-temperature excitations are concerned, the mixture
of HAF and TSL tetrahedra is simply linear and the additional frustration due to quenched
disorder is negligible.
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Figure 4.4: Scaling function of the specific heat as T → 0+ (see Eq. 4.4) for α = −0.25,
showing that the specific heat grows linearly with x.

4.3.2 Order parameters and susceptibilities

As noticed previously, the only irreps belonging to both spin-liquid ground states are E and
T2. One could imagine that frustration due the mixture of both types of tetrahedra (TSL
and HAF) would prevent fluctuations outside of these two irreps (E and T2). As explained in
Fig. 1.11, this would give rise to Ψ2 order. However, the absence of peaks in the specific heat
does not support this scenario, as confirmed by a direct measure of the order parameters
which are all zero (up to finite-size effects) (Fig. 4.5).

In absence of long-range order, the reduced magnetic susceptibility χT can be written as

χT ≡ 1

N

N∑
i,j=1

⟨Si · Sj⟩. (4.5)

In the appropriate units, spin liquids show a Curie-law crossover [104] between the standard
paramagnetic Curie law χ = 1/T and the low-temperature behavior χ = K/T , where K is
the normalised integration of magnetic correlations in the spin-liquid ground state. While
the standard magnetic susceptibility corresponds to the T1,A irrep, the reduced susceptibility
χIT corresponds to the integration of degrees of freedom for a specific irrep I [57]. The
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(a) mA2 (b) mE

(c) mT1,A (d) mT1,B

(e) mT2

Figure 4.5: All order parameters, (a) mA2 , (b) mE , (c) mT1,A
, (d) mT1,B

, (e) mT2 , are zero
up to finite-size effects, for all values of x. In particular they are always bounded by the
ones of the spin liquids at x = 0 or x = 1.

quantities KI ≡ χIT |T→0+ are thus a characteristic property of a given spin liquid. Our
simulations in Fig. 4.6 show that the value of this plateau KI(x) evolves monotonically as a
function of x for all irreps I. It means each system with a given dilution x forms its own
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distinctive spin liquid at low temperature The evolution of KI depends on the irrep I, and

(a) TχA2 (b) TχE

(c) TχT1,A (d) TχT1,B

(e) TχT2

Figure 4.6: Reduced susceptibilities χIT for each irrep I = {A2 (a), E (b), T1,A (c), T1,B

(d), T2 (e)}, as a function of the temperature T in log scale, and for different dilutions x.
Simulations for T ≪ 0.01 could be difficult to thermalise, which explains the spurious data
point at T = 0.001 in panel (b).

as opposed to the specific-heat scaling of Eq. 4.4, it is visibly not linear in x for most irreps:
see e.g. how the spacing between the plateaux KA2 (resp. KT1A

) gets wider (resp. smaller)
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as x increases. We rationalise it as follows. In the HAF (x = 1), there are no ferromagnetic
fluctuations corresponding to the T1A irrep, which is why KT1A

= 0. As x starts to decrease,
a small density of TSL tetrahedra appear in the system, but they are diluted and mostly
disconnected from each other. It means ferromagnetic correlations are possible within each
tetrahedron, but they can only persist over small length scales between connected cluster
of TSL tetrahedra. As x keeps decreasing, two joint effects take place: (i) short-range
ferromagnetic correlations linearly increase with the number of TSL tetrahedra, and (ii)
long-range ferromagnetic correlations become possible over larger clusters of connected TSL
tetrahedra. According to Eq. 4.5, both effects contribute positively to the value of KT1A

which thus decreases faster than linearly in x (see Fig. 4.6(c)). The same argument can be
applied to the A2 irrep which is absent from the TSL ground state; and to the T1B irrep
which is quasi-absent from the TSL ground state. As a summary, the value of KI increases
faster than linearly as one approaches the spin liquid where the irrep I is part of the ground
state. When the irrep is present in both spin liquids (e.g. E and T2), then the evolution of
KI is closer to linear (see Fig. 4.6(b,e)).

Figure 4.7: Temperature dependence of spin glass susceptibility for different x values.

To conclude, we should make sure that the system does not enter a spin glass. The absence
of bump in the specific heat already suggested the absence of any substantial release of
entropy expected if the system was freezing. This is confirmed by the spin-glass susceptibility
χspinglass in Fig. 4.7 where we don’t see any rapid increase at low temperature for any
dilution x.

As a running summary, we have shown that our model with quenched disorder does neither
order nor freeze for any value of dilution x. Instead, it remains in a spin liquid regime for all
x, whose properties evolve continuously from TSL to HAF.



Chapter 4. Spin Liquid design 70

4.4 Structure Factor

To conclude this chapter, we will compare the evolution of both the equal-time S(q) and
inelastic S(q,w) structure factors as a function of x. We use the Landau-Lifshitz dynamics
for the latter, as explained in section 2.9, averaged over 1000 initial spin configurations
obtained from Monte Carlo simulations at very low temperature in the spin liquid regime.

The structure factor is indeed the most quantitative observable, experimentally available,
to describe the nature of a spin liquid. Emergent Coulomb gauge fields such as the HAF
spin liquid at x = 1 appear as pinch-point singularities [56, 105] that evolve into half-moon
patterns when increasing the energy w [5, 6, 7] (see Fig. 4.13). But more complex magnetic
textures have different signatures, such as the tensor spin liquid at x = 0, famous for its
pinch lines [57] visible in Fig. 4.8. Pinch lines are extensions of pinch points for higher-rank
spin liquids [106].

Turning on the dilution, we see that pinch lines have already smeared out for a small amount
of disorder x = 0.2 (see Fig. 4.9), and have completely vanished at x = 0.4 (see Fig. 4.10).
On the other hand, even with a majority of TSL tetrahedra in the system, the contour of
the HAF pinch points already starts to form at x = 0.4. Increasing the dilution then quickly
brings the magnetic correlations closer to the ones of the HAF. Half-moon patterns appear
at high energy for x = 0.6 (see Fig. 4.11), and the structure factors at x = 0.8 and x = 1 are
essentially the same (see Figs. 4.12 and 4.13), except for the finite thickness of the pinch
points. This thickness is most likely due to the length scale imposed by the presence of TSL
tetrahedra in the system that break the HAF Coulomb gauge field beyond the mean distance
between TSL tetrahedra.

Dilution x thus opens a path between these two spin liquids with an intermediate phase that
is qualitatively different from the TSL and HAF. This intermediate phase is, however, not
in the middle of the phase diagram (x = 0.5) but rather shifted towards x ∼ 0.2− 0.4. As
opposed to the asymmetry observed in the phase diagrams of chapter 3, there is no reason a
priori for the HAF to dominate the TSL here. In the pristine models, the HAF and TSL
models are connected by the J1 = J2 line of Fig. 1.7. It might be possible to search for a
different path between the two models, but the important fact is that both spin liquids only
rigorously exist in the asymptotic limits J1 = J2 = 0 for the TSL and J3 = 0 for the HAF.
For classical spins, any perturbations would lift the spin-liquid degeneracy. Hence, we must
look for the reason elsewhere.

This is where it is useful to remember that, on one hand, the ground-state manifolds of
the HAF is a linear combination of A2 ⊕ E ⊕ T1,B ⊕ T2 states, as explained in section
4.2. It means that deviations from the HAF structure factor mostly come from tetrahedra
where mT1,A

≠ 0. It can happen in TSL tetrahedra, but it only represents a fraction of
the 3-dimensional T1,A′ subspace within the 8-dimensional TSL manifold composed of E ⊕
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T1,A′ ⊕ T2.

On the other hand, deviations from the TSL structure factor mostly come from tetrahedra
where mT1,B′ ̸= 0 and mA2 ̸= 0, which represents a fraction of the 3-dimensional T1,B and the
1-dimensional A2 subspaces within the 9-dimensional HAF manifold. There is an additional
dimension of degrees of freedom that breaks TSL correlations with respect to HAF ones.

It means that at x = 1/2, when there is an equal number of TSL and HAF tetrahedra in the
system, TSL correlations are more frequently broken than HAF ones when doing a spatial
average over the entire system. Hence the structure factor at x = 0.5 would look more
similar to the HAF one than the TSL one. As a result, the intermediate phase where the
system is different from both spin liquids is at lower dilution, for x ∼ 0.2− 0.4. As a general
rule of thumb, the spin liquid with highest residual entropy tends to dominate the phase
diagram in presence of quenched disorder.
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Figure 4.8: Equal-time structure factor in the [HHL] plane (top) and energy cuts of the
inelastic structure factor (bottom) for x = 0 (TSL, no quenched disorder). The left and
right column in the bottom panels correspond to [HHL] and [H0L] planes respectively. The
energies are marked in the lower left corner of each subplot. Pinch lines can be seen at
energy E = 0.5 meV
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Figure 4.9: Equal-time structure factor in the [HHL] plane (top) and energy cuts of the
inelastic structure factor (bottom) for x = 0.2. The left and right column in the bottom
panels correspond to [HHL] and [H0L] planes respectively. The energies are marked in the
lower left corner of each subplot. Pinch lines have smeared out.
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Figure 4.10: Equal-time structure factor in the [HHL] plane (top) and energy cuts of the
inelastic structure factor (bottom) for x = 0.4. The left and right column in the bottom
panels correspond to [HHL] and [H0L] planes respectively. The energies are marked in the
lower left corner of each subplot. We are starting to see similarities with HAF spin liquid.
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Figure 4.11: Equal-time structure factor in the [HHL] plane (top) and energy cuts of the
inelastic structure factor (bottom) for x = 0.6. The left and right column in the bottom
panels correspond to [HHL] and [H0L] planes respectively. The energies are marked in the
lower left corner of each subplot. The structure factor possesses patterns reminiscent to the
one of the HAF spin liquid, with broad pinch points at low energy that evolve into half-moon
patterns at higher energy [5, 6, 7, 8].
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Figure 4.12: Equal-time structure factor in the [HHL] plane (top) and energy cuts of the
inelastic structure factor (bottom) for x = 0.8. The left and right column in the bottom
panels correspond to [HHL] and [H0L] planes respectively. The energies are marked in the
lower left corner of each subplot. This structure factor is very similar to the one of the HAF
spin liquid. The main difference is the finite thickness of the pinch points, most likely due to
the length scale imposed by the presence of TSL tetrahedra in the system that break the
HAF gauge field.
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Figure 4.13: Equal-time structure factor in the [HHL] plane (top) and energy cuts of the
inelastic structure factor (bottom) for x = 1 (HAF, no quenched disorder). The left and
right column in the bottom panels correspond to [HHL] and [H0L] planes respectively. The
energies are marked in the lower left corner of each subplot.



Chapter 5
Conclusion

In this work, we have studied diverse frustrated systems on pyrochlore lattices. In highly
frustrated magnetism, it is usually believed that pristine crystals are necessary, and impurities
are unwanted perturbations. Our motivation here was to take the opposing view, and use
impurities as a tool to design the properties of frustrated magnets. Exhaustive studies
have been done for the two pyrochlore oxides:: Er2Ti2O7 and Er2Sn2O7. Motivated by
experiments on the rare-earth pyrochlore oxide Er2Ti2−xSnxO7[4], the idea was to tune the
hamiltonian of our system via non-magnetic dilution x; in other words, to use impurities
as a knob to explore unknown parts of the phase diagram. This approach brings us at the
frontier between geometric frustration and spin glasses.

We reported in chapter 3 the phase diagram of Er2Ti2−xSnxO7 for 0 ≤ x ≤ 2, using classical
Monte Carlo simulations for three different models. Our calculations reproduce the shape
of the experimental phase diagram [4], with a competition between Γ5 and Palmer-Chalker
antiferromagnetic orders. Depending on the type of quenched disorder, an intermediate spin-
glass phase takes place where magnetic order disappears. As in experiments, a pronounced
asymmetry in favor of Γ5 is observed, due to the exchange parameters of Er2Sn2O7 being
closer to the E/T2 phase boundary than Er2Ti2O7 ones. In addition, above the transition
temperature Tc, the structure factors of the two models with quenched disorder closely follow
the evolution expected for a pristine model connecting Er2Ti2O7 to Er2Sn2O7 in parameter
space. Finally, in presence of a magnetic field h, we recovered in simulations with quenched
disorder the apparition of reentrance expected when approaching Er2Sn2O7. All of these
results put together strongly support the idea that non-magnetic dilution can be used to
explore inaccessible regions in parameter space, by connecting the dots between pristine
samples.

In chapter 4, we extended this idea to spins liquids, by continuously diluting the tensor spin
liquid (x = 0) into the Heisenberg antiferromagnet (x = 1). We find neither long-range order
nor glassiness in simulations. But the challenge is that in absence of long-range order, we
cannot rely on order parameters to measure the presence or absence of a given phase. This
is why we had to find alternate solutions in the zero-temperature limit of the specific heat
Cv and reduced susceptibility χIT of irrep I. The former offers a measure of the number of
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quartic modes in the system, which we find to evolve linearly with dilution x. The latter
represents the integration of magnetic correlations for a given irrep, whose evolution with
x is not necessarily linear anymore, but remains monotonic. Taken together, these results
indicate that we have build a model with a spin-liquid ground state for all values of dilution,
and whose properties evolve continuously with x. This is further confirmed by the structure
factors, but with a noticeable asymmetry in favour of the spin liquid with highest residual
entropy.

As a conclusion, we believe our work in this thesis paves the way for a systematic use of
quenched disorder, and in particular non-magnetic dilution, as a knob to tune the properties
of frustrated magnets. The range of possibilities is gigantic with rare-earth pyrochlore and
spinels alone. It offers a direct way to tune a spin liquid into order or vice-versa, and a
platform to search for exotic properties in magnets. On a more fundamental level, with
spin liquids as low-energy realizations of emergent gauge fields, it provides a framework
to combine artificial gauge fields that might be difficult, nay impossible, to study at high
energy.



Appendix A
A.1 g-tensor calculations

In the local coordinate frame, the magnetic moment is given as :

mα
i =

3∑
β=1

gαβlocalS
β
i (A.1)

which is connected to the spin-1/2 operator Sαi via a g-tensor matrix given as :

glocal =


gxy 0 0

0 gxy 0

0 0 gz

 (A.2)

here, α , β are the local coordinates of the spin. Values of gxy and gz(Table A.1) are derived
from experiments on Er2Ti2O7 , and Er2Sn2O7.

Yb2Ti2O7 Er2Ti2O7 Er2Sn2O7

gxy 4.18 5.97 7.52

gz 1.77 2.45 0.05

Table A.1: Estimates of the components of the g-tensor in the local frame glocal [Eq. (A.2)],
taken from experiments.

The g-tensor in global coordinates can be formulated by rotating glocal :

g0 =


g1 g2 g2

g2 g1 g2

g2 g2 g1

 g1 =


g1 −g2 −g2

−g2 g1 g2

−g2 g2 g1


(A.3)
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g2 =


g1 −g2 g2

−g2 g1 −g2

g2 −g2 g1

 g3 =


g1 g2 −g2

g2 g1 −g2

−g2 −g2 g1


(A.4)

where

g1 =
2

3
gxy +

1

3
gz g2 = −1

3
gxy +

1

3
gz. (A.5)
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A.2 Finite size scaling (Model 1: Correlated quenched disor-
der)

(a) x = 0.0 (b) x = 0.0

(c) x = 0.2 (d) x = 0.2

(e) x = 1.2 (f) x = 1.2

(g) x = 1.3 (h) x = 1.3

Figure A.1: Temperature dependence of mE (a,c,e,g) and mT2 (b,d,f,h) order parameter
for different x values with the finite size scaling on the inset. The constant in the scaling
function gives the value of the order parameter in the thermodynamic limit. mT2 vanishes
for these x values.
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(a) x = 1.6 (b) x = 1.6

(c) x = 1.7 (d) x = 1.7

(e) x = 1.8 (f) x = 1.8

(g) x = 2.0 (h) x = 2.0

Figure A.2: Temperature dependence of mE (a,c,e,g) and mT2 (b,d,f,h) order parameter
for different x values with the finite size scaling on the inset. The constant in the scaling
function gives the value of the order parameter in the thermodynamic limit. mT2 vanishes
for these x values.
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