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Abstract
Real World Databases are increasingly accessible, exhaustive and with fine temporal details. Unlike
traditional data used in clinical research, they capture the routine organization of care. These
day-to-day records of patients care open the door to new research questions, notably concerning the
efficiency of interventions after market access, the heterogeneity of their benefits in under-served
populations or the development of personalized medicine. On the other hand, the complexity and
large-scale nature of these databases pose a number of challenges for effectively answering these
questions. To remedy these problems, econometricians and epidemiologists have recently proposed
the use of flexible models combining causal inference with high-dimensional machine learning.

We first illustrate with three examples the current tension between these new sources of data,
machine learning and modern public health issues. These examples motivate the main research
question of this work: How flexible models can help delivering appropriate treatment to each
and every patient to improve her health? In order to gain a better understanding of the modern
infrastructures for collecting and analyzing Electronic Health Records (EHRs), we summarize
semi-structured interviews conducted as part of a national case study of the clinical data warehouses
(CDWs) of the 32 French regional and university hospitals. Acknowledging the difficulty to access
large sample sizes and computational power to develop generalizable predictive models, we explore
a complexity gradient in representation and predictive algorithms for EHRs. We then turn to causal
thinking, detailing key elements necessary to robustly estimate treatment effect from time-varying
EHR data. We illustrate the impact of methodological choices in studying the effect of albumin on
sepsis mortality in the Medical Information Mart for Intensive Care database (MIMIC-IV). EHRs
are high-dimensional databases. For such settings, the selection of hyper-parameters for the causal
model is crucial to avoid under- or over-learning. In a simulation and three semi-simulated datasets,
we show that the usual machine learning risk are not adapted to the causal setting and that the
doubly robust R-risk outperforms other existing causal risks.
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Résumé en français
Les bases de données de vie réelle sont de plus en plus accessibles, exhaustives, avec des détails
temporels précis. Contrairement aux données utilisées dans la recherche clinique traditionnelle, elles
capturent l’organisation routinière des soins. Ces données de soins quotidiens ouvrent la porte à de
nouvelles questions de recherche, notamment en ce qui concerne la qualité des soins, l’efficacité des
interventions après leur mise sur le marché, l’hétérogénéité de leurs bénéfices dans les populations
mal desservies ou le développement de traitements personnalisés. D’un autre côté, la complexité
et la nature à grande échelle de ces bases de données posent un certain nombre de défis pour une
utilisation efficace. Pour remédier à ces problèmes, les économètres et les épidémiologistes ont
récemment proposé l’utilisation de modèles flexibles combinant l’inférence causale et l’apprentissage
automatique en grande dimension.

Dans un premier temps, nous illustrons par trois exemples la tension actuelle entre ces nouvelles
sources de données, l’apprentissage automatique et des problématiques modernes de santé publique.
Ces exemples motivent notre principale question de recherche : Comment des modèles flexibles
peuvent-ils aider à fournir un traitement approprié à chaque patient afin d’améliorer sa santé ?
Afin de mieux comprendre les infrastructures modernes de collecte et d’analyse des dossiers patients
informatisés (DPI), nous faisons la synthèse d’entretiens semi-structurés menés dans le cadre d’une
étude de cas nationale portant sur les entrepôts de données cliniques des 32 hôpitaux régionaux
et universitaires français. Reconnaissant la difficulté d’accéder à des échantillons de grande taille
et à la puissance de calcul pour développer des modèles prédictifs généralisables, nous étudions
un gradient de complexité dans les représentations et les algorithmes prédictifs sur DPI. En se
tournant vers le cadre causal, nous détaillons ensuite les éléments clés nécessaires pour estimer
de manière robuste l’effet du traitement à partir de données de DPI variant dans le temps. Nous
documentons l’impact de différents choix méthodologiques pour l’étude de l’effet de l’albumine sur
la mortalité dans des cas de septicémie avec la base de données MIMIC-IV (Medical Information
Mart for Intensive Care). Les DPIs sont des bases de données à grandes dimensions. Pour de tels
problèmes, la sélection d’hyperparamètres pour les modèles causaux est cruciale afin d’éviter le
sous-apprentissage ou le sur-apprentissage. Grâce à une simulation et trois ensembles de données
semi-simulées, nous montrons que le risque usuel en apprentissage statistique n’est pas adapté au
cadre causal et que le risque R doublement robuste surpasse d’autres risques causaux existants.
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Chapter 1

Introduction: Amazing opportunities
of health data?

Outline
1.1 Why focus on health inference from Electronic Health Records . . . . 1
1.2 The data: Electronic Health Records . . . . . . . . . . . . . . . . . . . 3
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1.4 Important questions in public health . . . . . . . . . . . . . . . . . . . 9
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Résumé extensif en Français . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1 Why focus on health inference from Electronic Health
Records

1.1.1 Data looking for a question [...] and rais[ing] puzzles (Cox, 2001)
Machine learning has met great success in leveraging large amount of poor quality and
weakly labelled data in Natural Language Processing or computer vision. Can other applica-
tions benefit from such approach. Because medical practice, and biomedical research, [are]
inherently information-management tasks (Patel et al., 2009), many researchers foresaw a
big potential for improving healthcare in applying machine learning to novel data collections
(Topol, 2019; Rajkomar et al., 2019).

There is currently a tension between massive routine care data collections such as
claims or Electronic Health Records (EHRs) (presented in Section 1.2), a new statistical
framework (machine learning (Breiman, 2001b) described in Section 1.3), and pressing
analytical questions in public health (detailed in Section 1.4). To understand the importance
and the challenges of health inference from EHRs, let us discuss three concrete examples
below.

1.1.2 Learning statistics during the Natural Language Processing revolu-
tion

In the 2010’s, Halevy et al., 2009 proposed to take advantage of regularities present in large
piles of data to automatically design features relevant for multiple application tasks. Consider
a model trained to classify images from a massive collection of labelled pictures. During
training, it progressively learns internal representations of natural images such as feet, faces,
or hands. These intermediary representations can be reused –transferred– to applicative
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tasks with different objectives such as predicting the severity of a traumatism from a photo.
This paradigm –called pre-training– has been very successful in applied domains such as
computer vision (Krizhevsky et al., 2012), then Natural Language Processing (NLP) (Devlin
et al., 2018) and structural biology (Jumper et al., 2021). A valuable question is whether
pre-training could be applied to other fields with vast amounts of complex data such as
healthcare.

1.1.3 Paris hospitals, a large scale repository of clinical notes

In 2017, the emerging healthcare data warehouse of the Paris Hospitals (AP-HP), acknowledg-
ing the continuous improvement of NLP, ambitioned to leverage its vast repository of clinical
notes for research. Yet, routine care data is not a familiar material for medical research.
For engineers and NLP researchers, this routine care data are different from traditional
research data collection because it requires new tools –e.g., from NLP– to deal with the
novel complexity and scale of the data collection process. For epidemiologists and physicians,
the major difference lies in the opposition between experimental and observational data
(presented in Subsection 1.2.3).

1.1.4 Billing claims: new data for public health?

In 2018, the direction of statistics of the French ministry of health extracted billions of
national claims from the aging national health platform into a dedicated server. To improve
and accelerate analytics on this new platform, they built upon the work from Bacry et al., 2020
to leverage parallel computing and developed collaborative documentation (HDH, 2023a).
However, describing sequences of cares remained challenging due to the high number of
different medical events used in this data. This problem known as the curse of dimensionality
has been introduced in operational research (Bellman, 1957) and is well known in statistics
(Breiman, 2001b): The required number of samples to train predictive algorithms typically
grows exponentially with the number of dimensions. Sequences of claim events can be viewed
as a sequence of tokens, just as natural sentences. Thus, a trend from medical informatics,
draws from NLP techniques, to create low dimensional representations –embeddings– of
medical concepts (Beam et al., 2019). The relationships between events captured by these
embeddings are strikingly close to known associations as shown in Figure 1.1. However,
the downstream utility of such representations remains unclear. Public health policy is not
concerned with knowledge representation or even predictive accuracy. Public services seek
to understand the heterogeneities in healthcare consumptions: what is an appropriate care
and how to measure it from the data (Canadian Medical Association, 2015)? This question
is motivated by the growing necessity to adapt healthcare funding to a resource-constrained
system (McGinnis et al., 2013; Aubert et al., 2019).

The following sections review new data collection mechanisms, highlights the different
stance taken by machine learning over traditional statistics and precises critical questions in
public health that could benefit from innovative methods.
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Fig. 1.1. Projection in two
dimensions (TSNE) of medical
event embeddings. Each point is
a projection of the embedded vec-
tor for a given medical concept:
Embeddings have been built from
French Medical Claims (SNDS).
Colors correspond to different
medical vocabularies: drugs in
green, billing diagnoses in blue,
billing procedures in red, biology
in pink, general practitioner (GP)
activity in yellow. An interactive
version of this plot is available
at: https://straymat.
gitlab.io/event2vec/
visualizations.html
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1.2.1 From research-oriented to large scale routine care data collection

Traditional research data collections The gold standard for generating new evidence
in healthcare are Randomized Controlled Trials (RCTs). Based on the randomization of
patients to a treatment or a control group, the data collection is designed for one experiment,
addressing one precise research question. RCTs are at the heart of evidence-based medicine,
which promotes a hierarchy of evidence in which randomized experiments are superior to
natural –uncontrolled– experiments or expert opinion (Guyatt et al., 1995). The modern
trial methodology has been shaped by the large-scale International Studies of Infarct Survival
(ISIS) experiments (ISIS-1 Collaborative Group, 1986). Two other common research data
collections are cohorts –any designated group of individuals followed or traced over a period
of time (Porta, 2014)– and registry –covering exhaustively a well defined clinical population.
All these types of data are costly to collect and most of the time cover small samples of
carefully selected patients.

More data collected routinely – Real World Data Healthcare data is increasingly
collected from electronic information systems used in routine care (Jha et al., 2009; Sheikh
et al., 2014; Kim et al., 2017; Esdar et al., 2019; Kanakubo; Kharrazi, 2019; Liang et al.,
2021; Apathy et al., 2021). The term Real World Data (RWD) has been coined to define
these new kind of data, not primarily collected for research (FDA, 2021a; HAS, 2021; Kent
et al., 2022). Two major sources of RWD are insurance claims and EHRs.
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1.2.2 Two major routine care data collection

Insurance claims – Good population coverage, low granularity Healthcare insurance
systems collect massive amount of data, such as the coding of diagnoses and procedures for
hospitals reimbursements, or patient prescriptions in city care. They usually have a good
temporal and geographic coverage of the population –especially in countries with universal
healthcare insurance. However, they fall short of clinical features, exam results, social
background or reason for seeking care (Ziegler et al., 2022). Finally, billing optimization
processes endanger the validity of billing variables by over-representing well-reimbursed cares
(Juven, 2013).

Clinical data – EHRs and Hospital Information System EHRs are defined as the
longitudinal collection of health data in an electronic information system (IS) (Gunter;
Terry, 2005). As of 1990, the computerization of paper-based patient records incentivized by
national foundings led to the wide adoption of EHR solutions. For example, in the United
States 80% of hospitals (Adler-Milstein et al., 2017) and close to 90% of office-based practices
(Quick-Stat, 2023) have now adopted EHRs. Used routinely by clinicians, EHRs enable them
to record and interrogate clinically relevant information for patient care mainly through
notes. EHRs can be specific to an institution, or shared between several actors (Hoerbst;
Ammenwerth, 2010). This central system is accompanied by other business applications,
such as patient administrative management, computerized prescribing, biology software,
reanimation software, and imaging software. Together, these softwares make up the Hospital
Information System (HIS). Depending on the degree of maturity of the HIS, the various data
sources communicate more or less well with each other.

As early as 1990, the artificial intelligence in medicine community emphasized the
importance of EHR (Shortliffe, 1993). These systems are a precious collection of natural
experiments, allowing to complete the understanding of genotype-environment interactions
with phenotypes (Butte; Kohane, 2006; Patel et al., 2009). Interest in EHR studies developed
during the early 2000s highlighting their increasing rich data modalities. EHRs also provide a
potential alternative to costly traditional data collections with decreasing financial supports.
Casey et al., 2016 estimated the average cost per participant in traditional studies of
cardio-vascular disease risk factors between US$2,700 and US$17,700 compared to
US$0.11 for a recent EHR. Today’s interest of EHR for research has been acknowledged in
artificial intelligence in medicine (Yu et al., 2018), clinical research (Cowie et al., 2017) and
epidemiological studies (Casey et al., 2016; Gianfrancesco; Goldstein, 2021). Opportunities
and challenges of EHRs are further discussed and illustrated with an overview of the French
situation in Chapter 2.

1.2.3 Interventional data vs observational data

Treatment allocation is a fundamental difference between RCTs and RWD
Consider the toy example of assessing if the probability of death is influenced by the
administration of a drug for treated patients compared to no administration for control
patients. In observational data, interventions are far from random but focused on patients
requiring care. In observational data –illustrated in Figure 1.2a), the drug would be given to
patients with more comorbidities –assessed for illustration purposes by the Charlson score
(Charlson et al., 1987) shown on the x axis. Treated and control populations depart from each
other in such way that it is doubtful whether the difference in results can be attributed to the
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treatment alone. Such population discrepancies call for dedicated estimation methodologies
–presented in Section 4.2.3.

Fig. 1.2. a) In routine care, treat-
ments allocation is not random:
priority is often given to patients
that will benefit the most from
the intervention.
b) In interventional studies, ran-
domization ensures the compara-
bility of treated and control pop-
ulation on average.

a) Observational data
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For interventional data –shown in Figure 1.2b), the randomization forces the probability
of receiving the treatment for every patient –often to 50%. Importantly, it is independent
from patient characteristics such as the Charlson score. This favors the comparability
between treated patients and control patients: Once this randomization has been repeated
over many patients, on average, the difference in outcomes can only be attributed to the
treatment.

Rothman, 2012 distinguishes RCTs from observational data as follows: In an experiment,
the reason for the exposure assignment is solely to suit the objectives of the study; if people
receive their exposure assignment based on considerations other than the study protocol,
it is not a true experiment. Epidemiological textbooks highlight the experimental setup
since randomization yields excellent internal validity (Campbell, 1957): The estimated
average treatment effect is close to the true treatment effect if we could repeat the experience
indefinitely on the same population –the average estimate is unbiased. Statistical assumptions
for the RCT methodology are easily met (Colnet et al., 2020, Section 3.1.1) and involve
the measurements of only two variables: the treatment and the outcome. This simplicity
contributed to its success for clinical evidence generation.

External validity – When RCTs insufficiently inform practices Interventional
data are hard to collect: patients must be voluntary, without comorbidities, adhering to
the treatment. These requirements contribute to idealized populations recruited in RCTs,
endangering the external validity of interventional studies (Feinstein; Horwitz, 1997; Concato
et al., 2000; Rothwell, 2005): The findings of a study may not generalize to other populations.
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As a practical consequence, RCTs may not apply to real world situations since included
populations and experimental conditions differ too much from usual practices. For example,
only 6% of asthmatics would have been eligible for their own treatment RCTs (Travers
et al., 2007). An advantage of observational data over RCTs is their description of usual
care practices, opening a window on care effectiveness (Cochrane, 1972): How well does a
treatment work in practice, outside the ideal circumstances of the experimentation ?

External validity have been raised in economics earlier than in epidemiology (Deaton,
2020). The focus in such problems is probably greater in economics because situations are
not well controlled: economic agents act outside of the laboratory. On the contrary, clinical
situations are closer to laboratory settings. This difference in data sources and methodology
is visible in the divide between clinical and social epidemiology (Zielhuis; Kiemeney, 2001).
What about medico-economics ? The present thesis does not address this question, but it is
a clear motivation.

Heterogeneity of treatment – The link with personalized medicine The previous
paragraph discussed average treatment effect. However, heterogeneity of treatment among
subgroups is also an object of interest in healthcare (Hernàn; Robins, 2020). It is at the
heart of the personalized medicine paradigm –also called precision medicine. Originally
anchored into genomics, this concept tries to take individual variability into account for
tailored treatment recommendations (Schork, 2015; Topol, 2019).

In sequential decision-making problems, heterogeneity of treatment effect is close to
operational research (Schaefer et al., 2004) or reinforcement learning (Bareinboim et al.,
2015). These fields are focused on sequential decision making processes with a large action-
state space, rather than a one-off treatment as in this thesis. To robustly estimate the
probabilities involved in large dimensional state-action spaces, these works often require a
simulated environment (Bennett; Hauser, 2013). Simulations are convenient to collect large
samples of trajectory implementing the policy to be evaluated but are hard to build for
complicated problems such as patient trajectories. Bridges with healthcare and personalized
medicine include application in optimizing antiretroviral therapy in HIV (Guez et al., 2008)
or management of sepsis in the Intense Care Unit (Komorowski et al., 2018) and is an active
area of research (Coronato et al., 2020).

1.3 Two cultures of statistics for health
Breiman, 2001b clearly distinguished two statistical cultures: a predominant community at
the time focused on models, and an emerging trend that relies only on predictive accuracy.
The latter is called machine learning.

1.3.1 Model-based statistics: oracle domain experts
Biostatistics puts a strong emphasis on model specification, often interpreting model param-
eters as real mechanisms (Cox, 2001). Maybe because epidemiology seek to estimate causes
and effects, it also favors the model-based culture as one can judge from textbooks (Rothman,
2012): In many epidemiological applications, it is the choice among effect measures that
dictates the type of model the investigator ought to use. In medical journals, Cox model
for survival data and logistic regression for binary outcomes have been the standard for
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publication. It is tempting to link explicit relations between variables in linear models to
claims over the data. But interpretability of the model parameters is a strong assumption
(Lipton, 2018), which relies on the well-specification of the model: The underlying variables
and their relations built into the models should describe natural laws as in physics.

Despite judging model choice as crucial to fruitful application (Cox, 2006), this tedious
task is left to experts, that should have an appropriate theoretical model of the problem (Cox,
2001). This practice is prone to circular reasoning where a model is chosen only to justify an
established theory. Crowdsourcing studies asking the same question to different teams
of experts showed that the choice of model and features is far from consensual and
yield substantially different quantitative and qualitative results. Botvinik-Nezer et al.,
2020 attributed this dispersion to different modeling choice in a crowdsourced analysis of
brain imaging data by 70 teams. Schweinsberg et al., 2021 showed that theoretical constructs
–how the model input variables are defined from raw data– also contribute to the heterogeneity
of results. All of these studies followed the model-based culture, assuming specific linear
models and interpreting their inner part as causal.
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1.3.2 Machine learning: black-box predictive ability?

Departing from carefully designed functional forms for statistical models, algorithms
emerged in the late 90s to automatically learn patterns in the growing body of complex data.
Among them, one can cite random forests, gradient boosting, neural networks or support
vector machines.

Supervised learning Statistical learning (Vapnik, 1999) is the theoretical framework
underpinning machine learning. It has been introduced in the 1960s and popularized in
the 1990s with the development of flexible pattern recognition models. It is concerned with
empirical risk minimization: Finding good approximation of the features-outcome association.
Appendix A.1 recalls the formal definition of the supervised regression problem. Appendix
A.2 details the principles of random forest and gradient boosting as we are using these two
algorithms in different chapters of this thesis.

Model selection – How to choose between multiple promising models Choosing
the best model among a family of potential estimators is done by comparing their performance
on an unseen test dataset. If we were to evaluate a model on the same data that it has been
trained on, we would systematically favor flexible models that adapt better to the sampled
training data. To avoid this process called overfitting, the analyst should separate the data
on which an estimator is fitted –the training set– from the data used to chose the estimators
–the test set. To avoid data loss, cross-validation (Stone, 1974) proceeds in multiple rounds
of training and testing on the same data as illustrated in Figure 1.3. The data is divided in
K folds –typically 5 to 10–. Then, each fold is part of the training set K-1 time and is used
once as test set. Algorithms are then selected on the average performance over the K test
sets.

Note, that despite being valid for model selection –i.e. choosing the best model, cross-
validation yields biased estimates to evaluate a given model (Wager, 2020a). Nested cross-
validation is a classic way to perform this final model evaluation (Varoquaux et al., 2017).
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Fig. 1.3. Cross-validation: the data is split into training and testing sets. The training set is used to fit
the model. The testing set is used to evaluate the model. The process is repeated multiple times to
avoid overfitting. Original figure from Varoquaux et al., 2017.
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Pre-training – From learning patterns to learning representations As of 2012,
the success of deep neural networks in computer vision (Krizhevsky et al., 2012), sparkled
interest for representation learning. Grounded in information theory, this subfield of machine
learning is concerned in automatically building low dimensional features from raw data
that capture useful information (Bengio et al., 2013). A good representation should keep
information on the output y and loose non-useful information in the input x, making it
robust to noise: I refer to Achille; Soatto, 2018 for a detailed formalization. This definition
of usefulness highlights the importance of finding pretext tasks to supervise the learning of
representations. For example, in computer vision, the pretext task is to label coarse classes
of images (e.g., dog, cat, container, ...). In NLP, the pretext task is to predict randomly
masked world in a text. These tasks should be weakly-supervised in the sense that they do
not require human annotations. The learned representations are then used as input to a
supervised task, which should be close enough from the pretext task to leverage information
retained during pre-training.

This thesis was originally motivated by studying deep representations for patient trajec-
tories and their ability to transfer between healthcare databases. However, the choice of a
representation loops back to the choice of a model, and hence to the measure of performance
for relevant downstream tasks. For other domains such as NLP, consensual downstream
tasks such as text classification have been established to evaluate the performance of rep-
resentations. Aggregated in benchmarks such as GLUE (Wang et al., 2018), these tasks
fueled model developments for years. Recently, Raji et al., 2021 pointed out the risk of
misalignment between machine learning benchmarks and research claims about a task or
real world objectives –what they call construct validity. This criticism is also pertinent for
RWD since interests in using these data are fragmented –as developed in the next section.
Moreover, healthcare interest in pure predictive problems is unclear –see Section 4.1. Finally,
the circulation of data or representations in healthcare are almost non-existent due to privacy
requirements. These specific features of RWD call into question the appropriateness of
constructing universal representations in healthcare.
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1.3.3 One choice of perspective: Recent statistical learning for EHRs
In this thesis, we focus on EHRs, even if some of our results could be relevant for insurance
claims as well. The complexity of using EHRs in statistical frameworks is linked with their
potential to address complex questions in public health: they register almost all aspect of the
patients care trajectories in the hospital. Therefore, the dimensionality of EHRs data is high:
diagnoses, laboratory measurements and procedures are logged with medical terminologies
having ten of thousands of codes; unstructured text data is by nature high dimensional.
Finally, the temporal dimension of EHRs poses a challenge for statistical models, usually
assuming a static vector of features for each unit. For such high dimensional data where the
number of (selected) features could easily reach the hundreds, linear models are not strictly
more interpretable than deep neural network (Lipton, 2018). Therefore, it is tempting to
turn towards machine learning techniques to leverage the full potential of EHRs. Are flexible
statistical models a valid tool to answer today’s questions in healthcare? If we are concerned
with identifying which levers to pull to improve healthcare, we might not need to specify in
our statistical models all mechanisms involved in the care process and its interaction with
the complex EHR measurement system. One can hope that sufficient amount of data would
allow flexible algorithm to detect useful regularities in the data and learn from them (Halevy
et al., 2009).

1.4 Important questions in public health

1.4.1 The promises of RWD: what pressing needs to use health data
The recent increase in RWD collection is attracting the attention of many players. The
optimism on the promises of healthcare data is shared by epidemiologists (Mooney et al.,
2015; Hernán; Robins, 2016), artificial intelligence in medicine researchers (Schwartz et al.,
1987; Yu et al., 2018), clinical researchers (Schwalbe; Wahl, 2020; Dzau, 2023), the industry
(Pfizer, 2019; IQVIA, 2023) and government bodies (McGinnis et al., 2013; FDA, 2018; EMA,
2023). New scientific journals such as the NEJM AI 1 (Beam et al., 2023) at the intersection
between algorithmic advances and clinical practices demonstrate the sustained interest in
leveraging RWD for improving healthcare.

Drawing a full picture of these expectations would be over-ambitious and partial. But
it is relevant to disentangle them in order to delimitate clearly the scope of questions that
motivate my work. As discussed in Section 1.1, these motivations stem from a machine
learning formation and public health concerns.

Primary uses of health data focus on patient care EHRs are primarily used to record
patients’ health state and cares (Safran et al., 2007; Datalink, 2022). This information might
be shared within the healthcare team, but always with the goal to cary for the patient whose
data is collected. Direct benefits to the patients are provided thanks to more detailed and
searchable information than paper-based medical records. These benefits are amplified in
modern care systems where patient trajectories are fragmented between numerous healthcare
professionals.

From automating the care workflow to personalized medicine The automation of
tedious tasks in healthcare is part of the original agenda of artificial intelligence in medicine

1https://ai.nejm.org/
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(Schwartz et al., 1987). The goal is to give more time to the physicians by accelerating and
facilitating parts of their work that require poor analytical capacities.

Recent discourse and successes are heavily influenced by this line of though, with the aim
to automate ever more specialized parts of care. Machines read medical images faster and
more efficiently than most practitioners (Zhou et al., 2021a). Machine learning algorithms
trained on structured data from EHR (Rajkomar et al., 2018b) or administrative databases
(Beaulieu-Jones et al., 2021) outperform rule-based clinical scores in predicting patient’s
readmission, in-hospital mortality or future comorbidities (Li et al., 2020b). Recently, large
language models (LLMs) leveraged clinical notes from several hospitals for length of stay
prediction (Jiang et al., 2023). Hope is high that LLM models will soon be able to help
practitioners during consultation (Lee et al., 2023). The trend towards personalized medicine
is gradually moving away from the automation of well-understood but tedious tasks to
tailored individual care, where mechanisms are less understood (Schork, 2015; Topol, 2019).

New data for better knowledge acquisition? RWD data also bring indirect benefits
–secondary uses– by accelerating and improving knowledge production: on pathologies
(Campbell et al., 2022), on the conditions of use of health products and technologies (Safran
et al., 2007; Tuppin et al., 2017), on the measures of their safety (Wisniewski et al., 2003).
They can also be used to assess the organizational impact of health products and technologies
(HAS, 2020; HAS, 2021). These descriptive usages are closer to the main goal of epidemiology:
the study of the distribution and determinants of disease frequency (MacMahon, Pugh, et al.,
1970).

Health Technology Assessment (HTA) agencies in many countries have conducted exten-
sive work to better support the generation and use of RWD (FDA, 2021a; HAS, 2021; Kent
et al., 2022; Plamondon et al., 2022). Study programs have been launched by regulatory
agencies: for example, the DARWIN EU program by the European Medicines Agency and the
Real World Evidence Program by the Food and Drug Administration (FDA, 2018). However,
recent surges in data collection also encouraged deviation from the standard interventional
design by relaxing some of the methodological constraint of RCTs. HTA agencies witnessed
a deterioration of evidence for new drugs and strongly advocate against observational studies
for replacing new drugs evaluation (Wieseler et al., 2023; Vanier et al., 2023). This debate
crystallizes tensions between the pharmaceutical industry and regulators since drug prices
are mainly driven by drug efficacy –assessed in trials. There are still active debates to better
understand what is the place of these data to develop new evidence on the effectiveness –def.
in Section 1.2– of interventions (Richesson et al., 2013; Wang et al., 2023b).

Public health questions – Old and new The Coming revolution In Medicine is described
by Rutstein, 1967 as:1) modern medicine’s skyrocketing costs; 2) the chaos of an information
explosion involving both paperwork proliferation and large amounts of new knowledge that no
single physician could hope to digest; 3) a geographic maldistribution of M[edical] D[octors]s;
4) increasing demands on the physician’s time as increasing numbers of individuals began to
demand quality medical care. Fifty years later, the same preoccupations are destabilizing
healthcare systems in rich countries: increasing costs (OECD, 2023), knowledge produced
too quickly to be assimilable by a single person (McGinnis et al., 2013), geographic disparities
and lack of trained physicians (Anguis et al., 2021; AAMC, 2021).

In this context, public health authorities are asked to better understand what cares
are the most effective. With constrained medical resources, efforts should be focused on
the most effective interventions and prevent unnecessary cares. However, measuring the
appropriateness of a care is a delicate question (Canadian Medical Association, 2015).
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Scientific associations and regulators issue medical guidelines built upon the scientific
literature to recommend ideal care trajectories. However, these recommendations often
focus on single-disease approaches, insufficiently covering today’s population of patients:
increasingly old and multimorbid (Skou et al., 2022). Fewer than half of the clinical
guidelines for the nine most common chronic conditions consider older patients with
multiple comorbid chronic conditions (Boyd et al., 2005; Parekh; Barton, 2010). In the
United States, the Committee on Learning Healthcare System suggested to better use routine
data to adapt evidence to real practice and accelerate its diffusion (McGinnis et al., 2013).

In line with this roadmap, this work is motivated by the opportunities offered by EHRs to
evaluate the effectiveness of medical guidelines. Formally, a guideline can be expressed as an
action (or a series of actions) to take given a patient risk profile. The action/characteristic
reflects the practice of physicians: they see and listen to a patient, then take appropriate
actions given its profile. A medical recommendation tries to guide this link between patient
characteristics and intervention.
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1.4.2 Prediction or causation?

Is statistical learning a useful tool to evaluate these guidelines? There is a growing
interest in predictive models in healthcare. This trend is reflected by the exponential increase
in the proportion of publications per year in Pubmed shown in Figure 1.4. Nonetheless, the
prognosis literature does not specifically emphasize prediction as its primary objective.

The early Framingham study concludes that risk reduction is more important than
identifying the strength of specific risk factors since this quantity is subject to slight changes
in the risk model (Brand et al., 1976): It further suggests that the strength of a particular risk
factor may not be as important from the point of view of intervention as the ability to safely
and conveniently achieve even a moderate risk reduction in a large number of persons. In a
foundational article on EHR, heart failure prediction is motivated by aggressive interventions
(Wu et al., 2010): heart failure could potentially lead to improved outcomes through aggressive
intervention, such as treatment with angiotensin converting enzyme (ACE)-inhibitors or
Angiotensin II receptor blockers (ARBs). More recently, Beam; Kohane, 2018 devise a
machine learning spectrum, making the distinction between algorithms requiring heavy
human assumptions and flexible models. But the goal of these algorithms is almost always to
serve decision-making, not prediction. It is clearly described by Steyerberg, 2009 for diagnosis:
If we do a diagnostic test, we may detect an underlying disease. But some diseases are not
treatable, or the natural course might be very similar to what is achieved with treatment.
Modeling has always been judged necessary but it is only recently that pattern recognitions
is pursued as an objective per-se, associated with an exponential disinterest for causality as
shown in Figure 1.4. Patel et al., 2009 discussed the inappropriateness of the unsupervised
and supervised approaches: They tend to discover relatively simple relationships in data and
have not yet demonstrated the ability to discover complex causal chains of relationships. This
make them misaligned with scientific and practical objectives which are to formulate and
test hypotheses about how the human organism “works” in health and illness.

The auxiliary role of prediction in healthcare calls for replacing or complementing
statistical learning with another methodological tool.
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Fig. 1.4. Proportion of articles by year in Pubmed returned by queries on causality (orange) or predictive
modeling (blue). The scale differs greatly but the symmetry of the trends is disturbing.
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The central concept of causality Causality is a central concept in epidemiology (Hill,
1965; Hernàn; Robins, 2020) and has been developed formally in statistics (Rubin, 1974),
econometrics (Imbens; Wooldridge, 2009) and machine learning (Pearl; Mackenzie, 2018).

Causality departs from classical statistics by stressing the importance of interventions: the
strong correlation between an outcome and a feature is no evidence of a causal link between
them. This central point has been depicted as the ladder of causation (Pearl; Mackenzie,
2018): For a given set of observations, multiple consistent causal models exist, only one of
which correctly reflects the reality. For concreteness, consider the didactic example from
Veitch et al., 2022: Consider three possible explanations for the association between ice cream
and drowning. Perhaps eating ice cream does cause people to drown—due to stomach cramps
or similar. Or, perhaps, drownings increase demand for ice cream—the survivors eat huge
quantities of ice cream to handle their grief. Or, the association may be due (at least in
part) to a common cause: warm weather makes people more likely to eat ice cream and more
likely to go swimming (and, hence, to drown). Under all three scenarios, we can observe
exactly the same data, but the implications for an ice cream ban are very different. Hence,
answering questions about what will happen under an intervention requires us to incorporate
some causal knowledge of the world — e.g., which of these scenarios is plausible?

Causality also has connections with other important issues in healthcare such as fairness
(Plecko; Bareinboim, 2022) or dataset shift, linked to the representativity of a dataset
(Subbaswamy; Saria, 2020). We did not explore these aspects, but they motivate part of the
work in Chapter 4.

A robust statistical framework – Neyman-Rubin I recall the framework of the
potential outcomes, which enables statistical reasoning on causal treatment effects (Imbens;
Rubin, 2015). I will progressively introduce supplementary concepts as needed in Chapters 4
and 5.

Given an outcome Y ∈ R (e.g., mortality risk or hospitalization length), function of a
binary treatment A ∈ A = {0, 1} (e.g., a medical procedure, a drug administration), and
baseline covariates X ∈ X ⊂ Rd, we observe the factual distribution, O = (Y (A), X, A) ∼
D = P(y, x, a). However, we want to model the existence of potential observations (unob-
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served ie. counterfactual) that correspond to a different treatment. Thus we want quantities
on the counterfactual distribution O∗ = (Y (1), Y (0), X, A) ∼ D∗ = P(y(1), y(0), x, a).

Popular quantities of interest –estimands– are: at the population level, the Average
Treatment Effect

ATE τ
def= EY (1),Y (0)∼D∗ [Y (1) − Y (0)];

at the individual level, to model heterogeneity, the Conditional Average Treatment Effect

CATE τ(x) def= EY (1),Y (0)∼D⋆ [Y (1) − Y (0)|X = x].

We might be tempted to equate the mean of a potential outcome to the mean of the
observed outcome conditionally on the treatment. However, in general: E[Y (a)] ̸= E[Y |A =
a]. This is because the right hand side reads as the expected value of Y given A = a, thus we
restrict the outcome to the individuals that actually received the treatment. If this group
has a different potential outcomes distribution than the other group, the equality does not
hold as illustrated in Figure 1.2.

The statistical assumptions required to estimate these quantities from observational data
are presented in Section 4.2.2. The common methods used for the estimations are detailed
in Appendix D.4.1.

1.5 Contributions
First influenced by the growing successes of machine learning in predictive modeling, this
work seeks to understand what models and framework might help evaluating the effectiveness
of clinical guidelines using the time varying and high dimensional EHRs. What predictive
models are useful ? Why prediction is not enough ? How flexible models can serve the
true objective of healthcare: delivering appropriate treatment to each and every patient to
improve her health (Canadian Medical Association, 2015)?

The contributions of each chapter, which are summarized below, have led to three articles
as first-authors and one work in progress:

Chapter 2 published in PLOS Digital Health,
Chapter 3 is ongoing work,
Chapter 4 is being finalized for submission,
Chapter 5 submitted to Artificial Intelligence in Medicine.

Beyond these works, applied projects have also been conducted, leading to one other
research work linked to invasive ICU treatment disparities, co-authored with Sara Mohammed,
João Matos, Leo Anthony Celi and Tristan Struja. This work has been accepted to Yale
Journal of Biology and Medicine (third-position author). On this project I helped on the
design of the statistical analysis, more particularly on the model selection procedure with
machine learning algorithms.

This work is a specific application separated from the thesis main questions. Therefore it
is not detailed in this manuscript.
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Chapter 2: Potential and challenges of Clinical Data Warehouse, a case study in
France This chapter draws the first overview of the Clinical Data Warehouses (CDWs)
in France. These technical and organizational infrastructures are emerging in the hospitals
to collect and analyze the data produced in EHRs. This work is an attempt to better
characterize the reality of data reuses in university hospitals. It documents key aspects of
the collection and organization of routine care data into homogeneous databases: governance,
transparency, types of data, data reuse main objectives, technical tools, documentation and
data quality control processes.

We show that the emerging landscape of CDWs in France is highly heterogeneous and
mostly focused on research or piloting. We highlight the necessity to create or perpetuate
multidisciplinary warehouse teams capable of operating the CDW and supporting the various
projects. The multi-level collaborations allow to mutualize resources and skills at the
regional or national levels. We report poor data documentation and unequal adoption of
internationally recognized common data models. Finally, we encourage to expand the scope
of data beyond the hospital to better include city care. The qualitative aspect of this chapter
contrasts with the general mathematical context of the thesis.

Chapter 3: Exploring a complexity gradient in representation and predictive
models for EHRs Acknowledging the growing interest in predictive algorithms for EHR
data, this chapter introduces two simple feature construction methods taking raw medical
events as input features before feeding a predictive model. It benchmarks four predictive
pipelines of increasing complexity on three predictive tasks: length of stay interpolation,
next visit prognosis and cardiovascular adverse events prediction. It focuses on medium
sized datasets where the population at risk (after inclusion and exclusion rules) ranges from
10,000 to 20,000 samples. In these setups, this work explores the complexity-performance
tradeoff from simple baseline models to recent transformer-based neural networks.

We show that for these medium sample-size settings, simple baselines outperform
transformer-based models both in predictive accuracy and computing resource efficiency. We
note a performance decrease for prognosis with low case prevalences. To encourage more
thorough study, we publish scikit-learn compatible implementations of our proposed medical
event featurization pipelines.

Chapter 4: Prediction is not all we need: Causal thinking for decision making on
EHRs This chapter exploits the causal framework to build clinically valuable models. It
shows that predictions –even accurate as with machine learning, may not suffice to provide
optimal healthcare for every patient. Anchored in causal thinking, it details key elements
necessary to robustly estimate treatment effect from time-varying EHR data. We present a
step-by-step framework to help build valid decision making from real-life patient records by
emulating a randomized trial before individualizing decisions, e.g., with machine learning.
We illustrate the various choices in studying the effect of albumin on sepsis mortality in the
Medical Information Mart for Intensive Care database (MIMIC-IV). We study the impact of
various choices at every step, from feature extraction to causal-estimator selection.

We find that subtle bias such as immortal time bias can change the conclusion of a
study. However, we show that these errors can be captured by following a careful trial
emulation design and by comparing different modeling hypotheses in a vibration analysis.
We validate our estimation of average treatment effect with RCT gold-standards and inspect
heterogeneous treatment effects in subpopulations. In a tutorial spirit, the code and the
data are openly available.
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Chapter 5: How to select predictive models for causal inference? This chapter
built on the variability of results presented in chapter 4. Can we explain why some models
yield better treatment effect estimation than others? Statistical learning theory establishes
how to select models for prediction. This chapter shows that classic machine-learning model
selection does not pick the best models for causal inference. We review more elaborated risks
developed in the causal inference literature. These risks rely on the estimation of nuisances
that allow for the identification of the causal effect. However, these causal risk have not been
empirically evaluated in a wide variety of finite sample settings. Drawing from an extensive
empirical study, this chapter study the performance of five causal risk to select an outcome
model for treatment effect estimation.

Our results highlight that estimators for causal inference should be selected, validated,
and tuned using different procedures and error measures than those classically used to
assess prediction. Rather, selecting the best outcome model according to the R-risk leads to
more valid causal estimates. Despite relying on the estimation of two nuisances, this risk
outperform others risks. We also show theoretically that the R-risk is a reweighted version of
the oracle unobserved risk between predicted and potential outcomes. This property lead to
accurate estimation of treatment heterogeneity when treated and untreated population differ
little, as in RCTs. To facilitate better model selection, we provide python code implementing
our procedure.
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1.6 Résumé extensif en Français

Pourquoi étudier l’inférence causale à partir des dossiers patients informa-
tisés

Des données qui cherchent une question [...] et posent des énigmes (Cox, 2001)

L’apprentissage automatique a connu de grands succès en traitement automatique du langage
(TAL) et en analyse d’image, grâce à l’exploitation de grandes quantités de données de
piètre qualité, faiblement labellisées. D’autres champs d’applications peuvent-ils bénéficier
d’une telle approche ? Parce que la pratique médicale et la recherche biomédicale, [sont]
intrinsèquement des tâches de gestion de l’information (Patel et al., 2009), de nombreux
chercheurs prévoient un grand potentiel d’amélioration des soins grâce à l’apprentissage
automatique appliqué à de nouvelles collections de données (Topol, 2019; Rajkomar et al.,
2019).

Il existe actuellement une tension entre la collecte massive de données de soins de routine,
telles que les données de remboursement ou les dossiers patients informatiques (DPI), un
nouveau cadre statistique (l’apprentissage automatique (Breiman, 2001b)), et des questions
analytiques urgentes en matière de santé publique. Pour comprendre l’importance et les
défis de l’inférence causale à partir des DPI, examinons trois exemples concrets.

Etudier les statistiques pendant la révolution du traitement automatique du
langage

Dans les années 2010, Halevy et al., 2009 a proposé de tirer parti des régularités présentes
dans de grandes masses de données pour concevoir automatiquement des variables pertinentes
pour de multiples tâches applicatives. Considérons un modèle destiné à classifié des images à
partir d’une grande collection de pairs d’images et d’étiquettes. Au cours de l’entraînement,
le modèle apprend progressivement des représentations internes d’images naturelles telles que
des pieds, des visages ou des mains. Ces représentations intermédiaires peuvent être réutilisées
–transférées– à des tâches applicatives ayant des objectifs différents, telles que prédire la
gravité d’un traumatisme à partir d’une photo. Ce paradigme, appelé préapprentissage
a connu un grand succès dans des domaines appliqués tels que la vision par ordinateur
(Krizhevsky et al., 2012), puis le traitement du langage naturel (TAL) (Devlin et al., 2018) et
la biologie structurelle (Jumper et al., 2021). Il est pertinent de savoir si le pré-entraînement
pourrait être appliqué à d’autres domaines avec des données complexes, tels que le soin.

Les hôpitaux de Paris, un vaste dépôt de notes cliniques

En 2017, le nouvel entrepôt de données de santé des Hôpitaux de Paris (AP-HP), ambitionnait
d’exploiter son vaste référentiel de notes cliniques à des fins de recherche. Pourtant, les
données de soins de routine ne sont pas un matériau familier pour la recherche médicale.
Pour les ingénieurs et les chercheurs en TAL, ces données diffèrent de celles de la recherche
traditionnelle car elles requièrent de nouveaux outils, par exemple provenant du TAL afin
de gérer la complexité et l’échelle inédites des processus de collecte de données. Pour les
épidémiologistes et les médecins, la principale différence réside dans l’opposition entre données
expérimentales et données observationnelles. Cette difference de nature apparaît comme plus
importante pour comprendre comment bien mobiliser les données de routine pour améliorer
le soin.
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Les données de facturation : de nouvelles données pour la santé publique?

En 2018, la direction des statistiques du ministère français de la santé a extrait des milliards
de données de remboursement depuis la plateforme d’exploitation de l’assurance maladie au
sein d’un serveur dédié. Pour améliorer et accélérer l’analyse sur cette nouvelle plateforme,
elle s’est appuyée sur les travaux de Bacry et al., 2020 qui tirent parti du calcul parallèle
et sur de la documentation collaborative (HDH, 2023a). Cependant, la description des
séquences de soins est restée complexe en raison du grand nombre d’événements médicaux
différents utilisés dans ces données. Ce problème, connu sous le nom de malédiction de la
grande dimension a été introduit en recherche opérationnelle (Bellman, 1957) et est bien
connu en statistique (Breiman, 2001b) : Le nombre d’échantillons requis pour développer
des algorithmes prédictifs croît généralement de manière exponentielle avec le nombre de
dimensions. Les séquences d’événements de facturation peuvent être considérées comme
des séquences de signes, tout comme le texte. Ainsi, des travaux en informatique médicale,
s’inspirant des techniques de TAL, consiste à créer des représentations de faible dimension
–embeddings– de concepts médicaux (Beam et al., 2019). Les relations entre les événements
capturées par ces représentations sont étonnamment proches des associations connues, comme
le montre la figure 1.1. Cependant, l’utilité avale de ces représentations reste incertaine. La
santé publique est peu intéressée par les domaines de représentation de l’information ou même
par des tâches de prédictions. Les services publics cherchent à comprendre l’hétérogénéité
des consommations de soins : qu’est-ce qu’un soin approprié et comment le repérer à partir
des données ? (Canadian Medical Association, 2015) ? Cette question est motivée par la
nécessité croissante d’adapter le financement des soins à un système aux ressources limitées
(McGinnis et al., 2013; Aubert et al., 2019).

Contributions
Initialement influencé par les succès croissants de l’apprentissage automatique pour la
modélisation prédictive, ce travail cherche à comprendre quels modèles et quel cadre sont
appropriés pour évaluer l’efficacité des recommendations de bonnes pratiques en santé à
partir des données de vie réelle. Quels sont les modèles prédictifs utiles ? Pourquoi la
prédiction n’est-elle pas suffisante ? Comment des modèles flexibles peuvent-ils contribuer
aux véritables objectifs du soin : fournir un traitement approprié à chaque patient pour
améliorer sa santé (Canadian Medical Association, 2015) ?

Les contributions de chaque chapitre –résumées ci-dessous, ont donné lieu à trois articles
en tant que premier auteur et à un travail en cours :

Le chapitre 2 est publié dans PLOS Digital Health,
Le chapitre 3 est un travail en cours,
Le chapitre 4 est en cours de finalisation pour soumission,
Le chapitre 5 est soumis à Artificial Intelligence in Medicine.

Chapitre 2 : Opportunités et obstacles rencontrés par les entrepôts de données
cliniques cliniques, une étude de cas en France Ce chapitre présente la première
vue d’ensemble des entrepôts de données de santé hospitaliers (EHDS) en France. Ces
infrastructures techniques et organisationnelles émergent dans les hôpitaux afin de collecter
et analyser les données produites en routine. Ce travail tente de mieux caractériser la réalité
des réutilisations de données dans les Centres Hospitaliers Universitaires. Il documente les
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aspects clés de la collecte et de l’organisation des données de soins de routine dans des bases
de données homogènes : gouvernance, transparence, types de données, objectifs principaux
de la réutilisation des données, outils techniques, types d’analyse, documentation et processus
de contrôle de la qualité des données.

A partir d’entretiens semi-dirigés, nous montrons que l’écosystème naissant des EDSH
en France est très hétérogène et principalement axé sur la recherche ou le pilotage. Nous
soulignons la nécessité de créer ou de pérenniser des équipes d’entrepôts pluridisciplinaires
capables d’opérer et d’exploiter l’EDSH afin de soutenir les différents projets de données. Les
collaborations à plusieurs échelles permettent de mutualiser les ressources et les compétences
au niveau régional ou national. Nous constatons une faible documentation des données
et une adoption inégale des modèles de données communs pourtant reconnus au niveau
international. Enfin, nous encourageons une extension du champ des données au-delà de
l’hôpital pour mieux inclure les soins de ville. L’aspect qualitatif de ce chapitre contraste
avec le contexte général de la thèse, plus mathématique.

Chapitre 3 : Exploration d’un gradient de complexité pour les modèles prédictifs
à partir de DPI Constatant l’intérêt croissant pour les algorithmes prédictifs à partir de
données de DPI, ce chapitre introduit deux méthodes simples de construction de variables
prenant les événements médicaux bruts en entrée avant d’alimenter un modèle prédictif. Il
compare quatre pipelines prédictives de complexité croissante sur trois tâches médicales :
classification de la durée du séjour, pronostic de la prochaine visite et prédiction d’événements
cardiovasculaires indésirables. Ce travail se concentre sur des ensembles de données de taille
moyenne où la population à risque (après les règles d’inclusion et d’exclusion) se situe entre
10 000 et 20 000 échantillons. Dans ces configurations, ce travail explore le compromis
complexité-performance entre des modèles simples et des réseaux neuronaux récents à base
d’architecture transformer.

Nous montrons que dans ces conditions de moyennes tailles d’échantillon, les modèles
simples sont plus adaptés que les modèles à base de transformer, tant en termes de perfor-
mance prédictive que d’efficacité en ressources de calcul. Nous constatons une diminution
des performances pour les tâches pronostiques avec de faibles prévalences. Pour encourager
l’étude plus approfondie de ces méthodes, nous publions les nouveaux modèles introduits
avec une API scikit-learn.

Chapitre 4: La prédiction ne suffit pas: nécessité d’un cadre causal pour la prise
de décision à partir des données de DPI Ce chapitre exploite le cadre causal pour
concevoir des modèles d’aide à la décision utiles. Il montre que des prédictions –même
précises comme avec l’apprentissage automatique, peuvent ne pas suffire à fournir des soins
adaptés à chaque patient.

En tirant parti des principes de l’inférence causale, nous détaillons les éléments clés
nécessaires pour estimer de manière robuste l’effet d’un traitement à partir de données de
DPI variant dans le temps. Nous présentons des étapes détaillées permettant de développer
des systèmes d’aide à la décision valides à partir des données de DPI grâce à l’émulation
d’un essai randomisé. Nous illustrons ce guide par une étude de l’effet de l’albumine sur la
mortalité due à la septicémie dans la base de données Medical Information Mart for Intensive
Care database (MIMIC-IV). Nous étudions l’impact des différents choix d’analyses sur le
résultat de l’étude, depuis l’extraction des caractéristiques des patients jusqu’à la sélection
de l’estimateur causal. Nous constatons que des biais subtils, tels que le biais du temps
immortel, peuvent modifier la conclusion d’une étude. Cependant, nous montrons que ces
erreurs peuvent être capturées en émulant avec attention un essai randomisé hypothétique et
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en comparant différentes choix de modélisation au sein d’une analyse de vibration. Nous
validons notre estimateur de l’effet moyen du traitement à l’aide des résultats d’essais
randomisés disponibles dans la littérature. Enfin, nous inspectons l’hétérogénéité de l’effet
du traitement dans des sous-populations afin de guider le choix individuel de l’intervention.
Dans un esprit didactique, le code et les données sont disponibles publiquement.

Chapitre 5 : Comment sélectionner des modèles prédictifs pour l’inférence
causale ? Ce chapitre s’intéresse à la variabilité des résultats constatée dans le chapitre
4 pour différents choix d’estimateurs. Pouvons-nous expliquer pourquoi certains modèles
permettent de mieux estimer l’effet du traitement que d’autres ? La théorie de l’apprentissage
statistique établit comment sélectionner les modèles pour la prédiction. Ce chapitre montre
que les méthodes de sélection utilisées en apprentissage automatique ne permettent pas de
choisir les meilleurs modèles pour l’inférence causale. Nous passons en revue des risques plus
élaborés présents dans la littérature d’inférence causale. Ces risques reposent sur l’estimation
de nuisances qui permettent l’identification de l’effet causal. Cependant, ces risques causaux
n’ont pas été évalués empiriquement pour une grande variété de contextes en échantillons
finis. Ce chapitre étudie grâce à une étude empirique approfondie les performances de cinq
risques causaux pour sélectionner un modèle d’estimation de l’effet de traitement.

Nos résultats montrent que les estimateurs pour l’inférence causale doivent être sélec-
tionnés, validés et ajustés à l’aide de procédures et de mesures d’erreur différentes de celles
utilisées classiquement en apprentissage statistique. La sélection du meilleur modèle à l’aide
du risque R conduit à de meilleures estimations causales. Malgré le fait qu’il repose sur
l’estimation de deux nuisances, ce risque est plus performant que les autres. Nous montrons
également de manière théorique que le risque R est une version repondérée du risque non
observé oracle entre les deux modèles d’outcomes potentiels. Cette propriété permet une
estimation précise de l’hétérogénéité du traitement lorsque la population traitée et la popu-
lation non traitée diffèrent peu, comme dans les essais randomisés. Pour faciliter la sélection
des modèles, nous fournissons un code python mettant en oeuvre notre procédure.
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Chapter 2

Potential and challenges of Clinical
Data Warehouse, a case study in

France
Souvent, entre [la construction des données et leur traitement ou leur interprétation], se dresse
la "banque de données", qui fonctionne comme un sas de passage de l’une à l’autre. Or le monde
de la "construction" est lui-même tendu entre deux façons de rendre compte de ses pratiques : la
mesure, issue du langage des sciences de la nature, le codage conventionnel, inspiré, selon les
cas, du droit, des sciences politiques, ou des sciences cognitives.
– Alain Desrosière, Entre réalisme métrologique et conventions d’équivalence : les ambiguïtés de
la sociologie quantitative, 2001

Chapter’s content
Despite increasing collection of routine care data, reusing it does not come free of charges. Attention
must be paid to the entire life cycle of the data to create robust knowledge and develop innovation.
In this chapter, we build upon the first overview of Clinical Data Warehouses (CDWs) in France to
document key aspects of the collection and organization of routine care data into homogeneous
databases: governance, transparency, types of data, data reuse main objectives, technical tools,
documentation and data quality control processes. The landscape of CDWs in France dates from
2011 and accelerated in the late 2020, showing a progressive but still incomplete homogenization.
National and European projects are emerging, supporting local initiatives in standardization,
methodological work and tooling. From this sample of CDWs, we draw general recommendations
aimed at consolidating the potential of routine care data to improve healthcare. Particular attention
must be paid to the sustainability of the warehouse teams and to the multi-level governance.
The transparency of the data transformation tools and studies must improve to allow successful
multi-centric data reuses as well as innovations for the patient. The qualitative aspect of this
chapter contrasts with the general mathematical context of the thesis. We have borrowed the
methodology from the field of sociology on the advice of Professor Emmanuel Didier.

This chapter corresponds to the article entitled Good practices for clinical data warehouse
implementation: A case study in France published to PLOS Digital Health,
Authors: Matthieu Doutreligne, Adeline Degremont, Pierre-Alain Jachiet, Antoine
Lamer and Xavier Tannier.
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2.1.1 Healthcare data collection is tightly linked with local organization

In practice, the possibility of mobilizing routinely collected data depends on their degree
of concentration, in a gradient that goes from centralization in a single, homogenous Hospital
Information Systems (HISs, 1.2.2) to fragmentation in a multitude of HIS with heterogeneous
formats. The structure of the HIS reflects the governance structure. Thus, the ease of
working with these data depends heavily on the organization of the healthcare actors.

Claims data are often centralized by national agencies In South Korea, the govern-
ment agency responsible for healthcare system performance and quality (HIRA) is connected
to the HIS of all healthcare stakeholders. HIRA data consists of national insurance claims
(Kyoung; Kim, 2022). England has a centralized health care system under the National
Health Service (NHS). Despite, not having detailed clinical data, this allowed the NHS to
merge claims data with detailed data from two large urban medicine databases, corresponding
to the two major software publishers (OpenSAFELY, 2023). This data is currently accessed
through Opensafely, a first platform focused on Covid-19 research (OpenSAFELY, 2022). In
the United States, even if scattered between different insurance providers, claims are pooled
into large databases such as Medicare, Medicaid or IBM MarketScan. Lastly, in Germany,
the distinct federal claims have been centralized only very recently (Kreis et al., 2016).

Clinical data are mostly distributed among many entities Despite different interop-
erability choices, large institutional clinical data-sharing networks begin to emerge. South
Korea very recently launched an initiative to build a national wide data network focused on
intensive care. United States is building Chorus4ai, an analysis platform pooling data from
14 university hospitals (CHoRUS, 2023). To unlock the potential of clinical data, the German
Medical Informatics Initiative (Gehring; Eulenfeld, 2018) created four consortia in 2018.
They aim at developing technical and organizational solutions to improve the consistency of
clinical data.

Israel stands out as one of the rare countries that pooled together both claims and clinical
data at a large scale: half of the population depends on one single healthcare provider and
insurer (Clalit, 2023).

The case of France In France, the national insurer collects all hospital activity and city
care claims into a unique reimbursement database (Tuppin et al., 2017). However, clinical
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Fig. 2.1. Clinical Data Warehouse: Four steps of data flow from the Hospital Information System: 1)
collection, 2) transformations and 3) provisioning.
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data is historically scattered at each care site in numerous HISs.

2.1.2 An infrastructure fo healthcare data : The Clinical Data Ware-
houses

Clinical Data Warehouse (CDW) Dedicated infrastructures are needed to pool data
from one or more medical information systems –whatever the organizational framework– to
homogeneous formats, for management, research or care reuses (Chute et al., 2010; Pavlenko
et al., 2020). Fig 2.1 illustrates for a CDW, the four phases of data flow from the various
sources that make up the HIS.

1. Collection and copying of original sources.
2. Transformation: Integration and harmonization

Integration of sources into a unique database.
Deduplication of identifiers.
Standardization: A unique data model, independent of the software models
harmonizes the different sources in a common schema, possibly with common
nomenclatures.
Pseudonymization: Removal of directly identifying elements.

3. Provision of sub-population data sets and transformed datamarts for primary and
secondary reuse.

4. Usages thanks to dedicated applications and tools accessing the datamarts and data
sets.

Multiplication of CDW in France For about ten years, several hospitals developed
CDWs from electronic medical records (Cuggia et al., 2011; Jannot et al., 2017; Garcelon
et al., 2017; Wack, 2017; Daniel et al., 2018; Malafaye et al., 2018; Artemova et al., 2019;
Lelong et al., 2019; Conan et al., 2021; Lamer et al., 2022). This work has accelerated
recently, with the growing development of dedicated infrastructures at the regional and
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national levels. Regional cooperation networks are being set up –such as the Ouest Data
Hub (Hugo, 2022). In July 2022, the Ministry of Health opened a 50 million euros call for
projects to set up and strengthen a network of hospital Clinical Data Warehouses (CDWs)
coordinated with the national platform, the Health Data Hub by 2025.

Poor understanding of CDW scope Despite these few examples, the precise scope of
CDWs is still poorly understood: How are they created ? What data do they process ? How
common are they ? What studies do they run ? Acknowledging the key importance of better
structuring healthcare data, we create the first overview of CDWs in France. We build upon
this landscape, to draw general recommendations aiming at consolidating the potential of
routine care data reuse.

2.2 Speaking to the data collectors: Interviews of French
University Hospitals

Based on an overview of university hospital CDWs in France, this study make general recom-
mendations for properly leveraging the potential of CDWs to improve healthcare. It focuses
on: governance, transparency, types of data, data reuse, technical tools, documentation and
data quality control processes.

Interviews were conducted from March to November 2022 with 32 French regional and
university hospitals, both with existing and prospective CDWs.

2.2.1 Interviews and study coverage
Semi-structured interviews We conducted semi-structured interviews on the following
themes: the initiation and construction of the CDWs; the current status of the project
and the studies carried out; opportunities and obstacles; quality criteria for observational
research. Appendix B.1 lists all interviewed people with their team title.

We designed an interview form, sent to participants in advance. We used it as a support
to conduct 90 minutes interviews recorded for reference (the complete form is available in
Appendix B.2).

Based on these interviews, we collected structured information on both the characteristics
of the actors, and those of the data warehouses. We completed them based on the notes
taken during the interviews, the recordings, and by asking the participants for additional
information. Detailed tables are available on https://gitlab.has-sante.fr/has-sante/
public/rapport_edsh/.

2.2.2 A classification of observational studies
In addition to the interviews, we reviewed the study reporting portals, which we found
for 8 out of 14 operational CDWs. We developed a classification of studies, based on the
typology of retrospective studies described by the OHDSI research network (Schuemie, 2021).
We enriched this typology by comparing it with the collected studies resulting in the six
following categories. Studies were classified according to this nomenclature based on their
title and description.

Outcome frequency: Incidence or prevalence estimation for a medically well-defined
target population.
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Population characterization: Characterization of a specific set of covariates. Feasi-
bility and pre-screening studies belong to this category (Pasco et al., 2019).
Risk factors: Identification of covariates most associated with a well-defined clinical
target (disease course, care event). These studies look at association study without
quantifying the causal effect of the factors on the outcome of interest.
Treatment Effect: Evaluation of the effect of a well-defined intervention on a specific
outcome target. These studies intend to show a causal link between these two variables
(Hernán, 2021).
Development of diagnostic and prognostic algorithms: Improve or automate
a diagnostic or prognostic process, based on clinical data from a given patient. This
can take the form of a risk, a preventive score, or the implementation of a diagnostic
assistance system. These studies are part of the individualized medicine approach,
with the goal of inferring relevant information at the level of individual patient’s files.
Medical informatics: Methodological or tool oriented. These studies aim to improve
the understanding and capacity for action of researchers and clinicians. They include the
evaluation of a decision support tool, the extraction of information from unstructured
data, or automatic phenotyping methods.

2.3 Observations from a rapidly evolving and heterogeneous
ecosystem

Fig 2.2 summarizes the development state of progress of CDWs in France. Out of 32 regional
and university hospitals in France, 14 have a CDW in production, 5 are experimenting, 5
have a prospective CDW project, 8 did not have any CDW project at the time of writing.
The results are described for all projects that are at least in the prospective stage minus the
three that we were unable to interview after multiple reminders (Orléans, Metz and Caen),
resulting in a denominator of 21 university hospitals.
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Fig. 2.2. Repartition of CDWs in France.
The base layer map comes from https://wiki.openstreetmap.org/wiki/Mapnik.
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Fig. 2.3. The French CDWs implementations date back to the first academic works in data reuse in
early 2010s and accelerated recently.

2.3.1 Governance: CDWs are federating multiple teams in the hospital
Initiation and actors Fig 2.3 shows the history of the implementation of CDWs. A
distinction must be made between the first works –in blue–, which systematically precede the
regulatory authorization –in green– from the French Commission on Information Technology
and Liberties (CNIL).

The CDWs have so far been initiated by one or two people from the hospital world
with an academic background in bioinformatics, medical informatics or statistics. The
sustainability of the CDW is accompanied by the construction of a cooperative environment
between different actors: Medical Information Department (MID), Information Systems
Department (IT), Clinical Research Department (CRD), clinical users, and the support of
the management or the Institutional Medical Committee. It is also accompanied by the
creation of a team, or entity, dedicated to the maintenance and implementation of the CDW.
More recent initiatives, such as those of the HCL (Hospitals of the city of Lyon) or the
Grand-Est region, are distinguished by an initial, institutional and high-level support.

The CDW has a federating potential for the different business departments of the hospital
with the active participation of the CRD, the IT Department and the MID. Although there
is always an operational CDW team, the human resources allocated to it vary greatly: from
half a full-time equivalent to 80 people for the AP-HP, with a median of 6.0 people. The team
systematically includes a coordinating physician. It is multidisciplinary with skills in public
health, medical informatics, informatics (web service, database, network, infrastructure),
data engineering and statistics.

Historically, the first CDWs were based on in-house solution development. More recently,
private actors are offering their services for the implementation and implementation of CDWs
(15/21). These services range from technical expertise in order to build up the data flows
and data cleaning up to the delivery of a platform integrating the different stages of data
processing.

2.3.2 Management of studies
Before starting, projects are systematically analyzed by a scientific and ethical committee.
A local submission and follow-up platform is often mentioned (12/21), but its functional
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scope is not well defined. It ranges from simple authorization of the project to the automatic
provision of data into a Trusted Research Environment (TRE) (Goldacre et al., 2022). The
processes for starting a new project on the CDW are always communicated internally but
rarely documented publicly (8/21).

2.3.3 Uneven transparency of ongoing studies

Ongoing studies in CDWs are unevenly referenced publicly on hospital websites. Some
institutions have comprehensive study portals, while others list only a dozen studies on
their public site while mentioning several hundreds ongoing projects during interviews. In
total, we found 8 of these portals out of 14 CDWs in production. Uses other than ongoing
scientific studies are very rarely documented. The publication of the list of ongoing studies
is very heterogeneous and fragmented between several sources: clinicaltrials.gov, the
mandatory project portal of the Health Data Hub (HDH, 2023b) or the website of the
hospital data warehouse. 1

2.3.4 Triple usage of data: Research, management, clinic

Strong dependance to the Hospital Information System CDW data reflect the HIS
used on a daily basis by hospital staff. Stakeholders point out that the quality of CDW data
and the amount of work required for rapid and efficient reuse are highly dependent on the
source HIS. The possibility of accessing data from an HIS in a structured and standardized
format greatly simplifies its integration into the CDW and then its reuse.

Categories of Data Although the software landscape is varied across the country, the
main functionalities of HIS are the same. We can therefore conduct an analysis of the content
of the CDWs, according to the main categories of common data present in the HIS.

The common base for all CDWs is constituted by data from the Patient Administrative
Management software (patient identification, hospital movements) and the billing codes.
Then, data flows are progressively developed from the various softwares that make up the
HIS. The goal is to build a homogeneous data schema, linking the sources together, controlled
by the CDW team. The prioritization of sources is done through thematic projects, which
feed the CDW construction process. These projects improve the understanding of the sources
involved, by confronting the CDW team with the quality issues present in the data.

Table 2.1 presents the different ratio of data categories integrated in French CDWs.
Structured biology and texts are almost always integrated (20/21 and 20/21). The texts
contain a large amount of information. They constitute unstructured data and are therefore
more difficult to use than structured tables. Other integrated sources are the hospital drug
circuit (prescriptions and administration, 16/21), Intensive Care Unit (ICU, 2/21) or nurse
forms (4/21). Imaging is rarely integrated (4/21), notably for reasons of volume. Genomic
data are well identified, but never integrated, even though they are sometimes considered
important and included in the CDW work program.

1The full collection of ongoing study is available on this url: https://gitlab.has-sante.fr/has-sante/
public/rapport_edsh/-/blob/master/data/cycle_eds/cycle_eds_etudes.csv?ref_type=heads
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Category of data Number of CDW Ratio
Administrative 21 100 %
Billing Codes 20 95 %
Biology 20 95 %
Texts 20 95 %
Drugs 16 76 %
Imagery 4 19 %
Nurse Forms 4 19 %
Anatomical pathology 3 14 %
ICU 2 10 %
Medical devices 2 10 %

Table 2.1. Type of data integrated into the
French CDWs.
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Fig. 2.4. Percentage of studies by objective.

Today, CDWs are built predominantly for scientific research (21/21) The studies
are mainly observational (non-interventional). Fig 2.4 presents the distribution of the six
categories defined in 2.2.2 for 231 studies collected on the study portals of nine hospitals.
The studies focus first on population characterization (25 %), followed by the development
of diagnostic and prognostic algorithms (24 %), the study of risk factors (19 %) and the
treatment effect evaluations (15 %).

The CDWs are used extensively for internal projects such as student theses (at least in
9/21) and serve as an infrastructure for single-service research: their great interest being the
de-siloing of different information systems. For most of the institutions interviewed, there is
still a lack of resources and maturity of methods and tools for conducting inter-institutional
research (such as in the Grand-Ouest region of France) or via European calls for projects
(EHDEN). These two research networks are made possible by supra-local governance and a
common data schema, respectively eHop (Madec et al., 2019) and OMOP (Hripcsak et al.,
2015b). The Paris hospitals, thanks to their regional coverage and the choice of OMOP,
are also well advanced in multi-centric research. At the same time, the Grand-Est region is
building a network of CDW based on the model of the Grand-Ouest region, also using eHop.

Data reuse – CDW are used for monitoring and management (16/21) The CDW
have sometimes been initiated to improve and optimize billing coding (4/21). The clinical
texts gathered in the same database are queried using keywords to facilitate the structuring
of information. The data are then aggregated into indicators, some of which are reported
at the national level. These types of indicators also inform the administrative management
of the institution. Finally, closer to the clinic, some actors state that the CDW could also
be used to provide regular and appropriate feedback to healthcare professionals on their
practices. This feedback would help to increase the involvement and interest of healthcare
professionals in CDW projects. The CDW is sometimes of interest for health monitoring
(e.g., during Covid-19) or pharmacovigilance (13/21).

Data reuse – Strong interest for CDW in the context of care (13/21) Some CDWs
develop specific applications that provide new functionalities compared to care software.
Search engines can be used to query all the hospital’s data gathered in the CDW, without
data compartmentalization between different softwares. Dedicated interfaces can then offer
a unified view of the history of a patient’s data, with inter-specialty transversality, which is
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particularly valuable in internal medicine. These cross-disciplinary search tools also enable
healthcare professionals to conduct rapid searches in all the texts, for example to find similar
patients (Garcelon et al., 2017). Uses for prevention, automation of repetitive tasks and care
coordination are also highlighted. Concrete examples are the automatic sorting of hospital
prescriptions by order of complexity, or the setting up of specialized channels for primary or
secondary prevention.

2.3.5 A multi-layered technical architecture
The technical architecture of modern CDWs has several layers:

Data processing: connection and export of source data, diverse transformation (cleaning,
aggregation, filtering, standardization).
Data storage: database engines, file storage (on file servers or object storage), indexing
engines to optimize certain queries.
Data exposure: raw data, APIs, dashboards, development and analysis environments,
specific web applications.

Supplementary cross-functional components ensure the efficient and secure operation of the
platform: identity and authorization management, activity logging, automated administration
of servers and applications.

The analysis environment (Jupyterhub or RStudio datalabs) is a key component of the
platform, as it allows data to be processed within the CDW infrastructure. A few CDWs
had such operational datalab at the time of our study (6/21) and almost all of them have
decided to provide it to researchers. Currently, clinical research teams are still often working
on data extractions, in less secure environments.

2.3.6 Rare data quality checks and multiple standard formats
Quality tools Systematic data quality monitoring processes are being built in some CDWs.
Often (8/21), scripts are run at regular intervals to detect technical anomalies in data
flows. Rare data quality investigation tools, in the form of dashboards, are beginning to
be developed internally (3/21). Theoretical reflections are underway on the possibility of
automating data consistency checks, for example, demographic or temporal. Some facilities
randomly pull records from the EHR to compare them with the information in the CDW.

Standard format No single standard data model stands out as being used by all CDWs.
All are aware of the existence of the OMOP (research standard) (Hripcsak et al., 2015b) and
HL7 FHIR (communication standard) models (Braunstein, 2019). Several CDWs consider the
OMOP model to be a central part of the warehouse, particularly for research purposes (9/21).
This tendency has been encouraged by the European call for projects EHDEN, launched
by the OHDSI research consortium, the originator of this data model. In the Grand-Ouest
region of France, the CDWs use the eHop warehouse software. The latter uses a common
data model also named eHop. This model will be extended with the future warehouse
network of the Grand Est region also choosing this solution. Including this grouping and
the other establishments that have chosen eHop, this model includes 12 establishments out
of the 32 university hospitals. This allows eHop adopters to launch ambitious interregional
projects. However, eHop does not define a standard nomenclature to be used in its model
and is not aligned with emerging international standards.
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Documentation Half of the CDWs have put in place documentation accessible within the
organization on data flows, the meaning and proper use of qualified data (10/21 mentioned).
This documentation is used by the team that develops and maintains the warehouse. It is
also used by users to understand the transformations performed on the data. However, it is
never publicly available. No schema of the data once it has been transformed and prepared
for analysis is published.

2.4 Recommendations: How to consolidate EHRs and ex-
pand usages

We give the first overview of the CDWs in university hospitals of France with 32 hospitals
reviewed. The implementation of CDW dates from 2011 and accelerated in the late 2020.
Today, 24 of the university hospitals have an ongoing CDW project. From this case study,
some general considerations can be drawn, that should be valuable to all healthcare system
implementing CDWs on a national scale.

2.4.1 Governance: CDWs are infrastructures
Multidisciplinary teams As the CDW becomes an essential component of data man-
agement in the hospital, the creation of an autonomous internal team dedicated to data
architecture, process automation and data documentation should be encouraged (Goldacre
et al., 2022). This multidisciplinary team should develop an excellent knowledge of the data
collection process and potential reuses in order to qualify the different flows coming from the
source IS, standardize them towards a homogenous schema and harmonize the semantics. It
should have a sound knowledge of public health, as well as the technical and statistical skills
to develop high-quality software that facilitates data reuse.

Lack of sustainable funding The resources specific to the warehouse are rare and often
taken from other budgets, or from project-based credits. While this is natural for an initial
prototyping phase, it does not seem adapted to the perennial and transversal nature of the
tool. As a research infrastructure of growing importance, it must have the financial and
organizational means to plan for the long term.

The governance of the CDW has three layers – Within the university hospital,
interregional, and national/international The first level allow to ensure the quality
of data integration as well as the pertinence of data reuse by clinicians themselves. The
interregional level is well adapted for resources mutualization and collaboration. Finally, the
national and international levels assure coordination, encourage consensus for committing
choices such as metadata or interoperability, and provide financial, technical and regulatory
support.

2.4.2 Transparency: Keep the bar high
For better registration of observational studies Health Technology Assessment
agencies advocate for public registration of comparative observational study protocols before
conducting the analysis (Berger et al., 2017; FDA, 2021a; HAS, 2021). They often refer
to clinicaltrials.gov as potential but not ideal registration portal for observational
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studies. The research community advocates for public registrations of all observational
studies (Rushton, 2011; PLOS Medicine Editors, 2014). More recently, it emphasizes the
need for more easy data access and the publication of study code (Pavlenko et al., 2020;
Kohane et al., 2021; NIH, 2023). We embrace these recommendations and we point to the
unfortunate duplication of these study reporting systems in France. One source could be
favored at the national level and the second one automatically fed from the reference source,
by agreeing on common metadata.

The patient’s perspective There is currently no way to know if a specific patient personal
data is included for a specific project. Better patient information about the reuse of their
data is needed to build trust over the long term. A strict minimum is the establishment and
update of the declarative portals of ongoing studies at each institution.

2.4.3 New data, new challenges
Shift the focus to data engineering When using CDW, the analyst has not defined the
data collection process and is generally unaware of the context in which the information is
logged. This new dimension of medical research requires a much greater development of data
science skills to change the focus from the implementation of the statistical design to the
data engineering process. Data reuse requires more effort to prepare the data and document
the transformations performed.

Poor adoption of common standards The more heterogeneous a HIS system is, the
poorest quality will have a CDW built above it. There is a need for increasing interoperability,
to help EHR vendors interfacing the different hospital softwares, thus facilitating CDW
development. One step in this direction would be the open source publication of HIR data
schema and vocabularies. At the analysis level, international recommendations insist on the
need for common data formats (Zhang et al., 2022; Kohane et al., 2021). However, there is
still a lack of adoption of research standards from hospital CDWs to conduct robust studies
across multiple sites. Building open-source tools on top of these standards such as those
of OHDSI (Schuemie, 2021) could foster their adoption. Finally, in many clinical domains,
sufficient sample size is hard to obtain without international data sharing collaborations.
Thus, more incitation is needed to maintain and update the terminology mappings between
local nomenclatures and international standards.

Lack of translational researches Many ongoing studies concern the development of
diagnostic and prognostic algorithms whose goal is to save time for healthcare professionals.
These are often research projects, not yet integrated into routine care. The analysis of study
portals and the interviews revealed that data reuse oriented towards primary care is still
rare and rarely supported by appropriate funding. The translation from research to clinical
practice takes time and need to be supported on the long run to yield substantial results.

2.4.4 Technical architecture: Towards more harmonization and open
source ?

Tools, methods and data formats of CDW lack harmonization due the presence of many actors.
The strong technical innovation in the field led to the emergence of many heterogeneous
solutions. As suggested by the recent report on the use of data for research in the UK
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(Goldacre et al., 2022), it would be wise to focus on a small number of model technical
platforms.

These platforms should favor open-source solutions to assure transparency by default,
foster collaboration and consensus and avoid technological lock-in of the hospitals.

2.4.5 Data quality and documentation: more incentives needed

Focus on data quality Quality is not sufficiently considered as a relevant scientific topic
itself. However, it is the backbone of all research done within an CDW. In order to improve
the quality of the data with respect to research uses, it is necessary to conduct continuous
studies dedicated to this topic (Zhang et al., 2022; Kohane et al., 2021; Shang et al., 2018;
Looten et al., 2019). These studies should contribute to a reflection on methodologies and
standard tools for data quality, such as those developed by the OHDSI research network
(Schuemie, 2021).

Open-source is key to improve quality Finally, there is a need for open-source
publication of research code to ensure quality retrospective research (Shang et al., 2018;
Seastedt et al., 2022). Recent research in data analysis has shown that innumerable biases
can lurk in training data sets (Gebru et al., 2021; Mehrabi et al., 2021). Open publication of
data schemas is considered an indispensable prerequisite for all data science and artificial
intelligence uses (Gebru et al., 2021). Inspired by dataset cards (Gebru et al., 2021)
and dataset publication guides, it would be interesting to define a standard CDW card
documenting the main data flows.

2.5 Conclusion
Limitations The interviews were conducted in a semi-structured manner within a limited
time frame. As a result, some topics were covered more quickly and only those explicitly
mentioned by the participants could be recorded. The uneven existence of study portals
introduces a bias in the recording of the types of studies conducted on CDW. Those with a
transparency portal already have more maturity in use cases.

For clarity, our results are focused on the perimeter of university hospitals. We have
not covered the exhaustive health care landscape in France. CDW initiatives also exist in
primary care, in smaller hospital groups and in private companies.

The French CDW ecosystem is beginning to take shape It benefits from an
acceleration thanks to national funding, the multiplication of industrial players specializing
in health data and the beginning of a supra-national reflection on the European Health
Data Space (EC, 2022). However, some points require special attention to ensure that the
potential of the CDW translates into patient benefits.

The priority is the creation and perpetuation of multidisciplinary warehouse
teams This team should be capable of operating the CDW and supporting the various
projects. A combination of public health, data engineering, data stewardship, statistics
and IT competences is a prerequisite for the success of the CDW. The team should be the
privileged point of contact for data exploitation issues and should collaborate closely with
the existing hospital departments.
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The constitution of a multi-level collaboration network is another priority The
local level is essential to structure the data and understand its possible uses. Interregional,
national and international coordination would make it possible to create thematic working
groups, in order to stimulate a dynamic of cooperation and mutualization.

A common data model should be encouraged It should specify metadata allowing to
map the integrated data, in order to qualify the uses to be developed today from the CDWs.
More broadly, open-source documentation of data flows and transformations performed for
quality enhancement would require more incentives to unleash the potential for innovation
for all health data users.

Expanding the scope of the data beyond the purely hospital domain Many
risk factors and patient follow-up data are missing from the CDWs, but are crucial for
understanding pathologies. Combining city data and hospital data would provide a complete
view of patient care.
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Chapter 3

Exploring a complexity gradient in
representation and predictive models

for EHRs
What must one know a priori about an unknown functional dependency in order to estimate it
on the basis of observations?

– Vladimir Vapnik, The nature of Statistical Learning Theory, 2000

Chapter’s content
As chapter 2 shows, Electronic Health Records (EHRs) contain multiple categories of data sparking
interest in the development of predictive algorithms. Text and image put aside, this data can
be represented as time-stamped medical codes with a high number of categories and biological
measurements. Current state-of-the-art predictive models for EHRs build on increasingly elaborated
pipelines –for instance using the transformer architecture– to handle the complexity of these data.
Given the operational difficulties to transfer and adapt these models on local care environments, we
explore a complexity-benefit tradeoff by comparing them to simple aggregation of events. We use
three predictive tasks involving time-varying structured EHRs and increasingly clinically relevant
problems. We introduce a simple aggregation of static embeddings –transferred from national claims
and publicly available–, showing that it outperforms transformer-based models on simple tasks with
medium sample sizes. We highlight the sample and computing resource efficiency of these models.
Finally, clinically relevant problems generally present a strong class imbalance, with low outcome
prevalence. This makes frugal models particularly attractive because of their capacity to learn from
few examples. Despite being attractive for large sample sizes –over the million, complex models, as
with transformers may be less adpated to typical clinical settings than lightweight data-processing
pipelines using tree-based models.

This chapter presents ongoing work. A communication was accepted for the Simpa2023
day on patient similarity.

work done with Judith Abecassis, Julie Adjerad, Theo Jolivet, Jean-Baptiste Julla
and Gaël Varoquaux.
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3.1 The modern quest for medical oracles
The increasing availability of routine care data and advances in machine learning are raising
hope for predictive modeling in healthcare. EHRs are promising because of the richness of
their data and their integration in routine care (Raghupathi; Raghupathi, 2014). However,
predictive algorithms trying to model this ever richer data sources gain in complexity. There
is currently a lack of of guidance on the performance-complexity tradeoff in predictive models
(Hond et al., 2022). We explore a complexity gradient of predictive pipelines on three tasks
ranging from general populations of patients to more specific clinical cases.

3.1.1 Focus on predictive models for planning or risk scores

In biostatistics and clinical medicine, prognosis models have been motivated by risk strat-
ification: the Framingham risk score for coronary heart disease was an early attempt to
characterize behavior changes that could lead to decreased risk (Brand et al., 1976). Clinical
risk scores are either focused on the short term with alarm models (Tang et al., 2007; Roth-
man et al., 2013; Wong et al., 2021) or on the long term with screening models. In parallel,
artificial intelligence in medicine looks for prognosis model as part of larger decision-making
systems (Szolovits, 1982). Finally, in complex healthcare organizations, accurate individual
predictions help to use efficiently constrained medical resource by informing care planning
(Topol, 2019). Appendix C.2.1 details these four type of predictive objectives for healthcare.

Following the trend for evaluating current state-of-the-art models (Wornow et al., 2023),
we focus on purely predictive models: risk scores or planning.

3.1.2 Predictive pipelines fueling medical predictions are increasingly
complex

Original complexity of the data EHRs contain time varying variables with a high
cardinality. Time-consuming work from medical and computer experts is required to clean
and transform these sources into data tables suited for statistical analysis (Bacry et al., 2020;
Hripcsak et al., 2015a). More specifically, data preprocessing usually requires mapping non
standard terminologies, create derived variables by aggregating measures over specific time
periods. The choices of baseline covariates should be driven by medical experts which are
often not familiar with the complexity of the full EHR data processing pipeline. We propose
to leverage models that take raw structured data as input to avoid as much as possible these
preprocessing steps.
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From simple hand-crafted linear models to elaborated weakly-supervised tran-
formers Predictions on EHRs originally used linear models on few carefully selected static
variables for tens of thousand patients coming from a single center (Goldstein et al., 2017).
To overcome the high cardinality of EHRs medical vocabularies, a series of deep learning
methods have been developed (Shickel et al., 2017). Time varying features were first modelled
thanks to recurrent neural network (Lipton et al., 2016), then with large transformer-based
architectures (Li et al., 2020b). Appendix C.2.2 further details this evolution of predictive
model complexity.

3.1.3 The illusion of large populations
Well-defined clinical questions concern small numbers of cases Diseases are rare,
often with less than 5% of prevalence (CNAM, 2023), even lower if considering incidence.

For example, consider the flowchart for the pre-
diction of cardiovascular complications –a rather
common clinical condition–, we first extracted a
cohort of 2,101,819 patients. After running all
inclusion criteria –shown in Figure C.3, we are left
with only 4,360 cases among a population at risk
of 165,930 patients. Currently, large models are
trained on larger number of cases (see a review
of number of cases for three major transformer-
based models in Appendix C.3). Privacy rights
enforced by the General Data Protection Regu-
lation (GDPR) make it difficult to access large
repositories of healthcare data. We should thus
develop and evaluate prognosis models on small
samples, accessible in many hospitals.

Fig. 3.1. Simplified selection flowchart for major cardio-
vascular events prediction. Most of the exclusion occurs
because of poor quality of the information system, pe-
diatric patients, right censoring or patients having less
than two stays in the database. Appendix C.4c provides
the complete flowchart.

Initial Population
(n=2,101,819)

n=1,114,238

Poor quality of the
Information system

(n=987,581)

n=923,893

Right censoring,
horizon at one year

(n=190,345)

n=648,746

Aged below 18
(n=275,147)

n=343,898

Less than two stays
(304,848)

n=165,930
with 4,360 cases

Other exclusion
criteria

(n=177,968)

Transferring predictive model is no silver bullet A potential solution to local
small sample sizes is to transfer models pretrained on large populations. However, privacy
requirements also prevent such transfer between institutions 1. Even if publicly available,
major dataset shifts might break effective transfer of predictive pipelines (Finlayson et al.,
2021): heterogeneity in coding practices (Juven, 2013), socio-economic status (Gianfrancesco
et al., 2018), inconsistency of practices in different organizations (Agniel et al., 2018). Futoma
et al., 2020 even argues that it is not possible to generalize machine learning models in
healthcare: Different population, information systems and healthcare practices may require
tailored tools (Rose, 2018). As an example of failed generalization, Wong et al., 2021

1We asked for CEHR-BERT to be published, but so far without success: https://github.com/
cumc-dbmi/cehr-bert/issues/2
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externally evaluated a sepsis prediction model deployed in hundered of US caresites. The
model transfer performance dropped from 0.76 to 0.83 area under the receiver operating
curve (ROC AUC) declared by the manufacturer to 0.63.

3.1.4 Current barriers to predictive models usefulness
Credibility of external validity requires simple model deployments Some predictive
risks are used in daily clinical practice: For example, the Glasgow Coma Scale (Teasdale;
Jennett, 1974) or the APACHE III score (Knaus et al., 1991), though these are very simple
scores built from expertise rather than machine learning. But only a small part of the
published models are successfully deployed into clinical practice (Wyatt; Altman, 1995; Kelly
et al., 2019). Poor adoptions are due to lack of evidence for clinical credibility, accuracy,
generality or clinical effectiveness. Improving the strength of this evidence requires repeatedly
testing these systems on different prospective populations with intuitive metrics for physicians
(Kelly et al., 2019; Varoquaux; Colliot, 2022; Wornow et al., 2023). Hence deployment
simplicity is a key factor for model adoption.

Simple pipelines facilitate model deployments Hospital softwares already run on
complex information systems. We should aim for predictive models that can run on pre-
existing hardware such as the successful QRISK for cardiovascular risk prediction (Hippisley-
Cox et al., 2017). Relying on such commodity hardware facilitates model training, calibration
and deployment, eventually leading to better clinical adoption and integration into healthcare
processes. To benefit the largest number of patients accross the world, predictive models
should be an appropriate technology: it should be easily and economically utilized from
readily available resources by local communities to meet their needs (Pearce, 2012). However,
recent predictive pipelines strongly focus on performance gains, at the cost of increasing
architecture sizes requiring ever greater computing and technical resources –as detailed in
Appendix C.4. There is a need to balance good predictive performance with model frugality.

3.1.5 Objective and outline of the paper
Contributions We study the performance of increasingly complex models on three opera-
tional and clinical tasks. We explore the performance trade-offs between small models that
can be run on few samples and large models requiring more samples to become effective. We
propose a new model based on the transfer of static medical embeddings trained from large
claims databases. In the technically and legally constrained environment of healthcare data,
what predictive pipelines are the most efficient to yield good practical utility?

Outline Section 3.2 details four predictive pipelines of increasing complexity. Subsection
3.3.1 defines three clinical tasks covering different benchmarking and clinical usefulness.
Subsection 3.3.1 details our evaluation pipeline. Finally subsection 3.3.2 presents our results
and section 3.4 discusses their implications.

Main findings With small to moderate sample sizes -up to 20,000 patients-, simple models
have better performance than transformer-based models on general tasks such as length of
stay interpolation or prognosis. Among the simpler model based on row counts or static
embeddings, no featurization choice largely outperforms others in any single task but random
forest estimators are always more performant than linear estimators. Static embeddings
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Fig. 3.2. Event time representation of EHRs data for predictive tasks. Events are observed between the
inclusion and start of followup dates. Target is considered only between the start of followup and the
horizon to avoid right censoring. The event types are distinguished by their color: billing diagnoses in
blue, billing procedures in red and drug administrations in green.

models are the most compute and memory efficient solution. We quantify the detrimental
effects on prognosis performance of low target prevalences –linked to the number of cases.

3.2 From basic to complex: four increasingly sophisticated
predictive pipelines

3.2.1 A simple information-preserving data format: sequence of events
We model the patient healthcare trajectory as a sequence of events (Beam et al., 2019; Bacry
et al., 2020; Chazard et al., 2022). Each event is described by a triplet: a person identifier
i, a datetime t and a medical code c, e = (i, t, c) as shown in Figure 3.2. For each patient
i, the complete trajectory is the ordered collection of its Ti events Si = {ek}k=1..Ti

. S is
the collection of sequences for all N patients: S = {Si}i=1..N .This simple format integrates
together a wide variety of time varying features without imposing data transformation
or feature selection –often brittle to modelization choices. However, it calls for adequate
aggregation methods to reduce the long event table into a patient-wise features table of
shape N × d matrix for d that can be passed over to statistical estimators. Here, we explore
four different choices of aggregation of increasing complexity, followed by common statistical
estimators. We call these aggregation methods featurizers and note them g(·, λg), where λg

are the parameters of the featurizers.

3.2.2 Demographic features: gdemo

One simple featurization choice ignores these sequence of events and only focus on a few
demographic features available in the patient record: age, gender, admission origin, discharge
destination, admission date. These demographics are added as new columns for all other
subsequent featurizers.

3.2.3 Decayed counting of event features: gcount

We process the raw events by computing a sparse count matrix C of shape (N, nvocabulary)
where each row collapses the patient history by counting the number of times a concept is
present in the patient history as illustrated in Figure 3.3. To better take into account the
temporal dimension, we also computed a decayed count of the events in the patient history,
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noted Cδ.
For an event triplet (i, t, c), we compute the time delta between the event and the followup

time.
∆t = |t − T0|

Then, we decay the count matrix with an exponential of half life δ.

Cδ[i, c]+ = e− ∆t
δ

Finally, we obtain the patient features by concatenating each delayed count matrix; e.g.,
with decay 0 and decay δ.

gcount(S, (0, δ)) = [C0, Cδ]
Several decays can be selected and concatenated together. The decays are considered
hyperparameters which are selected by cross-validation.

3.2.4 Static embeddings of event features: gemb−local or gemb−SNDS

The SVD-PPMI algorithm (introduced by Beam; Kohane, 2018, detailed in Appendix C.5.3)
performs a dimension reduction on the cooccurrence matrix between medical concepts. It
creates neighboring vector representations for codes that coocur frequently together and
thus induces some sense of clinical relation. Building upon this algorithm, we consider
two sequence representation techniques. These embeddings are static by opposition to
transformer-based embeddings that adapts to the context.

Static embeddings locally trained: gemb−local We apply the SVD-PPMI algorithm to the
training cohort yielding static embeddings Φlocal. Aggregation at the stay level is done using
the same count matrices as for 3.2.3 –potentially with decayed counts: gemb−local(S, (0, δ)) =
[C0 · Φlocal, Cδ · Φlocal].

Transfer trained static embeddings Instead of retraining the embeddings on the train
cohort, we rely on static embeddings ΦSNDS pre-computed on French national claims data
from 3,112,565 patients (Doutreligne et al., 2021). The aggregation is performed similarly as
for decayed counting and local embeddings: gemb−SNDS((S, (0, δ))) = [C0 · ΦSNDS, Cδ · ΦSNDS].

Patient 1
event

sequence
Time

1 1 3 0

0 1 2 1

1 0 1 0

... ... ... ...

V concepts

N patients

0.02 0.1 0.801 0

0 0.2 0.1 0.001

0.1 0 0.8 0

... ... ... ...

Patient features without time decay

Patient features with time decay 

Patient 1
event

sequence
Time

Fig. 3.3. Illustration of the decayed counting procedure.
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3.2.5 Transformer based: gcbert

Relying on the transformer architecture (Vaswani et al., 2017), recent trajectory modeling
algorithms showed promising results for various EHR prediction tasks (Li et al., 2020b;
Rasmy et al., 2021; Pang et al., 2021). We benchmarked CEHR-BERT (Pang et al., 2021),
one of these recent transformer-based models particularly adapted to our data format.

Transformer models are trained in two steps: a) First, pre-train the model on an auxiliary
task using a large database. In our case, this task is a Masked Language Model (MLM): the
network tries to predict the medical concept of randomly masked events in the sequences.
The CEHR-BERT implementation also tries to predict the type of the next visit. b) Then
fine-tune the model on the task of interest. We use the train set for pretraining and finetuning.
Details on this architecture are given in Appendix C.5.4.

3.2.6 Final step estimator
These choices of featurizers are not task-specific. To obtain probabilities of occurrence for
the target, the analyst needs to choose and train an estimator f and its corresponding
parameters λf . The predictions are given by the chain of the featurizer and the estimator:
ŷ(si) = f(g(si, λg), λf ).

For CEHR-BERT, the predictor is the final layer of the neural network. It is trained
together with the sequence representations during the fine-tuning step. For the other
featurizers, we create a scikit-learn pipeline 2 where a featurizer is followed by an estimator:
either a penalized logistic regression or a random forest. The hyperparameters of the
featurizers and estimators can be cross-validated together. We experimented with gradient
boosting trees, without observing significant performance gains.

3.3 Empirical Study – Benchmarking three operational and
clinical tasks

3.3.1 Experiments to explore the performance-complexity trade off
Heathcare database – Greater Paris Hospitals We use data extracted from the
data warehouse of the Greater Paris Hospitals (AP-HP), hosting routine care data from 38
hospitals in the Paris area. Details on this database is given in Appendix C.6.1. We include
every medical event among drug administrations, ICD10 diagnosis and procedure billing
codes.

Prediction tasks framing Here, we detail our framework to precisely define each predic-
tive task, taking inspiration from OHDSI, 2021; Tomašev et al., 2021. First, we define a
study period during which data acquisition was sufficiently stable. Then, we define and select
the cohort detailed for each task. Inclusion criteria are detailed in the flowcharts of Figure
C.4. We define the task with: an index visit, an observation period during which events are
fed to the predictive model, an horizon after the end of the observation period defining the
followup, and a target event potentially occurring during the followup.

We study three tasks of increasing clinical value and implementation complexity: Long
Length Of Stay interpolation (LOS), prognosis the prediction of the next stay ICD10 chapters,

2https://scikit-learn.org/stable/modules/compose.html#combining-estimators
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and prediction at one year of incident Major Adverse Cardiovascular Events (MACE). Table
3.1 summarizes key characteristics of the cohorts and task definitions and Appendix C.6.2
details each task.

Long LOS Prognosis MACE

Task Binary classification Multi-Label
binary classification Binary classification

Index Visit First inpatient visit Random Non-Final Visit Random Visit

Observation Period Index visit Full trajectory before
end of index visit

Full Trajectory before
end of index visit

Horizon End of index visit End of next visit 12 Months
Median Age 56.4 61.5 60.0
Female 54.6% 53.3% 53.7%
Cohort Size 27,053 10,786 165,948
Prevalence 23.1% From 1.3 to 55.9% 2.6 %
Number of cases 6,249 From 139 to 6,029 4,315

Description Long stay classification
(longer than 7 days)

Next stay prognosis:
ICD10 chapter classification

MACE prognosis
at one year

Table 3.1. Tasks definitions and cohort characteristics.

Evaluation procedure – Exploring sample efficiency We split each cohort described
in Table 3.1 into a train and a test set following a temporal split based on each patient
inclusion date with a 0.8/0.2 ratio (split detailed in Appendix C.6.3). Each patient only
appears in one of the two sets. To study the sample efficiency of the different pipelines,
we further restrict the effective train set size to increasing ratio of its full size. Figure 3.4
summarizes the procedure. We report Area Under the Receiver Operating Characteristic
Curve (ROC AUC) or Area Under the Precision Recall Curve results (AUPRC) which is
more adapted to highly imbalanced tasks.

(Estimators, Featurizers)

...

Sample increasing
 fractions 

Effective train set Evaluate

Hyperparameter search
for all 

Train set Fixed validation set

Fig. 3.4. Evaluation procedure: For each effective train set of size r, each pair of featurizer and
estimator are cross-validated together to obtain the best parameters, then evaluated on a fixed validation
set.

Appendix C.8 details an alternative geographic split validation procedure for LOS and
prognosis tasks, exploring the validity of our results when testing the models on patient from
other hospitals.
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Fig. 3.5. Prognosis AUPRC, weighted by prevalences over 21 ICD10 chapters with more than 1%
prevalence. The performance is averaged over 5 folds. The shaded area represents the standard deviation.
The horizontal black line displays the naive baseline that predicts the previous stay codes for the target
stay. Random forest have better performance. Count encoder outperforms other featurizers, suggesting
the importance of low count events that are smoothed out in embedding methods. We report AUPRC
rather than ROC AUC, since it takes better into account the difference in prevalence between chapters.
Appendix C.7.2 details AUPRC for each chapter and displays averaged ROC AUC.

3.3.2 Results – Tree-based models on event counts, a simple but efficient
performer

Decayed counting followed by random forest outperforms elaborate embedding
models Both for the prognosis (shown if Figure 3.5) and the LOS task (shown in Figure
3.6), decayed counting with random forest outperforms other pipelines. For these two tasks,
the transformer model is far from the best performance, certainly because of too small
samples.

For the prognosis task, we added to all featurizers the previous index stay ICD10 chapters
as supplementary features. This intuitive baseline is reported as the horizontal black line.
The good performance of the logistic regression with demographic features only indicates
that a simple linear combination of the index stay chapters is a strong baseline.

The challenge of low prevalence Figure 3.7 shows the AUPRC performances on the
prognosis task plotted against the prevalence for a random forest estimator. Low prevalences
translate into small number of cases, which decreases overall performance and increase
variances among chapters with less than 5% prevalences. Appendix C.7.2 shows similar
results for ROC AUC and linear estimators.

Static embeddings reduce computational costs Figure 3.8 shows the training time of
the different pipelines averaged over the 21 chapters of the prognosis task, highlighting the
efficiency of the static embedding methods. There is a 10-times speed up of local embeddings
over the transformer-based model.
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Fig. 3.6. Length of stay ROC AUC for different featurizers and estimators. The performance is averaged
over 5 folds. The shaded area represents the standard deviation. The task performance seems to
saturate at 95% ROC AUC for random forest and all featurizers but the demographics and CEHR-BERT,
suggesting that the Bayes error rate is reached. However, for lower sample regimes –below 12,500
patients, we see a clear benefit of static embeddings over decayed counting of events (both for logistic
regression and random forest). Appendix C.7.1 details AUPRC.
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Fig. 3.7. Higher target prevalences yield better AUPRC. The different chapters are binned in prevalence
bins. The estimator used for this plot is random forest trained on the full effective train set of size 8560.
Appendix C.7.2 details the ROC AUC curves.

3.4 Conclusion
Training state-of-the-art predictive models from EHRs from scratch requires important
computing resources, and access to very large cohorts. We explored a performance-complexity
trade-off by studying different types of predictive algorithms, from simple baseline to large
transformer-based pipelines.

Tree-based models outperform other pipelines For simple predictive tasks such as
LOS interpolation or prognosis at the ICD10 level and small sample sizes, simple pipelines
based either on decayed countings or static embeddings followed by random forest are
sufficient to reach good performance. Transformer-based models struggle with these low-
sample regimes. In low computing resources environments, static embedding pipelines are
twice as fast as decayed counting and more than five times faster than transformers.
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Fig. 3.8. Static embeddings are
quicker to train. The training times
are reported for the full train set for
the prognosis task averaged on the
21 ICD10 chapters. For all featur-
izers with the exception of CEHR-
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BERT, the calculation took place on
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MACE is challenging due to low prevalence MACE is more complicated to evaluate
because of the low prevalence of the outcome. This forced us to use a larger cohort to collect
enough cases. Both simple and complex models require larger computing resources than those
we can access. However, the type of these resources are different. Static embeddings can
reach satisfying performance on big samples with large memory consumption (e.g., 100GB
of RAM). Transformer architectures require large GPUs to be trained even for small sample
sizes. Because of constraints for these two types of resources on the AP-HP computing
cluster, we are currently struggling to evaluate the MACE task on the full cohort.

Comparing to bigger or pretrained models The high number of laboratory measure-
ments –only available for inpatients– could improve the performance for all tasks. However,
the addition of these high-frequency features exceeds the computing resources currently at
our disposal. Our benchmark also lacks a pre-trained model on large structured data and
the interesting avenue of repurposing large language model for predictive tasks directly from
clinical notes. These two approaches require large GPU resources, making a poor use of
the commodity hardware already present in hospitals. Healthcare financial resources are
already scarce in rich countries. It is still an open question to assess if the prevention benefits
brought by large scale models from EHRs outweigh the cost of their deployment.
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Chapter 4

Prediction is not all we need: Causal
thinking for decision making on

Electronic Health Records
All scientific work is incomplete - whether it be observational or experimental. All scientific work
is liable to be upset or modified by advancing knowledge. That does not confer upon us a freedom
to ignore the knowledge we already have, or to postpone the action that it appears to demand at
a given time.

–Austin Bradford Hill, The Environment and Disease: Association or Causation?, 1965

Chapter’s content
While Chapter 3 focused on predictive models for patient outcomes, this chapter details the
importance of causality to build clinically-valuable models and introduces a framework to facilitate
such endeavor. It shows that predictions –even accurate as with machine learning, may not suffice
to provide optimal healthcare for every patient. Indeed, prediction can be driven by shortcuts
in the data, such as racial biases. Causal thinking is needed for data-driven decisions. Here, we
give an introduction to the key elements, focusing on routinely-collected data, Electronic Health
Records (EHRs) and claims data. Using such data to assess the value of an intervention requires
care: temporal dependencies and existing practices easily confound the causal effect. We present
a step-by-step framework to help build valid decision making from real-life patient records by
emulating a randomized trial before individualizing decisions, eg with machine learning. Our
framework highlights the most important pitfalls and considerations in analyzing EHRs or claims
data to draw causal conclusions. We illustrate the various choices in studying the effect of albumin
on sepsis mortality in the Medical Information Mart for Intensive Care database (MIMIC-IV).
We study the impact of various choices at every step, from feature extraction to causal-estimator
selection. In a tutorial spirit, the code and the data are openly available.

This chapter corresponds to the article entitled Step-by-step causal analysis of Electronic
Health Records to ground decision making submitted to npj Digital Medicine,

Authors: Matthieu Doutreligne, Tristan Struja, Judith Abecassis, Claire Morgand,
Leo Anthony Celi and Gaël Varoquaux.
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4.1 Motivation : Healthcare is concerned with decision
making, not mere prediction

Medicine increasingly relies on data with the promise of better clinical deci-
sion-making Machine learning is central to this endeavor. On medical images, it achieves
human-level performance to diagnose various conditions (Aggarwal et al., 2021; Esteva et al.,
2021; Liu et al., 2019). Using Electronic Health Records (EHRs) or administrative data,
it outperforms traditional rule-based clinical scores to predict a patient’s readmission risk,
mortality, or future comorbidities (Rajkomar et al., 2018b; Li et al., 2020b; Beaulieu-Jones
et al., 2021). And yet, there is growing evidence that machine-learning models may not
benefit patients equally. They reproduce and amplify biases in the data (Rajkomar et al.,
2018a), such as gender or racial biases (Singh et al., 2022; Gichoya et al., 2022; Röösli et al.,
2022), or marginalization of under-served populations (Seyyed-Kalantari et al., 2021). The
models typically encode these biases by capturing shortcuts: stereotypical features in the
data or unequal sampling (Geirhos et al., 2020; Winkler et al., 2019; DeGrave et al., 2021).
For instance, an excellent predictive model of mortality in the Intense Care Unit (ICU) might
be of poor clinical value if it uses information available only too late. These shortcuts are at
odds with healthcare’s ultimate goal: appropriate care for optimal health outcome for each
and every patient (Canadian Medical Association, 2015; Ghassemi et al., 2020). Making the
right decisions requires more than accurate predictions.

Causal thinking is a key ingredient to ground data-driven decision making
(Prosperi et al., 2020) Indeed, decision-making logic cannot rely purely on learning from the
data, which itself results from a history of prior decisions (Plecko; Bareinboim, 2022). Rather,
reasoning about a putative intervention requires comparing the potential outcomes with and
without the intervention, the difference between these being the causal effect. In medicine,
causal effects are typically measured by Randomized Controlled Trials (RCTs). Yet, RCTs
may not suffice for individualized decision making: They may suffer from selection biases
(Travers et al., 2007; Averitt et al., 2020), failure to recruit disadvantaged groups, and become
outdated by evolving clinical practice. Their limited sample size seldom allows to explore
treatment heterogeneity across subgroups. Rather, routinely-collected data naturally probes
real-world practice and displays much less sampling bias. It provides a unique opportunity
to assess benefit-risk trade-offs associated with a decision (Desai et al., 2021), with sufficient
data to capture heterogeneity (Rekkas et al., 2023). Estimating causal effects from this data
is challenging however, as the intervention is far from being given at random, and, as a
result, treated and untreated patients cannot be easily compared. Without dedicated efforts,
machine-learning models simply pick up these difference and are not usable for decision
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making. Rather dedicated statistical techniques are needed to emulate a “target trial” from
observational data – without controlled interventions.

Different time resolutions EHRs and claims are two prominent sources of real-life
healthcare data with different time resolutions. EHRs are particularly suited to guide clinical
decisions, as they are rich in high-resolution and time-varying features, including vital signs,
laboratory tests, medication dosages, etc. Claims, on the other hand, inform best on medico-
economic questions or chronic conditions as they cover in-patient and out-patient care during
extended time periods. But there are many pitfalls to sound and valid causal inferences
(Hernan et al., 2019; Schneeweiss; Patorno, 2021). Data with temporal dependencies, as
EHRs and claims, are particularly tricky, as it is easy to induce time-related biases (Suissa,
2008; Wang et al., 2023b).

Objectives and structure of the chapter Here we summarize the main considerations to
derive valid decision-making evidence from EHRs and claims data. Many guidelines on causal
inference from observational data have been written in various fields such as epidemiology
(Hernàn; Robins, 2020; Schneeweiss; Patorno, 2021; Zeng et al., 2022), statistics (Belloni et
al., 2014; Chernozhukov et al., 2018b), machine learning (Shalit; Sontag, 2016; Sharma, 2018;
Moraffah et al., 2021) or econometrics (Imbens; Wooldridge, 2009). Time-varying features of
EHR data, however, raise particular challenges that call for an adapted framework. We focus
on single interventions: only one prescription during the study period, e.g., a patient either
receives mechanical ventilation or not during admission to an intensive care unit compared
to, e.g., blood transfusion which may be given repeatedly. Section 4.2 details our proposed
step-by-step analytic framework on EHR data. Section 4.3 instantiates the framework by
emulating a trial on the effect of albumin on sepsis using the Medical Information Mart for
Intensive Care database (MIMIC-IV) database (Johnson et al., 2020). Section 4.4 discusses
our results and its implications on sound decision making. These sections focus on being
accessible, appendices and online Python code1 expand more technical details, keeping a
didactic flavor.

4.2 Step-by-step framework for robust decision making from
EHR data

The need for a causal framework, even with machine learning Data analysis
without causal framing risks building shortcuts. As an example of such failure, we trained
a predictive model for 28-day mortality in patients with sepsis within the ICU. We fit the
model using clinical measures available during the first 24 hours after admission. To simulate
using this model to decide whether or not to administrate resuscitation fluids, we evaluate its
performance on unseen patients first on the same measures as the ones used in training, and
then using only the measures available before this treatment, as would be done in a decision
making context. The performance drops markedly: from 0.80 with all the measures available
during the first 24 hours after admission to 0.75 using only the measures available before
the treatment (unit: Area Under the Curve of the Receiving Operator Characteristic, ROC
AUC). The model has captured shortcuts: good prediction based on the wrong features of
the data, useless for decision making. On the opposite, a model trained on pre-treatment
measures achieves 0.79 in the decision-making setting (further details in appendix D.1). This

1https://github.com/soda-inria/causal_ehr_mimic/
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Fig. 4.1. Step-by-step analytic framework – The complete inference pipeline confronts the analyst
with many choices, some guided by domain knowledge, others by data insights. Making those choices
explicit is necessary to ensure robustness and reproducibility.

illustrates the importance of accounting for the putative interventions even for predictive
models.

Whether a data analysis uses machine learning or not, many pitfalls threaten its value
for decision making. To avoid these traps, we outline in this section a simple step-by-step
analytic framework, illustrated in Figure 4.1. We first study the medical question as a target
trial (Hernan, 2021), the common evidence for decisions. This enables assessing the validity
of the analysis before probing heterogeneity –predictions on sub-groups– for individualized
decision.

4.2.1 Step 1: study design – Frame the question to avoid biases

PICO(T) format Grounding decisions on evidence needs well-framed questions, defined
by their PICO components: Population, Intervention, Control, and Outcome (Richardson
et al., 1995). To concord with a (hypothetical) target randomized clinical trial, an analysis
must emulate all these components (Hernán; Robins, 2016; Wang et al., 2023b), eg via
potential outcome statistical framework (Hernàn; Robins, 2020) –Table 4.1 and Figure 4.2.
EHRs and Claims need an additional time component: PICOT (Riva et al., 2012).

Without dedicated care, defining those PICO(T) components from EHRs can pick up
bias: non-causal associations between treatment and outcomes. We detail two common
sources of bias in the Population and Time components: selection bias and immortal time
bias, respectively.

PICO component Description Notation Example

Population What is the target
population of interest? X ∼ P(X), the covariate distribution Patients with sepsis in the ICU

Intervention What is the treatment? A ∼ P(A = 1) = pA,
the probability to be treated

Crystalloids and albumin
combination

Control What is the clinically
relevant comparator? 1 − A ∼ 1 − pA Crystalloids only

Outcome What are the outcomes ? Y (1), Y (0) ∼ P(Y (1), Y (0)),
the potential outcomes distribution 28-day mortality

Time Is the start of follow-up aligned
with intervention assignment? N/A Intervention administered within

the first 24 hours of admission

Table 4.1. PICO(T) components help to clearly define the medical question of interest.
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Selection Bias In EHRs, outcomes and treatments are often not directly available and
need to be inferred from indirect events. These signals could be missing not-at random,
sometimes correlated with the treatment allocation (Weiskopf et al., 2023). For example, not
all billing codes are equally well filled in, as billing is strongly associated with case-severity
and cost. Consider comparing the effect on mortality of fluid resuscitation with albumin
to that of crystalloids. As albumin is much more costly, patients who have received this
treatment are much more likely to have a sepsis billing code, independent of the seriousness
of their condition. On the contrary, for patients treated with crystalloids, only the most
severe cases will have a billing code. Naively comparing patients on crystalloid treatment
with less sick patients on albumin treatment would overestimate the effect of albumin.

Immortal time bias Another common bias comes from timing: improper alignment of
the inclusion defining event and the intervention time (Suissa, 2008; Hernan et al., 2016;
Wang et al., 2022). Figure 4.3 illustrates this Immortal time bias –related to survivor bias
(Lee; Nunan, 2020). It occurs when the follow-up period, i.e. cohort entry, starts before the
intervention, e.g., prescription for a second-line treatment. In this case, the treated group
will be biased towards patients still alive at the time of assignment and thus overestimating
the effect size. Other common temporal biases are lead time bias (Oke et al., 2021; Fu et al.,
2021), right censorship (Hernan et al., 2016), and attrition bias (Bankhead C, 2017).

Good practices include explicitly stating the cohort inclusion event (OHDSI, 2021,
Chapter 10:Defining Cohorts) and defining an appropriate grace period between starting
time and the intervention assignment (Hernan et al., 2016). At this step, a population
timeline can help (e.g., Figure 4.5).

4.2.2 Step 2: identification – List necessary information to answer the
causal question

The identification step builds a causal model to answer the research question (Figure 4.6).
Indeed, the analysis must compensate for differences between treated and non-treated that
are not due to the intervention (Pearl; Mackenzie, 2018, chapter 1, Hernàn; Robins, 2020,
chapter 1).
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Causal Assumptions Not every question can be answered from a given dataset: valid
causal inference requires assumptions. We assume the following four assumptions, referred
as strong ignorability and necessary to assure identifiability of the causal estimands with

Ventilation

T0

Kidney failure

Hypotension

SOFA=12 SpO2=92%

Vasopressors

Crystalloids

T1 T2

Glucose=4.5mmol/LAnna
Age = 54
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Insurance Status = RG

Residency = Le Havre T3
Inpatient mortality = 

A = 1
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Covariates X
demographics, biology, comorbidities, procedures...

💊 Intervention A 📈 Outcome Y
Inpatient mortality = 

Fig. 4.2. Study design – The first step of the analysis consists in identifying a valid treatment effect
question from patient healthcare trajectories and defining a target trial emulating a RCT using the
PICO(T) framework.
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Fig. 4.3. Poor experi-
mental design can intro-
duce Immortal time bias,
which leads to a treated
group with falsely longer
longevity (Lee; Nunan,
2020).
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observational data (Rubin, 2005). See Naimi; Whitcomb, 2023 for a concise introduction for
epidemiologists:

Assumption 1 (Unconfoundedness)

{Y (0), Y (1)} ⊥⊥ A|X

This condition –also called ignorability– is equivalent to the conditional independence on e(X)
(Rosenbaum; Rubin, 1983): {Y (0), Y (1)} ⊥⊥ A|e(X).

Assumption 2 (Overlap, also known as Positivity))

η < e(x) < 1 − η ∀x ∈ X and some η > 0

The treatment is not perfectly predictable. Or with different words, every patient has a chance
to be treated and not to be treated. For a given set of covariates, we need examples of both to
recover the ATE.

As noted by D’Amour et al., 2021, the choice of covariates X can be viewed as a trade-off
between these two central assumptions. A bigger covariates set generally reinforces the
ignorability assumption. On the contrary, overlap can be weakened by large X because of
the potential inclusion of instruments: variables only linked to the treatment which could
lead to arbitrarily small propensity scores.

Assumption 3 (Consistency) The observed outcome is the potential outcome of the as-
signed treatment:

Y = A Y (1) + (1 − A) Y (0)

Here, we assume that the intervention A has been well defined. This assumption focuses on
the design of the experiment. It clearly states the link between the observed outcome and the
potential outcomes through the intervention (Hernán; Robins, 2020).

Assumption 4 (Generalization) The training data on which we build the estimator and
the test data on which we make the estimation are drawn from the same distribution D∗, also
known as the “no covariate shift” assumption (Jesson et al., 2020).
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Fig. 4.4. The five categories of causal variables needed for our framework.
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n Categorizing covariates Potential predictors –covariates– should be categorized depend-

ing on their causal relations with the intervention and the outcome (Figure 4.4): confounders
are common causes of the intervention and the outcome; colliders are caused by both the
intervention and the outcome; instrumental variables are a cause of the intervention but
not the outcome, mediators are caused by the intervention and is a cause of the outcome.
Finally, effect modifiers interact with the treatment, and thus modulate the treatment effect
in subpopulations (Attia et al., 2022).
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To capture a valid causal effect, the analysis should only include confounders and possible
treatment-effect modifiers to study the resulting heterogeneity. Regressing the outcome
on instrumental and post-treatment variables (colliders and mediators) will lead to biased
causal estimates (VanderWeele, 2019). Drawing causal Directed Acyclic Graphs (DAGs)
(Greenland et al., 1999), eg with a webtool such as DAGitty (Textor et al., 2011), helps
capturing the relevant variables from domain expertise.

Estimand or effect measure The estimand is the final statistical quantity estimated
from the data. Depending on the question, different estimands are better suited to contrast
the two potential outcomes E[Y(1)] and E[Y(0)] (Imbens, 2004; Colnet et al., 2023). For
continuous outcomes, risk difference is a natural estimand, while for binary outcomes (e.g.,
events) the choice of estimand depends on the scale of the study. Whereas the risk difference
is very informative at the population level, e.g., for medico-economic decision making, the
risk ratio and the hazard ratio are more informative to reason on sub-populations such as
individuals or sub-groups (Colnet et al., 2023).

4.2.3 Step 3: Estimation – Compute the causal effect of interest
Confounder aggregation Some confounders are captured via measures collected over
multiple time points. These need to be aggregated at the patient level. Simple forms of
aggregation include taking the first or last value before a time point, or an aggregate such
as mean or median over time. More elaborate choices may rely on hourly aggregations of
information such as vital signs. These provide more detailed information on the health
evolution, thus reducing confounding bias between rapidly deteriorating and stable patients.
However, it also increases the number of confounders, resulting in a larger covariate space,
hence increasing the estimate’s variance and endangering the positivity assumption. The
choices should be guided by expert knowledge. If multiple choices appear reasonable, one
should compare them in a vibration analysis (see Section 4.2.4). Indeed, aggregation may
impact results, as Sofrygin et al., 2019 show, revealing that some choices of averaging time
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scale lead to inconclusive links between HbA1c levels and survival in diabetes.
Beyond measures and clinical codes, unstructured clinical text may capture confounding

or prognostic information (Horng et al., 2017; Jiang et al., 2023) which can be added in the
causal model (Zeng et al., 2022).

Causal estimators or statistical modeling A given estimand can be estimated through
different methods. One can model the outcome with regression models (also known as
G-formula, Robins; Greenland, 1986) and use it as a predictive counterfactual model for all
possible treatments for a given patient. Alternatively, one can model the propensity of being
treated use it for matching or Inverse Propensity Weighting (IPW) (Austin; Stuart, 2015).
Finally, doubly robust methods model both the outcome and the treatment, benefiting from
the convergence of both models (Wager, 2020b). Various doubly robust models have emerged:
Augmented Inverse Propensity Score (AIPW) (Robins et al., 1994), Double Robust Machine
Learning (Chernozhukov et al., 2018b), or Targeted Maximum Likelihood Estimation (TMLE)
(Schuler; Rose, 2017) to name a few. We detail their statistical properties in Appendix D.4.1,
giving some hints on when to choose one method over the others.

Estimation models of outcome and treatment The causal estimators use models of
the outcome or the treatment –called nuisances as they are not the main inference targets in
our causal effect estimation problem. Which statistical model is best suited is an additional
choice and there is currently no clear best practice (Wendling et al., 2018b; Dorie et al.,
2019). The trade-off lies between simple models risking misspecification of the nuisance
parameters versus flexible models risking to overfit the data at small sample sizes. Stacking
models of different complexity in a super-learner is a good solution to navigate the trade-off
(Van der Laan et al., 2007; Doutreligne; Varoquaux, 2023).

4.2.4 Step 4: Vibration analysis – Assess the robustness of the hypothe-
ses

Some choices in the pipeline may not be clear cut. Several options should then be explored,
to derive conceptual error bars going beyond a single statistical model. This process is
sometimes called robustness analysis (Neumayer; Plümper, 2017) or sensitivity analysis
(Thabane et al., 2013; Hernàn; Robins, 2020; FDA, 2021b). However, in epidemiology,
sensitivity analysis refers to quantifying the bias from unobserved confounders (Schneeweiss,
2006). Following Patel et al., 2015, we use the term vibration analysis to describe the
sensitivity of the results to all analytic choices. The vibration analysis can identify analytic
choices that deserve extra scrutiny. It complements a comparison to previous studies –ideally
RCTs– to establish the validity of the pipeline.

4.2.5 Step 5: Treatment heterogeneity – Compute treatment effects on
subpopulations

Once the causal design and corresponding estimators are established, they can be used to
explore the variation of treatment effects among subgroups. Measures of the heterogeneity
of a treatment nourish decisions tailored to a patient’s characteristics. A causally-grounded
model, eg using machine learning, can be used to predict the effect of the treatment from all
the covariates –confounders and effect modifiers– for an individual: the Individual Treatment
Effect (ITE Lu et al., 2018). Studying heterogeneity only along specific covariates, or a
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given patient stratification, is related to the Conditional Average Treatment Effect (CATE)
(Robertson et al., 2021). Practically, CATEs can be estimated by regressing the individual
predictions given by the causal estimator against the sources of heterogeneity (details in
D.11.3).

4.3 Application: evidence from MIMIC-IV on which resusci-
tation fluid to use

We now use the above framework to extract evidence-based decision rules for resuscitation.
Ensuring optimal organ perfusion in patients with septic shock requires resuscitation by
reestablishing circulatory volume with intravenous fluids. While crystalloids are readily
available, inexpensive and safe, a large fraction of the administered volume is not retained
in the vasculature. Colloids offer the theoretical benefit of retaining more volume in the
circulation, but might be more costly and have adverse effects (Annane et al., 2013). The
scientific community long debated which fluid benefits patients most (Mandel; Palevsky,
2023).

Emulated trial: Effect of albumin in combination with crystalloids compared to
crystalloids alone on 28-day mortality in patients with sepsis We illustrate the
impact of the different analytical steps to conclude on the effect of albumin in combination
with crystalloids compared to crystalloids alone on 28-day mortality in patients with sepsis
using MIMIC-IV (Johnson et al., 2020). This question is clinically relevant and multiple
published RCTs can validate the average treatment effect. Appendix D.3 provides further
examples of potential target trials.

Evidence from the literature Meta-analyses from multiple pivotal RCTs found no effect
of adding albumin to crystalloids (Li et al., 2020a) on 28-day and 90-day mortality. Further,
an observational study in MIMIC-IV (Zhou et al., 2021b) found no significant benefit of
albumin on 90-day mortality for severe sepsis patients. Given this previous evidence, we
thus expect no average effect of albumin on mortality in sepsis patients. However, studies
–RCT (Caironi et al., 2014) and observational (Li et al., 2020a)– have found that septic-shock
patients do benefit from albumin.

4.3.1 Study design: effect of crystalloids on mortality in sepsis
Population: Patients with sepsis within the ICU stay according to the sepsis-3 definition.
Other inclusion criteria: sufficient follow-up of at least 24 hours, and age over 18 years
described in table 4.2.
Intervention: Treatment with a combination of crystalloids and albumin during the first
24 hours of an ICU stay.
Control: Treatment with crystalloids only in the first 24 hours of an ICU stay.
Outcome: 28-day mortality.
Time: Follow-up begins after the first administration of crystalloids. Thus, we potentially
introduce a small immortal time bias by allowing a time gap between follow-up and the
start of the albumin treatment –shown in Figure 4.5. Because we are only considering
the first 24 hours of an ICU stay, we hypothesize that this gap is insufficient to affect our
results. We test this hypothesis in the vibration analysis step 4.3.4.
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Missing Overall Cristalloids only Cristalloids + Albumin P-Value

n 18421 14862 3559
Female, n (%) 7653 (41.5) 6322 (42.5) 1331 (37.4)
White, n (%) 12366 (67.1) 9808 (66.0) 2558 (71.9)
Emergency admission, n (%) 9605 (52.1) 8512 (57.3) 1093 (30.7)
admission_age, mean (SD) 0 66.3 (16.2) 66.1 (16.8) 67.3 (13.1) <0.001
SOFA, mean (SD) 0 6.0 (3.5) 5.7 (3.4) 6.9 (3.6) <0.001
lactate, mean (SD) 4616 3.0 (2.5) 2.8 (2.4) 3.7 (2.6) <0.001

Table 4.2. Characteristics of the trial population measured on the first 24 hours of ICU stay. Appendix
D.5 describes all confounders used in the analysis.

Blank period

(med=6.7h, IR=8.7h)

Observation period

Hosp stayICU stay Time

 (med=90.5h, IR=130h)

T0-Inclusion:
first crystalloids

(med=1.6h, IR=9h)

 (med=40d, IR=250d)

Outcome: 28-day mortality

Intervention: albumin

Fig. 4.5. Defining the inclusion event, the starting time T0 for follow-up, the intervention’s assignment
time and the observation window for confounders is crucial to avoid time and selection biases. In our
study, the gap between the intervention and the inclusion is small compared to the occurrence of the
outcome to limit immortal time bias: 6.7 hours vs 40 days for mortality.

In MIMIC-IV, these inclusion criteria yield 18,121 patients with 3,559 patients treated
with a combination of crystalloids and albumin (Appendix D.6 details the selection flowchart).

4.3.2 Identification: listing confounders
We enrich the confounders selection procedure described by Zhou et al., 2021b with expert
knowledge, creating the causal DAG shown in Figure 4.6. Gray confounders are not controlled
for, since they are not available in the data. However, resulting confounding biases are
captured by proxies such as comorbidity scores (SOFA or SAPS II) or other variables (e.g.,
race, gender, age, weight). Appendix D.7 details confounders summary statistics for treated
and controls.

4.3.3 Estimation
Confounder aggregation We tested multiple aggregations such as the last value before
the start of the follow-up period, the first observed value, and both the first and last values
as separated features.

Causal estimators We implemented multiple estimation strategies, including Inverse
Propensity Weighting (IPW), outcome modeling (G-formula) with T-Learner, Augmented
Inverse Propensity Weighting (AIPW) and Double Machine Learning (DML). We used the
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Fig. 4.6. Causal graph for the Albumin vs crystalloids emulated trial – The green arrow indicates
the effect studied. Black arrows show causal links known to medical expertise. Dotted red arrows
highlight confounders not directly observed. For readability, we draw only the most important edges
from an expert point of view. All white nodes corresponds to variables included in our study.

python packages dowhy (Sharma, 2018) for IPW implementation and EconML (Battocchi et
al., 2019) for all other estimation strategies. Confidence intervals were estimated by bootstrap
(50 repetitions). Appendices D.4.1 and D.4.3 detail the estimators and the available Python
implementations.

Outcome and treatment estimators To model the outcome and treatment, we used two
common but different estimators: random forests and ridge logistic regression implemented
with scikit-learn (Pedregosa et al., 2011). We chose the hyperparameters with a random
search procedure (detailed in Appendix D.4.4). While logistic regression handles predictors
in a linear fashion, random forests should have the benefit of modeling non-linear relations
as well.

4.3.4 Vibration analysis: Understanding variance or sources of systematic
errors in our study

Varying estimation choices – Confounders aggregation, causal and nuisance
estimators Figure 4.7 shows varying confidence intervals (CI) depending on the method.
Doubly-robust methods provide the narrowest CIs, whereas the outcome-regression methods
have the largest CI. The estimates of the forest models are closer to the consensus across prior
studies (no effect) than the estimates from the logistic regression indicating a better fit of the
non-linear relationships in the data. We only report the first and last pre-treatment feature
aggregation strategies, since detailed analysis showed little differences for other choices of
feature aggregation (see Appendix D.8). Confronting this analysis with the prior published
evidence of little-to-no effect, it seems reasonable to select the models using random forests
for nuisance. Out of these, theory suggests to trust more double machine learning or doubly
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0.15 0.10 0.05 0.00 0.05 0.10
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Doubly Robust (AIPW)
  Est=Forests                              -0.01(-0.02 to -0.00)
  Est=Regularized Linear Model             -0.06(-0.07 to -0.04)
Double Machine Learning
  Est=Forests                              -0.01(-0.21 to  0.18)
  Est=Regularized Linear Model             -0.05(-0.12 to  0.02)
Outcome model (TLearner)
  Est=Forests                              -0.03(-0.04 to -0.02)
  Est=Regularized Linear Model             -0.03(-0.06 to  0.00)
Inverse Propensity Weighting
  Est=Forests                               0.67( 0.67 to  1.48)
  Est=Regularized Linear Model              0.01(-0.00 to  0.04)
Propensity Score Matching
  RCT Gold Standard (Caironi et al. 2014)  -0.00(-0.05 to  0.05)
  Difference in mean                       -0.07(-0.07 to -0.07)

ATE (95% bootstrap confidence interval)

Outlier 

Albumin more efficient Albumin less efficient

Fig. 4.7. Forest plot for the vibration analysis – Different estimators give different results, sometimes
even outside of each-other’s bootstrap confidence intervals. Score matching yields unconvincingly high
estimates, inconsistent with the published RCT. With other causal approaches, using linear estimators
for nuisances suggest a reduced mortality risk for albumin, while using forests for nuisance models points
to no effect, which is consistent with the RCT gold standard. The diamonds depict the mean effect and
the bar are the 95% confidence intervals obtained by 50 bootstrap repetitions.

robust approaches.

Study design – Illustration of immortal time bias To illustrate the risk of immortal-
time bias, we varied the eligibility period by allowing patients to receive the treatment or the
control in a shorter or longer time window than 24 hours. As explained in Subsection 4.2.1, a
large eligibility period means that patients in the study are more likely to be treated if they
survived till the intervention and hence the study is biased to overestimate the beneficial
effect of the intervention. Figure 4.8 shows that larger eligibility periods change the direction
of the estimate and lead to Albumin seeming markedly more efficient. Should the analyst
not have in mind the mechanism of immortal time bias, this vibration analysis ought to raise
an alarm and hopefully lead to correct the study design.

0.04 0.02 0.00 0.02 0.04
ATE on 28-day mortality

Observation period: 72h  -0.02(-0.03 to -0.01)

Observation period: 24h  -0.00(-0.01 to  0.01)

Observation period: 6h    0.01(-0.01 to  0.03)
ATE (95% bootstrap confidence interval)

Albumin more efficient Albumin less efficient

Fig. 4.8. Detecting immortal time bias – Increasing the observation period increases the temporal
blank period between inclusion and treatment initialization, associating thus patients surviving longer
with treatment: Immortal Time Bias. A longer observation period (72h) artificially favors the efficacy of
Albumin. The estimator is a doubly robust learner (AIPW) with random forests for nuisances. This
result is consistent across estimators as shown in Appendix D.9. The green diamonds depict the mean
effect and the bar are the 95% confidence intervals obtained by 30 bootstrap repetitions.
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4.3.5 Treatment heterogeneity: Which treatment for a given sub-population?
We now study treatment heterogeneity using the pipeline validated by confronting the
vibration analysis to the literature: a study design avoiding immortal time bias, and the
double machine learning model using forest for nuisances and a linear model for the final
heterogeneity regression. We explore heterogeneity along four binary patient characteristics,
displayed on Figure 4.9. We find that albumin is beneficial with patient with septic shock
before fluid administration, consistent with the Caironi et al., 2014 RCT. It is also beneficial
for older patients (age >=60) and males, consistent with (Zhou et al., 2021b), as well as
white patients.

Fig. 4.9. The subgroup distri-
butions of Individual Treatment
effects showed better treatment
efficacy for patients older than
60 years, septic shock, and to
a lower extent males. The fi-
nal estimator is ridge regres-
sion. The boxes contain the
25th and 75th percentiles of the
CATE distributions with the me-
dian indicated by the vertical
line. The whiskers extend to 1.5
times the inter-quartile range of
the distribution.

< 60
>= 60Ag

e
Albumin more efficient Albumin less efficient

No shock
Shock

Se
pt

ic 
sh

oc
k

Male
FemaleSe

x

0.075 0.050 0.025 0.000 0.025 0.050 0.075
Distribution of Individual Treatment Effect

White
Non-whiteRa

ce

4.4 Discussion and conclusion
A didactic causal framework for decision-making from EHR Our analytic framework
strives to streamline extracting valid decision-making rules from EHR data. Decision-making
is tied to a choice: to treat or not to treat, for a given intervention. A major pitfall, source
of numerous shortcuts of machine-learning systems, is to extract non-causal associations
between the intervention and the outcome. Our framework is designed to avoid these pitfalls
by starting with rigorous causal analysis, in the form of a target trial, to validate study design
and analytic choices before more elaborate analysis, potentially using machine-learning for
individual predictions. We argue that in the absence of a precise framing including treatment
allocation, automated decision making is brittle. It is all too easy, for instance, to build
a predictive system on post-treatment data, rendering it unreliable for decision making.
EHR data come with particular challenges: information may be available indirectly, e.g.,
via billing codes, the time-wise dimension requires aggregations (Sub-section 4.2.3). These
challenges can create subtle causal biases (Subsection 4.2.1). To ensure that our framework
addresses all aspects of EHR analysis and to expose it in a didactic way, we detailed a
complete analysis of a publicly-available EHR dataset, supported by open code.

A well-framed target trial can be validated Assessing the validity of an analysis
is challenging even for experts (Ioannidis, 2005; Breznau et al., 2022). Our framework
recommends using a well-specific target trial to establish a valid pipeline because it helps
confronting the resulting average treatment effect to other evidence (Hernán; Robins, 2016;
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Wang et al., 2023b). Our resuscitation-fluid analysis matches well published findings: Pooling
evidence from high-quality RCTs, no effect of albumin in severe sepsis was demonstrated
for both 28-day mortality (odds ratio (OR) 0.93, 95% CI 0.80-1.08) and 90-day mortality
(OR 0.88, 95% CI 0.76-1.01) (Xu et al., 2014). This consistency validates our study design
and analytic choices. Varying analytic choices and confronting them to prior studies can
reveal loopholes in the analysis, as we demonstrated with immortal time bias: extending the
time between ICU admission and intervention to 72 hours, we observed an inflation of effect
size consistent with such bias. Looping back to reference RCTs reveals that these include
patients within 8 to 24 hours of ICU admission (SAFE Study Investigators, 2011; Annane
et al., 2013; Caironi et al., 2014).

Decision-making from EHRs Once the causal analysis has been validated, it can be
used for decision making. A sub-population analysis (as in Figure 4.9) can distill rules
on which groups of patients should receive the treatment. Ideally, dedicated RCTs can be
run with inclusion criteria matching these sub-groups. However, the cost and the ethical
concerns of running RCTs limit the number of sub-groups that can be explored. In addition,
the sub-group view risks oversimplifying, as opposed to patient-specific effect estimates
to support more individualized clinical decision making (Kent et al., 2018). For this,
predictive modeling shines. Causally-grounded machine learning can give good counter-
factual prediction (Prosperi et al., 2020; Hernan et al., 2019; Richens et al., 2020), if it
predicts well the treated and untreated outcomes as shown in 5.1. Even without focusing on
a specific intervention, anchoring machine learning on causal mechanisms gives models that
are more robust to distributional shift (Schölkopf et al., 2021), safer for clinical use (Richens
et al., 2020), and more fair (Plecko; Bareinboim, 2022). Capturing individualized effects via
machine-learning models does require many diverse individuals. EHRs and claims data are
well suited for these models, as they easily cover more individuals than a typical clinical
study.

EHRs and RCTs, complementary sources of evidence But EHRs cannot inform
on trade-offs that have not been explored in the data. No matter how sophisticated, causal
inference cannot conclude if there is no data to support an apple-to-apple comparison
between treated and non-treated individuals. For example, treatment allocation is known to
be influenced by race- and gender-concordance between the patient and the care provider.
Yet, if the EHR data does not contain this information, it cannot nourish evidence-based
decisions on such matter. EHRs and RCTs complement each other: a dedicated study, with
a randomized intervention, as an RCT, can be crafted to answer a given question on a given
population. But RCTs cannot address all the subpopulations, local practices, healthcare
systems (Rothwell, 2006; Travers et al., 2007; Kennedy-Martin et al., 2015). Our framework
suggest integrating the evidence from RCTs designed with matching PICO formulation to
ensure the validity of the analysis and to use the EHR to explore heterogeneity.

Conclusion Without causal thinking machine learning does not suffice for optimal clinical
decision making for each and every patient. It will replicate non-causal associations such as
shortcuts improper for decision making. As models can pick up information such as race
implicitly from the data (Adam et al., 2022), they risk propagating biases when building
AI models which can further reinforce health disparities. This problem is acknowledged by
the major tech companies which are deploying causal inference tooling to mitigate biases
(Google, 2023; Microsoft, 2023; PwC, 2023). On the medical side, causal modeling can create
actionable decision-making systems that reduce inequities (Mitra et al., 2022; Ehrmann et al.,

60 / 182 M. Doutreligne



4.4. Discussion and conclusion

2023). However, as we have seen, subtle errors can make an intervention seemingly more
–or less– beneficial to patients. No sophisticated data-processing tool can safeguard against
invalid study design or modeling choices. The goal of our step-by-step analytic framework is
to help the data analyst work around these loopholes, building models that avoid shortcuts
and extract the best decision-making evidence. Applied to study the addition of albumin
to crystalloids to resuscitate sepsis patients, it shows that this addition is not beneficial in
general, but that it does improve survival on specific individuals, such as patients undergoing
sceptic shock.
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Chapter 5

How to select predictive models for
causal inference?

Quand à moi, après une longue existence, je ne crois toujours point au "hasard", mais plutôt à
une loi des coïncidences dont nous ne connaissons pas le méchanisme.

– Amadou Hampâté Bâ, Mémoires (1994)

Chapter’s content
In the previous chapters, we showed the strong interest in predictive models for healthcare, bridging
to increasingly complex machine learning algorithms. We also pointed out that even when giving
likely outcomes, they are not immediately transposable to decision making –choosing whether to
treat or not to treat. Such reasoning on the effect of an intervention is a causal-inference task. We
demonstrated that causal thinking was necessary to avoid introducing biases in the study design
or during confounders selection. But, even with a robust causal framework such as in Chapter 4,
the practitioner is left to choose among the plethora of predictive models available for health data
(some detailed in Appendix C.2.2). In a given situation, which of these models yield the most valid
causal estimates? Here, we highlight that classic machine-learning model selection does not pick
the best models for causal inference. Indeed, causal model selection should control both outcomes
for each individual, treated or not treated, whereas only one outcome is observed. Theoretically,
simple risks used in machine learning do not control causal effects when treated and non-treated
population differ too much. More elaborate risks use “nuisances” re-weighting to approximate
the causal error on the observed data. But does estimating these nuisances add noise to model
selection? Drawing from an extensive empirical study, we outline an efficient causal model-selection
procedure. To select the best predictive model to guide decisions: use the so-called R-risk, use
flexible estimators to compute the nuisance models on the train set, and split out 10% of the data
to compute risks.

This chapter corresponds to the article entitled How to select predictive models for decision
making or causal inference? submitted to Artificial Intelligence in Medicine,

Authors: Matthieu Doutreligne, Gaël Varoquaux.
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5.1 Motivation: causal predictive models cannot rely on the
Machine Learning toolbox

5.1.1 Extending prediction to prescription needs causality
Progress in machine learning brings predictive models to new health data (Beam;
Kohane, 2018; Rajkomar et al., 2019) Automated analysis of medical images is increasingly
accurate, eg for brain images, (Khojaste-Sarakhsi et al., 2022; Zhang; Sejdić, 2019) or
mammography (Yala et al., 2019; Shen et al., 2019; Nassif et al., 2022). New prognostic
models leverage routinely-collected patient records (Mooney; Pejaver, 2018): predicting heart
failure from claims (Desai et al., 2020), suicide attempts from questionnaires (Simon et al.,
2018)... Clinical notes contain much prognostic information but require text modeling (Horng
et al., 2017; Wang et al., 2020; Spasic, Nenadic, et al., 2020; Jiang et al., 2023). Data may be
difficult to control and model, but the accuracy of the prediction can be verified on left-out
data (Altman et al., 2009; Poldrack et al., 2020; Varoquaux; Colliot, 2022). Given a model
predicting a health outcome, precision medicine would like it to guide decisions: will an
individual benefit from an intervention such as surgery (Fontana et al., 2019)? Contrasting
predictions with and without the treatment gives an answer, but statistical validity requires
causal inference (Snowden et al., 2011; Blakely et al., 2020).

Causal-inference bridges to predictive modeling via the rich statistical literature
on outcome models This estimation approach is also known as G-computation, G-formula
(Robins; Greenland, 1986), Q-model (Snowden et al., 2011), conditional mean regression
(Wendling et al., 2018a). A central challenge of inference of treatment effects is that of
confounding: spurious associations between treatment allocation and baseline health, eg only
prescribing a drug to mild cases (Hernán; Robins, 2020; VanderWeele, 2019). Controlled
allocation of treatment, as in Randomized Controlled Trials (RCTs), alleviate this concern.
Yet most machine-learning models are trained on observational data, close to real-word
practice (Black, 1996; Hernán, 2021) but challenging for causal inference. Causal inference
has been central to epidemiology, typically with methods that model treatment assignment
(Austin; Stuart, 2015; Grose et al., 2020), based on propensity scores (Rosenbaum; Rubin,
1983). Recent empirical results (Wendling et al., 2018a; Dorie et al., 2019) show benefits of
outcome modeling to estimate average treatment effects. Maybe a greater benefit is that
these methods naturally go beyond average effects, estimating individualized or conditional
average treatment effects (CATE), central to precision medicine. For this purpose, such
methods are also invaluable on randomized trials (Su et al., 2018; Lamont et al., 2018;
Hoogland et al., 2021).
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Explosion of outcome modeling or machine learning methods Many deep-learning
methods have been developed for medical image analysis (Shen et al., 2017; Monshi et
al., 2020). Even outcome-modeling methods specifically designed for causal inference are
numerous: Bayesian Additive Regression Trees (Hill, 2011), Targeted Maximum Likelihood
Estimation (Laan; Rose, 2011; Schuler; Rose, 2017), causal boosting (Powers et al., 2018),
causal multivariate adaptive regression splines (Powers et al., 2018), random forests (Wager;
Athey, 2018; Athey et al., 2019), Meta-learners (Künzel et al., 2019), R-learners (Nie; Wager,
2017), Doubly robust estimation (Chernozhukov et al., 2018a)... The wide variety of methods
raises the problem of selecting between different estimators based on the data at hand.
Indeed, estimates of treatment effects can vary markedly across different predictive models.
For instance, Figure 5.1 shows large variations obtained across different outcome estimators
on semi-synthetic datasets (Dorie et al., 2019). Flexible models such as random forests are
doing well in most settings except when treated and untreated populations differ noticeably,
in which case a linear model (ridge) is to be preferred. However random forests with different
hyper-parameters (max depth= 2) yield poor estimates. A simple rule of thumb such as
preferring flexible models does not work in general; model selection is needed.

Fig. 5.1. Different outcome
models lead to different es-
timation errors on the Aver-
age Treatment Effects, on 77
classic simulations with known
true causal effect (Dorie et
al., 2019). The different mod-
els are ridge regression and
random forests with different
hyper-parameters (details E.1).
The different configurations are
plotted as a function of increas-
ing difference between treated
and untreated population –see
sous-section 5.4.3. There is
no systematic best performer;
data-driven model selection is
important.
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Standard practices to select models in predictive settings rely on the error on the outcome
(Poldrack et al., 2020; Varoquaux; Colliot, 2022). However, as we will see, these practices
may not pick the best models for causal inference, as they can be misled by inhomogeneities
due to treatment allocation. Given complex, potentially noisy, data, which model is to
be most trusted to yield valid causal estimates? As no single learner performs best on all
data sets, there is a pressing need for clear guidelines to select outcome models for causal
inference.

Objectives and structure of the chapter In this chapter, we study model selection
procedures in practical settings: finite samples settings and without well-specification assump-
tion. Asymptotic causal-inference theory calls for complex risks, but a practical question is
whether model-selection procedures, that rely on data split, can estimate these risks reliably
enough. Indeed, they come with more quantities to estimate, which may bring additional
variance, leading to worse model selection.
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Fig. 5.2. Illustration
a) a random-forest estimator with
high performance for standard
prediction (high R2) but that
yields poor causal estimates (large
error between true effect τ and
estimated τ̂), b) a linear estima-
tor with smaller prediction perfor-
mance leading to better causal
estimation.
Selecting the estimator with the
smallest error to the individ-
ual treatment effect E[(τ(x) −
τ̂(x))2] –the τ -risk, def. 1 – would
lead to the best causal estimates;
however computing this error is
not feasible: it requires access to
unknown quantities: τ(x).
While the random forest fits the
data better than the linear model,
it gives worse causal inference be-
cause its error is inhomogeneous
between treated and untreated.
The R2 score does not capture
this inhomogeneity.

a) Random forest, good average prediction but bad causal inference
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b) Linear model, worse average prediction but better causal inference
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We first illustrate the problem of causal model selection and briefly review prior art.
Then, Section 5.2 sets causal model selection in the potential outcome framework and details
the causal risks and model-selection procedure. Section 5.3 gives theoretical results. Section
5.4 details a thorough empirical study, covering many different settings. Finally, Section 5.5
discusses the findings. Results outline how to best select outcome models for causal inference
with an adapted cross-validation to estimate the so-called R−risk. This risk compensates
for systematic differences between treated and non-treated individuals using two nuisance
models, themselves estimated from data and thus imperfect; yet these imperfections do not
undermine the R−risk.

5.1.2 Illustration: the best predictor may not estimate best causal effects
Using a predictor to reason on causal effects relies on contrasting the prediction of the
outcome for a given individual with and without the treatment –as detailed in section 5.2.
Given various predictors of the outcome, which one should we use? Standard predictive
modeling or machine-learning practice selects the predictor that minimizes the expected
error. However, this predictor may not be the best model to reason about causal effects of
an intervention, as we illustrate below.

Figure 5.2 gives a toy example: the probability Y of an undesirable outcome (eg death),
a binary treatment A ∈ {0, 1}, and a covariate X ∈ R summarizing the patient health
status (e.g., the Charlson index (Charlson et al., 1987)). We simulate a treatment beneficial
(decreases Y ) for patients with high Charlson scores (bad health status) but with little effect
for patients in good condition (low Charlson scores).
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Figure 5.2a shows a random forest predictor with a counter-intuitive behavior: it predicts
well on average the outcome (as measured by a regression R2 score) but perform poorly to
estimate causal quantities: the average treatment effect τ (as visible via the error |τ − τ̂ |) or
the conditional average treatment effect (the error E[(τ(x) − τ̂(x))2], called CATE). On the
contrary, Figure 5.2b shows a linear model with smaller R2 score but better causal inference.

The problem is that causal estimation requires controlling an error on both treated and
non-treated outcome for the same individual: the observed outcome, and the non-observed
counterfactual one. The linear model is misspecified –the outcome functions are not linear–,
leading to poor R2; but it interpolates better to regions where there are few untreated
individuals –high Charlson score– and thus gives better causal estimates. Conversely, the
random forest puts weaker assumptions on the data, thus has higher R2 score but is biased
by the treated population in the poor-overlap region, leading to bad causal estimates.

This toy example illustrates that the classic minimum Mean Square Error criterion is not
suited to choosing a model among candidate estimators for causal inference.

5.1.3 Prior work: model selection for outcome modeling (g-computation)
A natural way to select a predictive model for causal inference would be an error measure
between a causal quantity such as the CATE and models’ estimate. But such error is not
a “feasible” risk: it cannot be computed solely from observed data and requires oracle
knowledge.

Simulation studies of causal model selection Using eight simulations setups from
Powers et al., 2018, where the oracle CATE is known, Schuler et al. (2018) compare four
causal risks, concluding that for CATE estimation the best model-selection risk is the
so-called R-risk (Nie; Wager, 2017) –def. 6, below. Their empirical results are clear for
randomized treatment allocation but less convincing for observational settings where both
simple Mean Squared Error –MSE, µ-risk(f) def. 2– and reweighted MSE –µ-riskIP W def. 3–
appear to perform better than R-risk on half of the simulations. Another work (Alaa; Schaar,
2019) studied empirically both MSE and reweighted MSE risks on the semi-synthetic ACIC
2016 datasets (Dorie et al., 2019), but did not include the R-risk. We complete these prior
empirical work by studying a wider variety of data generative processes and varying the
influence of overlap, an important parameter of the data generation process which makes a
given causal metric appropriate (D’Amour et al., 2021). We also study how to best adapt
cross-validation procedures to causal metrics which themselves come with models to estimate.

Theoretical studies of causal model selection Several theoretical works have proposed
causal model selection procedures that are consistent: select the best model in a family given
asymptotically large data. These works rely on introducing a CATE estimator in the testing
procedure: matching (Rolling; Yang, 2014), an IPW estimate (Gutierrez; Gerardy, 2016), a
doubly robust estimator (Saito; Yasui, 2020), or debiasing the error with influence functions
(Alaa; Schaar, 2019). However, for theoretical guarantees to hold, the test-set correction
needs to converge to the oracle: it needs to be flexible enough –well-posed– and asymptotic
data. From a practical perspective, meeting such requirements implies having a good CATE
estimate, thus having solved the original problem of causal model selection.

Statistical guarantees on causal estimation procedures Much work in causal inference
has focused on procedures that guarantee asymptotically consistent estimators, such as
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Targeted Machine Learning Estimation (TMLE) (Laan; Rose, 2011; Schuler; Rose, 2017)
or Double Machine Learning (Chernozhukov et al., 2018a). Here also, theories require
asymptotic regimes and models to be well-specified.

By contrast, Johansson et al. (2022) studies causal estimation without assuming that
estimators are well specified. They derive an upper bound on the oracle error to the CATE
(τ -risk) that involves the error on the outcome and the similarity of the distributions of
treated and control patients. However, they use this upper bound for model optimization,
and do not give insights on model selection. In addition, for hyperparameter selection, they
rely on a plugin estimate of the τ -risk built with counterfactual nearest neighbors, which
has been shown ineffective (Schuler et al., 2018).
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5.2 Formal setting: causal inference and model selection

5.2.1 The Neyman-Rubin Potential Outcomes framework

Settings We consider the Potential Outcomes framework introduced in 1.4.1.

Causal assumptions Assumptions are necessary for causal estimands to be identifiability
in observational settings (Rubin, 2005). We assume the usual strong ignorability assump-
tions: 1) unconfoundedness {Y (0), Y (1)} ⊥⊥ A|X, 2) strong overlap ie. every patient has a
strictly positive probability to receive each treatment, 3) consistency, and 4) generalization
(introduced in 4.2.2).

Estimating treatment effects with outcome models Should we know the two expected
outcomes for a given X, we could compute the difference between them, which gives the
causal effect of the treatment. These two expected outcomes can be computed from the
observed data: the consistency 3 and unconfoundedness 1 assumptions imply the equality of
two different expectations:

EY (a)∼D⋆ [Y (a)|X = x] = EY ∼D[Y |X = x, A = a] (5.1)

On the left, the expectation is taken on the counterfactual unobserved distribution. On
the right, the expectation is taken on the factual observed distribution conditionally on the
treatment. This equality is referred as the g-formula identification (Robins, 1986). For the
rest of the paper, the expectations will always be taken on the factual observed distribution
D. This identification leads to outcome based estimators (ie. g-computation estimators
(Snowden et al., 2011)), targeting the ATE τ with outcome modeling:

τ = EY ∼D⋆ [Y (1) − Y (0)|X = x] = EY ∼D[Y |A = 1] − EY ∼D[Y |A = 0] (5.2)

This equation builds on two quantities: the conditional expectancy of the outcome given the
covariates and either treatment or no treatment, called response function:

Response function µa(x) def= EY ∼D[Y |X = x, A = a]

Given a sample of data and the oracle response functions µ0, µ1, the finite sum version of
equation 5.2 leads to an estimator of the ATE written:

τ̂ = 1
n

(
n∑

i=1
µ1(xi) − µ0(xi)

)
(5.3)
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Table 5.1. Review of causal risks — The R-risk∗ is called τ -riskR in Schuler et al. (2018).

Risk Equation Reference
mse(τ(X), τf (X)) = τ -risk EX∼p(X)[(τ(X) − τ̂f (X))2] Eq. 1 (Hill, 2011)
mse(Y, f(X)) = µ-risk E(Y,X,A)∼D [(Y − f(X; A))2] Def. 2 (Schuler et al., 2018)
µ-risk∗

IP W E(Y,X,A)∼D

[(
A

e(X) + 1−A
1−e(X)

)
(Y − f(X; A))2

]
Def. 3 (Laan et al., 2003)

τ -risk⋆
IP W E(Y,X,A)∼D

[(
Y
(

A
e(X) − 1−A

1−e(X)

)
− τ̂f (X)

)2
]

Def. 4 (Wager; Athey, 2018)

U -risk∗ E(Y,X,A)∼D
[(

Y −m(X)
A−e(X) − τ̂f (X)

)2]
Def. 5 (Nie; Wager, 2017)

R-risk∗ E(Y,X,A)∼D
[(

(Y − m (X)) − (A − e (X)) τ̂f (X)
)2]

Def. 6 (Nie; Wager, 2017)
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This estimator is an oracle finite sum estimator by opposition to the population expression
of τ , E[µ1(xi)−µ0(xi)], which involves an expectation taken on the full distribution D, which
is observable but requires infinite data. For each estimator ℓ taking an expectation over D,
we use the symbol ℓ̂ to note its finite sum version.

Similarly to the ATE, at the individual level, the CATE:

τ(x) = µ1(x) − µ0(x) (5.4)

Robinson decomposition The R-decomposition of the outcome model plays an important
role, (Robinson, 1988): introducing two quantities, the conditional mean outcome and the
probability to be treated (known as propensity score (Rosenbaum; Rubin, 1983)):

Conditional mean outcome m(x) def= EY ∼D[Y |X = x] (5.5)

Propensity score e(x) def= P[A = 1|X = x] (5.6)

the outcome can be written

R-decomposition y(a) = m(x) +
(
a − e(x)

)
τ(x) + ε(x; a) with E[ε(X; A)|X, A] = 0

(5.7)

m and e are often called nuisances (Chernozhukov et al., 2018a); they are unknown. ε is
residual noise of mean zero.

5.2.2 Model-selection risks, oracle and feasible

Causal model selection We formalize model selection for causal estimation. Thanks to
the g-formula identification (equation 5.1), a given outcome model f : X × A → Y –learned
from data or built from domain knowledge– induces feasible estimates of the ATE and CATE
(eqs 5.3 and 5.4), τ̂f and τ̂f(x). Let F = {f : X × A → Y} be a family of such estimators.
Our goal is to select the best candidate in this family for the observed dataset O using a risk
ℓ:

f ∗
ℓ = argmin

f∈F
ℓ(f, O) (5.8)

We now detail possible risks ℓ, risks useful for causal model selection, and how to compute
them.
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The τ-risk: an oracle error risk As we would like to target the CATE, the following
evaluation risk is natural:

Definition 1 (τ-risk(f)) also called PEHE (Schulam; Saria, 2017; Hill, 2011):

τ -risk(f) = EX∼p(X)[(τ(X) − τ̂f (X))2]

Given observed data from p(X), the expectation is computed with a finite sum, as in
eq. 5.3, to give an estimated value τ̂ -risk(f). However this risk is not feasible as the oracles
τ(x) are not accessible with the observed data (Y, X, A) ∼ D.

Feasible error risks Feasible risks are based on the prediction error of the outcome model
and observable quantities.

All expectations below are on observed distribution: (Y, X, A) ∼ D.

Definition 2 (Factual µ-risk) (Shalit et al., 2017) This is the usual Mean Squared Error
on the target y. It is what is typically meant by “generalization error” in supervised learning:

µ-risk(f) = E
[
(Y − f(X; A))2

]
We now detail risks that use the nuisances e –propensity score, def 5.6– and m –conditional

mean outcome, def 5.5. We give the definitions as semi-oracles, function of the true unknown
nuisances, but later instantiate them with estimated nuisances, noted

(
ě, m̌

)
. Semi-oracles

risks are superscripted with the ⋆ symbol.

Definition 3 (µ-risk⋆
IP W ) (Laan et al., 2003) Let the inverse propensity weighting function

w(x, a) = a
e(x) + 1−a

1−e(x) , we define the semi-oracle Inverse Propensity Weighting risk,

µ-risk⋆
IP W (f) = E

[(
A

e(X) + 1 − A

1 − e(X)

)
(Y − f(X; A))2

]

Definition 4 (τ-risk⋆
IP W ) (Wager; Athey, 2018) The CATE τ(x) can be estimated with a

regression against inverse propensity weighted outcomes (Athey; Imbens, 2016; Gutierrez;
Gerardy, 2016; Wager; Athey, 2018), the τ -riskIP W .

τ -risk⋆
IP W (f) = E

[(
Y

A − e(X)
e(X)(1 − e(X)) − τf (X)

)2
]

Definition 5 (U-risk⋆) (Künzel et al., 2019; Nie; Wager, 2017) Based on the Robinson
decomposition –eq. 5.7, the U-learner uses the A − e(X) term in the denominator. The
derived risk is:

U-risk⋆(f) = E

(Y − m (X)
A − e (X) − τf (X)

)2


Note that extreme propensity weights in the denominator term might inflate errors in the
numerator due to imperfect estimation of the mean outcome m.

Definition 6 (R-risk⋆) (Nie; Wager, 2017; Schuler et al., 2018) The R-risk also uses two
nuisances m and e:

R-risk⋆(f) = E
[(

(Y − m (X)) − (A − e (X)) τf (X)
)2]

It is also based on the Robinson decomposition –eq. 5.7.
These risks are summarized in Table 5.1.
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5.2.3 Estimation and model selection procedure
Causal model selection (as in equation 5.8) may involve estimating various quantities from
the observed data: the outcome model f , its induced risk as introduce in the previous
section, and possibly nuisances required by the risk. Given a dataset with N samples, we
split out a train and a test sets (T , S). We fit each candidate estimator f ∈ F on T . We
also fit the nuisance models (ě, m̌) on the train set T , setting hyperparameters by a nested
cross-validation before fitting the nuisance estimators with these parameters on the full train
set. Causal quantities are then computed by applying the fitted candidates estimators f ∈ F
on the test set S. Finally, we compute the model-selection metrics for each candidate model
on the test set. This procedure is described in Algorithm 1 and Figure 5.3.

As extreme inverse propensity weights induce high variance, clipping can be useful for
numerical stability (Swaminathan; Joachims, 2015; Ionides, 2008).

Algorithm 1 Model selection procedure
Given train and test sets (T , S) ∼ D, a candidate estimators f , a causal metrics ℓ:

1. Prefit: Learn estimators for unknown nuisance quantities (ě, m̌) on the training set T

2. Fit: learn f̂(·, a) on T
3. Model selection:

∀x ∈ S predict
(
f̂(x, 1), f̂(x, 0)

)
and evaluate the estimator storing the metric value:

ℓ(f, S) – possibly function of ě and m̌

Fig. 5.3. Estimation procedure for causal model selection.

5.3 Theory: Links between feasible and oracle risks
We now relate two feasible risks, µ-riskIP W and the R-risk to the oracle τ -risk. Both results
make explicit the role of overlap for the performance of causal risks.

These bounds depend on a specific form of residual that we now define: for each potential
outcome, a ∈ {0; 1}, the variance conditionally on x is (Shalit et al., 2017):

σ2
y(x; a) def=

∫
y

(y − µa(x))2 p(y | x = x; A = a) dy
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Integrating over the population, we get the Bayes squared error: σ2
B(a) =

∫
X σ2

y(x; a)p(x)dx
and its propensity weighted version: σ̃2

B(a) =
∫

X σ2
y(x; a) p(x; a) dx. In case of a purely

deterministic link between the covariates, the treatment, and the outcome, these residual
terms are null.

5.3.1 Upper bound of τ -risk with µ-riskIPW

Proposition 1 (Upper bound with µ-riskIP W ) (Johansson et al., 2022) Given an out-
come model f , let a weighting function w(x; a) = a

e(x) + 1−a
1−e(x) as the Inverse Propensity

Weight. Then, under overlap (assumption 2), we have:

τ -risk(f) ≤ 2 µ-riskIP W (w, f) − 2
(
σ2

B(1) + σ2
B(0)

)
This result has been derived in previous work (Johansson et al., 2022). It links µ-riskIP W to
the squared residuals of each population. For completeness, we provide the proof in E.2.

The upper-bound comes from the triangular inequality applied to the residuals of both
populations. The two quantities are equal when the absolute residuals on treated and
untreated populations are equal on the whole covariate space: ∀x ∈ X , |µ1(x) − f(x, 1)| =
|µ0(x) − f(x, 0)|. The main difference between the oracle τ -risk and the reweighted mean
squared error, µ-riskIP W , comes from heterogeneous residuals between populations. This
bound shows that minimizing the µ-riskIP W helps to minimize the τ -risk, which leads to
interesting optimization procedures (Johansson et al., 2022). However, there is no guarantee
that this bound is tight, which makes it fragile for model selection.

Assuming strict overlap (probability of all individuals being treated or not bounded
away from 0 and 1 by η, 4.2.2), the above bound simplifies into a looser one involving the
usual mean squared error: τ -risk(f) ≤ 2

η
µ-risk(f) − 2

(
σ2

B(1) + σ2
B(0)

)
. For weak overlap

(propensity scores not bounded far from 0 or 1), this bound is very loose (as shown in Figure
5.2) and is not appropriate to discriminate between models with close performance.

5.3.2 Reformulation of the R-risk as reweighted τ -risk
We now derive a novel rewriting of the R-risk, making explicit its link with the oracle τ -risk.
Proposition 2 (R-risk as reweighted τ-risk) Given an outcome model f , its R-risk ap-
pears as weighted version of its τ -risk (Proof in E.2.2):

R-risk∗(f) =
∫

x
e(x)

(
1 − e(x)

)(
τ(x) − τf (x)

)2
p(x)dx + σ̃2

B(1) + σ̃2
B(0) (5.9)

The R-risk targets the oracle at the cost of an overlap re-weighting and the addition of
the reweighted Bayes residuals, which are independent of f . In good overlap regions the
weights e(x)

(
1 − e(x)

)
are close to 1

4 , hence the R-risk is close to the desired gold-standard
τ -risk. On the contrary, for units with extreme overlap violation, these weights go down to
zero with the propensity score.

5.3.3 Interesting special cases
Randomization special case If the treatment is randomized as in RCTs, p(A = 1 | X =
x) = p(A = 1) = pA, thus µ-riskIP W takes a simpler form:

µ-riskIP W = E(Y,X,A)∼D

[(
A

pA

+ 1 − A

1 − pA

)
(Y − f(X; A))2

]
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However, we still can have large differences between τ -risk and µ-riskIP W coming from
heterogeneous errors between populations as noted in Section 5.3.1 and shown experimentally
in Schuler et al. (2018) and our results below.

Concerning the R-risk, replacing e(x) by its randomized value pA in Proposition 2 yields
the oracle τ -risk up to multiplicative and additive constants:

R-risk = pA (1 − pA) τ -risk + (1 − pA) σ2
B(0) + pAσ2

B(1)

Thus, selecting estimators with R-risk∗ in randomized setting controls the τ -risk. This
explains the strong performance of R-risk in randomized setups (Schuler et al., 2018) and is
a strong argument to use it to estimate heterogeneity in RCTs.

Oracle Bayes predictor If we have access to the oracle Bayes predictor for the outcome
ie. f(x, a) = µ(x, a), then all risks are equivalent up to the residual variance:

τ -risk(µ) = EX∼p(X)[(τ(X) − τµ(X))2] = 0 (5.10)

µ-risk(µ) = E(Y,X,A)∼p(Y ;X;A)[
(
Y − µA(X)

)2
] (5.11)

=
∫

X ,A
ε(x, a)2p(a | x) p(x) dx da ≤ σ2

B(0) + σ2
B(1) (5.12)

µ-riskIP W (µ) = σ2
B(0) + σ2

B(1) from Lemma 1 (5.13)
R-risk(µ) = σ̃2

B(0) + σ̃2
B(1) ≤ σ2

B(0) + σ2
B(1) from Proposition 2 (5.14)

Thus, differences between causal risks only matter in finite sample regimes. Universally
consistent learners converge to the Bayes risk in asymptotic regimes, making all model
selection risks equivalent. In practice however, choices must be made in non-asymptotic
regimes.

5.4 Empirical Study
We evaluate the following causal metrics, oracle and feasible versions, presented in Table 5.1:
µ̂-risk

∗
IP W , R̂-risk

∗
, Û -risk

∗
, ̂τ -riskIP W

∗
, µ̂-risk, µ̂-riskIP W , R̂-risk, Û -risk, ̂τ -riskIP W . We

benchmark the metrics in a variety of settings: many different simulated data generation
processes and three semi-simulated datasets 1.

5.4.1 Caussim: Extensive simulation settings
Data Generation We use simulated data, on which the ground-truth causal effect is
known. Going beyond prior empirical studies of causal model selection (Schuler et al., 2018;
Alaa; Schaar, 2019), we use many generative processes, to reach more general conclusions
(as discussed in E.12).

We generate the response functions using random bases. Basis extension methods are
common in biostatistics, eg functional regression with splines (Howe et al., 2011; Perperoglou
et al., 2019). By allowing the function to vary at specific knots, they give flexible non-linear
models. We use random approximation of Radial Basis Function (RBF) kernels (Rahimi;

1Scripts for the simulations and the selection procedure are available at https://github.com/
soda-inria/caussim.
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Recht, 2008) to generate the response functions. RBF use the same process as polynomial
splines but replace polynomial by Gaussian kernels. Unlike polynomials, Gaussian kernels
have decreasing influences in the input space. This avoids unrealistic divergences of the
response surfaces at the ends of the feature space.

The number of basis functions –ie. knots–, controls the complexity of the ground-truth
response surfaces and treatment. We first use this process to draw the non-treated response
surface µ0 and the causal effect τ . We then draw the observations from a mixture two
Gaussians, for the treated and non treated. We vary the separation between the two
Gaussians to control the overlap between treated and non-treated populations, an important
parameter for causal inference (related to η in section 5.3.1). Finally, we generate observed
outcomes adding Gaussian noise yielding a dataset as plotted in Figure 5.4. We generate
1 000 of such datasets, with uniformly random overlap parameters. Details in E.4.1.

Family of candidate estimators We test model selection on a family of candidate
estimators that approximate imperfectly the data-generating process. To build such an
estimator, we first use a RBF expansion similar to the one used for data generation. We
choose two random knots and apply a transformation of the raw data features with a Gaussian
kernel. This step is referred as the featurization. Then, we fit a linear regression on these
transformed features. We consider two ways of combining these steps for outcome mode; we
use common nomenclature (Künzel et al., 2019; Shen et al., 2023) to refer to these different
meta-learners that differ on how they model, jointly or not, the treated and the non treated:

SLearner: A single learner for both population, taking the treatment as a supplementary
covariate.
SftLearner: A single set of basis functions is sampled at random for both populations,
leading to a given feature space used to model both the treat and the non treated,
then two separate different regressors are fitted on this shared representation.
TLearner: Two completely different learners for each population, hence separate feature
representations and regressors.

Fig. 5.4. Example of the simu-
lation setup in the input space
with two knots –ie.basis func-
tions. The top panel shows the
observations in feature space,
while the bottom panel displays
the two response surfaces on
a 1D cut along the black lines
drawn on the top panel.

Treatment status Control Treated

Simulation: D = 2, = 0.7, seed=8

One-dimensional cuts of the response surfaces
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We do not include more elaborated meta-learners such as R-learner (Nie; Wager, 2017)
or X-learner (Künzel et al., 2019). Our goal is not to have the best possible learner but
to have a variety of sub-optimal learners to compare the different causal metrics. For the
same reason, we did not include more powerful outcome models such as random forests or
boosting trees.

For the regression step, we fit a Ridge regression on the transformed features with 6
different choices of the regularization parameter λ ∈ [10−3, 10−2, 10−1, 1, 101, 102], coupled
with a TLearner or a SftLearner. We sample 10 different random basis for learning and
featurization yielding a family F of 120 candidate estimators.

5.4.2 Semi-simulated datasets
Datasets We also use classic benchmarks of the causal-inference literature, semi-simulated
data adding a known synthetic causal effect to real –non synthetic– covariate:
ACIC 2016 (Dorie et al., 2019): The dataset is based on the Collaborative Perinatal Project

(Niswander; Stroke, 1972), a RCT studying infants’ developmental disorders. The
initial intervention was a child’s birth weight (A = 1 if weight < 2.5kg), and outcome
was the child’s IQ after a follow-up period. The study contained N = 4 802 data points
with D = 55 features (5 binary, 27 count data, and 23 continuous). They simulated 77
different setups varying parameters for treatment and response models, overlap, and
interactions between treatment and covariates 2. We used 10 different seeds for each
setup, totaling 770 dataset instances.

ACIC 2018 (Shimoni et al., 2018): Starting from data from the Linked Births and Infant
Deaths Database (LBIDD) (MacDorman; Atkinson, 1998) with D = 177 covariates,
treatment and outcome models are simulated with complex models to reflect different
scenarios. The data do not provide the true propensity scores, so we evaluate only
feasible metrics, which do not require this nuisance parameter. We used all 432
datasets3 of size N = 5 000.

Twins (Louizos et al., 2017): It is an augmentation of real data on twin births and mortality
rates (Almond et al., 2005). There are N = 11 984 samples (pairs of twins), and
D = 50 covariates4, The outcome is the mortality and the treatment is the weight of
the heavier twin at birth. This is a "true" counterfactual dataset (Curth et al., 2021)
in the sense that we have both potential outcomes with each twin. They simulate
the treatment with a sigmoid model based on GESTAT10 (number of gestation weeks
before birth) and x the 45 other covariates:

ti | xi, zi ∼ Bern
(
σ
(
w⊤

o x + wh(z/10 − 0.1)
))

(5.15)
with wo ∼ N (0, 0.1 · I), wh ∼ N (5, 0.1)

We add a non-constant slope in the sigmoid to control the overlap between treated
and control populations. We sampled uniformly 1 000 different overlap parameters
between 0 and 2.5, totaling 1 000 dataset instances. Unlike the previous datasets, only
the overlap varies for these instances. The response surfaces are set by the original
outcomes.

2Original R code available at https://github.com/vdorie/aciccomp/tree/master/2016 to generate
77 simulations settings.

3Using the scaling part of the data, from github.com/IBM-HRL-MLHLS/IBM-Causal-Inference-
Benchmarking-Framework

4We obtained the dataset from https://github.com/AMLab-Amsterdam/CEVAE/tree/master/datasets/TWINS
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Family of candidate estimators For these three datasets, the family of candidate es-
timators are gradient boosting trees for both the response surfaces and the treatment5

with S-learner, learning rate in {0.01, 0.1, 1}, and maximum number of leaf nodes in
{25, 27, 30, 32, 35, 40} resulting in a family of size 18.

Nuisance estimators Drawing inspiration from the TMLE literature that uses combina-
tion of flexible machine learning methods (Schuler; Rose, 2017), we use as models for the
nuisances ě (respectively m̌) a form of meta-learner: a stacked estimator of ridge and boosting
classifiers (respectively regressions). We select hyper-parameters with randomized search
on a validation set V and keep them fixed for model selection (E.4.2 lists hyperparameters).
As extreme inverse propensity weights induce high variance, we use clipping (Swaminathan;
Joachims, 2015; Ionides, 2008) to bound min(ě, 1 − ě) away from 0 with a fixed η = 10−10,
ensuring strict overlap for numerical stability.

5.4.3 Measuring overlap between treated and non treated
Good overlap between treated and control population is crucial for causal inference as it is
required by the positivity assumption 2. It is often assessed by comparing visually population
distributions (as in Figure 5.2) or computing standardized difference on each feature (Austin,
2011; Austin; Stuart, 2015). While these methods are useful to decide if positivity holds, they
do not yield a single measure. Rather, we compute the divergence between the population
covariate distributions P(X|A = 0) and P(X|A = 1) (D’Amour et al., 2021; Johansson et al.,
2022). We introduce the Normalized Total Variation (NTV), a divergence based on the sole
propensity score (see E.3).

5.4.4 Results: factors driving good model selection
The R-risk is the best metric Each metric ranks differently the candidate models.
Figure 5.5 shows the agreement between the ideal ranking of methods given the oracle τ -risk
and the different feasible causal metrics. We measure this agreement with a relative6 Kendall
tau κ (eq. E.4) (Kendall, 1938). Given the importance of overlap in how well metrics
approximate the oracle τ -risk (E.2.1), we separate strong and weak overlap.

Among all metrics, the classical mean squared error (ie. factual µ-risk) is worse and
reweighting it with propensity score (µ-riskIP W ) does not bring much improvement. The
R-risk, which includes a model of mean outcome and propensity scores, leads to the best
performance. Interestingly, the U -risk, which uses the same nuisances, deteriorates in weak
overlap, probably due to variance inflation when dividing by extreme propensity scores.

Beyond rankings, the differences in terms of absolute ability to select the best model
are large: The R-risk selects a model with a τ -risk only 1% higher than the best possible
candidate for strong overlap on Caussim, but selecting with the µ-risk or µ-riskIP W –as
per machine-learning practice– leads to 10% excess risk and using τ -riskIP W –as in some
causal-inference methods (Athey; Imbens, 2016; Gutierrez; Gerardy, 2016)–leads to 100%
excess risk (Figure E.7). Across datasets, the R-risk consistently decreases the risk compared
to the µ-risk: 0.1% compared to 1% on ACIC2016, 1% compared to 20% on ACIC2018, and
0.05% compared to 1% on Twins.

5Scikit-learn regressor, HistGradientBoostingRegressor, and classifier, HistGradientBoostingClassifier.
6To remove the variance across datasets (some datasets lead to easier model selection than others), we report

values for one metric relative to the mean of all metrics for a given dataset instance: Relative κ(ℓ, τ−risk) =
κ(ℓ, τ−risk) − meanℓ

(
κ(ℓ, τ−risk)

)
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Model selection is harder for low population overlap Model selection for causal
inference becomes more and more difficult with increasingly different treated and control
populations (Figure 5.6). The absolute Kendall’s coefficient correlation with τ -risk drops
from values around 0.9 (excellent agreement with oracle selection) to 0.6 on both Caussim
and ACIC 2018 (E.4.3).

Nuisances can be estimated on the same data as outcome models Using the train
set T both to fit the candidate estimator and the nuisance estimates is a form of double
dipping which can lead to errors in nuisances correlated to that of outcome models (Nie;
Wager, 2017). In theory, these correlations can bias model selection and, strictly speaking,
push to split out a third separated data set –a “nuisance set”– to fit the nuisance models. The
drawback is that it depletes the data available for model estimation and selection. However,
Figure 5.7 shows no substantial difference between a procedure with a separated nuisance
set and the simpler shared nuisance-candidate set procedure.

Stacked models are good overall estimators of nuisances For every risk, the oracle
version recovers better the best estimator. However, stacked nuisances estimators (boosting
and linear) lead to feasible metrics with close performance to the oracles ones: the corre-
sponding estimators recover well-enough the true nuisances. One may wonder if simpler
models for the nuisance could be useful, in particular in data-poor settings or when the true

0.50 0.25 0.00 0.25 0.50

r̂isk

r̂iskIPW

r̂iskIPW

Û risk

R̂ risk

Strong Overlap

0.50 0.25 0.00 0.25 0.50

Weak Overlap

Relative ( , Risk) compared to mean over all metrics Kendall's

Twins 
 (N= 11 984)

ACIC 2016
 (N=4 802)

Caussim
 (N=5 000)

ACIC 2018 
 (N=5 000)

Fig. 5.5. The R-risk is the best metric: Relative Kendall’s τ agreement with τ -risk. Strong and Weak
overlap correspond to the first and last tertiles of the overlap distribution measured with Normalized
Total Variation eq. E.2. E.4.3 presents the same results by adding semi-oracle risks in Figure E.5,
measured with absolute Kendall’s in Figure E.6 and with τ−risk gains in Figure E.7. Table E.3 gives
median and IQR of the relative Kendall.
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Fig. 5.6. Model selection is
harder for low population overlap:
Kendall’s τ agreement with τ -risk.
Strong, medium and Weak overlap
are the tertiles of the overlap mea-
sured with NTV eq. E.2. E.4.3
presents results for all metrics in Fig-
ure E.9 in absolute Kendall’s and
continuous overlap values in Figure
E.6.

R̂ risk

R̂ risk*

Dataset = Twins 
 (N= 11 984)

Dataset = ACIC 2016
 (N=4 802)

0.0 0.2 0.4 0.6 0.8 1.0
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    ( , Risk)

R̂ risk

R̂ risk*

Dataset = Caussim
 (N=5 000)

0.0 0.2 0.4 0.6 0.8 1.0
Kendall rank correlation 

    ( , Risk)

Dataset = ACIC 2018 
 (N=5 000)

Weak Overlap Medium Overlap Strong Overlap

0.6 0.4 0.2 0.0 0.2

Twins 
 (N= 11 984)

ACIC 2016
 (N=4 802)

Caussim
 (N=5 000)

Strong Overlap

0.6 0.4 0.2 0.0 0.2

Weak Overlap

Relative Kendall to semi-oracle R̂ risk *

Training procedure Shared sets Separated sets

Fig. 5.7. Nuisances can be estimated on the same data as outcome models: Results for the
R-risk are similar between the shared nuisances/candidate set and the separated nuisances set procedures.
Figure E.8 details results for all metrics.

models are linear. Figure 5.8 compares causal model selection estimating nuisances with
stacked estimators or linear model. It comprises the Twins data, where the true propensity
model is linear, and a downsampled version of this data, to study a situation favorable to
linear models. In these settings, stacked and linear estimations of the nuisances performs
equivalently. Detailed analysis (Figure E.11) confirms that using adaptive models –as built
by stacking linear models and gradient-boosted trees– suffices to estimate nuisance.

Use 90% of the data to estimate outcome models, 10% to select them The analyst
faces a compromise: given a finite data sample, should she allocate more data to estimate
the outcome model, thus improving the quality of the outcome model but leaving little data
for model selection. Or, she could choose a bigger test set for model selection and effect
estimation. For causal model selection, there is no established practice (as reviewed in E.5).

We investigate such tradeoff varying the ratio between train and test data size. For this,
we first split out 30% of the data as a holdout set V on which we use the oracle response
functions to derive silver-standard estimates of causal quantities. We then use the standard
estimation procedure on the remaining 70% of the data, splitting it into train T and test S
of varying sizes. We finally measure the error between this estimate and the silver standard.

We consider two different analytic goals: estimating a average treatment effect –a single
number used for policy making– and a CATE –a full model of the treatment effect as a

78 / 182 M. Doutreligne



5.5. Discussion and conclusion

0.6 0.4 0.2 0.0 0.2

Twins 
 (N= 11 984)

Twins downsampled
 (N=4 794)
ACIC 2016

 (N=4 802)
Caussim

 (N=5 000)

Strong Overlap

0.6 0.4 0.2 0.0 0.2

Weak Overlap

Relative Kendall to semi-oracle R̂ risk *

Nuisance models Linear Stacked

Fig. 5.8. Stacked models are good overall estimators of the nuisances: Results are shown only
for the R-risk; Figure E.10 details every metrics. For Twins, where the true propensity model is linear,
stacked and linear estimations of the nuisances performs equivalently, even for a downsampled version
(N=4794).

a) CATE estimation error

2 4 6 8

Strong Overlap

2 4 6 8

Weak Overlap

V̂ risk(f * (R̂ risk))

Train ratio 0.33 0.5 0.66 0.8 0.9 0.95 b) ATE estimation error

1.6 1.8 2.0 2.2 2.4

Strong Overlap

1.6 1.8 2.0 2.2 2.4

Weak Overlap

| V S(f * (R̂ risk))| normalized by V

Fig. 5.9. a) For CATE, a train/test ratio of 0.9/0.1 appears a good trade-off. b) For ATE, there
is a small signal pointing also to 0.9/0.1 (K=10). for ATE. Experiences on 10 replications of all 78
instances of the ACIC 2016 data.

function of covariates X. Given that the latter is a much more complex object than the
former, the optimal train/test ratio might vary. To measure errors, we use for the ATE the
relative absolute ATE bias between the ATE computed with the selected outcome model
on the test set, and the true ATE as evaluated on the holdout set V. For the CATE, we
compare the τ -risk of the best selected model applied on the holdout set V . We explore this
trade-off for the ACIC 2016 dataset and the R-risk.

Figure 5.9 shows that a train/test ratio of 0.9/0.1 (K=10) or 0.8/0.2 (K=5) appears best
to estimate CATE and ATE.

5.5 Discussion and conclusion
Predictive models are increasingly used to reason about causal effects, for instance in precision
medicine to drive individualized decision. Our results highlight that they should be selected,
validated, and tuned using different procedures and error measures than those classically
used to assess prediction (estimating the so-called µ-risk). Rather, selecting the best outcome
model according to the R-risk (eq. 6) leads to more valid causal estimates.

Nuisance models – More gain than pain Estimating the R-risk requires a more
complex procedure than standard cross-validation used e.g., in machine learning: it involves
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fitting nuisance models necessary for model evaluation, though our results show that these
can be learned on the same set of data as the outcome model evaluated.

The nuisance models must be well estimated (Figure 5.8). However these models are
easier to select and control than a causally-valid outcome model, as they are associated to
errors on observed distributions. Our results show that using for nuisance models a flexible
stacking-based family of estimator suffices for good model selection. In fact, a feasible R-risk
–where the nuisances are estimated– performs almost as well as an oracle R-risk –where the
nuisances are known. This may be explained by results that suggest that estimation errors
on both nuisances partly compensate out in the R-risk (Daniel, 2018; Kennedy, 2020; Nie;
Wager, 2017; Chernozhukov et al., 2018a; Zivich; Breskin, 2021; Naimi et al., 2021).

Note that propensity score models must be selected to estimate the individual posterior
probability. For this, we used the Brier score, which is minimized by the true individual
probability. An easy mistake is to use calibration errors popular in machine learning (Platt;
Platt, 1999; Zadrozny; Elkan, 2001; Niculescu-Mizil; Caruana, 2005; Minderer et al., 2021)
as these select not for the individual posterior probability but for an aggregate error rate
(Perez-Lebel et al., 2022).

Extension to binary outcomes While we focused on continuous outcomes, in medicine,
the target outcome is often a categorical variable such as mortality status or diagnosis. In this
case, it may be interesting to focus on other estimands than the Average Treatment Effect
E[Y (1)]−E[Y (0)], for instance the relative risk P(Y (1)=1)

P(Y (0)=1) or the odd ratio, P(Y (1)=1)/[1−P(Y (1)=1)]
P(Y (0)=1)/[1−P(Y (0)=1]

are often used (Austin; Stuart, 2017). While the odds ratio is natural for case-control studies
(Rothman et al., 2008), other measures can reduce heterogeneity (Colnet et al., 2023). In the
log domain, the ratios are written as a difference, the framework studied here (section 5.2)
can directly apply. In particular, the log odds ratio is estimated by the common cross-entropy
loss (or log loss) as in logistic regression.

More R-risk to select models driving decisions Prediction models have flourished
because their predictions can be easily demonstrated and validated on left-out data. But
they require more careful validation for decision making, using a metric accounting for
the putative intervention, the R-risk. Even when treated and untreated population differ
little, as in RCTs, the R-risk brings a sizeable benefit. To facilitate better model selection,
we provide Python code 7. Using the R-risk does make evaluation more complicated not
only because the procedure is more involved, but also because each intervention requires
a dedicated evaluation. However, such off-policy evaluation remains much less costly than
the recommended good practice of impact evaluation testing the ability of a prediction
model to actually guide patient health (Hendriksen et al., 2013). Also, the model-selection
procedure puts no constraints on the models used to build predictive models: it opens the
door to evaluating a wide range of models, from gradient boosting to convolutional neutral,
or language models.

7https://github.com/soda-inria/causal_model_selection
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Chapter 6

Conclusion

6.1 Lessons learned
Considerable efforts are being made to prepare routine care data for reuse A
vast amount of new data is being collected in healthcare, at the cost of new infrastructures:
the Clinical Data Warehouses (CDWs). Navigating this mass of data is simplified, mainly by
centralizing fragmented data from poor interoperability and the use of NLP techniques. The
main aim of these CDWs is to improve clinical research. However, deriving new evidence from
EHRs is currently hindered by a poorly standardized data access processes, heterogeneous
local care practices, and the non-exhaustive collection of critical elements of care trajectories,
even during hospital care.

These data repositories are not big enough for large neural networks trained
on structured data Even the regional scale data center of the AP-HP with data on
10 millions individuals has only a few thousands of cases for common pathologies such as
cardiovascular adverse events. On these medium sized datasets, flexible models on top of
simple data representations –such as random forest with event counts– are performing better
than transformer-based models while being simpler to deploy and more compute efficient.
These results echo the recent benchmark from Grinsztajn et al., 2022 showing the superiority
of tree-based methods over deep learning on tabular data.

Big data is no oracle, we need causal thinking Even with sufficient data, the
observational nature of EHRs requires clear and robust workflows inspired by modern causal
inference to derive unbiased intervention effects. Using flexible predictive models without a
causal framework opens the door to collider biases, but using only linear models is prone to
underfitting and biased estimates as well. Vibration analyses are key to better spot bias in
observational studies.

Selecting outcome models for heterogeneous treatment effects benefits from
flexible estimations of nuisances Causal model selection should not been performed
with mean squared error as it is done in predictive modeling. Estimating nuisance parameters
of the doubly robust R-risk thanks to flexible models is the most performant approach. In
practice, a simple procedure where nuisances are estimated with the same train set as the
candidate models introduces negligible bias.

6.2 Personal thoughts on perspectives
The unreasonable effectiveness of healthcare data is still out of reach Due to
the impossibility to transfer models, administrative barriers to access data (linked with
the multiplicity of the involved actors), and the difficulty to normalize healthcare data,
predictive models are very seldom deployed (Kelly et al., 2019). This encourages us to rely
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on sample efficient techniques that make the best of medium-sized data or rely on sharable
sources of knowledge. This calls for more work adopting research network methodologies
(Hripcsak et al., 2015a) and model sharing strategies such as federated learning (Rieke et al.,
2020). Another interesting avenue is to leverage large language models pretrained on natural
text to either extract information from clinical notes, or directly to build predictive models
(Jiang et al., 2023). These last perspectives require having sufficient computing resources for
finetuning the language models.

For treatment effect estimations, relying on text calls for better understanding of
causal representation learning Using text for confounder adjustment in causal studies
opens many research questions. Building a causal graph as in Figure 4.6 becomes tedious.
Even if all information is present in the text –satisfying the ignorability assumption 1, should
we extract every confounder or is it possible to build appropriate representations? Optimizing
directly the R-loss by gradient descent could be an interesting avenue, which is closely related
to the work of Johansson et al., 2022 and Chernozhukov et al., 2022 with non-text data.
Vibration analysis is needed to confront these methods to applications and known effects
such as the one presented in chapter 4.

Claims data are an interesting source for studying treatment effectiveness and
public health policy Some difficulty to define precise populations make claims inappro-
priate for precise clinical questions, but they are a good source for many public health and
medico-economic questions. They are well standardized, well documented, and contain most
of the PICO elements needed to study chronic conditions (Caruana et al., 2023). Estimations
methods borrowed to econometrics such as difference-in-difference (Athey; Imbens, 2006),
regression discontinuity design (Bor et al., 2014) and instrumental variables (Greenland,
2000) might be also considered when appropriate for the question of interest.

Modern public health problems should account for the fragmented nature of
healthcare Healthcare burdens and costs are driven by chronic diseases where death or
rehospitalization are not the only outcomes of interest. Most of care is provided outside of
the hospital (White et al., 1961), therefore requiring to link city care, and socio-economic
features to hospital data. This would allow to study less critical outcomes, for which
experiments are easier to conduct and where error is more acceptable. Adopting methods
from policy learning (Athey; Wager, 2021) would allow better evaluation and continuous
improvement for interventions, opening the door to potentially big prevention benefits. Such
public health interventions should be conducted within clear ethical frameworks. They could
draw inspiration from existing experimental processes such as the French Article 51 or the
United States center for medicare and medicaid innovation, both focused on organisational
innovations (Lenormand; Panteli, 2021). Ultimately, I am convinced that the resource
constraints faced by modern healthcare systems link the issue care effectiveness to that
of equity. Some patients will benefit more from a given intervention than others. Public
health seeks to minimize these mistreated patients, hopefully without discrimination. More
observational studies could help identify which subpopulations benefit the most from effective
interventions.
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Appendix A

Chapter 1

A.1 Statistical learning theory
I recall here the formal definition of the regression problem in statistical learning and I refer
to Hastie et al., 2009 for the classification problem.

Given n pairs of (features, outcome) noted (x, y) ∈ X × Y identically and independently
distributed (i.i.d) , the goal is to find a function f : X → Y that approximates the true
value of y ie. f(x) ≈ y. One need to define a loss function ℓ that define proximity between
the predicted value ŷ = f(x) and the true value y. Usually, for continuous outcomes, the
squared loss is used. Finally, when choosing among a family of functions f ∈ F , the best
possible function f ⋆ minimizes the expected loss E(f ⋆):

f ⋆ = argmin
f∈F

E
[
(ŷ − y)2

]
(A.1)

In finite sample regimes, the expectation is not accessible since we only have access to a
finite number of data pairs (xi, yi)i=1..n. So in practice, we aim to minimize the empirical
loss E(f ⋆)::

f̂ = argmin
f∈F

n∑
i=1

[
(ŷi − yi)2

]
(A.2)

In most interesting problems, there is some randomness involved in the (x, y) asso-
ciation, either due to inherent randomness or to the lack of important information in
x. This is modeled by assuming it independent of the features and with mean zero:
y = g(x) + e, with E[e] = 0. The best possible estimator is thus g, yielding the Bayes error
E(g) = E

[
(g(x) + e − g(x))2

]
= E[e2] . This error cannot be avoided.

Finally, the generalization error of the estimator f̂ can be decomposed as:

E(f̂) = E(g) + (E(f ⋆) − E(g)) + (E(f̂) − E(f ⋆)) (A.3)

The second term is the approximation error: the difference between the best estimator
in the family of estimator considered and the Bayes estimator. It decreases for larger F .

The third term is the estimation error related to the sampling noise of the data. It
decreases with raising n –if we have a lot of data points. It increases for larger F . This
decomposition highlights the choice of a practitioner for applying regression: she must choose
a function class F flexible enough to avoid underfitting the data but restrictive enough to
avoid a high estimation error.

A.2 Statistical models
We recall briefly how trees, random forests and boosting work. For more details, see (Hastie
et al., 2009).
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A.2.1 Trees

Decision trees are a class of models that recursively split the feature space into a set of
rectangles –called nodes, and assign a constant value to each rectangle. They can be use
both for classification or regression. If used for regression, a new split from one region
into two subregions is chosen as follows. Among all variable and split possibility, choose
the split that minimizes the error –typically the squared error– between the average of the
outcomes over the two newly regions and the individual outcomes. If used for classification,
splits are chosen by minimizing some impurity measure of the class probabilities over the
two new created nodes instead of the squared error. A typical impurity measure is the
Gini index ∑K

k=1 p̂mk(1 − p̂mk) where p̂mk is the empirical probability of class k in node m.
The complexity of a tree is determined by its maximal depth –ie, the maximum number of
splits before reaching a terminal node –called a leaf. Figure A.1 illustrates on a toy dataset,
decision trees with depth 1, 2 and 5.

Trees have the advantages to have small biases and to be grown rapidly from both
categorical or continuous variables. However, they suffer from instability and thus have high
variance: Small changes in the data can yield to very different series of split.

A.2.2 Random Forests

Random forests (Breiman, 2001a) have been proposed to overcome the instability of trees. A
random forest averages the results of B trees grown identically, thus not affecting the bias of
the whole estimator. The variance reduction is performed by forcing the trees to be different
from each other. This is achieved by introducing randomness in the tree growing procedure.
At each split, only a random subset of features are selected. On average, the errors of each
individual tree cancel each other, thus reducing the high variance of each individual tree
without a high increase in bias. Figure A.2 shows on a toy dataset random forests with
increasing number of trees of depth 4.

Max depth=1
Max depth=2
Max depth=5

Fig. A.1. Illustration of regression trees with depth 1, 2 and 5.
Code adapted from https://scikit-learn.org/stable/auto_examples/ensemble/plot_
adaboost_regression.html.
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1 Tree
2 Trees combined
3 Trees combined
300 Trees combined

Fig. A.2. Illustration of random forest with increasing number of trees.
Code adapted from https://scikit-learn.org/stable/auto_examples/ensemble/plot_
adaboost_regression.html.

A.2.3 Gradient Boosting
Random forest is the aggregation of overfitting estimators. On the contrary, boosting
(Freund; Schapire, 1995) is a method that iteratively sums underfitted learners –typically
trees– to each other. Each new weak learner improves over the errors of the previous averaged
estimators. Improvement on errors can be performed by solving analytically the error loss
function or numerically by gradient descent (Friedman, 2001). The later has the advantage
to avoid a new implementation for every new loss function. The final estimator has the
same form than a random forest, but require substantially less trees to converge. Figure A.3
illustrates on a toy example of boosting trees with increasing number of trees of depth 4.

1 Tree
2 Trees combined
3 Trees combined
300 Trees combined

Fig. A.3. Illustration of boosting trees with increasing number of trees.
Code adapted from https://scikit-learn.org/stable/auto_examples/ensemble/plot_
adaboost_regression.html.
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Appendix B

Chapter 2

B.1 List of interviewed stakeholders with their teams

Clinical Data Warehouse Teams
CDW_AMIENS IT : 1,MID : 1
CDW_ANGERS Data Direction : 1
CDW_APHM Clinician : 1,CDW team : 2
CDW_APHP CDW team : 4,IT : 5
CDW_BORDEAUX CDW team : 1,Inserm : 1,public health : 2
CDW_BREST CDW team : 1,MID : 1
CDW_DIJON CDW team : 1
CDW_EDSAN CDW team : 2,MID : 1
CDW_HCL Clinician : 1,Data Direction : 1,IT : 1,Inserm
CDW_INCLUDE_LILLE Administration : 2,CDW team : 3,public health : 2
CDW_MARTINIQUE CDW team : 1,public health : 1
CDW_MONTPELLIER Data Direction : 2,MID : 1,public health : 1
CDW_NANCY CDW team : 2,public health : 2
CDW_NANTES CDW team : 2,public health : 1
CDW_POITIERS IT : 2,CRD : 1
CDW_PREDIMED_CHUGA CDW team : 3,public health : 2
CDW_REIMS Clinician : 1,CDW team : 1
CDW_RENNES CDW team : 2,public health : 2
CDW_STRASBOURG CDW team : 2,public health : 2
CDW_TOULOUSE CDW team : 1
CDW_TOURS CDW team : 1
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B.3. Study data tables

B.3 Study data tables
The data tables used to produce the figures in the results section are available at the following
url:

https://gitlab.has-sante.fr/has-sante/public/rapport_edsh/.

The guests table concerns the individuals interviewed, the interview dates, the positions
and the membership of a specific team: https://gitlab.has-sante.fr/has-sante/
public/rapport_edsh/-/blob/master/data/cycle_eds/cycle_eds_intervenants.
csv

The warehouse table collects information about the CDW: https://gitlab.has-sante.
fr/has-sante/public/rapport_edsh/-/blob/master/data/cycle_eds/cycle_eds_
entrepots.csv

The study table references the in-progress study titles and objectives from 10 public
declarative portals in progress: https://gitlab.has-sante.fr/has-sante/public/
rapport_edsh/-/blob/master/data/cycle_eds/cycle_eds_etudes.csv
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Appendix C

Chapter 3

C.1 Code
The code for the experiments is available at https://github.com/soda-inria/predictive-ehr-benchmark.

A fork of the CEHR-BERT implementation is available at https://github.com/strayMat/
cehr-bert. It was necessary to adapt the code to our data format and to the AP-HP com-
puting environment.

All decayed counting and static embedding featurizers are available as a standalone
package at https://gitlab.com/strayMat/event2vec.

C.2 Predictive models and tasks on EHRs

C.2.1 Why predictive models in healthcare ?

Risk stratification in the clinic Early prediction of a complication calls for early
intervention. Focused on short term interventions in the clinic, these models seek to increase
short or long terms outcomes of the patients thanks to early intervention before deterioration
(Tang et al., 2007; Rothman et al., 2013; Wong et al., 2021). Those so-called alert systems
(Yu et al., 2018) map complex inputs –e.g., a combination of nursing assessments, vital signs,
laboratory results and cardiac rhythms– to simpler risk scores, allowing clinicians to rapidly
judge the evolution of the patient. The same kind of risk stratification is also used for long
term prevention under the term screening.

Predict to identify important risk factors Risk stratification is close to the research of
risk factors. The Framingham risk score, one of the earliest predictive models in medicine was
designed to predict Coronary heart disease risk by fitting a cox model using seven features on
5300 patients: age, cholesterol, systolic blood pressure, hematocrit, ECG status, smoking at
intake, and relative body weight (Brand et al., 1976). The authors aim to identify important
risk factors allowing the selection of individuals for intervention programs. Biostatistics
also focuses on risk factors for subgroup identification, framing this task as therapeutics
(Steyerberg, 2009) or heterogeneous treatment effect (Harrell et al., 2001).

Prognosis for automated decision-making Multiple applications of Artificial Intel-
ligence in Medicine were already discussed in the early 80s (Szolovits, 1982, Chapter 1):
diagnostic and therapeutic program for glaucoma (CASNET), diagnostic and therapy for
infectious diseases (MYCIN) (SHORTLIFFE, 1976), therapic advice for patients with heart
disease, diagnosis in general internal medicine (INTERNIST-I). In this line of work, a good
predictive model often serves as a module in a larger decision-making system aiming at
personalized medicine (Topol, 2019).
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C.2. Predictive models and tasks on EHRs

Predict to better plan and pilot In complex healthcare organizations, accurate in-
dividual predictions help to use efficiently constrained medical resources (Topol, 2019).
One of such operational tasks is Length Of Stay (LOS) prediction, allowing to plan the
number of beds and members of staff required, identify individual outliers (Verburg et al.,
2017). Identified as a quality of care indicator, unplanned readmission at 30 days is used to
benchmark and finance hospitals in several countries (CMS for Medicare, 2019; Kristensen
et al., 2015). In addition to the risk reduction for patients, it incentivized the hospital to
develop better prediction models for unplanned readmission.

Interestingly, recent developments of predictive models on EHRs (described in next section)
focused mainly on administrative tasks and less on the risk factors or the intervention aspect.

C.2.2 Predictive models on EHRs: from simple to complex
Predictions on EHRs originally used linear models on few carefully selected
statics variables Early work for predictive models on EHR used parsimonious logistic
regression (selecting 10 variables on average) to predict Heart Failure (12% case prevalence)
within 6 months reaching 0.77 AUC (Wu et al., 2010).

Goldstein et al., 2017 identified key characteristics of 107 studies on predictive models
on EHRs: a very large study size (median=26,100), few predictors are included (median =
27 variables), few longitudinal data (37 studies), half multi-center studies. The tasks and
performance were mortality with 0.84 AUC, clinical prediction (various clinical endpoints)
with 0.83 AUC, hospitalization with 0.71 AUC, service utilization with 0.71 AUC. Generalized
linear models such as logistic regression or Cox regression (87 studies) were the most
common, followed by Bayes methods (11 studies), random forests (10 studies) and regularized
regressions (7 studies).

Including high-cardinality and time-varying features thanks to neural networks
Acknowledging the high cardinality of medical vocabularies used in EHRs, medical informatics
leveraged representation learning (mostly algorithms used in Natural Language Processing)
to embed them into low dimensional feature spaces (Shickel et al., 2017). The goal was to
reduce the costly feature engineering work used by traditional predictive models.

This line of work focused first on concept representations: restricted bolzmann machines
for suicide predictions (13.1% prevalence) (Tran et al., 2015).

Then it included time: word2vec with temporal contexts (Beam et al., 2019), convolutional
neural networks for unplanned readmission at 6 months (balanced case/control) with 0.82
AUC (Nguyen et al., 2016), LSTM for diagnosis from physiological signals with 0.86 weighted
ROC AUC and 0.12 precision at 10 (Lipton et al., 2016), recurrent neural networks for heart
failure (selected 9 to 10 control to cases) with 0.88 AUC (Choi et al., 2017), recurrent neural
networks for Length Of Stay over 7 days (20.68% prevalence), mortality (1.74% prevalence)
and 30-day readmission (12.93% prevalence) with respectively 0.79, 0.87 and 0.70 AUC all
using 24 first hours of observation data (Beaulieu-Jones et al., 2021).

Rare benchmarks of these different methods include :
Harutyunyan et al., 2019 benchmarked four clinical tasks on MIMIC-III database, a
EHR rich in signals since it covers Intense Care Units. The tasks were in-hospitality
prediction based on the first 48 hours of data, decompensation prediction at each hour,
Length-Of-Stay prediction at each remaining hour of stay, phenotyping of 25 acute
care conditions. This benchmark uses 17 time-varying clinical measurements but with
a measure each hours, focusing on the temporal part of EHRs. They found that LSTM
processing separately each signal were the mist performant for all tasks.
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C.3. Number of cases used in foundation models downstream tasks

Solares et al., 2021 benchmarked different concept embedding methods to predict the
presence of three ICD10 codes (level 2) at six months in General practitioner data.
They use either Auto Encoders to reconstruct the patient histories, Neural collaborative
filtering with positive/negative sampling, Continuous Bag of Words (context window
is not precised), CBOW with time aware attention for the context window (Cai et al.,
2018), and BEHRT (Li et al., 2020b). This benchmark covers the high-cardinality
part of EHRs. There is less emphasis on temporality since patients only have up to 10
different visits.

The age of foundation models for EHRs? Foundation models (FMs) are machine
learning models capable of performing many different tasks after being trained on large,
typically unlabeled datasets (Wornow et al., 2023). Leveraging the transformer architecture
Vaswani et al., 2017 that proved efficient for Natural Language Processing, large EHR
modeling models are pre-trained on large volume of data, then evaluated on downstream
tasks.

BEHRT focus on 301 diseases predictions in next general practitioner visits within
6 months with 0.958 AUROC and 0.525 APS. It was pretrained on 1.6 million patients
from UK general practitioners encounters diagnoses. Med-BERT focus on heart failure
for diabetes patients (DHF) (6.2% prevalence) and pancreatic cancer prediction (30%
prevalence) with respectively 84 and 74 AUROC (Rasmy et al., 2021). It was pretrained
on 28.5 million patients from IBM MarketScan billing codes. Cerh-Bert predicts 30-days
all-cause readmission in heart failure (24.116% prevalence), mortality within 1 year since
discharge to home (4.85% prevalence), heart failure for DT2 patients (9.38% prevalence) and
2 year risk of hospitalization starting from the 3rd year since the initial entry into the EHR
(10.9% prevalence) with respective AUROC/APS 66/38.6, 94.6/52.7, 80.7/32.3, 75.9/31.1
(Pang et al., 2021). It was pretrained on 2.4 million patients from the Columbia University
Irving Medical Center-New York Presbyterian Hospital.

Wornow et al., 2023 review other published FMs for EHRs highlighting the small scale
of patients used for pretraining, and the lack of model weights accessibility. To improve
upon the existing they advise: 1) for better predictive performance (measured both on
AUOC, AUPRC and ranking metrics) as well as calibration performance; 2) to detail the
performance with the number of labelled cases; 3) simplified model deployment; 4) Emergent
clinical applications; 5) Multimodality.

C.3 Number of cases used in foundation models downstream
tasks

A strong argument in favor of foundation models trained on EHRs is their ability to transfer
well to downstream once pretrained. However, in most of the papers presenting these models,
the number of cases used for the downstream tasks is out of reach for numerous medical
applications. Table C.1 shows the number of cases for downstream tasks of Med-BERT and
CEHR-BERT. All tasks exceed 10,000 cases, a number of cases out of reach for the vast
majority of healthcare centers. Figure C.1 outlines the performance of BEHRT on every
diagnosis. There is no clear trend that outlines better performance for higher number of
cases. However, the number of cases is still greater than 5000 for almost all targeted diseases.

Coupled to the current impossibility to share (and transfer) the weights of these models,
this need for large downstream datasets is a strong limitation to their use in practice.
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C.3. Number of cases used in foundation models downstream tasks

Model Task Cohort size Prevalence Number of
Cases ROC AUC AUPRC

CEHR-BERT
(Pang et al., 2021)

Heart Failure
readmission 97,758 24.16% 23,618 66.3 (0.2) 38.6 (0.1)

CEHR-BERT
(Pang et al., 2021)

Discharge home
Death 207,919 4.85% 10,084 94.6 (0.1) 52.7 (0.4)

CEHR-BERT
(Pang et al., 2021)

T2DM
Heart Failure 114,564 9.38% 10,746 80.7 (0.6) 32.3 (1.0)

CEHR-BERT
(Pang et al., 2021) Hospitalization 590,578 10.90% 64,373 75.9 (0.1) 31.1 (0.4)

Med-BERT
(Rasmy et al., 2021)

Pancreatic cancer
Cerner 29,405 39% 11,486 82.23 (0.29) 75.08 (0.36)

Med-BERT
(Rasmy et al., 2021)

Pancreatic cancer
Truven 42,721 40% 17,088 80.57 (0.21) 71.54 (0.45)

Med-BERT
(Rasmy et al., 2021)

T2DM
Heart Failure 672,647 6.2% 39,727 85.39 (0.05) 83.8 (0.05)

Table C.1. For downstream tasks of both CEHR-BERT and Med-BERT, the number of cases (ie.
number of patients with the positive class) is out of reach for numerous medical applications were the
number of positive classes is closer to the thousand –in the best cases.

0.8

0.9

AU
RO

C

0 5000 10000 15000 20000 25000 30000
Number of cases

0.0

0.5

AP
S

Fig. C.1. BEHRT (Li et al., 2020b) performance for every diagnosis target. Number of positive cases
is above 5000 for almost every disease.
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C.4. Review of computing resources for modern predictive models in healthcare

Data
Type

GPU
number GPU model Training

time (hours) Pretraining Sample size
(millions) Server details Reference

Claims 4 Nvidia V100 <24 No 43 72 CPU cores Beaulieu-Jones et al., 2021
EHR NA Nvidia Titan Xp NA Yes 1.6 NA Li et al., 2020b

EHR 2 Nvidia RTX
20280 Ti 45 Yes 2.4 768 GB memory Pang et al., 2021

EHR 1 Nvidia V100
32 GB 168 Yes 28 NA Rasmy et al., 2021

Text 24 Nvidia A100
40GB 504 Yes 0.39

Pre-training on NYU Langone
High-Performance Computing;

Deployment on 128 GB RAM
servers with 2 RTX 3090 GPUs

Jiang et al., 2023

Text 992 Nvidia A100 144 Yes 2 HiperGator-AI cluster Yang et al., 2022

Table C.2. Computing resources for modern large scale predictive models.

C.4 Review of computing resources for modern predictive
models in healthcare

The increasing architecture sizes of predictive models require appropriate computing in-
frastructures to pre-train and deploy those models. Table C.2 reviews the computing
requirements for some of these modern predictive models. Computing resources for Large
Language Models trained with clinical notes are greater than for EHR or claims models.
Numbers are rarely provided at deployment , since they require smaller computing resources.

C.5 Detailed pipelines
For all methods except demographics, the event features are the following structured events:
billing codes (ICD-10), procedure codes (CCAM nomenclature), drugs administration (ATC7
nomenclature). Despite their high predictive potential, we did not consider biology since the
number of events was too big for our memory capacity.

C.5.1 Demographics
All static features correspond to the index visit of the task (T1=target stay, T2=first included
stay, T3=???): age, gender, admission reason, discharge destination, type and value.

The feature time of day was built as followed: morning between 7am and 12pm, afternoon
between 12pm and 20pm and night between 20pm and 7am. This feature was mostly set at
night, because almost all times are set to 22:00pm in our data extraction. More fine grained
details should be available in the information system but were not communicated to us.

C.5.2 Decayed counting

During cross-validation, the explored decay parameters are:
[
[0], [0, 1], [0, 7], [0, 30], [0, 90]

]
.

C.5.3 Static Embeddings of event features
SVD-PPMI We recall the SVD-PPMI algorithm developed by Beam et al., 2019 and used
for transferring phenotyping in Hong et al., 2021.

The algorithm takes a sequence of coded events as input and outputs vector representations.

97 / 182 M. Doutreligne



C.5. Detailed pipelines

As shown in Figure C.2, it builds a context window around every event e = (i, t, c) ,
then updates the cooccurrence matrix for the corresponding medical code P (c, cj) ∀ cj ∈
V ocabulary.

context window

Patient
event

sequence
Time

update

Fig. C.2. The cooccurrence matrix is updated when two events occur in a specified time window.

The PPMI matrix is then computed as the logged-shifted version of the cooccurrence
matrix.

PMI(ci, cj) = log
P (ci, cj)N
P (ci)P (cj)

(C.1)

where P (ci) is the total count of the event ci and N is the total count of events.

PPMI = max(0, PMI − log(k)) (C.2)

Finally, concept embeddings are recovered by SVD factorization and taking the mean of
the context and target word matrix.

PPMI = U · Σ · V (C.3)

embeddings = Ud ·
√

Σd + Vd ·
√

Σd (C.4)

Where the subscript d indicates the restriction to the first d components of the matrices.

Aggregation of the static embbedings Figure C.3 details how the aggregation on a
patient sequence is performed before feeding the vector to a scikit-learn estimator.

C.5.4 CEHR-BERT

CEHR-BERT is based on the original BERT architecture (Devlin et al., 2018). Pang et al.,
2021 modified previous transformers applied on EHR in two ways. They embed absolute
and relative time with age of the patients, using a fourier transform of time numerical
values. Secondly, they add the Visit Type Prediction objective. In addition to the usual
sequence reconstruction task (masked language model) for concept embeddings, the model
also tries to reconstruct the type of the visit associated with the masked concepts (inpatient,
outpatient,emergency).
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Fig. C.3. Aggregation of the embeddings to yield one vector representing each patient sequence.
The left blue matrix is the same as the one computed in the decayed method. It is multiplied by the
embedding matrix Φ either learned on the training set or transferred from the SNDS claims database.

C.6 Experimental study

C.6.1 Database description: two extractions from the Paris hospitals
data warehouse

We use two data extractions from the clinical data warehouse of the Greater Hospital of
Paris (AP-HP) hosting routine care data from 38 hospitals formatted in the OHDSI OMOP
format (Hripcsak et al., 2015a). The first extraction containing 200,000 randomly sampled
patients, is used for the LOS (C.6.2) and Prognosis (C.6.2) tasks. For the MACE task
(C.6.2), the number of case events –prevalence– was lower than for the two other tasks, so
we had to work on a bigger extraction containing 2.1 million patients. In both cases, raw
data contained diagnoses and procedures billing codes, prescriptions and administrations of
drugs, administrative information, laboratory results for inpatient only and clinical notes.

We sessionize the visits to merge indices that are closer than one day into one unique
stay. This avoids to consider transfers as two different hospitalizations.

C.6.2 Tasks descriptions
Selection flowcharts The Figure C.4 shows the selection flowcharts for the three tasks.

LOS interpolation

Plan – Long Length Of Stay interpolation (LOS) During complete hospitalization,
stays with extreme LOS values are responsible for a large share of hospital costs and resource
uses. The ability to predict extreme LOS is useful for resource managements (Omachonu
et al., 2004; Caetano et al., 2014; Jiang et al., 2023). We define LOS as a binary task
categorizing each inpatient stay as long if LOS greater than 7 days or short if LOS shorter
than 7 days. The study period was january 2017 to june 2022. The population at risk are
the patients aged above 18, with at least one hospitalization lasting at least 24 hours. Stays
with in-hospital mortality are discarded. The index visit is the first included visit for each
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Acute Myocardial Infarction I210, I211, I219, I220, I221, I229
Unstable Angina I200, I208, I209
Acute Heart Failure I501, I5020, I5021, I5022, I5023, I5030, I5031, I5032, I5033
Acute Cerebrovascular Events (Stroke) I60, I61, I62, I630, I631, I632, I633, I634, I64
Other codes I24, I23

Table C.3. ICD10 codes used for MACE definition.

individual. LOS is defined as a binary classification task for each index visit. The label is 0
if the stay lasts less than 7 days and 1 if the stay lasts more than 7 days. The horizon is
the end of the index visit and the observation period is the full index visit. This task is an
interpolation since we classify the length of the stay with data from the whole stay.

Stratify – Prognosis Prognosis is important for prevention as it can influence shared
decision-making between the clinician and the patient. We define a proxy for prognosis as a
multi-label binary classification task where we predict the next stay ICD10 codes starting
from a random non final stay for each patient. We reduce the granularity of the codes to only
21 chapters at the highest level of the hierarchy. For this task, we realized that providing
the index stay ICD10 chapters was a strong baseline. We therefore concatenated these codes
as separated demographic features for all pipelines after aggregation.

The study period was january 2017 to june 2022. The cohort are the patients aged
above 18, with at least two hospitalization (inpatient or outpatient). Stays with in-hospital
mortality are discarded. The index stay is defined as a random stay for each individual
before its last stay. The horizon is the beginning of the next stay and the observation period
is the full patient trajectory up to the end of the index visit. Prognosis is defined as a
multi-label classification task. In the following stay after the index visit, for each of the
20 ICD10 chapters with a prevalence greater than 1%, the label is 1 if the stay contains a
diagnosis in this chapter, otherwise it is 0.

Prevent – Predict Major Adverse Cardiovascular Events Prediction of all-chapters
billing codes does not focus on a clinically well-defined population. On the contrary, the
composite outcome of Major Adverse Cardiovascular Events (MACE) is often used in clinical
trials targets the cardio-vascular risk. We define MACE prediction as the prognosis of
incident MACE at one year for a randomly chosen stay for each patient. The study period
was january 2018 to december 2020. The population at risk are the patients aged above
18, with at least two hospitalization (inpatient or outpatient). The index visits are for each
patients a randomly selected stay without in-hospital mortality, with at least an horizon of
12 months between the end of the stay and the end of the study period. The observation
period is the whole patient trajectory up to the end of the index visit. MACE is defined as
a binary classification task. The label is 1 if a MACE billing code is observed (see Table
C.3) and 0 otherwise. We used billing codes defined by Bosco et al., 2021 and complement
them with other codes specific to the French healthcare system Caisse Nationale d’Assurance
Maladie, n.d.

For well-defined clinical tasks such as MACE, the study population is only a small part
of the initial general population. Even when studying regional data warehouses, the relevant
population for the algorithm is an order of magnitude smaller than the full population,
requiring better sample efficiency than general tasks such as LOS or prognosis.
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C.6.3 Training procedure
The temporal split was designed for the train/test ratio to be 0.8/0.2. This resulted in
different split dates for each dataset. For LOS, training period covers 2017-01-01 to 2021-
04-06 and test period covers 2021-04-07 to 2022-05-01. For Prognosis, train period covers
2017-01-01 to 2021-04-21 and test period covers 2021-04-22 to 2022-05-20. For MACE, train
period covers 2018-01-01 to 2019-08-11 and test period covers 2019-08-11 to 2020-01-05.

Note that CEHR-BERT is also pre-trained on growing parts of the train set but only uses
a validation set for stopping pretraining. Due to the high computing cost of transformers,
we could not cross-validate its internal parameters.

C.7 Supplementary results for temporal split
C.7.1 LOS interpolation

C.7.2 Prognosis
Performance is reported with Area Under the Receiver Operating Characteristic Curve (ROC
AUC) and Area Under the Precision Recall Curve (AUPRC) using https://scikit-learn.
org/stable/modules/generated/sklearn.metrics.roc_auc_score.html and https://
scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_
score.html#sklearn.metrics.average_precision_score implementations to compute
the scores.

ROC AUC Figure C.6 displays the AUPRC averaged with equal weight for each chapter
(Macro) and with the chapter prevalence as the weight (weighted).

AUPRC scores for every ICD10 chapter Figure C.7 displays the AUPRC averaged
with equal weight for each chapter (Macro).

AUPRC scores for every ICD10 chapter Figure C.21 to C.23 display AUPRC scores
for every ICD10 chapters with respect to number of patients in the train set. Recall that
contrary to ROC AUC where the random baseline is 0.5, the random baseline for AUPRC is
the prevalence of the target class.

Prevalence results Figure C.29 shows the prevalence results for the AUPRC curve and
the linear estimator.

Figure C.30 shows the prevalence results for the ROC AUC curve and the linear estimator.
Figure C.31 shows the prevalence results for the ROC AUC curve and the random forest

estimator.

C.7.3 MACE

C.8 Results for the geographic split
C.8.1 Dataset split by hospital

To evaluate the geographic validity of our results, we proceed to a geographic split for train
and test, according to hospitals. In the test set, the patients visited one of the following
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hospitals: Avicenne, Jean Verdier, Cochin, Ambroise Pare and Raymond Poincare-Berck. In
the train set, patients visited another of the AP-HP 38 hospitals. Patients having a visit in
both hospital groups were removed from both the train and test data. Figure C.32 shows
the hospital cooccurrence matrix for patient populations.

C.8.2 Hospital split results
LOS interpolation This task is saturated by the best machine learning models so we
did not evaluate the transformer on it. Instead, we benchmarked the transfer from cui2vec
embeddings, trained on american claims (Beam et al., 2019). To be fair to these embeddings,
we restricted the vocabulary of medical codes to the common intersection of 2100 codes
occurring both in cui2vec and in our dataset. The decay was set to 7 days (not cross-validated
as in the main experiments). Figure C.33 shows all embeddings methods outperforming the
count models.

Prognosis Figure C.34 shows the results on the prognosis task, with train/test split by
hospital. We average the results for the 21 target diagnosis chapters: either with the same
weight for each chapter (macro) or weighted by each chapter prevalence (weighted). The
Random forest estimators with SNDS embeddings seem to be the best performing method.
The transformer method begins to be competitive only with 8000 thousands patients in
the train set. An interesting result is the performance of the naive method that predicts a
diagnosis if it is present in the index visit (last stay before prediction target). It outperforms
all other methods by a large margin, suggesting than ICD10 predictions might not be a
useful predictive task. This result made us add the codes from the previous visit as new
static feature to the prediction matrix in the main analysis.

C.9 Vibration study on the effects of the decay
Using the LOS task, we investigated if the decay hyperparameter played an important role
in the performance of the different pipelines. We evaluated this vibration analysis on a
randomly chose train set (no temporal or hospital data shift). Figure C.35 shows the big
impact of different decay hyperparameters on ROC AUC. This led us to cross-validate
the decays in the main analyses. Interestingly, concatenating multiple decays only had a
significant impact on the count pipelines.

C.10 Medical concept embeddings
C.10.1 Previous work and motivation

Building on a formulation of word2vec (Mikolov et al., 2013) as the factorization of the
Positive Pointwise Information Matrix –PPMI eq. C.2–, Beam et al. (2019) built medical
concept embeddings from both text and structured data. These embeddings are non-
contextual, meaning that they do not take into account the full sequence of event at the time
of inference. These make them less powerful than contextual embeddings such as the ones
from the transformer-based models (Li et al., 2020b; Rasmy et al., 2021; Pang et al., 2021).

However, the information at the basis of the non-contextual embeddings is a sharable
aggregated data: the cooccurrence matrix. The easy creation and exchange of medical
concept embeddings opens a wide range of applications that efficiently pulls data from
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multiple sites, overcoming both the heterogeneity of the data, and the administrative barriers
to access individual patient data. Transferring these dense representations of healthcare
events to specific low-sampled cohorts might provide efficient pretrained data representations
even in setups where very few patients are available.

C.10.2 Background on medical concept embeddings for prediction
Only few works have studied the transfer capabilities of clinical concept embeddings for
relevant prognosis tasks. None of them studied how such representations can be used in a
combination with traditional machine learning techniques such as random forests or logistic
regressions.

Huang et al., 2018 used the same embeddings method on the two EHR in MIMIC,
fusing them with Procruste. Utility is evaluated on diagnoses prediction tasks, using Patient
Diagnosis Projection Similarity, top-K cosine distance between a temporally weighted average
of the embedding for a given patient and the diagnoses embeddings. They show that Procruste
fused embeddings are almost as performant (measured with ROC-AUC) as embeddings
derived from the two databases.

Hong et al., 2021 used SVD-PPMI factorization on two databases. They evaluated
the utility of embeddings on a phenotyping downstream task for eight diseases: coronary
artery disease (CAD), type I diabetes mellitus (T1DM), type II diabetes mellitus (T2DM),
depression, rheumatoid arthritis (RA), multiple sclerosis (MS), Crohn’s disease (CD) and
ulcerative colitis (UC). They did not evaluate them for predictive tasks, only for differential
diagnosis.

Xiang et al., 2019 fine-tuned a LSTM on top of different medical concept representations
(FastText (Bojanowski et al., 2017), SVD-PPMI or Skip-Gram with a time context window
(Beam et al., 2019) and ), for heart failure (11.7% prevalence) reaching respectively for each
representation 84.9, 82.4 and 85.4 ROC AUC.

C.10.3 Embeddings implementation

We published event2vec 1, a python package to quickly build medical concept embeddings
using the SVD-PPMI algorithm Beam et al., 2019; Levy; Goldberg, 2014. Our package
proposes two backends for the computation of this cooccurrence matrix: pandas for small
datasets (ten thousand of patients), spark for big datasets (Salloum et al., 2016).

C.10.4 Qualitative assessment of the embeddings
Figure C.36 displays 2D Tsne projections Van der Maaten; Hinton, 2008 of the embeddings.
Clear groups of pathologies has been recovered by the algorithm. Table C.4 shows the ten
closest neighbors of the Diabete type 1 with acidosis concept for each dataset (by cosine
distance), reflecting discrepancies between both dataset for this billing code. Interactive
Tsne plots and full embeddings (SNDS only) are available on our gitlab repository 2.

1https://gitlab.com/strayMat/event2vec/
2https://gitlab.com/strayMat/event2vec/-/tree/main/data/results/
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Concept code Concept label medical vocabulary similarity
I210 Acute myocardial infarction ICD10:diagnosis 1.000000
I25 Chronic ischemic heart disease ICD10:diagnosis 0.491964

DDAF006 Intraluminal dilatation of a
coronary vessel with stenting CCAM:procedures 0.459349

DDQJ001 Intra-arterial coronary ultrasound
and/or Doppler ultrasound CCAM:procedures 0.455709

B01AC22 Prasugrel ATC7:drugs 0.426467
C03DA04 Eplerenone ATC7:drugs 0.385482
TNS Nicotine replacement therapy NGAP:GP 0.399372
SRA Resuscitation supplement NGAP:GP 0.392237
1526 Creatine phosphokinase NABM:biology 0.385801
521 Lactate deshydrogenase (LDH) NABM:biology 0.315254

Table C.4. Two closest concepts for each vocabulary for the medical concept I210 of Transmural
infarction with the claims SNDS embeddings. Prasugrel is a medication used to prevent formation of
blood clots. Eplerenone is an aldosterone antagonist type of potassium-sparing diuretic that is used
to treat chronic heart failure and high blood pressure. Creatine phosphokinase used to be determined
specifically in patients with chest pain. Because Lactate deshydrogenase is released during tissue damage,
it is a marker of common injuries and disease such as heart failure
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(a) Selection flowchart for Length
Of Stay interpolation task.

(b) Selection flowchart for ICD-10
chapter prediction task.

(c) Selection flowchart for MACE prog-
nosis.
Fig. C.4. Selection flowcharts for the three tasks.105 / 182 M. Doutreligne
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Fig. C.5. LOS AUPRC for different featurizers and estimators. The performance is averaged over 5
folds. The shaded area represents the standard deviation. The task performance seems to saturate
at 98% average precision for random forest and all featurizers but the demographics, suggesting that
the Bayes error rate is reached. However, for lower sample regimes –below 12,500 patients, we see an
advantage of static embeddings over event counts (both for logistic regression and random forest).
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Fig. C.6. Prognosis ROC AUC averaged over chapters for different featurizers and estimators. The
performance is averaged over 5 folds. The shaded area represents the standard deviation. The horizontal
black lines display the naive baseline that predicts the previous stay codes for the target stay. Figure
C.6a average all chapter with equal weight whereas C.6b averages chapters by prevalences. Random
forest have better performance. Count encoder outperform other featurizers, suggesting the importance
of low count events that are smoothed out in embedding methods.
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Fig. C.7. Prognosis AUPRC averaged by prevalence over chapters for different featurizers and estimators.
The performance is averaged over 5 folds. The shaded area represents the standard deviation. The
horizontal black line displays the naive baseline that predicts the previous stay codes for the target stay.
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Fig. C.8. ICD10 chapter 21
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Fig. C.9. ICD10 chapter 4
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Fig. C.10. ICD10 chapter 9
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Fig. C.11. ICD10 chapter 18
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Fig. C.12. ICD10 chapter 5
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Fig. C.13. ICD10 chapter 2
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Fig. C.14. ICD10 chapter 6
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Fig. C.15. ICD10 chapter 11
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Fig. C.16. ICD10 chapter 13
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Fig. C.17. ICD10 chapter 14
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Fig. C.18. ICD10 chapter 10
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Fig. C.19. ICD10 chapter 19
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Fig. C.20. ICD10 chapter 3
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Fig. C.21. ICD10 chapter 1
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Fig. C.22. ICD10 chapter 7
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Fig. C.23. ICD10 chapter 22
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Fig. C.24. ICD10 chapter 12
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Fig. C.25. ICD10 chapter 20
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Fig. C.26. ICD10 chapter 15
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Fig. C.27. ICD10 chapter 17
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Fig. C.28. ICD10 chapter 8
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Fig. C.29. Bigger target prevalences yield better ROC AUC. The different chapters are binned in
prevalence bins. The estimator used for this plot is a penalized linear model trained on the full effective
train set. Each box contour represents Q1-Q3 inter-quartile range.
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Fig. C.30. Bigger target prevalences yield better AUPRC. The different chapters are binned in prevalence
bins. The estimator used for this plot is a penalized linear model trained on the full effective train set.
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Fig. C.31. Bigger target prevalences yield better ROC AUC. The different chapters are binned in
prevalence bins. The estimator used for this plot is random forest trained on the full effective train set.
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Fig. C.32. Hospitals clustered by average euclidean distance in common patients from the LOS cohort.
Scale in dice score: 2 · |A ∩ B|/(|A| + |B|). Test set hospitals appear in purple on the left.
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Fig. C.33. LOS task, transfer between hospitals with 2100 codes only, ROC AUC: The local, SNDS
or cui2vec embeddings with forest and boosting are all equivalent. For logistic regression, the local
embeddings remain the best performing method. We also compare the effect of reducing the dimension
by applying a Singular Value Decomposition with 30 components kept. This increases a little bit the
performance for logistic regression but decreases the performance of the other estimators.
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Fig. C.34. Prognosis task, transfer between hospitals, weighted average (by chapter prevalence) and
macro average ROC AUC: The black vertical line shows the results from predicting the next diagnoses if
they appear in the last visits in the observation period.
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Fig. C.35. LOS task, random test set, ROC AUC, estimator is random forest: Concatenating a one day
decay add 10 points of ROC AUC to the embedding pipeline.

(a) AP-HP (b) SNDS

Fig. C.36. TSNE projection of medical event embeddings. Each point is a projection in 2D of the
embedded vector for a given medical concept: a) in the AP-HP Clinical Data Warehouse (200, 000 random
patients extractions), b) in the French Medical Claims (SNDS). Colors correspond to different medical
vocabularies: drugs in green, billing diagnoses in blue, billing procedures in red, biology in pink (different
vocabulary for AP-HP and SNDS), general practitioner (GP) activity in yellow. Interactive versions of
these plots are available at: https://straymat.gitlab.io/event2vec/visualizations.html
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Appendix D

Chapter 4

D.1 Motivating example: Failure of predictive models to
predict mortality from pretreatment variables

To illustrate how machine learning frameworks can fail to inform decision making, we present
a motivating example from MIMIC-IV. Using the same population and covariates as in the
main analysis (described in Table D.5), we train a predictive model for 28-day mortality.
We split the data into a training set (80%) and a test set (20%). The training set uses the
last measurements from the first 24 hours, whereas the validation set only uses the last
measurements before the administration of crystalloids. We split the train set into a train
and a validation set. We fit a HistGradientBoosting classifier 1 on the train set and evaluate
the performance on the validation set and on the test set. We see good area under the
Precision-recall curve (PR AUC) on the validation set, but a deterioration of 10 points on
the test set (Figure D.1a). The same is seen in Figure D.1b when measuring performance
with Area Under the Curve of the Receiving Operator Characteristic (ROC AUC). In
the contrary, a model trained on pre-treatment features yield competitive performance.
This failure illustrates well the shortcuts on which predictive models could rely to make
predictions. A clinically useful predictive model should support decision making –in this case,
addition of albumin to crystalloids– rather than maximizing predictive performance. In this
example, causal thinking would have helped to identify the bias introduced by post-treatment
features. In fact, these features should not be included in a causal analysis since they are
post-treatment colliders.

D.2 Estimation of Treatment effect with MIMIC data
We searched for causal inference studies in MIMIC using PubMed and Google scholar with
the following search terms ((MIMIC-III OR MIMIC-IV) AND (causal inference OR treatment
effect)). We retained eleven treatment effect studies clearly following the PICO framework:

Liu et al., 2021 studied the effect of High-flow nasal cannula oxygen (HFNC) against
noninvasive mechanical ventilation on 801 patients with hypoxemia during ventilator
weaning on 28-day mortality. They used propensity score matching, and found non-
negative effects as previous RCTs reported – though those were focused on reintubation
as the main outcome (Stéphan et al., 2015; Hernandez et al., 2016).
Yarnell et al., 2023 studied the effect of lower hypoxemia vs higher hypoxemia thresholds
for the initiation of invasive ventilation (defined with saturation-to-inspired oxygen
ratio (SF)) for 3,357 patients from MIMIC receiving inspired oxygen fraction >= 0.4
on 28-day moratlity. Using bayesian G-computation (time-varying treatment model
with gaussian process and outcome-model with BART, taking the treatment model

1https://scikit-learn.org/stable/modules/ensemble.html#histogram-based-gradient-boosting
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Fig. D.1. Failure to predict 28-day mortality from a model fitted on pre-treatment variables. The
model is trained on the last features from the whole stay and tested on two validation sets: one with all
stay features and one with last features before crystalloids administration (Pre-treatment only). The
all-stay model performance markedly decreases in the pre-treatment only dataset.

as entry), they found protective effects for initialization at low hypoxemia. However,
when externally validation their findings in the AmsterdamUMCdb dataset, they found
the highest mortality probability for patients with low hypoxemia. Authors concluded
that their model was heavily dependent on clinical context and baseline caracteristics.
There might be some starting-time bias in this study since it is really close

Hsu et al., 2015 studied the effect of indwelling arterial catheters (IACs) vs non-IAC for
1,776 patients who are mechanically ventilated and did not require vasopressor support
on 28-day mortality. They used propensity score matching and found no effect. A
notebook based on google cloud access to MIMIC-IV replicating the study is available
here.

Feng et al., 2018 studied the effect of transthoracic echocardiography vs no intervention
for 6,361 patients with sepsis on 28-day mortality. They used IPW, PSM, g-formula
and a doubly robust estimation. The propensity score was modeled with boosting
and the outcome model with a logistic regression. They found a significant positive
reduction of mortality (odd ratio 0.78, 95% CI 0.68-0.90). Study code is open source.

Gani et al., 2023 studied the effect of liberal –target SpO2 greater than 96%– vs con-
servative oxygenation –target SpO2 between 88-95%– in 4,062 mechanically ventilated
patients on 90-day mortality. They found an advantage of the liberal strategy over
liberal (ATE=0.13) by adjusting on age and apsii. This is not consistent with previous
RCTs where no effects have been reported (Panwar et al., 2016; Mackle et al., 2019).
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Shahn et al., 2020 studied the effect of fluid-limiting treatment –caped between 6
and 10 L– vs no cap on fluid administration strategies for 1,639 sepsis patients on 30
day-mortality. Using a dynamic Marginal Structural Model with IPW, they found
a protective effect of fluid-limitation on ATE -0.01 (95%CI -0.016, -0.03). This is
somehow concordant with the RIFTS RCT that found no effect of fluid limitation
(Corl et al., 2019) and two previous meta-analyses (Malbrain et al., 2014; Meyhoff
et al., 2020).

Chinaeke et al., 2021 studied the effect of statin use prior to ICU admission vs absence
of pre-ICU prescription for 8,200 patients with sepsis on 30-day mortality. Using
AIPW (no estimator reported) and PSM (logistic regression), they found a decrease on
mortality (ATE -0.039, 95%CI -0.084, -0.026). This partly supports previous findings
in Propensity Matching bases observational studies (Lee et al., 2017; Kyu Oh et al.,
2019). But all RCTs (National Heart; Network, 2014; Singh et al., 2017) found no
improvement for sepsis (not pre-admission administration though). The Wan et al.,
2014 meta-analysis concludes that there is lack of evidence for the use of statins in
sepsis with inconsistent results between RCTs (no effect) and observational studies
(protective effect).

Adibuzzaman et al., 2019 studied the effect of higher vs lower positive end-expiratory
pressures (PEEP) in 1,411 patients with Acute Respiratory Distress Syndrome (ARDS)
syndrome on 30 day mortality. Very few details on the methods were reported, but
they found a protective effect for higher PEEP consistent results from a target trial
(National Heart; Network, 2004).

Adibuzzaman et al., 2019 also studied the effect of early use of a neuromuscular blocking
agent vs placebo in 752 patients moderate-severe ARDS on 30 day mortality. Very
few details on the methods were reported, but they found a protective effect for the
use of a neuromuscular blocking agent, consistent with the results from a target trial
(Papazian et al., 2010).

Zhou et al., 2021b studied the administration of a combination of albumin within the
first 24-h after crystalloids vs crystalloids alone for 6,641 patients with sepsis on 28-day
mortality. Using PSM, they found protective effect of combination on mortality, but
insist on the importance of initialization timing. This is consistent with Xu et al.,
2014, who found a non-significant trend in favor of albumin used for severe sepsis
patients and a significant reduction for septic shock patients, both on 90-day mortality.
These results are aligned with Caironi et al., 2014 that found no effect for severe sepsis
patient but positive effect for septic shock patients.

Wang et al., 2023a studied early enteral nutrition (EN) –<=53 ICU admission hours–
vs delayed EN for 2,364 patients with sepsis and EN on acute kidney injury. With
PSM, IPW and g-formula (logistic estimator each time), they found a protective effect
(OR 0.319, 95%CI 0.245, 0.413) of EEN.

These eleven studies mainly used propensity score matching (6) and IPW (4), two of
them used Double robust methods, and only one included a non-linear estimator in either
the outcome or the treatment model. None of them performed a vibration analysis on the
confounders selection or the feature transformations. They have a strong focus on sepsis
patients. Only four of them found concordant results with previous RCTs (Liu et al., 2021;
Shahn et al., 2020; Adibuzzaman et al., 2019).
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D.3 Target trials proposal suitable to be replicated in MIMIC
Celi et al., 2016 suggested the creation of a causal inference database based on MIMIC with
a list of replicable RCTs, which has not been accomplished yet. We reviewed the following
RCTs, which could be replicated within the MIMIC-IV database. Table D.1 details the
sample sizes of the eligible, control and treated populations for the identified RCTs.

Trial name Criteria description Number of
patients

Criteria
status Implemented Meta-analysis or

target RCT reference

Fludrocortisone
combination for sepsis

Septic shock defined by the sepsis-3 criteria,
first stay, over 18, not deceased during first 24 hours of ICU 28,763 target

population ✓ (Yamamoto et al., 2020)

Hydrocortisone administred and sepsis 1,855 control ✓

Both corticoides administered and sepsis 153 intervention ✓

High flow
oxygen therapy
for hypoxemia

Over 18, hypoxemia 4 h before planed extubation
(PaO2, FiO2) ≤ 300 mmHg), and either High Flow
Nasal Cannula (HFNC) or Non Invasive Ventilation (NIV)

801 target
population ✗ (Stéphan et al., 2015)

Eligible hypoxemia and HFNC 358 intervention ✗

Eligible hypoxemia and NIV 443 control ✗

Routine oxygen for
myocardial infarction

Myocardial infarction without hypoxemia at admission:

- Myocardial infarction defined with ICD9-10 codes,
first stay, over 18, not deceased during first 24 hours of ICU

- Hypoxemia during first 2 hours defined as either
(PaO2/FiO2) leq 300mmHg OR SO2 leq 90
OR SpO2 ≤ 90

3,379 target
population ✓

(Hofmann et al., 2017),
(Stewart et al., 2021)

Myocardial infarction without hypoxemia at admission AND
Supplemental Oxygen OR Non Invasive Vent 1,901 intervention ✓

Myocardial infarction without hypoxemia at admission AND
no ventilation of any kind during first 12 hours 605 control ✓

Prone positioning
for ARDS

Acute Respiratory Distress Syndrome (ARDS) during
the first 12 hours defined as (PaO2,FiO2) leq 300mmHg,
first stay, over 18, not deceased during 24 hours of ICU

11506 trial
population ✓ (Munshi et al., 2017)

Prone positioning and ARDS 547 intervention ✓

Supline position and no prone position 10,904 control ✓

NMBA for ARDS

ARDS during the first 12 hours defined as
(PaO2,FiO2) leq 300mmHg, first stay,
over 18, not deceased during 24 hours of ICU

11,506 trial
population ✓

(Papazian et al., 2010),
(Ho et al., 2020)

Neuromuscular blocking agent (NBMA) as cisatracurium
injections during the stay. 709 intervention ✓

No NBMA during the stay 10,797 control ✓

Albumin for sepsis

Septic shock defined by the sepsis-3 criteria,
first stay, over 18, not deceased during first 24 hours
of ICU, having crystalloids

18,421 trial
population ✓

(Caironi et al., 2014),
(Li et al., 2020a),
(Tseng et al., 2020)

Sepsis-3 and crystalloids during first 24h, no albumin 14,862 control ✓

Sepsis-3 and combination of crystalloids followed by
albumin during first 24h 3,559 intervention ✓

Table D.1. Eligibility criteria and resulting populations for potential target trials in MIMIC-IV.

D.4 Major causal-inference methods

D.4.1 Causal estimators: When to use which method ?

Difference in Mean, (Splawa-Neyman et al., 1990) This is the most intuitive method
to estimate the ATE. It processes by comparing the mean of the outcome between both
populations:

τ̂DM = 1
n1

∑
Ai=1

Yi(1) − 1
n0

∑
Ai=0

Yi(0) (D.1)

In the case of randomization, we have an independence between the treatment and the
potential outcomes:

{
Y

(0)
i , Y

(1)
i

}
⊥⊥ Ai. We can thus show that this estimator is unbiased,

ie. E[τ̂DM ] = τ :
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E [Y | A = 1] = E [Y A | A = 1] Binary nature of A

= E
[
Y (1)A2 | A = 1

]
Consistency Yi = Ai Y

(1)
i + (1 − Ai) Y

(0)
i

= E
[
Y (1) | A = 1

]
Binary nature of A

= E
[
Y (1)

]
Randomization,

The same calculation with A = 0 give the result. Note that this result does not apply to
observational data, where we only have conditional randomization:

{
Y

(0)
i , Y

(1)
i

}
⊥⊥ Ai|Xi.

Thus, we should rely on more elaborated estimation strategies if the data is observational.

G-formula This estimator is also called conditional mean regression (Wendling et al.,
2018b), g-computation (Robins; Greenland, 1986), or Q-model (Snowden et al., 2011).
It is directly modeling the outcome, also referred to as the response surface: µ(a)(x) =
E (Y | A = a, X = x)

Using an outcome estimator to learn a model for the response surface µ̂ (e.g., a linear
model), the ATE estimator is an average over the n samples:

τ̂G(µ̂) = 1
n

n∑
i=1

µ̂(xi, 1) − µ̂(xi, 0) = 1
n

n∑
i=1

µ̂(1)(xi) − µ̂(0)(xi) (D.2)

This estimator is unbiased if the model of the conditional response surface µ̂(a) is well-
specified. This approach assumes than Y (a) = µa(X) + ϵa with E[ϵ|X] = 0. The main
drawback is the extrapolation of the learned outcome estimator from samples with similar
covariates X but different intervention A. Figure D.2 shows the intuition of g-formula on a
example with a single confounder.

0

1

Y
=
P[
M
or
ta
li
ty

]

Untreated outcome Y0(x)

Treated outcome Y1(x)

Predicted outcomes

Untreated outcome Y0(x)

Treated outcome Y1(x)

Predicted outcomes

0 10 20
X = Charlson score

Populations covariate distributions

Fig. D.2. G-formula fit a model on the outcome against the confounders and the treatment.
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Proof 1 (Unbiasdness of the G-formula, (Robins; Greenland, 1986)) Suppose, we
have access to the oracle mean response surfaces µ(a), then the finite sample estimator is
τ̂G(µ) = 1

n

∑n
i=1 µ(1)(xi) − µ(0)(xi)

τ(x) = E [Y (1) − Y (0) | X = x] Definition of CATE
= E [Y (1) | X = x, A = 1] − E [Y (0) | X = x, A = 0] Ignorability, eq. 1
= E [AY (1) | X = x, A = 1] − E [(1 − A)Y (0) | X = x, A = 0] Binary nature of A
= E[Y | X = x, A = 1] − E[Y | X = x, A = 0] Consistency, eq. 3
= E[τ̂G(µ)]

Note that without further parametric assumption on the conditional response surface
µ(a), the asymptotic properties of this estimator are unknown.

Propensity Score Matching (PSM) To avoid confounding bias, the ignorability assump-
tion 1) requires to contrast treated and control outcomes only between comparable patients
with respect to treatment allocation probabilities. A simple way to do this is to group
patients into bins, or subgroups, of similar confounders and contrast the two population
outcomes by matching patients inside of these bins (Stuart, 2010). However, the number
of confounder bins grows exponentially with the number of variables. Rosenbaum; Rubin,
1983 proved that matching patients on the individual probabilities to receive treatment
–propensity scores– is sufficient to verify ignorability. PSM is a conceptually simple method,
but has delicate parameters to tune such as choosing a model for the propensity score,
deciding what is the maximum distance between two potential matches (the caliper width),
the number of matches by sample, and matching with or without replacement. It also prunes
data not meeting the caliper width criteria, and suffers form high estimation variance in
highly-dimensional data where extreme propensity weights are common. Finally, the simple
bootstrap confidence intervals are not theoretically grounded (Abadie; Imbens, 2008), making
PSM more difficult to use for applied practitioners.

Inverse Propensity Weighting (IPW) A simple alternative to propensity score matching
is to weight the outcome by the inverse of the propensity score: Inverse Propensity Weighting
(Austin; Stuart, 2015). It relies on the same idea than matching but builds automatically
balanced population by reweighting the outcomes with the propensity score model ê to
estimate the ATE:

τ̂IP W (ê) = 1
n

N∑
i=1

AiYi

ê(Xi)
− (1 − Ai)Yi

(1 − ê(Xi))
(D.3)

This estimate is unbiased if ê is well-specified. IPW suffers from high variance if some
weights are too close to 0 or 1. In high-dimensional cases where poor overlap between treated
and control is common, one can clip extreme weights to limit estimation instability. Figure
D.3 illustrates the intuition of IPW on an example with a single confounder.
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Fig. D.3. IPW reweights individual to build a balanced population with respect to the treatment. It
gives more weight to treated samples having a small chance to receive the treatment (bigger blue points
on the left), and more weight to controls having a small chance to not receive the treatment (bigger
orange points on the right).

Proof 2 (Unbiasdness of IPW, (Rosenbaum; Rubin, 1983)) As an intermediary re-
sult, we need to show that the propensity score e is a balancing score, ie. if ignorability (1)
holds then {Y (1), Y (0)} ⊥⊥ A|e(X). Thus, need to prove that P[A = 1 | Y (1), Y (0), e(X)] =
P[A = 1 | e(X)] First remark that P[A = 1 | e(X)] = e(X):

P[A = 1 | e(X)] = E
[
P[A = 1 | X, e(X)] | e(X)

]
Law of total expectation

= E
[
P[A = 1 | X] | e(X)

]
X contains all information of e(X)

= E
[
e(X) | e(X)

]
by definition of the propensity score

= e(X) e(X) contains all information of e(X)

Thus, we only have to prove that P[A = 1 | Y (1), Y (0), e(X)] = e(X):

P[A = 1 | Y (1), Y (0), e(X)]
= E

[
P[A = 1 | Y (1), Y (0), X, e(X)] | Y (1), Y (0), e(X)

]
Law of total expectation

= E
[
P[A = 1 | Y (1), Y (0), X] | Y (1), Y (0), e(X)

]
X contains all information of e(X)

= E
[
P[A = 1 | X] | Y (1), Y (0), e(X)

]
ignorability

= E
[
e(X) | Y (1), Y (0), e(X)

]
by definition of the propensity score

= e(X) e(X) contains all information of e(X)

Suppose that we have access to the oracle propensity score e, then the finite sample
estimator is τ̂IP W (e) = 1

n

∑n
i=1

AiYi

e(Xi) − (1−Ai)Yi

1−e(Xi) .
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E
[ AY

e(X) ] = E
[A2Y (1)

e(X)
]

Consistency, eq. 3

= E
[A2Y (1)

e(X)
]

Binary nature of A

= E
[
E
[AY (1)

e(X) |e(X)
]]

Law of total expectation

= E
[
E
[ A

e(X) |e(X)
]
E
[
Y (1)|e(X)

]]
Ignorability and e is a balancing score

= E[Y (1)] sincee(X) = P[A = 1|X]

Doing the same calculation for A = 0 gives the result.

Doubly Robust Learning, DRL It is also called Augmented Inverse Probability Weight-
ing (AIPW) (Robins et al., 1994).

The underlying idea of DRL is to combine the G-formula and IPW estimators to protect
against a mis-specification of one of them. It first requires to estimate the two nuisance
parameters: a model for the intervention ê and a model for the outcome f .

τ̂AIP W = 1
n

n∑
i=1

(
µ̂(1) (xi) − µ̂(0) (xi) + ai

ê (xi)
(
yi − µ̂(1) (xi)

)
− 1 − ai

1 − ê (xi)
(
yi − µ̂(0) (xi)

))

= 1
n

n∑
i=1

(
aiyi

ê(xi)
− (1 − ai)yi

1 − ê(xi)
+ µ̂(1)(xi)

(
1 − ai

ê(xi)
)

− µ̂(0)(xi)
(
1 − 1 − ai

1 − ê(xi)
))

If one of the two nuisance is unbiased, the following ATE estimator is as well. We see it
easily in the previous equation. Suppose that the outcome model is unbiased. Then, looking
at the first line, we see that the first term is the G-formula estimator so it is unbiased. And the
second term has mean zero since E[Y − µ(A) | X, A = 1] = 0 and E[Y − µ(0) | X, A = 0] = 0.
Suppose now that the propensity score model is unbiased. Then, looking at the second line,
we see that the first term is the IPW estimator so it is unbiased. And the second term has
mean zero since E[1 − A

e(X) |X] = 0 and E[1 − 1−A
1−e(X) |X] = 0.

More interestingly, despite the need to estimate two models, this estimator is more
efficient in the sense that it converges quicker than single model estimators (Wager, 2020b).
For this propriety to hold, one need to fit and apply the two nuisance models in a cross-fitting
manner. This means that we split the data into K folds. Then for each fold, we fit the
nuisance models on the K-1 complementary folds, and predict on the remaining fold.

To recover Conditional Treatment Effects from the AIPW estimator, Foster; Syrgkanis,
2019 suggested to regress the Individual Treatment Effect estimates from AIPW on potential
sources of heterogeneity Xcate: τ̂ = argminτ∈Θ(τ̂AIP W (X) − τ(Xcate)) for Θ some class of
model (e.g., linear model).

Double Machine Learning (Chernozhukov et al., 2018b) It is also known as the R-
learner (Nie; Wager, 2021). It is based on the R-decomposition, (Robinson, 1988), and the
modeling of the conditional mean outcome, m(x) = E[Y |X = x] and the propensity score,
e(x) = E[A = 1|X = x]:

yi − m (xi) = (ai − e (xi)) τ (xi) + εi with εi = yi − ε [4i | xi, ai] (D.4)

126 / 182 M. Doutreligne



D.4. Major causal-inference methods

Note that we can impose that the conditional treatment effect τ(x) only relies on a subset of
the features, xcate on which we want to study treatment heterogeneity.

From this decomposition, we can derive an estimation of the ATE τ , where the right
hand-side term is the empirical R-Loss:

τ̂(·) = argminτ

{
1
n

n∑
i=1

(
(yi − m (xi)) − (ai − e(xi)) τ

(
xcate

i

))2
}

(D.5)

The full procedure for R-learning is:
Fit nuisances: m̂ and ê

Minimize the estimated R-loss eq.D.5, where the oracle nuisances (e, m) have been
replaced by their estimated counterparts (ê, m̂). Minimization can be done by regressing
the outcome residuals weighted by the treatment residuals
Get the ATE by averaging conditional treatment effect τ(xcate) over the population

This estimator has also the doubly robust proprieties described for AIPW. it should have
less variance than AIPW since it does not use the propensity score in the denominator.

D.4.2 Statistical considerations when implementing estimation
Counterfactual prediction lacks off-the-shelf cross-fitting estimators Doubly robust
methods use cross-fit estimation of the nuisance parameters, which is not available off-the-shelf
for IPW and T-Learner estimators. For reproducibility purposes, we did not reimplement
internal cross-fitting for treatment or outcome estimators. However, when flexible models
such as random forests are used, a fairer comparison between single and double robust
methods should use cross-fitting for both. This lack in the scikit-learn API reflects different
needs between purely predictive machine learning focused on generalization performance
and counterfactual prediction aiming at unbiased inference on the input data.

Good practices for imputation not implemented in EconML Good practices in
machine learning recommend to input distinctly each fold when performing cross-fitting 2.
However, EconML estimators test for missing data at instantiation preventing the use of
scikit-learn imputation pipelines. We thus have been forced to transform the full dataset
before feeding it to causal estimators. An issue mentioning the problem has been filed, so we
can hope that future versions of the package will comply with best practices. 3

Bootstrap may not yields the more efficient confidence intervals To ensure a fair
comparison between causal estimators, we always used bootstrap estimates for the confidence
intervals. However, closed form confidence intervals are available for some estimators – see
Wager, 2020b for IPW and AIPW (DRLeaner) variance estimations. These formulas exploit
the estimator properties, thus tend to have smaller confidence intervals. On the other hand,
they usually do not include the variance of the outcome and treatment estimators, which is
naturally dealt with in bootstrap confidence intervals. Closed form confidence intervals are
rarely implemented in the packages. Dowhy did not implement the well-known confidence
interval method for the IPW estimator, nor did EconML for the AIPW confidence intervals.

Bootstrap was particularly costly to run for the EconML doubly robust estimators (AIPW
and Double ML), especially when combined with random forest nuisance estimators (from 10
to 47 min depending on the aggregation choice and the estimator). See Table D.2 for details.

2https://scikit-learn.org/stable/modules/compose.html#combining-estimators
3https://github.com/py-why/EconML/issues/664

127 / 182 M. Doutreligne

https://scikit-learn.org/stable/modules/compose.html#combining-estimators
https://github.com/py-why/EconML/issues/664


D.4. Major causal-inference methods

estimation_method compute_time (sec) outcome_model event_aggregations

2 LinearDML 1128 Forests [’first’, ’last’]
3 backdoor.propensity_score_matching 200 Forests [’first’, ’last’]
4 backdoor.propensity_score_weighting 86 Forests [’first’, ’last’]
5 TLearner 284 Forests [’first’, ’last’]
6 LinearDRLearner 2855 Forests [’first’, ’last’]
7 LinearDML 50 Regularized LR [’first’, ’last’]
8 backdoor.propensity_score_matching 128 Regularized LR [’first’, ’last’]
9 backdoor.propensity_score_weighting 6 Regularized LR [’first’, ’last’]
10 TLearner 7 Regularized LR [’first’, ’last’]
11 LinearDRLearner 81 Regularized LR [’first’, ’last’]

Table D.2. Compute times for the different estimation methods with 50 bootstrap replicates.

D.4.3 Packages for causal estimation in the python ecosystem
We searched for causal inference packages in the python ecosystem. The focus was on
the identification methods. Important features were ease of installation, sklearn estimator
support, sklearn pipeline support, doubly robust estimators, confidence interval computation,
honest splitting (cross-validation), Targeted Maximum Likelihood Estimation. These criteria
are summarized in D.3. We finally chose EconML despite lacking sklearn._BaseImputer
support through the sklearn.Pipeline object as well as a TMLE implementation.

The zEpid package is primarily intended for epidemiologists. It is well documented and
provides pedagogical tutorials. It does not support sklearn estimators, pipelines and honest
splitting.

EconML implements almost all estimators except propensity score methods. Despite
focusing on Conditional Average Treatment Effect, it provides all. One downside is the lack
of support for scikit-learn pipelines with missing value imputers. This opens the door to
information leakage when imputing data before splitting into train/test folds.

Dowhy focuses on graphical models and relies on EconML for most of the causal inference
methods (identifications) and estimators. Despite, being interesting for complex inference
–such as mediation analysis or instrumental variables–, we considered that it added an
unnecessary layer of complexity for our use case where a backdoor criterion is the most
standard adjustment methodology.

Causalml implements all methods, but has a lot of package dependencies which makes it
hard to install.

Packages Simple
installation

Confidence
Intervals

sklearn
estimator

sklearn
pipeline

Propensity
estimators

Doubly Robust
estimators

TMLE
estimator

Honest splitting
(cross validation)

dowhy ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

EconML ✓ ✓ ✓
Yes except
for imputers ✗ ✓ ✗

Only for doubly
robust estimators

zEpid ✓ ✓ ✗ ✗ ✓ ✓ ✓ Only for TMLE

causalml ✗ ✓ ✓ ✓ ✓ ✓ ✓
Only for doubly
robust estimators

Table D.3. Selection criteria for causal python packages

D.4.4 Hyper-parameter search for the nuisance models
We followed a two-step procedure to train the nuisance models (e.g., (ê, µ̂) for the AIPW causal
estimator), taking inspiration from the computationally cheap procedure from Bouthillier
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D.5. Computing resources

Hyperparameter 
search

Best nuisances
hyperparameters

Dataset

Causal estimator

Fit nuisances Compute ATE

Fig. D.4. Hyper-parameter search procedure.

estimator nuisance Grid
Estimator type
Linear LogisticRegression treatment {’C’: logspace(-3, 2, 10)}
Linear Ridge outcome {’alpha’: logspace(-3, 2, 10)}
Forest RandomForestClassifier treatment {’n_estimators’: [’10’, ’100’, ’200’], ’max_depth’: [’3’, ’10’, ’50’]}
Forest RandomForestRegressor outcome {’n_estimators’: [’10’, ’100’, ’200’], ’max_depth’: [’3’, ’10’, ’50’]}

Table D.4. Hyper-parameter grid used during random search optimization.

et al., 2021a, section 3.3. First, for each nuisance model, we fit a random parameter search
with 5-fold cross validation and 10 iterations on the full dataset. Each iteration fit a model
with a random combination of parameters in a predefined grid, then evaluate the performance
by cross-validation. The best hyper-parameters λ̂⋆ are selected as the ones reaching the
minimal score across all iterations. Then, we feed this parameters to the causal estimator.
The single robust estimators (matching, IPW and TLearner) refit the corresponding estimator
only once on the full dataset, then estimate the ATE. The doubly-robust estimators use
a cross-fitting procedure (K=5) to fit the nuisances then estimate the ATE. Figure D.4
illustrates the procedure and Table D.4 details the hyper-parameters grid for the random
search.

D.5 Computing resources
The whole project was run on a laptop running Ubuntu 22.04.2 LTS with the following
hardware: CPU 12th Gen Intel(R) Core(TM) i7-1270P with 16 threads and 15 GB of RAM.

D.6 Selection flowchart
Figure D.5 details the selection flowchart for the emulated trial.

D.7 Complete description of the confounders for the main
analysis

Figure D.5 detail the characteristics of the emulated trial population with all confounders
used in our study.
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Fig. D.5. Selection flowchart on MIMIC-IV for the emulated trial.

D.8 Complete results for the main analysis
Compared to figure 4.7, we also report in figure D.6 the estimates for Causal forest estimators
and other choices of feature aggregation (first and last).

D.9 Complete results for the Immortal time bias
Compared to figure 4.3, we also report in figure D.7 the estimates for Double Machine
Learning, Inverse Propensity Weighting for both Random Forest and Ridge Regression.
Feature aggregation was concatenation of first and last for all estimates.

D.10 Vibration analysis for aggregation
We conducted a dedicated vibration analysis on the different choices of features aggregation,
studying the impact on the estimated ATE. We also studied if some choices of aggregation
led to substantially poorer overlap.

We assessed overlap with two different methods. As recommended by (Austin; Stuart,
2015), we did a graphical assessment by plotting the distribution of the estimated. The
treatment model hyper-parameters were chosen by random search, then predicted propensity

130 / 182 M. Doutreligne



D.10. Vibration analysis for aggregation

scores were obtained by refitting this estimator with cross-fitting on the full dataset.

As shown in Figure D.8, we did not find substantial differences between methods when
plotting graphically the distribution of the estimated propensity score.

We also used normalized total variation (NTV) as a summary statistic of the estimated
propensity score to measure the distance between treated and control population (Doutreligne;
Varoquaux, 2023). This statistic varies between 0 – perfect overlap – and 1 – no overlap at all.
Fig D.9 shows no marked differences in overlap as measured by NTV between aggregation
choices, comforting us in our expert-driven choice of the aggregation: a concatenation of
first and last feature observed before inclusion time.

Missing Overall Cristalloids only Cristalloids + Albumin P-Value

n 18421 14862 3559
Glycopeptide, n (%) 9492 (51.5) 7650 (51.5) 1842 (51.8)
Beta-lactams, n (%) 5761 (31.3) 5271 (35.5) 490 (13.8)
Carbapenems, n (%) 727 (3.9) 636 (4.3) 91 (2.6)
Aminoglycosides, n (%) 314 (1.7) 290 (2.0) 24 (0.7)
suspected_infection_blood, n (%) 170 (0.9) 149 (1.0) 21 (0.6)
RRT, n (%) 229 (1.2) 205 (1.4) 24 (0.7)
ventilation, n (%) 16376 (88.9) 12931 (87.0) 3445 (96.8)
vasopressors, n (%) 9058 (49.2) 6204 (41.7) 2854 (80.2)
Female, n (%) 7653 (41.5) 6322 (42.5) 1331 (37.4)
White, n (%) 12366 (67.1) 9808 (66.0) 2558 (71.9)
Emergency admission, n (%) 9605 (52.1) 8512 (57.3) 1093 (30.7)
Insurance, Medicare, n (%) 9727 (52.8) 7958 (53.5) 1769 (49.7)
myocardial_infarct, n (%) 3135 (17.0) 2492 (16.8) 643 (18.1)
malignant_cancer, n (%) 2465 (13.4) 2128 (14.3) 337 (9.5)
diabetes_with_cc, n (%) 1633 (8.9) 1362 (9.2) 271 (7.6)
diabetes_without_cc, n (%) 4369 (23.7) 3532 (23.8) 837 (23.5)
metastatic_solid_tumor, n (%) 1127 (6.1) 1016 (6.8) 111 (3.1)
severe_liver_disease, n (%) 1289 (7.0) 880 (5.9) 409 (11.5)
renal_disease, n (%) 3765 (20.4) 3159 (21.3) 606 (17.0)
aki_stage_0.0, n (%) 7368 (40.0) 6284 (42.3) 1084 (30.5)
aki_stage_1.0, n (%) 4019 (21.8) 3222 (21.7) 797 (22.4)
aki_stage_2.0, n (%) 6087 (33.0) 4605 (31.0) 1482 (41.6)
aki_stage_3.0, n (%) 947 (5.1) 751 (5.1) 196 (5.5)
SOFA, mean (SD) 0 6.0 (3.5) 5.7 (3.4) 6.9 (3.6) <0.001
SAPSII, mean (SD) 0 40.3 (14.1) 39.8 (14.1) 42.8 (13.6) <0.001
Weight, mean (SD) 97 83.3 (23.7) 82.5 (24.2) 86.4 (21.2) <0.001
temperature, mean (SD) 966 36.9 (0.6) 36.9 (0.6) 36.8 (0.6) <0.001
mbp, mean (SD) 0 75.6 (10.2) 76.3 (10.7) 72.4 (7.2) <0.001
resp_rate, mean (SD) 9 19.3 (4.3) 19.6 (4.4) 18.0 (3.8) <0.001
heart_rate, mean (SD) 0 86.2 (16.3) 86.2 (16.8) 86.5 (14.3) 0.197
spo2, mean (SD) 4 97.4 (2.2) 97.3 (2.3) 98.0 (2.1) <0.001
lactate, mean (SD) 4616 3.0 (2.5) 2.8 (2.4) 3.7 (2.6) <0.001
urineoutput, mean (SD) 301 24.0 (52.7) 24.7 (58.2) 21.1 (16.6) <0.001
admission_age, mean (SD) 0 66.3 (16.2) 66.1 (16.8) 67.3 (13.1) <0.001
delta mortality to inclusion, mean (SD) 11121 316.9 (640.2) 309.6 (628.8) 365.0 (708.9) 0.022
delta intervention to inclusion, mean (SD) 14862 0.3 (0.2) nan (nan) 0.3 (0.2) nan
delta inclusion to intime, mean (SD) 0 0.1 (0.2) 0.1 (0.2) 0.1 (0.1) 0.041
delta ICU intime to hospital admission, mean (SD) 0 1.1 (3.7) 1.0 (3.7) 1.6 (3.4) <0.001
los_hospital, mean (SD) 0 12.6 (12.5) 12.6 (12.5) 12.9 (12.4) 0.189
los_icu, mean (SD) 0 5.5 (6.7) 5.5 (6.5) 5.5 (7.2) 0.605

Table D.5. Characteristics of the trial population measured on the first 24 hours of ICU stay.
Risk scores (AKI, SOFA, SAPSII) and lactates have been summarized as the maximum value during the
24 hour period for each stay. Total cumulative urine output has been computed. Other variables have
been aggregated by taking mean during the 24 hour period.
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0.15 0.10 0.05 0.00 0.05 0.10
ATE on 28-day mortality

  Agg=['first', 'last'], Est=Forests                   -0.00(-0.01 to  0.01)

  Agg=['first'], Est=Forests                           -0.01(-0.02 to  0.00)

  Agg=['first', 'last'], Est=Regularized Linear Model  -0.08(-0.15 to -0.02)

  Agg=['first'], Est=Regularized Linear Model          -0.08(-0.14 to -0.01)

Doubly Robust (AIPW)
  Agg=['first', 'last'], Est=Forests                   -0.01(-0.02 to -0.00)

  Agg=['first'], Est=Forests                           -0.02(-0.03 to -0.01)

  Agg=['first', 'last'], Est=Regularized Linear Model  -0.06(-0.07 to -0.04)

  Agg=['first'], Est=Regularized Linear Model          -0.07(-0.08 to -0.05)

Double Machine Learning
  Agg=['first', 'last'], Est=Forests                   -0.01(-0.21 to  0.18)

  Agg=['first'], Est=Forests                           -0.01(-0.21 to  0.18)

  Agg=['first', 'last'], Est=Regularized Linear Model  -0.05(-0.12 to  0.02)

  Agg=['first'], Est=Regularized Linear Model          -0.05(-0.12 to  0.01)

Outcome model (TLearner)
  Agg=['first', 'last'], Est=Forests                   -0.03(-0.04 to -0.02)

  Agg=['first'], Est=Forests                           -0.03(-0.05 to -0.02)

  Agg=['first', 'last'], Est=Regularized Linear Model  -0.03(-0.06 to  0.00)

  Agg=['first'], Est=Regularized Linear Model          -0.03(-0.06 to  0.01)

Inverse Propensity Weighting
  Agg=['first', 'last'], Est=Forests                    0.67( 0.67 to  1.48)

  Agg=['first'], Est=Forests                           -0.04(-0.05 to -0.01)

  Agg=['first', 'last'], Est=Regularized Linear Model   0.01(-0.00 to  0.04)

  Agg=['first'], Est=Regularized Linear Model          -0.02(-0.04 to -0.01)

Propensity Score Matching
  RCT Gold Standard (Caironi et al. 2014)              -0.00(-0.05 to  0.05)

  Difference in mean                                   -0.07(-0.07 to -0.07)

ATE (95% bootstrap confidence interval)

Outlier 

Albumin more efficient Albumin less efficient

Fig. D.6. Full sensitivity analysis: The estimators with forest nuisances point to no effect for almost
every causal estimator consistently with the RCT gold standard. Only matching with forest yields an
unconvincingly high estimate. Linear nuisance used with doubly robust methods suggest a reduced
mortality risk for albumin. The choices of aggregation only marginally modify the results expect for
propensity score matching. The green diamonds depict the mean effect and the bar are the 95%
confidence intervals obtained by 50 bootstrap repetitions.

D.11 Details on treatment heterogeneity analysis

D.11.1 Detailed estimation procedure
The estimation of heterogeneous effect based on Double Machine Learning adds another step
after the computation, regressing the residuals of the outcome nuisance Ỹ −µ(X) against the
residuals of the treatment nuisance Ã = A − e(X) with the heterogeneity features XCAT E.
Noting the final CATE model θ, Double ML solves:

argmin
θ

En

[
(Ỹ − θ(XCAT E) · Ã)2

]
Where Ỹ = Y − µ̂(X, A) and Ã = A − ê(X)
To avoid the over-fitting of this last regression model, we split the dataset of the main

analysis into a train set (size=0.8) where the causal estimator and the final model are learned,
and a test set (size=0.2) on which we report the predicted Conditional Average Treatment
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  Est=DR (AIPW) + Forests             -0.02(-0.03 to -0.01)
  Est=DR (AIPW) + Regularized Linear  -0.06(-0.11 to -0.01)
  Est=Double ML + Forests             -0.01(-0.03 to  0.01)
  Est=Double ML + Regularized Linear  -0.06(-0.08 to -0.04)
  Est=IPW + Forests                   -0.04(-0.06 to -0.02)
  Est=IPW + Regularized Linear        -0.04(-0.07 to -0.01)
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  Est=DR (AIPW) + Forests             -0.00(-0.01 to  0.01)
  Est=DR (AIPW) + Regularized Linear  -0.09(-0.14 to -0.03)
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  Est=Double ML + Regularized Linear  -0.06(-0.07 to -0.05)
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  Est=IPW + Regularized Linear        -0.03(-0.05 to -0.01)
Observation period: 24h
  Est=DR (AIPW) + Forests              0.01(-0.01 to  0.03)
  Est=DR (AIPW) + Regularized Linear  -0.03(-0.07 to  0.01)
  Est=Double ML + Forests              0.01(-0.01 to  0.03)
  Est=Double ML + Regularized Linear  -0.02(-0.04 to  0.00)
  Est=IPW + Forests                   -0.02(-0.05 to -0.00)
  Est=IPW + Regularized Linear        -0.01(-0.03 to  0.02)
Observation period: 6h
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Fig. D.7. Sensitivity analysis for immortal time bias: Every choice of estimates show an improvement of
the albumin treatment when increasing the observation period, thus increasing the blank period between
inclusion and administration of albumin. Aggregation was concatenation of first and last features. The
green diamonds depict the mean effect and the bar are the 95% confidence intervals obtained by 50
bootstrap repetitions.
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Fig. D.8. Different choices of aggregation yield qualitatively close distributions of the propensity score:
Figure D.8a)a) shows a concatenation of first, last and median measures whereas Figure D.8b)b) shows
an aggregation by taking the first measure only. The underlying treatment effect estimator is a random
forest.

Effects.

D.11.2 Known heterogeneity of treatment for the emulated trial
Caironi et al., 2014 observed statistical differences in the post-hoc subgroup analysis between
patient with and without septic shock at inclusion. They found increasing treatment effect
measured as relative risk for patients with septic shock (RR=0.87; 95% CI, 0.77 to 0.99 vs
1.13;95% CI, 0.92 to 1.39).
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Investigators, 2007 conducted a post-hoc subgroup analysis of patients with or without
brain injury –defined as Glasgow Coma Scale between 3 to 8–. The initial population was
patients with traumatic brain injury (defined as history or evidence on A CT scan of head
trauma, and a GCS score <= 13). They found higher mortality rate at 24 months in the
albumin group for patients with severe head injuries.

Zhou et al., 2021b conducted a subgroup analysis on age (<60 vs >60), septic shock and
sex. They conclude for increasing treatment effect measured as Restricted Mean Survival
Time for Sepsis vs septic shock (3.47 vs. 2.58), for age >=60 (3.75 vs 2.44), for Male (3.4 vs
2.69). None of these differences were statistically significant.

D.11.3 Vibration analysis
The choice of the final model for the CATE estimation should also be informed by statistical
and clinical rationals. Figure D.10 shows the distribution of the individual effects of a final
random forest estimator, yielding CATE estimates that are not consistent with the main
ATE analysis. Figure D.11 shows that the choice of this final model imposes a inductive
bias on the form of the heterogeneity and different sources of noise depending of the nature
of the model. A random forest is more noisy than a linear model. Figure D.11 shows the
difference of modelization on the subpopulation of non white male patients without septic
shock. One see that the downside linear trend is reflected by the forest only for patients
aged between 55 and 80.

0.15 0.10 0.05 0.00 0.05
ATE on 28-day mortality

  Agg=['first', 'last', 'median'], Est=Forests             -0.00(-0.01 to  0.01)
  Agg=['first'], Est=Forests                               -0.01(-0.02 to  0.00)
  Agg=['last'], Est=Forests                                -0.02(-0.03 to -0.00)
  Agg=['median'], Est=Forests                              -0.01(-0.02 to  0.00)
  Agg=['first', 'last', 'median'], Est=Regularized Linear  -0.08(-0.14 to -0.02)
  Agg=['first'], Est=Regularized Linear                    -0.08(-0.14 to -0.02)
  Agg=['last'], Est=Regularized Linear                     -0.09(-0.14 to -0.03)
  Agg=['median'], Est=Regularized Linear                   -0.10(-0.16 to -0.04)
Doubly Robust (AIPW)
  Agg=['first', 'last', 'median'], Est=Forests             -0.01(-0.02 to -0.00)
  Agg=['first'], Est=Forests                               -0.02(-0.03 to -0.01)
  Agg=['last'], Est=Forests                                -0.03(-0.04 to -0.02)
  Agg=['median'], Est=Forests                              -0.02(-0.04 to -0.01)
  Agg=['first', 'last', 'median'], Est=Regularized Linear  -0.06(-0.07 to -0.05)
  Agg=['first'], Est=Regularized Linear                    -0.07(-0.08 to -0.05)
  Agg=['last'], Est=Regularized Linear                     -0.07(-0.08 to -0.06)
  Agg=['median'], Est=Regularized Linear                   -0.07(-0.08 to -0.05)
Double Machine Learning
  Agg=['first', 'last', 'median'], Est=Forests             -0.03(-0.05 to -0.01)
  Agg=['first'], Est=Forests                               -0.03(-0.05 to -0.02)
  Agg=['last'], Est=Forests                                -0.04(-0.05 to -0.02)
  Agg=['median'], Est=Forests                              -0.04(-0.05 to -0.02)
  Agg=['first', 'last', 'median'], Est=Regularized Linear  -0.03(-0.05 to -0.00)
  Agg=['first'], Est=Regularized Linear                    -0.03(-0.05 to  0.00)
  Agg=['last'], Est=Regularized Linear                     -0.04(-0.06 to -0.02)
  Agg=['median'], Est=Regularized Linear                   -0.04(-0.07 to -0.02)
Inverse Propensity Weighting
  RCT Gold Standard (Caironi et al. 2014)                  -0.00(-0.05 to  0.05)
  Difference in mean                                       -0.07(-0.07 to -0.07)

Variable                                                 
ATE (95% bootstrap confidence interval)
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Fig. D.9. Vibration analysis dedicated to the aggregation choices. The choices of aggregation only
marginally modify the results. When assessed with Normalized Total Variation, the overlap assumption
is respected for all our choices of aggregation. The green diamonds depict the mean effect and the bar
are the 95% confidence intervals obtained by 50 bootstrap repetitions.
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Fig. D.10. Distribution of Conditional Average Treatment effects on sex, age, race and pre-treatment
septic shock estimated with a final forest estimator. The CATE are positive for each subgroups, which is
not consistent with the null treatment effect obtained in the main analysis. The boxes contain between
the 25th and 75th percentiles of the CATE distributions with the median indicated by a vertical line.
The whiskers extends to 1.5 the inter-quartile range of the distribution.
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Fig. D.11. Distribution of Conditional Average Treatment effects on sex, age, race and pre-treatment
septic shock plotted for different ages. On the top the final estimator is a linear model; on the bottom,
it is a random forest. The forest-based CATE displays more noisy trends than the linear-based CATE.
This suggest that the flexibility of the random forest might be underfitting the data.
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Fig. D.12. Figure D.11 on the subpopulation of white male patients without septic shock. Contrary to
the ridge regression (on top) inducing a nicely interpretable trend, using random forests as the final
estimator failed to recover CATE on ages: the predicted estimates do not exhibit any trend and display
inconsistently large effect sizes, suggesting data underfitting.
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Appendix E

Chapter 5

E.1 Variability of ATE estimation on ACIC 2016
Figure 5.1 shows ATE estimations for six different models used in g-computation estimators
on the 76 configurations of the ACIC 2016 dataset. Outcome models are fitted on half of
the data and inference is done on the other half –ie. train/test with a split ratio of 0.5. For
each configuration, and each model, this train test split was repeated ten times, yielding non
parametric variance estimates (Bouthillier et al., 2021b).

Outcome models are implemented with scikit-learn (Pedregosa et al., 2011) and the
following hyper-parameters:

Outcome Model Hyper-parameters grid
Random Forests Max depth: [2, 10]
Ridge regression without treatment interaction Ridge regularization: [0.1]
Ridge regression with treatment interaction Ridge regularization: [0.1]

Table E.1. Hyper-parameters grid used for ACIC 2016 ATE variability

E.2 Proofs: Links between feasible and oracle risks
E.2.1 Upper bound of τ -risk with µ-riskIPW

For the bound with the µ-riskIP W , we will decompose the CATE risk on each factual
population risks:

Definition 7 (Population Factual µ-risk) (Shalit et al., 2017)

µ-riska(f) =
∫

Y×X
(y − f(x; A = a))2p(y; x = x | A = a) dydx

Applying Bayes rule, we can decompose the µ-risk on each intervention:

µ-risk(f) = pA µ-risk1(f) + (1 − pA) µ-risk0(f)with pA = P(A = 1)

These definitions allows to state a intermediary result on each population:

Lemma 1 (Mean-variance decomposition) We need a reweighted version of the classi-
cal mean-variance decomposition.

For an outcome model f : x × A → X . Let the inverse propensity weighting function
w(a; x) = ae(x)−1 + (1 − a)(1 − e(x))−1.∫

X
(µ1(x) − f(x; 1))2p(x)dx = pAµ-riskIP W,1(w, f) − σ2

Bayes(1)
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And ∫
X

(µ0(x) − f(x; 0))2p(x)dx = (1 − pA)µ-riskIP W,0(w, f) − σ2
Bayes(0)

Proof 3

pAµ-riskIP W,1(w, f) =
∫

X ×Y

1
e(x)(y − f(x; 1))2p(y | x; A = 1)p(x; A = 1)dydx

=
∫

X ×Y
(y − f(x; 1))2p(y | x; A = 1)p(x; A = 1)

p(x; A = 1)p(x)dydx

=
∫

X ×Y

[
(y − µ1(x))2 + (µ1(x) − f(x; 1))2 + 2 (y − µ1(x)) (µ1(x) − f(x, 1))

]
p(y | x; A = 1)p(x)dydx

=
∫

X

[ ∫
Y

(y − µ1(x))2p(y | x; A = 1)dy
]
p(x)dx +

∫
X ×Y

(µ1(x) − f(x; 1))2 p(x)p(y | x; A = 1)dxdy

+ 2
∫

X

[ ∫
Y

(y − µ1(x)) p(y | x; A = 1)dy
]

(µ1(x) − f(x, 1)) p(x)dx

=
∫

X
σ2

y(x, 1)p(x)dx +
∫

X
(µ1(x) − f(x; 1))2 p(x)dx + 0

Proposition 1 (Upper bound with mu-IPW) Let f be a given outcome model, let the
weighting function w be the Inverse Propensity Weight w(x; a) = a

e(x) + 1−a
1−e(x) . Then, under

overlap (assumption 2),

τ -risk(f) ≤ 2 µ-riskIP W (w, f) − 2 (σ2
Bayes(1) + σ2

Bayes(0))

Proof 4

τ -risk(f) =
∫

X
(µ1(x) − µ0(x) − (f(x; 1) − f(x; 0))2p(x)dx

By the triangle inequality (u + v)2 ≤ 2(u2 + v2):

τ -risk(f) ≤ 2
∫

X

[
(µ1(x) − f(x; 1))2 +

(µ0(x) − f(x; 0))2
]
p(x)dx

Applying Lemma 1,

τ -risk(f) ≤ 2
[
pAµ-riskIP W,1(w, f)+

(1 − pA)µ-riskIP W,0(w, f)(w, f)
]

− 2(σ2
Bayes(0) + σ2

Bayes(1))
= 2µ-riskIP W (w, f) − 2(σ2

Bayes(0) + σ2
Bayes(1))

E.2.2 Reformulation of the R-risk as reweighted τ -risk
Proposition 2 (R-risk as reweighted τ-risk) Proof 5 We consider the R-decomposition:
(Robinson, 1988),

y(a) = m(x) +
(
a − e(x)

)
τ(x) + ε(x; a) (E.1)

Where E[ε(X; A)|X, A] = 0 We can use it as plug in the R-risk formula:
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R-risk(f) =
∫

Y×X ×A
[(y − m(x)) −

(
a − e(x)

)
τf (x)]2p(y; x; a)dydxda

=
∫

Y×X ×A

[(
a − e(x)

)
τ(x) + ε(x; a) −

(
a − e(x)

)
τf (x)

]2
p(y; x; a)dydxda

=
∫

X ×A

(
a − e(x)

)2(
τ(x) − τf (x)

)2
p(x; a)dxda

+ 2
∫

Y×X ×A

(
a − e(x)

)(
τ(x) − τf (x)

) ∫
Y

ε(x; a)p(y | x; a)dyp(x; a)dxda

+
∫

X ×A

∫
Y

ε2(x; a)p(y | x; a)dyp(x; a)dxda

The first term can be decomposed on control and treated populations to force e(x) to
appear: ∫

X

(
τ(x) − τf (x)

)2
[
e(x)2p(x; 0) +

(
1 − e(x)

)2
p(x; 1)

]
dx

=
∫

X

(
τ(x) − τf (x)

)2
[
e(x)2

(
1 − e(x)

)
p(x) +

(
1 − e(x)

)2
e(x)p(x)

]
dx

=
∫

X
(τ(x) − τf (x))2(1 − e(x))e(x)[1 − e(x) + e(x)]p(x)dx

=
∫

X
(τ(x) − τf (x))2(1 − e(x))e(x)p(x)dx.

The second term is null since, E[ε(x, a)|X, A] = 0.
The third term corresponds to the modulated residuals 5.3 : σ̃2

B(0) + σ̃2
B(1)

E.3 Measuring overlap
Motivation of the Normalized Total Variation Computing overlap when working
only on samples of the observed distribution, outside of simulation, requires a sophisticated
estimator of discrepancy between distributions, as two data points never have the same
exact set of features. Maximum Mean Discrepancy (Gretton et al., 2012) is typically used
in the context of causal inference (Shalit et al., 2017; Johansson et al., 2022). However it
needs a kernel, typically Gaussian, to extrapolate across neighboring observations. We prefer
avoiding the need to specify such a kernel, as it must be adapted to the data which is tricky
with categorical or non-Gaussian features, a common situation for medical data.

For simulated and some semi-simulated data, we have access to the probability of
treatment for each data point, which sample both densities in the same data point. Thus, we
can directly use distribution discrepancy measures and rely on the Normalized Total Variation
(NTV) distance to measure the overlap between the treated and control propensities. This is
the empirical measure of the total variation distance (Sriperumbudur et al., 2009) between
the distributions, TV (P(X|A = 1),P(X|A = 0)). As we have both distribution sampled on
the same points, we can rewrite it a sole function of the propensity score, a low dimensional
score more tractable than the full distribution P(X|A):

N̂TV (e, 1 − e) = 1
2N

N∑
i=1

∣∣∣e(xi)
pA

− 1 − e(xi)
1 − pA

∣∣∣ (E.2)

Formally, we can rewrite NTV as the Total Variation distance between the two population
distributions. For a population O = (Y (A), X, A) ∼ D:
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NTV (O) = 1
2N

N∑
i=1

∣∣∣e(xi)
pA

− 1 − e(xi)
1 − pA

∣∣∣
= 1

2N

N∑
i=1

∣∣∣P (A = 1|X = xi)
pA

− P (A = 0|X = xi)
1 − pA

∣∣∣
Thus NTV approximates the following quantity in expectation over the data distribution

D:

NTV (D) =
∫

X

∣∣∣p(A = 1|X = x)
pA

− p(A = 0|X = x)
1 − pA

∣∣∣p(x)dx

=
∫

X

∣∣∣p(A = 1, X = x)
pA

− p(A = 0, X = x)
1 − pA

∣∣∣dx

=
∫

X

∣∣∣p(X = x|A = 1) − p(X = x|A = 0)
∣∣∣dx

For countable sets, this expression corresponds to the Total Variation distance between
treated and control populations covariate distributions : TV (p0(x), p1(x)).

Measuring overlap without the oracle propensity scores For ACIC 2018, or for
non-simulated data, the true propensity scores are not known. To measure overlap, we rely
on flexible estimations of the Normalized Total Variation, using gradient boosting trees to
approximate the propensity score. Empirical arguments for this plug-in approach is given in
Figure E.1.

Empirical arguments We show empirically that NTV is an appropriate measure of
overlap by :

Comparing the NTV distance with the MMD for Caussim which is gaussian distributed
in Figure E.3,
Verifying that setups with penalized overlap from ACIC 2016 have a higher total
variation distance than unpenalized setups in Figure E.2.
Verifying that the Inverse Propensity Weights extrema (the inverse of the ν overlap
constant appearing in the overlap Assumption 2) positevely correlates with NTV for
Caussim, ACIC 2016 and Twins in Figure E.4. Even if the same value of the maximum
IPW could lead to different values of NTV, we expect both measures to be correlated :
the higher the extrem propensity weights, the higher the NTV.

Estimating NTV in practice Finally, we verify that approximating the NTV distance
with a learned plug-in estimates of e(x) is reasonnable. We used either a logistic regression
or a gradient boosting classifier to learn the propensity models for the three datasets where
we have access to the ground truth propensity scores: Caussim, Twins and ACIC 2016. We
respectively sampled 1000, 1000 and 770 instances of these datasets with different seeds and
overlap settings. We first run a hyperparameter search with cross-validation on the train
set, then select the best estimator. We refit on the train set this estimator with or without
calibration by cross validation and finally estimate the normalized TV with the obtained
model. This training procedure reflects the one described in Algorithm 1 where nuisance
models are fitted only on the train set.
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(a) Uncalibrated classifiers
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(b) Calibrated classifiers
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Fig. E.1. a) Without calibration, estimation of NTV is not trivial even for boosting models. b)
Calibrated classifiers are able to recover the true Normalized Total Variation for all datasets where it is
available.

The hyper parameters are : learning rate ∈ [1e − 3, 1e − 2, 1e − 1, 1], minimum samples
leaf ∈ [2, 10, 50, 100, 200] for boosting and L2 regularization ∈ [1e − 3, 1e − 2, 1e − 1, 1] for
logistic regression.

Results in Figure E.1 comparing bias to the true normalized Total Variation of each
dataset instances versus growing true NTV indicate that calibration of the propensity model
is crucial to recover a good approximation of the NTV.

E.4 Experiments

E.4.1 Details on the data generation process

We use Gaussian-distributed covariates and random basis expansion based on Radial Basis
Function kernels. A random basis of RBF kernel enables modeling non-linear and complex
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Fig. E.2. NTV recovers well the overlap settings described in the ACIC paper (Dorie et al., 2019)
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Fig. E.4. Maximal value of Inverse Propensity Weights increases exponentially with the overlap as
measure by Normalized Total Variation.

relationships between covariates in a similar way to the well known spline expansion. The
estimators of the response function are learned with a linear model on another random basis
(which can be seen as a stochastic approximation of the full data kernel (Rahimi; Recht,
2008)). We carefully control the overlap between treated and control populations, a crucial
assumption for causal inference.

The raw features for both populations are drawn from a mixture of Gaussians: P(X) =
pAP(X|A = 1) + (1 − pA)P(X|A = 0) where P(x|A = a) is a rotated Gaussian:

P(x|A = a) = W · N
( [(1 − 2a)θ

0

]
;
[
σ0 0
0 σ1

] )
(E.3)

with θ a parameter controlling overlap (bigger yields poorer overlap), W a random
rotation matrix and σ2

0 = 2; σ2
1 = 5.

This generation process allows to analytically compute the oracle propensity scores
e(x), to simply control for overlap with the parameter θ, the distance between the two
Gaussian main axes and to visualize response surfaces.
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A basis expansion of the raw features increases the problem dimension. Using Radial
Basis Function (RBF) Nystroem transformation 1, we expand the raw features into
a transformed space. The basis expansion samples randomly a small number of
representers in the raw data. Then, it computes an approximation of the full N-
dimensional kernel with these basis components, yielding the transformed features
z(x).
We generate the basis following the original data distribution, [b1..bD] ∼ P(x), with
D=2 in our simulations. Then, we compute an approximation of the full kernel
of the data generation process RBF (x, ·) with x ∼ P(x) with these representers:
z(x) = [RBFγ(x, bd)]d=1..D · ZT ∈ RD with RBFγ being the Gaussian kernel K(x, y) =
exp(−γ||x − y||2) and Z the normalization constant of the kernel basis, computed as
the root inverse of the basis kernel Z = [K(bi, bj)]−1/2

i,j∈1..D

Functions µ0, τ are distinct linear functions of the transformed features:

µ0(x) =
[
z(x); 1

]
· βT

µ

τ(x) =
[
z(x); 1

]
· βT

τ

Adding a Gaussian noise, ε ∼ N (0, σ(x; a)), we construct the potential outcomes:
y(a) = µ0(x) + a τ(x) + ε(x, a)

We generated 1000 instances of this dataset with uniformly random overlap parameters
θ ∈ [0, 2.5].

E.4.2 Model selection procedures
Nuisances estimation The nuisances are estimated with a stacked regressor inspired by
the Super Learner framework, (Laan et al., 2007). The hyper-parameters are optimized with
a random search with following search grid detailed in Table E.2. All implementations come
from scikit-learn (Pedregosa et al., 2011).

Model Estimator Hyper-parameters grid
Outcome, m StackedRegressor ridge regularization: [0.0001, 0.001, 0.01, 0.1, 1, 10, 100]

(HistGradientBoostingRegressor, ridge) HistGradientBoostingRegressor learning rate: [0.01, 0.1, 1]
HistGradientBoostingRegressor max leaf nodes: [10, 20, 30, 50]

Treatment, e StackedClassifier LogisticRegression C: [0.0001, 0.001, 0.01, 0.1, 1, 10, 100]
(HistgradientBoostingClassifier, LogisticRegression) HistGradientBoostingClassifier learning rate: [0.01, 0.1, 1]

HistGradientBoostingClassifier max leaf nodes: [10, 20, 30, 50]

Table E.2. Hyper-parameters grid used for nuisance models

E.4.3 Additional Results
Definition of the Kendall’s tau, κ The Kendall’s tau is a widely used statistics to
measure the rank correlation between two set of observations. It measures the number of

1We use the Sklearn implementation, (Pedregosa et al., 2011)
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Strong Overlap Weak Overlap
Median IQR Median IQR

Metric Dataset

µ̂−risk

Twins (N= 11 984) -0.32 0.12 -0.19 0.12
ACIC 2016 (N=4 802) -0.03 0.13 0.11 0.19
Caussim (N=5 000) -0.40 0.55 -0.16 0.31
ACIC 2018 (N=5 000) 0.00 0.30 0.01 0.40

µ̂−riskIP W

Twins (N= 11 984) -0.31 0.13 -0.17 0.12
ACIC 2016 (N=4 802) -0.02 0.13 0.11 0.19
Caussim (N=5 000) -0.34 0.50 0.09 0.31
ACIC 2018 (N=5 000) 0.00 0.30 -0.01 0.43

µ̂−risk
∗
IP W

Twins (N= 11 984) -0.32 0.13 -0.17 0.13
ACIC 2016 (N=4 802) -0.02 0.13 0.11 0.21
Caussim (N=5 000) -0.33 0.54 0.26 0.27

τ̂−riskIP W

Twins (N= 11 984) 0.13 0.12 0.27 0.12
ACIC 2016 (N=4 802) -0.07 0.18 0.05 0.31
Caussim (N=5 000) -0.19 0.43 -0.14 0.18
ACIC 2018 (N=5 000) -0.16 0.40 -0.11 0.66

τ̂−risk
∗
IP W

Twins (N= 11 984) 0.12 0.14 0.20 0.16
ACIC 2016 (N=4 802) -0.03 0.16 -0.09 0.43
Caussim (N=5 000) -0.15 0.46 -0.17 0.19

Û − risk

Twins (N= 11 984) 0.13 0.12 0.02 0.25
ACIC 2016 (N=4 802) 0.04 0.11 0.11 0.26
Caussim (N=5 000) 0.04 0.43 -0.04 0.17
ACIC 2018 (N=5 000) 0.12 0.26 -0.02 0.50

Û − risk
∗

Twins (N= 11 984) 0.25 0.08 -0.41 0.45
ACIC 2016 (N=4 802) 0.08 0.13 -0.59 0.57
Caussim (N=5 000) 0.46 0.12 0.02 0.44

R̂ − risk

Twins (N= 11 984) 0.15 0.10 0.25 0.18
ACIC 2016 (N=4 802) 0.07 0.12 0.22 0.15
Caussim (N=5 000) 0.34 0.26 0.13 0.21
ACIC 2018 (N=5 000) 0.13 0.27 0.21 0.47

R̂ − risk
∗

Twins (N= 11 984) 0.25 0.10 0.32 0.15
ACIC 2016 (N=4 802) 0.12 0.12 0.25 0.15
Caussim (N=5 000) 0.47 0.11 0.16 0.14

Table E.3. Values of relative κ(ℓ, τ−risk) compared to the mean over all metrics Kendall’s as shown in
the boxplots of Figure 5.5

concordant pairs minus the discordant pairs normalized by the total number of pairs. It
takes values in the [−1, 1] range.

κ = (number of concordant pairs ) − (number of discordant pairs)
(number of pairs) (E.4)

Values of relative κ(ℓ, τ−risk) Values of relative κ(ℓ, τ−risk) compared to the mean over
all metrics Kendall’s as shown in the boxplots of Figure 5.5.

Figure E.5 – Results measured in relative Kendall’s for feasible and semi-oracle
risks Because of extreme propensity scores in the denominator and bayes error residuals in
the numerator, the semi-oracle U -risk has poor performance at bad overlap. Estimating these
propensity scores in the is feasible U -risk reduces the variance since clipping is performed.

Figure E.6 – Results measured in absolute Kendall’s
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Figure E.7 – Results measured as distance to the oracle tau-risk To see practical
gain in term of τ -risk, we plot the results as the normalized distance between the estimator
selected by the oracle τ -risk and the estimator selected by each causal metric.

Then, R̂-risk
∗

is more efficient than all other metrics. The gain are substantial for every
datasets.

Figure E.8 – Stacked models for the nuisances is more efficient For each metrics
the benefit of using a stacked model of linear and boosting estimators for nuisances compared
to a linear model. The evaluation measure is Kendall’s tau relative to the oracle R-risk⋆ to
have a stable reference between exepriments. Thus, we do not include in this analysis the
ACIC 2018 dataset since R-risk⋆ is not available due to the lack of the true propensity score.

Figure E.9 – Low population overlap hinders model selection for all metrics

Figure E.10 – Stacked models for the nuisances is more efficient For each metrics
the benefit of using a stacked model of linear and boosting estimators for nuisances compared
to a linear model. The evaluation measure is Kendall’s tau relative to the oracle R-risk⋆ to
have a stable reference between exepriments. Thus, we do not include in this analysis the
ACIC 2018 dataset since R-risk⋆ is not available due to the lack of the true propensity score.
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Fig. E.5. The R-risk is the best metric: Relative Kendall’s τ agreement with τ -risk. Strong and weak
overlap correspond to the first and last tertiles of the overlap distribution measured with Normalized
Total Variation eq. E.2.
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(b) ACIC 2016
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(d) TWINS
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Fig. E.6. Agreement with τ -risk ranking of methods function of overlap violation. The lines represent
medians, estimated with a lowess. The transparent bands denote the 5% and 95% confidence intervals.
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(b) ACIC 2016
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Fig. E.7. Metric performance by normalized tau-risk distance to the best method selected with τ -risk.
All nuisances are learned with the same estimator stacking gradient boosting and ridge regression. Doted
and plain lines corresponds to 60% lowess quantile estimates. This choice of quantile allows to see
better the oracle metrics lines for which outliers with a value of 0 distord the curves.
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Fig. E.8. Results are similar between the Shared nuisances/candidate set and the Separated nuisances
set procedure. The experience has not been run on the full metrics for Caussim due to computation
costs.
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Fig. E.9. Low population overlap hinders causal model selection for all metrics: Kendall’s τ
agreement with τ -risk. Strong, medium and weak overlap correspond to the tertiles of the overlap
distribution measured with Normalized Total Varation eq. E.2.
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Û risk
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Fig. E.10. Learning the nuisances with stacked models (linear and gradient boosting) is important for
successful model selection with R-risk. For Twins dataset, there is no improvement for stacked models
compared to linear models because of the linearity of the propensity model.

Figure E.11 – Flexible models are performant in recovering nuisances even in
linear setups

Selecting different seeds and parameters is crucial to draw conclusions One
strength of our study is the various number of different simulated and semi-simulated datasets.
We are convinced that the usual practice of using only a small number of generation processes
does not allow to draw statistically significant conclusions.

Figure E.12 illustrate the dependence of the results on the generation process for caussim
simulations. We highlighted the different trajectories induced by three different seeds for
data generation and three different treatment ratio instead of 1000 different seeds. The
result curves are relatively stable from one setup to another for R−risk, but vary strongly
for µ-risk and µ-riskIP W .

151 / 182 M. Doutreligne



E.4. Experiments

0.6 0.4 0.2 0.0 0.2

Twins downsampled
 (N=4 794)

Strong Overlap

0.6 0.4 0.2 0.0 0.2

Weak Overlap

Relative Kendall to semi-oracle R̂ risk *

Nuisance models
Linear
Forests
Boosting
Stacked

Fig. E.11. Flexible models are performant in recovering nuisances in the downsampled Twins
dataset. The propensity score is linear in this setup, making it particularly challenging for flexible
models compared to linear methods.

Fig. E.12. Kendall correlation coefficients for each causal metric. Each (color, shape) pair indicates a
different (treatment ratio, seed) of the generation process.
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E.5 Heterogeneity in practices for data split
Splitting the data is common when using machine learning for causal inference, but practices
vary widely in terms of the fraction of data to allocate to train models, outcomes and
nuisances, and to evaluate them.

Before even model selection, data splitting is often required for estimation of the treatment
effect, ATE or CATE, for instance to compute the nuisances required to optimize the outcome
model (as the R-risk, definition 6). The most frequent choice is use 80% of the data to fit
the models, and 20% to evaluate them. For instance, for CATE estimation, the R-learner
has been introduced using K-folds with K = 5 and K = 10: 80% of the data (4 folds) to
train the nuisances and the remaining fold to minimize the corresponding R-loss (Nie; Wager,
2017). Yet, it has been implemented with K=5 in causallib (Shimoni et al., 2019) or K=3
in econML (Battocchi et al., 2019). Likewise, for ATE estimation, Chernozhukov et al.,
2018a introduce doubly-robust machine learning, recommending K=5 based on an empirical
comparison K=2. However, subsequent works use doubly robust ML with varying choices of
K: Loiseau et al., 2022 use K=3, Gao et al., 2021 use K=2. In the econML implementation,
K is set to 3 (Battocchi et al., 2019). Naimi et al., 2021 evaluate various machine-learning
approaches –including R-learners– using K=5 and 10, drawing inspiration from the TMLE
literature which sets K=5 in the TMLE package (Gruber; van der Laan, 2012).

Causal model selection has been much less discussed. The only study that we are aware
of, Schuler et al. (2018), use a different data split: a 2-folds train/test procedure, training
the nuisances on the first half of the data, and using the second half to estimate the R-risk
and select the best treatment effect model.
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Titre: Représentations et inférence à partir de données de santé temporelles collectées en routine
Mots clés: Apprentissage automatique, Dossiers de santé électroniques, Causalité, Epidémiologie,
Santé publique

Résumé: Les bases de données de vie réelle sont
de plus en plus accessibles, exhaustives, avec des
détails temporels précis. Contrairement aux don-
nées utilisées dans la recherche clinique tradition-
nelle, elles capturent l’organisation routinière des
soins. Ces données de soins quotidiens ouvrent la
porte à de nouvelles questions de recherche, no-
tamment en ce qui concerne la qualité des soins,
l’efficacité des interventions après leur mise sur le
marché, l’hétérogénéité de leurs bénéfices dans les
populations mal desservies ou le développement
de traitements personnalisés. D’un autre côté, la
complexité et la nature à grande échelle de ces
bases de données posent un certain nombre de dé-
fis pour une utilisation efficace. Pour remédier
à ces problèmes, les économètres et les épidémi-
ologistes ont récemment proposé l’utilisation de
modèles flexibles combinant l’inférence causale et
l’apprentissage automatique en grande dimension.

Dans un premier temps, nous illustrons par
trois exemples la tension actuelle entre ces nou-
velles sources de données, l’apprentissage automa-
tique et des problématiques modernes de santé
publique. Ces exemples motivent notre princi-
pale question de recherche : Comment des mod-
èles flexibles peuvent-ils aider à fournir un traite-
ment approprié à chaque patient afin d’améliorer
sa santé ? Afin de mieux comprendre les infrastruc-
tures modernes de collecte et d’analyse des dossiers

patients informatisés (DPI), nous faisons la syn-
thèse d’entretiens semi-structurés menés dans le
cadre d’une étude de cas nationale portant sur
les entrepôts de données cliniques des 32 hôpi-
taux régionaux et universitaires français. Re-
connaissant la difficulté d’accéder à des échantil-
lons de grande taille et à la puissance de calcul
pour développer des modèles prédictifs généralis-
ables, nous étudions un gradient de complexité
dans les représentations et les algorithmes prédic-
tifs sur DPI. En se tournant vers le cadre causal,
nous détaillons ensuite les éléments clés nécessaires
pour estimer de manière robuste l’effet du traite-
ment à partir de données de DPI variant dans le
temps. Nous documentons l’impact de différents
choix méthodologiques pour l’étude de l’effet de
l’albumine sur la mortalité dans des cas de sep-
ticémie avec la base de données MIMIC-IV (Med-
ical Information Mart for Intensive Care). Les
DPIs sont des bases de données à grandes di-
mensions. Pour de tels problèmes, la sélection
d’hyperparamètres pour les modèles causaux est
cruciale pour éviter le sous-apprentissage ou le sur-
apprentissage. Pour une simulation et trois ensem-
bles de données semi-simulées, nous montrons que
le risque usuel en apprentissage statistique n’est
pas adapté au cadre causal et que le risque R dou-
blement robuste surpasse d’autres risques causaux
existants.



Title: Representations and inference from time-varying routine care data
Keywords: Machine learning, Electronic Health Records, Causality, Epidemiology, Public health

Abstract: Real World Databases are increasingly
accessible, exhaustive and with fine temporal de-
tails. Unlike traditional data used in clinical re-
search, they capture the routine organization of
care. These day-to-day records of patients care
open the door to new research questions, no-
tably concerning the efficiency of interventions af-
ter market access, the heterogeneity of their ben-
efits in under-served populations or the develop-
ment of personalized medicine. On the other
hand, the complexity and large-scale nature of
these databases pose a number of challenges for
effectively answering these questions. To rem-
edy these problems, econometricians and epidemi-
ologists have recently proposed the use of flexi-
ble models combining causal inference with high-
dimensional machine learning.

We first illustrate with three examples the cur-
rent tension between these new sources of data,
machine learning and modern public health issues.
These examples motivate the main research ques-
tion of this work: How flexible models can help
delivering appropriate treatment to each and every
patient to improve her health? In order to gain

a better understanding of the modern infrastruc-
tures for collecting and analyzing Electronic Health
Records (EHRs), we summarize semi-structured in-
terviews conducted as part of a national case study
of the clinical data warehouses (CDWs) of the 32
French regional and university hospitals. Acknowl-
edging the difficulty to access large sample sizes
and computational power to develop generalizable
predictive models, we explore a complexity gradi-
ent in representation and predictive algorithms for
EHRs. We then turn to causal thinking, detailing
key elements necessary to robustly estimate treat-
ment effect from time-varying EHR data. We il-
lustrate the impact of methodological choices in
studying the effect of albumin on sepsis mortality
in the Medical Information Mart for Intensive Care
database (MIMIC-IV). EHRs are high-dimensional
databases. For such settings, the selection of
hyper-parameters for the causal model is crucial
to avoid under- or over-learning. In a simulation
and three semi-simulated datasets, we show that
the usual machine learning risk are not adapted
to the causal setting and that the doubly robust
R-risk outperforms other existing causal risks.
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