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Genomic characterisation of rare thoracic tumours
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Over the past decades, taking advantage of the development of next generation sequencing technologies, large-scale genomic characterisation provided a better understanding of cancer development that benefit patients. However, these valuable advances do not entirely reach one group of patients: those with a rare cancer.

Pulmonary carcinoids and malignant pleural mesothelioma (MPM) are rare thoracic tumours, poorly understood and understudied with challenging diagnosis and limited therapeutic options. Large multi-omic studies characterising these tumours might provide the missing pieces needed to tackle these diseases. In this thesis, I characterised the molecular landscape of pulmonary carcinoids, in the context of lung neuroendocrine neoplasms (NENs) and MPMs by means of exceptional bio-repositories, state-of-the-art computational tools, and advanced integrative multi-omic analyses. Firstly, multi-omic integrative analyses identified three distinct subgroups with different prognosis and therapeutic implications. We also revealed a novel entity of carcinoids with carcinoidlike morphology but the molecular and clinical traits of high-grade NENs. Secondly, unsupervised multi-omic analyses shed light on MPM heterogeneity at every omic layer associated with specific morphological, epidemiological, and clinical characteristics.

Finally, for each extensive multi-omics study undertaken, we provided accessible, reproducible, interactive, and integrative molecular maps to sustainably promote the investigation of these poorly characterised thoracic diseases.

Résumé

Au cours des dernières décennies, profitant du développement des technologies de séquençage de nouvelle génération, la caractérisation génomique a permis de mieux comprendre le développement des cancers et de faire progresser les traitements.

Cependant, ces avancées précieuses ne bénéficient pas vraiment aux patients atteints d'un cancer rare. Les carcinoïdes pulmonaires et le mésothéliome pleural malin (MPM) sont des tumeurs thoraciques rares, mal comprises et peu étudiées, avec un diagnostic difficile et des options thérapeutiques limitées. De grandes études multi-omiques pourraient fournir les éléments manquants nécessaires pour combattre ces maladies.

Dans cette thèse, j'ai caractérisé le paysage moléculaire des carcinoïdes pulmonaires et des MPMs au moyen de biobanques exceptionnelles, d'outils informatiques de pointe et d'analyses multi-omiques intégratives avancées. Nous avons réalisé des analyses multiomiques intégratives qui ont permis d'identifier trois sous-groupes de carcinoïdes distincts avec un pronostic et des implications thérapeutiques différents. Nous avons également révélé une nouvelle entité de carcinoïdes avec une morphologie de type carcinoïde mais les traits moléculaires et cliniques de néoplasmes neuroendocriniens de haut grade. Aussi des analyses multi-omiques non supervisées ont mis en lumière l'hétérogénéité du MPM à chaque couche omique associée à des caractéristiques cliniques spécifiques. Enfin, pour chaque étude multi-omique entreprise, nous avons fourni des cartes moléculaires accessibles, reproductibles, interactives et intégratives pour promouvoir durablement l'investigation de ces maladies thoraciques peu comprises. Dans le premier chapitre de la thèse, nous montrons comment des cartographies moléculaires des néoplasmes neuroendocriniens pulmonaires ont établi des similitudes et des différences moléculaires révélant des groupes cliniquement pertinents. Ainsi, dans une première étude publiée dans Nature Communications (Alcala et al. 2019) nous avons comparé le profil moléculaire de 116 carcinoïdes pulmonaires (incluant 35 carcinoïdes atypiques), 75 LCNECs et 66 SCLCs en utilisant l'intelligence artificielle et l'analyse factorielle multi-omique permettant l'étude intégrative et non supervisée de différentes données omiques. Nous y rapportons que l'analyse intégrative de 257 tumeurs neuroendocrines du poumon permet de stratifier les carcinoïdes atypiques en deux groupes de pronostics différents avec une survie globale à 10 ans de 88% et 27% respectivement. Nous avons également identifié des groupes moléculaires de carcinoïdes pulmonaires thérapeutiquement pertinents, suggérant notamment DLL3 et le système immunitaire comme candidats de cibles thérapeutiques. Nous avons également confirmé la valeur pronostique et diagnostique du niveau d'expression du gène OTP. Enfin, nous avons découvert l'existence des supra-carcinoïdes, un groupe de carcinoïdes pulmonaires avec une morphologie propre aux carcinoïdes mais avec des caractéristiques moléculaires et cliniques de LCNEC. Cette dernière découverte soutient l'hypothèse précédemment formulée qu'il existe un lien moléculaire entre les tumeurs neuroendocrines du poumon de bas et de haut grade.

Mots clés :

Dans une seconde étude et comme une extension des études visant à remplir l'objectif (1), nous avons aussi évalué l'expression de OTP au sein des carcinoïdes pulmonaires comme étant différentielle et associée à des changements dans la méthylation de l'ADN (Moonen et al., en cours d'examen dans International Journal of Cancer). Pour cela, nous avons analysé les données multi-omiques de 58 carcinoïdes typiques, 27 carcinoïdes atypiques, 69 LCNECs et 51 SCLCs. Nous rapportons la bimodalité de l'expression d'OTP dans les carcinoïdes définissant les groupes OTP high et OTP low , avec OTP low présentant une survie globale significativement plus basse. Les carcinoïdes OTP low présentent des niveaux élevés de méthylation de l'ADN par rapport aux carcinoïdes OTP high . Ces découvertes ouvrent la voie à l'examen de l'utilité des thérapies épigénétiques pour les patients atteints de carcinoïdes pulmonaires.

Le second chapitre porte sur le mésothéliome pleural malin (MPM), une maladie agressive liée à l'exposition à l'amiante, dont les options thérapeutiques sont limitées.

Dans une première étude publiée dans EBioMedicine (Alcala et al., 2019), nous avons entrepris l'analyse non supervisée de données transcriptomiques de 284 MPMs publiquement accessibles sans aucun a priori de discontinuité et effectué une validation orthogonale ainsi qu'une réplication biologique dans des séries indépendantes d'échantillons. Cette étude révèle qu'un continuum de profils moléculaires explique mieux le pronostic que des modèles discrets basés notamment sur l'histopathologie. De plus, les voies immunitaires et vasculaires constituent les principales sources de variation moléculaire, avec de fortes différences dans l'expression des points de contrôle immunitaires et des gènes pro-angiogéniques. Enfin, les extrêmes de ce continuum présentent des profils moléculaires bien spécifiques. Nous avons identifié un profil «chaud» de pronostic défavorable, avec une importante infiltration lymphocytaire et une expression élevée de gènes de points de contrôle immunitaires et de gènes proangiogéniques ; un profil «froid» de pronostic défavorable, avec une infiltration lymphocytaire faible et une expression élevée de gènes pro-angiogéniques; et un profil de meilleur pronostic (VEGFR2+/VISTA+, survie médiane de 36 mois), avec une expression élevée du point de contrôle immunitaire VISTA et du gène pro-angiogénique VEGFR2. Nous avons sélectionné cinq gènes appartenant aux voies immunitaires et vasculaires (CD8A, PDL1, VEGFR3, VEGFR2 et VISTA) capables de résumer le panel de profils moléculaires observés pour valider l'expression génique au niveau protéique par immunohistochimie sur un sous-ensemble de 103 échantillons parmi les 284 MPMs. Ce panel de cinq protéines déjà utilisé en clinique pourrait être mis en place pour caractériser les tumeurs MPM et éclairer leur gestion clinique et leurs stratégies de traitement.

Dans la continuité de ce projet, nous avons conduit une seconde étude avec une nouvelle cohorte de 124 MPMs avec des données de séquençage du génome entier, du transcriptome et de méthylation de l'ADN. Nous avons démêlé l'hétérogénéité du MPM grâce à des analyses omiques intégratives profondes (Mangiante et al., en cours d'examen dans Cancer Cell). Ces analyses non supervisées ont notamment révélé de nouveaux axes de variation moléculaire avec des implications cliniques. En utilisant des analyses factorielles multi-omiques, nous démontrons que l'hétérogénéité du MPM provient de quatre sources de variation : la morphologie des cellules tumorales, la ploïdie, la réponse immunitaire adaptative et le phénotype de méthylation des îles de CpGs. Nous avons aussi estimé l'hétérogénéité intra-tumorale à l'aide de données omiques provenant de régions tumorales différentes, pour 13 patients et au regard de ces quatre axes moléculaires dont les résultats ont suggéré une hétérogénéité intratumorale qui mérite des études plus approfondies. Globalement, cette étude, apportant des avancées majeures dans la rationalisation de l'hétérogénéité moléculaire, clinique et morphologique des MPMs ouvre la voie à de nouvelles perspectives dans la prise en charge clinique de cette maladie très sévère et récalcitrante.

Enfin, pour chaque étude multi-omique approfondie entreprise, nous avons fourni des cartes moléculaires accessibles, reproductibles, interactives et intégratives pour promouvoir durablement l'investigation de ces maladies thoraciques peu comprises (Gabriel et al. GigaScience, 2020 et Di Genova et al., en préparation). Alors que les cancers communs sont de plus en plus amenés à être sous divisés en sousgroupes ayant des fréquences similaires aux cancers caractérisés comme rares, les pratiques et approches de recherches développées pour ces tumeurs sont amenées à être transposées pour tous les types de cancers. Dans la discussion de la thèse, nous détaillons cette démarche qui favorise une science plus intégrative et plus durable qui favorise l'accessibilité, la valorisation et la réutilisation des données ainsi que la transparence et la reproductibilité des analyses. In order to understand cancer in all its manifestation, disentangling its complexity into common behaviours may help to pave the way to a better understanding of cancer growth and spread. In 2000, as a first attempt at a cancer biology summary, Douglas Hanahan and Robert A. Weinberg defined the Hallmarks of Cancer [START_REF] Hanahan | The hallmarks of cancer[END_REF] that they updated in 2011 (Hanahan and Weinberg, 2011). This organising principle aims to rationalise the complexity of neoplastic disease by comprehending the biological capabilities acquired during the multistep development of human tumours.

One of the most fundamental characteristics of cancer cells involves their ability to sustain chronic proliferation. Transformed cells subdivide repeatedly resulting in tumour masses while normal tissues prudently restrict the production and release of growth-promoting signals that activate entry into and progression through the cell growth-and-division cycle [START_REF] Collins | The cell cycle and cancer[END_REF][START_REF] Witsch | Roles for growth factors in cancer progression[END_REF]. Cancer cells induce and sustain these enabling signals that maintain and accelerate this full speed division.

They divide chronically rather than following the normal very stereotypical process that ensures a homeostasis of cell number and maintains normal tissue architecture and function. Therefore, Sustaining proliferative signaling, referring to this expansive proliferation is a fundamental hallmark of cancer. In addition to the characteristic ability of producing and maintaining growth-stimulatory signals, cancer cells also need to circumvent powerful processes that negatively regulate cell proliferation [START_REF] Sever | Signal transduction in cancer[END_REF]. Many of these mechanisms depend on the function of proteins encoded by tumour suppressor genes and then, Evading growth suppressors capability becomes required. In the past two decades, dozens of tumour suppressors have been characterised, operating in widely various ways to constrain cell growth and proliferation [START_REF] Burkhart | Cellular mechanisms of tumour suppression by the retinoblastoma gene[END_REF][START_REF] Deshpande | Cyclins and cdks in development and cancer: a perspective[END_REF][START_REF] Sherr | The RB and p53 pathways in cancer[END_REF]. While these genes operate as brakes to constrain inappropriate replication of cells, in a neoplastic progression, they are disabled and thus fail invariably.

Over the last two decades, combining functional studies established the notion of programmed cell death which, by apoptosis, serves as a natural barrier to cancer progress [START_REF] Adams | The Bcl-2 apoptotic switch in cancer development and therapy[END_REF]Evan and Littlewood, 1998;[START_REF] Lowe | Intrinsic tumour suppression[END_REF]. Most malignant cells that characterise symptomatic disease, abrogate these protective mechanisms that normally eliminate aberrant cells for the benefit of the organism.

Similarly to the previous hallmark, Resisting cell death refers to another protective barrier that cancer cells learned to cross.

Unlimited replicative potential of cancer cells to generate macroscopic tumours is a widely accepted cancer capability. Contrary to cancer cells, normal cells pass only through a limited number of successive cycles of cell growth and division. In fact, normal cells face senescence which refers to a typically irreversible entrance into a nonproliferative but viable state and crisis involving programmed cell death that both constitute two distinct barriers to their proliferation (Collado et al., 2007;[START_REF] Shay | Hayflick, his limit, and cellular ageing[END_REF][START_REF] Hayat | Tumor Dormancy, Quiescence, and Senescence[END_REF]. The expression of telomerase, corresponding to the specialised deoxyribonucleic acid (DNA) polymerase that extends the repeat segments to the ends of telomeric DNA (telomere), is correlated with a resistance to induction of both senescence and crisis proliferative barriers [START_REF] Kelleher | Telomerase: biochemical considerations for enzyme and substrate[END_REF][START_REF] Lundblad | A mutant with a defect in telomere elongation leads to senescence in yeast[END_REF][START_REF] Mceachern | Telomeres and their control[END_REF]. The telomeric DNA is in fact an accounting mechanism that clocks, by losing part of its sequence, every time a cell divides. To disrupt this counting mechanism, transformed cells are capable of Enabling replicative immortality by maintaining telomeric DNA at lengths sufficient to avoid triggering nonproliferative state or programmed cell death.

All together, the above-mentioned hallmarks are interconnected by the characteristic chronic proliferation that defines tumour cells. Deregulating cellular energetics and metabolism refers to another hallmark, illustrating the phenotypic plasticity of cancer cells in response to their needs [START_REF] Chuang | Altered Mitochondria Functionality Defines a Metastatic Cell State in Lung Cancer and Creates an Exploitable Vulnerability[END_REF][START_REF] Deberardinis | We need to talk about the Warburg effect[END_REF]Targeting tumour metabolism, 2010). This notion has become a special focus in the past decade and is based on the vast reprogramming of cellular energy metabolism to fuel continuous cell growth and proliferation. The transformed cells replace the normal metabolic program and induce the physiological operations of the associated cells.

Malignant tumours are a complex, yet organised, diverse ensemble of cells that communicate and collaborate. Tumour cells are surrounded by other types of cells, which collectively form the tumour microenvironment. Cancer cell behaviour is strongly influenced by the surrounding cells in this microenvironment [START_REF] Wang | Role of tumor microenvironment in tumorigenesis[END_REF]. First, based on this notion, Avoiding immune destruction refers to the active cancer cell capacity of evasion from immune cells attack and elimination. This hallmark ability underlines the role of both the innate and adaptive immune system able to antagonise tumour progression [START_REF] Botti | Immunosuppressive factors: role in cancer development and progression[END_REF][START_REF] Shields | Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21[END_REF][START_REF] Swann | Immune surveillance of tumors[END_REF]. To survive, tumour cells, especially in symptomatic cancers, evade immune destruction by diverse ingenious mechanisms such as hiding from their recognition or abrogating their attacks. Secondly, like normal tissues, cancer cells require sustenance in the form of oxygen and nutrients and the unconditional evacuation of carbon dioxide and metabolic wastes. To address these needs, cancer cells induce a specific tumour-associated neovasculature through the angiogenesis process [START_REF] Saman | Inducing Angiogenesis, a Key Step in Cancer Vascularization, and Treatment Approaches[END_REF]Zuazo-Gaztelu and Casanovas, 2018). In fact, cancer cells have the capability of Inducing angiogenesis, by activating mechanisms to continuously grow new vessels that ultimately promote and sustain tumour spread [START_REF] Folkman | Tumor angiogenesis: therapeutic implications[END_REF][START_REF] Hanahan | Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis[END_REF]. Throughout this process, blood vessels are generated within tumours chronically by the means of an unbalanced mix of proangiogenic signals that activate angiogenesis continually.

Therefore, cancer cells present remarkable skills to contribute to their fitness by conducting direct responses to their environment constraints such as the lack of oxygen and nutrients essential for these cells to expand efficiently.

Cancer cells are able to spread through mechanisms such as Activating invasion and metastasis. Cancer cell invasion ability is often coupled with the alteration of cell-cell and cell-extracellular matrix adhesions and the epithelial-mesenchymal transition (EMT) to confer migration capabilities [START_REF] Berx | Involvement of members of the cadherin superfamily in cancer[END_REF][START_REF] Cavallaro | Cell adhesion and signalling by cadherins and Ig-CAMs in cancer[END_REF][START_REF] Cohen | Cellular adhesion molecules in urologic malignancies[END_REF][START_REF] Nieto | EMT: 2016[END_REF]. More globally, this hallmark refers to the ability of growing cells to migrate and invade healthy normal organs locally and throughout the body. This process refers to a multistep mechanism of invasion and metastasis summarised as a sequence of discrete steps, called the invasion-metastasis cascade [START_REF] Fidler | The pathogenesis of cancer metastasis: the "seed and soil" hypothesis revisited[END_REF][START_REF] Talmadge | AACR centennial series: the biology of cancer metastasis: historical perspective[END_REF][START_REF] Oliveira | Cancer Invasion and Metastasis: Cellular, Molecular and Clinical Aspects[END_REF]. This succession of cell-biologic changes starts with local invasion resulting in in-situ tumours, then cancer cells perform an intravasation into nearby lymphatic or blood vessels to enable their transit through the lymphatic or hematogenous systems respectively. Then, cancer cells leave these vessels to form small nodules into the parenchyma of distant tissues, and finally proliferate in the form of micrometastatic lesions first, and then to macroscopic tumours referring to what is called the "colonisation." Therefore, the colonisation of these aggressive cells disrupts and ultimately spoils the function of normal tissues and organs. All these steps are only possible because of a remarkable skill to adapt to its new environment by an enormous phenotypic plasticity [START_REF] Lu | Epithelial-Mesenchymal Plasticity in Cancer Progression and Metastasis[END_REF]. This plasticity has become a special focus in cancer cellular and molecular biology since this particular hallmark is responsible for symptomatic and lethal diseases (da Silva-Diz et al., 2018).

Because changes in gene expression underlie the adaptive evolution in many complex phenotypes such as neoplastic progression [START_REF] Harrison | The evolution of gene expression and the transcriptome-phenotype relationship[END_REF], in the past decades, cancer genomic research promotes the integration of the gene expression data and those profiling its regulation in the study of cancer development. Importantly, the authors pointed to two enabling characteristics that make the acquisition of the eighth above-mentioned hallmarks possible. Genomic instability and mutations hallmark is the most prominent enabling characteristics, generating random mutations including larger genomic aberrations such as chromosomal rearrangements and, ultimately, copy number changes enabling characteristics of the other capabilities [START_REF] Stratton | The cancer genome[END_REF][START_REF] Wishart | Is Cancer a Genetic Disease or a Metabolic Disease?[END_REF]. Cell biology is the results of the program encoded in the DNA but cancer cells show failures of crucial groups of proteins that protect the genome from being corrupted, rearranged and damaged [START_REF] Jackson | The DNA-damage response in human biology and disease[END_REF]Negrini et al., 2010;[START_REF] Tian | DNA damage response--a double-edged sword in cancer prevention and cancer therapy[END_REF]. Mutations and more globally genomic instability convey to cancer cells various characters, shaping their resulting phenotype. They are characterised as transformative events that continuously tune cancer evolution through time [START_REF] Vendramin | Cancer evolution: Darwin and beyond[END_REF][START_REF] Yates | Evolution of the cancer genome[END_REF]. Since the next generation sequencing era, the capacity to sequence at relatively low prices the human genome, revealed at an extraordinary depth, the degree of genomic instability and mutations that takes place in many human cancers.

Douglas Hanahan and Robert

Pre-and malignant lesions involve an inflammatory state that constitutes to a second enabling characteristic driven by specific immune cells able to promote tumour formation and progression in widely various ways. In the past decade, the Tumourpromoting inflammation hallmark has been demonstrated as having important tumourpromoting effects on neoplastic progression [START_REF] Coussens | Inflammation and cancer[END_REF][START_REF] Mantovani | Cancer-related inflammation[END_REF][START_REF] Ritter | Modulating inflammation for cancer therapy[END_REF]. It has been found that, for the innate immune system, tumours are actually considered as unhealed wounds [START_REF] Nathan | Genomic instability--an evolving hallmark of cancer[END_REF].

Therefore, the innate immune cells, designed to fight infections and heal wounds, misdiagnose the problem of cancer and inadvertently enable cancer cells to acquire a large range of hallmark capabilities. In fact, this inflammatory state of cancerous lesions is able to enhance multiple hallmark of cancer by generating bioactive molecules within the tumour microenvironment, such as growth factors that sustain growth-stimulatory and proliferative signalling [START_REF] Okabe | Tissue biology perspective on macrophages[END_REF], survival factors that constraint programmed cell death, proangiogenic factors that sustain angiogenic processes, active enzymes that modify the extracellular matrix structure and composition to facilitate angiogenesis, invasion, and metastasis [START_REF] Karnoub | Chemokine networks and breast cancer metastasis[END_REF][START_REF] Qian | Macrophage diversity enhances tumor progression and metastasis[END_REF], and, finally, inductive signals activating EMT and other hallmark-facilitating programs [START_REF] Denardo | Interactions between lymphocytes and myeloid cells regulate pro-versus anti-tumor immunity[END_REF][START_REF] Gregorc | NGR-hTNF in combination with best investigator choice in previously treated malignant pleural mesothelioma (NGR015): a randomised, double-blind, placebo-controlled phase 3 trial[END_REF]. Therefore, while molecular characterisation of cancer remains highly informative of its biology, owing to the key role of the tumoural microenvironment in the multistep tumoural development, multidisciplinary studies integrating both molecular and cellular features represent a more comprehensive strategy for cancer understanding. (Hanahan and Weinberg, 2011), and Polidoro et al. [START_REF] Polidoro | Tumor microenvironment in primary liver tumors: A challenging role of natural killer cells[END_REF] The Hallmarks of Cancer constitute an organising principle summarising similarities between human neoplastic diseases (see Figure 1) that can be assessed through genomic, epigenomic, and transcriptomic data. Therefore, their molecular characterisation through sequencing techniques might benefit patients by the discovery of cancer Achilles' hills and the improvement of diagnosis, prognostication, and treatment for all malignant tumours. However, molecular characterisation of tumours does not reach all cancer types such as rare tumours.

The era of genomic, a revolution mostly limited to common cancers

Large-scale collaborative projects on cancer research generate a large amount of cancer-related data coming from diverse resources. Over the past two decades, there has been an exponential growth of prominent initiatives of such efforts for human cancers to be characterised on the molecular level, such as the Cancer Genome Atlas (TCGA) [START_REF] Tomczak | A molecular cell atlas of the human lung from singlecell RNA sequencing[END_REF] and the International Cancer Genome Consortium (ICGC) (International Cancer Genome Consortium et al., 2010) programs. However, these initiatives primarily focus on common cancers and if genomic studies on rare tumours exist, they often share limitations [START_REF] Abbas-Aghababazadeh | Statistical genomics in rare cancer[END_REF]. In this part, the TCGA and ICGC projects are used as illustrative examples of the limitation (or absence) of rare cancers omics studies.

The TCGA is a large cancer genomics program providing publicly available multi-omic data from access to 11,000 patients. The project was launched in 2006 by the National Institutes of Health (NIH) and aims at performing molecular characterisation of several human cancer types using genomic, epigenomic, transcriptomic, and proteomic data [START_REF] Tomczak | A molecular cell atlas of the human lung from singlecell RNA sequencing[END_REF]. The TCGA has published descriptive studies characterising the molecular landscape of each tumour type that the public database encompasses. The TCGA descriptive papers were often cancer-specific leading to the identification of genes or pathways causing each cancer type, paving the way for the identification of novel cancer biomarkers. These findings improved the understanding of the underlying genomic aberrations of many cancer types, informing their classification, and ultimately promoting drug development for the patient benefit. To do so, the TCGA took advantage of diverse omics and clinical datasets. Genomic data from most TCGA samples have been sequenced using whole-exome sequencing (WES) that represent more than ten times the number of shared whole-genome sequencing (WGS) data in the TCGA. While exomes represent only 1% of the human genome, WES, contrary to WGS, presents limitations in the characterisation of large genomic events, and the influence of non-coding regions.

The transcriptome of TCGA samples has been assessed using ribonucleic acid (RNA) and micro ribonucleic acid (miRNA) sequencing while their methylation profiles were assessed mainly using 25K or 450K methylation arrays. Furthermore, datasets from reduced representation bisulfite sequencing (RRBS) and whole-genome bisulfite sequencing (WGBS) are absent and EPIC 850K arrays data represent only one third of the total TCGA shared methylation files. Finally, the TCGA proteome profiling has been characterised using Reverse-Phase Protein Array (RPPA). Importantly, when possible, the clinical and epidemiological annotations were collected in addition to the abode-mentioned molecular data, but these annotations were in most cases incomplete. The TCGA program also made available histopathological images associated with each tumour, enabling the annotation of morphological features. The TCGA projects selected the tumour types for study based on specific criteria that included: poor prognosis, overall public health impact, and availability of samples meeting standards for patient consent, quality, and quantity. Therefore, TCGA data encompasses today 33 different cancer types with multi-omic data sets including 10 rare cancers: sarcoma, adrenocortical carcinoma, cholangiocarcinoma, uterine carcinosarcoma, mesothelioma, pheochromocytoma and paraganglioma, kidney chromophobe carcinoma, thymoma, testicular germ cell tumour, and uveal melanoma (The Cancer Genome Atlas Program, 2018). If the average number of samples in TCGA common cancer cohorts reaches ~414 patients, these 10 rare cancers encompass only about ~119 samples per cohort.

In parallel to the cancer-specific studies, the TCGA consortium launched, in 2012, the vast Pan-Cancer Atlas project aiming at exploring the similarities and differences between cancer types using comprehensive, in-depth, and interconnected investigation of how, where, and why tumours arise in humans (Cancer Genome Atlas Research [START_REF] Network | Integrated genomic characterization of endometrial carcinoma[END_REF]. This initiative was completed in 2018, published in Cell, through the collection of 27 papers divided into three main categories: cell-of-origin patterns, oncogenic processes, and signaling pathways (Welcome to the Pan-Cancer Atlas). While this highly integrative effort involves TCGA rare cancers, their characteristic limited sample size and the depth in the molecular characterisation can prevent the discovery of the underlying pathways of their malignant growth.

The ICGC project was launched in 2007 to undertake systematic studies of over 25,000 using genomic, epigenomic and transcriptomic data with pathology and clinical annotations. This consortium encompasses 50 cancer types from the contribution of the TCGA projects and other initiatives such as the Sanger Cancer Genome Project (International Cancer Genome Consortium et al., 2010). This collaborative effort between public databases enabled the creation of the PanCancer Analysis of Whole Genomes (PCAWG) project based on ICGC and TCGA samples (Cancer Genome Atlas

Research [START_REF] Network | Integrated genomic characterization of endometrial carcinoma[END_REF]; ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020). Along the same lines as the PanCancer Atlas project, this additional initiative aims at meta-analysing whole-genome data across cancers. For now, the project relied on more than 2,600 samples from 38 different tumour types. The first results from these data have been released in 2020 in a series of publications in Nature [START_REF] Cieslik | Clinical Lung Cancer Genome Project (CLCGP), and Network Genomic Medicine (NGM)[END_REF]. Common cancers are the primary cancers being explored in the ICGC that agreed that further efforts will be needed to leverage support and expertise to tackle the remaining tumour types, including rare cancers (International Cancer Genome Consortium et al., 2010).

The TCGA and the ICGC have been described as central, publicly accessible databases that contain data pertinent to cancer [START_REF] Pavlopoulou | Human cancer databases (review)[END_REF] that generated key findings in genomics and provided a better understanding of the molecular and phenotypic interplay for many cancer types. Ultimately, these large-scale genomic studies lead to a better understanding of the biology of cancer that can be still today, related to the Hallmarks of Cancer defined by Douglas Hanahan and Robert A.

Weinberg. As an illustrative example, the molecular landscape of lung cancers, corresponding to the leading cause of cancer deaths worldwide [START_REF] Sung | Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[END_REF], have also been investigated in the past decade taking advantage of the development of next generation sequencing studies. In 2012 and 2014, the TCGA provided descriptive papers on two common lung cancer types, lung squamous cell carcinoma (Cancer Genome Atlas Research [START_REF] Network | Comprehensive genomic characterization of squamous cell lung cancers[END_REF] and lung adenocarcinoma (Cancer Genome Atlas Research Network, 2014), with, respectively, 178 and 230 samples. The molecular analyses that generated these studies have identified cancer driver genes. Among others, the Epidermal Growth Factor Receptor (EGFR) gene is part of the protein kinase family and has been reported in 2014 using 230 samples from one of the TCGA descriptive papers, to be mutated in approximately 15% of the lung adenocarcinoma tumours (Cancer Genome Atlas Research Network, 2014). This particular phenotype can be associated with the Evading growth suppressors capability observed widely in cancer cells (see 1.1. section). Importantly, this gene has been reported as associated with therapeutic response [START_REF] Politi | Lung cancer in the era of precision medicine[END_REF] in patients with adenocarcinoma.

Indeed, these patients for which their tumour carries activating mutations in the EGFR gene, show an improved survival in comparison to other cancer patients treated with chemotherapy and this subset of tumours are also responsive to tyrosine kinase inhibitor therapy. As a large and significant consequence of such multi-omic descriptive studies, these types have been further subdivided into unique entities in the lung cancer classification. Also, in 2013 guidelines to include molecular testing of driver genes (mainly for EGFR and ALK alterations) were published and put in place in the clinical practice for these patients [START_REF] Lindeman | Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology[END_REF]. In addition, beyond the list of drivers genes, these multi-omic studies investigate the transcriptomic, methylation and proteomic profiles of these lung tumours. The exploration of these other molecular layers translated into the division of lung adenocarcinoma tumours based on their expression profiles that could ultimately also transform their classification (Cancer Genome Atlas Research Network, 2014). While routine transcriptomic profiling in the clinic remains limited [START_REF] Chen | A five-gene signature and clinical outcome in non-small-cell lung cancer[END_REF], in 2020, Ruiz-Cordero et al. [START_REF] Ruiz-Cordero | Simplified molecular classification of lung adenocarcinomas based on EGFR, KRAS, and TP53 mutations[END_REF] proposed a simplified classification of adenocarcinoma based on the mutational status of EGFR, KRAS, and TP53, with prognostic value. Between 2008 and 2015, Li et al. [START_REF] Li | Identifying scientific projectgenerated data citation from full-text articles: An investigation of TCGA data citation[END_REF] reported over 5,000 PubMed Central (PMC) articles using TCGA data with 18.27% focused on lung cancers. Today, TCGA lung adeno and squamous cell carcinoma cohorts encompass 585 and 504 samples and correspond to the associated data for 4,236 and 2,988 PMC articles (Home -PMC -NCBI), respectively.

In the past decades, the diffusion of genomics technologies, such as next generation sequencing, and the establishment of large consortia have enabled human cancers to be characterised on the molecular level. As a result, these efforts provided a better understanding of cancer aetiology and the functional biological processes underlying tumour initiation and progression. Finally, these descriptive molecular studies have impacted tumour classification and clinical management thanks to the identification of associations between molecular patterns, phenotypes and patient prognosis and treatment response. Despite this exponential growth of large-scale genomic cancer projects, this effort has not entirely reached the group of rare cancers due to a lack of available high-quality tissue that these large studies require. This substantial number of patients that rare cancers represent (~25-30% of all cancer diagnoses and 25% of cancer deaths [START_REF] Desantis | The burden of rare cancers in the United States[END_REF][START_REF] Gatta | Burden and centralised treatment in Europe of rare tumours: results of RARECAREnet-a population-based study[END_REF])

is missing out on groundbreaking therapeutic opportunities.

After the discovery of cytotoxic antitumour drugs and the birth of chemotherapy, the second fundamental breakthrough in the field of oncology and pharmacology took place at the beginning of the '80s, taking advantage of cellular and molecular investigations that resulted in the establishment of innovative drugs targeting specific molecular patterns involved in cancer progression, giving rise to targeted therapy [START_REF] Baudino | Targeted Cancer Therapy: The Next Generation of Cancer Treatment[END_REF]. Even, the authors of the Hallmarks of Cancer have considered how the organised hallmark principles could inform and promote the implementation of targeted therapies. Targeted therapy refers to therapy that is specifically targeted to either mutations amplifications or other kinds of molecular aberrations that are oftentimes found in a particular cancer. Therefore, the increasing number of next-generation sequencing studies fuels cancer clinical management based on targeted therapy (Hasin et al., 2017). As an illustrative example, lung adenocarcinoma genomic characterisation benefits the discovery of targeted therapy largely developed in this cancer type. EGFR, PI3K/AKT/mTOR, RAS-MAPK, and NTRK/ROS1 pathways have been identified as targetable major pathways [START_REF] Beevers | Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells[END_REF][START_REF] Hay | Upstream and downstream of mTOR[END_REF][START_REF] Liu | ING5 knockdown enhances migration and invasion of lung cancer cells by inducing EMT via EGFR/PI3K/Akt and IL-6/STAT3 signaling pathways[END_REF]Singh et al., 2020) translating in the development of specific drugs targeting these pathways that have shown clinical benefits [START_REF] Kawano | PIK3CA mutation status in Japanese lung cancer patients[END_REF] and even replaced chemotherapy as the first line treatment [START_REF] Vara | PI3K/Akt signalling pathway and cancer[END_REF][START_REF] Fumarola | Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer[END_REF][START_REF] Pérez-Ramírez | PTEN and PI3K/AKT in non-small-cell lung cancer[END_REF][START_REF] Wang | miRNA-328 overexpression confers cisplatin resistance in non-small cell lung cancer via targeting of PTEN[END_REF].

Interestingly, already in 1976, Peter C. Nowell [START_REF] Nowell | The clonal evolution of tumor cell populations[END_REF] believed that each patient's tumour required specific and personalised therapy through genomic characterisation. Targeted therapy, by focusing its approach on individual genomic variability, provides the foundation of precision medicine. Precision medicine is an innovative approach for cancer treatment and prevention that takes into account individual variability in genes, environment, and lifestyle to develop individualised treatment plans. Cancer clinical applications that benefit from precision medicine comprises the improvement of patient diagnosis and prognostication, the prediction of treatment response, and the investigation predisposition to specific cancers [START_REF] Jardim | Impact of a Biomarker-Based Strategy on Oncology Drug Development: A Meta-analysis of Clinical Trials Leading to FDA Approval[END_REF][START_REF] Schwaederle | Impact of Precision Medicine in Diverse Cancers: A Meta-Analysis of Phase II Clinical Trials[END_REF]. This information is incorporated into an individualised patient treatment plan that will provide maximum benefit while reducing the use of drugs that have serious side effects and are unlikely to benefit the patient.

However, personalised medicine has not reached rare cancers since they remain globally understudied and consequently, too poorly characterised to develop clinical trials and approval of new therapies.

Overall, this state of the art of the large-scale genomic projects suggests a global delay in the investigation of rare tumours. Even if this group of cancers account for a substantial number of cancer diagnoses and deaths, basic science research, clinical trials, and approval of new therapies are still lacking. Because these patients are missing out on the most breakthrough therapeutic opportunities this translates into a worse prognosis for these patients. Indeed, between 2000 and 2007 in Europe, 5-year relative survival for all rare cancers was 48.5% (95% CI 48.4 to 48.6), compared with 63.4% (95% CI 63.3 to 63.4) for all common cancers [START_REF] Gatta | Burden and centralised treatment in Europe of rare tumours: results of RARECAREnet-a population-based study[END_REF]. With the emergence and development of high-throughput genomics, based on a set of molecular characteristics, recent studies have been able to further stratify common cancers into specific subtypes,

where often the number of patients that fall into these particular groups becomes small and meets the general definition of a rare cancer. Considering the increasing number of rare cancers that is currently rising by 0.5% annually, studying rare cancers and exploring more appropriate solutions for diagnosing and clinical management is essential [START_REF] Barker | Preclinical rare cancer research to inform clinical trial design[END_REF].

Lung neuroendocrine neoplasms, the rarest group of lung cancers, still under characterised

Lung cancer remains the most frequent cancer worldwide, and one of the most aggressive with a 5-year overall survival of 10-20%, mainly because less than 20% of patients are diagnosed at early-stage (stage I) while most are diagnosed at advanced stage (IIIB or IV) (WORLD HEALTH ORGANIZATION: REGIONAL OFFICE FOR EUROPE., 2020). Based on histology, lung cancer is divided into the following subtypes: lung adenocarcinomas (~40%), squamous cell lung tumours (~30%), small cell lung cancer (SCLC, ~25%), large cell neuroendocrine carcinoma (LCNEC, ~3%), and pulmonary carcinoids (~2%) (Simbolo et al., 2019). Pulmonary carcinoids can be further classified into typical and atypical. According to the WHO classification from 2021 (W. H. O.

Classification WHO Classification of Tumours Editorial Board, 2021), typical and atypical carcinoids are distinguished histologically by the presence of mitosis (<2/mm² for typical and 2-10/mm² for atypical) and necrosis (see Figure 2). SCLC, LCNEC, and carcinoids constitute the lung neuroendocrine neoplasms (NENs) that, contrary to the non-neuroendocrine adeno and squamous are positive for neuroendocrine differentiation markers, such as CD56, synaptophysin, and chromogranin (Clinical Lung Cancer Genome Project (CLCGP) and Network Genomic Medicine (NGM), 2013 ;[START_REF] Travis | Lung tumours with neuroendocrine differentiation[END_REF]. In the case of LCNEC and SCLC, tumours are separated on the basis of cytological criteria (cell size and nuclear features) (International Agency for Research on Cancer, 2015). Lung NEN range from well differentiated, typical (grade-1) and atypical (grade-2) carcinoids, to poorly differentiated and highly malignant (grade-3) SCLC and LCNEC. Carcinoids account for 1-2% of lung cancers although their incidence has rapidly increased within the past 30 years, especially at the advanced stages [START_REF] Modlin | A 5-decade analysis of 13,715 carcinoid tumors[END_REF][START_REF] Travis | Genetic profiling-based prognostic prediction of patients with advanced small-cell lung cancer in large scale analysis[END_REF].

Immunohistochemical and morphological features are currently used to establish the differential diagnosis between lung NENs, subtypes that also exhibit considerably different biological aggressiveness, aetiology, and clinical behaviour. The 5-year survival rate is 92-100% for typical carcinoids and in contrast, atypical ones have a more aggressive phenotype, with a 5-year survival rate of 61%-88%. SCLC and LCNEC are more aggressive with a 5-year survival rate below 5% for SCLC, and 15-57% for LCNEC [START_REF] Rossi | Role of chemotherapy and the receptor tyrosine kinases KIT, PDGFRalpha, PDGFRbeta, and Met in large-cell neuroendocrine carcinoma of the lung[END_REF][START_REF] Travis | Advances in neuroendocrine lung tumors[END_REF]. While carcinoids occur frequently in neversmokers, SCLC and LCNEC are almost exclusively related to cigarette smoking, with more than 90% of the patients being heavy smokers and are typically detected at a clinically advanced stage [START_REF] Rossi | Role of chemotherapy and the receptor tyrosine kinases KIT, PDGFRalpha, PDGFRbeta, and Met in large-cell neuroendocrine carcinoma of the lung[END_REF]. Therefore, the management of the lung NENs strongly depends on the clinical stage. SCLC and LCNEC progress rapidly, are often metastatic at diagnosis, and have a very poor prognosis. LCNEC and SCLC require upfront aggressive, multimodal treatment for most of the patients. Indeed, surgical resection is the treatment of choice for localised tumours -mostly carcinoids-while systemic treatment is preferred for disseminated diseases. However, cytotoxic agents are mostly ineffective in these tumours. Overall, 5% of typical and 25% of atypical carcinoids initially surgically resected will relapse in the first 10 years. Metastatic recurrent pulmonary carcinoids are associated with limited sensitivity to platinum, etoposide, and/or 5-fluorouracil-based regimens, with response rates below 15%.

Moreover, somatostatin analogues and everolimus, which have been recently approved in this situation, mostly provide stabilisation of the disease, not tumour response [START_REF] Wolin | Advances in the Diagnosis and Management of Well-Differentiated and Intermediate-Differentiated Neuroendocrine Tumors of the Lung[END_REF]. The lack of predictive markers for carcinoids is an unmet need for the diagnosis and the follow-up of patients, but also for the development of personalised medicine strategies with agents targeting deregulated molecular pathways. Pulmonary carcinoids and LCNECs are mostly chemoresistant [START_REF] Rossi | Role of chemotherapy and the receptor tyrosine kinases KIT, PDGFRalpha, PDGFRbeta, and Met in large-cell neuroendocrine carcinoma of the lung[END_REF]. In contrast, SCLCs are almost always sensitive to chemotherapy, but invariably relapse with resistant and deadly disease [START_REF] Rossi | Role of chemotherapy and the receptor tyrosine kinases KIT, PDGFRalpha, PDGFRbeta, and Met in large-cell neuroendocrine carcinoma of the lung[END_REF][START_REF] Travis | Advances in neuroendocrine lung tumors[END_REF]. No therapeutic option

has as yet proven successful in the management of unresectable lung NENs. Owing to the differences in prognosis and treatment plan for these diseases, their accurate diagnosis is critical. Nevertheless, consensus on the optimal approach for their differential diagnosis remains inexistent while the currently used criteria based on immunohistochemical and morphological markers are imperfect resulting in common inter-observer variations, especially to distinguish typical from atypical carcinoids, and atypical carcinoids from LCNEC in small biopsies (Swarts et al., 2014). As a good prognosis marker in lung NENs as a whole and for differential diagnosis when separating carcinoids from SCLC, researchers have suggested Ki67 protein immune-reactivity (Pelosi et al., 2014). However, it has been shown that this marker does not faithfully follow the histological distinction between typical and atypical carcinoids.

Very little is known about the genomic characteristics of most lung NENs because performing genomic studies on these tumours has proven very difficult: SCLC is usually diagnosed by small biopsies and only in rare cases, when treated by surgical resection, it yields samples that are suitable for in-depth genomic studies (Xu et al., 1999). LCNEC tumours are often incorrectly classified and rarely documented in tissue banks since they are only identified when the initial pathological evaluation involves analyses of neuroendocrine differentiation markers [START_REF] Rekhtman | Lung neuroendocrine neoplasms: recent progress and persistent challenges[END_REF]. Finally, pulmonary carcinoids are rare pulmonary neoplasms, frequently presenting as small-size endobronchial masses, which are not always sampled for tumour banking [START_REF] Rekhtman | Lung neuroendocrine neoplasms: recent progress and persistent challenges[END_REF]Reuling et al., 2019).

In 2012, Peifer et al. (Peifer et al., 2012) and Rudin et al. (Rudin et al., 2012) published the first two genomic studies on SCLC. In total, over 100 SCLC specimens were analysed by exome sequencing, in addition to copy number arrays and transcriptome sequencing.

One of the most striking observations made was the extremely high background mutation rate of up to 7.4 somatic mutations per megabase of sequence. C:G>A:T transversions, which are typically caused by tobacco-associated carcinogens, were frequently detected in SCLC, thus confirming the association with smoking. In a followup study published in 2015, George et al. (George et al., 2015) also showed that SCLC is a disease driven by the almost universal inactivation of the two major suppressor genes TP53 and RB1 fundamental for cell cycle regulation. In fact, in nearly all the genomes of the 110 SCLC analysed in this followed-up study, bi-allelic inactivation of these two genes has been found, sometimes by complex genomic rearrangements. Among the mutated genes, the histone modifiers CREBBP, EP300, and MLL (also known as KMT2D)

were altered in 28% of the cases (Peifer et al., 2012). The chromatin regulator CREBBP driver function and the histone methyltransferase MLL frequent inactivation in SCLC have been confirmed in more recent studies [START_REF] Augert | Small Cell Lung Cancer Exhibits Frequent Inactivating Mutations in the Histone Methyltransferase KMT2D/MLL2: CALGB 151111 (Alliance)[END_REF][START_REF] Jia | Mutational and gene fusion analyses of primary large cell and large cell neuroendocrine lung cancer[END_REF].

Moreover, FGFR1 amplifications have been detected in 6% of the SCLC samples, providing the first therapeutic opportunity for these tumours, since at least one FGFR1amplified SCLC cell line has been previously found sensitive to FGFR inhibition (Sos et al., 2012;[START_REF] Weiss | Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer[END_REF]. In addition to these recurrent amplifications, amplification of MYC family genes, including MYC, MYCN, and MYCL were also found in a subset of SCLC tumours (Peifer et al., 2012;Rudin et al., 2012;[START_REF] Travis | Genetic profiling-based prognostic prediction of patients with advanced small-cell lung cancer in large scale analysis[END_REF]. Finally, in George et al. (George et al., 2015) study found somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, and inactivating mutations in NOTCH family genes in 25% of the cases. More recently, Lim et al. revealed that intra-tumoural heterogeneity generated by loss-of-function events in NOTCH receptors promotes SCLC development [START_REF] Lim | Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer[END_REF] and can be targeted by LSD1 inhibitors enabling the repression of SCLC tumourigenesis [START_REF] Augert | Targeting NOTCH activation in small cell lung cancer through LSD1 inhibition[END_REF].

For LCNEC, the genomic data were first limited to the whole-exome sequencing (WES)

analyses on 15 cases (Clinical Lung Cancer Genome Project (CLCGP) and Network

Genomic Medicine (NGM), 2013) and to few targeted sequencing studies (Karlsson et al., 2015;[START_REF] Miyoshi | Genomic Profiling of Large-Cell Neuroendocrine Carcinoma of the Lung[END_REF]Rekhtman et al., 2016). In Nat Commun, on the largest and most comprehensive sequencing effort on LCNEC, George et al. (George et al., 2018) conducted genome/exome and transcriptome sequencing on 60 LCNECs patients. The authors identified two distinct and mutually exclusive subgroups defined as "type 1

LCNEC" with TP53 and mostly bi-allelic STK11/KEAP1 alterations, and with upregulation of metabolism related pathways and, similar to SCLC, a neuroendocrine profile with ASCL1 high /DLL3 high /NOTCH low ; and "type 2 LCNEC" enriched for bi-allelic inactivation of TP53 and RB1, a hallmark of SCLC, and with a transcriptional pattern of ASCL1 low /DLL3 low / NOTCH high . In 2018, Derks et al. (Derks et al., 2018) assessed the predictive value of LCNEC subtypes (RB1/TP53 mutated referring to "type 2 LCNEC" versus RB1 wild-type referring to "type 1 LCNEC") on chemotherapy outcome. To do so, they used sequencing and immunohistochemistry data on 79 and 109 cases, respectively to stratify LCNEC patients. This study revealed that patients with RB1 wildtype LCNEC and treated with non-SCLC type chemotherapy including platinum and gemcitabine or taxanes had a significantly longer overall survival than those treated with SCLC type chemotherapy using platinum-etoposide. Overall, the grade 3 LCNECs present a high mutation burden, and two major molecular subtypes characterised by specific genomic features and different chemotherapy outcomes.

In the case of pulmonary carcinoids, in 2014, Fernández-Cuesta et al. (Fernandez-Cuesta et al., 2014) have sequenced 44 tumours, mostly typical (only four atypical). This study identified frequent mutations in chromatin-remodelling genes, with MEN1, PSIP1 and ARID1A being recurrently affected. It is of note that although no MEN1 or PSIP1 mutations have been identified in more than 200 SCLC genomes (George et al., 2015;Peifer et al., 2012;Rudin et al., 2012) only four out of the 60 LCNEC tumours analysed in George et al. harboured damaging mutations in these genes. In contrast to SCLC, TP53

and RB1 mutations were rare events only present in two out of the four atypical carcinoids included in the study and totally absent from the 40 typical carcinoids analysed. In addition, while one of the atypical carcinoids showed a chromothripsis event, none of the 40 typical carcinoids analysed presented with this pattern, which is characteristic of aggressive tumours [START_REF] Iwakawa | Genome-wide identification of genes with amplification and/or fusion in small cell lung cancer[END_REF][START_REF] Stephens | Massive genomic rearrangement acquired in a single catastrophic event during cancer development[END_REF]. These data point to TP53/RB1 mutations and chromothripsis as the underlying mechanism for the increased aggressiveness of atypical versus typical carcinoids. In contrast, several genes, fusion transcripts and pathways emerged as interesting candidates;

unfortunately, this dataset remains too small and very enriched towards typical carcinoids to draw meaningful conclusions. A second study investigated the molecular profile of pulmonary carcinoids, Simbolo et al. (Simbolo et al., 2017) in 2017, using a discovery-screen approach that included profiling tumour-normal tissue samples from 14 and 37 carcinoids by WES and targeted sequencing (on 418 genes), respectively.

They compared these carcinoids with nine lung neuroendocrine carcinomas (LCNEC or SCLC) and confirmed that MEN1 alterations are almost exclusive to carcinoids, associated with poor prognosis; whereas alterations of TP53, RB1, and PI3K/AKT/mTOR pathway genes were significantly enriched in lung neuroendocrine carcinomas. In fact, in this study, carcinoids were characterised by few affected genes of the phosphoinositide 3-kinase (PI3K)-AKT-mechanistic target of rapamycin gene (MTOR) pathway affecting 2% of pulmonary carcinoids while significantly enriched in carcinomas. In addition, alterations in chromatin-remodelling, histone modifiers, and SWI-SNF complexes genes were reported at similar rates in carcinoids (45.5%) and carcinomas (55.0%). Overall, these genomic studies showed that carcinoids generally contain a low mutational burden (0.4 mutations per megabase) and few recurrently mutated genes with fewer copy number alterations than carcinomas. However, atypical carcinoids showed an intermediate copy number pattern in Simbolo et al. [START_REF] Simbolo | Lung neuroendocrine tumours: deep sequencing of the four World Health Organization histotypes reveals chromatin-remodelling genes as major players and a prognostic role for TERT, RB1, MEN1 and KMT2D[END_REF], whereby amplifications of TERT, PIK3CA, RICTOR, SDHA, SRC, and MYCL were detected at similar rates similar to those in lung neuroendocrine carcinomas. In addition, mutations are found in DNA-repair genes and there are also losses of orthopedia homeobox (OTP) and CD44 [START_REF] Papaxoinis | 555 Prognostic significance of CD44 and orthopedia homeobox protein (OTP) expression in 556 pulmonary carcinoid tumours[END_REF]Swarts et al., 2013). At the gene expression level, upregulation of ret proto-oncogene gene (RET) gene has also been characterised in carcinoids (Swarts et al., 2013). This particular gene is a manifestation of the carcinoid neuroendocrine character since it appears to be essential for the normal development of several kinds of nerve cells, including nerves in the intestine and the autonomic nervous system.

Since all lung NEN express neuroendocrine differentiation markers, they are thought to arise mainly from neuroendocrine cells or neuroendocrine progenitors of the airways system, and therefore, they might share some features [START_REF] Park | Characterization of the cell of origin for small cell lung cancer[END_REF][START_REF] Sutherland | Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung[END_REF][START_REF] Swarts | Molecular and cellular biology of neuroendocrine lung tumors: evidence for separate biological entities[END_REF]. In fact, lung NENs with both a SCLC component and a

LCNEC component are frequently observed by pathologists (International Agency for

Research on Cancer, 2015). Moreover, in a George et al. (George et al., 2018) using the data from 60 LCNECs, a predominance of mutations typical of SCLC such as TP53, RB1, CREBBP, and EP300 has been observed. Together with similarities in expression data and clinical response, this data points to these two entities as very closely related. Based on the neuroendocrine differentiation of SCLC, LCNEC, and pulmonary carcinoids, a common neuroendocrine progenitor has been postulated for lung NENs. Another possible mechanism for the formation of these tumours might be through "transdifferentiation", for example from adenocarcinoma to SCLC [START_REF] Liu | Small cell lung cancer transformation from EGFR-mutated lung adenocarcinoma: A case report and literatures review[END_REF][START_REF] Oser | Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin[END_REF]. The existence of pulmonary carcinoids with admixed typical and atypical phenotypes, as well as lung carcinomas with a SCLC and a LCNEC component, or with a neuroendocrine (SCLC or LCNEC) and a non-neuroendocrine component (adeno or squamous), further supports this hypothesis (International Agency for Research on Cancer, 2015). Therefore, it has also been postulated that pulmonary carcinoids might be the precursor lesions of some highly aggressive SCLCs and LCNECs (Pelosi et al., 2018), though this hypothesis is far from largely accepted. [START_REF] Raso | Pathology and Classification of SCLC[END_REF]; LCNEC tumours are often incorrectly classified and rarely documented in tissue banks [START_REF] Rekhtman | Lung neuroendocrine neoplasms: recent progress and persistent challenges[END_REF]; and finally, pulmonary carcinoids are particularly rare pulmonary neoplasms. In addition, the majority of studies on pulmonary carcinoids have focused on targeted sequencing of a limited panel of genes, limiting the depth of their molecular characterisation and their understanding. Finally, while well-differentiated (carcinoid)

and low-differentiated (SCLC and LCNEC) lung NENs significantly differ in terms of aggressiveness and clinical management, the molecular link between them remains unclear despite the fundamental role of their differential diagnosis.

Malignant pleural mesothelioma, rare and highly aggressive thoracic tumours

Malignant pleural mesothelioma (MPM) is a rare (global incidence of 1.87/100,000/year), poorly explored cancer associated with exposure to asbestos (Carbone et al., 2019) (see Figure 3). Despite the ban of asbestos in many developed countries, the increased environmental exposure, and the ongoing use of asbestos in developing countries translates to MPM being an ongoing worldwide health problem. In addition, the past exposure to asbestos still remains a major problem in France, as highlighted by the Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, due to the long latency (30-40 years) of the disease together with the aging of the population (L'amiante, ANSES). As the period of peak asbestos use is yet to exceed the latency window (asbestos massive use in the industry until the end of 1980's), MPM incidence is expected to increase significantly in the upcoming years. In France, MPM shows an incidence plateau for males but a rising unexplained incidence among females and the young, with nearly 1,000 new cases recorded in France every year. Finally, worldwide statistics for MPM mortality are probably underestimated due to the misdiagnosis with lung adenocarcinoma and other tumours invading the pleura. Despite the long latency and the fact that this is mainly a professional disease, and therefore, the populations at risk are well known, there is currently no marker for the early detection of the disease.

The tumoural initiation related to asbestos exposure, probably involves chronic inflammation caused by the deposition of mineral fibres in tissues that release oxyradicals with mutagenicity properties (Carbone and Yang, 2012;Qi et al., 2013;Xu et al., 1999). These mechanisms seem to originate from the necrosis caused by asbestos fibres, related to the production of HMGB1 and the activation of Nalp3 inflammasome that potentially induce a pro-inflammatory response through the NF-κB signalling pathway. At a smaller extent, germline mutations of tumour suppressor genes such as the gene encoding for BRCA1-associated protein 1 (BAP1) have been associated with genetic susceptibility to MPM, emphasising the role of genetics in the malignant growth of this disease (Hassan et al., 2019;Panou et al., 2018;Pastorino et al., 2018). Finally, therapeutic ionising radiation applied on the chest has been reported as clinical history in young patients with MPM, and therefore has also been associated with the development of MPM tumours (Attanoos and Pugh, 2018;Goodman et al., 2009;Vivero et al., 2018). have to be routinely assessed in histological specimens [START_REF] Husain | Guidelines for pathologic diagnosis of malignant mesothelioma: 2012 update of the consensus statement from the International Mesothelioma Interest Group[END_REF]. However, suitable biopsies are not always available, which can leave doctors uncertain about the patient's diagnosis, sometimes resulting in a delay in the start of treatment. In addition, well-differentiated papillary mesothelioma (WDPM), another tumour of mesothelial origin, is often misdiagnosed as diffuse mesothelioma [START_REF] Galateau-Sallé | Well-differentiated papillary mesothelioma of the pleura: a series of 24 cases[END_REF]. The distinction of these two tumour entities is very important, since it limits the access to MPM tissue and WDPM is a tumour of borderline malignancy, from which patients usually do not die. Taken altogether, the identification of molecular markers that could increase the accuracy as well as accelerate the diagnostic process would be of extreme interest in the management of MPM.

MPM is usually treated with pemetrexed and cisplatin-based chemotherapy, although it does not significantly prolong survival in comparison to supportive care [START_REF] Nojiri | Survival and prognostic factors in malignant pleural mesothelioma: a retrospective study of 314 patients in the west part of Japan[END_REF], with only ~12-21 months median overall survival (Mesothelioma life expectancy, 2013). In fact, MPM is relatively refractory to all conventional treatment modalities, such as chemotherapy, radiotherapy and/or surgery. A contributing factor to this lack of response is that MPM is usually not detected until symptoms arise, usually with associated diffuse pleuropulmonary or thoracic spread, for which surgery is not an option anymore. As a result, most MPM patients die within two years after diagnosis and new therapeutic options have been evaluated with limited success (Carbone et al., 2019). Phase-II and phase-III clinical trials testing for anti-angiogenic drugs have only shown modest activity when using VEGF-A targeting monoclonal antibody (bevacizumab) (Zalcman et al., 2016) and none of the vascular targeting agents [START_REF] Gregorc | NGR-hTNF in combination with best investigator choice in previously treated malignant pleural mesothelioma (NGR015): a randomised, double-blind, placebo-controlled phase 3 trial[END_REF][START_REF] Nowak | A phase II clinical trial of the vascular disrupting agent BNC105P as second line chemotherapy for advanced Malignant Pleural Mesothelioma[END_REF] or multi-target tyrosine kinase inhibitors (nintedanib) [START_REF] Grosso | Nintedanib Plus Pemetrexed/Cisplatin in Patients With Malignant Pleural Mesothelioma: Phase II Results From the Randomized, Placebo-Controlled LUME-Meso Trial[END_REF] tested have showed significant efficiency. Preliminary data from ongoing clinical trials suggested that immunotherapy might be a promising approach [START_REF] De Gooijer | Immunotherapy in Malignant Pleural Mesothelioma[END_REF][START_REF] Nicolini | Malignant Pleural Mesothelioma: State-of-the-Art on Current Therapies and Promises for the Future[END_REF] using PDL1-blocker (Okada et al., 2019;[START_REF] Quispel-Janssen | Programmed Death 1 Blockade With Nivolumab in Patients With Recurrent Malignant Pleural Mesothelioma[END_REF]Scherpereel et al., 2019), CTLA-4 inhibitors [START_REF] Calabrò | Tremelimumab for patients with chemotherapy-resistant advanced malignant mesothelioma: an open-label, single-arm, phase 2 trial[END_REF][START_REF] Calabrò | Efficacy and safety of an intensified schedule of tremelimumab for chemotherapy-resistant malignant mesothelioma: an open-label, single-arm, phase 2 study[END_REF][START_REF] Maio | Tremelimumab as second-line or third-line treatment in relapsed malignant mesothelioma (DETERMINE): a multicentre, international, randomised, double-blind, placebo-controlled phase 2b trial[END_REF], or combined therapies [START_REF] Calabrò | Tremelimumab combined with durvalumab in patients with mesothelioma (NIBIT-MESO-1): an open-label, nonrandomised, phase 2 study[END_REF]Scherpereel et al., 2019;[START_REF] Zalcman | Second/third-line nivolumab vs nivo plus ipilimumab in malignant pleural mesothelioma: Long-term results of IFCT-1501 MAPS2 phase IIR trial with a focus on hyperprogression (HPD)[END_REF]. However, immunohistochemistry measurement of PD(L)1 seems to be a poor predictive biomarker of response to PD(L)1

inhibitors [START_REF] De Gooijer | Immunotherapy in Malignant Pleural Mesothelioma[END_REF][START_REF] Nicolini | Malignant Pleural Mesothelioma: State-of-the-Art on Current Therapies and Promises for the Future[END_REF]Scherpereel et al., 2019). A reason for the lack of reliability of PD(L)1 immunohistochemistry biomarker might be the immune environment of MPM tumours that might complicate the interpretation of the predictive value of this marker. The discovery of predictive markers for early detection, classification and treatment response is, therefore, an unmet need, hampered by the limited molecular studies available for this rare disease.

MPM relative rarity leads to a limited number of available genomic studies that often comprise a small number of samples. A first study performed whole-exome sequencing on 22 MPMs in 2015 [START_REF] Guo | Whole-exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1 in malignant pleural mesothelioma[END_REF] and identified recurrent somatic alterations in BAP1, NF2, CUL1, and CDKN2A genes that could explain less than 40% of the cases.

Another recent study has assessed 50 cancer genes in 123 formalin-fixed paraffinembedded (FFPE) MPM samples using NGS-Ion Torrent technology [START_REF] Lo Iacono | Targeted next-generation sequencing of cancer genes in advanced stage malignant pleural mesothelioma: a retrospective study[END_REF] and found two main altered pathways: the phosphatidylinositol 3-kinase-AKT and p53/DNA repair pathways. Nevertheless, there have been two recent large published studies on MPM that have provided very important insights on the molecular characteristics of the disease [START_REF] Churg | Highlights of the 14th international mesothelioma interest group meeting: Pathologic separation of benign from malignant mesothelial proliferations and histologic/molecular analysis of malignant mesothelioma subtypes[END_REF][START_REF] Leblay | BAP1 Is Altered by Copy Number Loss, Mutation, and/or Loss of Protein Expression in More Than 70% of Malignant Peritoneal Mesotheliomas[END_REF] identifying molecular groups of MPM. The first, led by Bueno and colleagues (Bueno et al., 2016), characterised 99 whole exomes and 211 transcriptomes from 216 MPM fresh-frozen specimens collected at time of surgery. The second study took part in the TCGA consortium program and undertook an integrative genomic analysis encompassing whole-exome and transcriptome sequencing, as well as 450K methylation arrays datasets from 87 MPM tumours (Hmeljak et al., 2018). Bueno and colleagues identified BAP1, NF2, TP53, SETD2, SETDB1, ULK2, CFAP45, RYR2, DDX3X, and DDX51 genes as significantly and recurrently mutated in these tumours. Beyond this list, additional recurrent mutations (~2%) were reported in SF3B1 and TRAF7 genes. This study showed that mutations in the SF3B1 gene affect its splicing profile and that tumours with TRAF7 alterations were mutually exclusive with those carrying NF2 alterations.

Furthermore, recurrent gene fusions and splice alterations in the significantly mutated NF2, BAP1, and SETD2 genes were also detected inactivating these MPM characteristic genes. Finally, alterations were found in mTOR, Hippo, RNA helicase, histone methylation, and p53 signalling pathways by means of integrated analyses (Bueno et al., 2016). More recently, chromosomal rearrangements in MPM have been explored by Mansfield et al. (Mansfield et al., 2019) using mate-pair sequencing but with a limited amount of samples. They used mate-pair, and RNA sequencing on 22 and 28 MPM samples respectively as well as T cell receptor sequencing, in silico predictions and immunologic assays to infer genomic rearrangement impact on gene expression.

Interestingly, inter-or intrachromosomal rearrangements were found in every MPM tumour and often followed patterns of chromoplexy or chromothripsis. This resulting transcription of the rearrangement-related junctions detected was predicted to translate into numerous potential neoantigens that might stimulate intra-tumoural T cell clones. These findings suggest the key role of larger catastrophic chromosomal events in MPM development as well as the potential of immunotherapy for MPM patients. However, the genomic data enabling the investigation of such alterations remains limited for MPM, hampering the investigation of these large genomic events and their impacts.

The TCGA (Hmeljak et al., 2018) and more recently the Quetel et al. (Quetel et al., 2020) studies confirmed the high frequency of BAP1 inactivation by copy number deletion and mutations, and also recurrent inactivating alterations in CDKN2A, NF2, TP53, LATS2, and SETD2 genes. Indeed, Quetel et al. characterised 266 primary MPM tumours using targeting sequencing on a set of MPM related genes and TERT promoter. Importantly, TERT promoter hotspot mutation C228T were found in a subset of MPM tumours (~10%) (Quetel et al., 2020) and associated with a poorer overall survival. The TCGA study also discovered a novel MPM molecular subtype of MPM characterised by genomic near-haploidisation combined with TP53 and SETDB1 alterations, associated with gender and age since occurring especially in young females (Hmeljak et al., 2018).

This new MPM subtype suggests that large genomic events such as chromosomal losses or other aberrations might be much more frequent alterations in MPM than mutations (Oey et al., 2019). However, in this study, near-haploidisation were detected and characterised only in three cases. In reality, compared to other cancer types, only few genes with high frequency mutations have been reported in MPM, with BAP1 being the most recurrent, but found mutated in only ~20-25% of the MPM tumours (Quetel et al., 2020).

These genomic studies also informed the classification of MPM that remains particularly challenging (see above). As a first attempt at MPM molecular classification, de Reyniès this study suggested that one of the deregulated underlying pathways of these clusters was the EMT by proposing the log2 ratio of the expression of the claudin family CLDN15, involved in cell-cell adhesion to the EMT gene VIM as a molecular marker of this molecular classification. In fact, CLDN15 and VIM were found as among the most significantly upregulated genes in the epithelioid and sarcomatoid clusters, respectively (Bueno et al., 2016).

Two years later, the TCGA identified four distinct molecular MPM classes as well by using integrative clustering from 87 MPM tumours. These molecular groups present different prognoses even after adjusting for MPM histopathological type and CDKN2A homozygous deletion that have been reported as a molecular prognostic factor in MPM (Dacic et al., 2008;López-Ríos et al., 2006). TCGA cluster 1 was enriched for epithelioid type, characterised by few somatic copy number alterations, with CDKN2A homozygous deletions relatively rare, and almost universal alterations of BAP1. Contrary to cluster 1, cluster 2 presented few numbers of BAP1 alterations and low DNA methylation level and cluster 3 displayed CDKN2A homozygous deletions. Cluster 4 is defined as the opposite group of the cluster 1, presenting the worst prognosis, a high EMT score characterised by the overexpression of VIM but also PECAM1, and TGFB1, and low expression of the related miR-200 family. High frequency of LATS2 mutations were also found in this subgroup also associated with a higher expression of AURKA, as well as E2F targets, G2-M checkpoints, and DNA damage response genes. Interestingly, these tumours showed enrichment for leukocytes, a significantly higher score for the Th2 cell signature compared with the other clusters, and a deregulation of PI3K-mTOR and RAS-MAPK signalling pathway based on both RNA and protein expression (Hmeljak et al., 2018). Altogether, this data suggest that the different molecular features identified Lifestyle behaviours and environmental factors might account for approximately 70-90% of cancer cases [START_REF] Wu | Substantial contribution of extrinsic risk factors to cancer development[END_REF]. Already in 2005, Wild [START_REF] Wild | Complementing the genome with an "exposome": the outstanding challenge of environmental exposure measurement in molecular epidemiology[END_REF] of MPM depending on a set of immunohistochemical markers [START_REF] Husain | Guidelines for pathologic diagnosis of malignant mesothelioma: 2012 update of the consensus statement from the International Mesothelioma Interest Group[END_REF] and related to common misclassification with other thoracic pathologies [START_REF] Galateau-Sallé | Well-differentiated papillary mesothelioma of the pleura: a series of 24 cases[END_REF]. In addition, the majority of studies on MPM have focused on WES or on WGS analyses in small series of samples, limiting the depth of their molecular characterisation and their understanding. Finally, while all the previous molecular classification focused on the current WHO classification that recognises three major histological types with prognostic but limited predictive value, MPM histological heterogeneity suggests large variability at the molecular level that might hamper the appropriate clinical management of these patients. [START_REF] Husain | Guidelines for pathologic diagnosis of malignant mesothelioma: 2012 update of the consensus statement from the International Mesothelioma Interest Group[END_REF] 

PhD aims

Pulmonary carcinoid and malignant pleural mesothelioma (MPM) tumours correspond to the most frequent neoplasms among the rare thoracic cancers, both poorly understood and with a challenging clinical management that ultimately translates into a worse overall survival [START_REF] Gatta | Burden and centralised treatment in Europe of rare tumours: results of RARECAREnet-a population-based study[END_REF]. Lung NENs range from well-differentiated typical carcinoids and atypical carcinoids, to poorly differentiated and highly malignant large cell neuroendocrine carcinoma (LCNEC) and small cell lung cancer (SCLC) (W. these groups remains challenging while their imperfect classification is fundamental in the clinical management of these patients as well as for lung NENs [START_REF] Rossi | Role of chemotherapy and the receptor tyrosine kinases KIT, PDGFRalpha, PDGFRbeta, and Met in large-cell neuroendocrine carcinoma of the lung[END_REF][START_REF] Travis | Advances in neuroendocrine lung tumors[END_REF]. Similarly to pulmonary carcinoids, no real adapted treatment has been established for MPM patients and their care faces a particularly aggressive condition (2013). Initial genomic studies on both rare thoracic cancers suggest that, unlike other thoracic tumours such as lung adenocarcinoma and squamous cell carcinoma, pulmonary carcinoids and MPMs do not harbour frequent genomic alterations (Fernandez-Cuesta et al., 2014;Quetel et al., 2020;Simbolo et al., 2017) amenable to therapeutic intervention, and therefore, understanding the molecular pathways involved in the malignant progression of these tumours, might be a better strategy to improve patient stratification, and provide the patients with novel therapeutic opportunities.

It has been previously established that trans-differentiation from lung adenocarcinoma to SCLC can occur [START_REF] Liu | Small cell lung cancer transformation from EGFR-mutated lung adenocarcinoma: A case report and literatures review[END_REF][START_REF] Oser | Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin[END_REF] (see 1.3. section). Moreover, a carcinoidlike subtype has also been identified among LCNEC tumours supporting the belief that lung tumours might be interconnected in their history (George et al., 2018;[START_REF] Rekhtman | Next-generation sequencing of pulmonary large cell neuroendocrine carcinoma reveals small cell carcinoma-like and non-small cell carcinoma-like subsets[END_REF]. The identification of the molecular connection between lung NENs could reveal the underlying pathways of their development. In a similar way, MPM types appear interconnected through the biphasic type carrying both epithelioid and sarcomatoid components. MPM tumours also present a significant morphological heterogeneity (Nicholson et al., 2020) also reported in MPM treatment responses that remain often highly variable and misunderstood (Carbone et al., 2019). The characterisation of the MPM inter-patient heterogeneity could unveil the underlying phenotypes responsible for their differences.

The objective of this thesis is to help identifying genomic characteristics that would establishing the similarities and differences among lung neuroendocrine and malignant pleural mesothelioma types, independently, for which the accurate diagnosis remains challenging; and also unveil the molecular pathways responsible for the carcinogenesis and progression of these tumours, providing the patients with more promising therapeutic options.

Specific Aim 1: Characterisation of pulmonary carcinoids and pleural mesotheliomas at the genomic, transcriptomic, and DNA methylation level to better understand the biology of these tumours.

This descriptive effort was undertaken using next generation sequencing of the entire genome/exome and transcriptome, and DNA methylation using EPIC 850K arrays of 63 pulmonary carcinoids and 124 MPMs to identify somatic genomic variants, recurrently mutated genes and pathways, and expression and methylation patterns. These newly generated datasets were also integrated with publicly available data from 74 and 284 additional pulmonary carcinoids and MPMs, respectively, to increase the statistical power for the analyses or validate the findings in independent cohorts. Specific Aim 2: Identification of altered genes and pathways explaining the molecular similarities and differences, firstly among, lung neuroendocrine neoplasms and, secondly, within malignant pleural mesothelioma types.

This comprehensive effort was undertaken by the use of comparative and integrative analyses using the genomic, transcriptomic, and DNA methylation data generated and gathered in Aim 1 with additional 95 LCNECs and 66 SCLCs, focusing on: aberration rates, genomic signatures, dimensionality reduction and unsupervised consensus clustering of multi-omic data to identify meaningful molecular groups, and gene-set enrichment analysis to identify up-and down-regulated pathways in the different phenotypes.

Specific Aim 3: Translation of molecular features informing the clinical management at every level: diagnosis, prognosis, and treatment for patients with pulmonary carcinoid and mesothelioma.

This effort for promoting clinical translation was undertaken using integrative analyses crossing molecular insights provided in Aim 1 and 2 with detailed clinical, epidemiological, and morphological annotations, with a special focus on the validation of clinically usable markers, prognosis prediction modelisation, and validation in in vitro models for treatment response assessment.

In summary, we aimed to characterise the genome, transcriptome, and DNA methylome of the most frequent neoplasms among the rare thoracic cancers and investigate the similarities and differences among their specific subtypes. We also aimed to shed light on the mechanisms responsible for the development of these poorly investigated diseases to promote translational application and, ultimately, patient benefit.

Research approach and contributions

This thesis has been undertaken in the context of the Rare Cancers Genomics (RCG) initiative (https://rarecancersgenomics.com/) led by Dr Lynnette Fernandez-Cuesta and Dr Matthieu Foll with the specific aim of providing a molecular characterisation of relatively large series of rare cancers through the integration of multi-omic data and detailed morphological, epidemiological, and clinical information, to generate a better understanding of these understudied diseases. My contribution focused on the studies investigating the lung neuroendocrine neoplasms and mesothelioma tumours termed the lungNENomics and MESOMICS projects, respectively.

Generation of biorepositories

Rare cancers face specific challenges translating into a limited number of comprehensive studies and resulting in poorly understood diseases. One of the difficulties in performing genomic studies on these tumours is the limited availability of tissue not only due to their rare nature but also because of technical limitations at the stage of diagnosis to collect enough high-quality tissue. Owing that the ability to study these rare cancers is impaired by the ability to collect enough material from a statistically meaningful number of patients, getting the maximum from the minimum available becomes the unique valid strategy. In fact, we believe that international and collective efforts between centers and specific panels of experts might be essential for the benefit of everyone.

Taking into account these limitations, during the last years the RCG team has established multi-centre collaborations that have given us access to a unique collection of samples required for the genomic characterisation of rare tumours (see Figure 5). As a result, we have already provided major contributions to the genomic characterisation of these diseases. In particular, in the case of lung neuroendocrine tumours, we put together clinicians and pathologists from all around the world, resulting in an international multicenter collaboration. This network enabled the collection of more than 300 pulmonary carcinoids (including 80 atypical carcinoids) from 14 centers. In In the context of this thesis, whilst these multicenter networks were already built, my contribution has been essential in management and usage of the specimens and data collected through these networks. I took part in the selection of samples to be analysed based on specific criteria, performed methylation array design, and conducted and interpreted quality controls throughout the process. Therefore, beyond my participation in data processing and analysis, a substantial part of this thesis required me to perform project and data management, including maintaining collaboration and communication with a wide panel of experts ranging from pathologists and clinicians to bioinformaticians and biostatisticians. This contribution therefore warrants the larger description of the RCG projects design and approach, provided in the following sections.

Generation of data

The Rare Cancers Genomics (RCG) team generated data from whole-genome sequencing, whole-transcriptome sequencing, and EPIC 850K methylation arrays to assess the molecular landscape of rare cancers in the aim of molecular characterisation of rare tumours (Specific Aim 1, see 2. section).

Whole-genome and RNA sequencing were undertaken in the Centre National de Recherche en Génomique Humaine, Evry, France (CNRGH) and the Cologne Center for Genomics (CCG), respectively, while EPIC 850K methylation arrays were performed inhouse at the International Agency for Research on Cancer (IARC) on fresh-frozen tumour samples. Then, the RCG team runs bioinformatic workflows to obtain analysisready omic data. We have set up best-practices pipelines to process wholegenome/exome sequencing, RNA sequencing, and EPIC 850K methylation arrays data.

The pipelines include pre-processing steps and rigorous quality controls at each step.

These workflows rely on the Nextflow domain-specific language (Di Tommaso et al., 2017) to make an optimal use of the high-performance computing facilities at IARC, while also relying on public version control platforms (GitHub), and by allowing us to run workflows within containers, using notably Docker [START_REF] Di Tommaso | The impact of Docker containers on the performance of genomic pipelines[END_REF] and Singularity [START_REF] Kurtzer | Singularity: Scientific containers for mobility of compute[END_REF], that bundle an operating system plus all necessary software with their dependencies.

Our approach consists in taking advantage of state-of-the-art computational methods to analyse omics data. Whole-genome sequencing data provides insights on genomic variability and instability. Furthermore, the RCG has set up the analysis pipelines to call single nucleotide variants and small indels, structural variants and large indels, and finally copy number variants. RNA sequencing data provides insight on the gene expression and is also used in deconvolution methods to characterise the tumour microenvironment. More precisely, we call gene fusions, quantify immune infiltration, and perform gene and transcript-level expression quantification. EPIC 850K methylation arrays are used for the interrogation of over 850,000 cytosine-phosphateguanine (CpG) dinucleotides sites and their data provides insight on epigenetic regulation as well as genomic instability and cellular lineage. Our pipelines are used to perform DNA methylation level assessment and we also quantify normal cell infiltration using a deconvolution method (R package EpiDISH [START_REF] Zheng | Identification of differentially methylated cell types in epigenome-wide association studies[END_REF]). Genomic, transcriptomic, and DNA methylation data refers to three interconnected molecular layers that ultimately inform cancer phenotype and is used to assess the underlying molecular pathways of cancer growth and spread. All above-mentioned pipelines and methods are available at https://github.com/IARCbioinfo.

The RCG research approach also uses detailed morphological, clinical, and epidemiological annotations to provide clinically relevant conclusions on the development of these rare cancers (Specific Aim 3, see 2. section). Along the process, the morphological annotations are collected through extensive pathological reviews and then centralised. Especially for the MPM studies, I personally collected, homogenised, and controlled this data. In fact, I set up a detailed and standardised histopathological questionnaire for reporting the major annotations of interest for the investigation of MPM histologic variability. Jointly with Pr Françoise Galateau-Salle, I collected data for tumour grade, immune infiltration, presence of necrosis and vessels, histopathological types and subtypes proportions at high-resolution. In addition, I also unified age at diagnosis, sex, smoking status, asbestos exposure, previous treatment with chemotherapy drugs, treatment information, cancer history, and survival data collected for all the patients. I also validated a part of this data (sex and sample mate) using omic data and computational methods. In addition for the investigation of MPM, detailed information from Santé Publique France (SPF), the French National Public Health Agency, about probability of exposure, frequency, intensity, and duration of the asbestos exposure was available for 47 patients as the result of a supervised survey undertaken by the National Program for pleural Mesothelioma Surveillance (PNSM) [START_REF] Ilg | Programme national de surveillance du mésothéliome pleural (PNSM) : vingt années de surveillance des cas, de leurs expositions et de leur reconnaissance médico-sociale (1998-2017)[END_REF].

In the aim of improving rare cancers understanding, the most urgent need relies on getting additional high-quality molecular data and samples annotations. As a first step, gathering these rare biological specimens still remains challenging. Facing these current gaps, there are two necessary efforts to make: (i) building additional biorepositories to further increase the number of available samples and (ii) making the most out of the already published data. In the context of the RCG initiative, a collaborative and multidisciplinary effort enables the collection of exceptional biological materials with rigorous quality controls at each step. In addition, to promote the generation of omic data for these poorly characterised cancers, our tools rely on the most up-to-date informatics technologies to ensure a perfect reproducibility of results, scalability-from individual computers to large high-performance computing facilities-, and portability to suit a maximal range of platforms (Di Tommaso et al., 2017). For the integration of already published data, the raw data were re-processed using the same bioinformatics approach to minimise batch effects. This allows our team to make the most of the already available data for these rare cancers, using large-scale genomic studies that share their data such as the TCGA MPM study. These additional cohorts are used either for re-analyses, validation, or replication of our findings to ultimately draw meaningful conclusions. For the integration of furthcoming datasets, we generate open-science projects that we implement and document everything we produce for the community.

Highly committed to open-science, we sustain a user-friendly workflow combining state-of-art bioinformatics tools to ultimately allow the scientific community to perform comprehensive molecular characterisation. Furthermore, for each newly generated multi-omic cohort and its related publication, we provide a companion data note paper used to encourage reuse by highlighting and helping to contextualise our datasets (see 4. and 5. sections below). Overall, taking the advantages of unique biorepositories and in-house computational sources, we provide access to a unique set of patient annotations and multi-omic data for a profitable number of rare cancer samples.

If most above-mentioned bioinformatics processing steps were performed by my colleagues, my contribution focused on generating quality controls, the secondary annotations of the omic data generated but also project and data management by notably the collection of morphological, epidemiological, and clinical annotations in a joint effort with specific key collaborative experts, especially in the context of the MESOMICS project. I also actively participated in the open-science effort that we conducted for each of our large genomic studies for which we generated additional data.

Moreover, the following sections describe downstream analyses, on which my contribution during this thesis mainly focused.

Primary downstream analyses

The central dogma of molecular biology can be represented by multi-omics datasets that capture distinct layers of the global molecular landscape. These multi-omic datasets generate high-dimensional data that challenges biological interpretation and hypothesis generation with the number of variables, p, much higher than the number of samples, n.

If usual statistical methods like regression methods require p < n, specific strategies are needed to handle the substantial amount of noise generated in such datasets, to capture the meaningful relationships compared to random events, and to mitigate the redundancy among the variables [START_REF] Altman | The curse(s) of dimensionality[END_REF][START_REF] Domingos | A few useful things to know about machine learning[END_REF][START_REF] Ronan | Avoiding common pitfalls when clustering biological data[END_REF].

Different models are able to analyse high-dimensional datasets and can be classified as supervised or unsupervised methods based on the nature of their approach.

Corresponding to confirmatory data analyses, supervised methods are used when specific hypotheses need to be tested, using labelled input data; while exploratory data analyses are preferred when there are no predefined hypotheses, usually referring to unsupervised analyses for which the input is not labelled [START_REF] Holmes | Modern Statistics for Modern Biology[END_REF].

Indeed, using the labels given to the input, supervised methods predict the value of an outcome. They correspond to classification or regression problems that form categorical outcomes or predict a continuous variable, respectively. Unsupervised algorithms can be associated with exploratory analyses and are hypothesis-free methods. Usually, the main objective of such methods is to identify and extract useful properties of the data [START_REF] Eraslan | Deep learning: new computational modelling techniques for genomics[END_REF]. Unsupervised methods encompasse both clustering and dimensionality reduction algorithms.

In the context of this thesis, I used a wide range of these statistical methods that allow the downstream analyses of complex omic datasets that raise specific challenging issues. As a first step of the exploratory investigation of rare thoracic tumours, I computed summaries of the transcriptomic and methylation data using Principal

Component Analysis (PCA) to reduce the high-dimensional data to a few orthogonal dimensions, each representing groups of genes or CpGs with correlated expression or methylation levels, respectively. PCA belongs to dimensionality reduction methods, designed to preserve as much as possible the initial structure of the input. As cross-omic analyses, I performed expression quantitative trait loci (eQTL) analyses to assess the role of genomic alterations and of DNA methylation as an epigenetic regulatory process.

This method corresponds to a supervised strategy that focuses on the resolution of a linear regression problem. Multi-Omics Factor Analysis (MOFA) (Argelaguet et al., 2020) is a multi-omic integrative analysis able to generate low-dimensional molecular summaries, similarly to PCA and can infer the interplay between molecular layers, as eQTL analyses aim to. Similarly to PCA, MOFA is a dimensionality reduction method designed to generate the low-dimensional summary of multiple omic datasets. Like for PCA, its algorithm is based on a matrix factorisation approach that consists in decomposing an initial matrix in two smaller matrices based on linear relationships which leads to the generation of new variables, in smaller numbers. At a more integrative level and similarly to the eQTL analyses, MOFA enables investigating the interplay between different molecular layers, providing extensive cartographies of the tumoural molecular landscape. Finally, based on these maps, we also identify tumour subtypes using integrative consensus clustering, another unsupervised method that interrogates the structure of a dataset by searching subgroups of samples based on their similarities.

The interpretation of the variables captured by unsupervised analyses requires further supervised investigation to unveil the underlying biological mechanisms. To do so, I tested the association between each dimension and morphological, clinical, and epidemiological variables using linear regression when appropriate, or non-linear regression using cubic splines when the linearity assumption is not met. I performed the statistical association tests between dimensions and the immune cell composition (estimated from the RNA sequencing data), and other data such as the survival score obtained using the artificial intelligence algorithm from Courtiol et al. (Courtiol et al., 2019) (MesoNet, a deep convolutional neural network trained to predict survival from whole-slide digitised images); mutational signatures inferred by our collaborator Pr Alexandrov; damaging somatic alterations in specific driver genes detected by Pr Lopez-Bigas using the well-established and state-of-the-art integrative oncogenomics pipeline IntOGen (Martínez-Jiménez et al., 2020); and more complex genomic pattern such as chromothripsis or amplicons among others. Because each dimension of the PCA or MOFA summarises sets of genes, I also inferred the main biological processes that correspond to each dimension by looking at the biological functions of these sets of genes using Gene-Set Enrichment Analyses (GSEA) (Specific Aim 2, see 2. section).

Finally, Cox regression models correspond to another supervised method that tests the effect of variables upon the time a specified event takes to happen (death). in the context of this thesis, I identified predictors of patient survival using Cox's proportional hazard models on which assess their fits using the time-dependent Area Under the ROC Curve (AUC) and its integral (iAUC; Chambless and Diao (Chambless and Diao, 2006); R package survAUC), computed using the test set (Specific Aim 3, see 2. section). All together, these analyses aim to unveil the mechanisms underlying the development of these tumours and explain the inter-type similarities and differences.

Secondary downstream analyses

In addition to the above-mentioned primary analyses, I conducted interdependent secondary analyses. Firstly, I explored specific evolutionary traits under the scope of a multi-task evolution theory (or Pareto front theory (Hausser and Alon, 2020;Hausser et al., 2019)) based on the fact that tumour cells need to conduct multiple tasks that take part in their fitness. This powerful conceptual framework unveiled trade-offs between tasks in multiple cancers, constraining tumour gene-expression to a continuum bounded by a polyhedron whose vertices correspond to specific transcriptomic profiles and presenting tumour specialisation in one task (Hausser et al., 2019). These tasks are strategies for the tumour cell to survive and can be identified in low-dimension molecular summaries. In the context of our studies, the Pareto front model has been fitted using the ParetoTI R package (https://github.com/vitkl/ParetoTI). For each significant fit, the algorithm provides the proportion of each specialist phenotype (called archetype) within each tumoural sample. As for molecular dimensions, association between each archetype proportion and all the relevant variables are tested (see above).

Secondly, I used the ActivePathways R package, presenting an innovative method, for performing integrative GSEA [START_REF] Paczkowska | Integrative pathway enrichment analysis of multivariate omics data[END_REF]. Using statistical data fusion, ActivePathways is defined as an integrative method able to discover significantly enriched pathways across multiple datasets, rationalises contributing evidence, and highlights associated genes. Originally, this tool was developed to integrate lists of genes with non-and coding mutations to unveil the underlying mutated functional pathways and reveal additional cancer-related genes with infrequent mutations but still contributing in the pathway enrichments. In this paper, the authors also integrated genomic and transcriptomic features of 1,780 breast cancer samples and ChIP-seq and RNA sequencing data from normal human tissues as supplementary practical application of their method. ActivePathways method uses the signal from each integrated datasets to gather a single gene-set enrichment signal. Interestingly, this method is able to determine the main source(s) of the summed signal underlying each pathway enriched. In the context of Pareto front characterisation, I tuned this tool to get the most specific enriched pathways for each archetype by integrating the data coming from the association between gene expression and the different archetype proportions.

ActivePathways was therefore able to find for each archetype, the specific pathways only enriched because of the signal captured from the tested archetype. This integrative GSEA allowed us to infer the underlying phenotypic differences of the archetypes.

Statistical analyses were performed using software R. Dimensionality reduction analyses (PCA and MOFA), Pareto front evolutionary fit and GSEA method ActivePathways were performed using the corresponding R packages following best practices to produce robust, reproducible analyses. Associations between morphological, clinical, and epidemiological variables, AI scores, genomic patterns, molecular dimensions, and archetype proportions were carried out using univariable linear regression (base package). In case of survival models, both the linear and nonlinear regression have been tested using cubic splines (package splines). In addition, all models have been adjusted for confounder variables such as sex, age among others identified in unvariate tests. P-values have been adjusted for multiple testing using the Benjamini-Hochberg procedure. 

Multidisciplinary approach

As suggested in the above sections describing the generation of biorepositories and diverse data sets as key steps in our research approach, collaborative and multidisciplinary efforts are prominent factors in our research setting. The RCG multidisciplinary approach emcompasses analyses of tumoural multi-omic data, conduction of traditional and digital pathology, use of evolutionary framework, and integrations of panels of expert clinicians and epidemiologists. Hence, our multidisciplinary team includes basic scientists, clinicians, pathologists, computational biologists, and biostatisticians, combined with multi-center collaborations provides an efficient setting to generate insights at the molecular level into the development of rare tumours (see Figure 7). Interestingly, as presented in the above sections and illustrated in the following chapters, in this thesis my contributions have spanned the whole range of the RCG activities with a special focus on some areas such as project and data management, quality controls of data processing, and diverse downstream analyses.

Additionally, I closely interacted with a wide range of experts that developed my ability to translate knowledge, question findings, and conduct more targeted and relevant investigations. Beyond the participation in management meetings on a regular-basis, I have been the contact person and coordinator the multidisciplinary analyses in the context of the investigation of mesothelioma, and I also directly met collaborators abroad to actively participate in the initial set up of a novel partnership on behalf of the whole team. On this occasion, I spent two weeks in the group of Pr H Clevers to cooperate for the development of in vitro models for the study of lung NENs (see section 4.3.). The RCG team strongly believes that this cooperative effort enables our studies to undertake a special focus on generating strong and convincing translational data that will improve the clinical management and, consequently, the quality of life of these patients. The worldwide incidence of pulmonary carcinoids is increasing, but little is known about their molecular characteristics. Through machine learning and multi-omics factor analysis, we compare and contrast the genomic profiles of 116 pulmonary carcinoids (including 35 atypical), 75 large-cell neuroendocrine carcinomas (LCNEC), and 66 small-cell lung cancers.

Here we report that the integrative analyses on 257 lung neuroendocrine neoplasms stratify atypical carcinoids into two prognostic groups with a 10-year overall survival of 88% and 27%, respectively. We identify therapeutically relevant molecular groups of pulmonary carcinoids, suggesting DLL3 and the immune system as candidate therapeutic targets; we confirm the value of OTP expression levels for the prognosis and diagnosis of these diseases, and we unveil the group of supra-carcinoids. This group comprises samples with carcinoid-like morphology yet the molecular and clinical features of the deadly LCNEC, further supporting the previously proposed molecular link between the low-and high-grade lung neuroendocrine neoplasms.

A ccording to the WHO classification from 2015 1 and a recent IARC-WHO expert consensus proposal 2 , pulmonary carcinoids are low-grade typical and intermediate-grade atypical well-differentiated lung neuroendocrine tumours (LNETs) that belong to the group of lung neuroendocrine neoplasms (LNENs), which also includes the highgrade and poorly differentiated small-cell lung cancer (SCLC) and large-cell neuroendocrine carcinomas (LCNEC). Pulmonary carcinoids are rare malignant lesions, annual incidence of which has been increasing worldwide, especially at the advanced stages 3 . Pulmonary carcinoids account for 1-2% of all invasive lung malignancies: typical carcinoids exhibit good prognosis, although 10-23% metastasise to regional lymph nodes, resulting in a 5-year overall survival rate of 82-100%. The prognosis is worse for atypical carcinoids, with 40-50% presenting metastasis, reducing the 5-year overall survival rate to 50%. Contrary to pulmonary carcinoids, most of which are eligible for upfront surgery at the time of diagnosis 3 , LCNEC and SCLC require upfront aggressive, multimodal treatment for most of the patients. Owing to these differences in clinical management and prognosis, the accurate diagnosis of these diseases is critical. However, there is still no consensus on the optimal approach for their differential diagnosis; 2 the current criteria, based on morphological features and immunohistochemistry, are imperfect and inter-observer variations are common, especially when separating typical from atypical carcinoids 4 , as well as atypical carcinoids from LCNEC in small biopsies 5 . Ki67 protein immune-reactivity has been suggested as a good marker of prognosis in LNENs as a whole, and for the differential diagnosis between carcinoids and SCLC 6,7 , whereas this marker does not faithfully follow the defining histological criteria of typical and atypical carcinoids 4 . The difficulties in finding good markers to separate these diseases might be due to the limited amount of comprehensive genomic studies available for SCLC, LCNEC, and typical carcinoids, and the complete lack of such studies for atypical carcinoids 8 .I n addition, such studies would also be needed to validate the recent proposed molecular link between pulmonary carcinoids and LCNEC 9,10 .

In this study, we provide a comprehensive overview of the molecular traits of LNENs-with a particular focus on the understudied atypical carcinoids-in order to identify the mechanisms underlying the clinical differences between typical and atypical carcinoids, to understand the suggested molecular link between pulmonary carcinoids and LCNEC, and to find new candidates for the diagnosis and treatment of these diseases.

Results

Data. We have generated new data (genome, exome, transcriptome, and methylome) for 63 pulmonary carcinoids (including 27 atypical) and 20 LCNEC. In order to perform comparative analyses, we have reanalysed published data for 74 pulmonary carcinoids 11 , 75 LCNEC 12 , and 66 SCLC 13,14 . Taken together, we have performed multi-omics integrative analyses on 116 pulmonary carcinoids (including 35 atypical), 75 LCNEC, and 66 SCLC (Supplementary Fig. 1 and Supplementary Data 1).

Molecular groups of pulmonary carcinoids and LCNEC.W e performed an unsupervised analysis of the expression and methylation data of the LNENs (i.e., 110 pulmonary carcinoids and 72 LCNEC) using the Multi-Omics Factor Analysis implementation of the group factor analysis statistical framework (Software MOFA) 15 (MOFA LNEN; Fig. 1a and Supplementary Figs. 2 and3). We identified five latent factors explaining more than 2% of the variance in at least one data set, and among them, three latent factors provided consistent groups of samples with similar expression and methylation profiles (i.e., clusters). MOFA latent factors one (LF1) and two (LF2) explained a total of 45% and 34% of the variance in methylation and expression, respectively, and were both associated with survival (Supplementary Fig. 4). Using consensus clustering on these two latent factors (which explained most of the variation and thus carried most of the biological signal; Supplementary Figs. 567and Supplementary Data 2-3), we identified three clusters, each of them enriched for samples of one of the three histopathological types (Fig. 1a). Cluster Carcinoid A was enriched for typical carcinoids (75%; Fisher's exact test p-value < 2.2 × 10 -16 ); cluster Carcinoid B was enriched for atypical carcinoids (54%; Fisher's exact test p-value < 2.2 × 10 -16 ) and male patients (79%; Fisher's exact test p-value = 1.6 × 10 -9 ); and cluster LCNEC included 92% of the histopathological LCNEC (Fisher's exact test p-value < 2.2 × 10 -16 ). Note that clustering based on LF1 to LF5, weighted by their proportion of variance explained, leads to the exact same clusters (Supplementary Fig. 8).

To assess whether the current histopathological classification could be improved by the combination of molecular and morphological characteristics, we undertook a machine-learning (ML) analysis. To do so, we combined the predictions from two independent random forest classifications, based on onlyexpression or only-methylation data. Using two independent models allowed the inclusion of samples for which only one of these data sets was available, thus maximising the power of subsequent analyses (Fig. 1b and Supplementary Fig. 9 for an alternative analysis based on both 'omic data sets simultaneously, but restricted to fewer samples). In order to avoid overfitting the data, we performed a leave-one-out cross-validation, with feature filtering and normalisation learned from the training set and applied to the test sample. To identify intermediate profiles, we defined a prediction category (unclassified) for samples that had a probability ratio between the two most probable classes close to one. We present in Fig. 1b the results for a cutoff ratio of 1.5, and show in Supplementary Fig. 10 the robustness of our results with regard to this ratio. Ninety-six per cent of the carcinoids predicted as typical by the ML were in cluster Carcinoid A (Fig. 1a). Similarly, the majority of ML-predicted atypical carcinoids (87%) belonged to cluster Carcinoid B.

We selected the ML-prediction groups with >10 samples (gathering the unclassified samples in one single group) and compared their overall survival using Cox's proportional hazard model (coloured groups in Fig. 1b). The machine learning trained on the histopathology stratified atypical carcinoids into two prognostic groups: the good-prognosis group (atypical reclassified as typical, in pink in Fig. 1b,c) with a 10-year overall survival similar to that of samples confirmed by ML as typical carcinoids (in black in Fig. 1b,c; 88% and 89%, respectively; Wald test pvalue = 0.650); and the bad-prognosis group (atypical predicted as atypical, in red in Fig. 1b,c) with a 10-year overall survival similar to that of samples confirmed by ML as LCNEC (in blue in Fig. 1b,c; 27% and 19% respectively; Wald test p-value = 0.574; see also Supplementary Fig. 11). Machine-learning analyses based on other features -combined expression and methylation data (Supplementary Fig. 9), MOFA latent factors (Supplementary Fig. 12A), and Principal component analyses (PCA) principal components explaining more than 2% of the variance (Supplementary Fig. 12B)-led to qualitatively similar results.

Atypical carcinoids with LCNEC molecular characteristics. Six atypical carcinoids clustered with LCNEC in the MOFA LNEN (supra-carcinoids; Fig. 1a). Consistent with this clustering, this group displayed a survival similar to the other samples in the LCNEC cluster (10- Fig. 1 Multi-omics (un)supervised analyses of lung neuroendocrine neoplasms. a Multi-omics factor analysis (MOFA) of transcriptomes and methylomes of LNEN samples (typical carcinoids, atypical carcinoids, and LCNEC). Point colours correspond to the histopathological types; coloured circles correspond to predictions of histopathological types by a machine learning (ML) algorithm (random forest classifier) outlined in b; filled coloured shapes represent the three molecular clusters identified by consensus clustering. The density of clinical variables that are significantly associated with a latent factor (ANOVA q-value < 0.05) are represented by kernel density plots next to each axis: histopathological type for latent factor 1, sex and histopathological type for latent factor 2. b Confusion matrix associated with the ML predictions represented on a. The different colours highlight the prediction groups considered in the survival analysis and the colours for machine learning are consistent between panel b and upper panel c. Black represents typical carcinoids predicted as typical, pink represents atypical carcinoids predicted as typical, red represents atypical carcinoids predicted as atypical, and blue represents LCNEC samples predicted as LCNEC. For the unclassified category, the most likely classes inferred from the ML algorithm are represented by coloured arcs (black for typical, red for atypical, blue for LCNEC, and light grey for discordant methylation-based and expression-based predictions). c Kaplan-Meier curves of overall survival of the different ML predictions groups (upper panel) and histopathological types (lower panel). Upper panel: colours of predicted groups match panel b. Lower panel: black-typical, red-atypical, blue-LCNEC. Next to each Kaplan-Meier plot, matrix layouts represent pairwise Wald tests between the reference group and the other groups, and the associated p-values; 0.01 ≤ p < 0.05, 0.001 ≤ p < 0.01, and p < 0.001 are annotated by one, two, and three stars, respectively. Data necessary to reproduce the figure are provided in Supplementary Data 1 respectively; Wald test p-value = 0.574; Fig. 2a). The observed molecular link appears to be between supra-carcinoids and LCNEC rather than with SCLC, as shown by PCA and MOFA including expression data for 51 SCLC (Supplementary Figs. 6 and 13, respectively).

These samples originated from three different centres (two from each), and included two previously published samples (S01513 and S01522) 11 , implying that this observation is unlikely to be the result of a batch effect. The limited number of supracarcinoids did not allow to explore aetiological links; however, it is of note that one of them (LNEN005) belonged to a patient with professional exposure to asbestos (which is known to cause mesothelioma) 16 (Table 1), and the tumour harboured a splicing BAP1 somatic mutation (a gene frequently altered in mesothelioma) 17 . This sample showed the highest mutational load (37 damaging somatic mutations; Supplementary Data 4). Gene set enrichment analyses (GSEA) of mutations in the hallmarks of cancer gene sets 18,19 , showed a significant enrichment for the hallmark evading growth suppressor (q-value = 0.0213; Fig. 2b and Supplementary Data 5), while the hallmark genome instability and mutation was significant only at the 10% false discovery rate (FDR) threshold (q-value = 0.0970; Fig. 2b and Supplementary Data 5). We had access to the Haematoxylin and Eosin (H&E) stain for three of these supra-carcinoids, on which the pathologists discarded misclassifications with LCNEC, SCLC, or mesothelioma in the case of the asbestos-exposed BAP1mutated sample (Fig. 2c and Table 1).

While generally similar to LCNEC, and albeit based on small numbers, the supra-carcinoids appeared to have nonetheless some distinct genomic features based on genome-wide expression and methylation profiles (Fig. 2d). Supra-carcinoids displayed higher levels of immune checkpoint genes (both receptors and ligands; Fig. 2e), and also harboured generally higher expression levels of MHC class I and II genes (Fig. 2e and Supplementary Fig. 14). Interestingly, the interferon-gamma gene-a prominent immune-stimulator, in particular of the MHC class I and II genes -also showed high-expression levels in these samples (Supplementary Fig. 14). The differences in immune checkpoint gene expression levels between groups were not explained by the amount of infiltrating cells, as estimated by deconvolution of gene expression data with software quanTIseq (Fig. 2f, left panel). However, supra-carcinoids contained the highest levels of neutrophils (greater than the 3rd quartile of the distributions of neutrophils in the other groups; Fig. 2f, right panel). Permutation tests showed that these levels were significantly higher than in other carcinoid groups and in SCLC, but not than in LCNEC (Supplementary Fig. 15). Concordantly, GSEA showed that MOFA LNEN LF1 (separating LCNEC and supra-carcinoids from the other carcinoids) was significantly associated with neutrophil chemotaxis and degranulation pathways (Supplementary Data 6). By contrast, no such association was observed in the MOFA performed only on carcinoids and SCLC samples (Supplementary Figs. 6C and 13C and Supplementary Data 6).

Mutational patterns of pulmonary carcinoids. In a previous study, mainly including typical carcinoids, we detected MEN1, ARID1A, and EIF1AX as significantly mutated genes 11 . We also found that covalent histone modifiers and subunits of the SWI/ SNF complex were mutated in 40% and 22.2% of the cases, respectively. Genomic alterations in these genes and pathways were also seen in the new samples included in this study (Fig. 3a, Supplementary Fig. 16, and Supplementary Data 4). Apart from the above-mentioned genes, ATM, PSIP1, and ROBO1 also showed some evidence, among others, for recurrent mutations in pulmonary carcinoids (Fig. 3a). In addition to point mutations and small indels, the ARID2, DOT1L, and ROBO1 genes were also altered by chimeric transcripts (Fig. 3b). MEN1 was also inactivated by genomic rearrangement in a carcinoid sample with a chromothripsis pattern affecting chromosomes 11 and 20 (Fig. 3c). The full lists of somatically altered genes, chimeric transcripts, and genomic rearrangements are presented in Supplementary Data 4,7,and 8,respectively. Of note, MEN1 mutations were significantly associated with the atypical carcinoid histopathological subtype (Fisher's exact test p-value = 0.0096), as well as MOFA LNEN LF2.

Altered pathways in pulmonary carcinoids. The third latent factor from the MOFA LNEN accounted for 8% and 6% of the variance in expression and methylation, respectively, but unlike LF1 and LF2, LF3 was not associated with patient survival (Supplementary Fig. 4). The molecular variation explained by LF3 appeared to capture different molecular profiles within cluster Carcinoid A (Supplementary Fig. 13B). We therefore undertook an additional MOFA restricted to pulmonary carcinoid samples only (MOFA LNET; Fig. 4a and Supplementary Fig. 17). This MOFA identified five latent factors that explained at least 2% of the variance in one data set. As expected, the first two latent factors of the MOFA LNET were highly correlated with LF2 and LF3 from the MOFA LNEN, respectively, (Pearson correlation >0.96; Supplementary Fig. 13B), and explained 41% and 35% of the variance in methylation and expression, respectively. Integrative consensus clustering using LF1 and LF2 of the MOFA LNET identified three clusters (Supplementary Fig. 18): cluster Carcinoid A1 and cluster Carcinoid A2, that together correspond to the samples in cluster Carcinoid A of the MOFA LNEN, plus the supra-carcinoids; and cluster Carcinoid B (as for the clustering of LNEN samples, a clustering based on LF1-LF5 weighted by their proportion of variance explained, led to the exact same clusters; Supplementary Fig. 8). LF2 was associated with age, with cluster Carcinoid A1 enriched for older patients ( [START_REF] Love | Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[END_REF]90] years old) and cluster Carcinoid A2 enriched for younger patients ( (15,[START_REF] Love | Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[END_REF] years old).

We applied GSEA to identify the pathways associated with the different latent factors. We found significant associations with the immune system and the retinoid and xenobiotic metabolism pathways (Supplementary Data 6). Numerous Gene Ontology (GO) terms and KEGG pathways were related to the immune system, immune cell migration, and infectious diseases. The GO terms and KEGG pathways related to immune cell migration included leucocyte migration, chemotaxis, cytokines, and interleukin 17 signalling. In particular, the expression of all β-chemokines (including CCL2, CCL7, CCL19, CCL21, CCL22, known to attract monocytes and dendritic cells) 20 (Supplementary Data 6), and all CXC chemokines (such as IL8, CXCL1, CXCL3, and CXCL5, known to attract neutrophils) 21 , were positively correlated with MOFA LNEN LF1 (separating pulmonary carcinoids from LCNEC) and negatively correlated with MOFA LNET LF2 (separating clusters Carcinoid A1 and A2).

The different LNET clusters did not differ in their total amounts of estimated proportions of immune cells, but they did differ in their composition (Supplementary Fig. 19): cluster Carcinoid A (particularly A1) was significantly enriched in dendritic cells, and cluster Carcinoid B, in monocytes (Fig. 4b, upper panel). As monocytes can differentiate into dendritic cells in a favourable environment 22 , we assessed the levels of LAMP3 and CD1A dendritic-cells markers 23 , and found that samples in cluster Carcinoid A1 presented high-expression levels of these genes (Fig. 4b, lower panel), implying that this cluster was indeed enriched for dendritic cells. We pursued this further by assessing the CD1A protein levels by immunohistochemistry (IHC) in an independent series of pulmonary carcinoids, and found that 60% of them (12 out of 20) were enriched in CDA1-positive dendritic cells, confirming the presence of dendritic cells in a subgroup of pulmonary carcinoids (Fig. 4c and Supplementary Data 9).

Regarding the retinoid and xenobiotic metabolism pathways (e.g., elimination of drugs and environmental pollutants), the main genes driving the correlation with MOFA latent factors were the phase II enzymes involved in glucuronosyl-transferase activity (Supplementary Data 6), but also the phase I cytochrome P450 (CYP) proteins. These pathways were positively correlated with MOFA LNEN LF2 (separating LNEN clusters A and B) and negatively correlated with MOFA LNET LF1 (separating LNET clusters A1 and A2 from cluster B). Indeed, we found that samples in cluster Carcinoid B were characterised by high levels of the CYP family of genes, and a very strong expression of several UDP glucuronosyl-transferases UGT genes (median FPKM = 4.6 in UGT2A3 and 28.1 in UGT2B genes; Fig. 4d), which contrasts with the low levels in other carcinoids (median FPKM = 0 for both UGT2A3 and UGT2B; Fig. 4d), LCNEC (median FPKM = 0 and 1.2 for UGT2A3 and UGT2B; Supplementary Fig. 20) and SCLC (median FPKM = 0 and 0.3 for UGT2A3 and UGT2B; Supplementary Fig. 20).

Molecular groups of pulmonary carcinoids. We explored the molecular characteristics of each cluster from the MOFA LNET based on their core differentially expressed coding genes (core-DEGs, the expression levels of which defined a given group of samples), corresponding promoter methylation profiles (Fig. 5a and Supplementary Data 10), and their somatic mutational patterns (Figs. 3a and4a). To achieve this goal, we computed the DEGs in all pairwise comparisons between a focal group and the other groups, and then defined core-DEGs as the intersection of the resulting gene sets. We show in Supplementary Fig. 21 that core-DEGs are almost exclusively a subset of the DEGs between the focal group and samples from all other groups taken together. We correlated the gene expression and promoter methylation data of the core-DEGs to identify genes, which expression could be mainly explained by their methylation patterns (Fig. 5a). One of the top correlations was found for HNF1A and HNF4A homeobox genes (Supplementary Fig. 22), which were strongly downregulated in cluster Carcinoid A1 samples (Supplementary Fig. 23). In addition, the promoter regions of these genes also harboured core-DMPs (differentially methylated positions) of cluster Carcinoid A1, indicating that their methylation profile is specific of this cluster (Supplementary Data 11). These two genes have been reported as having a role in the transcriptional regulation of ANGPTL3, CYP, and UGT genes 24 , and could thus explain the differential expression of these genes between the clusters. Samples in cluster Carcinoid A1 were also characterised by high-expression levels of the delta like canonical Notch ligand 3(DLL3, 75% with FPKM > 1) and its activator the achaete-scute family bHLH transcription factor 1 (ASCL1) (Fig. 5a and Supplementary Data 10), similar to SCLC and LCNEC (Fig. 5b); however, the expression levels of NOTCH genes did not differ between the different groups (Supplementary Fig. 24). The supracarcinoids were negative for DLL3 expression (Fig. 5b), and had generally high-expression levels of NOTCH1-3 (Supplementary Fig. 24). We additionally tested the DLL3 protein levels in the aforementioned independent series of 20 pulmonary carcinoids and found 40% (eight out of 20) with relatively high expression of DLL3 (Fig. 4d and Supplementary Data 9), while in the other 12 samples DLL3 was strikingly absent (Fig. 4d and Supplementary Data 9). Furthermore, we found a correlation between the protein levels of DLL3 and CD1A (Pearson test p-value = 0.00034; Supplementary Fig. 25), providing additional evidence for the existence of a DLL3+ CD1A+ subgroup of carcinoids. Core-DEGs in cluster Carcinoid A2 included the low levels of SLIT1 (slit guidance ligand 1; 97% with FPKM < 0.01), and ROBO1 (roundabout guidance receptor 1; 56% with FPKM < 1) (Fig. 5a, b and Supplementary Data 10). This cluster also contained the four samples with somatic mutations in the eukaryotic translation initiation factor 1A X-linked (EIF1AX) gene (Fig. 4a). Concordantly, samples with EIF1AX mutations had significantly higher coordinates on the MOFA LNET LF2 (t-test p-value = 0.0342). As expected based on Fig. 4d, several UGT genes were core-DEGs of cluster Carcinoid B (Fig. 5a). Also, accordingly with the worse survival of patients in this cluster (Fig. 2a), these samples were also characterised by the expression of angiopoietin like 3 (ANGPTL3, 90% with FPKM > 1), and the erb-b2 receptor tyrosine kinase 4 (ERBB4, 67% with FPKM > 1) (Fig. 5b). This cluster was also characterised by the universal downregulation of orthopedia homeobox (OTP; 90% with FPKM < 1), and NK2 homeobox 1 (NKX2-1; 90% FPKM < 1) (Fig. 5b). Interestingly, the SCLC-combined LCNEC sample (S00602) that clustered with the pulmonary carcinoids in the MOFA LNEN (Fig. 1a) was the only LCNEC in our series harbouring high-expression levels of OTP (290.26 FPKM vs. 9.89 FPKM for the 2nd highest within LCNEC, the median for LCNEC being 0.22 FPKM). UGT genes, ANGPTL3, and ERBB4 were also core-DEGs of cluster B samples when compared to LNEN clusters Carcinoid A and LCNEC (Supplementary Data 12), which indicates that their expression levels also significantly differed from that of LCNEC. Cluster Carcinoid B included all observed MEN1 mutations, which is consistent with the fact that samples with MEN1 mutations had significantly lower coordinates on the MOFA LNET LF1 (t-test p-value = 7×10 -6 ; Fig. 4a). Nevertheless, mutations in this gene did not explain the poorer prognosis of this group of samples compared to other LNET (logrank p-value > 0.05; Supplementary Fig. 26). To gain some insights into what might be driving the bad prognosis of cluster Carcinoid B samples, we performed a GSEA of mutations in hallmarks of cancer gene sets 18,19 ; while clusters Carcinoid A1 and A2 were not enriched for any hallmark of cancer, cluster Carcinoid B was significantly enriched for genes involved in evading growth suppressor, sustaining proliferative signalling, and genome instability and mutation at the 5% FDR (Fig. 5c). We also performed a Cox regression with elastic net regularisation based on the core-DEGs of this cluster; the model selected eight coding genes explaining the overall survival, OTP being one of them (Fig. 5d and Supplementary Data 13). Further supporting their prognostic value, we found that the expression of four of these genes was significantly different between the goodand the poor-prognosis atypical carcinoids based on the machinelearning predictions (Fig. 1c, upper panel and Supplementary Fig. 27).

Finally, we also checked the MKI67 expression levels in the different molecular groups and found relatively low levels in the clusters Carcinoids A1, A2, and B (78% with FPKM < 1) and high levels in the supra-carcinoids (FPKM > 1 in the three samples). As expected, LCNECs and SCLCs carried high levels of this gene (FPKM > 1 in 99% and 92% of the samples, respectively). Although the levels of MKI67 for each of the clusters were different, further analyses showed that MKI67 expression levels alone were not able to accurately separate good-from poorprognosis pulmonary carcinoids (Supplementary Fig. 11B,C).
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An overview of the different molecular groups of pulmonary carcinoids and their most relevant characteristics is displayed in Fig. 6.

Discussion

Lung neuroendocrine neoplasms are a heterogeneous group of tumours with variable clinical outcomes. Here, we characterised and contrasted their molecular profiles through integrative analysis of transcriptome and methylome data, using both machinelearning (ML) techniques and multi-omics factor analyses (MOFA). ML analyses showed that the molecular profiles could distinguish survival outcomes within patients with atypical carcinoid morphological features, splitting them into patients with good typical-carcinoid-like survival and patients with a clinical outcome similar to LCNEC. Overall, out of the 35 histopathologically atypical carcinoids, ML reclassified 12 into the typical category.

Unsupervised MOFA and subsequent gene-set enrichment analyses unveiled the immune system and the retinoid and xenobiotic metabolism as key deregulated processes in pulmonary carcinoids, and identified three molecular groups-clusters-with clinical implications (Fig. 6). The first group (cluster A1) presented high infiltration by dendritic cells, which are believed to promote the recruitment of immune effector cells resulting in a strongly active immunity 25 . Samples in cluster A1 showed overexpression of ASCL1 and DLL3. The transcription factor ASCL1 is a master regulator that induces neuronal and neuroendocrine differentiation. It regulates the expression of DLL3, which encodes an inhibitor of the Notch pathway 26 . Overexpression of ASCL1 and DLL3 is a characteristic of the SCLC of the classic subtype 26 and of type-I LCNEC 12 . We validated the expression of DLL3 in an independent series of 20 pulmonary carcinoids assessed by immunohistochemistry (IHC; 40% positive). The fact that we found a correlation between the protein levels of DLL3 and CD1A (a marker of dendritic cells also assessed by IHC in this series; 60% positive) provides orthogonal evidence to support the existence of this molecular group. Phase I trials have provided evidence for clinical activity of the anti-DLL3 humanised monoclonal antibody in high-DLL3-expressing SCLCs and LCNECs 27 , and additional clinical trials are ongoing in other cancer types.

The second group (cluster A2) harboured recurrent somatic mutations in EIF1AX, and showed downregulation of the SLIT1 and ROBO1 genes. SLIT and ROBO proteins are known to be axon-guidance molecules involved in the development of the nervous system 28 , but the SLIT/ROBO signalling has also been associated with cancer development, progression, and metastasis. Pulmonary neuroendocrine cells (PNEC) represent 1% of the total lung epithelial cell population 29 , they reside isolated (Kultchinsky cells) or in clusters named neuroepithelial bodies (NEBs), and are believed to be the cell of origin of most lung neuroendocrine neoplasms 30 . In the normal lung, it has been shown that ROBO1/2 are expressed, exclusively, in the PNECs, and that the SLIT/ROBO signalling is required for PNEC assembly and maintenance in NEBs 31 . In cancer, this pathway mainly suppresses tumour progression by regulating invasion, migration, and apoptosis, and therefore, is often downregulated in many cancer types 28 . More specifically, the SLIT1/ROBO1 interaction can inhibit cell invasion by inhibiting the SDF1/ CXCR4 axis, and can attenuate cell cycle progression by destruction of β-catenin and CDC42 28 . Potential clinical avenues to this finding exist, especially the ongoing development of CXCR4 inhibitors.

The third molecular group (cluster B) was enriched in monocytes and depleted of dendritic cells, and had the worst median survival. Even in the presence of T cell infiltration, this immune contexture suggests an inactive immune response, dominated by monocytes and macrophages with potent immunosuppressive functions, and almost devoid of the most potent antigen-presenting cells, dendritic cells, suggesting dendritic cellbased immunotherapy as a therapeutic option for this group of samples 32 . Cluster B was also characterised by recurrent somatic mutations in MEN1, the most frequently altered gene in pulmonary carcinoids and pancreatic NETs 33 , which is in line with the common embryologic origin of pancreas and lung. MEN1 was inactivated by genomic rearrangement due to a chromothripsis event affecting chromosomes 11 and 20 in one of our samples. This observation, together with two additional reported cases involving chromosomes 2, 12, and 13 11 , and chromosomes 2, 11, and 20 34 , respectively, suggest that chromothripsis is a rare but recurrent event in pulmonary carcinoids. Interestingly, MEN1 mutations did not have a clear prognostic value in our series. Regarding the above-mentioned deregulation of the retinoid and xenobiotic metabolism in pulmonary carcinoids, samples in cluster B presented high levels of UGT and CYP genes. In line with previous studies 35,36 , these samples also harboured low levels of OTP, which gene expression levels were correlated with survival in the ML predictions. High levels of ANGPTL3 and ERBB4 were also detected in this group of samples, representing candidate therapeutic opportunities. ANGPTL3 is involved in new blood vessel growth and stimulation of the MAPK pathway 37 . This protein has been found aberrantly expressed in several types Fig. 5 Molecular groups of pulmonary carcinoids. a Heatmaps of the expression of core differentially expressed genes of each molecular cluster, i.e., genes that are differentially expressed in all pairwise comparisons between a focal cluster and the other clusters. Green bars at the right of each heatmap indicate a significant negative correlation with the methylation level of at least one CpG site from the gene promoter region. The colour scale depends on the range of q-value (q) and squared correlation estimate (R²) of the correlation test. b Boxplots of the expression levels of selected cancer-relevant core genes, in fragment per kilobase million (FPKM) units, where centre line represents the median and box bounds represent the inter-quartile range (IQR). The whiskers span a 1.5-fold IQR or the highest and lowest observation values if they extend no further than the 1.5-fold IQR. c Characteristic hallmarks of cancer in each molecular cluster (Carcinoid A1 without the supra-carcinoids, A2, and B), LCNEC, and SCLC. Coloured concentric circles correspond to the molecular clusters. For each cluster, dark colours highlight significantly enriched hallmarks (Fisher's exact test q-value < 0.05). The mutated genes contributing to a given hallmark are listed in the boxes. Recurrently mutated genes are indicated in brackets by the number of samples harbouring a mutation. d Survival analysis of pulmonary carcinoids based on the expression level of eight core genes of cluster Carcinoid B. The genes were selected using a regularised GLM on expression data. For each gene, coloured lines correspond to the Kaplan-Meier curve of overall survival for individuals with a high (green) and low (orange) expression level of this gene. Cutoffs for the two groups were determined using maximally selected rank statistics (Methods). The percentage of samples in each group is represented above each Kaplan-Meier curve and the logrank test p-value is given in bottom right for each gene. Data necessary to reproduce the figure are provided in Supplementary Data 5,10,and of human cancers 37 . Similarly, overexpression of the epidermal growth factor receptor ERBB4, which induces a variety of cellular responses, including mitogenesis and differentiation, has also been associated with several cancer types 38,39 .

For many years, it has been widely accepted that the lung welldifferentiated NETs (typical and atypical carcinoids) have unique clinico-histopathological traits with no apparent causative relationship or common genetic, epidemiologic, or clinical traits with the lung poorly differentiated SCLC and LCNEC 3 . While molecular studies have sustained this belief for pulmonary carcinoids vs. SCLC 11,13,14 , the identification of a carcinoid-like group of LCNECs 10,12 , the recent observation of LCNEC arising within a background of pre-existing atypical carcinoid 40 , and a recent proof-of-concept study supporting the progression from pulmonary carcinoids to LCNEC and SCLC 9 , suggest that the separation between pulmonary carcinoids and LCNEC might be more subtle than initially thought, at least for a subset of patients. Our study supports the suggested molecular link between pulmonary carcinoids and LCNEC, as we have identified a subgroup of atypical carcinoids, named supra-carcinoids, with a clear carcinoid morphological pattern but with molecular characteristics similar to LCNEC. In our series, the proportion of supracarcinoids was in the order of 5.5% (six out of 110 pulmonary carcinoids with available expression/methylation data); however, considering the intermediate phenotypes observed in the MOFA LNEN, the exact proportion would need to be confirmed in larger series. We found high estimated levels of neutrophil infiltration in the supra-carcinoids. For both supra-carcinoids and LCNEC (but not SCLC), the pathways related to neutrophil chemotaxis and degranulation, were also altered. Neutrophil infiltration may act as immunosuppressive cells, for example through PD-L1 expression 41 . Indeed, the supra-carcinoids also presented levels of immune checkpoint receptors and ligands (including PDL1 and CTLA4) similar-or higher-than those of LCNEC and SCLC, as well as upregulation of other immunosuppressive genes such as HLA-G, and interferon gamma that is speculated to promote cancer immune-evasion in immunosuppressive environments 42,43 . If confirmed, this would point to a therapeutic opportunity for these tumours since strategies aiming at decreasing migration of neutrophils to tumoral areas, or decreasing the amount of neutrophils have shown efficacy in preclinical models 44 . Similarly, immune checkpoint inhibitors, currently being tested in clinical trials, might also be a therapeutic option for these patients.

C D 2 7 4 (P D -L 1 ) NKX 2-1 NKX 2-1 NKX 2-1 O T P O T P O T P E R B B 4 E R B B 4 E R B B 4 A N G P T L 3 A N G P T L 3 SL IT 1 SL IT 1 SL IT 1 R O B O 1 R O B O 1 R O B O 1 A S C L 1 A S C L 1 A S C L 1 DLL3 DLL3 DLL3 U G T ge
C D 2 7 4 (P D -L 1 ) NKX 2-1 NKX 2-1 NKX 2-1 O T P O T P O T P E R B B 4 E R B B 4 E R B B 4 A N G P T L 3 A N G P T L 3 A N G P T L 3 SL IT 1 SL IT 1 SL IT 1 R O B O 1 R O B O 1 R O B O 1 A S C L 1 A S C L 1 DLL3 DLL3 DLL3 U G T ge
Overall, although preliminary, our data suggest that supracarcinoids could be diagnosed based on a combination of morphological features (carcinoid-like morphology, useful for the differential diagnosis with LCNEC/SCLC) and the high expression of a panel of immune checkpoint (IC) genes (LCNEC/SCLClike molecular features, useful for the differential diagnosis with other carcinoids); the levels of IC genes, such as PD-L1, VISTA, and LAG3, could also be used to drive the therapeutic decision for patients harbouring a tumour belonging to this subset of very aggressive carcinoids. Nevertheless, due to the very low number of supra-carcinoids identified so far (n = 6), follow-up studies are warranted to comprehensively characterise these tumours from pathological and molecular standpoints, to evaluate the immune cell distribution, and to establish if the diagnosis of these supracarcinoids can be undertaken in small biopsies. Finally, the current classification only recognises the existence of grade-1 (typical) and grade-2 (atypical) well-differentiated lung NETs, while the grade-3 would only be associated with the poorly differentiated SCLC and LCNEC; however, in the pancreas, stomach and colon, the group of well-differentiated grade-3 NETs are well known and broadly recognised 45 . Whether these supra-carcinoids constitute a separate entity that may be the equivalent in the lung of the gastroenteropancreatic, well-differentiated, grade-3 NETs will require further research.

In summary, this study provides comprehensive insights into the molecular characteristics of pulmonary carcinoids, especially of the understudied atypical carcinoids. We have identified three well-characterised molecular groups of pulmonary carcinoids with different prognoses and clinical implications. Finally, the identification of supra-carcinoids further supports the already suggested molecular link between pulmonary carcinoids and LCNEC that warrants further investigation.

Methods

Sample collection. All new specimens were collected from surgically resected tumours, applying local regulations and rules at the collecting site, and including patient consent for molecular analyses as well as collection of de-identified data, with approval of the IARC Ethics Committee. These samples underwent an independent pathological review. For the typical carcinoids and LCNEC, on which methylation analyses were performed, the DNA came from the samples included in already published studies 4,11-14,35 , for which the pathological review had already been done.

Clinical data. Collected clinical data included age (in years), sex (male or female), smoking status (never smoker, former smoker, passive smoker, and current smoker), Union for International Cancer Control/American Joint Committee on Cancer stage, professional exposure, and survival (calculated in months from surgery to last day of follow-up or death). These data were merged with that from Fernandez-Cuesta et al. 11 , George et al. 12 , and George et al. 14 . In order to improve the power of the statistical analyses, we regrouped some levels of variables that had few samples. Age was discretized into three categories ( (15,40], (40,[START_REF] Love | Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[END_REF], and ( 60, 90] years), Union for International Cancer Control stages were regrouped into four categories (I, II, III, IV), and smoking status was regrouped into two categories (non-smoker, that includes never smokers and passive smokers, and smoker, that includes current and former smokers). In addition, one patient (S02236) that was originally classified as male was switched to female based on its concordant wholeexome, transcriptome, and methylome data; and one patient (LNEN028) for whom no sex information was available was classified as male based on its methylation data (Supplementary Fig. 28; see details of the methods used in the DNA sequencing, expression, and methylation sections of the methods), because we had no other data type for this sample. Note that two SCLC samples from George et al. 14 displayed Y chromosome expression patterns discordant with their clinical data (S02249 and S02293; Supplementary Fig. 28B), but because we did not perform any analysis of SCLC samples that used sex information, this did not have any impact on our analyses. See Supplementary Data 1 for the clinical data associated with the samples.

We assessed the associations between clinical variables-a batch variable (sample provider), the main variable of interest (histopathological type), and important biological covariables (sex, age, smoking status, and tumour stage)using Fisher's exact test, adjusting the p-values for multiple testing. Using samples from all histopathological types (typical and atypical carcinoids, LCNEC, and SCLC), we found that the sample provider was significantly associated with the histopathological type (Supplementary Fig. 29A). Indeed, the 20 carcinoids from one of the providers (provider 1) are all atypical carcinoids. Nevertheless, because there are also seven atypical carcinoids from a second provider and five from a third one, variables provider and histopathological type are not completely confounded and we could check for batch effects in the following molecular analysis by making sure that the molecular profiles of atypical carcinoids from provider 1 overlap with that from the two other providers. The histopathological type was significantly associated with all other variables (Supplementary Fig. 29A, B, andC).

Pathological review. Some of the samples included in this manuscript had already undergone a Central Pathological Review in the context of other published studies, so we used the classifications from the supplementary tables of the corresponding manuscripts 4,11,12,14,35 . For the new ones, an H&E (hematoxylin and eosin) stain from a representative FFPE block was collected for all tumours for pathological review. All tumours were classified according to the 2015 WHO classification by three independent pathologists (E.B., B.A.A., and S.L.). An H&E stain was also performed in order to assess the quality of the frozen material used for molecular analyses and to confirm that all frozen samples contained at least 70% of tumour cells.

Immunohistochemistry. FFPE tissue sections (3 µm thick) from 20 atypical and typical carcinoids were deparaffinized and stained with the Ventana DLL3 (SP347) assay, UltraView Universal DAB Detection Kit (Ventana Medical Systems and Amplification Kit (Ventana Medical Systems-Roche) on Ventana ULTRA autostainer (Ventana, Roche, Meylan, France), and with the CD1 rabbit monoclonal antibody (cl EP3622) (Ventana). The positivity of DLL3 was defined by the percentage of tumour cells exhibiting a cytoplasmic staining, whatever the intensity. The positivity of CD1A was defined by the percentage of the total surface of the tumour exhibiting a membrane staining with 1 corresponding to less than 1%, 2 to a percentage between 1 and 5%, and 3 to greater than 5%. Results are presented in Supplementary Data 9 and representative slides are shown in Fig. 4c.

Statistical analyses.

All tests involving multiple comparisons were adjusted using the Benjamini-Hochberg procedure controlling the false discovery rate 46 summary of the statistics associated with survival analyses is provided in Supplementary Data 14.

Survival analysis. We performed survival analysis using Cox's proportional hazard model; we assessed the significance of the hazard ratio between the reference and the other levels using Wald tests, and assessed the global significance of the model using the logrank test statistic (R package survival v. 2.41-3). Kaplan-Meier and forest plots were drawn using R package survminer (v. 0.4.2). Note that three LCNEC samples from George et al. 14 had missing survival censor information and were thus excluded from the analysis (samples S01580, S01581, and S01586).

DNA extraction. Samples included were extracted using the Gentra Puregene tissue kit 4g (Qiagen, Hilden, Germany), following the manufacturer's instructions. All DNA samples were quantified by the fluorometric method (Quant-iT Pico-Green dsDNA Assay, Life Technologies, CA, USA), and assessed for purity by NanoDrop (Thermo Scientific, MA, USA) 260/280 and 260/230 ratio measurements. DNA integrity of Fresh Frozen samples was checked by electrophoresis in a 1.3% agarose gel.

RNA extraction. Samples included were extracted using the Allprep DNA/RNA extraction kit (Qiagen, Hilden, Germany), following manufacturer's instructions. All RNA samples were treated with DNAse I for 15 min at 30 °C. RNA integrity of frozen samples was checked with Agilent 2100 Electrophoresis Bioanalyser system (Agilent Biotechnologies, Santa Clara, CA95051, United States) using RNA 6000 Nano Kit (Agilent Biotechnologies).

Whole-genome sequencing (WGS). Whole-genome sequencing was performed on three fresh frozen pulmonary carcinoids and matched-blood samples by the Centre National de Recherche en Génomique Humaine (CNRGH, Institut de Biologie François Jacob, CEA, Evry, France). After a complete quality control, genomic DNA (1 µg) has been used to prepare a library for whole-genome sequencing, using the Illumina TruSeq DNA PCR-Free Library Preparation Kit (Illumina Inc., CA, USA), according to the manufacturer's instructions. After normalisation and quality control, qualified libraries have been sequenced on a HiSeqX5 platform from Illumina (Illumina Inc., CA, USA), as paired-end 150 bp reads. One lane of HiSeqX5 flow cell has been produced for each sample, in order to reach an average sequencing depth of 30x for each sample. Sequence quality parameters have been assessed throughout the sequencing run and standard bioinformatics analysis of sequencing data was based on the Illumina pipeline to generate fatsq files for each sample.

Whole-exome sequencing (WES). Whole-exome sequencing was performed on 16 fresh frozen atypical carcinoids in the Cologne Centre for Genomics. Exomes were prepared by fragmenting 1 μg of DNA using sonication technology (Bioruptor, Diagenode, Liège, Belgium) followed by end repair and adapter ligation including incorporation of Illumina TruSeq index barcodes on a Biomek FX laboratory automation workstation from Beckman Coulter (Beckman Coulter, Brea, CA, USA). After size selection and quantification, pools of five libraries each were subjected to enrichment using the SeqCap EZ v2 Library kit from NimbleGen (44Mb). After validation (2200 TapeStation; Agilent Technologies, CA, USA), the pools were quantified using the KAPA Library Quantification kit (Peqlab, Erlangen, Germany) and the 7900HT Sequence Detection System (Applied Biosystems, Waltham, MA, USA), and subsequently sequenced on an Illumina HiSeq 2000 sequencing instrument using a paired-end 2 × 100 bp protocol and an allocation of one pool with 5 exomes/lane. The expected average coverage was approximately 120x after removal of duplicates (11 GB).

Targeted sequencing. Targeted sequencing was performed on the same 16 fresh frozen atypical carcinoids and 13 matched-normal tissue for the samples with enough DNA. Three sets of primers covering 1331 amplicons of 150-200 bp were designed with the QIAGEN GeneRead DNAseq custom V2 Builder tool on GRCh37 (gencode version 19). Target enrichment was performed using the GeneRead DNAseq Panel PCR Kit V2 (QIAGEN) following a validated in-house protocol (IARC). The multiplex PCR was performed with six separated primers pools [(1) 1 pool covering 786 amplicons, (2) 4 pools covering 498 amplicons, and (3) 1 pool covering 47 amplicons]. Per pool, 20 ng (1) or 10 ng (2 and 3) of DNA were dispensed and air-dried (only 2 and 3). Subsequently 11 µL (1) or 5 µL (2 and 3) of the PCR mix were added [containing 5.5 µL (1) or 2.5 µL (2 and 3) Primer mix pool (2x), 2.2 µL (1) or 1 µL (2 and 3) PCR Buffer (5x), 0.73 µL (1) or 0.34 µL (2 and 3) HotStar Taq DNA Polymerase (6 U/µL) and 0.57 µL (1) or 1.16 µL (2 and 3) H2O] and the DNA were amplified in a 96-well-plate as following: 15 min at 95 °C; 25 (1), 21 (2), or 23 (3) cycles of 15 s at 95 °C and 4 min at 60 °C; and 10 min at 72 °C. For each sample, amplified PCR products were pooled together, purified using 1.8x volume of SeraPure magnetic beads (prepared in-house following protocol developed by Faircloth & Glenn, Ecol. And Evol. Biology, Univ. of California, Los Angeles) (1) or NucleoMag® NGS Clean-up from Macherey-Nagel (2 and 3) and quantified by Qubit DNA high-sensitivity assay kit (Invitrogen Corporation). One-hundred nanograms of purified PCR product (6 µL) were used for the library preparation with the NEBNext Fast DNA Library Prep Set (New England BioLabs) following an in-house validated protocol (IARC). End repair was performed [1.5 µL of NEBNext End Repair Reaction Buffer,0.75 µL of NEBNext End Repair Enzyme Mix, and 6.75 µL of H2O] followed by ligation to specific adapters and in-house prepared individual barcodes (Eurofins MWG Operon, Germany) [4.35 µL of H2O, 2.5 DNA data processing. WGS and WES reads mapping on reference genome GRCh37 (gencode version 19) were performed using our in-house workflow (https://github.com/IARCbioinfo/alignment-nf, revision number 9092214665). This workflow is based on the nextflow domain-specific language 47 and consists of three steps: reads mapping (software bwa version 0.7.12-r1044) 48 , duplicate marking (software samblaster, version 0.1.22) 49 , and reads sorting (software sambamba, version 0.5.9) 50 . Reads mapping for the targeted sequencing data was performed using the Torrent Suite software version 4.4.2 on reference genome hg19. Local realignment around indels was then performed for both using software ABRA (version 0.97bLE) 51 on the regions from the bed files provided by Agilent (SeqCap_EZ_Exome_v2_probe-covered.bed) and QIAGEN, respectively, for the WES and targeted sequencing data. Consistency between sex reported in the clinical data and WES data was assessed by computing the total coverage on X and Y chromosomes (Supplementary Fig. 28A).

Variant calling and filtering on DNA. WES data: We re-performed variant calling for all typical and atypical carcinoid WES, including already published data, in order to remove the possible cofounding effect of variant calling in the subsequent molecular characterisation of carcinoids. Software Needlestack v1.1 (https://github. com/IARCbioinfo/needlestack) 52 was used to call variants. Needlestack is an ultrasensitive multi-sample variant caller that uses the joint information from multiple samples to disentangle true variants from sequencing errors. We performed two separate multi-sample variant callings to avoid technical batch effects: (1) The 16 WES atypical carcinoids newly sequenced in this study were analysed together with 64 additional WES samples sequenced using the same protocol from another study in order to increase the accuracy of Needlestack to estimate the sequencing error rate; (2) The 15 WES LNET (ten typical and five atypical carcinoids) previously analysed (Fernandez-Cuesta et al.) 11 were reanalysed with their matched-normal. For both variant callings, we used default software parameters except for the minimum median coverage to consider a site for calling, the minimum mapping quality, and the SNV and INDEL strand bias 13 threshold (they were set to 20, 13, 4, and 10, respectively). Annotation of resulting variant calling format (VCF) files was then performed with ANNOVAR (2018Aprl16) 53 using the PopFreqAll (maximum frequency over all populations in ESP6500, 1000G, and ExAC germline databases), COSMIC v84, MCAP, REVEL, SIFT, and Polyphen (dbnsfp30a) databases.

We performed the same variant filtering after each of the two variant callings, based on several stringent criteria. First, we only retained variants that have never been observed in germline databases or present at low frequency (≤ 0.001) but already reported as somatic in the COSMIC database. Second, we only retained variants that were in coding regions and that had an impact on expressed proteins: we filtered out silent, non-damaging single nucleotide variants (based on MCAP, REVEL, SIFT, or Polyphen2 databases) and variants present in non-expressed genes (mean and median FPKM < 0.1 over all carcinoid tumours). Additionally, for calling (2), we re-assessed the somatic status of variants reported by Needlestack in light of possible contamination errors. Indeed, Needlestack is a very sensitive caller and will sometimes detect low allelic fraction variants in normal tissue that actually come from contamination by tumour cells. In such cases the variant is found in both matched samples and is reported as germline, but we still considered a variant as somatic if its allelic fraction in the normal tissue was at least five times lower than the allelic fraction observed in the tumour.

Targeted sequencing data: Software Needlestack was also used to call variants on targeted sequencing data from 16 atypical carcinoids and their matched-normal tissue. We performed the calling with default parameters except for the phredscaled q-value and minimum median coverage to consider a site (20 and 10, respectively). These parameters were decreased compared to WES variants calling because we wanted a larger sensitivity in the validation set than in the discovery set. The annotation procedure was the same as for WES data. No other filters were used. Validation: For both previously published data and data generated in this study, we only report somatic mutations that were validated using a different technique: targeted sequencing, RNA sequencing (see below for variant calling in RNA-seq data), or Sanger sequencing. Results are presented Supplementary Data 4.

Structural variant calling. Somatic copy number variations (CNVs) were called from WGS data using an in-house pipeline (software WGinR, available at https:// github.com/aviari/wginr) that consists of three main steps. First, the dependency between GC content and raw read count is modelled using a generalised additive smoothing model with two nested windows in order to catch short and long distance dependencies. The model is computed on a subset of human genome mappable regions defined by a narrow band around the mode of binned raw counts distribution. This limits the incorporation of true biological signal (losses and gains) by selecting only regions with (supposedly) the same ploidy. In a second step, we collect heterozygous positions in the matched-normal sample and GCcorrected read counts (RC) and alleles frequencies (AF) at these positions are used to estimate the mean tumour ploidy and its contamination by normal tissue. This ploidy model is then used to infer the theoretical absolute copy number levels in the tumour sample. In the third step, a simultaneous segmentation of RC and AF signals (computed on all mappable regions) is performed using a bivariate Hidden Markov Model to generate an absolute copy number and a genotype estimate for each segment.

Somatic structural variants (SV) were identified using an in-house tool (crisscross, available at https://github.com/anso-sertier/crisscross) that uses WGS data and two complementary signals from the read alignments: (a) discordant pair mapping (wrong read orientation or incorrect insert-size) and (b) soft-clipping (unmapped first or last bases of reads) that allows resolving SV breakpoints at the base pair resolution. A cluster of discordant pairs and one or two clusters of softclipped reads defined an SV candidate: the discordant pairs cluster defined two associated regions, possibly on different chromosomes and the soft-clipped reads cluster(s), located in these regions, pinpointed the potential SV breakpoint positions. We further checked that the soft-clipped bases at each SV breakpoint were correctly aligned in the neighbourhood of the associated region. SV events were then classified as germline or somatic depending on their presence in the matched-normal sample. Results are presented as Supplementary Data 8 and one sample is highlighted in Fig. 3c.

Gene-set enrichment analysis of somatic mutations. Gene-set enrichment for somatic mutations was assessed independently for each set of Hallmark of cancer genes 18 using Fisher's exact test. We built the contingency tables used as input of the test taking into account genes with multiple mutations and used the fisher.test R function (stats package version 3.4.4). We also included validated mutations (we removed silent and intron/exon mutations) reported in SCLC 13 . In each group the p-values given by Fisher's exact test performed for all Hallmarks were adjusted for multiple testing. Supplementary Data 5 lists the altered hallmarks, including the mutated genes and the associated q-value for each group, as well as the mutated genes for each hallmarks present in each supra-carcinoid, cluster LNET, LCNEC, and SCLC samples.

We performed several robustness analyses to assess the validity of our results, in particular with regards to outlier samples/genes that would have a high leverage on the statistical results, i.e., that would alone drive the significance of a particular hallmark. First, we assessed the leverage of each individual sample using a jackknife procedure (i.e., for each sample, we performed the GSE test after removing this sample). Second, we assessed the leverage of each gene using a jackknife procedure (i.e., for each gene, we performed the GSE test without this gene). We observed that when we removed sample LNEN010 from the cluster LNET B, the sustaining proliferative signalling hallmark enrichment became non-significant at the 0.05 false discovery rate threshold, but was still significant at the 10% threshold (q-value = 0.075; Supplementary Data 3). Similarly, we observed that for several SCLC samples, once the sample was removed, the deregulating cellular energetics and inducing angiogenesis hallmarks became significant at the 0.05 false discovery rate threshold (Supplementary Data 5). For supra-carcinoids samples, we performed GSE for each sample individually. The code used for the gene set enrichment analyses on somatic mutations (Hallmarks_of_cancer_GSEA.R) is available in the Supplementary Software file 1 and the associated results are reported in Supplementary Data 5.

RNA sequencing. RNA sequencing was performed on 20 fresh frozen atypical carcinoids in the Cologne Centre for Genomics. Libraries were prepared using the Illumina® TruSeq® RNA sample preparation Kit. Library preparation started with 1 µg total RNA. After poly-A selection (using poly-T oligo-attached magnetic beads), mRNA was purified and fragmented using divalent cations under elevated temperature. The RNA fragments underwent reverse transcription using random primers. This is followed by second strand complementary DNA (cDNA) synthesis with DNA Polymerase I and RNase H. After end repair and A-tailing, indexing adapters were ligated. The products were then purified and amplified (14 PCR cycles) to create the final cDNA libraries. After library validation and quantification (Agilent 2100 Bioanalyzer), equimolar amounts of library were pooled. The pool was quantified by using the Peqlab KAPA Library Quantification Kit and the Applied Biosystems 7900HT Sequence Detection System. The pool was sequenced by using an Illumina TruSeq PE Cluster Kit v3 and an Illumina TruSeq SBS Kit v3-HS on an Illumina HiSeq 2000 sequencer with a paired-end (101x7x101 cycles) protocol.

RNA data processing. The 210 raw reads files (89 carcinoids, 69 LCNEC, 52 SCLC) were processed in three steps using the RNA-seq processing workflow based on the nextflow language 47 and accessible at https://github.com/IARCbioinfo/ RNAseq-nf (revision da7240d). (i) Reads were scanned for a part of Illumina's 13 bp adapter sequence ′AGATCGGAAGAGC′ at the 3′ end using Trim Galore v0.4.2 with default parameters. (ii) Reads were mapped to reference genome GRCh37 (gencode version 19) using software STAR (v2.5.2b) 54 with recommended parameters 55 . (iii) For each sample, a raw read count table with gene-level quantification for each gene of the comprehensive gencode gene annotation file (release 19, containing 57,822 genes) was generated using script htseq-count from software htseq (v0.8.0) 56 . Gene fragments per kilobase million (FPKM) of all genes from the gencode gene annotation file were computed using software StringTie (v1.3.3b) 57 in single pass mode (no new transcript discovery), using the protocols from Pertea et al. 57 (nextflow pipeline accessible at https://github.com/IARCbioinfo/RNAseqtranscript-nf; revision c5d114e42d).

Quality control of the samples was performed at each step. Software FastQC (v. 0.11.5; https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to check raw reads quality, software RSeQC (v. 2.6.4) was used to check alignment quality (number of mapped reads, proportion of uniquely mapped reads). Software MultiQC (v. 0.9) 58 was used to aggregate the QC results across samples. Concordance between sex reported in the clinical data and sex chromosome gene expression patterns was performed by comparing the sum of variance-stabilised read counts (vst function from R package DESeq2) of each sample on the X and Y chromosomes (Supplementary Fig. 28B).

Variant calling on RNA. Software Needlestack was also used to call variants on the 20 RNA sequencing data for WES variant validation. Default parameters were used, except for the phred-scaled q-value, minimum median coverage to consider a site, and minimum mapping quality (20, 10, and 13, respectively). The annotation procedure was the same as for WES data.

Fusion transcript detection. RNA-seq data was processed as previously described 11,13 to detect chimeric transcripts. In brief, paired-end RNA-seq reads were mapped to the human reference genome (NCBI37/hg19) using GSNAP. Potential chimeric fusion transcripts were identified using software TRUP 59 by discordant read pairs and by individual reads mapping to distinct chromosomal locations. The sequence context of rearranged transcripts was reconstructed around the identified breakpoint and the assembled fusion transcript was then aligned to the human reference genome to determine the genes involved in the fusion. All interesting fusion-transcript were validated by Sanger sequencing. The code used for the fusion transcript detection is available on https://github.com/ ruping/TRUP. All the associated results are presented Supplementary Data 7, and selected genes are highlighted in Fig. 3b.

Unsupervised analyses of expression data. The raw read counts of 57,822 genes from the 210 samples were normalised using the variance stabilisation transform (vst function from R package DESeq2 v1.14.1) 60 ; this transformation enables comparisons between samples with different library sizes and different variances in expression across genes. We removed genes from the sex-chromosomes in order to reduce the influence of sex on the expression profiles, resulting in a matrix of gene expression with 54,851 genes and 210 samples. We performed four analyses, with different subsets of samples. (i) An analysis with all 210 samples (LNEN and SCLC), (ii) an analysis with LNEN samples only (158 samples), (iii) an analysis with LNET and SCLC samples only (139 samples), and (iv) an analysis with LNET samples only (89 samples). For each analysis, the most variable genes (explaining 50% of the total variance in variance-stabilised read counts) were selected (6398, 6009, 6234, and 5490 genes, respectively, for i, ii, iii, and iv). Principal component analysis (PCA) was then performed independently for each analysis (function dudi. pca from R package ade4 v1.7-8) 61 . Results are presented in Supplementary Fig. 6; see the Multi-omic integration section of the methods for a comparison of the results of the unsupervised analysis of expression data with that of the other 'omics.

We used the results from the PCA to detect outliers and batch effects in the expression data set. We did not detect any outliers in any of the analyses from Supplementary Fig. 6. We further studied the association between expression data, batch (sample provider), and five clinical variables of interest (histopathological type, age, sex, smoking status, and stage) using a PCA regression analysis. For each principal component, we fitted separate linear models with each of the six covariables of interest (provider plus the five clinical variables) and adjusted the resulting p-values for multiple testing. Results highlighted an association between principal component 2 and provider, histopathological type, and sex, and an association between principal components 4 and 5 and stage (Supplementary Fig. 30A). The fact that both histopathology and sample provider are jointly significantly associated with PC2 is expected given their non-independence (Supplementary Fig. 29A,B). In order to assess whether there was a batch effect ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11276-9

explaining the variation on PC2, we investigated the range of samples from each provider on PC2 (Supplementary Fig. 30B). We can see that samples from Provider 1 and provider 2 span a similar range on PC2 (from values less than -20 to values greater than 40). Restricting the analysis to atypical carcinoids, we can further see that AC samples from provider 2 have a range included in that of provider 1, which is expected given their differing sample sizes (five from provider 2 compared to 20 from provider 1). Overall, this shows that samples from the two providers have similar profiles and can be combined. In addition, we found that the samples that were independently sequenced in a previous study 11 and in this study (samples S00716_A and S00716_B, respectively) were spatially close in the PCA (technical replicates highlighted in Supplementary Fig. 30B).

Supervised analysis of expression data. We performed three distinct differential expression (DE) analyses. (i) A comparison between histopathological types; (ii) A comparison between pulmonary carcinoid (LNET) clusters A1, A2, and B (see Fig. 5a and the Multi-omic integration method section); (iii) a comparison between lung neuroendocrine neoplasm (LNEN) clusters Carcinoid A, Carcinoid B, and LCNEC (see the Multi-omic integration method section).

For each differential expression (DE) analysis, among the 57,822 genes from the raw read count tables, genes that were expressed in less than 2 samples were removed from the analysis, using a threshold of 1 fragment per million reads aligned. We also removed samples with missing data in the variables of interest (either histopathological types, LNET clusters, or LNEN clusters) or in any of the clinical covariables included in the statistical model (sex and age). This resulted in excluding two samples with missing age data from the three analyses (samples S01093, S02236), and further excluding three samples with no clear histopathological type (classified as carcinoids in Supplementary Data 1) from analysis (i) (samples S00076, S02126, S02154). For each analysis, we then identified DE genes from the raw read counts using R package DESeq2 (v. 1.21.5) 60 . For each analysis, we fitted a model with the variable of interest (type, LNET cluster, or LNEN cluster) and using sex (two levels: male and female), and age (three levels: (16,40], (40,[START_REF] Love | Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[END_REF], [START_REF] Love | Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[END_REF]90]) as covariables. We then extracted DE genes between each pair of groups, and adjusted the p-values for multiple testing. In order to select the genes that have the largest biological effect, we tested the null hypothesis that the two focal groups had less than 2 absolute log 2 -fold changes differences. For each analysis, we define the core genes of a focal group as the set of genes that are DE in all pairwise comparisons between the focal group and other groups; they correspond to genes, which expression level is specific to the focal group. For example, given three groups-A, B, and C-to find core genes, which expression levels uniquely define A compared to both B and C, we select DE genes that differentiate A from B (A vs. B), DE genes that differentiate A from C (A vs. C) and take the intersection of these gene sets [(A vs. B)∩(A vs. C)]. The code used for the DE analyses (RNAseq_supervised.R) is available at https://github.com/ IARCbioinfo/RNAseq_analysis_scripts. Results of analysis (i) are reported in Supplementary Data 15 and Supplementary Fig. 31; results of analysis (ii) are reported in Supplementary Data 10 and Fig. 5a; results of analysis (iii) are reported in Supplementary Data 12. See section Multi-omics integration for comparisons between the analyses based on histopathological types [analysis (i)] from all 'omics perspectives.

Note that an alternative method for finding DE genes would be to compare a focal group to all the other samples together. For example, comparing group A to both groups B and C simultaneously [denoted A vs. (B and C) or A vs. the rest]. Note that this would find genes that are DE between A and the average level of expression of B and C, and thus this alternative method would have the unwanted behaviour of including the genes that are strongly DE in the comparison of A vs. B, but with similar expression levels in A and C. In order to compare the methods we used to detect core genes with this alternative method, we performed an analysis similar to analysis (ii) but comparing a focal group to all the other samples simultaneously (A vs. the rest). The comparison between our method and the alternative one is presented in Supplementary Fig. 21 and shows that our analysis provides conservative results compared to testing the focal group vs. the rest. Indeed, core DE genes reported are almost exclusively a subset of the genes found when comparing the focal group vs. the rest.

Immune contexture deconvolution from expression data. We quantified the proportion of cells that belong to each of ten immune cell types (B cells, macrophages M1, macrophages M2, monocytes, neutrophils, NK cells, CD4+ T cells, CD8+ T cells, CD4+ regulatory T cells, and dendritic cells) from the RNA-seq data using software quanTIseq (downloaded 23 March 2018) 62 . quanTIseq uses a rigorous RNA-seq processing pipeline to quantify the gene expression of each sample, and performs supervised expression deconvolution in a set of genes identified as informative on immune cell types, using the least squares with equality/inequality constrains (LSEI) algorithm with a reference data set containing expected expression levels for the ten immune cell types. Importantly, quanTIseq also provides estimates of the total proportion of cells in the bulk sequencing that do and do not belong to immune cells.

We tested whether immune composition differed between histopathological types, LNET clusters, LNEN clusters, and supra-carcinoids using linear permutation tests (R package lmperm, v. 2.1.0). Permutations tests are exact statistical tests that do not rely on approximations and assumptions regarding the data distribution, and are thus well-fitted to test whether a few samples come from the same distribution as a larger group of samples. As such, they were well-fitted to handle the tests involving supra-carcinoids, for which only three samples had RNA-seq data. For each of the three analyses (histopathology, LNET clusters, and LNEN clusters), and for each pair of groups, we fitted one model per immune cell type, with the proportion of this cell type in each sample as explained variable and the cluster membership as explanatory variable. We adjusted the p-values for multiple testing. The code used for these three analyses is available on https://icbi.imed.ac.at/software/quantiseq/doc/index.html and the associated results are presented Figs. 2f,4b,and Supplementary Figs. 15,19,and 32. EPIC 850k methylation array. Epigenome analysis was performed on 33 typical carcinoids, 23 atypical carcinoids, and 20 LCNEC, plus 19 technical replicates. Epigenomic studies were performed at the International Agency for Research on Cancer (IARC) with the Infinium EPIC DNA methylation beadchip platform (Illumina) used for the interrogation of over 850,000 CpG sites (dinucleotides that are the main target for methylation). Each chip encompasses eight samples, so 12 chips were needed for the 95 samples. We used stratified randomisation to mitigate the batch effects, ensuring that the three histopathological types were present on every chip, while also controlling for potential confounders (the sample provider, sex, smoking status, and age of the patient); replicates were placed on different chips.

For each sample, 600 ng of purified DNA were bisulfite converted using the EZ-96 DNA Methylation-Gold TM kit (Zymo Research Corp., CA, USA) following the manufacturer's recommendations for Infinium assays. Three replicates included half the amount (300 ng). Then, 200 ng of bisulfite-converted DNA was used for hybridisation on Infinium Methylation EPIC beadarrays, following the manufacturer's protocol (Illumina Inc.). This array shares the Infinium HD chemistry (Illumina Inc.) and a similar laboratory protocol used to interrogate the cytosine markers with HumanMethylation450 beadchip. Chips were scanned using Illumina iScan to produce two-colour raw data files (IDAT format).

Methylation data processing. The resulting IDAT raw data files were preprocessed using R packages minfi (v. 1.24.0) 63 and ENmix (v. 1.14.0) 64 .W efirst removed unwanted technical variation in-between arrays using functional normalisation of the raw two-colour intensities, and computed the β-values for the 866,238 probes and 96 samples. Then, we filtered four types of probes that could confound the analyses. (i) We removed probes on the X and Y chromosomes, because we were interested in variation between tumours and treated sex as a confounder. (ii) We removed known cross-reactive probes-i.e., probes that cohybridise to other chromosomes and thus cannot be reliably investigated. (iii) We removed probes that had failed in at least one sample, using a detection p-value threshold of 0.01, where p-values were computed with the detection P function from R package minfi, that compares the total signal (methylated + unmethylated) at each probe with the background signal level from non-negative control probes. (iv) We removed probes associated with common SNPs-that reflect underlying polymorphisms rather than methylation profiles-using a threshold minor allele frequency of 5% in database dbSNP build 137 (function dropLociWithSnps from minfi). (v) We removed probes putatively associated with rare SNPs by detecting and removing probes with multimodal β-value distributions (function nmode.mc from R package ENmix). Next, we removed duplicated samples, randomly choosing one sample per pair so as to minimise potential discrepancies, and we removed one sample that came from a metastatic tumour rather than a primary tumour. The final data set contained the β-values of 767,781 CpGs for 76 samples.

We performed quality controls of the raw data. Two-colour intensity data of internal control probes were inspected to check the quality of successive sample preparation steps (bisulfite conversion, hybridisation). We did not find outliers when comparing the methylated/unmethylated channel intensities of all samples, nor did we find samples with overall low detection p-values (the sample with the lowest mean p-value had a value of 0.001). Concordance between the sex reported in the clinical data and the methylation data was assessed using a predictor based on the median total intensity on sex-chromosomes, with a cutoff of -2 log 2 estimated copy number (function getSex from minfi). Consistently with the WES and RNA-seq data, we found one sample with a mismatch between reported and inferred sex (see results in Supplementary Fig. 28C). We investigated batch effects at the raw data level using surrogate variable analysis. We used function ctrlsva from package ENmix to compute a principal component analysis of the intensity data from non-negative control probes. We retained the first ten principal components-hereafter referred to as surrogate variables-explaining >90% of the variation in control probes intensity. The ten surrogate variables were included as covariables in later supervised analyses to mitigate the impact of batch effects on the results. We checked the association of surrogate variables with batch (chip, position on the chip, and sample provider) and clinical variables (histopathological type, age, sex, smoking status) using PCA regression analysis, fitting separate linear models to each surrogate variable with each of the seven covariables of interest and adjusted the p-values for multiple testing. We show in Supplementary Fig. 33A code used to perform all the pre-processing procedure of these data is available at https://github.com/IARCbioinfo/Methylation_analysis_scripts. Unsupervised analysis of methylation data. The β-values of 767,781 CpGs for 76 samples were transformed into M-values to perform unsupervised analyses; indeed, contrary to β-values, M-values theoretically range from -∞ to +∞ and are considered normally distributed. We performed two analyses, with different subsets of samples: (i) an analysis with all carcinoid and LCNEC samples (76 samples), and (ii) an analysis with carcinoid samples only (56 samples). For each analysis, the most variable CpGs (explaining 5% of the total variance in M-values) were selected (8,483 and 7,693 CpGs,respectively,for (i) and (ii). PCA was then performed independently for each analysis (function dudi.pca from R package ade4 v1.7-8) 61 . Results are presented in Supplementary Fig. 7; see the Multi-omic integration section of the methods for a comparison of the results of the unsupervised analysis of methylation data with that of the other 'omics.

We used the results from the PCA to detect outliers and batch effects in the methylation data set. We did not detect any outliers in any of the analyses from Supplementary Fig. 7. We also performed a PCA regression analysis using the same protocol as described in the data processing section above. Results highlighted no association between any principal component and array batches (chip and position in the chip; Supplementary Fig. 33A). Principal component 2 was associated with the sample provider; further examination of the PCA (Supplementary Fig. 33B) revealed that this effect was driven by the samples from provider 1, which have the largest range of coordinates on PC2 (from < -30 to >100). Nevertheless, the fact that their coordinates on PC2 overlap with that of samples from other providers, and the fact that the vast majority of atypical carcinoid samples come from one provider, suggest that the large range of values of provider 1 samples on PC2 is driven by the biological variability of carcinoid methylation profiles. In addition, note that samples that cluster with LCNEC are not solely from provider 1. We assessed the impact of functional normalisation on batch effects by performing the same analysis on the M-values of the 5% most variable CpGs obtained without normalisation (Supplementary Fig. 33A). Compared to the PCA of the 5% most variable CpGs with normalisation (Supplementary Fig. 33A), we find that the chip position (variable Sentrix position) is significantly associated with PC10, and that PC2 is not associated with histopathology. This suggests that the functional normalisation reduced batch effects and revealed some of the biological variability in methylation data.

The PCA is also informative about associations between methylation profiles and clinical variables. We find a significant association between PC1, histopathological type, age, and smoking status, with LCNEC, smokers, and larger age classes located at higher PC1 coordinates (Supplementary Fig. 33A); these associations are expected, given that the difference between LCNEC and carcinoids is expected to be the main driver of variation in methylation, and given known the aetiology of the diseases 8 .W efind an association between principal component 2, histopathology, and sex, with male and atypical carcinoids having overall larger PC2 coordinates. We find associations of larger components, in particular PC3 and age, and PC7 and 9, and sex. Supervised analysis of methylation data. We detected differential methylation at the probe level (DMP) in three independent analyses: (i) between histopathological types (TC, AC, and LCNEC), (ii) between LNET clusters (clusters A1, A2, and B), and (iii) between LNEN clusters (clusters A, B, and LCNEC).

To detect DMPs, for each analysis, linear models were first fitted independently for each CpG to its M-values (function lmFit from R package limma version 3.34.9) 65 , using the variable of interest (histopathology, LNET cluster, or LNEN cluster), in addition to the sex, age group, and the ten surrogate variables as covariables. Then, moderated t-tests were performed by empirical Bayes moderation of the standard errors (function eBayes from package limma), and p-values were computed for each CpG. Moderation enables to increase the statistical power of the test by increasing the effective degrees of freedom of the statistics, while also reducing the false-positive rate by protecting against hypervariable CpGs, and are thus favoured in array analyses. The p-values were adjusted for multiple testing, and CpGs with a q-value <0.05 were retained. The code used for the DMPs identification (DMP.R) is available in the Supplementary Software 1 and the associated results of analyses (i), (ii), and (iii) are presented Supplementary Data 16, Supplementary Data 11, and 17, respectively. See section Multi-omics integration for comparisons between the analyses based on histopathological types [analysis (i)] from all 'omics perspectives. Analysis (iii) confirmed most DMPs associated with DEGs reported in Fig. 5a for cluster B relative to LNET clusters (TFF1, OTOP3, SLC35D3, APOBEC2) were also DMPs for cluster B relative to LNEN clusters, showing that they harboured specific methylation levels that made them different from the LCNEC cluster, as well as from other carcinoid clusters.

Multi-omics integration. We performed an integrative analysis of the WES, WGS, RNA-seq, and 850 K methylation array data, using the validated somatic mutations (Supplementary Data 4), the variance-stabilised read counts, and the M-values, respectively. The full data set consisted of 243 samples, but some analyses focused on a subset of the data.

Unsupervised continuous multi-omic analyses.T op e r f o r mc o n t i n u o u sl a t e n t factors identification, we performed an integrative group factor analysis of the expression and methylation data using software MOFA (R package MOFAtools v. 0.99) 15 .M O F Ai d e n t i fies latent factors (LF, i.e., continuous variables) that explain most variation in the joint data sets. We did not include the somatic mutations in the model because the low level of recurrence (only four recurrently mutated genes in Supplementary Data 4) resulted in a sample by mutation matrix of much lower dimension than the other 'omics, which is known to bias the analyses 15 . Also, we did not consider expression and methylation from the sex-chromosomes, because we were interested in differences between tumours independently of the sex of the patient.

We performed four analyses, with different subsets of samples. (i) An analysis with all 235 samples for which expression or methylation data was available (LNEN and SCLC), (ii) an analysis with LNEN samples only (183 samples), (iii) an analysis with LNET and SCLC samples only (163 samples), and (iv) an analysis with LNET samples only (111 samples). For each analysis, the most variable genes for expression (explaining 50% of the total variance) were selected (6398, 6009, 6234, and 5490 genes, respectively, for i, ii, iii, and iv), and the most variable CpGs (explaining 5% of the total variance) were selected (8483, 8483, 7693, and 7693 CpGs, respectively, for i, ii, iii, and iv). Note that these lists of genes and CpGs are the same as the ones used to perform the unsupervised analyses of expression and methylation data (see above sections). Also note that we did not have EPIC 850k methylation array data for SCLC; MOFA was shown to handle missing data, including samples with entire 'omic techniques missing, by using the correlated signals from several data sets (e.g., expression and methylation) to accurately reconstruct latent factors. MOFA was performed independently for each analysis, setting the number of latent factors to 5, because subsequent latent factors explained <2% of the variance of both 'omic data sets (function runMOFA from R package MOFAtools v0.99.0). Because MOFA uses a heuristic algorithm, we assessed the robustness of the results using 20 MOFA runs. We then computed the correlations between each of the five first-latent factors across each run, resulting in a correlation matrix of 100 by 100 entries (Supplementary Figs. 2 and17). We found that the correlations across runs were very high (> 0.95 for >80% of runs) in all analyses, suggesting that the results are robust. In addition, we found that correlations between latent factors within runs were small (typically below 0.2), which suggests that latent factors capture quasi-independent sources of variation in the data sets. For each analysis, we selected the MOFA run that resulted in the best convergence, based on the evidence lower bound statistic (ELBO). Results are presented in Figs. 1a,4a, and Supplementary Fig. 13. Interestingly, we find that MOFA latent factors 1 to 3 for analysis (i) (LNET, LCNEC, and SCLC) correspond to MOFA LF2 to 4 for analysis (ii) (LNET and LCNEC), and to MOFA LF3 to 5 for analysis (iv) (LNET alone); this suggests that each histopathological type introduces an independent source of variation, resulting in a new LF. The code used for the unsupervised continuous molecular analyses (integration_MOFA.R) is available on https://github.com/IARCbioinfo/integration_analysis_scripts.

To perform comparisons with uni-omic unsupervised analyses, we compared the results of MOFA with that of the unsupervised analysis of expression and methylation data (Supplementary Fig. 3). To do so, we used the 51 LNEN samples for which we had both expression and methylation data, and extracted their coordinates in MOFA, expression PCA (see section unsupervised analysis of expression data), and methylation PCA (see section unsupervised analysis of methylation data). When using LNET and LCNEC samples (Supplementary Fig. 3A), we found that MOFA LF1 is strongly correlated with expression PC1 and methylation PC1 (|r| > 0.98; Supplementary Fig. 3D,E), and that expression PC1 and methylation PC1 are strongly correlated between them (r = 0.97; Supplementary Fig. 3C); LF2 was strongly correlated with expression PC3 (r = -0.86; Supplementary Fig. 3P), and methylation PC2 (r = -0.98; Supplementary Fig. 3K), suggesting that LF2 is more driven by methylation differences, but that it is nonetheless consistent with a large proportion of expression variation. On the contrary, LF3 was more strongly correlated with expression PC2 (r = 0.87; Supplementary Fig. 3J), suggesting that PC3 is more driven by expression differences. All these observations are consistent with the fact that the percentage of variance explained by LF2 and LF3 in terms of expression and in terms of methylation are different: LF2 explains more expression in methylation, while LF3 explains more variation in expression (Fig. 1a); it is also coherent with the fact that clusters A1 and A2 are the most separated clusters on expression PC2 (Supplementary Fig. 6B), while clusters A1 and B are the most separated on methylation PC2 (Supplementary Fig. 7A). When using LNET samples only (Supplementary Fig. 3B), we found that MOFA LF1 is strongly correlated with expression PC2 and methylation PC1 (|r| > 0.86; Supplementary Fig. 3M,H), and that expression PC2 and methylation PC1 are strongly correlated between them (r = 0.72; Supplementary Fig. 3F); LF2 was strongly correlated with expression PC1 (r = -0.88; Supplementary Fig. 3G), and methylation PC2 (r = 0.90; Supplementary Fig. 3N), suggesting that LF2 is more driven by methylation differences, but that it is nonetheless consistent with a large proportion of expression variation. Again, all these observations are consistent with the fact that the percentage of variance explained by LF1 and LF2 in terms of expression and in terms of methylation are different (Fig. 4a); it is also coherent with the fact that clusters A1 and A2 are the most separated clusters on expression PC1 (Supplementary Fig. 6D), while clusters A1 and B are the most separated on methylation PC2 (Supplementary Fig. 7B).

To perform associations of latent factors with other variables, we used the results from MOFA to detect outliers and batch effects in the data set. We did not ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11276-9 detect any outliers in any of the analyses from Supplementary Fig. 13. We further studied the associations between the first 5 LFs, batch (sample provider), and five clinical variables of interest (histopathological type, age, sex, smoking status, and stage) using regression analysis. For each latent factor, we fitted a linear model with the six covariables of interest (provider plus the five clinical variables). Because of the reported association between sex, age, and smoking status, we also included in the model the interaction between sex and smoking status and between age and smoking status; we adjusted the resulting p-values for multiple testing. Significant associations (q-value < 0.05) are highlighted in Figs. 1a and4a.

We also tested the association between MOFA clusters and mutations using regression analysis. We tested genes recurrently mutated in carcinoids, using a threshold of three samples (following Argelaguet et al.) 15 ; indeed, non-recurrent genes are not informative about molecular groups. Only two genes were retained: MEN1 and EIF1AX. We also included recurrently mutated genes reported in LCNEC 12 . Results are highlighted in Fig. 4a. Similarly, we tested the association between pathways highlighted in Supplementary Fig. 16 (Lysine demethyltransferases, polycomb complex, SWI/SNF complex) and MOFA LF using regression analysis, but did not find any significant association at a false discovery rate threshold of 0.05.

Unsupervised discrete multi-omic analyses. We identified molecular clustersgroups of samples with similar molecular profiles-from MOFA results. Following Mo et al. 66 , given a specified number of clusters K, we used the K -1 latent factors that explained most of the variation to perform clustering; this choice of number of latent factors in Mo et al. 66 is said to be primarily motivated by "a general principle for separating g clusters among the n datapoints, a rank-k approximation where k ≤ g -1 is sufficient." In addition, because the MOFA latent factors explaining the most variance in gene expression and methylation are expected to capture more biological signal compared to the ones explaining the least variance-expected to represent more of the noise in the data set-we expect that using the first K -1 latent factors would provide more biologically meaningful clusters than using all latent factors. In addition, following the procedure from Wilkerson and Hayes 67 , we performed consensus clustering to detect robust molecular clusters. This procedure involved multiple replicate clusterings (K-means algorithm; R function kmeans), each on latent factors from an independent MOFA run done on a subsample (80%) of the data. Pairwise consensus values were defined as the proportion of runs in which two samples are clustered together and used as a similarity measure, and used to perform a final hierarchical clustering (median linkage method). Consensus clustering results for K from 2 to 5, for LNET plus LCNEC samples, and LNET samples alone, are presented in Supplementary Figs. 5 and18, respectively. In the case of LNET alone, because the optimal Dunn index, which evaluates the quality of clustering as a ratio of within-cluster to between-cluster distances, corresponded to K = 3 clusters (Supplementary Fig. 18C), we chose the solution with three clusters. Nevertheless, note that the cluster memberships for K = 4 and K = 5 are almost perfectly nested into that for K = 3 (e.g., samples from the blue cluster for K = 3, Supplementary Fig. 18B are split between a blue and a purple cluster for K = 4), so the solutions with three and four clusters are coherent. Cluster memberships are highlighted in Fig. 4a. Similarly, in the case of LNET plus LCNEC samples (LNEN), because the optimal Dunn index is reached when K = 3, we chose that solution, but note that the cluster memberships for K > 3 are also nested into that for K = 3, so all results are coherent across values of K.

In order to test whether using additional latent factors could increase the power to detect molecular clusters, we performed a similar analysis but using all five latent factors identified by MOFA. In order to provide more importance to the factors most likely to capture the biological variation in the data, the multiple replicate clusterings were performed using a weighted k-means algorithm, where variables (here MOFA latent factors) are given weights corresponding to their proportion of variance explained. More specifically, instead of minimising the within-cluster sum of squares, the weighted within-cluster sum of squares is minimised. Results for K = 3 clusters of LNET and LNEN samples are presented in Supplementary Fig. 8. We can see that the alternative approach (weighted K-means on five latent factors) leads to the exact same cluster membership as the original approach (K-means on K -1 latent factors), both for LNEN and LNET clusters. Indeed, among the latent factors, only the first 3 were associated with either the LNEN clusters (ANOVA q = 4.09 × 10 -84 ,8 . 6 3×1 0 -80 , 0.66, 0.094, 0.24, respectively, for latent factors 1 through 5) or the LNET clusters (ANOVA q = 5.06 × 10 -4 , 5.99 × 10 -47 , 5.12 × 10 -46 , 0.15, 0.052, respectively), which indicates that the first three latent factors captured the differences between clusters. The code used for the clustering analyses (integration_unsupervised.R) is available at https://github.com/IARCbioinfo/ integration_analysis_scripts.

GSEA on multi-omic latent factors. We performed gene set enrichment analysis (GSEA) on the latent factors identified by MOFA using the built-in function FeatureSetEnrichmentAnalysis 15 . This tests for each latent factor whether the distribution of the loadings of features (genes or CpGs) from a focal set are significantly different from the global distribution of loadings from features outside the set. We performed the analysis using two reference databases of gene sets: GO and KEGG. To retrieve the appropriate databases, for all genes from the mutiomics integration analysis, we downloaded GO terms using R package biomaRt 68 , and we retrieved KEGG pathways using R package KEGGgraph (v. 1.38.0) 69 . Results are presented in Supplementary Data 6.

Expression and methylation correlation analysis. We performed correlation tests in two analyses: (i) between LNET clusters (clusters A1, A2, and B), and (ii) between LNEN clusters (clusters A, B, and LCNEC). We selected for each gene, the set of CpGs in the region -2000 to +2000 from the transcription start site (TSS) using function getnearestTSS from R package FDb.InfiniumMethylation.hg19 version 2.2.0 based on the IlluminaHumanMethylationEPICanno.ilm10b2.hg19 annotation (get Annotation function from R package minfi version 1.24.0) 63 .

We performed correlation test analyses (function cor.test from R package stats version 3.5.1) using the core genes lists (Supplementary Data 10 and 12) to find associations between expression and methylation data for each CpG, using Pearson's correlation coefficient. The p-values were adjusted for multiple testing. In addition, we explored the correlation between expression and methylation data by fitting a linear model independently for each correlated CpG (function lm from R package stats version 3.5.1). Finally, we calculated the interquartile distance of β-values for each CpG. CpGs with a q-value < 0.05, r 2 > 0.5 and an interquartile distance greater than 0.25 were retained and, among these CpGs, only the one with the smallest q-value has been represented in Supplementary Fig. 22. Results of analyses (i) and (ii) are reported in Supplementary Data 10 and 12.

Survival analysis using penalised generalised linear model. We computed a generalised linear model with elastic net regularisation (R package glmnet v2.0-16) 70 to select the genes associated with the survival of LNET samples. We fixed the elastic net mixing parameter α to 0.5 and used leave-one-out crossvalidation to determine the regularisation parameter λ (cv.glmnet function from glmnet package). To be more stringent, the optimal regularisation parameter chosen was the one associated with the most regularised model with crossvalidation error within one standard deviation of the minimum. In order to identify the genes associated with the poor survival of the cluster Carcinoid B, we included in the model only the expression of the core genes of this cluster defined in the MOFA considering only the LNET samples (see section Multi-omics integration). We used the normalised read counts, and centred and scaled them using R package caret (v6.0-80). The genes with non-zero estimated coefficients are listed in Supplementary Data 13. For each non-coding gene, we determined the optimal cutpoint of expression (normalised read counts) that best separates the survival outcome into two groups using the surv_cutpoint function based on the maximally selected rank statistics and available in the R package survminer (v0. 4.3). The minimal proportion of samples per group was set to 10%.

Supervised multi-omic analyses. We performed supervised learning in order to classify typical and atypical carcinoids, and LCNEC based on the different 'omics data available: expression and methylation data.

Classification algorithm: Each classification was performed using a random forest algorithm (R package randomForest v4. [6][7][8][9][10][11][12][13][14]. Considering the restricted number of samples, we performed a leave-one-out cross-validation. For each run, to increase the training set size, minority classes were oversampled so that all classes reach the same number of training samples. Note that for the sample with technical replication of RNA-seq data (S00716_A and S00716_B), in order to avoid model overfitting, the two replicates were never simultaneously included in the training and test sets. Also in order to avoid overfitting, we performed normalisation and independent feature filtering within each fold, so that test samples were excluded from this step. More specifically, for the expression data, the features of the training set were first normalised using the variance stabilisation transformation (vst function from R package DESeq2 v1.22.2), then mean-centred and scaled to unit variance. Then, the variance stabilising transformation learned from the training set was applied to the test set using the dispersionFunction function from the DESeq2 package, and centreing and scaling were performed using the values learned from the training set. For the methylation data, the M values were computed using the R package minfi (v1. 28.3); the features of the training set were mean-centred and scaled to unit variance, then the test sample features were centred and scaled using the values learned from the training set. For each fold of the leave-one out, the training set was used for the feature selection. Based on the training set, we selected the most variable features, representing 50% and 5% of the total variation in expression and methylation data, respectively. The code used for the machine learning analyses (ML_functions.r) is available in the Supplementary Software 1 and the associated results are reported in Supplementary Data 1.

Defining an Unclassified category: The random forest algorithm provides for each predicted sample the class probabilities. We considered a sample as unclassifiable (Unclassified category) if the ratio of the two highest probabilities was below 1.5. In fact, this threshold allowed us to identify a category of samples with intermediate molecular profiles, for which the algorithm assigns similar probabilities to the two most probable classes. Because of the small sample size, this parameter was chosen a priori and not tuned in order to avoid overfitting. In Supplementary Fig. 10, we compared the classification results when considering three different thresholds: 1 (which corresponds to no ratio and results in few unclassified samples, i.e., only discordant expression and methylation-based predictions, see Integration of expression and methylation data below), 1.5 (which corresponds to the ratio reported in the main text), and 3 (which corresponds to a very stringent ratio resulting in more unclassified samples). Except for the size of the unclassified classes that depends on the ratio used, the confusion matrices for the three ratios were qualitatively similar, with most LCNEC samples correctly classified, a majority of typical correctly classified, and almost as many atypical classified as typical and classified as atypical. In addition, the survival analyses of the three models also led to similar conclusions, with atypical carcinoids classified as atypical by the machine learning having a survival that is not statistically significantly different from that of LCNEC samples but that is lower from both that of typical carcinoids predicted as typical carcinoids, and that of atypical predicted as typical. However, in the case of the largest ratio, the small number of atypical samples predicted in those categories did not enable the identification of two groups of atypical carcinoids with significant different overall survival (p = 0.086).
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Number of samples and features:

To classify LCNEC against atypical and typical carcinoids, 157 and 76 samples were considered using the expression and methylation data, respectively. The number of features selected in each fold of the leave-one-out are of the order of 6000 and 8000 for expression and methylation features, respectively. For the analysis based on MKI67 only (Supplementary Fig. 31C, left panel), the only feature considered was the expression of MKI67.

Integration of expression and methylation data: As the random forest algorithm does not handle missing data directly, and because only 51 out of 182 LNEN samples had both expression and methylation data available (Supplementary Fig. 1), we performed random forest classification on expression and methylation separately, and merged the classification results by combining the two sets of ML predictions. Thus, the samples with both expression and methylation data were associated with two predictions. When the two predictions were discordant we applied the following rules: (i) if one prediction was Unclassified (see Defining an Unclassified category above) and the other a histopathological category, we chose the histopathological category (ii) if the two predictions were different histopathological categories, we chose the Unclassified category.

Note that fitting independent random forest models on each data set separately corresponds to maximising the number of samples (n) per model at the expense of the number of features (p), because each model relies only on the number of features in a single data set. An alternative approach is to maximise the number of features (p) by combining both data sets, at the expense of the number of samples n, because of the limited number of samples with both data types available. Indeed, for fixed n increasing p requires less parameters and leads to a higher statistical power. Nevertheless, in our case, because of missing data, increasing p by using both omics layers would drastically reduce n, restricting our sample set (n = 157 and n = 76 for expression and methylation, respectively) to the set of samples with both layers (n = 51, including only a single supra-carcinoid). Given the existence of very rare entities such as the supra-carcinoids, accurately capturing the diversity of molecular profiles in the training set was our priority, and thus we chose to maximise n. In addition, by maximising n, we hypothetically ensured that we would also maximise the power of the subsequent analyses based on the ML results. To confirm this hypothesis, we performed the ML analyses on the restricted set of samples, including both expression and methylation data in the same model and compared the predictions of this model to the combined predictions based on expression and methylation data separately. We found that the predictions (confusion matrix in Supplementary Fig. 9) were similar, with 43/51 samples with both data types predicted similarly in the two models. In addition, our main finding -the existence of two groups of atypical samples, which tended to have a good and bad prognosis (red and pink curves Fig. 1b)-still held, but that limited number of samples impeded the statistical analyses. In fact, none of the Cox regression tests were significant even for the groups displaying the largest differences (e.g., MLpredicted LCNEC vs. ML-predicted typical samples), and even when comparing the histological types reported by the pathologists (bottom panel Supplementary Fig. 9). This supports our hypothesis that maximising p at the expense of n leads to a decrease in power in subsequent analyses due to a smaller sample size, and comforts our initial choice.

As matrix factorisation methods such as MOFA and PCA remove correlations between features by finding latent factors that summarise them, they could presumably improve the performance of ML. Nevertheless, by providing lowdimensional approximations of the data, such techniques induce a loss of information, which could reduce the performance of the ML. To assess the balance between these beneficial and detrimental effects, we also performed ML using the MOFA factors or the principal components of the PCA analysis, using factors or components that explained at least 2% of the variance (five MOFA latent factors, six expression PCs, and five methylation PCs, respectively). These analyses are presented in Supplementary Fig. 12 and led to similar classification to the results presented in the main text Fig. 1. In addition, in the case of MOFA factors, in accordance with Fig. 1, atypical carcinoids were stratified into a group with an overall survival similar to that of the LCNEC (in red) and a group with a higher overall survival (in pink), similar to that of the typical carcinoids. When using the principal components, despite a similar trend, the difference in survival between the high-and low-survival groups was not significant. These results show that dimensionality reduction does not lead to an increased classification ability, nor does it provide a better explanation of clinical behaviour. We thus chose to represent only the results of the ML analyses based on expression and methylation data in the main text and figures.

Survival analysis based on expression and methylation data.W ed i v i d e d the samples into different groups based on the ML predictions. We represented the Kaplan-M e i e rc u r v e so ft h ep r e d i c t i o n sg r o u p sb ys e l e c t i n gt h eg r o u p s with >10 samples and gathering the unclassified samples in the same group. Using Cox's proportional hazard model and using the logrank test statistic (R package survival v2.42-3) we compared the overall survival of LCNEC, atypical and typical samples based on the histopathological classification and based on the ML predictions (Supplementary Fig. 11A). Forest plots were drawn using R package survminer (v0. 4.3). The same survival analysis was performed using the ML predictions based on MKI67 expression only (Supplementary Fig. 11C).

Comparison between the supervised analyses of typical and atypical carcinoids. We contrasted the results of the different supervised analyses between typical and atypical carcinoids based on clinical data, specific markers (Ki67), machine learning, differential expression, and differential methylation (Supplementary Fig. 31). Survival analyses showed a significant difference between histopathological types (Supplementary Fig. 31A). Nevertheless, the machine learning classifier based on the genome-wide expression or methylation data could not properly distinguish atypical and typical carcinoids (Supplementary Fig. 31B): there were 64-83% correctly classified typical carcinoids and only 30-41% correctly classified atypical carcinoids. The differential expression analysis showed that atypical carcinoids also presented very few core differentially expressed genes (Supplementary Fig. 31C, middle panel and Supplementary Data 15) and differentially methylated positions (Supplementary Fig. 31C, right panel and Supplementary Data 17). Overall, these data suggest that the histopathological classification, although clinically meaningful, does not completely match the molecular classification.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article. 68. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184Protoc. 4, -1191Protoc. 4, (2009)). 69. Zhang, J. D. & Wiemann, S. KEGGgraph: a graph approach to KEGG PATHWAY in R and bioconductor. Bioinformatics 25, 1470Bioinformatics 25, -1471Bioinformatics 25, (2009)). 70. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33,1 -22 (2010).

Background

Lung neuroendocrine neoplasms (LNENs) are rare understudied diseases with limited therapeutic opportunities. LNENs include poorly differentiated and highly aggressive lung neuroen-docrine carcinomas (NECs)-i.e., small-cell lung cancer (SCLC) and large-cell neuroendocrine carcinoma (LCNEC)-as well as well-differentiated and less aggressive lung neuroendocrine tumors (NETs), i.e., typical and atypical carcinoids (WHO classification 2015 [1]). Over the past years several genomic studies have investigated the molecular characteristics of these diseases to provide some evidence for more personalized clinical management [2][3][4][5][6][7][8]. Although lung NECs and NETs are broadly considered different diseases, several recent studies have suggested that they may share some molecular characteristics [7,[9][10][11][12]. However, owing to the rarity of these diseases, the sample sizes of these studies individually are limited, and the integration of independent datasets is not an easy task.

Providing a way to interactively visualize and analyze these pan-LNEN data would be of great interest for the scientific community, not only to further explore the proposed molecular link between lung NECs and NETs but also to integrate data from studies including fewer samples to reach the statistical power needed to draw meaningful conclusions.

Data Description

Recently [7], we performed the first integrative and comparative genomic analysis of LNEN samples from all histological types, based on newly sequenced data: whole-exome sequencing (WES) data (16 samples), whole-genome sequencing (WGS) data (3 samples), RNA-sequencing (RNA-Seq) data (20 samples), and EPIC 850K methylation data (76 samples), as well as publicly available data. These data correspond to the most extensive multi-omic dataset of LNENs, including the first methylation data for LCNEC and the first molecular characterization of the rarest LNEN subtype (atypical carcinoids) [7]. This dataset, which provides the missing pieces for a complete molecular characterization of LNENs, has been deposited at the EMBL-EBI European Genome-phenome Archive (EGA accession No. EGAS00001003699). To facilitate the reuse of the data generated for the previous publication [7], we provide here a complementary data descriptor by outlining the pre-processing and quality control (QC) steps performed on each omic dataset available on EGA.

Also, other studies have generated sequencing data and performed a molecular characterization of LNEN samples: pulmonary carcinoids (mostly typical carinoids) have been characterized by Fernandez-Cuesta et al. [4] and Laddha et al. [8], LC-NEC by George et al. [6], and SCLC by George et al. [5] and Peifer et al. [2]. We therefore generate the first pan-LNEN molecular tumor map by integrating the transcriptomic data from Alcala et al. [7] and the other published LNEN transcriptomic data [2,[4][5][6]8]. This map provides an interactive way to explore the molecular data and allows statistical interrogation, based on the UCSC TumorMap portal [13]. The integrated transcriptomic dataset resulting from these studies is available on GitHub [14].

Data quality controls

Fig. 1 provides a schematic view of the pre-processing steps and the associated QC performed for each omic dataset generated by Alcala and colleagues [7]. An overview of the available omics and clinical data for each sample is provided in Supplementary Table 1.

WES and WGS data

WES and WGS were performed, respectively, on 16 and 3 freshfrozen atypical carcinoids in the Cologne Centre for Genomics and the Centre National de Recherche en G énomique Humaine. For WES, the SeqCap EZ v2 Library capture kit from NimbleGen (44 Mb) and the Illumina HiSeq 2000 machine (Illumina Inc., San Diego, CA, USA) were used for the sequencing. For WGS, the Illu-mina TruSeq DNA PCR-Free Library Preparation Kit was used for library preparation and the HiSeqX5 platform from Illumina for the sequencing as described in [7]. The sequencing reads from the 16 atypical carcinoids' whole exomes and the 3 carcinoids' whole genomes were processed using the in-house Nextflow [15] workflow available at the IARCbioinfo/alignment-nf [16] GitHub repository, revision No. 9092214665. The pipeline consists in 3 steps: mapping reads to the reference genome (GRCh37), marking duplicates, and sorting reads using bwa v0.7.12-r1044 (BWA, RRID:SCR 010910) [ 17], samblaster v0.1.22 (samblaster, RRID:SC R 000468) [ 18], and sambamba v0.5.9 [19], respectively. For WES samples, local realignment using ABRA v0.97b (ABRA, RRID:SC R 003277) [20] was then run.

The QCs of the WES and WGS data were performed using FastQC v0.11.8 (FastQC, RRID:SCR 014583) [ 21] and Qual-iMap v2.2.1 (QualiMap, RRID:SCR 001209) [22] using the in-house Nextflow [15] workflows available at IARCbioinfo/fastqc-nf [23] and IARCbioinfo/qualimap-nf [24] repositories, respectively, and the results aggregated using MultiQC v1.7 (MultiQC, RRID:SCR 0 14982) [25](Fig. 1, left panel).

Fig. 2A andB show the per base sequence quality scores (left panels) and the per sequence mean quality scores (right panels). Regarding the per base sequence quality scores, the majority of the base calls were of very good quality (>28, green area, Fig. 2A left panel) and of reasonable quality (>20, orange area, Fig. 2B left panel) for WES and WGS data, respectively. The most frequently observed sequence mean quality score was ∼30 for both techniques, which is equivalent to an error probability of 0.1%. Table 1 provides the general statistics associated with the WES and WGS QCs. The observed median coverage for each sample was above the expected coverage (30× for the WGS samples and 120× for the WES samples). Concerning the alignment quality, all WES samples had >99% of the reads aligned and all WGS samples had >98% of the reads aligned.

RNA-Seq data

RNA-Seq was performed on 20 fresh-frozen atypical samples. The Illumina TruSeq RNA sample preparation Kit was used for library preparation and the Illumina TruSeq PE Cluster Kit v3 and the Illumina TruSeq SBS Kit v3-HS kits were used on an Illumina HiSeq 2000 sequencer. The data generated were processed in 5 steps (Fig. 1, middle panel): (i) read trimming using Trim Galore v0.6.5 (Trim Galore, RRID:SCR 011847) [ 26], (ii) read mapping to the reference genome (GRCh38, gencode version 33 from bundle CTAT from 6 April 2020 [27]) using STAR v.2.7.3a (STAR, RRID:SCR 015899) [ 28], (iii) realignment of the reads using ABRA2 v2.22 (ABRA, RRID:SCR 003277) [29], (iv) base quality score recalibration using GATK4 v4.0.5.1 (GATK, RRID: SCR 001876) [ 30,31], and (v) gene expression quantification using StringTie v2.1.1 (StringTie, RRID:SCR 016323) [ 32]. FastQC v.0.11.9 (FastQC, RRID:SCR 014583) [ 21], RSeQC v3.0.1 (RSeQC, RRID:SCR 005275) [ 33], and HTSeq v0.12.4 (HTSeq, RRID:SCR 0 05514) [ 34] were used to control the raw read quality and assignments, and the results aggregated using MultiQC v1.7 (Mul-tiQC, RRID:SCR 014982) [ 25]. These steps were performed using our in-house Nextflow [15] pipelines available at the following GitHub repositories: IARCbioinfo/RNAseq-nf [35] release v2.3, IARCbioinfo/abra-nf [36] release v3.0, IARCbioinfo/BQSR-nf [37] release v1.1, and IARCbioinfo/RNAseq-transcript-nf [38]r elease v2.1.

Fig. 2C shows that the base calls, before trimming, are of good quality because all samples have a mean per base sequence quality score >28 (left panel) and for all samples the most fre-Downloaded from https://academic.oup.com/gigascience/article/9/11/giaa112/5943495 by library@iarc.fr user on 28 September 2021 quently observed per sequence mean quality is >35, corresponding to an error probability of 0.03% (right panel). None of the samples presented >1% of over-represented sequences, which ensures a proper library diversity. RSeQC was used to control the alignment quality and to assign mapped reads to different genomic features (coding regions, introns, intergenic regions, TSS, TES). Fig. 2D (left panel) shows that every sample had >70% of reads uniquely mapped and the read distribution for each sample is represented in Fig. 2D (middle panel). All samples had >75% reads mapped in coding regions (CDS-exons, 5 ′ and 3 ′ untranslated transcribed region exons). The read counting was performed at the gene level for 59,607 genes (genecode annotation, release 33) using HTSeq [34]. Fig. 2D (right panel) shows the read assignments; the percentage of assigned reads ranges from 71.3 to 87.3%. STAR, RSeQC, and HTSeq metrics for each sample are provided in Supplementary Tables 234. Note that 3 samples, LNEN008, LNEN014, and LNEN017, have a higher proportion of reads classified as "Unmapped too short" and "Mapped to multiple loci" (Fig. 2D, left panel), reads mapped in intronic regions (Fig. 2D, middle panel), and a lower proportion of reads assigned by HTSeq (Fig. 2D, right panel) in comparison with the other samples. Unexpected results concerning those samples should thus be considered with caution. Finally, to apply dimensionality reduction methods to the RNA-Seq data (see below), the DESeq2 package v1.26.0 (DESeq2, RRID:SCR 015687) [39] was used to transform the read counts obtained using StringTie to variance-stabilized read counts (vst), enabling the comparison of samples with different library sizes. To reduce sex influence on expression profiles, the genes located on sex chromosomes were not considered for subsequent analyses. Genes located on the mitochondrial chromosome were also not considered.

Downloaded from https://academic.oup.com/gigascience/article/9/11/giaa112/5943495 by library@iarc.fr user on 28 September 2021 A, B, andC, the left panels correspond to the sequence quality plots, the x-axis representing the base position in the read and the y-axis the mean quality value; the right panels correspond to the per sequence quality score plots, the x-axis representing the mean quality score and the y-axis the number of reads. (D) QC of the RNA-Seq data after trimming. Left: Bar plot representing the percentage of reads uniquely mapped ("Uniquely mapped"), mapped to multiple loci ("Mapped to multiple loci" or "Mapped to too many loci" if the number of loci is >10), unmapped because the mapped reads' proportion was too small ("Unmapped: too short"), unmapped because of too many mismatches ("Unmapped: mismatches"), or unmapped for other reasons ("Unmapped: other"). Middle: Cumulative bar plot representing the percentages of reads mapped, using RSeQC, at different locations in the genome (exons, introns, 5 ′ and 3 ′ untranslated transcribed region [UTR], intergenic regions, TSS, and TES). Right: Cumulative bar plot representing the cumulative percentages associated with the different read assignments using HTSeq ("Assigned": reads assigned to 1 gene, "Ambiguous": reads assigned to multiple overlapping genes, "Aligned not unique": reads assigned to multiple non-overlapping genes, "No Feature": reads assigned to none of the features). 

Methylation data

The methylation analyses were performed on the basis of the EPIC 850K methylation arrays and the Infinium EPIC DNA methylation beadchip platform (Illumina) for 33 typical carcinoids, 23 atypical carcinoids, 20 LCNECs, and 19 technical replicates in total. These arrays interrogate >850,000 CpGs and contain internal control probes that can be used to assess the overall efficiency of the sample preparation steps. The raw intensity data (IDAT files) were processed using the R package minfi v.1.24.0 (minfi, RRID:SCR 012830) [ 40]. Fig. 1 (right panel) provides the packages, functions, and publication used for the data Downloaded from https://academic.oup.com/gigascience/article/9/11/giaa112/5943495 by library@iarc.fr user on 28 September 2021 processing, QC, and filtering steps as implemented in the IAR-Cbioinfo/Methylation analysis scripts [41] GitHub repository.

Fig. 2E shows that no outliers were detected: (i) the left panel, representing the median log 2 of the methylated and unmethylated intensities, indicates that all samples cluster together with a log median intensity >11 for both channels, which supports the absence of failed samples; (ii)in the right panel, the multidimensional scaling plot shows that the samples cluster together by histological groups. We used the depectionP function (minfi package), which compares the DNA signal to the background signal based on the negative control probes to provide a detection P-value per probe, lower P-value indicating reliable CpGs. Fig. 2F represents the mean detection P-values per sample and shows that all samples' mean detection P-values were <0.01. To correct for the variability identified in the control probes, a normalization step was applied to the raw intensities using the prepro-cessFunnorm function from minfi.

After between-array normalization, different sets of probes that could generate artifacts were removed successively from the methylation dataset: (i) 19,634 probes on the sex chromosomes, in order to identify differences related to tumors but unrelated to sex chromosomes; (ii) 41,818 cross-reactive probes, which are probes co-hybridizing with multiple CpGs on the genome and not only to the one for which it has been designed [42]; (iii) 10,588 probes associated with common SNPs (present in dbSNP build 137); (iv) 24,363 probes with multi-modal β-value distribution; and (v) 9,697 probes having a detection P-value >0.01 in ≥1 sample. Supplementary Table 5 lists the sets of filtered probes. To assess the experimental quality of the assay, the distributions of the β-values were analyzed. As described previously, probes with multi-modal distributions were removed at the filtering step and overall distributions of β-values for each sample before and after filtering were plotted (Fig. 2G). As expected, after filtering all samples showed a bimodal profile, indicative of the good quality of the experiment. No experimental batch effects were identified after functional normalization (see Supplementary Fig. 33 from [7]). Based on all the QCs performed, none of the samples analyzed were identified as outlier. However, 1 sample available on EGA (201414140007 R06C01) was removed from the analyses because it came from a metastatic tumor rather than the primary tumor. Sample metadata are provided in Supplementary Table 6.

Generation of an integrative molecular map

Here we have generated a pan-LNEN molecular map with the whole-transcriptomic (RNA-Seq) data available from individual studies of each LNEN tumor type [2,[4][5][6][7][8]. This dataset includes the RNA-Seq data for a total of 51 SCLCs, 69 LCNECs, and 118 carcinoids including 40 atypical and 75 typical carcinoids. The different data underwent the same processing steps described above because the generation of the molecular map requires a homogenized dataset.

Dimensionality reduction using UMAP

UMAP method

The pan-LNEN map was obtained using the Uniform Manifold Approximation and Projection (UMAP) method [43] on the genes with the most variable expression (genes explaining 50% of the total variance). UMAP is a dimensionality reduction method based on manifold learning techniques, which are adapted to non-linear data in contrast with the commonly used principal component analysis (PCA) method. First, it builds a topologi-cal representation of the high-dimensional data, and second it finds the best low-dimensional representation of this topological structure [43]. UMAP representations were generated using the umap function from the R package umap (v. 0.2.5.0) [44]. All the parameters were set to their default values except the n neighbors parameter. This parameter defines the number of neighbors considered to learn the structure of the topological space. Varying this parameter from small to large values enables the user to find a trade-off between local and global preservation of the space, respectively. To preserve the global structure of the data (see "quality control of the UMAP projection" section below), we built the pan-LNEN map setting the n neighbors parameter to 238, which corresponds to the total number of samples.

Biological interpretation of the pan-LNEN TumorMap

Fig. 3 shows the pan-LNEN map available on TumorMap [45] (see "Reuse potential" section below), with colors representing the main molecular subtypes. To evaluate the accuracy of the generated pan-LNEN map we first verified whether it was consistent with the main biological findings from the original studies, in particular whether it represented the molecular subtypes of LNENs previously identified, and their relationship with histological types. We specifically tested whether groups of samples previously described as having discordant molecular and histopathological features were identified in our map. To do so, given a focal molecular subtype and 2 reference histopathological types, we assessed whether samples from the focal molecular subtype were closer to 1 of the 2 references using a 1-sided Wilcoxon test between the Euclidean distances of samples to the centroid of each reference type.

First, the SCLC/LCNEC-like samples [6], which are histological SCLCs presenting the molecular profile of LCNEC, tend to cluster with the LCNECs rather than with the SCLCs (Wilcoxon P = 6.2 × 10 -4 ). Similarly, the LCNEC/SCLC-like samples [6], which are histological LCNECs having the molecular profile of SCLC, tend to cluster with the SCLCs rather than with the LCNECs (Wilcoxon P = 3.3 × 10 -3 ). In 2018, George et al. showed also that LCNEC samples can be subdivided into Type I and Type II molecular groups [6]. We observed that the Type I and Type II LCNECs were closer to each other than to the SCLC/SCLC-like (Wilcoxon P = 9.9 × 10 -14 ) and that SCLC/LCNEC-like samples were closer to Type II than to Type I LCNECs [6] (Wilcoxon P = 3.9 × 10 -3 ). Like the LCNECs, pulmonary carcinoids have been subdivided into molecular groups. Alcala et al. [7] identified 3 clinically relevant molecular clusters, using a multi-omics factor analysis: Carcinoid A1, Carcinoid A2, and Carcinoid B [7]. In the pan-LNEN map generated using UMAP, those 3 clusters are clearly visible (Fig. 3) and, respectively, correspond to the 3 clusters identified in [8] named LC1, LC3, and LC2. Also, in the study from Alcala and colleagues [7], 2 carcinoids that clustered with the carcinoids B (S00118 and S00089) were borderline and located between cluster A1 and B. Similarly, an LCNEC sample and an SCLC sample clustered with the carcinoids A1 [7]. These observations are also visible on the TumorMap representation. Finally, in the same study, a novel entity of carcinoids, named the "supra-carcinoids," was unveiled. These samples were characterized by a morphology similar to that of pulmonary carcinoids but with the molecular features of LCNEC samples. In the pan-LNEN TumorMap, the supra-carcinoids also clustered with the LCNEC samples and were molecularly closer to LCNECs than to SCLCs (Wilcoxon P = 5 × 10 -2 ). We also note that 1 sample from Laddha et al. [8] LC2 cluster (SRR7646258) clusters with LCNEC. 

Quality control of the UMAP projection

In any dimensional reduction technique, there is a trade-off between preserving the global structure of the data and the finescale details, and UMAP has been designed to reach a better balance compared with previous methods.

On the basis of the previously published analyses of LNEN data [2,[4][5][6][7][8], we expect the global structure of the data to be composed of 6 molecular groups (SCLCs, Type I and Type II LC-NECs, Carcinoid A1, A2, and B). For this reason, an ideal projection able to capture this large-scale variation should contain 5 dimensions. To assess the quality of the 2D representation generated by UMAP, we propose a comparative analysis between UMAP and the traditional PCA based on the 5 first principal components of PCA (PCA-5D) as implemented in the dudi.pca function from the ade4 R package (v1.7-15) [46]. Because UMAP is aiming at preserving the global structure in only 2 dimensions, we also compared it to the traditional PCA based only on the 2 first principal components (PCA-2D). We evaluated the performance of the methods on the basis of the preservation of (i) the samples' neighborhood and (ii) the spatial auto-correlations.

Preservation of the samples' neighborhood

We used the sequence difference view (SD) metric (eq. 3 from [47]) to evaluate the preservation of the samples' neighborhood. This dissimilarity metric compares, for a given sample, its neighborhood in the low-dimensional space with that in the original space, taking into account that preserving the rank of a close neighbor is more important than for a distant neighbor (see [47] for details). SD values are positive (SD ∈ [0 ; +∞)), with small values indicating a good preservation of the sample neighborhood. We denote by SD k the value of SD averaged across samples for a fixed number of neighbors k; SD k g i v e sas e n s eo ft h eo v e r a l l preservation of the neighborhood at different scales: local for low k values and global for large k values. We calculated SD k for PCA-5D, PCA-2D, UMAP with n neighbors = 238, and UMAP with the default value n neighbors = 15. Because we are interested in the relative values of SD k for the different dimensionality reduction methods, and because we use PCA as a reference, for each dimensionality reduction method X we scaled the values of SD k using that of PCA-5D and PCA-2D:

SD ′ k,X = SD k,X -SD k,PCA-5D SD k,PCA-2D -SD k,PCA-5D . (1) 
By definition, SD

′ k,PCA-5D = 0a n dSD ′ k,PCA-2D = 1.
Thus values of SD ′ k,X close to 0 indicate that X preserves k neighborhoods as well as PCA-5D, whereas values close to 1 indicate that X preserves k neighborhoods worse than PCA-5D but as well as PCA-2D, and values >1i n d i c a t et h a tX preserves k neighborhoods worse than PCA-2D and PCA-5D. Note that SD ′ k,X can be negative if X preserves k neighborhoods better than SD k,PCA-5D . For the UMAP projection, we iterated the computation of SD ′ k 1,000 times because the algorithm uses a stochastic optimization step to define the projection.
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As expected, increasing the n neighbors UMAP parameter from 15 to 238 leads to a better preservation of the global structure, clearly visible for k > 30 (Fig. 4A; mean SD ′ k>30 = 2.855 and 1.029, respectively), while only marginally reducing the preservation of the local structure for k < 30 (mean SD ′ k<30 =-0.076 and 0.124, respectively), which is approximately the size of the smallest cluster. Globally, the SD ′ k values over all k levels are lower for an n neighbors value of 238 than 15 (paired t-test P = 6.09 × 10 -8 ).

With n neighbors = 238, the UMAP projection provides a clear improvement over PCA-2D for k ∼ 135 (mean SD ′ k < 1), offering a good trade-off for visualization in only 2 dimensions while being able to maintain the global structure of the data, in particular the 6 molecular groups previously identified. This observation highlights the importance of varying the n neighbors parameter according to the purpose of the projection. Some analyses would require the local structure of the sample neighborhood to be maintained, while others, the global structure.

Preservation of spatial auto-correlations

Under the hypothesis that close points on projections share a similar molecular profile, spatial auto-correlations were measured according to the Moran index (MI) metric [48]. MI values range from -1 to 1, the extreme values indicating negative (nearby locations have dissimilar gene expression) or positive (nearby locations have similar gene expression) spatial autocorrelation, respectively. The spatial auto-correlation of the expression of each gene helps to identify the genes contributing to the structure of the molecular map (MI ≃ 1), and conversely, the genes that are randomly distributed spatially (MI ≃ 0). The computation of MI requires a weight matrix that determines the spatial scale at which auto-correlation is assessed; we gave a weight of1tothek nearest neighbors based on Euclidean distance, and 0 otherwise, so that we can control the scale at which MI is computed with parameter k. The mean MI across k values was computed for all gene expression features for: (i) the original space, (ii) the PCA-5D projection, and (iii) the UMAP projection (with n neighbors = 238). We used the implementation of MI from the Moran.I function of R package ape (v. 5.3) [49].

To evaluate the preservation of the spatial auto-correlations, we ranked the top N genes based on the mean MI values for these 3 cases and calculated the overlap between the lists (Fig. 4B). We found that the PCA-5D is only slightly more conservative of the spatial auto-correlations found in the original space than UMAP (unilateral paired t-test P = 2.2 × 10 -16 ). For example, for N = 1,000 (see Euler diagram inserted in Fig. 4B), 88.8% of the genes with the highest MI overlap between the PCA-5D, UMAP, and the original space.

Reuse potential

An interactive TumorMap

Newton and colleagues have recently developed a portal called TumorMap [13,50], an online tool dedicated to omics data visualization. This new type of integrated genomics portal uses the Google Maps technology designed to facilitate visualization, exploration, and basic statistical interrogation of high dimensional and complex datasets. The pan-LNEN molecular map that we generated in this work (Fig. 3) has been shared on the Tu-morMap platform. Along with the molecular map, the main clinical, histopathological and molecular features highlighted in the previous studies were uploaded as attributes. The interface enables users to explore and navigate through the map: zooming in and out, coloring and filtering samples based on attributes. The users can also create their own attributes based on pre-existing ones by using operators such as union or intersection. In addition, multiple statistical tests are pre-implemented and available, for example: comparison of attributes without considering the samples positions on the map, comparison of attributes considering samples' positions on the map, and ordering attributes on the basis of their potential to differentiate 2 groups of samples. The interactive nature of the map and the fact that its manipulation does not require computational expertise, could enable the generation of new hypotheses and expand the reuse potential of the dataset.

An interactive computational notebook

In the first part of the article, we described the pre-processing and QC steps applied on the recently published LNEN multiomics dataset [7] in order to facilitate its reuse. To generate the pan-LNEN molecular map, the same pre-processing steps were followed to homogenize independently published transcriptomic data [2,[4][5][6][7][8]. For that purpose, reproducible pipelines, developed in house, were used and are available for reuse to the scientific community on GitHub [START_REF] Mose | improved coding indel detection via assembly-based realignment[END_REF] (see the "data description" section). In addition, the code used to generate the molecular map and to evaluate the quality of the dimensionality reduction is provided as a notebook published on Nextjournal [52]. Along with the code, the notebook provides the data and the dependencies required to run the analyses performed in this paper. Interested researchers can thus make a copy of this publicly available notebook (called "Remix") to reproduce our results but also interactively modify the code and explore the influence of different parameters.

Integration of new samples

The homogenized read counts of the pan-LNEN data are available on GitHub [14]. Along with the available code, these data could be used to integrate new samples for which RNA-Seq data are available. The raw read counts of the new samples should firstly be generated following the same processing steps described in the section "Data quality controls" (Fig. 1, middle panel) and integrated to the pan-LNEN read counts. We also provide in the Nextjournal notebook, the Nextflow command lines allowing to obtain the read counts. The vst (DESeq2 [39]) should then be applied on the combined dataset and UMAP should finally be rerun to project all samples together in a 2D space. All together, we provide the resources to integrate additional samples into our molecular map, starting from raw sequencing read counts.

Discussion

Genomic projects focused on rare cancers encounter the limitation of availability of high-quality biological material suitable for such studies. This translates in small series of samples usually underpowered to draw meaningful conclusions. Thus, tools facilitating the integration of independent datasets into larger sample series will lead to more informative studies. Recently, the first multi-omic dataset for the understudied atypical pulmonary carcinoids and the first methylation dataset for LCNECs was published [7]. Here we provide a parallel description of the pre-processing of these molecular data and provide evidence of the good quality of the different 'omics data generated. This data collection associated with previous datasets [2,[4][5][6]8] completes the LNEN molecular landscape and thus provides a valuable re-Downloaded from https://academic.oup.com/gigascience/article/9/11/giaa112/5943495 by library@iarc.fr user on 28 September 2021 source to improve the molecular characterization of LNEN tumors. Notably, we show here the perfect concordance of the 3 molecular clusters of pulmonary carcinoids independently identified in [7]a n d [ 8], validating the discoveries made by these 2 studies and proving the usefulness of this integrative approach.

However, even when primary genomic data are available, barriers to accessing the data still exist, often limiting reuse by the community [53]. In particular, downloading and re-reprocessing large raw sequencing datasets requires dedicated infrastructure and bioinformatics skills. Indeed, to minimize batch effects when integrating data from different studies, one needs to process it in exactly the same way (e.g., with the same versions of the same software, the same reference genome, the same annotation databases). As more and more data are generated, the previously mentioned reprocessing will become untenable and replicating these efforts for each new study in each research group represents a waste of resources. Standardization of laboratory and computational protocols might become a reality when large national medical genomics initiatives become fully operational [54]. In the meantime there is a need for better data sharing strategies than the traditional "supplementary spreadsheet/raw data" combination that can accelerate the translational impact of molecular findings.

One step in this direction is the generation of so-called "tumor maps," which provide an interactive way to explore the molecular data and allow easy statistical interrogation, including generating new hypotheses, but also projecting data from future studies including fewer samples [13]. This integration method has some limitations though. A fixed reference map could be of interest for easier biological interpretations, but the overall sample size of the datasets used to build the pan-LNEN map remains relatively small. Thus, the map probably does not capture the complete molecular diversity of the LNENs, and integrating new samples will influence the map and potentially change the clusters obtained after dimensionality reduction. Also, if the harmonization of the new dataset to integrate is not enough to correct for strong batch effects, the interpretation of the projections would be erroneous. Another approach would be to project the new samples into a fixed reference map. However, the stochastic nature of UMAP embedding and its sensitivity to parameter tuning can lead to unstable projection results; thus this task is for now not straightforward and requires further development [55]. In the meantime, favoring the integration of datasets will, over the years, yield the constitution of molecular maps that will probably be more and more accurate and more adapted to the projection of new samples.

Conclusion

Here we provide a molecular map based on homogenized transcriptomic data available for the 4 types of LNENs from 6 different studies. We show that this map represents well both the local and global structure of the data and captures the main biological features previously reported. We provide a full spectrum of data and tools to maximize reuse potential for a wide range of users: raw sequencing reads, gene expression matrix, bioinformatics pipelines, interactive computational notebooks, and an interactive TumorMap. In particular, we indicate how one can update the molecular map by integrating new samples starting from raw sequencing reads. Considering the small sample sizes of molecular studies on rare LNENs, promoting data integration will empower more reliable statistical testing, and this map will therefore serve as a reference in future studies.

Availability of Supporting Data and Materials

R codes used for this article are available in the GigaDB data repository [56]. The data used in this manuscript are available in the European Genome-phenome Archive (EGA), which is hosted at the EBI and the Centre for Genomic Regulation (CRG), under 2B). Bland altman plots showed no proportional 383 difference between pyrosequencing and 850K arrays (Supplementary Figure 3; p=0.562 384 for cg26576712 and p=0.069 for cg02493167).

385

The identified association between DNA methylation and OTP expression raised 386 the question whether one or multiple CpGs are associated with expression. For this 387 purpose, we have generated a heatmap of the β-values of all cg-sites for both carcinoid 388 clusters (i.e., OTP high and OTP low ) and LCNEC (Figure 2C). Complete-linkage clustering 389 using the euclidean distance metric revealed a cluster with cgs that strongly correlates 390 when applying a tree height cut-off of three (Figure 2C, cg21907107, cg16703762, 391 cg02086801, cg26365545, cg17374364, specified in green). These cgs might possibly 392 explain together the regulation of OTP expression. Noteworthy is cg17374364, which 393 shows a β-value above 0.5 in all OTP low samples (Figure 2C). While OTP high samples show 394 overall a low methylation level, data reveal that some samples (e.g., LNEN013, LNEN014, 395 S01502, S01539) tend to show a higher methylation level (β-value > 0.5). Somatic 396 mutation analysis revealed that these samples harboured mutations in genes associated 397 with Gene Ontology (GO) terms related to histone demethylase activity (HDM i.e., KDM4A, 398 KDM5C, FBXL19) and histone methylation (HMT i.e., DOT1L) (Figure 2C). 
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Discussion and perspectives

It has been widely accepted that pulmonary carcinoids have unique histopathological, clinical, and molecular characteristics with no causative relationship with hihg-grade lung NENs (SCLC and LCNEC). If the main molecular studies have mostly supported this idea, other observations suggested evidence for interconnections between these prognosis groups, such as the recent evidence of LCNEC arising within a background of pre-existing atypical carcinoid in the thymus [START_REF] Fabbri | Thymus neuroendocrine tumors with CTNNB1 gene mutations, disarrayed ß-catenin expression, and dual intra-tumor Ki-67 labeling index compartmentalization challenge the concept of secondary high-grade neuroendocrine tumor: a paradigm shift[END_REF], and a recent proof-ofconcept study suggesting the progression of pulmonary carcinoids to LCNEC and SCLC (Pelosi et al., 2018). In line with this, our study (Alcala et al., 2019a) uncovered the supra-carcinoids, a group of atypical carcinoids that exhibit genuine carcinoid-like morphology (well-differentiated grade 1 and 2 tumours) but molecular and clinical features of LCNEC (poorly differentiated grade 3 carcinomas). In contrast to the lung, in the gastrointestinal system, the existence of well-differentiated grade-3 neuroendocrine tumours is well known and broadly recognised (Tang et al., 2016). The analogy between this previously unappreciated entity and the grade-3 NENs of the gastrointestinal system might inform further investigation of the development of these tumours.

The supra-carcinoid cases that we identified display comparable prognosis with patients diagnosed with high-grade LCNEC. Although lung carcinoids show a relatively good prognosis, there is a group which present with metastatic disease, and a subgroup of patients initially treated by surgery that will relapse. Cytotoxic agents are mostly ineffective in these tumours (Rindi et al., 2018), and the long follow up to identify the relapses is costly and difficult for the patients. Given the clinical characteristics of the supra-carcinoids we identified in our initial cohort, this subgroup of pulmonary carcinoids is likely to be related with the pulmonary carcinoids associated with an aggressive clinical course. Furthermore, we hypothesise that intermediate-grade atypical carcinoids evolve from low-grade typical carcinoids and that a subgroup of atypical carcinoids might progress towards more aggressive lung neuroendocrine neoplasms, such as supra-carcinoids and, eventually, LCNEC. Therefore, we are currently testing this hypothesis in collaboration with Dr T Dayton, in the group of Pr H Clevers, where I had the chance to spend two weeks to get insights in the organoid-based in vitro models that they are working on. Dr Dayton has already generated patient derived-tumour organoids (PDTOs) for LCNECs, well-differentiated pulmonary carcinoids, and one supra-carcinoid. Multi-omic analyses show that neuroendocrine tumour PDTOs maintain the intra-tumour heterogeneity and major gene expression patterns of the original tumours. Also, the pulmonary carcinoid organoid lines recapitulate the slow growth characteristic of these tumours, while presenting the morphologic characteristics of tumour organoids. Together, this data suggest that these models might not only serve as mechanistic tools but might reveal the unexplored underlying mechanisms underlying the growth of these tumours. In addition, these novel patient-derived tumour organoid models would serve as a platform for neuroendocrine cancer research (Dayton et al. In preparation). Indeed, to further explore the potential evolutionary link between lung NENs, Dr Dayton will use lenti-viral based and CRISPR/Cas9-mediated genome editing in these pulmonary carcinoid PDTOs to introduce candidate alterations identified from our ongoing followup study to characterise supra-carcinoids, to test the hypothesis of progression from low-to high-grade lung NENs.

Beyond the use of the novel mechanistic models to further examine the evolutionary trajectory of lung NENs, tumour maps are already being used as tools to integrate multiple datasets and investigate evolutionary hypotheses. In 2017, Newton and colleagues (Newton et al., 2017) created the portal TumorMap by means of computational technologies and approaches providing intuitive and interactive browsing of thousands of tumoural samples based on their molecular similarities. This publicly available and interactive tool aims to assist users in statistical interrogation and exploration of high-dimensional omic datasets in a way that facilitates biological interpretability and promotes hypothesis generation. In the cartographies provided by TumorMap, molecular similarities and differences arrange the samples on a hexagonal grid in an original genomic space that are subsequently rendered with Google's Map technology. One year later, in the context of the TCGA Pan-Cancer initiative, Hoadley and colleagues [START_REF] Hoadley | Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer[END_REF] performed multi-omic clustering on the complete set of TCGA tumours, unveiled mixed clusters of cancer with similar molecular profiles from which they projected the clustering distances into TumorMap to visualise the similarities and differences between approximately 10,000 biospecimens encompassing 33 types of cancer. The integrative clustering of RNA, and miRNA expression and DNA methylation levels as well as Reverse-Phase Protein Array (RPPA) data underscored the prominent role of cell-of-origin patterns translating in molecular similarities between cancer types. In Gabriel et al. (Gabriel et al., 2020) study, using the transcriptomics data from LCNEC and SCLC tumours publicly available and from our previously published studies on pulmonary carcinoids, we have generated the first comprehensive molecular map for lung neuroendocrine neoplasms. We project new samples into this molecular space using the mapping function that we created. This comprehensive cartography enables us to visualise similarities and differences and hypotheses of evolutionary paths between these cancer types. However, further investigations would be needed to uncover the molecular link between lung NENs. For example, surprisingly, in the carcinoids-only tumour map, the supra-carcinoids cluster with good-prognosis typical carcinoid-enriched samples. Moreover, according to preliminary data from the follow up Rare Cancers Genomics study on lung NENs (Sexton-Oates et al. In preparation) and recent data on single-cell sequencing, it seems that different cells of origin could be responsible for the different molecular groups that we have identified. Indeed, the transcriptomic sequencing at the cell resolution, already achieved the identification and characterisation of a wide range of normal lung tissue cell types including neuroendocrine cells [START_REF] Adams | Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis[END_REF][START_REF] Carraro | Transcriptional analysis of cystic fibrosis airways at single-cell resolution reveals altered epithelial cell states and composition[END_REF][START_REF] Deprez | A Single-Cell Atlas of the Human Healthy Airways[END_REF]Travaglini et al., 2020;[START_REF] Zuo | Cell-specific expression of lung disease risk-related genes in the human small airway epithelium[END_REF] that are suspected to be the cell-of-origin of lung NENs. However, some evidence has been also reported for the existence of different neuroendocrine cell subtypes which might explain the interconnections between lung NENs types.

To date, our molecular characterisation of pulmonary carcinoids constitutes one of the most extensive multi-omics studies focused on these diseases, unveiling a new entity that we have named supra-carcinoids and which need further investigation. Given the clinical characteristics of the supra-carcinoids, this subgroup is likely to represent a subgroup of the aggressive carcinoids associated with an aggressive clinical course and might be analogous to the well-differentiated, grade-3 neuroendocrine tumours of the gastrointestinal system which might imply drastic changes in the way lung carcinoids are managed in the clinic. Furthermore, preliminary data suggests that the transdifferentiation from low-grade typical carcinoids to intermediate-grade atypical carcinoids and from atypical carcinoids towards supra-carcinoids and, eventually, LCNEC might be possible for some cases. In addition, the exponential advancements in single-cell sequencing technologies and analyses offer promising perspectives on the resolution of the lung cancer interconnections and origins. Already, through cuttingedge research platforms of organoid models that Dr Dayton developed in collaboration with the RCG team, might reveal the unexplored underlying mechanisms of the carcinogenesis and evolution of these diseases.

Chapter 2: Genomic characterisation of malignant pleural mesothelioma unveiled independant heterogeneity dimensions with clinical implications

State of the art and research contributions

MPM is a rare and severe disease associated with asbestos exposure (Carbone et al., 2019) that remains poorly-understood. The current WHO classification distinguishes three major histological types including epithelioid, biphasic, and sarcomatoid (International Agency for Research on Cancer, 2015). This classification has prognostic but limited predictive value and imperfectly matches with the molecular classification of the two main large genomic studies available (Bueno and colleagues including 211 MPM tumours (Bueno et al., 2016) and the TCGA consortium based 87 samples (Hmeljak et al., 2018)). These two studies mainly focused on epithelioid MPM, and proposed molecular classifications of MPM with discrete classes that partially follow the current histologic classification. These attempts at molecular classification were based on the implicit assumption that MPM is subdivided into discrete and unique entities, potentially preventing the discovery of some important dimensions of the MPM molecular variability.

In addition to the under-representation of non-epithelioid MPM in the published studies, several additional limitations and unanswered questions support the need of further studies. First, whole-genome sequencing (WGS) data is almost non-existent for MPM, hampering the assessment of genomic rearrangements, the impact of non-coding mutations in regulatory elements, as well as the evaluation of any asbestos-associated mutational signature. Indeed, up-to-date, only few studies used WGS data for MPM and only on a limited number of samples. First in 2015, De Rienzo et al. (De Rienzo et al., 2016) performed WGS on ten MPMs samples to identify driver mutations and key copy number events. Then, in 2017 Hylebos et al. [START_REF] Hylebos | Large-scale copy number analysis reveals variations in genes not previously associated with malignant pleural mesothelioma[END_REF] used low-pass whole genome sequencing on a set of 21 MPMs to undertake a large-scale copy number analysis, and one year later, Mansfield et al. (Mansfield et al., 2019) used mate-pair sequencing on 22 MPM to investigate genomic rearrangements. Finally, in 2019, Oey et al. (Oey et al., 2019) used WGS data from nine primary tumours and matched cultured cells to test the accuracy of patient-derived cultured tumour cells at the molecular level.

Secondly, the epigenome of MPM has, so far, not been exhaustively studied (only available for 84 TCGA samples), although it may play a key role in a disease with such a low mutation rate (<2 nonsynonymous mutations per megabase (Hmeljak et al., 2018)).

In addition, the molecular intra-tumour heterogeneity (ITH) of MPM has not been fully explored in terms of analysis depth and/or sample size, despite the enormous morphological heterogeneity known for this disease (Chirieac et al., 2019). Indeed, Chen 

Redefining malignant pleural mesothelioma types as a continuum uncovers immune-vascular interactions (Alcala et al. EBioMedicine 2019).

In this study, we performed unsupervised analyses of already published RNA sequencing data of 284 MPMs without assumption of discreteness. In addition, we undertook an orthogonal validation using immunohistochemistry data on a subgroup of 103 samples and a biological replication using an independent cohort of 77 MPM tumours. Unsupervised analyses found a continuum of molecular profiles rather than discrete clusters, that better explained the prognosis of MPM than any discrete model. Underlying this continuum, we showed that the vascular and immune pathways were the main sources of molecular variation with strong differences in the expression of pro-angiogenic and immune checkpoints genes. Therefore, we found very specific molecular profiles at the extrema of this continuum: a "VEGFR2+/VISTA+" profile, with high expression of proangiogenic gene VEGFR2 and immune checkpoint VISTA, and associated with a betterprognosis; a "cold" profile, with low lymphocyte infiltration and high expression of proangiogenic genes, and associated with a bad-prognosis; and a "hot" profile, with high lymphocyte infiltration and high expression of pro-angiogenic and immune checkpoints genes, and associated with a bad-prognosis. We undertook the orthogonal validation of the gene expression levels at the protein level for a five-gene panel selected from the vascular and immune pathways (CD8A, PDL1, VEGFR3, VEGFR2, and VISTA). We also replicated these molecular profiles and their prognosis value in an independent replication series. Overall, we confirmed that the continuous model better explained the prognosis and drew extremes with specific expression patterns of genes involved in immune response and angiogenesis. In this study, my contribution focused on the validation and replication of our findings. To do so, I centralised and unified the immunohistochemistry dataset, generated by our collaborators that I used to conduct the orthogonal validation of the transcriptomic profiles that we identified at the protein levels. Additionally, I participated in the replication of the gene expression profiles in long-, short-survival epithelioid, and sarcomatoid groups. To translate our findings to clinical use, I estimated the prognosis value of a relevant panel of twelve genes. I also took part in the discussions and interpretation of the other analyses conducted. These findings shed light on the importance of the interplay between angiogenesis and the immune response in MPM progression and patient prognosis that might inform forthcoming MPM classifications. This study also provided a five-protein panel already in use in the clinic that can be put in place to characterise MPM tumours and inform their clinical management and treatment strategies.

The clinical management of malignant pleural mesothelioma illustrates challenges in lung and thoracic pathology while molecular advances in the classification of pleural mesotheliomas provides novel insights (Fernández-

Cuesta et al. Virchows Archiv 2021). The histopathological diagnosis and classification

of MPM remain extremely challenging; to obtain an accurate diagnosis of the different subtypes, tumour morphology expert assessment and suitable biopsies are required but not always available. These limitations can leave doctors uncertain about the diagnosis and treatment plan, sometimes resulting in a delay in the patient's clinical management.

In this review, the recent major advances of the past decade that concern the molecular characterisation of MPM are discussed with a special focus on their clinical implication for MPM classification. We provide details on the state of art of the MPM molecular landscape at the genomic, epigenomic, and transcriptomic levels. We discuss the similarities and dissimilarities between the last attempt at molecular classifications published and generate a summary of the current state of knowledge regarding interand intra-tumour MPM heterogeneity. Finally, we underline the current gaps in knowledge and how filling them might improve the histological classification and ultimately, benefit the patients. For this review, my contribution focused on the investigation of the MPM literature and the comparison of the main attempts at molecular classification. Furthermore, I undertook a process of summarising the similarities and differences between these suggestions and created the schematic representation of the different classifications of MPM and the molecular features associated. I also took part in the discussions on the different faces of MPM heterogeneity and its current classification. This review on the state of the art of MPM molecular classification might encourage further initiatives to fill the current gap and inspire the investigation of the significant heterogeneity of MPM.

Disentangling heterogeneity of Malignant Pleural Mesothelioma through deep integrative omics analyses (Mangiante et al. Under review in Cancer Cell) reveals

three novel axes of molecular variation with clinical implications. By means of the largest series of WGS data to date, integrated with the epigenomic and transcriptomic layers using multi-omic factor analysis, we show that tumour cell morphology, ploidy, adaptive immune response, and CpG island methylator phenotype correspond to the four major sources of variation from which MPM heterogeneity arises. Importantly, we demonstrate that previous genomic studies focused on characterising the tumour cell morphology dimension while we robustly confirm the three other sources in all publicly available cohorts. Furthermore, we investigated and proved that these main sources of variation explain the biological functions performed by the cancer cells shaped by specific genomic events that we characterised using WGS data. Finally, using drug responses measured in cell lines as well as detailed clinical annotations, we found that these new sources of variation were highly informative to understand the heterogeneity of the clinical behavior of MPM. In this project, I took part in the selection and collection of biological samples as well as clinical, morphological, and epidemiological annotations (see sections 3.1. and 3.2.). I conducted an effort of coordination and cooperation between internal and external expertises to galvanise a strong multidisciplinary effort for this large study of MPM (see section 3.5.). More concretely, I performed Multi-Omics Factor Analysis (MOFA), Pareto front modeling, and integrative GSEA leading to the first multi-omic continuous characterisation of MPM summarising evolutionary traits in these tumours. In addition, combining molecular and clinical data, I estimated the prognosis value of molecular factors, inferred the predictive ability of survival models, and assessed the association of our molecular factors with drug responses (see sections 3.3. and 3.4.). Overall, from the sequencing to the more advanced analyses, I undertook quality controls at each step, generated additional genomic data and annotations, detected large molecular patterns using computational tools and provided replication of our findings in independent series of MPM. I also took part in the discussions and interpretation of the other analyses conducted. This study, providing major advances in rationalising the molecular, clinical, and morphological heterogeneity of MPM might become one of the references in MPM heterogeneity understanding also paving the way to new perspectives in the clinical management of this very severe and recalcitrant disease.

In the context of the companion data note paper of Mangiante et al. study, a molecular phenotypic map of malignant pleural mesothelioma establishes a comprehensive framework for the evolutionary characterisation of mesothelioma (Di Genova et al. In preparation). In this companion paper of the above-mentioned

Mangiante et al. study, we aimed to promote the integration of MPM molecular data, by providing detailed information on data generation and quality control for the new WGS, RNA sequencing, and EPIC 850K methylation arrays datasets that we generated for 124 MPM. This data set includes multi-regional multi-omic data for 13 of the MPM samples.

In addition, as a data valorisation effort, we describe how we made the best of WGS data from tumour tissues without matched-normal samples by means of powerful computational analyses such as machine learning to call the most likely somatic variants. Finally, we generate an interactive molecular phenotypic map of malignant pleural mesothelioma by using a powerful evolutionary framework named the multitask theory (Hausser and Alon, 2020) and integrating all available datasets (TCGA (Hmeljak et al., 2018), Bueno et al. (Bueno et al., 2016), and Mangiante et al. see above).

Therefore, we provided a multi-omic map of the survival strategies performed by MPM cells, and the related degree to which these cancer cells are specialised in each of these cancer tasks. In this study, I extensively undertook the quality controls of omic data, especially of WGS and RNA sequencing as described in section 4.1. Using the advanced biostatistical methods, I also generated the molecular phenotypic map of MPMs also mentioned above (see sections 3.4.). Finally, I took part in the discussions and interpretation of the other analyses conducted. Promoting data valorisation and integration should empower more reliable statistical testing considering the small sample sizes of molecular studies on MPM. Therefore this phenotypic map might serve as a reference in forthcoming studies.

abstract Background: Malignant Pleural Mesothelioma (MPM) is an aggressive disease related to asbestos exposure, with no effective therapeutic options. Methods: We undertook unsupervised analyses of RNA-sequencing data of 284 MPMs, with no assumption of discreteness. Using immunohistochemistry, we performed an orthogonal validation on a subset of 103 samples and a biological replication in an independent series of 77 samples. Findings: A continuum of molecular profiles explained the prognosis of the disease better than any discrete model. The immune and vascular pathways were the major sources of molecular variation, with strong differences in the expression of immune checkpoints and pro-angiogenic genes; the extrema of this continuum had specific molecular profiles: a "hot" bad-prognosis profile, with high lymphocyte infiltration and high expression of immune checkpoints and pro-angiogenic genes; a "cold" badprognosis profile, with low lymphocyte infiltration and high expression of pro-angiogenic genes; and a "VEGFR2+/VISTA+" better-prognosis profile, with high expression of immune checkpoint VISTA and proangiogenic gene VEGFR2. We validated the gene expression levels at the protein level for a subset of five selected genes belonging to the immune and vascular pathways (CD8A, PDL1, VEGFR3, VEGFR2,a n d VISTA), in the validation series, and replicated the molecular profiles as well as their prognostic value in the replication series. Interpretation: The prognosis of MPM is best explained by a continuous model, which extremes show specific expression patterns of genes involved in angiogenesis and immune response.

© 2019 World Health Organization; licensee Elsevier. This is an open access article under the CC BY-NC-ND IGO license.
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Research in context

Evidence before this study

We searched for publically available genomic data of MPM in public databases (European Genome-Phenome Archive, db-GaP, TCGA data portal; last accessed in August 2019) associated with a peer-reviewed article, requiring a minimum of 20 samples with RNA-sequencing data per study. We found two studies that matched our criteria, one by Bueno and colleagues including 211 samples and one by the TCGA consortium including 73 samples. The two studies proposed discrete molecular classifications of MPM that partially match the current histological classification. These two studies were based on the implicit assumption that MPM is subdivided into discrete entities, potentially preventing the discovery of some important aspects of the MPM molecular variation.

Added value of this stud

In this study we characterized the molecular variation of MPM without any assumption of discreteness, to analyse the molecular pathways underlying this variation, and to identify novel candidate markers that could serve both for classification and treatment of this disease. We provide a model that explains the prognosis of MPM better than previous discrete models, both based on histology and molecular data. The continuous model also enabled to identify the immune and vascular pathways as the major sources of molecular variation in MPM. Finally, we provide a validated panel of five proteins that is sufficient to characterize the molecular profile of MPM.

Implications of all the available evidence

Our findings provide novel insights into the combined importance of angiogenesis and the immune response in MPM prognosis and progression and inform future tumour classifications. In addition, the five-protein panel that we provide could be used in the clinic to characterize tumours and inform clinical management and treatment strategies.

Introduction

Malignant Pleural Mesothelioma (MPM) is a deadly disease, with most patients dying within 2 years of diagnosis. MPM is related to asbestos exposure, with a long latency between the exposure and the development of the disease [1].B a s e do nt h e2 0 1 5 WHO classification, there are three major MPM histopathological types, with different prognoses: epithelioid, biphasic, and sarcomatoid [2]. The sarcomatoid component is the marker with the highest prognostic value; however, in the recent IASLC-EURACAN multidisciplinary workshop on mesothelioma classification held in Lyon on the 6-7th July 2018 [3], pathologists agreed that a more precise definition of what constitutes sarcomatoid features, in addition to a more multidisciplinary classification, would be needed to improve diagnosis reproducibility (currently with a kappa of 0.45) [4].

The histopathological classification also has a role in the clinical decision-making but, ultimately, MPM becomes refractory to all conventional treatment modalities, including surgery, chemotherapy, and radiotherapy. Alternative therapeutic options have been evaluated with limited success; for example, although strong preclinical data support the role of angiogenesis in MPM, the available phase-II and phase-III clinical trials testing for anti-angiogenic drugs have only shown modest activity [5,6]. Similarly, preliminary data from ongoing clinical trials suggested that immunotherapy might be a promising approach for this disease [7];h o w e v e r , PD(L)1 expression measured by immunohistochemistry turned out to be a poor predictive marker of response to PD(L)1 inhibitors, while concerns have been raised about potential toxicities of immunotherapies in patients with mesothelioma [5,[8][9][10]. In addition, the outcome of patients treated with systemic agents may be variable across histopathological types: while chemotherapy seems to be less effective in sarcomatoid tumours, antiangiogenic agents and immune checkpoint inhibitors are associated with a lower survival benefit in the epithelioid type. A recent study has highlighted the enormous heterogeneity of the microenvironment of MPM, suggesting that a combination of immunotherapies might be more effective than single-agent approaches [11].

Large-scale genomic studies aiming at characterizing MPM have provided new insights into its classification. Bueno and colleagues [12] proposed a four-class molecular subdivision based on transcriptomic data, consisting of an "Epithelioid" group enriched for epithelioid tumours, a "Biphasic-E" group enriched for biphasic and epithelioid tumours, a "Biphasic-S" group enriched for biphasic and sarcomatoid tumours, and a "Sarcomatoid" group enriched for sarcomatoid tumours. Similarly, Hmeljak and colleagues [13] provided a subdivision into molecular groups based on integrated genomic, transcriptomic, and epigenomic data. Nevertheless, these attempts at classifications were all based on the implicit assumption that MPM is subdivided into discrete entities, potentially preventing the discovery of some important aspects of the MPM molecular variation. Thus, in this study we characterized the molecular variation of MPM without any assumption of discreteness, to analyse the molecular pathways underlying this variation, and to identify novel candidate markers that could serve both for classification and treatment of this disease.

Materials and methods

Ethics

All methods were carried out in accordance with relevant guidelines and regulations. This study is part of a larger study -MESOMICS project-aiming at the comprehensive molecular characterization of malignant pleural mesothelioma, approved by the IARC Ethical Committee . The samples used in this study belong to the French MESOBANK [14], which guidelines include obtaining the informed consent from all subjects.

Molecular data

We combined the RNA-sequencing (RNA-seq) datasets from Bueno and colleagues [12] (n = 211) and the TCGA [13] (n = 73). Note that we excluded from the full TCGA-MESO cohort of 86 samples, the samples that were excluded in the final report (13 samples). Additionally, we conducted immunohistochemistry (IHC) on two datasets: (1) Tissue MicroArrays (TMAs) of a subset of 106 samples from the Bueno and colleagues study [12], which acts as an orthogonal technical validation; and (2) an independent cohort of 77 samples from the French MESOBANK, which acts as a replication of our results. TMAs were done from 106 cases of MPM, three cores per sample of 0.6 mm of diameter each were used to make six recipient blocks of TMA. The replication dataset of 77 samples come from the French MESOBANK, a multi-centric virtual and exhaustive repository of national data, biological samples, and standardized operational procedures for mesothelioma. This database contains histopathological data for more than 10,000 specimens [14]. The 77 samples were selected from three groups: a longsurvival epithelioid group (survival >30months), a short-survival epithelioid group (survival <10 months), and a sarcomatoid group (survival <10 months). The samples from the three groups were matched for age (≤6 years difference) and sex, were all chemonaive at the time of sample collection but all underwent cisplatin and/or pemetrexed chemotherapy afterwards. Although not matched, we confirmed that smoking status and asbestos exposure were balanced between the three groups (Fisher's exact tests p > 0.05).

Pathological review and clinical data

Tumour grade, infiltration, and the presence of necrosis were assessed for all 284 samples from digital H&E slides of FFPE. The slides from the TCGA cohorts were visualized from the cancer digital slide archive (http://cancer.digitalslidearchive.net/, accessed in January and February 2018). The histopathological types based on the 2015-WHO classification (epithelioid, biphasic, sarcomatoid) and the clinical information (sex, age, survival, asbestos exposure, pre-treatment, surgery) were retrieved from the supplementary tables of the corresponding manuscripts. The 77 samples from the French MESOBANK replication cohort have all undergone a Central Pathological Review (French standardized procedure of certification of mesothelioma) and contained clinical information on the same variables. For the replication cohort, we also assessed the epithelioid histopathological characteristics (patterns and stromal characteristics), which we subdivided into three subtypes, based on the recent IASCL-EURACAN interdisciplinary meeting recommendations: [3] good-prognosis (regrouping the acinar and papillary subtypes, and samples with abundant myxoid stroma), intermediateprognosis (trabecular subtype), and bad-prognosis (solid subtype). We confirmed that the epithelioid subtypes were balanced between the long-and short-survival groups (Table 1; Fisher's exact tests p = 1).

Immunohistochemistry

For the 77 French MESOBANK samples, FFPE tissue sections were previously deparaffinised. All the TMA spots and the MESOBANK samples were stained with the CD8 (ROCHE, cl SP57 Rabbit), PDL1 (ROCHE, cl SP263 Rabbit), VEGFR2 (Cell Signaling, cl 55B11 Rabbit), VEGFR3 (R&D, Polyclonal goat), and VISTA (Cell Signaling, cl D1L2G) assays using UltraView Universal DAB Detection Kit (Ventana Medical Systems) and Amplification Kit (Ventana Medical Systems -Roche) on Benchmark ULTRA (Roche, Ventana Meylan, France) individually. For CD8, PDL1 and VISTA, because the available antibodies were all membranous for tumour cells, no dual stainings were performed. For CD8, the percentage of tumour infiltrating lymphocytes (TILS) exhibiting a staining were reported. For PDL1, the percentages of TILS cytoplasmic/membranous staining and tumour cells exhibiting a membranous staining were separately reported. For all other markers, the percentages of tumour cells exhibiting a membranous staining were reported. CD8 and VEGFR3 percentages have been reported as five levels of protein expression: 0%, 25%, 50%, 75% and 100%, instead of a continuous quantification as reported for all other markers, due to the lack of resolution. For VEGFR3 we optimized the membranous staining by adapting the dilution to the best staining of the internal control (vessels), which could explain these difficulties. The percentage of all markers was only reported when the average number of tumour cells was more than 50%. When the slide or staining global quality did not allow the protein level evaluation, the percentage of the marker was not reported. For these reasons, only a subset of 103 out of the 106 samples initially planned was included in the technical validation cohort by IHC on TMA. Among the 77 MESOBANK samples, there were three samples with missing data for CD8 expression, three for PDL1 expression in the tumour, four for PDL1 in TILS, seven for VEGFR2, three for VEGFR3, and eight for VISTA. The positive controls of the five antibodies used are reported in Fig. S1. All IHC photos have been scanned at 20× magnification. All the IHC slides have been read and scored by FGS.

RNA-seq data processing

The 284 raw reads files were processed in three steps (bioinformatic workflow freely available at https://github.com/IARCbioinfo/ RNAseq-nf): [15][16][17] (i) reads were scanned for Illumina adapter sequence using software Trim Galore v0.4.2; (ii) reads were mapped to reference genome GRCh38 (gencode version 24) using software STAR v2. 5.2b; and (iii) reads were counted for each gene of the comprehensive gencode gene annotation file using software htseq v0.8.0. We quantified the proportion of cells that belong to different immune cell types from the RNA-seq data using software quanTIseq [18] (Table S1). In a nutshell, quanTIseq performs a supervised deconvolution based on the expression signature of a

The raw read counts of the 284 samples were normalized using the variance stabilization transform (R package DESeq2 v1.18.1) [19]. The genes that displayed the largest variance (7145 genes representing 50% of the total variance; Table S2) were then meancentered and selected to compute a low-dimensional summary using Principal Component Analysis (PCA; Table S1). Indeed, the visualization of the expression levels across samples for 7145 genes theoretically requires a plot in 7145 dimensions, which would be impossible to interpret. PCA overcomes this issue by reducing the high-dimensional data to a few independent dimensions, each representing groups of genes with correlated expression levels. One limitation of PCA is that it assumes linear relationships between the low-dimensional representation and original variables (gene expression, in our case). Nevertheless, contrary to alternative nonlinear techniques, this linear relationship results in interpretable dimensions [20]. In other words, PCA makes data easy to explore and visualize by reducing the dimensionality of a data set consisting of many variables correlated with each other, while retaining as much as possible the variation present in the original dataset. Note that we report the first two dimensions of the PCA in the results section, because the other main dimensions (from three to seven) explain each <5% of the gene expression variation among the 7145 selected genes, they were not significantly associated with the histopathological type (ANOVA q > 0.05), and none except Dimension 5 were associated with survival (Wald test p > 0.05; Table S3). Importantly, the samples with pre-treatment (31 samples with pre-surgical chemotherapy from the Bueno et al. cohort) did not have significant associations with any of the seven axes. Also note that all 199 samples included in the survival studies underwent similar treatments (chemotherapy plus surgery). Correlation circles were constructed from the correlations of variables on each dimension.

We performed a five-gene PCA following the same protocol, but using only a subset of five genes highly correlated with PCA Dimensions 1 and 2, for which IHC-validated antibodies were available (CD8A, VEGFR2, VEGFR3, PDL1, and VISTA). We compared the PCA performed on all genes (hereafter simply denoted "PCA") to that performed on the reduced gene set (denoted "five-gene PCA") using the Kabsch algorithm, which finds the rotation that minimizes the deviation between two sets of points.

PCAs were independently conducted on the validation and replication IHC datasets, after mean-centering expression levels. We used hierarchical clustering on the replication IHC dataset to ensure that the protein expression profiles of the short-and long-survival epithelioid sets were not biased by misclassifications. Indeed, if misclassifications-which are common in MPM, in particular biphasic samples misclassified into epithelioids and sarcomatoids-disproportionately happened between sarcomatoids and short-term survival epithelioids in our series, we would expect the protein expression of the epithelioid short-survival set to be biased toward that of the sarcomatoid set. Using hierarchical clustering analysis on the five-protein expression data (Fig. S2), we found that most sarcomatoid and epithelioid samples had distinct expression patterns, and that there were similar numbers of shortand long-survival epithelioids that had an expression profile inbetween that of epithelioid and sarcomatoid samples (four and two samples, respectively, possibly misclassified biphasics). This indicates that misclassifications should impact the two epithelioid sets similarly and thus should not induce a bias in the comparisons between epithelioid sets.

Interpretation of the PCA dimensions

We tested the association between each dimension and clinical and histopathological variables using linear regression, with sex, age, histopathological type, asbestos exposure, smoking status, necrosis, and grade, as explanatory variables (Table S3). Because each dimension of the PCA summarizes sets of genes, we can infer the main biological processes that correspond to each dimension by looking at the biological functions of these sets of genes. To do so, we computed Gene-Set Enrichment Analyses (GSEA) on hallmarks of cancer gene sets (gene sets in Table S4; results in Table S5) from the study of Kiefer and colleagues [21],

after removing the duplicated genes from some hallmarks, using the Principal Component Gene-Set Enrichment method [22].P C G S E uses t-tests to compare the mean correlation coefficient of nonhallmark genes with that of genes from a focal hallmark. In addition, to test the robustness of GSEA the results to the choice of database, we performed GSEA on the top correlated genes with Dimensions 1 and 2 using the STRING database [23] v11 (Table S6). From the top 300 genes correlated with Dimension 1, 66 Biological Process GO terms were enriched with vascular pathways, with the top 10 including: "regulation of vasculature development" (GO:1901342), "positive regulation of angiogenesis" (GO:0045766), and "artery development" (GO:0060840). Interestingly, the "cell adhesion" (GO:0007155) and "regulation of cell migration" (GO:0030334) GO terms were also in this top 10, suggesting that molecular pathways involved in the epithelial mesenchymal transition are also captured by Dimension 1. We performed the same analysis with the top 300 genes correlated with Dimension 2 coordinates and found 312 Biological Process GO terms enriched for a large majority of pathways related to the immune system. In fact, all nine most strongly associated pathways were directly linked to the immune system. All the results are presented in Table S6.

Survival analysis

Median survival times were estimated using the Kaplan-Meier nonparametric estimator. Survival predictions were tested using Cox proportional hazards models (R package survival v. 2.42-6) [24]. Goodness of fit was assessed using three diagnoses (following Bradburn and colleagues [25]): (i) to assess the proportional hazards assumption, we computed the Schoenfeld residuals test for each variable, using rank transformation for survival time (function cox.zph from package survival); (ii) to assess the leverage of each observation, we computed the change in regression coefficients when removing each observation (function ggdiagnostics with option "dfbeta" from package survminer); and (iii) to assess the general goodness of fit of the model, we plotted the deviance residuals as a function of linear predictions (function ggdiagnostics with option "deviance" from package survminer). We also assessed the functional forms for continuous variables using plots of martingale residuals against the values of the focal variable; because the percentage of sarcomatoid, PC1 and PC2 presented non-linear functional forms, we modelled them using smoothing splines with four degrees of freedom. Diagnostics and functional forms were assessed using R package survminer, v. 0.4.3.

We compared model fits using the time-dependant Area Under the ROC Curve (AUC) and its integral (iAUC; Section 3.3 of Chambless and Diao, 2006;R package survAUC, v. 1.0-5) [26], computed using leave-one-out cross-validation [27] (Table S7). Timedependent AUC estimates the ability of a model to predict patients w i t has u r v i v a lh i g h e ro rl o w e rt h a nag i v e nt h r e s h o l d ,a n di A U C integrates the results of time-dependent AUC over the threshold value, providing an interpretation similar to that of classical AUC.

To assess the ability of the PCA to predict survival, we used the first seven dimensions of the PCA as continuous explanatory variables, and included smoking, and asbestos exposure in the model, and used sex as a stratification variable (Table S3). The use of a stratification variable enables to adjust for the effect of sex, which is in our case a nuisance factor that is not investigated. To assess the ability of specific genes to predict survival, we used the expression of each gene as an explanatory variable, also including age and asbestos exposure as covariables, and sex as a stratification variable (Table S8). All models used the attained age scale, which provides a control for age effects without needing to fit an additional age parameter compatible with the proportional hazards assumption [28]. Because of the high proportion of missing smoking status information and the lack of significant association between this variable and the two first PCs, smoking was not included as a covariable in the model.

Differential protein expression analysis from IHC data

We performed differential gene-expression analyses from RNAseq data on the discovery cohort (data from Bueno and colleagues and the TCGA) using univariate independent two-sample Wilcoxon U tests between a long-survival epithelioid group (47 samples from the cohort with survival >30 months), a short-survival epithelioid group (58 samples with survival <10 months), and a sarcomatoid group (eight samples with survival <10 months) as defined in Section 2.2 of Materials and Methods; because we had no ap r iori hypotheses about the direction of the effects of the groups on gene expression, we used two-sided tests in the discovery cohort. For the replication cohort, we conducted both univariable tests of differential protein expression between the matched sets (shortsurvival epithelioids, long-survival epithelioids, and sarcomatoids; paired two-sample Wilcoxon T-tests) and between epithelioid subtypes (subtypes and stromal variants; Kruskal-Wallis tests). Note that among the 77 samples of the replication cohort, due to missing data, the sample sizes were 74, 74, 73, 70, 74, and 69, respectively for CD8, PDL1 expression in the tumour, PDL1 in TILS, VEGFR2, VEGFR3, and VISTA. We used nonparametric tests because IHC measures are discrete and thus violate the normality assumption of linear models (linear regression and ANOVA), and we used similar tests in the discovery cohort to maximize the homogeneity between the statistical treatment of discovery and replication cohorts. We conducted Bivariable tests including both sets and epithelioid subtypes using conditional logistic regression. Because the replication cohort was used to confirm the hypotheses generated in the discovery cohort, including the direction of the effects, we performed one-sided tests. See results in Table S9.

Multiple testing corrections

Whenever multiple tests were performed, we computed qvalues-p-values adjusted for a controlled false discovery rateusing the Benjamini-Hochberg procedure [29]. For the remainder of the text, "q" will denote such adjusted p-values and "p" will denote regular p-values.

Data sharing

TCGA RNA-seq data are available from the GDC portal (TCGA-MESO cohort) and the RNA-seq data from the Bueno and colleagues cohort are available from the European Genome-phenome Archive, EGA:EGAS00001001563. An interactive version of the PCA in Fig. 1a is available for further exploration in https://tumormap. ucsc.edu/ under the project MESOMICS.

Results

A continuous molecular classification of MPM

We computed a two-dimensional visual summary of the gene expression variation of 284 MPMs using an unsupervised analysis (Principal Component Analysis, PCA) (see Methods) (Fig. 1a, left panel; Table S1). Each dimension of the PCA summarizes the expression of sets of correlated genes, with the two first dimensions explaining respectively, 11% and 8% of the molecular variation of the most variable genes (7145 genes representing 50% of the total variance; Table S2, see Methods). The first dimension was significantly associated with the reported histopathological type Arrow lengths and direction correspond to the strength and sign of the correlation between the variable and Dimensions 1 and 2. e) Forest plot of hazard ratios for overall survival with age, sex and asbestos exposure as covariables. The black boxes represent estimated hazard ratios and whiskers represent the associated 95% confidence intervals. Wald test q-values are shown on the right. Only the markers significantly associated with survival are represented (Wald test q < 0.05); see Table S8 for the results of all genes. Data used in (a) and (c) correspond to the n = 211 samples from the study of Bueno and colleagues [12] and the n = 73 transcriptomes from the TCGA MESO cohort [13]. Data used in (b) correspond to the n = 199 samples from the Bueno cohort [12] with RNA-seq data and available percentage of sarcomatoid component. Data used in (e) correspond to n = 205 samples from the Bueno cohort [12] and n = 59 samples from the TCGA MESO cohort [13] with RNA-seq data and available asbestos exposure annotations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) (ANOVA q = 3.0 × 10 -20 ; Fig. 1a, bottom panel; Table S3), with sarcomatoid samples mainly on the left (lowest coordinates on Dimension 1), biphasic samples mainly in the middle (intermediate coordinates on Dimension 1), and epithelioid samples mainly on the right (greatest coordinates on Dimension 1; Fig. 1a, left panel). Nevertheless, samples did not form discrete clusters, and rather conformed to a continuum of expression profiles (see density along Dimension 1 in Fig. S3). This first dimension was also significantly correlated with the percentage of sarcomatoid component in the tumour estimated by the pathologist from the H&E stain (r =-0.74, Pearson correlation test p = 8.4 × 10 -36 ;F i g .S 4 ) , presence of necrosis (ANOVA q = 1.1 × 10 -2 ; Table S3), and grade (ANOVA q = 2.5 × 10 -2 ; Table S3), with samples on the left presenting high sarcomatoid component, high grade and necrosis.

The prognostic value of the histopathological classification is well known. In the PCA, samples in the top-right region (greatest coordinates on Dimensions 1 and 2) presented the best survival (Kaplan-Meier median estimate of 36 months, dark blue rectangle in the PCA; Fig. 1a, left panel), and samples on the left, the worst (Kapan-Meier median estimate of 10 months, light blue rectangles; see Table S7 for statistical tests and Fig. S5 for Kaplan-Meier curves). In order to compare the ability of histopathological and molecular data to predict survival, and to compare the relative benefit of using discrete versus continuous variables to predict survival, we compared five survival models: (i) a model based on the three histopathological types (epithelioid, biphasic, and sarcomatoid); (ii) a model based on the sarcomatoid content estimated by the pathologist (continuous phenotypic variable); (iii) a model based on the four molecular groups described by Bueno and colleagues (Epithelioid, Biphasic-E, Biphasic-S, and Sarcomatoid) [12]; (iv) a model based on the one-dimensional summary of gene expression data (using Dimension 1 as a continuous variable); and (v), a model based on the two-dimensional summary of gene expression data (using the two dimensions of the PCA as continuous variables) (Fig. 1b). We found that the models based on molecular (expression) data outperformed the models based on histopathology (iAUC of 0.63, 0.62, 0.67, 0.68, and 0.70, respectively for models i-v), with the continuous molecular models, and in particular, the one based on both dimensions providing the most accurate survival predictions (Fig. 1b). In particular, the continuous molecular model based on PC1 and PC2 provided better predictions for longterm survivors (more than 15% increase in AUC for survival greater than two years; Fig. S6). See Fig. S7 for diagnostics of the goodness of fit for each model, and Fig. S8 for assessments of the functional form of continuous variables. All tests of the proportional hazards assumption (Schoenfeld tests) were non-significant, and no trends were observed in any plot, suggesting adequate models (Fig. S7). One observation-a sarcomatoid tumour with large associated survival (~four years)-displayed a large leverage in most models (Fig. S7b); this observation had a particularly large leverage on the estimate of the sarcomatoid coefficient of model (i) from Fig. 1b (-0.59 change when the sample is removed), because of the very small number of samples in the sarcomatoid group.

Because each dimension of the PCA summarizes the expression of a large group of genes (1793 and 986 genes with an absolute correlation greater than 0.5 with Dimensions 1 and 2, respectively), we used gene-set enrichment analysis (GSEA) on the hallmarks of cancer-10 biological capabilities acquired during the development of tumours- [30] in order to reveal the cellular and molecular processes underlying the two dimensions of the PCA, and to inform their link with survival. We found that Dimension 1 was associated with hallmark "inducing angiogenesis", with samples on the left of the PCA (Fig. 1a, left panel) presenting higher expression levels of genes from this hallmark (negative association with Dimension 1, Fig. 1c; t-test q = 1.5 × 10 -7 ). Dimension 2 was associated with "avoiding immune destruction" and "tumour-promoting inflammation", with samples at the top of the PCA presenting higher expression levels of genes from these hallmarks (positive associations with Dimension 2; t-test q = 1.7 × 10 -101 and q = 7.3 × 10 -28 , respectively; Fig. 1c; Fig. S9). Of note, genes from eight out of the 10 hallmarks presented a higher expression level in samples on the left of the PCA (t-tests q < 0.05; Fig. S9), which is in line with the worse prognosis of these samples (light blue areas).

Genes from the angiopoietins-tie pathway-which is critical for tumour angiogenesis-and CD31 (PECAM1 in the gencode annotation; which is also a marker of angiogenesis) [31,32] behave similarly to the "inducing angiogenesis" hallmark. Indeed, many of the genes in the angiopoietins-tie axis (including ANGPTL1, ANGPTL4-5, ANGPTL7, ANGPT1-2, ANGPT4,a n dTIE1) belong to the genes with the largest molecular variation across samples (Table S2). In addition, many of these genes also contribute to the "inducing angiogenesis" (e.g., ANGPT1-2 and ANGPT4, ANGPTL3-4,a n dCD31) and the "tumour promoting inflammation" hallmarks (ANGPT1-2 and ANGPT4 and CD31; Table S3). Finally, ANGPT1-7, TIE1,a n dCD31 expression are all significantly correlated with Dimension 1, supporting our claim that this first dimension represents an angiogenesis axis (Table S5). We show in Table S6 that the association of vascularization with Dimension 1, and immune processes with Dimension 2 are robust to the choice of gene sets, by using GO terms instead of the hallmarks of cancer (see Methods). These results provide a biological interpretation of the dimensions, where Dimension 1 corresponds to an "angiogenesis" axis and Dimension 2 corresponds to an "immune response" and "inflammation" axis.

To assess the importance of tumour infiltrating lymphocytes in driving the gene expression differences across samples captured by the second dimension, we quantified the proportion of immune cells per sample using RNA-seq data [18]. We found that the estimated proportions of B cells, macrophages M2, CD8+ T cells, CD4+ regulatory T cells, and dendritic cells were significantly associated with this second dimension (permutation test q < 0.05; Fig. S10a). In particular, the proportion of CD8+ T cells presented the strongest variation across samples, with samples enriched for these cells being overrepresented in the top-left region of the PCA (Fig. 1a, right panel; Fig. S10). Concordantly, we found that for both Bueno and colleagues [12] and TCGA [13] cohorts, the amount of tumour infiltration estimated by the pathologists from the H&E stains was significantly correlated with the amount estimated from the matched expression data (Pearson correlation tests p = 9.3 × 10 -7 and p = 2.8 × 10 -4 , respectively; Fig. S11).

Potential markers for classification and therapy

We then focused on finding candidate markers that could have dual roles: classification-accurately representing the continuum of molecular profiles of MPM-and therapy-being associated with possible therapeutic options. Among the 85 "inducing angiogenesis" genes significantly correlated with the first dimension, we found all the members of the vascular endothelial growth factor receptor (VEGFR) family of genes-FLT1 (VEGFR1), KDR (VEGFR2), and FLT4 (VEGFR3)-as well as the VEGFR3 and PDGFRB ligands VEGFC and PDGFB, respectively. Indeed, samples on the right of the PCA presented higher expression of VEGFR2 (Pearson correlation with Dimension 1: r = 0.59, q = 2.9 × 10 -26 ; Fig. 1c-d) and samples on the left presented higher expression of genes PDGFRB, VEGFR1, VEGFR3,a n dVEGFC (respective correlations with Dimension 1: r =-0.72, -0.65, -0.65, and -0.56, and q = 3.4 × 10 -44 , 1.2 × 10 -33 ,5 . 7× 10 -33 ,a n d9 . 4× 10 -23 ; Fig. 1c-d; Table S5). Genes VEGFR1 and VEGFC were also in the "tumour promoting inflammation" hallmark, highlighting their dual pro-angiogenic and proinflammatory role (Fig. 1c). The region with the largest amount of CD8+ T cells included samples with a low-survival profile (topleft region of the PCA), also harbouring overexpression of genes from the "avoiding immune destruction" hallmark (Fig. 1c). To gain some insights into this observation, we further investigated the 458 genes from the "avoiding immune destruction" hallmark showing significant correlations with the two dimensions and we found, among them, the CD8+ T-cell marker CD8A,a n dt h ei mmune checkpoints (IC) CTLA4, TIM3 (HAVCR2), PD1 (PDCD1), and PDL1 (CD274, Fig. 1c-d; Table S5). Similarly, other well-known ICs that were not annotated in the hallmarks of cancer list from Kiefer and colleagues [21],s u c ha sVISTA (C10orf54)a n dLAG3 [33],w e r e also significantly correlated with Dimensions 1 and 2 (q < 0.05; Table S5). Interestingly, these data point to an immunosuppressive environment in these samples. The expression levels of six [12] and the n = 73 transcriptomes from the TCGA MESO cohort [13]. Right panel: correlation matrix of the five-gene panel expression (upper triangle), of their protein expression (lower triangle), and correlation between expression from RNA-seq data and protein expression from IHC data (green diagonal). Colours correspond to the magnitude and sign of the correlations and statistically significant correlations are surrounded by a black box; dendrograms represent hierarchical clustering of gene or protein expression levels. Data used correspond to the n = 103 samples from the Bueno cohort [12] with RNA-seq data and with Tissue MicroArray (TMA) IHC staining data. b) Tissue MicroArray (TMA) IHC staining from the technical validation series corresponding to n = 103 samples from the Bueno cohort [12], with 0.6 mm core diameter at 5.2× magnification, for the five-gene panel, representing the positive and negative references of the tested protein expression. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) (PDGFRB, VEGFR1, VEGFR2, VEGFR3, VEGFC,VISTA)o u to ft h e1 2p r oangiogenic and IC genes above-mentioned, were individually associated with survival differences across samples (Fig. 1e). These associations still held significant for VISTA, VEGFR1 and VEGFC (at the 10% false discovery rate threshold) when restricting the analyses to epithelioid samples (Table S8), suggesting that this association is not only driven by histopathological types. See Fig. S12 for diagnostics of the goodness of fit for each survival model. All tests of the proportional hazards assumption (Schoenfeld tests) were nonsignificant, and no trends were observed in any plot, suggesting adequate models.

Technical orthogonal validation and independent replication

We validated the gene expression levels (from RNA-seq data) at the protein level using immunohistochemistry (IHC) on tissue microarrays (TMAs) generated for a subset of 103 out of the 284 samples included in this study. For this technical orthogonal validation, we selected five genes (out of the 12 genes above-mentioned) for which IHC-validated antibodies were available: CD8, PDL1, VEGFR3, VEGFR2 and VISTA. In order to test if these five genes provided a good approximation of the behaviour of the entire transcriptome, we computed a two-dimensional visual summary of these five genes (five-gene PCA; Fig. S13a) that we contrasted with the two-dimensional summary from the main PCA (Fig. 1a, left panel), based on the entire transcriptome (hereafter simply denoted as PCA). We found that the five-gene PCA provided a good approximation of the PCA: the first two dimensions of the five-gene PCA were significantly correlated with those of the PCA (Pearson correlation test p ≤ 6.2 × 10 -59 ; Fig. S13b-c). In addition, the overall structure (direction and strength) of the correlations between the protein levels and the two dimensions matched that identified using the whole transcriptome (Fig. 2a, left panel versus Fig. 1d; Table S5). The protein levels of the five genes were significantly positively correlated with the gene-expression levels (green diagonal in Fig. 2a, right panel). Interestingly, despite the background detected for the VEGFR3 marker (see Methods), we still found a significant positive correlation with the gene expression. We also validated the correlation structure observed at the RNA-seq levelpositive correlations between PDL1 and CD8, and between VEGFR2 and VISTA ( u p p e rt r i a n g u l a rp a r ti nFig. 2a, right panel)-at the protein expression level (lower triangular part in Fig. 2a, right panel). These observations further support the value of the five markers in explaining the continuum model of MPM, and support the existence of two dimensions in the protein expression of MPM-one associated with angiogenesis and the other one associated with the immune response. Examples of positive and negative samples for the above-mentioned markers are shown in Fig. 2b.

The two main findings of this study [(i) the existence of two dimensions of variation in protein expression in MPM respectively linked to angiogenesis and the immune response, and (ii) the prognostic value of the above-mentioned five-marker panel] were independently replicated in a series of 77 additional MPMs from the French MESOBANK [14],o nw h i c hw ep e r f o r m e dI H Cf o rt h efi v egene panel and estimated the percentage of tumour infiltration from the H&E slides. This series was composed of three age-and sex-matched sets of 26 samples each, based on their histopathological type and survival characteristics: a short-survival epithelioid group, a long-survival epithelioid group, and a sarcomatoid group (Table 1). For the epithelioid samples, we also obtained a balanced representation of the different histopathological categories (epithelioid subtypes and stromal characteristics) across the matched sets (Table 1; see details in Methods); in addition, using hierarchical clustering analyses of the IHC data, we confirmed that histopathological type misclassifications are unlikely to bias the analyses (Fig. S2; see details in Methods). The protein levels in this independent series of samples allowed reproducing the two-dimensional summary resulting from the entire transcriptome (denoted IHC PCA and PCA, respectively; Fig. 3a). Indeed, as in the PCA (Fig. 3a, upper panel), a first dimension in the IHC PCA mainly separated sarcomatoid samples from epithelioid samples (Fig. 3a, bottom panel), and was negatively correlated with the expression of PDL1 and CD8 and positively correlated with the expression of VISTA and VEGFR2 (Fig. 3b). A second dimension was mostly orthogonal to the histopathological types, and positively correlated with the expression of PDL1, CD8, VEGFR2, and VISTA, and negatively correlated with the expression of VEGFR3 (Fig. 3b). Concordantly, the correlation structure of the protein expression in this replication series matched that of the discovery series based on RNA-seq data (Fig. 3b versus Fig. 2a).

In this independent series, we also validated the prognostic value of the markers. Indeed, the second dimension (IHC PCA Dimension 2) was associated with survival, with the region of high expression of VISTA and VEGFR2 (top-right region in Fig. 3a, bottom panel) enriched for long-survival epithelioids (median survival of 35 months). In terms of distinguishing long-and shortsurvival epithelioids, VISTA seems to be a promising individual marker since both gene expression and protein levels were significantly different between the two groups as shown in the discovery and replication series, respectively (Wilcoxon tests q < 0.01; Fig. 3c). In addition, the IHC also allowed differentiating the expression of PDL1 in tumour cells and in lymphocytes (Fig. 3d); the fact that the tumour cells express PDL1 further supports the suggested immunosuppressive phenotype. VISTA was the only protein with significant expression differences between epithelioid subtypes (Kruskal-Wallis test q = 0.066; Fig. 3e left panel; Table S9). Surprisingly, despite the overall good-prognosis of VISTA expression that we identified, VISTA was overexpressed in the epithelioid subtypes usually associated with intermediate-prognosis (trabecular) and bad-prognosis (solid), compared to those usually associated with good-prognosis (acinar, papillary, and myxoid stroma; Fig. S14). In fact, stratifying by epithelioid subtype revealed larger VISTA expression differences between the short-and long-survival sets (Fig. 3e, right panel; Fig. S14).

Discussion

The molecular profile and the prognosis of malignant pleural mesothelioma (MPM) appears to be better explained by a continuous model, with strong differences in the expression of proangiogenic and immune checkpoint (IC) genes across samples, pointing to the immune and vascular systems as the major sources of variation. This continuous model can be thought as a refinement of the four-class molecular subdivision from Bueno and colleagues [12] as follows: firstly, we showed that its continuity better captures the molecular variation and provides better prediction than a discrete classification; and secondly, we showed that the continuous model captured a second dimension that was independent of the histopathological classification and that was also associated with survival. This second dimension was not captured by previous molecular classification studies [12,13], presumably because of their focus on discrete groups correlated with histopathological types. Importantly, we find that this two-dimensional continuous model enables in particular better predictions of long-term survival, which is coherent with the identification of a region of better prognosis (36 months) for high values of both Dimensions 1 and 2. The discovery of a two-dimensional summary of molecular variation uncovered important associations with the 10 currently accepted hallmarks of cancer. In particular, genes of eight hallmarks showed general upregulation in the region enriched for sarcomatoid and biphasic tumours, including the hallmark "activating invasion motility" that encompasses pathways involved in the epithelial-mesenchymal transition, which is known to play an important role in MPM [34,35]. This could explain the increased aggressiveness reported for these two tumour types, as well as the diverse responses to anti-angiogenic agents and immunotherapies. In addition, among genes from these eight hallmarks that are significantly correlated with the first dimension and upregulated in the region with sarcomatoid and biphasic tumours, there are two well-known indexes used in the clinic: MKI67, which is a wellknown proliferation index and which is in the "sustaining proliferative signaling" hallmark, and CASP3, which is a well-known apoptotic index which is in the "evading growth suppressors", "deregulating cellular energetics", and "resisting cell death" hallmarks (Table S4). Because our results for these two genes only correspond to gene expression estimates from RNA-seq data, additional studies are warrantied to confirm the correlation between gene and protein expression in this group of tumours.

At the extremes of the above-mentioned two dimensions, we could define three molecular profiles with prognostic and therapeutic implications (Fig. 4). The first profile (hot/IC+/Angio+) would correspond to "hot" tumours (highly infiltrated with T lymphocytes), enriched for non-epithelioid types (biphasic and sarcomatoid), and characterized by the high expression of pro-angiogenic genes (VEGFR1, VEGFR3,a n dPDGFRB)a n dI C s( PD(L)1, CTLA4, TIM3, and LAG3). Patients developing tumours with this profile are expected to show a short median survival (7 months). These characteristics are in line with published data suggesting that PD(L)1 expression by immunohistochemistry is correlated with non-epithelioid histology and poor survival [36].

The second profile (VEGFR2+/VISTA+) would correspond to tumours with high expression levels of VEGFR2 and VISTA, enriched for the epithelioid type. Patients carrying tumours with this profile are expected to show the best median survival (36 months). Despite its suggested immunosuppressive role [37], VISTA expression in tumour cells has been associated with increased tumourinfiltrating lymphocytes, PD-1, a favourable immune microenvironment, and with better overall survival in hepatocellular carcinoma [38] and non-small cell lung cancer [39]. Although also associated with better survival, we found that VISTA expression is associated with VEGFR2 expression, further supporting the possible interaction of these two pathways in MPM. Interestingly, VISTA was the only protein with significant expression differences between epithelioid subtypes, suggesting a potential diagnostic value.

The third and last profile (cold/Angio+) would be represented by "cold" tumours (devoid of immune effector cells) enriched for the non-epithelioid types, and with high expression of proangiogenic genes (VEGFR1, VEGFR3,a n dPDGFRB). Patients with tumours with this profile are expected to show a bad survival (median of 10 months). Of note, when stratifying the analysis by tumour type, we also found that patients with epithelioid tumours of the first and third profiles have a worse survival (median of 10 and 17 months) than those with the second profile (median of 27 months). Tumours in this group also show high levels of VEGFC. Upon activation by VEGFRC, VEGFR3 has a role in lymphangiogenesis, which is an important feature in MPM [40].I th a s been shown in cellular models that activation of VEGFR3 on natural killer cells by VEGFC can lead to immunosuppression and that the treatment with the VEGFR3-selective tyrosine-kinase inhibitor MAZ51 counterbalanced this effect [41]. It has also been proven by immunohistochemistry that VEGFR3 is expressed in MPM of differ- 1a). Bottom panel: two-dimensional summary of the protein expression of the five genes in the replication cohort (n = 77) (IHC PCA). Point colours correspond to the three sample sets from Table 1. b) Top panel: correlation circle of the IHC PCA (n = 77) from (a) bottom panel, where arrow lengths and direction correspond to the strength and sign of the correlation between the variable and Dimensions 1 and 2. Bottom panel: correlation matrix of the protein expression of the 77 MPMs from the replication cohort, where colours correspond to the magnitude and sign of the correlations; the dendrogram represents a hierarchical clustering of protein expression. Significant correlations are surrounded by a black box. c) Left panel: gene expression levels (normalized read counts) in the discovery cohort between long-survival epithelioid, long-survival epithelioid, and sarcomatoid groups, resulting in n = 82 samples from the study of Bueno and colleagues [12] and the n = 31 transcriptomes from the TCGA MESO cohort [13], for the three sets; each row presents violin plots and boxplots for a gene, with stars representing the significance level of pairwise comparisons between groups (q-values from two-sided independent Wilcoxon U tests). Right panel: Protein expression levels (% of cells where the protein is expressed) in the replication cohort, for the three sets; each row presents violin plots and boxplots for a protein, with stars representing the significance level of pairwise comparisons between groups (q-values from one-sided paired Wilcoxon T-tests). Sample sizes were 74, 74, 73, 70, 74, and 69, for CD8, PDL1 in the tumour, PDL1 in TILS, VEGFR2, VEGFR3, and VISTA, respectively. In the boxplot representation, centre line represents the median and box bounds represent the inter-quartile range (IQR). The whiskers span a 1.5-fold IQR or the highest and lowest observation values if they extend no further than the 1.5-fold IQR. d) PDL1 immunohistochemistry of two MPM cases from the replication cohort (left panel: short-survival epithelioid sample; right panel: sarcomatoid sample), both PDL1+ and PDL1 TILS+. Upper panels: Hematoxylin Eosin Saffron (HE) stain at 7× magnification, where white and black arrows show tumour cells and TILS, respectively. Lower panels: corresponding staining with PDL1 rabbit monoclonal antibody (cl SP263; VENTANA) at 7× magnification, where white and black arrows show positive staining of tumour cells and TILS, respectively. e) Protein expression level of VISTA in the replication cohort when considering epithelioid subtypes, independently of the sample set (upper panel) and in addition to the sample set (bottom panel). Data used correspond to n = 63 samples from the replication cohort with available data for all protein markers. In the boxplot representation, centre line represents the median and box bounds represent the inter-quartile range (IQR). The whiskers span a 1.5-fold IQR or the highest and lowest observation values if they extend no further than the 1.5-fold IQR.

ent histopathological types, supporting its putative role as a potential therapeutic target in this disease [42].

MPM being refractory to chemotherapy and radiotherapy, there is an urgent need to identify novel and promising candidate therapeutic options as well as the best candidates for those options, especially for the sarcomatoid and biphasic types. Considering the known role of the VEGF/VEGFR axis and the immune response as driving forces in MPM [11,43], drugs against these pathways have been developed to treat this disease; unfortunately, anti-angiogenic therapies for mesothelioma patients have shown modest activity in clinical trials [6], and recent data from ongoing clinical trials pointed that, while immunotherapy remains promising in the treatment of a subset of mesothelioma patients, better predictive markers of response are needed [44]. Several recent reviews have nicely summarized how the tumour-associated blood and lymphatic vasculature play an important role in avoiding tumour destruction, as well as the therapeutic opportunities to overcome this immune blockage [45][46][47][48], pointing to combinations of antiangiogenic drugs and immunotherapy as promising options for the management of many cancers. In this study we found a role for the immune and vascular systems in MPM that might not only have a prognostic value, but also allow stratification of patients for the most relevant therapeutic options.

Contrary to already published studies, on which the authors have made an implicit assumption of discreteness by focusing their analyses on (discrete) histopathological types, or on (discrete) molecular clusters (identified using consensuscluster+ or iCluster+), in this study we have made no such assumption. This agnostic characterization of the molecular diversity of these tumours allowed observing an inherent continuity of the tumour phenotypes in MPM that helped uncover clinically relevant pathway interactions that have not been identified in the published studies, presumably because of this implicit assumption of discreteness. Overall, the role of angiogenesis and the heterogeneous microenvironment of MPM could be used as Achilles' heel for this disease; however, the success of future treatments will strongly rely on a deep understanding of the biology of the disease and the interactions that may occur between the most frequently altered pathways.

Epidemiology

Malignant pleural mesothelioma (MPM) is an aggressive and rarely curable rare cancer accounting for 0.3% of all cancer cases. MPM is predominantly caused by occupational or environmental exposure to asbestos and to other carcinogenic fibres, such as erionite [1][2][3]. To a lesser extent, germline mutations of BRCA1-associated protein 1 (BAP1) and of other tumour suppressor genes have been causally linked to MPM, underscoring the role of genetics in this disease [4][5][6]. Therapeutic ionising radiation to the chest has also been associated with MPM development, especially in young patients [7][8][9].

The incidence and mortality rates of MPM increased after the massive use of asbestos in the 1960s-1980s. Because the latency from asbestos exposure to the development of MPM is about 30 to 50 years, age-adjusted mortality rates increased by 5.37% per year worldwide between 1994 and 2008 [10]. Despite the ban of asbestos in many countries, its incidence rates have not decreased much in countries where regulations have been in effect for several decades [11]; instead, the number of new cases of MPMs and deaths per year continues to increase both in highresource countries and worldwide. The global incidence is, however, difficult to estimate due to the lack of data from developing countries, where asbestos is still used in large amounts.

The carcinogenesis process probably involves chronic inflammationcausedbythedeposition of mineral fibres in tissues and the related production of mutagenic oxygen radicals ind u ce db ya sb es t o s [12][13][14]. This process seems to be initiated by the necrosis caused by asbestos fibres, leading to the release of HMGB1 and the activation of Nalp3 inflammasome, which would induce a pro-inflammatory response, notably through the NF-κB signalling pathway.

Histopathological classification

The current WHO classification, dated 2015, distinguishes three major histological types of diffuse MPM, with prognostic significance: epithelioid (median overall survival of 14.4 months), biphasic (9.5 months), and sarcomatoid (5.3 months), recognising desmoplastic as a variant of sarcomatoid mesothelioma [15]. This classification is not expected to change much in the upcoming 2020 WHO classification.

Epithelioid mesothelioma can be further stratified into a mixture of architectural patterns (solid, tubulo-papillary, trabecular, and adenomatoid), and cytologic (pleomorphic and lymphohistiocytoid) and stromal (fibrous and myxoid) features. Solid, pleomorphic, rhabdoid, and transitional features are associated with poor prognosis, while lymphohistiocytoid and possibly myxoid features are more favourable (reviewed in Nicholson et al. [16]). Sarcomatoid mesothelioma tumour cells are defined as 'elongated and tapered'. Biphasic mesotheliomas should contain at least 10% of the sarcomatoid features in definitive resection specimens along with an epithelioid component, but this cutoff is more arbitrary than evidence-based.

Molecular landscape of MPM

MPM is a rare disease, which consequently translates into limited available genomic studies, typically involving a small number of samples. However, in recent years, two large genomic studies have been published: the first, led by Bueno and colleagues [17], analysed 211 transcriptomes and 99 wholeexomes from 216 human primary MPM fresh-frozen specimens obtained at time of surgery; the second, an integrative genomic analysis (including whole-exome and transcriptome sequencing, as well as 450k methylation arrays) of 74 MPMs, was carried out by the TCGA [18].

Bueno and colleagues identified BAP1, NF2, TP53, SETD2, DDX3X, ULK2, RYR2, CFAP45, SETDB1,andDDX51 genes as significantly mutated in MPMs. Additional recurrent mutations (~2%) were detected in SF3B1 and TRAF7. SF3B1 mutations were found to affect the splicing profile and TRAF7 alterations were mutually exclusive with NF2 alterations. NF2, BAP1,and SETD2 were found inactivated not only by mutation, but also by recurrent gene fusions and splice alterations. Finally, integrated analyses unveiled alterations in Hippo, mTOR, histone methylation, RNA helicase, and p53 signalling pathways [17].

The TCGA study also confirmed the high frequency of BAP1 inactivation by mutation and copy number loss, as well as recurrent inactivating alterations in CDKN2A, NF2, TP53, LATS2, and SETD2 genes. Their analyses also unveiled a novel molecular subtype of MPM defined by genomic near-haploidisation combined with TP53 and SETDB1 alterations, occurring in females with MPM diagnosis at a younger age [18]. Despite the fact that near-haploidisation has been reported only in a handful of cases (3%), it has been suggested that other genetic alterations, like large chromosomal aberrations or chromosomal losses, are much more frequent alterations in MPM than mutations [19]. In fact, compared to other cancers, few recurrently mutated genes have been identified in MPM, with BAP1 being the most frequent, but found mutated in only ~20-25% of the cases [20]. In addition to the above-mentioned genes, TERT promoter hotspot mutation C228T has been found in ~10% of a recently analysed series of 266 MPMs [20].

Towards a molecular classification of MPM

The first attempt to do a molecular classification of MPM was carried out by de Reyniès and colleagues [21]. Through an unsupervised hierarchical clustering on transcriptomic microarray data generated for 38 primary MPM cultures, the authors defined two MPM subgroups, which they named C1 (enriched for samples with BAP1 mutations) and C2 (characterised by a mesenchymal phenotype). All MPMs histologically classified as sarcomatoid/desmoplastic were included in the C2 subgroup, while the epithelioid samples were found in both subgroups, with a worse prognosis for those in the C2 subgroup.

In the case of the more recent studies from Bueno and colleagues and the TCGA, the authors also used clustering approaches to identify molecular groups with prognostic value. Bueno and colleagues performed unsupervised consensus clustering of RNA-seq-derived expression data of 211 MPMs. They identified four major clusters that they named sarcomatoid, epithelioid, biphasic-epithelioid (enriched for biphasic samples with predominantly epithelioid cells), and biphasic-sarcomatoid (including biphasic samples with high sarcomatoid cell content). The sarcomatoid and epithelioid clusters constituted the most distinct clusters, with the epithelioid cluster showing greater overall survival than the other groups. Interestingly, the authors found that the log2 ratio of the expression of CLDN15 to the epithelial-mesenchymal transition (EMT) gene VIM was significantly different between types, with CLDN15 being the most significantly upregulated gene in the epithelioid cluster, and VIM among the most significantly upregulated genes in the sarcomatoid cluster [17].

The TCGA identified, through integrative clustering, four distinct molecular types of MPM with different prognoses even after adjusting for histology and CDKN2A homozygous deletion, a known molecular prognostic factor in MPM [22,23]. Cluster 1 was enriched for epithelioid histology, had few somatic copy number alterations (SCNA), relatively few CDKN2A homozygous deletions, and almost universal alterations of BAP1. Cluster 4, the cluster with the worst prognosis, had a high EMT score (high mRNA expression of VIM, PECAM1,an dTGFB1, and low miR-200 family). This poor prognosis cluster also showed enrichment of LATS2 mutations, higher AURKA mRNA expression, higher leukocyte fraction, and elevated mRNA expression of E2F targets, G2-M checkpoints, and DNA damage response genes. PI3K-mTOR and RAS-MAPK signalling were also upregulated, based on both mRNA and protein expression. Cluster 4 also contained a significantly higher score for the Th2 cell signature compared with the other clusters [18].

These data suggest that different molecular features are seen in the different histopathological types, some of them with candidate clinical targets, which might be of great use for a more clinically meaningful molecular classification of MPM. However, three major limitations must be noted. The first limitation is the low number of samples of the nonepithelial types, which renders the analyses underpowered to detect molecular alterations characteristic of the less frequent MPM types. The second limitation relates to the single biopsy analysed in these studies; the high heterogeneity of MPM observed at the morphological level is also likely to translate into a strong molecular heterogeneity, which would complicate the interpretation of the clinical value of a given molecular alteration. Finally, the authors of both studies have made an implicit assumption of discreteness by focusing their analyses on discrete histopathological types, or on discrete molecular clusters, even though the morphology of MPM with the biphasic type carrying between 10 and 90% of the epithelioid and sarcomatoid components suggests a continuum.

In line with this, two recent studies have reanalysed the transcriptomic data for the above-mentioned papers without any implicit assumption of discreteness. Blum and colleagues used a deconvolution approach to show the expected strong inter-tumour molecular heterogeneity in a way that each MPM tumour can be decomposed as a combination of epithelioidlike and sarcomatoid-like components, whose proportions are highly associated with prognosis [24]. Alcala and colleagues undertook unsupervised analyses and found that the prognosis of MPM was best explained by a continuous model with the immune and vascular pathways being the major sources of molecular variation. The extrema of this continuum showed specific expression patterns of genes involved in angiogenesis and immune response that could be used as Achilles' heels for this disease [25].

Heterogeneity in MPM

In spite of the advances in the understanding of the molecular landscape of MPM highlighted above, the overall survival of patients remains short. Like in other cancers, the heterogeneity of the disease is a major challenge with strong therapeutic implications. The high heterogeneity observed at the morphological level is becoming visible at the molecular levels. This diversity is found between patients (inter-tumour heterogeneity), within different regions of a given tumour (intra-tumour heterogeneity, ITH), but is also evolving through time, in particular during treatment, with a predominant role of the tumour microenvironment [26].

By definition, the biphasic type presents high levels of intertumour heterogeneity, as it groups together tumours with sarcomatoid components ranging from 10 to 90%. However, the molecular studies detailed above [24,25] have revealed that tumours classified as epithelioids also vary strongly, and often have molecular profiles (gene expression and exonic alterations) very similar to the more aggressive tumours classified as biphasic or even sarcomatoid, and they present the associated poor survival. BAP1 mutations were found over-represented in the epithelioid type or with epithelioid-like molecular features (cluster epithelioid in [17] and cluster 1 in [18]). It has been hypothesised that other genetic alterations like large chromosomal aberrations or chromosomal losses are much more frequent alterations in MPM than mutations [19]; as of today, there are no available data on a large series of patients integrating these different types of genomic alterations to comprehensively characterise driver genes and accurately quantify the level of interpatient heterogeneity in chromosomal aberrations. In addition to the altered genes varying among patients, methylation levels were also shown to strongly vary between patients, with patients with epithelioid-like expression profiles showing genome-wide elevated levels of methylation (cluster 1 in [18]). Altogether, the general molecular profile of MPM revealed by transcriptomic or epigenomic studies shows a high inter-patient heterogeneity, and the genomic studies similarly show a high variability in terms of the locations and compositions of alterations at the DNA level.

Additionally, as illustrated by the existence of a biphasic type, MPM also has a high level of intra-tumour heterogeneity, with areas of the tumour made of epithelioid components, and others with sarcomatoid components. Recently, Chirieac and colleagues [27] have shown, on a large series of 759 patients with both presurgery biopsies and surgery resections, that epithelioid tumour diagnosis was changed to the biphasic or sarcomatoid type in 19.5% of cases after examining the resections, and that increasing the number of biopsies improves the accuracy of the initial diagnosis. Similarly, some recent studies have started to describe the spatial heterogeneity at the molecular level. Kiyotani and colleagues [28] have analysed three areas of the tumour of six MPM patients and found a high heterogeneity in neoantigeninducing mutations based on whole-exome sequencing (WES) as well as on the expression level of some immune-related genes. Interestingly, the mutation and neoantigen load was associated with the expression levels of two immune-related genes (PRF1 and FOXP3) and with the clonality of tumour-infiltrating lymphocytes. Similarly, Chen and colleagues performed multiregion WES and T cell receptor (TCR) sequencing of two to six regions per tumour from nine patients [29]. They found a good concordance in the neoantigen landscape, and homogeneous mutational and copy number aberration profiles across all the regions of each patient. Despite this, they also reported a high level of T cell repertoire heterogeneity, with 73 to 95% of T cell clones found in a single tumour region. A possible explanation could be that neoantigens are predominantly generated by inter-or intra-chromosomal rearrangements, as recently suggested [30], but this type of alteration would require wholegenome sequencing (WGS) data to be detected. Nextgeneration sequencing data also allows the reconstruction of the subclonal composition of tumours using phylogenetic methods. This approach has been used on a small series of four MPM patients and showed that, while the majority of somatic mutations are present in a founder clone, an important fraction (> 40%) are only found in subclonal cell populations [19].

A few recent studies have focused on the evolution of intratumour heterogeneity through time and, in particular, after treatment. Quetel and colleagues [20] have sequenced a panel of 21 frequently altered genes in MPM, including 21 patients with two tumour samples collected at different times: at diagnosis and after surgery, with or without neoadjuvant treatment or after recurrence, ranging from 1.1 to 161.5 months. Interestingly, no differences in mutational status were observed in all pairs of samples from the 21 patients in this gene panel, suggesting that intra-tumour heterogeneity in driver genes is limited and stable over time, in line with the results obtained by Chen and colleagues [29] for both mutations and copy number alterations in known MPM genes before and after treatment with the Src kinase inhibitor dasatinib.

Molecular classification, heterogeneity, and tumour microenvironment

Despite the discrepancies in some findings, most intra-and inter-tumoural heterogeneity studies point to a strong role of the microenvironment, in particular of immune cells [31]. Tumours with transcriptomic profiles similar to those of sarcomatoid mesotheliomas present elevated levels of macrophages M2 and T cells [17]-in particular Th2 cells [18]and also neutrophils [25], monocytes, and fibroblasts [24]. The expression of immune checkpoint genes was also shown to differ between types, with PD-L1 overexpressed in tumours with a sarcomatoid profile [17]a n dVISTA overexpressed in tumours with an epithelioid profile [18]. Nevertheless, most variation in the microenvironment was shown to be independent of histological types, with inter-tumour variation in TILs (in particular B cells, macrophages M2, and CD8+ T cells) existing even within each histopathological type or molecular cluster [25]; similarly, both PD-L1+andPD-L1-sarcomatoid and VISTA+ and VISTA-epithelioid tumour profiles were highlighted. The interplay between the tumour and the microenvironment heterogeneity is a major challenge for MPM treatment, and likely one of the main reasons for the currently limited therapeutic opportunities [32].

Reconciling histopathological and molecular classifications

Dichotomising a continuous variable is a common practice in medical research for various reasons and, in particular, for histopathological classification. As it becomes apparent from molecular studies that MPM heterogeneity is a continuum, future classifications should ideally be able to predict good and poor prognosis patients, in particular, within the epithelioid type. Recently, a deep learning algorithm was able to predict the overall survival of MPM patients from whole-slide digitised images [33]. While a molecular characterisation of the identified groups of good and poor prognosis patients would be a necessary next step, it is worth noting that the algorithm has highlighted stromal regions as being associated with survival, in particular, inflammation and vascularisation features, in line with recent molecular studies [24,25]. Studies integrating histopathological features extracted from deep learning algorithms together with molecular data have recently been published for several cancer types [34,35], paving the way for an integrated classification of tumours with higher prognostication value, which will certainly be applicable for MPM.

Opportunities for improving the clinical management of MPM using molecular classifications

In a recent systematic review of the 2009-2018 literature, the authors found that, apart from adding bevacizumab to cisplatin (cis)/pemetrexed (pem) doublet as first-line treatment [36], and despite the discovery of promising molecular targets, no other antiangiogenic drug or tyrosine kinase inhibitors have yet demonstrated significant efficacy in a randomised phase III trial [37]. Other major drugs targeting known molecular profiles, and evaluated in MPM with discouraging results, included vorinostat, an inhibitor of histone deacetylases, and the focal adhesion kinase inhibitor VS-6063/defactinib. Other promising drugs include pegylated arginine deiminase (ADI-PEG 20) targeting argininosuccinate synthetase-1-deficient tumours, mostly biphasic and sarcomatoid mesotheliomas, as well as therapies targeting the EZH2 pathway in BAP1loss MPMs.

Since 2009, concordantly with the discovery of MPM with immune suppressive molecular profiles, new immunotherapies have been tested in MPM, with anti-PD-1 or anti-PD-L1 antibodies inducing, in preliminary data from small nonrandomised trials, increased overall response rate and overall survival compared to chemotherapy [38,39]. In addition, nivolumab (anti-PD-1 inhibitor) alone or in combination with ipilimumab (anti-CTLA-4 inhibitor) significantly increased the disease control rate after 12 weeks of treatment and overall survival in a randomised phase II trial [40]. This combination was also efficient in another mono-arm phase II trial as second-or third-line treatment for MPM [41], and a phase III trial as first-line treatment in unresectable MPM [42], leading to the first FDA drug approval for MPM in 16 years. Several other trials are ongoing, assessing immunotherapies alone or combined with chemotherapy and targeted therapies, and also testing cell therapy or gene therapy [37].

Considering the progress made in the past years on the understanding of the molecular characteristics of MPM, in particular highlighting a complex molecular classification with various candidate therapeutic targets, adding molecular data to better interpret the clinical results can only be of benefit for the patients. As shown for other cancers in the past, such as anti-EGFR therapies in lung cancer, the negative results might be the result of applying the drugs to unselected groups of patients, which will dilute the positive response of those who can really benefit from the treatment. Along these lines, the predictive value of non-epithelioid histology and PD-L1 expression, which were shown to be significantly correlated [25], for response to immunotherapy, has been discussed multiple times [42,43]. Nevertheless, the existence of variations in terms of immune infiltration (in particular CD8+ T cells), neoangiogenesis (EGFR proteins), and expression of other immune checkpoint genes (e.g. CTLA-4, LAG-3) within non-epithelioid, PD-L1 expressing tumours [25], suggests that a finer grained classification might help explain immunotherapy failures. In addition, taking into account the molecular classification might provide rationale for combined treatment, by using known associations between molecular targets beyond that of PD-L1 and CTLA-4, and also ensuring that each molecular profile is associated with a treatment, for example exploiting the mutually exclusive expression of immune checkpoint genes to stratify patients (e.g. the negative correlation between PD-L1 and VISTA).

Conclusions and perspectives

Major advances have been made in the molecular characterisation of MPM, which has provided important data to inform and make more clinically relevant the histopathological classification of this disease (Fig. 1). However, limitations are still to be overcome in order to fully understand and identify the clinically meaningful molecular events that could further inform the current classification, in order to have a real impact on the poor survival rate of MPM patients. On the one hand, the available studies are mainly enriched for MPMs of the epithelioid type, with limited samples from the biphasic type and only anecdotal numbers of samples of the sarcomatoid For discrete molecular classifications, the proposed molecular clusters are reported. For Blum et al. [24], a gradient of the epithelioid score (E-score) and the sarcomatoid score (S-score) is represented. For Alcala et al. [25], the association between the first dimension of the molecular classification and the WHO histological types is represented. The side face of the pyramid represents features and subtypes mentioned in each study but that have not been reported to be significantly correlated with the histological types; for Alcala et al. [25], we represent the second molecular dimension, which was shown to summarise features independent of the WHO classification. Colours represent the association between features and the different types; red: sarcomatoid or sarcomatoid-like profiles; orange: biphasic or biphasic-like profiles; green: epithelioid or epithelioid-like profiles; grey: no proven association with the WHO classification type, as well as limited clinical, epidemiological, and morphological annotations. The molecular characteristics of the different morphological subtypes of MPM are also unknown, apart from the limited knowledge available for the recently described non-epithelioid transitional pattern, harbouring less BAP1 loss and higher p16 homozygous deletions than epithelioid MPMs [44]. In addition, the available whole-genome and methylation data are currently quite limited to draw meaningful conclusions. Having a more comprehensive overview of the molecular landscape of all MPM types and the integration of the molecular data with prognostic morphological features identified by artificial intelligence, as well as clinical and epidemiological data, would help to improve not only the classification of MPM but also its early detection, diagnosis, and clinical management.

On the other hand, there is a strong gap in the understanding of the evolution and heterogeneity of MPM tumours. The importance of describing the MPM ITH has been highlighted in the recent IASLC/EURACAN proposal for updating the classification of this disease [16]. Indeed, studies unveiling these processes will help refine the current classification of tumours by including ITH, and will provide a way to test hypotheses about transdifferentiation from one tumour type to another, elucidating the relationships between the different entities of the current classification. As highlighted in Fig. 1, more and more prognostic molecular features independent from histopathological types are being discovered, in particular, linked with the tumour microenvironment, and more work will be needed to understand their exact role in tumour progression and aggressiveness. In addition, understanding the evolutionary processes responsible for the long latency and aggressiveness of MPM, and the role that ITH may have in these processes, will have a key role when designing early detection strategies in asbestos-exposed populations.

Overall, the molecular and morphological studies published over recent years support moving towards a more clinically relevant morphomolecular classification of MPM, in which both morphological and molecular information are taken into account for the diagnosis, prognostication, and treatment decisions of MPM patients.

Introduction

Malignant Pleural Mesothelioma (MPM) is a poorly-understood, rare, and aggressive disease associated with asbestos exposure (Carbone et al., 2019). The current WHO classification distinguishes three major histological types: epithelioid (MME), biphasic (MMB), and sarcomatoid (MMS) (IARC/WHO, 2015). In the past decade, knowledge on the molecular profile of MPM has rapidly expanded, owing to cohorts combining whole-exome sequencing, transcriptomic, and epigenomic data (Bueno et al., 2016;Hmeljak et al., 2018;de Reyniès et al., 2014). These genomic studies uncovered molecular profiles (clusters) related to MPM's histopathological classification. Additional studies revealed a molecular continuum of types that explained the prognosis of the disease more accurately than discrete clusters (Alcala et al., 2019a;Blum et al., 2019). The clinical impact of these important findings has been limited by the vast morphological (Nicholson et al., 2020) and molecular heterogeneity of MPM (Fernandez-Cuesta et al., 2021), which remains largely unexplained. Several additional histopathological and molecular features have been described, such as variations between epithelioid histological subtypes (Nicholson et al., 2020), variable immune infiltration (Alcala et al., 2019a), and large-scale genomic aberrations such as aneuploidy (Hmeljak et al., 2018), and structural rearrangements (Mansfield et al., 2019). As new treatment opportunities are being made available, such as antiangiogenic agents and immunotherapies, with unpredictable benefits at the individual patient level, a better understanding of these aspects is mandatory.

Malignant transformation and cancer development depend on genomic aberrations that can result in a wide range of molecular profiles, and provide actionable treatment targets [START_REF] Cortés-Ciriano | Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing[END_REF]PCAWG Consortium, 2020;[START_REF] Quinton | Whole-genome doubling confers unique genetic vulnerabilities on tumour cells[END_REF]. Genomic events have not been fully described in MPM as previous efforts have been restricted to profiling only exomes or a reduced representation of genomes (Bueno et al., 2016;Hmeljak et al., 2018;de Reyniès et al., 2014). There is also a lack of comprehensive integrative analyses examining how molecular features affecting multiple omic layers, in particular genomic aberrations, interact to generate the observed heterogeneous tumor phenotypes. Biological functions performed by tumor cells, and the role of genomic events in shaping these functions remain largely unknown, hindering any meaningful progress in the diagnosis, classification, and treatment of the disease.

We have designed the MESOMICS study (http://rarecancersgenomics.com/mesomics/) to dissect MPM tumor heterogeneity, uncover its main sources of molecular variation, and identify its underlying biological functions. We characterize the impact of genomic aberrations on these biological functions, and use them to identify potential therapeutic opportunities. We performed multi-omics analyses combining genomic, transcriptomic, and epigenomic data, with detailed clinical and histopathological annotations, providing the most complete profile of MPM to date, avoiding blindspots in sources of variation. Taking advantage of the first cohort-level whole-genome sequencing data of 115 tumors, in addition to 109 transcriptomes, 119 epigenomes, and 13 multi-region samples, we mapped the genomic landscape of 120 mesotheliomas and characterized its implications for the molecular profiles. Replicating our findings in MPM cell lines previously tested for multiple drugs allowed us to identify therapeutic vulnerabilities across the spectrum of MPM heterogeneity.

Integrative multi-omics analyses uncover three novel axes of molecular variation

To find the major independent molecular profiles underlying MPM heterogeneity, and infer associations between omics layers, we performed a Multi-Omics Factor Analysis (MOFA) (Argelaguet et al., 2020) including genomic, transcriptomic, and epigenomic data. MOFA identified four latent factors (LFs) explaining individually more than 10% of molecular variation (Figures 1A andS1A-G; Table S2). We found features from all omics layers associated with each LF, and only one, LF2, associated with the current WHO histopathological classification, the recent artificial intelligence score based on digital pathology (Courtiol et al., 2019), and the previously proposed molecular classifications (maximum q-value = 2.57×10 -10 ; Figure 1B; Alcala et al., 2019;Blum et al., 2019;Bueno et al., 2016;Hmeljak et al., 2018;de Reyniès et al., 2014). This data suggests that these LFs inform interactions between omics layers, and capture novel molecular profiles. LF1, largely explained by copy number variants (CNVs), ranged from a genomic near-haploidization (GNH) sample to whole-genome doubled (WGD) samples (q-value = 3.3×10 -35 ; Figure 1C). Aneuploidy was previously reported in the TCGA's MPM cohort (Hmeljak et al., 2018), now captured by this axis. We found LF1 strongly correlated with ploidy (r = 0.90) and named it the Ploidy factor. As described below, LF2 summarizes the current knowledge on the molecular profiles of histological types (Figure 1A-B), and we therefore named LF2 the Morphology factor. Also described below, LF3 summarizes immune infiltration with adaptive response effectors (lymphocytes), separating "hot" (high infiltration, in particular of effector cells) from "cold" phenotypes (low immune infiltration), and was named the Adaptive-response factor (Figure 1A). For these two factors, enhancer methylation was the major omic contributor (explaining about half of the variance of LF2 and LF3; Figure 1A). This is partly explained by enhancer methylation implication in the Invasion-and-tissue-remodeling phenotype (see below), and its variability in MPM likely driven by cell-type heterogeneity (tumour cell type and immune cell type mixtures; Figure S1H-J; Table S2). The major contribution to LF4 came from methylation at gene body and promoter regions, and most of its molecular variation was strongly associated with the CpG island methylator phenotype (CIMP) index (q-value = 3.2×10 -35 ; Figure 1D), thus we named it the CIMP factor. driven by upregulation of mesenchymal genes and hypomethylation of their associated enhancers (maximum q-value = 6.22×10 -5 ). In MPM, in vitro studies have shown that asbestos may induce EMT [START_REF] Turini | Epithelial to Mesenchymal Transition in Human Mesothelial Cells Exposed to Asbestos Fibers: Role of TGF-β as Mediator of Malignant Mesothelioma Development or Metastasis via EMT Event[END_REF] and in line with this, we found a positive correlation between mesenchymal genes expression and asbestos exposure score, and a negative correlation between mesenchymal gene enhancer methylation and asbestos exposure score (Pearson's correlation coefficient r = 0.44, q-value = 0.01, and r = -0.33, q-value = 0.02, respectively). The Cell-division and the Acinar phenotypes were both correlated with the presence of innate immune response cells, but of different individual types: neutrophils for the Cell-division phenotype, and monocytes and NK cells for the Acinar phenotype.

Multi-regional sequencing reveals variable intra-tumoral heterogeneity in the Morphology,

Adaptive-response, and CIMP factors

Using a multi-regional sub-cohort from 13 patients, we inferred intra-tumoral heterogeneity (ITH) in MPM (Table S4) and observed that ITH can be greater than inter-tumoral heterogeneity in all molecular axes except the Ploidy factor (Figures 2A andS2A), and affected most omic layers except the genome (Figure S2B-C). This heterogeneity matched pathological annotations and impacted tumor specialization, that is, movement within the Pareto front (Figure 2B (in particular macrophages M1; Figure 2D). Substantial ITH in the CIMP index was also found in three out of the 13 patients (Figure 2E), either in conjunction with regional differences in histopathological type, immune infiltration, or no detectable difference.

WGS uncovers a heterogeneous genomic landscape and characteristic MPM drivers

In our MESOMICS series, which is the largest WGS cohort of MPM to date, we identified a wide range of large-scale genomic events for 111 out of 115 samples with available data (97%) (Figure 3A). As captured by the Ploidy factor, MPM samples have various ploidies, ranging from haploid to tetraploid (Figure 3B). The average CNV profile is highly consistent between cohorts (Figure S3A), with several recurrent chromosome arm-level CNVs, as well as focal alterations (deletions, del; amplifications, amp) encompassing known cancer genes: BAP1 del (chr 3p21.1), TERT amp (chr 5p), EZH2 del (chr 7q36.1), CDKN2A/B and MTAP del (chr 9p21.1), RBFOX1 del (chr 16p13.3), and NF2 del (chr 22q) (Figure 3C; Table S8). While CDKN2A/B and MTAP presented mostly homozygous deletions, NF2 and BAP1 were more often affected by heterozygous deletions (Figure 3A, left panel; Table S7); both events impacted gene expression levels (Figure 3A, middle-right panel). As previously reported [START_REF] Chapel | MTAP immunohistochemistry is an accurate and reproducible surrogate for CDKN2A fluorescence in situ hybridization in diagnosis of malignant pleural mesothelioma[END_REF], most of the MTAP alterations co-occurred with CDKN2A/B deletions with only five and six samples, respectively, presenting alterations in MTAP or CDKN2A/B exclusively (Figure 3A; Table S7). In addition, we found recurrent deletions of a prominent immune recognition gene, B2M (chr 15q14; Figure 3C).

CNV signatures [START_REF] Steele | Signatures of copy number alterations in human cancer[END_REF] illustrated the processes leading to the deletions and amplifications, but also the heterogeneity of chromosomal rearrangements affecting MPM, such as those resulting in extrachromosomal DNA (ecDNA) and chromothripsis (Figure 3A, right panel; Table S9). We found CN9 to be positively correlated with focal CDKN2A/B and BAP1 deletions (Pearson's correlation coefficient r = 0.23, q-value = 0.039 and r = 0.27, q-value = 0.02 respectively), in line with recent data linking this signature with CDKN2A/B deletions in breast cancer [START_REF] Steele | Signatures of copy number alterations in human cancer[END_REF]. CN5 was associated with ecDNA in our cohort (Figure 3A, right panel). Oncogenes encoded on ecDNA are among the most highly expressed genes in tumor transcriptomes [START_REF] Wu | Circular ecDNA promotes accessible chromatin and high oncogene expression[END_REF]. Consistently with this, and despite the general pattern of alterations compatible with a disease driven by the inactivation of TSGs (Figure 3C), the one ecDNA sample with available transcriptomic data (out of the six MPM with ecDNA, Figure S3B)

showed an increased expression of the genes predicted to be part of the ecDNA sequence, including the known oncogene BRIP1 (Figure 3D). ecDNA can be driven by kataegis (Bergstrom et al., 2021). In line with this, we observed that the aforementioned ecDNA sample co-occurred with and might be fuelled by kataegis (Figure S3C), despite the rarity of kataegis in our cohort, contributing to only 2% of the MPM clustered mutations (Table S9).

CN18 and CN19 are associated with complex CNV patterns, such as chromothripsis [START_REF] Steele | Signatures of copy number alterations in human cancer[END_REF]. In our cohort, a pattern compatible with chromothripsis was observed in 19% of the samples (Figure 3A, Figure S3D; Table S9), and this pattern was also observed at the transcriptomic level as fusion transcripts, in half of the positive samples (see example in S6). A signature of clustered structural variants (SVs) was detected and was significantly associated with a high SV load and chromothripsis (Figure S3F; Table S6). CN15 corresponded to the tandem-duplicator phenotype and homologous recombination-deficiency (TDP/HRD) signature, which was not associated with BAP1 status in our series. Overall, 23% of the samples showed an HRD phenotype, identified either by CN analyses or other previously validated methods [START_REF] Ladan | Homologous Recombination Deficiency Testing for BRCA-Like Tumors: The Road to Clinical Validation[END_REF] (Figure 3F; Table S9).

Mutational signature analysis of single base substitutions (SBS) identified 10 previously reported COSMIC signatures (Figure S3G), and we found none of them significantly associated with asbestos exposure, as previously reported (Bueno et al., 2016;Hmeljak et al., 2018).

Although APOBEC signature activity was low in our cohort, we identified six samples with APOBEC-related signatures (SBS2/SBS13) that might be sensitive to epigenetic drugs [START_REF] Levatic | Mutational signatures are markers of drug sensitivity of cancer cells[END_REF].

Despite the low mutational rate (0.98 non-synonymous single-nucleotide variants, SNVs, per megabase, Figure S4A; Table S5), MPM tumors carry a particularly high number of SVs relative to tumors with similarly low mutational burden (Figure 4, top panel, Figure S4B). The top genes altered by SVs (≥ 5%) were RBFOX1, NF2, BAP1, MTAP, and PCDH15 (Figure S4C; Figure 4). Closer examination of the RBFOX1 rearrangements reveals that 14 out of 52 samples have two separate events with most of them deleting CDS number 6 (Figure S4D), which encodes part of the RNA binding protein domain. Many of these genomic rearrangements resulted in fusion transcripts detected at the transcriptomic level; tumor suppressor genes (MTAP, BAP1, and NF2) were the most frequently affected by fusion transcripts (Figure S4E).

Combining the MESOMICS dataset with the additional two other large datasets from Bueno et al. (2016) and the TCGA (Hmeljak et al., 2018), we reached the sample size (n≈300) needed to detect low frequency (1%) MPM driver genes in such low-mutated tumors. We used the well-established Integrative OncoGenomics (IntOGen) pipeline on point mutations and indels (Martínez-Jiménez et al., 2020). Thirty genes were identified as putative driver genes (Figure S4F). Five genes -BAP1, NF2, SETD2, TP53, and LAST2 -were called in the three series individually and in the combined analysis, and are all known MPM altered genes. Among the other 25 genes, some had been previously reported as recurrently mutated in MPM (PBRM1, KMT2D, DDX3X, PIK3CA, FBXW7, MGA, NF1, SETDB1, MYH9, PTCH1, RHOA, and TRAF7;De Rienzo et al., 2016;[START_REF] Kato | Genomic Landscape of Malignant Mesotheliomas[END_REF][START_REF] Shukuya | Identification of actionable mutations in malignant pleural mesothelioma[END_REF], or altered by SVs (PTPRD and LRP1B; Mansfield et al., 2019), two were previously found overexpressed in cell lines but not mutated (DNMT3B and EZH2;[START_REF] Mcloughlin | Targeting the epigenome in malignant pleural mesothelioma[END_REF], and for some, germline mutations have been discovered, suggesting they may be genetic susceptibility genes (NCOR1; Pastorino et al., 2018;MYO5A;[START_REF] Hylebos | Molecular analysis of an asbestos-exposed Belgian family with a high prevalence of mesothelioma[END_REF]. The remaining eight driver genes have, to our knowledge, not been previously reported in MPM, but are all known cancer genes as reported in COSMIC: FAT3, NIN, ARHGAP5, HLA-A, NCOR2, SRGAP3, and WNK2. Beyond extending the list of putative MPM drivers, combining point mutations with SVs allowed for the refinement of the frequency of altered key MPM genes (Figure 4, shade of green in right panel; Tables S5-6).

Genomic alterations tune the molecular profiles of MPM

Most of the key identified genomic alterations were associated with the MOFA LFs (Figure 5A; Table S11). In addition to ploidy, NCOR2 alterations and TERT amp were associated with the Ploidy factor (maximum q-value = 7.5×10 -4 ; Figure 5A, left panel). While no association was previously detected between TERT promoter mutations and WGD [START_REF] Bielski | Genome doubling shapes the evolution and prognosis of advanced cancers[END_REF], here we found that both TERT amp and expression were associated with WGD events (p-value = 1.6×10 -10 , Fisher's exact test, p-value = 0.009, linear regression, respectively; Figure S5A). Differential gene expression analyses showed that the most up-regulated enriched pathways in WGD+ vs WGD-MPM tumors were E2F targets, G2M checkpoints, myogenesis, downregulation of KRAS signaling, and glycolysis (maximum q-value = 0.04; Figure 5B; Table S10), revealing a specific profile with tumor vulnerabilities [START_REF] Quinton | Whole-genome doubling confers unique genetic vulnerabilities on tumour cells[END_REF].

All types of genomic events were associated with the position of the samples in the Pareto front (Figure 5A, three middle panels). Multi-task evolution theory further allows to quantify how alterations tune tumor specialization by computing effect vectors -difference in position between the position of altered and wild-type samples-for each alteration within MOFA space. Alignment of vectors with the Pareto front indicates that the alterations tune specialization, and their lengths indicate the strength of the specialization (Hausser et al., 2019).

We found that genomic events highlighted in Figure 5A were significantly aligned with the front and had significantly large sizes (permutation test vs shuffled vectors, p-values of 1.54×10 -3 and 2.67×10 -8 , respectively; Figure 5C). WGD and chromothripsis tended to specialize tumors towards the Cell-division and Acinar phenotypes, both characterized by a "cold" phenotype (low immune infiltration) (maximum q-value = 0.05; Figure 5C). WGD+ MPM tumors had downregulation of the interferon response pathway (q-value = 5.8×10 -5 ; Figure 5B), which might explain this "cold" phenotype [START_REF] Quinton | Whole-genome doubling confers unique genetic vulnerabilities on tumour cells[END_REF]. We identified B2M as the second most downregulated gene in WGD+ tumors (Figure S5C). B2M is part of the MHC-I being involved in the presentation of peptide antigens to the immune system [START_REF] Sreejit | The ESAT-6 protein of Mycobacterium tuberculosis interacts with beta-2-microglobulin (β2M) affecting antigen presentation function of macrophage[END_REF]; the downregulation of B2M and interferon genes might be important mechanisms for WGD+ tumors to avoid the immune response. Chromothripsis has also been associated with low immune infiltration as part of the chromosomal chaos that silences immune surveillance [START_REF] Zanetti | Chromosomal chaos silences immune surveillance[END_REF].

NF2 alterations, chr 9p21.1 del (CDKN2A/B and MTAP) and TP53 alterations also converged upon "cold" tumours (maximum q-value = 0.04). TERT amp moved tumors towards the Cell-division phenotype (q-value = 6.6×10 -4 ; Figure 5C). Mutations in the TERT promoter have been previously described in MPM and were associated with the non-epithelioid types and shorter survival [START_REF] Pirker | Telomerase Reverse Transcriptase Promoter Mutations Identify a Genomically Defined and Highly Aggressive Human Pleural Mesothelioma Subgroup[END_REF]Quetel et al., 2020), and TERT overexpression has been shown to promote EMT [START_REF] Liu | Telomerase reverse transcriptase promotes epithelial-mesenchymal transition and stem cell-like traits in cancer cells[END_REF], angiogenesis [START_REF] Zhou | Telomerase reverse transcriptase activates the expression of vascular endothelial growth factor independent of telomerase activity[END_REF], and cancer cell proliferation [START_REF] Choi | TERT promotes epithelial proliferation through transcriptional control of a Myc-and Wnt-related developmental program[END_REF] in other cancer types. Here, we found 29 samples (25%) with TERT amp as part of a chr 5p amp event, which led to increased expression of the gene (p-value = 1.8×10 -5 ; Figure S5A). In total, 36 MPMs exhibited an increased expression of TERT (31%), with chr 5p amp as the main underlying mechanism (80%). Finally, chr 3p21.1 del encompassing MPM drivers BAP1, DNAH1, and PBRM1, as well as BAP1 mutations moved tumors towards the Acinar phenotype (maximum q-value = 0.02; Figure 5C).

We found enrichment for epigenetic regulator genes (ERGs), including NCOR2 and EZH2, among the genes whose expression was significantly positively correlated with the CIMP index (p-value = 0.003). Moreover, chr 7q36.1 del, encompassing EZH2, further tuned the position of the samples along the CIMP factor (q-value = 5.6×10 -3 ; Figure 5A). EZH2 is a histone methyltransferase and MPM driver that functions as part of the PRC2 complex to promote gene silencing of specific targets [START_REF] Margueron | The Polycomb complex PRC2 and its mark in life[END_REF]. Indeed, genes whose CpG island methylation level was highest in CIMP-high tumors were enriched for PRC2 target genes (p-value = 0.01; Figure 5D). Nine out of the 30 driver genes were also ERGs, and GSEA confirmed a significant enrichment for ERGs in the IntOGen drivers lists (Fisher's exact test q-value = 2.3×10 -8 ), further supporting the role of this category in MPM beyond the CIMP index (Figure S5B). A recent pan-cancer and multi-omics study has shown that ERGs, when disrupted through genetic or non-genetic mechanisms, may act as drivers ("epidrivers") in cancer development [START_REF] Halaburkova | Pan-cancer multi-omics analysis and orthogonal experimental assessment of epigenetic driver genes[END_REF].

A well-known effect of the CIMP-high phenotype is epigenetic silencing of TSGs [START_REF] Baylin | Epigenetic Determinants of Cancer[END_REF]. We identified five COSMIC TSGs [START_REF] Sondka | The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers[END_REF], whose expression was both negatively correlated with the CIMP index and the methylation level of their CpG island(s):

CBFA2T3, FBLN2, PRF1, SLC34A2, and WT1 (Pearson's correlation maximum q-value = 0.028, Table S12). Particularly interesting is WT1, a PRC2 target for which a vaccine against is currently being assessed in clinical trials for mesothelioma [START_REF] Zauderer | A Randomized Phase II Trial of Adjuvant Galinpepimut-S, WT-1 Analogue Peptide Vaccine, After Multimodality Therapy for Patients with Malignant Pleural Mesothelioma[END_REF].

The specialization of tumors was influenced by early genomic events. Using the proportion of small variants present in one or multiple copies allowed us to infer the relative timing of CN gains (Figure S5D-F S5H). This suggests that molecular profiles are constrained early during carcinogenesis by genomic events and therefore plasticity might be limited. Neutral tumor evolution was significantly associated with closeness to the Acinar phenotype (ANOVA p-value = 0.005; Figure S5I), with all neutrally evolving samples showing lack of BAP1 protein expression (Table S1) and two out of three harboring BAP1 genomic alterations. BAP1 small variants were all highly clonal (Figure S5J); nonetheless, as noted in previous studies (Quetel et al., 2020;Zhang et al., 2021a), we detected a minority of subclonal CNVs affecting the 22q region encompassing NF2, suggesting that recent genomic events can in some cases further influence specialization.

Axes of molecular variation explain the clinical heterogeneity of MPM

The four axes of molecular variation predicted the observed inter-patient heterogeneity in overall survival (OS) and efficacy of drugs. All the identified factors were orthogonal and associated with OS (Figures 6A andS6A-D; Table S13). The Ploidy factor associated WGD+ tumors with poor OS; the Morphology factor separated good and poor OS samples along the epithelioid-sarcomatoid continuum; the Adaptive-response factor linked "hot" tumors with better OS and also separated "cold" from "hot" sarcomatoids; and the CIMP factor associated CIMP-low tumors with a better OS (Figure 6A). We trained LF-based survival models and tested their performance over previously proposed prognostic factors in both the MESOMICS cohort (using 4-fold cross-validation to avoid overfitting) and the TCGA series (fitting models on the MESOMICS cohort and using TCGA as a purely external test set). Each factor individually provided a prediction value similar to that of the histopathological types, as well as that of other morphological and molecular, discrete and continuous, prognostic factors previously described (Figures 6B andS6E-J; Table S13). When combining the four factors there was an increase in their AUC value, suggesting that they capture molecular characteristics with independent prognostic value. This is supported by the performance of models using (i) the Morphology and CIMP factors and (ii) the Ploidy and adaptive-response factors, in predicting short-and long-term survivors, respectively (Figures 6C andFigure S6E, H). Interestingly, we found that MKI67 gene expression, associated with the Morphology factor, allowed for clear separation between epithelioid with better and worse OS (left panel, Figure 6D, Table S2) while the four-factor model distinguished bad from good OS samples in the tested series (right panel,

Figure 6D).

We used data from the [START_REF] Iorio | A Landscape of Pharmacogenomic Interactions in Cancer[END_REF]), de Reyniès et al. (2014), and Blum et al. (2019) MPM cell lines to find candidate drugs for each molecular profile, combining molecular data and response to drugs available (265 for Iorio and three for de Reyniès and Blum; Figures 6E andS7; Table S14). The Ploidy, Morphology, and CIMP factors were accurately reproduced in the Iorio et al. cell lines, which had all 'omic layers available, and the Morphology factor was also accurately reproduced in the de Reyniès et al. cell lines (Figure S7A-G). We found that drug responses associated with the different factors were entirely orthogonal: all 27 drugs with significant associations between IC 50 and MOFA factors (before multiple-testing correction) were associated with a single factor (Figure S7H); this highlights that MOFA factors capture independent sources of heterogeneity in drug response. We found that the Ploidy factor presented the largest number of significant associations with drugs (19 out of 27; Figures 6E andS7), which further supports the importance of large-scale genomic variation to understand clinical behavior of the disease. Among these drugs, we found one receptor tyrosine kinase signaling compound axitinib, VEGFRi and the HDAC inhibitor Vorinostat, to which low-ploidy samples might be specifically sensitive. On the other hand, high-ploidy samples might be sensitive to the apoptosis regulator r-TRAIL. In the case of the Morphology factor, MMS-like samples seem to be sensitive to GSK269962A (in line with the results from Blum et al., 2019) targeting the cytoskeleton through ROCK1/2 inhibition. MME-like samples may be more sensitive to PF-562271, a drug targeting the cytoskeleton and GSK1070916 regulating mitosis.

CIMP-high samples may be specifically sensitive to mitomycin C, a drug targeting uncontrolled tumor DNA replication. While the aforementioned agents may not be in the clinic so far for MPM, these data suggest that stratification of patients may be relevant for clinical trials assessing new drugs, and support the clinical value of the biological functions captured by these factors.

Although MOFA factors were computed from thousands of molecular features, they represent phenotypes that can be captured by much simpler features (Figure 6F). Any robust estimate of the ploidy could be a proxy for the Ploidy factor. The Morphology factor is correlated with the pathologist-estimated percentage of sarcomatoid cells in the tumor (q-value = 6.98×10 -11 ), and the Acinar phenotype is correlated with BAP1 expression measured by immunohistochemistry (IHC) (r = -0.38, q-value = 5.02×10 -5 ) (Figure S7K). The Tumor-immune-interaction phenotype is significantly correlated with the pathologist-estimated immune content (r = 0.50, q-value = 6.08×10 -8 ). The CIMP factor can be approximated by a small panel of genes such as the five genes proposed by [START_REF] Weisenberger | CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer[END_REF], found to be significantly correlated with the CIMP factor (r = 0.91, q-value = 4.69×10 -29 ). Importantly, these four simple features allow predicting survival almost as well as the actual four LFs (Figure 6B, light blue bars).

Discussion

MPM is a recalcitrant cancer with an expected OS of less than two years following diagnosis. This extremely poor prognosis is largely explained by the little progress made in its clinical management over the past decades. The EURACAN/IASLC effort to provide a more multidisciplinary classification of MPM highlighted the current limitations in diagnosis, prognostication and classification (Nicholson et al., 2020), highlighting the impact of heterogeneity.

Regarding classification, characterization and refinement of the histopathological type dimension has been the major focus of the previously published studies, and all molecular groups described in the two major genomic cohorts of MPM generated to date (Bueno et al., 2016;Hmeljak et al., 2018) are solely correlated with our Morphology factor. The recently developed whole-image based AI prognostic score, which represents state-of-the-art survival predictions (Courtiol et al., 2019) was only correlated with the Morphology factor as well, further confirming that this factor mainly captures the molecular variation related to the morphological and not the molecular features, contrary to what has been shown for other cancer types (Fu et al., 2020). Here, we have uncovered three additional independent sources of major molecular variation, all with prognostic value, within MPM samples from the French MESOBANK. These findings were replicated using the the TCGA and Bueno datasets comprising mostly American patients, as well as in available data for MPM cell lines (Blum et al., 2019;[START_REF] Iorio | A Landscape of Pharmacogenomic Interactions in Cancer[END_REF]de Reyniès et al., 2014), showing that the factors represent overlooked but robust processes present in all omic cohorts to date.

Regarding prognostication, we found that the four factors provided complementary information about survival, and taking them all into account led to the most accurate prediction of prognosis. WGD, tumor infiltration, and CIMP status influence survival in other cancers and are being considered for their classification (Zhang et al., 2021c), but not for MPM. Our results, while further supporting the value of a refinement of the current histopathological classification using molecular data, suggest that ploidy, immune infiltration, and CIMP status are promising features to consider for prognostication. They allow us to distinguish "cold" from "hot" sarcomatoid tumors with different prognoses, which may also influence treatment decision-making. They even outperform the recently developed AI score (Courtiol et al., 2019), specifically designed to predict survival from a large series of pathology slides using deep learning. Our data also suggest that some simple markers could be used to separate samples: in line with published studies [START_REF] Ghanim | Ki67 index is an independent prognostic factor in epithelioid but not in non-epithelioid malignant pleural mesothelioma: a multicenter study[END_REF], we confirmed that gene expression of the routinely assessed KI-67 protein could help stratify epithelioid tumors into survival groups.

Regarding treatment, chemotherapy remains the standard first-line therapy for most MPM patients and may also be used in the end-stage setting [START_REF] Baas | Malignant pleural mesothelioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[END_REF]. Several novel therapies have been or are currently being tested in clinical trials [START_REF] Dulloo | Precision Therapy for Mesothelioma: Feasibility and New Opportunities[END_REF][START_REF] Gray | Emerging avenues in immunotherapy for the management of malignant pleural mesothelioma[END_REF], most with limited success despite initially promising preclinical data. The benefit of targeted therapies only exists if they are applied to the right population. This type of personalized medicine is particularly challenging to implement in rare aggressive cancers due to limited molecular studies, and the pressure clinicians feel to offer "something" to patients with these otherwise deadly tumors. Our study has provided some interesting hints for new therapeutic opportunities and also valuable information on how to define target populations that will benefit the most from specific therapies, whether in clinical trials or already approved for MPM. Several examples are given below.

Tumors with BAP1 alterations are expected to carry high levels of EZH2 [START_REF] Lafave | Loss of BAP1 function leads to EZH2-dependent transformation[END_REF], suggesting that EZH2i could be an effective therapy for patients carrying BAP1-mutated cancers. Based on this, EZH2i were tested in BAP1 inactivated MPMs and a clinical trial is currently ongoing (NCT02860286). The molecular criteria for inclusion is lack of nuclear BAP1 staining by IHC, or evidence of loss of function by gene sequencing. However, we did not see a negative correlation between the expression of BAP1 and EZH2. Moreover, samples in Arc-3 enriched for BAP1 alterations, did not show a particular profile of high EZH2 gene expression level. Considering the above-mentioned link between EZH2 expression and CIMP index, patients with tumors showing high CIMP index may benefit the most from EZH2i.

Nuclear BAP1 regulates homologous recombination (HR) and cells harboring HR deficiency switch to base excision repair, which is assisted by PARP to repair DNA single-strand breaks [START_REF] Helleday | The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings[END_REF]. The observed synthetic lethality led to approval of PARPi in BRCA1/2 cancers [START_REF] Ledermann | Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial[END_REF]. Despite the lack of evidence to support BAP1 status as a bona fide predictor of sensitivity to PARPi, several clinical trials have tested PARPi in BAP1-deficient samples [START_REF] Dulloo | Precision Therapy for Mesothelioma: Feasibility and New Opportunities[END_REF]. Our data does not support the use of PARPi in these tumors. Indeed, there was no co-occurrence of HRD phenotype and BAP1 alterations in our series.

Major progress has been seen in the use of immunotherapy, with recent results from the CheckMate 743 trial supporting its use as a first-line treatment option for all patients with MPM (Baas et al., 2021a). Follow-up analyses highlighted the heterogeneity of treatment efficacy among histological types, likely due to the very different tumor microenvironment of epithelioid and non-epithelioid MPM (Di [START_REF] Di Maio | Heterogeneity of treatment effects in malignant pleural mesothelioma[END_REF][START_REF] Baas | Heterogeneity of treatment effects in malignant pleural mesothelioma -Authors' reply[END_REF]. Despite the statistically significant improvement in OS, less than a quarter of patients were alive three years post diagnosis (Baas et al., 2021a). The failure to identify appropriate populations may be masking the beneficial effect of immunotherapy in selected patients. Our data suggest that tumors in Arc-2 may respond best to immunotherapy as supported by their high infiltration, high tumor inflammatory score (TIS) [START_REF] Damotte | The tumor inflammation signature (TIS) is associated with anti-PD-1 treatment benefit in the CERTIM pan-cancer cohort[END_REF], and high levels of CTLA4 and PD-1.

The samples presenting the highest levels of PD-L1, a traditional immunotherapy target, were located around Arc-1, an archetype with almost no expression of CTL4A and PD-1, and with very little infiltration ("cold" tumors), and therefore very unlikely to respond to immunotherapies.

All sources of variation captured by molecular factors, that may be used to define targeted therapy populations, could be easily detected by molecular markers already available in the clinic. As a proxy for the Ploidy factor, ploidy may be assessed by FISH [START_REF] Wuilleme | Ploidy, as detected by fluorescence in situ hybridization, defines different subgroups in multiple myeloma[END_REF]. Pathologist-estimated percentages of sarcomatoid cells in the tumor could be used as a proxy for the Morphology factor, complemented by the already routine use of IHC to detect BAP1 expression. The Tumor-immune-interaction phenotype can be captured by the pathologist-estimated immune content, and the interdependence between phenotypes enables us to distinguish tumors with the Cell-division phenotype from the others by crossing the immune content with the sarcomatoid component for MMS or MMB samples, or with BAP1 IHC for MME samples. The CIMP factor may be easily detected using a CIMP panel assay such as the MethyLight detection panel of five genes proposed by [START_REF] Weisenberger | CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer[END_REF].

A comprehensive molecular understanding of a disease, coupled with detailed clinical information to make sense of the observed molecular variation and heterogeneity, are key to the success of clinical management of any cancer type. We report an experimental and analytical design to quantify and interpret the impact of genomic events on the heterogeneity of tumor phenotypes and translate the results into the clinic. This approach expands upon our previous efforts using unsupervised dimensionality reduction to uncover continuous sources of variation blindly to the WHO classification (Alcala et al., 2019a) in two complementary aspects. Firstly, experimental design, with the inclusion of whole-genome sequencing data on top of expression and methylation data; and secondly, statistical design, with the use of multi-omics dimensionality reduction (following [START_REF] Argelaguet | Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets[END_REF]Argelaguet et al., , 2020)). This approach allowed us to detect features such as aberrant gene expression shaped by large scale genomic events (WGD, GNH), as well as driver alterations, that were previously excluded from histological and molecular classifications (clusters from Bueno et al., 2016 andHmeljak et al., 2018). We also propose a downstream framework to identify cancer tasks from multi-omics profiles, expanding the application of multi-task evolutionary theory (Hausser and Alon, 2020) to multi-omics tumor latent factors, rather than expression latent factors. We expect this approach to be particularly beneficial compared to traditional approaches based on clustering and differential analysis between clusters, e.g., using consensus clustering as in Bueno et al. (2016), or iCluster+ as in Hmeljak et al. (2016) or other TCGA studies (TCGA [START_REF] Network | Comprehensive genomic characterization of squamous cell lung cancers[END_REF][START_REF] Network | Integrated genomic characterization of endometrial carcinoma[END_REF]Network, , 2014)), for cancer types including mixtures of different histopathologies, and in cases where current histopathological and molecular classifications are poorly correlated.

We encourage further research pursuing the biological understanding of MPM and its impact on clinical management. Bulk sequencing data did not allow us to completely disentangle the relative importance of tumor and microenvironment expression along the Morphology and Adaptive-response factors. In particular, to what extent the characteristic continuous molecular profiles we identified in MPM result from a heterogeneous mixture of specialist cells or a homogeneous population of generalist cells. Finally, further studies are needed to develop biomarkers for prognosis and treatment stratification from the candidate features we highlight, before any recommendations for clinical practice can be made. probability of exposure (no evidence found-0, possible-1/3, likely-2/3, and very likely-1), frequency (sporadic-0.25, intermittent-0.5, frequent-0.75, and permed-1), intensity (low-1, intermediate-2, high-3, and very high-4), and duration of the asbestos exposure (in years) was available for 47 patients as the result of a supervised survey, the National Program for pleural Mesothelioma Surveillance (PNSM) (soit [START_REF] Ilg | Programme national de surveillance du mésothéliome pleural (PNSM) : vingt années de surveillance des cas, de leurs expositions et de leur reconnaissance médico-sociale (1998-2017)[END_REF]. In order to compare exposure levels between patients and to reduce the number of variables, we computed a lifetime exposure score in units of years of permed low-intensity asbestos exposure, by multiplying the probability, frequency, intensity, and duration of the exposure. This score is analogous to the pack-years concept used for tobacco smoking that also balances intense, short-durations with weaker, long-duration exposures [START_REF] Schaeffner | Use of an asbestos exposure score and the presence of pleural and parenchymal abnormalities in a lung cancer case series[END_REF]. Indeed, 10 years of very likely, sporadic, very high intensity asbestos exposure leads to the same score (10×1×0.25×4=10) as 10 years of very likely, permed, low-intensity exposure (10×1×1×1=10) (Table S1). In order to improve the power of some of the statistical analyses, we regrouped some levels of the age variable which was discretized into 3 classes ( (29,[START_REF] Aryee | Minfi:aflexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays[END_REF], [START_REF] Aryee | Minfi:aflexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays[END_REF]71], and (71, 90] years).

We tested the associations between clinical variables; in particular, between a batch variable (sample provider) and the main variable of interest (histopathological type or major epithelioid subtype) or important biological covariables such as sex, age, smoking status, and asbestos exposure, using Fisher's exact test. We found that the sample provider was not significantly associated with the clinical variables (from Table S1), while sex was significantly associated with smoking status and asbestos exposure (Fisher's exact test q-value = 0.0002 and q-value = 0.03, respectively).

The MESOMICS cohort

Samples were collected from surgically-resected tumours, applying local regulations and rules at the collecting site, and including patient consent for molecular analyses as well as collection of de-identified = 36, 31, 17, and 14, respectively). Note that this distribution of MPM types and epithelioid subtypes does not represent the true clinical real distribution because of the bias we have introduced by including only samples with sufficient tumor content and good DNA and RNA quality. The tumor content estimated by our pathologist (FGS) in the series ranged from 10 to 100%. Similarly, the presence of infiltration was also evaluated in the H&E slides, and it ranged from 0% to 45% (Table S1). In addition, using the H&E slides, whole-image artificial intelligence analyses were undertaken to identify the most clinically relevant morphological features, and a score was calculated using a previously published validated algorithm (Courtiol et al., 2019).

As expected, the median overall survival (OS) for the whole series was 14 months (IQR 12-17.1), with epithelioid (MME) showing the longest OS (15.8 months, followed by biphasic (MMB; 10.8 months,) and sarcomatoid (MMS; 4.5 months, IQR 2.2-NA). The tubulopapillary subtype showed the best OS (ranging from 20.9 to 41.9 months), followed by trabecular (15-18.4), acinar (13.1-15.9) and solid (11.9-14.4), which showed the worst OS. In addition, the proportion of solid subtype was negatively associated with survival (q-values < 0.01) (Table S13). The ratio of men to women is 2.76, with no statistical association between sex and histological type or subtype.

Discovery and ITH cohorts

Among the 123 MPM patients, 13 have two tumour specimens collected to study intratumoral heterogeneity (ITH). The one with the highest tumor content, estimated by pathological review, has been selected for this descriptive study and is reported in Table S1, and the other region is described in Table S4. Additionally, three patients have been reported as non-chemonaive and they were excluded from the analyses except if explicitly mentioned otherwise in the Methods.

Pathological review

For all 136 samples (123 tumors +13 additional regions) an H&E (hematoxylin and eosin) stain from a representative FFPE block was collected for pathological review. Our pathologist (FGS) performed a pathological review and classified all tumours according to the 2015 WHO classification (Galateau-Salle et al., 2016;2015). The H&E stain was also used to assess the quality of the frozen material selected for molecular analyses and to confirm that all frozen samples contained at least 70% of tumour cells.

Tumour grade, immune infiltration, presence of necrosis and vessels were assessed for all 136 samples. In addition of histopathological types, we also assessed the epithelioid histopathological characteristics (architectural subtypes, cytological variants and stromal characteristics), which we subdivided into three subtypes, based on the recent IASCL-EURACAN interdisciplinary meeting recommendations (Nicholson et al., 2020): favorable prognosis (regrouping the acinar and papillary subtypes, and samples with abundant myxoid stroma), intermediate-prognosis (trabecular subtype), and unfavorable prognosis (solid subtype). Finally, we also assessed the sarcomatoid histopathological characteristics (simple, desmoplastic, low and high grade fusocellular, and with pleomorphic, heterologous, or transitional component) and both epithelioid and sarcomatoid histopathological characteristics in case of biphasic samples.

Artificial Intelligence analysis

Whole-slide image based Artificial Intelligence (AI) prognostic score was computed using the AI MesoNet model, based on morphological features, developed by OWKIN, AI for Medical Research company (Courtiol et al., 2019). The model has been trained on a randomly selected training dataset of 2903 slides from the MESOPATH-NETMESO INCa network/MESOBANK (excluding samples from our MESOMICS cohort) and applied to the slides of our MESOMICS cohort. This model is trained to predict overall survival using only one H&E stained whole slide image per patient as input. It is therefore completely agnostic of any genomic information.

RNA integrity of frozen samples was checked with Tapesation system (Agilent Biotechnologies, Santa Clara, CA95051, United States) using RNA ScreenTape (Agilent Biotechnologies).

Because of unsuccessful extraction (impacting either the quality or the quantity), we obtained different numbers of MPM samples for which Whole-Genome sequencing, DNA methylation, or RNA-sequencing data is available (Table S1).

DNA Sequencing

Whole-Genome DNA Sequencing (WGS) Whole-genome sequencing was performed by the Centre National de Recherche en Génomique Humaine (CNRGH, Institut de Biologie François Jacob, CEA, Evry, France) on 130 fresh-frozen MPMs, 54 of which with matched-normal tissue or blood samples. After a complete quality control, genomic DNA (1µg) has been used to prepare a library for whole genome sequencing, using the Illumina TruSeq DNA PCR-Free Library Preparation Kit (Illumina Inc., CA, USA), according to the manufacturer's instructions. After quality control and normalization, qualified libraries have been sequenced on a HiSeqX5 platform from Illumina (Illumina Inc., CA, USA), as paired-end 150 bp reads. Two lanes of HiSeqX5 flow cells have been produced for each sample paired with matched-normal tissue or blood, in order to reach an average sequencing depth of 60x and one lane for the others in order to reach an average sequencing depth of 30x for the others. Sequence quality parameters have been assessed throughout the sequencing run and standard bioinformatics analysis of sequencing data was based on the Illumina pipeline to generate FASTQ files for each sample.

Data processing

WGS reads were mapped to the reference genome GRCh38 (with ALT and decoy contigs) using our in-house workflow (https://github.com/IARCbioinfo/alignment-nf, release v1.0), as described in (Alcala et al., 2019b). In summary, this workflow relies on the Nextflow domain-specific language [START_REF] Di Tommaso | Nextflow enables reproducible computational workflows[END_REF] and consists in 4 steps: reads mapping (software bwa version 0.7.15; Li and Durbin, 2009), duplicate marking (software samblaster, version 0.1.24), reads sorting (software sambamba, version 0.6.6;Tarasov et al., 2015), and base quality score recalibration using GATK v4.0.12.

Variant calling and filtering on DNA

We performed somatic variant calling using software MuTect2 from GATK v4.1.5.0 [START_REF] Benjamin | Comprehensive analysis of clustered mutations in cancer reveals recurrent APOBEC3 mutagenesis of ecDNA[END_REF][START_REF] Van Der Auwera | Genomics in the Cloud: Using Docker, GATK, and WDL in Terra[END_REF] as implemented in our Nextflow workflow based on the GATK best practices (https://github.com/IARCbioinfo/mutect-nf release v2.2b), using a set of 79 blood samples ( 16from the MESOMICS cohort and 73 from Gabriel et al., 2021) coming from the same sequencing machine from CNRGH in Paris as panel of normal and using GATK4's filtering module (FilterMutectCalls) with the recommended known variants VCF (gnomAD variants from GATK's Mutect2 bundle) and per sample estimates of the contamination rate obtained with GATK4's CalculateContamination (using the small panel of EXAC SNPs from GATK4's Mutect2 bundle). Multi-region samples were processed jointly using the multi-sample calling mode of Mutect2. We called germline variants using Strelka2 v2.9.10-0 (Kim et al., 2018) using our Nextflow workflow (https://github.com/IARCbioinfo/mutect2-nf release v1.2a).

Normalization of resulting variant calling format (VCF) files was performed with BCFtools v1.10-2 as implemented in our workflow (https://github.com/IARCbioinfo/vcf_normalization-nf v1.1), and annotation was then performed with ANNOVAR (2018Aprl16) (Wang et al., 2010) using the GENCODE v33 annotation, COSMIC v90, REVEL databases.

To call somatic variants on tumor-only samples (72/115) a similar procedure was performed (Mutect2 tumor-only mode) but including further germline filtering steps using a random forest (RF) classifier. A total of 20 features (gnomad, cosmic, genomic location/impact, and features obtained directly from Mutect2) were selected to build a RF model to classify single nucleotide variants and small Indels into somatic or germline. For training the RF model a total of 46 tumors with matched normal mesothelioma whole-genome sequences were used. Variants on this subset were called using both the tumor-only and matched modes of Mutect2. The matched somatic calls (ground-truth) were used to split the variants of the tumor-only calls into germline and somatic classes and subsampled to mitigate bias arising from class imbalance during training (1:1 somatic:germline ratio, n=407,984). The dataset was divided into 75% for training (n=305,988) and 25% for testing (n=101,996), and the trained model reached an accuracy of 0.93 in the test set. A random forest model for SNVs (rfvs01) was trained using a total of 326,388 (80%) variants (1:1 ratio). For indels, a random forest model (rfvi01) was built using a total of 337,442 variants (1:1 ratio, including 305,988 SVNs and 31,454 indels). To control the false positives (RF Model FDR=6.4%), given the highest expected proportion of germline variants in the prediction set, we set a cutoff (RF votes) of 0.5 and 0.75 for coding and non-coding variants, respectively.

Finally, the RF models (rfvs01 and rfvi01) were used to classify a total of 1,454,942 variants (SNVs=1,317,200 and indels=137,742) of which 217,436 variants (including SNVs and indels) were classified as somatic. The point mutation calls for the MESOMIC cohort (n=448,434) include the matched calls (43 WGS) and the filtered tumor-only calls (72 WGS) (Table S5). The source code and the random forest models are available in the Github repository at https://github.com/IARCbioinfo/RF-mut-nf.

Copy number variant calling

Somatic Copy Number Variants (CNVs) were called using the PURPLE software (Priestley et al., 2019) , as implemented in our Nextflow workflow (https://github.com/IARCbioinfo/purple-nf, version 1.0). We used a total of 57 (including multi-region samples) matched whole-genome sequences (WGS) of MPM for benchmarking the tumor-only mode of PURPLE. We ran PURPLE twice for each matched sample: first using as input the matched WGS Normal/Tumor pair, and second, using as input only the tumor WGS. We benchmarked the PURPLE tumor-only mode by comparing the estimation of tumor purity, tumor ploidy, number of segments, percentage of genome changed (amplified, deleted), percentage of genome in neutral LOH (Loss Of Heterozygosity), and major/minor copy number alleles at gene level for matched and tumor-only PURPLE calls. CNV calls are reported in Table S7 and presented in Figure 3B-C We observed a high concordance (pearson correlation) between tumor-only and matched PURPLE calls for tumor purity (r > 0.98), tumor ploidy (r=1), number of cnv segments per tumor (r > 0.98), percentage of genome changed (amplified, deleted, r > 0.99), and percentage of genome in neutral LOH (r > 0.99). Moreover, the concordance between tumor-only and matched PURPLE calls was also high at gene level with major and minor copy number alleles reaching R > 0.96. However, we observed artifactual focal amplifications and deletions near telomeric and centromeric regions that were not called when using the matched data. These regions were identified and the segments overlapping these regions were removed from the tumor-only calls. The copy number calls for the MESOMIC cohort (115 WGS) include the matched PURPLE calls (43 WGS) and the filtered tumor-only PURPLE calls (72 WGS). Whole genome doubling samples were called in genomes with more than 10 autosomes with major allele copy number > 1.5. Near haploid samples were identified as those with LOH genome percentage larger than 80%. Finally, recurrent genomic regions of DNA copy-number alterations in the 115 WGS were identified with GISTIC2.0 (Mermel et al., 2011, version 2.20.23, -conf 99%) using as input the PURPLE CNV calls (log2(totalcopynumber)-1) (Table S8).

For replication of the analyses using the whole-exome sequencing data from the TCGA and Bueno cohorts (Figure S3A), because PURPLE is only suited for WGS data, we used software Facets (Shen and Seshan 2016) instead, as implemented in our pipeline (https://github.com/IARCbioinfo/facets-nf v. 2.0).

Structural variant calling

To identify somatic structural variants (SVs), including insertions, deletions, duplications, inversions, and translocations, we built a consensus SVs call set by integrating SvABA (v1.1.0, Wala et al., 2018), Manta (v1.6.0, Chen et al., 2016), and Delly (v0.8.3, Rausch et al., 2012) calls with SURVIVOR (v1.0.7, Jeffares et al., 2017). For matched WGS, Delly was run in somatic SV discovery mode using the hg38 blacklisted Delly regions ("-x human.hg38.excl.tsv"; the list excludes centromere, telomere, and heterochromatin regions, as well as alt, decoy, and unknown contigs of hg38) and the tumor/normal WGS pairs. A list of somatic SVs passing all filters was generated using the Delly somatic filter, which considers somatic SVs as those with at least 10 fold coverage in the tumor sample and without evidence of normal read support for the alternative allele (ALT support in normal equal 0). Manta was run in somatic SV discovery mode using the tumor/normal WGS (--normalBAM and -tumorBAM options) and excluding the non-chromosome contig sequences (alt and decoy) of hg38 (--callRegions option). The somatic SVs passing all Manta filters (minPassSomaticScore >=30) were considered for the consensus step. SvABA was run using our in-house Nextflow workflow (https://github.com/IARCbioinfo/svaba-nf, revision number 1.0) to identify somatic and germline SVs using the tumor/normal WGS. The somatic SVs passing all SvABA filters were considered for the consensus step. The overlap of filtered somatic SV calls was performed using SURVIVOR (merge subcommand) considering as matching SV breakpoints those at a maximum distance of 1kb (ignoring SV type and SV strand). Somatic SVs (minimum SV size 50bp) identified by at least two callers and single caller predictions with a minimum read support of 15 pairs (including pair-end and split-read evidence) were included in the consensus set of each matched sample.

To filter germline SVs in tumor-only samples we trained a random forest model for each SV caller.

The SV random forest model includes a total of 19 features, which are associated with external SV databases, custom panel-of-normal SVs, genomic regions, and SV features derived from SV callers. The training of the random forest model for each SV caller was performed using the matched WGS ( 57including multi-region samples). First, the somatic calls from the matched WGS were used as the ground-truth during training and evaluation of each SV random forest model. Second, tumor-only calls were generated for the matched data using the tumor WGS for Manta and Delly. For SvABA, the somatic and germline SVs called by the somatic mode were merged to generate the tumor-only calls from the matched data. Third, the panel of normals for each matched WGS and SV caller combinations were generated by integrating 45 germline SV calls (excluding the respective normal sample) with SURVIVOR (merge command). Fourth, a total of 12,454, 16,720, and 12,264 SVs at 1:1 somatic:germline proportions were used to train (75%) and evaluate (25%) the random forest models of Delly, Manta, and SvABA, respectively.. The accuracy achieved on the benchmark set was 0.9, 0.89 and 0.88 for Delly, SvABA, and Manta SV RF models, respectively. Finally, the SV random forest models were used to filter the germline SVs from tumor-only samples using a cutoff (RF votes) of 0.5 and 0.75 for coding and non-coding SVs, respectively. SVs matching one present in the custom PON or located in centromeric regions were discarded. SV call set for each tumor-only sample was created using the same steps performed for the matched WGS (merging Delly, SVaba and Manta calls with SURVIVOR and keeping single caller predictions with read support >= 15). Moreover, SVs found in more than 4 samples in the tumor-only series were also classified as potentially germline and removed from the final consensus set. The SVs calls for the MESOMIC cohort (Table S6, n=12,914) include the matched SV calls (43 WGS,n=4,685) and the filtered tumor-only SV calls (72 WGS,n=8,229). The source code and the SV random forest models are available in the Github repository at https://github.com/IARCbioinfo/ssvht.

Damaging variants and driver detection

Mutational cancer driver genes have been detected using the state-of-the-art integrative oncogenomics pipeline (IntOGen; Martínez-Jiménez et al., 2020), that distinguishes signals of positive selection from neutral mutagenesis across a cohort of tumors by combining multiple driver detection methods. The IntOGen pipeline was run for each cohort separately, and also for the combined cohort to gain in statistical power, and to detect mutational driver genes that may be specific to each of them (Figure S4F and Figure 4, left panel). Of note, variants occurring on mitochondria chromosome chrM have not been considered in this analysis. Genes that drive tumorigenesis upon SVs have simply been selected based on their recurrence, using a cutoff of 5 samples (Figure S4C).

The damaging SNVs, indels and structural variants have been selected as follows. First, for SNVs and small indels, we used ANNOVAR annotations to restrict the list to the exonic or splicing, non-synonymous variants. For multi-nucleotide polymorphisms (MNP), we used the Coding Change ANNOVAR procedure to infer the protein changes occurring and in case of any amino acid changes, we classified the event as damaging. Finally, we removed structural variants for which the breakpoints lead to harmless changes for the coding sequence of the gene such as large in frame deletion in a single intron.

TERT promoter mutation analyses

Point mutations within the TERT promoter region (chr5: 1,294,956-1,295,406, hg38) were identified from the VCF file outputs of WGS prior to filtering T-only variants using the random forest filter (see Variant calling and filtering on DNA). Pre-filtered VCF files were used due to low mappability of the region that results in high false negative point mutation detection rates. Genomic coordinates were selected specifically as all previously reported TERT promoter mutations in mesothelioma (C158A, A161C, C228T, C250T) are contained within the above region [START_REF] Pirker | Telomerase Reverse Transcriptase Promoter Mutations Identify a Genomically Defined and Highly Aggressive Human Pleural Mesothelioma Subgroup[END_REF]Quetel et al., 2020). Three of four reported mutations were identified in seven samples: A161C (chr5: 1,295,046 in hg38 coordinates), C228T (chr5: 1,295,113), and C250T (chr5: 1,295,135). Results are presented in Figure S5A.

RNA Sequencing

RNA Sequencing (RNA-seq)

RNA sequencing was performed on 126 fresh frozen MPM in the Cologne Centre for Genomics, of which 109 MPM belonged to the discovery cohort (Table S1). In addition, we collected two technical replicates, MESO_051_TR and MESO_115_TR, from two different patients and coming from the same RNA extraction as MESO_051_T and MESO_115_T respectively but sequenced separately. Libraries were prepared using the Illumina® TruSeq® mRNA stranded sample preparation Kit. Library preparation started with 1 µg total RNA. After poly-A selection (using poly-T oligo-attached magnetic beads), mRNA was purified and fragmented using divalent cations under elevated temperature. The RNA fragments underwent reverse transcription using random primers. This is followed by second strand complementary DNA (cDNA) synthesis with DNA Polymerase I and RNase H. After end repair and A-tailing, indexing adapters were ligated. The products were then purified and amplified (14 PCR cycles) to create the final cDNA libraries.

After library validation and quantification (Agilent 4200 Tapestation), equimolar amounts of library were pooled. The pool was quantified by using the Peqlab KAPA Library Quantification Kit and the Applied Biosystems 7900HT Sequence Detection System. The pool was sequenced by using an Illumina Novaseq 6000 sequencing device and a paired end 100nt protocol.

Data processing

The 126 raw reads files from the MESOMICS cohort and the 21 files from the Iorio and colleagues (2016) mesothelioma cohort (downloaded from the EGA and SRA websites, datasets EGAS00001000828 and PRJNA523380) were processed in three steps using the RNA-seq processing workflow based on the Nextflow language and accessible at https://github.com/IARCbioinfo/RNAseq-nf (release v2.3), as described first in Alcala, Leblay, Gabriel et al. (2019b). In summary, reads were trimmed for the adapter sequence using Trim Galore v0.4.2, then mapped to reference genome GRCh38 (using annotation gencode version 33) with STAR software (v2.7.3a). Then, reads were realigned locally using ABRA2 (Mose et al., 2019; workflow https://github.com/IARCbioinfo/abra-nf release v3.0), and base quality scores were recalibrated using GATK (workflow https://github.com/IARCbioinfo/BQSR-nf release v1.1). Once processed, expression was quantified for each sample, generating a raw read count table with gene-level quantification for each gene of the comprehensive gencode gene annotation file (release 33), as well as a table with Gene fragments per kilobase million (FPKM), using StringTie software (v2.1.2) (Nextflow For each sample, 600 ng of purified DNA were bisulfite converted using the EZ DNA Methylation kit (Zymo Research Corp., CA, USA) following the manufacturer's recommendations for Infinium assays.

Then, 250 ng of bisulfite-converted DNA was used for amplification, fragmentation and finally hybridisation on Infinium Methylation EPIC beadchip, following the manufacturer's protocol (Illumina Inc.). Chips were scanned using Illumina iScan to produce two-colour raw data files (IDAT format).

Data processing

The resulting IDAT raw data files were pre-processed using R packages minfi (v. 1.34.0) and ENmix (v. 1.25.1). We first performed quality control checks on the raw data. Two-colour intensity data of internal control probes were manually inspected to check the quality of successive sample preparation steps (bisulfite conversion, hybridisation, extension, and staining; function plotQC, ENmix). There was one outlier, the technical replicate MESO_056_T1, when comparing per sample log2 methylated and unmethylated chip-wise median signal intensity (function getQC, minfi), and no samples displayed an overall p-detection value > 0.01 (function detectionP, minfi). The poor quality sample, MESO_056_T1, was excluded from subsequent processing. Sex was assigned using a predictor based on the median total signal intensity of sex chromosomes, with a cutoff of -2 log2 estimated copy number difference between males and females (function getSex, minfi). One sample was identified to be discordant between predicted (female) and clinically reported (male) sex, MESO_071_T. Whole genome sequencing results from matched blood confirmed that the participant was male, whilst the tumour displayed losses on chrY and gains on chrX.

Raw data were then normalised using functional normalisation (function preprocessFunnorm, minfi) to reduce technical variation within the data, and probe removal steps were performed to ensure reliability and accuracy of the final dataset. Four groups of probes were removed: (i) poor performing probes with a p-detection value > 0.01 in at least one sample (16,497 probes discarded), p-detection value was computed by comparing the total signal (methylated and unmethylated) of each probe with the background signal level from non-negative control probes (function detectionP, minfi) (ii) cross-reactive probes (42,552 probes discarded), cross-reactive probes co-hybridise to multiple locations within the genome and therefore cannot be reliably investigated (Pidsley et al. Genome Biology 2016 PMID: 27717381) (iii) probes on the sex chromosomes (17,144 probes discarded), and (iv) probes with SNPs within the single base extension site, or target CpG site, at a minor allele frequency of > 5% (database dbSNP build 137), (8,411 probes discarded,function dropLociWithSnps,minfi). This resulted in a normalised, filtered dataset of 781,245 probes for 139 samples. Finally, beta and M-values were extracted (functions getBeta and getM, minfi). Nine probes recorded m-values of -∞ for at least one sample, and these values were replaced with the next lowest m-value in the dataset. The three normal tissues and one remaining technical replicate were then removed from the beta and m matrices for the subsequent analyses. This resulted in 135 samples, 122 for discovery and an additional 13 for ITH analyses.

Processing of publicly available DNA methylation data

DNA methylation array data (IlluminaHumanMethylation450k BeadChip array IDAT files) from the TCGA mesothelioma cohort (Hmeljak et al., 2018) were downloaded from the GDC legacy archive (https://portal.gdc.cancer.gov/legacy-archive/search/), and from the [START_REF] Iorio | A Landscape of Pharmacogenomic Interactions in Cancer[END_REF] cell line cohort from GEO repository (dataset GSE68379), respectively. Datasets were then imported into R and pre-processed using R packages minfi (v. 1.34.0) and ENmix (v. 1.25.1) individually. Data processing was performed as per the MESOMICS cohort, no samples failed QC steps or were discordant for sex. Probes with p-detection value > 0.01, cross-reactive probes [START_REF] Chen | Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray[END_REF], probes on sex chromosomes, and those associated with SNPs were discarded. This resulted in normalised, filtered datasets of 439,417 probes for 74 samples for the TCGA cohort, and 436,125 probes for 21 samples for the Iorio cell line cohorts. Beta and M-values were extracted (functions getBeta and getM, minfi), and probes recording M-values of -∞ for at least one sample were replaced with the next lowest m-value in the dataset.

Where DNA methylation array data was required for the MESOMICS and TCGA cohorts together (see Integrative unsupervised analyses), data were combined and processed as follows. IDAT files for 126 MESOMICS samples (excluding ITH samples), and 74 TCGA samples were imported into R as separate RGSets. The TCGA RGSet was converted to array type IlluminaHumanMethylationEPIC and combined with the MESOMICS RGSet (function convertArray and combineArrays from R package minfi). All samples passed QC. One sample was identified to be discordant between predicted and clinically reported sex, MESO_071_T, as previously described. Subsequent processing was as per the MESOMICS cohort, and 56,308 probes were discarded (16,588 

Global methylation level

DNA methylation level at LINE1 repetitive elements was used as an estimate of global methylation level.

Methylation level at LINE1 repetitive elements were calculated using the REMP package (v 1.12.0) functions to extract m and beta values of CpGs that are located in LINE1 [START_REF] Zheng | Prediction of genome-wide DNA methylation in repetitive elements[END_REF]. REMP functions were performed on the normalised, filtered M table containing 781,245 probes, and identified 23,906 probes located in LINE1 elements. Average M and beta values were then calculated for each individual sample across all LINE1 probes respectively to obtain mean LINE1 methylation levels per sample. The mean M values were used for statistical analysis of associations between global methylation levels and features of interest (Table S2), while beta values were used for plotting significant findings. An examination of the mean methylation level across LINE1 probes identified one outlier, MESO_040_T, for which the global level of methylation appears particularly low in comparison to the rest of the cohort, nevertheless this single sample only marginally influenced the relationship between LINE1 and other variables mentioned in the main text.

were considered methylated per sample. A proxy for this CIMP index was computed based on the mean methylation level of promoter CpG islands for five genes only: CACNA1G (island coordinates (hg19): chr17:48636103-48639279), IGF2 (chr11:2158951-2162484), NEUROG1 (chr5:134870740-134872051), RUNX3 (chr1:25255527-25259005), and SOCS1 (chr16:11348541-11350803) (selected from Weisenberger et al., 2006, Table S2).

A previously published method for calculating CIMP index that was also tested (in the MESOMICS cohort only), here called CIMP-normal index, as follows (Blum et al., 2019). Probes located within CpG islands were retained, the mean beta value across all probes within each island was calculated for the three adjacent normal tissues available in the MESOMICS cohort. Islands whose methylation level was < 30% in all three adjacent normal samples were retained (n = 15,824), denoted as normally hypomethylated islands. The CIMP-normal index was then calculated as the proportion of these 15,824 islands with ≥ 30% methylation (beta value ≥ 0.3) per sample. CIMP-normal index values ranged from 0.013 to 0.19, corresponding to 0.13% to 19% of normally hypomethylated islands to be hypermethylated per sample (Table S2). There was a significant correlation between the two CIMP index values calculated (p-value = 3.27e-66, r = 0.96). The method for CIMP-normal index was based on first identifying normally hypomethylated islands, therefore requiring normal pleura or mesothelium. The normal tissues available in the MESOMICS cohort are adjacent to mesothelioma samples, therefore that they are unlikely to be pure non-tumour tissues, as such, the CIMP index rather than the CIMP-normal index was used for subsequent analysis.

Annotating IlluminaHumanMethylationEPIC array probes with gene ID

Probes were assigned to a gene based on the contents of the EPIC 850K array manifest b5 column 'UCSC_RefGene_Name'. Additionally, promoter and enhancer only associated probes which did not have any gene annotation in the manifest column 'UCSC_RefGene_Name' were then assigned a 'nearest gene' annotation using the function matchGenes with the TxDb.Hsapiens.UCSC.hg19.knownGene library from R package bumphunter.

Correlation between methylation and expression

Correlation between methylation levels and gene expression was performed as follows. Regional level testing: probes were divided into promoter, enhancer and gene body (see Regional methylation analysis), probe groups were then filtered to retain only those with a difference of > 0.1 beta value between lowest and highest methylation level across 119 samples (samples input to MOFA analysis i).

Pearson correlation tests were performed between the m-value of all probes within a region group and their corresponding gene expression level (normalised using variance stabilisation transformation, filtered for genes having > 1 FPKM difference across 109 samples). This resulted in testing within 109 samples with both methylation and expression data of 37,067 promoter probes against expression of 8,444 genes, 20,308 enhancer probes against expression of 6,539 genes, and 262,820 gene body probes against expression 15,825 genes. p-values were adjusted for multiple testing using Benjamini-Hochberg method within region groups, probes were considered correlated with expression at q-value ≤ 0.05.

Island level testing: probes located within Cpg islands (denoted as "Island" in the Epic 850k array manifest b5 column Relation_to_UCSC_CpG_Island) were retained, the mean M-value across all probes within each island (identified from manifest column Island_name) was calculated per sample resulting in M-values for 24,891 CpG islands. Pearson correlation tests were performed between the M-value of each island and their corresponding gene expression level (normalised using variance stabilisation transformation, filtered for genes having > 1 FPKM difference across 109 samples). Corresponding genes for each island were identified as the corresponding gene for each probe within the island (see Annotating IlluminaHumanMethylationEPIC array probes with gene ID). This resulted in testing within 109 samples with both methylation and expression data of 21,189 islands against expression of 12,992 genes.

Epithelial-mesenchymal transition methylation quantification

Epithelial-mesenchymal transition expression score. A score of epithelial-mesenchymal transition (EMT) per sample was calculated from variance-stabilized read counts as the mean expression of 52 mesenchymal-associated genes minus the mean expression of 25 epithelial-associated genes, as previously described (Hmeljak et al., 2018;[START_REF] Mak | A Patient-Derived, Pan-Cancer EMT Signature Identifies Global Molecular Alterations and Immune Target Enrichment Following Epithelial-to-Mesenchymal Transition[END_REF]. A higher EMT score indicates a more mesenchymal-like gene expression profile than epithelial-like. Results are reported in Table S2.

Methylation. EMT gene methylation levels were calculated as follows. Firstly, all probes within promoter, enhancer, or gene body groups associated with at least one of the panel of 77 EMT-associated genes [START_REF] Mak | A Patient-Derived, Pan-Cancer EMT Signature Identifies Global Molecular Alterations and Immune Target Enrichment Following Epithelial-to-Mesenchymal Transition[END_REF] in the manifest column 'UCSC_RefGene_Name' or 'nearest gene' annotation (function matchGenes, bumphunter) were selected. This resulted in 3,764 probes across all 77 genes, specifically 150 promoter probes corresponding to 17 EMT genes, 207 enhancer probes corresponding to 54 EMT genes, and 2,446 body probes corresponding to 76 EMT genes. The mean M-and beta-values across all epithelial and mesenchymal genes separately for each region group were then calculated per sample.

Epithelial (E) and Sarcomatoid (S) scores

For each sample, E-and S-scores were computed for the MESOMICS, TCGA, Bueno and cell-lines samples using expression data (normalized read count for MESOMICS, TCGA, Bueno and expression array data for cell-lines) and the method WISP from Blum et al. (2019). The method relies en unsupervised clustering to identify three clusters, enriched for samples of the Epithelioid, Sarcomatoid histopathological types and Normal cells, respectively, and then uses these samples to produce signature expression profiles that are used to perform a deconvolution of all the samples using a constrained linear model. Results are presented in Table S2, S13, and S14.

Genomic instability scores

We estimated genomic instability from all omic's layers: genomic, expression, and methylation profiles.

From the genome, we calculated the proportion of changes in the genome in terms of copy number. From expression data, we computed a hallmark score using hallmarks of cancer (Keifer et al. 2017) by summing the normalized read count of the genes belonging to each hallmark. Finally, we used global methylation level (see Global methylation level section) as a third proxy of genomic instability. Values are reported in Table S2.

Integrative unsupervised analyses

We performed four series of analyses, with different subsets of samples: (i) discovery analyses with all our discovery cohort (MESOMICS cohort, 120 samples) for which WGS, RNA-seq, and/or 850 K methylation array data are available, (ii) and (iii) replication analyses with the already published data from Bueno (2016) (Bueno cohort,181 samples after exclusion of non-chemonaive samples) and Hmeljak and colleagues respectively (2018) (TCGA cohort, 73 samples in the curated list), (iv) combined analyses integrating the MESOMICS, Bueno, and TCGA cohorts with a total of 374 samples, (v) replication combining cell lines from the Iorio (2016)-for which whole-exome sequencing, expression arrays and RNA-seq, 450K methylation arrays, and drug responses in the form of IC 50 scores are available-( 21samples, 265 drugs) and the de Reyniès (2014) and Blum et al. (2019) datasets-for which expression arrays and drug responses are available-(38 samples, 3 drugs). In addition, some single-omic analyses are also described in this section.

Pre-processing of expression data

We used normalised read counts matrices (see RNA Sequencing) for (i), (ii),(iii) and (iv) encompassing 59,607 genes. Among these genes, those having less than one FPKM difference across the samples have been excluded from the unsupervised analyses. Also, in order to mitigate sex influence on the expression profiles, we removed genes from the sex-chromosomes. For each analysis, the top 5,000 most variable genes were selected. Similarly, the 5,000 most variable genes from the normalized array expression of cell lines (see expression array processing section) were selected. Whenever several probes were available for a same gene, the one with the highest intensity was selected.

Pre-processing of methylation data

DNA methylation was available for both MESOMICS and TCGA cohorts. Firstly, we extracted the M-values of the resulting 781,245, 426,213, and 396,145 CpGs from MESOMICS, TCGA, combined MESOMICS/TCGA, and Iorio cell line cohorts cohorts respectively, which theoretically range from -∞ to +∞ and have a bimodal distribution, being not affected by heteroscedasticity contrary to beta-values [START_REF] Du | Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis[END_REF].

Following the same approach as for expression data, sex-chromosomes CpGs have been excluded (see Methylation section), and from the resulting 781,245, 426,213, 396,145, and 436,125 CpGs available following QC (see DNA methylation Sequencing section), those having less than 0.1 β-value difference across the (i) 119, (iii) 73, (iv) 192, and (v) 59 samples have been excluded from the unsupervised analyses. Based on this annotation, the CpGs list representing the methylation data has been divided according to their association with promoters, enhancers or gene body using EPIC 850K array manifest b5 (see Regional methylation analysis section) resulting in three data sets respectively named MethPro, MethEnh, and MethBod gathering respectively, 37,884, 23,169 and 291,877 CpGs for analysis (i); 27,235, 4,953 and 125,228 for analysis (iii); 37,951, 5,174, and 132,546 for analysis (iv), and 30,387, 4,757, and 111,774 for analysis (v). For each analysis and data set, the top 5,000 most variable CpGs were selected.

Pre-processing of copy number changes

Copy number changes data was available for both MESOMICS and TCGA cohorts. We assessed the global (Total) and the minor (Minor) allele copy number states at the gene level using respectively the total (total) and the minor (minor) copy number estimate given by PURPLE (see Copy number variant calling section) on hg38 genome for the MESOMICS cohort, and SNP array estimates downloaded from the GDC portal for the TCGA MESO cohort. Of note, for the TCGA samples, the copy number state has been aligned on the hg19 genome. Hence, specifically for analysis (iv), the transformation of hg19 coordinates into hg38 has been required to integrate copy number data from both MESOMICS and TCGA samples within the same data set. To do so, we used liftOver R package (v.1.14.0) to transform segment coordinates into hg38 genome. Hg19 positions not found by the software because overlapping uncertain regions such as centromeres, have been replaced by the corresponding hg38 centromere coordinates. Then, for the remaining positions not found in the hg38 genome, we first listed, for each segment, the overlapping genes in hg19 and hg38 coordinates and compared the two lists. Then, we saved the same coordinates in case of identical lists and expanded the coordinates to include the overlapping genes that are missing. This expansion has been made only and only if the resulting segment length did not exceed an increase of 5% of the original segment and less than the maximum length difference observed in the transformation process made by liftOver. If these criteria were not filled, the given gene was not included and thus, the coordinates remained unchanged.

For the three analyses, the resulting value assigned to each gene is an average of the copy number estimate of the tumor by taking into account the tumour purity (purity) estimated by PURPLE. As a result, total = purity × total + (1-purity) × 2 and minor = purity × minor + (1-purity) with total and minor the value assigned for each gene in the Total and Minor data set, respectively. In case of segment breaks occurring within a given gene sequence, the mean value of the two segments overlapping is assigned to the gene. In order to avoid redundancy, genes with exactly the same resulting copy number value in all samples (because of their genome location proximity) were grouped as one single feature in the data set.

Only the genes or groups of genes altered in at least three samples have been selected. For consistency, each feature of the resulting data sets (10,292 genes or groups of genes-Total and Minor) were centered and scaled to unit variance using the scale R function, and SCNVs occuring on sex-chromosomes were removed. Finally, the top 5,000 most variable genes or groups of genes were selected to be integrated.

Note that although available (see Figure S3A), because they were computed from exome data instead of genome-wide data as the MESOMICS and TCGA cohorts, CNVs from the Bueno cohort were not included in MOFA.

Pre-processing of genomic alterations data

Somatic structural variants data has been used only for the integrative analyses (i) and (iv), while somatic mutations have been used in all analyses. Each gene, altered by somatic splicing or exonic, damaging mutations or structural variants (see Damaging variants and driver detection section), has been integrated in a common data set. Of note, for missense mutations, we used REVEL annotation included in ANNOVAR, for predicting the pathogenicity of these variants and used a 0.5 cut-off to restrict to the most likely damaging missense events. We also removed genes altered in less than three samples. For consistency, we selected genes in non sex-chromosomes, protein coding or long non-coding RNA genes and with minimum expression of 0.01 FPKM within the cohort to be sure to include genes expressed in mesothelioma. We integrated the resulting data sets as a boolean variable in the following analyses.

Pre-processing of drug response data

We used drug response data (used IC 50 in units of mean µM) only for the analysis (v) on MPM cell lines, combining the drug response of 265 drugs from Iorio. Among them, 3 have also been tested on the de Reyniès cell lines and their responses are reported in Blum et al. (2019).

Multi-omic integrative analyses

To provide an integrative low-dimensional summary of the molecular variation across the samples, we performed continuous latent factors identification using software MOFA (R package MOFA2 v1.1.21).

Indeed, MOFA is able to integrate different omic data sets by generating independent continuous variables, named latent factors (LF) that transcribe most variation from the joint data sets. In total, we performed four analyses (i) MOFA-MESOMICS (n = 120, Figures 1 andS1A), (ii) MOFA-Bueno (n = 181, MOFA was performed independently for each analysis, setting the number of latent factors to 10 (function runMOFA from R package MOFA2 v1. 1.21). The summary of all these runs are given in Figures 1, S1A-G, and S7 and coordinates and proportions of variance explained for (i)-(iv) are given in Table S2, while those for MOFA-ITH are given in Table S4, and those for the cell lines (model v) are given in Table S14. To compare multi-omic with uni-omic unsupervised analyses, we correlated the MOFA coordinates of the samples shared by MOFA and the PCAs with their coordinates in PCA-exp (see RNA Sequencing).

Results show that the main 4 MOFA factors all have a counterpart in the PCA. For the MOFA-Cell lines, weights of the features from the drug layer and their correlations with the latent factors are represented in Figure S7H-I and Table S14.

Interpreting MOFA latent factors

We tested the association between each LF and clinical, morphological, and epidemiological variables using linear regression (Table S2). As quality control, we also assessed their associations with the technical variables selected to detect potential batch effects in the data using linear regression (Figure S6D). The proportion of cells that belong to different immune cell types (see Immune contexture Intra tumor heterogeneity analyses. The ploidy, morphology, and CIMP factors represented in Figure 2 were identified in the MOFA-ITH by correlating the coordinates of non-ITH samples in the MOFA-ITH with their coordinates in the MOFA from Figure 1, and choosing the largest match (correlations were all r>0.9).

To avoid spurious ITH to be detected, and because the ploidy factor overwhelmingly represents variance in genomic data (CNVs; Table S4), samples with missing WGD information were not represented in the ploidy factor (NA values in Table S4). Similarly, the Pareto front was fitted on the MOFA-ITH using the method described below (Table S4). Euclidean distances between each pair of samples were then computed for each factor of the MOFA-ITH separately (Figures 2A andS2A). Proportions of the tumor from different components (% Sarcomatoid, % Acinar, % immune infiltration) presented in Figure 2B matched that reported by the pathologist, and include the constraint that % Sarcomatoid + % Epithelioid + % infiltration=100%, and % Acinar <= % Epithelioid (see data in Table S4).

Evolutionary tumor trade-off analyses

Pareto theory fit

The Pareto front model has been fitted to different sets of samples using the ParetoTI R package (https://github.com/vitkl/ParetoTI, release v0.1.13), following the above mentioned analyses (i), (ii), (iii) and (iv), and additionally, on two different kinds of molecular maps: using MOFA, restricting to latent factors LF1, LF2, LF3, and LF4 and using expression PCA as technical validation (see RNA Sequencing). In brief, the algorithm tries to find polyhedra by testing successively 1 to n axes adding them one after another in a decreasing order of transcriptomic variance explained. For this technical reason, the MOFA LFs have been ordered as follows by decreasing transcriptomic variance explained: Morphology factor (LF2), Adaptive-response factor (LF3), CIMP factor (LF4), and Ploidy factor (LF1). For each number n of axes used, ParetoTI identifies the position of the n+1 = k vertices (archetypes) in the molecular map defined. Each polyhedron fit is assessed by the ratio of the volume of the best-fitting polyhedron to the volume of the convex hull of the data (t-ratio). The more the data follows the Pareto optimality theory, the more the t-ratio metric, higher than 1, approaches 1. Finally, the algorithm re-calculates the t-ratio on 1000 shuffles keeping the distribution of loading on each axis but not the associations between them and computes a one-sided p-value to estimate the statistical significance of the fit.

Here, we chose to represent the most significant fit with the smallest number k because of the limited number of samples. Using MOFA axes, we found k = 3 archetypes in the LF2-LF3 space and reproduced, for each analysis (i), (ii), (iii), and (iv), the fit using the corresponding expression PCA in the PC1-PC2 space (see Figure S1G for the fit for model ii, and iii). In order to evaluate the reproduction of the three archetypes discovered in (i) (MESOMICS cohort) into (ii) (Bueno's cohorts) and (iii) (TCGA cohort), we used (iv) (3-cohorts) and correlated the pairwise distance between archetypes and samples within each molecular map (Table S3). Overall, we found a strong concordance between the three analyses (minimum absolute Pearson's r = 0.84).

Interpretation of MPM polyhedron

To further characterise the phenotype of each archetype we used the proportion of each archetype for each sample estimated by ParetoTI. These proportions have been used as continuous variables to further test the association between each archetype and clinical, epidemiological, morphological variables, as well as molecular data (Table S3).

More specifically, we inferred each archetype phenotype by performing integrative gene set enrichment analysis (IGSEA) on the expression data. To do so, we used the ActivePathways r package (https://github.com/reimandlab/ActivePathways, release v1.02) which is a tool able to integrate different sources of molecular variations to assess the enrichment of GO terms, by combining p-values from different association tests between sources and gene level data. Here, we integrated these proportions as different axes of molecular variation. We restricted the GO terms to a minimum size of 20 genes to a maximum size of 1000 genes as the default parameters of ActivePathways. To infer the pathways specifically altered in each archetype, we integrated the Pearson's p-value correlation of each gene from the expression matrix of 59,607 genes with the proportion from each archetype and we selected the pathways for which the enrichment source only correspond to the tested archetype. We performed two kinds of analyses: one restricted to the genes positively correlated with the proportion to get the upregulated pathways and a second one restricted to the negatively correlated genes to identify the down-regulated pathways. In all the analyses, the proportion of enriched genes within the enriched pathways ranged from 0.04 to 0.75 (Table S3). Used as a quality control of the enrichment results, we assessed the fold change between the 10% closest samples vs the 10% furthest samples from each archetype of the enriched genes belonging to each enriched pathway. More specifically, in order to assign universal cancer task to each archetype, we referred to Hausser et al. (2019) and examined the GO term descriptions to gather pathways in super-pathways as reported in Table S3.

Similarly, we tested the association between each archetype and genomic event using linear regression and more specifically, in order to infer genomic event effect-size on the Pareto front, we calculated the vector linking the centroids of the altered and wild-type groups (centroids function from sda R package v. 1.3.7). To infer to what extent alterations drives the tumour cells toward specialisation, we followed the method from Hausser et al. (2019) and calculated the alignment of vectors with the front (angle between the Pareto front and the vector built from the altered and wild-type groups within the 4-factors space), after having normalised each LF (centering and division by standard deviation). Finally, we evaluated the driving role of genomic events associated to at least one archetype (Table S11) using these two variables (vector size and angle to Pareto front) by permutation tests (with 1,000 permutations) in which we randomised, one genomic event at a time, the altered and wild-type groups and compared this distribution from shuffled values with the observed values (Figure 5C).

Clonal reconstruction

Small variants subclonal reconstruction

To obtain accurate estimates of variant allelic fractions (VAFs), we restricted the model fitting to somatic alterations with high-confidence VAF estimations (read depth greater than or equal to 60X and VAF greater than or equal to 0.05), and focused on samples with matched normal tissue or blood (n=43). We only selected variants in high-confidence CN calls: regions with confident calls, excluding centromeric regions (based on UCSC annotation) that have notoriously more difficult CNV calling due to larger variance in reads mapping.

Because of the difficulty of inferring the clonality of CNVs, we also assessed the clonality of CNVs using software Facets [START_REF] Shen | FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing[END_REF]; https://github.com/IARCbioinfo/facets-nf; release 2.0); only CNVs consistently called as clonal or subclonal by PURPLE and Facets are reported in Figure S5H (see Table S7 for all CNV clonalities). Although CNVs are generally called more accurately than small variants in T-only samples, for consistency with the rest of the clonality and evolutionary analyses, we restricted the analyses to tumors with a matched normal (n=43).

Inferring the timing of alterations

Due to the low tumor mutational burden in MPM, we restricted the analysis to samples with large scale events (WGD or more than 10% of the genome with LOH), and to samples with matched normal tissue or blood.

Molecular time dating

Similarly to the approach from Gerstung and colleagues (2020) implemented in package MutationTimeR, copy number gains and copy neutral losses of heterozygosity (LOH) were dated by comparing the number of alterations that were present in a single copy (that appeared after the event), N r , to the ones that were present in multiple copies (that appeared before the event) N l (Figure S5F).

We computed Bayesian credibility intervals (BCI) for the timing of each gain and compared results with parametric bootstrapping confidence intervals (CI). BCI were obtained by assuming that N r followed a Poisson distribution of parameters λ r and λ l , and uniform prior distributions over the interval [0, 10 4 ] with the constraints that λ r < λ l , because the mutation rate λ l includes both mutations that occurred before and after the copy number gain, while λ r is limited to mutations that occurred before the gain; posterior distributions were numerically computed using a discrete grid approximation of size 1001, and used to compute the posterior distribution of timings t e . Bootstrapping CI proceeded as in Gerstung and colleagues (2020), first drawing 1000 N ri values from a Poisson distribution of parameter N r , and finally inferring t e from the simulations. We show in Figure S5E that both approaches provide very similar results (correlation between the center of the CI and BCI across dated events is r=0.99, p=4.8×10 -14 ), but the Bayesian estimates have the advantage of ensuring that 0<t e <1, because of the prior imposing that λ r < λ l , so they are the ones reported in the main text. Synchronicity of duplications in the WGD sample was assessed by checking the overlap between CI for gains in the different segments considered.

Chronological time dating

We used the method validated by Gerstung and colleagues to date amplification events [START_REF] Gerstung | The evolutionary history of 2,658 cancers[END_REF] first estimated the temporal accumulation of CpG to TpG mutations ([C>T]pG), mostly due to spontaneous de-aminations that would accumulate at an approximately constant rate through time. In order to check whether the small number of alterations present in some segments led to biases in our estimates, we performed the same analysis but using all mutations instead of just [C>T]pG mutations.

Results showed no significant systematic bias (linear regression coefficient estimated at 0.85, with 95%CI [0.69,1.01]; Figure S5D), and CI of [C>T]pG and CI of all mutations overlapped except for MESO_008, a non-chemonaive tumor that showed an excess of chemotherapy associated mutational signatures that andS7 andTables S13 andS14. However, as for Alcala et al. (Alcala et al., 2019b), where we reported the second molecular dimension as independent of the WHO classification, other features can be annotated suggesting other hidden sides of this pyramid such as morphological subtypes (Nicholson et al., 2020), MPM subset with splicing alterations (Bueno et al., 2016), and the near-haploidisation subtype (Hmeljak et al., 2018).

As a first attempt at exploratory and unsupervised investigation of MPM molecular variability, we published in 2019, a characterisation of the molecular variation of MPM without any assumption of discreteness unveiling a continuum of types also demonstrated in Blum et al. (Blum et al., 2019) the same year. We successfully identified the main sources underlying this variation: the vascular and immune pathways from which we suggest novel candidate markers that could serve both for classification and treatment of this disease (Alcala et al., 2019b). In our last large genomic study of MPM [START_REF] Mangiante | Disentangling heterogeneity of Malignant Pleural Mesothelioma through deep integrative omics analyses[END_REF], using unsupervised and integrative multi-omic factor analysis Our exploratory and integrative approach, using unsupervised analyses, revealed independent variabilities and identified three novel sources of MPM heterogeneity previously unexplored. Together, these complementary dimensions not only explain MPM molecular heterogeneity at every omic level but also unveiled evolutionary traits, clinical behaviours, and differential therapeutic responses. The resulting phenotypic cartography could be used as a reference for the scientific community but also to develop personalised medicine for these patients, considering the related vast clinical implications. However, if the intra-tumoural heterogeneity (ITH) of MPM tumours in the histological level reflects a high degree of molecular ITH including in the microenvironment, it will condition the efficacy of prognosis, predictive, or treatment response markers. To fill this current gap, already, we are building an adapted research setting using multi-regional, multi-omic, and single cell sequencing to precisely characterise MPM ITH and empower more reliable diagnostic and prognostic biomarkers.

Discussion

Rare cancers are associated with an urgent need for basic science research, genomic characterisation, and clinical trials to ultimately provide the missing pieces needed to tackle these understudied and poorly explained diseases. However, this need is less and less specific to rare cancers and, given that common cancers are stratified into subtypes that reach the same frequency as rare cancers with the same limitations and challenges, the specific research approach used to study rare cancers will be extended to all cancer types [START_REF] Barker | Preclinical rare cancer research to inform clinical trial design[END_REF].

The re-analyses of publicly available data can provide a better comprehension of rare cancers. Being able to make the most of what is already available to the scientific community is a first step in a more sustainable research approach essential for studying rare cancers. In Alcala et al. (Alcala et al., 2019a) (Nature Communications), the RCG team integrated publicly available data from high-grade lung NENs (LCNEC and SCLC), which allowed us to identify a new entity of pulmonary carcinoids. In Alcala et al. (Alcala et al., 2019b) (EBioMedicine), we reanalysed publicly available transcriptomic data of MPM using a different approach, which helped unveiling a continuum of morphological types of MPM, previously unnoticed. In Mangiante et al. [START_REF] Mangiante | Disentangling heterogeneity of Malignant Pleural Mesothelioma through deep integrative omics analyses[END_REF]) (under review), I also reused these series, even if our team generated our own multi-omic MPM cohort, to replicate our findings and provide accurate insights on MPM.

Therefore, I believe that taking advantage of all available data from rare cancers is valuable at every level, especially, to perform deep characterisation and draw meaningful conclusions.

These studies illustrate different purposes of re-analysing already explored data sets:

(i) the re-interpretation of the data by addressing different questions and using more diverse research strategies, to ultimately shed a novel light on these diseases and (ii)

the constant universal objective of providing additional evidence and adding power to the already generated findings. Key elements that characterise the approaches on which these two ambitions rely on are multidisciplinarity in the study design, creativity in the analyses, and use of conceptual insights from other scientific fields for (i); and standardisation, homogenisation, and integration of the different data sets for (ii).

Throughout my thesis, I had the impression that these two approaches are in fact interconnected, for instance the integration of additional data sets can also be used as a strategy to re-interpret the data, as we did during the investigation of lung NENs, and more generally in pan-cancer initiatives. Additionally, the novelty in the methods that researchers use to investigate cancer also tend to shape over time the strategies used to integrate additional data. As research approaches and technical methods evolve, I expect re-analysis strategies to to also evolve, for instance through the use of concepts from other research fields, such as immunology and evolutionary modelisation, in the context of cancer research, and in the development of new machine learning technologies that are able to investigate more complex non-linear relationships between variables.

Considering the limited availability of specimens suitable for multi-omic analyses, building unique biorepositories with detailed clinical annotations, and the appropriate analytic approaches is fundamental for studying rare cancers and generating relevant characterisation. Indeed, I observed how it has been fundamental to focusing the resources and efforts on what is more likely to be explanatory for the understanding of such tumours, as well as informative for the clinicians and beneficial for the patients to conduct research that matters. As a preliminary but crucial step, taking advantage of panels of experts might provide highly valuable insight into the project design that is more likely to be successful. Developing exceptional biorepositories by means of continuous collaborative efforts benefits everybody. For our studies, beyond the selection of high-quality biospecimens, we also made sure that we collected detailed and relevant clinical, epidemiological, and morphological annotations for the investigation of these specific diseases, and our team ensure the extensive use of the most appropriate, recent, and powerful computational tools to undertake our analyses. In the context of this thesis, the rare thoracic tumours that we investigated were characterised by low tumour mutational burden and no frequent genomic alterations amenable to therapeutic intervention. Therefore, understanding the molecular pathways involved in their expansion appeared to be a good strategy to improve patient stratification, and provide the patients with novel therapeutic opportunities. To adapt our project design to what was most likely to be a successful strategy for these tumours, we used multi-omic data encompassing the main molecular layers, and performed integrative analyses to identify the pathways underlying their neoplastic progression. As a result, in Alcala et al. (Alcala et al., 2019a) (Nat Commun), we identified the immune system and the retinoid, and xenobiotic metabolism as key deregulated processes in pulmonary carcinoids. In Alcala et al. (Alcala et al., 2019b) (EBioMedicine) and Mangiante et al. [START_REF] Mangiante | Disentangling heterogeneity of Malignant Pleural Mesothelioma through deep integrative omics analyses[END_REF] (under review), we found that angiogenesis, immune interaction, and cell division were the major pathways explaining the inter-tumoural heterogeneity among MPMs cases.

Importantly, the integration of multi-omic data enabled us to create links between the different molecular layers and to ultimately associate genomic events to phenotypes that can be used as markers to capture the identified tumoural traits. This approach promotes a translational effort to create bonds between our findings and clinical implications. Furthermore, we suggested panels of already in use proteins, or panels of clinical or morphological proxies to capture the prognostic groups or profiles that we identified.

Aiming at getting the most of our data, a common effort at studying rare cancers is data valorisation. In Mangiante et al. [START_REF] Mangiante | Disentangling heterogeneity of Malignant Pleural Mesothelioma through deep integrative omics analyses[END_REF] (under review), our team used tumour only samples in the context of WGS data thanks to powerful computational tools (machine learning) to remove the most likely germline variants and restrict the somatic list to comparable levels with tumour tissue with matched-normal materials. In addition, we used non-chimionaive samples for precise purposes for which we know that this potential bias represented by the chemotherapy will not affect our downstream analyses such as for the normalisation steps of our data. We also used replicates for quality controls and to discuss our findings. In addition, we strongly believe in more integrative and exploratory approaches in the context of imperfectly characterised diseases. To do so, I undertook unsupervised analyses integrating all our multi-omic datasets and let algorithms capture what should be meaningful without affecting the results by our assumptions. For example, while one of the previous limitations in the investigation of MPM was the limited depth in the exploration of MPM heterogeneity, because of the limited use of WGS data, epigenomic investigation, and, more globally, the small sample size (see 5.3. section), our integrative multi-omic analysis revealed heterogeneity at every molecular layer in MPM tumours, underscoring the utility of this approach in the case of such diseases that still arise a substantial provided and providing further insights on the prognosis value of the expression of OTP and its regulation. To go even further into this integrative effort, we generated publicly available interactive molecular maps for data exploration and hypothesis generation.

These maps can also be used as reference to project and assess the molecular profile of forthcoming patients to ultimately inform their classification and decision-making. This personalised medicine strategy is particularly adapted to the case of pulmonary carcinoids and MPM that both harbour poorly recurrent mutated genes, and for which the development relies on large molecular processes rather than single altered genes.

More globally, beyond the fact that the specific research approach applied for studying rare cancers will be extended to common cancers, I am convinced that the knowledge on this particular group of cancers is able to inform other cancer types. Indeed, one of the limitations of tumour classification, can be the discreteness assumption that ultimately, might keep away the explanation of the development of 

  Génomique, Néoplasmes neuroendocriniens du poumon, Mésothéliome pleural malin, Intégration multi-omique Résumé en français Les carcinoïdes pulmonaires et les mésothéliomes pleuraux malins (MPMs) représentent les tumeurs rares thoraciques les plus fréquentes avec une incidence mondiale en augmentation. Les carcinoïdes pulmonaires comprennent les carcinoïdes typiques et atypiques de grade inférieur et intermédiaire, mais font tous deux partie du groupe des néoplasmes neuroendocriniens du poumon (NENs). Ce groupe inclut aussi les carcinomes pulmonaires neuroendocriniens à grandes cellules (LCNECs) et les cancers du poumon à petites cellules (SCLCs), tous deux classés comme tumeurs de haut grade. Au sein des MPMs on reconnaît les épithélioïdes, biphasiques et sarcomatoïdes qui ont des pronostics respectivement relativement favorable, intermédiaire et défavorable. Ces différents types tumoraux au sein des NENs du poumon et des MPMs diffèrent par leur malignité et correspondent donc à des pronostics et à des stratégies thérapeutiques différentes. Alors que leur classification appropriée est essentielle, il existe toujours une grande variabilité inter-observateur lors du diagnostic et les opportunités thérapeutiques restent limitées pour ces patients. En effet, les carcinoïdes typiques et atypiques sont souvent confondus ainsi que les carcinoïdes atypiques et les LCNECs. Alors que la plupart des carcinoïdes typiques peuvent faire l'objet de résection chirurgicale, certains carcinoïdes atypiques et la majorité des LCNECs et SCLCs sont déjà trop agressifs et requièrent des stratégies thérapeutiques multimodales. Dans le cas des MPMs, les trois types reconnus ont une valeur prédictive limitée de la survie des patients qui décèdent souvent deux ans après leur diagnostic, devenus réfractaires à tous les traitements conventionnels. De plus, les MPMs semblent montrer des réponses hautement hétérogènes à des thérapies plus innovantes, sans réelle explication pour ces différences de comportement. Alors que les cancers dits « rares » ont une survie globale souvent plus faible que pour des cancers plus communs, ils restent sous-étudiés précisément à cause de leur rareté et peu compris. De grandes études de caractérisation génomique permettraient une meilleure compréhension des mécanismes sous-jacents à leur développement et renseigneraient leur classification pour un meilleur diagnostic et de nouvelles perspectives thérapeutiques. Cette thèse vise à (1) fournir les éléments nécessaires à une meilleure caractérisation moléculaire de ces tumeurs thoraciques rares ; (2) investiguer les voies moléculaires responsables des liens et les disjonctions entre ces différents types tumoraux et (3) transférer les résultats des points 1 et 2 à un niveau clinique pouvant directement bénéficier aux patients. Durant cette thèse, nous avons réuni des données omiques issues de 63 carcinoïdes pulmonaires, 20 LCNECs et 124 MPMs au moyen de biobanques exceptionnelles complétées par les données de 74 carcinoïdes pulmonaires, 75 LCNECs, 66 SCLCs et 284 MPMs (données précédemment publiées). En outre, j'ai caractérisé le paysage moléculaire des carcinoïdes pulmonaires (dans le contexte des NENs du poumon) et des MPMs au moyen d'outils informatiques de pointe et d'analyses multi-omiques intégratives avancées.

1 . 2 . 3 . 1 . 4 . 1 . 2 .

 1231412 The Hallmarks of Cancer, an organised summary of the biology of cancer 1.The era of genomic, a revolution mostly limited to common cancers 1.Lung neuroendocrine neoplasms, the rarest group of lung cancers, still under characterised Malignant pleural mesothelioma, rare and highly aggressive thoracic Integrative and comparative genomic analyses identify clinically relevant pulmonary carcinoid groups and unveil the supra-carcinoids 4.2.2. A molecular map of lung neuroendocrine neoplasms 4.2.3. Differential Orthopedia Homeobox (OTP) expression in pulmonary carcinoids is associated with changes in DNA methylation (Under review) Challenges in lung and thoracic pathology: molecular advances in the classification of pleural mesotheliomas 5.2.3. Disentangling heterogeneity of Malignant Pleural Mesothelioma through deep integrative omics analyses (Under review)

  A. Weinberg have described the Hallmarks of Cancer as the cancer cell acquired functional capabilities enabling them to survive, proliferate, and disseminate. Distinct mechanisms enable the establishment of such functions, at different times of the tumourigenesis multistep course and in diverse tumour types.

Figure 1 :

 1 Figure 1: Hallmarks of Cancer. Adapted from Hanahan and Weinberg (Hanahan and

Figure 2 :

 2 Figure 2: Differential diagnosis of lung neuroendocrine neoplasms and histological features (W. H. O. Classification WHO Classification of Tumours Editorial Board, 2021)

Figure 3 :

 3 Figure 3: Malignant pleural mesothelioma and asbestos exposure. Created from smart.servier.com

Figure 4 :

 4 Figure 4: Malignant pleural mesothelioma types (International Agency for Research on Cancer, 2015; Nicholson et al., 2020). Kindely provided by Pr F Galateau-Salle.

  and colleagues(de Reyniès et al., 2014) defined two MPM subgroups named C1 (enriched for samples with BAP1 mutations) and C2 (characterised by a mesenchymal phenotype), through an unsupervised hierarchical clustering on transcriptomic microarray data from 38 primary MPM cultures. Epithelioid cases were found in both subgroups while all the MPMs lines originating from sarcomatoid/desmoplastic tumours were in the C2 subgroup. This molecular classification had prognosis value with the C2 subgroup associated with a worse survival. More recent genomic studies, such as the one carried out by Bueno and colleagues and the TCGA consortium, proposed MPM molecular classification. They both also used clustering approaches to detect molecular groups with prognostic value. First, Bueno and colleagues performed unsupervised consensus clustering of RNA sequencing data from 211 MPMs and characterised four major classes: sarcomatoid cluster enriched for sarcomatoid samples, epithelioid cluster enriched for epithelioid samples, biphasic-epithelioid cluster enriched for biphasic tumours with a predominant epithelioid component, and biphasic-sarcomatoid cluster encompassing biphasic tumours with with a predominant sarcomatoid component. The sarcomatoid and epithelioid clusters referred to the most extreme molecular classes, with the epithelioid cluster associated with a better prognosis compared to the other groups. Interestingly,

  can be seen as candidates for clinical targets, which might encourage more clinically relevant molecular classification of MPM. Nevertheless, in the attempt at MPM molecular classification, the authors of these studies have made an implicit assumption of discreteness by focusing their analyses on discrete histopathological types, or on discrete molecular clusters. If some of these clusters are enriched for particular MPM types, they do not clearly match the histopathological classification. Finally, the morphology of MPM with the biphasic type carrying between 10 and 90% of the epithelioid and sarcomatoid components underscores a continuum rather than discrete clusters.

  the case of mesothelioma, our studies would not have been possible without the French MESOBANK, a strongly integrated network on MPM previously chaired by Pr F Galateau-Salle and currently led by Pr Sylvie Lantuejoul. The MESOBANK is a clinicobiological database, a multi-centric virtual and exhaustive repository of clinical data, biological samples, and standardised operational procedures for MPM (Galateau-Sallé et al., 2014). DNA and RNA from fresh-frozen material were extracted at the Centre de Ressources Biologiques (Centre Léon Bérard) under the supervision of Pr S Tabone-Eglinger. All the samples undergoing sequencing are reviewed by a panel of expert pathologists led by Pr S Lantuejoul or Pr F Galateau-Salle, and classified according to the most recent WHO classification of lung tumours.

Figure 5 :

 5 Figure 5: Study design of lungNENomics and MESOMICS projects.Figure kindly provided by Dr N Alcala and adapted afterwards.

Figure 6 :

 6 Figure 6: Rare Cancers Genomics computational approach. Figure kindly provided by N. Alcala.

Figure 7 :

 7 Figure 7: Rare Cancers Genomics multidisciplinary approach. Adapted from https://rarecancersgenomics.com/(2019)
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 92 Fig. 2 Molecular characterisation of supra-carcinoids. a Forest plot of hazard ratios for overall survival of the supra-carcinoids, compared to Carcinoid A and B, and LCNEC. The number of samples (N) in each group is given in brackets. The black box represent estimated hazard ratios and whiskers represent the associated 95% confidence intervals. Wald test p-values are shown on the right. b Enrichment of hallmarks of cancer for somatic mutations in supracarcinoids. Dark colours highlight significantly enriched hallmarks at the 10% false discovery rate threshold; corresponding mutated genes are listed in the boxes, and enrichment q-values are reported below. c Hematoxylin and Eosin (H&E) stains of three supra-carcinoids. In all cases, an organoid architecture with tumour cells arranged in lobules or nests, forming perivascular palisades and rosettes is observed; original magnification x200. Arrows indicate mitoses. d Radar charts of expression and methylation levels. Each radius corresponds to a feature (gene or CpG site), with low values close to the centre and high values close to the edge. Coloured lines represent the mean of each group. Left panel: expression z-scores of genes differentially expressed between clusters Carcinoid A and LCNEC or between Carcinoid B and LCNEC. Right panel: methylation β-values of differentially methylated positions between Carcinoid A and LCNEC clusters or between Carcinoid B and LCNEC clusters. e Radar chart of the expression z-scores of immune checkpoint genes (ligands and receptors) of each group. f Left panel: average proportion of immune cells in the tumour sample for each group, as estimated from transcriptomic data using software quanTIseq. Right panel: boxplot and beeswarm plot (coloured points) of the estimated proportion of neutrophils, where centre line represents the median and box bounds represent the inter-quartile range (IQR). The whiskers span a 1.5-fold IQR or the highest and lowest observation values if they extend no further than the 1.5-fold IQR. Data necessary to reproduce the figure are provided in Supplementary Data 1, 4, 5, 12, 17, and in the European Genome-phenome Archive
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 349 Fig. 3 Mutational patterns of pulmonary carcinoids. a Recurrent and cancer-relevant altered genes found in pulmonary carcinoids by WGS and WES. Fisher's exact test p-value for the association between MEN1 and the atypical carcinoid histopathological subtype is given in brackets; 0.01 ≤ p < 0.05, 0.001 ≤ p < 0.01, and p < 0.001 are annotated by one, two, and three stars, respectively. b Chimeric transcripts affecting the protein product of DOT1L (upper panel), ARID2 (middle panel), and ROBO1 (lower panel). For each chimeric transcript the DNA row represents genes with their genomic coordinates, the mRNA row represents the chimeric transcript, and the protein row represents the predicted fusion protein. c Chromotripsis case LNEN041, including an inter-chromosomic rearrangement between genes MEN1 and SOX6. Upper panel: copy number as a function of the genomic coordinates on chromosomes 11 and 20; a solid line separates chromosomes 11 and 20. Blue and green lines depict intra-and inter-chromosomic rearrangements, respectively. Lower panel: MEN1 chromosomic rearrangement observed in this chromotripsis case. Data necessary to reproduce the figure are provided in Supplementary Data 4, 7, and 8

  https://doi.org/10.1038/s41467-019-11276-9 ARTICLE NATURE COMMUNICATIONS | (2019) 10:3407 | https://doi.org/10.1038/s41467-019-11276-9 | www.nature.com/naturecommunications

Fig. 6

 6 Fig. 6 Main molecular and clinical characteristics of lung neuroendocrine neoplasms. Upper panel: Radar charts of the expression level (z-score) of the characteristic genes [DLL3, ASCL1, ROBO1, SLIT1, ANGPTL3, ERBB4, UGT genes family, OTP, NKX2-1, PD-L1 (CD274), and other immune checkpoint genes] of each LNET molecular cluster (Carcinoid A1, Carcinoid A2, and B clusters), supra-ca, LCNEC, and SCLC. The coloured text lists relevant characteristicsadditional molecular, histopathological, and clinical data-of each group. Lower panel: heatmap of the expression level (z-score) of the characteristic genes of each group from the left panel, expressed in z-scores. Data necessary to reproduce the figure are provided in the European Genome-phenome Archive

  using the p.adjust R function (stats package version 3.4.4). All tests were two-sided. Also, a ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11276-9 12 NATURE COMMUNICATIONS | (2019) 10:3407 | https://doi.org/10.1038/s41467-019-11276-9 | www.nature.com/naturecommunications

  µL of T4 DNA Ligase Buffer for Ion Torrent, 0.7 µL of Ion P1 adaptor (double-stranded), 0.25 µL of Bst 2.0 WarmStart DNA Polymerase, 1.5 µL of T4 DNA ligase, and 0.7 µL of in-house barcodes]. Bead purification of 1.8x was applied to clean libraries and 100 ng of adaptator ligated DNA were amplified with 15 µL of Master Mix Amplification [containing 1 µL of Primers, 12.5 µL of NEBNext High-Fidelity 2x PCR Master Mix, and 1.5 µL of H2O]. Pooling of libraries was performed equimolarly and loaded on a 2% agarose gel for electrophoresis (220 V, 40 min). Using the GeneClean™ Turbo kit (MP Biomedicals, USA) pooled DNA libraries were recovered from selected fragments of 200-300 bp in length. Libraries quality and quantity were assessed using Agilent High Sensitivity DNA kit on the Agilent 2100 Bioanalyzer on-chip electrophoreses (Agilent Technologies). Sequencing of the libraries was performed on the Ion Torrent TM Proton Sequencer (Life Technologies Corp) aiming for deep coverage (> 250x), using the Ion PI TM Hi-QT TM OT2 200 Kit and the Ion PI TM Hi-Q TM Sequencing 200 Kit with the Ion PI TM Chip Kit v3 following the manufacturer's protocols.

  NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11276-9 ARTICLE NATURE COMMUNICATIONS | (2019) 10:3407 | https://doi.org/10.1038/s41467-019-11276-9 | www.nature.com/naturecommunications

Figure 1 :

 1 Figure 1: Bioinformatics workflows for data processing and associated quality controls (QC; green boxes). Bioinformatics tools used for the processing of the WES/WGS data, RNA-Seq, and methylation data are represented in the left, middle, and right panels, respectively.

Figure 2 :

 2 Figure 2: Quality control (QC) performed on each omic dataset. (A) Read QC using FastQC for WES data. (B) Read QC using FastQC for WGS data. (C) Read QC usingFastQC for RNA-Seq data. For A, B, and C, the left panels correspond to the sequence quality plots, the x-axis representing the base position in the read and the y-axis the mean quality value; the right panels correspond to the per sequence quality score plots, the x-axis representing the mean quality score and the y-axis the number of reads. (D) QC of the RNA-Seq data after trimming. Left: Bar plot representing the percentage of reads uniquely mapped ("Uniquely mapped"), mapped to multiple loci ("Mapped to multiple loci" or "Mapped to too many loci" if the number of loci is >10), unmapped because the mapped reads' proportion was too small ("Unmapped: too short"), unmapped because of too many mismatches ("Unmapped: mismatches"), or unmapped for other reasons ("Unmapped: other"). Middle: Cumulative bar plot representing the percentages of reads mapped, using RSeQC, at different locations in the genome (exons, introns, 5 ′ and 3 ′ untranslated transcribed region [UTR], intergenic regions, TSS, and TES). Right: Cumulative bar plot representing the cumulative percentages associated with the different read assignments using HTSeq ("Assigned": reads assigned to 1 gene, "Ambiguous": reads assigned to multiple overlapping genes, "Aligned not unique": reads assigned to multiple non-overlapping genes, "No Feature": reads assigned to none of the features). (E) Left: Samples' quality based on log median intensities. The x-axis and y-axis correspond to the median of log2 methylated and unmethylated intensities, respectively. Right: Representation of the between-sample similarities based on the 2 first multidimensional scaling dimensions. (F) Histogram of the median detection P-value for each sample. (G) Distribution of the β-values for each sample before and after the filtering step (left and right panel, respectively).

  Figure 2: Quality control (QC) performed on each omic dataset. (A) Read QC using FastQC for WES data. (B) Read QC using FastQC for WGS data. (C) Read QC usingFastQC for RNA-Seq data. For A, B, and C, the left panels correspond to the sequence quality plots, the x-axis representing the base position in the read and the y-axis the mean quality value; the right panels correspond to the per sequence quality score plots, the x-axis representing the mean quality score and the y-axis the number of reads. (D) QC of the RNA-Seq data after trimming. Left: Bar plot representing the percentage of reads uniquely mapped ("Uniquely mapped"), mapped to multiple loci ("Mapped to multiple loci" or "Mapped to too many loci" if the number of loci is >10), unmapped because the mapped reads' proportion was too small ("Unmapped: too short"), unmapped because of too many mismatches ("Unmapped: mismatches"), or unmapped for other reasons ("Unmapped: other"). Middle: Cumulative bar plot representing the percentages of reads mapped, using RSeQC, at different locations in the genome (exons, introns, 5 ′ and 3 ′ untranslated transcribed region [UTR], intergenic regions, TSS, and TES). Right: Cumulative bar plot representing the cumulative percentages associated with the different read assignments using HTSeq ("Assigned": reads assigned to 1 gene, "Ambiguous": reads assigned to multiple overlapping genes, "Aligned not unique": reads assigned to multiple non-overlapping genes, "No Feature": reads assigned to none of the features). (E) Left: Samples' quality based on log median intensities. The x-axis and y-axis correspond to the median of log2 methylated and unmethylated intensities, respectively. Right: Representation of the between-sample similarities based on the 2 first multidimensional scaling dimensions. (F) Histogram of the median detection P-value for each sample. (G) Distribution of the β-values for each sample before and after the filtering step (left and right panel, respectively).

Figure 3 :

 3 Figure 3: Two-dimensional projection of LNEN transcriptome data using UMAP. The representation was obtained from the TumorMap portal, using the hexagonal grid view, each hexagonal point representing a LNEN sample. Point colors correspond to the molecular clusters defined in the previous publications.

Figure 4 :

 4 Figure 4: Quality controls performed on the UMAP projection. (A) Comparison of the samples' neighborhood preservation for UMAP, PCA-2D, and PCA-5D dimensionality reductions. SD ′ k values are represented as a function of the number k of nearest neighbors considered, for different dimensionality reduction methods: PCA-2D in purple, PCA-5D in blue, UMAP with n neighbors = 238 (UMAP-nn-238) in yellow, and UMAP with the default value n neighbors = 15 (UMAP-nn-15) in green. Error bars correspond to the means ± standard deviations computed across 1,000 replicate simulations. (B) Concordance between gene expressions' spatial auto-correlations in the original space, UMAP-nn-238, and PCA-5D dimensionality reductions. For each space, the genes were ranked on the basis of the spatial auto-correlations of their expression (mean MI values). The concordance is measured as the proportion of overlap between the top N genes in the different spaces (colored lines). The yellow line corresponds to the proportion of overlap expected under the null hypothesis (based on the expected mean of the hypergeometric law). The Euler diagram represents the overlaps between the top 1,000 features (N = 1,000, dashed line) resulting from the 3 spaces.

  findings using published pulmonary carcinoid data from Laddha 402 et al.
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 34 Cross-validation of 850K methylation array data and 680 quantitative pyrosequencing. Scatter plots for the methylation values obtained by 681 pyrosequencing (x-axis) and the β-values obtained from the 850K array (y-axis) for 682 cg26576712 (A.) and cg02493167 (C.). Each dot in the diagram represents the 683 comparison of % methylation according to pyrosequencing versus the β-value for a single 684 cg-site. B. and D. corresponding Bland-Altman plots. The difference between both 685 methods for every individual measurement is plotted against the mean of both methods. 686 The mean of the differences +/-two times the standard deviation denotes the 95% range 687 for the limits of agreement (marked by the blue lines). For the construction of these plots, 688 the percentages pyrosequencing have been divided by a factor 100 in order to obtain data 689 sets of the same size range. 690 Confirmation of findings on Laddha et al data. A. Histogram 692 presenting the OTP expression, in units of normalized read counts, pattern in pulmonary 693 carcinoids. Striped curve represent the distribution fit of the two Gaussian mixture 694 distributions (component 1, in blue, and component 2, in orange). The OTP cut-off is 695 determined as the lowest density point of the two Gaussian mixture distributions (upper 696 panel, x = 10.2). B. Heatmap of the methylation level (in β-values) for the OTP high and 697 OTP low group (x-axis) for each cg-site (y-axis). The cgs which harbour a significantly 698 different methylation level in the original data between the groups are presented in 699 yellow. The upper legend bar represents the histopathological diagnosis of each sample, 700 and the lower bar indicates the OTP group.
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  et al.(Chen et al., 2020) investigated immunogenetic ITH using whole-exome and T-cell receptor sequencing of 69 longitudinal MPM specimens from nine patients that were treated with dasatinib.Zhang et al. (Zhang et al., 2021) performed multi-regional exome sequencing of 90 tumour samples from 22 MPMs. Finally, very recently, Meiller et al.[START_REF] Meiller | Multi-site tumor sampling highlights molecular intra-tumor heterogeneity in malignant pleural mesothelioma[END_REF] also performed deep characterisation of ITH in MPM tumours using paired biopsies through WES, RNA sequencing, and DNA methylation on, respectively, nine, eighth, and five patients. Globally, more integrative effort might be needed to provide a more appropriate clinical management of MPM including the molecular characteristics with detailed clinical, epidemiological, and morphological features with prognostic value based on Artificial Intelligence algorithms (AI) that could ultimately improve the early detection, diagnosis, classification, and clinical management. The unexplored MPM heterogeneity, combined with the intrinsic difficulties when studying rare cancers, has been defined as one of the main causes for the limited progress made in the clinical management of MPM over the past decades. A brief overview of the manuscripts that I co-authored for this chapter is shown below.

Fig. 1 .

 1 Fig. 1. Malignant Pleural Mesothelioma expression profiles follow a continuum model. a) Two-dimensional summary of 284 transcriptomes using Principal Component Analysis (PCA). Point colours represent the three histopathological types, and the overlayed blue-coloured rectangles represent the survival in nine regions; the filled shapes on the bottom panel correspond to the density of samples from each histopathological type on Dimension 1, and the filled shapes on the right panel correspond to the RNA-seq-estimated mean proportion of immune cells from 10 cell types, in each sample, as a function of Dimension 2 coordinates, computed using a moving average with a window size of 30 Dimension 2 units. b) Integral AUC (iAUC) of five Cox proportional hazards survival models: (i) a model based on the three histological types; (ii) a model based on the percentage of sarcomatoid; (iii) a model based on the four molecular clusters from the study of Bueno and colleagues [12]; (iv) a model based on the coordinates of samples on Dimension 1; (v) a model based on the coordinates of samples on Dimensions 1 and 2. c) Gene-Set Enrichment Analysis (GSEA) of the genes most correlated with Dimensions 1 and 2, based on the hallmarks of cancer gene sets; violin plots and boxplots represent the distribution of Pearson correlation coefficients between gene expression and Dimensions 1 (red) or 2 (blue); genes in parenthesis are not part of the current hallmark annotation; only the three hallmarks with the highest correlation are represented; see Fig. S9 for the results of all hallmarks. In the boxplot representation, centre line represents the median and box bounds represent the inter-quartile range (IQR). The whiskers span a 1.5-fold IQR or the highest and lowest observation values if they extend no further than the 1.5-fold IQR. d) Correlation circle of the Principal Component Analysis (PCA) from panel (a) for 12 genes of interest.Arrow lengths and direction correspond to the strength and sign of the correlation between the variable and Dimensions 1 and 2. e) Forest plot of hazard ratios for overall survival with age, sex and asbestos exposure as covariables. The black boxes represent estimated hazard ratios and whiskers represent the associated 95% confidence intervals. Wald test q-values are shown on the right. Only the markers significantly associated with survival are represented (Wald test q < 0.05); see TableS8for the results of all genes. Data used in (a) and (c) correspond to the n = 211 samples from the study of Bueno and colleagues[12] and the n = 73 transcriptomes from the TCGA MESO cohort[13]. Data used in (b) correspond to the n = 199 samples from the Bueno cohort[12] with RNA-seq data and available percentage of sarcomatoid component. Data used in (e) correspond to n = 205 samples from the Bueno cohort[12] and n = 59 samples from the TCGA MESO cohort[13] with RNA-seq data and available asbestos exposure annotations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2 .

 2 Fig. 2. Technical validation of a five-gene panel on 103 MPMs. a) Left panel: correlation circle of the Principal Component Analysis (PCA) based on the RNA-seq expression of the five-gene panel. Arrow lengths and direction correspond to the strength and sign of the correlation between the variable and Dimensions 1 and 2. Data used correspond to the n = 211 samples from the study of Bueno and colleagues[12] and the n = 73 transcriptomes from the TCGA MESO cohort[13]. Right panel: correlation matrix of the five-gene panel expression (upper triangle), of their protein expression (lower triangle), and correlation between expression from RNA-seq data and protein expression from IHC data (green diagonal). Colours correspond to the magnitude and sign of the correlations and statistically significant correlations are surrounded by a black box; dendrograms represent hierarchical clustering of gene or protein expression levels. Data used correspond to the n = 103 samples from the Bueno cohort[12] with RNA-seq data and with Tissue MicroArray (TMA) IHC staining data. b) Tissue MicroArray (TMA) IHC staining from the technical validation series corresponding to n = 103 samples from the Bueno cohort[12], with 0.6 mm core diameter at 5.2× magnification, for the five-gene panel, representing the positive and negative references of the tested protein expression. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3 .

 3 Fig. 3. Diagnostic and prognostic value of the expression level of the five-protein panel in the replication series of 77 MPMs, determined by immunohistochemistry. a) Top panel: two-dimensional summary of the gene expression in the discovery cohort (n = 284) (PCA; subset of Fig.1a). Bottom panel: two-dimensional summary of the protein expression of the five genes in the replication cohort (n = 77) (IHC PCA). Point colours correspond to the three sample sets from Table1. b) Top panel: correlation circle of the IHC PCA (n = 77) from (a) bottom panel, where arrow lengths and direction correspond to the strength and sign of the correlation between the variable and Dimensions 1 and 2. Bottom panel: correlation matrix of the protein expression of the 77 MPMs from the replication cohort, where colours correspond to the magnitude and sign of the correlations; the dendrogram represents a hierarchical clustering of protein expression. Significant correlations are surrounded by a black box. c) Left panel: gene expression levels (normalized read counts) in the discovery cohort between long-survival epithelioid, long-survival epithelioid, and sarcomatoid groups, resulting in n = 82 samples from the study of Bueno and colleagues[12] and the n = 31 transcriptomes from the TCGA MESO cohort[13], for the three sets; each row presents violin plots and boxplots for a gene, with stars representing the significance level of pairwise comparisons between groups (q-values from two-sided independent Wilcoxon U tests). Right panel: Protein expression levels (% of cells where the protein is expressed) in the replication cohort, for the three sets; each row presents violin plots and boxplots for a protein, with stars representing the significance level of pairwise comparisons between groups (q-values from one-sided paired Wilcoxon T-tests). Sample sizes were 74, 74, 73, 70, 74, and 69, for CD8, PDL1 in the tumour, PDL1 in TILS, VEGFR2, VEGFR3, and VISTA, respectively. In the boxplot representation, centre line represents the median and box bounds represent the inter-quartile range (IQR). The whiskers span a 1.5-fold IQR or the highest and lowest observation values if they extend no further than the 1.5-fold IQR. d) PDL1 immunohistochemistry of two MPM cases from the replication cohort (left panel: short-survival epithelioid sample; right panel: sarcomatoid sample), both PDL1+ and PDL1 TILS+. Upper panels: Hematoxylin Eosin Saffron (HE) stain at 7× magnification, where white and black arrows show tumour cells and TILS, respectively. Lower panels: corresponding staining with PDL1 rabbit monoclonal antibody (cl SP263; VENTANA) at 7× magnification, where white and black arrows show positive staining of tumour cells and TILS, respectively. e) Protein expression level of VISTA in the replication cohort when considering epithelioid subtypes, independently of the sample set (upper panel) and in addition to the sample set (bottom panel). Data used correspond to n = 63 samples from the replication cohort with available data for all protein markers. In the boxplot representation, centre line represents the median and box bounds represent the inter-quartile range (IQR). The whiskers span a 1.5-fold IQR or the highest and lowest observation values if they extend no further than the 1.5-fold IQR.

Fig. 4 .

 4 Fig. 4. Characteristics of the three Malignant Pleural Mesothelioma transcriptomic profiles. The schematic position of samples harbouring a given profile in the two-dimensional summary from Fig. 1a( n= 284) is represented in the bottom right panel. For each profile, the hallmarks of cancer generally upregulated are indicated by pictograms in the upper left part, the histological type composition is represented by a pie chart in the upper right part, the proportion of tumour infiltrating lymphocytes estimated from the RNA-seq data (Figs. 1 and S10) is represented by a bar plot in the bottom left part, and the expression of representative genes is represented by a radar plot in the bottom right part. Tissue MicroArray (TMA) IHC staining from the technical validation series, with 0.6 mm core diameter at 5.2× magnification, for the five-gene panel, are presented above each panel.

Fig. 1

 1 Fig. 1 Schematic representation of the different classifications of malignant pleural mesothelioma and their key molecular features. The front face of the pyramid represents the current WHO classifications (top) and the different discrete (middle) and continuous (bottom) molecular classifications that have been proposed. For discrete molecular classifications, the proposed molecular clusters are reported. For Blum et al. [24], a gradient of the epithelioid score (E-score) and the sarcomatoid score (S-score) is represented. For Alcala et al. [25], the association between the first dimension of the molecular classification and the WHO

  , arrow length corresponding to task specialization ITH matches arrow width, corresponding to histopathological ITH). Interestingly, ITH detected along the Morphology factor is driven by two alternative sources: the tumor cell morphology, as observed in between-region variation in EMT score (sample MESO_002, Figure 2C, left) and the innate immune response, as observed in between-region variation in the difference between neutrophil and monocytes and NK cells (sample MESO_052, Figure 2C, right). In general, the strongest ITH was due to different immune infiltration profiles, including the small changes in innate response cell compositions (7%) shown in Figure 2C and stronger changes in adaptive immune response cell proportions

Figure

  Figure 3E; Figure S3E; TableS6). A signature of clustered structural variants (SVs) was

  ), and followingZhang et al. (2021b) who focused on similarly low tumor mutational burden (TMB) tumors, and given that the small variants accurately followed a simple linear model of accumulation as a function of patient age (FigureS5G), we used an estimated acceleration rate of 1x to time the events in an individual's lifetime. WGD and chr 5p amp (containing TERT) that influenced the Ploidy, Morphology, and Adaptive-response factors, can occur up to 20-30 years before diagnosis (Figures 5E).

  Similarly, BAP1, NF2, CDKN2A/B and MTAP CN losses that impact the tumor specialization map (Figure 5C), were preferentially clonal and thus likely to have happened early in tumor development (Figure

  data. Samples underwent an independent pathological review. The MESOMICS cohort includes biological material from 120 MPM patients kindly provided by the French MESOBANK, annotated with detailed clinical, epidemiological, and morphological data. Based on the French MESOPATH reference panel, out of the 120 MPM tumor samples, 79 belong to the epithelioid type (MME), 26 are biphasics (MMB) and 15 are sarcomatoids (MMS). Out of the 105 samples with an epithelioid component (79 MME and 26 MMB), solid, acinar, trabecular, and tubulopapillary architectural patterns were the most frequent in the series (n

  , and compared to that from the Bueno and TCGA cohorts in Figure S3A. TCGA copy number data has been downloaded from the TCGA portal (TCGA-MESO, https://portal.gdc.cancer.gov/, March 2021) corresponding to the allele-specific copy number segment data from genotyping arrays.

  with p-detection value > 0.01, 26,254 cross-reactive, 8,838 sex chromosome, and 4,628 SNP-associated). This resulted in a normalised, filtered dataset of 396,145 probes for 200 samples. Beta and M-values were extracted (functions getBeta and getM, minfi), one hundred and twenty eight probes recorded m-values of -∞ for at least one sample and were replaced with the next lowest M-value in the dataset. Seven samples were then removed from the beta and m matrices (all MESOMICS samples), three normal tissues, one technical replicate and three non-chimionaif samples, resulting in a dataset of 193 samples.

Figure

  Figure S1C), (iii) MOFA-TCGA (n = 73, Figure S1C), (iv) MOFA-3-cohorts (n = 374, Figure S1B), and (v) MOFA-Cell lines described above (n = 59, Figure S7A). Additionally, we ran MOFA on our discovery cohort including the ITH samples (MOFA-ITH, n = 134) to evaluate the ITH within MPM samples. Also, note that some samples did not have all the data sets chosen to be integrated available, such as for Bueno and colleagues' samples missing methylation array data. Fortunately, MOFA was shown to handle missing data, including samples with entire 'omic techniques missing, by using the correlated signals from several datasets to accurately reconstruct latent factors (Arguelaget et al. 2018).

Figure 5 MESOMICS

 5 Figure 5

Figure 6 .

 6 Figure 6. Clinical relevance of the four identified factors. (A) Forest plot of hazard ratios of MOFA latent factors for overall survival (OS). (B) Integral AUC (iAUC) of 11 Cox proportional hazards survival models: (i) a model based on the three histopathological types; (ii) a model based on the proportion of sarcomatoid content; (iii) a model based on the log2 of the CLDN15/VIM (C/V) expression ratio from Bueno et al. (2016); (iv-vi) models based on the E and S-score from Blum et al. (2019), individually and in combination; (vii) a model based on the AI prognostic score from Courtiol et al. (2019); (vii-xi) models based on each MOFA LF individually; (xii), a model based on all four MOFA LFs; (xiii) a model based on simpler proxies of the four MOFA LFs. Left: iAUC in the MESOMICS cohort, estimated using cross-validation. Right: iAUC estimated in the TCGA cohort. Bars correspond to standard errors of estimations (based on cross-validation sets for MESOMICS and bootstrapping for TCGA). (C) Increase in AUC in models (ii)-(xi) compared to model (i) as a function of OS, in two sample groups: long-(OS > 30 months) and shortsurvival (OS < 10 months), in the MESOMICS cohort. Increases in AUC are quantified as a percentage of change compared to the AUC of model (i). (D) Kaplan-Meier curves of OS for the three histopathological types (left) and prognostic groups from Cox model (xi) predicted using crossvalidation (right), in the MESOMICS cohort. Dashed lines represent the median OS of each group. Prognostic groups were defined as the 25% of samples with the most extreme good and bad prognostic based on the cross-validated predictions of the Cox model (xi). Up: MKI67 expression level in nrc in the good and bad-survival prognostic groups defined by Cox model (xi). (E) Correlations between drug sensitivity (IC 50 ) of MPM cell lines and MOFA factors. Drugs have been selected from Figure S7 H-I, as being significantly correlated with at least one of the four factors and displaying an extreme factor weight within the empirical feature weight distribution (within 2 standard deviations of the mean). Of note, only drugs for which at least 10 cell-lines have been tested have been considered. (F) Correlation between four clinically accessible features and MOFA factors. See also Figures S6and S7 and Tables S13 and S14.
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Figure S2 .

 S2 Figure S2. Patterns of intra-tumor heterogeneity in 13 samples. A) Position of multi-regional samples in MOFA LFs.Colors represent samples (gray: samples with a single region sequenced; colors: multi-regional samples), segments connect regions from a same tumor. Black bars on the left of each plot represent the empirical 50% and 75% percentiles of the distribution of pairwise inter-tumor distances, and tumors with an intra-tumor distance in the range [50%, 75%) and [75%, 100%) are annotated by a † and † †, respectively. Note that samples with missing genomic data are not represented on Factor 1. B) Venn-Euler diagrams of small variants (top) and SVs (bottom), indicating which alterations are found in a single or both regions. Driver mutations as highlighted in Figure4are mentioned, with numbers corresponding to the number of such alterations among the 13 samples. C) Joint distribution of VAFs for the 12 multi-regional samples with WGS data (out of 13). Point colors: density measured by the number of points within a fixed radius. Damaging alterations in driver genes are represented by red points and text. Dashed lines: expected VAF for clonal alterations in diploid regions given tumor purity; dotted line: expected VAF for clonal alterations in haploid regions given tumor purity; solid line: ratio of tumor purities estimated from WGS data.3

Figure S3 .

 S3 Figure S3. Detailed genomic profiles. A) Highly-consistent CNV profiles across MPM cohorts. B) Amplicon Architect ecDNA predictions. C) Characterization and classification of clustered point mutations of one sample with co-occurrence of kataegis and ecDNA (MESO_019_T). D) Chromothripsis analysis combining Structural Variants and Copy Number Variants. E) MPM tumors with chromothripsis tend to have more mRNA fusions per structural variant. F) Association between clustered SV signature, SV load, and chromothripsis (Pearson correlation R = 0.38, p-value=3.658e-05). G) Tumor Mutational Burden of the 10 Single Nucleotide Variant Signatures detected in the MESOMICS cohort.

Figure S4 .

 S4 Figure S4. MPM driver detection. A)Tumor Mutational Burden of Mesothelioma and TCGA tumors. B) Comparison of the mutational load between mesothelioma and tumor-types from the Pan Cancer Analysis of Whole Genome data (PCAWG). Left: median number of Structural Variants (SVs) as a function of the median number of SNVs per tumor type. Right: median percentage of the genome affected by amplifications and deletions per tumor type. C) Recurrent genes affected by SVs the MESOMICS cohort. D) Structural and CNV variants affecting the coding regions of the RBFOX1 gene. E) Number of mRNA fusions per Tumor type and recurrent mRNA-fusion network for Mesomics, Bueno and TCGA cohorts. F) IntOGen MPM drivers (based on SNVs and small indels) identified within each individual MPM cohort(Bueno, TCGA, and MESOMICS) and in the pooled cohort(3-cohorts). The upset plot represents the intersections between the four sets of drivers.

Figure S5 .

 S5 Figure S5. Detailed impact of genomic alterations on molecular profiles of MPM. A) Overview of TERT alterations in the MESOMICS samples. Left: oncoplot of the different types of alterations affecting TERT and its chromosomal arm. Right: impact of TERT amplification on gene expression (in normalized read counts, nrc). B) Schematic representation of mesothelioma driver ERG functions. Histone methyltransferases KMT2D, SETDB1, EZH2 and SETD2 methylate histone positions H3K4, H3K9, H3K27 and H3K36 respectively (Me), DNA methyltransferase DNMT3B maintains DNA methylation marks (Me), BAP1 deubiquitinates H2AK119 (Ub), NCOR1 and NCOR2 bind to nuclear receptors (NR) as part of corepressor complexes and recruit histone deacetylase HDAC3, and PBRM1 binds acetylated histone tails(Ac) as part of the PBAF chromatin remodelling complex (created with BioRender). C) top 10 down-regulated genes of WGD+ samples. D) Comparison of copy gain timing estimates based on CpG to TpG mutations and based on all mutations. Points represent point estimates for an event and a tumor sample, and segments 95% Bayesian CI. Samples included either underwent a WGD event (MESO_008 and MESO_063), or a large-scale LOH allowing timing (MESO_048, MESO_093). E) Comparison of copy gain timing CI using Bayesian inference or parametric bootstrapping. Points represent the centers of CI, and segments 95% CI. Samples included correspond to that presented in panel D. F) Timing of copy number gains in mutation time. Points represent tumor sample estimates and segments their 95% CI. G) Analysis of the small variant mutational burden as a function of age at diagnosis. The line denotes the mean and standard error of a linear regression model without intercept (R 2 and best fit equation are mentioned in the plot). H) Clonality of CNVs affecting driver genes from Figure 4. I) Neutral evolution detected from the VAF distribution, and corresponding proportions of small variants belonging to selected (red), neutral subclones (gray), or clonal (blue, purple, and green) (top), and position of samples in the Pareto front from Figure 1D. J) Clonality of driver small variant mutations; "early" indicates that the alteration predates the LOH in the corresponding region. (H)-(I) display 13 high-purity samples where clonal reconstruction was possible (see list in panel I). 6

Figure S6 .

 S6 Figure S6. Association between survival and MOFA in the MESOMICS cohort. A) Forest plot of the survival analysis based on the ten MOFA latent factors (LFs), using a Cox proportional hazards model with LFs as continuous explanatory variables for (A) all 120 MESOMICS and (B) MME only samples (n=79). The black box represents estimated hazard ratios and whiskers represent the 95% confidence intervals. Wald test p-values are shown on the right. See corresponding data in Supplementary Table1. C) Pearson correlation coefficients between factors. D) Linear regression test significance (qvalue) between LFs (row) and each technical variable (column). E) Increase in AUC as a function of percentage of change compared to the AUC of model (i). F) Density of survival time within the MESOMICS cohort. G) Integral AUC (iAUC) of twenty-two Cox proportional hazards survival models based on: (i) the three histopathological types (MME, MMB, and MMS); (ii) the proportion of sarcomatoid content; (iii) the log2 ratio of CLDN15/VIM (C/V) expression proposed byBueno and colleagues; (iv), (v) and (vi) the E-score, S-score, and combining both scores from Blum and colleagues, respectively; (vii) an AI prognostic score; (viii-xi) the one-dimensional summary of molecular data using LFs as a continuous variable; (xii-xvii), the two-dimensional summary of molecular data using either each combination of 2 LFs as continuous variables, respectively; (xviii-xxi), the three-dimensional summary of molecular data using each combination of 3 LFs as continuous variables; and (xxii), the four-dimensional summary of molecular data using all 4 LFs. Panels (E-G) present the model fit accuracy (no split between training and test sets), while (H-J) present the out-of-sample accuracy within the MESOMICS cohort (4-fold cross-validation).7
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 1 Figure S6. Association between survival and MOFA in the MESOMICS cohort. A) Forest plot of the survival analysis based on the ten MOFA latent factors (LFs), using a Cox proportional hazards model with LFs as continuous explanatory variables for (A) all 120 MESOMICS and (B) MME only samples (n=79). The black box represents estimated hazard ratios and whiskers represent the 95% confidence intervals. Wald test p-values are shown on the right. See corresponding data in Supplementary Table1. C) Pearson correlation coefficients between factors. D) Linear regression test significance (qvalue) between LFs (row) and each technical variable (column). E) Increase in AUC as a function of percentage of change compared to the AUC of model (i). F) Density of survival time within the MESOMICS cohort. G) Integral AUC (iAUC) of twenty-two Cox proportional hazards survival models based on: (i) the three histopathological types (MME, MMB, and MMS); (ii) the proportion of sarcomatoid content; (iii) the log2 ratio of CLDN15/VIM (C/V) expression proposed byBueno and colleagues; (iv), (v) and (vi) the E-score, S-score, and combining both scores from Blum and colleagues, respectively; (vii) an AI prognostic score; (viii-xi) the one-dimensional summary of molecular data using LFs as a continuous variable; (xii-xvii), the two-dimensional summary of molecular data using either each combination of 2 LFs as continuous variables, respectively; (xviii-xxi), the three-dimensional summary of molecular data using each combination of 3 LFs as continuous variables; and (xxii), the four-dimensional summary of molecular data using all 4 LFs. Panels (E-G) present the model fit accuracy (no split between training and test sets), while (H-J) present the out-of-sample accuracy within the MESOMICS cohort (4-fold cross-validation).7
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 S783 Figure S7. MOFA of MPM cell lines. A) Overview of the omic data sets integrated into MOFA (design follows that of Figure S1A). B) Association between MOFA cell lines morphological factor and the previously proposed molecular classifications. C-D) Association between Ploidy and ploidy factor, and between CIMP index and CIMP factor, respectively. E) Correspondance between MOFA cell lines LFs and the MESOMICS MOFA LFs from Figure 1. F) Correlations between drug responses (IC 50 in µM) and MOFA LFs of cell lines. Significant associations are annotated by black point border. G) Distribution of drug response weights from the Drugs data set, with drugs for which the response is significantly correlated with the given LF annotated in black. Targeted pathways are represented in (F) by a color bar (left), and in (G) by point colors. H) Correlations between representative drug responses significantly correlated with MOFA LFs from cell lines (left: negative correlations, right: positive associations). In (B) top and (I), p-values of an ANOVA is presented. In other (B) plots, (C), (D), (F), and (H), Pearson correlation coefficients and the associated p-values are displayed. I) Relationship between acinar phenotype and BAP1 expression measured by IHC. Sample sizes (n) and cohort of origin (Iorio or de Reyniès) are mentioned in each scatter plot. 8

(

  MOFA), we have demonstrated that MPM heterogeneity arises from four sources of variation: tumour cell morphology, ploidy, adaptive immune response, and CpG island cartography of the survival strategies involved in MPM. Additionally, we closely interrogate the genomic features associated with these different phenotypes. Tumour survival strategies and their related molecular, morphological, and clinical features are in fact particularly used in personalised medicine to design therapies that target specifically these particular phenotypes. In the clinical setting, these phenotypic maps could be used as a reference map to assess patients' molecular profile and help for the diagnosis and decision-making. This is of particular interest as high throughput sequencing technologies start to be used for personalised medicine at a broad scale (e.g., in France with the Plan France Médecine Génomique 2025).However, despite our recent efforts, there is still a limited number of samples of the nonepithelial types. Indeed, biphasic and sarcomatoid MPMs are quite underrepresented (on average only one third of all samples, including only 11 and 15 sarcomatoids in Alcala et al.(Alcala et al., 2019b) and in Mangiante et al.(Mangiante et al., 2021) respectively), which leads to a current lack of resolution in the area of MPM maps with tumours of high sarcomatoid component and lowest survival. This unfortunately limits the usefulness of the current molecular maps for the most aggressive cases.In addition, high heterogeneity at the morphological level is observed in MPM suggesting a strong molecular intra-tumoural heterogeneity, that would obscure the interpretation of the clinical value of a given molecular alteration. A recent study has shown a discordance of 20% regarding the MPM histological type between biopsies performed for diagnosis and surgical resections performed for curative purposes in some cases reflecting the intra-tumoural heterogeneity (ITH)(Chirieac et al., 2019). If this histological ITH is, as expected, reflecting a high degree of heterogeneity at the molecular level, including in the microenvironment, it will condition the efficacy of prognosis, predictive, or treatment response markers. Despite these observations, the MPM ITH has been little studied beyond the histological aspect, largely due to the lack of available biological material needed for this type of study.As part of the MESOMICS project, we have also started to study the ITH of MPM in[START_REF] Mangiante | Disentangling heterogeneity of Malignant Pleural Mesothelioma through deep integrative omics analyses[END_REF] through multi-omic integrative analyses of two tumoural regions in a subset of 13 MPM patients. In this pilot study we have observed that ITH can be greater than inter-tumoural heterogeneity in all molecular axes except the Ploidy factor. This heterogeneity matched pathological annotations and impacted tumour phenotype. However, we have identified two main limitations in this retrospective study: (i) limited information regarding the physical distance between the tumoral pieces was available, precluding correlations between distance and heterogeneity and (ii) bulk sequencing of tumours does not allow to identify the cell population (tumour, tumour-associated stroma or tumour-infiltrating immune cells) over/under-expressing particular biomarkers, limiting the interpretation and the clinical relevance of the ITH. We hypothesise that the difficulty in identifying effective diagnostic and prognostic biomarkers is a consequence of a high level of molecular ITH, and that multi-regional, multi-omic, and single cell sequencing are needed to precisely describe and quantify this ITH. Understanding the diversity and interaction of MPM cells with the microenvironment might provide essential information on cancer progression and contribute to understanding the modest and heterogeneous response to treatment, in clinical trials assessing immunotherapies and antiangiogenic drugs.
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 613S467S6S79S8S10S1113S12S13S14 Figure S4 Percentage of sarcomatoid as evaluated by the pathological report from Bueno et al. (2016), as a function of the position on PCA Dimension 1. Dimension 1 values are taken from TableS1and Fig.1afor the 211 samples fromBueno et al. (2016). The solid line corresponds to the best linear model fit; the correlation coefficient (r) and p-value of a Pearson correlation test are indicated on the top right.

Figure S1 .

 S1 Figure S1. MOFA of the MESOMICS, TCGA, and Bueno cohorts. Overview of the omic data sets integrated into MO-FAs, for (A) a MOFA of the MESOMICS cohort (n = 120), (B) separate MOFAs of the TCGA (n = 73) and Bueno cohorts (n = 183), and (C) a MOFA integrating the three cohorts (3-cohort MOFA; n = 403). D is the number of integrated omic features from genomic (rearrangements and mutations within DNA Alt; allele-specific copy number in Total CN and Minor CN), transcriptomic (RNA), and epigenomic data at promoter (MethPro), gene body (MethBod), and enhancer regions (MethEnh). D) Correlation between the different MOFA LFs. E) Matching between LF1, LF2, LF3, and LF4 (columns) in the different MOFAs (rows). F-G) Replication of Figure 1B-E with the TCGA and Bueno cohorts. H-J) Reference-free deconvolution (MeDeCom) of MESOMICS enhancer DNA methylation data. H) Correlation between proportion of each inferred latent methylation component (LMC) and the proportion of cell types within a sample (Pearson's correlation test, * = qvalue < 0.05). I) Proportion of LMCs 1 and 3 were significantly associated with tumour type (t-test, * = p-value < 0.05, ** = p-value < 0.01, *** = p-value < 0.001). J) Correlation between LMCs 1 and 3 and MOFA's Morphology factor (left), and LMC2 and MOFA's Adaptive-response factor (Pearson correlation test).

Figure S2 .

 S2 Figure S2. Patterns of intra-tumor heterogeneity in 13 samples. A) Position of multi-regional samples in MOFA LFs.Colors represent samples (gray: samples with a single region sequenced; colors: multi-regional samples), segments connect regions from a same tumor. Black bars on the left of each plot represent the empirical 50% and 75% percentiles of the distribution of pairwise inter-tumor distances, and tumors with an intra-tumor distance in the range [50%, 75%) and [75%, 100%) are annotated by a † and † †, respectively. Note that samples with missing genomic data are not represented on Factor 1. B) Venn-Euler diagrams of small variants (top) and SVs (bottom), indicating which alterations are found in a single or both regions. Driver mutations as highlighted in Figure4are mentioned, with numbers corresponding to the number of such alterations among the 13 samples. C) Joint distribution of VAFs for the 12 multi-regional samples with WGS data (out of 13). Point colors: density measured by the number of points within a fixed radius. Damaging alterations in driver genes are represented by red points and text. Dashed lines: expected VAF for clonal alterations in diploid regions given tumor purity; dotted line: expected VAF for clonal alterations in haploid regions given tumor purity; solid line: ratio of tumor purities estimated from WGS data.3

Figure S3 .

 S3 Figure S3. Detailed genomic profiles. A) Highly-consistent CNV profiles across MPM cohorts. B) Amplicon Architect ecDNA predictions. C) Characterization and classification of clustered point mutations of one sample with co-occurrence of kataegis and ecDNA (MESO_019_T). D) Chromothripsis analysis combining Structural Variants and Copy Number Variants. E) MPM tumors with chromothripsis tend to have more mRNA fusions per structural variant. F) Association between clustered SV signature, SV load, and chromothripsis (Pearson correlation R = 0.38, p-value=3.658e-05). G) Tumor Mutational Burden of the 10 Single Nucleotide Variant Signatures detected in the MESOMICS cohort.

Figure S4 .

 S4 Figure S4. MPM driver detection. A)Tumor Mutational Burden of Mesothelioma and TCGA tumors. B) Comparison of the mutational load between mesothelioma and tumor-types from the Pan Cancer Analysis of Whole Genome data (PCAWG). Left: median number of Structural Variants (SVs) as a function of the median number of SNVs per tumor type. Right: median percentage of the genome affected by amplifications and deletions per tumor type. C) Recurrent genes affected by SVs the MESOMICS cohort. D) Structural and CNV variants affecting the coding regions of the RBFOX1 gene. E) Number of mRNA fusions per Tumor type and recurrent mRNA-fusion network for Mesomics, Bueno and TCGA cohorts. F) IntOGen MPM drivers (based on SNVs and small indels) identified within each individual MPM cohort(Bueno, TCGA, and MESOMICS) and in the pooled cohort(3-cohorts). The upset plot represents the intersections between the four sets of drivers.

Figure S5 . 6 Figure S6 .

 S56S6 Figure S5. Detailed impact of genomic alterations on molecular profiles of MPM. A) Overview of TERT alterations in the MESOMICS samples. Left: oncoplot of the different types of alterations affecting TERT and its chromosomal arm. Right: impact of TERT amplification on gene expression (in normalized read counts, nrc). B) Schematic representation of mesothelioma driver ERG functions. Histone methyltransferases KMT2D, SETDB1, EZH2 and SETD2 methylate histone positions H3K4, H3K9, H3K27 and H3K36 respectively (Me), DNA methyltransferase DNMT3B maintains DNA methylation marks (Me), BAP1 deubiquitinates H2AK119 (Ub), NCOR1 and NCOR2 bind to nuclear receptors (NR) as part of corepressor complexes and recruit histone deacetylase HDAC3, and PBRM1 binds acetylated histone tails(Ac) as part of the PBAF chromatin remodelling complex (created with BioRender). C) top 10 down-regulated genes of WGD+ samples. D) Comparison of copy gain timing estimates based on CpG to TpG mutations and based on all mutations. Points represent point estimates for an event and a tumor sample, and segments 95% Bayesian CI. Samples included either underwent a WGD event (MESO_008 and MESO_063), or a large-scale LOH allowing timing (MESO_048, MESO_093). E) Comparison of copy gain timing CI using Bayesian inference or parametric bootstrapping. Points represent the centers of CI, and segments 95% CI. Samples included correspond to that presented in panel D. F) Timing of copy number gains in mutation time. Points represent tumor sample estimates and segments their 95% CI. G) Analysis of the small variant mutational burden as a function of age at diagnosis. The line denotes the mean and standard error of a linear regression model without intercept (R 2 and best fit equation are mentioned in the plot). H) Clonality of CNVs affecting driver genes from Figure 4. I) Neutral evolution detected from the VAF distribution, and corresponding proportions of small variants belonging to selected (red), neutral subclones (gray), or clonal (blue, purple, and green) (top), and position of samples in the Pareto front from Figure 1D. J) Clonality of driver small variant mutations; "early" indicates that the alteration predates the LOH in the corresponding region. (H)-(I) display 13 high-purity samples where clonal reconstruction was possible (see list in panel I). 6
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 1 Figure S6. Association between survival and MOFA in the MESOMICS cohort. A) Forest plot of the survival analysis based on the ten MOFA latent factors (LFs), using a Cox proportional hazards model with LFs as continuous explanatory variables for (A) all 120 MESOMICS and (B) MME only samples (n=79). The black box represents estimated hazard ratios and whiskers represent the 95% confidence intervals. Wald test p-values are shown on the right. See corresponding data in Supplementary Table1. C) Pearson correlation coefficients between factors. D) Linear regression test significance (qvalue) between LFs (row) and each technical variable (column). E) Increase in AUC as a function of percentage of change compared to the AUC of model (i). F) Density of survival time within the MESOMICS cohort. G) Integral AUC (iAUC) of twenty-two Cox proportional hazards survival models based on: (i) the three histopathological types (MME, MMB, and MMS); (ii) the proportion of sarcomatoid content; (iii) the log2 ratio of CLDN15/VIM (C/V) expression proposed byBueno and colleagues; (iv), (v) and (vi) the E-score, S-score, and combining both scores from Blum and colleagues, respectively; (vii) an AI prognostic score; (viii-xi) the one-dimensional summary of molecular data using LFs as a continuous variable; (xii-xvii), the two-dimensional summary of molecular data using either each combination of 2 LFs as continuous variables, respectively; (xviii-xxi), the three-dimensional summary of molecular data using each combination of 3 LFs as continuous variables; and (xxii), the four-dimensional summary of molecular data using all 4 LFs. Panels (E-G) present the model fit accuracy (no split between training and test sets), while (H-J) present the out-of-sample accuracy within the MESOMICS cohort (4-fold cross-validation).7
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 S7 Figure S6. Association between survival and MOFA in the MESOMICS cohort. A) Forest plot of the survival analysis based on the ten MOFA latent factors (LFs), using a Cox proportional hazards model with LFs as continuous explanatory variables for (A) all 120 MESOMICS and (B) MME only samples (n=79). The black box represents estimated hazard ratios and whiskers represent the 95% confidence intervals. Wald test p-values are shown on the right. See corresponding data in Supplementary Table1. C) Pearson correlation coefficients between factors. D) Linear regression test significance (qvalue) between LFs (row) and each technical variable (column). E) Increase in AUC as a function of percentage of change compared to the AUC of model (i). F) Density of survival time within the MESOMICS cohort. G) Integral AUC (iAUC) of twenty-two Cox proportional hazards survival models based on: (i) the three histopathological types (MME, MMB, and MMS); (ii) the proportion of sarcomatoid content; (iii) the log2 ratio of CLDN15/VIM (C/V) expression proposed byBueno and colleagues; (iv), (v) and (vi) the E-score, S-score, and combining both scores from Blum and colleagues, respectively; (vii) an AI prognostic score; (viii-xi) the one-dimensional summary of molecular data using LFs as a continuous variable; (xii-xvii), the two-dimensional summary of molecular data using either each combination of 2 LFs as continuous variables, respectively; (xviii-xxi), the three-dimensional summary of molecular data using each combination of 3 LFs as continuous variables; and (xxii), the four-dimensional summary of molecular data using all 4 LFs. Panels (E-G) present the model fit accuracy (no split between training and test sets), while (H-J) present the out-of-sample accuracy within the MESOMICS cohort (4-fold cross-validation).7

  

Although very little data is available, atypical carcinoids might indeed represent an intermediate step between the low aggressive typical carcinoids and the high aggressive SCLCs and LCNECs. The line between atypical carcinoids and the high-grade SCLCs and LCNECs is not as well defined as in the case of typical carcinoids, and therefore, further genomic studies are required.

  Approximately 70% of lung tumours belong to the adeno or squamous carcinoma types. This high frequency together with the fact that these tumours usually undergo surgical resection providing enough material for deep-sequencing genomic studies, as illustrated by the key TCGA descriptive studies (see 1.2. section), explain why most of the studies on the field have focused on these two entities. Unlike lung adeno and squamous carcinomas, too little is known about the genomics of lung NENs, and although they are usually considered rare lung tumours, if we take into account the lung

cancer incidence

(1.8 

million new cases in 2012) and mortality

(1.6 million deaths in 2012)

, this relatively low percentage (~30%) translates into a considerable number of cancer patients without a therapeutic option. One of the difficulties in performing genomic studies on lung NENs is the limited availability of tissue: SCLC is usually diagnosed in small FFPE biopsies or cytological specimens

  , encouraged by epidemiological studies, introduced the notion of the exposome referring to all the exposures encountered by an individual during his lifetime. Because the impact of some carcinogens is reflected on the somatic genome, genomic events measurements are used to associate cancer and exposure. In 2015, the Catalogue Of Somatic Mutations In

Cancer (COSMIC) provided a curated set of 30 mutational signatures based on previously published studies on different cancer types

(Cosmic, 2020)

. If MPM is strongly associated with asbestos exposure and highly aggressive, unlike the tumour evolution related to other environmental exposures such as ultraviolet or tobacco exposures, too little is known about the underlying mechanisms of MPM carcinogenesis and progression. Although MPMs are usually considered rare thoracic tumours, the ongoing use of asbestos in developing countries and the aging population translates to MPM being an ongoing worldwide health problem. Beyond its rarity, one of the difficulties in performing genomic studies relies on the extremely challenging diagnosis

4. Chapter 1: Molecular cartographies of lung neuroendocrine neoplasms established molecular similarities and differences revealing clinically-relevant groups 4.1. State of the art and research contributions

  

	Typical carcinoids and atypical carcinoids are well-differentiated lung neuroendocrine
	tumours, for which the pathogenesis is understudied and the etiology remains
	unknown. Grade 3 SCLC and LCNEC are more common lung NENs with unclear
	molecular link with pulmonary carcinoids. The majority of studies on pulmonary
	carcinoids have either focused on targeted sequencing of a limited panel of genes or on
	genomic analyses in small series of samples and multi-omics studies on these diseases
	are almost nonexistent (see 1.3. section), altogether resulting in a limited
	understanding. This is partially explained by the rarity of these diseases and the
	consequent lack of large biorepositories with high-quality samples required for large
	and comprehensive genomic studies.

To date, we have led the most extensive multi- omics studies focused on these diseases, unveiling a new entity that we have named supra-carcinoids and which warrants future deeper characterisation. A brief overview of the manuscripts that I co-authored for this chapter is shown below. Integrative and comparative genomic analyses identify clinically relevant pulmonary carcinoid groups and unveil the supra-carcinoids (Alcala et al. Nat Commun 2019). In

  

	diagnosis of pulmonary carcinoids. Finally, integrative analyses of lung NENs unveiled
	the supra-carcinoids entity characterised by a carcinoid-like morphology and the
	molecular and clinical features of the aggressive LCNEC, further supporting the
	molecular link previously suggested between the low-and high-grade lung NENs. In this
	study, my contribution focused on the molecular characterisation of pulmonary
	carcinoid groups. To do so, I notably undertook GSEA on damaging somatic mutations,
	using a Hallmarks of Cancer gene set, to further infer the aggressiveness differences
	between lung NEN groups (see 1.1. section) and performed eQTL analyses between
	specific expression patterns and DNA methylation level. I also took part in the
	discussions and interpretation of the other analyses conducted. Whether the supra-
	carcinoids that we have identified constitute a separate, previously unappreciated
	entity may have meaningful implications for the treatment and stratification of lung
	NEN patients and therefore additional studies are needed.
	this study, we used machine learning and multi-omics factor
	analysis (MOFA) to contrast the genomic profiles of 116 pulmonary carcinoids including
	35 atypical as well as 75 LCNECs, and 66 SCLCs. The multi-omic integrative analyses of
	257 lung NENs stratified the atypical carcinoid group into two prognostic subgroups
	with a 10-year overall survival of 88% and 27%, respectively. In addition, we
	characterised clinically relevant molecular groups of pulmonary carcinoids, unscoring
	the immune system and DLL3 gene expression as candidate therapeutic targets. We also
	confirmed the prognosis value and utility of OTP expression for the differential

In the context of the companion data note paper of Alcala et al. study, a molecular map of lung neuroendocrine neoplasms establishes a comprehensive framework for the integration of furthcoming datasets (Gabriel et al. Gigascience, 2020). In

  

	explore and interrogate the generated map on the UCSC TumorMap portal
	(https://tumormap.ucsc.edu/?p=RCG_lungNENomics/LNEN). Therefore, the data and
	all resources needed to integrate future lung NENs transcriptomic datasets with these
	samples are accessible. In this study, my contribution focused on the quality controls of
	omic sequencing data. More precisely, I participated in the interpretation of (i) the
	extensive reports from appropriate softwares on the global quality of raw reads, the
	read alignment process, and the resulting read depth from genomic and transcriptomic
	sequencing data; and (ii) the appreciation of the DNA methylation array signal along the
	main pre-processing steps of functional normalisation of the intensity and probes
	filtering. I also took part in the discussions and interpretation of the other analyses
	conducted, especially the ability of these maps to capture the main biological findings of
	previous studies. Providing novel insights on rare cancers, to ultimately better
	understand these diseases, requires open-science efforts for integrating data sets
	together and empowering more reliable statistical testing. Considering the small sample
	sizes of molecular studies on rare lung NENs, this map might serve as a reference for
	further investigations. In fact, over two years, we have already received six requests to
	access this data on EGA and our data note paper already appeared useful for other
	this paper, we provide detailed information on data generation and quality control for researchers such as the Hormones and Cancer group from the Instituto Maimónides de
	whole-genome/exome sequencing, RNA sequencing, and EPIC 850K methylation arrays Investigación Biomédica de Córdoba (IMIBIC) in Spain that is exploring the patterns of
	to sustain the integration of forthcoming lung NENs molecular data. These datasets alternative splicing within the different groups of lung NENs, including the molecular
	correspond to the 84 patients with lung NENs as used in Alcala et al. above-mentioned groups of carcinoids
	study. Additionally, using the Uniform Manifold Approximation and Projection (UMAP)
	dimension reduction technique, we integrated the gene expression data of these
	samples with other previously published data and provided the first comprehensive
	molecular map of lung NENs. Importantly, as a low-dimensional molecular summary,
	this map reconstructs the main biological findings of previous studies and can refer to a
	reference for the integration of forthcoming lung NEN samples for which RNA
	sequencing data is available. To promote open-science, we generated a Nextjournal
	interactive notebook (https://nextjournal.com/rarecancersgenomics/a-molecular-
	map-of-lung-neuroendocrine-neoplasms/) that provides the data, source code, and
	compute environments integrated to create the map. Furthermore, the raw data are also
	available at the EMBL-EBI European Genome-phenome Archive (EGA) and Gene
	Expression Omnibus (GEO) data repositories. Interestingly, users can interactively

that we described in Alcala et al. study and by the use of the data and resources provided in this companion paper. Differential Orthopedia Homeobox (OTP) expression in pulmonary carcinoids is associated with changes in DNA methylation (Moonen et al. Under review in International Journal of Cancer). Loss

  

	comparison. In addition, we report significant differences of DNA methylation levels 4.2. Articles
	between OTP high and OTP low carcinoids for 12 over 34 OTP-associated CpGs with a
	higher global level in OTP low carcinoids. Furthemore, this group presents a significantly 4.2.1.
	worse overall survival compared to OTP high carcinoids. Together this study suggests that
	high levels of OTP expression is a unique characteristic of carcinoids associated with a
	favourable prognosis. Loss of OTP expression is most likely due to associated DNA
	methylation regulation. In this study, I mainly undertook the characterisation of the
	carcinoid groups with differential expression of OTP and their prognosis value. I also
	took part in the discussions and interpretation of the other analyses conducted. This
	study paves the way for further exploration of epigenetic therapies utility for patients
	with pulmonary carcinoid in the future.
	of expression of OTP has been reported as a
	strong indicator of poor prognosis in carcinoids (Papaxoinis et al., 2017; Swarts et al.,
	2013). In this study, we investigated OTP expression and its association with DNA
	methylation levels in lung NENs. The multi-omics data from the above-mentioned
	studies was analysed corresponding to the profile of 58 typical, 27 atypical carcinoids,
	69 LCNECs, and 51 SCLCs patients that I contributed to generate. We demonstrate
	bimodality of OTP expression (OTP high versus OTP low group) in carcinoids while the
	OTP high profile appears specific to pulmonary carcinoids in a cross-cancer types

Integrative and comparative genomic analyses identify clinically relevant pulmonary carcinoid groups and unveil the supra-carcinoids

  

	ARTICLE
	Integrative and comparative genomic
	analyses identify clinically relevant pulmonary
	carcinoid groups and unveil the supra-carcinoids
	N. Alcala et al. #

  year overall survival of 33% and 19%,

	ARTICLE	NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11276-9
	2	NATURE COMMUNICATIONS | (2019) 10:3407 | https://doi.org/10.1038/s41467-019-11276-9 | www.nature.com/naturecommunications

Table 1

 1 Characteristics of supra-carcinoids

		LNEN005	LNEN012	LNEN021	LNEN022	S01513	S01522
	Classification						
	Histopathology	Atypical	Atypical	Atypical	Atypical	Atypical	Atypical
	Morphological	Carcinoid morph. 2 mitoses/2	Carcinoid morph. 2 mitoses/2	LCNEC morph. 4 mitoses/2	NA	NA	NA
	characteristics	mm 2 No necrosis	mm 2 No necrosis	mm 2 No necrosis			
	Machine learning	LCNEC	LCNEC	Unclassified	Unclassified Atypical	Unclassified
	Clinical data						
	Sex	Male	Female	Female	Female	Male	Male
	Age at diagnosis	80	70	83	58	58	63
	TNM Stage	IB	IIIC	IA1	IIB	IIIA	IV
	Overall survival	144.6	111.7	29.8	36.1	59	7
	(months)						
	Epidemiology						
	Smoking status	Former	NA	NA	NA	Never	Current
	Other known	Asbestos	NA	NA	NA	NA	NA
	exposure						
	Multi-omics data						
	Data available	WES, RNAseq, Epic 850K	RNAseq	Epic 850K	Epic 850K	WGS, RNAseq WES,
							Epic 850K
	Cluster	LCNEC	LCNEC	LCNEC	LCNEC	LCNEC	LCNEC
	MOFA LNEN						
	Cluster	Carcinoid A1	Carcinoid A1	Carcinoid A1	Carcinoid A1 Carcinoid A1	Carcinoid A1
	MOFA LNET						
	Selected	JMJD1C, KDM5C, BAP1	NA	NA	NA	DNAH17	TP53
	mutated genes						
	Mean FPKM of IC	8.12	10.32	NA	NA	3.15	NA
	genes a						
	MKI67 FPKM	2.6	7.3	NA	NA	1.9	NA

FPKM refers to Fragments Per Kilobase per Million reads. The median FPKM of immune checkpoint (IC) genes was calculated based on the genes included in Fig.

2e

, excluding HLA genes because of their very large expression levels a IC genes median FPKM values for pulmonary carcinoids, LCNEC and SCLC are 1.0, 3.5, and 3.2, respectively ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11276-9 6 NATURE COMMUNICATIONS | (2019) 10:3407 | https://doi.org/10.1038/s41467-019-11276-9 | www.nature.com/naturecommunications

  in the European Genome-phenome Archive ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11276-9 10

NATURE COMMUNICATIONS | (2019) 10:3407 | https://doi.org/10.1038/s41467-019-11276-9 | www.nature.com/naturecommunications

  that surrogate variables 1, 2, 3, and 10 are significantly associated with the chip (variable Sentrix id) or position on the chip (variable Sentrix position), while surrogate variables 4, 5, and 10 are significantly associated with the sample provider. The NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11276-9

ARTICLE NATURE COMMUNICATIONS | (2019) 10:3407 | https://doi.org/10.1038/s41467-019-11276-9 | www.nature.com/naturecommunications

  COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11276-9

ARTICLE NATURE COMMUNICATIONS | (2019) 10:3407 | https://doi.org/10.1038/s41467-019-11276-9 | www.nature.com/naturecommunications

Table 1 :

 1 General statistics associated with the quality controls of the WES and WGS data

			Median	To t a l N o.		Aligned	GC content	Median insert	
	Sample	Sequencing	coverage	reads (M)	>30× (%)	(%)	(%)	size	Duplicates (%)
	LNEN002	WES	148	113.3	95.5	99.7	53.7	194	13.9
	LNEN003	WES	146	110.3	95.8	99.7	53.7	194	13.4
	LNEN004	WES	150	115.3	95.4	99.8	54.3	193	13.1
	LNEN005	WES	135	103.4	94.7	99.8	54.0	195	12.1
	LNEN006	WES	126	93.6	94.6	99.8	53.5	197	12.5
	LNEN007	WES	145	116.3	94.4	99.8	54.5	195	14.8
	LNEN009	WES	123	98.4	92.9	99.7	54.1	195	12.4
	LNEN010	WES	138	104.1	95.0	99.7	53.3	196	13.4
	LNEN011	WES	161	125.8	95.8	99.8	54.3	196	14.8
	LNEN013	WES	131	99.2	94.3	99.8	53.5	193	13.0
	LNEN014	WES	132	102.6	94.0	99.8	54.1	195	13.3
	LNEN015	WES	148	111.3	95.7	99.6	54.1	197	10.1
	LNEN016	WES	133	98.0	94.3	99.6	54.3	194	9.0
	LNEN017	WES	158	116.4	95.9	99.6	54.1	192	8.9
	LNEN020	WES	187	144.7	96.6	99.7	53.6	192	14.5
	S00716 B	WES	133	99.8	95.4	99.7	52.8	194	14.3
	LNEN041	WGS	36	923.5	77.5	98.9	41.0	366	13.3
	LNEN042	WGS	41	993.7	88.1	98.8	41.5	388	9.4
	LNEN043	WGS	43	1033.1	89.7	99.3	41.6	392	8.8

GC: guanine-cytosine.

Differential Orthopedia Homeobox (OTP) expression in pulmonary carcinoids is associated with changes in DNA methylation
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low 78 group, likelihood-ratio test p=1.5x10 -2 ), with the OTP high group specific to pulmonary 79 carcinoids while absent from all other cohorts analysed. Significantly different DNA 80 methylation levels were observed between OTP high and OTP low carcinoids in 12/34 OTP 81 infinium probes (fdr<0.05 & β-value effect size>0.2). OTP low carcinoids harbour high DNA 82 methylation levels as compared to OTP high carcinoids. OTP low carcinoids showed a 83 significantly worse overall survival (logrank test p=0.0052). Gene set enrichment 84 analysis for somatically mutated genes associated with hallmarks of cancer showed 85 robust enrichment of three hallmarks in the OTP low group, i.e., sustaining proliferative 86 signalling, evading growth suppressor, and genome instability and mutation. Together 87 our data suggest that high OTP expression is a unique feature of pulmonary carcinoids 88 with a favourable prognosis and that in poor prognostic patients, OTP expression is lost, 89 most likely due to changes in DNA methylation levels. 153 Transcriptomic data (In units of Fragment Per Kilobase of transcript per Million 154 mapped read, FPKM) and corresponding clinical data of 33 different tumor types were 155 gathered from the publicly available The Cancer Genome Atlas (TCGA) platform. Data was 156 downloaded using the Bioconductor R package TCGAbiolinks (version 2.9.5). Duplicated 157 samples were removed as well as one lung squamous cell carcinoma sample (TCGA-37-158 4129) because this sample was previously reported as misclassified 20 . TCGA OTP 159 expression data was merged with LNEN OTP expression data to gather an overview of 160 OTP expression patterns throughout 37 different tumor types. 161 162 Data processing of expression data 163 Data processing was performed as described previously by Alcala, et al. 15 , 164 providing quantification of expression at the gene level in two formats. (i) FPKM, one of 165 the most popular formats for expression quantification, that facilitates comparisons 166 across cohorts by mitigating technical batch effects through normalization based on gene 167 length and sequencing library size; this is the format we used for comparing with TCGA 168 cohorts, and for interpreting absolute expression levels. (ii) Normalized read counts, 169 obtained through the variance stabilization procedure described in Alcala et al. using the 173 (see determining an expression cut-off point procedure, and gene set enrichment analysis 174 below).

  of the two Gaussian mixture distributions 10.2, in units of normalized read 407 counts), 7 patients were allocated to the OTP low group and 23 patients to the OTP high 408 group. To investigate whether OTP expression is also associated with methylation in this 409 cohort, we have generated a heatmap using the Illumina 450K methylation array data. RNA gene expression of OTP in 37 different tumor types highlighted using 644 boxplots in fragment per kilobase million (FPKM). Centre lines represent the median and 645 box bounds represent the inter-quartile range (IQR). B. Histograms presenting the OTP 646 expression, in units of normalized read counts, pattern in carcinoids (upper panel), 647 LCNEC (middle panel), and SCLC (lower panel). The striped curve represents the 648 distribution fit of the two Gaussian mixture distributions (component 1, in blue, and 649 component 2, in orange). The OTP cut-off is determined as the lowest density point of the 650 two Gaussian mixture distributions (upper panel, x = 8.7). C. Kaplain-Meier curves of 651 overall survival probability for the OTP high and OTP low group in pulmonary carcinoid. a horizontal bar was drawn at the median β-value for each probe. Differential 676 DNA methylation between OTP high and OTP low carcinoids was calculated using the 677 Wilcoxon rank sum test (significant different cg-sites are presented in yellow).
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	F o r P e e r R e v i e w 411 carcinoids clustered in the OTP low group (Supplementary Figure 4B). Results showed 412 that, in line with our findings described above, all OTP low samples harbour a β-value 413 above 0.5 on cg17374364, while OTP high samples show overall a low methylation level 414 (i.e., a β-value below 0.5). Furthermore, we observed a variable methylation level 415 throughout all samples for cg05832593 (Supplementary Figure 4B, specified in red), also 416 consistent with our data (Figure 2C, specified in red). 417 418 Discussion F o r P e e r R e v i e w F o r P e e r R e v i e w F o r P e e r R e v i e w 506 Cancer/World Health Organization. Dr. van Engeland is co-founder and shareholder of 507 Epify BV, a company which develops cancer DNA methylation markers 508 509 Financial support 510 This work was supported by the Dutch Cancer Foundation [grant number 10956, 2017 511 to EJS], the French National Cancer Institute (INCa, PRT-K-17-047 to L.F.C. and M.F.), the 512 Ligue Nationale contre le Cancer (LNCC 2016 to L.F.C.), and the NeuroendocrineTumor 513 Research Foundation (NETRF, Investigator Award 2019 to L.F.C.). L.M. has a fellowship 514 from the LNCC. The results shown here are in part based upon data generated by the 515 TCGA Research Network (https://www.cancer.gov/tcga) and the Rare Cancers Genomics 516 initiative (http://rarecancersgenomics.com/lungnenomics/). 517 518 References (max. 50 references) F o r P e e r R e v i e w F o r P e e r R e v i e w F o r P e e r R e v i e w F o r P e e r R e v i e w 643 Figure 1A. 667 Somatic mutations are represented in the lower rectangle. 406 density point 410 Results showed that the highest methylation levels, in β-values, were observed in 505 represent the decisions, policy or views of the International Agency for Research on 642 Figure legends 675 β-values;
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	433 669 Supplementary Figure 1. Characteristic hallmarks of cancer in the OTP high and OTP low Previously, Alcala et al. correlated gene expression and promoter methylation in
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, which included gene expression, mutation, and Illumina 450K methylation array 403 data of 30 samples

(17 TCs and 13 ACs)

. Bimodality testing confirmed our previous 404 findings showing a clear bimodal distribution of OTP expression within the group of 405 carcinoids (Supplementary Figure

4A

, p = 6.9 x 10 -9 ). Following the OTP cut-off (lowest 419 Pulmonary carcinoids are rare lung tumors with a relatively indolent course of 420 disease although a subgroup shows a more aggressive disease course. Previously, we 421 have shown that low OTP gene and protein expression is associated with a poor prognosis 422 and others have shown that OTP expression may be utilized to identify patients at risk 423 for disease recurrence 11 . However, thus far the mechanisms underlying the regulation of 424 OTP expression have not been clarified. Here, we evaluated OTP expression and 425 methylation levels within 208 LNEN samples, 33 other tumor subtype cohorts and 426 normal lung tissue using publicly available transcriptomics and methylomics data and 427 identified a unique and bimodal expression of OTP in lung carcinoids. To date, no 428 mutations, or other genomic modifications (i.e., chimeric transcripts and/or genomic 429 rearrangements) have been reported in the OTP gene. Therefore, we comprehensively 430 analysed epigenomic data, revealing, for the first time, that differential OTP expression 431 patterns could be explained by epigenetic modifications. Our findings were verified in 30 432 additional pulmonary carcinoids samples from Laddha et al. 436 two homeobox genes (HNF1A and HNF4A). However, OTP, although methylated, was not 437 among these top candidate genes. This might be the results of the fact that DNA 438 methylation does not occur exclusively at CpG islands. Most of the tissue-specific DNA

652 653 Figure 2A. Plot showing the DNA methylation levels at each OTP infinium probe (850K) 654 of all carcinoid samples (OTP high and OTP low ) combined with TCGA normal lung 655 adenocarcinoma and squamous cell carcinoma tissues (450K). The y-axis on the right 656 shows the β-values; a horizontal bar was drawn at the median β-value for each probe. 657 Differential DNA methylation between OTP high and OTP low carcinoids was calculated 658 using the Wilcoxon rank sum test (significant different cg-sites are presented in yellow) 659 B. Representative images illustrating OTP IHC of a pulmonary carcinoid patient showing 660 nuclear OTP positivity and a low methylation level (left panel) and a pulmonary carcinoid 661 patient showing absence of OTP protein expression and a high methylation percentage 662 (right panel). C. Heatmap of the methylation level (in β-values) for the OTP high and OTP low 663 group (x-axis) for each cg-site (y-axis). The cg-sites which harbour a significantly 664 different methylation level between the groups are presented in yellow. The upper green 665 legend bar represents the OTP level measurement, the middle bar represents the 666 histopathological diagnosis of each sample, and the lower bar indicates the OTP group. 672 673 Supplementary Figure 2. Plot showing the DNA methylation levels at each OTP infinium 674 probe (850K) of OTP low carcinoids and LCNEC samples. The y-axis on the right shows the

Table 1 .

 1 Overview of the primer combinations for both CpG sites within the promoter region of OTP and their specifications.
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	Location	Primer	Sequence	Nt Tm	%	Product
				°C	CG	length
						(bp)
		Forward	GGGAGTAGTAAATATTAGTTTTTATTGTGA	30 58.8 26.7	
	cg02493167 OTP	Reverse	ATTCTATACCATTTCTAATCTACTCCTAAA	30 57.3 26.7	160
		Pyrosequencing	ATGTTTTGTTATAAATATAATTG	23 39.2 13.0	
		Forward	GTTTTTAGTTAGTATTTTTAATGTTTTGTTTAAGT 35 57.2 17.1	
	cg26576712 OTP	Reverse	CCTTCCACAAAAAAATAACCCAATAA	26 58.4 30.8	116
		Pyrosequencing	ATGTTTTGTTTAAGTTAATTGG	22 44.6 22.7	

Abbreviations: bp, base pairs; CG, cytosine-guanine content; Nt, nucleotides; Tm, melting temperature.

Table 2 .

 2 Patient characteristics of the OTP high and OTP low group

		International Journal of Cancer	Page 24 of 25
	Variable	Groups OTP high OTP low	p-value
	Patients n	64	24	
	Age years			
	Mean +/-SD	51,6 ± 18,3 58,3 ± 12,8	
	Median IQR	54 (16-80)	58 (29-80)	0.16
	Gender			7.9 x 10 -5
	Female	44 (68.75)	5 (20.8)	
	Male	20 (31.25)	19 (79.2)	
	Smoking status			0.16
	Current	14 (21.9)	3 (12.5)	
	Former	13 (20.3)	8 (33.3)	
	Never	23 (35.9)	6 (25.0)	
	Passive		1 (4.2)	
	Histopathological classification			1,30 x10 -4
	Typical	50 (78.1)	8 (33.3)	
	Atypical	12 (18.8)	15 (62.5)	
	Unclassified	2 (3.1)	1 (4.2)	
	TNM Stage			0.01
	I -II	60 (94)	18 (75.0)	
	III -IV	3 (5)	6 (25.0)	
	Unknown	1 (1)		
	Survival Censor			0.03
	Alive	50 (78.1)	14 (58.3)	
	Death	6 (9.4)	8 (33.3)	
	Unknown	8 (12.5)	2 (8.3)	
	Median survival in months	79,3	59	
	Abbreviations: IQR, interquartile range; SD, standard deviation; TNM, tumor Node
	Metastasis.			
		John Wiley & Sons, Inc.	
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Gene expression variation is mainly captured by the interdependent Morphology and

Adaptive-response factors. Looking at these factors through the lens of multi-task theory (Hausser and Alon, 2020) provided a map of the biological functions performed by MPM cells, and the degree to which tumours specialize in each function. Interdependence between molecular axes occurs when tumor cells implement trade-offs between different tasks [START_REF] Hatzikirou | Go or grow": the key to the emergence of invasion in tumour progression?[END_REF]. Such trade-offs are expected to leave a specific footprint in omics data, where values in one axis are constrained by values in a second axis, forming specific geometric shapes named the "Pareto front" (such as triangles, or tetrahedra; Hausser et al., 2019). In the case of MPM, samples formed a robust triangle within the LF2 and LF3 space, demonstrating a significant trade-off between three tasks corresponding to the extreme profiles captured by LF2 and LF3 (Pareto fit model p-value = 0.001; upper left panel, Figure 1E). The projection of samples within this triangular Pareto front provides a map of MPM task specialization, where vertices, known as phenotypic archetypes, correspond to task specialists, and the center to multi-tasks generalists (central panel, Figure 1E).

Archetype 1 (Arc-1) corresponds to the Cell division phenotype, with tumors closest to Arc-1 displaying upregulation of pathways within the universal "cell division" task [START_REF] Hatzikirou | Go or grow": the key to the emergence of invasion in tumour progression?[END_REF] identified through Integrative Gene-Set Enrichment Analysis (IGSEA; maximum q-value = 3.8×10 -2 ; Figure 1F first row; Table S3). This archetype was enriched for sarcomatoid tumors and biphasics with a large sarcomatoid component, with samples presenting higher levels of necrosis, higher grade, and greater percentage of infiltrating neutrophils (maximum q-value = 2.29×10 -2 ). Arc-1 was associated with high expression levels of the proliferation marker MKI67, and increased genomic instability (estimated from genomic, transcriptomic and epigenomic data; maximum q-value = 0.001). Arc-2 is the Tumor-immune-interaction phenotype as supported by upregulated immune-related pathways identified with IGSEA (maximum q-value = 3.1×10 -2 ; Figure 1F second row; Table S3), and high immune infiltration with an enrichment for adaptive-response cells: lymphocytes B, T-CD8+, and T-reg (maximum q-value = 3.11×10 -9 ). Arc-3 was named the Acinar phenotype upon its enrichment in samples of this epithelioid subtype, and the few upregulated pathways based on IGSEA (Acinar association q-value = 0.009; Figure 1F third row; Table S3). In line with the better prognosis reported for this subtype (Nicholson et al., 2020), the Acinar phenotype is characterized by the highest levels of global methylation (q-value = 3×10 -10 ); global hypomethylation is a characteristic of many cancers and is known to occur during rapid cell division and growth [START_REF] Shipony | Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells[END_REF]. The Cell-division and Tumor-immune-interaction phenotypes showed common enrichment for pathways in the Invasion-and-tissue-remodeling universal cancer task (maximum q-value = 4.09×10 -2 ; Figure 1F fourth row; Table S3). We also observed a higher Epithelial-to-Mesenchymal Transition (EMT) score amongst tumors closest to these phenotypes, 
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Further information and requests for resources should be directed to and will be fulfilled by Matthieu Foll (follm@iarc.fr).

Data and code availability

The genome sequencing data, RNA-seq data, and methylation data have been deposited in the 

DETAILED METHODS

Ethics

All methods were carried out in accordance with relevant guidelines and regulations. This study is part of a larger study -the MESOMICS project-aiming at the comprehensive molecular characterization of malignant pleural mesothelioma, approved by the IARC Ethical Committee (Project No. [15][16][17]. The samples used in this study belong to the virtual biorepository French MESOBANK, which guidelines include obtaining the informed consent from all subjects.

Clinical data

Age at diagnosis (in years), sex (male or female), smoking status (no-smoker, ex-smoker, and smoker), asbestos exposure (exposed or non-exposed), previous treatment with chemotherapy drugs (yes or no), treatment information (surgery, chemotherapy, radiotherapy, immunotherapy, and cancer history), and survival (calculated in months from surgery to last day of follow up or death) data were collected for all the 123 patients. Median age at diagnosis was 67.5 years and 73.3% of patients were male. Detailed information from Santé Publique France (SPF), the French National Public Health Agency, about

Immunohistochemistry

Formalin fixed paraffin embedded (FFPE) tissue sections (3µm thick) from 136 MPM samples were deparaffinized and stained with the Santa Cruz BAP1 (cloneC-4) (dilution one to 50). Nuclear staining was considered positive (when nuclear expression was retained) or negative (complete loss of staining of all tumor cells with a positive internal control on the slides: fibroblast, lymphocytes and other non-tumor cells). Consequently, the positivity of BAP1 was reported as a score ranging from 0 complete loss of nuclear staining and 1 nuclear staining retained in 100% nuclei. Results are presented in Table S1.

Statistical analyses

All tests involving multiple comparisons were adjusted using the Benjamini-Hochberg procedure controlling the false discovery rate using the p.adjust R function (stats package version 3.4.4).

Survival analysis

Survival analysis has been performed using Cox's proportional hazard model from which the significance of the hazard ratio between the reference and the other levels has been evaluated using Wald tests. We assessed the global significance of the model using the logrank test statistic (R package survival v. 2. and drew Kaplan-Meier and forest plots using R package survminer (v. 0.4.2). The proportional hazards hypothesis was checked using the Schoenfeld residuals (zph function). Univariate Cox analyses were performed for each important biological data such as sex, age, smoking status, and asbestos exposure as explanatory variable to evaluate their individual association with survival. In order to respect the minimal proportion of samples per group at 10%, we gathered current and former smoker groups together. Among the clinical data tested, only age and sex were both significantly associated with survival (Cox model p-value = 0.00021 and p-value = 0.045 respectively) (Table S13). As a results of univariate analyses results, in order to assess survival associations with continuous molecular variables, we fited Cox's models by including sex and used the attained age scale, which provides a control for age effects without needing to fit an additional age parameter compatible with the proportional hazards assumption (Griffin et al., 2012) (Table S13).

DNA extraction

Samples included were extracted using the Gentra Puregene tissue kit 4g (Qiagen, Hilden, Germany), following the manufacturer's instructions. All DNA samples were quantified by the fluorometric method (Quant-iT PicoGreen dsDNA Assay, Life Technologies, CA, USA), and assessed for purity by NanoDrop (Thermo Scientific, MA, USA) 260/280 and 260/230 ratio measurements. DNA integrity of Fresh Frozen samples was checked with Tapesation system (Agilent Biotechnologies, Santa Clara, CA95051, United

States) using Genomic DNA ScreenTape (Agilent Biotechnologies).

RNA extraction

Samples included were extracted using the Allprep DNA/RNA extraction kit (Qiagen, Hilden, Germany), following manufacturer's instructions. All RNA samples were treated with DNAse I for 15 min at 30 °C.

Comparison with PCAWG and TCGA

Tumor mutational Burden comparison of Mesothelioma and TCGA cohorts (Figure S4A) was performed with the mafftool (Mayakonda et al., 2018) package (v2.6.05). The PCAWG data for mRNA fusions (version 1.0), SVs (version consensus_1.6.161116), CNVs (consensus.20170119), and number of SNVs represented in Figure S4B were downloaded from the PCAWG site (https://dcc.icgc.org/releases/PCAWG).

Identification of complex mutational process in MPM tumors

Mutational SBS signatures were de novo discovered and decomposed into COSMIC mutational signatures with the SigProfilerExtractor [START_REF] Alexandrov | The repertoire of mutational signatures in human cancer[END_REF] tool. The SNVs called by both Mutect2 and Strelka [START_REF] Kim | Strelka2: fast and accurate calling of germline and somatic variants[END_REF], nextflow workflow https://github.com/IARCbioinfo/strelka2-nf v1.2a) on the T/N samples were used as input for SigProfilerExtractor (v1.0.17) to avoid caller specific signatures. Copy Number signatures were called using SigProfilerExtractor as described in [START_REF] Steele | Signatures of copy number alterations in human cancer[END_REF] (Table S7)

and using as input the PURPLE copy number segments. SV signatures were also called using the SigProfiler framework but using a newer version of SigProfilerExtractor (v1.1). Finally, detection and classification of clustered mutations (kataegis analysis) was performed as described in (Bergstrom et al., 2021). The list of clustered mutations per tumor including their classes are provided in Table S9, and represented in Figure S3C.

Chromothripsis regions were identified by combining SVs and CNV calls with the svpluscnv R package [START_REF] Lopez | svpluscnv: analysis and visualization of complex structural variation data[END_REF]. To identify shattered regions' breakpoints from CNVs and SVs, breakpoints were counted by splitting the genome into 10Mb windows. Contiguous windows with a high density of breakpoints were merged into larger shattered regions. Then interleaved SVs and variations in copy number state signatures were used to differentiate chromothripsis from focal events such as double minutes. Additionally, following recent practices [START_REF] Cortés-Ciriano | Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing[END_REF], we classified the shattered region into high and low confidence by considering the number of oscillating CN segments:

high-confidence calls were classified as those displaying an oscillation pattern between two copy number states in at least seven adjacent CN segments, others were classified as low-confidence calls (Table S9, Figure S3D).

Amplicon predictions were performed using the AmpliconArchitect program version 1.2 [START_REF] Deshpande | Exploring the landscape of focal amplifications in cancer using AmpliconArchitect[END_REF]. In Brief, the copy number variants were called using the CNVkit program (version 0.9.7), which is the recommended CNV caller to identify seed for AmpliconArchitect. Seed selection was performed following the recommended criteria (minimum segment length of 50Kb and minimum copy number gain of 4.5) using the amplified_intervals.py (amplified_intervals.py --gain 4.5

--cnsize_min 50000 --ref GRCh38) script provided by the AmpliconArchitect package. AmpliconArchitect (Version 1.2) was then run with default parameters using the selected seeds and the tumor CRAM files as input. Finally, the AmpliconClassifier program was run to classify the amplicons generated by AmpliconArchitect into ecDNA, BFS, Complex, linear or non-amplified classes (Table S9, Figure S3B).

Finally, the homologous recombination deficiency samples were identified using the R package CHORD [START_REF] Nguyen | Pan-cancer landscape of homologous recombination deficiency[END_REF] version 2.0 (Table S9). Following CHORD recommendation, four HRD positive samples were marked with a not determined HRD type because they have less than 30 SV.

pipeline accessible at https://github.com/IARCbioinfo/RNAseq-transcript-nf release v2.2). Quality control of the samples was performed at each step. FastQC software (v0.11.9; https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to check raw reads quality and RSeQC software (v3.0.1) was used to check alignment quality

Normalisation and quality controls

The raw read counts of the 59,607 genes in the expression data matrix, from MESOMICS, TCGA, and Bueno cohorts, from which we removed non-chimionaif samples, were normalised using the variance stabilisation transform (vst function from R package DESeq2 v1.14.1); this transformation enables comparisons between samples with different library sizes and different variances in expression across genes. We performed dimensional reduction on expression data as quality control, using Principal

Component Analysis (PCA) (function dudi.pca from R package ade4 v1. [7][8][9][10][11][12][13][14][15][16]. PCA was performed on the variance-stabilised read counts of the 5,000 most variable genes for (i) (MESOMICS) 109, (ii) (Bueno) 180, (TCGA) 73, and (iii) (3-cohorts: MESOMICS, Bueno, and TCGA) 362 samples (Table S3). For each set, samples were plotted by their coordinates to visualise outliers. For each dataset, linear regression analysis was performed to determine any significant association between these PCs and technical variables such as RNA-seq batch, macrodissection and provider. We found no outliers, and no batch effect in this data.

Variant calling and filtering on RNA

We used Mutect2 with the --allele flag to force genotyping of variants identified by mutect in the whole-genome sequencing data to call variants on the 126 RNA sequencing data for validation (workflow https://github.com/IARCbioinfo/mutect2-nf release v2.2b with option --genotype).

Fusion transcript analysis

Fusion transcripts were detected using Arriba [START_REF] Uhrig | Accurate and efficient detection of gene fusions from RNA sequencing data[END_REF] for the MESOMICS, Bueno, and TCGA cohorts. First, RNA-seq reads were aligned using STAR (2.7.6a) to the hg38 reference. Second, Arriba was used to call mRNA-fusions using the STAR alignment (BAM) and Arriba blacklisted regions (-b option). For the MESOMICS cohort, we additionally integrated the genomic SVs by including the SV breakpoints into the calling (-d option). Finally, high-quality mRNA-fusion predictions for all MPM cohorts were defined as those Arriba predictions classified as high confidence and with a minimum support of 10 reads from paired-end and split-read alignments. The Table S6 contains all the mRNA fusions passing the aforementioned filters, and Figure S4E represents recurrently altered genes.

Processing of publicly available expression array data

Raw expression array CEL files from Iorio and colleagues [START_REF] Iorio | A Landscape of Pharmacogenomic Interactions in Cancer[END_REF] and de Reynies and colleagues (de Reyniès et al., 2014) were downloaded from public repositories (GEO: GSE29354 and

ArrayExpress: E-MTAB-1719, respectively) and processed using the RMA algorithm (justRMA function from the affy R package v1.68.0). Annotations were downloaded from the hgu219.db and hgu133plus2.db packages (v3.2.3).

Immune contexture deconvolution from expression data

The proportion of cells that belong to each of ten immune cell types (B cells, macrophages M1, macrophages M2, monocytes, neutrophils, NK cells, CD4+ T cells, CD8+ T cells, CD4+ regulatory T cells, and dendritic cells) were estimated from the RNA-seq data using software quanTIseq (downloaded 14 September 2020) using our workflow for parallel processing of samples (https://github.com/IARCbioinfo/quantiseq-nf release v1.1). Additionally, as technical validation, we used EpiDISH R package (v2.6.0) to estimate seven immune cell types (B cells, monocytes, neutrophils, NK cells, CD4+ T cells, CD8+ T cells, and eosinophils) as well as epithelial cells and fibroblasts from the DNA methylation data. The immune cell types for which the association with archetypes were the strongest (absolute Pearson's correlation coefficient r > 0.4, B cells, CD8+ T, and neutrophils) presented significant concordance between softwares (additionally to monocytes). The other estimates (NK cells and CD4+ T)

have not been confirmed in EpiDISH estimation, possibly because of the reference differences -such as the reference size, the number of cell types estimated-between softwares. Proportion of cells in the TCGA and Bueno samples were taken from the supplementary tables of Alcala et al. (Alcala et al., 2019a), which used the exact same software and version.

WGD expression analyses

To identify significant differentially expressed genes associated with WGD status, we employed the same strategy introduced by [START_REF] Quinton | Whole-genome doubling confers unique genetic vulnerabilities on tumour cells[END_REF]. In brief, the expression of each gene (TPM values) was modeled as a function of WGD + purity + local_copy_Number. The purity, local_copy_number (log2(total copy number)), and WGD status were obtained from PURPLE predictions. Genes were considered significantly associated with WGD status if they had an FDR q-value of less than 0.05. Pathway enrichment analyses were performed with the hypeR [START_REF] Federico | hypeR: an R package for geneset enrichment workflows[END_REF]) package (v1.9.0) using the MSigDB Hallmark gene sets (v7.4.1) and the list of differentially expressed WGD genes. Pathways with an FDR q-value of less than 0.05 were considered significantly associated with WGD status. Results are reported in Table S10 and presented in Figures 5B andS5C.

DNA methylation

EPIC 850k methylation array

Epigenome analysis was performed on 119 MPMs (Figure S1A, Table S1), two technical replicates and three adjacent normal tissues. Epigenomic studies were performed at the International Agency for

Research on Cancer (IARC) with the Infinium EPIC DNA methylation beadchip platform (Illumina) used for the interrogation of over 850,000 CpG sites (dinucleotides that are the main target for methylation).

Each chip holds eight samples, and the 140 samples were spread over 19 chips. We used stratified randomisation to mitigate the batch effects, samples were arranged over the chips to evenly distribute, in order of priority, histopathological type, major epithelioid subtype, provider, sex, smoking status, age and professional asbestos exposure. However, due to differences in the number of each histopathological type, and date of sample arrival, four of the 19 chips contained exclusively one type. Technical replicates were placed on different chips, whilst ITH and adjacent normal samples were placed on the same chip as their corresponding tumour sample. The position of samples on each chip was then randomised.

Regional methylation analysis

Methylation profile within promoter, enhancer and gene body regions were examined as follows. Array probes were classified as promoter, enhancer, gene body or other, using annotations provided in the EPIC 850K array manifest b5 (version 1.0 b5, downloaded from:

https://emea.support.illumina.com/downloads/infinium-methylationepic-v1-0-product-files.html).

Probes with a value of "Promoter_Associated" in the column 'Regulatory_Feature_Group' were assigned as promoter probes, those with any value in the column 'Phantom5_Enhancers' were assigned as enhancer probes, and probes with a value including "Body" or "1stExon" in the column 'UCSC_RefGene_Group' were assigned as gene body probes. Probes which fell into multiple groups were classified as promoter first, if applicable, then as enhancer probes. The dataset of 781,245 probes contained 102,341

promoter-assigned probes, 23,858 enhancer-assigned probes, and 317,281 gene body assigned probes.

Average M and beta values were calculated for each individual sample across all promoter, enhancer and gene body probes to obtain mean promoter, enhancer and gene body methylation levels per sample respectively. The mean M-values were used for statistical analysis of associations between regional methylation levels and features of interest, while beta values were used for plotting significant findings.

Deconvolution of enhancer methylation profile

Deconvolution of enhancer methylation levels was performed with non-negative matrix factorisation using R package MeDeCom (v1.0.0) [START_REF] Lutsik | MeDeCom: discovery and quantification of latent components of heterogeneous methylomes[END_REF]. The 5,000 most variable enhancer probes S1).

CpG island methylator phenotype index

A CpG island methylator phenotype (CIMP) index value was calculated for all samples as follows. Probes located within Cpg islands (denoted as "Island" in the Epic 850k array manifest b5 column Relation_to_UCSC_CpG_Island) were retained, the mean beta value across all probes within each island (identified from manifest column Island_name) was calculated per sample resulting in beta values for 24,891 and 24,924 CpG islands, MESOMICS (EPIC array), TCGA (Hmeljak et al., 2018), and Iorio and colleagues [START_REF] Iorio | A Landscape of Pharmacogenomic Interactions in Cancer[END_REF] cell lines (HM450K array), respectively. The CIMP index was then calculated as the proportion of these 24,891 or 24,924 islands with ≥ 30% methylation (beta value ≥ 0.3) per sample.

CIMP index values ranged from 0.32 to 0.56, meaning 32% to 56% of all islands represented on the array deconvolution from expression data section) has been quantified and correlated with each dimension using Pearson correlation tests (Table S2).

Survival prediction. four-dimensional summary of molecular data using both the combination of two, three, and four of the four LFs as continuous variables, respectively (continuous variables, fitted with penalized cubic spline without interaction). To do so, we assessed their fits using the time-dependent Area Under the ROC Curve (AUC) and its integral (iAUC; Chambless and Diao, 2006; R package survAUC, v.1.0-5), computed using the test set. This time-dependent AUC is used to evaluate the ability of an explanatory variable to predict patients with a survival lower or higher than a given threshold. Its integral summarises the results of time-dependent AUC over the threshold value, providing an interpretation similar to that of classical AUC.

In each model, we included sex and age; penalized splines were fitted using the pspline function from package survival, with three degrees of freedom. Because of the high proportion of missing asbestos and smoking status information and the absence of significant association between these variables and survival in univariate models (see Survival analysis section), smoking and asbestos were not included in the model as covariables. Nevertheless, results for survival prediction from these twenty-two models and including both asbestos and smoking status as covariables are also reported in Table S13.

To assess the out-of-sample prediction performance, we used 4-fold cross-validation in the MESOMICS cohort (Figures S6H-J and Figure 6B). We also assessed the prediction performance on a completely independent cohort by fitting the model on the whole MESOMICS cohort and testing it on the TCGA cohort, using bootstrapping (n=2,000 bootstraps) on the test set to assess variation in performance (Figure 6B). Standard errors in the iAUC mean estimate were computed either from the 4 folds or the 2000 bootstraps, respectively for the MESOMICS and TCGA. We also looked at the model fits on the MESOMICS cohort (Figure S6 E-G and Table S13), which confirmed that the MOFA with 4 LFs (xxii)

provided the best fit of all models, and also led to the lowest Akaike Information Criteria (AIC=554.324 for the model with the LFs, vs AIC=569.806 for the best AIC of non-MOFA models, that of the S-score + E-score; Table S13), which shows that the greater number of parameters in the MOFA survival model is not enough to explain its better performance.

We inferred whether small somatic variants were clonal or subclonal using R package MOBSTER v1.00. MOBSTER uses a mixture model to identify different clones in the VAF distribution. Importantly, the model uses evolutionary theory predictions to perform more accurate subclonal reconstructions, and can test whether subclones are under natural selection or neutral evolution by testing the presence of a "neutral tail" component, a Pareto type I distribution that is expected to be present in exponentially growing tumors evolving under neutral evolution [START_REF] Williams | Identification of neutral tumor evolution across cancer types[END_REF]. For each sample, we first fit a mixture model to the VAF distribution from variants in regions with the most frequent CN (major and minor CN of 1 for most samples, major and minor CN of 2 and 1 or 3 and 1 for WGD samples, and 1 and 0 or 2 and 0 for GNH samples). For each sample, we compared the fit of models with or without neutral tail and with 1 to 3 clusters, with 10 repetitions per model with different initializations, resulting in 6×10 models per sample; we chose the best model using the ICL statistic. We assessed the robustness of the fit using parametric bootstrapping; only models that were correctly inferred in more than 80% of the simulations were used. Of Note, the clonal cluster also provides an estimate of the sample purity based on the VAF distribution. Multiple clusters denoting the presence of a subclone were identified in 13 samples.

All 13 samples presented a single subclone, and all were in the low-adaptive response factor range (close to archetype 3), as expected from the high purity required to detect subclonal alterations (see Table S1);

3 samples presented a neutral tail, while the 10 others presented a selected subclone (Figure S5I).

We finally assigned mutations that were not included in the model fit (small variants in regions with another CN, subclonal CNVs) to clones and subclones using their VAF and the fitted model. For each of the 13 samples where a subclone was identified, we recovered the cutoff cancer cell fraction (CCF) separating clonal and subclonal alterations according to the selected MOBSTER model. We then converted this threshold CCF to a threshold VAF by taking into account the CN state of each alteration using the

where CN normal is 2 for autosomal regions and 1

for sex chromosomes, CN total is the total CN of the tumor, and ɸ is the MOBSTER-estimated purity. Variants were then assigned to the clonal and subclonal categories depending on which side of the threshold they fell. Note that this approach is similar to that used in the DPClust software [START_REF] Nik-Zainal | The life history of 21 breast cancers[END_REF], but using the recent evolutionary-theory aware probability distributions from MOBSTER instead of Dirichlet distributions. The proportion of clonal and subclonal alterations in the 13 samples where this analysis was possible are reported in Table S1 andFigure S5J.

Note that the small number of samples with such clusters of subclonal alterations detected allowed to further check visually the consistency between the fits of different CN regions (e.g., CN neutral LOH regions should have two clonal modes-one corresponding to variants in 1 or 2 copies-while diploid regions should have only clonal mode). Results for alterations in the driver list from Figure 4 are presented in Figures S5G andI.

CNV clonality reconstruction

Clonality of CNVs was assessed using the estimated fractional copy number from PURPLE. Indeed, the PURPLE algorithm uses a penalised estimation of CN so that clonal CN segments are expected to have CN values close to an integer while subclonal segments have non-integer CN values; we thus classified as subclonal segments with a CN deviating from an integer value (fractional part between 0.2 and 0.8).

likely influenced the proportion of signatures associated with ageing relative to other signatures. Overall, our results show that using all mutations increases the precision of estimates but does not bias the results as long as we exclude non-chemonaive samples, probably because MPM do not have SBS signatures of exogenous sources but rather only a slow temporal accumulation of mutations (see mutational signatures section), so results in the main text correspond to results for all mutations. Finally, we checked whether mutation accumulation showed a sign of temporal acceleration by comparing the number of small variants corrected for the effective genome size (defined as in Gerstung et al. 2020 as 1/mean(m i /C i ), with m i the number of copies of alteration i and C i the total CN at this position) with the age at diagnosis (Figure S5G); the analysis showed that small variants fit a linear accumulation model, thus we used a rate of x1 for chronological dating.
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In order to further promote the extensive use of what we provide for the scientific community, we need to ensure that reanalyses of the data we generated can be easily undertaken, and that our analyses can also be easily reproduced. Through open-science efforts, we are committed to provide all the ressources, information, and tools, to promote the reuse and reanalysis of our data by the scientific community. More precisely, we used tools that rely on the most up-to-date computational methods that ensure homogenisation and perfect reproducibility of the results, but also promote resource sharing by providing portability between platforms and scalability between computing facilities (Di Tommaso et al., 2017). As an illustrative example, for both of our extensive studies of rare thoracic tumours (Alcala et al., 2019a;[START_REF] Mangiante | Disentangling heterogeneity of Malignant Pleural Mesothelioma through deep integrative omics analyses[END_REF] for which we generated novel multi-omic cohorts, we provided a companion paper (respectively, Gabriel et al. (Gabriel et al., 2020) 1A and Supplementary Figure 13B). B) Correlation between LF across runs for MOFA run on all LNEN and SCLC samples (the best run among the 20 is presented Supplementary Figure 13A). In all panels, the red colour on the diagonal and the blue colours off-diagonal indicate a very good robustness of the LF. Data necessary to reproduce the figure are provided in Supplementary Data 1.

Supplementary Figure 3 Correlations between MOFA latent factors (Figures 1A and4A) and the principal components of the PCA of expression (Supplementary Figure 6) and methylation (Supplementary Figure 7). Panels Consensus matrix 
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Cluster LNET a model based on the machine learning predictions from expression and methylation data. For the two models, the same set of 138 samples was considered (see Online methods). B) Boxplot of the expression level (in Fragments Per Kilobase Million; FPKM) of MKI67 for each prediction group highlighted in Figure 1B. cTC (consensus typical) are typical samples predicted as typical, PCA->UC carcinoids predicted as unclassified, AC->TC atypical samples predicted as typical, cAC (consensus atypical) atypical samples predicted as atypical and cLCNEC (consensus LCNEC) LCNEC samples predicted as LCNEC. Centre line represents the median and box bounds represent the inter-quartile range (IQR). The whiskers span a 1.5-fold IQR or the highest and lowest observation values if they extend no further than the 1.5-fold IQR. C) Analysis of the ML predictions based on MKI67 expression only. Left panel: Confusion matrix associated with the machine learning predictions based on MKI67 expression. Middle panel: Kaplan-Meier curves of the overall survival of the different MLpredictions groups. The colour associated to each group matches that of the confusion matrix (left panel). Right panel: Forest plot of hazard ratios of overall survival for a model based on the ML predictions based on MKI67 expression. For all forest plots, the black box represents estimated hazard ratios and whiskers represent the associated 95% confidence intervals. Wald test p-values are shown on the right; 0.01 ≤ p < 0.05, 0.001 ≤ p < 0.01, and p < 0.001 are annotated by one, two, and three stars, respectively. Number of samples (N) for each group is given in brackets. Data necessary to reproduce the figure are provided in Supplementary Data 1. Supplementary Figure 15 Estimation of the amount of immune cells in the different pulmonary carcinoid groups from transcriptome data. The upper panel represents immune cells of each LNEN cluster and supra-carcinoids (supra-ca). The average proportion of each cell type in each group is represented. The lower panel represents the linear permutation test significance (q-value; colours: dark for q <0.001, intermediate for q <0.01, light for q <0.05, white for q ≥0.05) of the difference in cell type composition, for each cell type (row), and each possible pairwise comparison between groups (columns).
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Comparisons with a cell proportion difference greater than 2% are indicated by a black box. Estimates are computed using software quanTIseq (see Online methods). Data necessary to reproduce the figure are provided in Supplementary Data 1. 
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C1orf87 GHSR OTP BAIAP2L2 q = 0.3899 q = 0.0037 q = 0.1039 q = 0.0929 q = 0.0641 q = 0.0048 q < 0.0001 q = 0.0006 Supplementary Figure 27 Expression levels of core cluster B genes associated with survival (Figure 1B). For each gene selected by the penalized Cox regression (Supplementary Data 13), the expression levels between the good-(histopathological (HP) atypical predicted by the machine learning (ML) as typical, in pink) and poor-prognosis groups of atypical carcinoids (HP-atypical predicted as ML-atypical, in red) are compared. Expression is measured in fragments per kilobase million (FPKM) units; in each plot, beeswarm plots are superimposed to boxplots to display the distribution of expression level in the corresponding groups. Centre line represents the median and box bounds represent the inter-quartile range (IQR). The whiskers span a 1.5-fold IQR or the highest and lowest observation values if they extend no further than the 1.5-fold IQR. The q-values corresponds to the Benjamini-Hochberg adjusted p-value of permutation tests. Data necessary to reproduce the figure are provided in Supplementary Data 1,13,and Supplementary Figure 29 Associations between clinical variables. A) Matrix of the significance (q-value) of the associations between pairs of variables, for all 242 samples from Supplementary Data 1. B) Matrix of the significance (q-value) of the association between pairs of variables, for all 116 LNET samples from Supplementary Data 1. C) Proportion of each level of each variable (rows) for each histopathological type (columns). In (A) and (B), associations are computed using Fishers exact test, adjusting for multiple testing using the Benjamini-Hochberg procedure; because of symmetry, only the upper diagonal was tested and represented. Data necessary to reproduce the figure are provided in Supplementary Data 
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Supplementary Figure 33 Assessment of the batch effects in the EPIC 850K methylation array analysis. A) Matrix of the significance (q-value) of the associations, computed using Fishers exact test, between batch and clinical variables and: i) methylation surrogate variables determined from non-negative control probes (left panel), ii) the principal components of the most variable M-values (Online Methods), before functional normalization (middle panel), iii) the principal components of the most variable M-values (Online Methods), after functional normalization (right panel