
HAL Id: tel-04343687
https://theses.hal.science/tel-04343687

Submitted on 14 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-time Software Architectures and Performance
Evaluation Methods for 5G Radio Systems

Tsu-Han Wang

To cite this version:
Tsu-Han Wang. Real-time Software Architectures and Performance Evaluation Methods for 5G Radio
Systems. Networking and Internet Architecture [cs.NI]. Sorbonne Université, 2022. English. �NNT :
2022SORUS362�. �tel-04343687�

https://theses.hal.science/tel-04343687
https://hal.archives-ouvertes.fr

Real-time Software Architectures and
Performance Evaluation Methods for

5G Radio Systems

Dissertation
submitted to

Sorbonne Université
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Author:

Tsu-Han WANG

Scheduled for defense on the 13th December, 2022, before a committee composed of:

Reviewers
Dr. Thierry Turletti INRIA, France
Prof. Ludovic Apvrille Télécom Paris, France

Examiners
Prof. Melek Önen EURECOM, France
Prof. Ternying Hsu NCTU, Taiwan

Director of Thesis
Prof. Raymond KNOPP EURECOM, France

Architectures logicielles temps-réel
et m’éthodes d’évaluation des

performances
les systèmes radio 5G

Thèse
soumise à

Sorbonne Université
pour l’obtention du Grade de Docteur

Auteur:

Tsu-Han WANG

Soutenance de thèse effectuée le 13 Decembre 2022 devant le jury composé de:

Rapporteurs
Dr. Thierry Turletti INRIA, France
Prof. Ludovic Apvrille Télécom Paris, France

Examinateurs
Prof. Melek Önen EURECOM, France
Prof. Ternying Hsu NCTU, Taiwan

Directeur de Thèse
Prof. Raymond KNOPP EURECOM, France

To my family

Abstract

Cette thèse a pour sujet l’optimisation de la radio logicielle (SDR, software defined radio)
pour la 5G. Le premier point à aborder est la radio logicielle. Comme son nom l’indique,
la radio logicielle est un programme informatique qui est exécuté par un ordinateur se
comportant comme une station radio. Ce qui rend ce système particulier c’est qu’il
sagit d’un logiciel, avec toutes les caractéristiques d’un logiciel, mais qui exécute ce qui
jusqu’alors était réservé au matériel. Plusieurs raisons expliquent la popularité croissante
de la radio logicielle. L’une d’elles est que la conception d’une puce électronique est
longue et tolère peu les erreurs. Pour produire une puce électronique, il faut tout d’abord
passer par une étape de conception utilisant un langage de bas niveau de type Verilog
pour décrire le comportement du système. Ensuite ce programme doit être traduit en un
graphique où la taille de chaque porte logique, comment elle est implémentée, et où elle
est positionnée, sont importants puisque la taille de la puce a un impact direct sur son
coût de fabrication. De même, les connections entre les portes de la puce doivent être
soigneusement conçues puisque les longs chemins induisent des délais dans l’acheminement
des données ce qui pourrait générer des erreurs. Et il ne s’agit là que d’un coup d’œil sur
la conception de la puce dans la phase graphique. Après toutes ces étapes, ce graphique
va à l’usine où la gravure sur puce réelle est effectuée. Il faut traverser le revêtement,
graver la couche pour révéler le silicium, graver le silicium, et laver les résidus. Ces étapes
ne servent à produire qu’une seule couche de la puce, qui en contient plusieurs. Cela
montre bien qu’il faut du temps et de la précision pour fabriquer une puce. De tout ce
qui précède, on peut dire que produire une puce est à la fois coûteux et long.

La radio logicielle bénéficie des avantages du développement logiciel, avec un cycle de
vie de développement court et une facilité certaine pour ajouter de nouvelles fonctionalités.
Cependant, des obstacles demeurent que la radio logicielle doit surmonter, le premier
étant le temps réel. Les puces matérielles nécessitent toute cette complexité de conception
pour s’assurer qu’elles peuvent traiter le signal de la manière la plus rapide possible. Les
programmes informatiques qui tournent sur des ordinateurs à usage général ne peuvent
pas égaler les performances des puces matérielle. La bonne nouvelle pour la radio logicielle
est que les processeurs sont de plus en plus puissants avec les machines récentes donc
même si les logiciels ne peuvent rivaliser en terme de performance avec le matériel, ils
peuvent quand même gérer les procédures dans le temps imparti. De plus, malgré cet
inconvénient de moindre performance, le logiciel a l’avantage évident d’avoir un cycle
de développement court. Dès que de nouvelles fonctionalités doivent être ajoutées à la
radio logicielle, il suffit simplement d’introduire une nouvelle fonction qui exécute cette

i

Abstract

Figure 3 – IMT-2020

fonctionalité et de recompiler le programme. Et aussi, il peut prendre en charge plusieurs
configurations car pour le programme, il ne s’agit que d’un ensemble de variables qui
doivent être prédéfinies par la configuration. Donc au final, de plus en plus de gens
s’intéressent à la radio logicielle en raison de sa souplesse de développement et tolèrent
sa lenteur puisque les traitements sont quand même faits dans les temps.

Le deuxième point à aborder est la 5G. La 5G a trois caractéristiques principales qui
sont le haut débit mobile amélioré (Enhanced Mobile Broadband, eMBB), les communi-
cations ultra-fiables et à faible latence (Ultra-reliable and Low Latency Communications,
URLLC), et les communications massives de type machine (Massive Machine Type
Communications, mMTC), comme le montre la figure 3. L’eMBB se concentre sur les
débits de données massifs avec une large bande où la transmission de données est la
principale préoccupation tandis que l’URLLC, de par son nom, se concentre d’avantage
sur la précision et les réponses rapides pour des usages avec un besoin de rétroaction
rapide, la conduite automatique par exemple. Quant à mMTC, il s’agit plus de gérer
simultanément une quantité massive d’appareils sur une large portée où la quantité
d’appareils gérés en même temps est la principale préocuppation, par exemple l’internet
des objets (Internet of Things, IoT)

Ce qui précède decrit ce qu’est la radio logicielle 5G. Ce dont va traiter cette thèse est
la couche physique (PHY). Il y a sept couches pour la connection internet et la couche
physique est la plus basse de toutes. Ce que fait la couche physique c’est principalement
de gérer le flux binaire et de transmettre et recevoir ce flux entre les appareils. Pour
pouvoir parler de communication sans fil nous devons tout d’abord parler d’une des
plus importantes conceptions dans le domaine des communications, le multiplexage par
répartition orthogonale de la fréquence (Orthogonal Frequency-Division Multiplexing,
OFDM). Le principe d’OFDM est d’avoir plusieurs porteuses dans le domaine fréquentiel

ii

Abstract

Figure 4 – Inter Symbol Interference (ISI)

orthogonales pour transmettre les données. Ainsi, idéalement, il y aura des interférences
seulement où ne se trouvent pas les données. Cependant en pratique, il existe toujours
des interférences inter-symboles (Inter-Symbol Interference, ISI) et des interférences
inter-porteuses (Inter-carrier Interference, ICI). ISI et ICI se produisent à cause du délai
d’arrivée du paquet ce qui signifie qu’il y aura des données manquantes et/ou melangées
dans le signal reçu. ISI peut se résoudre en ajoutant une période de garde contenant
des données connues, par exemple du remplissage par des zéros, comme illustré par la
figure 4. Bien que l’ajout de données connues résolve le problème ISI, cela ne résout pas
l’ICI. L’introduction du préfixe cyclique (Cyclic Prefix, CP) au lieu d’un remplissage par
des données connues résout le problème de l’ICI puisque le décalage temporel dans le
domaine temporel n’est qu’un décalage dans le domaine fréquentiel, comme illustré à la
figure 5, les données sont toujours récupérables.

Étant donné que tout le travail de la procédure PHY vise à ce que le signal OFDM
soit transféré et décodé avec succès même face à des interférences lors du passage dans
le canal, ce dont PHY doit se préoccuper, c’est de savoir comment obtenir des données
de flux binaire réversibles avec une tolérance pour les bruits. Prenons l’exemple de la
transmission descendante (downlink). Les données de flux binaire proviennent de la
couche supérieure et subissent ensuite un traitement au niveau du bit qui consiste en un
brouillage et un codage. Le brouillage modifie l’ordre des données du flux binaire pour
tenir compte des cas d’interférences en rafale qui perturbent les données consécutives.
Quant au codage, il consiste à ajouter des bits de contrôle selon un algorithme de
codage donné pour s’assurer que même si certains bits sont contaminés par le bruit,
ils sont toujours récupérables. Et après le brouillage et le codage, vient la modulation

iii

Abstract

Figure 5 – Inter Carrier Interference (ICI)

Figure 6 – Quadrature Amplitude Modulation (QAM) diagram example

d’amplitude en quadrature (Quadrature Amplitude Modulation, QAM). Ce que fait QAM,
c’est mapper les données de flux binaires sur des ensembles d’amplitudes et d’angles
afin qu’ils puissent être ajoutés à l’onde OFDM, comme illustré à la figure 6. Enfin
il y a le mappage OFDM. Ce n’est que la procédure pour une couche et une antenne.
Pour la 5G, il est nécessaire de disposer de plusieurs antennes pour prendre en charge
les entrées multiples et les sorties multiples (Multiple-Input Multiple-Output, MIMO).
Pour le fonctionnement MIMO, le mappage de plusieurs couches sur plusieurs antennes
est effectué par mappage et précodage de couche pour s’assurer que chaque antenne a
le signal qu’elle doit envoyer, puis on effectue la transformée de Fourier rapide inverse
(Inverse Fast Fourier Transform, IFFT) pour répondre aux exigences OFDM.

Comme mentionné précédemment, tous les processus doivent être faits « à temps »,
ce qui rend la contrainte de temps de plus en plus importante. Dans la norme 3GPP
pour la 5G, la relation entre l’espacement des sous-porteuses et le slot est indiquée dans
le tableau 1

Les équations suivantes montrent la relation entre l’espacement des sous-porteuses

iv

Abstract

µ ∆f = 2µ ∗ 15[kHz] Cyclic prefix
0 15 Normal
1 30 Normal
2 60 Normal, Extended
3 120 Normal
4 240 Normal

Table 1 – Numérologie et espacement des sous-porteuses dans la norme 3GPP

et le slot où le slot est l’unité de temps de base dans PHY. Tc = 1/(∆fmax ∗ Nf)
où ∆fmax = 480 ∗ 103HZ et Nf = 4092, La constante k = Ts/Tc = 64 où Ts =
1/(∆fref ∗Nf,ref),∆fref = 15∗103HZ et Nf,,ref = 2048Tf = (∆fmaxNf/100)∗Tc = 10ms.
Ces équations montrent que le temps de trame est toujours de 10 ms, mais qu’il y aura
plus de slots dans une trame lorsque la numérologie augmentera, ce qui signifie que le
slot devient plus court tout en utilisant une numérologie plus grande. La numérologie
zéro est la même configuration que celle utilisée par LTE où le slot est de 1 ms, ce qui
signifie que le slot en 5G est généralement plus court que ce qui est demandé en LTE.

Connaissant la durée de l’unité de base, le slot, dans PHY, nous savons maintenant que
le temps d’exécution de toutes les procédures du processus PHY, une fois tout additionné,
doit être compris dans un slot pour que la radio logicielle s’exécute de manière stable.
Il est alors important de savoir combien de temps coûte chaque fonction individuelle et
combien de temps coûte l’ensemble de la procédure. Parlons d’exécution séquentielle. Ce
qui est fait est de programmer la fonction PHY directement à partir de la norme 3GPP
avec le même ordre de flux d’exécution, comme illustré à la figure 7. Et puisque le canal
répond quatre slots plus tard dans le canal opposé, comme indiqué à la figure 8, on a
instinctivement le fonctionnement suivant : traiter le slot n pour un côté (transmission
ou réception), puis le côté opposé pour le slot n+4. Il est plus logique d’avoir le système
piloté par la réception que par l’émission puisque le système doit activer la procédure de
réception à chaque tranche de temps et ce n’est qu’à ce moment-là que les données sont
connues pour la transmission. Pourtant, la transmission peut être pré-générée bien avant
qu’elle ne soit transmise. Ce qui aboutit finalement à la structure décrite à la figure 9.

D’après la figure 9, on peut voir que la transmission est préparée bien plus tôt
que ce qui est nécessaire, où le temps total d’exécution pour une réception et une
transmission est preque le même que la durée d’un slot dans LTE quand il y a une forte
charge. Avec un ordonnancement si serré, la préparation précoce des données transmises
est considérée comme un gaspillage d’énergie et de ressources. Sans oublier qu’avoir
un ordonnancement plus serré pour des slots plus courts en 5G rend cette structure
peu pratique, que l’accélération doit améliorer. Il existe deux idées principales pour
l’accélération. La première est de réorganiser la structure ce qui signifie avoir de multiples
exécutions parallèles en même temps, par exemple « time space trading ». La deuxième
est d’accélérer la fonction elle-même.

Premièrement, parlons de la réorganisation de la structure. Il est important de savoir
que tous les canaux ont peu de relations les uns avec les autres comme illustré par la figure

v

Abstract

Figure 7 – Flux de procédure PHY pour la radio logicielle

Figure 8 – Réponse du canal dans différents modes

vi

Abstract

Figure 9 – Procédure pour l’exécution séquentielle radio logicielle

10. Cela signifie que la plupart des canaux peuvent être traités en parallèle. Pourtant,
le découpage du traitement des canaux en morceaux est un peu difficile à gérer, donc
l’accent sera mis sur ceux qui consomment le plus de temps et de ressources, à savoir
les canaux partagés, responsable de la majeure partie du transfert de données. Il y a
deux canaux partagés, un pour la liaison montante et un pour la liaison descendante.
En plus du traitement du canal, le traitement d’antenne OFDM coûtera également un
peu de temps lors de l’utilisation de plusieurs antennes. Ainsi, les quatre principales
parties chronophages sont la procédure OFDM pour la réception et la transmission et
la procédure de canal partagé pour la réception et la transmission. Étant donné que
l’ordre de ces quatre procédures est irréversible, nous devons proposer une structure qui
conserve l’ordre tout en les exécutant en même temps. Bien que cela puisse sembler un
peu contradictoire, il existe en fait une solution qui s’appelle un pipeline.

La structure de pipeline d’origine est illustrée à la figure 11. La structure de pipeline
traditionnelle utilise une horloge globale qui déclenche les étapes pour démarrer le
traitement, aux instants marqués par la ligne rouge sur la figure 11, mais il peut y
avoir quelques problèmes. Le premier problème que l’on peut rencontrer est de diviser
le processus de manière inégale, ce qui est une variation temporelle. Chaque étape
du pipeline a son propre temps d’exécution qui est très probablement différent des
autres puisque chaque étape a sa propre procédure unique. Si les temps d’exécution de
chaque étape sont trop différents les uns des autres, cela signifie que le fractionnement
de ce pipeline est déséquilibré, ce qui pourrait non seulement réduire le parallélisme du
programme, mais également écraser les données de référence ou les données d’entrée pour
l’étape suivante, comme indiqué dans la partie de la variation temporelle de la figure
10. Le deuxième problème est d’avoir un conflit de données. Le conflit de données est
un autre problème qui peut survenir lors de l’utilisation de la programmation parallèle.

vii

Abstract

Figure 10 – Mappage des canaux - ShareTechNote

viii

Abstract

Figure 11 – Un exemple de structure de pipeline à trois étages

Lorsqu’il y a plusieurs écritures qui se produisent en même temps ou lorsqu’une écriture
et une lecture se produisent en même temps, l’ambiguïté de qui vient en premier a
un impact énorme sur le résultat final. Ce type de risque sur les données rendra le
programme instable, ce qui est définitivement indésirable dans la radio logicielle, comme
indiqué dans la partie sur les risques sur les données de la figure 12. Le troisième type de
problème qui peut survenir dans la programmation parallèle est le risque sur les branches.
Si le programme exécute plusieurs branches en parralèle, au moment de la fusion de ces
branches pour continuer le processus, il se peut qu’une partie des données ne soit pas
encore prête à être gérée en fonction du moment où le processus fusionné est exécuté
comme indiqué dans la partie risque sur les branches de la figure 12.

Ici, la structure du pipeline radio logicielle pourrait tirer parti d’une version logicielle
où les threads sont responsables du parallélisme. Les threads sont utilisés dans la
programmation parallèle car ils peuvent s’exécuter en même temps. En intégrant le
pipeline dans une version logicielle, chaque thread représentera une étape de pipeline.
Bien que la structure de pipeline d’origine ait été proposée pour la conception matérielle,
les problèmes mentionnés précédemment resteront préoccupants après l’intégration de la
structure de pipeline dans une version logicielle. Pourtant, le pipelining logiciel présente
des avantages, car tous ces problèmes ont une solution plus simple dans une version
logicielle où les risques sur les données peuvent être résolus en utilisant le verouillage
mutex pour la tâche qui travaille actuellement sur les données. Et les tâches qui voudront
également demander l’écriture devront attendre que la mémoire soit libérée puis le
système des verrous donnera le droit d’écrire des données à une des tâches en attente,
de manière équitable. En ce qui concerne le problème de fusion des branches, le plus
important est de s’assurer que la tâche suivante ne commence à s’exécuter qu’une fois
toutes les tâches de branche avant la fusion terminées. La solution utilisée dans cette
thèse est d’avoir un masque binaire qui contient sa taille en bits qui est au moins de
la même taille que le nombre de tâches de branche. Chaque bit du masque représente
la branche correspondante et le masque est partagé entre toutes les branches. Une fois
que la branche a terminé sa tâche, elle positionnera alors le bit correspondant dans le
masque à un pour représenter qu’elle a terminé sa tâche. Chaque branche effectuera la

ix

Abstract

Figure 12 – Risque

vérification du masque et s’il ne reste plus de zéro réveillera la tâche suivante. La même
méthode mentionnée ci-dessus pour la prévention des risques sur les données est utilisée
pour résoudre les risques sur les branches lors du remplissage du masque. Cela signifie
qu’une seule tâche peut remplir le masque à la fois pour s’assurer qu’il n’y aura pas de
branches non suivies.

Dans le pipeline logiciel, le déclenchement par l’horloge est remplacé par le signal
envoyé. Cela signifie qu’une étape du pipeline logiciel est réveillée par l’étape précédente
plutôt que par chaque tic d’horloge. Pour s’assurer que toutes les étapes suivent l’ordre
du pipeline, elles seront en mode veille immédiatement après leur création. Après cela, ces
étapes vérifient constamment s’il y a un signal de réveil provenant de l’étape précédente.
Une fois que chaque étape a terminé son traitement, elle réveille la prochaine étape, puis
revient en mode d’attente jusqu’au signal suivant qui la réveillera. Pour pouvoir effectuer
le déclenchement, des variables de condition et des mutex sont utilisés pour permettre
la communication. Si un thread a besoin d’un autre thread pour le réveiller, il passera
à l’état d’attente en verrouillant d’abord la variable de condition, puis en effectuant
l’attente sur la variable de condition. Le thread ne reviendra à l’action qu’après la
modification de la variable de condition. Le signal correspondant pour réveiller le thread
est émis par un autre thread. Quand un thread doit en réveiller un autre, il verrouille
la variable de condition et la modifie pour qu’elle corresponde à la condition requise
pour l’autre thread, puis envoie le signal afin que l’autre thread sache qu’il est temps
de se réveiller et de vérifier la condition. Et puis le thread libère le verrou pour que

x

Abstract

d’autres puissent effectuer des opérations sur la même mémoire. À la fin, le thread qui a
terminé son travail, et qui aura besoin d’un autre signal pour démarrer un nouveau cycle
d’opérations, verrouille alors la variable de condition, modifie à nouveau la variable de
condition, déverrouille la variable, puis recommence à attendre.

En combinant toutes ces fonctionnalités avec un pipeline logiciel, à l’exception de la
première étape du pipeline, toutes les autres étapes du pipeline doivent passer en état
d’attente après la création du thread. Et la première étape du pipeline décide de la
fréquence à laquelle ces étapes du pipeline peuvent être déclenchées. La différence est
qu’au lieu d’utiliser l’horloge pour permettre à chaque étape du pipeline de démarrer
le mouvement suivant, c’est déclenchée uniquement par l’étape précédente, ce qui peut
provoquer un brouillage car chaque étape du pipeline a un temps d’exécution différent, et
le brouillage se produit généralement sur celui qui prend le plus de temps pour s’exécuter.
Pour éviter le brouillage qui était considéré comme l’un des résultats des problèmes de
variation temporelle, il suffit simplement de s’assurer que le temps d’exécution de chaque
étape ne dépasse pas le temps de la fréquence du déclenchement à partir de la première
étape du pipeline. Et la structure du pipeline pour la radio logicielle est illustrée à la
figure 13.

Enfin, parlons de l’accélération fonctionelle. Dans la conclusion précédente, les étapes
les plus longues sont le canal partagé et la génération de l’OFDM. Il est essentiel d’analyser
quelle fonction consomme le plus de temps d’exécution au sein du canal partagé. Comme
le montre la figure 5, en prenant la liaison descendante comme exemple, il existe un
codage, un brouillage, QAM, un mappage de couche, un précodage et la génération de
l’OFDM qui peuvent être la cible de l’accélération.

Dans la 5G, l’algorithme de codage utilise le contrôle de parité à faible densité (Low-
Density Parity-Check, LDPC). Ce que fait LDPC, c’est de coder la chaîne de données en
attachant une chaîne de bits de contrôle de parité à la fin de chaque bloc de données codé,
où la génération des bits de contrôle de parité est créée par les données d’origine traversant
une matrice creuse. Dans la norme 3GPP, LDPC prend en charge plusieurs tailles de
matrices creuses où plus la taille de la matrice est large, plus le temps de traitement
est long pour une même chaîne d’entrée en raison du nombre de bits de contrôle de
parité à générer. Il existe deux matrices « Base Graph » (BG) qui ont des tailles de
quarante-six fois soixante-huit pour BG1 et quarante-deux fois cinquante-deux pour BG2
pour le LDPC selon la norme 3GPP. Et l’expansion pour ces BG peut aller jusqu’à
trois cent quatre-vingt-quatre, ce qui signifie que chaque nombre au BG se transformera
en une matrice au niveau du bit avec une taille de facteur d’expansion multipliée par
le facteur d’expansion. Quant au décodage, il utilise également la même matrice pour
l’opération mais estime la chaîne de bits à travers le rapport log-vraisemblance (log-
likelihood ratio, LLR). Le codage aussi bien que le décodage sont des opérations basées
sur les blocs. Chaque bloc n’est pas lié aux autres, ce qui rend l’opération très répétitive
et indépendante des données à travers les blocs. Étant donné que LDPC a toujours de
grandes matrices de parité, l’opération matricielle prend du temps pour terminer un bloc.
L’encodage et le décodage LDPC consomment à la fois du temps et des ressources. Il
s’agit même des opérations les plus coûteuses en temps quand on teste tout le système
en simulation. Le traitement matriciel basé sur des blocs et le long temps d’exécution en

xi

Abstract

Figure 13 – Pipeline radio logicielle

xii

Abstract

font des candidats idéals pour l’accélération fonctionnelle.
Ce que fait le brouillage, c’est réduire la possibilité que des données proches soient

contaminées en même temps, ce qui rend l’information plus difficile à décoder ou même
impossible à inverser. Pour ce faire, le bit actuel est lié à un couple spécifique de bits
qui ont déjà traversé le brouilleur auparavant. Après avoir passé la séquence de bits à
travers une transformation de type aléatoire, on obtient la séquence de départ pour le
brouillage. Puisque l’entrée se présente sous la forme d’une chaîne de bits et que chaque
bit de sortie est affecté par le bit d’entrée précédent, il n’est pas approprié d’effectuer le
brouillage en parallèle en raison de son exécution séquentielle native.

Quant à QAM, il fait correspondre un groupe de bits à un ensemble spécifique
d’amplitudes et d’angles où l’amplitude et l’angle sont décidés par le type de QAM. Le
niveau pour QAM peut aller par exemple du taux de modulation le plus bas, un à un, la
modulation par déplacement de phase binaire (Binary phase-shift keying, BPSK), pour
transporter plusieurs bits avec un ensemble d’amplitudes et d’angles, comme illustré
à la figure 6. Une fois le niveau QAM décidé, les données de la chaîne seront alors
regroupées puis transposées sur l’ensemble angle-amplitude. Cela signifie qu’il n’y a pas
de relation entre les groupes, ce qui facilite le traitement parallèle du fonctionnement
QAM. Cependant, ce que fait QAM, c’est simplement mapper des ensembles de bits sur
des ensembles d’amplitudes et d’angles, ce qui ne prend pas beaucoup de temps.

Enfin, c’est OFDM. Il est utilisé avant d’envoyer un signal aux antennes pour résoudre
les problèmes d’ISI et de « delay spread » comme mentionné précédemment. Dans
la 5G, la transformée de Fourier rapide (FFT) et la transformée de Fourier discrète
inverse (IDFT) pour le fonctionnement OFDM ont jusqu’à quatre mille quatre-vingt-seize
points, ce qui signifie qu’il y aura une matrice de taille quatre mille quatre-vingt-seize
fois quatre mille quatre-vingt-seize impliquée dans l’opération. Le traitement OFDM est
également une opération matricielle avec une complexité en O(n2). Il existe des moyens
de simplifier l’opération, mais même avec un meilleur algorithme, on obtient toujours
une complexité en O(nlogn). Comme il existe une taille maximale pour FFT et IDFT,
la chaîne de données est séparée en groupes pour l’opération. Étant donné que la 5G
utilise de multiples antennes, avoir toutes les données pour différentes antennes n’est pas
efficace. La FFT et l’IDFT ont toutes deux un fonctionnement matriciel très complexe
et le fonctionnement sur différentes antennes n’a aucune dépendance. Tout cela en font
de bonnes candidates pour l’accélération.

Après avoir choisi le candidat pour l’accélération fonctionnelle, plusieurs méthodes
existent pour réaliser l’accélération. La première consiste à avoir une accélération sur un
CPU à plusieurs cœurs à l’aide de threads de travail. La seconde consiste à utiliser un
matériel spécial pour effectuer le traitement (offloading). Et la troisième est d’avoir un
jeu d’instructions spécial.

Pour l’accélération à l’aide de threads de travail, plusieurs threads de travail sont
créés et utilisés par le thread d’origine qui est un thread dominant. Il contrôle les threads
de travail qui traitent les données et les collecte à la fin du processus. C’est ainsi que le
threading fonctionnel parallèle est utilisé. Ceux qui ont le fonctionnement de groupe, ce
qui signifie qu’il n’y aura pas de dépendance au sein des groupes, pourraient alors être
facilement séparés. Utiliser des threads de travail pour répartir la charge de travail pour

xiii

Abstract

les processus les plus chronophages du pipeline est ce que nous voulons faire avec la radio
logicielle temps réel. Comme mentionné précédemment, le codage et le décodage sont
les goulots d’étranglement du traitement PHY. En analysant la façon dont les données
sont gérées dans la fonction, il est clair que le codage et le décodage sont des opérations
basées sur des blocs, ce qui signifie que l’on peut diviser quelques-uns des blocs en threads
de travail pour obtenir du parallélisme. Le thread principal s’occupe des opérations
communes avant l’opération principale, puis distribue une partie des données aux threads
de travail qui ont des opérations identiques à exécuter en parallèle. Le temps d’exécution
total sera le temps de fonctionnement commun plus le temps d’exécution du traitement
des groupes de blocs qui est le temps d’exécution d’origine divisé par le nombre de threads
de travail, plus enfin le temps d’attente des threads de travail terminant leur propre
opération et signalant au thread principal que leur travail est terminé. En théorie, la
meilleure performance que nous pouvons obtenir est le temps d’exécution des opérations
communes et une part du temps d’exécution des processus parallèles.

Les processus DFT et IDFT sont tous deux des opérations basées sur des blocs et les
données entre différentes antennes sont indépendantes. Cela rend le traitement séquentiel
des différentes antennes inefficace. La parallélisation des traitements sur les antennes
est l’une des façons de faire, en utilisant les threads correspondants pour effectuer les
opérations IDFT et DFT par antenne, puis envoyer les données au fronthaul pour que
l’antenne envoie le signal. En faisant cela, on passe du temps de traitement d’origine
d’une antenne multiplié par le nombre d’antennes à peut-être juste un peu plus que le
temps de traitement d’une antenne en raison de la surcharge due à la synchronisation.
Le résultat de la combinaison de la structure du pipeline et des threads de travail est
illustré à la figure 14.

L’utilisation d’un accélérateur externe, par exemple un FPGA ou un GPU, est la
deuxième option. La plupart du temps, l’accélérateur externe a sa propre manière
d’organiser les données, donc avant d’envoyer des données à un accélérateur externe,
les données doivent être réorganisées sous forme de blocs. Ce n’est qu’alors que l’on
pourra envoyer les données pour un traitement parallèle et puis collecter les données une
fois l’opération dans l’accélérateur externe terminée. L’accélérateur externe doit alors
renvoyer les données à l’étape du pipeline. Les données renvoyées peuvent nécessiter un
autre réarrangement pour l’étape suivante. Il y a plus de données qui sont échangées lors
de l’utilisation de l’accélérateur externe, ce qui signifie que nous devons nous concentrer
sur l’opération la plus longue. Ce qui suit va parler de l’utilisation du GPU comme
accélérateur externe. Le GPU fait naturellement de la programmation parallèle, ce qui lui
donne un avantage pour accélérer un traitement dupliqué. Et cela fait du GPU un bon
candidat pour le codage et le décodage. Mais comme mentionné précédemment, toutes
les données doivent être réorganisées puis envoyées au GPU pour qu’il puisse les traiter.
En particulier dans les stations de base des centres de données, les données transmises
vers et depuis le GPU créent une longue latence. Cela signifie que l’utilisation de bus
normaux pour le transfert de données n’est pas suffisante. Il y a besoin de bus à haut
débit, supérieur à 1 Gbit/s, en radio logicielle pour un centre de données 5G. Tout cela
signifie que la latence créée par le transfert des données devra également être prise en
compte. Bien que le GPU ait un support natif pour la programmation parallèle, il a

xiv

Abstract

Figure 14 – Combiner les threads de travail et la structure du pipeline

une fréquence d’horloge plus lente, des cœurs plus simples, une mémoire partagée au
sein d’un groupe de processeurs et plusieurs groupes de processeurs. Tous ces éléments
rendent la programmation sur GPU plus difficile à concevoir et nécessitent plus d’efforts
sur la conception parallèle.

La dernière technique d’accélération est d’utiliser un jeu d’instructions spécial. SIMD
est l’abréviation de Single Instruction Multiple Data (Instruction Unique Données Mul-
tiples), ce qui montre déjà ses capacités de traitement parallèle natif de par son nom.
Il s’agit d’un traitement parallèle au niveau de l’instruction. SIMD est utilisé pour
traiter plusieurs variables à la fois. SIMD utilise l’idée d’avoir plusieurs opérations
simples identiques opérant sur un grand vecteur avec une opération simple. Par exemple,
l’opération d’addition de tous les éléments de « a » et « b », et de stockage du résultat
dans « x » peut être transformée en un processus vectoriel « X = A + B ». C’est ainsi
que SIMD fonctionne. SIMD prend en charge un groupe de données en y effectuant la
même opération, par exemple ici une addition vectorielle. SIMD accélère en transformant
une opération de boucle en une instruction opérant directement sur un vecteur. Cela
raccourcit le temps d’exécution d’une boucle d’instructions au temps d’exécution d’une
instruction SIMD.

Comme mentionné précédemment, il existe plusieurs endroits qui utilisent des blocs
comme base de traitement et opèrent de manière répétée dans le traitement du signal. De
nombreux traitements sont des opérations basées sur les bits. Le remplacement du code
d’origine par un équivalent SIMD réduit considérablement le temps de fonctionnement
pour le traitement de données de chaîne simples. Cela rend SIMD pratique pour accélérer
considérablement le traitement. Partout où il y a une opération matricielle, il est possible

xv

Abstract

Figure 15 – La combinaison des threads de travail et de la structure du pipeline

de la transformer en plusieurs opérations vectorielles plutôt que d’utiliser une double
boucle pour couvrir l’opération matricielle. En ce qui concerne la répétition d’opérations
sur des données de chaîne, tant que l’opération elle-même n’entraîne pas de dépendance
des données sur la chaîne de bits, il est également possible de dérouler l’opération en une
opération vectorielle. Par exemple, LDPC est une opération matricielle qui peut être
découpée en plusieurs processus vectoriels.

Pour SIMD, il y a plusieurs avantages et inconvénients. L’avantage le plus important
que nous en tirons est de raccourcir considérablement le temps de traitement, ce qui
compte beaucoup dans la radio logicielle temps réel. Pourtant, il y a encore des limites au
SIMD. Il s’agit d’un jeu d’instructions spécial qui cible spécifiquement certains processeurs,
ce qui signifie que la radio logicielle aura besoin de plusieurs jeux d’instructions SIMD
correspondant aux différentes plates-formes prises en charge par le logiciel. Le jeu
d’instructions SIMD ne prend en charge que les opérations simples, ce qui signifie que
si l’opération est trop complexe à désassembler, elle ne peut pas utiliser SIMD pour
s’exécuter. De plus, SIMD a des limites sur la longueur des données sur lesquelles il peut
fonctionner. Cela signifie que si une donnée est plus longue que la taille des données
SIMD, il faudra la séparer en plusieurs données pouvant tenir dans la taille des données
SIMD pour pouvoir fonctionner. Le code SIMD est plus proche du code d’assemblage que
du code C normal. Cela signifie qu’il est moins instinctif et plus difficile à comprendre.
Il faut aussi transférer les données dans les registres spéciaux SIMD avant de pouvoir
procéder. De plus, les données étant traitées par bloc, cela signifie que leur taille doit être
multiple de la taille d’un bloc SIMD. Et comme il s’agit plus d’un code assembleur que
d’un code C général, il est fortement dépendant de l’environnement ce qui rend difficile
le changement de plate-forme.

Après avoir combiné toutes les fonctionnalités ci-dessus, on obtient une structure de
radio logicielle comme illustré à la figure 15.

xvi

Acknowledgements

xvii

Acknowledgements

xviii

Contents

Abstract . i
Acknowledgements . xvii
Contents . xix
List of Figures . xx
List of Tables . xxiii
Acronyms . xxv
Notations . 1

1 Introduction 1
1.1 Software Defined Radio . 6
1.2 5G Systems and Implementation Technologies 7
1.3 Motivation . 10

2 Software Optimized Real-time Processing for 5G systems 11
2.1 Related Work and State of the Art . 11

2.1.1 Multi-threading for Parallelized Execution on Multi-Core Systems 12
2.1.2 Hardware Acceleration(FPGA/GPU) 13
2.1.3 SIMD/VLIW optimizations . 14

2.2 Real-time SDR and Fronthaul Interface 15
2.3 Challenges in Implementing Real-time SDR 16
2.4 Considered Approach for Implementing Real-time SDR-base 5G systems . 16

3 Functional Decomposition and Pipelining for 5G radio processing 19
3.1 5G Physical-Layer Procedures . 20
3.2 Proposed Pipelining Methods . 22

3.2.1 Pipeline Mechanism . 23
3.2.2 Software Pipeline . 24
3.2.3 Proposed Pipeline Structure . 27

4 Acceleration Methods for 5G Functional Blocks 29
4.1 Acceleration Target Choice . 29
4.2 Splitting Method . 34

xix

Contents

4.3 SIMD optimizations . 37

5 Implementations Using OpenAirInterface 39
5.1 Testing Methods . 41
5.2 Performance Evaluation Methods . 42
5.3 Results of Performance Evaluation on multi-core x86 platforms 45

6 Conclusion and Future Work 55

xx

List of Figures

3 IMT-2020 . ii
4 Inter Symbol Interference (ISI) . iii
5 Inter Carrier Interference (ICI) . iv
6 Quadrature Amplitude Modulation (QAM) diagram example iv
7 Flux de procédure PHY pour la radio logicielle vi
8 Réponse du canal dans différents modes vi
9 Procédure pour l’exécution séquentielle radio logicielle vii
10 Mappage des canaux - ShareTechNote . viii
11 Un exemple de structure de pipeline à trois étages ix
12 Risque . x
13 Pipeline radio logicielle . xii
14 Combiner les threads de travail et la structure du pipeline xv
15 La combinaison des threads de travail et de la structure du pipeline . . . xvi

1.1 Internet seven layers from SystemZone . 2
1.2 Inter Symbol Interference . 3
1.3 Inter Symbol Interference . 3
1.4 Three dimension for 5G from IMT-2020 4
1.5 SDR 5G network from IEEE [1] . 5
1.6 OpenAirInterface Functional split . 9
1.7 Flow for Physical Layer . 9

2.1 OpenAirInterface Functional split . 12
2.2 Hazard that might happen while using multi-thread 13
2.3 Four slot delay from received to send . 15
2.4 Data-center environment with FPGA/GPU accelerator 17

3.1 Consecutive execution for receive and transmit set 20
3.2 Channel mapping diagram from ShareTechNote 21
3.3 Physical layer flow with the functional split 22
3.4 Simplest pipeline example . 23
3.5 Hazard that might happen when using parallel programming 24
3.6 Example of One of The Mutex Used in SDR 25
3.7 Bit-wise mapping mask indicator . 26
3.8 Threads communication with mutex lock introduced 27

xxi

List of Figures

3.9 Pipeline structure works in timing aspect 28

4.1 Resource grid for NR from ShareTechNote 30
4.2 Quadrature Amplitude Modulation (QAM) diagram example 33
4.3 OFDM effect on resource element for both time and frequency domain

from 5G Technology World . 34
4.4 Including worker threads to the procedure 35
4.5 Combing worker threads and pipline structure 36
4.6 The communication between threads when combining pipeline structure

and worker threads . 37

5.1 The role that Operation System (OS) play 40
5.2 Timing measurement on different threads 43
5.3 VCD tracking for function and variable 44
5.4 VCD tracking for function and variable 46
5.5 Two different pipeline split . 47
5.6 Functions that is categorized in different acceleration group 47
5.7 The ability of pipeline structure to recovery from a sudden data rush . . . 49
5.8 The timing log of the recovery of the pipeline structure 49
5.9 Channel simulation result . 51
5.10 Scenario that have multiple RRU in the pipeline structure 52
5.11 Timing analysis of Transmitting and Receiving every OFDM symbol . . . 52
5.12 An example of having more threads than cores 53
5.13 Front end process with single thread . 53
5.14 Front end process with two thread . 53
5.15 Execution resource distribution . 54

xxii

List of Tables

1 Numérologie et espacement des sous-porteuses dans la norme 3GPP . . . v

1.1 Sub-carrier spacing and cyclic prefix under different numerology 4

5.1 N320 Test result on 60MHz bandwidth . 50
5.2 N310 Test result on 60MHz bandwidth . 50

xxiii

List of Tables

xxiv

Acronyms and Abbreviations

The acronyms and abbreviations used throughout the manuscript are specified in the
following. They are presented here in their singular form, and their plural forms are
constructed by adding and s, e.g. RRU (Remote Radio Unit) and RRUs (Remote Radio
Units). The meaning of an acronym is also indicated once, the first time appearing in
the text.

3GPP Third Generation Partnership Project
5G Fifth Generation
4G Fourth Generation
ADC Analog-to-digital converter
AI Artificial Intelligence
API Application Program Interface
AWGN Additive White Gaussian Noise
BBU BaseBand Unit
BG Base Graph
BPSK Binary phase-shift keying
BS Base Station
CA Carrier Aggregation
CAPEX Capital Expenditure
CDD Cyclic Delay Diversity
CDMA Code-Division Multiple Access
CN Core Network
CPU Central Processing Unit
C-RAN Cloud-Radio Access Network
CP Cyclic Prefix
CPRI Common Public Radio Interface
CSI Channel State Information
CSIT Channel State Information at the Transmitter
CU Central Unit
CUDA Compute Unified Device Architecture
DAC Digital-to-Analog Converter
DAS Distributed Antenna System
DFT Discrete Fourier transform
DL DownLink

xxv

Acronyms

DMRS Demodulation Reference Signal
DSP Digital Signal Processor
DU Distributed Unit
ECP Extended Cyclic Prefix
eMBB Enhanced Mobile Broadband
EPC Enhanced Packet Core
FC Fast Calibration
FDD Frequency-Division Duplex
FPGA Field Programmable Gate Array
FTT Fast Fourier Transform
gNB gNodeB
GPP General-Purpose Processor
GPU Graphics Processing Unit
HDL Hardware Description Language
HPA High Power Amplifier
HSS Home Subscriber Server
ICI Inter-Carrier Interference
IDFT Inverse Discrete Fourier transform
IFFT Inverse Fast Fourier Transform
IoT Internet of Things
IRIG Inter Range Instrumentation Group
ISI Inter-Symbol Interference
L1 Layer1
LDS Laser Direct Structuring
LDPC Low-Density Parity-Check
LTE Long Term Evolution
MAC Media Access Control layer
MCS Modulation and Coding Scheme
MIMO Multiple-Input Multiple-Output
ML Machine Learning
MME Mobility Management Entity
MMSE Minimum Mean Square Error
mMTC Massive Machine Type Communications
mmWave Millimeter Wave
MRT Maximum Ratio Transmission
MSE Mean Square Error
MU Multi-User
NLOS Non Line Of Sight
NR New Radio
OAI OpenAirInterface
OCXO Oven-Controlled Crystal Oscillator
OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access
OS Operation System

xxvi

Acronyms

OSI Open System Interconnection
SIMD Single Instruction Multiple Data
PA Power Amplifier
PBCH Physical Broadcast Channel
PCB Printed Circuit Board
PCIe Peripheral Component Interconnect Express
PDCCH Physical Downlink Control Channel
PDCP Packet Data Convergence Protocol
PDSCH Physical Downlink Shared Channel
PHY Physical Layer
PRB Physical Resource Block
PSS Primary Synchronization Sequence
PTP Precision Time Protocol
PUCCH Uplink Shared Channel
PUSCH Uplink Control Channel
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase-Shift Keying
RAN Radio Access Network
RAU Radio Aggregation Unit
RB Resource Block
RCC Radio Cloud Center
RE Resource Element
RF Radio Frequency
RLC Radio Link Control
RRC Radio Resource Control
RRU Remote Radio Unit
RS Reference Signal
RU Radio Unit
Rx Receiver
SGw Serving Gateway
SINR Signal to Interference and Noise Ratio
SM Spatial Modulation
SNR Signal to Noise Ratio
SRS Sounding Reference Signal
SSF Special SubFrame
SyncE Synchronous Ethernet
TDD Time Division Duplex
TM Transmission Mode
Tx Transmitter
UE User Equipment
UHD USRP Hardware Driver
UL UpLink
URLLC Ultra-reliable and Low Latency Communications
USRP Universal Software Radio Peripheral

xxvii

Acronyms

UTC Coordinated Universal Time
VCD Value Change Dump
VCO Voltage-Controlled Oscillator
VCTCXO Voltage-Controlled Temperature Compensated Crystal Oscillators
VLIW Very Long Instruction Word
ZF Zero Forcing
ZFBF Zero-Forcing Beamforming

xxviii

Chapter 1

Introduction

The implementation of a real-time Software Defined Radio (SDR) for 5G is the topic of
the thesis. Before learning more about real-time 5G SDR, let’s discuss some background
information. First Let’s discuss the definition of the internet. As depicted in figure 1.1,
there are seven separate layers in the Open System Interconnection (OSI) paradigm of
communication. The Physical Layer (PHY), Data Link Layer, Network Layer, Transport
Layer, Session Layer, Presentation Layer, and Application Layer are the layers in order
from lowest to highest. Physical nodes are used to send and receive data throughout
the network, and the physical layer is in charge of handling raw bitwise data strings.
The Media Access Control (MAC) and Logical Link Control (LLC) are combined to
form the data link layer, which controls whether connections between physical nodes
are established or removed. The PHY was controlled by MAC, but LLC will make the
corrections that the PHY missed. The thesis will make reference of these two. The
Application Layer, the uppermost level, is what we are most familiar with. As the sole
result most users are familiar with, it is in charge of delivering and receiving data directly
from the users and showing the result to them.

An SDR is a radio communication system that primarily uses the bottom layer, as
indicated by the name. SDR supports a variety of data transmission methods, including
wireless, optical fiber, and any type of cable. Out of all of these, the SDR will focus on
wireless communication for this thesis. The unique aspect of wireless communication
is that, as implied by the name, it transmits data across the air without the use of
wires or other conductors. The advantage of this is that there are less physical limits
because no conductors are required for true connection, but the disadvantage is that there
may be greater interference during the transmission. We must first discuss Orthogonal
Frequency-Division Multiplexing (OFDM), one of the best communication architectures,
before we can discuss wireless communication. It carries the data on a number of carriers
in the frequency domain that are orthogonal to one another. Therefore, except for the
case where the data is optimal, there will be cancellation everywhere else. However, in
reality, inter-carrier interference (ICI) and inter-symbol interference (ISI) still exist. ISI
and ICI happen while having a delay for the arrived package which means that there will
be some data missing for the expected signal and being overlapped by the signal attached
to it. By include a guardian period with known data, such as the zero padding illustrated

1

Chapter 1. Introduction

Figure 1.1 – Internet seven layers from SystemZone

in figure 1.2 could be resolved. However, ICI continues to exist because there is still a
signal component that is lost during the process. While adding known data padding
solves the ISI problem, it doesn’t solve the ICI. Since the time shift in the time domain
is only an offset in the frequency domain, as demonstrated in Figure 1.3, inducing Cyclic
Prefix (CP) rather than known data padding produces the desired effect for ICI.

As previously said, SDR focuses on the lower layer more. While the Physical Layer
will be the main focus of this thesis, the SDR is built for wireless communication for 5G as
described in the 3gpp standard. Timing will be one of the biggest obstacles real-time SDR
would have to overcome. Slot time is the most fundamental PHY unit, and table 1.1 in
the 3GPP standard for 5G illustrates the link between subcarrier spacing and numerology.
According to space-time transmission between slot time and subcarrier spacing, a rough
idea of using wider subcarrier spacing will induce a shorter slot time. The following
equations show the relationship between subcarrier spacing and slot time where slot time
is the basic time unit in PHY. Tc = 1/(∆fmax ∗Nf) were ∆fmax = 480∗103HZ and Nf =
4092, The constant k = Ts/Tc = 64 where Ts = 1/(∆fref ∗Nf,ref),∆fref = 15 ∗ 103HZ
and Nf,,ref = 2048Tf = (∆fmaxNf/100) ∗ Tc = 10ms. These equations demonstrate
that although the frame time is always 10 ms, there will be more slots per frame as the
numerology increases, resulting in a shorter slot time when utilizing higher numerology.
The slot time in 5G is typically less than what is required in LTE because numerology
zero has the same setup as LTE and has a slot time of 1ms.

Let’s talk a little bit about the Fifth Generation of Cellular Mobile Communications
(5G) New Radio (NR) network now that you know a little bit about the real-time
SDR. As seen in figure 1.4, 5G NR provides a variety of features, such as Enhanced
Mobile Broadband (eMBB), Ultra-reliable and Low Latency Communications (URLLC),
and Massive Machine Type Communications (mMTC). Every component has a central

2

Chapter 1. Introduction

Figure 1.2 – Inter Symbol Interference

Figure 1.3 – Inter Symbol Interference

3

Chapter 1. Introduction

µ ∆f = 2µ ∗ 15[kHz] Cyclic prefix
0 15 Normal
1 30 Normal
2 60 Normal, Extended
3 120 Normal
4 240 Normal

Table 1.1 – Sub-carrier spacing and cyclic prefix under different numerology

Figure 1.4 – Three dimension for 5G from IMT-2020

focus. eMBB is concentrating on high data rates over a wide band, whereas URLLC is
concentrating more on precision and speed. With regard to mMTC, it focuses more on
simultaneously supplying a sizable number of devices across a broad range.

According to standard 38.801, the use case for 5G NR is a centralized base station
with multiple nodes feeding various antennae. Since the Central Unit (CU) may support
multiple Distributed Units (DU) with a distance and several localized nodes, as shown in
figure 1.5, it is anticipated that 5G NR would have a centralized deployment. This will
allow the base station to have larger coverage. Additionally, DU is connected locally or
remotely by multiple radio units (RU) or remote radio units (RRU). Particularly the
Physical Layer (PHY), those processes in DU and RU have a larger demand for real-time
property. High throughput and minimal latency are needed from a 5G base station, and
one of the obstacles will rely on how well the DU can perform.

4

Chapter 1. Introduction

Figure 1.5 – SDR 5G network from IEEE [1]

5

Chapter 1. Introduction

1.1 Software Defined Radio

The thesis focuses on developing a real-time Software Defined Radio (SDR) for 5G using
citations from the following works [2] [3] [4] [5] [6] [7]. The thesis is about implementing
a real-time Software Defined Radio (SDR). SDR does not have a single standard, but
in this case it is a combination of software programs that connects with the hardware
frontend. SDR, as its name suggests, is a program that runs on a computer that once
housed a radio station. It stands out because it is a software application that performs
tasks that were previously handled by hardware devices while having capabilities for
software. One of the factors contributing to SDR’s rising popularity is that a chip’s
extended development period allows for minimal room for error. To be able to create a
semiconductor that functions, it must first design with a low-level language like Verilog for
the behavior design which is not intuitive. The size of each gate, how it is implemented,
and where it is positioned all matter since the size of the chip directly affects its price,
so the program must be converted into visual form. Additionally, the connection path
between each gate on the chip needs to be carefully constructed because a long link could
result in problems like path loss, which is a power decrease when an electric wave travels
a long distance, and data hazards which is data that is delayed. Additionally, this is
only a quick look at the chip design at the graphics stage. After going through all of
these steps, it needs to be taken to the manufacturing facility for production where the
graphic is actually etched onto the chip. It must go through four phases in order to have
one layer for the chip: coating, etching the coat to reveal the silicon, etching the silicon,
and washing out the residue. This demonstrates that producing a chip requires time
as well as precision. We can infer that making a chip is expensive and time-consuming
from all the details given above. Hardware verification still requires more work than
software, even without a chip. Here’s an illustration of functional verification using an
FPGA board. In addition to requiring the use of a low-level programming language, the
FPGA’s compilation time is significantly higher than that of a standard CPU because it
must modify the board’s gateway.

When SDR uses software programming, as in the cases of [8] [9], it offers the advantage
of a quick development cycle and an easy-to-add new feature. However, SDR must still
overcome some challenges, starting with the timing problem. The hardware chip went
through all of these difficulties in order to deliver the signal as quickly as it possibly
could, whereas general-purpose software programs can’t match the performance, which
was not even possible back in the day due to the slow clock rate and other factors. The
good news for the SDR is that, despite the fact that the most recent software was still
unable to match the performance of the most recent hardware, it was now capable of
doing the SDR procedure within the time frame demanded by 3gpp. Modern technology
has made it possible for the SDR to be served by a generic CPU. Despite this drawback,
it has the unmistakable advantage of having a quick development cycle, which is apparent
whenever a new feature needs to be introduced to the SDR. The SDR can easily handle
the additional features if we simply add the new functions to the code and recompile it.
It is not only easy to add new features, but it can also support multiple configurations [9]
within one version of the SDR. Since the software program can be configured in several

6

Chapter 1. Introduction

ways, each configuration only needs to predefine a small number of variables. Because
of SDR’s development flexibility and understanding that it will still meet the timing
requirement, more and more people are becoming interested in it.

As previously indicated, the SDR’s strong adaptiveness speeds up development
whenever new features are added to the standard. It is now necessary for the station to
offer numerous functions at once because modern communication is more sophisticated
and diversified than it used to be, which makes creating hardware even less appealing.
SDR is also known as reconfigurable radio, which indicates from the name that it is made
to be able to handle a variety of communication. Since general-purpose computers are
becoming more powerful, hardware is no longer the only way to implement radio. SDR
development will need to be flexible in terms of frequency, bandwidth, modulation, data
rate, and other factors, so the lifespan of the device may be extended.

Although practically all of the hardware components of the SDR radio station have
been replaced by software, the antenna is the one component that software will never be
able to take the place of. Since the data stream must travel through the air with the analog
signal for wireless communication, there must always be a digital-to-analog or analog-to-
digital converter (DAC/ADC) by itself, in addition to the antennas. The communication
between the RU and the rest of the SDR is becoming increasingly complicated and
requires discussion since 5G must be a large Multiple-Input Multiple-Output (MIMO)
system.

Combining all of the above will make it difficult to create an SDR that can handle
the complex set necessary to meet the 5G specification alone with the MIMO usages
while still being able to support the massive data flow within the timing requirement.
This thesis will focus on this challenge.

1.2 5G Systems and Implementation Technologies

The three dimensions that 5G hopes to achieve are eMBB, URLLC, and mMTC, as was
previously indicated. All three of the 5G implementation’s dimensions, as depicted in
1.4, are covered in [10] [11]respectively. eMBB is the most understandable. By enabling
a greater bandwidth and more PHY layers than the previous generation LTE, it is seen
as an improved version of the LTE. This means that 5G might enable better data rates
and more data flow. For instance, the implementation of virtual reality (VR) may have
greater visual quality, live streaming may be more fluid and have higher resolution, and
for activities requiring large amounts of data transfer. In addition to eMBB, there are
two further new features over previous-generation LTE: URLLC and mMTC. Let’s start
by discussing URLLC. The short time unit feature of URLLC, which also translates to
short slot time, is obvious from the name. In addition, there is hardly any chance that
anything will go wrong. For precise implementation of tasks requiring quick response
times, such as emergency medical treatment and, in particular, the auto drive system
for vehicles as detailed in [12], URLLC is employed. The vehicle control instruction is
rather straightforward, but every signal that the system picks up is important for the
decision-making process, and the moving vehicle’s quick reaction time makes it an ideal
choice for using URLLC. Regarding mMTC, it is utilized to support a sizable number of

7

Chapter 1. Introduction

devices simultaneously, as its name suggests. The challenge is being able to handle so
many devices at once, even while each one that is linked to the radio doesn’t need a lot
of resources. The idea of the Internet of Things (IoT), which connects numerous devices
with centralized control, meets the definition of mMTC. One example is the healthcare
system as stated in [13].

In comparison to LET, 5G requires more from all data strings supplied, execution
time unit, users, data rate, capacity, signaling overhead, energy consumption, end-to-end
latency, dependability, and other factors. The figure 1.5 [14] [15] shows that 5G has the
structure of several wild distributed RU with a relatively centralized computation unit.
The layout of which functions should exist in Cartelized Unit (CU) and which functions
should exist in Distributed Unit (DU) becomes more crucial since the implementation
of such a structure with the necessity of 5G entails a short time interval with large
data. Due to the combination of DU and MIMO, a lot of data transmission time may
be wasted, or the data could be sent with a minor modification that could be readily
accomplished by making a small adjustment from the original data. Multiple strategies
for splitting functions between CU and DU in OAI are shown in Figure 1.6. One of the
most significant constraints, the Transmission Time Interval (TTI), was also described
as the fundamental time unit in the chapter before, in addition to the latency caused
by data transfer. Less latency and a shorter TTI should be achievable with the 5G
SDR, which will result in faster PHY processing. To achieve the latency requirement,
5G PHY processing times should be quick. It should also have sufficient data processing
speed to support MIMO. PHY needs to be adaptable in order to support various usage
requirements in 5G.

Let’s examine the data flow in PHY in more detail since it is crucial to have the
split inside the data flow. The brief PHY flow is depicted in figure 1.7, which doesn’t
much change from that in LTE other than the use of a new strategy and algorithm. For
instance, Low-Density Parity-Check (LDPC) encoding is used for coding and decoding
in 5G instead of turbo encoding. Even though the fundamental concept hasn’t changed
much, there have been a lot of tiny adjustments made, such as the coding rate due to
differing Base Graph (BG) widths used by LDPC, channel response timing, and most
crucially, the TTI as previously indicated. Since there could be more than one layer in
5G, the amount of data travelling through the PHY is also variable. Additionally, MIMO
is a native feature of the 5G framework, whereas Single-Input Single-Output (SISO) is
only permitted on 4G. This increases the processing time for antennas by a few times
compared to before. When multi-layer and MIMO are combined, layer mapping and
precoding, which in 4G were merely utilized for data transfer, will need to be used as
connecting elements.

A higher Fast Fourier Transform (FFT) size is employed in 5G in addition to a shorter
TTI, different coding rates, and additional antennas and layers. This indicates that the
coding process utilizes a larger matrix. The 3gpp standard states that the FFT size for
5G increases from 1024 to 4096 depending on the bandwidth and numerology since a
larger numerology results in a shorter slot duration and a larger subcarrier spacing.

8

Chapter 1. Introduction

Figure 1.6 – OpenAirInterface Functional split

Figure 1.7 – Flow for Physical Layer

9

Chapter 1. Introduction

1.3 Motivation
From the summary above, it is clear that there would be a few challenges when con-
structing a 5G system with SDR. The two factors that matter the most out of all are
having a lot of data to analyze and a fast PHY since MIMO uses numerology to apply
multi-layer data to a broader bandwidth. The variety of 5G makes it increasingly difficult
and impractical to create a specific chip. So it has become more appealing to create an
SDR capable of supporting 5G. The SDR can begin testing with the 4G requirements
before moving on to the 5G ones because 5G requires more timing and resources than
4G does.

Due to the lengthy processing time with limited data, approaching the behavior
without acceleration is initially still manageable with 4G. The timing issue in PHY is
then apparent even when just altering the configuration for the numerology in 4G and
modifying the coding and decoding scheme are done. The original SDR architecture
cannot handle the 5G operation by just porting the 3gpp standard. The question of how
to make SDR work with the 5G time requirement becomes one that merits discussion.

PHY performance should be approached from a few different aspects, including
speeding the process itself and performing structural rearrangement by overlapping the
operations. Even though it sounds straightforward, multiple users processing data at
once, handling data before it is available, and other similar problems might result from
overlapping processes. When it comes to speeding up the operation itself, creating a
faster algorithm doesn’t appear to be a viable option. Instead, job offloading or having
special instructions for quick execution come into play.

10

Chapter 2

Software Optimized Real-time
Processing for 5G systems

One of the open-source real-time and simulation SDR base stations, known as OpenAir-
Interface5g (OAI), which was initially built on LTE and is currently being integrated
and developed in 5G NR that adheres to the 3gpp protocol. The SDR in this thesis will
be implemented using OAI. The advancement of the present chip development makes
real-time SDR viable in comparison to the old hardware-based base station. For real-time
SDR, it is most important to have software processing time to be able to match up the
timing required for the front end for it to not only be able to do the verification for the
procedure but actually be a base station [16]. According to [17], matching the front end
time means that in addition to all the software signal processing, it must be able to
handle the input and output throughput from the front end.

When building the base station using software, one of the most crucial difficulties is
the real-time programming paradigm. The corresponding figure 1.6 illustrates how splits
for 5G NR are implemented in OAI.

We can deduce from the aforementioned figure that all signals and data are transmitted
one at a time, leading to the instinctive sequential design. A real-time program does
not need a lot of idle resources or pending time, though, which is what consecutive
programming will do. Therefore, the main focus of this issue is on how to shorten the
waiting time and maximize the use of the resource.

2.1 Related Work and State of the Art

in order to keep up with real-time. There are a few ways to speed things up, including
hardware acceleration, threads that use cores, and programming language configuration.
According to the source [18], SDR can be based on a variety of platforms, including
General-Purpose Processors (GPPs) and Field Programmable Gate Arrays (FPGAs).
A lower-level programming language is utilized to enable real-time programming for
SDR. The hardware language Verilog must be used to program FPGAs, whereas C is
used to program GPPs. Hardware language is more focused on programming with fine-

11

Chapter 2. Software Optimized Real-time Processing for 5G systems

Figure 2.1 – OpenAirInterface Functional split

grained logic gates and wire connections, whereas C language is more focused on logical
programming with easier to maintain data structures, command libraries, and cross-
platform portability.In order to design the SDR, we therefore selected the General-Purpose
Processor with C language for development and programmability.

2.1.1 Multi-threading for Parallelized Execution on Multi-Core Sys-
tems

First, let’s discuss cores and threads. The ones on the chips that are physically present
are called cores. The ability of each core to function independently makes cores in
parallel functional. Each physical thread has two cores. They are also utilized to enhance
compute performance by parallelization, which is the simultaneous execution of numerous
tasks. Threads cannot do many tasks simultaneously, unlike cores. However, while tasks
are being handled by a core, if tasks in thread one of the core are pending, such as
waiting for data access in memory, the core can then transition to duties in thread two
to make the most of the pending time that thread one creates, as seen in figure 2.1. The
overall thread count is equal to the number of cores multiplied by the maximum number
of threads that each Intel core can support under its current architecture, which is two.

However, when discussing multi-threading programming, software risk is a given. A
process will be more likely to experience hazards if it manages several threads. Hazards
include consulting data before handling it or cross-changing data in several threads,
which can lead to inaccurate answers. The figure 2.2 displays a few instances of the
risk occurring. Reading and writing simultaneously on the same register or performing
more than one act of writing simultaneously on the same register may produce surprising
results since the data may be overwritten at the wrong time. In addition, any work that
follows branch merging can only be started until all branches ahead have been completed.
The adage "the more threads, the faster it is" won’t always hold true because there will
be communication overhead between threads. Code complexity and readability will both
be drawbacks of multi-threaded programming.

The aforementioned factors need taking extra care while employing several threads
for the same activity. Data being processed for multi-thread parallelization should be
carefully organized because only unrelated data can be executed on different threads at
the same time safely without running into issues. In addition to a sign or a check to

12

Chapter 2. Software Optimized Real-time Processing for 5G systems

Figure 2.2 – Hazard that might happen while using multi-thread

signify the start of parallelized execution, there should also be a guard for common usage
data, such as signal sending to activate parallelized execution.

[19] is cited as saying that performance increases rapidly as core count increases. In
order to create an SDR, [19] combines multiple Digital Signal Processors (DSPs). This
eliminates the need for the engineer to modify the algorithm in order to fit it into the
resource of a single DSP and achieve real-time performance, which occasionally may
entail sacrificing the algorithm’s accuracy. The question of how the algorithm might be
divided has taken precedence. However, because of the overhead between DSPs, the
relationship between performance and core count has not grown linearly. It nonetheless
demonstrates how having more than one processor can boost performance, despite the
fact that it employs DSPs rather than the General Purpose Processor’s (GPP) cores.

Real-time reaction, environmental adjustment, and decoding all have various duty
cycles and levels of parallelism (data level, instruction level, and task level), as noted
in [20]. Despite adding complexity to the SDR by nature, this makes multi-core work load
sorting and splitting acceptable. Not to mention the simultaneous existence of numerous
modes in the same SDR. Using several cores for the SDR process maximizes resource
utilization, which can lower energy usage and enhance timeliness.

2.1.2 Hardware Acceleration(FPGA/GPU)

We can infer that multi-task processing is required for present SDR from the part above.
However, communication and synchronization issues arise with parallel execution. To
prevent stalling, the SDR’s organizational structure and resource consumption should be
well-planned. Adding the attached hardware accelerators is an alternative to utilizing
the current cores, citing [21].

Hardware with image processing and graphics capabilities is known as a graphics
processing unit (GPU). The handling of an enormous quantity of data in the same way is
a natural feature of the graphical process. And as a result, when stream data processing
is designed properly, GPUs are effective at it. Due to this, GPU is a strong contender
when discussing data-level parallelism. For instance, NVIDIA’s Compute Unified Device
Architecture (CUDA) GPU always has a structure with numerous groups of cores that is

13

Chapter 2. Software Optimized Real-time Processing for 5G systems

less powerful than the general processor, and each core has its own unique memory with
shared memory inside the group. Providing a GPU with a single piece of data in a single
motion, in my experience, takes almost as long as providing a GPU with several inputs
in a single move, as in the case of an array process. The configuration of data input and
output for GPU will then be the primary distinction.

[22] A programmable hardware accelerator can also be a Field Programmable Gate
Array (FPGA) that has been Hardware Description Language (HDL) programmed.
Having a dedicated chip for a specific use was a possibility when considering unit
acceleration. However, manufacturing a chip is time-consuming and expensive; using
programmable hardware, such as FPGA, instead, is more cost-effective. By substituting
an FPGA for the existing component, the unit that has to be accelerated can be used
exclusively. The chosen component is then redesigned, wired, and connected to the
remainder of the process inside the FPGA. This results in the processing of data inside
the unit being more conventionally analog rather than digital, which will speed up the
process.

A case of combining FPGA with conventional CPUs is the article [23]. It offers
multiple modes where the FPGA controls specific parts of the overall operation. The
processing time for the FPGA is faster than that of the general processor handling the
same process in a different mode, despite the fact that it differs from using FPGA just
for acceleration.

2.1.3 SIMD/VLIW optimizations

It is assumed that repetitive execution will be held on various data in SDR because
communication protocols are about processing the stream of data in a consistent manner.
Single Instruction Multiple Data (SIMD) is now a possible acceleration method as
a result. By nature of its name, SIMD makes it clear that it handles many data sets
simultaneously, which is what communication processing requires for. SIMD is parallelism
at the instruction level. A number of data should be combined into one large piece of
data and then handled by special instructions based on the language and data size, such
as AVX256, in order to be able to analyze numerous data at once.

The article [24] claims that vector data is used for SIMD operation. Due to the fact
that it is a specific process, alignment was needed for the data being served, which usually
involves data movement. The barrier for SIMD instructions is now data organization
rather than execution time. The issue of complex vector computation is then resolved
with the advent of Very Long Instruction Words (VLIW). Compared to SIMD, VLIW
takes a different approach to acceleration. It benefits from the fact that all data goes
through the same procedure, but the data has dependencies that prevent them from
splitting in parallel as usual. Process is divided into smaller chunks and has a pipeline
structure for it rather than employing typical consecutive execution. Whenever greater
accuracy is required The concurrent execution that the SIMD pipeline couldn’t manage
will subsequently be handled by VLIM.

14

Chapter 2. Software Optimized Real-time Processing for 5G systems

Figure 2.3 – Four slot delay from received to send

2.2 Real-time SDR and Fronthaul Interface

SDRs handle digital data, but the signal that is actually delivered is an analog waveform.
To convert analog signals to digital data and the other way around, there must be a data
transformation process between digital and analog that includes sampling. Antennas
are furthermore required for wireless transmission. For the SDR to function fully, all of
these indicate that at least one piece of hardware must be connected. We refer to the
period prior to the Base Band Unit (BBU) as fronthaul or Remote Radio Unit (RRU).
Fronthaul should operate in real-time since the SDR does. This requires not only that
fronthaul processing be completed on time, but also that data transfer from RRU to
BBU be accomplished in real-time.

Transmission Time Interval (TTI) could be substantially lower than in LTE because
of the increase in subcarrier spacing brought on by the numerologies, according to the 5G
standard (38.211). According to the specification, real-time SDR must have a consistent
input and output of slot data per TTI, which in 5G is lower than 500ms. Furthermore,
5G NR has stricter requirements for low latency, particularly for URLLC, as is illustrated
in figure 2.3. The amount of data traffic in 5G NR has also grown, particularly for
Enhanced Mobile Broadband (eMBB), making it crucial to consider scheduling for data
delivery even to the offloading device.

Because MIMO is necessary for 5G, the loading for real-time fronthaul is larger. When
it used to send just one string of data every TTI, it now needs to send a few times more
data while still getting the job done in a single TTI. There are primarily two options:
either all Radio Units (RU) or both the lowest layer of PHY and RU are present in the
fronthaul structure. In the first situation, each antenna’s data must be sent via BBU
within a single TTI. For the second, each layer’s string data will need to be transmitted
using BBU.

The Universal Software Radio Peripheral (USRP) family is utilized as the fronthaul
of the SDR in the article [25]. The feature of USRP is also discussed in the Ettus
Research article [26]. Gigabit Ethernet or USB 2.0 ports on the processor are available
for connecting USRP. USB 2.0 is no longer effective enough to support the real-time
functionality of 5G; only high-velocity Ethernet, like 10 Gigabit Ethernet, can keep up

15

Chapter 2. Software Optimized Real-time Processing for 5G systems

with the speed for real-time SDR. USRP hardware includes an RF front end, FPGA,
ADC, and DAC. Furthermore, Ettus created the USRP Hardware Driver (UHD), an
application program interface (API) to achieve real-time performance. 5G uses a variety
of configurations for its bandwidth, bands, frequency, antennas, and other components,
so the fronthaul must also be programmable.

2.3 Challenges in Implementing Real-time SDR

As previously noted, having the simplest concurrent dataflow with no acceleration required
and just software acting as a sandbox in simulation mode can be achieved to have an SDR
for development and logical verification. However, achieving real-time is the most crucial
aspect of real-time SDR. The TTI, which in 5G is less than 500us, must be the basis for all
process unit times in the physical layer. Things become more challenging as a result. It is
necessary to reconstruct the PHY structure, which cannot be sequential. The shorter the
processing unit, the better. Before the reaction time, the corresponding data needs to be
ready. Not only these, but the data rate, capacity, signaling overhead, end-to-end latency,
energy consumption, and number of devices have all been improved in the 5G system.
Real-time SDR implementation must satisfy all of the aforementioned requirements,
which makes calculating and allocating computing resources for the general-purpose
computer the primary challenge. Finding and understanding the timing critical path
is crucial since Real-time is the implementation constraint. However, there might be
several executions going on at once, and speeding up the existing critical path might not
be sufficient. It becomes crucial to consider how the process will run and how much work
it would require.

In conclusion, there are going to be a few points that need to be taken care of in the
real-time SDR.

• Structure of the SDR – Rearranging the structure to parallel programming. Ob-
serving critical path.

• Unit process time – Shorten up each unit time using different levels of parallelism

• Data passing overhead – Data transferring time should also be considered.

2.4 Considered Approach for Implementing Real-time SDR-
base 5G systems

Short TTI and multiple antennas will be the main areas to focus on for 5G real-time
SDR, according to all the descriptions above. Short TTI has the drawback of having less
PHY processing time, which eliminates the possibility of successive processing. Regarding
several antennas, they signify a larger data stream that must be processed separately and
take more time to transport. Combining these two requirements, the 5G real-time SDR
must process data quickly and have a high throughput. Additionally, as 5G has widely
dispersed antenna nodes, having a potent central processing unit looks more logical.

16

Chapter 2. Software Optimized Real-time Processing for 5G systems

Figure 2.4 – Data-center environment with FPGA/GPU accelerator

According to the investigation, a slot time was required to finish a 4G process when a
sequential process structure was used to handle a single layer of data to one antenna. It
is not feasible to keep the same structure for 5G. Acceleration is unquestionably required.
From the chapter above, there are a few techniques to quicken. The data-center BBU
architecture is what we’re aiming for, combining all these techniques. A quicker SDR
with a more evenly distributed work offload is produced by connecting many processors
for work distribution within the data center, as demonstrated in figure 2.4.

Accelerating every PHY step is crucial to solving problems with long execution times,
especially for those on timing important paths. Employing the previously indicated
technique, either by adding an outside accelerator or by using a customized instruction
set for the CPU. Since some of the steps in the procedure were not dependent on one
another, reconfiguring them for more parallel execution can boost performance and make
the best use of available processing power.

Multiple machines are joined in the data center base station with the intention of
acting as one large unit. The topic of controlling and collaborating with each machine
is crucial. Prior to then, the problem was how to arrange work reasonably even with
just one machine. One method of offloading involves dividing the independent process
among the machine’s cores to balance the workload. However, fragmenting the process,
accelerating it using CPU instructions or an accelerator, and then rearrange it will make
it more difficult to read the code and to continue with additional development and
maintenance. The article’s focus will be on striking a balance between performance and
development potential.

17

Chapter 2. Software Optimized Real-time Processing for 5G systems

18

Chapter 3

Functional Decomposition and
Pipelining for 5G radio processing

For the 5G real-time SDR, structural reconstruction is required from the previous chapter.
The 3gpp communication rules state that there are no restrictions across channels,
therefore they can theoretically be executed simultaneously. This results in the execution
of all channels concurrently and in parallel being the most timing-efficient method.
However, there are still Media Access Control layer (MAC) layer settings required for
the PHY channel as well as answers from the prior slot, such as ACK/NACK responses
that are shared by all channels. The most computationally intensive channels out of all
of them are PDSCH and PDCCH for the downlink channel and PUSCH and PUCCH
for the uplink channel. The most cost-effective solution is to divide only these heavily
laden channels from other channels, as opposed to running all channels in parallel. Since
fewer physical threads will be used at once, but jobs are distributed among threads more
equitably in this situation.

According to the previous explanation, the maximum process time for the pair is
4 TTI from the RX antenna input to the TX antenna output if slot n for uplink and
slot n+4 for downlink are grouped together due to ACK/NACK response. The new
structure must prevent situations where the processing time might go beyond the slot
time, endangering fronthaul devices, even though Real-time SDR must collect and send
data to and from fronthaul devices at every slot time. The pipeline structure is brought
up into the picture. Because of the pipeline layout, the processing time for a single string
can be multiplied by the number of pipe stages while still retaining the same throughput.
And because it is intended to be receiver-triggered, the processing time for the pipe stage
is one slot time. Given the complexity of 5G, the structure will be divided into four
pipe phases, including front end processing and channel processing for both uplink and
downlink.

19

Chapter 3. Functional Decomposition and Pipelining for 5G radio processing

Figure 3.1 – Consecutive execution for receive and transmit set

3.1 5G Physical-Layer Procedures

Having all of the channels in 5G execute one after the other is the most natural method
to build an SDR. The received signal, which the fronthaul gives out every TTI, is the
only trigger that the processor does not control, therefore due to the synchronization
of the fronthaul devices, the PHY process should be triggered by the received signal.
Additionally, the receive signal includes the downlink’s answer, and the corresponding
downlink signal, which must be transmitted back four TTI later, will be configured in
accordance with the response. The most fundamental structure for SDR will result from
combining these two features, as shown in the figure 3.1, which has the fronthaul process
for uplink, followed by the physical layer for uplink on slot n, followed by the physical
layer for downlink, and finally the fronthaul for downlink on slot n+4. The processing
for the following set begins after the set for processing slots n for uplink and slot n+4 for
downlink is complete.

It is obvious from the previous description that the structure must have finished
processing the n+4 downlink signal before receiving the following slot. Due to the fact
that the uplink fronthaul is activated every slot time, both the uplink n and downlink
n+4 processes are completed far in advance of when they are required. Additionally,
because it is a 5G SDR with many antennas and the potential for several data layers
in Layer 1 (L1), the physical layer, the amount of data being delivered has significantly
risen and the TTI will be shorter. Although the structure might work for 4G SDR, which
uses a time slot of one millisecond, it won’t be ready for 5G SDR, which uses a time slot
of five hundred microseconds more frequently but may be significantly shorter in some
circumstances.

The basic structure needs to accelerate, but how to accelerate is the question. The

20

Chapter 3. Functional Decomposition and Pipelining for 5G radio processing

Figure 3.2 – Channel mapping diagram from ShareTechNote

21

Chapter 3. Functional Decomposition and Pipelining for 5G radio processing

Figure 3.3 – Physical layer flow with the functional split

figure 3.2 contains a description of all PHY channels for both uplink and downlink as
well as their relationships. The execution of every block for PHY in figure 3.2 represents
the greatest parallelism that can be done on the SDR, in theory. Even though it may
be among the fastest methods for SDR, some of those channels are short to execute,
splitting it in parallel will just result in overhead due to hand shaking within threads.
A sudden increase in the need for computing resources will result from splitting off all
these tasks. There will be additional overhead if there aren’t enough cores to support
the processing because the Operating System (OS) will have to work extra to arrange
and manage them. Additionally, it is more difficult to maintain and add new features for
development with a shredded architecture.

Figure 3.3 illustrates the process that the majority of data in PHY must go through
by approaching it from the point of view of flow rather than channels. According to
figure 3.3, data must first go through certain processes, including coding, scrambling,
modulating, layer mapping, and OFDM, before being sent out by the antennas for the
downlink after MAC. Since uplink and downlink are essentially identical, the reverse
operation is used to do the reverse procedure. All data must go through these procedures,
whether it is control data or not, as long as it is not the signal that determines a channel’s
adjustment or measurement. A mechanism for matching layers and antennas is required
since 5G may simultaneously use many layers and numerous antennas. The precoding
process is in charge of mapping the layers and antennas. In Figure 3.3, for instance, the
blue blocks are all based on layers, whereas the green blocks are all based on antennas.
As a result, there are two different categories created in the processing flow. In OAI,
these categories are divided into L1 and RU, respectively.

3.2 Proposed Pipelining Methods
It is apparent from the previous description for figure 3.1 that downlink signals are
prepared four slot times before being actually sent out. However, it is handled at the

22

Chapter 3. Functional Decomposition and Pipelining for 5G radio processing

Figure 3.4 – Simplest pipeline example

same time as the uplink signal, which is much in advance of when it is required. This
inspires the concept of creating a framework that keeps the antennas’ ability to receive
and broadcast signals at every time slot while allowing the processing time to be as long
as possible. Since, as previously said, it won’t be possible to create threads for each
block in figure 3.2, using figure 3.3 as inspiration becomes yet another aspect for which
the pipeline structure is then suggested. The process is divided into four portions by
the pipeline structure, where the divisions are dependent on the uplink and downlink
process as well as the L1 process and RU process. In this scenario, the procedure might
be extended to four pipe stages later and still fulfill the requirement of maintaining the
ability to send and receive data for the antennas during each slot despite the 5G slot
time being compressed.

3.2.1 Pipeline Mechanism

One of the subjects mentioned when discussing parallel programming is pipelining. As
depicted in the picture 3.4, the pipeline structure divides the entire process into segments
and then separates them into several stages. After the data being handled in the pipe
stage is complete, it is stored in that particular memory rather than being sent directly
to the following stage since each stage has its own distinct set of memory. As a result, all
pipe stages can run concurrently without interfering with one another.

A global clock in the classic pipeline layout triggers the stages to begin processing,
although this may have a few drawbacks. Timing variation is the first problem that
may arise from unevenly dividing the operation. Since each pipe stage has its own
distinct execution, each pipe stage’s execution time is likely to differ from the others.
The splitting for this pipeline is unbalanced if the execution times for each stage are too
dissimilar from one another. This could reduce the program’s parallelism and also cause
the reference data or input data for the following stage to be overwritten, as shown in
the timing variation section of the figure 3.5. The second problem is data conflict, which
is one of many that might arise while utilizing parallel programming. The uncertainty of
who gains the first dose has a significant impact on the outcome when many writes occur
simultaneously or when a write and a read occur simultaneously. As demonstrated in

23

Chapter 3. Functional Decomposition and Pipelining for 5G radio processing

Figure 3.5 – Hazard that might happen when using parallel programming

the data hazard section of the figure 3.5, this type of data hazard will make the program
unstable, which is undoubtedly undesirable in the SDR. Branch hazard is the third type
of problem that could arise in parallel programming. As shown in the branch hazard
portion of the figure 3.5, if the program branches out to have more than one path and
then merges those paths back together to continue the process, it might have some data
that is not yet ready to be handled depending on when the merged process is being
executed.

3.2.2 Software Pipeline

Due of their ability to run simultaneously, threads are commonly used in parallel pro-
gramming. Each thread will represent one stage of the pipeline by incorporating it into
the software. How to handle shared data becomes crucial because most of the time, com-
munication between threads is required. The mechanism we selected for implementation
should be able to prevent data conflict because communication across threads may do so.
When implementing, there are a few options. One of them is to use a volatile variable,
which provides the compiler the impression that the value is only being changed by the
present program. Another one is the atomic operation, which verifies if a variable has
been altered by one action as it is being performed. The final method is to use a mutex,
which is a blocking action that guarantees that only one operation can access a variable
at a time. In this situation, utilizing a mutex can ensure that the variable is processed in

24

Chapter 3. Functional Decomposition and Pipelining for 5G radio processing

Figure 3.6 – Example of One of The Mutex Used in SDR

the desired order while also ensuring that there will be no data conflicts. An illustration
of the use of mutex in the code may be found in the picture 3.6. Wherein we first log
the timestamp before to the operation, and then we mutex-lock the thread. After which
storing the shared variable that was sent to the function in a local variable. Finally, we
unlock the thread using a mutex, log the time, and calculate how long was spent on the
mutex.

Despite the fact that the first pipeline structure was suggested for the hardware
design, the previously mentioned problems will still be a problem after the pipeline
structure is integrated into the software application. However, there are benefits to
software pipelining because all of these problems have a simpler software solution.

Data hazards can be avoided by utilizing mutex locks to grant privileges to the task
that is currently handling the data. Similar to the example in figure /reffig:mutex, the
thread locks shared memory, writes data into it, and then unlocks the memory when it is
completed writing. Additionally, individuals who want to request writing must wait for
the memory to be freed before competing for the opportunity to write data. As a result,
mutex locks act as the threads’ data protectors, preventing any potential data hazards.

Regarding the branch merging issue, the most crucial thing is to ensure that the
following job, which should occur after the merge, only begins to run when all branch
tasks before to merging are completed. The binary mask method is the one employed in
the thesis to represent each branch’s state. There shouldn’t be multiple executions on
one branch within one pipe stage because a pipe stage can only be woken up again after
its present duty is complete. Because of this, representing one branch with one bit is
sufficient. Bit sizes that are at least equal to the number of branch jobs are contained
in the bit mask. The mask is shared by all branches, and each component of the mask
stands for the associated branch. Once the branch has completed its duty, it will change
the matching bit in the mask to one to indicate that it is complete. Every branch will
check the mask, and if there are no zeros remaining, it is the last branch to finish, at
which point the next job will be woken up. When filling in the mask, the branch hazards
are dealt with using the same technique as was previously discussed for data hazard
prevention. In order to prevent any missed track branches, this means that only one

25

Chapter 3. Functional Decomposition and Pipelining for 5G radio processing

Figure 3.7 – Bit-wise mapping mask indicator

mask can be filled at a time.
The signal sent in the software pipeline replaces the clock trigger for the hardware

pipeline. This indicates that rather than being woken up by each clock tick, the software
pipeline’s pipe stage is woken up by its previous stage. All stages will enter sleep mode
right away after being established to ensure that they all follow the pipeline order.
Following that, those stages continuously check for a wake-up signal from the previous
stage. Each stage completes its task, wakes up the following stage, and then returns to
the waiting mode to await the next signal to wake it up.

As was previously established, those threads must speak to one another. They can
communicate with one other in various ways, one of which is depicted in figure 3.8. To
achieve communication, mutex and condition variables are being used. It will enter the
wait state if another thread is required to wake it up, and it will accomplish this by
first locking the condition variable and then doing the waiting on it. Once the condition
variable has updated, the thread will resume its activity. The thread signal, which is used
to wake up a thread, is sent when a thread wants to wake up another thread. The other
thread will then receive the signal that it is time to wake up and check the condition
variable to see if it matches the requirement after the thread locks the condition variable
and modifies it to fit the condition necessary for it. The lock is then released by the
thread so that other threads can do the action on the same memory. The thread that has
completed its task and is waiting for a new signal to tell it when to begin the next round
of work will lock the condition variable, modify the condition variable back, unlock the
variable, and then resume waiting.

When all of these features are combined with a software pipeline, all pipe stages
other than the first pipe stage have to enter a wait state after the thread is created. The

26

Chapter 3. Functional Decomposition and Pipelining for 5G radio processing

Figure 3.8 – Threads communication with mutex lock introduced

frequency at which those pipe stages can be triggered is determined by the first pipe
stage. The difference is that the next move is now started by only its previous stage
and not by each pipe stage clock as before. This could lead to jamming because each
pipe stage has a different execution time, and jamming typically occurs at the stage that
takes the longest to execute. Make sure that no stage’s execution duration exceeds the
time for the frequency of the trigger from the first pipe stage to avoid jamming, which
was thought to be one of the effects of timing variation problems.

3.2.3 Proposed Pipeline Structure

Downlink signals for n+4 are generated using the original structure after uplink signals
n are received. These downlink signals are, however, sent four slot times later. This
indicates that the new structure just needs to produce the relevant downlink signals
within four slot times. Pipeline approaches are introduced to provide these characteristics
while retaining the ability to receive and send at every slot time and extending processing
time for the physical layer processing set to four slot times.

The SDR pipeline topology has the benefit of a better throughput by utilizing
overlapping stage execution. However, if we divide the operation into too many steps,
the latency will increase because of the time spent communicating between threads.
Furthermore, because to the high complexity of the thread, if there are too many threads

27

Chapter 3. Functional Decomposition and Pipelining for 5G radio processing

Figure 3.9 – Pipeline structure works in timing aspect

utilized in the program, it will be difficult to continue developing and maintaining
the SDR. This thesis achieves 5G by converting the SDR into a pipeline topology to
generate sufficient throughput. We can build a pipeline structure for real-time SDR by
including all the ideas from the previous section into the SDR. Even division is necessary,
nevertheless, in order for the SDR to escape the time variation problem brought on by
pipeline structure.

Speaking about balancing splitting, it is preferable to have the splitting as indicated
in the figure 3.9 due to the distinct bases of the L1 and RU, which are layer and antenna.
The most logical solution is to divide into four pipe stages since the set of the receive
and transmit pair includes the transmit for four TTI later. Because of the pipeline
arrangement, the receive and transmit pairs are not required to complete in a single TTI.
The timeline shown in the figure 3.9 clearly shows that all pipe stages are processing
simultaneously, but the SDR can still have the incoming and outgoing data ready at each
slot time, and from the perspective of the receive and transmit pair, they now have four
TTI instead of one to allow them to complete their process.

28

Chapter 4

Acceleration Methods for 5G
Functional Blocks

Since functional acceleration will be covered in this chapter, it would be wise to look
at how those functions work. According to the standard, the bandwidth, sub-carrier
spacing based on numerology, and modulation coding scheme (MCS) all play a role in
how all data is handled in SDR for 5G. After these factors are chosen, the amount of
the bit stream data—which is equal to the number of resource blocks multiplied by
the modulation scheme—is chosen. This is illustrated in Figure 4.1. More data will be
carried by single resource blocks when the MCS increases since the data encryption rate
increases along with it. The SDR will take longer to operate the longer the bit stream
data is. The heaviest operation loading in time should be manageable by a 5G real-time
SDR. When the SDR is heavily loaded, it is easier to determine which function requires
more computing time and resources than other operations.

Despite the fact that the previously specified pipeline configuration for SDR. Even
yet, a few operations still need more time than others, particularly when the high data
rate is in use. The processing time for one slot per pipe stage will still be exceeded by the
pipeline structure as a result of these lengthy functions. The question of how to speed
up function execution is the one that will have an impact on the pipeline structure’s
stability.

4.1 Acceleration Target Choice

As already noted, in order to match the throughput of 5G, all of those pipe phases must
be completed in a single slot time. On a general purpose processor, the SDR pipeline
arrangement without any acceleration is still insufficient. Acceleration over the function
will shorten the execution time for the current pipe stage, which may allow the SDR to
continue operating steadily under heavy data loading without experiencing traffic jams.
The initial stage will be to measure and analyze the execution times for each function in
order to choose a candidate for the functional acceleration.

Each block in the block diagram of figure 3.3 in previous chapters, which serves

29

Chapter 4. Acceleration Methods for 5G Functional Blocks

Figure 4.1 – Resource grid for NR from ShareTechNote

30

Chapter 4. Acceleration Methods for 5G Functional Blocks

as the minimum accelerate unit in this case, represents a distinct PHY process. The
target that might be selected to accelerate is also depending on how each step must be
completed before the next phase can begin. This section discusses the acceleration for
the functional blocks of coding, scrambling, modulation, and IDFT for downlink, and
decoding, descrambling, demodulation, and DFT for uplink, which is the opposite of
downlink. The key issue will be how to speed up each step’s execution. Rearranging the
process and shortening the execution time are the two methods available for carrying out
the task. Rearranging the process may involve employing an accelerator or threads to
perform parallel processing.

Coding is the initial block to enter the site. In replacement of the turbo encoder
technology used in LTE, Low-Density Parity-Check (LDPC) is the coding technique used
in 5G. The parity check bit string is generated by the original data passing through a
sparse matrix, and it is attached to the end of each encoded data block as part of the
LDPC encoding process. The 3gpp standard includes LDPC, which supports several
spars matrix sizes. The broader the matrix size, the longer it takes to process a single
input string since there are more parity check bits to generate. The following equation
represents the LDPC operation.

H = (PI), I = identity

inputstream : m = [m1,m2,,mn]
paritycheckstream : p = [p1, p2,, px]

codedstream : c = [m1,m2,,mn, p1, p2,, px]
Hct = 0

One example of LDPC encoding uses a block size of six and three parity check bits
to illustrate the concept of LDPC coding more clearly.

P =

1 0 1 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0



H =

1 0 1 0 0 1 | 1 0 0
0 1 0 0 1 0 | 0 1 0
1 0 0 1 0 0 | 0 0 1


m = [m1,m2,m3,m4,m5,m6]

1 0 1 0 0 1 1 0 0
0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 0 0 1

 ∗



m1
m2
m3
m4
m5
m6
p1
p2
p3


= 0

31

Chapter 4. Acceleration Methods for 5G Functional Blocks

p1 = m1 +m3 +m6

p2 = m2 +m5

p3 = m1 +m4

The previously mentioned example demonstrates how the LDPC creates the parity
check bit; the quantity of parity check bits equals the matrix’s depth, and the quantity
of input data is equal to the number of rows in matrix P.

Since there are two Base Graphs (BG), measuring 46 by 68 for BG1 and 42 by 52 for
BG2, the matrix in the 3GPP standards for 5G can be quite large. And since those BGs
have a maximum expansion of 384, each BG number will become a bitwise matrix with
a size equal to the expansion factor times the expansion factor. For the decoding, the
same matrix is used, but the bit string is estimated using the log-likelihood ratio [27]
using the following equation.

Lx(x) = Px(x = 0)/Px(x = 1)

Coding and decoding are block-based procedures, as the explanation above indicates.
Each block stands alone from the others, which results in a very repetitious and data-
independent action when using blocks. Since LDPC always uses big parity matrices,
it will take a long time for the matrix operation to complete one block. These factors
combine to make LDPC an excellent choice for functional acceleration.

By scrambling data, it is possible to lessen the chance that nearby data may become
polluted simultaneously, which could make it more difficult or impossible to reverse the
information. These are accomplished by having the current bit cross-relate with a certain
set of bits that have previously passed through the scrambler. It received the initial
sequence to work on the scrambling after passing the golden random-like sequence. Its
natural successive execution makes parallel execution undesirable because the input is a
bit string and every output bit is influenced by the previous input bit.

The use of quadrature amplitude modulation (QAM) is the following. A group of bits
are matched to a certain set of amplitude and angle, where the type of QAM determines
the amplitude and angle. The two most important factors in choosing the type of QAM
are channel quality and signal dependability. Because there are fewer locations in the
diagram, there will be less chance for error even if the channel state is really bad when
data needs to be encoded and demands high reliability. However, it usually uses a higher
QAM level when the channel is clear and there is a lot of data to send since it can fit
more information in a given set of amplitude and angle. The level for QAM could start
at the smallest one-to-one modulation rate, like Binary phase-shift keying (BPSK), to
transport multiple bits with a single set of amplitude and angle as illustrated in the
figure 4.2. The string data will be aggregated and then matched to the angle-amplitude
set after the level of QAM has been chosen. As a result, there is no connection between
the groups, which makes parallel processing of QAM operations simple.

Then comes OFDM. Prior to delivering a signal to the antennas, it is utilized to fix
the previously described ISI and delay spread issues. Multiple orthogonal subcarriers are
implemented in OFDM to transport data, and the Fourier transform is used to do this.

32

Chapter 4. Acceleration Methods for 5G Functional Blocks

Figure 4.2 – Quadrature Amplitude Modulation (QAM) diagram example

Figure 4.3 displays the represented image. Fast Fourier Transform (FFT) and Inverse
Discrete Fourier Transform (IDFT) in 5G are capable of processing up to 4,967 points,
which means that the operation will involve a 4,967 by 4,967 matrix. The following shows
how the equation will appear and an example of FFT and IDFT with n points.

FFT :


P (x0)
P (x1)

...
P (xn−1)

 =


1 x0 x2

0 · · · xn−1
0

1 x1 x2
1 · · · xn−1

1
...

...
...

1 xn−1 x2
n−1 · · · xn−1

n−1




p0
p1
...

pn−1


xk = ωk, where ω = e

2πi
n

→


P (ω0)
P (ω1)

...
P (ωn−1)

 =


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

...
...

...
1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)




p0
p1
...

pn−1



for IDFT


p0
p1
...

pn−1

 = 1
n


1 1 1 · · · 1
1 ω−1 ω−2 · · · ω−(n−1)

...
...

...
1 ω−(n−1) ω−2(n−1) · · · ω−(n−1)(n−1)




P (ω0)
P (ω1)

...
P (ωn−1)


It is clear from the equation above that the process has an O(n2) level of complexity.

There are techniques to make the operation simpler, however even with a better algorithm,
the complexity will still be O(n logn). The data string is then divided into groups for
the operation since IFFT and IDFT have a maximum point. The link between the time
domain and frequency domain carried out by the Fourier Transform is also depicted in
Figure 4.3.

As was already established, scrambling is the only activity in real-time SDR that
cannot be sped up by splitting into groups. The acceleration for function needs to be
chosen from those operations demonstrated before since it can result in timing problems
or data jamming as previously described owing to having an excessively long execution

33

Chapter 4. Acceleration Methods for 5G Functional Blocks

Figure 4.3 – OFDM effect on resource element for both time and frequency domain from
5G Technology World

time. Coding and decoding come in as the top contenders. They demand a lot of time
and resources. Even after testing all these functions in the simulation, they end up
costing the majority of the time. It is the ideal candidate for functional acceleration due
to its block-based, matrix processing, and lengthy execution time. As for the following
prospective QAM. It can be parallelized as well, but all it does is map a bit to an
angle-amplitude pair, which is set up quickly. It may require more time to accelerate it
using reconstruction or an outside accelerator because the overhead is greater than the
acceleration gains. This indicates that QAM functioning isn’t well suited for acceleration.
Since multiple antennas are utilized in 5G SDR, having all of the data for various antennae
execute sequentially is inefficient for FFT and IDFT. Both FFT and IDFT contain matrix
operations that are highly complex and independent when used with various antennas.
They are strong candidates for acceleration due to all of these.

4.2 Splitting Method

When the additional acceleration device is not connected to the PC, one of the accelerating
approaches is to use additional threads as the workers to offload the initial operation.
Functional threading parallel is used to process the data and collect it at the end of the
process by having one dominant thread that manages multiple worker threads. There
won’t be any dependency within groups for those that have group operations, making
it simple to split them up. The function that consumes the most time during the pipe
stage is given priority when it comes to splitting.

We want to use worker threads in the real-time SDR to divide the workload among
the most time-consuming operations in the pipe stage. Coding and decoding are the
PHY processing bottlenecks, as was previously mentioned. It is evident that coding and
decoding are block-based processes by looking at how the data is handled in the function.

34

Chapter 4. Acceleration Methods for 5G Functional Blocks

Figure 4.4 – Including worker threads to the procedure

Because of this, we must divide some of the blocks into worker threads for offloading.
Prior to the main operation, the main thread handles the common operation and then
distributes some of the data to the worker threads that have identical tasks so they
can run in parallel. The total execution time will be made up of the time for common
operations, the time for operations with fewer groups (calculated by dividing the original
execution time by the quantity of worker threads), and the time spent waiting for each
worker thread to complete its own task and signal the main thread that the execution is
complete. The timing of common execution time with a portion of the parallel process
execution time, in theory, results in the best performance.

The data handled in the RU pipe stage grows by the original time number of the
antennas since 5G uses many antennas. Both the DFT and IDFT procedures operate
on blocks, and data between various antennas is independent. As a result, sequential
execution of antenna works is ineffective. Since each piece of data that is given or received
has a timeframe, the structure may prevent the data from being generated in the allowed
period of time. One method of performance is to parallelize tasks over antennas. utilizing
the appropriate threads to serve the IDFT and DFT operation for each antenna, and
sending the data to the fronthaul to enable the antenna to broadcast the signal. By
doing this, the time required for the original operation times the number of antennas is
reduced to maybe somewhat longer than the original operation time due to overhead.
The execution while adding worker threads to the original flow is shown in the figure 4.4.

When the pipeline structure and worker threads are integrated into the SDR, the
architecture will resemble that in figure 4.5. The four-pipe stage is designated here as
RU RX, L1 RX, L1 TX, and RU TX. The task of OFDM demodulation, or DFT, for
each antenna is then offloaded to worker threads when RU RX has received the data.
After each worker thread has completed its task, it should fill in the corresponding bit in
the mask. A message will be returned to the RU RX stage by the final worker thread

35

Chapter 4. Acceleration Methods for 5G Functional Blocks

Figure 4.5 – Combing worker threads and pipline structure

that completed processing. To ensure that all worker threads have concluded, the main
thread—RU RX pipe stage—will verify the mask after that. The RU RX stage will
then take the following action to awaken the L1 RX stage if all the worker threads have
successfully completed their tasks. Similar to RU RX, L1 RX offloads its decoding work
to the worker threads. The worker threads in the L1 TX stage and RU TX stage act
similarly as well.

Splitting the process to an external accelerator, like an FPGA or a GPU, is another
technique to approach the acceleration. Before transmitting data to any outer accelerator,
the data should be restructured into block-wise form because the outer accelerator
typically has its own method of data arrangement. The data could only be sent to the
devices for parallel processing after that. After the process in the outside accelerator
finishes, it’s time to collect data. The data should then be returned to the pipe stage by
the outer accelerator. Be advised that any data supplied back may require additional
reorganization for the following process.

When using the outer accelerator, there are more data traveling, thus we should
concentrate on the operation that takes the longest. Coding and decoding took up
the greatest time and resources throughout the PHY operation, as was previously
explained, thus they will be the target of this form of acceleration. The use of GPU
as an exterior accelerator will be discussed in the paragraphs that follow. The inbuilt
parallel programming capabilities of the GPU offer it an advantage when it comes to
quickening a replicating operation. And because of this, GPUs are a solid choice for
coding and decoding. However, as was previously mentioned, all the data needs to be
reorganized before being sent to the GPU for processing. Data flowing to and from GPU

36

Chapter 4. Acceleration Methods for 5G Functional Blocks

Figure 4.6 – The communication between threads when combining pipeline structure and
worker threads

causes a significant latency, especially at the data center base station. This indicates
that using regular buses is insufficient for data transport. A 5G data center will require
buses with high throughput, greater than 1 Gbit/s, in SDR. All of these imply that
latency caused by data transfer must also be taken into consideration. While GPU offers
native support for parallel programming, it also has more processor groups, simpler cores,
shared memory inside the processor group, and slower clock rates. All of these make
GPU programming more challenging to design and require more parallel design work.

The combination of worker threads, pipeline architecture, and accelerator devices
is depicted in Figure 4.6. wherein the worker’s execution may take place not just on a
regular PC but also on an accelerator. The architecture becomes more complex when
pipeline structure and worker or accelerator are combined, as shown in Figure 4.6. This
implies that adding new features will be more difficult and that maintenance work will
take more time.

4.3 SIMD optimizations

Single Instruction Multiple Data, or SIMD, is an abbreviation that already implies
native parallel processing. Parallel processing is being used at the instruction level. The
following example shows how SIMD is used to process many variables simultaneously.

x[0] = a[0] + b[0], x[1] = a[1] + b[1]...x[n] = a[n] + b[n]

We can infer from the equation that the operation simply adds each element of "a"
and "b," storing the result in "x," which can then be used in the vector process "X =
A + B." This is where SIMD happens and this is how SIMD works. A bunch of data

37

Chapter 4. Acceleration Methods for 5G Functional Blocks

performing the same action, in this case a vector add, is handled by SIMD. By converting
a loop action with basic execution into a vector operation, SIMD speeds up processing.
The loop over instruction execution time is reduced to one SIMD instruction time as a
result.

There are several instances in signal processing when processes are built on blocks
and are repeated. Due to this, SIMD is useful in order to drastically speed up the
procedure. In signal processing, there are many operations that are bitwise-based. The
matrix operation LDPC, for instance, can be divided into various vector processes.

There are many benefits and drawbacks of SIMD. The biggest advantage we experience
is a large reduction in operation time, which is crucial for real-time SDR. However, SIMD
still has its limitations. It is a particular type of special instruction set that targets only
particular cores, hence the SDR will need various SIMD instruction sets that correspond
to different platforms. Only basic operations are supported by the SIMD instruction
set, therefore if an operation is too complicated to deconstruct, SIMD cannot be used to
complete the execution. Additionally, SIMD has restrictions on the size of the data that
it can process. This implies that in order to operate, a vector operation that is longer
than the SIMD data size must be divided into many data that might fit in the SIMD
data size. Compared to standard C code, SIMD is more similar to assembly code. This
implies that it is less automatic and more difficult to comprehend. Additionally, data
will need to be transferred into the unique register needed for the process’ execution.
Furthermore, the data must be the power of the number in the group because the data
are based on groups. Finally, because it is more like assembly code than regular C code,
changing platforms is challenging because of how environment-dependent it is.

38

Chapter 5

Implementations Using
OpenAirInterface

This chapter will demonstrate how the SDR gains from the new organizational structure.
Now that the pipeline layout and acceleration techniques have been implemented, the
OAI SDR can match the throughput requirement for 5G in real time.

OAI is a real-time SDR that use USRP as the frontend, as was previously stated.
Different general-purpose operators alone with various USRP sets are used to test the
structure. Nevertheless, it is not as simple just starting the program once it has been
created, like a typical program does. OAI can only be used in a few limited scenarios,
such the Linux operating system and a real-time kernel are required for the real-time
SDR OAI to function. There are specifications for the CPU as well. To support the
performance, the CPU utilized in real-time OAI SDR needs to have high-frequency
scaling and the hyper-threading feature turned off. Since the OAI SDR requires the
SIMD instruction set, the platform’s CPU must be up to date in order to handle the
instruction set, such as AVX256. As a result, our 5G SDR cannot use any prior releases
of the CPU. OAI has already been proven to work on devices with Intel Core i5 or higher
after the third generation, Intel Core Xeon after the second generation, and Intel Atom
Rangeley, E38xx, and x5-z8300 processors. OAI SDR, which even required additional
cores in the most recent OAI, is projected to take up the majority of at least one CPU
core because OAI is a program that requires a lot of processing power. Since an SDR
still requires an operating system to maintain the system, real-time OAI SDR is difficult
to run on computers with fewer cores. Four cores are the minimum number of processors
needed to enable real-time 4G OAI. Additionally, real-time 5G processing for OAI requires
considerably more resources.

It is crucial to investigate the interaction between such a demanding process, OAI,
and the OS. As seen in figure 5.1, the operating system (OS) is in charge of directly
managing hardware behavior within the computer and is regarded as a bridge between
software and hardware. When programs are running on the computer, the OS manages
the machine’s resources, such as memory. How to organize and use OS resources becomes
crucial once multiple processes are running concurrently. More resources are needed in
order to match the real-time performance. Additionally, since OS allocates resources

39

Chapter 5. Implementations Using OpenAirInterface

Figure 5.1 – The role that Operation System (OS) play

based on task priority, it is vital to give SDR a greater priority than other programs.
Another possibility for meeting the performance requirements for 5G is to pin select
threads with demanding loading operations to specific cores in the real-time SDR. By
manually allocating tasks to various cores, the workload can be distributed more evenly,
preventing some cores from carrying too much of the load while underutilizing others.
This also helps the OS schedule jobs more efficiently. However, there are limitations for
pinning operations to certain cores. Due to the possibility that various systems would
have a different amount of cores and resources than the one on which the structure was
tested, this may affect the SDR’s ability to be accommodating when it is implemented.

A second method of optimization, in addition to managing job distribution, is through
the use of compilation parameters. Here, OAI SDR is compiled using the GNU compiler
collection (GCC). There are compilation choices that perform optimization with a trade-
off in terms of space-speed, such as unrolling loops or inlining code. However, some
optimization strategies could result in code reordering, which might create risks for the
SDR because the timing of each data and the ordering in which the operations are
performed are essential to the SDR. As a result, there are fewer optimization options
available when compiling the SDR, ensuring that no reordering was brought about by
the process. Where the majority of the optimization must be performed manually and
meticulously stated in the code.

As we previously discussed, OAI was created initially for the 4G LTE framework, which
has different PHY properties when importing to 5G NR. One of the few modifications
is that the scheduling response for 5G NR is no longer rigidly limited to 4 slot times
and is more flexible, allowing multiple slot times in different modes. Additionally, while
multiple antennas or even layers are only optional in 4G, they are native to 5G. With a
multi-antenna structure, more processing work is required since the frontend will need to
handle multiple sets of data that all relate to the same string in a layer-based bit-wise
approach. Regarding the multi-layer structure, it indicates that more than one string of
data will require processing using a bit-wise operation. In addition to these, 5G has a
broader bandwidth and runs at a faster frequency rate, meaning it has more resources

40

Chapter 5. Implementations Using OpenAirInterface

to process in the same amount of time whereas the analog signal has less penetration
over an obstacle, resulting in a narrower coverage area from the frontend node. This
forces the 5G platform to offer a feature that has a widely dispersed frontend node with
a centralized processing unit rather than a few potent nodes. The coding and decoding
method in 5G is replaced by the LDPC even though there aren’t many modifications to
the procedure flow. Due to many options for the size of the matrix, LDPC is a matrix
operation that offers more coding rate options than 4G.

5.1 Testing Methods

The behavior, accuracy, and timing performance of such a real-time SDR are what are
primarily examined. To ensure that the SDR can function and act properly, accuracy
is required. The major goal of the thesis is to ensure that the processing time is short
enough for the data to be handled in time because, aside from correctness, every piece
of data in SDR is attached with a timestamp and has an expiration date. Unit tests
are utilized in OAI just like they are in any programming development. Each operation
must first pass through the unit test’s verification process before being implemented in
order to ensure that the implementation with code matches what the algorithm specifies.
The algorithm was not altered by the structural rearrangement, so there should be no
difference when testing with the unit test, and the outcome that passes the unit test
should remain the same. The input and output must remain the same while the SDR
is operating because data loss could occur while doing the rearrangement. The input
and output change in real-time, so recording out the data string for comparison might
not be a viable method. However, the unit test might offer the check to ensure that it
is not impacted by parallelism by having a consistent output with the same input if it
is a larger operation that just so happens to have the acceleration happens within the
process. Additionally, the execution time for the unit test demonstrates how great the
improvement is after modifying the architecture, providing an indication as to whether
this form of reconstruction is even necessary or suitable for acceleration.

In addition to the unit test, there is also a simulation mode. As implied by the name,
it imitates how a channel might operate in various scenarios and on several channels. Data
flow through the process with simulated channel noises and defects from transmission to
reception. After that, we could contrast the output with the input, which should have
been identical in theory. By using the simulation mode, it was possible to demonstrate
how these components work together within the channel as well as the restriction by
deteriorating the channel’s condition until the data was no longer retrievable from the
receiver. Both the base station and the UE can serve as the receivers in the simulation
modes, which use uplink and downlink channels, respectively. If all of these functions
pass their unit tests, we could infer from everything mentioned above whether there is
a problem with how these functions interact. The advantage of the simulation mode is
that, as long as everything is in order, timing concerns are not necessary. The problems
that can only be caused by real-time activity are eliminated by employing simulation,
which just examines the channel’s behavior and only involves one data string without
an execution time constraint. This makes it simpler to focus on issues with how each

41

Chapter 5. Implementations Using OpenAirInterface

thread or function interacts with one another. To determine whether the settings are
appropriate for real-time execution, we might also time the execution results while in
simulation mode.

The real-time behavior of the OAI SDR is ultimately what the thesis focuses on
the most. We wanted to ensure that the SDR operation could be carried out without
issue within the 5G timeframe. Timing issues could create new concerns during real-
time execution if they are added to the operation flow. Since executing everything in
the correct order is not sufficient, it must also run within the timing constraints to
avoid timing hazards like data jamming and delayed data. The real-time issue might
not result in a sudden software crush on the SDR, but it could lead to delays that
eventually stop the SDR from being able to service consumers. Connecting users to the
real-time SDR can test the base station’s capacity under the highest possible demand.
Additionally, operating OAI in real-time while connected to users can assist in analyzing
the effectiveness and correctness of the algorithms implemented in OAI. The order of
execution and data processing are the key timing issues with the multi-thread design.
When real-time is added to a multi-threaded architecture, the behavior is constrained, so
all executions must take place in the proper order and must be completed on time.

In addition to all of the above, a tool known as VCD is also used to examine thread
and function activity. It has the ability to capture the state of the threads as they
run, making it possible to pinpoint the exact moment when the system started acting
incorrectly. What it does is create a second thread with its own timeline that continuously
logs the signal delivered by the process, which represents the function’s activation and
deactivation or the value of the variable. This illustrates the relationship between the
functions, which is equally applicable to the relationship between the threads. It is simple
to determine how long it takes for those threads to execute because it logged the active
time of those threads. Despite the fact that it has a lot of advantages, VCD is a large
application that uses a lot of resources that are intended for the SDR. VCD delays the
timing and may also alter the behavior because it continuously monitors the values and
status of all these variables and signals from the SDR. So it is preferable to implement
VCD when debugging.

5.2 Performance Evaluation Methods

Performance can be characterized by a variety of factors, including timing, resource usage,
and power consumption. When it comes to resources, this kind of speed enhancement
seeks to use less memory and CPU. From a power perspective, the program should use as
little energy as possible, which increases the durability and environmental friendliness of
the electronic devices. Regarding timing, the better the program is, the less time it takes
to run. Additionally, it implies that the program responds to requirements more quickly,
resulting in a reduction in latency and reaction time when using the SDR. Because of this,
timing performance is crucial and will be the main subject of this thesis. If a program is
willing to put everything else at risk in order to increase timing performance, there is
a good probability that the timing improvement will be insufficient to make up for the
losses, which will make the program no longer meet the requirements for OAI SDR. The

42

Chapter 5. Implementations Using OpenAirInterface

Figure 5.2 – Timing measurement on different threads

extent to which the ability to trade resources for timing will be taken into consideration,
even though there is still a trade-off between time and space.

Since timing is what we are most concerned with, we must first determine the amount
of time spent on each operation and the important path in the program. OAI uses the
timing difference between CPU clock times to calculate how long specific operations
take. Simply note the CPU time at the start and finish of the process, and then subtract
those two values to get the total amount of time spent on the operation. However, since
the OAI is a program with multiple tasks running at once, jobs might be distributed to
different cores for the operation, there are some cases when the method doesn’t truly
function. Since the clock timing from any two CPUs will differ, obtaining the clock
timing from several CPUs and then doing the deduction has no practical meaning in
this case. This means that keeping track of each task and how it relates to other tasks
is crucial in this situation. The OAI VCD tool is used to accomplish this, and it even
displays the relationship with graphical plotting, which further clarifies the temporal
relationship between various operations.

As was previously mentioned, there is a reasonable difference in timing between clocks
on the same processor, but different processors may have different timing, so taking
measurements on different cores won’t give the same results for operations when running
a multi-threaded process, as shown in figure 5.2. The fact that there may be some timing
distortion between CPU clocks in practice only makes the situation worse.

The time difference between the start and finish of the operation can be determined
in a few different ways. The first method involves using the get clock function found
in the C library. A few of the functions in the library, which was developed for timing

43

Chapter 5. Implementations Using OpenAirInterface

Figure 5.3 – VCD tracking for function and variable

measurement, deal with setting and accessing the clock for the running program. The
execution time is determined by first setting the clock once at the beginning and then
obtaining the time at both the beginning and the end of the process. Since nanoseconds
are the smallest unit supported by the library, its accuracy is limited to nanoseconds.
There are additional methods for determining the execution time, one of which is the
timing discrepancy between the processor’s time stamp and the execution time. Using the
assembly syntax provided by the GCC is the way to retrieve the time-stamp. While the
application is running, a trigger within the code causes the core-specific assembly code
to obtain the processor time-temp counter number. The execution time of the process
might then be determined by calculating the difference between the two time-stamps of
the processor.

VCD is a different system that can be used to measure the passage of time, particularly
for multi-threaded systems. As previously noted, the VCD generates a plot with every
function and variable that was logged while the process was executing, as seen in figure
5.3. The advantage of this method is that it demonstrates the relationship between
functions and variables, even though it might not be as precise as retrieving the time
clock straight from the core. The plot makes it simple to determine the function’s order.
This means that it is simple to determine the level of parallelization for threads if VCD
is used to track the activity of the threads. Despite these advantages, creating the VCD
document itself takes up a lot of resources. It requires the application to deliver the signal
for recording because it is executing on a separate thread. Since there will always be one
fewer thread available while VCD is enabled, performance difficulties may arise when
the SDR is pushed to its limit. There will also be less RAM available for the program
because VCD is simultaneously writing to the file for recording.

44

Chapter 5. Implementations Using OpenAirInterface

5.3 Results of Performance Evaluation on multi-core x86
platforms

Although OAI has been tested on a number of systems and USRP sets, this test is mostly
conducted on a machine with 36 Intel cores and the USRP n300 series as the frontend. As
said, OAI was created in 4G with a sequential operating system and little acceleration. Its
PHY activities were based on the n and n+4 receiver-transmitter set, where the subframe
time for 4G is one millisecond. We begin by incorporating the 5G concept of numerology
into the structure. The fundamental time unit for 5G is a slot, where numerology
determines the subcarrier spacing, which ultimately results in a variable timing for the
slot time due to a frequency trade-off. The consequence of the execution going beyond
the allotted time has begun to become apparent after the addition of numerology to the
picture. Coding and decoding are now done using LDPC, which is another significant
update to the method. Figure 5.4 for numerology 0 displays the execution result for
combining the LDPC method and numerology. According to the timing in figure 5.4
for numerology 0, the total execution time has already above 500us, which will result
in unrecoverable execution overtime for numerology 1. Then, the previously specified
features—the pipeline structure alone with functional acceleration—must be added to
the SDR. Figure 5.4 is the outcome of running the SDR under the given conditions with
numerology 0 and numerology 1. The SDR is still able to manage even when the signal’s
execution time for one slot is larger than that of one slot, as illustrated in Figure 5.4
numerology 1, from which we can plainly see the parallelism of the pipeline structure.
From the perspective of the fronthaul, it can only sustain receiving and transmitting at
each slot time with the pipeline topology; otherwise, late packages would pile.

As was previously indicated, employing threads to offload the task could result in
latency in addition to real execution time. Two types of pipeline splitting are suggested, as
shown in Figure fig:pipelinesplit, topreventtheoveruseofthreads.TheRRUandRadioAggregationUnit(RAU)arewheretheseparatingpointisfirstplaced.Bycreatingthisdivide, itseparatesthefronthaulprocedurefromotherL1operationsandcreatesadistinctdivisionoverseveralbases, withL1operatingaccordingtothelayerandfronthauloperatingaccordingtotheantenna.Additionally, becausethecodinganddecodingprocessestakesuchalongtimetoexecute, anothersplitpointmightbeincludedwithintheL1methodtoseparatethereceiveandtransmitoperations.Executionoccurringonthesamesuccessiveflowisnolongertakenintoconsiderationbecause5GdemandsmorethanLTEdoes.Whentherearealotofantennasbeingusedbutnotmuchdataflow, thepipelinewiththreepipestagesworkswell.Regardingthepipelinewithfourphases, itismoresuitedforgeneralusage, whichisgoingtobethesubjectofthemajorityoftalks.

The splitting is seen in Figure 5.6 from a different angle. The targets for the
accelerations are three groups in the procedure flow. The first one, which takes the
longest to execute according to the timing study, is bit-level processing, which includes
coding and decoding. The second category includes all the other layer-based execution
techniques. Instead of layering, the third component uses the antenna-based method.
Combining figures 5.6 and 5.5, we can see that each pipe stage has a number of worker
threads.

Let’s start by discussing the worker thread used in the L1 coding and decoding method.
We use eight worker threads to offload the coding and decoding operation in order to be
able to comply with the 5G specification. All segments are then evenly distributed across
these eight worker threads, from the perspective of coding, when the preparatory stage
prior to beginning the coding method is complete. The similar approach can be used
for decoding. According to testing with various SDR setups, if worker threads are not
enabled, there will be a lot of late package signals from the fronthaul, which will cause
the program to crash. Each piece of data must be ready on time because each of them
has a timestamp that corresponds to it. Data jamming will happen if the processing
power required to perform those demanding loading processes was insufficient due to a

45

Chapter 5. Implementations Using OpenAirInterface

Figure 5.4 – VCD tracking for function and variable

46

Chapter 5. Implementations Using OpenAirInterface

Figure 5.5 – Two different pipeline split

Figure 5.6 – Functions that is categorized in different acceleration group

47

Chapter 5. Implementations Using OpenAirInterface

lack of worker threads to handle the offloading. Since the data will arrive in every time
slot but the process won’t be able to finish in one, the system won’t be able to recover
while this is happening. Even if the processing step is complete while the jamming is
occurring, the data has already expired. The data was never delivered in time for it to
be sent from the fronthaul perspective. One of the testing configurations uses a single
worker thread to do the acceleration, dividing the work between coding and decoding.
Although this type of structure does aid in the SDR’s performance, it is insufficient
to maintain the program’s stability because the structure was only able to handle the
problem when there were few packages. On the other hand, there would be an issue if
the structure only had one worker thread to serve one segment. As was previously noted,
employing worker threads would add overhead to the execution time, but since coding
takes far longer than the overhead, the improvement is still substantial. The overhead
will start to affect the execution time if the processing time for coding and decoding is
reduced to just one segment.

The thesis makes reference to the late package on a few occasions. Let’s have a
look at how the SDR with the pipeline topology recovers from late packages. If the TX
data didn’t reach the fronthaul in time, as indicated by the green slot in figure 5.7, the
timestamp will inform the fronthaul that the package exceeded the time restriction
and subsequently display the late package signal. The pipeline structure does have the
capability to automatically recover from an execution overrun bug, even though having
late packages could cause the program to crash. There won’t be any jamming at the
receiver for the fronthaul because the receiver is not blocked by the other execution. In
contrast, if the following slot has less data loading and its processing time is less than two
TTI when added to the current slot execution time, the subsequent slot will still have a
valid timestamp that arrived in time for the fronthaul, as shown in Figure 5.7. However,
if the other process, L1, exceeds the processing time for the TTI, it will result in the
late package error also for this slot. A system recovering from a reading error-induced
prolonged execution time is shown in Figure 5.7. Even though it is a read-write issue
from the fronthaul, it still demonstrates the pipeline structure’s capacity to recover from
the tardy package.

The outcomes of the channel simulation are shown in Figure 5.9. This simulates the
uplink chain, starting with the user equipment (UE) that generates the uplink signal,
moving through an Additive White Gaussian Noise (AWGN) channel effect, and finally
reaching the OAI base station to decode the signal. At the conclusion, the error rate
between the UE-generated signal and the signal being decoded is calculated. It continues
to monitor each procedure’s timing in the base station in the interim for the timing
analysis. The circled result in figure 5.9 corresponds to what is circled in figure 5.6, and
it indicates the timing for the uplink procedure with various worker thread counts. The
first two results show that cutting the execution time for decoding and other processing
in half by increasing the worker thread count from one to two. However, there appears
to be performance saturation when comparing the acceleration with either four or eight
worker threads. The data amount should be sufficient for the speed to improve by almost
half when the number of worker threads is doubled because the setup for the test case
was the signal amount that simulated eight antennas. Figure 5.9 illustrates the impact of

48

Chapter 5. Implementations Using OpenAirInterface

Figure 5.7 – The ability of pipeline structure to recovery from a sudden data rush

Figure 5.8 – The timing log of the recovery of the pipeline structure

49

Chapter 5. Implementations Using OpenAirInterface

the overhead as a result.
Let’s move on to the worker acceleration that served at the fronthaul where the test

was done in real-time after the simulation results for adding worker threads to offload all
the operations in the layer-based procedures. Three situations were tested, each with a
different number of antennas, and each scenario was tested with one worker thread per
antenna, two worker threads per antenna, and two worker threads per antenna where
each worker thread served half of the slot. The USRP n320, which has a maximum of
2 TX and 2 RX antennas, as indicated in table 5.1, and the USRP n310, which has a
maximum of 4 TX and 4 RX antennas, as shown in table 5.2, were used in the tests that
produced the results that are presented below.

Tx OFDM execution time Tx front end process time
2x2 1x1 2x2 1x1

Single thread 35.244 us 34.802 us 173.277 us 85.807 us
One thread per antenna 35.955 us 101.138 us
Two thread per antenna 34.538 us 36.477 us 74.855 us 64.806 us

Table 5.1 – N320 Test result on 60MHz bandwidth

Tx OFDM execution time Tx front end process time
4x4 2x2 4x4 2x2

Single thread Late package 34.235 us Late package 175.157 us
One thread per antenna 45.649 us 33.757 us 134.099 us 100.923 us
Two thread per antenna X 34.603 us X 76.411 us

Table 5.2 – N310 Test result on 60MHz bandwidth

It is apparent from the timing results in tables 5.1 and 5.2 that the execution time of an
OFDM symbol in a given device appears to vary relatively little under every circumstance,
which is to be expected. However, the overall execution time differs dramatically from
prior cases where the execution time decreased as the number of worker threads increased.
However, the improvement went beyond just dividing the execution time by two. As
an example, consider the front-end procedure for one antenna, where overhead is still
there as previously described. In addition to the exams, there was a test being run that
involved adding threads that were under the control of the main thread. The entire
execution time increased despite the fact that the newly added threads did not contain
any additional operations. This suggests that using too many threads could make the
execution time longer than when using only the right number of threads, in this case
two threads per antenna as illustrated in Figure 5.10. Due to an additional attempt to
employ the worker thread, which would have resulted in one thread being used for every
OFDM symbol, the decision was made to use two threads per antenna. As a result, the
data passing time has significantly risen, which ultimately results in an execution time
that is practically identical to that of an implementation with a single thread and 1x1
antennas, as illustrated in figure 5.11. Additionally, as the number of antennas required

50

Chapter 5. Implementations Using OpenAirInterface

1 worker thread:

2 worker threads:

4 worker threads:

8 worker threads:

Figure 5.9 – Channel simulation result

51

Chapter 5. Implementations Using OpenAirInterface

Figure 5.10 – Scenario that have multiple RRU in the pipeline structure

Figure 5.11 – Timing analysis of Transmitting and Receiving every OFDM symbol

rises, there will be an excess of threads running concurrently that cannot be served by
the available cores. This will ultimately result in all of the threads still being in a queue
while they wait for the cores to process them. An example of executing twelve threads
on four physical cores is shown in Figure 5.12. The execution time is almost equal to
using four threads when the handover times between each thread are added. In the end,
it seems more logical and practical to limit the number of worker threads to one per half
of the front-end process.

Figures 5.13 and 5.14 document the outcome of the execution and the connections
between the threads and the VCD. On the one-by-one antenna LTE-based SDR, the
test was carried out with one thread, which is the main thread only, as shown in Figure
5.13, and two threads, which is with one worker thread for the acceleration to handle
the OFDM signals, as shown in Figure 5.14. The timing result for the overall OFDM
signal processing, where the yellow circle in Figure 5.6 is, is 60us, which is faster than
just one thread process, which is 87us, according to the VCD, which demonstrates that
the worker thread was parallel executed from the main thread for the acceleration. The
time discrepancy supports the notion that there are thread overhead problems as well.
They also fit the results from the 5G SDR tables 5.2 and 5.1.

According to what we previously stated, if the OS distributes threads, it might
not be as effective because multiple threads may need to run concurrently on a single

52

Chapter 5. Implementations Using OpenAirInterface

Figure 5.12 – An example of having more threads than cores

Figure 5.13 – Front end process with single thread

Figure 5.14 – Front end process with two thread

53

Chapter 5. Implementations Using OpenAirInterface

Figure 5.15 – Execution resource distribution

physical thread. Only one task could be carried out at a time because hyperthreading
was disabled, and the second work might be delayed, particularly if two threads with
significant loads are allocated to the same core. Hardcoding threads to cores during
initialization may result in resource waste, but it ensures that no tasks overlap to impair
timing performance. Figure 5.15 is a screenshot taken while the OAI SDR is running
with a two-by-two antenna and a bandwidth of 60MHz while using allocated threads to
cores. It demonstrates that the workload is distributed across multiple cores and that
multiple cores are being used simultaneously.

54

Chapter 6

Conclusion and Future Work

The real-time SDR in the thesis is constructed using OAI. The OAI is accelerated using
various techniques. Using threads and recreating the structure are the acceleration
techniques. Since the timing limitation in 5G is more stringent, the structure is rebuilt
using a pipeline structure in the thesis. This enables to lengthen the process without
causing a timing delay issue. Additionally, those heavy-loading procedures are offloaded
using a number of worker threads. One of the primary themes discussed in the thesis is
how and where to implement worker threads.

The thesis was able to keep the real-time property for the SDR even when integrating
OAI to 5G where the timing limitation was much more severe than that in 4G LTE
thanks to the introduction of worker threads and pipeline structure. Even with the
pipeline layout, there are still problems when the SDR needs to function at maximum
capacity and a higher data process is needed. If this occurs, temporal delays will occur
because some of the procedures will take too long to complete. Worker threads are
available to address this issue. The workload is now multiplied by the number of layers
and antennas, rather than being multiplied by the number of antennae, as multi-antennas
or even multi-layers would be a feature of 5G. Worker threads are used to parallelize
multi-antenna and multi-layer processes since data between various antennae and layers
is independent, in addition to offloading the laborious loading procedures.

Regarding upcoming work, as discussed in the previous chapter, thread overhead
is a problem even when there are several threads available to offload the workload for
accelerated processing. The switching between threads should take less time than it
does in the thesis, in theory. The OAI community has already made some progress
in partially resolving difficulties with the threading system. However, determining the
thread overhead that costs the least amount of timing overhead could aid in improving
timing performance, necessitating the use of a new thread handover method.

OS handled the most of the threading organization for the thesis. While creating the
threads, a priority parameter can be set. Following that, OS arranged all of the jobs
according to the priority parameter. Even if we could instruct the OS to give the desired
procedure priority using the priority parameter, all of these tasks would still need to join
the task pool with all of the other tasks already running on the processor and compete
for access to the CPUs. Tasks for OAI might not be able to obtain the resources to

55

Chapter 6. Conclusion and Future Work

begin the process immediately away if there are too many high-priority tasks running
concurrently. This will influence the timing for OAI and result in the OAI SDR not being
stable enough. The goal will be to organize such jobs in a way that is effective while
without using up too much processor resources.

Worker thread re-usability is going to be another crucial issue that needs to be taken
into consideration since we might have to assign threads to specific CPUs. The thesis
uses worker threads that are constructed with a specific topic in mind rather than being
general purpose worker threads. Assigning them to CPUs may still result in jamming
problems if many executions are required at once because there will be a number of high
priority worker threads when the process is needed. The most effective solution, which is
also what we want to accomplish, appears to be to have shared worker threads that may
handle various tasks and pin them to various CPUs.

The adaptability of SDR has already made it the better option in the current
environment. Additionally, its more affordable price contributes to the growth of the
marketing. Designing a hardware chip for wireless communication is no longer an option
due to the complexity of 5G. However, because to the increased throughput requirements
for 5G and future generations, employing GPP-based SDR is currently also experiencing
a few challenges. Since an FPGA is programmable and less expensive than creating a
hardware chip, using one to support SDR has been proposed as well. While FPGA offers
a more promising throughput and speed, SDR built primarily with GPP is easier to
maintain, add new features, perform cross-layer cooperation, etc. Due to the advantages
that both GPP and FPGA provide, a future for SDR that incorporates both technologies
is also possible.

56

Bibliography

[1] H. ElSawy, H. Dahrouj, T. Y. Al-Naffouri, and M.-S. Alouini, “Virtualized cognitive
network architecture for 5g cellular networks,” IEEE Communications Magazine,
vol. 53, no. 7, pp. 78–85, 2015.

[2] W. H. Tuttlebee, “Software-defined radio: facets of a developing technology,” IEEE
Personal Communications, vol. 6, no. 2, pp. 38–44, 1999.

[3] P. Cruz, N. B. Carvalho, and K. A. Remley, “Designing and testing software-defined
radios,” IEEE Microwave Magazine, vol. 11, no. 4, pp. 83–94, 2010.

[4] T. Ulversoy, “Software defined radio: Challenges and opportunities,” IEEE Commu-
nications Surveys & Tutorials, vol. 12, no. 4, pp. 531–550, 2010.

[5] W. H. Tuttlebee, Software defined radio: enabling technologies. John Wiley & Sons,
2003.

[6] E. Grayver, Implementing software defined radio. Springer Science & Business
Media, 2012.

[7] J. R. Machado-Fernández, “Software defined radio: Basic principles and applications,”
Revista Facultad de Ingeniería, vol. 24, no. 38, pp. 79–96, 2015.

[8] M. Dillinger, K. Madani, and N. Alonistioti, Software defined radio: Architectures,
systems and functions. John Wiley & Sons, 2005.

[9] F. K. Jondral, “Software-defined radio—basics and evolution to cognitive radio,”
EURASIP journal on wireless communications and networking, vol. 2005, no. 3, pp.
1–9, 2005.

[10] C. Zhang, Y.-L. Ueng, C. Studer, and A. Burg, “Artificial intelligence for 5g and
beyond 5g: Implementations, algorithms, and optimizations,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 10, no. 2, pp. 149–163,
2020.

[11] M. Taheribakhsh, A. Jafari, M. M. Peiro, and N. Kazemifard, “5g implementation:
Major issues and challenges,” in 2020 25th International Computer Conference,
Computer Society of Iran (CSICC). IEEE, 2020, pp. 1–5.

57

Bibliography

[12] R. Hussain, F. Hussain, and S. Zeadally, “Integration of vanet and 5g security: A
review of design and implementation issues,” Future Generation Computer Systems,
vol. 101, pp. 843–864, 2019.

[13] R. K. Kodali, G. Swamy, and B. Lakshmi, “An implementation of iot for healthcare,”
in 2015 IEEE Recent Advances in Intelligent Computational Systems (RAICS).
IEEE, 2015, pp. 411–416.

[14] K. Cengiz and M. Aydemir, “Next-generation infrastructure and technology issues
in 5g systems,” Journal of Communications Software and Systems, vol. 14, no. 1,
pp. 33–39, 2018.

[15] V. W. Wong, R. Schober, D. W. K. Ng, and L.-C. Wang, “Overview of new
technologies for 5g systems,” Key Technologies for 5G Wireless Systems, p. 1, 2017.

[16] M. N. Sadiku and C. M. Akujuobi, “Software-defined radio: a brief overview,” Ieee
Potentials, vol. 23, no. 4, pp. 14–15, 2004.

[17] E. Grayver and A. C. Utter, “Extreme software defined radio – ghz in real time,”
2020 IEEE Aerospace Conference, pp. 1–10, 2020.

[18] G. Sklivanitis, A. Gannon, S. N. Batalama, and D. A. Pados, “Addressing next-
generation wireless challenges with commercial software-defined radio platforms,”
IEEE Communications Magazine, vol. 54, no. 1, pp. 59–67, 2016.

[19] L. Karam, I. AlKamal, A. Gatherer, G. A. Frantz, D. V. Anderson, and B. L. Evans,
“Trends in multicore dsp platforms,” IEEE signal processing magazine, vol. 26, no. 6,
pp. 38–49, 2009.

[20] M. Palkovic, P. Raghavan, M. Li, A. Dejonghe, L. Van der Perre, and F. Catthoor,
“Future software-defined radio platforms and mapping flows,” IEEE Signal Processing
Magazine, vol. 27, no. 2, pp. 22–33, 2010.

[21] Y. Choi, Y. Lin, N. Chong, S. Mahlke, and T. Mudge, “Stream compilation for
real-time embedded multicore systems,” in 2009 International Symposium on Code
Generation and Optimization. IEEE, 2009, pp. 210–220.

[22] H. Hurskainen, J. Raasakka, T. Ahonen, and J. Nurmi, “Multicore software-defined
radio architecture for gnss receiver signal processing,” EURASIP Journal on Embed-
ded Systems, vol. 2009, pp. 1–10, 2009.

[23] G. J. Minden, J. B. Evans, L. Searl, D. DePardo, V. R. Petty, R. Rajbanshi,
T. Newman, Q. Chen, F. Weidling, J. Guffey et al., “Kuar: A flexible software-
defined radio development platform,” in 2007 2nd IEEE International Symposium
on New Frontiers in Dynamic Spectrum Access Networks. IEEE, 2007, pp. 428–439.

[24] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti, and
K. Flautner, “Soda: A high-performance dsp architecture for software-defined radio,”
IEEE micro, vol. 27, no. 1, pp. 114–123, 2007.

58

Bibliography

[25] T. B. Welch and S. Shearman, “Teaching software defined radio using the usrp and
labview,” in 2012 IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE, 2012, pp. 2789–2792.

[26] A. M. Wyglinski, D. P. Orofino, M. N. Ettus, and T. W. Rondeau, “Revolutionizing
software defined radio: case studies in hardware, software, and education,” IEEE
Communications magazine, vol. 54, no. 1, pp. 68–75, 2016.

[27] R.-x. Liu, Z.-g. Zhong, X.-l. Sun et al., “Reverse recognition of ldpc codes based
on log-likelihood ratio,” in Journal of Physics: Conference Series, vol. 1607, no. 1.
IOP Publishing, 2020, p. 012106.

59

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	Notations
	Introduction
	Software Defined Radio
	5G Systems and Implementation Technologies
	Motivation

	Software Optimized Real-time Processing for 5G systems
	Related Work and State of the Art
	Multi-threading for Parallelized Execution on Multi-Core Systems
	Hardware Acceleration(FPGA/GPU)
	 SIMD/VLIW optimizations

	Real-time SDR and Fronthaul Interface
	Challenges in Implementing Real-time SDR
	Considered Approach for Implementing Real-time SDR-base 5G systems

	Functional Decomposition and Pipelining for 5G radio processing
	5G Physical-Layer Procedures
	Proposed Pipelining Methods
	Pipeline Mechanism
	Software Pipeline
	Proposed Pipeline Structure

	Acceleration Methods for 5G Functional Blocks
	Acceleration Target Choice
	Splitting Method
	SIMD optimizations

	Implementations Using OpenAirInterface
	Testing Methods
	Performance Evaluation Methods
	Results of Performance Evaluation on multi-core x86 platforms

	Conclusion and Future Work

