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Introduction

Cette thèse porte sur certains modèles de matrices aléatoires en lien avec les réseaux de neurones artificiels. Elle est composée de deux textes principaux, les chapitres 2 et 3, directement issus d'articles destinés à être publiés, et qui sont de ce fait rédigés en anglais.

Le premier de ces deux textes étudie une classe générale de matrices de covariance empirique présentant une structure de dépendance partielle. Cette analyse complète plusieurs travaux antérieurs dans le domaine des matrices aléatoires, et présente donc un intérêt théorique en elle-même. Elle trouve également des applications pratiques dans certains problèmes d'apprentissage machine.

Le deuxième article qui constitue cette thèse porte sur le modèle du noyau conjugué. Ce modèle est un ensemble de matrices de covariance directement inspiré du fonctionnement de certains types de réseaux de neurones artificiels. Nous établissons certaines propriétés théoriques de ce modèle, qui généralisent et complètent les travaux antérieurs dans ce domaine.

L'objectif de cette introduction est de présenter dans un premier temps les concepts et les résultats fondateurs sur les matrices aléatoires de covariance (section 1.1). Nous pourrons alors contextualiser nos recherches portant sur les modèles avec une structure de dépendance partielle (section 1.2). Dans un second temps, nous expliquerons comment les matrices aléatoires interviennent naturellement dans l'étude des réseaux de neurones artificiels (section 1.3). Nous décrirons ensuite nos travaux sur le modèle dit du noyau conjugué (section 1.4), et enfin nous explorerons quelques implications pratiques de ces résultats. 

Théorie classique des matrices aléatoires de covariance

L'étude des matrices aléatoires en grande dimension a commencé dans les années 1950 avec les travaux fondateurs de Wigner ( [START_REF] Paul | Statistical properties of real symmetric matrices with many dimensions[END_REF]). Pour modéliser des problèmes issus de la physique nucléaire, où les niveaux d'énergie d'un système correspondent aux valeurs propres d'un opérateur hamiltonien, Wigner considère des matrices carrées symétriques à entrées indépendantes et identiquement distribuées (i.i.d.). Il démontre la convergence de la mesure spectrale empirique de telles matrices vers une mesure de probabilité déterministe appelée loi du semi-cercle.

Quelques années plus tard, Marčenko et Pastur s'intéressent à une autre classe de matrices aléatoires, les matrices dites de covariance empirique, qui seront au coeur de cette thèse. Ce type de matrices est particulièrement utilisé en statistiques depuis les travaux de Wishart [START_REF] Wishart | The generalised product moment distribution in samples from a normal multivariate population[END_REF], et la compréhension de leurs propriétés asymptotiques se révèle très utile pour établir des tests ou estimateurs statistiques en grande dimension. Dans l'article [START_REF] Marčenko | Distribution of eigenvalues for some sets of random matrices[END_REF], les auteurs démontrent la convergence de la mesure spectrale empirique de certains modèles de matrices de covariance empirique vers une mesure de probabilité déterministe, depuis connue sous le nom de loi de Marčenko-Pastur.

Les résultats qui décrivent le comportement spectral asymptotique de ces matrices aléatoires peuvent être obtenus de différentes manières : par des méthodes combinatoires comme la méthode des moments, des méthodes déterminantales lorsque la loi jointe des valeurs propres est explicite, ou bien encore en utilisant des méthodes analytiques comme celles dans lesquelles s'inscrit cette thèse. Introduisons donc quelques objets essentiels qui nous permettront d'aborder les résultats fondateurs de ce domaine de recherche. Une des préoccupations principales de la théorie des matrices aléatoires est de comprendre les propriétés spectrales de ces matrices lorsque leurs dimensions tendent simultanément vers +∞.

Transformée de Stieltjes

Parmi les nombreuses approches possibles, nous utilisons dans cette thèse des méthodes dites analytiques, qui consistent à étudier certaines fonctions complexes en lien avec le spectre de ces matrices.

La transformée de Stieltjes associée à une mesure réelle µ est la fonction d'une variable complexe :

g µ : z → g µ (z) = R 1 t -z dµ(t).
Cette intégrale a un sens lorsque la variable z, aussi appelée paramètre spectral de la transformation, se situe en dehors du support de µ. La transformée de Stieltjes g µ est donc toujours bien définie sur le demi-plan complexe ouvert supérieur C + = {z ∈ C tels que ℑ(z) > 0}.

Considérons K ∈ R p×p une matrice diagonalisable, et regroupons ses valeurs propres dans un ensemble appelé spectre de K, et noté SpK = {λ valeurs propres de K}. La mesure spectrale empirique de K est la mesure de probabilité µ K = 1 p λ∈SpK δ λ , où δ λ désigne la mesure de Dirac centrée en λ. Pour une matrice diagonalisable K ∈ R p×p , la fonction z ∈ C + → g K (z) est par définition la transformée de Stieltjes associée à la mesure spectrale empirique de K :

g K (z) = g µ K (z) = R 1 t -z dµ K (t) = 1 p λ∈SpK 1 λ -z .
On peut voir que g K est une fonction méromorphe dont les pôles sont les valeurs propres de K, ce qui est particulièrement adapté pour étudier le spectre de K.

Un des principaux avantages de la transformée de Stieltjes est justement qu'elle caractérise la mesure dont elle est issue. On se réfère à [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF] pour la démonstration des propriétés suivantes : Proposition 1.1.1.

1. La transformée de Stieltjes d'une mesure de probabilité réelle µ est une fonction holomorphe sur C + , et vérifie ℑ(g µ (z)) > 0 pour tout z ∈ C + , |g µ (z)| ≤ 1/ℑ(z), et lim t→∞ itg µ (it) = -1. Nous proposons d'appeler par la suite fonctions candidates les fonctions holomorphes sur C + qui vérifient ces trois propriétés.

Si a et b ne sont pas des atomes de µ, alors :

µ([a, b]) = lim ϵ→0 + 1 π [a,b]
ℑ(g µ (t + iϵ))dt.

Cette formule est connue sous le nom de formule d'inversion de Frobenius-Perron. En conjonction avec le théorème de représentation de Herglotz pour les fonctions holomorphes, on obtient l'importante conséquence suivante :

1.1. THÉORIE CLASSIQUE DES MATRICES ALÉATOIRES 5 3. La transformée de Stieltjes est une bijection de l'ensemble des mesures de probabilité réelles sur l'ensemble des fonctions candidates, c'est à dire des fonctions g holomorphes sur C + , telles que ℑ(g(z)) > 0 pour tout z ∈ C + , |g(z)| ≤ 1/ℑ(z), et lim t→∞ itg(it) = -1. La transformée de Stieltjes d'une mesure caractérise donc cette mesure. 4. Si (µ n ) et µ ∞ sont des mesures de probabilité réelles, la convergence faible de (µ n ) vers µ ∞ est équivalente à la convergence simple sur C + de la suite des transformées de Stieltjes (g µn ) vers g µ∞ .

Signalons enfin que certains auteurs utilisent une convention pour les signes opposée à la nôtre, et travaillent donc avec la transformée de Cauchy égale à -g µ (z) = R 1 z-t dµ(t). Nous verrons d'ailleurs à plusieurs instances dans ce manuscrit l'inverse de cette transformée de Cauchy, égale à l µ (z) = -1/g µ (z).

Lois globales

Considérons Y ∈ R p×n une matrice rectangulaire, à entrées réelles. La matrice de covariance empirique associée à Y est par définition la matrice K = 1 n Y Y ⊤ . K est une matrice carrée de dimension p, réelle, symétrique, et semi-définie positive. K est donc diagonalisable en base orthonormée, avec p valeurs propres réelles positives ou nulles, dont on cherche à comprendre le comportement asymptotique.

La loi de Marčenko-Pastur de paramètre γ > 0, notée MP(γ), est la mesure de probabilité réelle µ, avec une masse en 0 égale à µ({0}) = 1 -1/γ si γ > 1, et qui admet la densité suivante sur l'intervalle 1 -√ γ

2 , 1 + √ γ 2 : f (t) = t -1 - √ γ 2 1 + √ γ 2 -t 2πγt .
De manière équivalente, MP(γ) est caractérisée par sa transformée de Stieltjes g(z), seule fonction candidate (cf. Proposition 1.1.1) qui vérifie l'équation de point fixe :

g(z) = 1 1 -γ -γzg(z) -z .
Nous pouvons maintenant présenter quelques théorèmes centraux de la théorie des matrices aléatoires de covariance empirique. Ces résultats sont connus sous le nom de lois globales car ils décrivent le comportement asymptotique global des spectres aléatoires de ces matrices.

Commençons par le cas le plus simple où les entrées de Y sont i.i.d. On dit alors que la matrice de covariance empirique K est une matrice de Wishart.
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Avertissement : les paragraphes qui suivent ont pour but d'établir un historique de notre domaine de recherche et de pouvoir replacer dans leur contexte les résultats obtenus pendant cette thèse. Nous ne proposons absolument pas les hypothèses les plus générales, ni les résultats les plus fins.

Nous prévenons aussi notre lecteur que, pour plus de lisibilité et conformément à l'usage en matrices aléatoires, nous omettrons souvent de préciser la dépendance en la dimension des objets manipulés. Ainsi dans les résultat suivants, Y , K, . . . sont tous implicitement des suites indexées par n.

Théorème 1.1.1 [START_REF] Marčenko | Distribution of eigenvalues for some sets of random matrices[END_REF]). Soit Y ∈ R p×n une matrice aléatoire telle que :

1. Le rapport des dimensions γ n = p n converge vers γ ∞ > 0.

Les entrées de Y sont i.i.d. et de variance 1.

Alors la mesure spectrale empirique de K = 1 n Y Y ⊤ converge faiblement presque sûrement (p.s.) vers la mesure de probabilité déterministe MP(γ ∞ ).

Si µ est une mesure de probabilité à support dans R + , nous appelons produit de convolution libre de MP(γ) avec µ la mesure de probabilité caractérisée par sa transformée de Stieltjes g(z), seule fonction candidate (cf. Proposition 1.1.1) qui vérifie l'équation de point fixe :

g(z) = R 1 (1 -γ -γzg(z))t -z dµ(t).
Nous notons MP(γ) ⊠ µ cette nouvelle mesure, aussi appelée loi de Marčenko-Pastur déformée par µ. La notation ⊠ adoptée ici est issue de la théorie des probabilités libres. Sans rentrer dans le détail, ν ⊠ µ correspond à la loi (au sens des probabilités libres) d'un produit de deux variables aléatoires non commutatives, libres entre elles, de lois ν et µ respectivement. Nous utiliserons exclusivement dans cette thèse des produits de convolution libre avec des lois de Marčenko-Pastur, pour lesquels la définition à l'aide de la transformée de Stieltjes est suffisante.

Lorsque Y est obtenue par transformation linéaire d'une matrice à entrées i.i.d., on parle de structure de dépendance linéaire, ou bien encore de matrice de Wishart colorée pour K. Il est aussi possible dans ce cas de caractériser la limite spectrale empirique à l'aide de l'opérateur de convolution décrit cidessus.

Théorème 1.1.2 [START_REF] Silverstein | Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices[END_REF]). Soit Σ ∈ R p×p une matrice déterministe symétrique semi-définie positive, X ∈ R p×n une matrice aléatoire, et Y = Σ 1/2 X. On suppose que :

1. Le rapport des dimensions γ n = p n converge vers γ ∞ > 0. 2. Les entrées de X sont i.i.d. et de variance 1.
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3. µ Σ converge faiblement vers une mesure de probabilité µ ∞ .

Alors la mesure spectrale empirique de K = 1 n Y Y ⊤ converge faiblement p.s. vers la mesure de probabilité déterministe MP(γ ∞ ) ⊠ µ ∞ .

Il est enfin possible de considérer le cas plus général où les colonnes de Y sont indépendantes, mais où les entrées à l'intérieur de ces colonnes peuvent être corrélées. C'est ce type de modèle présentant une structure de dépendance partielle qui va principalement nous intéresser pendant notre thèse. La loi globale correspondante est la suivante : Théorème 1.1.3 [START_REF] Bai | Large sample covariance matrices without independence structures in columns[END_REF]). Soit Y ∈ R p×n une matrice aléatoire telle que :

1. Le rapport des dimensions γ n = p n converge vers γ ∞ > 0. 2. Les colonnes de Y sont i.i.d. suivant la loi d'un vecteur aléatoire y.

y satisfait la propriété de concentration suivante : pour toute matrice

déterministe A ∈ R p×p , Var y ⊤ Ay ≤ |||A||| 2 o(n 2 ).

4. Avec Σ = E yy ⊤ , |||Σ||| est bornée, et µ Σ converge faiblement vers une mesure de probabilité µ ∞ .

Alors la mesure spectrale empirique de K = 1 n Y Y ⊤ converge faiblement p.s. vers la mesure de probabilité déterministe MP(γ ∞ ) ⊠ µ ∞ .

Il est possible de compléter ces résultats dans de nombreuses directions. Tout d'abord on peut chercher à rendre quantitative la convergence des mesures spectrales, soit en utilisant une distance sur les mesures comme la distance de Kolmogorov, soit en fournissant des estimées précises sur les transformées de Stieltjes. Ces deux questions sont d'ailleurs très proches et nous y reviendrons aux sections 1.2.4 et 2.8.

Un autre problème intéressant est de s'intéresser aux valeurs propres extrémales et à leurs fluctuations, ce qui donne lieu à une littérature très riche. Dans cette thèse, nous optons pour une approche encore différente, qui consiste à étudier un outil analytique plus précis que la transformée de Stieltjes, la résolvante de la matrice de covariance.

Résolvante et notion d'équivalent déterministe

Considérons K ∈ R p×p une matrice symétrique réelle, et donc en particulier diagonalisable en base orthonormée. La résolvante de K est la fonction d'une variable complexe et à valeurs matricielles :

G K : z → G K (z) = (K -zI p ) -1 .
La transformée de Stieltjes d'une matrice est égale à la trace normalisée de sa résolvante, autrement dit elles sont reliées par la formule g K (z) = 1 p TrG K (z).

CHAPITRE 1. INTRODUCTION

De plus si {e λ , λ ∈ SpK} désigne une base orthonormée associée aux valeurs propres de K, il est facile de voir que :

G K (z) = λ∈SpK 1 λ -z e λ e ⊤ λ .
Ainsi G K (z) est une fonction méromorphe sur le plan complexe, dont les pôles sont les valeurs propres de K, et dont les résidus correspondent aux projecteurs orthonormaux associés à ces valeurs propres. Une compréhension fine du comportement asymptotique de la résolvante apporte donc non seulement des informations sur le spectre de la matrice, mais aussi sur ses directions propres.

La résolvante d'une matrice possède une structure algébrique très riche et de nombreuses autres propriétés, notamment de concentration, dont il est possible de tirer parti pour étudier les matrices aléatoires. Nous renvoyons à la section 2.4 pour une analyse approfondie de cet objet.

Nous avons vu que la convergence faible d'une suite de mesures aléatoires vers une mesure déterministe p.s. était équivalente à la donnée d'une limite déterministe p.s. pour leurs transformées de Stieltjes, et nous aurions pu formuler les Théorèmes 1.1.1, 1.1.2 et 1.1.3 en ce sens. À la différence de la transformée de Stieltjes cependant, la résolvante est une suite de fonctions à valeurs matricielles dont les dimensions tendent vers +∞, ce qui rend la notion de limite plus difficile à formuler. Nous utilisons pour cela le concept d'équivalent déterministe de la résolvante, en suivant une terminologie issue de [START_REF] Hachem | Deterministic equivalents for certain functionals of large random matrices[END_REF].

Si K ∈ R p×p est une matrice aléatoire, un équivalent déterministe de sa résolvante G K (z) est une fonction à valeurs matricielles G : C + → C p×p , telle que pour toute matrice A ∈ R p×p , vérifiant certaines contraintes de normalisation suivant les résultats, la quantité Tr(G K (z)A -G(z)A) converge vers 0 p.s.

Cette formulation d'un équivalent déterministe traduit également un phénomène de concentration typique des matrices aléatoires. En effet lorsque les dimensions des espaces augmentent, les objets aléatoires ne restent pas proches de leur espérance en norme, et ils ne peuvent donc pas être approchés par des objets déterministes. En revanche les formes linéaires issues de ces matrices aléatoires se concentrent bien autour de leur espérance, et il est possible d'utiliser ce phénomène pour parler d'équivalent déterministe de matrices en grande dimension. Nous discuterons plus en détail de ces phénomènes de concentration à la section 1.2.1.

Explorons quelques conséquences immédiates apportées par un équivalent déterministe de la résolvante : en choisissant dans la définition A = 1 p I p , on obtient que g K (z) et 1 p TrG(z) ont la même limite si elle existe, et donc que µ K 1.1. THÉORIE CLASSIQUE DES MATRICES ALÉATOIRES converge p.s. vers une mesure admettant cette limite comme transformée de Stieltjes. Ainsi un équivalent déterministe de la résolvante est une propriété plus forte qu'une loi globale sur la mesure spectrale empirique. En fixant un vecteur unitaire u ∈ R p et A = uu ⊤ , on obtient également une limite p.s. pour la mesure µ K,u = λ∈SpK (u ⊤ e λ ) 2 δ λ , connue sous le nom de mesure spectrale empirique dans la direction u, ou v.e.s.d. en anglais (cf.la section 2.2 et [START_REF] Noiry | Spectral measures of spiked random matrices[END_REF]). En prenant pour A des matrices de base E ij , on obtient G K (z) ij -G(z) ij → 0 p.s., et on peut même obtenir cette convergence uniformément sur les entrées :

||G K (z) -G(z)|| max → 0 p.s.

Lois locales

La convergence de Tr(G K (z)A -G(z)A) vers 0 dans notre définition d'équivalent déterministe peut être raffinée de manière quantitative en la dimension et le paramètre spectral z. Lorsque c'est le cas, de tels résultats d'équivalents déterministes quantitatifs portent le nom de lois locales. En effet, comme nous l'avons vu la résolvante contient des informations non seulement sur les valeurs propres, mais aussi sur les directions propres de la matrice.

Ce terme est aussi justifié par le fait que des estimées suffisamment précises en z peuvent conduire à des résultats fins sur les valeurs propres, à une échelle plus petite que l'ensemble des valeurs propres comme dans les lois globales. Nous n'avons pas obtenu de résultats permettant d'explorer cette direction dans notre thèse, mais nous renvoyons le lecteur intéressé par ces techniques à consulter [KY17, section 10].

Les premières lois locales obtenues concernaient les matrices de Wigner ( [START_REF] Erdős | Local semicircle law and complete delocalization for Wigner random matrices[END_REF]). Quelques années après, le résultat suivant fournissait un équivalent pour les matrices de covariance de type Wishart. 

Ψ(z) = ℑ g MP(γn) (z) nℑ(z) + 1 nℑ(z) , pour toute constante fixée τ > 0, uniformément en z ∈ {z ∈ C + tels que |z| ≥ τ , |ℜ(z)| ≤ τ -1 , et n τ -1 ≤ ℑ(z) ≤ τ -1 }, et uniformément en les vecteurs unitaires déterministes u, v ∈ C n : Tr (G K (z) -G(z))uv ⊤ ≤ O log nΨ(z) p.s.
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Prenons quelques instants pour discuter ce résultat fondamental. Tout d'abord le théorème prend bien la forme d'un équivalent déterministe de la résolvante comme nous l'avons présenté ci-dessus. Cet équivalent autorise à faire varier le paramètre spectral avec n, et notamment de le rapprocher de l'axe réel, pour peu que ℑ(z) ne tende pas trop vite vers 0 (strictement moins vite que 1/n).

L'équivalent déterministe est quantitatif, avec des vitesses de convergence typiques en 1/ √ n pour la dimension et 1/ℑ(z) pour le paramètre spectral. Nous pouvons aussi remarquer l'apparition de l'hypothèse de moyenne nulle pour les entrées de Y . Cette hypothèse était absente des lois globales présentés au début de cette section. Centrer une matrice aléatoire revient en effet à ajouter une matrice déterministe de rang 1, ce qui ne change pas la distribution spectrale asymptotique de cette matrice. Ce n'est plus le cas lorsqu'on considère la résolvante de cette matrice. Pour obtenir un équivalent déterministe de la résolvante, le centrage, ou au minimum un contrôle suffisant de l'espérance des colonnes, devient alors une hypothèse cruciale.

En effet ℑ g MP(γn) (z) ≤ 1/ℑ(z), donc Ψ(z) est majorée par O 1 √ nℑ(z)
Dans le cas d'entrées i.i.d., la résolvante se comporte donc asymptotiquement comme une homothétie dont le rapport est la transformée de Stieltjes d'une loi de Marčenko-Pastur. On peut parler d'isotropie car les vecteurs propres de K n'ont pas de direction privilégiée.

Ce n'est plus le cas en général pour d'autres modèles de matrices de covariance, et on parle alors de lois locales anisotropiques. Pour les modèles avec une structure de dépendance linéaire, autrement dénommées matrices de Wishart colorées, le résultat correspondant est le suivant :

Théorème 1.1.5 ( [KY17]). Soit Σ ∈ R p×p une matrice déterministe symé- trique semi-définie positive, X ∈ R p×n une matrice aléatoire, et Y = Σ 1/2 X.

On suppose que :

1. Le rapport des dimensions γ n = p n est majoré et minoré par des constantes strictement positives.

2. Les entrées de X sont i.i.d., centrées, de variance 1, et de classe d'intégrabilité L q pour tout q ∈ N.

Σ est inversible et |||Σ||| est bornée.
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Alors avec ν = MP(γ n )⊠µ Σ et ν = (1-γ n )•δ 0 +γ n •ν, ν est
bien une mesure de probabilité, et la fonction à valeurs matricielles G(z) = (-zg ν (z)Σ -zI p ) -1 est un équivalent déterministe de G K (z) au sens suivant : avec

Ψ(z) = ℑ(g ν (z)) nℑ(z) + 1 nℑ(z)
,

pour toute constante fixée τ > 0, uniformément en z ∈ {z ∈ C + tels que |z| ≥ τ , |ℜ(z)| ≤ τ -1 , et n τ -1 ≤ ℑ(z) ≤ τ -1 }, et uniformément en les vecteurs unitaires déterministes u, v ∈ C n : Tr Σ -1/2 (G K (z) -G(z))Σ -1/2 uv ⊤ ≤ O log nΨ(z) p.s.
On peut montrer que l'identité g ν (z) = 1 p TrG(z) a lieu (Proposition 2.6.2), et donc que cette loi locale implique bien à nouveau la loi globale 1.1.2. À la lumière de ces résultats, on peut se demander s'il n'est pas possible d'obtenir une loi locale pour les modèles ayant simplement une structure de dépendance partielle. Nous avons répondu positivement à cette question pendant notre thèse, ce qui fait l'objet de la section suivante.

Équivalent déterministe pour les modèles avec une structure de dépendance partielle

Dans cette partie nous présentons les résultats et idées principales de l'article [START_REF] Chouard | Quantitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF], duquel est directement issu le deuxième chapitre de cette thèse. Il nous semble important de nous arrêter quelques instants auparavant sur les propriétés de concentration des vecteurs et matrices aléatoires en grande dimension, qui seront au coeur des démonstrations.

Concentration lipschitzienne

Le phénomène de concentration de la mesure peut être décrit comme une propriété des objets aléatoires en grande dimension, selon laquelle les fonctions régulières de ces objets apparaissent comme presque constantes autour de leur moyenne. Un exemple typique est celui de la mesure uniforme sur la sphère euclidienne, qui concentre toute sa masse autour de l'équateur à mesure que la dimension tend vers +∞.

Nous avons adopté dans cette thèse le récent formalisme de concentration lipschitzienne de On dit que la suite X n a la propriété de concentration lipschitzienne avec une suite de diamètres observables σ n > 0, s'il existe une constante C > 0, indépendante de la dimension, telle que pour toute suite de fonctions 1-lipschitziennes 

||M || F = Tr(M M ⊤ ) 1/2 = i,j M 2 ij 1/2
f n : (E n , ||•||) → C, et pour tous n ∈ N et t ≥ 0 : P(|f n (X n ) -E[f n (X n )]| ≥ t) ≤ Ce -1 C ( t σn ) 2 . On note cette propriété X n ∝ ||•|| E(σ n ), ou bien X n ∝ E(σ n ) s'il
(X n ) -E[f n (X n )]| ≤ √ log nO(σ n ) p.s., et Var[f n (X n )] ≤ O(σ 2 n ) (Proposition 2.3.3).
On peut en revanche comparer X n à son espérance en norme, au prix d'un facteur qui dépend de la nature des espaces vectoriels normés. Par exemple, si

X n ∈ R p×n ∝ |||•||| E(σ n ), alors |||X -E[X]||| ≤ O( √ n + p σ n ) p.s. (Proposition 2.3.4).
Comme exemple fondamental d'objets aléatoires concentrés, si un vecteur aléatoire X n ∈ R n a des coordonnées i.i.d. gaussiennes centrées réduites, alors [START_REF] Ledoux | The concentration of measure phenomenon[END_REF] pour de nombreux autres exemples de vecteurs ou matrices vérifiant ce phénomène de concentration.

X n ∝ ||•|| E(1). De manière similaire, une matrice Y à entrées i.i.d. gaussiennes centrées réduites vérifie Y ∝ ||•|| F E(1). On se réfère à [LC20] et
Toute transformation continue lipschitzienne préserve la propriété de concentration lipschitzienne, en modifiant éventuellement la suite des diamètres observables si la constante de Lipschitz dépend de la dimension (Proposition 2.3.2).

Pour les matrices de Wishart colorées des Théorèmes 1.1.2 et 1.1.5 par exemple, si les entrées de X ∈ R p×n sont i.i.d. gaussiennes centrées réduites, et que Σ ∈ R p×p est une matrice déterministe, symétrique semi-définie positive, alors

Y = Σ 1/2 X ∝ ||•|| F E(|||Σ|||) (ceci découle de l'inégalité ||AB|| F ≤ |||A|||||B|| F ).
De même si f : R → R est une fonction continue lipschitzienne, et que

Y ∝ ||•|| F E(1), alors la matrice f (Y ) obtenue en appliquant la fonction f en- trée par entrée vérifie également f (Y ) ∝ ||•|| F E(1)
. Ceci permettra notamment d'obtenir sans effort des propriétés de concentration pour les modèles de matrices issus de réseaux de neurones artificiels, qui apparaîtront plus tard dans ce manuscrit.

En ce qui concerne les résolvantes de matrices de covariance, il est possible de montrer que l'application :

Y ∈ R p×n → G K (z) = (K -zI p ) -1 = 1 n Y Y ⊤ -zI p -1
est continue lipschitzienne par rapport à la norme de Frobenius, avec comme paramètre

2 3/2 |z| 1/2 √ nℑ(z) 2 (Proposition 2.4.3). Ainsi en partant d'une matrice CHAPITRE 1. INTRODUCTION Y ∝ ||•|| F E(1), on a automatiquement G K (z) ∝ ||•|| F E |z| 1/2 √ nℑ(z) 2 (Corollaire 2.4.4).
Les développements récents de cette notion de concentration lipschitzienne vont bien au-delà des quelques faits énoncés ici, ou de ceux dont nous avons eu besoin pendant notre thèse. Nous encourageons le lecteur intéressé à poursuivre par la lecture de l'article [START_REF] Louart | Concentration of solutions to random equations with concentration of measure hypotheses[END_REF], spécifiquement centré sur ces questions.

Résultat principal

Nous pouvons maintenant énoncer la loi locale que nous avons obtenue pour les matrices de covariance empirique avec une structure de dépendance partielle.

Théorème 1.2.1 (cf. Proposition 2.2.4). Soit Y ∈ R p×n une matrice aléatoire telle que :

1. Le rapport des dimensions γ n = p n est majoré et minoré par des constantes strictement positives.

Y vérifie la propriété de concentration

Y ∝ ||•|| F E(1).

Les colonnes de Y sont i.i.d. suivant la loi d'un vecteur aléatoire y.

||E[y]|| est bornée, et avec

Σ = E yy ⊤ , |||Σ||| est bornée. Alors avec ν = MP(γ n ) ⊠ µ Σ et ν = (1 -γ n ) • δ 0 + γ n • ν, ν est

bien une mesure de probabilité, et la fonction à valeurs matricielles

G(z) = (-zg ν (z)Σ -zI p ) -1 est un équivalent déterministe de G K (z) au sens suivant : il existe une constante C > 0, telle que avec κ(z) = |z| 5/2 ℑ(z) 9 , pour toute constante fixée τ > 0, unifor- mément en z ∈ {z ∈ C + tels que |z| 7 ℑ(z) 16 ≤ Cn et ℑ(z) ≤ τ }, et uniformément en la matrice déterministe A ∈ R p×p de norme de Frobenius égale à 1 : |Tr((G K (z) -G(z))A)| ≤ O   log n n κ(z)   p.s.
On peut remarquer que la matrice d'équivalent déterministe G(z) est exactement la même que celle obtenue dans la loi locale 1.1.5. On peut aussi voir que les directions propres de G(z) sont les mêmes que celles de Σ. Ainsi lorsque Σ est une matrice diagonale, G(z) reste aussi diagonale, et si de plus Σ est un multiple de l'identité on retrouve une loi locale isotropique.

La structure de notre théorème est également très similaire : le paramètre spectral z peut varier avec n, à condition que ℑ(z) ne tende pas trop vite vers 1.2. MODÈLES AVEC UNE DÉPENDANCE PARTIELLE 15 0 (et également ici |z|/ℑ(z) puisque nous n'avons pas imposé de condition sur la partie réelle de z).

Le résultat prend bien la forme d'un résultat de concentration, en un sens plus général que les lois globales précédemment énoncées puisqu'il autorise toutes les formes linéaires issues d'une matrice normalisée en norme de Frobenius, et pas seulement les formes quadratiques avec des vecteurs unitaires (ce qui équivaut à considérer des matrices de rang 1).

Enfin l'équivalent est quantitatif, avec des vitesses de convergence typiques en 1/ √ n pour la dimension, et κ(z) pour le paramètre spectral, c'est à dire polynomiales en 1/ℑ(z) et |z|/ℑ(z). Nous touchons ici cependant à l'inconvénient principal de notre résultat comparé au Théorème 1.1.5, car notre estimée quantitative n'apparaît absolument pas optimale en z.

Ce résultat est dans la continuité directe des travaux [START_REF] Louart | Spectral properties of sample covariance matrices arising from random matrices with independent non identically distributed columns[END_REF], où les auteurs obtiennent essentiellement le même équivalent déterministe, sans toutefois l'aspect quantitatif en z, et la possibilité de faire se rapprocher z de l'axe réel lorsque n tend vers +∞ qui sont nos principales contributions.

En revanche, dans l'article [START_REF] Louart | Spectral properties of sample covariance matrices arising from random matrices with independent non identically distributed columns[END_REF] les colonnes de Y peuvent éventuellement avoir des distributions différentes. Dans ce cas il faut remplacer dans l'équivalent déterministe la transformée de Stieltjes g ν (z) par une matrice diagonale qui vérifie une équation de point fixe matricielle, généralisant en un sens la définition de la convolution libre multiplicative avec une loi de Marčenko-Pastur.

Il serait du plus grand intérêt d'obtenir l'analogue de notre résultat quantitatif dans ce cas plus général. Cependant la technicité des preuves augmente grandement lorsqu'on est amené à considérer des équations de point fixe matricielles, et nous n'avons pu nous rapprocher de ce but.

Énonçons enfin quelques corollaires immédiats de ce résultat d'équivalent déterministe, tels que ceux présentés au paragraphe 1.1.3. En utilisant l'identité g ν (z) = 1 p TrG(z) (Proposition 2.6.2), et en choisissant la matrice A = I p / √ p, qui est de norme de Frobenius égale à 1, on voit que le Théorème 1.2.1 implique bien la loi globale 1.1.3 correspondant à ce modèle. Il fournit de plus une convergence quantitative pour les transformées de Stieltjes. En conservant les mêmes notations que celles du théorème, on a en effet :

|g K (z) -g ν (z)| ≤ O √ log n n κ(z) p.s.
Rappelons la définition des mesures spectrales empiriques directionnelles : µ K,u = λ∈SpK (u ⊤ e λ ) 2 δ λ , où les vecteurs e λ forment une base orthonormée associée aux valeurs propres λ. Pour tout vecteur unitaire déterministe u ∈ R p , CHAPITRE 1. INTRODUCTION on a :

g µ K,u (z) -u ⊤ G(z)u ≤ O   log n n κ(z)   p.s.
On peut enfin obtenir la convergence uniforme suivante sur les entrées de la résolvante :

||G K (z) -G(z)|| max ≤ O log n n κ(z) p.s.

Stratégie de preuve

Pour obtenir le Théorème 1.2.1, on se ramène tout d'abord à travailler en espérance. En effet comme vu précédemment la simple hypothèse

Y ∝ ||•|| F E(1) implique automatiquement pour la résolvante que G K (z) ∝ ||•|| F E |z| 1/2 √ nℑ(z) 2 .
Uniformément en la matrice déterministe A ∈ R p×p de norme de Frobenius égale à 1, on a donc :

|Tr((G K (z) -E[G K (z)])A)| ≤ O log n |z| 1/2 √ nℑ(z) 2 p.s. Puisque |z| 1/2 ℑ(z) 2 ≤ O(κ(z))
, pour obtenir un équivalent déterministe il suffit donc d'approcher l'espérance de la résolvante en norme de Frobenius, et plus précisément de montrer que

||E[G K (z)] -G(z)|| F ≤ O κ(z) √ n (Théorème 2.2.3).
Suivant une idée attribuée à Silverstein ([Sil86]), et adaptée dans ce cadre par Louart et Couillet dans [START_REF] Louart | Concentration of measure and large random matrices with an application to sample covariance matrices[END_REF], on cherche une première approximation de E[G K (z)] à partir de la résolvante de Σ, non plus considérée en le paramètre spectral z mais en autre point, dépendant à la fois de z et de n.

Pour exploiter l'indépendance entre les colonnes de Y , on utilise des variantes des matrices de covariance de notre modèle, où on a laissé de côté la première colonne y 1 de la matrice Y (leave-one-out ou LOO en anglais). On définit ainsi Y -= (0, y 2 , . . . , y n ),

K -= 1 n Y -Y ⊤ -= K -y 1 y ⊤ 1 /n, et G K -(z) = (K --zI p ) -1 . On se sert aussi de la co-résolvante, définie en inter- vertissant Y et Y ⊤ dans la matrice de covariance empirique : Ǩ = 1 n Y ⊤ Y , et G Ǩ (z) = 1 n Y ⊤ Y -zI n -1
. Nous détaillons les caractéristiques de ces résolvantes alternatives à la section 2.4, notamment leurs propriétés de concentration, et nous pensons que leur utilisation mériterait d'être généralisée dans le cadre des méthodes analytiques en matrices aléatoires.

À l'aide d'identités purement algébriques entre ces objets (formules de Sherman-Morrison, Proposition 2.4.9), l'indépendance entre y 1 et les autres colonnes et donc tous les objets LOO, et enfin des propriétés de concentration des formes quadratiques de type Hanson-Wright (Proposition 2.3.5), on arrive à démontrer que

E[G K (z)] est proche de z b(z) Σ -zI p -1
, où b(z) peut être défini par deux formulations équivalentes : b

(z) = z + z n Tr ΣE G K -(z) , ou bien b(z) = E[-1/G Ǩ (z) 11 ] (Théorème 2.5.3).
La dernière partie de la preuve (section 2.6) consiste à tirer parti de la suite d'approximations suivantes :

b(z) = z + z n Tr ΣE G K -(z) ≈ z + z n Tr(ΣE[G K (z)]) ≈ z + z n Tr   Σ z b(z) Σ -zI p -1   .
b(z) est donc une solution approchée d'une certaine équation de point fixe (Proposition 2.6.4), qui est exactement l'équation vérifiée par l ν (z) = -1/g ν (z), l'inverse de la transformée de Cauchy de la mesure ν (Proposition 2.6.2). On s'attend donc à ce que b(z) se rapproche asymptotiquement de l ν (z). Ceci est d'ailleurs suggéré par la seconde formulation de b(z) utilisant la co-résolvante. Au moins heuristiquement, on a en effet b

-1 = E[-1/G Ǩ (z) 11 ] ≈ E[-1/g Ǩ (z)] ≈ -1/g ν (z) = l ν (z). Remarquons d'ailleurs que l'équivalent G(z) s'écrit bien comme G(z) = z l ν (z) Σ -zI p -1
. Pour montrer rigoureusement que le pseudo point fixe b(z) converge vers le vrai point fixe l ν (z), on utilise des propriétés de stabilité. L'équation peut en effet s'écrire à l'aide d'une fonction contractante pour une semi-métrique bien choisie sur C + (Proposition 2.6.11). En utilisant des théorèmes de convergence quantitatifs adaptés (Lemme 2.6.14), on obtient que b(z) -l ν (z) tend vers 0 (Proposition 2.6.15), et donc finalement que E[G K (z)] est proche de G(z) avec les bornes quantitatives recherchées en norme de Frobenius.

Signalons d'ailleurs que c'est pour faire fonctionner cet argument de stabilité qu'apparaît la condition selon laquelle ℑ(z) ne tend pas trop vite vers 0. En effet, à mesure que ℑ(z) se rapproche de 0, la fonction est de moins en moins contractante, et dans le même temps b(z) est de moins en moins un point fixe approché de cette fonction. La condition sus-mentionnée est donc nécessaire pour lever toute indétermination.

Convergence en distance de Kolmogorov

Étant donné deux mesures réelles µ et ν, nous notons F µ et F ν leur fonctions de répartition respectives, et nous rappelons la définition de la distance de Kolmogorov entre µ et ν :

D(µ, ν) = sup t∈R |F µ (t) -F ν (t)|.
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La convergence en distance de Kolmogorov implique la convergence faible des mesures, et il y a même équivalence lorsque la fonction de répartition de la mesure limite est continue höldérienne ( [START_REF] Jeffrey | Necessary and sufficient condition that the limit of Stieltjes transforms is a Stieltjes transform[END_REF]). Prouver une convergence en distance de Kolmogorov, qui plus est quantitative, est donc un résultat plus précis que la simple convergence des lois globales mentionnées au paragraphe 1.1.2.

De tels résultats ont été démontrés d'abord dans le cas de matrices de Wishart classiques [START_REF] Zhidong | Convergence rate of expected spectral distributions of large random matrices. part ii. sample covariance matrices[END_REF], puis dans le cas de matrices de covariance avec une structure de dépendance linéaire, aussi appelées matrices de Wishart colorées [START_REF] Bai | Convergence rates to the Marčenko-Pastur type distribution[END_REF]. Dans le cas d'une structure de dépendance partielle en colonnes, nous avons établi cette convergence en distance de Kolmogorov. La vitesse obtenue n'est toutefois pas optimale puisque nous sommes partis de notre équivalent déterministe qui n'était pas optimal en premier lieu.

La convergence en distance de Kolmogorov est une conséquence assez classique de la théorie des matrices aléatoires, dès lors que l'on dispose d'un équivalent quantitatif sur les transformées de 

∞ = MP(γ ∞ ) ⊠ µ ∞ . De plus : D(µ K , ν ∞ ) ≤ D(µ Σ , µ ∞ ) + O(|γ n -γ ∞ |) + O n -1 70 p.s.
Signalons au passage que, pour les besoins de notre démonstration, nous avons établi le résultat suivant concernant la distance de Kolmogorov entre deux distributions de Marčenko-Pastur avec des paramètres différents (Lemme 2.8.10) :

D(MP(γ), MP(γ ′ )) ≤ |γ -γ ′ | max(γ, γ ′ )
Bien qu'il s'agisse d'une question naturelle et assez facile à résoudre, nous n'avions pu trouver de référence correspondant à ce problème dans la littérature.

Terminons enfin par quelques mots sur la potentielle convergence en distance de Kolmogorov des mesures spectrales empiriques directionnelles, pour lesquelles on dispose également d'une borne quantitative sur g µ K,u (z)u ⊤ G(z)u. À l'aide de la Proposition 1.1.1, il n'est pas difficile de montrer que la fonction de variable complexe g νu (z) = u ⊤ G(z)u est bien une transformée de Stieltjes, et donc qu'elle correspond à une mesure de probabilité ν u . Pour mettre en oeuvre comme précédemment la méthodologie du Théorème 2.8.6, il est cependant nécessaire de vérifier certaines hypothèses de régularité höldérienne sur la fonction de répartition de la distribution spectrale équivalente ν u .

Dans le cas de la mesure spectrale empirique classique, ces hypothèses sont facilement vérifiées puisque l'on travaille avec des convolutions multiplicatives libres avec des lois de Marčenko-Pastur (cf. Lemme 2.8.7). Pour les mesures spectrales empiriques directionnelles en revanche, il n'est pas possible de fournir de telles garanties générales. Il faut donc adapter les résultats de convergence en distance de Kolmogorov en fonction du modèle, et notamment de la résolvante de Σ dont est directement issu l'équivalent déterministe G(z).

Réseaux de neurones artificiels et liens avec les matrices aléatoires 1.3.1 Principes de fonctionnement des réseaux de neurones artificiels

Les réseaux de neurones artificiels forment une large classe d'algorithmes en intelligence artificielle. Inspirés par le fonctionnement d'un cerveau biologique, ces réseaux sont constitués d'une collection de neurones artificiels qui échangent et traitent des informations. Une tâche complexe peut ainsi être réalisée par une suite d'opérations simples au niveau des neurones du réseau.

Mathématiquement parlant, un neurone artificiel est une fonction x → f (W x), où x est un vecteur de données, W est une matrice de poids, et f une fonction réelle appelée fonction d'activation, qui est appliquée coordonnée par coordonnée aux vecteurs. La fonction f joue un rôle central dans le réseau de neurones car elle permet de reproduire des comportements non linéaires. Entre autres fonctions couramment utilisées, on peut citer la fonction unité linéaire rectifiée ReLU(x) = max(x, 0), sa version lissée Softplus(x) = log(1 + e x ), la fonction sigmoïde f (x) = 1/(1 + e -x ), ou bien encore la fonction arc-tangente.

Nous allons nous concentrer sur les réseaux de neurones à propagation avant, où les connections entre les neurones ne forment pas de cycle. Un tel réseau à L couches transforme un vecteur d'entrée x 0 ∈ R d 0 en un vecteur de sortie x L ∈ R d L , éventuellement d'une autre dimension voire simple scalaire, de la façon suivante :

x 0 → x 1 = f (W 1 x 0 ) → x 2 • • • → • • • → x L = f (W L x L-1 ),
et où la fonction f est appliquée aux coordonnées des vecteurs.

Le postulat fondateur des réseaux de neurones artificiels est que toute tâche complexe peut être réalisée en ajustant les paramètres de poids internes du réseau W l . Il est en effet possible de montrer théoriquement que de tels réseaux peuvent approcher une large classe de fonctions ( [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF]). Tout l'intérêt et la difficulté des réseaux de neurones résident cependant dans le choix des paramètres internes du réseau, qui est communément appelé phase d'apprentissage.

Une manière courante de procéder est de disposer d'une base de données, formée de n vecteurs d'entrée associés à des vecteurs de sortie qui correspondent à la tâche demandée. En reconnaissance d'images par exemple, on pourrait imaginer comme vecteurs d'entrée des photographies de chats ou de vélos en coordonnées RGB, comme vecteurs de sortie des étiquettes "chat" ou "vélo", et la tâche complexe à réaliser consisterait à discriminer la nature animale ou mécanique des images présentées.
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Lorsqu'on regroupe les vecteurs d'entrée et de sortie en matrices, on dispose d'une paire (X 0 , Y ) ∈ R d 0 ×n × R d L ×n , appelée ensemble d'apprentissage. Notons F la fonction matricielle du réseau de neurones, c'est à dire la fonction F : X 0 → X L , avec :

X 0 → X 1 = f (W 1 X 0 ) → X 2 • • • → • • • → X L = f (W L X L-1 ),
et où la fonction f est appliquée aux entrées des matrices. On compare Y à la prédiction F(X 0 ) fournie par le réseau de neurones, à l'aide d'une fonction de coût L. On cherche alors à optimiser les paramètres de poids du réseau pour minimiser ce coût sur la base de données. Une fois entraîné, on espère que le réseau sera capable de réaliser correctement la tâche sur de nouvelles données, ce qui est souvent le cas en pratique et explique le succès de tels algorithmes.

De nombreux choix sont possibles à ce stade d'apprentissage, plus ou moins pertinents suivant le domaine d'application. Pour fixer les idées, on peut d'abord choisir aléatoirement tous les paramètres W , et ensuite optimiser les poids à l'aide d'une fonction d'erreur quadratique moyenne avec un terme de pénalisation en crête γ > 0 :

L(W ) = 1 n ||F(W, X 0 ) -Y || 2 F + γ||W || 2 F .
Cette optimisation est typiquement réalisée à l'aide d'un algorithme de descente de gradient stochastique, combinée avec une méthode de rétro-propagation du gradient. Le paysage d'apprentissage n'étant pas convexe, de telles méthodes n'ont toutefois pas de garanties de succès théoriques, et un savoir-faire spécialisé est nécessaire pour assurer le bon déroulement de la procédure.

Lois globales pour le modèle du noyau conjugué

Le modèle du noyau conjugué est inspiré par un réseau de neurones à propagation avant, lors de sa phase d'initialisation où les paramètres du réseau sont choisis de manière aléatoire, et dans le régime où toutes les dimensions des matrices tendent vers +∞. Le modèle avec L couches est donc constitué :

-d'une fonction d'activation f : R → R, -d'une matrice de données initiale X 0 ∈ R d 0 ×n , -de matrices de poids W l ∈ R d l ×d l-1 .

On définit X l pour l ∈ [[1, L]] par récurrence avec la normalisation suivante :

X l+1 = f W l+1 X l √ d l ,
et où la fonction f est appliquée entrée par entrée aux matrices. Les matrices des noyaux conjugués sont les matrices de covariance empirique associées aux matrices de données de chaque couche :

K l = X ⊤ l X l d l .
Ce modèle de matrices aléatoires a été popularisé dans l'article [START_REF] Pennington | Nonlinear random matrix theory for deep learning[END_REF], et est relié à des questions très concrètes concernant les performances des réseaux de neurones artificiels, dont nous reparlerons à la section 1.4.4. Dressons pour l'instant un panorama des résultats théoriques existants.

On désigne par N la loi d'une variable aléatoire gaussienne centrée réduite, ou cette variable elle-même suivant le contexte.

Théorème 1.3.1 ( [BP21], Théorème 2.2). Dans le cas d'un réseau de neurones à une seule couche, on suppose que : 

1. Les rapports des dimensions γ (0) n = n d 0 et γ (1) n = n d 1 convergent respecti- vement vers γ (0) ∞ > 0 et γ (1) ∞ > 0.

La fonction d'activation f est infiniment dérivable et vérifie l'hypothèse suivante (plus forte que l'analycité) : il existe des constantes A, C, c > 0 telles que pour tout

A ≥ A 0 , sup t∈[-A,A] |f (n) (t)| ≤ CA cn . De plus E[f (N )] = 0. 3. Les
|||K 0 ||| et ||diag(K 0 ) -I n || F sont bornées, et ||K 0 -I n || max = o(n -1/4 ).
5. µ K 0 converge faiblement p.s. vers une mesure de probabilité déterministe ν (0) ∞ . Alors pour l ∈ [[1, L]], les mesures spectrales empiriques de K l convergent faiblement p.s. vers les mesures de probabilité déterministes ν (l) ∞ , définies par récurrence comme suit, avec

ζ = E[f ′ (N )] : ν (l+1) ∞ = MP(γ (l) ∞ ) ⊠ (1 -ζ 2 ) + ζ 2 ν (l) ∞ .
La condition dite d'orthonormalité approximative (4.) est vérifiée pour une large classe de matrices X 0 à colonnes indépendantes, ce qui correspond à prendre des vecteurs indépendants en entrée du réseau de neurones (cf. [FW20, Proposition 3.3] et Proposition 3.6.6).

En particulier dans le cas où les entrées de X 0 sont i.i.d., centrées et de variance 1, cette propriété est vérifiée avec ||K 0 -

I n || max = O log n/n ≤ o(n -1/4
) sur une ensemble de grande probabilité, avec comme distribution spectrale asymptotique

µ K 0 → ν (0) ∞ = MP(γ (0) ∞ ) p.s. La distribution µ du Théorème 1.3.2 est donc égale à µ = MP(γ (1) ∞ ) ⊠ (1 -ζ 2 ) + ζ 2 MP(γ (0) ∞ )
. On peut vérifier que ce résultat est cohérent avec les descriptions de la mesure µ évoquées précédemment ([BP21, Théorème 2.3]) et [Pé19, Théorème 1.4] ) en utilisant certaines relations entre convolutions libres ([BG10, Théorème 3]).
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Le Théorème 1.3.2 peut toutefois s'accommoder de corrélations à l'intérieur des colonnes de X 0 , et la distribution ν (0) ∞ n'est donc pas nécessairement une loi de Marčenko-Pastur.

Mentionnons enfin l'existence de l'article [START_REF] Wang | Deformed semicircle law and concentration of nonlinear random matrices for ultra-wide neural networks[END_REF], qui établit un résultat similaire dans le cas d'un réseau de neurones à une seule couche, mais où le rapport des dimensions γ (1) n tend vers 0. La limite est alors une convolution libre multiplicative de MP(γ (0) ∞ ), non plus avec une loi de Marčenko-Pastur, mais avec une loi du semi-cercle.

Équivalent déterministe pour le modèle du noyau conjugué

Cette section a pour but de présenter les principales conclusions et idées de l'article [START_REF] Chouard | Deterministic equivalent of the conjugate kernel matrix associated to artificial neural networks[END_REF], duquel est directement issu le troisième chapitre de ce manuscrit.

Résultat principal

Pour étudier le modèle du noyau conjugué, nous allons travailler avec les équivalents déterministes issus de notre premier article [START_REF] Chouard | Quantitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF]. Ces estimées sont quantitatives en la dimension n et le paramètre spectral z, mais non optimales en z comme nous avons discuté précédemment. Nous avons donc choisi de ne garder que le caractère polynomial en z de cette convergence, ce qui motive la définition suivante.

Définition 1.4.1 (cf. Définition 3.2.4). Soit ζ : N × C + → R + une fonction et ϵ n > 0 une suite. On dit que ζ est bornée par ϵ n en n, et polynomialement en z, s'il existe une constante α ≥ 0 telle que, pour tout A > 0, uniformément en n ∈ N et z ∈ {z ∈ C tels que 0 < ℑ(z) ≤ A} : ζ(n, z) ≤ O ϵ n |z| α ℑ(z) 2α . On note cette propriété ζ(n, z) ≤ O z (ϵ n ).
On peut montrer que cette définition est compatible avec les règles de calcul classiques en analyse :

O z (ϵ n ) + O z (ϵ ′ n ) = O z (ϵ n + ϵ ′ n ) et O z (ϵ n )O z (ϵ ′ n ) = O z (ϵ n ϵ ′ n ) (cf.Remarque 3.2.5
). Un autre avantage apporté par cette approche est de pouvoir se débarrasser de certaines restrictions sur z qui étaient présentes dans les énoncés d'équivalents déterministes. Nous renvoyons au Lemme 3.2.6 pour les détails techniques concernant cette mécanique, et au Théorème 3.4.5 pour une version simplifiée de la loi locale 1.2.1 sur les modèles de covariance avec une structure de dépendance partielle.

Pour plus de lisibilité dans cette section, nous proposons ci-dessous une version allégée de notre résultat d'équivalent déterministe 3.7.2. Nous mettons de côté volontairement la possibilité d'utiliser différentes fonctions d'activation, d'ajouter à chaque couche des matrices de biais, ou bien encore de suivre précisément l'évolution des erreurs d'approximation.

Rappelons ici les constituants du modèle du noyau conjugué : en partant d'une matrice de données X 0 , de poids W 1 , . . . , W L , et d'une fonction réelle f , on définit les matrices X l pour l ∈ [[1, L]] par la formule de récurrence suivante :

X l+1 = f W l+1 X l √ d l ,
où la fonction f est appliquée entrée par entrée aux matrices. Les matrices de covariance empirique associées aux vecteurs de sortie de chaque couche sont égales à K l = X ⊤ l X l /d l , et dans ce contexte appelées noyaux conjugués.

Théorème 1.4.1 (cf. Théorème 3.7.2). Dans le cas d'un réseau de neurones sans biais à L couches, on suppose que :

1. Les rapports des dimensions γ (l) n = n d l sont majorés et minorés par des constantes strictement positives. 

La fonction d'activation

f est continue lipschitzienne, avec E[f (N )] = 0 et E[f (N ) 2 ] = 1.

Les poids

|||K 0 ||| et ||diag(K 0 ) -I n || F sont bornées, et ||K 0 -I n || max = O(ϵ n ) pour une certaine suite ϵ n > 0. De plus X 0 vérifie la propriété de concentration X 0 ∝ ||•|| F E(1).

On dispose d'équivalents déterministes pour la transformée de Stieltjes et la résolvante de K 0 . Plus précisément, il existe :

-une suite de mesures de probabilité déterministes

ν (0) n , à support dans R + , telles que E[g K 0 (z)] -g ν (0) n (z) ≤ O z (1/n).
-une suite de fonctions G 0 :

C + → C n×n , vérifiant |||G 0 (z)||| ≤ 1/ℑ(z), telles que |||E[G K 0 (z)] -G 0 (z)||| ≤ O z (1/ √ n). Soient ζ 1 = E[f (N )N ], ζ 2 = E[f (N )(N 2 -1)] et ζ 3 = E[f (N )(N 3 -N )].

On définit par récurrence les mesures et fonctions suivantes :

ν (l) n = MP γ (l) n ⊠ (1 -ζ 1 2 ) + ζ 1 2 ν (l-1) n , ν(l) n = (1 -γ (l) n ) • δ 0 + γ (l) n • ν (l) n , G l (z) = -1 zζ 1 g ν(l) n (z) G l-1   -1/g ν(l) n (z) -(1 -ζ 1 2 ) ζ 1   si ζ 1 ̸ = 0, G l (z) = g MP(γ (l) n ) (z)I n si ζ 1 = 0. Alors pour tout l ∈ [[1, L]], les fonctions g K l (z) et G l (z)
sont des équivalents déterministes pour la transformée de Stieltjes et la résolvante de K l respectivement, au sens suivant : uniformément en la matrice déterministe A ∈ R n×n de norme spectrale égale à 1 :

g K l (z) -g ν (l) n (z) ≤ log n O z log n/n + ϵ n + √ n(ζ 2 2 ϵ 2 n + ζ 2 3 ϵ 3 n ) p.s. |Tr((G K l (z) -G l (z))A)| ≤ log n O z 1/ √ n + ϵ n + n(ζ 2 2 ϵ 2 n + ζ 2 3 ϵ 3 n ) p.s.
La forme que prend cet énoncé et les conséquences que l'on peut en tirer sont similaires à la loi locale 1.2.1, et nous renvoyons donc notre lecteur à la discussion qui suivait ce théorème. Signalons toutefois la différence consistant à normaliser les matrices en norme spectrale plutôt qu'en norme de Frobenius. Ceci est dû à un argument de linéarisation en norme spectrale sur lequel nous reviendrons au paragraphe suivant.

Remarquons aussi que les directions propres de G 0 (z) sont laissées inchangées par la formule de récurrence définissant les équivalents déterministes successifs G l (z). En particulier si X 0 se comporte de manière isotropique, c'est à dire si G 0 (z) est un multiple de l'identité, alors on conserve une loi locale isotropique le long des couches du réseau. Ceci apparaît à première vue contre-intuitif, puisque réaliser des opérations entrée par entrée sur les matrices dépend intrinsèquement du choix d'une base de l'espace vectoriel.

Les constantes ζ i sont appelées coefficients d'Hermite de f (cf. paragraphe 3.3.1). Lorsque f est deux fois dérivable, en utilisant les formules d'intégration par partie gaussiennes on peut montrer que

ζ 1 = E[f (N )N ] = E[f ′ (N )] et ζ 2 = E[f (N )(N 2 -1)] = E[f ′′ (N )]
, ce qui est cohérent avec la notation employée dans le Théorème 1.3.2.

Observons maintenant les termes d'erreur dans cette loi locale. Sous l'hypothèse ϵ n = o((n log n) -1/4 ), la différence des transformées de Stieltjes converge vers 0 à la vitesse O z log n/n + √ n log n ϵ 2 n . On retrouve donc une version quantitative de la loi globale 1.3.2, que nous réécrirons sous la forme d'un corollaire ci-après.

La condition ϵ n = o((n log n) -1/4 ) n'est toutefois pas suffisante pour assurer que la différence entre les résolvantes converge bien vers 0. Pour ceci il faut en effet ϵ n = o(n -1/2 (log n) -1/4 ), ou bien des conditions supplémentaires sur les coefficients d'Hermite de f . Si ζ 2 est nul par exemple, ce qui se produit lorsque f est une fonction impaire, alors ϵ n = o(n -1/3 (log n) -1/6 ) suffit. Nous renvoyons à la Remarque 3.7.3 pour une exploration détaillée de ces conditions qui mêlent l'orthonormalité approximative de la matrice des données d'entrée et les coefficients d'Hermite de la fonction d'activation.

Corollaire 1.4.2 (cf. Corollaire 3.7.4). Avec les hypothèses et notations du Théorème 1.4.1, si de plus :

1. Les rapports des dimensions γ (l) n convergent vers γ (l)

∞ > 0. 2. ϵ n = o((n log n) -1/4 ). CHAPITRE 1. INTRODUCTION 3. ν (0)
n converge faiblement p.s. vers une mesure de probabilité déterministe ν (0) ∞ . Alors pour l ∈ [[1, L]], les mesures spectrales empiriques de K l convergent faiblement p.s. vers les mesures de probabilité déterministes ν (l) ∞ , définies par la relation de récurrence suivante :

ν (l) ∞ = MP γ (l) ∞ ⊠ (1 -ζ 1 2 ) + ζ 1 2 ν (l-1) ∞ .
De plus, pour une certaine constante θ > 0, on a les inégalités suivantes en distance de Kolmogorov :

D(µ K l , ν (l) ∞ ) ≤ O D(ν (0) n , ν (0) ∞ ) + max 1≤k≤l |γ (k) n -γ (k) ∞ | + 1/n θ p.s.

Idées de démonstration

Pour obtenir la loi locale 1.4.1, notre démarche est proche de celle de l'article [START_REF] Fan | Spectra of the conjugate kernel and neural tangent kernel for linear-width neural networks[END_REF] qui avait permis d'obtenir la loi globale 1.3.2. Nous ne travaillons cependant plus au niveau des transformées de Stieltjes, mais au niveau des résolvantes elles-mêmes. Ceci est rendu possible par les développements concernant les matrices aléatoires de covariance que nous avons présentés précédemment, ainsi que par de nouveaux arguments propres au modèle du noyau conjugué.

La preuve consiste essentiellement en quatre étapes : une récurrence sur les propriétés d'un modèle avec une seule couche X → f (W X), un argument de conditionnement par rapport aux données X, l'utilisation d'un équivalent déterministe pour les matrices avec une structure de dépendance partielle, et enfin un procédé de linéarisation pour certaines matrices de covariance faisant intervenir des fonctions entrée par entrée. Présentons brièvement ces différents points.

Lorsque la matrice de données X est déterministe, les lignes de f (W X) sont i.i.d. suivant la loi d'un vecteur f (X ⊤ w), où w est un vecteur aléatoire à entrées i.i.d. gaussiennes. Ce modèle rentre donc dans le cadre de notre premier article, et le Théorème 2.2.4 fournit un équivalent déterministe pour la résolvante de K = f (W X) ⊤ f (W X)/d. Cet équivalent déterministe fait intervenir la résolvante de la matrice de covariance Σ = E f (X ⊤ w)f (X ⊤ w) ⊤ , à priori difficile à appréhender compte-tenu de la fonction f appliquée entrée par entrée.

On contourne cette difficulté par un argument d'approximation en norme spectrale de Σ. En utilisant les propriétés de l'espace de Hilbert des fonctions L 2 par rapport à la mesure gaussienne, et les propriétés des polynômes d'Hermite qui en forment une base orthonormée, on peut en effet montrer que Σ est
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est le premier coefficient d'Hermite de f (Proposition 3.3.10). Cette proximité dépend à la fois de l'orthonormalité approximative de X et des premiers coefficients d'Hermite de la fonction d'activation f . On en déduit que les résolvantes de Σ et Σ lin sont proches en norme spectrale, et on peut donc trouver un équivalent déterministe pour la résolvante de K, qui dépende de manière explicite de X (Théorème 3.5.7).

Si maintenant X est aléatoire et indépendante des autres matrices, on peut travailler conditionnellement à X pour utiliser les propriétés du modèle avec une matrice de données déterministe. Cette étape requiert aussi de bien comprendre les propriétés de concentration des objets qui apparaissent dans l'équivalent déterministe, un travail qui est réalisé à la section 3.4. Nous obtenons au passage des estimées sur les transformées de Stieltjes de mesures obtenues par convolution libre multiplicative, ce qui peut représenter un intérêt en lui-même (Théorème 3.4.7).

La dernière étape de notre raisonnement consiste à propager par récurrence les équivalents déterministes le long du réseau de neurones artificiels, en vérifiant que les conclusions pour une couche donnée correspondent bien aux hypothèses requises pour la couche suivante.

Modèle linéaire gaussien équivalent

Considérons le cas particulier où les vecteurs en entrée du réseau de neurones sont i.i.d. Dans cette situation la propriété d'orthonormalité asymptotique de X 0 est vérifiée sur un évènement de grande probabilité avec ϵ n = log n/n, sous des hypothèses assez générales (cf. [FW20, Proposition 3.3] et Proposition 3.6.6).

Si de plus X 0 est concentrée en norme de Frobenius, le Théorème 1.2.1 fournit les équivalents déterministes g MP(γ (0) 1. Les rapports des dimensions γ (l) n = n d l sont majorés et minorés par des constantes strictement positives.

n ) ⊠ µ Σ (z) et G 0 (z)

La fonction d'activation

f est continue lipschitzienne, avec E[f (N )] = 0 et E[f (N ) 2 ] = 1.
3. Les matrices W 1 , . . . , W L , Z 0 , . . . , Z L sont aléatoires, indépendantes entre elles, à entrées i.i.d. gaussiennes centrées réduites.

4. X 0 est aléatoire, indépendante des autres matrices, et

X 0 ∝ ||•|| F E(1). Les colonnes de X 0 sont i.i.d. suivant la loi d'un vecteur aléatoire centré x. Avec Σ = E xx ⊤ , |||Σ||| est bornée et TrΣ = d 0 .
On définit

X ′ 0 = Σ 1/2 Z 0 , ζ 1 = E[f (N )N ], ζ 2 = E[f (N )(N 2 -1)], et par récurrence pour l ∈ [[0, L -1]] : X l+1 = f W l+1 X l √ d l , X ′ l+1 = ζ 1 W l+1 X ′ l √ d l + 1 -ζ 2 1 Z l+1 .
Alors les modèles de matrices de covariance empirique

K l = X ⊤ l X l /d l et K ′ l = X ′ l ⊤ X ′ l /d l
sont équivalents dans le sens suivant :

g K l (z) -g K ′ l (z) ≤ O z log n n p.s.
Si de plus ζ 2 = 0, alors uniformément en la matrice déterministe A ∈ R n×n de norme spectrale égale à 1 :

Tr G K l (z) -G K ′ l (z) A ≤ O z (log n) 2 √ n p.s.
Notre modèle de réseau de neurones artificiels, avec une fonction d'activation non linéaire et sans biais, apparaît donc équivalent à un autre modèle, qui ne fait plus intervenir que des matrices gaussiennes et des transformations linéaires, au prix de bruits aléatoires additionnels Z l . Ce modèle équivalent est polynômial en un certain nombre de matrices aléatoires indépendantes, ce qui pourrait permettre d'utiliser des outils classiques en matrices aléatoires et en probabilités libres (cf. [START_REF] Capitaine | Deformed ensembles, polynomials in random matrices and free probability theory[END_REF]).

Ce phénomène se retrouve dans d'autres contextes en intelligence artificielle, où il est généralement appelé principe d'équivalence gaussienne ( [GLR + 22]). De manière plus générale, on peut même envisager un parallèle avec le domaine des systèmes dynamiques, où les non-linéarités induisent typiquement un comportement chaotique.

Il faut toutefois rester prudent sur le sens accordé à cette équivalence, qui ne signifie pas que toutes les propriétés des deux modèles sont les mêmes, notamment en ce qui concerne la phase d'apprentissage des paramètres. Au sens strict, nous avons juste prouvé que les transformées de Stieltjes des deux modèles sont proches, et donc que les mesures spectrales empiriques des deux modèles convergent vers la même limite si elle existe.

Si de plus ζ 2 = 0, ce qui se produit notamment lorsque f est une fonction impaire, on sait que les résolvantes des deux modèles sont proches dans l'acceptation donnée ci-dessus. Entre autres conséquences, ces résolvantes sont proches entrée par entrée, et toutes les mesures spectrales empiriques directionnelles des deux modèles convergent également vers les mêmes limites si elle existent.

Signalons enfin que d'autres auteurs retrouvent des similarités avec ce même modèle, mais avec un sens différent accordé à cette équivalence. Dans [START_REF] Benigni | Largest eigenvalues of the conjugate kernel of single-layered neural networks[END_REF] il est démontré que les plus grandes valeurs propres des deux modèles se comportent de la même manière, pour un réseau à une seule couche et dans le cas où ζ 2 = 0 (et sous des hypothèses supplémentaires sur les distributions des entrées et la régularité de la fonction d'activation). Ce résultat est obtenu par une comparaison fine des moments des distributions en utilisant des méthodes combinatoires. Dans le cas ζ 2 ̸ = 0, un autre modèle équivalent est proposé, que nous n'avons pas pu retrouver par nos méthodes analytiques.

Lien avec l'erreur d'apprentissage du réseau

Considérons le réseau de neurones artificiels suivant, couramment utilisé pour des tâches de type régression. Le réseau consiste en L premières couches avec une fonction d'activation f , à priori non linéaire, et une dernière couche purement linéaire pour produire la matrice de sortie Z :

X 0 → X 1 = f (W 1 X 0 / d 0 ) → • • • → X L = f (W L X L-1 / d L-1 ) → Z = W X L .
On dispose aussi d'un ensemble d'apprentissage, qui correspond à un ensemble de paires de données d'entrée X 0 et de cibles de régression Y . La phase d'apprentissage du réseau correspond à trouver les poids convenables pour que le réseau envoie la matrice

X 0 sur la cible Y , c'est à dire que Z(X 0 , W 1 , . . . , W L , W ) ≈ Y .
On initialise aléatoirement W 1 , . . . , W L , et par commodité on suppose que la dernière couche du réseau ne change pas les dimensions des matrices, c'est à dire que W ∈ R d L ×d L . On optimise uniquement les poids de la dernière couche, à l'aide d'une fonction d'erreur quadratique moyenne avec un terme CHAPITRE 1. INTRODUCTION de pénalisation en crête γ > 0 :

L(W ) = 1 d L ||Z(X 0 , W 1 , . . . , W L , W ) -Y || 2 F + γ||W || 2 F = 1 d L W ⊤ X L -Y 2 F + γ||W || 2 F .
On peut vérifier facilement que le paramètre de poids optimal est :

Ŵ = 1 d L X L 1 d L X ⊤ L X L + γI n -1 Y ⊤ = 1 d L X L G K L (-γ)Y ⊤ .
L'erreur d'apprentissage quadratique est donc égale à :

E train = 1 d L Y ⊤ -Ŵ X ⊤ L 2 F = γ 2 d L Tr Y ⊤ Y G K L (-γ) 2 = - γ 2 d L Tr Y ⊤ Y ∂ ∂γ G K L (-γ) ,
où on a utilisé la relation algébrique générale sur le carré de la matrice résolvante :

∂ ∂z G K L (z) = G K L (z) 2 .
L'erreur d'apprentissage du modèle est donc directement reliée aux propriétés de la résolvante de K L , considérée avec un paramètre spectral réel négatif. Le Théorème 1.4.1 n'est pas directement formulé pour correspondre à cette situation, mais il pourrait être étendu sans problème en ce sens (cf. la version de la loi locale 1.2.1 avec z réel négatif à la section 2.2).

Sous réserve que les hypothèses en usage dans cette section soient vérifiées, et avec les mêmes notations, on obtient l'équivalent déterministe γ), dans le sens du Théorème 1.4.1. En particulier :

G K L (-γ) 2 ≈ -∂ ∂γ G L (-
E train ≈ - γ 2 d L Tr Y ⊤ Y ∂ ∂γ G L (-γ) .
Ces dérivées peuvent être explicitées en remontant jusqu'aux fonctions G 0 (z) et g ν (0) n (z) à l'aide des formules de récurrence du Théorème 1.4.1. Comme ces formules ne changent pas les directions propres, on peut d'ailleurs remarquer que l'erreur d'apprentissage dépend directement de l'alignement entre les directions propres de la matrice cible Y , et celles de la première matrice d'équivalent déterministe G 0 (z).

ÉQUIVALENT POUR LE NOYAU CONJUGUÉ

Dans le cas le plus simple dit de mémorisation, on entraîne le réseau sur des paires aléatoires d'entrée et de sortie. La performance d'un réseau à effectuer une telle tâche est une bonne mesure de sa capacité, c'est à dire à quel point il peut reproduire des liens complexes entre données.

Si les cibles de régression sont des matrices i.i.d. normalisées de sorte que E Y ⊤ Y = d L /n I n , et indépendantes des autres matrices, alors on a simplement besoin de la transformée de Stieltjes équivalente pour approximer l'erreur d'apprentissage moyenne :

E[E train ] = E - γ 2 d L Tr Y ⊤ Y ∂ ∂γ G K L (-γ) = -γ 2 ∂ ∂γ E[g K L (-γ)] ≈ -γ 2 ∂ ∂γ g ν (L) n (-γ).
Chapitre 2

Quantitative deterministic equivalent of sample covariance matrices with a general dependence structure

This self-contained chapter consists in the article [START_REF] Chouard | Quantitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF], submitted, and available on arXiv.

Abstract

We study sample covariance matrices arising from rectangular random matrices with i.i.d. columns. It was previously known that the resolvent of these matrices admits a deterministic equivalent when the spectral parameter stays bounded away from the real axis. We extend this work by proving quantitative bounds involving both the dimensions and the spectral parameter, in particular allowing it to get closer to the real positive semi-line.

As applications, we obtain a new bound for the convergence in Kolmogorov distance of the empirical spectral distributions of these general models. We also apply our framework to the problem of regularization of random features models in machine learning without Gaussian hypothesis.

Introduction

Since the pioneering works in Statistics of [START_REF] Wishart | The generalised product moment distribution in samples from a normal multivariate population[END_REF], an object of great importance to consider is the sample covariance matrix K = 1 n XX ⊤ where X is a rectangular p × n random matrix made of n independent columns. One is particularly interested in the asymptotic behaviour of the empirical spectral distribution (ESD) µ K = 1 p λ eigenvalue of K δ λ when n and p go to infinity, and the ratio p n converges to a fixed constant γ > 0. When all the entries of X are independent and identically distributed (i.i.d.), it can be shown ( [MP67], [START_REF] Jack W Silverstein | On the eigenvectors of large dimensional sample covariance matrices[END_REF]) that µ K converges almost surely to a deterministic probability measure MP(γ), now called the Marčenko-Pastur distribution with shape parameter γ. From this article on, many works have provided generalizations beyond the i.i.d. case. This is the case for instance in [START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF], where the authors investigated the linearly dependent case. Namely when X = Σ 1 2 Y , with Σ a real symmetric matrix and Y filled with i.i.d. entries, µ K converges almost surely (a.s.) to a deterministic probability measure. This deterministic probability measure can be described as the free multiplicative convolution MP(γ) ⊠ µ ∞ , where µ ∞ is the limiting ESD of Σ. Under the sole assumption that the columns of X are independent, [START_REF] Bai | Large sample covariance matrices without independence structures in columns[END_REF] 

proved that µ K still converges a.s. to MP(γ) ⊠ µ ∞ where µ ∞ is the limiting ESD of Σ = E[K].
A key object in random matrix theory is the resolvent matrix G K (z) = (K -zI p ) -1 , where z is a complex number called spectral argument. This matrix is related to the Stieltjes transform g

K (z) = R 1 t-z µ K (dt) via the identity g K (z) = 1 p Tr(G K (z))
. This integral transform is a powerful tool that characterizes the law and the weak convergence of probability measures. For more advanced applications to the distribution of eigenvalues and eigenvectors, the Stieltjes tranform is not powerful enough and one needs control of the whole resolvent matrix G K (z). This was investigated in [BEK + 14] in the i.i.d. case, establishing that G K (z) is close to g K (z)I p with quantitative bounds involving the dimensions and the spectral parameter z. This analysis was later carried to the linearly dependent case in [START_REF] Knowles | Anisotropic local laws for random matrices[END_REF], showing that G K (z) is close to a deterministic matrix G(z), which is not a multiple of the identity matrix in general. Following the terminology of [START_REF] Hachem | Deterministic equivalents for certain functionals of large random matrices[END_REF], we call the matrix G(z) a deterministic equivalent of G K (z). In the most general case dealing with independent columns, [LC21] found a similar deterministic equivalent. Remarkably, they consider columns with different distributions, that were not examined in the previous literature.

This last article however did not allow the spectral argument z to vary with the dimensions, and in particular to get closer to the real axis with quantitative bounds. We complete it by quantifying the convergence towards the deterministic equivalent when the underlying random matrix has i.i.d. columns. Our result encompasses two different settings : when z are complex numbers with positive imaginary parts that do not vanish too quickly, and when z are negative real numbers. In both cases, we prove the existence of polynomial bounds in n, ℑ(z) and |z|, uniform in the sense that the bounds only involve a few well-identified parameters, and not the whole law of the matrices. Our results also have the additional benefit of explaining the appearance of free convolution operators in the deterministic equivalent. Although not optimal compared to numerical simulations or previous similar statements in the linearly dependent case ( [KY17]), our estimates still allow for important new applications.

In random matrix theory, a classic question arising after the existence of a weak limit for the ESD of a given model is to know whether this convergence can be quantified using a distance between probability distributions. [START_REF] Zhi | Convergence rate of expected spectral distributions of large random matrices part i : Wigner matrices[END_REF] first tackled the problem of convergence rate in the i.i.d. case, a result that was later improved in [START_REF] Götze | The rate of convergence of spectra of sample covariance matrices[END_REF]. In the linearly dependent case, a similar result was proved in [START_REF] Bai | Convergence rates to the Marčenko-Pastur type distribution[END_REF]. We complete this work by proposing a bound in Kolmogorov distance in our setting of matrices with i.i.d. columns.

Such a deterministic equivalent can also prove itself useful for machine learning applications. In the method of random features associated to kernel ridge regression, some natural predictors are systematically biased. Under Gaussian hypothesis, the authors of [JSS + 20] proved that this issue could be solved by replacing the ridge parameter of the regression by a different parameter called effective ridge. We are able to extend this result beyond the Gaussian paradigm, showing in a sense the universality of the phenomenon regardless to the law of the random features.

This paper uses a wide variety of techniques. Concentration of measure theory in particular is a powerful tool to deal with large dimensional random objects. A core result in [START_REF] Ledoux | The concentration of measure phenomenon[END_REF] highlights the importance of a class of concentrated vectors compatible with Lipschitz mappings. Logically flowing from this idea, we adopt the recent formalism of [START_REF] Louart | Concentration of solutions to random equations with concentration of measure hypotheses[END_REF] as it is particularly well adapted to deal with random matrices and their transformations. Along with the classic concentration properties, we use generalizations of the so-called Hanson-Wright inequalities ( [VW15], [START_REF] Adamczak | A note on the Hanson-Wright inequality for random vectors with dependencies[END_REF]), which state the concentration of quadratic forms involving random vectors and matrices.

This paper also uses extensively the theory behind resolvent matrices. In addition to the usual sample covariance resolvent, we introduce two companion objects : the leave-one-out (LOO) resolvent and the co-resolvent. We provide a systematic analysis of the analytical and algebraic joint properties of these objects. In conjunction with concentration, this work allows to streamline some of the technical arguments, in particular we do not resort anymore to conditional concentration arguments. It also helps to better understand the properties of the deterministic equivalent and its links with free probability theory.

Finally to convert estimates on Stieltjes transforms into bounds in Kolmogorov distance, a general methodology was developed in [START_REF] Banna | Hölder continuity of cumulative distribution functions for noncommutative polynomials un-125 der finite free fisher information[END_REF]. We adapt these techniques to work with looser requirements better adapted to our needs.
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Setting

Notations and definitions

The set of matrices with p lines, n columns, and entries belonging to a set K is denoted as K p×n . We use the following norms for vectors and matrices : Let us consider a spectral parameter z, either belonging to

R * -= (-∞, 0) or C + = {ω ∈ C such that ℑ(ω) > 0}. If M is symmetric positive semi-definite, then SpM ⊂ R + , and we can define its resolvent G M (z) = (M -zI p ) -1 and its Stieltjes transform g M (z) = 1 p Tr(G M (z)). Given a probability distribution ν supported on R + , its Stieltjes transform is g ν (z) = R ν(dt) t-z where z ∈ R * -or z ∈ C + .
The Stieltjes transform of a matrix is the same as the Stieltjes transform of its ESD :

g µ M (z) = g M (z).
There is a similar link for the VESD's :

g µ M,u (z) = u ⊤ G M (z)u.
We denote by F ν the cumulative distribution function (CDF) of ν, and by D(ν, µ) = sup t∈R |F ν (t) -F µ (t)| the Kolmogorov distance between two measures ν and µ.

We denote by ⊠ the free multiplicative convolution of measures (see [START_REF] Bercovici | Free convolution of measures with unbounded support[END_REF]). If MP(γ) denotes a Marčenko-Pastur distribution with shape parameter γ, the distribution MP(γ) ⊠ µ may be defined by its Stieltjes transform g(z), which is the unique Stieltjes transform function that solves the self-consistent equation [START_REF] Marčenko | Distribution of eigenvalues for some sets of random matrices[END_REF] :

g(z) = R 1 (1 -γ -γzg(z))t -z µ(dt).
Throughout this paper, we say that a property occurs almost surely eventually (a.s.e.) if there is a full measure set on which the property holds true for all but finitely many n. Equivalenty, we ask that there is a full measure set on which the property holds true for all integers n greater than a (possibly random) rank n 0 . Such statements typically result from the application of Borel-Cantelli lemma.

For a better readability, we will sometimes omit indices n and parameters z in our notations.

SETTING

Main results

Let X ∈ R pn×n be a sequence of random matrices. The associated sample covariance matrix is K = n -1 XX ⊤ . We set Σ = E[K], and we also define the resolvent matrix 3. γ n = pn n is bounded from above and from below : there is a constant

G K (z) = (K -zI p ) -1 . Assumptions 2.2.
C > 0 such that C -1 ≤ γ n ≤ C.
We start with a simple proposition establishing the concentration of the resolvent of the sample covariance matrix K :

Proposition 2.2.2. 1. If z ∈ R * -are real spectral arguments, then G K (z) ∝ E 2 τ n 1 2
, where τ = 1

|z| 3 2 . 2. If z ∈ C + are complex spectral arguments, then G K (z) ∝ E 2 τ n 1 2
, where

τ = |z| 1 2 ℑ(z) 2
In order to state the main result of this article, we need to introduce the probability measures ν n = MP(γ n ) ⊠ µ Σ and νn = (1 -γ n )δ 0 + γ n ν n . We also build the sequence of matrices :

G(z) = (-zg ν (z)Σ -zI p ) -1 , where z ∈ R * -or z ∈ C + . Theorem 2.2.3. 1. If z ∈ R * -are real spectral arguments, possibly va- rying with n, such that |z| is bounded and |z| -7 ≤ O(n), then ||E[G K (z)] -G(z)|| F ≤ O κ n 1 2 , where κ = 1 |z| 11 2 .
2. There exists a constant C > 0 such that, if z ∈ C + are complex spectral arguments with ℑ(z) bounded and ℑ(z) -16 |z| 7 ≤ Cn, then

||E[G K (z)] -G(z)|| F ≤ O κ n 1 2
, where κ = |z| 5 2 ℑ(z) 9 . These results are uniform in the sense that the implicit constants in the O(•) notations only depend on the constants in the hypothesis chosen for X, γ n , Σ, E[x] and z.
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This result can be combined with the concentration of the resolvent to obtain a so-called deterministic equivalent of the resolvent. We remind our reader that a.s.e. stands for almost surely eventually. Proposition 2.2.4. With the same assumptions and notations as in Theorem 2.2.3, G(z) is a deterministic equivalent for G K (z). More precisely, uniformly in any deterministic matrix A ∈ R p×p , we have :

|Tr(G K (z)A -G(z)A)| ≤ ||A|| F O   κ(log n) 1 2 n 1 2   a.s.e. and Var [Tr(G K (z)A)] ≤ ||A|| 2 F O κ 2 n .
Specifying the matrix A and using the relation p -1 TrG(z) = g ν (z), which shall be proved in the course of this article, yields the following consequences : Corollary 2.2.5. With the same assumptions and notations as in Theorem 2.2.3, uniformly in any deterministic vector u ∈ S p-1 , we have :

|g K (z) -g ν (z)| ≤ O   κ(log n) 1 2 n   a.s.e. g µ K,u (z) -u ⊤ G(z)u ≤ O   κ(log n) 1 2 n 1 2   a.s.e. max 1≤i,j≤p |G K (z) -G(z)| ij ≤ O   κ(log n) 1 2 n 1 2   a.s.e.
Remark 2.2.6. Similar statements can be made about the variances, for instance Var

[g K (z)] ≤ O κ 2 n 2 .
The Stieltjes transform of the ESD is better concentrated than the Stieltjes transforms of the VESD's. That was to be expected since the ESD corresponds to an average over a basis of orthonormal vectors.

Finally all these results admit a transposed version for models of random matrices X ′ ∈ R n×p having i.i.d. sampled rows from a random vector with covariance Σ. In this setting the covariance matrix has to be chosen as K ′ = 1 n X ′⊤ X ′ and the equivalent objects are left unchanged.

Application to Kolmogorov distances

Our main results give quantitative bounds for spectral arguments that get close the real axis. This allows to use general methods that bound the Kolmogorov distance of two distributions given a precise control on their Stieltjes transforms. The consequences are the following : 

D(µ K , ν) ≤ O n -1 70 a.s.e. Corollary 2.2.8. If additionally µ Σ → µ ∞ weakly and γ n → γ ∞ , then µ K converges weakly to ν ∞ = MP(γ ∞ ) ⊠ µ ∞ a.s. Moreover : D(µ K , ν ∞ ) ≤ D(µ Σ , µ ∞ ) + O(|γ n -γ ∞ |) + O n -1 70 a.s.e.

Application to kernel methods

This second application to the regularization of random feature models in machine learning closely follows the works of [JSS + 20]. Random feature (RF) models are used as an efficient approximation of kernel ridge regression (KRR) methods. In the regime on the dimensions where this approximation has a computational interest, a systematic asymptotic bias appears unfortunately.

Under Gaussian assumptions, the authors of [JSS + 20] showed an implicit regularization phenomenon : the bias can be removed by replacing λ, the ridge parameter used in the regression, by another parameter λ. They called this new parameter effective ridge, and characterized it by means of a selfconsistent equation.

Using our deterministic equivalent, we extend the aforementioned work when the data are not necessarily Gaussian distributed, and we also explain how the effective ridge parameter λ is related to a free multiplicative convolution of measures. We refer to the Section 2.9 for more details on these results.

Organization of the paper

The bulk of this paper is devoted to the proof of the deterministic equivalent Theorem 2.2.3, which is the content of Sections 2.5-2.7.

In Section 2.3 we present the concentration framework and the key concentration results that we shall use throughout the proofs. In Section 2.4 we study thoroughly the properties of the resolvent of sample covariance matrices and two companion objects : the leave-one-out (LOO) resolvent and the co-resolvent.

In Section 2.5 we perform the first step of the proof by establishing an intermediate deterministic equivalent based on algebraic identities. In Section 2.6 we pass from this first equivalent to a second deterministic equivalent corresponding to our main result. The key ingredient of this step consists in rewriting the problem as a fixed point equation, implying a function that is a contraction mapping for a well-chosen metric. The arguments for real and complex spectral parameters differ slightly and are treated separately. In Section 2.7 we wrap up the proofs of Theorem 2.2.3 and its corollaries.

In Section 2.8, as an illustration of the power of our quantitative results, we present an application to the convergence in Kolmogorov distance for general models of sample covariance matrices with i.i.d. columns.

In Section 2.9, we explain how our work is related to the problem of kernel ridge regression (KRR) in machine learning, and we retrieve similar results to those of [JSS + 20] under looser hypothesis.

Concentration framework

In this preliminary section we introduce some basic definitions and results to handle concentrated random vectors and matrices. We adopt the recent formalism of Lipschitz concentration of Louart and Couillet as it is particularly well adapted to deal with random matrices and their transformations. We advice the reader to consult the articles [START_REF] Louart | Concentration of measure and large random matrices with an application to sample covariance matrices[END_REF], [START_REF] Louart | Concentration of solutions to random equations with concentration of measure hypotheses[END_REF], and [START_REF] Louart | Spectral properties of sample covariance matrices arising from random matrices with independent non identically distributed columns[END_REF] for a more comprehensive coverage of these notions. Definition 2.3.1. We say that a sequence of random vectors X n , belonging to normed vector spaces (E n , ||•||), is concentrated with parameter q > 0 and observable diameter σ n > 0, if there is a constant C > 0 such that for any sequence of 1-Lipschitz maps f n : E n → C, for any n ∈ N and t ≥ 0 :

P(|f n (X n ) -E[f n (X n )]| ≥ t) ≤ Ce -1 C ( t σn ) q .
We denote by X n ∝ E q (σ n ) this notion of concentration.

As explained in the beginning of this paper, we will omit most of the n indices for a better readability. We also use the following generalization of the definition :

X n ∝ E q (σ n )+E q ′ (σ ′
n ) means that the above property holds with the right hand side term of the inequality replaced by Ce -1 C ( t σn )

q + Ce -1 C t σ ′ n q ′
. In this paper, we mostly consider R n endowed with the Euclidean norm, or equivalently R p×n endowed with the Frobenius norm. In this setting, any standard Gaussian vector is concentrated independently of its dimension : if the entries of X n are i.i.d. sampled from a standard Gaussian random variable, then X n ∝ E 2 (1) ( [START_REF] Ledoux | The concentration of measure phenomenon[END_REF]). The class of Lipschitz concentrated random vectors goes way beyond Gaussian vectors, see [START_REF] Ledoux | The concentration of measure phenomenon[END_REF], [START_REF] Talagrand | Concentration of measure and isoperimetric inequalities in product spaces[END_REF], and [START_REF] Tao | Topics in random matrix theory[END_REF] for more examples.

We deduce immediately from the definition the following property :

Proposition 2.3.2. If X n ∝ E q (σ n ) and φ n is a sequence of k φn -Lipschitz functions on the support of X n , then φ n (X n ) ∝ E q (k φn σ n )
, with new concentration constants that do not depend on φ n .

Let us now mention a simple link between observable diameter and variance for random variables.

Proposition 2.3.3. If a random variable X n is E q (σ n ) concentrated, then |X n -E[X n ]| ≤ O σ n (log n) 1 q
almost surely eventually (a.s.e.) and Var[X n ] ≤ O(σ 2 n ). These bounds only depend on the concentration constant of X n , not on the whole law of X n .
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Proof. For the first assertion, let us choose t n = σ n (2C log n) 1 q in the concentration inequality. We obtain :

P(|X n -E[X n ]| ≥ t n ) ≤ Ce -1 C ( tn σn ) q = C n 2 .
This bound is summable, so Borel-Cantelli lemma implies that

|X n -E[X n ]| ≤ t n ≤ O σ n (log n) 1 q
a.s.e. This O(•) bound only depends on C, the concentration constant of X n .

For the second assertion, we integrate the concentration inequality :

Var[X n ] = ∞ 0 P |X n -E[X n ]| 2 ≥ t dt ≤ C ∞ 0 exp - 1 C t q 2 σ q n dt = 2C 1+ 2 q q Γ 2 q σ 2 n .
Thanks to a classic argument of ϵ-nets ( [Tao12, Section 2.3.1]), we also have a control on the spectral norm of concentrated random matrices :

Proposition 2.3.4. If a sequence of random matrices X ∈ R p×n is ∝ E 2 (σ n ) concentrated with respect to the spectral norm, then |||X -E[X]||| ≤ O((n + p) 1 2 σ n ) a.s.e.
Proof. Upon centering and rescaling, we can assume without loss of generality that X is centered and ∝ E 2 (1) concentrated.

Let us consider a covering of the unit Euclidean ball of R p with 9 p balls of radius 1/3, centered in u 1 , . . . , u 9 p vectors belonging to the unit Euclidean ball. Similarly let us consider a covering of the unit Euclidean ball of R n with 9 n balls of radius 1/3, centered in v 1 , . . . , v 9 n vectors belonging to the unit Euclidean ball. The applications M → u ⊤ i M v j all are 1-Lipschitz with respect with the spectral norm. From Propositions 2.3.2 and 2.3.3, there is C > 0 such that for any i, j and t ≥ 0 :

P u ⊤ i Xv j ≥ t ≤ Ce -t 2 C . With t n = C 1 2 ((n + p) log 9 + 2 log n) 1 2
, a union bound over the pairs (i, j) shows that :

P sup i,j |u ⊤ i Xv j | ≥ t n ≤ C9 n+p e -t 2 n C = C n 2 .
This bound is summable, so Borel-Cantelli lemma implies that sup i,j |u ⊤ i Xv j | ≤ t n a.s.e.

For any u ∈ R p and v ∈ R n unit-normed vectors, we can find i and j such that ∥u -u i ∥ and ∥v -v j ∥ ≤ 1 3 , hence :

|u ⊤ Xv| ≤ u ⊤ i Xv j + (u -u i ) ⊤ Xv j + u ⊤ X(v -v j ) ≤ |u ⊤ i Xv j | + ∥u -u i ∥|||X|||∥v j ∥ + ∥u ⊤ ∥|||X|||∥v -v j ∥ ≤ sup i,j |u ⊤ i Xv j | + 2 3 |||X|||.
We deduce that

|||X||| = sup ∥u∥=∥v∥=1 |u ⊤ Xv| ≤ sup i,j |u ⊤ i Xv j | + 2 3 |||X|||, thus |||X||| ≤ 3 sup i,j |u ⊤ i Xv j | ≤ 3t n ≤ O((n + p) 1 2 ) a.s.e.
The next proposition is sometimes referred to as Hanson-Wright type inequality after the seminal paper [START_REF] Lee | A bound on tail probabilities for quadratic forms in independent random variables[END_REF]. It establishes the concentration of some random quadratic forms, and will prove itself to be crucial in the analysis of resolvents. A proof of this result can be found in [Ada15, Theorem 2.4].

Proposition 2.3.5 (Hanson-Wright). Let X n ∈ R n be a random vector, such that X n ∝ E 2 (1) with respect to the Euclidean norm, and

||E[X n ]|| is bounded. Then uniformly in any deterministic matrix A ∈ C n×n , we have X ⊤ n AX n ∝ E 2 (||A|| F ) + E 1 (|||A|||)
, in the sense that the new concentration constants can be taken uniformly in A.

We wrap up this section with a simple lemma that bounds the variance of a product of random variables when one of them is a.s. bounded. Proposition 2.3.6 (Variance of a product). Let X and Y be L 2 complex random variables with |X| a.s. bounded by ||X|| ∞ > 0. Then :

Var[XY ] ≤ 2||X|| 2 ∞ Var[Y ] + 2|E[Y ]| 2 Var[X]
Proof. We decompose the product

XY into XY = X(Y -E[Y ]) + XE[Y ],
and we use the inequality Var

[A + B] ≤ 2 Var[A] + 2 Var[B]
:

Var[XY ] = Var [X(Y -E[Y ]) + XE[Y ]] ≤ 2 Var [X(Y -E[Y ])] + 2 Var [XE[Y ]] ≤ 2E |X| 2 |Y -E[Y ]| 2 + 2|E[Y ]| 2 Var[X] ≤ 2||X|| 2 ∞ Var[Y ] + 2|E[Y ]| 2 Var[X].

Properties of resolvent matrices

This section deals with the resolvent of sample covariance matrices, and introduces two important companion objects : the leave-one-out (LOO) resolvent and the co-resolvent.

Given a matrix M ∈ R p×p , the resolvent of M is the matrix function G M (z) = (M -zI p ) -1 , well defined when the spectral parameter z ∈ C is not an eigenvalue of M . In the upcoming sections, we will often discard the parameter z from our notations for better readability, especially in the course of technical proofs.

By resolvent identity we refer to the relation between invertible matrices A-B = A(B -1 -A -1 )B, and its immediate corollary for resolvents

G M -G N = G M (N -M )G N .

Sample covariance resolvent

If X ∈ R p×n is a rectangular matrix, we set its sample covariance K = 1 n XX ⊤ . Given a spectral parameter z ∈ R * -or C + , we define the resolvent matrix G = G K (z). In other terms :

G = (K -zI p ) -1 = 1 n XX ⊤ -zI p -1
.

To unify the notations we let η = |z| -1 when z ∈ R * -and η = ℑ(z) -1 when z ∈ C + . Note that we always have η|z| ≥ 1. Let us establish some elementary properties of the sample covariance resolvent.

Proposition 2.4.1. G is well defined, |||G||| ≤ η and |||GX||| ≤ n 1 2 2 1 2 η|z| 1 2 .
Proof. The eigenvalues of K are real non negative, thus all eigenvalues of K -zI p are bounded from below by d(z, R + ), and K -zI p is invertible with (K -zI p ) -1 = |||G||| ≤ η. From the identity GK = I p + zG, we deduce that

|||GX||| 2 = GXX ⊤ G † ≤ |||GnK||| • |||G||| ≤ n(1 + η|z|)η ≤ 2nη 2 |z|.
In the following proposition ℑ(M ) denotes the entrywise imaginary part of a complex matrix M . The sample covariance map X → 1 n XX ⊤ is not globally Lipschitz with respect to the Frobenius norm when |||X||| is not bounded. However, we will prove that taking the resolvent of the sample covariance matrix is a Lipschitz function, which will greatly simplify all further concentration analysis.

Proposition 2.4.3. The map X → G(X) = 1 n XX ⊤ -zI p -1
is globally

Lipschitz with respect to the Frobenius norm with parameter n -1 2 2

3 2 η 2 |z| 1 2 .
Proof. Let us consider X and H ∈ R p×n . We have :

G(X) -G(X + H) = G(X) 1 n (X + H)(X + H) ⊤ -XX ⊤ G(X + H) = 1 n G(X) XH ⊤ + H(X + H) ⊤ G(X + H).
We bound this expression in the following way :

||G(X) -G(X + H)|| F ≤ 1 n |||G(X)X||| H ⊤ F |||G(X + H)||| + |||G(X)|||||H|| F (X + H) ⊤ G(X + H) ≤ 1 n n 1 2 2 1 2 η|z| 1 2 ||H|| F η + η||H|| F n 1 2 2 1 2 η|z| 1 2 = n -1 2 2 3 2 η 2 |z| 1 2 ||H|| F .
As an immediate consequence, we obtain by Proposition 2.3.2 the following key result for the concentration of sample covariance resolvents :

Corollary 2.4.4. If X ∝ E 2 (1), then G ∝ E 2 n -1 2 η 2 |z| 1 2 .

LOO resolvent and co-resolvent

Let x 1 , x 2 , . . . , x n ∈ R p be the columns of X. For a better readability we denote the first column x 1 simply by x. We define the leave-one-out (LOO) matrix

X -= (0 p , x 2 , . . . , x n ), the LOO sample covariance K -= 1 n X -X - ⊤ and the LOO resolvent G -= G K -(z).
We have the following identities :

K -= 1 n j≥2 x j x ⊤ j = K - 1 n xx ⊤ , G -= (K --zI p ) -1 = 1 n X -X - ⊤ -zI p -1
.

We also define the co-sample covariance matrix by swapping X and X ⊤ : Ǩ = 1 n X ⊤ X, and the co-resolvent : Ǧ = G Ǩ (z). In other terms :

Ǧ = Ǩ -zI n -1 = 1 n X ⊤ X -zI n -1
.

The LOO resolvent and the co-resolvent naturally inherit all bounds and concentration properties of the sample covariance resolvent : |||G -||| and Ǧ ≤ η, and if

X ∝ E 2 (1), then G -and Ǧ ∝ E 2 n -1 2 η 2 |z| 1 2
. When X has an additional structure of independence between the columns, the first column x is independent from the LOO resolvent G -, leading to further interesting properties.

Proposition 2.4.5. Assume that X ∈ R p×n has i.i.d. columns, that X is ∝ E 2 (1) concentrated with respect to the Frobenius norm, and that ||E[x]|| and

E xx ⊤ are bounded. Let σ 2 = η 2 (1 + n -1 η 2 |z|).
Then uniformly in any deterministic matrix B ∈ C p×p with ||B|| F ≤ 1 :

Var x ⊤ G -x ≤ O pσ 2 ,
(2.4.1)

Var x ⊤ BG -x ≤ O σ 2 , (2.4.2) Var x ⊤ G -BG -x ≤ O η 2 σ 2 .
(2.4.3) Remark 2.4.6. These variance bounds correspond exactly to the ones we would obtain by considering that G -is deterministic and applying the concentration of quadratic forms given by Proposition 2.3.5. The full concentration property of these quantities remains however unclear.

Proof.

Let Σ = E xx ⊤ . Remark that Σ = 1 n E n i=1 x i x ⊤ i = 1 n E XX ⊤ = E[K].
Without loss of generality we can assume that ||E[x]|| ≤ 1 and |||Σ||| ≤ 1. Let us first prove in full details the second inequality.

For any deterministic matrix M ∈ R p×p with ||M || F ≤ η, from Proposition 2.3.5 we have

x ⊤ M x ∝ E 2 (η) + E 1 (η), thus Var x ⊤ M x ≤ O(η 2 ). If B is deterministic with ||B|| F ≤ 1, then ||BG -|| F ≤ η
and using independence :

E x ⊤ BG -x -Tr(BG -Σ) 2 = E E x ⊤ BG -x -Tr(BG -Σ) 2 G - = E G -E x x ⊤ M x -Tr(M Σ) 2 (M = BG -) = E G -Var x x ⊤ M x (M = BG -) ≤ O η 2 .
On the other hand M → Tr(BM Σ) is 1-Lipschitz with respect to the Frobenius norm, therefore by Proposition 2. 

Tr(BG

-Σ) ∝ E 2 n -1 2 η 2 |z|
Var x ⊤ BG -x = E x ⊤ BG -x -Tr(BE[G -]Σ) 2 ≤ 2E x ⊤ BG -x -Tr(BG -Σ) 2 + 2E |Tr(BG -Σ) -Tr(BE[G -]Σ)| 2 ≤ O η 2 + O n -1 η 4 |z| = O(σ 2 ).
At no point did the O(•) notations depend on B in the estimates, as explained in the concentration section.

The first inequality (2.4.1) can be seen as a consequence of the second inequality, applied to B = p -1 2 I p which satisfies ||B|| F ≤ 1. The proof of the third inequality (2.4.3) is quite similar to the first one. For this reason we will only point out the key differences. Using the deterministic bound ||G -BG -|| F ≤ η 2 we get :

E x ⊤ G -BG -x -Tr(G -BG -Σ) 2 ≤ O η 4 .
On the other hand the map M → Tr(M BM Σ) = Tr(BM ΣM ) is η-Lipschitz on the set {M ∈ C p×p with |||M ||| ≤ η}. Indeed :

||M ΣM -M ′ ΣM ′ || F ≤ |||M ||||||Σ|||||M -M ′ || F + ||M -M ′ || F |||Σ||||||M ′ ||| ≤ η||M -M ′ || F .

This implies that Tr(G

-BG -Σ) ∝ E 2 n -1 2 η 3 |z| 1 2
and Var[Tr(G -BG -Σ)] ≤ O(n -1 η 6 |z|). Combining the previous two estimates proves the inequality (2.4.3).

We wrap up this section by mentioning some links between the resolvent, the LOO resolvent and the co-resolvent. We need the following linear algebra results : Lemma 2.4.7 (Sherman-Morrison). Given an invertible matrix M ∈ C p×p and two vectors u, v ∈ C p , M +uv ⊤ is invertible if and only if 1+v ⊤ M -1 u ̸ = 0, in which case the following identities hold true :

M + uv ⊤ -1 = M -1 - M -1 uv ⊤ M -1 1 + v ⊤ M -1 u , M + uv ⊤ -1 u = M -1 u 1 + v ⊤ M -1 u . Lemma 2.4.8. 1 n X ⊤ GX = I n + z Ǧ. CHAPITRE 2. GENERAL SAMPLE COVARIANCE MATRICES Proof. Since X ⊤ 1 n XX ⊤ -zI p = 1 n X ⊤ X -zI n X ⊤ , we have 1 n X ⊤ GX = 1 n 1 n X ⊤ X -zI n -1 X ⊤ X = I n + z Ǧ.
As an immediate application of these lemmas, we get the following identities, which we will refer to as LOO identities. These will be extremely useful to exploit any column independence structure in the random matrix X, and subsequently to prove bounds and concentration properties that otherwise would have been far from obvious. Proposition 2.4.9 (LOO identities). 1 + 1 n x ⊤ G -x ̸ = 0, and :

1 n x ⊤ Gx = 1 - 1 1 + 1 n x ⊤ G -x = 1 + z Ǧ11 , G = G -- 1 n G -xx ⊤ G - 1 + 1 n x ⊤ G -x = G -+ z n Ǧ11 G -xx ⊤ G -, Gx = G -x 1 + 1 n x ⊤ G -x = -z Ǧ11 G -x.
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General properties of the deterministic equivalents

We place ourselves under the Assumptions 2.2.1 for the matrix X, and we set the sample covariance matrix K = n -1 XX ⊤ . For a better readability we will denote the first column of X as We introduce respectively the classical resolvent

G = XX ⊤ n -zI p -1 , the leave-one-out (LOO) resolvent G -= XX ⊤ -xx ⊤ n -zI p -1 and the co-resolvent Ǧ = X ⊤ X n -zI n -1
associated to X. An in-depth analysis of these resolvent matrices may be found in Section 2.4.

The general form of our deterministic equivalents is given by :

G l = z l Σ -zI p -1
, for some sequence of deterministic parameters l ∈ C that may vary with z.

We will first give a sufficient condition on l so that G l is well defined and bounded. To this end we define Ω = (-∞, z] if z ∈ R * -, and Ω = {l ∈ C such that ℑ(l) ≥ ℑ(z) and ℑ(z -1 l) ≥ 0} if z ∈ C + . We also recall the definition of

η = |z| -1 if z ∈ R * -and η = ℑ(z) -1 if z ∈ C + . Lemma 2.5.1. If l ∈ Ω, then G l is well defined, G l ≤ η and z l G l ≤ η. Proof. The eigenvalues of z l Σ -zI p are z l λ -z for λ ∈ SpΣ ⊂ R + . If z ∈ R * -, then z l ≥ 0 and z l λ -z ≥ |z|. If z ∈ C + , then ℑ z l ≤ 0 and ℑ z l λ -z ≤ -ℑ(z).
In both cases, all the eigenvalues of z l Σ -zI p are greater or equal than η -1 in modulus, hence

G l = z l Σ -zI p -1
is well defined and G l ≤ η. The argument for z l G l is similar : the eigenvalues of Σ -

lI p are λ -l for λ ∈ SpΣ. If z ∈ R * -then l ≤ z and λ -l ≥ |z|. If z ∈ C + then ℑ(l) ≥ ℑ(z)
and ℑ(λ -l) ≤ -ℑ(z). In both cases, all the eigenvalues of Σ -lI p are greater or equal than η -1 in modulus, hence z l G l = (Σ -lI p ) -1 ≤ η.

Introduction of parameters a and b

Let us consider a = z

+ z n x ⊤ G -x and b = E[a] = z + z n Tr(ΣE[G -]).
In the rest of this section we will prove that G b is close to E[G]. The precise statement constitutes Theorem 2.5.3.

We can rewrite the LOO identities of Proposition 2.4.9 in the following fashion :

1 n x ⊤ Gx = 1 - z a = 1 + z Ǧ11 , G = G -- z a 1 n G -xx ⊤ G -, Gx = z a G -x.
In particular a = -Ǧ-1 11 . We also deduce the following properties :

Proposition 2.5.2. a and b ∈ Ω. G b is well defined, |a -1 | ≤ η and z b G b ≤ η. Proof. If z ∈ R * -, G -is a real positive semi-definite matrix and a z = 1 + 1 n x ⊤ G -x ≥ 1, hence a ≤ z. If z ∈ C + , ℑ(G -)
and ℑ(zG -) are positive semidefinite matrices using Proposition 2.4.2, thus ℑ(a) = ℑ(z)

+ 1 n x ⊤ ℑ(zG -)x ≥ ℑ(z), and ℑ a z = 1 n x ⊤ ℑ(G -)x ≥ 0.
In any case, a ∈ Ω, and Ω is stable through expectation so b ∈ Ω as well. The last assertions are immediate consequences of Lemma 2.5.1 and the definition of Ω.

Proof of the first deterministic equivalent

Let us recall the definition of η = |z| -1 if z ∈ R * -and η = ℑ(z) -1 if z ∈ C + . We can now prove the following result : 

E[G] -G b F ≤ O   η 5 |z| 3 2 n 1 2  
Remark 2.5.4. In the case where z stays bounded away from R + , the theorem boils down to a O(n -1 2 ) estimate, which was already obtained in [LC21, Theorem 4].

The assumption η 10 |z| 3 = O(n) is not strictly necessary to obtain this result, but it greatly simplifies the explicit bound. Indeed we can always obtain a O n -1 2 κ bound, where

σ 2 = η 2 (1 + n -1 η 2 |z|) and κ = σ 2 η 2 |z| + ση 4 |z| 3 2
. However κ ≥ η 5 |z| 3 2 , so the above bound will not be interesting unless we have at least η 10 |z| 3 = O(n). The other assumption can be rewritten as 1 ≤ O(η), which simplifies the results and is not restrictive for practical applications. Under these two hypothesis, κ = O(η 5 |z| 3 2 ) which gives the same estimate. The proof of Theorem 2.5.3 can be organized in three steps :

First step :

We introduce G -using the LOO identities :

G z b Σ -xx ⊤ = G z b Σ - z a G -xx ⊤ = z b (G -G -)Σ + G -Σ -xx ⊤ + 1 - b a G -xx ⊤ .
XX ⊤ is the sum of n iid copies of xx ⊤ , and E G -Σ -xx ⊤ = 0 by independence, leading to :

E[G] -G b = E G z b Σ - 1 n XX ⊤ G b = E G z b Σ - 1 n n i=1 x i x ⊤ i G b = E G z b Σ -xx ⊤ G b = z b E [G -G -] Σ + E a -b a G -xx ⊤ G b .

Second step :

We estimate the above quantities using concentration and the properties of LOO quadratic forms.

First note that the term σ appearing in Proposition 2.4.5 boils down to σ = O(η) under our assumptions. Indeed η 2 |z| ≤ η

5 2 |z| 3 2 ≤ O(η 5 |z| 3 2 ) ≤ O(n 1 2 ), so σ 2 = η 2 (1 + n -1 η 2 |z|) = O(η 2 ).
We have estimates on the variance of both a and a -1 : indeed Var 

[a] = |z| 2 n -2 Var x ⊤ G -x ≤ O(n -1 η 2 |z| 2 ) from Proposition 2.4.5, and a -1 = -Ǧ11 ∝ E 2 n -1 2 η 2 |z| 1 2 so Var [a -1 ] ≤ O(n -1 η 4 |z|). Now let us consider a matrix B ∈ C p×p with ||B|| F ≤ 1. We have Tr (BE[G -G -]) = E -z a 1 n Tr BG -xx ⊤ G -= -z n E ζ a with ζ = x ⊤ G -BG -x. We have |E[ζ]| = |Tr(E[G -BG -]Σ)| ≤ η 2 p 1 2 ≤ O(n 1 2 η 2 ),
E a -1 ζ ≤ E a -1 (ζ -E[ζ]) + E[a -1 ]E[ζ] ≤ η Var[ζ] 1 2 + η|E[ζ]| ≤ O n 1 2 η 3 . We deduce that : ||E[G -G -]|| F = sup ||B|| F =1 |Tr (BE[G -G -])| ≤ O n -1 2 |z|η 3 . For the second term, Tr E B a-b a G -xx ⊤ = E (a -E[a]) ξ a with ξ = x ⊤ BG -x. From Proposition 2.4.5, Var[ξ] ≤ O(η 2 ) uniformly in B, and CHAPITRE 2. GENERAL SAMPLE COVARIANCE MATRICES |E[ξ]| = E[Tr(BG -Σ)] ≤ p 1 2 η ≤ O(n 1 2 η).
We bound the variance of ξ a using Propositions 2.5.2 and 2.3.6 :

Var ξ a ≤ 2 a -1 2 ∞ Var[ξ] + 2 Var a -1 |E[ξ]| 2 ≤ O η 4 + η 6 |z| ≤ O(η 6 |z|),
where we used that 1 ≤ O(η) ≤ O(η 2 |z|). Cauchy-Schwartz inequality again implies that :

E (a -E[a]) ξ a 2 ≤ Var [a] Var ξ a ≤ O n -1 η 8 |z| 3 .
We deduce that :

E a -b a G -xx ⊤ F = sup ||B|| F =1 Tr E B a -b a G -xx ⊤ ≤ O n -1 2 η 4 |z| 3 2 .

Third step :

We wrap up the proof by combining the previous estimates :

E[G] -G b F ≤ z b G b • ||E [G -G -]|| F |||Σ||| + E a -b a G -xx ⊤ F ≤ η • O n -1 2 η 3 |z| + O n -1 2 η 4 |z| 3 2 ≤ n -1 2 O η 5 |z| 3 2 .
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Second deterministic equivalent

We continue our analysis under the same assumptions as in Theorem 2.5.3.

Reformulation as a fixed point problem

Let us recall the definitions of

ν = MP(γ n ) ⊠ µ Σ , ν = (1 -γ n )δ 0 + γ n ν and G l = z l Σ -zI p -1
. We let c = -g ν -1 . In the rest of this section we will prove that G c is close to E[G]. The precise statement constitutes Theorem 2.6.16. We first establish some properties of ν and ν. Lemma 2.6.1. ν is a probability distribution, and

g ν = γn-1 z + γ n g ν .
Proof. ν has total mass 1 and is a positive measure, excepted maybe in {0} if γ n > 1. In this case, from [Bel03, Theorem 4.1] we have ν({0}) ≥ 1 -γ n -1 , thus ν({0}) ≥ 0 and ν is a probability measure.

The identity between the Stieltjes transforms is easily verified :

g ν (z) = R 1 t -z ν(dt) = (1 -γ n ) R 1 t -z δ 0 (dt) + γ n R 1 t -z ν(dt) = 1 -γ n -z + γ n g ν (z).
Let us recall the definition of Ω = (-∞, z] if z ∈ R * -, and Ω = {l ∈ C such that ℑ(l) ≥ ℑ(z) and ℑ(z -1 l) ≥ 0} if z ∈ C + . We introduce the following functional on Ω :

F(l) = z + z n Tr G l Σ . Proposition 2.6.2. c is a fixed point of F and c ∈ Ω. Moreover 1 p Tr(G c ) = g ν .
Proof. The fact that c ∈ Ω is a consequence of the classical properties of the Stieltjes transforms. Using the properties of the free multiplicative convolution we have

g ν (z) = R 1 (1-γn-γnzgν (z))t-z µ Σ (dt). Moreover z c = 1 -γ n -γ n zg ν (z) using Lemma 2.6.1. We deduce that 1 p Tr(G c ) = R 1 z c t-z µ Σ (dt) = g ν (z). On the 58 CHAPITRE 2.
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other hand :

z n Tr(G c Σ) = γ n p Tr   Σ c -I p -1 Σ   = γ n R t t c -1 µ Σ (dt) = γ n R c 1 + 1 t c -1 µ Σ (dt) = γ n c(1 + zg ν (z)) = c -z.
This proves that c is indeed a fixed point of F.

Remark 2.6.3. We will prove in Corollaries 2.6.8 and 2.6.12 that c is the unique fixed point of F in Ω. The two characterizations we have for c correspond to the two characterizations we mentioned for a and b. Indeed by considering that

E[G -] ≈ E[G] ≈ G b in the definition of b, we can see that b ≈ z + z n Tr G b Σ .
In other terms b is an approximate fixed point of F, and we can hope that it will get close to c which is the true fixed point of F.

The definition of c using Stieltjes transforms also admits a heuristic interpretation using the co-resolvent Ǧ. We will later understand that ν = MP(γ n ) ⊠ µ Σ is a good approximation of µ K , the spectral distribution of K, in the sense that their Stieltjes transforms are close. On the other hand, the spectra of K = n -1 XX ⊤ and Ǩ = n -1 X ⊤ X differ by |n -d| zeroes, equivalently µ Ǩ = (1 -γ n )δ 0 + γ n µ K . The measure ν = (1 -γ n )δ 0 + γ n ν is therefore a good approximation of µ Ǩ . With the help of concentration arguments, it makes sense that b

-1 = E[a] -1 = E -Ǧ-1 11 -1 ≈ E[-g Ǩ ] -1 ≈ -g -1
ν , which enlightens the choice of c = -g -1 ν .

Our strategy for the rest of this section is as follows : we quantify the error made when saying that b is an approximate fixed point of F in the next proposition. We then study the stability of the fixed point equation to control the gap between b and c. This analysis will rely on the fact that F is a contraction mapping, with slightly different arguments in the real and in the complex case. We finally deduce that G c is close to G b , itself close to E[G], which proves Theorem 2.6.16. Proof. Let us remember the estimates obtained in the proof of Theorem 2.5.3 :

||E[G -G -]|| F ≤ O n -1 2 |z|η 3 and E[G] -G b F ≤ O n -1 2 η 5 |z| 3 2
. We deduce 2.6. SECOND DETERMINISTIC EQUIVALENT 59 that :

|b -F(b)| = z n Tr E[G -] -G b Σ ≤ |z| n p 1 2 ||E[G --G]|| F + E[G] -G b F ≤ O n -1 η 5 |z| 5 2 .

Stability of F in the real case

Let us working with z belonging to R * -. In this context we recall that Ω = (-∞, z]. Our first objective in this section is to prove that F is a contraction mapping around c for the usual distance on R. Lemma 2.6.5. For any l ∈ Ω, z -

γ n ≤ F(l) ≤ z ≤ 0. In particular 1 ≤ c z ≤ 1 + γn |z| .
Proof. The matrices G l and Σ commute and are both positive semi-definite, hence the product G l Σ is positive semi-definite. We deduce that 0 ≤ Tr G l Σ ≤ p|z| -1 , and -γ n ≤ F(l) -z = z n Tr G l Σ ≤ 0. Applying these bounds to c = F(c) proves the second assertion. Lemma 2.6.6. For any l ∈ Ω, z l G l Σ ≤ 1 1+|z| .

Proof. The eigenvalues of z l G l Σ = (Σ -lI p ) -1 Σ are given by λ λ-l where λ are the eigenvalues of Σ. All λ belong to [0, 1] and l ≤ z < 0, so we have the following inequalities :

0 ≤ λ λ -l = λ λ + |l| ≤ λ λ + |z| ≤ 1 1 + |z| .
We deduce that all the eigenvalues of z l G l Σ belong to 0, 1 1+|z| , which proves the bound in spectral norm. Proposition 2.6.7. F is a contraction mapping around c. More precisely, F is k F -Lipschitz around c with k F = γn (1+|z|)(γn+|z|) < 1. Proof. For any l, using a resolvent identity :

F(c) -F(l) = z n Tr G c -G l Σ = z n Tr G c z l - z c ΣG l Σ = c -l n Tr z c G c Σ z l G l Σ .
A straightforward application of the last lemma would only yield a Lipschitz factor of γ n (1 + |z|) -2 which may not be small enough. To go beyond, we exploit the fact that c is a fixed point of F, in particular 1 -z c = 1 n Tr z c G c Σ . All the matrices commute in the above expression, and we can use the bounds of the preceding lemmas to obtain :

|F(c) -F(l)| ≤ |c -l| • 1 n Tr z c G c Σ • z l G l Σ ≤ |c -l| • 1 - z c • 1 1 + |z| ≤ |c -l| •   1 - 1 1 + γn |z|   • 1 1 + |z| = |c -l| • γ n (1 + |z|)(γ n + |z|) .
Corollary 2.6.8. In the real case, c is the unique fixed point of F. 

Proof. If l is a fixed point of F, then |l -c| = |F(l) -F(c)| ≤ k F |l -c|. Given that k F < 1,
-k F ≤ 1+|z| |z| ≤ O(|z| -1 ), we deduce that |b -c| ≤ |b-F (b)| 1-k F ≤ O n -1 |z| -7 2 .

Stability of F in the complex case

We are now working with z belonging to C + . In this context we recall that Ω = {l ∈ C such that ℑ(l) ≥ ℑ(z) and ℑ(z -1 l) ≥ 0}. As in the last section, we would like F to be a contraction mapping. To this end we need to ditch the usual metric on C + , and work instead with the following semi-metric :

d(ω 1 , ω 2 ) = |ω 1 -ω 2 | ℑ(ω 1 ) 1 2 ℑ(ω 2 ) 1 2
.

Lemma 2.6.10. For any l ∈ Ω, ℑ(z) ≤ ℑ(F(l)) ≤ ℑ(z) + γ n |z|η, and :

ℑ(F(l)) -ℑ(z) = |z| 2 n ℑ(l) |l| 2 ΣG l 2 F .
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Proof. Applying the resolvent identity to zG l = Σ l -I p -1

and zG l = Σ l -I p -1 leads to :

ℑ(zG l ) = 1 2i zG l Σ l - Σ l Σ l zG l = |z| 2 ℑ(l) |l| 2 G l ΣG l .
From there we deduce that :

ℑ(F(l)) = ℑ(z) + 1 n Tr Σℑ zG l = ℑ(z) + |z| 2 n ℑ(l) |l| 2 Tr ΣG l ΣG l = ℑ(z) + |z| 2 n ℑ(l) |l| 2 ΣG l 2 F .
This identity proves the lower bound on ℑ(F(l)). The upper bound is a consequence of :

1 n Tr Σℑ zG l ≤ γ n • |||Σ||| • ℑ zG l ≤ γ n |z|η.
Proposition 2.6.11. F is a contraction mapping with respect to d. More precisely, F is k F -Lipschitz with k F = γn|z|η 2 1+γn|z|η 2 < 1. Proof. For any l, l ′ ∈ Ω, using a resolvent identity :

F(l) -F(l ′ ) = z n Tr G l -G l ′ Σ = z n Tr G l z l ′ - z l ΣG l ′ Σ = z 2 n l -l ′ ll ′ Tr G l ΣG l ′ Σ . We can recognize d(l, l ′ ) = |l-l ′ | ℑ(l) 1 2 ℑ(l ′ ) 1 2
and the expression for ℑ(F(l)) -ℑ(z) from the preceding lemma :

|F(l) -F(l ′ )| ≤ |z| 2 n |l -l ′ | |l||l ′ | G l Σ F G l ′ Σ F = |l -l ′ | ℑ(l) 1 2 ℑ(l ′ ) 1 2 |z| 2 n ℑ(l) |l| 2 ΣG l 2 F 1 2 |z| 2 n ℑ(l ′ ) |l ′ | 2 ΣG l ′ 2 F 1 2 = d(l, l ′ )(ℑ(F(l)) -ℑ(z)) 1 2 (ℑ(F(l ′ )) -ℑ(z)) 1 2 .
We thus have :

d(F(l), F(l ′ )) = |F(l) -F(l ′ )| ℑ(F(l)) 1 2 ℑ(F(l ′ )) 1 2 ≤ d(l, l ′ ) 1 - ℑ(z) ℑ(F(l)) 1 2 1 - ℑ(z) ℑ(F(l ′ )) 1 2 . Given that ℑ(z) ≤ ℑ(F(l)) ≤ ℑ(z) + γ n |z|η, we have 0 ≤ 1 -ℑ(z) ℑ(F (l)) ≤ 1 -(1 + γ n |z|η 2 ) -1 = γn|z|η 2 1+γn|z|η 2 , hence d(F(l), F(l ′ )) ≤ γn|z|η 2 1+γn|z|η 2 d(l, l ′
). Corollary 2.6.12. In the complex case, c is the unique fixed point of F.

Proof. In order to obtain a contradiction, let l ∈ Ω be a fixed point of F such that l ̸ = c . Using Lemma 2.6.10,

ℑ(l) = ℑ(F(l)) = ℑ(z) + |z| 2 n ℑ(l) |l| 2 ΣG l 2 F . Since ℑ(z) > 0, we have 1 > |z| 2 n 1 |l| 2 ΣG l 2 F . Similarly 1 > |z| 2 n 1 |c| 2 ||ΣG c || 2
F . As seen in the proof of Proposition 2.6.11, we have

l -c = F(l) -F(c) = z 2 n l-c
lc Tr G l ΣG c Σ . We obtain a contradiction after taking a Cauchy-Schwarz inequality :

1 = |z| 2 n 1 |l||c| Tr G l ΣG c Σ ≤ |z| 2 n 1 |l| G l Σ F 1 |c| ||G c Σ|| F < 1.
Our second objective in this section is to use the contraction property of F to quantify how b and c are close. Since d is not a true metric (it lacks the triangular inequality), we need a few additional lemmas : Lemma 2.6.13. Given ω 1 and ω

2 ∈ C + , 1 ℑ(ω 1 ) 1 2 ≤ 1 ℑ(ω 2 ) 1 2 (1 + d(ω 1 , ω 2 )).
Proof. It is simply a matter of computing :

1 

ℑ(ω 1 ) 1 2 = 1 ℑ(ω 2 ) 1 2   1 + ℑ(ω 2 ) 1 2 -ℑ(ω 1 ) 1 2 ℑ(ω 1 ) 1 2   = 1 ℑ(ω 2 ) 1 2   1 + ℑ(ω 2 ) -ℑ(ω 1 ) ℑ(ω 1 ) 1 2 ℑ(ω 2 ) 1 2 + ℑ(ω 1 ) 1 2   , 1 ℑ(ω 1 ) 1 2 ≤ 1 ℑ(ω 2 ) 1 2   1 + |ℑ(ω 2 ) -ℑ(ω 1 )| ℑ(ω 1 ) 1 2 ℑ(ω 2 ) 1 2 + ℑ(ω 1 ) 1 2    ≤ 1 ℑ(ω 2 ) 1 2 (1 + d(ω 1 , ω 2 )).
|c -b| ≤ |f (b) -b| 1 -k f (1 + ∆) .
Proof. Using the above lemma with ω 1 = b and ω 2 = f (b), we have :

|c -f (b)| ℑ(c) 1 2 ℑ(b) 1 2 ≤ |f (c) -f (b)| ℑ(c) 1 2 ℑ(f (b)) 1 2 (1 + d(b, f (b))) ≤ k f d(c, b)(1 + ∆).
Therefore :

d(c, b) = |c -b| ℑ(c) 1 2 ℑ(b) 1 2 ≤ |c -f (b)| ℑ(c) 1 2 ℑ(b) 1 2 + |f (b) -b| ℑ(c) 1 2 ℑ(b) 1 2 ≤ k f d(c, b)(1 + ∆) + |f (b) -b| ℑ(c) 1 2 ℑ(b) 1 2
.

Provided k f (1 + ∆) < 1, we obtain :

d(c, b) ≤ 1 1 -k f (1 + ∆) |f (b) -b| ℑ(c) 1 2 ℑ(b) 1 2 |c -b| ≤ |f (b) -b| 1 -k f (1 + ∆)
.

We will now prove the equivalent of Proposition 2.6.9 in the complex case.

Proposition 2.6.15. There is a constant C > 0 such that, if η 8 |z|

7 2 ≤ Cn, then |b -c| ≤ O n -1 η 7 |z| 7 2 .
Proof. We want to apply Lemma 2.6.14 to the function F, the true fixed point c and the approximate fixed point b. F is k F -Lipschitz with k F = γnη 2 |z| 1+γnη 2 |z| . On the other hand, from Proposition 2.6.4 we have :

∆ = d(b, F(b)) = |b -F(b)| ℑ(b) 1 2 ℑ(F(b) 1 2 ≤ O n -1 η 6 |z| 5 2 ,
where we used that ℑ(b) and ℑ(F(b)) ≥ ℑ(z) = η -1 . By assumption γ n is a bounded sequence, hence we can find a constant C > 0 such that

γ n ∆ ≤ Cn -1 η 6 |z| 5 2 . Now if η 8 |z| 7 2 ≤ n/2C, then γ n η 2 |z|∆ ≤ Cn -1 η 8 |z| 7 2
≤ 1/2, and for n large enough :

k F (1 + ∆) = γ n η 2 |z| + γ n η 2 |z|∆ 1 + γ n η 2 |z| ≤ γ n η 2 |z| + 1/2 1 + γ n η 2 |z| = 1 - 1 2(1 + γ n η 2 |z|) < 1.
From Lemma 2.6.14 we have :

1 1-k F (1+∆) ≤ 2(1 + γ n η 2 |z|) ≤ O(η 2 |z|). We deduce that : |c -b| ≤ |F(b) -b| 1 -k F (1 + ∆) ≤ O n -1 η 7 |z| 64 CHAPITRE 2. GENERAL SAMPLE COVARIANCE MATRICES

Proof of the second deterministic equivalent

Let us recall the definitions of ν

= MP(γ n ) ⊠ µ Σ , ν = (1 -γ n )δ 0 + γ n ν, c = -g ν -1
, and

G c = z c Σ -zI p -1
.

Theorem 2.6.16 (Second equivalent).

1. If z ∈ R * -are real spectral arguments, possibly varying with n, such that |z| is bounded and |z| -7 ≤ O(n), then :

||E[G] -G c || F ≤ O 1 n 1 2 |z| 11 2
.

2. There exists a constant C > 0 such that, if z ∈ C + are complex spectral arguments with ℑ(z) bounded and η 16 |z| 7 ≤ Cn, then :

||E[G] -G c || F ≤ O   η 9 |z| 5 2 n 1 2   .
Remark 2.6.17. In the real case, the assumptions on z are not strictly necessary to obtain an explicit bound. Indeed we can always find a O n -1 2 |z| -2 κ estimate with the same parameters as in the remark following Theorem 2.5.3 :

σ 2 = |z| -2 (1 + n -1 |z| -1 ) and κ = σ 2 |z| -1 + σ|z| -5
2 . The situation in the complex case is however different this time, because we really need η 8 |z| 7 2 ≤ Cn to prove the stability of the fixed point problem. This is a stronger hypothesis than the hypothesis η 10 |z| 3 ≤ O(n) we used for mere convenience in the first deterministic equivalent. In any case, the above bound will not be interesting unless we have at least η 18 |z| 5 ≤ O(n).

Also note that the exponent in the real case is slightly better than the one we would obtain by replacing ℑ(z) in the complex setting by |z| in the real setting (11/2 instead of 13/2). Surprisingly enough, this lack of symmetry does not come from the different methods we use to analyze the stability of the fixed point equation, but rather from a difference in the Lipschitz parameter of the application l ∈ Ω → G l as we will see in the upcoming proof.

Proof. We have quantified how close b and c are in Propositions 2.6.9 and 2.6.15, and we can derive a Lipschitz property for l → G l using a resolvent identity :

G l -G l ′ F = z|l -l ′ | G l ′ l ′ Σ G l l F ≤ p 1 2 |l -l ′ | |z| z l ′ G l ′ Σ • z l G l .
This is where we can get better exponents in the real case using Lemma 2.6.6.

z b G b Σ ≤ 1 1+|z| ≤ 1, thus : G c -G b F ≤ p 1 2 |z| -1 O n -1 |z| -7 2 |z| -1 ≤ O n -1 2 |z| -11 2 .
In the complex case, we only have z b G b Σ ≤ η by Proposition 2.5.2, thus :

G c -G b F ≤ p 1 2 |z| -1 O n -1 η 7 |z| 7 2 η 2 ≤ O n -1 2 η 9 z 5 2
In both cases, the first deterministic equivalent in Theorem 2.5.3 gives a term of lesser magnitude for

E[G] -G b F
, which completes the proof since :

||E[G] -G c || F ≤ E[G] -G b F + G c -G b F .

Proof of the main results

Most of the technical work is already achieved in Sections 2.4-2.6. For instance, the Proposition 2.2.2 stating the concentration of G K (z) is a direct consequence of Corollary 2.4.4. Indeed with

η = |z| -1 if z ∈ R * -, we have n -1 2 η 2 |z| 1 2 = n -1 2 |z| -3 2 . With η = ℑ(z) -1 if z ∈ C + , we have n -1 2 η 2 |z| 1 2 = n -1 2 ℑ(z) -2 |z| 1 2
. The conclusions of our main Theorem 2.2.3 are exactly the same as in Theorem 2.6.16 after carefully comparing the definitions of the deterministic equivalent. We need however to add a quick argument for the Proposition 2.2.4 and the Corollary 2.2.5. We remind our reader that a.s.e. stands for almost surely eventually.

Proof of Proposition 2.2.4. From Theorem 2.2.3, uniformly in any A ∈ R p×p we have :

|Tr(E[G K (z)]A -G(z)A)| ≤ ||E[G K (z)] -G(z)|| F • ||A|| F ≤ ||A|| F O κ n 1 2
,

where κ = 1 |z| 11 2
in the real case, or κ = |z| 5 2

ℑ(z) 9 in the complex case. On the other hand, from Propositions 2.2.2, 2.3.2 and 2.3.3, uniformly in any A ∈ R p×p we have : ℑ(z) 2 in the complex case. In both scenarios, τ ≤ O(κ). Indeed in the real case, τ κ -1 = |z| 4 ≤ O(1). In the complex case, τ κ -1 = ℑ(z) 7 |z| -2 ≤ ℑ(z) 5 ≤ O(1). We deduce that uniformly in any A ∈ R p×p :

|Tr(G K (z)A -E[G K (z)]A)| ≤ ||A|| F O   τ (log n)
|Tr(G K (z)A -G(z)A)| ≤ |Tr(G K (z)A -E[G K (z)]A)| + |Tr(E[G K (z)]A -G(z)A)| ≤ ||A|| F O   κ(log n) 1 2 n 1 2   a.s.e.
Proof or Corollary 2.2.5.

Considering A = p -1 I p which satisfies ||A|| F = p -1 2 = O(n -1
2 ), and using the identity p -1 TrG(z) = g ν (z) from Proposition 2.6.2
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yields :

1 p TrG K (z) - 1 p TrG(z) = |g K (z) -g ν (z)| ≤ O   κ(log n) 1 2 n   a.s.e.
Uniformly in u ∈ S p-1 , with A = uu ⊤ , ||A|| F = ||u|| = 1 :

Tr G K (z)uu ⊤ -G(z)uu ⊤ = g µ K,u (z) -u ⊤ G(z)u ≤ O   κ(log n) 1 2 n 1 2   a.s.e.
Finally the third assertion is a consequence of the polarization identity for symmetric matrices, which relates the entries of any matrix M to terms like u ⊤ M u : 2M ij = (e i + e j ) ⊤ M (e i + e j )e ⊤ i M e ie ⊤ j M e j . The entry-wise maximum is controlled by p 2 such terms, hence

max 1≤i,j≤p |G K (z) -G(z)| ij ≤ O κ(log n) 1 2 n 1 2
a.s.e. as a consequence of the second assertion.

Bounds in Kolmogorov distance

The goal of this section is to prove Theorem 2.8.6, which provides an asymptotic bound in Kolmogorov distance given a quantitative bound on the Stieltjes transforms of probability distributions. It closely follows the ideas of [BM20, Theorem 5.2], with some key differences. First of all we do not ask for estimates of the Stieltjes transforms on the whole complex upper plane, but rather for specific sequences that will appear in the proof. This broader setting will be well adapted to the conclusions of Theorem 2.2.3. Compared to the work of [START_REF] Banna | Hölder continuity of cumulative distribution functions for noncommutative polynomials un-125 der finite free fisher information[END_REF], we also do not require weak convergence of the distributions, and we work without uniform bounds on the support of our distributions. More precisely, we open the possibility that their second moments grow slowly to ∞.

Let us remind the notations F ν for the cumulative distribution function (CDF) of ν, and D(ν, µ) = sup t∈R |F ν (t) -F µ (t)| for the Kolmogorov distance between ν and µ. The following well-known facts are well-surveyed in [START_REF] Jeffrey | Necessary and sufficient condition that the limit of Stieltjes transforms is a Stieltjes transform[END_REF] : the convergence in Kolmogorov distance implies the weak convergence for probability measures, and there is even an equivalence if the limiting measure admits a Hölder continuous CDF.

Bound for fixed measures

To compare distributions in Kolmogorov distance we will first need a few technical lemmas for fixed probability measures µ and ν on R + . We start with the so-called Bai's Inequality [Bai08, Theorem 2.1] :

Lemma 2.8.1. Let a = tan 3π 8 . If R |F ν (t) -F µ (t)|dt < ∞, then for any y > 0 : D(µ, ν) ≤ 2 π R |g ν -g µ |(t + iy)dt + 1 y sup x∈R [±2ya] |F µ (x + t) -F µ (x)|dt .
The following tail bound for the Stieltjes transforms is a consequence of the intermediate result [BM20, Lemma 5.5] : Lemma 2.8.2. If µ and ν have finite second moments, smaller than σ ≥ 1, then for any y ∈ (0, 1) and A > 0 we have :

(±A) c |g ν -g µ |(t + iy)dt ≤ 4σ 3 y 2 A .
Finally the last lemma is a simple consequence of the Hölder property :

Lemma 2.8.3. If F µ is Hölder continuous with constant C and exponent β ∈ (0, 1], then for any y > 0 :

1 y sup x∈R [±2ya] |F µ (x + t) -F µ (x)|dt ≤ 50Cy β .
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Cutting the first integral of Lemma 2.8.1 in ±A and using the lemmas gives the following estimate for the Kolmogorov distance between two fixed measures : Proposition 2.8.4. Suppose that µ and ν have finite second moments, smaller than σ ≥ 1, that R |F ν (t) -F µ (t)|dt < ∞, and that F µ is Hölder continuous with constant C and exponent β ∈ (0, 1].

There is a new constant C ′ > 0, only depending on C, such that for any y ∈ (0, 1) and A > 0 :

D(µ, ν) ≤ C ′ A max t∈(±A) |g ν -g µ |(t + iy) + σ 3 y 2 A + y β .

Asymptotic bound

Let us consider µ n and ν n two sequences of probability measures on R + satisfying :

Assumptions 2.8.5. (1) R |F νn (t) -F µn (t)|dt < ∞ for all n (a uniform
bound is not required).

(2) All CDFs F µn are uniformly Hölder continuous with the same exponent β ∈ (0, 1] and constant C > 0.

(3) µ n and ν n have finite second moments bounded by a sequence (σ n ) ≥ 1.

(4) There are exponents k, l ∈ (0, ∞) and a sequence (ϵ n ) > 0 with (σ 3(1+l) n ϵ n ) → 0 such that, for any z ∈ C + :

|g µn (z) -g νn (z)| ≤ ϵ n |z| l (ℑz) k .
This last assumption may be replaced by the following weaker version : (4') There are exponents k, l ∈ (0, ∞), and a sequence (

ϵ n ) > 0 with (σ 3(1+l) n ϵ n ) → 0 such that, setting y n = σ 3(1+l) n ϵ n 1 2+2l+k+(2+l)β and A n = σ 3 n ϵn 1 2+l y k-2 2+l
n , the following inequality holds : sup z=t+iyn, t∈(±An)

|g µn (z) -g νn (z)| ≤ ϵ n |A n + iy n | l y k n .
Theorem 2.8.6. Under the Assumptions 2.8.5 : The Assumptions (1), ( 2) and (3), with β = 1/2 and σ n = 1, are consequences of the previous lemmas. Let us explain why the Assumption (4'), 

D(µ n , ν n ) ≤ O σ 3(1+l) n ϵ n β 2+2l+k+(2+l)β
with l = k = 9 and ϵ n = n -1 (log n) 1 2 holds true. y n = ϵ 1 2+2l+k+(2+l)β n = ϵ 2/69 n is bounded and A n = y -2-β n = ϵ -5/
|g νn (t + iy n ) -g µn (t + iy n )| ≤ max t∈(±An) ϵ n |t + iy n | 5 2 y 9 n ≤ O ϵ n A 9 n y 9 n .
We conclude thatD(µ K , ν) ≤ O ϵ 1/69 n ≤ O n -1/70 . In the case where all γ n ≥ 1, ν has an atom at 0 (see Lemma 2.6.1) and F ν is even discontinuous. We work instead on ν, thanks to the following formulas :

µ Ǩ = (1 -γ n )δ 0 + γ n µ K , ν = (1 -γ n )δ 0 + γ n ν, g Ǩ = γ n -1 z + γ n g K , g ν = γ n -1 z + γ n g ν , F µ Ǩ = (1 -γ n )1 R + + γ n F µ , F ν = (1 -γ n )1 R + + γ n F ν .
ν has no atom in 0, hence all F ν are identically equal to 0 on (-∞, 0]. Given that they also are uniformly 1 2 -Hölder continuous on R + , they are uniformly 1 2 -Hölder continuous on R.

Since |g Ǩ -g ν | = γ n |g K -g ν |,
we can apply Theorem 2.8.6 with the measures µ Ǩ and ν. We conclude that D(µ

K , ν) = γ -1 n D(µ Ǩ , ν) ≤ O n -1/70 .
In all generality, we apply the arguments on the subsequences corresponding to γ n ≤ 1 and γ n > 1 and we still retrieve the same result.

Remark 2.8.9. In the application of Theorem 2.8.6, choosing indices l = 5/2 and k = 9 as in Corollary 2.2.5, would lead to

A 7 n y 16 n ≤ O(ϵ n ) -143/73
≰ o(n) which is not sufficient to apply Corollary 2.2.5. We could have chosen however any l = (43 + ϵ)/5, which yields D(µ K , ν) ≤ O(n -1/67-ϵ ′ ). Given that our quantitative bound is not optimal in the first place, we choose not to include this technical detail in the result.

To prove Corollary 2.2.8 we need a bound on the Kolmogorov distance between Marčenko-Pastur distributions with different shape parameters. Surprisingly enough, we could not find any references for this question, which is why we propose our own proof below. Proof. Let n and p ≥ p ′ be fixed integers, and consider a random matrix Y ∈ R p×n filled with i.i.d. N entries. We set Y ′ = (Y ij ) 1≤i≤p ′ , 1≤j≤n to be the first p ′ × n block matrix of Y , and we define the sample covariance matrices

C = n -1 Y Y ⊤ ∈ R p×p and C ′ = n -1 Y ′ Y ′ ⊤ ∈ R p ′ ×p ′ . We denote by F = F µ C and F ′ = F µ C ′ the CDF corresponding to the ESD of C and C ′ . If λ 1 ≤ • • • ≤ λ p are the ordered eigenvalues of C and λ ′ 1 ≤ • • • ≤ λ ′ p ′ those of C ′ , then F(t) = (1/p) • p k=1 1 λ k ≤t , and similarly F ′ (t) = (1/p) • p k=1 1 λ ′ k ≤t . C ′ being equal to the first p ′ × p ′ block matrix of C, the interlacing eigen- values theorem states that λ k ≤ λ ′ k ≤ λ k+p-p ′ for any k ∈ [[1, p ′ ]].
Depending on the values of t ∈ R, we can distinguish between three cases :

1. If F ′ (t) = 0, then t < λ ′ 1 ≤ λ 1+p-p ′ , hence F(t) ≤ p-p ′ p and |F(t) -F ′ (t)| ≤ p-p ′ p . 2. If F ′ (t) = 1, then t ≥ λ ′ p ′ ≥ λ p ′ , hence F(t) ≥ p ′ p and |F(t) -F ′ (t)| ≤ p-p ′ p . 3. If F ′ (t) = k/p ′ for some k ∈ [[1, p ′ -1]], then λ k ≤ λ ′ k ≤ t < λ ′ k+1 ≤ λ k+1+p-p ′ , in particular k p ≤ F(t) ≤ k+p-p ′ p
. Given that :

k p - k p ′ = k(p -p ′ ) pp ′ ≤ p -p ′ p , k + p -p ′ p - k p ′ = (p -p ′ )(p ′ -k) pp ′ ≤ p -p ′ p ,
in this case we also have |F(t) -F ′ (t)| ≤ p-p ′ p . We have therefore obtained :

D(µ C , µ C ′ ) = sup t∈R |F(t) -F ′ (t)| ≤ p-p ′
p . Consider now parameters γ ≥ γ ′ > 0, and p(n) and p ′ (n) sequences of integers such that p/n → γ and p ′ /n → γ ′ respectively. In this case lim

sup n→∞ D(µ C , µ C ′ ) ≤ lim n→∞ p-p ′ p = γ-γ ′ γ .
On the other hand µ C and µ C ′ converge respectively to MP(γ) and MP(γ ′ ) in Kolmogorov distance ( [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF]). The lemma is proven after taking the limit in the following triangular inequality :

D(MP(γ), MP(γ ′ )) ≤ D(MP(γ), µ C ) + D(µ C , µ C ′ ) + D(µ C ′ , MP(γ ′ )).
Proof of Corollary 2.2.8. The almost surely weak convergence of µ K towards ν ∞ is a consequence of the regularity of the free convolution with respect to the weak convergence of measures. Moreover from [BV93, Proposition 4.13] we have the quantitative bound :

D(ν n , ν ∞ ) ≤ D(MP(γ n ), MP(γ ∞ ))+D(µ Σ , µ ∞ ). Also note that |γn-γ∞| max(γn,γ∞) ≤ O(|γ n -γ ∞ |).
Using the preceding lemma, we get :

D(µ K , ν ∞ ) ≤ O n -1 70 + O(|γ n -γ ∞ |) + D(µ Σ , µ ∞ ).

CHAPITRE 2. GENERAL SAMPLE COVARIANCE MATRICES

Application to kernel methods

This section deals with the regularization of random feature models, using our main result to obtain Theorem 2.9.2. Let us introduce this method, closely following the approach of [JSS + 20].

Kernel ridge regression

In kernel ridge regression (KRR) we are considering a training dataset made of N distincts vectors X 1 , . . . , X N ∈ R D , and associated real numbers labels Y 1 , . . . , Y N , grouped as a vector Y ∈ R N . A kernel K : R D × R D → R is a function such that the matrix K X = (K(X i , X j )) 1≤i,j≤N is definite positive. We define the functions K(•, X j ) :

R D → R, x → K(x, X j ) and K(•, X ) : R D → R N , x → (K(x, X j )) 1≤j≤N .
The goal of KRR is to find in the linear span of {K(•, X j ), 1 ≤ j ≤ N } a function f such that f (X i ) ≈ Y i for all 1 ≤ i ≤ N . More precisely, given a ridge parameter λ > 0, we want to minimize in θ ∈ R N the mean square error with a λ ridge penalization term :

1 N 1≤i≤N   1≤j≤N θ j K(X i , X j ) -Y i   2 + λ N θ ⊤ K(X , X )θ.
Applying basic linear algebra techniques to the above minimization problem, it can be shown that θ = (K X + λI N ) -1 Y is the optimal value for θ, and that :

f (K) λ : R D → R, x → K(x, X )(K X + λI N ) -1 Y
is the optimal function, thus called KRR predictor with ridge λ.

Random features method

A set of random features (RF) associated with the kernel K is a collection Φ = Φ (j) 1≤j≤P of P random i.i.d. processes Φ (j) : R D → R, chosen such that they are centered and admit K as covariance function : for all

x, x ′ ∈ R D , E Φ (j) (x) = 0 and E Φ (j) (x)Φ (j) (x ′ ) = K(x, x ′ ).
In the RF method, we would like to find in the linear span of Φ a function f such that f (X i ) ≈ Y i for all 1 ≤ i ≤ N . More precisely, given a ridge parameter λ > 0, we want to minimize in θ ∈ R P the mean square error with a λ ridge penalization term :

1 N 1≤i≤N   1≤j≤N P -1 2 θ j Φ (j) (X i ) -Y i   2 + λ N θ ⊤ θ.
Let us define the data matrix

F = P -1 2 Φ (j) (X i ) 1≤i≤N,1≤j≤P
∈ R N ×P . Again using linear algebra techniques, it can be shown that :

θ = F ⊤ F F ⊤ + λI N -1
Y is the optimal value for θ, and that :

f (RF ) λ : R D → R x → P -1 2 Φ(x)F ⊤ F F ⊤ + λI N -1
Y is the optimal function, thus called RF predictor with ridge λ.

Effective ridge parameter

The RF predictor is a good approximation of the KRR predictor in the over-parametrized regime P ≫ N . Indeed :

f (RF ) λ (x) = (Ψ(x, X j )) 1≤j≤N (Ψ(X i , X j )) 1≤i,j≤N + λI N -1 Y, where Ψ is the random function (x, x ′ ) → 1 P 1≤k≤P Φ (k) (x)Φ (k) (x ′ ).
When N is fixed and P → ∞, Ψ converges to K by the law of large numbers, hence :

f (RF ) λ (x) → (K(x, X j )) 1≤j≤N (K(X i , X j )) 1≤i,j≤N + λI N -1 Y = f (K) λ (x)
. The under-parametrized regime P < N is more interesting for practical purposes, since computing the RF predictor requires to invert a P × P matrix instead of a N ×N matrix for the KRR predictor. In this regime unfortunately, a systematic bias appears and the RF predictor is not a good estimator of KRR predictor. The authors of [JSS + 20] proved however that the average RF predictor E f (RF ) λ is close to the KRR predictor f (K) λ with a different parameter λ, which they called effective ridge parameter. In order to state their result, let us introduce γ = P N the ratio of dimensions, d i the eigenvalues of K X , and the inverse kernel norm

||•|| K -1 X defined as ||v|| 2 K -1 X = v ⊤ K -1 X v.
Theorem 2.9.1 ( [JSS + 20], Theorem 4.1). If Φ (j) are Gaussian processes, for N, P > 0 and λ > 0, we have :

E f (RF ) λ (x) - f (K) λ (x) ≤ c K(x, x)||Y|| K -1 X P ,
where the effective ridge λ > λ is the unique positive number satisfying :

λ = λ + λ N N i=1 d i λ + d i .
The constant c > 0 only depends on λ, γ, and 1 N Tr K X .

Let us define the measure ν as :

ν = 1 - N P δ 0 + N P MP N P ⊠ µ K X .
We will now see how our main result implies that E f (RF )

λ ≈ f (K)
λ with quantitative bounds, where λ = g ν (λ) -1 . Theorem 2.9.2. Consider Φ (j) random processes (not necessarily Gaussian), such that the data matrix

F is ∝ E 2 (N -1
2 ) concentrated with respect to the Frobenius norm. Assume that |||K X ||| is bounded, and that γ is bounded from above and from below.

Then uniformly in any x ∈ R D and any bounded λ > 0 such that λ -7 ≤ O(N ), with λ = g ν (λ) -1 > λ, as N and P tend to ∞ :

E f (RF ) λ (x) - f (K) λ (x) ≤ O   K(x, x) 1 2 ||Y|| K -1 X N 1 2 λ 9 2   .
The implicit constant in the O(•) notation only depends on the concentration constant of F , and the bounds on γ, K X and λ.

Remark 2.9.3. Both descriptions of the effective ridge parameter λ in the Theorems 2.9.1 and 2.9.2 are of course equivalent, a fact that is best seen using Proposition 2.6.2. As a consequence, one can easily retrieve all properties of λ contained in [JSS + 20, Proposition 4.2] using general results on Stieltjes transforms and free multiplicative convolution. When γ is bounded from above and from below, that is when the dimensions grow at the same rate (up to a multiplicative factor), we can compare Theorems 2.9.1 and 2.9.2, and remark that the convergence speed of the original result is faster than ours. The authors relied on a similar deterministic equivalent result, in operator norm but with a better exponent than the one we obtained in Frobenius norm. This is made posible by reducing the problem to diagonal kernel matrices only, and we believe these arguments to be Gaussian specific.

Proof. By assumption P 1 2 F ∝ E 2 (1), and the columns of P 1 2 F are i.i.d., centered, and admit K X as covariance matrix. We can apply Theorem 2.2.3 with z = -λ ∈ R * -:

E F F ⊤ + λI N -1 - λ λK X + λI N -1 F ≤ O N -1 2 λ -11 2 .
Given the identities F F ⊤ F + λI P -1

F ⊤ = I N -λ F F ⊤ + λI N -1
and I N -

λ λ λ K X + λI N -1 = K X K X + λI N -1
, we have :

E F F ⊤ F + λI P -1 F ⊤ -K X K X + λI N -1 F ≤ O N -1 2 λ -9 2 .
We deduce that :

E f (RF ) λ (x) - f (K) λ (x) = K(x, X ) K -1 X E F F ⊤ F + λI P -1 F ⊤ -K X + λI N -1 Y ≤ O N -1 2 λ -9 2 K(x, X )K -1 X Y ≤ O N -1 2 λ -9 2 ||K(x, X )|| K -1 X ||Y|| K -1 X ,
where we use the Cauchy-Schwarz inequality on the inverse kernel norm to obtain the last estimate. As a general property of inverse kernel norms (see

[JSS + 20, Theorem C.8]), it can be shown that ||K(x, X )|| K -1 X ≤ K(x, x) 1 2
, which concludes the proof. 

Introduction

Artificial neural networks are computing systems inspired by a simplified model of interconnected neurons, storing and exchanging information inside a biological brain. Theorized in the late fifties [START_REF] Rosenblatt | The perceptron : a probabilistic model for information storage and organization in the brain[END_REF], this class of algorithms only established oneself as a cutting-edge technology in the two thousands, thanks to the ever-increasing computing power, and perhaps even more thanks to the accessibility of huge databases in the modern-age internet. Compared to the delicate craftsmanship of artificial intelligence specialists, the mathematical understanding of these networks remained at a very basic level until recently. The classical tools of random matrix theory in particular were helpless regarding the intrinsic non-linear connections between the artificial neurons.

This article is concerned about the conjugate kernel model, first introduced from the point of view of random matrices in [START_REF] Pennington | Nonlinear random matrix theory for deep learning[END_REF]. This model is a random matrix ensemble that corresponds to a multi-layer feed-forward neural network with weights initialized at random, in the asymptotic regime where the network width grows linearly with the sample size. In this setting, the conjugate kernel matrix is simply the sample covariance matrix of the output vectors produced by the final layer of the network. It can be shown that the conjugate kernel governs the training and generalization properties of the underlying network ( [ASS20], [START_REF] Yang | A fine-grained spectral perspective on neural networks[END_REF]). Its spectral properties are thus of great theoretical and practical interest.

The limiting spectral distribution of the conjugate kernel associated to a single-layer network was first characterized in [START_REF] Pennington | Nonlinear random matrix theory for deep learning[END_REF] under the form of a quartic polynomial equation satisfied by the Stieltjes transform of the limiting measure. This was proven rigorously in [START_REF] Benigni | Eigenvalue distribution of some nonlinear models of random matrices[END_REF] under more general assumptions, using advanced combinatorics. Some results on the extremal eigenvalues of the model were even obtained in [START_REF] Benigni | Largest eigenvalues of the conjugate kernel of single-layered neural networks[END_REF]. [START_REF] Péché | A note on the Pennington-Worah distribution[END_REF] first noticed a connection between these equations and the measures obtained from a free multiplicative convolution with some Marčenko-Pastur distributions. Let us also mention the work of [START_REF] Piccolo | Analysis of one-hiddenlayer neural networks via the resolvent method[END_REF], where a variant of model including a rank-one additive perturbation is examined, also by means of combinatorial techniques.

A first step towards a deeper understanding of the model using analytical techniques was done in [START_REF] Louart | Concentration of measure and large random matrices with an application to sample covariance matrices[END_REF], in the case of a single-layer network with deterministic data. [START_REF] Fan | Spectra of the conjugate kernel and neural tangent kernel for linear-width neural networks[END_REF] later generalized this result to random data and multi-layer networks, and was the first paper to convincingly explain the appearance of free probability convolutions in the limiting spectral distribution of the conjugate kernel matrix. A similar analysis was done in [START_REF] Wang | Deformed semicircle law and concentration of nonlinear random matrices for ultra-wide neural networks[END_REF], in the regime where the network width is much larger than the sample size.

The aforementioned results may be classified as global laws, in the sense that they establish the existence of a limiting spectral distribution, a problem that is directly linked to the convergence of the Stieltjes transform via the classical Frobenius-Perron inversion formula. The next natural question that arises in random matrix theory is to look for a deterministic equivalent of the resolvent of the conjugate kernel matrix in the sense of [START_REF] Hachem | Deterministic equivalents for certain functionals of large random matrices[END_REF]. This consists in finding a deterministic matrix that is asymptotically close to the expected resolvent of the matrix, and thus close to the random resolvent itself provided enough concentration in the random matrices. Establishing a deterministic equivalent result allows for instance to approximate linear statistics of the eigenvectors [START_REF] Yang | Linear spectral statistics of eigenvectors of anisotropic sample covariance matrices[END_REF], to examine the convergence of the eigenvectors empirical spectral distributions, and possibly to study the outliers of spiked models [START_REF] Noiry | Spectral measures of spiked random matrices[END_REF]. Regarding classical sample covariance random ensembles, this task was done a decade ago in the series of articles [START_REF] Natesh | Universality of covariance matrices[END_REF], [BEK + 14], [START_REF] Knowles | Anisotropic local laws for random matrices[END_REF]. Such results were recently partially extended to models with a general dependence structure in [START_REF] Louart | Spectral properties of sample covariance matrices arising from random matrices with independent non identically distributed columns[END_REF], [START_REF] Chouard | Quantitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF].

The most important contribution of this article is Theorem 3.7.2, that provides a deterministic equivalent of the conjugate kernel of a multi-layer neural network model. This theorem extends previously known results in various directions. First we include models with non-differentiable activation functions, as well as potential biases inside or outside the activation function. Secondly we give a quantitative estimate for the convergence of the Stieltjes transforms, which translates into a quantitative convergence of the measures in Kolmogorov distance. Finally and most importantly, we obtain local results, taking the form of a deterministic equivalent for the resolvent matrix of the conjugate kernel, quantitatively on both the dimension and the spectral parameter.

In the rest of the paper, we also establish intermediary results that may be interesting by themselves. In particular we show that the free convolution of measures with a Marčenko-Pastur distribution is regular with respect to the Stieltjes transform of these distributions (Theorem 3.4.7). We obtain a similar property for the deterministic equivalent matrices that appear in our results (Proposition 3.4.11). We also show how our framework applies to other models involving entry-wise operations on random matrices in Section 3.5.5. This paper relies mostly on analytical methods that study spectral functions of random matrices. We make great use of the theory of Stieltjes transforms and resolvent matrices, particularly its recent developments towards the deterministic equivalent of general sample covariance matrices ( [LC21], [START_REF] Chouard | Quantitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF]). We introduce a new notion of asymptotic equivalence for objects that depend both on a dimension parameter, and on a complex spectral parameter. Our definition is convenient to work with, whilst keeping enough precision to imply some quantitative results like the convergence of measures in Kolmogorov distance.

This analytical toolbox works in conjunction with concentration of measure principles. We follow the framework of [START_REF] Louart | Concentration of solutions to random equations with concentration of measure hypotheses[END_REF], in particular we use the notion of Lipschitz concentration that is remarkably compatible with entrywise operations on random matrices. We also use a linearization argument to
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83 study the covariance matrices of functions of weakly correlated Gaussian vectors. Using the theory of Hermite polynomials, we provide estimates for this approximation, not only on an entry-wise basis like it was done in [START_REF] Fan | Spectra of the conjugate kernel and neural tangent kernel for linear-width neural networks[END_REF], but also in spectral norm which is new to our knowledge.

After we finished a first version of this manuscript, we came across the preprint [START_REF] Schröder | Deterministic equivalent and error universality of deep random features learning[END_REF], which we were not aware of. A future comparison of the two different perspectives would be certainly interesting, as [START_REF] Schröder | Deterministic equivalent and error universality of deep random features learning[END_REF] studies similar objects and seems to describe related phenomena to those considered here.

Overview of the article

In Section 3.2, we remind the notations and basic properties of concentrated random vectors and matrices, following the framework of [START_REF] Louart | Concentration of solutions to random equations with concentration of measure hypotheses[END_REF]. We also introduce the new notion of asymptotic equivalence that will be key in the rest of the article. In Section 3.3, we address the problem of the approximating the covariance matrices of functions of weakly correlated Gaussian vectors. In Section 3.4, we remind the general deterministic equivalent results on which this article is based, and we study thoroughly the properties of the matrices appearing in these equivalents. In Section 3.5, we study a first artificial neural network model with a single layer and deterministic data. We also explain how our framework applies to other models involving entry-wise operations on random matrices (3.5.5). In Section 3.6, we analyze a second artificial neural network model, still consisting of a single layer but with random data instead. In Section 3.7, we explain how to study multi-layer networks by induction on the model with one layer. In the Appendix 3.8, we prove an independent result about the convergence in Kolmogorov distance of some empirical spectral measures.

General notations and definitions

The set of matrices with d lines, n columns, and entries belonging to a set K is denoted as K d×n . We use the following norms for vectors and matrices : 

∈ C + = {z ∈ C such that ℑ(z) > 0}, we define its resolvent G M (z) = (M -zI n ) -1 and its Stieltjes transform g M (z) = (1/n)TrG M (z).
If µ is a real probability distribution, its Stieltjes transform is

g µ (z) = R µ(dt)
t-z , well defined for z ∈ C + . It is easy to see that the Stieltjes transform of a matrix is the same as the Stieltjes transform of its empirical spectral distribution, that is g µ M (z) = g M (z). We denote by F µ be the cumulative distribution function of the measure µ, and by D(µ, ν) = sup t∈R |F µ (t) -F ν (t)| the Kolmogorov distance between µ and ν.

Let us also introduce two operations on measures : if γ ∈ R, we denote by γ

• µ + (1 -γ) • ν the new measure such that (γ • µ + (1 -γ) • ν)(B) = γµ(B) + (1 -γ)ν(B)
for any measurable set B (it may be a signed measure). If a, b ∈ R, we denote by a+bµ the distribution of the random variable a+bX, where X is a random variable distributed according to µ.

We denote by N a standard (centered and reduced) Gaussian random variable, or the law of this random variable depending on the context. We denote by δ a the Dirac delta distribution centered at a ∈ R, and by MP(γ) the Marčenko-Pastur distribution with shape parameter γ > 0. The operator ⊠ denotes the multiplicative free convolution between measures ( [START_REF] Bercovici | Free convolution of measures with unbounded support[END_REF]). The distribution MP(γ) ⊠ µ may be also defined by its Stieltjes transform g(z), which is the unique Stieltjes transform function that solves the self-consistent equation [START_REF] Marčenko | Distribution of eigenvalues for some sets of random matrices[END_REF] :

g(z) = R 1 (1 -γ -γzg(z))t -z µ(dt).
Throughout this paper, we say that a property occurs almost surely eventually (a.s.e.) if there is a full measure set on which the property holds true for all but finitely many n. Equivalenty, we ask that there is a full measure set on which the property holds true for all integers n greater than a (possibly random) rank n 0 . Such statements typically result from the application of Borel-Cantelli lemma.

For a better readability, we will sometimes omit to mention indices n and spectral parameters z in our notations, especially in the course of technical proofs, even if we are dealing implicitly with sequences and complex functions. 1. We say that X is Lipschitz concentrated if there is a constant C > 0 such that for any sequence of 1-Lipschitz maps f n : E n → C, for any n ∈ N and t ≥ 0 :

P(|f n (X n ) -E[f n (X n )]| ≥ t) ≤ Ce -1 C ( t σn ) 2 .
We note this Lipschitz concentration property X ∝ ||•|| E(σ n ), or simply X ∝ E(σ n ) when there is no ambiguity on the chosen norm.

2. If Z n ∈ E n is a sequence of deterministic vectors, we say that X is linearly concentrated around Z if there is a constant C > 0 such that for any sequence of 1-Lipschitz linear maps f n : E n → C, for any n ∈ N and t ≥ 0 :

P(|f n (X n ) -f n (Z n )| ≥ t) ≤ Ce -1 C ( t σn ) 2 .
We note this linear concentration property

X ∈ ||•|| Z ± E(σ n ), or simply X ∈ Z ± E(σ n ).
We refer to [START_REF] Louart | Spectral properties of sample covariance matrices arising from random matrices with independent non identically distributed columns[END_REF] for a comprehensive study of these notions of concentration. Let us enumerate the main properties that will be used throughout this article : Proposition 3.2.2.

A random vector (respectively a matrix) with i.i.d. N entries is ∝ E(1) concentrated with respect to the Euclidean norm (respectively the Frobenius norm). Other examples are listed in [LC21, Theorem 1].

A Lipschitz transformation of a Lipschitz concentrated vector still verifies a Lipschitz concentration property [LC21, Proposition

1]. 3. If X ∝ E(σ n ), Y ∝ E(σ ′ n ), and X and Y are independent, then (X, Y ) ∝ E(σ n + σ ′ n ) ( [LC21, Proposition 7]). 4. Lipschitz concentration implies linear concentration : if X ∝ E(σ n ), then X ∈ E[X] ± E(σ n )( [LC21, Proposition 4]).
Both definitions are equivalent in one-dimensional spaces.

5. If X ∈ Z ± E(σ n ) and Z is another deterministic vector, we have the equivalence :

X ∈ Z ± E(σ n ) ⇐⇒ Z -Z ≤ O(σ n ) ( [LC21, Lemma 3]). 6. If X ∈ Z ± E(σ n ) and X ′ is another random vector such that ||X ′ || ≤ O(σ n ) a.s., then X + X ′ ∈ Z ± E(σ n ). 7. Since |||•||| ≤ ||•|| F on

matrices, the concentration with respect to the

Frobenius norm is a stronger property than with the spectral norm.

The map

Y → Y ⊤ Y /n -zI p -1 is 2 3/2 |z| 1/2 ℑ(z) 2 √ n -Lipschitz with respect to the Frobenius norm ( [Cho22, Proposition 4.3]). In particular, if Y ∝ ||•|| F E(1), then G Y ⊤ Y /n (z) ∝ ||•|| F E |z| 1/2 ℑ(z) 2 √ n . 9. The map M → 1 n Tr(M ) is 1/ √ n-Lipschitz in Frobenius norm. In par- ticular, if G K (z) ∝ ||•|| F E(σ n ) for some random matrix K ∈ R n×n , then g K (z) ∝ E(σ n / √ n). 10. If a random variable X is ∝ E(σ n ) concentrated, then |X -E[X]| ≤ O( √ log n σ n ) almost surely eventually ( [Cho22, Proposition 3.3]).
We will also need a result for a product of matrices, and introduce for this reason a notion of conditional concentration. If B is a measurable subset of the universe Ω with P(B) > 0, the random matrix X conditioned with the event B, denoted as (X|B), designates the measurable mapping (B, F B , P/P(B)) → E n satisfying : ∀ω ∈ B, (X|B)(ω) = X(ω).

Proposition 3.2.3 (Proposition 9 in [LC20]). If X and Y are sequences of random matrices with dimensions bounded by

O(n), such that (X, Y ) ∝ ||•|| F E(1), E[|||X|||] ≤ O( √ n) and E[|||Y |||] ≤ O( √ n), then there exists a constant c > 0 such that : 1. E[|||X|||] ≤ c √ n and E[|||Y |||] ≤ c √ n. 2. With B = {|||X||| and |||Y ||| ≤ 2c √ n}), P(B c ) ≤ ce -n/c . 3. (XY |B) ∝ ||•|| F E( √ n).

Polynomial bounds in z and notation O z (ϵ n )

Throughout this article we will deal with quantitative estimates involving both a dimension parameter n ∈ N and a spectral parameter z ∈ C + . As it turns out, for many applications it is not useful to track the exact dependence in z, which motivates the following definition : Definition 3.2.4. Let ζ : N × C + → R + be a function and ϵ n > 0 a sequence. We say that ζ is bounded by ϵ n in n and polynomially in z, and we note ζ(n, z) ≤ O z (ϵ n ), if there exists α ≥ 0 such that, uniformly in n ∈ N and z ∈ C + with bounded ℑ(z) :

ζ(n, z) ≤ O ϵ n |z| α ℑ(z) 2α .
We say that a family of functions is uniformly O z (ϵ n ) bounded if the above bound holds uniformly for any function of the family. Remark 3.2.5. By "uniformly in n ∈ N and z ∈ C + with bounded ℑ(z)", we mean that for any fixed τ > 0, the bound holds uniformly in the parameters n and z belonging to the domain {z ∈ C such that 0 < ℑ(z) ≤ τ }. We allow in particular z to vary with n. The implicit constant in the O(•) notation may however depend on τ .

By the way, in such a domain, we have |z| ℑ(z) ≥ 1 and 1

ℑ(z) ≥ 1/τ . As a consequence, if α ′ ≥ α ≥ 0, then |z| α ℑ(z) 2α ≤ τ α ′ -α |z| α ′ ℑ(z) 2α ′ .
The classical rules of calculus thus apply to our notation :

O z (ϵ n ) + O z (ϵ ′ n ) = O z (ϵ n + ϵ ′ n ) and O z (ϵ n )O z (ϵ ′ n ) = O z (ϵ n ϵ ′ n ).
The next technical lemma will be key to translate results like the deterministic equivalent Theorem 3.4.3 into simplified versions using our O z (ϵ n ) notations.

Lemma 3.2.6. If for some constants α 0 , α 1 , . . . , α 6 > 0, the function ζ satisfies an a priori inequality |ζ(n, z)| ≤ O |z| α 1 ϵ α 0 n ℑ(z) α 1 +α 2 , and if the bound :

ζ(n, z) ≤ O ϵ n |z| α 3 ℑ(z) α 3 +α 4
holds uniformly for z ∈ C + with bounded ℑ(z) and satisfying ϵ n |z| α 5 ℑ(z) α 5 +α 6 ≤ c for some constant c > 0, then for some exponent α > 0, the bound :

ζ(n, z) ≤ O ϵ n |z| α ℑ(z) 2α holds uniformly in z ∈ C + with bounded ℑ(z), that is ζ(n, z) ≤ O z (ϵ n ).
Proof. Let us choose α = max (α 5 (α 0 + 1) + α 1 , α 6 (α 0 + 1) + α 2 , α 3 , α 4 ). If ϵ n |z| α 5 ℑ(z) α 5 +α 6 ≤ c, we use the main inequality on ζ :

ζ(n, z) ≤ O ϵ n |z| α 3 ℑ(z) α 3 +α 4 ≤ O ϵ n |z| α ℑ(z) 2α .
In the case where ϵ n |z| α 5 ℑ(z) α 5 +α 6 ≥ c, we use the a priori inequality on ζ :

|ζ(n, z)| ≤ O |z| α 1 ϵ α 0 n ℑ(z) α 1 +α 2 ≤ O   ϵ n |z| α 5 c ℑ(z) α 5 +α 6 α 0 +1 |z| α 1 ℑ(z) α 1 +α 2   ≤ O ϵ n |z| α ℑ(z) 2α .
Remark 3.2.7. As we will see later in this article, the lemma is particularly useful to simplify some quantitative statements that require the spectral parameter z to be away from the real axis. Indeed the Stieltjes tranforms and resolvent matrices satisfy the classical bounds |g(z)| ≤ 1/ℑ(z) and

||G(z)|| F ≤ √ n|||G(z)||| ≤ √ n/ℑ(z)
, which translate into a priori inequalities for any difference of such objects.

Let us wrap this subsection by giving a general setting on which O z (ϵ n ) bounds between Stieltjes transforms imply polynomial bounds in Kolmogorov distance. We remind our reader that for measures ν and µ with cumulative distribution functions F ν and F µ , the Kolmogorov distance is defined as 

D(µ, ν) = sup t∈R |F ν (t) -F µ (t)|.
(z) -g νn (z)| ≤ O z (ϵ n ) for some sequence ϵ n → 0.
Then there exists θ > 0 such that

D(µ n , ν n ) ≤ O(ϵ θ n ).
Remark 3.2.9. In some cases, the uniform Hölder continuity hypothesis may be adapted using a simple change of measures. For instance, given shape parameters γ n > 1 and measures τ n supported on the same compact of (0, ∞), the cumulative distribution function of ν n = MP(γ n ) ⊠ τ n are not even continuous at 0. However we can consider the new measures νn = (1 -γ n ) • δ 0 + γ n • ν n , and use the fact that F νn are uniformly 1/2-Hölder continuous to deduce the same result (see [START_REF] Chouard | Quantitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF]Section 8.3]). A variant of this result for empirical spectral distributions may also be adapted, see Proposition 3.8.1 in the Appendix.

Covariance matrices of coordinate-wise functions of Gaussian vectors

In this section we consider the random vector y = f (u) ∈ R n , obtained by applying a real function on each of the coordinates of a centered Gaussian vector u ∈ R n . We are particularly interested in the case where the entries of u are weakly correlated. In this instance, we will give approximations of the covariance matrix Σ = E yy ⊤ , with a control of the error either entry-wise, or in spectral norm, or for their respective Stieltjes transforms. We first present the tools making these approximations possible.

Hermite polynomials

Let us remind the notation N for a standard Gaussian random variable. We denote by H the Hilbert space of real Borel functions such that E[f (N ) 2 ] < ∞, endowed with the Gaussian inner product :

< f, g >= E[f (N )g(N )] = 1 √ 2π R f (t)g(t)e -t 2 /2 dt.
We can remark that all Lipschitz continuous functions automatically belong to H. The r-th non-normalized Hermite polynomial is by definition : h r (t) = (-1) r e t 2 /2 d r dt r e -t 2 /2 .

The first Hermite polynomials are : (ii) Every function of H can be expanded as the converging sum in H :

h 0 = 1, h 0 = X, h 2 = X 2 -1,
f = r≥0 ζ r (f ) ĥr . In particular ||f || 2 H = E[f (N ) 2 ] = r≥0 ζ r (f ) 2 . (iii)
The Hermite polynomials satisfy the relations :

h ′ r (t) = rh r-1 (t), h r+1 (t) = th r (t) -h ′ r (t).
We move on to more specific properties that shall be used in the course of this section. Lemma 3.3.2 (Lemma D.2 in [START_REF] Quynh | Global convergence of deep networks with one wide layer followed by pyramidal topology[END_REF]). If z 1 and z 2 are standard Gaussian random variables, such that (z 1 , z 2 ) forms a Gaussian vector, then :

E ĥr (z 1 ) ĥs (z 2 ) = 1 r=s Cov[z 1 , z 2 ] r . Proposition 3.3.3. Let us fix f ∈ H, and for r ∈ N let Ψ r (σ) = σ -r E[f (σN )h r (N )]. Then Ψ r is C ∞ on (0, ∞) and Ψ ′ r (σ) = σΨ r+2 (σ). Proof. From the identity E[f (σN )h r (N )] = 1 σ √ 2π R f (t)h r (t/σ)e -t 2
2σ 2 dt and the Leibniz integral rule, we deduce that Ψ r is C ∞ and that :

Ψ ′ r (σ) = d dσ 1 σ r+1 √ 2π R f (t)h r (t/σ)e -t 2 2σ 2 dt = 1 √ 2π R f (t) d dσ 1 σ r+1 h r (t/σ)e -t 2 2σ 2 dt.
The derivative inside the integral can be computed in a few steps. Firstly, from the definition d dt h r (t)e -t 2 /2 = (-1) r d r+1 dt r+1 e -t 2 /2 = -h r+1 (t)e -t 2 /2 . Then applying the identity th r+1 (t) = h r+2 (t) + (r + 1)h r (t), which can be deduced from Proposition 3.3.1, leads to : We obtain finally :

d dσ h r (t/σ)e -t 2 2σ 2 = t σ 2 h r+1 (t/σ)e -t 2 /2σ
Ψ ′ r (σ) = 1 √ 2π R f (t) 1 σ r+2 h r+2 (t/σ)e -t 2 2σ 2 dt = σ • 1 σ r+3 √ 2π R f (t)h r+2 (t/σ)e -t 2 2σ 2 dt = σ • Ψ r+2 (σ).
Corollary 3.3.4. Let f ∈ H, and for σ > 0 let f σ : t → f (σt). Then for any integer r ≥ 0 :

ζ r (f σ ) = σ r (ζ r (f ) + O(σ -1)) = σ r ζ r (f ) + (r + 1)(r + 2)(σ -1)ζ r+2 (f ) + O((σ -1) 2 ) .

FUNCTIONS OF GAUSSIAN VECTORS

91

Proof. These expressions are straightforward consequences of first and second order Taylor expansions of Ψ r . For instance, regarding the second formula :

ζ r (f σ ) = σ r √ r! Ψ r (σ) = σ r √ r! Ψ r (1) + (σ -1)Ψ r+2 (1) + O((σ -1) 2 ) = σ r ζ r (f ) + (r + 1)(r + 2)(σ -1)ζ r+2 (f ) + O((σ -1) 2 ) .

Iterated Hadamard products

In what follows, M •r denotes the Hadamard product of r copies of a matrix M ∈ R n×n . We denote by diag(M ) and off(M ) respectively the diagonal and off-diagonal sub-matrices of M . ⃗ diag(M ) ∈ R n denotes the diagonal elements of M reshaped as a vector in R n . Lemma 3.3.5. If ∆ ∈ R n×n is a symmetric matrix such that I n +∆ is positive semi-definite, then for any integer r ≥ 1 :

∆ •r+1 ≤ (1 + ||∆|| max )|||∆ •r ||| + ||∆|| r max , ∆ •2r ≤ ||∆|| 2r-2 max |||∆ • ∆|||.
Proof. For any matrices A and B ∈ R n×n with A positive semi-definite, the inequality |||A • B||| ≤ ||A|| max |||B||| holds true ( [Joh90, Proposition 3.7.9.]). As a consequence :

∆ •r+1 ≤ |||(I n + ∆) • ∆ •r ||| + |||I n • ∆ •r ||| ≤ ||I n + ∆|| max |||∆ •r ||| + |||diag(∆) r ||| ≤ (1 + ||∆|| max )|||∆ •r ||| + ||∆|| r max .
For the second inequality, since ∆ •2r has non negative entries, there is α ∈ (R + ) n such that ||α|| = 1 and |||∆ •2r ||| = ||∆ •2r α||. We deduce that : 

∆ •2r =    n i=1   n j=1 ∆ 2r ij α j   2    1/2 ≤ ||∆|| 2r-2 max    n i=1   n j=1 ∆ 2 ij α j   2    1/2

General expansion of the covariance matrix Σ

In the following paragraphs we are considering a function f ∈ H, and u ∈ R n a centered Gaussian vector with covariance matrix S ∈ R n×n . The random vector y = f (u) is obtained by applying the function f entry-wise on u, and we let Σ = E yy ⊤ . For 1 ≤ i ≤ n, we denote by f i the function

f i : t → f S 1/2
ii t , and by D r ∈ R n×n the diagonal matrix with entries S ii -r/2 ζ r (f i ).

Proposition 3.3.7. The convergence of the following sum holds entry-wise :

Σ = r≥0 D r S •r D r .
Proof. The random variables ũi = S -1/2 ii u i are standard Gaussian random variables, and they form a Gaussian vector. Using Lemma 3.3.2, we have :

Σ ij = E[f i (ũ i )f j (ũ j )] = r,s≥0 ζ r (f i )ζ s (f j )E ĥr (ũ i ) ĥs (ũ j ) = r≥0 ζ r (f i )ζ r (f j ) Cov[ũ i , ũj ] r = r≥0 ζ r (f i )ζ r (f j )S ii -r/2 S jj -r/2 S ij r = r≥0 (D r ) i (D r ) j (S •r ) ij ,
which proves the proposition.

Approximation of Σ for weakly correlated Gaussian vectors

We will now explain how the expansion of Σ given by Proposition 3.3.7 can be simplified when u has weakly correlated entries, in the sense that its covariance matrix S is close to I n . To this end we let ∆ = S -I n , and : 

Σ approx = ||f || 2 H I n + ζ 2 (f ) 2 2 ⃗ diag(∆) ⃗ diag(∆) ⊤ + r=1,2,3 ζ r (f ) 2 ∆ •
Proof. Let ϵ n = ||∆|| max . Since f is Lipschitz, ||f -f i || L 2 = O 1 -S 1/2 ii = O(ϵ n ). We deduce that |||diag(Σ) -||f ||I n ||| = max 1≤i≤n |||f i || -||f || H | ≤ O(ϵ n ).
For the off-diagonal terms, let ν be the vector in R n defined by its coordinates

ν i = ζ 0 (f i ). Let also µ = ζ 2 (f ) 2 2 ⃗ diag(∆). The decomposition : off(Σ) = off νν ⊤ + r≥1 D r off(∆ •r ) D r
follows easily from the expansion of Σ given by Proposition 3.3.7. Since ζ 0 (f ) = 0 and S

1/2 ii = 1 + ∆ ii 2 + O(∆ 2
ii ), using the second order expansion given by Corollary 3.3.4 applied to the function f , uniformly in i ∈ [[1, n]] we have : 

ν i = ζ 0 (f i ) = √ 2 S 1/2 ii -1 ζ 2 (f ) + O S 1/2 ii -1 2 = ζ 2 (f ) √ 2 ∆ ii + O(∆ 2 ii ) = µ i + O(∆ 2 ii ). Therefore ||ν -µ|| 2 = O( n i=1 ∆ 4 ii ) ≤ O(max 1≤i≤n ∆ 2 ii ) ⃗ diag(∆) 2 ≤ O(ϵ 2 n ), and : off νν ⊤ -µµ ⊤ ≤ ||ν -µ||(||ν|| + ||µ||) + diag νν ⊤ ≤ O(ϵ n ) For the remaining sum r≥1 D r off(∆ •r ) D r , we use again that |ζ r (f i ) -ζ r (f )| ≤ ||f i -f || H ≤ O(ϵ n ), hence |||D r -ζ r (f )I n ||| ≤ O(ϵ n ),
D r off(∆ •r ) D r -ζ r (f ) 2 ∆ •r ≤ |||D r ||| 2 |||diag(∆ •r )||| + |||D r -ζ r (f )I n ||||||∆ •r |||(|||D r ||| + |ζ r (f )|) ≤ O(ϵ n ).
Finally for the remaining terms, using Proposition 3.3.6 for r ≥ 4 :

r≥4 D r off(∆ •r ) D r ≤ r≥2 O ϵ 2r-2 n ≤ O ϵ 2 n .

Linearization of Σ in specific settings

We remind our reader the definition of ∆ = S -I n , and we let :

Σ lin = ||f || 2 H I n + ζ 1 (f ) 2 ∆
The matrix Σ lin is obtained by means of usual matrix operations, easy to handle with classical random matrix theory tools, in contrast to Σ approx which involves Hadamard products. Unfortunately, |||Σ approx -Σ lin ||| may not converge to 0 under the mere Assumptions 3.3.8. We can nonetheless identify conditions involving ∆ and f , under which Σ lin is a good approximation of Σ, either entry-wise, or in spectral norm, or for their respective Stieltjes transforms. 

ϵ n = ζ 2 (f ) 2 ||∆|| 2 max + ζ 3 (f ) 2 ||∆|| 3 max : ||Σ -Σ lin || max ≤ O(||∆|| max ), |||Σ -Σ lin ||| ≤ O(||∆|| max + nϵ n ), |g Σ (z) -g Σ lin (z)| ≤ 1 ℑ(z) 2 O ||∆|| max + √ nϵ n .
Proof. We start from the expression :

Σ approx -Σ lin = ζ 2 (f ) 2 2 ⃗ diag(∆) ⃗ diag(∆) ⊤ + ζ 2 (f ) 2 ∆ •2 + ζ 3 ( f ) 2 ∆ •3
The matrices ⃗ diag(∆) ⃗ diag(∆) ⊤ , ∆ •2 and ∆ •3 are all bounded in spectral norm, thus |||Σ approx -Σ lin ||| is bounded and from Theorem 3.3.9 |||Σ -Σ lin ||| is always bounded. The bound ||Σ approx -Σ lin || max ≤ O(ϵ n ) is immediate given the above expression for the difference of these matrices, and from Theorem 3.3.9 :

||Σ -Σ lin || max ≤ |||Σ -Σ approx ||| + ||Σ approx -Σ lin || max ≤ O(||∆|| max + ϵ n ) ≤ O(||∆|| max ).
The other bounds follow from classical matrix inequalities. Indeed :

|||Σ -Σ lin ||| ≤ |||Σ -Σ approx ||| + |||Σ approx -Σ lin ||| ≤ O(||∆|| max ) + n||Σ approx -Σ lin || max ≤ O(||∆|| max + nϵ n ).
Finally for the inequality on Stieltjes transforms, for any A, B ∈ R n×n and z ∈ C + :

|g A (z) -g B (z)| = 1 n Tr(G A (z)(B -A)G B (z)) ≤ 1 n |||G A (z)|||||I n || F ||B -A|| F |||G B (z)||| ≤ ||B -A|| F √ nℑ(z) 2 .
We deduce that :

|g Σ (z) -g Σ lin (z)| ≤ g Σ (z) -g Σapprox (z) + g Σapprox (z) -g Σ lin (z) ≤ ||Σ -Σ lin || F √ nℑ(z) 2 + ||Σ approx -Σ lin || F √ nℑ(z) 2 ≤ |||Σ -Σ lin ||| ℑ(z) 2 + √ n ||Σ approx -Σ lin || max ℑ(z) 2 ≤ 1 ℑ(z) 2 O ||∆|| max + √ nϵ n .
Remark 3.3.11. In practice, |||Σ -Σ lin ||| converges to 0, provided one of the following additional hypothesis holds true :

-

||∆|| max = o n -1/2 , -ζ 2 (f ) = 0 and ||∆|| max = o n -1/3 , -ζ 2 (f ) = ζ 3 (f ) = 0.
For the Stieltjes transforms, g Σ (z) -g Σ lin (z) converges to 0 pointwise, and thus Σ and Σ lin have the same limiting spectral distribution if it exists, provided one of the following additional hypothesis holds true :

-||∆|| max = o n -1/4 , -ζ 2 (f ) = 0 and ||∆|| max = o n -1/6 , -ζ 2 (f ) = ζ 3 (f ) = 0.

Deterministic equivalent of sample covariance matrices with a general dependence structure

In this section we recall the latest results about the deterministic equivalent of the resolvents of sample covariance matrices on which this article is based. These estimates were first established in [START_REF] Louart | Spectral properties of sample covariance matrices arising from random matrices with independent non identically distributed columns[END_REF] with a convergence speed in n only, and later complemented with quantitative estimates in the spectral parameter z in [START_REF] Chouard | Quantitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF]. In a second step, we will thoroughly study the properties of the deterministic equivalent matrices appearing in these results.

Given Σ ∈ R n×n a positive semi-definite matrix and a sequence of shape parameters γ n > 0, we build the matrix function G Σ ⊠ : C + → C n×n from the following objects :

ν Σ = MP(γ n ) ⊠ µ Σ , νΣ = (1 -γ n ) • δ 0 + γ n • ν Σ , l νΣ (z) = -1/g νΣ (z), G Σ ⊠ (z) = (-zg νΣ (z)Σ -zI n ) -1 , = z -1 l νΣ (z)G L (l νΣ (z)).
Let us state without proofs some useful properties of these objects. νΣ is always a true probability measure ( [Cho22, Lemma 6.1]). The usual resolvent inequality G Σ ⊠ (z) ≤ 1/ℑ(z) holds true ( [Cho22, Lemma 5.1]), and TrG Σ ⊠ (z) = ng ν Σ (z) ( [Cho22, Proposition 6.2]). Remark 3.4.1. The notation G Σ ⊠ (z) is inspired from the free probability theory, which appears as the profound canvas hidden within the above definitions. Indeed it is not difficult to see that the pair g νΣ (z), G Σ ⊠ (z) satisfies the system of self-consistent equations :

g νΣ (z) = -z -z γ n n Tr G Σ ⊠ (z)Σ -1 , G Σ ⊠ (z) = (-zI n -zg νΣ (z)Σ) -1
. This may be rewritten as the operator-valued self-consistent equation :

zH(z) = I n+1 + zη(H(z))H(z), where H(z) = g νΣ (z) 0 0 G Σ ⊠ (z)
, and :

η : C ⊕ C n×n → C ⊕ C n×n , g 0 0 G → γn n Tr(GΣ) 0 0 gΣ .
zH(z 2 ) thus corresponds to the resolvent of an operator-valued free semicircular variable with covariance η (see [START_REF] Rashidi Far | Spectra of large block matrices[END_REF]Section 3.3]). In this sense the definition of G Σ ⊠ (z) extends the notion of free convolution, and it should come as no surprise that such objects appear as deterministic equivalents of sample covariance matrices.

General results

Let Y ∈ R d×n be a sequence of random matrices. The associated sample covariance matrix is K = Y ⊤ Y /d, and for z ∈ C + we define its resolvent G K (z) = (K -zI n ) -1 and Stieltjes transform g K (z) = (1/n)TrG K (z). From the expected covariance matrix Σ = E[K], we follow the above procedure to build the measure ν Σ and the matrix function G Σ ⊠ (z). Assumptions 3.4. 

E[G K (z)] -G Σ ⊠ (z) F ≤ O |z| 5/2 ℑ(z) 9 n 1/2 .
Remark 3.4.4. By "uniformly under Assumptions 3.4.2", we mean that the implicit constants in the result only depend on the constants chosen in the assumptions. Said otherwise, if a family of random matrices satisfies Assumptions 3.4.2 uniformly, then the result holds uniformly for any matrix of this family.

Keeping track of the exponents appearing in this theorem will become more and more difficult as we go further into this article. We choose for this reason to work with a weaker notion of approximation using our concept of O z (ϵ n ) polynomial bounds. As a side effect, we will see that we do not need to specify conditions on z anymore for the approximations to hold true. Theorem 3.4.5 (Simplified version of the deterministic equivalent). Uniformly under Assumptions 3.4.2, the following concentration properties hold true :

1. g K (z) ∝ E(O z (1/n)) and G K (z) ∝ ||•|| F E(O z (1/ √ n)). 2. g K (z) ∈ g ν Σ (z) ± E(O z (1/n)) and G K (z) ∈ ||•|| F G Σ ⊠ (z) ± E(O z (1/ √ n)).
Proof. From Theorem 3.4.3, Lemma 3.2.6 and the bound E

[G K (z)] -G Σ ⊠ (z) F ≤ 2 √ n/ℑ(z), we have E[G K (z)] -G Σ ⊠ (z) F ≤ O z (1/ √ n).
The general properties of concentration recalled in Proposition 3.2.2 prove the theorem.

Similarly to [Cho22, Corolaries 2.5 and 2.8], we may deduce the following spectral properties of K. We will not prove this result immediately, but rather prompt our reader to consult the proof of Corollary 3.5.9 which is extremely similar.

Corollary 3.4.6. Uniformly under Assumptions 3.4.2 :

1. |g K (z) -g ν Σ (z)| ≤ O z √
log n/n almost surely eventually (a.s.e.), and

G K (z) -G Σ ⊠ (z) max ≤ O z log n/n a.s.e.
2. If the eigenvalues of Σ are bounded from below, there exists θ > 0 such that D(µ K , ν Σ ) ≤ O(n -θ ) a.s.e.

If additionally

µ Σ → µ ∞ weakly and γ n → γ ∞ , then µ K → ν ∞ = MP(γ ∞ ) ⊠ µ ∞ weakly a.s.
, and more precisely :

D(µ K , ν ∞ ) ≤ D(µ Σ , µ ∞ ) + O(|γ n -γ ∞ |) + O(n -θ ) a.s.e.

Regularity of the Stieltjes transform with respect to the free convolution

Let Σ ∈ R n×n be a sequence of positive semi-definite matrices, and let τ be probability measures such that g Σ (z) -g τ (z) converges to 0 pointwise in C + . Then µ Σ and τ converge weakly to the same limit if it exists. The free multiplicative convolution measures ν Σ = MP(γ n ) ⊠ µ Σ and χ = MP(γ n ) ⊠ τ also converge weakly to the same limit, which is equivalent to their Stieltjes transforms g ν Σ (z) and g χ (z) having the same limit pointwise. In this section we would like to refine this result by quantifying the convergence of g ν Σ (z)-g χ (z) to 0.

In the upcoming paragraphs, we always consider shape parameters γ n that are bounded from above and away from 0, like in Assumptions 3.4.2. We remind our reader that we are dealing with sequences of matrices, measures, and complex functions, even if we sometimes omit the indices n and z for a better readability. Theorem 3.4.7. Let Σ ∈ R n×n be deterministic positive semi-definite matrices, and τ deterministic probability measures supported on R

+ . If |g Σ (z) -g τ (z)| ≤ O z (ϵ n ), then |g ν Σ (z) -g χ (z)| ≤ O z (ϵ n ).
The proof of this result may be decomposed in several steps. First we translate the definition of the measures ν and χ into appropriate self-consistent equations on their reciprocal Cauchy transforms (Proposition 3.4.8). Then we Lemma 3.4.9. With the same notations and hypothesis as in Proposition 3.4.8 :

0 ≤ ℑ z -1 l ν (z) , ℑ(z) ≤ ℑ(l ν (z)) ≤ O(1 + ℑ(z)), |l ν (z)| ≤ O |z| ℑ(z) .
In particular if a function ζ :

N × C + → R satisfies ζ(n, z) ≤ O z (ϵ n ), then ζ(n, l ν (z)) ≤ O z (ϵ n ). Proof. ν = MP(γ n ) ⊠ µ is supported on R + , thus : -ℑ z l ν = -ℑ(1 -γ n -γ n zg ν ) = γ n R + ℑ z t -z ν(dt) = γ n ℑ(z) R + t |t -z| 2 ν(dt) ≥ 0, which proves that ℑ(z -1 l ν ) ≥ 0. Secondly : ℑ(l ν -z) = ℑ   γ n z R t zt l ν -z µ(dt)   = γ n R + ℑ 1 1/l ν -1/t µ(dt) = γ n R + ℑ(l ν )t 2 ℜ(l ν ) 2 + ℑ(l ν ) 2 + t 2 -2ℜ(l ν )t µ(dt) ≥ 0.
The right hand side integral is bounded from above by 1

ℑ(l ν ) R + t 2 µ(dt), hence ℑ(l ν ) 2 ≤ ℑ(z)ℑ(l ν ) + γ n R + t 2 µ(dt). Solving this second order polynomial inequality gives ℑ(l ν ) ∈ ℑ(z)/2 ± (γ n R + t 2 µ(dt) + ℑ(z) 2 /4) 1/2 and ℑ(l ν ) ≤ O(1 + ℑ(z)
). We also have ℑ zt l ν ≤ 0 for any t ≥ 0, hence :

|l ν | ≤ |z| + γ n |z| R + t ℑ zt l ν -z µ(dt) ≤ |z| + γ n |z| ℑ(z) R + t µ(dt) ≤ O |z| ℑ(z) .
For the last statement, let ζ be a function such that ζ(n, z) ≤ O z (ϵ n ). If ℑ(z) is bounded, so is ℑ(l ν (z)), hence there exists α > 0 such that :

ζ(n, l ν (z)) ≤ O ϵ n |l ν (z)| α ℑ(l ν (z)) 2α ≤ O ϵ n |z| α ℑ(z) 3α ≤ O ϵ n |z| 2α ℑ(z) 4α , from which we deduce that ζ(n, l ν (z)) ≤ O z (ϵ n ).
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Let us now move on to the second part of the proof of Theorem 3.4.7. We define the mapping :

F : l ∈ C + → z + γ n z n Tr z l Σ -zI n -1 Σ .
As shown in Proposition 3.4.8, the definition of F is equivalent to :

F(l) = z + γ n z R t zt l -z µ Σ (dt) = z + γ n l + γ n l 2 g Σ (l).
We set l νΣ (z) = -1/g νΣ (z) and l χ(z) = -1/g χ(z). In Proposition 3.4.8 we have proved that l νΣ (z) is a fixed point of F. We will see in the next proposition that l χ(z) is almost a fixed point of F.

Proposition 3.4.10. |F(l χ(z)) -l χ(z)| ≤ O z (ϵ n ).
Proof. Using the first formulation of the self-consistent equation of Proposition 3.4.8, we have l χ = z + γ n l χ + γ n l 2 χg ν (l χ), thus :

F(l χ) -l χ = γ n l 2 χ(g µ Σ (l χ) -g τ (l χ)). As seen in Lemma 3.4.9, since |g µ Σ (z) -g τ (z)| ≤ O z (ϵ n ), we also have |g µ Σ (l χ(z)) -g τ (l χ(z))| ≤ O z (ϵ n ),
and we obtain :

|F(l χ) -l χ| ≤ |γ n ||l χ| 2 |g µ Σ (l χ) -g τ (l χ)| ≤ O(1)O |z| ℑ(z) 2 O z (ϵ n ) ≤ O z (ϵ n ).
The last step to prove Theorem 3.4.7 is to use the stability of the selfconsistent equation l = F(l). Let us recall the tools and results established in [Cho22, Section 6]. For a fixed z ∈ C + , we introduce the domain D = {ω ∈ C such that ℑ(ω) ≥ ℑ(z) and ℑ(z -1 ω) ≥ 0}, and the semi-metric on C + : 

d(ω 1 , ω 2 ) = |ω 1 -ω 2 | ℑ(ω 1 ) 1/2 ℑ(ω 2 ) 1/2 . F is a contraction mapping on D with respect to d. More precisely, F is k F - Lipschitz with k F = |z| ℑ(z) 2 1+ |z| ℑ(z) 2 ( [Cho22, Proposition 6.11]). Moreover, if c ∈ D is a fixed point of
|c -b| ≤ |F(b) -b| 1 -k F (1 + d(b, F(b)))
.

We have now collected all the arguments required to compare the Stieltjes transforms of ν Σ and χ. 

(l χ) -l χ| ≤ Cϵ n |z| α ℑ(z) 2α . For values of z such that ϵ n |z| α+1 ℑ(z) 2α+3 ≤ 1/2C, |z| ℑ(z) 2 d(F(l χ), l χ) ≤ 1/2, thus : k F (1 + d(F(l χ), l χ)) = |z| ℑ(z) 2 + |z| ℑ(z) 2 d(F(l χ), l χ) 1 + |z| ℑ(z) 2 ≤ 1 - 1 2 1 + |z| ℑ(z) 2 .
In particular k F (1 + d(F(l χ), l χ)) < 1, and from [Cho22, Lemma 6.14] :

|l χ -l νΣ | ≤ |F(l χ) -l χ| 1 -k F (1 + d(F(l χ), l χ)) ≤ 2 1 + |z| ℑ(z) 2 Cϵ n |z| α ℑ(z) 2α ≤ O ϵ n |z| α+1 ℑ(z) 2α+2 .
To conclude :

|g ν Σ -g χ | = |g νΣ -g χ| γ = |g νΣ ||g χ||l νΣ -l χ| γ n ≤ O ϵ n |z| α+1 ℑ(z) 2α+2 , for values of z such that ϵ n |z| α+1 ℑ(z) 2α+3 ≤ 1 2C . Given the a priori bound |g ν Σ (z) -g χ (z)| ≤ 2 ℑ(z) and Lemma 3.2.6, the bound |g ν Σ (z) -g χ (z)| ≤ O z (ϵ n ) holds true.

Approximation of the deterministic equivalent built from deterministic matrices

Given an approximation for the Stieltjes transform g Σ (z) ≈ g τ (z), and another approximation for the resolvent G Σ (z) ≈ H(z), can we find an approximation for the matrix G Σ ⊠ (z) ? To this end we build a matrix function K using the same procedure we mentioned earlier to build G Σ ⊠ from µ Σ and G Σ :

χ = MP(γ n ) ⊠ τ, χ = (1 -γ n ) • δ 0 + γ n • χ, l χ(z) = -1/g χ(z), K(z) = z -1 l χ(z)H(l χ(z)).
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C + → C n×n deterministic complex functions. If |g Σ (z) -g τ (z)| ≤ O z (ϵ n ) and |||G Σ (z) -H(z)||| ≤ O z (ϵ ′ n ), then G Σ ⊠ (z) -K(z) ≤ O z (ϵ n + ϵ ′ n ).
Proof. We use a triangular inequality in the following decomposition :

G Σ ⊠ (z) -K(z) = z -1 (l ν -l χ)G Σ (l ν ) + z -1 l χ(G Σ (l ν ) -G Σ (l χ)) + z -1 l χ(G Σ (l χ) -H(l χ)).
For the first term,

|l ν -l χ| ≤ O z (ϵ n ) and |||G Σ (l ν )||| ≤ 1 ℑ(l ν ) ≤ 1 ℑ(z) , thus |||z -1 (l ν -l χ)G Σ (l ν )||| ≤ O z (ϵ n ).
For the second term, using a resolvent identity :

z -1 l χ(G Σ (l ν ) -G Σ (l χ)) ≤ z -1 l χ(z) |||G Σ (l ν )||||l ν -l χ||||G Σ (l χ)||| ≤ 1 |z| O |z| ℑ(z) O z (ϵ n ) ℑ(z) 2 ≤ O z (ϵ n ).
Finally for the third term, |||G Σ (l χ) -H(l χ)||| ≤ O z (ϵ ′ n ) using Lemma 3.4.9, thus :

z -1 l χ(G Σ (l χ) -H(l χ)) ≤ 1 |z| O |z| ℑ(z) O z (ϵ ′ n ) ≤ O z (ϵ ′ n ).
Corollary 3.4.12. The map Σ → G Σ ⊠ (z) is O z (1) Lipschitz with respect to the spectral norm.

Proof. Using a resolvent identity we have :

|||G Σ (z) -G Σ ′ (z)||| ≤ |||G Σ (z)||||||Σ ′ -Σ||||||G Σ (z)||| ≤ |||Σ -Σ ′ ||| ℑ(z) 2 . In particular g Σ (z) -g Σ ′ (z) ≤ |||G Σ (z) -G Σ ′ (z)||| ≤ O z (|||Σ -Σ ′ |||).
The result follows from Theorem 3.4.7 and Proposition 3.4.11.

Concentration of the deterministic equivalent built from random matrices

If Σ is random and satisfies a typical E(1/ √ n) Lipschitz concentration property, from the approximations E[g Σ (z)] ≈ g τ (z) and E[G Σ (z)] ≈ H(z), we may deduce that g Σ (z) ≈ g τ (z) a.s., but we cannot expect that G Σ (z) ≈ H(z) since G Σ (z) and E[G Σ (z)] are not necessarily close in spectral norm. We can however prove that G Σ ⊠ (z) is linearly concentrated around K(z).

f is Lipschitz continuous and Gaussian

centered, that is E f (N ) = E[f (σN )] = 0. 3. X is deterministic and |||K X ||| is bounded.

4.

⃗ diag(∆ X ) is bounded and ||∆ X || max converges to 0. 5. The ratio γ n = n d is bounded from above and away from 0. We refer to the Remark 3.5.8 for a detailed discussion about the assumption (4). The main result of this section is Theorem 3.5.7 that gives a deterministic equivalent for G K (z) and g K (z). To prove this result, we will combine the general results on resolvent matrices recalled in Section 3.4, with the linearization techniques of Section 3.3. We will wrap up this section by applying our framework to a simple yet original model having weakly correlated entries. 

Technicalities and linearization of Σ

Y ij = f   d 0 k=1 W ik X kj / d 0 + B ij   + D ij ,
we see that the rows of Y are independent and have the same distribution as y = f X ⊤ w/ √ d 0 + b + b. For the last statement, we may write y = f (u) + b, where u is a centered Gaussian vector with covariance matrix

S = (σ 2 W K X + σ 2 B I n )/σ 2 . We have S -I n = (σ 2 W /σ 2 )∆ X , hence the ran- dom variables u i are centered Gaussian with covariance 1 + O((∆ X ) ii ). Since ζ 0 ( f ) = E[f ( 
σN )] = 0, using the first order expansion given by Corollary 3.3.4 applied to the function f , we have

E f (u i ) = O((∆ X ) ii ) uniformly on i ∈ [[1, n]]. We deduce that ||E[y]|| = E f (u) = O ⃗ diag(∆ X ) = O(1).
Corollary 3.5.4. Under Assumptions 3.5.2, |||Σ||| is bounded, and moreover :

|||Σ -Σ lin ||| ≤ O(||∆ X || max + nζ 2 ( f ) 2 ||∆ X || 2 max + nζ 3 ( f ) 2 ||∆ X || 3 max ), |g Σ (z) -g Σ lin (z)| ≤ O(||∆ X || max + √ nζ 2 ( f ) 2 ||∆ X || 2 max + √ nζ 3 ( f ) 2 ||∆ X || 3 max ).
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Proof. As seen in the last proposition, the rows of Y are i.i.d. sampled from the distribution of a vector y = f (u) + b where u is a centered Gaussian vector with covariance matrix S = I n + ∆, and ∆ = (σ 2 W /σ 2 )∆ X . The Assumptions 3.3.8 are satisfied, and we deduce from Proposition 3.3.10 that |||Σ -Σ lin ||| is bounded. Since |||K X ||| is bounded and Σ lin = aI n +bK X , |||Σ||| is also bounded. From the same proposition, we have the following estimates in spectral norm, with

ϵ n = ||∆ X || max + nζ 2 ( f ) 2 ||∆ X || 2 max + nζ 3 ( f ) 2 ||∆ X || 3 max : E f (u) f (u) ⊤ = f 2 I n + ζ 1 ( f ) 2 ∆ + O(ϵ n ) = f 2 I n + ζ 1 ( f ) 2 (σ 2 W /σ 2 ) K X -σ 2 X I n + O(ϵ n ) Σ = E yy ⊤ = E f (u) f (u) ⊤ + σ 2 D I n = f 2 - σ 2 W σ 2 X σ2 ζ 1 ( f ) 2 + σ 2 D I n + ζ 1 ( f ) 2 σ 2 W σ2 K X + O(ϵ n ) = Σ lin + O(ϵ n ).
The proof for the Stieltjes transforms is similar.

Propagation of the approximate orthogonality

The contents of this paragraph will not be useful right away in this section, but rather in later stages of the article to study multi-layer networks by induction. Similar results may be found in [FW20, Section D] under the name of propagation of approximate orthogonality (see Remark 3.5.8 for more details on this concept), and proved by slightly different means. 

Lemma 3.5.5. Let σ 2 Y = f 2 H + σ 2 D , and ∆ Y = K -σ 2 Y I n = Y ⊤ Y /d -
E Y 2 ii = E f (u i ) + b i 2 = ζ 0 ( f 2 ) + O((∆ X ) ii ) + σ 2 D = f 2 H + σ 2 D + O((∆ X ) ii ) = σ 2 Y + O((∆ X ) ii ). We deduce that E ⃗ diag(∆ Y ) 2 ≤ n i=1 O((∆ X ) 2 ii ) ≤ O ⃗ diag(∆ X ) 2 ≤ O(1). Since ⃗ diag(∆ Y )|B ∝ ||•|| E(1/ √ n), ⃗ diag(∆ Y ) -E ⃗ diag(∆ Y ) ≤ O(
Σ -σ 2 Y I n max ≤ ||Σ -Σ lin || max + O(||∆ X || max ) ≤ O(||∆ X || max ),
which proves the result after a final triangular inequality.

Deterministic equivalent and consequences

We let ν Σ lin = MP(γ n ) ⊠ µ Σ lin , and we refer to the beginning of Section 3.4 for the definition of the deterministic equivalent matrix function G Σ lin ⊠ (z). Remark 3.5.6. If b = 0, then Σ lin does not depend on X and the objects ν Σ lin and G Σ lin ⊠ (z) are fully explicit. Indeed Σ lin = aI n , µ Σ lin = δ a , and ν Σ lin = MP(γ n ) ⊠ δ a = aMP(γ n ). Since Σ lin is a multiple of the identity matrix, so are G Σ lin (z) and G Σ lin ⊠ , hence :

G Σ lin ⊠ (z) = 1 n TrG Σ lin ⊠ (z) I n = g aMP(γn) (z)I n .
Note that if f ̸ = 0, then a ̸ = 0 and g aMP(γn) (z) = ag MP(γn) (z/a).

In the case where b ̸ = 0, we can describe the deterministic equivalents as functions of X.

Indeed µ Σ lin = a + bµ K X , ν Σ lin = MP(γ n ) ⊠ (a + bµ K X ), and since G Σ lin (z) = 1 b G K X z-a b : G Σ lin ⊠ (z) = z -1 l νΣ lin (z)G L (l νΣ lin (z)) = l νΣ lin (z) bz G K X l νL (z) -a b ,
where νΣ lin = (1 -γ n ) • δ 0 + γ n • ν Σ lin and l νΣ lin (z) = -1/g νΣ lin (z).
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For the next results, let us denote :

ϵ n = 1 n + ||∆ X || max + √ nζ 2 ( f ) 2 ||∆ X || 2 max + √ nζ 3 ( f ) 2 ||∆ X || 3 max , ϵ ′ n = 1 √ n + ||∆ X || max + nζ 2 ( f ) 2 ||∆ X || 2 max + nζ 3 ( f ) 2 ||∆ X || 3 max .
Theorem 3.5.7. Uniformly under Assumptions 3.5.2, the following concentration properties hold true :

1. g K (z) ∝ E(O z (1/n)) and G K (z) ∝ ||•|| F E(O z (1/ √ n)). 2. g K (z) ∈ g ν Σ lin (z) ± E(O z (ϵ n )) and G K (z) ∈ |||•||| G Σ lin ⊠ (z) ± E(O z (ϵ ′ n )).
Remark 3.5.8. Assumption 3.5.2(4) states roughly that the data matrix is close to being an orthogonal matrix (up to rescaling), a notion that was first introduced in [FW20] under the name of approximate orthogonality. If this holds true, the conjugate kernel model may be compared to a classical model derived from matrices with i.i.d. entries. To clarify this point, the assumption on ||∆ X || max measures how the entries of Y are dependent and how far they are from being standard Gaussian random variables individually. The additional bound on ⃗ diag(∆ X ) ensures that the latter phenomenon occurs somewhat uniformly.

In order for the deterministic equivalents to be meaningful, we need that ϵ n converges to 0 for the Stieltjes transforms, and that ϵ ′ n converges to 0 for the resolvent matrices. This is a stronger assumption, that depends both on the data matrix X, and on the activation function f . More precisely, K X should not be too far from I n entry-wise, to an extent that also depends on how far f is from acting linearly on Gaussians.

In If f is not linear, or if f is linear and the eigenvalues of K X are bounded from below, then the eigenvalues of Σ lin are bounded from below. In this case, for values of γ n ≤ 1, the cumulative distribution functions F ν Σ lin are uniformly Hölder continuous with exponent β = 1/2. For values of γ n ≥ 1, the cumulative distribution functions F νΣ lin are uniformly Hölder continuous with exponent β = 1/2 (see [START_REF] Chouard | Quantitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF]Section 8.3] and Remark 3.2.9). In both cases, from Proposition 3.2.8 we may deduce the second assertion.

Finally for the third assertion, using the properties of the free multiplicative convolution [BV93, Proposition 4.13] we deduce that ν Σ lin converges weakly to ν ∞ , and that :

D(ν Σ lin , ν ∞ ) ≤ D(MP(γ n ), MP(γ ∞ )) + D(µ Σ lin , a + bµ ∞ ) ≤ O(|γ n -γ ∞ | + D(µ K X , µ ∞ )).

Application to another model involving entry-wise operations

In this paragraph we show how our framework applies to other models of random matrices, not strictly related to artificial neural networks.

We consider U ∈ R n×n a Gaussian random matrix filled with N random variables, i.i.d. within the columns and weakly correlated within the rows. More precisely, we consider u ∈ R n a Gaussian random vector, centered, with covariance matrix : .

S =           1 1/n .
We let U be the random matrix with i.i.d. sampled columns from the distribution of u. Let f = tanh be the hyperbolic tangent function, B and D ∈ R n×n independent random matrices filled with i.i.d. N random variables, and Y = f (U + B) + D. We want to apply the contents of this section to study the spectral properties of the sample covariance matrix K = Y ⊤ Y /n, its resolvent G K (z) = (K -zI n ) -1 , and its Stieltjes transform g K (z) = (1/n)TrG K (z). Let us denote by J ∈ R n×n the matrix whose entries are all equal to 1, so that S = I n + (J -I n )/n. In law U = XW , where W ∈ R n×n is a matrix filled with i.i.d. N entries, independent from the other sources of randomness, and X = S 1/2 . Up to a transposition in the independence structure, the model Y is equal in law as f (XW + B) + D, and satisfies the Assumptions 3.5.2, 3. X is random, independent from W , B and D. There is an event B with P(B c ) ≤ O( √ log n/n), such that (X|B) ∝ ||•|| F E(1).

4. There is a sequence ϵ n converging to 0, such that uniformly in ω ∈ B, |||K X ||| and ⃗ diag(∆ X ) are bounded, and ||∆ X || max ≤ O(ϵ n ).

5. The ratio γ n = n d is bounded from above and away from 0. 6. There is a sequence εn ≥ 0 such that |E[g K X (z)] -g τ (z)| ≤ O z (ε n ) for some sequence of measures τ supported on R + .

7. There is a sequence ε′ n ≥ εn such that |||E[G K X (z)] -H(z)||| ≤ O z (ε ′ n ) for some sequence of matrix functions H : C + → C n×n satisfying |||H||| ≤ 1/ℑ(z).

Remark 3.6.2. Compared to Assumptions 3.5.2, in the assertions (3) and (4) we ask the data matrix X to be independent from the other random matrices, well concentrated, and uniformly approximately orthogonal on an event of high probability.

Let us explain why P(B c ) ≤ O( √ log n/n) is a convenient choice to simplify our results. We claim that, up to a O z ( √ log n/n) error that will blend into similar terms, it will be equivalent for us to compute expectations on the whole probability set or on B. The assertions (6) and (7) correspond to deterministic equivalents for the Stieltjes transform and the resolvent of K X . If ζ 1 ( f ) = 0 then b = 0, and as seen in Remark 3.5.6 the deterministic equivalents will not depend on X. In this case τ and H(z) will not appear in the results and the assertions (6) and (7) are in essence empty.

Deterministic equivalent and consequences

We let ν Σ X = MP(γ n ) ⊠ µ Σ X , and we refer to the beginning of Section 3.4 for the definition of the deterministic equivalent matrix function G Σ X ⊠ (z). Similarly to the process used to express G Σ X ⊠ (z) as a function of µ K X and G K X Proof. If ζ 1 ( f ) = 0, then Σ X does not depend at all on X, G Σ X ⊠ (z) = K(z) and ν Σ X = χ. If ζ 1 ( f ) ̸ = 0, from Proposition 3.2.3 applied to (X|B), there is a constant c > 0, and an event B ′ ⊂ B with P(B ′c ) ≤ P(B c ) + ce -n/c ≤ O( √ log n/n), on which (Σ

X |B ′ ) ∝ ||•|| F E(1/ √ n).
As explained in the Remark 3.6.2, given the a priori bounds on Stieltjes transforms and on the spectral norm of resolvent matrices, we may pass from expectations on B ′ to expectations on the full probability set, at the cost of a O z ( √ log n/n) error term. We thus have :

|E B ′ [g Σ X (z)] -g a+bτ (z)| = |E[1 B ′ (g Σ X (z) -g a+bτ (z))]| / P(B ′ ) ≤ 1 b E g K X z -a b - 1 b g τ z -a b + O z ( log n/n) ≤ O z (ε n + log n/n).
Proposition 3.4.13 applied to (Σ X |B ′ ) implies that :

|E B ′ [g ν Σ X (z)] -g χ (z)| ≤ O z (ε n + log n/n), hence |E[g ν Σ X (z)] -g χ (z)| ≤ O z (ε n + √ log n/n).
Similarly for the resolvents :

E B ′ [G Σ X (z)] - 1 b H z -a b = E 1 b G K X z -a b - 1 b H z -a b + O z ( log n/n) ≤ O z (ε ′ n + log n/n),
which implies by Proposition 3.4.13 that E

B ′ G Σ X ⊠ (z) -K(z) ≤ O z (ε n + ε′ n +1/ √ n) ≤ O z (ε ′ n +1/ √ n), and E G Σ X ⊠ (z) -K(z) ≤ O z (ε ′ n +1/ √ n).
We remind our reader that the sequences ϵ appearing in the Assumptions 3.6.1 measure the lack of orthogonality of X for ϵ n , and the convergence speeds in the deterministic equivalents g K X (z) ≈ g τ (z) for εn , and G K X (z) ≈ H(z) for ε′ n respectively. For the next results, let us denote :

εn = log n/n + ζ 1 ( f )ε n + ϵ n + √ nζ 2 ( f ) 2 ϵ 2 n + √ nζ 3 ( f ) 2 ϵ 3 n , ε′ n = 1/ √ n + ζ 1 ( f )ε ′ n + ϵ n + nζ 2 ( f ) 2 ϵ 2 n + nζ 3 ( f ) 2 ϵ 3 n .
εn and ε′ n will correspond to the new convergence speeds in the deterministic equivalents g K (z) ≈ g χ (z) and G K (z) ≈ K(z). Theorem 3.6.4. Uniformly under Assumptions 3.6.1, there is an event B ′ ⊂ B with P(B ′c ) ≤ O( √ log n/n), such that the following conditional concentration properties hold true :

1. (Y |B ′ ) ∝ ||•|| F E(1), (g K (z)|B ′ ) ∝ E(O z (1/n)), and 
(G K (z)|B ′ ) ∝ ||•|| F E(O z (1/ √ n)).

(g

K (z)|B ′ ) ∈ g χ (z) ± E(O z (ε n )) and (G K (z)|B ′ ) ∈ |||•||| K(z) ± E(O z (ε ′ n )).
Proof. For a better readability in the upcoming arguments, we choose to omit the spectral parameters z in most of our notations. From Proposition 3. To compare these expectations, as explained in the Remark 3.6.2, we may assume without loss of generality that B ′ = Ω, because the additional O z ( √ log n/n) error terms will not change the final estimates.

We apply Theorem 3.5.7 to the models with deterministic data matrices X(ω), uniformly in the outcomes ω ∈ Ω X . Since 1/ √ n ≤ ε′ n and ϵ n + nζ 2 ( f ) 2 ϵ 2 n + nζ 3 ( f ) 2 ϵ 3 n ≤ ε′ n , we obtain that

G K(ω) ∈ |||•||| G Σ X (ω) ⊠ ± E(O z (ε ′ n ).
As a consequence, we get uniformly in ω ∈ Ω X :

E W,B,D [G K (ω)] -G Σ X (ω) ⊠ ≤ O z (ε ′ n ).
Since X is independent from the other sources of randomness, for any measurable function Φ we have E[Φ(W, X, B, D)|X] = E W,B,D [Φ(W, X, B, D)].
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We integrate the above inequality with respect to X, and using the tower property of conditional expectation :

E[G K ] -E G Σ X ⊠ = E E G K -G Σ X ⊠ |X ≤ E X E W,B,D [G K ] -G Σ X ⊠ ≤ O z (ε ′ n ).
From Lemma 3.6.3 we also have As we did for Corollary 3.4.6, we will not prove this result here, but rather prompt our reader to consult the proof of Corollary 3.5.9 which is extremely similar.

E G Σ X ⊠ -K ≤ ζ 1 ( f )O z (ε ′ n + 1/ √ n) ≤ O z (ε ′ n ), hence |||E[G K ] -K||| ≤ O z (ε ′ n ).

Application to data matrices with i.i.d. columns

In this paragraph we focus on a fairly general setting, where the data matrix X is made of independent samples, and we explore the consequences given by our deterministic equivalents. Let us first mention a general framework on which the Assumption 3.6.1(4) holds true. Proposition 3.6.6 ( [FW20], Proposition 3.3). Let X ∈ R d 0 ×n be a random matrix whose columns are i.i.d. sampled from the distribution of a random vector x ∈ R d 0 , such that x ∝ ||•|| E(1), E[x] = 0, and E ||x|| 2 = σ 2

x d 0 . We also assume the ratio n d 0 to be bounded from above and away from 0. Then there is an event B with P(B c ) ≤ O(1/n), such that uniformly in ω ∈ B, |||K X ||| and ⃗ diag(∆ X ) are bounded, and ||∆ X || max ≤ O(ϵ n ) with ϵ n = log n/n. Remark 3.6.7. The exact statement in [START_REF] Fan | Spectra of the conjugate kernel and neural tangent kernel for linear-width neural networks[END_REF] is actually more general, because it requires for x to be concentrated in a weaker sense, called convex concentration. We will not digress on this here but rather refer our reader to [LC20, Section 1.7], which presents in all the details this variant of concentration. Also note that in the above result, we only need concentration for the columns of X, while in our deterministic equivalent, we need concentration for the whole matrix X.

To obtain deterministic equivalents for the input data matrix, it is of course possible to use again Theorem 3.4.5 : Proposition 3.6.8. If X ∈ R d 0 ×n is a random matrix, ∝ ||•|| F E(1) concentrated, whose columns are i.i.d. sampled from the distribution of a random vector x ∈ R d 0 , with ||E[x]|| and |||E[K X ]||| bounded, and if the ratio n/d 0 is bounded from above and away from 0, then with τ = MP(n/d 0 ) ⊠ µ E[K X ] :

|E[g K X (z)] -g τ (z)| ≤ O z (1/n) E[G K X (z)] -G E[K X ] ⊠ (z) ≤ O z (1/ √ n).
If we combine the previous propositions, we obtain deterministic equivalents for the conjugate kernel model in a fairly general setting where the data matrix is made of i.i.d. training samples. This encompasses in particular the case where X is a matrix with i.i.d. N entries, which was the original model studied in [START_REF] Pennington | Nonlinear random matrix theory for deep learning[END_REF].

Remark 3.6.9. Note that the typical order of magnitude ϵ n = log n/n given by Proposition 3.6.6 is good enough for a meaningful equivalent of the Stieltjes transform, with a O z (log n/ √ n) convergence speed. However it is not small enough for the resolvent, where we would have an O z (ζ 2 ( f ) 2 log n) error term, unless of course ζ 2 ( f ) = 0 (see Remark 3.5.8). If ζ 2 ( f ) = 0, we obtain a O z (log n) 3/2 / √ n error term for the deterministic equivalent of the resolvent. This condition ζ 2 ( f ) = 0, and more generally the Hermite coefficients of the activation function f , appear in other articles that study the conjugate kernel model. Let us consider indeed Ỹ = √ aZ + √ bW X/ √ d 0 , and K = Ỹ ⊤ Ỹ /d, where Z is a third random matrix, independent from the others, and filled with i.i.d. N entries. Using Theorem 3.5.7 conditionally on X and similar arguments to those of this paper, we see that G K (z) also admits G E[K X ] ⊠ (z) as a deterministic equivalent, with a O z (log n) 3/2 / √ n error term in the case where ζ 2 ( f ) = 0.

In [BP21, Theorem 2.3], using combinatorics it is shown that the biggest eigenvalues of both models behave similarly if ζ 2 ( f ) = 0. Although we could not manage to retrieve this property with our deterministic equivalent solely, there is without a doubt a connection between these statements. [BP21] also provides other equivalent models in the case where ζ 2 ( f ) ̸ = 0, which we could not relate to our results.

Matrices aléatoires de covariance et réseaux de neurones artificiels

Résumé : Cette thèse est consacrée à l'étude asymptotique de certains modèles de matrices aléatoires de covariance empirique, en utilisant une approche analytique et notamment en étudiant leur matrice résolvante. Elle se décompose en deux parties.

Dans un premier temps nous nous intéressons aux matrices de covariance issues de matrices avec une structure de dépendance partielle en colonnes. Nous fournissons un équivalent déterministe explicite pour la matrice résolvante de tels modèles, quantitatif en la dimension et le paramètre spectral de la résolvante. Ce résultat de type loi locale permet d'étudier les statistiques spectrales fines de ces matrices, et notamment de préciser la vitesse de convergence des mesures spectrales empiriques en distance de Kolmogorov.

Dans un second temps nous étudions le modèle du noyau conjugué, qui reproduit le comportement d'un réseau de neurones artificiels à propagation avant lors de sa phase d'initialisation. Ce modèle se distingue des modèles habituellement considérés en matrices aléatoires par l'application d'une fonction réelle entrée par entrée. Nous utilisons les résultats généraux obtenus précédemment pour obtenir un équivalent déterministe quantitatif pour la résolvante du noyau conjugué. Cet équivalent permet de mieux comprendre les propriétés spectrales de ce modèle, et aussi de donner un sens à un phénomène d'universalité appelé principe d'équivalence gaussienne dans le domaine de l'apprentissage machine.

Sample covariance matrices arising in artificial neural networks

Abstract : This thesis is devoted to the asymptotic study of some sample covariance random matrices models, by means of analytical methods and in particular by studying their resolvent. It subdivides into two parts.

First, we focus on sample covariance matrices derived from matrices with a partial dependence structure in columns. We provide an explicit deterministic equivalent for the resolvent of such models, quantitative in both the dimension and the spectral parameter. This local law-type result enables us to study fine spectral statistics of such matrices, and in particular to specify the speed of convergence of the empirical spectral measures in Kolmogorov distance.

Secondly, we study the conjugate kernel model, which modelizes a feedforward artificial neural network at initialization. This model differs from classical random matrix models in that a real function is applied entry-wise on the matrices. We use the aforementioned results to obtain a quantitative deterministic equivalent for the conjugate kernel resolvent. This equivalent provides a better understanding of the spectral properties of this model, and it highlights a universality phenomenon also known as Gaussian equivalence principle in machine learning.

  Nous notons K p×n l'ensemble des matrices avec p lignes, n colonnes, et à coefficients à valeurs dans K = R ou C. Si M ∈ K p×n , on note sa transposée M ⊤ , et dans le cas d'une matrice carrée sa trace Tr(M ) = n i=1 M ii . Nous utilisons les normes vectorielles et matricielles suivantes : la norme euclidienne ||•||, la norme de Frobenius ||•|| F , la norme spectrale |||•|||, et la norme du maximum des entrées ||•|| max .

  Louart et Couillet ([LC20]), qui est particulièrement adapté pour travailler avec les matrices aléatoires et leurs transformations. Rappelons les définitions de norme spectrale |||M ||| = sup ∥x∥=1 ||M x||, norme de Frobenius

  pour la transformée de Stieltjes et la résolvante de K 0 respectivement. Ces équivalents déterministes sont les mêmes que ceux correspondant à une matrice de Wishart colorée de covariance Σ, que l'on peut d'ailleurs supposer gaussienne.Le Théorème 1.4.1 fournit alors les équivalents déterministes g ν (l)n (z) et G l (z)pour les noyaux conjugués K l . À l'aide de la version complète de notre résultat pour un modèle incorporant des biais (cf. Remarque 3.7.6), on peut voir que ces objets sont les mêmes que ceux d'un autre réseau de neurones, avec une fonction d'activation linéaire mais où on a rajouté une matrice de biais à chaque couche. Ce nouveau modèle, qui n'implique plus que des matrices gaussiennes et des opérations linéaires sur les matrices, peut être vu comme un modèle linéarisé gaussien équivalent du modèle du noyau conjugué dans le sens précis suivant : CHAPITRE 1. INTRODUCTION Proposition 1.4.3. On suppose que :

  ||•|| the Euclidean norm, ||•|| F the Frobenius norm, and |||•||| the spectral norm. Given M ∈ C p×p , we denote respectively by M ⊤ its transpose, by M † its transconjugate, and by Tr(M ) = 1≤i≤p M ii its trace. If M is real and diagonalizable we denote by SpM its spectrum, and by µ M = 1 p λ∈SpM δ λ its empirical spectral distribution (ESD). Let us define the sphere S p-1 = {u ∈ R p such that ||u|| = 1}. If u ∈ S p-1 , we also define the eigenvector empirical spectral distribution (VESD) of M in the direction u as µ M,u = λ∈SpM u ⊤ v λ 2 δ λ , where v λ ∈ S p-1 are normalized eigenvectors associated to the eigenvalues λ of M .

Proposition 2 .

 2 4.2. ℑ(G) = ℑ(z)GG † and ℑ(zG) = ℑ(z)KGG † . In particular ℑ(G) and ℑ(zG) are positive semi-definite.Proof. Using the resolvent identity, 2iℑ(G) = G -G = G(-zI p + zI p )G = 2iℑ(z)GG † . Given that zG = KG -I p we also get ℑ(zG) = Kℑ(G) = ℑ(z)KGG † . The matrices GG † and K commute and are both positive semidefinite, which achieves the proof.

1 2 ,

 2 and by Proposition 2.3.3 Var[Tr(BG -Σ)] ≤ O(n -1 η 4 |z|). We combine both estimates to obtain the inequality (2.4.2) :

  x 1 = x. The other columns are i.i.d. sampled with the same law as x, hence Σ = E[K] = E[xx ⊤ ]. Without loss of generality, we can assume that ||E[x]|| ≤ 1 and |||Σ||| ≤ 1.

Theorem 2 .

 2 5.3 (First equivalent).Let z ∈ R * -or C + be spectral arguments, such that η 10 |z| 3 ≤ O(n), and |z| ≤ O(1) in the real case, or ℑ(z) ≤ O(1) in the complex case. Then :

  and from Proposition 2.4.5 Var [ζ] ≤ O(η 4 ) uniformly in B. Using the deterministic bound |a -1 | ≤ η, we have :

Proposition 2 .

 2 6.4. |b -F(b)| ≤ O n -1 η 5 |z| 5 2 .

2 by

 2 necessarily |l -c| = 0 and l must be equal to c.Proposition 2.6.9. |b -c| ≤ O n -1 |z| -7 2 .Proof. With k F = γn (1+|z|)(γn+|z|) ≤ 1 1+|z| < 1, by Proposition 2.6.7 :|b -c| ≤ |b -F(b)| + |F(b) -F(c)| ≤ |b -F(b)| + k F |b -c|.Given that |b -F(b)| ≤ O n -1 |z| -5 Proposition 2.6.4 and 1 1

Lemma 2 . 6 . 14 .

 2614 Let f : C + → C + be k f -Lipshitz with respect to d, let c be a fixed point of f and let b ∈ C + be another point. We let ∆ = d(b, f (b)). If k f (1 + ∆) < 1, then the following inequality holds true :

  case, or τ = |z| 1 2

Lemma 2 .

 2 8.10. If γ and γ′ > 0, then D(MP(γ), MP(γ ′ )) ≤ |γ-γ ′ | max(γ,γ ′ ) .
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  ||•|| the Euclidean norm, ||•|| F the Frobenius norm, |||•||| the spectral norm, and ||•|| max the entry-wise maximum norm. Given M ∈ C n×n , we denote by M ⊤ its transpose, and by Tr(M ) = n i=1 M ii its trace. If M is real and diagonalizable we denote by SpM its spectrum and by µ M = 1 n λ∈SpM δ λ its empirical spectral distribution. If M is symmetric positive semi-definite, then SpM ⊂ R + , and given a spectral parameter z

  Let X n be a sequence of random vectors in finite dimensional normed vector spaces (E n , ||•||), and let σ n > 0 be a sequence.

and h 3 =

 3 X 3 -3X. The r-th normalized Hermite polynomial is ĥr = hr √ r! , and the r-th Hermite coefficient of a function f ∈ H is ζ r (f ) =< f, ĥr >. Hereafter we remind some classical properties of Hermite polynomials without proofs. For more details, we invite our reader to consult [San59, Chapter 4]. Proposition 3.3.1. (i) h r are monic polynomials of degree r. ( ĥr ) r∈N form a complete orthonormal basis of H.

  and in particular |||D r ||| ≤ O(1). Using Proposition 3.3.6, for r = 1, 2 or 3 :

F

  and b ∈ D any other point, provided k F (1 + d(b, F(b))) < 1, the following inequality holds true ( [Cho22, Lemma 6.14]) :

CHAPITRE 3 .

 3 EQUIVALENT OF THE CONJUGATE KERNELProof of Theorem 3.4.7. If ℑ(z) is bounded, using Proposition 3.4.10 there exists α and C > 0 such that |F

  Proposition 3.5.3. Under Assumptions 3.5.2, Y ∝ ||•|| F E(1). The rows of Y are i.i.d. sampled from the distribution of a random vector y = f (X ⊤ w/ √ d 0 + b) + b, where w ∈ R d 0 and b, b ∈ R n are independent Gaussian vectors with i.i.d. N (σ 2 W ), N (σ 2 B ) and N (σ 2 D ) coordinates respectively. ||E[y]|| is moreover bounded. Proof. The map (W, B, D) → f (W X/ √ d 0 + B) + D is Lipschitz with respect to the product Frobenius norm since f is Lipschitz and X/ √ d 0 is bounded. Given the Gaussian concentration (W, B, D) ∝ ||•|| F E(1), we immediately obtain that Y ∝ ||•|| F E(1). From the expression :

  practice, for the Stieltjes transforms and a general activation functionf we need ||∆ X || max = o n -1/4 . If ζ 2 ( f ) = 0, which happens for instance if f is odd symmetric, this convergence can be relaxed to ||∆ X || max = o n -1/6 . If ζ 2 ( f ) = ζ 3 ( f ) = 0,no additional hypothesis is required as ϵ n = ||∆ X || max converges already to 0. For the resolvent matrices, the equivalent statements boil down to||∆ X || max = o n -1/2 in general, ||∆ X || max = o n -1/3 if ζ 2 ( f ) = 0, and no additional hypothesis if ζ 2 ( f ) = ζ 3 ( f ) = 0.Proof of Theorem 3.5.7. Y satisfies the Assumptions 3.4.2 as seen in Proposition 3.5.3. We deduce from Theorem 3.4.5 the Lipschitz concentration properties (1) and the linear concentration properties GK (z) ∈ ||•|| F G Σ ⊠ (z) ± E(O z (1/ √ n))and g K (z) ∈ g ν (z) ± E(O z (1/n)). Moreover from Theorem 3.4.7

  Indeed, if a random function ζ : N × C + → C satisfies the a priori bound ζ(n, z) ≤ 1/ℑ(z), then we have :|E B [ζ] -E[ζ]| = |E[1 B ζ]/P(B) -E[ζ]| = |E[1 B c ζ] + E[ζ]P(B c )| P(B) ≤ 2P(B c ) 1 -P(B c ) 1 ℑ(z) ≤ O z (P(B c )) ≤ O z ( log n/n).

3. 6 .

 6 SINGLE-LAYER NETWORK WITH RANDOM DATA 115 (see Remark 3.5.6), we define the objects :χ = MP(γ n ) ⊠ (a + bτ ), χ = (1 -γ n ) • δ 0 + γ n • χ, l χ(z) = -1/g χ(z), K(z) = z -1 l χ(z) b H l χ(z) -a b if b ̸ = 0, K(z) = g aMP(γn) (z)I n if b = 0. Lemma 3.6.3. Under Assumptions 3.6.1, |E[g ν Σ X (z)] -g χ (z)| ≤ ζ 1 ( f )O z (ε n + √ log n/n), and E G Σ X ⊠ (z) -K(z) ≤ ζ 1 ( f )O z (ε ′ n + 1/ √ n).

  2.3 applied to (W, (X|B))∝ ||•|| F E(1), there is a constant c > 0 and an eventB ′ ⊂ B, with P(B ′c ) ≤ P(B c )+ce -n/c ≤ O( √ log n/n), such that (W X|B ′ ) ∝ ||•|| F E( √ n).The map (U, B, D) → f (U + B) + D is Lipschitz with respect to the Frobenius norm, and by independence (W X/√ d 0 |B ′ ), B, D ∝ ||•|| F E(1), thus (Y |B ′ ) = f (W X/ √ d 0 |B ′ ) + B + D ∝ ||•|| F E(1). The general concentration properties recalled in Proposition 3.2.2 imply that (gK |B ′ ) ∝ E(O z (1/n)) and (G K |B ′ ) ∝ ||•|| F E(O z (1/ √ n)).For the second assertion, given the linear concentration properties(G K |B ′ ) ∈ |||•||| E[(G K |B ′ )]±E(O z (1/ √ n)) and (g K |B ′ ) ∈ E[(g K |B ′ )]±E(O z (1/n)), we only need to prove that |E[(g K |B ′ )] -g χ | ≤ O z (ε n ), and that |||E[(G K |B ′ )] -K||| ≤ O z (ε ′ n ).
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Théorème 1.1.4.

  

[BEK + 14] Soit Y ∈ R p×n une matrice aléatoire telle que : 1. Le rapport des dimensions γ n = p n est majoré et minoré par des constantes strictement positives. 2. Les entrées de Y sont i.i.d., centrées, de variance 1 et de classe d'intégrabilité L 4 . Alors la fonction à valeurs matricielles G(z) = g MP(γn) (z)I p est un équivalent déterministe de G K (z) au sens suivant : avec

  . Le facteur √ log n qui apparaît dans l'inégalité est une simple technicité pour obtenir une propriété p.s. Le résultat n'est de fait pas énoncé sous cette forme dans [BEK + 14], mais en utilisant le concept propre à cet article de domination stochastique. Les auteurs obtiennent ainsi leurs estimées sur des évènements de grande probabilité, ce qui implique des bornes asymptotiques p.s. en utilisant le lemme de Borel-Cantelli, au prix d'un facteur √ log n. Nous retrouverons beaucoup de ces caractéristiques dans nos propres énoncés.

  n'y a pas d'ambiguïté sur le choix de la norme.La norme ||•|| apparaît de façon cruciale dans cette définition car elle détermine la famille des fonctions 1-Lipschitz pour lesquelles l'inégalité de concentration est vérifiée uniformément. Remarquons que plus une norme est grande, plus elle induit une notion de concentration qui est forte. En particulier la concentration en norme de Frobenius d'une suite de matrices aléatoires est une propriété plus forte que sa concentration en norme spectrale, car la 1.2. MODÈLES AVEC UNE DÉPENDANCE PARTIELLE 13 norme spectrale d'une matrice est toujours inférieure ou égale à sa norme de Frobenius.Démentons tout de suite une idée fausse que l'on pourrait se faire au sujet de cette notion de concentration : lorsque les dimensions des espaces E n tendent vers +∞, X n ∝ ||•|| E(σ n ) ne signifie pas que X n est proche de son espérance en norme, mais seulement que les observations lipschitziennes unidimensionnelles se situent à une distance typique O(σ n ) de leur espérance. Plus précisément, |f n

  1. 1. The columns of X are i.i.d. sampled from the distribution of a random vector x, such that ||E[x]|| and |||Σ||| = E[xx ⊤ ] are bounded. 2. The sequence X is ∝ E 2 (1) concentrated with respect to the Frobenius norm, in the sense that all 1-Lipschitz functions of X satisfy a concentration inequality in e -(•) 2 (see Definition 2.3.1 below).

  Under the Assumptions 2.2.1 and the additional hypothesis that Σ is invertible and |||Σ -1 ||| is bounded, we have :

	2.2. SETTING
	Theorem 2.2.7.

.

  Lemma 2.8.8. |||K||| ≤ O(1) almost surely eventually (a.s.e.). In particular µ K have uniformly bounded support a.s.e. and the second moments of µ K are uniformly bounded a.s.e. |||K||| = n -1 |||X||| 2 ≤ O(1) a.s.e. which in turn implies that µ K have uniformly bounded support and uniformly bounded second moments a.s.e. Proof of Theorem 2.2.7. Let us first treat the case where all γ n ≤ 1. We want to apply Theorem 2.8.6 with the measures µ K and ν.

	Proof. From Proposition 2.3.4 we have |||X -E[X]||| ≤ O n	1 2	a.s.e. Given
	that |||E[X]||| = n	1 2 ||E[x]|| = O(n	1 2 ), we also have |||X||| ≤ O n	1 2	a.s.e. As
	a consequence,				

  All z = t + iy n , where t ∈ (±A n ), satisfy the Assumptions of Corollary 2.2.5, which is why :

	n	69	, hence |An+iyn| 7 y 16 n	≤ O ϵ -67/69 n	= o(n).
	max t∈(±An)				

  The following result is an immediate consequence of[START_REF] Chouard | Quantitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF] Theorem 3.6]. Let µ n and ν n be sequences of probability measures on R + such that :1. R |F µn (t) -F νn (t)|dt < ∞.2. F νn are uniformly Hölder continuous with exponent β ∈ (0, 1].3. µ n and ν n have uniformly bounded second moments.

	Proposition 3.2.8.

4. |g µn

  If ∆ ∈ R n×n is a sequence of symmetric matrices such that I n + ∆ is positive semi-definite, ||∆|| max converges to 0 and |||∆||| is bounded, then for any r ≥ 1 the quantities |||∆ •2r ||| , |||off(∆ •2r )|||, |||∆ •2r+1 ||| and |||off(∆ •2r+1 )||| are all bounded by O ||∆|| 2r-2 According to the preceding lemma, |||∆ • ∆||| ≤ (1 + ||∆|| max )|||∆||| + ||∆|| max ≤ O(1). This implies that : |||∆ •2r ||| ≤ ||∆|| 2r-2 max |||∆ • ∆||| ≤ O ||∆|| 2r-2 max , and |||∆ •2r+1 ||| ≤ (1 + ||∆|| max )|||∆ •2r |||+||∆|| 2r max ≤ O ||∆|| 2r-2 max . The remaining results follow after remarking that |||diag(∆ •r )||| ≤ O(||∆|| r max ).

	Proposition 3.3.6. max	when n goes to ∞.
	Proof.	
	≤ ||∆|| 2r-2 max |||∆ • ∆|||.

  r |||Σ -Σ approx ||| ≤ O(||∆|| max ).

	Assumptions 3.3.8.	1. f is Lipschitz and Gaussian centered, i.e. ζ 0 (f ) =
	E[f (N )] = 0.	
	2. |||∆||| and ⃗ diag(∆) are bounded.
	3. ||∆|| max converges to 0.
	Theorem 3.3.9. Under Assumptions 3.3.8,

  Proposition 3.3.10. Under Assumptions 3.3.8, |||Σ -Σ lin ||| is bounded, and with

  2. 1. Y ∝ ||•|| F E(1), the rows of Y are i.i.d. sampled from the distribution of a random vector y, with ||E[y]|| and E[yy ⊤ ] = |||Σ||| bounded. 2. The ratio of dimensions γ n = n d is bounded from above and away from 0. Theorem 2.3] Uniformly under Assumptions 3.4.2, there exists C > 0 such that uniformly in z ∈ C + with ℑ(z) bounded and

	Theorem 3.4.3. [Cho22, |z| 7 ℑ(z) 16 ≤ Cn, the following inequality holds :

  σ 2 Y I n . Under Assumptions 3.5.2, there exists an event B with P(B c ) ≤ ce -n/c for some constant c > 0, such that uniformly on B, ⃗ diag(∆ Y ) and |||K||| are bounded, and ||∆ Y || max ≤ O ||∆ X || max + log n/n . We will check the other statements in expectation first, and in a second stage use concentration to obtain bounds on the random objects. For any i ∈ [[1, n]], Y ii has the same distribution as f (u i ) + bi , where u i and bi are centered Gaussian variables, independent, with variances 1 + O((∆ X ) ii ) and σ 2 D respectively. Using the first order expansion given by Corollary 3.3.4 applied to the function f 2 , uniformly on i ∈ [[1, n]] we have :

	Proof. We have |||E[Y ]||| 2 ≤ ||E[Y ]|| 2 F ≤ d||E[y]|| 2 ≤ O(n). From Proposition 3.2.3, there exists a constant c > 0 and an event B with P(B c ) ≤ ce -n/c , such that (K|B) ∝ ||•|| F E(1/ √ n), and |||Y ||| ≤ 2c √ n on B, thus |||K||| is bounded on
	B.

  Finally ||K -Σ|| max ≤ O log n/n a.s. on B using the general properties of concentration listed in Proposition 3.2.2, and from Proposition 3.3.10 :

1) a.s. on B, and ⃗ diag(∆ Y ) ≤ O(1) a.s. on B.

  The proof for the Stieltjes transforms is similar. Uniformly under Assumptions 3.6.1 :1. |g K (z) -g χ (z)| ≤ √ log n O z (ε n ) almostsurely eventually (a.s.e.), and ||G K (z) -K(z)|| max ≤ √ log n O z (ε ′ n ) a.s.e. 2. If f is not linear, or if is f linear and the measures τ are supported on the same compact of (0, ∞), there exists θ > 0 such that D(µ K , χ) ≤ O(ε θ n ) a.s.e. 3. If moreover τ converges weakly to a measure τ ∞ , and if γ n → γ ∞ , then µ

	Corollary 3.6.5.

K converges weakly a.s. to χ ∞ = MP(γ ∞ ) ⊠ (a + bτ ∞ ), and more precisely :

D(µ K , χ ∞ ) ≤ O D(τ, τ ∞ ) + |γ n -γ ∞ | + εθ n a.s.e.

Remerciements

CHAPITRE 2. GENERAL SAMPLE COVARIANCE MATRICES

Proof. The idea is to optimize the inequality given by Proposition 3.8.2 in both y and A. We pass on the details leading to the aforementioned choices of y n and A n . We claim that ϵ n

n An = y β n . This fact is related to the properties of optimizing sequences and can also be checked manually. Indeed

n An , and :

Also note that y n → 0, and A n ≥ y -2-β n → ∞, in particular (y n ) ∈ (0, 1) and A n ≥ 1 for n large enough. From Assumption 2.8.5 (4') : max t∈(±An)

We finally apply Proposition 3.8.2 :

Application to the empirical spectral distribution of sample covariance matrices

Let us go back to the setting of our main result. To apply Theorem 2.8.6 given the bound of Corollary 2.2.5, we need to address two difficulties : the Hölder property for the CDF of ν n = MP(γ n ) ⊠ µ Σ , and a control on the second moment of µ K . Lemma 2.8.7. If Σ is invertible and |||Σ -1 ||| is bounded, then all CDF of ν n are uniformly 1/2-Hölder continuous on R + . If moreover γ n ≤ 1, the same property holds on R.

Proof. ν n = MP(γ n ) ⊠ µ Σ is supported on 0, (1 + γ 1 2 n ) 2 λ max (Σ) and admits a continuous density on f ν on (0, ∞) that satisfies f ν (t) ≤ π -1 (λ min (Σ)tγ n ) -1 2 ( [BHZ12, Lemma 2.3]). Given the bounds on γ n and the eigenvalues of Σ, we deduce that all F νn are uniformly 1/2-Hölder continuous on R + . In the case γ n ≤ 1, all F νn are identically equal to 0 on (-∞, 0], hence the Hölder continuity on R.

Chapitre 3

Deterministic equivalent of the conjugate kernel matrix associated to artificial neural networks

This self-contained chapter has been taken from the article [START_REF] Chouard | Deterministic equivalent of the conjugate kernel matrix associated to artificial neural networks[END_REF], to be submitted soon, and available on arXiv.

Abstract

We study the conjugate kernel associated to a multi-layer linear-width feed-forward neural network with random weights, biases and data. We show that the empirical spectral distribution of the conjugate kernel converges to a deterministic limit. More precisely we obtain a deterministic equivalent for its Stieltjes transform and its resolvent, with quantitative bounds involving both the dimension and the spectral parameter. The limiting equivalent objects are described by iterating free convolution of measures and classical matrix operations involving the parameters of the model.

show that χ is an approximate fixed point of the equation corresponding to ν (Proposition 3.4.10). Finally we use the stability of the self-consistent equation and the tools developed in [START_REF] Louart | Spectral properties of sample covariance matrices arising from random matrices with independent non identically distributed columns[END_REF] and [START_REF] Chouard | Quantitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF] to conclude.

The key function in the upcoming paragraphs l νΣ (z) = -1/g ν (z) is known as the reciprocal Cauchy transform of the measure νΣ . As such some classical properties of this function may be found in the seminal book [MS17, Section 3.4]. We will nonetheless provide short proofs for all the properties we need in this article.

Proposition 3.4.8 (Self-consistent equation for reciprocal Cauchy transforms). If µ is a measure supported on R + , we let

Then l ν (z) is the only solution on C + of the self consistent equation in l :

Proof. The two right hand side terms are always equal since :

Let us work with the first formulation. It is a classical property of Stieltjes transforms that g ν (z) ∈ C + when z ∈ C + , hence l ν (z) ∈ C + . Since g ν = γn-1 z + γ n g ν , we have the identity 1 -γ n -γ n zg ν = z l ν . By definition of the free multiplicative convolution with a Marčenko-Pastur distribution, g ν is the only solution on C + of :

Using again the identity 1 -γ n -γ n zg ν = z l ν , the self-consistent equation characterizing g ν is equivalent for l ν to satisfy :

2. If τ are deterministic probability measures supported on R + such that

) almost surely eventually (a.s.e.).

If in addition H

Proof. We refer to Proposition 3.2.2 for the properties of Lipschitz and linear concentrations used in this proof. The map Σ → G Σ ⊠ is O z (1) Lipschitz with respect to the spectral norm, thus

s.e. We can apply Theorem 3.4.7 uniformly on this set of full measure, and we obtain that

In the decomposition :

the first two terms are bounded by

s.e. in spectral norm (see the proof of Proposition 3.4.11). For the third term,

and combining the above estimates and concentration properties leads to G

3.5. SINGLE-LAYER NETWORK WITH DETERMINISTIC DATA 105

Single-layer neural network with deterministic data

Setting

In this section we consider the conjugate kernel matrix associated to a single-layer artificial neural network with deterministic input. The model is made of :

-a random weight matrix W ∈ R d×d 0 , -a deterministic data matrix X ∈ R d 0 ×n , -two random biases matrices B and D ∈ R d×n , -an activation function f : R → R, -and real parameters σ 2 W , σ 2 X > 0 and σ 2 B , σ 2 D ≥ 0 that will appear later in Assumptions 3.5.2.

As output of the neuron, we set

where the function f is applied entry-wise. Our goal is to investigate the spectral properties of the conjugate kernel matrix

We also define the following objects :

. Moreover a = 0 if and only if f is a linear function and there is no bias in the model (that is σ 2 B = σ 2 D = 0). Like in the rest of this article, we sometimes omit the indices n and z for a better readability, even if we are implicitly dealing with sequences of matrices, measures, and complex functions. Assumptions 3.5.2.

1. W , B and D are random, independent, with i.i.d.

and N (σ 2 D ) entries respectively.

CHAPITRE 3. EQUIVALENT OF THE CONJUGATE KERNEL

and Corollaries 3.5.4 and 3.4.12 :

which imply the linear concentration properties (2).

Similarly to Corollary 3.4.6, we may deduce from the deterministic equivalents the following spectral properties : Corollary 3.5.9. Uniformly under Assumptions 3.4.2 :

almost surely eventually (a.s.e.), and

, and more precisely :

Proof. By definition of the O z (ϵ ′ n ) notation, we may find α > 0 such that uniformly in z ∈ C + with bounded

Let us now fix z ∈ C + . The maps M → M ij are linear and 1-Lipschitz with respect to the spectral norm. By definition of the linear concentration, there are constants C > 0 such that for any n, t, i and j :

We choose

log n, and we use a union bound :

These probabilities are summable, so using Borel-Cantelli lemma :

We deduce that

s.e. The proof for the Stieltjes transforms is similar.

), and by odd symmetry of tanh it is clear that

The constants a and b are linked to Gaussian moments of the hyperbolic tangent function and may be numerically approximated. The matrix Σ lin =

. The measure ν Σ lin = νΣ lin = MP(1) ⊠ µ L is characterized by its Stieltjes transform g ν Σ lin (z), which is the only solution g ∈ C + of the self-consistent equation :

This equation may be rewritten as a cubic polynomial equation and solved explicitly. The deterministic equivalent matrix G Σ lin ⊠ (z) may also be explicitly computed. The interested reader can check that :

Theorem 3.5.7 applied to this model provides the following deterministic equivalents :

Since µ Σ lin converges weakly to δ a+b , ν L and µ K converge weakly to ν ∞ = MP(1) ⊠ δ a+b = (a + b)MP(1), and D(µ K , ν Σ lin ) ≤ O(n -θ ) for some θ > 0. To go further, Corollary 3.5.9(3) is not helpful since the measures are discrete. As a matter of fact, D(µ Σ lin , δ a+b ) = 1 -1/n does not vanish. However we can directly compare the Stieltjes transforms of Σ lin and δ a+b :

From Theorem 3.4.7, we have

) for some θ > 0 from Proposition 3.2.8. We conclude that µ K converges to ν ∞ as speed O(n -θ ) in Kolmogorov distance.
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Setting

In this section we study the conjugate kernel matrix associated to a singlelayer artificial neural network with random input. The hypothesis are thus the same as in the last section, excepted for the random data matrix. We consider :

-a random weight matrix W ∈ R d×d 0 , -a random data matrix X ∈ R d 0 ×n , -two random biases matrices B and D ∈ R d×n , -an activation function f : R → R, -and real parameters σ 2 W , σ 2 X > 0 and σ 2 B , σ 2 D ≥ 0 that will appear later in Assumptions 3.6.1.

As output of the neuron, we set

where the function f is applied entry-wise. Our goal is to investigate the spectral properties of the conjugate kernel matrix

We also define the following objects :

Like in the rest of this article, we sometimes omit the indices n and z for a better readability, even if we are implicitly dealing with sequences of matrices, measures, and complex functions. For reasons that we will understand later, we do not make hypothesis on the random matrix X itself, but rather on X conditioned with a high probability event (see the definition above Proposition 3.2.3). Assumptions 3.6.1.

1. W , B and D are random, independent, with i.i.d.

Multi-layer neural network model

In this section we consider the conjugate kernel matrix associated to an artificial neural network with L hidden layers and a random input matrix :

The initial data X 0 ∈ R d 0 ×n is a random matrix, associated to a real parameter σ 2 X 0 > 0 that will appear later in Assumptions 3. W l > 0 and σ 2 B l , σ 2 D l ≥ 0 that will appear later in Assumptions 3.7.1.

At each layer, we define the conjugate kernel matrix K l = X ⊤ l X l /d l , and for z ∈ C + its resolvent G K l (z) = (K l -zI n ) -1 , and Stieltjes transform g K l (z) = (1/n)TrG K l (z). We define by induction the following objects : 1. W l , B l and D l are random, independent as a family for l ∈ [[1, L]], with i.i.d. N (σ 2 W l ), N (σ 2 B l ) and N (σ 2 D l ) entries respectively.

fl are Lipschitz continuous and Gaussian

3. X 0 is random, independent from all the other matrices. There is an event

4. There is a sequence ϵ n converging to 0, with log n/n ≤ O(ϵ n ), such that uniformly in ω ∈ B, |||K 0 ||| and ⃗ diag(∆ X 0 ) are bounded, and

5. The ratios γ (l) n = n d l are bounded from above and away from 0. 6. There is a sequence ε(0

n ) for some sequence of measures χ (0) n supported on R + . 7. There is a sequence ε′

Starting from the deterministic equivalents µ K 0 ≈ χ (0) n and G K 0 (z) ≈ G 0 (z), we define by induction for l ∈ [[1, L]] :

We remind our reader that the sequence ϵ n measures the lack of orthogonality of the input data matrix X 0 . We define by induction the following sequences, corresponding respectively to the error terms in the approximation of the Stieltjes transforms and the resolvent at layer l :

Theorem 3.7.2. Uniformly under Assumptions 3.7.1, there is a constant c > 0 and an event B ′ ⊂ B with P(B ′c ) ≤ O( √ log n/n), such that for any l ∈ [[1, L]], the following conditional concentration properties hold true :

By induction on the layers using Proposition 3.2.3, we can prove that there is an event

The concentration properties of G K l (z) and g K l (z) follow. Again by induction, using Lemma 3.5.5 on

The random matrices (X l |B ′ ) satisfy the Assumptions 3.6.1 uniformly. By repeatedly using Theorem 3.6.4, we get the deterministic equivalents for all layers. The error terms ε(l) n and ε′(l) n are given by the formulas above Theorem 3.6.4. Remark 3.7.3. The deterministic equivalents are only meaningful if the error terms ε′(l) n and ε(l) n vanish when n → ∞. Similarly to Remark 3.5.8, let us mention a few cases where their expressions may be greatly simplified : -If ζ 1 ( fl ) = 0 for some layer l, then for all subsequent layers k ≥ l, the error terms ε′(k) n and ε(k) n do not depend on ε(0) n and ε′(0) n anymore.

-If

In the case ϵ n = O( log n/n) corresponding to a data matrix X 0 with i.i.d. columns (see Proposition 3.6.6), and starting from typical ε(0 

almost surely eventually (a.s.e.), and

s.e. 2. If fl is not linear, or if the measures χ (0) n are supported on the same compact of (0, ∞), there exists θ > 0 such that D(µ K l , χ (l) n ) ≤ O(ε (l) n θ ) a.s.e.
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3. If moreover χ (0) n converges weakly to a measure χ (0) ∞ , and if all dimension ratios γ (k) n → γ (k) ∞ > 0 , then µ K l converges a.s. to the measure χ (l) ∞ defined by induction as :

More precisely :

Again we will not prove this result here, but rather refer to the proof of Corollary 3.5.9 which is similar.

Remark 3.7.5. Our result generalizes previously known global laws on the conjugate kernel model. Employing our notations, [FW20, Theorem 3.4] states that, without bias in the model, if f is twice differentiable, ϵ n = o(n -1/4 ), and χ (0) n converges weakly to χ (0) ∞ , then µ K l converges weakly to χ (l) ∞ a.s. Taking into account the Remark 3.7.3, in this setting we have ε(l)

), and we retrieve the a.s. convergence of µ K l towards χ (l) ∞ weakly, supplemented with quantitative estimates for the Stieltjes transforms and the Kolmogorov distances.

Remark 3.7.6. The coefficients a l and b l , appearing in the deterministic equivalent, remain unchanged if we swap fl for the linear function t → ζ 1 ( fl )t, and

In other words, our original model, with non-linear activations functions f l , admits the same deterministic equivalents as the following model, involving only linear functions :

where D ′ l+1 is an additional bias matrix with i.i.d. N entries. This phenomenon may be seen as a linearization principle for the conjugate kernel model, similar to the Gaussian equivalence principle highlighted in a different setting in [GLR + 22].
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Appendix : Bounds on Kolmogorov distances between empirical measures

Let us remind the notations F ν for the cumulative distribution function of a measure ν, and D(ν, µ) = sup t∈R |F ν (t) -F µ (t)| for the Kolmogorov distance between two measures ν and µ.

It is a well-known fact that the convergence in Kolmogorov distance implies the weak convergence for probability measures, and there is even an equivalence if the limiting measure admits a Hölder continuous cumulative distribution function ( [START_REF] Jeffrey | Necessary and sufficient condition that the limit of Stieltjes transforms is a Stieltjes transform[END_REF]). In [START_REF] Banna | Hölder continuity of cumulative distribution functions for noncommutative polynomials un-125 der finite free fisher information[END_REF] and [START_REF] Chouard | Quantitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF], the authors propose a general method to derive a convergence speed in Kolmogorov distance from estimates on the Stieltjes transforms. This method implies for instance our Proposition 3.2.8. However the techniques employed are not well suited to work with two discrete measures like empirical spectral distributions.

Two matrices close in spectral norm admit the same limiting spectral distribution if it exists. This does not imply any bound on the Kolmogorov distances in general because the measures are discrete. In this section, we show how a quantitative result may still be obtained, provided the limiting empirical measure is regular enough. We strongly incite the reader to first examine [Cho22, Section 8], where the technical tools are explained in full detail.

Proposition 3.8.1. Let Σ and Σ ∈ R p×p be symmetric matrices such that :

1. |||Σ||| and Σ are bounded, and Σ -Σ converges to 0.

2. µ Σ converges weakly to some probability measure ν ∞ , and F ν ∞ is Hölder continuous for some parameter β > 0.

Then µ Σ converges weakly to ν ∞ , and more precisely in Kolmogorov distance :

Lemma 3.8.2. For any y ∈ (0, 1) and A > 0 :

Proof. We closely follow [Cho22, Section 3.1], with the only key difference that we plug in Bai's Inequality the following bound :

We thus obtain :