
HAL Id: tel-04344209
https://theses.hal.science/tel-04344209

Submitted on 14 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adapting Deep Neural Information Retrieval Models to
Long Documents and New Domains

Minghan Li

To cite this version:
Minghan Li. Adapting Deep Neural Information Retrieval Models to Long Documents and New
Domains. Document and Text Processing. Université Grenoble Alpes [2020-..], 2023. English. �NNT :
2023GRALM036�. �tel-04344209�

https://theses.hal.science/tel-04344209
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Informatique
Unité de recherche : Laboratoire d'Informatique de Grenoble

Adapter des modèles de recherche d'information basés sur les
réseaux neuronaux profonds pour les documents longs et les
nouveaux domaines

Adapting Deep Neural Information Retrieval Models to Long
Documents and New Domains

Présentée par :

Minghan LI
Direction de thèse :

Eric GAUSSIER
Professeur des Universités, Université Grenoble Alpes

Directeur de thèse

Rapporteurs :
BENJAMIN PIWOWARSKI
Chargé de recherche HDR, CNRS DELEGATION PARIS CENTRE
LYNDA TAMINE LECHANI
Professeur des Universités, UNIVERSITE TOULOUSE 3 - PAUL SABATIER

Thèse soutenue publiquement le 7 juillet 2023, devant le jury composé de :
ERIC GAUSSIER
Professeur des Universités, UNIVERSITE GRENOBLE ALPES

Directeur de thèse

BENJAMIN PIWOWARSKI
Chargé de recherche HDR, CNRS DELEGATION PARIS CENTRE

Rapporteur

LYNDA TAMINE LECHANI
Professeur des Universités, UNIVERSITE TOULOUSE 3 - PAUL
SABATIER

Rapporteure

DIDIER SCHWAB
Professeur des Universités, UNIVERSITE GRENOBLE ALPES

Président

JAAP KAMPS
Professeur associé, Universiteit van Amsterdam

Examinateur

SOPHIE ROSSET
Directeur de recherche, CNRS DELEGATION ILE-DE-FRANCE SUD

Examinatrice

Abstract

In the era of big data, information retrieval (IR) plays a pivotal role in our

daily lives. Deep neural networks, specifically Transformer-based models,

have shown remarkable enhancements in neural IR. However, their effective-

ness is constrained by limitations. This thesis aims to advance neural IR by

addressing three key topics: long document retrieval for Transformer-based

models, domain adaptation for dense retrieval and conversational search,

and a novel differentiable approximation of listwise loss functions.

The first topic addresses the challenge of retrieving relevant information from

long documents. The self-attention mechanism has the quadratic complexity,

making Transformer-based models difficult to process long documents. This

thesis proposes a framework that pre-ranks passages within a long document

based on the query, and then combines or processes the filtered top-ranking

passages to obtain the document relevance score. Experiments on IR collec-

tions with both interaction and late interaction based models demonstrate

state-of-the-art level effectiveness.

The second topic explores domain adaptation for dense retrieval and con-

versational search. Dense retrieval models’ generalization ability on target

domains is limited. This thesis proposes a self-supervision approach that

generates pseudo-relevance labels for queries and documents on the target

domain, using an interaction-based model T5-3B from a BM25 list. Dif-

ferent negative mining strategies are investigated to improve the proposed

iii

approach. Conversational search is challenging as the system needs to un-

derstand ambiguous user intent in each query turn, and obtaining labels for

target datasets is difficult. Existing approaches for training conversational

dense retrieval models can be further improved to tackle the domain shift

issue. This thesis uses a T5-Large model to generate rewritten queries for tar-

get datasets and applies a similar approach as in dense retrieval to generate

pseudo-relevance data. Experiment results show that the pseudo-relevance

labeling approach improves the dense retrieval and conversational dense

retrieval models on the target domain when fine-tuned on the generated

data.

The third topic focuses on the use of listwise loss functions for learning to

rank in IR. Popular IR metrics are not differentiable, limiting the potential

of training better IR models. This thesis proposes a softmax-based approxi-

mation of the rank indicator function, a key component in the design of IR

metrics. Experiments on learning to rank and text-based IR tasks demonstrate

the good quality of the proposed approximations of IR metrics.

Overall, this thesis contributes novel approaches to address important chal-

lenges in IR. The proposed approaches demonstrate improvements and

provide valuable insights into the development of effective IR systems.

iv

Résumé

À l’ère du big data, la recherche d’information (RI) joue un rôle central dans

notre vie quotidienne. Les réseaux neuronaux profonds, plus précisément

les modèles basés sur les Transformers, ont montré des améliorations re-

marquables dans la RI neuronale. Cependant, leur efficacité est limitée par

certaines contraintes. Cette thèse vise à faire avancer la RI neuronale en

abordant trois sujets clés : la recherche de documents longs pour les modèles

basés sur les Transformers, l’adaptation de domaine pour la recherche dense

et conversationnelle, ainsi qu’une nouvelle approximation différentiable des

fonctions de perte listwise.

Le premier sujet aborde le défi de la récupération d’informations pertinentes à

partir de documents longs. Le mécanisme d’auto-attention a une complexité

quadratique, ce qui rend difficile le traitement de documents longs par

les modèles basés sur les Transformers. Cette thèse propose un cadre qui

pré-classe les passages d’un document long en fonction de la requête, puis

combine ou traite les passages les mieux classés pour obtenir le score de

pertinence du document. Des expériences sur des collections de RI avec des

modèles basés sur l’interaction et des modèles basés sur l’interaction tardive

démontrent l’efficacité de l’état de l’art.

Le deuxième sujet explore l’adaptation de domaine pour la recherche dense et

la recherche conversationnelle. La capacité de généralisation des modèles de

recherche dense sur les domaines cibles est limitée. Cette thèse propose une

approche d’auto-supervision qui génère des étiquettes de pseudo-pertinence

v

pour les requêtes et les documents du domaine cible, en utilisant un modèle

T5-3B à partir d’une liste BM25. Différentes stratégies d’extraction de don-

nées négatives sont étudiées pour améliorer cette approche. La recherche

conversationnelle est un défi car le système doit comprendre l’intention am-

biguë de l’utilisateur à chaque tour de requête, et l’obtention d’étiquettes pour

les ensembles de données cibles est difficile. Les approches existantes pour

l’entraînement des modèles de recherche dense conversationnelle peuvent

être améliorées pour résoudre le problème du décalage de domaine. Cette

thèse utilise un modèle T5-Large pour générer des requêtes réécrites pour

les ensembles de données cibles et applique une approche similaire à celle

de la recherche dense pour générer des données de pseudo-pertinence. Les

résultats des expériences montrent que l’approche d’étiquetage de pseudo-

pertinence améliore les modèles de recherche dense et conversationnelle sur

le domaine cible lorsqu’ils sont entraînés sur les données générées.

Le troisième sujet se concentre sur l’utilisation de fonctions de perte listwise

pour l’apprentissage du classement en RI. Les métriques populaires en RI

ne sont pas différentiables, ce qui limite le potentiel d’entraînement de

modèles de RI plus performants. Cette thèse propose une approximation

basée sur le softmax de la fonction indicatrice de rang, un composant clé

dans la conception des métriques de RI. Les expériences sur l’apprentissage

du classement et les tâches basées sur le texte en RI démontrent la bonne

qualité des approximations proposées des métriques de RI.

Dans l’ensemble, cette thèse propose des approches novatrices pour relever

les défis importants de la RI. Les approches proposées montrent des amélio-

rations et fournissent des perspectives précieuses pour le développement de

systèmes de RI efficaces.

vi

Acknowledgement

It has been nearly three years since starting this PhD program, and almost

four years since departing China to pursue my studies abroad. During this

time, we have encountered the serious disruptions caused by COVID-19 and

I have also met several other difficulties. Before this PhD program, I was a in

a difficult situation. Fortunately, with the unwavering assistance of my thesis

advisor, Eric Gaussier, who gave me the opportunity and encouragement, I

was able to complete my thesis and possibly, my entire PhD journey. I am

deeply grateful to him for his patience, expertise, kindness, and unwavering

support.

I would also like to extend my gratitude to my friends in Europe and China

for their companionship and encouragement, as well as my collaborators

for their contributions to our joint projects and papers. I am grateful to

Tat-Seng Chua for agreeing to serve as my visiting advisor during my stay

at the National University of Singapore, which afforded me the opportunity

to explore new research environments and learn from others. Additionally,

I would like to thank my Master thesis advisor Jingxuan Wei and all other

teachers who provided me with guidance and support.

I am also appreciative of the external expert of my PhD committee, Benjamin

Piwowarski, for taking the time to meet with me annually and offer sugges-

tions, as well as serving as a reviewer for my thesis. I am also grateful to

the other reviewer Lynda Tamine-Lechani and the other PhD defense jury

vii

members: Didier Schwab, Jaap Kamps and Sophie Rosset for their valuable

time and efforts.

Lastly, I want to express my heartfelt appreciation to my parents, who raised

me and provided me with support throughout my life: thank you for your pa-

tience in listening to me during difficult times, providing me with suggestions

and encouragement.

viii

Contents

1 Introduction 1

1.1 Information Retrieval . 1

1.2 Thesis Outline . 6

I Long Document Information Retrieval for Transformer-
Based Models 9

2 Improve Interaction-Based Models based on Transformers for

Long Document Retrieval 11

2.1 Introduction . 11

2.2 Related Work . 14

2.3 A Finer-Grained Look at Documents 21

2.3.1 Preliminaries . 22

2.3.2 Relevance Signals Appear at Different Positions in Doc-

uments . 24

2.3.3 Fuzzy Matching May Help Select Better Blocks on Some

Collections . 28

2.4 Selecting Blocks with Standard IR Functions: TF-IDF and BM25 32

2.4.1 KeyB(vBERT) . 35

2.4.2 KeyB(PARADEk) . 36

2.4.3 Model Training . 38

2.5 Learning to Select Blocks . 39

2.5.1 Improving Vanilla BERT 39

ix

2.5.2 Improving PARADE . 41

2.6 Experiments on Standard IR Collections 44

2.6.1 Experimental Design 46

2.6.2 Experimental Results 49

2.6.3 Memory Usage . 58

2.6.4 Ranking Speed . 59

2.6.5 Analysis of the Position of Selected Blocks 61

2.7 Experiment on TREC 2019 DL and Comparison With Sparse

Attention Based Models and IDCM 63

2.7.1 Comparison with Sparse Attention Based Models . . . 64

2.7.2 Comparison with IDCM 66

2.8 Conclusion . 67

3 Late-interaction Based Model for Long Document Retrieval 69

3.1 Introduction . 69

3.2 Related Work . 70

3.3 Method . 72

3.3.1 Contextualized Document Embedding 72

3.3.2 Contextualized Query Embedding 74

3.3.3 Intra-Ranking for Key Passage Filtering 75

3.3.4 Fine-Grained Late Interaction 76

3.3.5 Multi-Task Learning . 77

3.3.6 Loss Functions . 77

3.4 Experiments . 78

3.4.1 Datasets . 78

3.4.2 Baseline Models . 79

3.4.3 Experimental Settings 80

3.4.4 Results . 81

3.4.5 Reranking Latency . 84

3.4.6 Ablation Study . 84

x

3.5 Conclusion . 85

II Domain Adaptation for Dense Retrieval and Conver-
sational Search 87

4 Domain Adaptation for Dense Retrieval through Self-Supervision

by Meticulous Pseudo-Relevance Labeling 89

4.1 Introduction . 89

4.2 Related Work . 92

4.3 Background . 94

4.4 DoDress: Pseudo-Relevance Label Generation 96

4.4.1 Global and BM25 Hard Negative Sampling 97

4.4.2 Step Further: Meticulous Pseudo-Relevance Labeling

with SimANS Hard Negative 98

4.4.3 Improving GPL: Combining Pseudo-Relevance Labels

and Pseudo-Queries . 99

4.4.4 Pairwise Loss . 100

4.5 Experiments . 100

4.5.1 Data Sets . 100

4.5.2 Experimental Setting 101

4.5.3 Baselines . 103

4.5.4 Results and Analysis 104

4.6 Conclusion . 109

5 Domain Adaptation for Conversational Search 113

5.1 Introduction . 113

5.2 Related Work . 116

5.3 Domain Adaptation for Conversational Dense Retrieval: Lever-

aging Pseudo-Relevance Labels Generated with T5-Large Rewrit-

ten Queries . 120

xi

5.3.1 Quantifying the Requirement of Pseudo-Relevance Data

for Training Conversational Dense Retrieval Model . . 121

5.3.2 T5-Large Query Rewriter Module 123

5.3.3 Generating Pseudo-Relevance Data on Target Dataset . 123

5.4 Experiment on Conversational Search 125

5.4.1 T5 Rewriter Training 125

5.4.2 Baselines and Training 126

5.4.3 Experiment Result . 128

5.5 Conclusion . 131

III Differentiable Listwise Loss Functions Based on Ap-
proximate Rank Indicators 133

6 Listwise Learning to Rank Based on Approximate Rank Indicators135

6.1 Introduction . 135

6.2 Related Work . 137

6.3 Differentiable IR Metrics . 139

6.3.1 SmoothI: Smooth Rank Indicators 141

6.3.2 Gradient Stabilization in Neural Architectures 142

6.3.3 Application to IR Metrics 144

6.4 Experiments . 144

6.4.1 Learning to Rank Experimental Setup 145

6.4.2 Learning to Rank Results 148

6.4.3 Experiments on Text-based IR 150

6.5 Conclusion . 153

7 Conclusion 155

7.1 Conclusion . 155

7.2 Future Direction . 158

7.3 Papers Accepted during this Thesis 159

xii

Bibliography 161

xiii

Introduction
1

1.1 Information Retrieval

Definition Information retrieval (IR) is an important research domain that

involves the process of extracting relevant information from vast collections

of data. With the exponential growth of diverse forms of digital information,

such as text, images, videos, and more, the need for effective and efficient

methods to retrieve and organize this information has become increasingly

crucial. Among these forms, text-based information represents the most

prevalent scenario in daily usage, including web search and digital libraries.

Query-document information retrieval is a critical research field that specifi-

cally focuses on retrieving relevant information from text-based documents.

In this thesis, it is referred to as information retrieval. It involves employing

techniques and methodologies to match user queries with document con-

tent, rank the documents based on relevance, and present the most relevant

documents to users.

Introduction Ranking models are fundamental to the field of IR research

[50]. Over the past decades, numerous ranking models have been proposed,

from vector space methods [151] and probabilistic methods [147] to learning

to rank (LTR) methods [95, 87]. LTR models have demonstrated considerable

success in various IR applications. However, these models heavily rely on

hand-crafted features, which are labor-intensive and often overly specific in

1

their definitions [50]. With the resurgence of interest in neural networks,

particularly deep neural networks or deep learning, significant advancements

have been made in computer vision and natural language processing (NLP)

tasks. Consequently, the field of neural information retrieval (Neural IR),

which involves utilizing (deep) neural networks to directly construct the

ranking function for IR, has been the subject of many studies [60, 154,

124, 49, 126, 125, 62, 182, 36, 82] which have led to the development of

several interesting IR models for learning representations of documents and

queries. These models employ deep neural networks, such as convolutional

neural network (CNN), recurrent neural network (RNN), and other similar

architectures.

The Transformer model, proposed by Vaswani et al. [166], is a novel ar-

chitecture that relies exclusively on multi-head attention mechanisms. This

model has demonstrated superior performance compared to recurrent neural

networks, as it exhibits higher quality results, improved parallelizability, and

reduced training time [166]. The self-attention mechanism employed in the

Transformer model allows for more effective capture of long-range depen-

dencies and contextual information. As a result, the Transformer model has

significantly impacted various NLP tasks, such as machine translation, text

generation, and sentiment analysis, leading to substantial advancements in

the field of NLP. Using a multi-layer bidirectional transformer encoder, the

authors of [30] have proposed Bidirectional Encoder Representations from

Transformers (BERT), a method for pre-training deep bidirectional represen-

tations from unlabeled text by conditioning all layers on both left and right

context. Fine-tuning of pre-trained BERT models has led to cutting-edge

performance in various applications. Inspired by the success of BERT in

natural language processing, several studies proposed models based on BERT

[30] like transformer architectures for IR tasks [118, 102, 26, 83], resulting

in some of the current state-of-the-art models in ad hoc IR [102, 83].

2 Chapter 1 Introduction

Neural IR models, especially models based on BERT like architectures, can

be categorized into three types. The first is interaction-based models[118,

83], the second is dense retrieval models and the third is late interaction

based [72]. The first method, similar to a vanilla BERT model [118], con-

catenates query tokens and document tokens as BERT inputs and applies

full self-attention, which is considered highly effective [51], but suffers from

high computational complexity. On the other hand, dense retrieval (DR)

methods [70, 183, 181] generate two representations [144] for a query

and a document, respectively. When the document representations can

be pre-stored, this approach allows for efficient fast retrieval, albeit at the

expense of effectiveness. To leverage the advantages of both approaches,

late-interaction based methods like ColBERT [72] have been proposed. In

ColBERT, token-level passage embeddings are pre-stored and late-interacted

with query embeddings to produce a relevance score. This method is slightly

less efficient than representation-based methods, but significantly more effec-

tive.

Limitations Neural information retrieval (IR) models have demonstrated

significant success but also exhibit limitations. The first is about the limi-

tation of length to process long documents. One main advantages of the

self-attention mechanism is that it allows to capture dependencies between

tokens in a sequence regardless of their distance. However, despite its ex-

cellent results, the self-attention mechanism has difficulty to process long

sequences due to its quadratic complexity in the number of tokens, which

also limits the application of transformer-based models to long document

information retrieval, where each document could contain thousands of

tokens. Existing approaches for addressing the challenge of long documents

in information retrieval include truncating the documents, which results in

potential loss of relevant information [118], segmenting them into several

1.1 Information Retrieval 3

passages [83], which may lead to miss some information and high com-

putational complexity when the number of passages is large, or modifying

the self-attention mechanism [66] to make it sparser as in sparse-attention

models, at the risk again of missing some information. These approaches still

have limitations.

Another limitation is observed in recent studies, such as BEIR [157], which

highlight that dense retrieval models trained on a source domain exhibit

diminished generalization compared to traditional models, such as BM25

and interaction-based models, when applied to out-of-distribution (OOD)

datasets. Although training on target datasets with annotated gold labels is a

standard approach, it can be time-consuming and costly, so that this approach

may have limitation on many real world usages. It is thus important to ad-

dress the issue of OOD scenarios for dense retrieval. To address this issue,

researchers have resorted to adversarial learning [181] and query generation

approaches [100], however both approaches resulted in limited improve-

ments. Conversational search poses additional challenges and complexity, as

the query in each turn of a conversation may contains ambiguity. Besides,

one key issue is the scarcity of labeled data, as obtaining human rewritten

queries and relevance labels can be labor-intensive and time-consuming. To

address this challenge, researchers have proposed promising approaches

that leverage source domain data resources to mitigate the data scarcity is-

sue, such as few-shot learning techniques, for conversational dense retrieval

model [190, 93]. However, there is still potential for further improvement

when adapting these approaches to target domain data.

Furthermore, in standard information retrieval systems, the primary objec-

tive is to maximize metrics based on rankings, such as precision or NDCG

[175]. However, the non-differentiable nature of the ranking operation poses

challenges for directly optimizing these metrics in state-of-the-art neural IR

4 Chapter 1 Introduction

models, which heavily rely on the computation of meaningful gradients for

optimization.

Contributions In this thesis, we propose three parts to improve neural IR

models, and addressed the limitations discussed above.

Firstly, in order to address the limitation of the Transformer architecture,

which can only handle only limited input length documents, we propose a

novel framework for long document retrieval. Our approach involves a two-

step process: first, local query-block pre-ranking is used to select key blocks

from the long document, and then a subset of these blocks are aggregated to

form a shorter document that can be effectively processed by models such

as BERT, or the blocks are used as input to an IR model. This framework

enables improved efficiency and effectiveness in handling long documents

by filtering out noisy blocks and selecting the most relevant information

for downstream processing. The framework we have proposed has been

implemented and evaluated on interaction-based models, such as BERT and

PARADE [83]. Furthermore, we have extended our approach to incorporate

a late interaction mechanism for long document retrieval, where the late

interaction mechanism is similar to ColBERT [72]. The proposed model is

trained with multi-task learning [92, 71] to have the abilities of generating

token level representations and passage level representations simultaneously.

Our experimental results on both models demonstrate the effectiveness and

efficiency of our proposed framework.

Secondly, we address the limited generation ability of dense retrieval (DR)

models when applied to new domain data by proposing a self-supervision

approach. We automatically generate pseudo-relevance labels for the target

domain by utilizing the BM25 model to obtain an initial document ranking,

and then employing the T5-3B [141] interaction-based model to re-rank

1.1 Information Retrieval 5

the documents for pseudo-positive labeling. Various strategies for selecting

hard negative examples are explored to improve the data generation quality.

Our experimental results demonstrate that the use of T5-3B for pseudo-

relevance labeling leads to improved performance of the DR model and the

state-of-the-art query generation approach GPL [172] when fine-tuned on

the pseudo-relevance labeled data. Additionally, for conversational search,

we propose to use T5-Large [141] to generate rewritten queries for target

datasets, followed by a similar approach as in dense retrieval to generate

pseudo-relevance data. Our experiments reveal that by further training on

the generated training data on target dataset, conversational dense retrieval

models [190, 93] can achieve better effectiveness.

Thirdly, we propose a smooth approximation of the rank indicator function,

which acts as a basic building block for the development of differentiable

approximations of IR metrics. This is achieved through a softmax-based

approximation. By employing these approximate metrics, we are able to

optimize end-to-end neural approaches using listwise loss functions. Through

experiments conducted on both learning to rank and text-based information

retrieval tasks, we provide evidence of the effectiveness of the proposed

approach.

1.2 Thesis Outline

Chapter 1 is a introduction about the background, limitations and contribu-

tions proposed. Then the proposed approaches are present in three parts.

In the first part, we propose the first contribution: Adapting Transformer

based IR models to long document retrieval.

6 Chapter 1 Introduction

• Chapter 2 presents the proposed framework for interaction based mod-

els, including BERT and PARADE.

• Chapter 3 presents a BERT-based late interaction approach for long

document retrieval.

In the second part, the second contribution is proposed: Adapting dense

retrieval (DR) and conversational dense retrieval (CDR) models to new

domains. This is achieved by proposing a self-supervision approach that

generates pseudo-relevance labels for queries and documents on the target

domain.

• Chapter 4 presents the pseudo-relevance labeling and the data genera-

tion approach for dense retrieval model.

• Chapter 5 further presents to use T5-Large model to generate rewritten

queries and use the same pseudo-relevance labeling and data genera-

tion approach for conversational search.

The third part focuses on the use of listwise loss functions for learning to

rank in IR. Chapter 6 roposes a softmax-based approxi- mation of the rank

indicator function for designing of popular IR metrics.

At last, Chapter 7 concludes the thesis.

1.2 Thesis Outline 7

Part I

Long Document Information

Retrieval for Transformer-Based

Models

Improve

Interaction-Based

Models based on

Transformers for Long

Document Retrieval

2

2.1 Introduction

The field of query-document information retrieval (IR) has seen increasingly

rapid advance in the past decades. Learning-to-rank (LTR) models [95, 87]

have already achieved great success in many IR applications. However, LTR

models mainly rely on hand-crafted features which are time-consuming and

often over-specific in definition [50]. With the resurgence of interest in

neural networks, especially deep neural networks or deep learning, we have

witnessed dramatic improvements in computer vision and natural language

processing (NLP) tasks. Neural Information Retrieval (Neural IR), which

refers to the use of (deep) neural networks to directly construct the ranking

function for IR, has been the subject of many studies [60, 154, 124, 49, 126,

125, 62, 182, 36, 82] which have led to the development of several interesting

IR models for learning representations of documents and queries.

11

The transformer model [166], which is exclusively based on multi-head

attention mechanism, has shown to be higher in quality while being more

parallelizable and requiring substantially less training time than models

based on recurrent neural networks [166]. Using a multi-layer bidirectional

transformer encoder, the authors of [30] have proposed Bidirectional Encoder

Representations from Transformers (BERT), a method for pre-training deep

bidirectional representations from unlabeled text by conditioning all layers

on both left and right context. Pre-trained BERT models can be fine-tuned

to produce cutting-edge models for a variety of applications. In particular,

following their success in NLP, several works have focused on transformers

[166] and derived models based on BERT [30] for solving IR tasks [118, 102,

26, 83], leading to some of the current state-of-the-art models in ad hoc IR

[102, 83].

One main advantages of the self-attention mechanism is that it allows to

capture dependencies between tokens in a sequence regardless of their

distance. However, despite its excellent results, the self-attention mechanism

has difficulty to process long sequences due to its quadratic complexity in

the number of tokens, which also limits the application of transformer-based

models to long document information retrieval, where each document could

contain thousands of tokens.

Three standard strategies based on BERT have been adopted to circumvent

this problem. The first one consists in truncating long documents (e.g.,

[118]), the second in segmenting long documents into shorter passages (e.g.,

[26]) and the last one in replacing the complex self-attention module with

sparse-attention ones (e.g., [66]). In the first case, important information

may be lost and the relevance judgement is damaged. In the second case, a

hierarchical architecture can be further adopted to build a document-level

representation on top of the representations of each passage [83]. This said,

12 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

despite the state-of-the-art results this strategy may lead to, there remain

issues concerning the time, memory and energy consumption associated

to it. Furthermore, the consideration of passages that may not be relevant

to the query may introduce noise in the final representation and limit the

identification of long-distance dependencies between relevant tokens [33]. In

the third case, sparsity constraints may lead to miss important dependencies

which can lead to under-optimal results.

The approach we propose is slightly different with these strategies, aiming

at capturing, in long documents, the blocks which are the most important

to decide on the relevance status of the whole document. Besides, it can

be integrated to the second strategy. It is based on three main steps: (a)

selecting key (i.e., likely relevant) blocks with local pre-ranking using either

classical IR models or a learning module reminiscent of the judge module

used in [33], (b) learning a joint representation of queries and key blocks

using a standard BERT model, and (c) computing a final relevance score

which can be regarded as an aggregation of local relevance information

[177].

Our contributions are two-fold. We first conduct an analysis which reveals

that relevance signals can appear at different locations in documents and

that such signals can be better captured by semantic relations than by exact

matches. We then investigate two methods to select blocks, one based on

standard IR functions and the other on a learned function operating on

semantic representations, and show how to integrate these methods in state-

of-the-art IR models. In this approach, as well as in previous approaches

based on passages as PARADE [83], blocks occurring at different positions

of a document are concatenated or selected in the order they occur in the

document and can be seen as a digest of the elements necessary to assess the

relevance of the whole document to the query. Although the blocks selected

2.1 Introduction 13

are not coherent physically, they still are coherent in that they are all relevant

to the same query.

The remainder of the chapter is organized as follows: Section 2.2 describes

related work. Section 2.3 investigates the relation between the potential

relevance and the position of a block in a document as well as the impor-

tance of fuzzy vs exact matching when selecting blocks. Section 2.4 presents

the block selection approach based on standard IR functions whereas Sec-

tion 2.5 describes the block selection approach based on a learned function.

Sections 2.6 and 2.7 show the benefits of selecting key blocks on different

collections. Finally, Section 2.8 summarizes our findings and concludes the

chapter.

2.2 Related Work

Let q denote a query and d a document. Without loss of generality, the

ranking function f of an IR system takes the form [50]:

f(q, d) = g(ψ(q), ϕ(d), η(q, d)), (2.1)

where ψ and ϕ are representation functions that extract features from q

and d respectively, η is the interaction function that models query-document

representation from (q, d) pairs, and g is the evaluation function that cal-

culates the relevance score based on the extracted features or interaction.

According to the choices made on the representation and interaction func-

tions, neural information retrieval models can be grouped into two categories

[50]: representation-based and interaction-based architectures. Besides these

two categories, some neural information retrieval models adopt a hybrid

approach.

14 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

The Deep Structured Semantic Model (DSSM) [60] is one of the earli-

est representation-based models for document ranking which uses a fully-

connected network for the functions ψ and ϕ. To map the query and the

documents to a shared semantic space, a non-linear projection is used. The

relevance of each document given the query is then calculated with the cosine

similarity between their vectors in that semantic space. Clickthrough data is

then used to discriminatively train the model by maximizing the conditional

likelihood of the clicked documents. Other studies in this category proposed

to exploit distributed representations via DSSM variations, or relied on dif-

ferent representation functions [121]. For example, ARC-I [59] and CLSM

[154] use convolutional neural networks (CNN) for ψ and ϕ while [124] uses

a recurrent neural networks.

One of the first neural IR models which outperformed traditional IR models is

the interaction-based model referred to as Deep Relevance Matching Model

(DRMM) [49]. The interaction function η is defined as the matching his-

togram mapping between each query term and the document. A feed-forward

network for term-level relevance and a gating network for score aggregation

in the evaluation function g are further used. In this work, the term vectors

are fixed to Word2Vec word embeddings [110]. Similarly, Xiong et al. [182]

proposed KNRM which employs a translation matrix that utilizes word embed-

dings to represent word-level similarities, a unique kernel-pooling technique

for extracting multi-level soft match features, and a learning-to-rank layer

that combines those features into the final ranking score. The entire model

is trained end-to-end, and the word embeddings are tuned to produce the

desired soft matches [182]. Inspired by the way humans assess the relevance

of a document, Pang et al. [125] proposed DeepRank, a model which splits

documents into term-centric contexts according to each query term. A tensor

containing both the word representations of query/query-centric context as

well as their interactions is first built. It is then passed through a measure

2.2 Related Work 15

network, based on CNN [76] or 2D-GRU [169], to produce a representation

of local relevance. Finally, the global relevance score is calculated using an

aggregation network. Hui et al. [62] proposed PACRR, a model inspired by

the neural models used in image recognition [50]. PACRR takes a similarity

matrix between a query and a document as input. Then multiple CNN kernels

capture the query-document interactions. Following this work, Hui et al.

[61] provided a lightweight contextualization model called CO-PACRR which

averages word vectors within a sliding window and appends the similarities

to those of the PACRR [62] model [58].

Since it is sometimes difficult to produce good high-level representations

of long texts, the representation-based architecture is better suited to short

input texts. Models in this category are good for online computing since they

allow one to pre-calculate text representations. Interaction-based models,

on the other hand, tend to yield better results as they can tune document

representations towards a given query. Unfortunately, since the interaction

function η cannot be pre-calculated until the input pair (q, d) is seen, models

in this category are not as efficient for online computation as representation-

focused models [50].

Models Based on transformers Benefiting from pre-trained language mod-

els based on transformers [166], especially BERT [30], different research

teams have developed state-of-the-art neural IR models, significantly out-

performing traditional and previous neural IR models. Nogueira and Cho

[118] proposed to use BERT as a re-ranker for the passage re-ranking task

by fine-tuning it and achieved state-of-the-art results. The passages are

truncated if too long (typically over 512 tokens). This work proved the

effectiveness of fine-tuning BERT for IR problems. MacAvaney et al. [102],

through a model called CEDR which combined BERT with other neural IR

16 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

models, as PACRR [62], KNRM [182] and DRMM [49], and showed the

benefits of this combination. Dai and Callan [26] proposed to first segment

documents into short, overlapping passages, and then used BERT to define

the relevance score of the document, using either the first passage, the

best passage or the sum of all passages. Hofstätter et al. [58] proposed a

reranking model called Transformer Kernel, in short TK, which uses a hybrid

approach based on a small number of transformer layers to contextualize

query and document word embeddings separately. Then RBF-kernels [182]

are used for interaction scoring, where each kernel focuses on a specific

similarity range. Experimental results show that although the effectiveness

is not as good as BERT reranker, TK has strong efficiency. In a similar vein,

Li et al. [83] explored strategies for aggregating relevance signals from a

document’s passages into a final ranking score, leading to a model called

PARADE. A hierarchical layer, in the form of a max-pooling, attention, CNN

or transformer aggregator is used to aggregate the passage representations so

as to obtain a joint query-document representation for long documents. They

showed that passage representation aggregation strategies can outperform

techniques proposed previously. In particular, PARADE can improve results

significantly on collections with broad information needs where relevance

signals can be disseminated throughout the document. Grail et al. [46]

also proposed a hierarchical model in which each transformer layer, used to

learn a representation for each sentence of a document, is followed by an

RNN which captures dependencies between the CLS tokens representing the

different sentences of a document. As shown in the experiments, this model

is particularly well adapted for long-document summarization.

In the above models, as transformers are limited in their input length due

to their quadratic complexity, researchers have either truncated long docu-

ments or segmented them into passages. There have however been different

attempts to use transformers on long documents. For example, Dai et al.

2.2 Related Work 17

[28] introduced a model with left-to-right recurrence between transformer

windows, consisting of a segment-level recurrence mechanism and a novel

positional encoding scheme. The left-to-right approach processes the docu-

ment in chunks moving from left-to-right and thus not adapted to tasks which

benefit from bidirectional contexts [3]. Child et al. [21] introduced several

sparse factorizations of the attention matrix which reduce the quadratic com-

plexity to O(n
√
n). Hofstätter et al. [56] proposed a local self-attention which

considers a sliding window over the document and restricts the attention

to that window in order to deal with long documents. Their model, called

TKL, adapts TK [58] with this mechanism. Beltagy et al. [3] introduced the

Longformer with an attention mechanism which scales linearly with sequence

length, combining windowed local-context self-attention with task-motivated

global attention to encode inductive bias about the task. Longformer achieves

state-of-the-art results on the character-level language modeling tasks, and

when pretrained from the RoBERTa [96] checkpoint, it consistently out-

performs RoBERTa on long document tasks. Zhao et al. [194] proposed

Transformer-XH which enables to represent structured texts. It shares similar

motivation with Dai et al. [28] and Child et al. [21], and is particularly well

adapted to multi-hop QA tasks [186] and fact verification tasks [158]. Ainslie

et al. [1] introduced the Extended Transformer Construction (ETC) model to

address two key challenges of standard transformers: scaling input length

and encoding structured inputs. A novel global-local attention mechanism

is introduced where the local sparsity reduces the quadratic scaling of the

attention mechanism. They further show that by including a pre-training

Contrastive Predictive Coding (CPC) task [123], the performance for tasks

where structure matters improves even further. Zaheer et al. [191] proposeed

BigBird, which combines local and global attention with random sparse atten-

tion. Kitaev et al. [74] only computed self-attention between similar tokens,

as defined through locality-sensitive hashing.

18 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

Despite such models’ described effectiveness, there remain problems. Firstly,

as described in [191], coalesced memory operations, which load blocks

of contiguous bytes at once, are where hardware accelerators like GPUs

and TPUs really shine. As a result, small sporadic look-ups caused by a

sliding window or random element queries are not very efficient. This is

addressed by "blockifying" the lookups. It is generally known [47, 187] that

GPUs cannot efficiently execute sparse multiplications, which are commonly

employed by models with tailored attention mechanisms. Naively using

for-loops or masking the matrix may result in even worse efficiency than

the full self attention [66]. Thus, such models with customized attention

mechanisms need specifically designed tricks or customized CUDA kernels

[3], which are inconvenient or require expertise in low-level GPU opera-

tions [66]. Jiang et al. [66] proposed Query-Directed Sparse Transformer

(QDS-Transformer), which also induce sparsity in self-attention mechanism,

containing local windowed attention and query-directed global attention. Ex-

periments demonstrate consistent and robust advantages of QDS-Transformer

over previous approaches. However, this model still needs customized TVM

implementation [19]. Secondly, as these customized attention models only

rely on partial attention, their accuracy does not match, in general, the one

of full attention models.

Selecting key blocks The approach we advocate here to solve the above-

mentioned problems is to select key, important blocks from a document

and base the relevant score of the full document on just these blocks. Note

that this differs from the approach followed in PARADE [83] in which the

passages retained are arbitrary. It is however reminiscent of both [125] and

[33], which are partly inspired by cognitive theory and reckon that, in order

to assess the relevance of a document, humans first scan the whole document

to detect relevant locations where query terms occur and then aggregate

2.2 Related Work 19

local relevance information to decide on the relevance of a document [177].

Compared to [125], our approach is simpler conceptually and can consider

blocks which do not contain query words but are nevertheless relevant to

the query. We show in Sections 2.3 and 2.6 that such a fuzzy matching can

help improve the block selection process and the overall IR system built

upon it. The study described in [33] focuses on reading comprehension,

multi-hop question-answering and text classification. We show here how this

approach can be simplified for IR purposes by using the same BERT model

for the reasoner and judge. In addition, we investigate the use of standard

models to select key blocks, which leads to an entirely different and simpler

architecture.

Furthermore, we want to mention the study presented in Muntean et al.

[114] which, in order to assign a relevance score to a document, weighs

each passage differently by identifying salient terms using TF-IDF and KL

divergence scores [12] are used to identify salient terms and to derive the

weights. Although this model treats passages in a long document differently,

the weights do not reflect the relevance to the query (salient terms are

identified independently of the query). This is a major difference with our

approach which aims to select blocks according to their relevance to the query.

Furthermore, we focus here on neural IR models which have difficulties in

dealing with long documents.

Lastly, in parallel to our work, Hofstätter et al. [53] also introduce a model

called IDCM which also learns to select top scoring blocks which are then

used to score documents with respect to a given query. IDCM first trains a

block ranking model based on BERT (and called ETM for Effective Teacher

Model) on MS-MARCO1, prior to fine-tuning this model on each collection for

document ranking. Then, a block selection model (called ESM for Efficient

1MS-MARCO is a passage retrieval collection available at: https://microsoft.github.
io/msmarco/

20 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

https://microsoft.github.io/msmarco/
https://microsoft.github.io/msmarco/

Student Model) is learned via knowledge distillation from ETM. Both ESM

and ETM are then used to score new documents, ESM allowing the selection

of the most important blocks and ETM being used to score documents on

the basis of the selected blocks. This contrasts with the way we learn

to select blocks: first of all, for all proposed models except the last one

KeyB(PARADE5)BinB2, we do not require any pre-training on additional

collections; second, we use the same model for selecting blocks and scoring

documents, the rationale being that in both cases one computes a relevance

score with respect to the same query. The last model that we propose can also

re-use an additional BERT ranker from the KeyB(vBERT) models previously

proposed to select blocks. Our approach is thus simpler (see Section 2.5)

and finally leads to better results as shown in Section 2.7. Furthermore,

it is interesting to note that IDCM scores each block separately and then

aggregates the block scores, while our approach for improving Vanilla BERT

scores a document using concatenated selected blocks. As shown in our

experiments, the two strategies are effective, with a slight advantage for the

latter on the TREC 2019 DL collection. We also want to mention that we

recently proposed Li and Gaussier [88] to select key blocks for late-interaction

models by training a BERT-based model with multi-task learning. This study

however has a different focus that the current one, which only concerns

interaction-based models.

2.3 A Finer-Grained Look at Documents

We take in this section a closer look at documents and the blocks they contain

by addressing two questions:

2.3 A Finer-Grained Look at Documents 21

1. Are relevant signals spread over the entire document, and thus can

appear in any block, or are they concentrated in particular regions, as

the beginning of documents?

2. Should one rely only on exact matching of query words to select impor-

tant blocks or is additional information contained in related words, as

synonyms, important?

Our analyses thus aim to reveal which blocks to select with respect to their

positions and how to select them.

2.3.1 Preliminaries

To conduct our investigation of the above points, we use four standard IR

datasets, namely MQ2007, MQ2008, GOV22 (also referred to as Trec-terabyte

2004/2005/2006) and Robust04. MQ2007 and MQ2008 are standard LETOR

[138] benchmark datasets for learning to rank. GOV2 contains documents

resulting from a crawl of .gov websites made in early 2004. Robust043

contains news article from the Financial Times, the Federal Register 94, the

LA Times, and FBIS. In each dataset, the title of the topics have been used

as queries and the content of the documents have been extracted using

Anserini [185]. Relevance judgements can take three values: 0 (irrelevant),

1 (relevant) or 2 (very relevant). A document-query pair with an associated

relevant judgement will be referred to as a labeled document-query pair.

All our analyses are based on labeled document-query pairs so as to avoid

assumptions on the relevance status of non-labeled pairs. Furthermore, as

it has become common to first filter documents with a standard IR system

prior to deploy deep IR models, we first select, for each query, the top 200

2http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm
3https://trec.nist.gov/data/robust/04.guidelines.html

22 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm
https://trec.nist.gov/data/robust/04.guidelines.html

documents using BM25 and only retain the labeled document-query pairs

associated with these documents. Note that the above filtering is not run on

MQ2007 and MQ2008 which already rely on a small subset of documents

for each query. Table 2.1 displays, for each collection, the number of queries

and documents as well as the number of unique labeled document-query

pairs (in the original dataset as well as the one filtered with BM25). The

proportions of irrelevant, relevant and very relevant pairs are computed on

the filtered version for GOV2 and Robust04, and on the original version for

MQ2007 and MQ2008.

Dataset MQ2007 MQ2008 GOV2 Robust04

Nb of queries 1,692 784 150 250
Original
Nb of documents 65,302 14,381 ca. 25M ca. 0.5M
Nb of labeled document-query pairs 69,599 15,208 135,352 311,410
BM25 filtered
Nb of unique documents - - 29,769 42,156
Nb of labeled document-query pairs - - 26,155 95,336
Proportion of irrelevant pairs 0.74 0.81 0.80 0.94
Proportion of relevant pairs 0.20 0.13 0.17 0.05
Proportion of very relevant pair 0.06 0.6 0.03 0.01

Tab. 2.1.: Statistics of the datasets used.

To divide documents into blocks, we use the recent CogLTX [33] block decom-

position method, which is based on a dynamic programming method, each

block having a maximum of 63 tokens. This method, which was used with

success on several NLP tasks, sets different costs for different punctuation

marks and aims at segmenting in priority on strong punctuation marks such

as "." and "!", making it close to a sentence segmentation procedure.

Lastly, to measure to which extent a block is relevant or not to a given query,

we use the Retrieval Status Value (RSV) of the block which simply amounts

here to the score provided by an IR model, in our case either BM25 or

the cosine similarity computed on semantic representations of queries and

2.3 A Finer-Grained Look at Documents 23

blocks. The higher the score obtained, the likelier the corresponding block is

relevant.

We now turn to answer the two questions we asked before.

2.3.2 Relevance Signals Appear at Different Positions in

Documents

We first analyze the length of documents with respect to the number of blocks

they contain. To do so, we plot in Figure 2.1 the proportion of documents

containing exactly n blocks, n varying from 1 to more than 1254. In addition,

the median as well as the first and third quartiles of the distribution of the

number of blocks for each dataset are provided. Even though the shape of

the curve for each dataset varies, one can notice that more than 25% of the

documents in MQ2007, MQ2008 and GOV2 contain more than 80 blocks,

way above the size limitation of current transformer-based IR models. For

Robust04, 25% of the documents have more than 30 blocks, a size that can

also exceed the limitation of current transformer-based IR models5.

As the number of blocks contained in a document varies a lot from one

document to another, for assessing where relevance signals appear in different

documents, we consider p positions (1, 2, · · · , p) and allocate each block of

a document to one of the p positions with the constraint that the first block

of the document should be allocated to the first position, and the last block

to the last position. This can be easily done with the following function

4The maximum number of blocks for MQ2007, MQ2008, Robust04 and GOV2 respectively
is 3225, 3225, 2959, 3311. We do not display the entire distribution for reading purposes.

5The average number of tokens per block for MQ2007, MQ2008, Robust04 and GOV2
respectively is 54.39, 54.44, 53.16, 54.33.

24 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

Fig. 2.1.: Interpolated curve of the density of the number of blocks per document
for the different datasets. The vertical line in red denotes the position of
the median, whereas the position of the 1st and 3rd quartile are displayed
in green. For the sake of readability, only the first 125 blocks are shown
here.

which provides the position of the ith block of a document containing b blocks

(1 ≤ i ≤ b):

pos(i) =
⌈10 × i

b

⌉
,

where ⌈x⌉ is the ceiling function which returns the integer greater than or

equal to x. For example, the fifth block in a document containing 100 blocks

is in the first position. Only documents that have at least 15 blocks are

considered for analysis, preventing missing positions.

Figure 2.2 displays the distribution of the average BM25 RSV score on each

position with p = 10 for all labeled query-document pairs (referred to as full

dataset), for very relevant and relevant pairs (referred to as relevant only)

and for irrelevant pairs (referred to as irrelevant only). On all collections,

the average RSV score decreases when the position increases. However,

the average RSV scores are still important in the middle positions and non-

2.3 A Finer-Grained Look at Documents 25

(a) BM25 RSV of Robust04 (b) BM25 RSV of GOV2

(c) BM25 RSV of MQ2007 (d) BM25 RSV of MQ2008

Fig. 2.2.: Average BM25 RSV scores per position of a block in a document using the
original query q.

negligible in the last positions. Furthermore, if one assumes that all blocks

of an irrelevant document are irrelevant6, then the difference, for a given

position, between the average RSV scores of relevant and irrelevant pairs

may serve as an additional indicator of whether or not relevance signals

are found in that particular position. When there is no difference between

the average RSV scores of relevant and irrelevant pairs at a given position,

then the only conclusion one can draw is that all blocks from relevant and

irrelevant documents behave in the same way with respect to the RSV score,

and there is no indication that relevance signals are present at that position.

On the contrary, when the average RSV score for relevant pairs is significantly

higher than the one for irrelevant pairs at a given position, then there is a

6We believe this is a reasonable assumption, at least when the blocks are not too short.

26 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

(a) Cosine similarity of Ro-
bust04

(b) Cosine similarity of
GOV2

(c) Cosine similarity of
MQ2007

(d) Cosine similarity of
MQ2008

Fig. 2.3.: Average RSV scores (cosine similarity) per position of a block in a docu-
ment using the original query q.

clearer indication that there are relevant signals at that position. This is the

case for all positions of the four collections.

To complement the above analysis, we used a different RSV score, namely the

cosine similarity between the semantic representations of blocks and queries

obtained with the pre-trained Sentence-BERT [144] model7 (we simply input

each query-block pair to Sentence-BERT which outputs query and block rep-

resentations on which a cosine similarity is computed). Contrary to the BM25

score which is mainly ’lexical’, this score aims to capture additional semantic

relationships between queries and blocks. Figure 2.3 displays the distribution

7The all-MiniLM-L12-v2 version from https://www.sbert.net/docs/pretrained_
models.html

2.3 A Finer-Grained Look at Documents 27

https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html

Tab. 2.2.: Example query and extensions

Original query q "minimum wage increase"
Synset ("minimum") minimal
Synset ("wage") earnings, pay, remuneration, salary
Synset ("increase") growth, gain, addition

Expanded query qexp minimum wage increase minimal earnings
pay remuneration salary growth gain addition

Random expanded query qrand_exp minimum wage increase cadent gravely
stuffiness puller complaisant sunlight profusely asterism

Original query boolean representation qbool ("minimum" OR "wage" OR "increase")

Extended query boolean representation qsyn
bool

(("minimal" OR
"earnings" OR "pay" OR "remuneration" OR "salary" OR
"growth" OR "gain" OR "addition")
AND NOT ("minimum" OR "wage" OR "increase"))

Random extended query boolean representation qrand
bool

(("cadent" OR
"gravely" OR "stuffiness" OR "puller" OR "complaisant" OR
"sunlight" OR "profusely" or "asterism")
AND NOT ("minimum" OR "wage" OR "increase"))

of the average cosine similarity RSV score on each position. This analysis

confirms that all positions can contain relevance signals. Furthermore, the

decrease in RSV scores when the position of the block increases is less marked

so that the difference between blocks at the beginning, the middle and the

end of a document (except the last block which gets in general significantly

smaller scores) is not really important.

Overall, our analysis reveals that, if terms at the beginning of a document

may be more important that terms at the end, all positions in a document

can contain important relevance signals and should a priori be explored for

IR purposes. This conclusion is in agreement with the verbosity hypothesis

[149].

2.3.3 Fuzzy Matching May Help Select Better Blocks on

Some Collections

The second question we address is whether one should solely rely on an

exact matching of the words present in the query to select a given block or

whether fuzzy matching including words related to the query words may help

28 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

retrieve better blocks. We consider here that a word related to a query word

is any synonym, as provided by WordNet [39], of that query word. Other

semantic relations can of course be used; we chose synonymy because it has

the advantage of being a simple relation which is at least partly captured in

modern word embeddings and for which useful resources such as WordNet

are available.

Our goal here is to assess whether using synonyms can help select useful

blocks. If this is the case, then one can conclude that it may be useful to

use matching strategies that go beyond an exact matching of query words.

It is important to note here that if many studies have been devoted to the

utility of synonyms in IR systems [161, 84], our study differs from them

in that it focuses on the use of synonyms for selecting blocks and does not

aim to assess different query expansion strategies. In particular, we are not

interested in assigning different weights to expanded terms even though such

a strategy may lead to better query expansion results [38, 37].

We first try to answer the question: Can synonyms identify blocks that would

not have been identified without them? To do so, from the original query, we

construct three boolean queries. The first one consists of the disjunction of

all query words and will be referred to as qbool. The second one consists of

the disjunction of all the synonyms from WordNet of all query words and

excludes the original query words. It will be referred to as qsyn
bool. Lastly, the

third one, referred to as qrand
bool , which has the same length as the second one,

consists of the disjunction of words randomly selected from WordNet. This

last query helps assess to which extent the phenomena observed depend

solely on the query length8. Table 2.2 provides an example of these three

8Adding terms to a boolean query through a disjunction is likely to increase the number of
blocks retrieved by the query. This said, please bear in mind that here the words added
to the original query come from an external resource and may not be present in the
collections queried.

2.3 A Finer-Grained Look at Documents 29

Tab. 2.3.: Statistics: number of blocks selected.

Dataset MQ2007 MQ2008 Robust04 GOV2
of blocks matching qbool 914,901 217,035 45,566 399,549
of blocks matching qbool + qsyn

bool 994,657 (+8.72%) 228,451 (+5.26%) 55,976 (+22.85%) 458,277 (+14.70%)
of blocks matching qbool + qrand

bool 917,026 (+0.23%) 217,378 (+0.16%) 45,717 (+0.33%) 400,570 (+0.26%)

types of boolean queries. Using the the eldar package9, we then computed,

for very relevant and relevant documents, the number of blocks matching

qbool, those matching either qbool or qsyn
bool, and matching either qbool or qrand

bool .

The results are given in Table 2.3 with the percentage increase with respects

to the number of blocks matched by qbool. One can observe that leveraging

the knowledge about synonyms enables to match more blocks: up to 22.85%

increase in the number of blocks matched in the case of the Robust04 dataset

(against 0.33% for the random query), 14.70% increase for GOV2 (against

0.26% for the random query, 8.72% in the case of MQ2007 (against 0.23%

for the random query) and 5.26% increase for MQ2008 (against 0.16% for

the random query).

To complement the above analysis, we also assessed whether synonyms can

leverage relevance signals in blocks at different positions. To do so, we used

a standard expansion of the original query by simply adding all synonyms

of all query terms without duplicates. For comparison purposes, we did the

same with the words randomly selected in WordNet. The obtained queries,

an example of which is given in Table 2.2, will be respectively referred to

as Original + synonyms and Original + random. We then computed the

difference in average BM25 scores between relevant and irrelevant docu-

ments across all positions for the three types of queries: Original, Original

+ synonyms, Original + random. The results obtained are reported in Fig-

ure 2.4. As one can note, blocks in relevant documents score higher than the

blocks in irrelevant documents, the gap being consistently and significantly

higher when using the query with synonyms than when using the original

9https://github.com/kerighan/eldar

30 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

https://github.com/kerighan/eldar

(a) Difference of Robust04 (b) Difference of GOV2

(c) Difference of MQ2007 (d) Difference of MQ2008

Fig. 2.4.: Difference in RSV scores between relevant and irrelevant documents for
the original query q, the expanded one qexp and the random expanded
one qrand_exp across block positions.

query or the original query with additional random words. Furthermore, the

two curves, Original and Original + random, are very close to each other

and almost identical on GOV2. This shows that the increase in the BM25

scores when using synonyms is not due to the length of the query, and that

synonyms help identify relevant signals in blocks. It thus may be useful to

use matching strategies that go beyond an exact matching of query words.

In the next sections, we will present two different ways to select blocks in

documents. The first one is based on standard IR functions, namely TF-IDF

and BM25, to compute relevance scores between queries and blocks; it is

thus based on an exact matching of words present in the query. The second

one aims at learning a scoring function that exploits the semantic similarities

2.3 A Finer-Grained Look at Documents 31

between query words and document words. In both cases, the top scoring

blocks are then used to compute the relevance score of the document.

2.4 Selecting Blocks with Standard IR

Functions: TF-IDF and BM25

TF-IDF is a popular IR model which amounts to score a document through

the product of the term frequency (TF) and inverse document frequency

(IDF) scores of the query words present in that document. Applied at the

block level, this yields the following retrieval status value (RSV):

RSV (q, b)T F −IDF =
∑

w∈q∩b

(ln tf b
w + 1)︸ ︷︷ ︸

T F

·IDF (w).

in which tf b
w corresponds to the number of occurrences of word w in block

b and IDF (w) to the inverse document frequency of word w. IDF (w) is

defined here according to scikit-learn [130] by:

IDF (w) = ln N + 1
dfw + 1 ,

where N is the number of documents in the collection and dfw corresponds

to the number of documents containing w.

For BM25 [150, 147], the RSV score is defined by:

RSV (q, b)BM25 =
∑

w∈q∩b

IDF (w) · tf b
w

k1 · (1 − b+ b · lb
lavg

) + tf b
w

,

where lb is the length of block b, lavg the average length of the blocks in d,

and k1 and b two hyperparameters. As standard in this setting, we use the

32 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

IDF formulation of Lucene version as shown in Kamphuis et al. [67] which

slightly differs from the previous one:

IDF (w) = ln N + 1
dfw + 0.5 .

According to [120], RSVs in different IR systems have different scales. In the

boolean model, RSVs are either 0 or 1. Vector space model can generate RSV

in [−1, 1] by cosine similarity or scalar product R. In this section, we rely

on TF-IDF and BM25, which can be viewed as an model that rely on term

matching and the scale of the RSVs is R. The blocks are ranked according to

RSVs by descending order.

Block or document level IDF As the reader may have noticed, the IDF is

based on documents and not on blocks. There are two main reasons for this.

First of all, considering blocks instead of documents for the IDF may artifi-

cially increase the df score of a word since important words of a document

are likely to occur in many blocks of that document. The second reason is

that one can directly re-use existing IDF scores computed at the document

level. Note that all words are lowercased prior to compute TF-IDF and BM25

scores.

The overall architecture of an IR neural system relying on the above standard

IR models to select blocks is presented in Figure 2.5. As one can note, the

query-block scoring part is used to select relevant blocks across the whole

document, which can be viewed as a pre-ranking strategy. The Deep Neural

IR Network can represent any neural IR network which generates relevance

scores for query-document pairs, scores which can in turn be used as input

to a learning-to-rank (LTR) loss, be it a pairwise or listwise loss. We focus

in this study on two state-of-the-art neural IR Models, namely Vanilla BERT,

2.4 Selecting Blocks with Standard IR Functions: TF-IDF and

BM25

33

One Long Document

query

One Lo Long ng ng DocDoc

Select Top Scoring Blocks

Query-block Scoring

1
block

2
block

3
block

4
block

5
block

6
block

7
block

8
block

9
block

n
block...

Query-document

Relevance

Query-document

Relevance

(another document)
... ...LTR

Loss

n
Score

1
Score

n
Label

1
Label

Deep Neural IR Network

Fig. 2.5.: An illustration of the architecture of KeyB (e.g., TF-IDF or BM25).

in which case we refer to the models obtained as KeyB(vBERT)T F −IDF and

KeyB(vBERT)BM25, and PARADE, in which case we refer to the models ob-

tained as KeyB(PARADEk)T F −IDF and KeyB(PARADEk)BM25, k representing in

that case the number of passages retained. Figure 2.6 provides an illustration

of Vanilla BERT and PARADE.

(a) Vanilla BERT neural IR
network

(b) PARADE neural IR net-
work

Fig. 2.6.: Different deep neural IR networks.

34 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

2.4.1 KeyB(vBERT)

The KeyB(vBERT) models rely on four steps:

1. Block segmentation We adopt here the dynamic programming method

proposed in [33] to segment documents into blocks, each block having

a maximum of 63 tokens. This method sets different costs for differ-

ent punctuation marks and aims at segmenting in priority on strong

punctuation marks such as "." and "!". It is thus close to a sentence

segmentation procedure.

2. Block selection Each block is assigned a relevance score provided by

either TF-IDF or BM25, as described above.

3. Query-blocks representation The most relevant blocks are then concate-

nated together in their order of appearance in the document and with

the query to form the input of BERT (see Figure 2.6). As the input

number of tokens for BERT is limited to 512, the last block is truncated

if necessary. The number n of selected blocks depends on the capacity

of BERT and is defined by:

3 + lq +
n−1∑
i=1

lbi
+ trunc(lbn) = 512,

where lq denotes the length of the query and lbi
the length of a block,

potentially truncated for the last selected block. The final query-

representation corresponds to the [CLS] embedding of the learned

BERT.

4. Document ranking We rely here on a one-layer dense, linear network

to generate the final relevance score, using a learning to rank loss

computed on a mini-batch (see Section 2.4.3).

2.4 Selecting Blocks with Standard IR Functions: TF-IDF and

BM25

35

2.4.2 KeyB(PARADEk)

As mentioned in Section 2.2, PARADE is a state-of-the-art model which

computes a query-document representation on the basis of the query-passage

representations. A document is first segmented into passages. Each passage

is then fed, together with the query, to a BERT model. The CLS embedding

thus obtained corresponds to the query-passage representation. Denoting by

pi the ith passage and pcls
i the corresponding query-passage representation,

one has:

pcls
i = BERT (q, pi).

The query-passage representations are then aggregated to obtain the query-

document representation, that is finally fed to a feed-forward neural network

to obtain the relevance score of the document.

Four types of aggregation methods have been proposed: PARADE–Max, PA-

RADE–Attn, PARADE–CNN and PARADE–Transformer. PARADE–Max uses

a max pooling operation on the passage relevance representations. PA-

RADE–Attn assumes that each passage contributes differently to the rele-

vance of a document to the query and passage weights are predicted by a

feed-forward network. PARADE–CNN stacks Convolutional Neural Network

(CNN) layers in a hierarchical way whereas PARADE–Transformer stacks

a full attention model which enables query-passage representations to in-

teract in a hierarchical manner through a transformer. Its architecture is

depicted in Fig. 2.6b. Because of its good behavior [83], we have retained

this last aggregation method here. We will refer to is as just PARADE in the

remainder.

36 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

Let x(ℓ) denote the input of the ℓ transformer layer. x(0) consists in the

concatenation of the query-passage representations (pcls
i). x(ℓ+1) is then given

by:

x(ℓ+1) = LayerNorm(h+ FFN(h)),

with h = LayerNorm(x(ℓ) + MultiHead(x(ℓ))).

LayerNorm refers to the layer-wise normalization described in [2] and Multi-

Head to the multi-head self-attention [166]. FFN is a two-layer feed-forward

network with a ReLU activation in between. The [CLS] vector of the final

output layer, which is denoted by dcls, constitutes the query-document rep-

resentation. A linear layer is then used to generate the query-document

relevance score:

RSV (q,D) = Wdcls,

where W is a learnable weight matrix.

It is important to note that the PARADE model described above can have

a high complexity when the number of passages considered is large (for

example, when using 10 passages, the model can not fit on a standard

GPU with 11 GB memory even with mixed precision). Indeed, in that case,

the input consists in a large tensor which can only be stored in a large

CUDA memory [45] with high computational complexity. To avoid this, the

number of passages is limited to 16. When a document contains more than

16 passages, then only the first passage, the last passage and 14 sampled

passages are used. Whether one restricts the number of passages or not, one

problem faced by PARADE lies in the fact that non relevant passages can bring

noise in the query-document representation, and hamper the computation of

a precise retrieval score. To address this problem, we propose here to select

a fixed, small number of passages, denoted by k. The selected passages are

2.4 Selecting Blocks with Standard IR Functions: TF-IDF and

BM25

37

then concatenated and fed to a transformer as in the original PARADE model.

When using standard IR functions as described above to select passages, the

query-document representations denoted by dcls
T F −IDF and dcls

BM25 are thus

obtained. The final relevance score of the document is then obtained by:

RSV (q,D) = Wdcls
T F −IDF or Wdcls

BM25.

2.4.3 Model Training

The block/passage selection process is applied in both the training and testing

phases. The BERT models used in Vanilla BERT and PARADE are fine-tuned

during training. The parameters of all the other components (final layer for

Vanilla BERT, final layer and transformer layers for PARADE) are directly

trained. For fine-tuning and training, the following pairwise hinge loss [49]

is used:

L(q, d+, d−; Θ) = max(0, 1 − s(q, d+; Θ) + s(q, d−; Θ)),

where q represents a query, (d+
q , d

−
q) a positive and negative training docu-

ment pair for q, Θ the parameters of the model considered and s the predicted

relevance score for a query-document pair. Other choices are of course pos-

sible, including ones based on a listwise loss. We chose the pairwise hinge

loss here as it is a very common choice, used in many IR methods [102, 89,

125].

38 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

2.5 Learning to Select Blocks

The analysis conducted in Section 2.3 suggests that a fuzzy matching pro-

cedure may be preferred over one based on an exact matching. We thus

aim here to learn a scoring function that exploits the semantic similarities

between words in queries and blocks using the same two neural IR model as

before, Vanilla BERT and PARADE.

2.5.1 Improving Vanilla BERT

We focus here on the Vanilla BERT model to compute the relevance score of

a block. That is, instead of just using the semantic representation of query-

block pairs to compute the relevance score of a document as in the previous

models, we also make use here of these representations to select the most

appropriate blocks. Furthermore, we propose here to share the semantic

representation for both purposes, selecting blocks and computing the overall

relevance score, as both are based on the relevance information contained in

each block. It is of course possible to make use of two different models, with

however higher computational and training costs. The overall architecture of

the model proposed is depicted in Figure 2.7, in which the same BERT model

and linear layer are used at different time slices, first to compute a query-

block representation, from which ([CLS] embedding) the relevance score of

the block is derived, and then to compute the query-document representation

([CLS] embedding) based on the top ranked blocks, finally to obtain the

score of the document. This query-document representation is identical to

the one used in the KeyB(vBERT) model, the only difference lying in the way

the blocks are selected. For the query-block represntation, both the BERT

model and the linear layer are only used for scoring and are not updated

2.5 Learning to Select Blocks 39

query

1
block

CLS

SEP

SEP

query

CLS

SEP

SEP

7
block

Linear Layer BERT
(eval model)

 BERT Linear Layer

block level

doc level

CLS

Embedding

CLS

Embedding

Query-doc

(another doc)

Query-doc

... ...LTR

Loss

n
Label

1
Label

query

same models in different time slices

before doc level tokens input to

BERT, every block is scored,

only for block scoring, no gradient.

S
elect Top

S
coring B

locks

(B
E
R
T C

apacity)

One Long Document

block scoring

1
block

2
block

3
block

4
block

5
block

6
block

7
block

8
block

9
block

n
block

...

n
block

...

n
Score

1
Score(train model)

(eval model)

(train model)

Fig. 2.7.: An illustration of the architecture of KeyB(vBERT)BinB. Here, the BERT
model and linear layer are used to select blocks too. While the neural
model being trained with document level annotations, this model would
become able to score blocks for a query.

via back-propagation (hence the term "eval model" used in Figure 2.7). The

score of a block b for a given query q is defined by:

RSV (q, b)BERT = Wdb
cls,

where Wd is the weight of the dense linear layer on top of BERT, and bcls is

the query-block relevance representation:

bcls = BERT (q, b).

For a given query, the BERT model is first used to generate a relevance score

for each block in the document. Since the BERT model is not well fine-tuned

at the beginning of the process, the block selection process acts as an almost

random selector. However, with the query-document level relevance labels,

after each back-propagation, the BERT model is improved and provides

better relevance scores for each block in the next iterations. In return, the

40 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

Fig. 2.8.: An illustration of the architecture of KeyB(PARADEk)BinB. Here, the
BERT model and linear layer of PARADE are used to select blocks too.

BERT model benefits from the block selection too. This can be viewed as a

self-evolution process: the BERT model evolves to provide appropriate query-

block representations to be able to select blocks, and meanwhile, appropriate

query-document representations to be able to generate relevance scores for

query-document pairs. Because of this self-evolution, we refer to this model

as KeyB(vBERT)BinB, where BinB means ”BERT in BERT”.

2.5.2 Improving PARADE

We here propose to improve the PARADE model with the learning approach

for selecting passages.

To do so, we first follow the same strategy as the one used for Vanilla BERT

by trying to use the same modules for both selecting passages and scoring

documents. A major difficulty for doing so here is that the Transformer

encoder used in PARADE to score a complete document takes as input the

representation of several query-block pairs. As such, it cannot be used to

2.5 Learning to Select Blocks 41

score a single block. For this reason, we first propose to only share the

initial BERT model and the final feed-forward neural network as illustrated

in Figure 2.8. In this new architecture, one obtains the [CLS] query-passage

representation, denoted by pcls for passage p, using the base BERT model

of PARADE which is shared in different time slices. The final feed-forward

neural network is used to provide, from a CLS representation, a score for

a query-passage pair (Fig. 2.8, left) and a score for a query-document pair,

where a document is seen as the concatenation of passages (Fig. 2.8, right).

The score of a passage p for a given query q is then defined by:

RSV (q, p)BERT = Wdp
cls,

where Wd is the weight of the feed-forward neural network after the Trans-

former encoder, and pcls is the query-passage relevance representation:

pcls = BERT (q, p).

We refer to this approach as KeyB(PARADEk)BinB, where k is the number of

selected passages.

If the previous attempt makes it possible to reuse modules for selecting

passages and scoring documents, it may however suffer from the fact that

the same feed-forward neural network is required to produce a relevance

score from two different CLS representations: one restricted to a single query-

passage pair for selecting passages, and one resulting from an encoding,

through a Transformer, of several query-passage representations for scoring

the document. We propose to fix this issue by decoupling the passage scoring

module from the main model, as illustrated in Figure 2.9 which relies on a

different BERT module and feed-forward neural network to select passages.

But which BERT model and feed-forward layer to use? A simple answer to

42 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

Fig. 2.9.: An illustration of the architecture of KeyB(PARADEk)BinB2. Here, addi-
tional BERT model and additional linear layer are used to select blocks.

this question is to re-use the pretrained BERT ranker and final feed-forward

neural network of one of the KeyB(vBERT) models previously proposed as

these models are compatible with the input used here. The score of a passage

p for a given query q is in this case defined by:

RSV (q, p)BERT 2 = W 2
d p

cls2 ,

where W 2
d is the weight of the feed-forward neural network following the ad-

ditional BERT module, and pcls2 is the query-passage relevance representation

after the additional BERT module:

pcls2 = BERT2(q, p).

In practice, we use the BERT module and feed-forward neural network from

the KeyB(vBERT)BM25 model and refer to this approach as KeyB(PARADEk)BinB2,

where k is the number of selected passages.

2.5 Learning to Select Blocks 43

2.6 Experiments on Standard IR Collections

We conducted a first series of experiments on the same collections as the ones

used in the analysis presented in Section 2.3, namely MQ2007, MQ2008,

Robust04 and GOV2. These experiments aim at assessing the validity of the

models proposed, KeyB(vBERT) and KeyB(PARADEk)10, and at comparing

them to models that have provided state-of-the-art results on these collections.

These latter models are:

• DeepRank: We compare with the DeepRank with CNN based measure

network, which leads to better results than 2D-GRU based on [125].

We used the PyTorch implementation of DeepRank 11 with given hy-

perparameter for the architecture. Following the implementation, the

number of words per document is set to 2000. Hence, by adopting

the default parameters the documents longer than 2000 tokens are

truncated.

• PARADE: We compare our model with the PARADE-Transfomer ver-

sion as this version performs mostly better and we call this baseline

PARADE in short. This method is a state-of-the-art IR method which

first segments documents into passages that are fed to a BERT model.

Transformer layers are then used to compute global attention scores

over the [CLS] embeddings of different passages. A final linear layer is

used for computing the document level relevance score. We have used

the open-sourced PyTorch implementation12.

• CEDR-KNRM: CEDR is also a reported state-of-the-art model that in-

corporates BERT’s classification vector into existing neural models. We

10These models are developed on top of the Georgetown IR Lab implementation and are
available at: https://github.com/lmh0921/keyB.

11https://github.com/pl8787/DeepRank_PyTorch
12https://github.com/capreolus-ir/capreolus

44 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

https://github.com/lmh0921/keyB
https://github.com/pl8787/DeepRank_PyTorch
https://github.com/capreolus-ir/capreolus

choose the CEDR-KNRM as the baseline for it is reported better than

other variants. We have used the Georgetown IR Lab implementation13

with the Hugging Face transformer module14.

For assessing the various components of the models proposed, we also used

the following baseline models:

• BM25: We use the BM25 implementation of Anserini [185], with

default hyperparameters. This model is the one presented in Section 2.4

and is used both as a baseline on all collections. In addition, it is

used as a first stage ranker, retaining only the top 200 documents,

for the neural IR models on Robust04 and GOV2. For MQ2007 and

MQ2008, we converted the original documents to JSON files which can

be indexed by Anserini. We then used the BM25 model from Anserini

as a baseline but not as a first stage ranker as in MQ2007 and MQ2008

each query only contains dozens of labeled documents for ranking.

For all experiments, the hyper-parameters k1 and b of BM25 are set to

Anserini’s default values: 0.9 and 0.4.

• Vanilla BERT: This is a BERT baseline that truncates long documents

to the first 512 tokens. Except for this difference in the input used

for BERT, the architecture is the same as the one of KeyB(vBERT).

This baseline thus allows one to evaluate the impact of key blocks.

For implementation, we have used the same library as the one for

CEDR-KNRM.

• Random Select: This architecture is the same as the one with KeyB(vBERT)

except that it does not incorporate the block selection mechanism. To

be specific, a long document is also firstly segmented into blocks, but

13https://github.com/Georgetown-IR-Lab/cedr
14https://github.com/huggingface/transformers

2.6 Experiments on Standard IR Collections 45

https://github.com/Georgetown-IR-Lab/cedr
https://github.com/huggingface/transformers

each block is given a random score. This is to say, without local block

pre-ranking step, the blocks are selected randomly.

2.6.1 Experimental Design

It is common in IR to first filter documents with a classical IR system prior

to re-rank them with a more complex (and usually more time consuming)

system [118, 102, 26, 83]. We adopt here this approach and use BM25 as the

first filtering system, retaining only, for each query, the first 200 documents

on Robust04 and GOV2 as done in [102]. As queries in MQ2007 and MQ2008

are associated with far less than 200 documents, this filtering step is not

necessary. Following [125], we merged the MQ2007 and MQ2008 training

sets as the training set of MQ2008 is relatively small. The validation and

testing sets remain unchanged. For all neural IR models, the pairwise hinge

loss [125] is used for training the models.

Furthermore, for all experiments, 5-fold cross-validation is used with three

folds for training, one fold for validation and one fold for testing. For

Robust04 and GOV2, we used the keyword (title) version of queries [26].

For MQ2007 and MQ2008, the default queries are used. All neural IR models

based on BERT use the “BERT-Base, Uncased, L=12, H=768”15 pre-trained

language model (but not further pre-trained with additional data) for fair

comparison.

For DeepRank, we followed the experimental setup of [125] and used GloVe

embeddings [131] of dimension 50, which are pre-trained on Wikipedia

2014 + Gigaword 5. For the preprocessing of document and query words,

we applied lower-case, removed English stop words, stemmed with Krovetz

15https://github.com/google-research/bert

46 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

https://github.com/google-research/bert

stemmer [77] and removed words occurring less than 5 times. The Adam

optimizer is used for training the network and the learning rate is searched

over values of {0.01, 0.005, 0.001}. We selected the model that leads to the

best MAP score on the validation set.

For PARADE, the first and last passages are always selected and the other

passages are randomly sampled16. The number of passages considered is a

hyperparameter in PARADE that needs to be set. Following [83], the passages

are obtained with 225 document tokens with stride size 200, the maximum

passage sequence length is set as 256, and the number of passages is set

to 16 for all collections. Note again that for a fair comparison, BERT is not

further trained on MS-MARCO [117]. For all BERT based IR models, we use

the BERT implementation of PyTorch Huggingface library [176].

For the variants of PARADE we have proposed in Section 2.4.2, we have

used TF-IDF or BM25 to select the top 5 passages. The choice of 5 passages

provides a good balance for effectiveness, as ca. 1000 tokens are considered,

and efficiency, as a standard RTX 2080ti GPU with 11GB memory is not

able to deal with 12 passages and automatic mixed precision [109] for

example. The resulting models, based on PARADE and integrating the top

5 passages using TF-IDF or BM25 for local pre-ranking, are referred to as

KeyB(PARADE5)T F −IDF and KeyB(PARADE5)BM25. The variants of PARADE

proposed in Section 2.5.2 and with top 5 passages are are referred to as

KeyB(PARADE5)BinB and KeyB(PARADE5)BinB2. We here use the "cross-

encoder/ms-marco-MiniLM-L-12-v2"17 version model as the standalone BERT

ranker for KeyB(PARADE5)BinB2. This standalone BERT ranker is firstly

finetuned on each collection as the way of KeyB(PARADE5)BM25 (trained

with document level labels), then it can generate a RSV for each query-

16As done https://github.com/canjiali/PARADE/blob/master/generate_data.py in
line 304.

17https://www.sbert.net/docs/pretrained_cross-encoders.html

2.6 Experiments on Standard IR Collections 47

https://github.com/canjiali/PARADE/blob/master/generate_data.py
https://www.sbert.net/docs/pretrained_cross-encoders.html

passage pair (this means that a query and passage are concatenated and

directly input to the BERT ranker). All other settings are the same as the

ones for the PARADE model described above. For comparison purposes, we

also used another variant of PARADE, called PARADE5, relying on the first,

last and 3 randomly chosen passages.

Each model is trained for a maximum of 10 epochs. For Robust04 and GOV2,

one epoch represents 1024 batches of two pairs, each pair being of the

form ((q, d+
q), (q, d−

q)) where d+
q is a positive document for query q and d−

q a

negative document. Since MQ2007 and MQ2008 have more queries than

Robust04 and GOV2, each epoch of these two collections is composed of

2048 batches of two pairs identical to the ones above. The negative example

in a pair is generated randomly for all models from the set of documents

which are either labeled not relevant or not labeled for the query. Although

different negative sampling mechanisms may impact final results [99], the

above simple negative sampling strategy achieves very good performance

and has been successfully used in previous studies [102, 89, 125]. Gradient

accumulation is employed every 8 steps to fit on a single GPU with 11GB

memory like a RTX 2080ti GPU, simulating a batchsize with 16 training pairs,

as done in [102]. Automatic mixed precision [109] is used to speed up

training. We adopt a validation mechanism with validation set to report each

metric on the test set. That is to say, for each evaluation metric, we obtain

the best performing model in the 10 epochs on the validation set, and use

this model to obtain results on the test set for this metric. Each model is

trained using Adam optimizer (the transformer layers are trained with a rate

of 2 ∗ 10−5 while the linear layer with a rate of 10−3).

Results, for all models, are measured with P@1, P@5, P@10, P@20, MAP,

NDCG@1, NDCG@5, NDCG@10, NDCG@20 and NDCG, NDCG and MAP

being computed on all available documents for each query (the number of

48 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

documents per query is 200 on Robust04 and GOV2 and varies from one

query to the other on MQ2007 and MQ2008). Each metric is calculated with

pytrec_eval18 [165], which is a wrapper of trec_eval19. Lastly, a paired

t-test is used to assess whether differences are significant or not.

2.6.2 Experimental Results

The results obtained on all the four collections are displayed in Table 2.4 to

Table 2.720. We first analyze the results of the KeyB(vBERT) models, prior to

analyze the ones of KeyB(PARADE5)BM25 and compare them.

Improving Vanilla BERT model with selected key blocks We propose to an-

alyze the experimental results by answering several research questions.

RQ1 How effective are KeyB(vBERT) models compared to baseline models

(BM25, DeepRank)?

The first conclusion we draw from Tables 2.4 to 2.7 is that all KeyB(vBERT)

models outperform both baseline models on all collections, for all metrics,

by a large margin. Furthermore, on all collections, KeyB(vBERT) models

significantly outperform most of metrics.

RQ2 How effective are KeyB(vBERT) models compared to standard BERT

based models (Vanilla BERT, CEDR-KNRM)?

18https://github.com/cvangysel/pytrec_eval
19https://trec.nist.gov/trec_eval
20As pointed out in e.g. https://github.com/Georgetown-IR-Lab/cedr/issues/22, the

results obtained for CEDR-KNRM with the code provided by the authors differ from the
ones reported in the original paper. We have also observed this in our experiments. The
same holds for DeepRank; in that case however the original paper provides results for
most of the metrics we have retained on MQ2007 and MQ2008. We have thus reported
the original results in Tables 2.6 and 2.7, under the name DeepRank∗. These results do
not change our conclusions.

2.6 Experiments on Standard IR Collections 49

https://github.com/cvangysel/pytrec_eval
https://trec.nist.gov/trec_eval
https://github.com/Georgetown-IR-Lab/cedr/issues/22

Tab.2.4.:
Results

on
Robust04

dataset.
Bestresults

are
in

bold.
For

KeyB(vBERT)
m

odels,a
significantdifference

w
ith

BM
25

is
m

arked
w

ith
a

’B
’,w

ith
D

eepR
ank

w
ith

a
’D

’,w
ith

Vanilla
B

ER
T

w
ith

a
’V

’,w
ith

C
ED

R
-K

N
R

M
w

ith
a

’C
’,and

w
ith

R
andom

select
w

ith
an

’R
’.For

KeyB
(PA

R
A

D
E)

m
odels,a

significant
difference

w
ith

B
M

25
is

m
arked

w
ith

a
’B

’,w
ith

D
eepR

ank
w

ith
a

’D
’,

w
ith

PA
R

A
D

E
w

ith
a

’P’,and
w

ith
PA

R
A

D
E5

w
ith

a
’5’.

A
paired

t-test
(p

−
v
a
lu

e
≤

0
.05)

is
used

for
m

easuring
significance.

M
odel

P@
1

P@
5

P@
10

P@
20

M
A

P
N

D
C

G
@

1
N

D
C

G
@

5
N

D
C

G
@

10
N

D
C

G
@

20
N

D
C

G
B

aseline
m

odels
B

M
25

0.5542
0.5004

0.4382
0.3631

0.2334
0.5080

0.4741
0.4485

0.4240
0.4402

D
eepR

ank
0.5663

0.4538
0.3907

0.3331
0.2145

0.5081
0.4386

0.4051
0.3864

0.4272
B

ER
T

based
m

odels
Vanilla

B
ER

T
0.6067

0.5478
0.4843

0.4088
0.2510

0.5706
0.5337

0.4945
0.4678

0.4553
C

ED
R

-K
N

R
M

0.6220
0.5542

0.4840
0.4097

0.2440
0.5878

0.5253
0.5093

0.4803
0.4600

R
andom

Select
0.5983

0.5108
0.4730

0.4059
0.2453

0.5482
0.4856

0.4880
0.4688

0.4540
KeyB

(vB
ER

T)
T

F
−

I
D

F
0.6146

0.5430
B

D
R

0.4963
B

D
R

0.4208
B

D
R

0.2628
B

D
V

C
R

0.5764
0.5275

B
D

R
0.5099

B
D

0.4884
B

D
V

R
0.4684

B
D

V
C

R

KeyB
(vB

ER
T)

B
M

25
0.6468

B
D

0.5622
B

D
R

0.4976
B

D
R

0.4241
B

D
V

R
0.2609

B
D

C
R

0.6004
B

D
0.5512

B
D

R
0.5166

B
D

V
R

0.4941
B

D
V

R
0.4687

B
D

V
C

R

KeyB
(vB

ER
T)

B
in

B
0.6710

B
D

R
0.5661

B
D

R
0.5088

B
D

V
C

R
0.4241

B
D

V
R

0.2722
B

D
V

C
R

0.6289
B

D
R

0.5554
B

D
R

0.5249
B

D
V

R
0.4958

B
D

V
R

0.4768
B

D
V

C
R

PA
R

A
D

E
based

m
odels

PA
R

A
D

E
0.6869

0.5686
0.5080

0.4309
0.2739

0.6166
0.5510

0.5146
0.5017

0.4737
PA

R
A

D
E5

0.6388
0.5334

0.4868
0.4125

0.2477
0.5905

0.5215
0.5055

0.4761
0.4594

KeyB
(PA

R
A

D
E5)

T
F

−
I
D

F
0.6790

B
D

0.5687
B

D
5

0.5093
B

D
5

0.4319
B

D
5

0.2714
B

D
5

0.6348
B

D
0.5467

B
D

0.5218
B

D
0.4989

B
D

5
0.4710

B
D

5

KeyB
(PA

R
A

D
E5)

B
M

25
0.6871

B
D

0.5768
B

D
5

0.5177
B

D
5

0.4337
B

D
5

0.2757
B

D
5

0.6329
B

D
0.5636

B
D

5
0.5304

B
D

5
0.5040

B
D

5
0.4735

B
D

5

KeyB
(PA

R
A

D
E5)

B
in

B
0.6308

B
0.5479

B
D

0.5057
B

D
0.4200

B
D

0.2629
B

D
P

5
0.5885

B
D

0.5329
B

D
0.5283

B
D

5
0.4967

B
D

5
0.4687

B
D

5

KeyB
(PA

R
A

D
E5)

B
in

B
2

0.6427
B

D
0.5758

B
D

5
0.5112

B
D

5
0.4378

B
D

5
0.2779

B
D

5
0.5965

B
D

5
0.5625

B
D

5
0.5247

B
D

0.5058
B

D
5

0.4778
B

D
5

50 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

Ta
b.

2.
5.

:
Re

su
lt

s
on

G
O

V2
da

ta
se

t.
Be

st
re

su
lt

s
ar

e
in

bo
ld

.
Be

st
re

su
lt

s
ar

e
in

bo
ld

.
Fo

r
Ke

yB
(v

BE
RT

)
m

od
el

s,
a

si
gn

ifi
ca

nt
di

ff
er

en
ce

w
it

h
B

M
25

is
m

ar
ke

d
w

it
h

a
’B

’,
w

it
h

D
ee

pR
an

k
w

it
h

a
’D

’,
w

it
h

Va
ni

lla
B

ER
T

w
it

h
a

’V
’,

w
it

h
C

ED
R

-K
N

R
M

w
it

h
a

’C
’,

an
d

w
it

h
R

an
do

m
se

le
ct

w
it

h
an

’R
’.

Fo
r

Ke
yB

(P
A

R
A

D
E)

m
od

el
s,

a
si

gn
ifi

ca
nt

di
ff

er
en

ce
w

it
h

B
M

25
is

m
ar

ke
d

w
it

h
a

’B
’,

w
it

h
D

ee
pR

an
k

w
it

h
a

’D
’,

w
it

h
PA

R
A

D
E

w
it

h
a

’P
’,

an
d

w
it

h
PA

R
A

D
E5

w
it

h
a

’5
’.

A
pa

ir
ed

t-
te

st
(p

−
v
a
lu

e
≤

0.
05

)
is

us
ed

fo
r

m
ea

su
ri

ng
si

gn
ifi

ca
nc

e.

M
od

el
P@

1
P@

5
P@

10
P@

20
M

A
P

N
D

C
G

@
1

N
D

C
G

@
5

N
D

C
G

@
10

N
D

C
G

@
20

N
D

C
G

B
as

el
in

e
m

od
el

s
B

M
25

0.
65

10
0.

60
54

0.
57

92
0.

53
62

0.
23

31
0.

50
34

0.
49

04
0.

48
67

0.
47

74
0.

42
96

D
ee

pR
an

k
0.

64
53

0.
56

82
0.

51
43

0.
48

80
0.

21
51

0.
47

38
0.

43
63

0.
41

94
0.

41
70

0.
41

20
B

ER
T

ba
se

d
m

od
el

s
Va

ni
lla

B
ER

T
0.

62
41

0.
60

68
0.

56
72

0.
54

75
0.

23
21

0.
45

31
0.

49
54

0.
48

37
0.

47
64

0.
42

79
C

ED
R

-K
N

R
M

0.
62

39
0.

61
33

0.
58

86
0.

55
56

0.
23

75
0.

49
29

0.
48

91
0.

48
92

0.
47

69
0.

43
15

R
an

do
m

Se
le

ct
0.

68
39

0.
61

69
0.

59
84

0.
56

40
0.

24
67

0.
49

95
0.

48
11

0.
49

55
0.

48
53

0.
43

58
Ke

yB
(v

B
ER

T)
T

F
−

I
D

F
0.

71
22

0.
67

35
B

D
V

C
R

0.
64

46
B

D
V

C
R

0.
61

23
B

D
V

C
R

0.
25

83
B

D
V

C
R

0.
55

74
D

0.
52

56
D

R
0.

53
40

B
D

V
C

R
0.

52
69

B
D

C
R

0.
44

13
B

D
C

Ke
yB

(v
B

ER
T)

B
M

25
0.

66
34

0.
65

24
D

0.
63

03
B

D
C

0.
59

97
B

D
V

C
R

0.
26

43
B

D
V

C
R

0.
51

71
0.

53
41

D
V

R
0.

52
72

B
D

V
C

0.
51

99
B

D
C

R
0.

44
47

B
D

V
C

R

Ke
yB

(v
B

ER
T)

B
in

B
0.

76
51

B
D

V
C

0.
69

37
B

D
V

C
R

0.
66

45
B

D
V

C
R

0.
61

25
B

D
V

C
R

0.
26

74
B

D
V

C
R

0.
55

74
D

0.
54

14
B

D
V

C
R

0.
53

56
B

D
V

C
R

0.
52

95
B

D
V

C
R

0.
44

53
B

D
V

C
R

PA
R

A
D

E
ba

se
d

m
od

el
s

PA
R

A
D

E
0.

72
44

0.
70

16
0.

66
31

0.
61

33
0.

26
21

0.
59

30
0.

55
18

0.
55

62
0.

54
66

0.
44

84
PA

R
A

D
E5

0.
69

06
0.

64
29

0.
62

46
0.

57
07

0.
24

62
0.

54
63

0.
53

27
0.

51
61

0.
50

53
0.

43
86

Ke
yB

(P
A

R
A

D
E5

) T
F

−
I
D

F
0.

73
86

0.
69

31
B

D
5

0.
66

05
B

D
5

0.
62

22
B

D
5

0.
27

28
B

D
P

5
0.

55
69

D
0.

55
36

B
D

0.
54

98
B

D
0.

53
52

B
D

5
0.

45
37

B
D

5

Ke
yB

(P
A

R
A

D
E5

) B
M

25
0.

77
20

B
D

0.
69

31
B

D
5

0.
65

28
B

D
0.

63
97

B
D

P
5

0.
27

45
B

D
P

5
0.

58
06

D
0.

57
83

B
D

5
0.

55
29

B
D

5
0.

56
24

B
D

5
0.

45
78

B
D

P
5

Ke
yB

(P
A

R
A

D
E5

) B
in

B
0.

70
55

0.
71

96
B

D
5

0.
65

63
B

D
0.

62
12

B
D

5
0.

26
80

B
D

5
0.

56
40

D
0.

56
60

B
D

0.
54

51
B

D
0.

53
79

B
D

0.
44

95
B

D

Ke
yB

(P
A

R
A

D
E5

) B
in

B
2

0.
72

53
0.

70
34

B
D

5
0.

67
71

B
D

5
0.

64
07

B
D

P
5

0.
27

33
B

D
P

5
0.

57
06

D
0.

55
12

B
D

0.
56

76
B

D
5

0.
55

91
B

D
5

0.
45

54
B

D
5

2.6 Experiments on Standard IR Collections 51

Tab.2.6.:
R

esults
on

M
Q

2007
dataset.

D
eepR

ank*
represents

the
results

from
the

original
paper.

B
est

results
are

in
bold

.
For

K
eyB

(vB
ER

T
)

m
odels,

a
significant

difference
w

ith
B

M
25

is
m

arked
w

ith
a

’B
’,

w
ith

D
eepR

ank
w

ith
a

’D
’,

w
ith

Vanilla
BER

T
w

ith
a

’V
’,w

ith
C

ED
R

-K
N

R
M

w
ith

a
’C

’,and
w

ith
R

andom
select

w
ith

an
’R

’.For
KeyB(PA

R
A

D
E)

m
odels,a

significant
difference

w
ith

BM
25

is
m

arked
w

ith
a

’B’,w
ith

D
eepR

ank
w

ith
a

’D
’,w

ith
PA

R
A

D
E

w
ith

a
’P’,and

w
ith

PA
R

A
D

E5
w

ith
a

’5’.
A

paired
t-test

(p
−

v
a
lu

e
≤

0
.05)

is
used

for
m

easuring
significance.

M
odel

P@
1

P@
5

P@
10

P@
20

M
A

P
N

D
C

G
@

1
N

D
C

G
@

5
N

D
C

G
@

10
N

D
C

G
@

20
N

D
C

G
B

aseline
m

odels
B

M
25

0.4186
0.3969

0.3757
0.3391

0.4527
0.3712

0.3954
0.4309

0.4962
0.5933

D
eepR

ank
0.4444

0.4201
0.3898

0.3473
0.4596

0.3942
0.4168

0.4468
0.5088

0.6012
D

eepR
ank*

0.508
0.452

0.412
-

0.497
0.441

0.457
0.482

-
-

B
ER

T
based

m
odels

Vanilla
B

ER
T

0.5266
0.4741

0.4257
0.3606

0.5073
0.4708

0.4808
0.5070

0.5620
0.6379

C
ED

R
-K

N
R

M
0.5284

0.4768
0.4233

0.3601
0.5066

0.4814
0.4874

0.5084
0.5601

0.6380
R

andom
Select

0.5343
0.4768

0.4347
0.3656

0.5207
0.4808

0.4980
0.5224

0.5775
0.6499

KeyB
(vB

ER
T)

T
F

−
I
D

F
0.5425

B
D

0.4926
B

D
V

C
R

0.4465
B

D
V

C
R

0.3702
B

D
V

C
R

0.5323
B

D
V

C
R

0.4917
B

D
0.5043

B
D

V
C

0.5342
B

D
V

C
R

0.5864
B

D
V

C
R

0.6551
B

D
V

C

KeyB
(vB

ER
T)

B
M

25
0.5526

B
D

V
C

0.4946
B

D
V

C
R

0.4408
B

D
V

C
0.3705

B
D

V
C

R
0.5305

B
D

V
C

R
0.4933

B
D

V
0.5061

B
D

V
C

0.5339
B

D
V

C
R

0.5824
B

D
V

C
0.6528

B
D

V
C

KeyB
(vB

ER
T)

B
in

B
0.5597

B
D

V
C

R
0.4971

B
D

V
C

R
0.4503

B
D

V
C

R
0.3759

B
D

V
C

R
0.5457

B
D

V
C

R
0.5133

B
D

V
C

R
0.5134

B
D

V
C

R
0.5496

B
D

V
C

R
0.5969

B
D

V
C

R
0.6627

B
D

V
C

R

PA
R

A
D

E
based

m
odels

PA
R

A
D

E
0.5474

0.5009
0.4486

0.3747
0.5418

0.5054
0.5255

0.5499
0.5950

0.6599
PA

R
A

D
E5

0.5686
0.4824

0.4370
0.3714

0.5291
0.5174

0.5142
0.5356

0.5851
0.6538

KeyB
(PA

R
A

D
E5)

T
F

−
I
D

F
0.5721

B
D

P
0.5034

B
D

5
0.4491

B
D

5
0.3737

B
D

0.5477
B

D
5

0.5198
B

D
0.5221

B
D

0.5488
B

D
5

0.5998
B

D
5

0.6645
B

D
5

KeyB
(PA

R
A

D
E5)

B
M

25
0.5769

B
D

P
0.5063

B
D

5
0.4486

B
D

5
0.3748

B
D

5
0.5494

B
D

P
5

0.5151
B

D
0.5261

B
D

5
0.5530

B
D

5
0.6021

B
D

5
0.6664

B
D

P
5

KeyB
(PA

R
A

D
E5)

B
in

B
0.5580

B
D

0.5079
B

D
5

0.4487
B

D
5

0.3740
B

D
0.5427

B
D

5
0.5054

B
D

0.5200
B

D
0.5493

B
D

5
0.5978

B
D

5
0.6623

B
D

5

KeyB
(PA

R
A

D
E5)

B
in

B
2

0.5709
B

D
P

0.5066
B

D
5

0.4488
B

D
5

0.3766
B

D
5

0.5461
B

D
5

0.5213
B

D
0.5266

B
D

5
0.5513

B
D

5
0.6005

B
D

5
0.6650

B
D

5

52 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

Ta
b.

2.
7.

:
R

es
ul

ts
on

M
Q

20
08

da
ta

se
t.

D
ee

pR
an

k*
re

pr
es

en
ts

th
e

re
su

lt
s

fr
om

th
e

or
ig

in
al

pa
pe

r.
B

es
t

re
su

lt
s

ar
e

in
bo

ld
.

Fo
r

K
ey

B
(v

B
ER

T
)

m
od

el
s,

a
si

gn
ifi

ca
nt

di
ff

er
en

ce
w

it
h

B
M

25
is

m
ar

ke
d

w
it

h
a

’B
’,

w
it

h
D

ee
pR

an
k

w
it

h
a

’D
’,

w
it

h
Va

ni
lla

BE
R

T
w

it
h

a
’V

’,
w

it
h

C
ED

R
-K

N
R

M
w

it
h

a
’C

’,
an

d
w

it
h

R
an

do
m

se
le

ct
w

it
h

an
’R

’.
Fo

r
Ke

yB
(P

A
R

A
D

E)
m

od
el

s,
a

si
gn

ifi
ca

nt
di

ff
er

en
ce

w
it

h
BM

25
is

m
ar

ke
d

w
it

h
a

’B
’,

w
it

h
D

ee
pR

an
k

w
it

h
a

’D
’,

w
it

h
PA

R
A

D
E

w
it

h
a

’P
’,

an
d

w
it

h
PA

R
A

D
E5

w
it

h
a

’5
’.

A
pa

ir
ed

t-
te

st
(p

−
v
a
lu

e
≤

0.
05

)
is

us
ed

fo
r

m
ea

su
ri

ng
si

gn
ifi

ca
nc

e.

M
od

el
P@

1
P@

5
P@

10
P@

20
M

A
P

N
D

C
G

@
1

N
D

C
G

@
5

N
D

C
G

@
10

N
D

C
G

@
20

N
D

C
G

B
as

el
in

e
m

od
el

s
B

M
25

0.
38

16
0.

33
16

0.
24

11
0.

15
15

0.
45

38
0.

32
97

0.
43

76
0.

48
41

0.
50

86
0.

52
43

D
ee

pR
an

k
0.

39
92

0.
28

16
0.

19
20

0.
11

50
0.

43
56

0.
36

41
0.

43
73

0.
46

72
0.

48
78

0.
49

17
D

ee
pR

an
k*

0.
48

2
0.

35
9

0.
25

2
-

0.
49

8
0.

40
6

0.
49

6
-

-
-

B
ER

T
ba

se
d

m
od

el
s

Va
ni

lla
B

ER
T

0.
50

63
0.

36
50

0.
25

60
0.

15
66

0.
52

30
0.

45
08

0.
51

65
0.

54
89

0.
56

97
0.

58
10

C
ED

R
-K

N
R

M
0.

50
50

0.
36

78
0.

25
61

0.
15

69
0.

52
20

0.
45

15
0.

51
51

0.
54

88
0.

56
74

0.
57

94
R

an
do

m
Se

le
ct

0.
50

00
0.

36
63

0.
25

74
0.

15
79

0.
51

96
0.

43
87

0.
50

96
0.

54
27

0.
56

11
0.

57
29

Ke
yB

(v
B

ER
T)

T
F

−
I
D

F
0.

51
66

B
D

0.
38

62
B

D
V

C
R

0.
25

97
D

0.
15

80
D

0.
53

18
B

D
0.

46
49

B
D

0.
53

30
B

D
V

C
R

0.
55

96
B

D
R

0.
57

55
B

D
R

0.
58

69
B

D
R

Ke
yB

(v
B

ER
T)

B
M

25
0.

51
65

B
D

0.
37

60
B

D
V

R
0.

25
79

D
0.

15
82

D
0.

53
50

B
D

R
0.

46
29

B
D

0.
53

17
B

D
V

C
R

0.
56

09
B

D
V

C
R

0.
57

88
B

D
C

R
0.

58
91

B
D

R

Ke
yB

(v
B

ER
T)

B
in

B
0.

52
54

B
D

0.
38

19
B

D
V

C
R

0.
26

24
D

V
C

R
0.

15
89

D
0.

54
25

B
D

V
C

R
0.

46
61

B
D

R
0.

53
82

B
D

V
C

R
0.

56
16

B
D

V
C

R
0.

57
88

B
D

C
R

0.
58

91
B

D
R

PA
R

A
D

E
ba

se
d

m
od

el
s

PA
R

A
D

E
0.

50
89

0.
38

11
0.

26
17

0.
15

90
0.

53
75

0.
45

02
0.

53
21

0.
56

56
0.

57
99

0.
58

67
PA

R
A

D
E5

0.
49

99
0.

37
63

0.
25

78
0.

15
74

0.
52

54
0.

45
14

0.
52

26
0.

55
23

0.
57

16
0.

58
21

Ke
yB

(P
A

R
A

D
E5

) T
F

−
I
D

F
0.

53
69

B
D

P
5

0.
38

29
B

D
0.

26
21

D
5

0.
15

85
D

0.
54

36
B

D
5

0.
48

59
B

D
P

5
0.

53
90

B
D

5
0.

57
28

B
D

5
0.

58
51

B
D

5
0.

59
42

B
D

5

Ke
yB

(P
A

R
A

D
E5

) B
M

25
0.

52
67

B
D

5
0.

38
31

B
D

0.
26

35
D

5
0.

15
92

D
5

0.
54

09
B

D
5

0.
47

44
B

D
P

0.
53

73
B

D
5

0.
56

46
B

D
5

0.
58

12
B

D
0.

59
07

B
D

5

Ke
yB

(P
A

R
A

D
E5

) B
in

B
0.

52
29

B
D

0.
38

88
B

D
P

5
0.

26
34

D
5

0.
15

92
D

0.
54

28
B

D
5

0.
46

68
B

D
0.

53
54

B
D

5
0.

57
02

B
D

5
0.

58
35

B
D

5
0.

59
14

B
D

Ke
yB

(P
A

R
A

D
E5

) B
in

B
2

0.
52

42
B

D
0.

38
47

B
D

5
0.

26
39

D
5

0.
15

83
D

0.
54

31
B

D
5

0.
47

89
B

D
P

5
0.

53
73

B
D

5
0.

56
89

B
D

5
0.

58
37

B
D

5
0.

59
52

B
D

5

2.6 Experiments on Standard IR Collections 53

As one can see, KeyB(vBERT)BM25 and KeyB(vBERT)BinB models outperform

standard BERT models (Vanilla BERT and CEDR-KNRM) on all collections

and for all metrics. KeyB(vBERT)T F −IDF outperforms standard BERT models

(Vanilla BERT and CEDR-KNRM) for all metrics on all collections except Ro-

bust04, for which it yields lower results than Vanilla BERT on P@5, NDCG@5,

and lower result than CEDR-KNRM on P@1, P@5 and NDCG@1. In addi-

tion, the best KeyB(vBERT) model (on each metric respectively) significantly

improves the Vanilla BERT model on 6 metrics out of 10 on Robust04, on 9

metrics out of 10 on GOV2, on all metrics on MQ2007 and on 5 metrics out

of 10 on MQ2008; it is furthermore significantly better than CEDR-KNRM on

2 metrics on Robust04, on 9 metrics out of 10 on GOV2, on all metrics on

MQ2007, and on 6 Metrics out of 10 on MQ2008.

RQ3 Is it important to accurately select blocks?

We are interested here in assessing whether it is important to accurately

select blocks or not. For this, we compare the results obtained by the dif-

ferent KeyB(vBERT) models with the ones obtained by the Random Select

strategy which amounts to randomly selecting blocks. As one can also

note, all KeyB(vBERT) models outperform the Random Select strategy on

all collections, for all metrics. Furthermore, the best KeyB(vBERT) model is

significantly better than Random Select on 10 metrics out of 10 on Robust04,

on 8 metrics out of 10 on GOV2, on 10 metrics out of 10 on MQ2007, and

on 8 Metrics out of 10 on MQ2008.

The above analysis shows that the KeyB(vBERT) models should be preferred

over all baseline and standard BERT-based IR models. We now turn to the

comparison of KeyB(vBERT) models.

RQ4 What are the differences between the different KeyB(vBERT) models?

54 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

On Robust04, KeyB(vBERT)BinB is the best model on 10 metrics and KeyB(vBERT)BM25

on 1 metric. We further conduct significant tests between KeyB(vBERT) mod-

els. KeyB(vBERT)BinB is significantly better than KeyB(vBERT)BM25 on MAP

and NDCG while shows no significant difference than KeyB(vBERT)T F −IDF .

On GOV2, KeyB(vBERT)BinB is the best model on 10 metrics and KeyB(vBERT)T F −IDF

on 1 metric. KeyB(vBERT)BinB is significantly better than KeyB(vBERT)BM25

on p@1 and p@10 while shows no significant difference than KeyB(vBERT)T F −IDF .

On MQ2007, KeyB(vBERT)BinB is the best model over all metrics and signifi-

cantly outperforms KeyB(vBERT)T F −IDF on MAP, P@20, NDCG, NDCG@1,

NDCG@10 and NDCG@20, significantly outperforms KeyB(vBERT)BM25

on MAP, P@10, P@20, NDCG, NDCG@10 and NDCG@20. On MQ2008,

KeyB(vBERT)BinB is the best model on all metrics but P@5, KeyB(vBERT)T F −IDF

on 1 metric and KeyB(vBERT)BM25 on 2 metrics. The difference between all

three models is however not really significant as KeyB(vBERT)BinB signifi-

cantly outperforms KeyB(vBERT)T F −IDF on only MAP and KeyB(vBERT)BM25

on P@10.

From this analysis, one can see that the model KeyB(vBERT)BinB is either sig-

nificantly better or on a par with KeyB(vBERT)T F −IDF and KeyB(vBERT)BM25.

This justifies the use of a learning mechanism to select blocks. This said, even

a simple approach to select blocks as the one implemented in KeyB(vBERT)BM25

can yield good results on collections such as Robust04 and MQ2008. We now

turn to the PARADE models.

Improving PARADE with selected passages As mentioned before, PARADE

is the original PARADE model with 16 passages corresponding to the first

and last passages, and 14 randomly selected passages in between, PARADE5

is another variant with only 5 passages corresponding to the first and last

passages, and 3 randomly selected passages in between, and KeyB(PARADE5)

2.6 Experiments on Standard IR Collections 55

models are the PARADE models with only 5 passages selected with BM25, TF-

IDF or learning based approaches. We propose to analyze the experimental

results by answering several research questions.

RQ5 How effective are KeyB(PARADE5) models compared to baseline models

(BM25, DeepRank)?

From Tables 2.4 to 2.7, one can see that KeyB(PARADE5) models outperform

both baselines on all collections, the difference being significant for all metrics

and all on collections but P@1 on GOV2.

RQ6 How effective are KeyB(PARADE5) models compared to PARADE and

PARADE5?

As one can note, on all collections, KeyB(PARADE5)T F −IDF , KeyB(PARADE5)BM25

and KeyB(PARADE5)BinB2 obtain better average results or on a par with

PARADE. For example, comparing with the original PARADE model, on Ro-

bust04, KeyB(PARADE5)BM25 outperforms PARADE on 9 metrics out of 10,

even though the difference is never significant. On GOV2, KeyB(PARADE5)BinB2

outperforms PARADE on 8 metrics out of 10 and is significantly better on

2 metrics. On MQ2007, KeyB(PARADE5)BM25 outperforms PARADE on 9

metrics out of 10 and is significantly better on 3 metrics. On MQ2008,

KeyB(PARADE5)T F −IDF outperforms PARADE on 9 metrics out of 10 and is

significantly better on 2 metrics.

Comparing with PARADE5, KeyB(PARADE5)T F −IDF , KeyB(PARADE5)BM25

and KeyB(PARADE5)BinB2 obtain better average results on all collections and

metrics, except KeyB(PARADE5)BM25 on NDCG@1 on MQ2007 (0.5151 vs

0.5174). More precisely, on Robust04, KeyB(PARADE5)BM25 and KeyB(PARADE5)BinB2

are significantly better than PARADE5 on 8 metrics. On GOV2, KeyB(PARADE5)BM25

and KeyB(PARADE5)BinB2 are significantly better than PARADE5 on 7 metrics.

56 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

On MQ2007, KeyB(PARADE5)T F −IDF and KeyB(PARADE5)BM25 are signifi-

cantly better than PARADE5 on 6 and 8 metrics respectively. On MQ2008,

KeyB(PARADE5)T F −IDF and KeyB(PARADE5)BinB2 are significantly better

than PARADE5 on 8 metrics.

The model KeyB(PARADE5)BinB, which reuses the BERT and feed-forward

neural networks in PARADE for selecting passages, is however sometimes

less effective than the other KeyB(PARADE5) models. On Robust04, it is

below the other three KeyB(PARADE5) models as well as below PARADE.

On GOV2, KeyB(PARADE5)BinB is higher than PARADE on 5 metrics and

lower on 5 metrics. On MQ2007 and MQ2007, KeyB(PARADE5)BinB is mostly

better than PARADE. Comparing with PARADE5, KeyB(PARADE5)BinB obtains

almost always better results, especially on MQ2007 and MQ2008, being

significantly better on 6 and 5 metrics respectively. This shows that, despite

its mitigated results on some metrics and collections, KeyB(PARADE5)BinB

is still a powerful approach that obtains several best results on different

metrics.

RQ7 What are the differences between the different KeyB(PARADE5) mod-

els?

As one can note, the best results on each metric is somehow distributed on

the different KeyB(PARADE5) models. On Robust04, KeyB(PARADE5)BM25

obtains 5 best results, KeyB(PARADE5)BinB2 4 and KeyB(PARADE5)T F −IDF 1.

On GOV2, KeyB(PARADE5)BM25 obtains 5 best results, KeyB(PARADE5)BinB2

3 and KeyB(PARADE5)BinB 1. On MQ2007, KeyB(PARADE5)BM25 obtains 5

best results, KeyB(PARADE5)BinB2 3 and the other two models 1 each. On

MQ2008, KeyB(PARADE5)T F −IDF obtains 6 best results, KeyB(PARADE5)BM25

1 and KeyB(PARADE5)BinB and KeyB(PARADE5)BinB 2 each. Besides, as

discussed above, although KeyB(PARADE5)BinB does not perform well on

2.6 Experiments on Standard IR Collections 57

Robust04, it is still competitive with PARADE5 on this collection and performs

well on the other collections. KeyB(PARADE5)BinB2 tends however to be

more stable across the collections and metrics.

Overall, the PARADE variants we have introduced in general significantly

outperform the PARADE5 model and are either on a par or significantly

outperform the original PARADE model. This is all the more remarkable

that these models use three times less passages than the original PARADE

model and require less memory while being faster, as illustrated below. Lastly,

the best KeyB(PARADE5) model tends to be slightly better than the best

KeyB(vBERT) model, on all collections and almost all metrics, even though

the difference is in general small. Their latency is however not the same (see

below).

2.6.3 Memory Usage

The memory usage of all models are similar across datasets. We thus only

report here the memory usage of different models on MQ2007 as this dataset

contains more queries and requires longer training than Robust04 and GOV2.

The memory usage corresponds to the GPU consumption for training a

given model. We remind the reader that a training batch contains two pairs

consisting of four queries and four documents. The results obtained are

shown in Figure 2.10 on two official LETOR metrics [138].

The best models in terms of accuracy (as measured by either P@10 or

NDCG@10) and memory usage are located in the top left corner: they use

less memory and achieve higher results. As one can note, KeyB(vBERT)BinB

and KeyB(PARADE5) models are located in this area. They need less GPU

memory while achieving similar or higher results than PARADE on the two

58 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

(a) P@10 performance (b) NDCG@10 performance

Fig. 2.10.: GPU memory usage and effectiveness comparisons, automatic mixed
precision is used for all models which would reduce memory usage. Top
left models show better performance.

metrics. Furthermore, KeyB(PARADE5)T F −IDF , KeyB(PARADE5)BM25 and

KeyB(PARADE5)BinB uses the same amount of memory as PARADE5 but are

better on both metrics. KeyB(PARADE5)BinB2 uses slightly more memory

than PARADE5 but is also better on both metrics.

2.6.4 Ranking Speed

We measure here the speed of ranking of the different models on two sets of

queries: all queries from one test fold of Robust04, each with 200 documents,

and a randomly selected subset of 100 queries from MQ2007, again from

one test fold, each with 40 documents. Note that the documents in MQ2007

are on average longer than the ones in Robust04. Latency results, as well

as the average time for processing a query (in seconds) and a document (in

milliseconds) on a RTX 6000 GPU are reported in Table 2.8 for Robust04 and

Table 2.9 for MQ2007. The passage splitting time is not counted as this step

can be performed offline.

2.6 Experiments on Standard IR Collections 59

As one can see on both tables, the three fastest models are Vanilla BERT,

KeyB(vBERT)T F −IDF and KeyB(vBERT)BM25, the latter two being only slightly

slower than the former one. Furthermore, on both collections, the KeyB(PARADE5)T F −IDF

and KeyB(PARADE5)BM25 are faster than PARADE. They are also faster than

PARADE5 on Robust04 and only slightly slower than PARADE5 on MQ2007.

These two variants, TF-IDF and BM25, because of their performance, their

memory usage and their speed, represent strong alternatives to the original

Vanilla BERT and PARADE models.

Regarding the models based on learning the selection block method, if their

performance is higher than the one of other models, their latency is also

higher: KeyB(vBERT)BinB, KeyB(PARADE5)BinB and KeyB(PARADE5)BinB2

are, at best, 10 times slower than the KeyB(vBERT)T F −IDF and KeyB(vBERT)BM25

models on both collections. Their current latency may prevent their use in a

commercial system. This said, there are several paths that one can follow to

make them faster, including a two-stage approach at the block level, using a

fast model as BM25 for filtering out less relevant blocks and using the more

complex models on the remaining blocks.

Tab. 2.8.: Reranking latencies (seconds) on Robust04 test set for one folder (50
queries each with 200 documents).

Model Latency Seconds/query Milliseconds/doc
Vanilla BERT 16.784 0.336 1.678

KeyB(vBERT)T F −IDF 18.475 0.370 1.848
KeyB(vBERT)BM25 19.679 0.394 1.970
KeyB(vBERT)BinB 178.339 3.567 17.834

PARADE 75.601 1.512 7.560
PARADE5 55.661 1.113 5.566

KeyB(PARADE5)T F −IDF 47.210 0.944 4.721
KeyB(PARADE5)BM25 47.781 0.956 4.778
KeyB(PARADE5)BinB 135.499 2.710 13.550
KeyB(PARADE5)BinB2 175.562 3.511 17.556

60 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

Tab. 2.9.: Ranking latencies (seconds) on MQ2007 test set for 100 queries each
with 40 documents.

Model Latency Seconds/query Milliseconds/doc
Vanilla BERT 6.962 0.070 1.741

KeyB(vBERT)T F −IDF 11.598 0.116 2.900
KeyB(vBERT)BM25 13.742 0.137 3.436
KeyB(vBERT)BinB 211.648 2.12 52.912

PARADE 27.909 0.279 6.977
PARADE5 18.701 0.187 4.675

KeyB(PARADE5)T F −IDF 26.894 0.269 6.724
KeyB(PARADE5)BM25 24.320 0.243 6.080
KeyB(PARADE5)BinB 242.309 2.423 60.577
KeyB(PARADE5)BinB2 336.789 3.368 84.197

2.6.5 Analysis of the Position of Selected Blocks

We are finally interested here in analyzing the positions at which blocks

are selected. To do so, we retained all documents containing at least 15

blocks and looked at which position the top eight scoring blocks occur for

two models with different selection strategies, namely KeyB(vBERT)BM25

and KeyB(vBERT)BinB. The position is computed as in Section 2.3. The

results obtained are displayed in Figure 2.11 for KeyB(vBERT)BM25 and in

Figure 2.12 for KeyB(vBERT)BinB. In both Figures, a heat map is used to

represent the probability the blocks selected occupy a particular position.

As one can observe, both models are more likely to select blocks at the begin-

ning of a document, this tendency being more marked in KeyB(vBERT)BM25.

Interestingly, KeyB(vBERT)BinB is more likely to select blocks in the second

position (and even in the third position) than in the first position. This

said, both models also have a non null probability to select blocks at later

positions. For example, in MQ2008, the possibility of selecting blocks in the

last five positions, i.e., in the second half of a document, amounts to 41.8%

for KeyB(vBERT)BM25 and to 42.7% for KeyB(vBERT)BinB. The situation is

similar on MQ2007 and GOV2, as well as on Robust04 for KeyB(vBERT)BinB.

2.6 Experiments on Standard IR Collections 61

Fig. 2.11.: The probabilities of top 8 block appearing locations in
KeyB(vBERT)BM25.

Fig. 2.12.: The probabilities of top 8 block appearing locations in KeyB(vBERT)BinB .

These results, in line with the analysis conducted in Section 2.3, show the

capacity of the proposed models to rely on blocks at different positions in

the document; the good performance of these models further shows that the

blocks selected tend to contain relevant information.

To conclude this series of experiments on standard IR collections and for

illustration purposes, we display an example in Figure 2.13, about the top 8

blocks selected by the KeyB(vBERT)BinB model on MQ2007. As one can see,

the different blocks are distributed across different positions at the beginning,

62 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

Fig. 2.13.: An example of top 8 blocks selected by the KeyB(vBERT)BinB model on
MQ2007.

middle and end of the document. Furthermore, each block is related to the

query.

2.7 Experiment on TREC 2019 DL and

Comparison With Sparse Attention Based

Models and IDCM

This section sheds additional light on the behaviour of the models proposed

by comparing them to different baseline models, including sparse attention

models and IDCM discussed in Section 2.2, on the relatively recent TREC DL

dataset introduced to evaluate neural IR models. Table 2.10 summarizes the

main characteristics of the the TREC 2019 Deep Learning Track collection.

Following [66], we aim here to rerank the official top 100 retrieved docu-

ments and use the official evaluation metric NDCG@10 on the test set, which

2.7 Experiment on TREC 2019 DL and Comparison With

Sparse Attention Based Models and IDCM

63

we complement with MAP. Since this collection is larger than previously

used collections, we train the models, again using the pairwise hinge loss

[49], for longer steps, i.e. for 10 epochs each epoch being composed of

15000 batches of 2 pairs (four documents). As the qrels for the training and

validation sets only contain one annotated document for each query (and

it is relevant), each pair is composed of a query, its relevant document and

another randomly sampled document which is viewed as irrelevant. For each

metric and each model, we select the hyper-parameters leading to the lowest

loss on the validation set and report its performance on the test set. The

other experimental settings are the same as those in Section 2.6.1.

2.7.1 Comparison with Sparse Attention Based Models

Query-Directed Sparse Transformer (QDS-Transformer) [66] makes use of

sparse local attention and global attention for long document information

retrieval. In [66], the experiments conducted on the TREC 2019 Deep

Learning Track collection [22] showed that QDS-Transformer improves the

standard retrofitting BERT ranking baselines and outperforms more recent

transformer architectures as Sparse Transformer [21], Longformer [3], and

Transformer-XH [194]. We compare here our proposed approach with this

QDS-Transformer and related baselines on this same collection.

Tab. 2.10.: Statistics of the TREC 2019 DL document ranking task.

Collection # Documents # Train queries # Train qrels # Dev queries # Dev qrels # Test queries # Test qrels
TREC19 DL 3,213,835 367,013 384,597 5,193 5,478 43 16,258

Table 2.11 shows the results obtained. Note that for PARADE, the number of

passages is set to 16 and the max query length to 30 (other settings are the

same as in Section 2.6.1). For the other models, we report the results given

in [66]. As one can see, the best results are obtained with KeyB(vBERT)BinB

64 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

Tab. 2.11.: Experiment on TREC 2019 DL and comparison with sparse attention
models and IDCM. Best results are in bold.

TREC Deep Learning Track Document Ranking
Model NDCG@10 MAP
Baseline models
BM25 0.488 0.234
CO-PACRR [62] 0.550 0.231
TK [58] 0.594 0.252
TKL [56] 0.644 0.277
RoBERTa (FirstP) [96, 26] 0.588 0.233
RoBERTa (MaxP) [96, 26] 0.630 0.246
PARADE [83] 0.655 0.280
Sparse attention models
Sparse-Transformer [21] 0.634 0.257
Longformer-QA [3] 0.627 0.255
Transformer-XH [194] 0.646 0.256
QDS-Transformer [66] 0.667 0.278
Select blocks models
IDCM [53] 0.679 0.273
KeyB(vBERT)BM25 0.678 0.277
KeyB(vBERT)BinB 0.707 0.281
KeyB(PARADE5)BM25 0.672 0.280
KeyB(PARADE5)BinB 0.676 0.277
KeyB(PARADE5)BinB2 0.678 0.279

which outperforms all baselines and sparse attention models, including

QDS-Transformer, reaching 0.707 on NDCG@10 and 0.281 on MAP. It is

closely followed by KeyB(vBERT)BM25 which outperforms all baseline and

sparse attention models on NDCG@10, reaching 0.678 compared with QDS-

Transformer’s 0.667. For MAP, KeyB(vBERT)BM25 is slightly below QDS-

Transformer and PARADE, and on a par with TKL.

The KeyB(PARADE5) models are very close to the KeyB(vBERT) models, both

in terms of NDCG@10 and MAP. They also outperform baseline and sparse

attention models on NDCG@10, and outperform all baseline and sparse

attention models but PARADE and QDS-Transformers on MAP (they are on

a par with these to models on MAP). One can note however that on this

collection the KeyB(PARADE5) models not as effective as on the previous

collections NDCG@10. Li et al. [83] also observed this for the PARADE

model and attributed it to the fact that the effectiveness of PARADE across

2.7 Experiment on TREC 2019 DL and Comparison With

Sparse Attention Based Models and IDCM

65

collections is related to the number of relevant passages per document in

these collections: TREC DL only has 1–2 relevant passages per document by

construction; with such a low number of relevant passages, the benefit of uti-

lizing complex passage aggregation methods such as PARADE is diminished.

We see here however the advantage of the KeyB(PARADE5) models which

rely on fewer d-passages, more likely to be relevant to the query.

2.7.2 Comparison with IDCM

As mentioned in Section 2.2, IDCM [53] is a recently proposed model that

also learns how to select blocks. The motivation behind this model is to

obtain an IR model more efficient as it would only rely on a few blocks. Our

motivation slightly differs as we aim to improve the overall IR system by

filtering out non relevant, likely noisy blocks. Furthermore, our approach

can be directly used with different IR models by selecting blocks with stan-

dard IR systems. This is the basis of the models KeyB(vBERT)BM25 and

KeyB(PARADE5)BM25 for example.

Table 2.11 shows a comparison of our approaches with IDCM (last four lines)

where for each query the official top 100 documents are used (this setting is

used for all models reported in Table 2.11). For IDCM, we have used the au-

thors’ notebook21. IDCM reaches 0.679 for NDCG@10, which is higher than

all baseline and sparse attention models, and 0.273 for MAP, which is higher

than all baseline and sparse attention models but TKL, PARADE and QDS-

Transformer. In contrast, KeyB(vBERT)BinB outperforms all models, including

IDCM, on both evaluation metrics. In addition, both KeyB(vBERT)BM25 and

KeyB(PARADE5) variants, even though they did not benefit from an addi-

tional pre-training on MS-MARCO and rely on a much simpler procedure

21https://github.com/sebastian-hofstaetter/intra-document-cascade

66 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

https://github.com/sebastian-hofstaetter/intra-document-cascade

to select blocks, obtain results comparable with IDCM: KeyB(vBERT)BM25

is 0.001 point below IDCM on NDCG@10 and 0.004 above on MAP whereas

KeyB(PARADE5)BM25 is 0.007 point below IDCM on NDCG@10 and 0.007

above on MAP, and KeyB(PARADE5)BinB, KeyB(PARADE5)BinB2 have higher

MAP results.

Overall, the results obtained on TREC DL 2019 once again prove the ef-

fectiveness of the proposed selecting key blocks approaches, which obtain

better results than baseline and sparse attention models without the need

to customize CUDA kernels. Besides, when selecting key blocks with the

trained BERT model, which corresponds to the model KeyB(vBERT)BinB, one

obtains the near state-of-the-art level performance [22] of 0.707 on this

collection for NDCG@10. Lastly, the faster and less memory demanding

variant KeyB(vBERT)BM25 is a close competitor to KeyB(vBERT)BinB and

should be preferred if time or memory constraints are important.

2.8 Conclusion

Benefiting from pre-trained BERT models, the field of information retrieval

has seen remarkable progress in neural IR models, as exemplified by the

success of Vanilla BERT which has become a strong, yet simple, baseline

for neural IR models. To overcome the limitations of BERT-based models

regarding long documents, we have proposed to divide documents into blocks

and to select only the most important key blocks. This is reminiscent of the

way humans assess the relevance of a document for a given query: one first

identifies blocks relevant to the query, blocks which are then aggregated to

obtain the overall assessment of the document. In order to select blocks,

we have investigated two approaches: the first one is straightforward and

2.8 Conclusion 67

makes use of standard retrieval functions as TF-IDF or BM25; the second

one learns a single BERT model used for both ranking blocks and documents.

Both approaches have been shown to improve over standard baselines and

previous BERT-based models. We have followed the same approach on

another highly competitive neural IR model, namely PARADE, here again

with improved results. All in all, selecting blocks is advantageous for the

two models studied here, Vanilla BERT and PARADE. We conjecture that this

selection is a way to remove passages in documents which are not relevant

to the query and which are likely to bring noise when matching queries and

documents.

Comparing our different proposals, if the selection strategy based on learned

mechanisms performs in average better than the one based on standard

IR models with similar GPU memory usage, its ranking latency is not as

appealing. We thus recommend in practice to use the TF-IDF and BM25

versions of Vanilla BERT and PARADE if latency constraints are important

(among these two variants, one may prefer the BM25 one which is slightly

better overall). The choice between Vanilla BERT and PARADE variants, the

latter being slightly better than the former on standard IR collections, and

slightly worse on the TREC 2019 DL collection, depends on the collection

considered.

In the future, we plan on deploying the proposed block selection approach

on more complex models, which could be a way to further improve the

results obtained in this study. We also plan to investigate alternative negative

sampling strategies as well as ways to accelerate the selection process based

on learned models.

68 Chapter 2 Improve Interaction-Based Models based on Transformers

for Long Document Retrieval

Late-interaction Based

Model for Long

Document Retrieval

3

3.1 Introduction

Information retrieval (IR) plays an important role in our daily life in the

era of big data. Retrieving relevant documents given a query is the central

part of many applications in our daily life, e.g., web search. Deep neural

networks have shown great success on a variety of tasks including informa-

tion retrieval [60, 49, 182, 27, 118] with pre-trained Transformer [166]

architectures like BERT [30] leading to state-of-the-art performances [118,

102, 26, 83, 72, 89]. BERT-based neural IR approaches can be classified

into three categories [72]: interaction-based methods, representation-based

methods and late-interaction methods. This first method, like a vanilla BERT

model [118], where the query tokens and document tokens are concatenated

as BERT inputs and applied full self-attention, is viewed to be extremely

effective [51] but suffers from high computational complexity. On the other

hand, representation-based methods generate two representations [144] for

a query and a document respectively. When the document representations

can be pre-stored, this method enables efficient fast retrieval at the expense

effectiveness. To take advantage of both approaches, late-interaction meth-

69

ods have been proposed, ColBERT [72] being certainly the most well-known

representative of this category. In ColBERT, token level passage embed-

dings are pre-stored, which are then late interacted with query embeddings

to produce a relevance score. This method is slightly less efficient than

representation-based methods, but definitely more effective.

ColBERT was primarily used for passage ranking and, as most BERT methods,

suffers from the major drawback that it cannot directly handle long docu-

ments. Although researchers [83, 89, 90, 54] has proposed some methods

for long document information retrieval, they are designed for interaction-

based methods that are computational expensive. So far, there have been no

attempts to adapt late interaction methods to long documents.

We address this problem here through a BERT-based dense intra-ranking and

contextualized late interaction (ICLI) with multi-task learning. Efficiency

is guaranteed by the pre-calculation of self attention, and effectiveness by

the fact that pre-stored token embeddings are interacted in a fine-grained

way. To the best of our knowledge, this is the first attempt to adapt a late

interaction method for long document retrieval. Experimental results show

that the proposed approach obtains near SOTA level effectiveness while being

efficient on such collections as TREC 2019.

3.2 Related Work

As already mentioned, neural IR can be classified into three types: interaction-

based, representation-based [50] and late interaction-based methods. The

first effective interaction-based neural IR approaches, as DRMM [49], KNRM

[182] or Conv-KNRM [27], were proposed before the introduction of BERT.

After transformer-based BERT models were proposed, the field of neural IR

70 Chapter 3 Late-interaction Based Model for Long Document Retrieval

has seen rapid improvements. Nogueira and Cho [118] proposed a simple

usage of BERT for passage re-ranking where the query and passage tokens

are concatenated and processed by the BERT and the [CLS] output of BERT

is used to assess the relevance, and got results that outperformed other

neural IR models largely. Hofstätter et al. [57] introduced the TK model

which relies on transformers to learn contextualized embeddings and kernel

matching for ranking. Early representation-based models as DSSM [60] were

appealing because of their extremely low latency. These models have also

benefited from BERT-based architectures, leading to so-called dense retrieval

models [144, 183]. Despite their efficiency, representation-based models are

however less effective than interaction-based models. A trade-off between

the two approaches is realized with late interaction methods like ColBERT

[72], which relies first on separate representations for queries and documents

and which approximates the effectiveness of interaction-based methods in

a late interaction step. It places the high latency passage processing by

BERT to offline stage and the contextualized token embeddings are stored,

which enable fine-grained late interaction. ColBERT is slightly less efficient

than dense retrieval methods, but more effective. However, as other BERT-

based models, this model cannot directly handle long documents, due to the

complexity of the self-attention step.

To deal with long document retrieval, a variety of methods have been pro-

posed, e.g., modified attention methods like Longformer and QDS-Transformer

[3, 66], sliding window and local relevance aggregation like TKL [55], pas-

sage representation aggregation methods like PARADE [83], and the recent

selecting key block/passage for evaluation methods like KeyBLD and IDCM

[89, 54, 90]. Recently, the KeyBLD model family [89, 90], that first filters

a long document by selecting key blocks on which to ground the document

relevance, has shown SOTA level performance while also being memory

efficient. In parallel, the IDCM model [54] was proposed, the core idea of

3.2 Related Work 71

which is also to first select key passages on which to ground the document

relevance. In this chapter, we introduce a late interaction method for long

document retrieval based on the same idea but in a different way that enables

both effectiveness and efficiency. The details are described in Section 3.3.

3.3 Method

As mentioned above, the selecting key block related methods [89, 54, 90]

have been shown to achieve SOTA level effectiveness for long document

information retrieval. Nevertheless, these models have been designed for

interaction-based models which have high computational complexity due to

their online self-attention computation and not good solutions for real world

online search scenarios where low latency is crucial. We propose to extend

them to late interaction retrieval methods for long documents by using a

cascaded ranking approach based on dense intra-ranking and late interaction.

However, designing this is non-trival for being both effective and efficient. In

the following, we firstly introduce the overall architecture and then describe

the details and the reason of some choices.

The overall architecture of the proposed method is depicted in Fig. 3.1 and

described later.

3.3.1 Contextualized Document Embedding

The ColBERT model’s efficiency comes from its offline pre-computed con-

textualized passage token embeddings. Here, we want to also rely on the

pre-stored contextualized document embeddings to enable fast retrieval. Due

to the quadratic complexity of self-attention mechanism, transformer based

72 Chapter 3 Late-interaction Based Model for Long Document Retrieval

BERT

query CLS

FFN1FFN2

BERT

passage1 CLS

FFN1FFN2

…

…

passageN CLS …… …

…

from a long document

pre-stored

intra passage ranking select first passage and other top
ranking passages for late interaction

fine-grained
interaction W

score
aggregation

doc score

Fig. 3.1.: The architecture of proposed approach. Contextualized embeddings
are calculated by the BERT model and a feedforward neural network
for late interaction. The [CLS] embedding is also inputted to another
feedforward neural network for passage ranking. The selected passages’
late interaction scores are aggregated to obtain the document relevance
score. The document tokens can be pre-stored.

models including BERT can only handle limited number of tokens, so they

are not able to process long documents directly. To tackle this, following

previous work [83, 89, 54], we firstly segment a long document into passages,

which can be inputted to a BERT model separately to obtain contextualized

embeddings. During training, the BERT model can be learned end-to-end

and enables storing contextualized embeddings.

Given a document D, we segment it into passages P1P2...Pk, which can be

done in a sliding window way. For each passage, with a BERT tokenizer, we

can obatin its tokens p1p2...pm, then BERT’s [CLS] token is prepended to the

tokens of each passage. The BERT model will compute the contextualized

token embeddingsEcls
p E1

p ...E
m
p , where eachEp is of dimension 768 (dim(Ep =

768)) for a bert-base-uncased model (as shown in the right part of Fig. 3.1).

3.3 Method 73

Each embedding Ep is then passed into a one-layer feedforward neural

network FFN1, referred to as compressor1 (the blue module in Fig. 3.1),

to obtain a low dimensional vector for late interaction: Vp = FFN1(Ep),

where dim(Vp) = 128. It is worth mentioning that the [CLS] embedding

is also passed to a one-layer feedforward neural network FFN2, referred

to as compressor2 (the green module in Fig. 3.1), for dense intra-ranking

of the passages in a document. This is to say, V cls1
p = FFN1(Ecls

p), V cls2
p =

FFN2(Ecls
p) with, for each V cls

p , dim(V cls
p) = 128. The choice of using two

compressors is based on the fact that a vector for intra-ranking should contain

query/passage representation information while a vector participating into

late interaction should be trained together with other tokens in a different

way. Using two compressed vectors allows one to capture these differences

and gives more flexibility.

Online computation is used during training. During deployment, the contex-

tualized tokens of each document are pre-computed and stored for efficient

late interaction.

3.3.2 Contextualized Query Embedding

Similar to a passage in a document, BERT’s [CLS] token is prepended to

the tokenized query tokens, which are passed to the BERT model to ob-

tain contextualized query token embeddings Ecls
q E1

q ...E
n
q , with, for each Eq,

dim(Eq) = 768. Then using FFN1, one obtains a low dimensional vector Vq

for each Eq. For the [CLS] token, V cls1
q and V cls2

q are also calculated.

Different from documents, the query is always computed online, which is

also the same case for ColBERT and dense retrieval models. Nevertheless,

74 Chapter 3 Late-interaction Based Model for Long Document Retrieval

the computational cost is relatively small as the queries are shorter and only

required to be computed once to retrieve different documents.

3.3.3 Intra-Ranking for Key Passage Filtering

The token embeddings of a long document can be pre-stored, however, they

are normally too long which may result in high latency and may contain

noisy information. Previous works [90, 54] first select key passages according

to the query to make it more efficient and even more accurate. BM25 and

learning based methods can be used where the later normally performs better

as it enables semantic matching. In the case of late interaction, we also want

to use this step and to use learning based method for informative passage

selection. To rely on pre-stored embeddings, inspired by dense retrieval

where a query and a passage are represented by a low dimensional vector

respectively, normally using the [CLS] embedding, we want to rely on this

which allows us to do semantic matching and is naturally part of the BERT

model. To do so, the [CLS] embedding of a passage or a query from BERT is

inputted to a compresser layer2 (the FFN2 module in Fig. 3.1), to obtain the

representation of a passage. Dot product is used during inference, to select

the most informative chunks, with the pre-stored passage representations

and the online query representation.

As the first passage of a document usually carries important information,

as illustrated in [90], we always select this passage in our approach. This

strategy is also consistent with truncation-based methods which truncate

long documents and rely only on their beginning in order to apply BERT-

based models. Given the representation V cls2
q of a given query and pre-stored

3.3 Method 75

representations V cls2
p of passages in a given document, we use the standard

dot product to score passages:

S1
q,p = V cls2

q · (V cls2
p)T . (3.1)

This selection process provides "top"-k passages for each query-document pair.

Having the first passage in the "top"-k list furthermore allows one to train

compressor2 through a standard ranking loss, as described below. During

training, this step is eval model for PyTorch, which means no backpropaga-

tion.

The above approach finally amounts to learning a representation useful for

selecting passages and is in line with previous work [90] that has shown that

learning how to select key blocks in a document can outperform methods

that select key blocks using standard ranking functions as BM25 [150].

3.3.4 Fine-Grained Late Interaction

After having selected the k passages, we adopt, for each passage, the late

interaction approach of ColBERT to obtain the query-passage relevance

score:

S2
q,p =

∑
i∈[cls1,1...n]

max
j∈[cls1,1...m]

V i
q · (V j

p)T . (3.2)

These scores are then simply aggregated through a weighted sum:

Sq,d = w1S
2
q,p1 + ...+ wkS

2
q,pk

, (3.3)

where the weights {w1, ..., wk} are real numbers.

76 Chapter 3 Late-interaction Based Model for Long Document Retrieval

3.3.5 Multi-Task Learning

Since the [CLS] contextualized vectors are used for two tasks: intra passage

ranking (Section 3.3.3) and late interaction (Section 3.3.4), we adopt a

multi-task learning approach to ensure that both tasks are taken into account

to fine-tune the BERT model. As mentioned before, (a) the first passage of a

document usually contains relevant information and is always selected, (b)

this first passage is furthermore always used by relatively strong baselines

based on truncation, and (c) its use ensures the training of the first task.

Indeed, we train the [CLS] vector to be used for intra-passage ranking using

the first passage of documents as explained below. The second task directly

relies on the scores of the selected passages (Eq. 3.2) and the document

labels. The loss functions associated with these tow tasks are given in the

following section.

3.3.6 Loss Functions

Following [54], we use the pairwise RankNet loss for each task, defined by:

L(q, d+, d−; Θ) = − log(Sigmoid(Sq,d+ − Sq,d−)),

where q is a query, (d+
q , d

−
q) is a positive and negative training document pair

for q, Θ represents the parameters of the model and Sq,d is the score provided

by the model for document d. For task 1, the loss function is given by:

L1(q, d+, d−; Θ) = RankNet(q, S1
q,p1+ , S

1
q,p1−),

3.3 Method 77

where S1
q,p1+ (resp. S1

q,p1−) is the relevance score of the first passage of a

positive (resp. negative) document for query q according to Eq. 3.1. For task

2, the loss is given by:

L2(q, d+, d−; Θ) = RankNet(q, Sq,d+ , Sq,d−),

where Sq,d+ (resp. Sq,d−) is the relevance score of a positive (resp. negative)

document for query q according to Eq. 3.3.

As the two losses may have different scales, we combine them to obtain the

final loss L(q, d+, d−; Θ) following [92], which adjusts the proposal of [71]

to enforce positive regularization:

L = 1
2σ2

1
L1 + 1

2σ2
2
L2 + log(1 + σ2

1) + log(1 + σ2
2),

where σ1 and σ2 are parameters of the model.

3.4 Experiments

In this section, we evaluate the proposed approach for both effectiveness and

efficiency. Besides, an ablation study is performed to analyze the model.

3.4.1 Datasets

We make use here of the widely used test collection TREC 2019 Deep Learning

Track Document Collection. We use two test sets: TREC 2019 and 2020 test

queries, where the task is to rerank top 100 documents for each test query.

The first test set is widely studied [66, 90, 54] on MS MARCO v1 corpus. We

78 Chapter 3 Late-interaction Based Model for Long Document Retrieval

here also evaluate it on MS MARCO v2 corpus1, which is said to be larger,

cleaner and more realistic. To be specific, for TREC 2019 and 2020 test set,

we use the same official data with MS MARCO v1 corpus, where the training

set is ’msmarco-doctrain-top100’, validation set is ’ msmarco-docdev-top100’.

For TREC 2019 test set, we also additionally evaluate it on the MS MARCO

v2 corpus, where the training set is ’docv2_train_top100’, validation set is

’docv2_dev_top100’.

3.4.2 Baseline Models

The proposed approach is compared with 5 baselines:

• BM25: we use the BM25 [150] implementation of Anserini [185], with

default hyperparameters;

• BERT-CAT: this is a BERT interaction-based [118] baseline;

• TK: this model [57] generates contextualized embeddings using Trans-

former and does kernel matching.

• TKL: this model [55] extends TK model for long documents;

• ColBERT: this is the SOTA late interaction model [72] for passage

ranking.

In addition, we also propose to use BM25 to do intra-ranking to select

passages. The other steps are unchanged but we do not need multi-task

learning in this case as there is no learning of the selection module. Only

late interaction loss, L2 is required. In this setting, we use the BM25 model

1https://microsoft.github.io/msmarco/TREC-Deep-Learning-2021

3.4 Experiments 79

https://microsoft.github.io/msmarco/TREC-Deep-Learning-2021

proposed in [89] which has provided very good results for block selection on

several collections.

3.4.3 Experimental Settings

Our implementation is based on the matchmaker open-source framework2,

using automatic mixed precision [109]. For the MS MARCO v1 corpus, the

goal is to rerank the official top 100 documents. For the MS MARCO v2

corpus, as TREC 2019 DL has no official top retrieved documents, we rely on

Anserini [185] with default hyperparameters to obtain top 100 documents

which are then used for reranking. All neural-IR models, except TKL, are

trained for 40000 steps where each step contains 8 positive-negative pairs.

For TKL, each step is set to 32 pairs and is trained for 10000 steps. All models

are trainied using the pairwise RankNet loss. The negative documents in the

positive-negative pairs are sampled randomly, from each query’s official top

100 documents that have no label. We conduct 10 validations during training

to store the best performing model.

For BERT-based models, the learning rate for BERT is set to 1.0e-05, the other

learning rates are set to 1.0e-3. TK and TKL use 1.0e-4, the learning rate for

kernels is 1.0e-3. Adam optimizer is used to train the models. For BERT-CAT,

TK and ColBERT, we only consider the first 400 tokens; indeed, as these

tokens are concatenated with the query, this ensures that one does not exceed

the maximum allowed size of 512 tokens in BERT (note that previous studies,

as [55], only considered 200 tokens for these kind models). The BERT

model used for queries and documents is shared. The maximum document

length is set to 3000 tokens, while the passage length is set to 200 tokens

(without overlap as we did not see significant difference during preliminary

2https://github.com/sebastian-hofstaetter/matchmaker

80 Chapter 3 Late-interaction Based Model for Long Document Retrieval

https://github.com/sebastian-hofstaetter/matchmaker

experiments). This means that a document can split into a maximum of

30 passages (when the document length is shorter than 3000, the obtained

passages can be less). For TKL, we set the passage size to 40, with an overlap

of 10, as done in the original paper. Both TK and TKL use lowercased texts as

GloVe [131] embeddings are lowercased version, while BERT based models

use original texts (bert-base-uncased model is used and in this case every

token will be made lowercase automatically). For the intra-ranking step, we

select 4 passages (an extreme case is the original passage number is less than

4, if so we pad 0 as the scores).

To learn both the complete BERT model and the aggregation scores (Eq. 3.3),

we first fix the aggregation scores to [0.4, 0.3, 0.2, 0.1] and learn BERT, prior

to fix BERT parameters and adjust the aggregation scores. The choice for

the initial values for the aggregation scores is arbitrary and simply reflects

the fact that passages with higher relevance scores are more important for

deciding the relevance of the entire document.

Finally, results are reported according to NDCG@10 and MAP, two standard

metrics on the collections considered.

3.4.4 Results

The results obtained on the TREC 2019 DL test collection with MS MARCO

v1 and v2 are shown in Table 3.1. With MS MARCO v1, the proposed

approach ICLI with dot product for passage filtering achieves SOTA results:

for NDCG@10, it reaches 0.7048, which is 8.36% higer than ColBERT. With

MS MARCO v2, it also obtains the best result on NDCG@10. Using BM25 to

filter passages for late interaction, ICLI-BM25 is the second best method on

MS MARCO v1, the best method on MAP and second best on NDCG@10 on

3.4 Experiments 81

Tab. 3.1.: Results on TREC 2019 DL collection of MS MARCO v1 and v2 corpus.
Best results are in bold.

MS MARCO v1 MS MARCO v2
Model NDCG@10 MAP NDCG@10 MAP

BM25 0.5176 0.2434 0.2368 0.0865
BERT-CAT 0.6519 0.2627 0.3754 0.1144
TK 0.5850 0.2491 0.3290 0.1086
TKL 0.6213 0.2656 0.3351 0.1108
ColBERT 0.6504 0.2688 0.3788 0.1133
ICLI-BM25 0.6806 0.2703 0.3926 0.1160
ICLI-dot 0.7048 0.2768 0.4049 0.1146

Tab. 3.2.: Results on TREC 2020 DL dataset, corpus MS MARCO v1. Best results
are in bold.

Model NDCG@10 MAP
BM25 0.5286 0.3793
BERT-CAT 0.6211 0.4112
TK 0.5732 0.3660
TKL 0.5677 0.3633
ColBERT 0.5951 0.3907
ICLI-BM25 0.5940 0.3783
ICLI-dot 0.6042 0.3938

MS MARCO v2. This proves that the proposed approach is effective compared

to other late interaction methods.

The results obtained on the TREC 2020 DL test collection are displayed in

Table 3.2. As once can see, BERT-CAT using only the first 400 tokens is the

best performing method, while the proposed approach is only slightly better

than ColBERT. A similar trend is observed on the TK and TKL models as TK,

with only the first 400 tokens, obtains better results than TKL with 3000

tokens. These results are consistent with the findings reported in [52]: the

authors also observed that for TKL, the 2K model outperforms the 4K model

on TREC 2020.

82 Chapter 3 Late-interaction Based Model for Long Document Retrieval

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

ra
tio

Different positions' ratios of NDCG@10 with position1
TREC 2019
TREC 2020

Fig. 3.2.: The NDCG@10 result of different positions compared with the first posi-
tion.

To better understand what’s happening on the TREC 2020 test collection,

we display in Fig. 3.2, for both TREC 2019 and TREC 2020, the ratio of the

NDCG@10 score of the ith (from 1 to 8) passage of a document. To be specific,

we use each passage’s relevance score as the document relevance score to

calculate the NDCG@10 with the label. Each passage’s relevance score with

the query is obtained using Sentence-BERT [144] pre-trained on MS MARCO

passage collection3. We consider here the first 8 passages, each passage

containing 400 tokens. As one can note, the relevance information decreases

with the position, and, compared to passages in TREC 2019, passages in

TREC 2020 tend to be less relevant when their position in the document

increases. We believe that this, at least partly, explains the unexpected results

observed here and in previous studies on TREC 2020. This said, the ICLI-dot

model is still comparable with ColBERT and better than the TK family on this

collection.

3The msmarco-distilbert-base-v4 version from https://www.sbert.net/docs/
pretrained-models/msmarco-v3.html

3.4 Experiments 83

https://www.sbert.net/docs/pretrained-models/msmarco-v3.html
https://www.sbert.net/docs/pretrained-models/msmarco-v3.html

Tab. 3.3.: Average reranking latencies (seconds) on TREC 2019 DL test set, corpus
MS MARCO v1 for 100 documents with a query. Best result is in bold.

Model Latency
BERT-CAT 1.0234
TKL 0.5002
ICLI-dot 0.3420

Tab. 3.4.: Ablation study on TREC 2019 DL dataset, corpus MS MARCO v1.

Model NDCG@10 MAP
Complete 0.7048 0.2768
W/o compressor1 0.6798 0.2687
Compressor2 = compressor1 0.6975 0.2719
Score aggregation: equal weights 0.6634 0.2614
Score aggregation: learned weights 0.6646 0.2725

3.4.5 Reranking Latency

Following [72], latency is used to measure the average time (in seconds) for

loading the pre-stored document vectors from disk to the GPU, for computing

the query representation and for applying the fine-grained interaction module

to rerank 100 documents for a query on the TREC 2019 MS MARCO v1 test

collection (total 43 queries). Average latency results for reranking, on a

RTX 8000 GPU, each query’s top 100 documents for TREC 2019 test set are

reported in Table 3.3. The average latency for BERT-CAT amounts to 1.0234,

to 0.5002 for TKL, and to 0.3420 for ICLI-dot. This demonstrates that the

proposed approach is more efficient than BERT-CAT, by a factor of 3, and

TKL, by a factor of 1.46.

3.4.6 Ablation Study

Lastly, Table 3.4 reports the results of the ablation study we performed on

the ICLI-dot model on MS MARCO v1. We provide in the first line the

results obtained with the complete model. The second line corresponds to

84 Chapter 3 Late-interaction Based Model for Long Document Retrieval

removing the compressor for intra-ranking module, in which case the model

uses the original 768 dimensional [CLS] embeddings (this embedding is also

directly learned with task 1). The third line means without compressor2,

in which case the model uses the same compressor for intra-ranking and

late interaction. The fourth line corresponds to initializing the aggregation

weights (Eq. 3.3) to [0.25, 0.25, 0.25, 0.25]. Lastly, the fifth line shows the

results when directly learning the score aggregation weights. As one can

note, comparing with the proposed design, the above modifications show

lower results, suggesting the importance of using different compressors and

validating our choice of learning weights for score aggregation by partly

decoupling their learning from the one of the BERT model.

3.5 Conclusion

In this chapter, we have attempted to adapt late interaction methods for

long document retrieval by first learning the [CLS] vectors for fast intra-

passage ranking, and then by applying late interaction on contextualized

token vectors to obtain the fine-grained relevance scores for each selected

passage. Score aggregation and multi-task learning methods are furthermore

used to combine the various ingredients of our approach. Experimental

results demonstrate the efficiency and efficacy of the proposed approach on

such collections as TREC 2019.

3.5 Conclusion 85

Part II

Domain Adaptation for Dense

Retrieval and Conversational

Search

Domain Adaptation for

Dense Retrieval through

Self-Supervision by

Meticulous

Pseudo-Relevance

Labeling

4

4.1 Introduction

Information retrieval (IR) is playing a pivotal role in our daily life due to data

explosion. Traditional IR approaches like BM25 [150] compute a similarity

between a query and a document on the sole basis of the terms common

to both. As such, they are unable to handle semantic matching between

different surface forms. Neural information retrieval, with the advent of deep

neural networks, has greatly improved IR systems through models which can

capture the semantics of each term and compare them even if their surface

form differs. A popular model in both Natural Language Processing (NLP)

and IR is BERT [31], which is based on transformers [166] and is pre-trained

89

on large scale unlabeled collections through self-supervision; BERT can be

used on a variety of downstream tasks through fine-tuning.

Neural IR models can be roughly classified into two categories [50]: interaction-

based and representation-based (also called dense retrieval) approaches.

Interaction-based models have been shown to perform better in average than

dense retrieval models; on the other hand, dense retrieval (DR) models are

faster than interaction-based models, since the document representations

can be generated and stored in advance, and preferred if one needs to deploy

a model at large scale. This said, recent studies like BEIR [157] showed

that dense retrieval models trained on a source domain generalize less well

than traditional models as BM25 and interaction-based models on out-of-

distribution (OOD) data sets. Although training on target data sets with

gold labels is a standard process, the annotation required may be both time

consuming and expensive so that this approach can have limitation on many

real world usages. It is thus important to address the issue at OOD scenarios

for dense retrieval.

One of the goals of domain adaptation [173, 170] is to make a model that

has been trained on one domain, called the source domain, to perform well

on another domain, called the target domain, without using human labels on

the latter. Recently, various domain adaption techniques for dense retrieval

have been proposed. Domain generalization based on data generation is one

type of approaches [170] which has been followed in Ma et al. [100] through

a model called QGen which generates queries for the target domain using

a query generator trained on the source domain. Along the same line, GPL

[172] uses hard negatives and knowledge distillation and obtain state-of-the-

art results on a number of BEIR data sets. However, the created queries are

synthetic and may not resemble real target queries. Another popular and

widely used approach is based on domain adversarial learning [170]. Very

90 Chapter 4 Domain Adaptation for Dense Retrieval through Self-

Supervision by Meticulous Pseudo-Relevance Labeling

recently, Xin et al. [181] proposed a model called MoDIR which adversially

trains a dense retrieval encoder to learn domain-invariant representations

for dense retrieval. However, such a learning objective may produce a poor

embedding space and lead to unstable performance [172, 69].

In this chapter, we address domain generalization for dense retrieval through

self-supervision by pseudo-relevance labeling (in short, DoDress). We first

aim to build pseudo-relevance labels on the target domain using interaction-

based models solely trained on the source domain as T53B [119] which act

as re-ranker. The rationale for using interaction-based models in this setting

lies in the fact that these models have been showed to behave relatively well

on OOD data sets [157]. Note that the heavy T53B model is only used for

producing pseudo-relevance labels before training the dense retrieval model

so that the overall approach is still efficient during the online search stage.

This method eliminates the requirement for human annotations and enables

the model to use genuine queries and documents of the target domain.

In addition, we investigate different negative sampling strategies: global

random negative sampling, BM25 hard negatives, and SimANS [195] hard

negatives based on current dense retrieval models being trained, to further

improve the final dense retrieval model on the target domain.

Our contributions are twofold: first, we propose to use interaction-based

model T5-3B trained on the source domain to produce pseudo-labels on the

target domain; second, we further investigate different negative sampling

strategies in order to improve the final dense retrieval model, to benefit from

more informative training data. Experiments demonstrate the efficacy of our

approach; they show in particular that it helps to improve the SOTA approach

GPL when it is fine-tuned on the generated pseudo-labeled data.

4.1 Introduction 91

4.2 Related Work

Wang et al. [170] present a survey paper about domain generalization on

unseen domains. Domain generalization or adaptation can be categorized

into three groups: data manipulation, representation learning and learning

strategy. There are two kinds of techniques in the first group: data aug-

mentation [134, 159, 153, 167] which is commonly used in image data

(for example, altering the location, textual of objects and adding random

noise), and data generation [142, 136, 193] which uses some models to

generate new data to train a model. Representation learning group has

domain-invariant representation learning (e.g., domain adversarial learning)

[5, 40, 113] and feature disentanglement methods [86, 115, 94]. The third

group has several categories, for example ensemble learning[105, 25], meta-

learning [85, 34] and self-supervised learning based approaches (e.g., the

task of solving jigsaw puzzles) [16, 65].

Similar strategies, such as domain generalization or transfer learning, are

put forth by researchers for information retrieval. A strategy similar to the

one adopted in this study is described in [111] which carries out a systematic

evaluation of transfer ability of BERT-based neural ranking models. The

authors additionally use BM25 to generate pseudo-relevance labels. They do

not, however, focus on dense retrieval models which are known to require

complex training methods and a large amount of data in a distinct situation

[42]. Besides, only using BM25 to obtain pseudo-relevance labels might be

a weak solution. For interaction-based models [81] or learning sentence

embeddings [44, 171], some publications suggest self-supervised techniques.

These methods are frequently used for pre-training, however they do not

explicitly focus on domain generalization [172]. Ma et al. [100] proposes

QGen, a generation approach to zero-shot learning for first-stage dense pas-

92 Chapter 4 Domain Adaptation for Dense Retrieval through Self-

Supervision by Meticulous Pseudo-Relevance Labeling

sage retrieval that makes use of synthetic question generation, allowing the

construction of arbitrarily large yet noisy question-passage relevance pairs

that are domain specific, in an effort to overcome the challenge that neural

retrieval models need a large supervised training set to outperform con-

ventional term-based approaches. The documents used to generate queries

are viewed as positive and other in-batch instances are viewed as negative.

Concurrently, Liang et al. [91] consider the two-tower dense passage retrieval

architecture. Given that labeled data can be difficult to obtain and that neural

retrieval models need a huge amount of data to be trained, they also suggest

using synthetic queries produced by a large sequence-to-sequence (seq2seq)

model for unsupervised domain adaptation. These two papers show the

effectiveness of the query generation approach, which is also used in the

GPL model [172]. GPL relies on a pre-trained T5 encoder-decoder [141]

to generate queries from input passages. The input passages are seen as

positive passages whereas similar passages retrieved using an existing dense

retrieval model are constituted by the (hard) negative passages. The Margin-

MSE loss [51] is used as knowledge distillation to teach the dense retrieval

model to learn from an interaction-based model. Experimental results show

a state-of-the-art effectiveness on several BEIR [157] collections.

Researchers have also explored alternative strategies for domain adaptation

of dense retrieval models. Xin et al. [181] proposed a momentum adversarial

domain invariant representation learning (MoDIR) approach, which intro-

duces a momentum method to train a domain classifier that distinguishes

source and target domains. The dense retrieval encoder is then trained in an

adversarial manner to learn domain-invariant representations. A momentum

queue that records embeddings from several prior batches is used in order

to strike a balance between accuracy and efficiency [181]. This approach is

used on a trained ANCE model [183]. The results vary from one data set to

the other, with sometimes important improvements and sometimes marginal

4.2 Related Work 93

gains or losses. Karouzos et al. [69] proposed UDALM for domain adaptation

for sentiment classification through multi-task learning. It simultaneously

learns the objective of the Masked Language Modeling (MLM) task on the

target domain and the task from the source labeled data. However, this

strategy was not designed for dense retrieval and, as mentioned in [172], it

does not work well for dense retrieval.

In this chapter, we propose to do domain adaptation for dense retrieval

through self-supervision by pseudo-relevance labeling. We apply the cutting-

edge, domain-generalizable T53B interaction-based model [119] for pseudo-

positive labeling . This model can produce more accurate pseudo-relevance

labels, where top ranked documents are viewed as relevant to a given query.

Additionally, different negative sampling strategies are investigated, espe-

cially with the SimANS [195] hard negatives sampled from the current DR

models’ retrieval list, to improve the model effectiveness, after training with

the generated pseudo-labeled data.

4.3 Background

Dense retrieval [70, 183, 181] seeks to encode both queries and documents

into a low-dimensional space with an encoder g, typically a BERT-like model.

The retrieval status value (RSV) of a query and a document is then calculated

with a simple similarity function in the low-dimensional space:

RSV (q, d)DR = g(q) · g(d) (or RSV (q, d)DR = cos(g(q), g(d))) ,

where g(q) (resp. g(d)) denotes the encoding of the query (resp. document).

This enables a fast retrieval through a nearest neighbour search strategy

[183].

94 Chapter 4 Domain Adaptation for Dense Retrieval through Self-

Supervision by Meticulous Pseudo-Relevance Labeling

BM25 BM25 is a widely used standard IR algorithm based on term matching.

The RSV of a document with respect to a query is given by:

RSV (q, d)BM25 =
∑

w∈q∩d

IDF (w) · tfw

k1 · (1 − b+ b · ld
lavg

) + tfw

,

where IDF (w) is the inverse document frequency, ld is the length of docu-

ment d, lavg the average length of the documents in the data set, and k1 and

b two hyper-parameters

T53B By establishing a uniform framework that transforms all text-based

language problems into a text-to-text format, T5 [141] explores the landscape

of transfer learning for NLP and achieves state-of-the-art results on many

benchmarks. Nogueira et al. [119] proposed to use T5 as an interaction-

based model for information retrieval by relying on the following input

representation:

Query: [q] Document: [d] Relevant: true or false

where [q] and [d] are replaced with the query and document texts. During

training, the T5 model learns to generate the word “true” when the document

is relevant to the query, and the word “false” when it is not. The relevance

score for inference is then determined by the likelihood of producing “true”

[119]:

RSV (q, d)T 5 = softmax(Ztrue) = eZtrue

eZtrue + eZfalse
,

where Ztrue and Zfalse are the logits of output tokens.

4.3 Background 95

query documents

BM25
BM25
ranked

documents

T5-3B
MS MARCO

Top k
re-ranked

documents

T5-3B top
pseudo positive

documents
Hard

Negative

Start:

Data generation

Obtain final Triplet

Final Triplet

Fig. 4.1.: The overall pipeline of generating self-supervised data with BM25 hard
negative sampling for pseudo-relevance labeling.

query documents

BM25

Current
Dense
Model

BM25
ranked

documents

Dense
retrieved top
n documents

T5-3B
MS MARCO

Top k
re-ranked

documents

T5-3B top
pseudo positive

documents

Hard
Negative

Start:
co-occurrence
filter

SimANS Sample

Data generation

Obtain final Triplet

Final Triplet

Fig. 4.2.: The overall pipeline of generating self-supervised data with meticulous
pseudo-relevance labeling using SimANS hard negative sampling.

4.4 DoDress: Pseudo-Relevance Label

Generation

One of our approach using BM25 hard negative sampling is described in

Figure 4.1, and our best approach using SimANS hard negative sampling is

described in Figure 4.2. We will describe them in detail below.

96 Chapter 4 Domain Adaptation for Dense Retrieval through Self-

Supervision by Meticulous Pseudo-Relevance Labeling

Generating Positive-Negative Training Pairs on the Target Domain

We simply propose here to consider the top k documents, obtained with the

combination BM25&T53B in which T53B serves as a re-ranker, as relevant. k

is an hyper-parameter which can be set according to different information,

as, e.g., the number of available queries and documents. Furthermore, for

each pseudo-relevant query-document pair, we sample m documents and

consider them as non-relevant (different negative mining strategies can be

used, and they are described in Section 4.4.1 and Section 4.4.2). Thus,

for each query, k × m query-document triplets (query, relevant document,

non-relevant document) can be formed. The green blocks in Figure 4.1 and

Figure 4.2 represent the generated triplet pseudo-training pairs, consisting

the training data for domain adaptation.

4.4.1 Global and BM25 Hard Negative Sampling

Previously, we mentioned that the top ranking documents are viewed as

positive instances for pseudo-relevance labeling, and now we discuss the

negative instances. Apparently, one simple negative mining strategy is global

random negative sampling: for all documents in the corpus, m documents

randomly sampled except the positive instances are viewed as negative.

However, as pointed out by other researchers, in order for dense retrievers

to reach their maximum capacity, fine-tuning pipelines often require heavily

engineered strategies [43]. A key challenge in DR is to construct proper

negative instances for learning its representations [70]. Previous global

random negative instances might be too simple for the DR models, thus they

might not be well trained on target domain. So, we further propose to use

BM25 top ranking documents except the pseudo-relevant documents (top

4.4 DoDress: Pseudo-Relevance Label Generation 97

T53B instances) as hard negative instances for training the DR models. The

architecture is shown in Figure 4.1: the hard negative documents can be

randomly sampled in the BM25 top ranking list, and positive documents are

labeled from the top re-ranking list of T5-3B model after a first stage BM25

list.

4.4.2 Step Further: Meticulous Pseudo-Relevance

Labeling with SimANS Hard Negative

Previous pseudo-labeling approach is based on top K reranked instances

and global random negatives or BM25 hard negatives. Although results are

overall good, we want to step further. Recently, researchers have shown

hard negative sampling is vital for training a good dense retrieval model

[183]. Xiong et al. [183] propose ANCE which selects hard training negatives

using an asynchronously updated ANN index, showing the accuracy nearly

matches BERT-based reranking model. The current DR model which is being

fine-tuned retrieve the entire corpus and is formed as an ANN index.

Recently, Zhou et al. [195] show that existing negative sampling strategies

suffer from the uninformative or false negative problem, and that the nega-

tives ranked around the positives (for example BM25 scores or dense retrieval

scores) are generally more informative and less likely to be false negatives

compared to others. This led them to consider the sampling probability

distribution [195] defined by:

pi ∝ exp (−a(s(q, di) − s(q, d̃+) − b)2), ∀ di ∈ D̃−, (4.1)

where the hyper-parameter a controls the density of the distribution, the

hyper-parameter b controls the peak of the distribution, d̃+ ∈ D+ is a ran-

domly sampled positive, D̃− is the top-k ranked negatives.

98 Chapter 4 Domain Adaptation for Dense Retrieval through Self-

Supervision by Meticulous Pseudo-Relevance Labeling

In this chapter, we use this SimANS [195] approach with the proposed

pseudo-positive labeling approach. This is to say, our positives are not

ground-truth positives labeled by humans, instead by the T53B model. The

architecture is shown in Figure 4.2. We use SimANS to select hard negatives

in the top ranking of current DR models (i.e., D-BERT and GPL respectively).

Note that the negatives ranked around the positives do not mean they are

in the most top ranking list, they are in fact around the positive instance in

current dense retrieval model list (e.g., a top-1 positive document from T53B

list is viewed as pseudo-positive, and may be at the position 50 in the dense

retrieval list, and we should sample the documents around position 50 as

negatives). Thus more ambiguous and informative negatives can be sampled.

During implementation, we found that several T53B top (e.g., 10) ranked

documents are not in the top ranking list of DR models, we thus remove

them if they are not in Top n (e.g., 500) list of dense retrieval scores. We

assume this step ensures that if the ensemble models both give high relevant

scores for the documents, they can less likely be false positive documents.

With above steps, the pseudo-positive documents and hard negatives can be

obtained together with the queries, obtaining the triplet training data (the

green blocks in Figure 4.2) used for the pairwise loss.

4.4.3 Improving GPL: Combining Pseudo-Relevance

Labels and Pseudo-Queries

As mentioned before, the QGen and GPL approaches both rely on a query

generator to generate pseudo-queries in order to train a dense retrieval

model. We propose here to further train this dense retrieval model on the

pseudo-relevance triplets described in Section 4.4. We believe one can gain

4.4 DoDress: Pseudo-Relevance Label Generation 99

from this additional training on the target collection as pseudo-queries and

pseudo-relevance labels rely on different sources of information and are

complementary to each other. As we will see in the experimental section, this

combination indeed improves the pseudo-query generation approach.

4.4.4 Pairwise Loss

In this chapter, we rely on the RankNet pairwise loss [9, 88] to train a dense

retrieval model using the triplets generated above, defined by:

L(q, d+, d−; Θ) = − log(σ(Sq,d+ − Sq,d−)),

where q is a query, (d+
q , d

−
q) is a (positive,negative) training document pair

for q, σ is the sigmoid function, Θ represents the parameters of the dense

retrieval model, and Sq,d is the score provided by the model for document d

with respect to query q.

4.5 Experiments

4.5.1 Data Sets

The MS MARCO passage ranking data set [116] is used as the source domain

data. We want to experiment in an extreme scenario where no test queries

can be seen even without human labels. This is to say, we need to generate

the pseudo-training data with the training queries which is not in the test

set. To do so, we experiment on 3 target domain data sets from the BEIR

benchmark [157]. They are FiQA, finance question answering [104] which

100 Chapter 4 Domain Adaptation for Dense Retrieval through Self-

Supervision by Meticulous Pseudo-Relevance Labeling

contains 6000 training queries, BioASQ biomedical question answering [160]

(following [172], irrelevant documents are randomly eliminated, leaving 1M

documents) which contains 3243 training queries from original collection1,

and Robust04, news documents [168] which contains 250 queries. Different

topics and tasks are covered by these chosen data sets. For Robust04, we

select the first 100 queries as training and development set, and the last 150

queries are used as test set.

4.5.2 Experimental Setting

Our implementation is based on the matchmaker open-source framework2

which is modified with mean pooling and dense evaluation3 using automatic

mixed precision [109]. On the target collection, the training triplets are gen-

erated according to the approaches described in Section 4.4, using BM25+T5

to produce pseudo-relevant documents by considering the top k documents

as relevant, and with different negative sampling strategies. Following previ-

ous work and for fair comparison, the transformer architecture of the dense

retrieval model, referred to as D-BERT, is DistilBERT [152] with 6 layers.

D-BERT is firstly trained on the source domain. We conduct two groups of

experiments. For domain adaptation, For the first group, the dense retrieval

model is based on D-BERT, and for the second group, the dense retrieval

model is based on GPL. D-BERT and GPL are trained using the RankNet

pairwise loss on both sets of triplets (obtained by BM25+T5 and different

negative sampling strategies). Note that GPL is first trained on the target

pseudo-queries it generates and associated documents prior to be trained on

the target triplets. The T5 model used is the 3B version that is trained on MS

1http://participants-area.bioasq.org/Tasks/8b/trainingDataset/
2https://github.com/sebastian-hofstaetter/matchmaker
3https://github.com/UKPLab/gpl/blob/main/gpl/toolkit/evaluation.py

4.5 Experiments 101

http://participants-area.bioasq.org/Tasks/8b/trainingDataset/
https://github.com/sebastian-hofstaetter/matchmaker
https://github.com/UKPLab/gpl/blob/main/gpl/toolkit/evaluation.py

MARCO passage ranking data set4. The MiniLM cross-encoder used is the

ms-marco-MiniLM-L-6-v2 version5 from Sentence Transformers [144].

For constructing the training set, we select the number k of top documents

to be considered as relevant according to the number of queries (to generate

enough pairs) and documents (as a large number of documents enables

sampling more negative documents). For each relevant document, we select

m documents from the target collection not present in the top k list of the

query, with different negative sampling strategies. These documents are

considered as not relevant. Table 4.1 displays the number of queries (not in

the test set), the value selected for k (in parenthesis) and the number m of

non relevant documents per relevant document. For BioASQ for example,

the number of triplets in the training set is 3193 × 2 × 15 = 95790. At

the end, each data set has a number of triplets in the training set in the

range of 50000 to 100000. We also construct a development set to select

the hyper-parameters of the models on each collection. For each query in

the development set, the top 10 documents are considered relevant and 90

randomly selected documents (not in the top 10) as non relevant. This choice

is dictated by the fact that we need a sufficient number of relevant documents

for evaluation purposes and that we have a limited number of queries for

the development set. However, to counterbalance the risk of considering

as relevant documents which in fact are not, the top two documents are

labeled as ’2’ and the following eight ones as ’1’. The non-relevant documents

are labeled as ’0’, thus leading to 3-level relevance judgements for each

data set. The best model is saved according to the NDCG@10 score on the

development set evaluated every 1K steps.

Following [172], a maximum sequence length of 350 with mean pooling

and dot-product similarity is used. For all data sets, we use a batch size of

4https://huggingface.co/castorini/monot5-3b-msmarco
5https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2

102 Chapter 4 Domain Adaptation for Dense Retrieval through Self-

Supervision by Meticulous Pseudo-Relevance Labeling

https://huggingface.co/castorini/monot5-3b-msmarco
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2

8, which means 8 positive-negative pairs, and a learning rate of 2e-6 with

Adam optimizer for 10K training steps. Cosine LR schedule [98] is also used

for learning rate decay.

For SimANS, the hyper-parameter a and b are set to 0.5 and 0 respectively

for all experiments.

Tab. 4.1.: The top k selected as positive and m as negative for each data set. The
number in parentheses is used for generating training data, remaining
for Dev set. Top k as relevant, m as non-relevant.

data set #queries (exclude test) #docs k m
FiQA 6000 (5960) 57K 1 10

BioASQ 3243 (3193) 1M 2 15
Robust04 100 (90) 528K 15 67

4.5.3 Baselines

Following [172], we compare the proposed approaches with zero-shot mod-

els, with pre-training approaches and with recent SOTA approaches to domain

adaptation.

Zero-shot models

Baseline zero-shot models comprise BM25 based on Anserini [185] with

default parameters which obtains top 100 documents for each query and

does not require to be trained is compared (these BM25 ranking lists are

further used to generate pseudo-relevance training data in this chapter) and

the dense retrieval model D-BERT solely trained on the source collection with

hard negatives and the MarginMSE loss with the ms-marco-MiniLM-L-6-v2

model taken as the teacher model (it is further used as a start point for

domain adaptation).

4.5 Experiments 103

Pre-training based models

We compare with SimCSE [44], ICT [81] and TSDAE [171]. These models

are all firstly pre-trained in a self-supervised way on the target data set and

then fine-tuned on MS MARCO.

Domain adaptation approaches

We compare here with four recent SOTA approaches: MoDIR [181] which

is based on ANCE [183] and relies on an adversarial training, UDALM [69]

which is based on multi-task learning, and QGen [100] and GPL [172] which

are approaches based on query generation.

In addition, we make use of the interaction-based models BM25+CE and

BM25+T53B which can be seen as strong baselines due to the good behaviour

of interaction-based models in OOD settings [157] but which are nevertheless

inefficient at inference. These models re-rank the top 100 BM25 ranked list,

using a ms-marco-MiniLM-L-6-v2 and T53B cross encoders respectively.

4.5.4 Results and Analysis

Table 4.3, Table 4.4 and 4.5 display the results obtained with the different

models and approaches. The results reported for BM25+CE, UDALM, MoDIR,

SimCSE, ICT, TDSAE, QGen and TSDAE+GPL are from [172]. Since we test

the Robust04 on the last 150 queries, for BM25+CE, GPL and TSDAE+GPL,

we load the trained checkpoints of D-BERT and Wang et al. [172]6, and

evaluate them on the last 150 queries. The notation “DoDress-BM25 (D-

BERT)” (respectively “DoDress-T53B (D-BERT)”) corresponds to the D-BERT

6https://huggingface.co/GPL

104 Chapter 4 Domain Adaptation for Dense Retrieval through Self-

Supervision by Meticulous Pseudo-Relevance Labeling

https://huggingface.co/GPL

dense retrieval model pre-trained on MS MARCO and fine-tuned on the target

data using the pseudo-relevance labels generated using BM25 (respectively

using BM25+T5). The notation (GPL) means the same for GPL, which is

again first trained on the target pseudo-queries it generates and associated

documents prior to be trained on the target triplets.

We analyze the results by answering three research questions.

RQ1 Do BM25+T53B top positives help domain generalization for dense

retrieval models?

From Table 4.3, we see DoDress-T53B (D-BERT) improves over D-BERT on

FiQA dataset with all the three negative sampling strategies, DoDress-T53B

(GPL) shows a similar trend compared to GPL. On Robust04 dataset, from

Table 4.4, we see a similar trends for DoDress-T53B (D-BERT) and DoDress-

T53B (GPL). Specifically, DoDress-T53B (GPL) with all three sampling strate-

gies can outperform GPL and TADAE + GPL. With the SimANS negative

mining strategy, DoDress-T53B (D-BERT) shows a 11.5% ((43.6−39.1)÷39.1)

improvement over D-BERT, and DoDress-T53B (GPL) shows a 8.6% improve-

ment over GPL. From Table 4.5, however, the approach with global random

negative sampling strategy fails, while the proposed approach with other

two negative sampling strategies improve the dense retrieval model D-BERT

and GPL respectively. These approach shows that proposed pseudo-relevance

labeling approach can help dense retrieval models generalize to new domains,

but different negative sampling strategy is vital for final effect.

RQ2 What is the impact of different negative sampling strategies and which

is the best?

From Table 4.3, Table 4.4 and Table 4.5, we see a overall ascending trend of

the three different negative sampling strategies. The global random negative

4.5 Experiments 105

method, as the name shows, does not sample hard negatives. It randomly

select negatives from the entire corpus, e.g., on BioASQ, the 2M documents,

and consider them as negative. However, although it improves the dense

retrieval models on FiQA and Robust04, it fails on BioASQ dataset. This

might be due to the uninformative negatives: they may be too easy for the

DR models on target domain.

Regarding the BM25 hard negative and SimANS negative sampling strategies,

they shows better performances than the global random negative strategy,

and improves D-BERT and GPL on all three datasets. These results show hard

negative sampling is important for the proposed pseudo-relevance labeling

data generation approach.

The proposed approach with SimANS hard negative sampling performs

consistently the best on all the datasets, better than the global random

negative and BM25 hard negative strategies, showing that better negative

sampling strategy can also further improve the proposed approach.

RQ3 What is the effect of the proposed pseudo-relevance labeling approach

with SimANS hard negative sampling compared with the baseline

models?

We now analyze the proposed approach with SimANS hard negative sam-

pling strategy comparing with the baselines. We have shown with SimANS,

DoDress-T53B (D-BERT) and DoDress-T53B (GPL) consistently improves over

D-BERT and GPL respectively and performs the best in the three negative

sampling strategies. We now compare it with other baselines.

BM25 is a standard first stage retrieval algorithm and does not require to be

trained, viewed as a zero-shot model. Although it is extremely simple com-

pared with recent neural-IR approaches, it is a strong baseline and perform

106 Chapter 4 Domain Adaptation for Dense Retrieval through Self-

Supervision by Meticulous Pseudo-Relevance Labeling

well on new domains. Especially on BioASQ, BM25 approach even outper-

forms the BM25 + CE reranking approach on new domain. Our proposed

approach outperform it on FiQA and Robust04. Specifically, DoDress-T53B

(GPL) with SimANS is the only approach that outperform BM25 on Robust04,

where GPL and TSDAE + GPL fail. On BioASQ, all DR models is lower than

BM25, while DoDress-T53B (GPL) is the best in them.

For UDALM, MoDIR (ANCE) and the three pre-training based approach

SimCSE, ICT and TSDAE, we report the results obtained on FiQA and BioASQ

from [172]. As one can note, on FiQA, DoDress-T53B (D-BERT) and DoDress-

T53B (GPL) with SimANS hard negatives reach 31.0 and 34.9 respectively

on NDCG@10, while MoDIR (ANCE), the best method among the previous

ones, only reaches 29.6. On BioASQ, the best baseline is TSDAE with 55.5,

while our DoDress-T53B (D-BERT) and DoDress-T53B (GPL) are 60.6 and

65.3 respectively, where the latter one has a 17.7% improvement.

The generation based models are previous state-of-the-art, and are mainly

based on the generated pseudo-queries. For example, a T-5 sequence-to-

sequence model can be trained on MS MARCO to mimic to generate pseudo-

queries, given the large query-document pairs. Then this T5 query generator

can be used on the documents on target domain, obtaining pseudo-queries,

and the corresponding documents used are viewed as positives. Our approach

is slightly different, by also taking into the original queries and documents

simultaneously into account. Then an effective reranking model T5-3B is used

for pseudo-positive annotation, and different negative sampling strategies

are explored for negative annotation. In Table 4.3, we see TSDAE + GPL

performs the best in the baselines, with a score of 34.4, better than GPL’s 32.8.

The proposed approach DoDress-T53B (GPL) obtains 34.9, higher than them.

On Robust04, in Table 4.4, however, TSDAE + GPL is worse than GPL: 40.7

and 41.9 respectively. Our proposed approach with SimANS hard negatives,

4.5 Experiments 107

both DoDress-T53B (D-BERT) and DoDress-T53B (GPL) outperform them,

showing the effectiveness of the approach. On BioASQ dataset, DoDress-T53B

(GPL) obtains better results than the best model GPL in the baselines.

RQ4 Does sampling hard negatives in the retrieval list of current DR model

perform better? Can SimANS further improve this?

We want to see if sampling the hard negatives in the retrieval list of current

dense retrieval model is better than sampling the hard negative in the BM25

list. Previous BM25 hard negatives which are used in above experiments,

are from random hard negative sampling without using SimANS sampling.

So we conduct a further experiment using random negative sampling from

current DR model’s top list, to compare with sampling from BM25 top list.

The results are shown in Table 4.2. We can see that sampling hard negatives

from D-BERT’s top retrieval list performs better than from BM25 top list. This

may be explained by the fact that hard negatives from the top list of the DR

model are more informative to train the model for domain adaptation.

Tab. 4.2.: Results of DoDress-BM25 (D-BERT) on Robust04 with different random
hard negative sampling source.

Random sampling from nDCG@10 (%)
BM25 top list 41.6

GPL top retrieval list 42.6

Besides, we want to see whether SimANS hard negative sampling can further

improve the retrieval results. From Table 4.4, we see that DoDress-BM25

(D-BERT) using SimANS sampling approach obtains 43.6, while in Table 4.2,

it is 42.6, showing that SimANS can further improve the result by sampling

more ambiguous negatives than random sampling from the top ranking list

of current DR model.

In conclusion, the above results demonstrate the effectiveness of the proposed

approach which provides state-of-the-art generalization results of dense re-

108 Chapter 4 Domain Adaptation for Dense Retrieval through Self-

Supervision by Meticulous Pseudo-Relevance Labeling

trieval models on several collections. Besides, by exploring different negative

sampling strategies, we show hard negative sampling is vital. By using a

SimANS negative sampling strategy from current DR model’s ranking list, the

results is the best.

Tab. 4.3.: Domain Adaptation Result of FiQA (during training only use training set
queries).

model nDCG@10 (%)
Zero-Shot Models

D-BERT 26.7
BM25 (Anserini) 23.6

Re-Ranking with Cross-Encoders (Upper Bound)
BM25 + CE 33.1

BM25 + T53B 39.2
Previous Domain Adaptation Methods

UDALM 23.3
MoDIR (ANCE) 29.6
Pre-Training based: Target → D-BERT

SimCSE 26.7
ICT 27.0

TSDAE 29.3
Generation-based (Previous SOTA)

QGen 28.7
GPL 32.8

TSDAE + GPL 34.4
Proposed: T53B, Global Random Neg

DoDress-T53B (D-BERT) 27.3
DoDress-T53B (GPL) 33.0

Proposed: T53B, BM25 Hard Neg
DoDress-BM25 (D-BERT) 30.4

DoDress-BM25 (GPL) 34.2
Proposed: T53B, SimANS Hard Neg

DoDress-T53B (D-BERT) 31.0
DoDress-T53B (GPL) 34.9

4.6 Conclusion

This chapter studies whether one can benefit from existing re-ranking based

IR models, pre-trained on MS MARCO, to generate pseudo-relevance labels

on an unannotated target collection. These labels with sampled negatives

are then used to fine-tune dense retrieval models on the target collection.

4.6 Conclusion 109

Tab. 4.4.: Domain Adaptation Result of Robust04 (training and development set
use the first 100 queries, test set is the last 150 queries).

model nDCG@10 (%)
Zero-Shot Models

D-BERT 39.1
BM25 (Anserini) 44.4

Re-Ranking with Cross-Encoders (Upper Bound)
BM25 + CE 45.8

BM25 + T53B 51.8
Generation-based (Previous SOTA)

GPL 41.9
TSDAE + GPL 40.7

Proposed: T53B, Global Random Neg
DoDress-T53B (D-BERT) 40.5

DoDress-T53B (GPL) 43.2
Proposed: T53B, BM25 Hard Neg

DoDress-BM25 (D-BERT) 41.6
DoDress-BM25 (GPL) 43.3

Proposed: T53B, SimANS Hard Neg
DoDress-T53B (D-BERT) 43.6

DoDress-T53B (GPL) 45.5

Tab. 4.5.: Domain Adaptation Result of BioASQ (during training only use training
set queries).

model nDCG@10 (%)
Zero-Shot Models

D-BERT 53.6
BM25 (Anserini) 73.0

Re-Ranking with Cross-Encoders (Upper Bound)
BM25 + CE 72.8

BM25 + T53B 76.1
Previous Domain Adaptation Methods

UDALM 33.1
MoDIR (ANCE) 47.9
Pre-Training based: Target → D-BERT

SimCSE 53.2
ICT 55.3

TSDAE 55.5
Generation-based (Previous SOTA)

QGen 56.5
GPL 62.8

TSDAE + GPL 61.6
Proposed: T53B, Global Random Neg

DoDress-T53B (D-BERT) 52.9
DoDress-T53B (GPL) 62.0

Proposed: T53B, BM25 Hard Neg
DoDress-BM25 (D-BERT) 58.6

DoDress-BM25 (GPL) 64.7
Proposed: T53B, SimANS Hard Neg

DoDress-T53B (D-BERT) 60.6
DoDress-T53B (GPL) 65.3

110 Chapter 4 Domain Adaptation for Dense Retrieval through Self-

Supervision by Meticulous Pseudo-Relevance Labeling

Our study reveals that this approach works well where the pseudo-labels are

generated using a T53B model to re-rank a first stage BM25 list, and that it

helps improve the generalization results of the GPL model which also makes

use of generated queries and associated relevant documents on the target

collection.

We further study the importance of using hard negative sampling strategies.

A BM25 hard negative sampling approach shows consistently improvement

over the base dense retrieval models after training using the generated data,

which global random negative sampling is not always good. By incorporating

a recent hard negative sampling strategy SimANS, which sampled hard

negatives from the current dense retrieval model’s top retrieval lists, shows

the best results, obtaining new state-of-the-art results on the data sets for DR

model’s domain generalization.

4.6 Conclusion 111

Domain Adaptation for

Conversational Search

5

5.1 Introduction

Conversational document search, which is to find relevant documents from

collections of documents in response to user queries in a conversational

context, is often referred to as "conversational search" as documents are

the typical output generated by the system [41]. In the preceding section,

we presented a novel approach that enhances the generative capability of

dense retrieval models, which are commonly used retrieval architectures.

Currently, conversational search, involving the interaction with a system

through natural conversations for information retrieval purposes, has gained

significant attention as an increasingly popular research area and is acknowl-

edged as a crucial frontier within the realm of information retrieval [192,

23]. In recent times, ChatGPT1 has gained widespread popularity worldwide.

Despite being a generation-based model at its core, its ability to comprehend

conversations showcases the advantages of conversational search, wherein

the system also needs to grasp the user’s information needs across multiple

turns. The objective of conversational search is to build such a model that

return the most relevant results to users during conversations.

1https://openai.com/blog/chatgpt

113

https://openai.com/blog/chatgpt

Q1: What is computer?

Q2: What’s the price?

Q3: Can you tell me some brands?

RW1: What is computer?

RW2: What’s the price of a computer?

RW3: Can you tell me some brands of
computers?

Example user queries in a
conversation.

Example rewritten queries or
user intentions.

Fig. 5.1.: An example of conversational search user queries, and the rewritten
queries or user intentions.

The challenge in conversational search lies in the understanding of queries.

Human conversations exhibit contextualization, conciseness, and reliance on

prior knowledge. Figure 5.1 shows an example of conversational search’s

queries (the left part) with the rewritten queries or the user intentions (the

right part). Given a query, for example the third one, the system needs to

understand the omission or user intention, by taking account into previous

queries. Conversational search often involves referencing and omitting infor-

mation from previous turns, resulting in ambiguities, which pose challenges

for search systems in accurately understanding the underlying information

needs, making it more complex compared to ad hoc retrieval [190]. Re-

cently, two main approaches have been proposed to address this challenge.

The first approach involves reformulating conversational queries into fully

specified, context-independent queries that can be effectively processed by

existing information retrieval systems [189, 108, 145, 162]. The second

approach, termed as conversational dense retrieval (CDR), directly utilizes

a dense retrieval architecture. The query encoder takes into account both

the current query and the history of queries to generate a representation that

captures the user’s information needs [190, 106, 93]. The relevance scores

of documents can then be obtained by matching the representations.

114 Chapter 5 Domain Adaptation for Conversational Search

Despite the simplicity and efficiency of utilizing dense retrieval models, a

well-known issue is the requirement of a large amount of training data.

Additionally, annotating relevance labels for a target dataset with human

experts can be expensive. To address this data scarcity issue, recent research

has proposed various approaches. Mao et al. [106] transform web search

sessions into conversational search sessions to train the CDR model. Yu et al.

[190] learn a student query encoder with concatenated queries to mimic

teacher embeddings on oracle reformulated queries using CANARD [35], and

then train the model on the target dataset with human judgments. Lin et al.

[93] use ColBERT [72] to rerank the BM25 list for human rewritten queries in

CANARD with documents in target domain, and thus obtain pseudo-labels.

Although these approaches partially address the data scarcity problem of

CDR, they still suffer from domain gaps in the training data. Therefore,

obtaining relevance information for queries and documents in the target

domain remains a significant challenge.

In this chapter, we propose a pseudo-relevance labeling approach for con-

versational queries and documents in the target dataset, also assuming a

difficult scenario where there are no human rewritten queries for conver-

sational queries. Our solution involves training a T5-Large [141] model to

generate rewritten queries given conversational queries, which can then be

used on the target dataset to generate rewritten queries. Once the rewritten

queries are obtained, pseudo-relevance labeling procedures can be employed,

as in the previous chapter. In a common few-shot setting with limited query

numbers, this pseudo-relevance data can serve as a complement for the

related CDR models, enabling domain adaptation on the target dataset.

5.1 Introduction 115

5.2 Related Work

Conversational search differs from standard document search in that its

queries are related to previous turns and often contain ambiguities. Two com-

monly proposed approaches for addressing the challenges of conversational

search are:

• Query rewriting module: This approach relies on a module that rewrites

the conversational queries into a more standard format that can be

effectively handled by existing information retrieval systems.

• Dense retrieval technique: This approach leverages the dense retrieval

architecture, termed as conversational dense retrieval (CDR), where

the query encoder of the dense retrieval model is trained to directly

understand conversational queries and generate representations that

capture the user’s information needs.

As to the first kind, researchers mainly rely on rule-based approach or learn-

ing based approach. For example, Mele et al. [108] propose an utterance

rewriting approach that enriches the current utterance with context key-

words. Their rewriting approach aims to maintain the conversation context

since natural-language utterances might be not self-explanatory. They utilize

a linguistically-driven approach that involves sophisticated components such

as Part-of-speech tagging, named entity resolution, dependency parsing, and

co-reference resolution to analyze the text and identify crucial texts for utter-

ance rewriting. These components form the core modules of their approach.

Experimental results show that the use of well-formed and self-expressive

utterances consistently improves the precision of results. Among their various

rewriting techniques, the one that employs topic detection and its possible

variations (referred to as "Topic Shift") yields results closest to manually

116 Chapter 5 Domain Adaptation for Conversational Search

rewritten utterances compared to other methods. However, there still exists

a substantial disparity between the results obtained from their approach and

manually rewritten utterances.

Another research approach in query rewriting involves learning-based models,

particularly sequence-to-sequence models, which are designed to generate

target sequences from source sequences. Ren et al. [145] formulate the task

of conversational query understanding as context-aware query reformulation,

with the goal of transforming the conversational query into a format that is

compatible with search engines in order to effectively address user’s informa-

tion needs. A general recurrent neural network (RNN) is employed in the

encoding process of the sequence-to-sequence approach, while another RNN

is utilized for sequential generation of the target sequence. This generation

process takes into account the RNN state and incorporates the embedding of

the previously generated word, aided by an attention mechanism. Several

variations of sequence-to-sequence models are proposed, including concate-

nated sequence-to-sequence, which concatenates history queries with the

current query, and pair sequences-to-sequence, which employs distinct RNNs

to encode history queries and the current query. Experimental results show

that the best-performing model accurately reformulates more than half of the

conversational queries, demonstrating the potential of sequence-to-sequence

modeling for this specific task. Later works focus on using the Transformer

architectures, especially the decoder part. Vakulenko et al. [162] propose a

question rewriting model that leverages a unidirectional Transformer decoder

for encoding the input sequence and decoding the output sequence. The

input to the model encompasses the question as well as previous conversa-

tion turns. During the training process, the objective is to predict the output

tokens based on the ground truth question rewrites that are generated by

human annotators.

5.2 Related Work 117

After the conversational queries have been rewritten into conversation turns,

standard retrieval models can be employed, treating the rewritten queries as

regular search queries. This can include term matching based approaches

such as BM25, neural information retrieval (IR) approaches like BERT, dense

retrieval models, and other relevant techniques.

The second research approach for conversational search involves the utiliza-

tion of dense retrieval architecture. In this approach, history queries and the

current query are combined and input together to the query encoder. During

training, the objective is to align the representations of the concatenated

queries and the positive document, while separating them from negative

documents. This approach is referred to as conversational dense retrieval

(CDR). One of the advantages of CDR is that, by leveraging deep learning

and training with a large amount of data, the query encoder can learn to

generate effective representations, and it does not need the query rewriter

module. Additionally, dense retrieval is known for its fast retrieval speed,

as document processing can be done offline. This makes CDR efficient and

straightforward in terms of both speed and simplicity.

However, one common issue is the need of large amount of data to train the

query encoder with ground-truth rewritten queries, which is difficult and

expensive to obtain for target dataset. Training dense retrieval is challenging

since dense retrieval models need more relevance-oriented supervision sig-

nals to be effective [190]. Besides, different from standard query encoder

of DR models, the query encoder of CDR needs to capture the user search

intention in the conversation, making it to be more difficult, and not able to

reuse pre-trained query encoder (e.g., trained on MS MARCO).

Related papers of CDR have been proposed that try to alleviate this data

scarcity issue. Mao et al. [106] present a data augmentation method called

ConvTrans that can automatically transform easily-accessible web search

118 Chapter 5 Domain Adaptation for Conversational Search

sessions into conversational search sessions to alleviate the data scarcity

issue for conversational dense retrieval. Although user’s multiturn interaction

with the web search engine is similar to the multi-turn interaction in the

conversational search session to some extent, directly using raw web search

sessions may not be effective for training the conversational session encoder

due to the gaps. To address these gaps, the authors develop a graph-based

reorganization method and a specific conversational query rewriter composed

of two T5 models, and then generate pseudo-conversational search sessions.

Experiments show it can achieve comparable retrieval performance as it

trained on high-quality but expensive artificial conversational search data.

Yu et al. [190] propose a teacher-student framework called ConvDR that

improves the few-shot ability of CDR by learning from an well trained ad hoc

dense retriever. They learn a student query encoder with the concatenated

queries to mimic the teacher embeddings on oracle reformulated queries on

CANARD [35] dataset, with mean squared error (MSE) loss, and otained

good results. However, human judgements of target datasets are still re-

quired. A similar approach to this chapter is called CQE [93]. They use the

conversational queries and human rewritten queries in the conversational

query reformulation dataset CANARD [35] for the target datasets. ColBERT

[72] is used to rerank the BM25 top list with the oracle rewritten queries

in CANARD, and top 3 are viewed as relevant, other reranked top ones are

viewed as negative. Although good results are obtained, this approach has

the potential problem: they assume the target datasets can be well searched

by CANARD queries. Apparently this is not always a truth, for example in

standard dense retrieval dataset, robust04 queries are not related to TREC-

COVID, which is a scenario for conversational search if the target is not

happened to be related to CANARD.

5.2 Related Work 119

Although approaches like ConvDR [190] and CQE [93] can utilize the large

conversational query rewritten dataset to train CDR model, they still suffer

from domain gaps in the training data. In this chapter, we propose a pseudo-

relevance labeling approach on the target conversational search dataset based

on the pseudo-labeling of previous chapter. To deal with the difficulty of

obtaining human rewritten queries on target datasets, we propose to use

T5-Large which is pre-trained on CANARD, to rewrite conversational queries.

Then we use the rewritten queries, and T5-3B from MS MARCO, to generate

pseudo-relevance labeling. The hard negatives are obtained with current

dense model and SimANS method [195]. For target datasets like TREC

CAsT-19 [29], which only contain a few training queries, training the query

encoder from scrach is not a best solution as this is a few-shot setting. If

in this scenario, our proposed method can be viewed as a complement step

of ConvDR [190] and CQE [93]: the DR model can be firstly trained using

these approaches, and then train it on target dataset using our proposed

pseudo-labels.

5.3 Domain Adaptation for Conversational

Dense Retrieval: Leveraging

Pseudo-Relevance Labels Generated with

T5-Large Rewritten Queries

As discussed above, our objective is to generate pseudo-labels without relying

on human rewritten queries in the target dataset, considering the challenges

and costs associated with annotating a new conversational dataset in real-

120 Chapter 5 Domain Adaptation for Conversational Search

Rewritten
query documents

BM25

Current
Dense
Model

BM25
ranked

documents

Dense
retrieved top
n documents

T5-3B
MS MARCO

Top k
re-ranked

documents

T5-3B top
pseudo positive

documents

Hard
Negative

co-occurrence
filter

Data generation

Obtain final Triplet

SimANS Sample

Current
query

History
queries

T5-Large
Rewriter
CANARD

Cur [SEP] His-1 [SEP] …

Final Triplet

Fig. 5.2.: Overall pipeline of generating pseudo-data for conversational dense re-
trieval. The rewritten query is a human language style sentence that
represent whole user intention, and the current dense model (pre-trained
on MS MARCO) can retrieve top documents.

world scenarios. Compared with Chapter 4, this pseudo-relevance data

generation process needs an additional module that acts as query rewriter.

The overall pipeline is depicted in Figure 5.2, wherein the architecture

primarily incorporates an additional T5-Large model [141] in the left section

to generate rewritten queries. Further details are given below.

5.3.1 Quantifying the Requirement of Pseudo-Relevance

Data for Training Conversational Dense Retrieval

Model

We begin by analyzing the data required to train a conversational dense

retrieval model. As discussed in Section 5.2, the query encoder in conversa-

tional dense retrieval is trained to accept concatenated queries, which include

the current query and history queries, and encode them into embeddings

5.3 Domain Adaptation for Conversational Dense Retrieval:

Leveraging Pseudo-Relevance Labels Generated with

T5-Large Rewritten Queries

121

His1 | His2 | … | Cur

Query
Encoder

Passage
Encoder

T5-3B top
pseudo positive

Hard
Negative

Dot
product

pos
score

neg
score Pairwise

loss

Fig. 5.3.: After generating pseudo-labeling data, now do domain adaptation for the
dense retrieval model for target conversational search corpus. Now the
encoders of the dense model (pre-trained on MS MARCO) are no longer
shared, and the query encoder is trained to generate whole representation
of the conversation (concatenated, not rewritten by T5-Large, since for
fast online search).

that encapsulate the overall user intentions. To train a conversational dense

model, relevance labels for some documents at each turn in the conversation

are required. However, obtaining ground-truth query representations that

encompass the entire user intention, including history turns in a conversation,

is challenging. To address this, we propose the use of a "machine oracle"

that can generate rewritten queries based on the current query and history

queries or conversations. In this study, we achieve this by training a T5-Large

sequence-to-sequence model on the CANARD dataset [35], which is a dataset

for learning to rewrite conversational queries. This trained T5-Large model

serves as the oracle for the target conversational search dataset, enabling the

rewriting of each query in a conversation. Subsequently, with the rewritten

queries, we can employ a similar pseudo-data generation process as described

in Chapter 4. The detailed procedures are outlined below.

122 Chapter 5 Domain Adaptation for Conversational Search

5.3.2 T5-Large Query Rewriter Module

This module is shown in the left part of Figure 5.2. We utilize the T5 model’s

special token "</s>" to concatenate the current query and history queries.

The current query is placed at the beginning, followed by the recent history

queries (with farther history queries located towards the end), following a

similar approach as described in [106]:

< /s > Current < /s > History−1 < /s > History−2... (5.1)

The T5-Large model is trained using the CANARD dataset [35] to generate

rewritten queries that comprehensively capture the user intentions, with

ground-truth human rewritten queries serving as labels. Once trained, this

model can effectively rewrite conversational queries from target datasets into

the desired format.

5.3.3 Generating Pseudo-Relevance Data on Target

Dataset

Pseudo-Positive We initially leverage the trained T5-Large model to gen-

erate de-contextualized queries denoted as ReQ for each turn in the con-

versations. Subsequently, we employ BM25 to retrieve a list of top-ranked

documents based on the generated ReQ. Following that, we utilize the T5-

3B model, which has been trained on MS MARCO, to rerank the BM25

list. The resulting top-k documents from this process can be considered as

pseudo-relevant instances.

5.3 Domain Adaptation for Conversational Dense Retrieval:

Leveraging Pseudo-Relevance Labels Generated with

T5-Large Rewritten Queries

123

SimANS Hard Negative Following Section 4.4.2, we use the SimANS [195]

to sample hard negatives. Also with the T5-Large rewritten queries: ReQ, we

use the dense retrieval model to retrieve the whole corpus and obtain DR

score list. In previous step for obtaining pseudo-positive instances, we also

have the top ranking list by T5-3B. With the DR score list and T5-3B list and

SimANS [195] hard negative sampling, as shown in section 4.4.2, then we

can obtain hard negative instances. These procedures are shown in the right

part of Figure 5.2.

Training the Conversational Dense Retrieval Model The architecture for

training the conversational dense model using training triplets is illustrated

in Figure 5.3. To train the dense retrieval model, we concatenate the history

and current queries, and aim to teach the query encoder to generate a de-

contextualized query representation. Consequently, each line of the training

triplet file can be presented in the following format:

[ConcatenateQ; Texts of a Pseudo-Positive Document; Texts of a

Pseudo-Negative Document],

where ConcatenateQ follows the format in [93]:

History1| History2|...|Current

The triplet training file can serve as training data for training a CDR model

from a source domain. If the generated data is large enough, it even could

be used to train a query encoder from scratch.

124 Chapter 5 Domain Adaptation for Conversational Search

5.4 Experiment on Conversational Search

Data Set Used

We utilize the TREC CAsT 2019 (CAsT-19) dataset [29] as the experimental

conversational search dataset. CAsT-19 comprises of 30 training topics and

20 test topics, with each topic representing a conversational search session

consisting of queries from multiple turns. The dataset contains a total of 269

training queries, and for each query, the neural network needs to comprehend

the overall user intention along with the history of previous queries. Notably,

in this chapter, we investigate an extreme scenario in which we do not have

access to human rewritten queries and relevance labels for CAsT-19, resulting

in an almost zero-shot scenario.

Following what has been done for BioASQ in [172]: the authors randomly

remove irrelevant passages from the whole 15M corpus to make the final

corpus size to 1M, we randomly remove irrelevant passages of the TREC

CAsT-19’s 38M corpus to 2M, for efficient experiments.

5.4.1 T5 Rewriter Training

The conversational rewriter used is the T5-Large version2. We train the model

on CANARD dataset which contains 31526 training instances repeatedly for

80K instances, and evaluate the T5-Large model on development set for every

20000 instances and save the best model. The learning rate is 5e-5 and batch

size is 4 using AdamW optimizer [97]. The BLEU [127] results of the final

T5-Large model are presented in Table 5.1.

2https://huggingface.co/t5-large

5.4 Experiment on Conversational Search 125

https://huggingface.co/t5-large

Tab. 5.1.: BLEU scores of different approaches for rewriting conversational queries
on CANARD dataset. First four results are from [35]. Human accuracy
(*) is computed from a small subset of the validation set.

Method Dev Test
Copy 33.84 36.25
Pronoun Sub 47.72 47.44
Seq2Seq 51.37 49.67
Human Rewrites* 59.92
T5-Large 59.5 57.9

Tab. 5.2.: BLEU scores of T5-Large for rewriting conversational queries on TREC
CAsT-19 test set, compared to human rewritten queries.

Method CAsT-19
T5-Large 64.35

We can see the T5-Large model can obtain near human accuracy for rewriting

conversational queries on CANARD dataset.

The T5-Large model, trained on the CANARD dataset, can be employed to

rewrite conversational queries for TREC CAsT-19. The BLEU score, as shown

in Table 5.2, is compared with human rewritten queries and indicates a

favorable outcome.

5.4.2 Baselines and Training

Zero-shot baselines The BERT-dot-v53 models trained on MS MARCO are

used as zero-shot baselines. To address the challenge of conversational

queries, we experiment with four methods: (1) using only the current query

to retrieve documents, (2) concatenating the history and current queries

as described in section 5.3.3 (it should be noted that the query encoder is

not specifically trained to handle this format), (3) using T5-Large rewritten

queries for retrieval, and (4) the upper bound method with human rewritten

3https://huggingface.co/sentence-transformers/msmarco-bert-base-dot-v5

126 Chapter 5 Domain Adaptation for Conversational Search

https://huggingface.co/sentence-transformers/msmarco-bert-base-dot-v5

queries from the dataset. However, it should be noted that the latter approach

may not be efficient in real-world scenarios, as relying on a T5-Large model

for online query conversion could be slow. We will present the results of

these models as zero-shot baselines. In addition, we also include BM25 using

Anserini [185] with official rewritten queries and T5-Large rewritten queries

as a baseline.

ConvDR This approach [190] teaches the query encoder to learn to mimic

the human rewritten queries’ representation produced by the teacher encoder.

We train this for 40k steps with the batch size of 8 and a learning rate of

2e-6. We observed that the performance remained similar across different

training intervals, namely 10k, 40k, and 80k steps. We adopt this approach

as a baseline trained on CANARD with an abundance of queries.

CQE This approach [93] uses CANARD’s queries and human rewritten

queries, to search the target CAsT-19 corpus. Following [93], we train it

for 120k steps with a batch size of 8, which is comparable to their original

paper’s training process of 20k steps with a batch size of 96. The learning

rate used in our training process is set to 2e-6.

Training As discussed above, the CAsT-19 dataset comprises only 269

queries across all conversations, making it a few-shot learning scenario.

So we use the generated data to fine-tune a base model which is firstly

trained on a domain. This is to say, we further conduct experiments based on

the checkpoints of baseline models ConvDR and CQE. Following [190, 93],

the passage encoder is fixed and the query encoder is trained. The parame-

ters for data generation are shown in Table 5.3, while other parameters are

the same as in Chapter 4. Our fine-tuning strategy is similar to the previous

5.4 Experiment on Conversational Search 127

Tab. 5.3.: The top k selected as positive and m as negative for CAsT-19. The number
in parentheses is used for generating training data, remaining for Dev
set. Top k as relevant, m as non-relevant.

data set #queries #docs k m
CAsT-19 269 (219) 2M 5 100

Chapter, using the RankNet pairwise loss [9, 88] with a batch size of 8 and

learning rate of 2e-6. We train on our (few shot) pseudo-target data for

2000 steps and evaluate on the development set every 500 steps, saving the

best models. Finally, we report the results of the trained models, and the

evaluation metric is based on NDCG@3, consistent with previous research

[190, 93].

5.4.3 Experiment Result

Experiment results are presented in Table 5.4.

Tab. 5.4.: Domain Adaptation Result of Cast19.

model nDCG@3 (%)
Zero-Shot Models

BERT-dot-v5(current) 33.4
BERT-dot-v5(concatenation) 27.2

BERT-dot-v5(T5Rewrite) 53.2
BERT-dot-v5(Human) (Upper Bound) 58.9

BM25(Human) 37.0
BM25(T5Rewrite) 31.2

Re-Ranking with Cross-Encoders
T5-3B rerank T5Rewrite 56.7

Related Work
ConvDR (teachQ) (BERT-dot-v5) 55.4

CQE (BERT-dot-v5) 53.7
Proposed Approach

T53B(filter), SimANS Neg, based ConvDR
DoDress-T53B (BERT-dot-v5) 58.0

T53B(filter), SimANS Neg, based CQE
DoDress-T53B (BERT-dot-v5) 57.6

128 Chapter 5 Domain Adaptation for Conversational Search

The analysis of the results involves addressing several research questions.

RQ1 In the context of conversational search, how do standard dense retrieval

(DR) models exclusively trained on MS MARCO perform as zero-shot

models?

We begin by presenting the results of using the standard DR model for

conversational search. The best baseline among zero-shot models is BERT-

dot-v5(Human), which constitutes an upper bound as it uses human rewritten

queries on the target dataset. This model largely outperforms BM25(Human).

In comparison, using the current query or the concatenation of queries with

the BERT-dot-v5 model yields lower results than the human rewritten queries,

respectively 33.4 and 27.2 compared to 58.9. This means that, for this

dataset, although DR models can successfully retrieve documents when given

real human rewritten queries and outperform BM25 approach, they do not

perform well when they are not specifically fine-tuned to understand the

conversational queries or when they are not given good rewritten queries.

When using T5 rewritten queries, the performance becomes closer to the

one obtained with human rewritten queries. In addition, using T5-3B with

the T5 rewritten queries as a reranking model yields very good results, can

outperform BM25 by a large margin and is close to the upper bound. The

proposed T5-Large rewriter is a relative good solution for a DR model to

automatically understand the queries. However, it may not be ideal for online

search, as it involves the use of another large sequence-to-sequence model.

RQ2 What about the conversation dense retrieval models in the related paper

compared with other baselines?

The experimental results presented in Table 5.4 show that ConvDR and CQE

achieve respective scores of 55.4 and 53.7, outperforming the standard zero-

shot dense retrieval (DR) model baselines except the upper bound using

5.4 Experiment on Conversational Search 129

human rewritten queries. These two models benefit from the large scale

conversational query rewritten dataset CANARD, which enables the query

encoder to learn effective representations for conversational queries. These

reproduced results provide evidence for the effectiveness of CDR models.

RQ3 Does the proposed in-domain pseudo-relevance data generation ap-

proach effectively enhance the performance of CDR models?

Previous results of ConvDR and CQE have shown the effectiveness of CDR

models using CANARD dataset. However, the queries in CANARD differ from

those in target dataset, it is essential to train the models using in-domain

queries. In this study, we aim to investigate whether the proposed in-domain

pseudo-relevance data generation approach can enhance the performance of

CDR models. Results of proposed models based on ConvDR and CQE show

58.0 and 57.6 respectively. Comaring with ConvDR and CQE, they have

an improvement of 4.7% and 7.3% respectively. These results demonstrate

that using target in-domain data and pseudo-relevance labels allows one to

adapt a CDR model pre-trained on CANARD to a new target domain. This

is due to the fact that the proposed pseudo-relevance labeling approach

enables the CDR models to see real queries and respective documents on

the target domain, resulting in better adaptation. Overall, our proposed

approach achieves comparable performance to the one obtained by the BERT-

dot-v5 model with real human rewritten queries, without requiring human

annotations on the target dataset.

Additional experiment: Comparing with further training the query encoder

with in-domain MSE loss. The ConvDR approach, as proposed by Yu et

al. [190], involves training a dense retrieval model using CANARD human

rewritten queries in a teacher-student manner (with MSE loss). We also

want to know, what if we further train the model like this manner using the

130 Chapter 5 Domain Adaptation for Conversational Search

in-domain rewritten queries? So we conduct another experiment with the T5-

Large rewritten queries generated by us. The detail training procedure is the

same as the ConvDR experiment and the training is based on the checkpoint

of ConvDR model shown in Table 5.4. The query encoder is finetuned with a

batch size of 8 for 500 training steps, and evaluate every 100 steps to save

the best checkpoint.

The experimental result for NDCG@3 is 56.0, which outperforms the ConvDR

model trained on CANARD dataset (55.4), but is lower than the result ob-

tained using the proposed pseudo-relevance data generation approach (58.0).

These findings suggest that while teaching the query encoder with target

domain queries to mimic the representations of the teacher encoder with

T5-Large rewritten queries can lead to slight improvements, the proposed

approach of using pseudo-relevance data generation with standard pairwise

loss is more effective in adapting the model.

5.5 Conclusion

In this chapter, we leverage the proposed pseudo-relevance labeling approach

in the context of conversational search task. We incorporate a query rewrit-

ten module that utilizes T5-Large sequence-to-sequence model trained on

CANARD dataset to automatically rewrite conversational queries in the target

dataset without relying on human experts. This transforms the task into a

standard retrieval problem, and pseudo-relevance labels are generated using

T5-3B model and SimANS hard negative mining strategy. The CDR models

can be firstly trained using other approaches like ConvDR with CANARD

dataset. Subsequently, by further fine-tuning on the generated data, with

the domain adaptation step, CDR models can further be enhanced, show-

5.5 Conclusion 131

ing the importance of domain adaptation and the effectiveness of proposed

pseudo-data generation pipeline.

132 Chapter 5 Domain Adaptation for Conversational Search

Part III

Differentiable Listwise Loss

Functions Based on Approximate

Rank Indicators

Listwise Learning to

Rank Based on

Approximate Rank

Indicators

6

6.1 Introduction

Learning to rank [95] is a sub-field of Machine Learning and Information

Retrieval (IR) that aims at learning, from some training data, functions

able to rank a set of objects – typically a set of documents for a given

query. Learning to rank is currently one of the privileged approaches to

build IR systems. This said, one important problem faced with learning

to rank is that the metrics considered to evaluate the quality of a system,

and the losses they underlie, are usually not differentiable. This is typically

the case in IR: popular IR metrics such as precision at K, mean average

precision or normalized discounted cumulative gain, are neither continuous

nor differentiable. As such, state-of-the-art optimization techniques, such as

stochastic gradient descent, cannot be used to learn systems that optimize

their values.

To address this problem, researchers have followed two main paths. The

first one consists in replacing the loss associated with a given metric by a

135

surrogate loss which is easier to optimize. A surrogate loss typically upper

bounds the true loss and, if consistent, asymptotically (usually when the

number of samples tends to infinity) behaves like it. One of the main

advantages of surrogate losses lies in the fact that it is sometimes possible

to rely on an optimization problem that is convex and thus relatively simple

to solve. However, Calauzènes et al. [14, 13] have shown that convex and

consistent surrogate ranking losses do not always exist, as for example for

the mean average precision or the expected reciprocal rank. The second

solution is to identify differentiable approximations of the metrics considered.

Typically, such approximations converge towards the true metrics when

an hyperparameter that controls the quality of the approximation tends

to a given value. One of the main advantages in using a differentiable

approximation of a metric is the fact that one directly approximates the true

loss, the quality of the approximation being controlled by an hyperparameter

and not the number of samples considered. One of the main disadvantages

of differentiable approximations is that the optimization problem obtained

is in general non-convex. That said, the recent success of deep learning

shows that solving non-convex optimization problems can nonetheless lead

to state-of-the-art systems.

We follow here this latter path and study differentiable approximations of

standard IR metrics. We focus on one ingredient at the core of ranking

metrics: the rank indicator function. We show how one can define high-

quality, differentiable approximations of the rank indicator and how these

lead to good approximations of the losses associated with standard IR metrics.

Our contributions are two three-fold:

• We introduce SmoothI (“smoothie”), a novel differentiable approxima-

tion of the rank indicator function that can be used in various ranking

metrics and losses.

136 Chapter 6 Listwise Learning to Rank Based on Approximate Rank In-

dicators

• We further empirically illustrate the behavior of our proposal on both

learning to rank features and standard, text-based features, and show

that it is, in both cases, very competitive compared to previous ap-

proaches.

6.2 Related Work

Listwise approaches are widely used in IR as they directly address the ranking

problem [15, 180]. A first category of methods developed for listwise learn-

ing to rank aimed at building surrogates for non-differentiable loss functions

based on a ranking of the objects. In this line, RankCosine [140] used a loss

function based on the cosine of two rank vectors while ListNet [15] adopted

a cross-entropy loss. ListMLE and its extensions [80, 180] introduced a likeli-

hood loss and a theoretical framework for statistical consistency (extended in

[79, 78, 179]), while [68] and [7, 143, 163] studied surrogate loss functions

for P@K and NDCG, respectively. Lastly, LambdaRank [10] used a logistic

loss weighted by the cost, according to the targeted evaluation metric, of

swapping two documents. This approach has then been extended to tree-

based ensemble methods in LambdaMART [11], and finally generalized in

LambdaLoss [174], the best performing method according to [174] in this

family.

If surrogate losses are interesting as they can lead to simpler optimization

problems, they are sometimes only loosely related to the target loss, as

pointed out in Bruch et al. [8]. A typical example is the Top-K loss proposed

in [4] (see also [20, 184] for a study of the relations between evaluation

metrics and surrogate losses). Furthermore, using a notion of consistency

based on the concept of calibration developed in [155], Calauzènes et al. [14,

6.2 Related Work 137

13] have shown that convex and consistent surrogate ranking losses do not

always exist, as for example for the mean average precision or the expected

reciprocal rank. Researchers have thus directly studied differentiable approxi-

mations of loss functions and evaluation metrics, from SoftRank [156], which

proposed a smooth approximation of NDCG, to the recent differentiable ap-

proximation of MAP, called ListAP, in the context of image retrieval [146].

Some of the proposed approaches are based on a soft approximation of the

position function [178] or of the rank indicator [18], from which one can

derive differentiable approximations of most standard IR metrics. However,

[178] is specific to DCG whereas [18] assumes that the inverse of the rank

function is known. Qin et al. [139] proposed differentiable approximations

of P@K, MAP, P@K and NDCG@K, recently used in [8], based of the composi-

tion of two approximation functions, namely the position and the truncation

functions. In contrast, our approach makes use of a single approximation,

that of the rank indicator, for all losses and metrics considered, and thus

reduces the risk of composing errors of different approximations.

More recently, different studies, mostly in the machine learning community,

have been dedicated to differentiable approximations of the sorting and

ranking functions. A fundamental relation between optimal transport and

generalized sorting is for example provided in [24], with an approximation

based on Sinkhorn quantiles (note that [188] also exploits optimal transport

for listwise document ranking, without however proving that the approxima-

tion used is correct). [6] have focused on devising fast approximations of the

sorting and ranking functions by casting differentiable sorting and ranking as

projections onto the convex hull of all permutations. In the context of K-NN

classification, Plötz and Roth [132] proposed a recursive formulation of an

approximation of the ranking function. However, no theoretical guarantees

are provided, neither for this approximation nor for the K-NN loss it is used

in. A more general framework, based on unimodal row-stochastic matrices,

138 Chapter 6 Listwise Learning to Rank Based on Approximate Rank In-

dicators

is introduced in [48] with an approximation of the sorting operator which is

used in [133] to derive a differentiable approximation to NDCG. It can be

shown that the approximate rank indicator matrix our approach leads to is

a unimodal row-stochastic matrix, so that our proposal can be used in their

framework as well. [135] further improved the above proposal by simplify-

ing it, an approach referred to as SoftSort. Lastly, we want to mention the

approach developed by Kong et al. [75] who propose an adaptive projection

method, called Rankmax, that projects, in a differentiable manner, a score

vector onto the (n, k)-simplex. This method is particularly well adapted to

multi-class classification. Its application to IR metrics remains however to be

studied.

6.3 Differentiable IR Metrics

For a given query, an IR system returns a list of ranked documents. The

ranking is based on scores provided by the IR system, scores that we assume

here to be strictly positive and distinct1 and that will be denoted by S =

{S1, . . . , SN} for a list of N documents. To assess the validity of an IR system,

one uses gold standard collections in which the true relevance scores of

documents are known, and IR metrics that assess to which extent the IR

system is able to place documents with higher relevance scores at the top

of the ranked list it returns. The most popular metrics are certainly the

precision at K (denoted by P@K) which measures the precision in the list of

top-K documents, its extension Mean Average Precision (MAP), as well the

Normalized Discounted Cumulative Gain at K (NDCG@K) which can take

into account graded relevance judgements.

1This is not a restriction per se as one can add an arbitrary large value to the scores without
changing their ranking, and ties can be broken randomly.

6.3 Differentiable IR Metrics 139

P@K is the average over queries of P@Kq, defined for a given query q by:

P@Kq = 1
K

K∑
r=1

relq(jr), (6.1)

where jr is the rth highest document in the list of scores S (i.e., the document

with the rth largest score in S), relq(j) is a binary relevance score that is 1 if

document j is relevant to q and 0 otherwise. MAP is the average over queries

of APq defined by:

APq = 1∑N
j=1 relq(j)

N∑
K=1

relq(jK)P@Kq, (6.2)

The normalized discounted cumulative gain at rank K, NDCG@K, is the

average over queries of NDCG@Kq, defined for a given query q by:

NDCG@Kq = 1
N q

K

K∑
r=1

2relq(jr) − 1
log2(k + 1) , (6.3)

where relq(j) is now a (not necessarily binary) positive, bounded relevance

score for document j with respect to query q (higher values correspond to

higher relevance) and N q
K a query-dependent normalizing constant. The

standard NDCG metric corresponds to NDCG@N [64].

As the reader may have noticed, the common building block and main

ingredient of the above IR metrics (Eqs. 6.1, 6.2, 6.3) is the relevance

score of the document at any rank r, namely relq(jr). If one can define a

“good” differentiable approximation of relq(jr), then one obtains a “good”

differentiable approximation of IR metrics. The goal of this chapter is to

introduce such a differentiable approximation, while giving “good” a precise

meaning.

140 Chapter 6 Listwise Learning to Rank Based on Approximate Rank In-

dicators

6.3.1 SmoothI: Smooth Rank Indicators

The relevance score of the document at any rank r in a list of N documents

can be rewritten as:

relq(jr) =
N∑

j=1
relq(j)Ir

j ,

where Ir
j is the rank indicator function at rank r, which is equal to 1 if j is

the rth highest document in the list and 0 otherwise. Thus, the rank indicator

function at rank r can be defined by:

Ir
j =

1 if j = argmax{

j′∈{1,...,N}
∀l<r,Il

j′ =0

Sj′,

0 otherwise.

Given the strict positivity assumption on the scores, the argmax above can be

equivalently expressed as:

argmax{
j′∈{1,...,N}
∀l<r,Il

j′ =0

Sj′ = argmax
j′∈{1,...,N}

Sj′

r−1∏
l=1

(1 − I l
j′),

as the product
∏r−1

l=1 (1 − I l
j′) is 0 for the (r − 1) highest documents.

A widespread smooth approximation of the argmax is the parameterized

softmax. It has been employed in, e.g., [112] in the context of deep k-means

clustering, in [132] in the context of neural nearest neighbor networks,

as well as in [63, 103] within a Gumbel-softmax distribution employed to

approximate categorical samples. The parameterized softmax defines, for any

rank r ∈ {1, . . . , N} and document j ∈ {1, . . . , N}, a smooth rank indicator

Ir,α
j of the form:

Ir,α
j = eαSj

∏r−1
l=1 (1−Il,α

j)∑
j′ e

αSj′
∏r−1

l=1 (1−Il,α

j′)
,

6.3 Differentiable IR Metrics 141

where α is an hyperparameter that plays the role of an inverse temperature

guaranteeing that Ir,α
j converges to the true rank indicator function Ir

j (for

any document j and rank r) when α → +∞.

Numerical approximations in the above formulation may however lead in

practice to choosing a document at a given rank r that was already selected

at a lower rank. Indeed, it may be that for a document j of rank l′ < r,

I l′,α
j gets a value slightly below 1, with the risk that Sj′

∏r−1
l=1 (1 − I l,α

j′) takes

the highest value for j′ = j and, in turn, that j is selected for both ranks

l′ and r. We thus slightly modify the above formulation by introducing

an additional hyperparameter, leading, for any rank r ∈ {1, . . . , N} and

document j ∈ {1, . . . , N}, to:

Ir,α
j = eαSj

∏r−1
l=1 (1−Il,α

j −δ)∑
j′ e

αSj′
∏r−1

l=1 (1−Il,α

j′ −δ)
. (6.4)

The hyperparameter δ ∈ (0, 0.5) controls the mass of the distribution that

is allocated to the (r − 1) highest documents: a larger δ leads to further

reducing the contribution of the (r− 1) highest documents in the distribution

at rank r. We refer to the above approximation of the rank indicator function

as SmoothI.

Figure 6.1 further shows how SmoothI can be integrated in a neural retrieval

system. It simply consists of the last element that is used to compute the

overall loss corresponding to the desired IR metrics.

6.3.2 Gradient Stabilization in Neural Architectures

In pilot experiments, we found that the recursive computation in Ir,α
j (Eq. 6.4)

could sometimes lead to numerical instability when computing its gradient

142 Chapter 6 Listwise Learning to Rank Based on Approximate Rank In-

dicators

SmoothI

Per-query input doc.
representations

Document
scores

...

Approximate rank
indicator functions

2.47

1.53

5.96

...

...

...

Ranking
loss

Neural
model

Fig. 6.1.: Illustration of SmoothI and its positioning in a neural retrieval system.
Given a query q, the document representations {Xq,di

}N
i=1 are first passed

through a neural model which outputs a set of scores {Sdi
}N

i=1. The
scores are then processed by the SmoothI module, yielding smooth rank
indicators {Ir,α}K

r=1 up to rank K, which are ultimately used to calculate
the ranking loss.

with respect to the scores S. To alleviate this issue, we adopted a simple

solution which consists in applying the stop-gradient operator to
∏r−1

l=1 (1 −

I l,α
j′ − δ) in the definition of Ir,α

j to “prune” the computation graph in the

backward pass. This operator, which was used in previous works such

as [122], acts as the identity function in the forward pass and sets the partial

derivatives of its argument to zero in the backward pass, leading to the

following slightly modified definition of Ir,α
j which we use in practice:

Ir,α
j = eαSjsg[∏r−1

l=1 (1−Il,α
j −δ)]

∑
j′ e

αSj′ sg
[∏r−1

l=1 (1−Il,α

j′ −δ)
] ,

where sg[·] is the stop-gradient operator. In other words, we consider that

the lower-rank smooth indicators I l,α
j′ (l < r) in Ir,α

j are constant with respect

to S.

6.3 Differentiable IR Metrics 143

6.3.3 Application to IR Metrics

Based on the proposed smooth rank indicators, one can obtain simple ap-

proximations of IR metrics by replacing relq(jr) with
∑N

j=1 relq(j)I
r,α
j , leading

to the following approximation for P@Kq:

P@Kα
q = 1

K

K∑
r=1

N∑
j=1

relq(j)Ir,α
j ,

from which one obtains the following approximation of APq:

APα
q = 1∑N

j=1 relq(j)

N∑
K=1

 N∑
j=1

relq(j)IK,α
j

 P@Kα
q .

Similarly, the approximation for NDCG@Kq is given by:

NDCG@Kα
q = 1

N q
K

K∑
r=1

2
∑N

j=1 relq(j)Ir,α
j − 1

log2(k + 1) .

6.4 Experiments

We conducted both feature-based learning to rank and text-based IR ex-

periments to validate SmoothI’s ability to define high-quality differentiable

approximations of IR metrics, and hence meaningful listwise losses. In par-

ticular, our evaluation seeks to address the following two questions: On

learning to rank collections, how does SmoothI compare to state-of-the-art

listwise approaches? Do neural models for text-based IR (e.g., models based

on BERT) benefit from SmoothI’s listwise loss?

In the remainder of this section, we first describe the experimental setup

of the learning to rank experiments, then we discuss the learning to rank

results. Finally, we detail our experiments with BERT on text-based IR.

144 Chapter 6 Listwise Learning to Rank Based on Approximate Rank In-

dicators

6.4.1 Learning to Rank Experimental Setup

Datasets. To evaluate our approach, we conducted learning to rank experi-

ments on standard, publicly available datasets, namely LETOR 4.0 MQ2007,

MQ2008 and MSLR-Web30K [137], respectively containing 1,692/69,623,

784/15,211 and 31,531/3,771,125 queries/documents, and the Yahoo learn-

ing to rank Set-1 dataset [17], containing 29,921/709,877 queries/docu-

ments. In these datasets, each query-document pair is associated with a

feature vector. We rely on the standard 5-fold train/validation/test split

for the LETOR collections and the standard train/validation/test split for

YLTR. In the remainder, MSLR-Web30K and Yahoo learning to rank Set-1

will respectively be referred to as Web30K and YLTR. The statistics of the

different datasets for their respective train/validation/test folds are detailed

in Table 6.1.

Tab. 6.1.: Statistics of the learning to rank datasets, averaged over 5 folds.

#queries #docs

train val test train val test

MQ2007 1,015 338 338 41,774 13,925 13,925
MQ2008 470 157 157 9,127 3,042 3,042
Web30K 18,919 6,306 6,306 2,262,675 754,225 754,225
YLTR 19,944 2,994 6,983 473,134 71,083 165,660

Baseline methods. Differentiable approximations of IR metrics (and their

associated losses) can be classified under two categories: surrogate losses and

direct approximations. Among approaches based on surrogate losses, we have

retained the three state-of-the-art approaches ListNET [15], ListMLE [180],

and LambdaLoss [174]. The latter is considered the best performing method

in the Lambda* family (LambdaRank, LambdaMART, LambdaLoss) [174],

and we thus omit the comparison against LambdaMART and LambdaRank.

Among approaches based on direct approximations, we have retained the

recently proposed ListAP [146] and the state-of-the-art method Approx

6.4 Experiments 145

[139], which was also recently used in [8]. In addition, we also considered

losses derived from recent approaches for differentiable sorting and ranking

[6, 24, 135]. We used here as baselines the most recent representatives

of these approaches, namely OT [24], which frames differentiable sorting

as an optimal transport problem, FastSort [6], which devises an efficient

differentiable approximation based on projections onto the convex hull of

permutations, and SoftSort [135], which proposes a continuous relaxation

of the sorting operator based on unimodal row-stochastic matrices and is

comparable, both in terms of method and results, to the NeuralSort method

introduced in [48].

As LambdaLoss, Approx and SmoothI can be used to approximate different

IR metrics, we defined several variants for each approach, respectively op-

timizing P@{1, 5, 10}, NDCG@{1, 5, 10, N} and MAP, and selected the best

variant based on the validation performance. The losses defined by ListNET,

ListAP2, Approx and SmoothI were implemented in PyTorch [129], using our

own implementation for ListNET, Approx and SmoothI3. For ListMLE and

LambdaLoss, we relied on the TF-Ranking library [128]. OT4, FastSort5 and

SoftSort6 all propose differentiable approximations of the position function.

This is the same position function as the one used by Approx for computing an

approximation of NDCG@N . We thus directly used this latter approximation

from the outputs of OT, FastSort and SoftSort (note that Approx uses, in ad-

dition to the approximation of the position function, an approximation of the

truncation function for computing approximations of truncated IR-metrics

P@K and NDCG@K [139]). For evaluating the performance of the different

2https://github.com/almazan/deep-image-retrieval
3https://github.com/ygcinar/SmoothI
4https://github.com/google-research/google-research/tree/master/soft_sort
5https://github.com/google-research/fast-soft-sort
6https://github.com/sprillo/softsort

146 Chapter 6 Listwise Learning to Rank Based on Approximate Rank In-

dicators

https://github.com/almazan/deep-image-retrieval
https://github.com/ygcinar/SmoothI
https://github.com/google-research/google-research/tree/master/soft_sort
https://github.com/google-research/fast-soft-sort
https://github.com/sprillo/softsort

approaches, we used the fast Python implementation of the TREC evaluation

tool [164], which calls the trec_eval evaluation metrics7 from Python.

0.0001 0.0005 0.001 0.005 0.01 0.05 0.1

0.
1

1.
0

10
.0

10
0.

0

60.98% 61.03% 61.03% 60.98% 61.07% 61.02% 60.97%

60.92% 61.06% 60.91% 61.01% 61.22% 61.25% 61.33%

60.68% 60.58% 60.64% 60.69% 60.69% 60.84% 61.01%

58.82% 58.47% 58.28% 58.70% 58.74% 60.08% 60.86%
0.585

0.590

0.595

0.600

0.605

0.610

Fig. 6.2.: NDCG performance (averaged over 5 folds) of SmoothI on MQ2007’s
validation set with different α and δ.

Lastly, in order to have a fair comparison of the losses defined by the different

methods in the context of modern neural end-to-end approaches, we used

the same fully-connected feedforward neural network for all methods. It

is composed of an input layer followed by batch normalization, a 1024-

dimensional hidden layer with ReLU activation again followed by batch

normalization, and a fully-connected output layer that provides a score for

each document in the list. The mini-batch size is chosen as 128 (for learning

to rank experiments), and the network parameters are optimized by the

Adam optimizer [73], with an initial learning rate in the range of {10−2,

10−3}. Each model is trained with 50 epochs and the parameters (weights)

leading to the lowest validation error are selected. The hyperparameters α

and β for Approx are searched over {0.1, 1, 10, 102}. Similarly, for SmoothI,

a line search was performed on the hyperparameter α in the range {0.1,

1, 10, 102}. The hyperparameter δ was simply set to 0.1 as we found in

7https://github.com/usnistgov/trec_eval

6.4 Experiments 147

https://github.com/usnistgov/trec_eval

Tab. 6.2.: Learning to rank retrieval results. Mean test performance is calculated
over 5 folds for MQ2007, MQ2008 and Web30K, and 5 random initial-
izations for YLTR as no predefined folds are available. Best results are
in bold and “ † ” indicates a model significantly worse than the best one
according to a paired t-test with Bonferroni correction at 5%.

P@1 P@5 NDCG@1 NDCG@5 NDCG P@1 P@5 NDCG@1 NDCG@5 NDCG
MQ2007 MQ2008

ListNet 0.463 0.412† 0.420 0.422† 0.603† 0.392† 0.318† 0.339† 0.422† 0.514†

ListMLE 0.442† 0.397† 0.395† 0.405† 0.594† 0.415† 0.337† 0.365† 0.445† 0.526†

LambdaLoss 0.452† 0.403† 0.407† 0.415† 0.601† 0.441 0.337† 0.385 0.457† 0.540
ListAP 0.457† 0.405† 0.405† 0.414† 0.600† 0.420 0.330† 0.371 0.442† 0.532†

Approx 0.479 0.419 0.430 0.430 0.611 0.457 0.349 0.401 0.471 0.549
OT 0.451† 0.405† 0.406† 0.414† 0.602† 0.431 0.342† 0.382 0.461† 0.542
FastSort 0.461 0.405† 0.413† 0.417† 0.599† 0.430 0.332† 0.371 0.450† 0.537†

SoftSort 0.469 0.413† 0.425 0.426† 0.608 0.411† 0.335† 0.360† 0.449† 0.534†

SmoothI (ours) 0.488 0.424 0.441 0.439 0.612 0.459 0.353 0.402 0.477 0.550
Web30K YLTR

ListNet 0.694† 0.649† 0.496† 0.483† 0.741† 0.858† 0.814† 0.726† 0.741† 0.857†

ListMLE 0.620† 0.544† 0.404† 0.383† 0.646† 0.874 0.829 0.724† 0.746 0.859
LambdaLoss 0.697† 0.617† 0.497† 0.466† 0.691† 0.868† 0.822† 0.731† 0.743† 0.854†

ListAP 0.715† 0.658† 0.503† 0.483† 0.733† 0.820† 0.768† 0.685† 0.686† 0.820†

Approx 0.767† 0.716 0.544† 0.523† 0.754 0.870 0.828 0.731† 0.745† 0.858
OT 0.682† 0.637† 0.459† 0.456† 0.729† 0.846† 0.793† 0.710† 0.719† 0.842†

FastSort 0.722† 0.660† 0.525† 0.494† 0.738† 0.857† 0.812† 0.724† 0.729† 0.851†

SoftSort 0.724† 0.669† 0.521† 0.500† 0.747† 0.861† 0.814† 0.729† 0.739† 0.854†

SmoothI (ours) 0.776 0.717 0.552 0.530 0.754 0.869† 0.826† 0.735 0.748 0.858

pilot experiments that this value consistently gave the best results on the

validation set. This is illustrated in Fig. 6.2 which shows the NDCG@N scores

on the validation set of MQ2007. We can observe that no matter what the

choice of α is, setting δ = 0.1 leads to the best results, or close to the best

result for α = 0.1. For SoftSort, the temperature is searched over {0.1, 1, 10,

102}. The regularization strength of FastSort and OT is searched over {10−2,

0.1, 1, 10}. Our experiments were run on an Intel Xeon server with a Nvidia

GTX 1080 Ti GPU.

6.4.2 Learning to Rank Results

In this section, we study the retrieval performance of the different learning

to rank losses derived from SmoothI and baseline approaches. Table 6.2

presents the learning to rank results, averaged over 5 folds for MQ2007,

MQ2008 and Web30K, each fold using a different random initialization,

148 Chapter 6 Listwise Learning to Rank Based on Approximate Rank In-

dicators

and averaged over five random initializations for YLTR. We reported the

significance using a paired Student t-test with Bonferroni correction at 5%

significance level. For space reasons, we only show in Table 6.2 the mean

results according to P@{1, 5}, NDCG@{1, 5, N}, and let the reader refer to

Section 5 of the Supplementary Material for the P@10, MAP and NDCG@10

metrics as well as the standard errors around the mean. For LambdaLoss,

Approx and SmoothI, Table 6.2 contains the best results obtained across the

variants – optimizing different metrics – of each approach.

As one can notice, SmoothI is the best performing method on MQ2007,

MQ2008 and Web30K. On MQ2007 and MQ2008, SmoothI outperforms

all other methods for P@{1, 5} and NDCG@{1, 5, N}. Approx is, on these

collections, the second best method. On Web30K, SmoothI significantly

outperforms all methods on P@1, NDCG@1, NDCG@5, and all methods

but Approx on P@5 and NDCG. The results are more contrasted on YLTR.

On the one hand, SmoothI and ListMLE are on par according to the NDCG-

based metrics as they respectively obtained the best performance in terms of

NDCG@{1, 5} and NDCG@N , with significant differences only at cutoff 1. On

the other hand, in terms of precision-based metrics, ListMLE outperformed

all other approaches except Approx.

Turning to the listwise losses obtained from the differentiable sorting ap-

proaches (OT, FastSort, and SoftSort), we observe that these methods demon-

strate competitive performance on the learning to rank task. SmoothI

nonetheless outperformed all of these approaches, in particular on Web30K

on which the differences are significant for all metrics. In summary, over all

the collections, we conclude that SmoothI proves to be very competitive on

learning to rank with respect to traditional listwise losses and differentiable

sorting approaches.

6.4 Experiments 149

Tab. 6.3.: Text-based retrieval results on Robust04: mean test performance ±
standard error calculated over 5 folds. The best results are in bold and
“ † ” indicates a model significantly worse than the best one according to
a paired t-test at 5%.

P@1 P@5 P@10 P@20 MAP

vanilla-BERT [102] 0.631±0.026 0.544±0.028 0.474±0.028† 0.396±0.019 0.236±0.006†

vanilla-BERT (Approx-NDCG@N loss) 0.651±0.023 0.529±0.020† 0.465±0.025† 0.392±0.021† 0.237±0.008†

vanilla-BERT (SmoothI-NDCG@N loss) 0.635±0.014 0.562±0.025 0.494±0.024 0.407±0.019 0.245±0.007

NDCG@1 NDCG@5 NDCG@10 NDCG@20 NDCG

vanilla-BERT [102] 0.592±0.022 0.528±0.024 0.493±0.023† 0.464±0.020† 0.434±0.010
vanilla-BERT (Approx-NDCG@N loss) 0.602±0.017 0.521±0.017† 0.490±0.020† 0.462±0.018† 0.436±0.010
vanilla-BERT (SmoothI-NDCG@N loss) 0.601±0.010 0.548±0.017 0.515±0.019 0.480±0.017 0.441±0.007

As a complement to this experiment, we investigate in Section 6 of the

Supplementary Material how the choice of the optimized metric influences

SmoothI’s performance. This study highlights that optimizing NDCG@N

leads to the best performance according to any IR metric and thus constitutes

an overall safe choice. We also discuss the efficiency of the different ap-

proaches in Section 7 of the Supplementary Material. Overall, all approaches

but ListMLE, LambdaLoss and OT – which are significantly slower than the

other approaches on different datasets – are comparable and scale reasonably

well.

6.4.3 Experiments on Text-based IR

To further validate the efficacy of SmoothI, we conducted experiments on

text-based information retrieval, i.e., with raw texts as input. In particular,

the task consists here in optimizing a given neural model to appropriately

rank the documents for each query, where the documents and queries are raw

texts. This differs from the previous sections which focus on feature-based

learning to rank, i.e., where each query-document pair is represented by a

feature vector.

150 Chapter 6 Listwise Learning to Rank Based on Approximate Rank In-

dicators

Experimental setup. The standard TREC Robust04 collection, which con-

sists of 250 queries and 0.5M documents, is used here as the text-based IR

collection. For queries, we used the keyword version which corresponds to

the title fields of the TREC topics [26, 107]. We experimented with vanilla

BERT as the neural ranking model, using the pretrained uncased BERT-base

version. This model is at the core of recent state-of-the-art IR models [32,

26, 102, 83]. We make use here of the version proposed by [102], which is

slightly better than the other ones.

Most text-based IR neural models based on BERT are trained with a pointwise

or pairwise loss, and not a listwise loss [83, 102]. This is not really surprising

as the calculation of the loss requires that the representations of all the

documents to be ranked for a query hold together in memory, which can lead

to a prohibitive memory cost for BERT if the list of documents associated to

a query is large. To overcome this potential problem when using a listwise

loss such as SmoothI, we computed the loss only on the documents of

the training batch, where each batch contains two pairs of (relevant, non-

relevant) documents associated to one query. For each query, one thus has

a list of four documents, which are all fed to the vanilla BERT model as a

list of query-document pairs. The input of the BERT models for each query-

document pair is obtained by concatenating the [CLS] token, query tokens,

the [SEP] token and document tokens. From BERT’s output [CLS] vector,

a dense layer generates the relevance score for the corresponding query-

document pair. Following MacAvaney et al. [102], documents are truncated

at 800 tokens in order to handle documents longer than the capacity of BERT.

In this case, a document is split into two inputs and the [CLS] vectors from

each split are averaged to get BERT’s output [CLS] vector.

We use as baselines the standard vanilla BERT model [102] as well as its

version with Approx-NDCG@N , which is the second best performing method

6.4 Experiments 151

in our previous comparison. We compare both approaches to the vanilla

BERT with SmoothI-NDCG@N , the best method overall in our previous

comparison. All models are trained for 100 epochs using Adam optimizer

with a learning rate of 2 · 10−5 for BERT, as suggested in MacAvaney et al.

[102], and 10−3 for the top dense layer, which is a common default value. As

mentioned before, the batch size is set to four and gradient accumulation

is used every eight steps [102]. We furthermore followed a five-fold cross

validation protocol: the models are trained on the training set (corresponding

to three folds), tuned on the validation set (one fold) with early stopping,

and evaluated on the test set (the remaining fold). We use the standard re-

ranking setting and re-rank the top-150 documents returned by BM25 [148].

The hyperparameters α and δ for SmoothI are set to 1.0 and 0.1 respectively.

The hyperparameter α for Approx-NDCG@N is set to 1.0 (note that only

one hyperparameter is needed for approximating NDCG@N with Approx as

the second hyperparameter relates to the truncation function used for the

truncated IR-metrics P@K and NDCG@K [139]). The random seed integer

was set to 66 and we ran our experiments on an Intel Xeon server with a

Nvidia GTX 1080 Ti GPU.

Results. Table 6.3 reports the text-based retrieval performance, averaged

over 5 folds, of the standard vanilla BERT model and the two vanilla BERT

models with the listwise losses Approx-NDCG@N and SmoothI-NDCG@N .

The best results are in bold and “ † ” indicates a model significantly worse

than the best one according to a paired t-test at 5%. Note that we observed

no significant differences between Approx-NDCG@N and the pairwise hinge

loss. In contrast, one can observe that vanilla BERT performs better when

it is trained with SmoothI-NDCG@N and achieves the highest scores on

all metrics but P@1 and NDCG@1 for which it is on par with the other

approaches. The improvement over the original vanilla BERT model with the

152 Chapter 6 Listwise Learning to Rank Based on Approximate Rank In-

dicators

pairwise hinge loss is in particular significant on P@10, MAP, NDCG@10 and

NDCG@20. The improvement over Approx-NDCG@N is significant on P@5,

P@10, P@20, MAP, NDCG@5, NDCG@10 and NDCG@20. Furthermore, the

vanilla BERT model with SmoothI-NDCG@N achieves 0.480 on NDCG@20

on the TREC Robust04 collection, which is the best result this model has

achieved on this collection to our knowledge [32, 102, 101].

6.5 Conclusion

We presented in this study a unified approach to build differentiable ap-

proximations of IR metrics (P@K, MAP and NDCG@K) on the basis of an

approximation of the rank indicator function. We further showed that the

errors associated with these approximations decrease exponentially with

an inverse temperature-like hyperparameter that controls the quality of the

approximations. We also illustrated the efficacy and efficiency of our ap-

proach on four standard collections based on learning to rank features, as

well as on the popular TREC Robust04 text-based collection. All in all, our

proposal, referred to as SmoothI, constitutes a tool for differentiable ranking

that proved very competitive compared with previous approaches on several

collections, either based on learning to rank or textual features.

We also want to stress that the approach we proposed is more general and

can directly be applied to other losses, such as the K-NN loss studied in

Grover et al. [48], and functions that are directly based on the rank indicator.

Among such functions, we are particularly interested in the ranking function,

which aims at ordering the documents in decreasing order of their scores,

the sorting function, which aims at ordering the scores, and the position

function, which aims at providing, for each document, its rank in the ordered

6.5 Conclusion 153

list of scores. We plan to study, on the basis of the development given in this

chapter, differentiable approximations of these functions in a near future.

154 Chapter 6 Listwise Learning to Rank Based on Approximate Rank In-

dicators

Conclusion
7

7.1 Conclusion

In this thesis, we presented several contributions to improve information

retrieval (IR) models, including adapting IR models to long documents, to

new domains, and proposing differentiable listwise loss functions based on

approximate rank indicators. Chapter 1 briefly introduces the definition of

information retrieval, the limitations and the contributions proposed. These

contributions are present in three parts.

The first part is about adapting Transformer based IR models to long doc-

ument retrieval. In chapter 2, a two-stage framework is proposed. For a

long document, it is firstly segmented into short passages or blocks. Then

these short blocks are judged the relevance information with the query using

standard IR approaches like BM25 or learning based approaches. With this

step, few top ranking blocks can be obtained, which are then combined to

form a short document, or chosen to be input to an IR model like PARADE .

This is reminiscent of the way humans assess the relevance of a document

for a given query and this step enables lower memory usage and less noise

information for better identifying the relevance information. The experi-

ments on standard IR collections like Robust 04 and MQ 2007 show the our

framework based on vanilla BERT IR model and PARADE model both overall

significantly improves the base models perform better than other baseline

models. We further conduct experiments on TREC 2019 DL Track collection.

155

The results also demonstrate a state-of-the-art level result. Among these

proposed variants, the learning based block selecting mechanism performs

in average better than the one based on standard IR methods, however, the

later ones have lower latencies. In practice, one may choose to use the

TF-IDF and BM25 versions of Vanilla BERT and PARADE if latency constraints

are important. The choice between Vanilla BERT and PARADE variants, the

latter being slightly better than the former on standard IR collections, and

slightly worse on the TREC 2019 DL collection, depends on the collection

considered.

In chapter 3, the idea of selecting key blocks is extended to late interaction

models. We propose a similar late interaction based retrieval model like

ColBERT for long document retrieval. The model not only should have the

ability to generate token level representations for late interaction usage, but

also should have the ability to generate passage level representations which

are used as passage relevance information judgement. Given a query and

with the representations obtained, top related passages are filtered with dot

product operations on the passage level representations and their fine-grained

relevance information are judged with token level representations. Then

with a weighting scheme, a long document’s relevance score is obtained.

The model’s common abilities to generate token level and passage level

representations are trained by multi-task learning . Experimental results

demonstrate the efficiency and efficacy of the proposed approach on such

collections as TREC 2019.

The second part is related to domain adaptation for dense retrieval and

conversational dense retrieval models. This is achieved by proposing a

pseudo-relevance labeling approach to generate self-supervised training data

on target domain datasets. As recent study BEIR shows , dense retrieval (DR)

models that are trained on the source domain like MS MARCO, perform not

156 Chapter 7 Conclusion

well when they are used on the target domain data. In chapter 4, we propose

this approach to deal with the issue of dense retrieval. The pseudo-positive

instances are identified by a T5-3B IR model trained on the source domain

data MS MARCO, which re-ranks the BM25 lists of the target data according

to the queries. The top re-ranked documents are viewed as positive. Different

negative sampling strategies are investigated for obtaining better negative

instances. Among them, the hard negative sampling strategy according to

SimANS performs the best. Experiments demonstrate the proposed approach

leads to improved performance of the DR model and the state-of-the-art

query generation approach GPL when fine-tuned on the pseudo-relevance

labeled data. In chapter 5, this approach is adapted to conversational search

scenario. The conversational search task is more difficult as the queries in

the conversation may be ambiguous and contain omissions and references.

Besides, obtaining rewritten queries for these queries and obtaining relevance

labels are difficult and expensive. In this chapter, we use an T5-Large model

that is trained on a large conversational query rewritten dataset CANARD,

to rewrite queries for the target datasets. Once the rewritten queries are

obtained, pseudo-relevance labels can be obtained in a similar way as done

for dense retrieval models. Experiments show when further training on the

generate training data, conversational dense retrieval models can achieve

better performances on the target domain data.

The third part is related to listwise loss functions. Chapter 6 introduces an

approximation of the rank indicator function, which can be used in various

ranking metrics and losses. This is achieved through a softmax-based approx-

imation. With these differentiable loss functions, one is able to train neural

IR models in a better listwise way. The efficacy and efficiency of our approach

are illustrated on four standard collections based on learning to rank features,

as well as on the popular TREC Robust04 text-based collection.

7.1 Conclusion 157

In conclusion, this thesis proposes several approaches to address the impor-

tant limitations of information retrieval models especially the current deep

learning era. We hope these contributions can give insights for research and

building better real world information retrieval applications.

7.2 Future Direction

There are several potential directions for future research to enhance or build

upon the ideas presented in this thesis.

In terms of adapting information retrieval models to long documents, there

is potential for exploring more complex models or other modalities that

incorporate the proposed selecting key block framework. For instance, this

framework may assist in developing a model for long audio or video re-

trieval. Additionally, alternative negative sampling strategies and ways to

accelerate the selection process through learned models can be further ex-

plored. As exemplified in Chapter 2 and Chapter 3, the training process relies

on pairwise loss, with negatives either obtained through human labels or

random sampling. Exploring novel approaches to extract more informative

negatives could lead to further performance improvements. Moreover, in

order to accelerate the selection process, it may be beneficial to incorpo-

rate dense representations into models such as KeyB(PARADEk)BinB and

KeyB(PARADEk)BinB2, which can facilitate fast retrieval of relevant passages

from long documents.

In the context of domain adaptation for information retrieval, it is important

to investigate domain shift issues not only for dense retrieval models, but also

for interaction based and late interaction based models. We plan to study

these issues and develop approaches to address them. Additionally, other

158 Chapter 7 Conclusion

methods of incorporating in-domain knowledge into models are planed be

explored to improve their performance, such as utilizing knowledge graphs.

In specific domains, expert knowledge can be crucial in determining the

relevance of information. This can benefit not only interaction based and

late interaction based models, but also the pseudo-relevance labeling process

for dense retrieval models, making it more reliable.

Furthermore, the thesis introduces a retrieval-based conversational system for

information retrieval. While ChatGPT, a generation-based system, has gained

considerable attention, the reliability of its generated contents remains a

concern. One potential line of research involves investigating the combination

of retrieval-based and generation-based systems to produce more reliable

conversational responses. For instance, we plan to propose a two-stage

conversational system: the first stage is a standard conversational search

system, and the second stage is a generation-based system that rearranges

the retrieved relevant passages into natural language content. This approach

may help alleviate the issue of generating "fake" content that can arise with

generation-based systems.

7.3 Papers Accepted during this Thesis

• Minghan Li, and Eric Gaussier. "KeyBLD: selecting key blocks with

local pre-ranking for long document information retrieval." Proceedings

of the 44th International ACM SIGIR Conference on Research and

Development in Information Retrieval. 2021.

• Thibaut Thonet, Yagmur Gizem Cinar, Eric Gaussier, Minghan Li, Jean-Michel

Renders. "Listwise Learning to Rank Based on Approximate Rank Indi-

7.3 Papers Accepted during this Thesis 159

cators." Proceedings of the AAAI Conference on Artificial Intelligence.

Vol. 36. No. 8. 2022.

• Minghan Li, and Eric Gaussier. "BERT-based Dense Intra-ranking and

Contextualized Late Interaction via Multi-task Learning for Long Doc-

ument Retrieval." Proceedings of the 45th International ACM SIGIR

Conference on Research and Development in Information Retrieval.

2022.

• Minghan Li, and Eric Gaussier. "Intra-document Block Pre-ranking for

BERT-based Long Document Information Retrieval-Abstract." CIRCLE

(Joint Conference of the Information Retrieval Communities in Europe).

2022.

• Minghan Li, Diana Nicoleta Popa, Johan Chagnon, Yagmur Gizem

Cinar, Eric Gaussier. "The power of selecting key blocks with local pre-

ranking for long document information retrieval." ACM Transactions

on Information Systems 41.3 (2023): 1-35.

• Minghan Li, and Eric Gaussier. "Adaptation de domaine pour la recherche

dense par annotation automatique." CORIA. 2023.

160 Chapter 7 Conclusion

Bibliography

[1]Joshua Ainslie, Santiago Ontanon, Chris Alberti, et al. “ETC: Encoding
Long and Structured Inputs in Transformers”. In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP).
2020, pp. 268–284 (cit. on p. 18).

[2]Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer normaliza-
tion”. In: arXiv preprint arXiv:1607.06450 (2016) (cit. on p. 37).

[3]Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The Long-
Document Transformer. 2020. arXiv: 2004.05150 (cit. on pp. 18, 19, 64, 65,
71).

[4]Leonard Berrada, Andrew Zisserman, and M. Pawan Kumar. “Smooth Loss
Functions for Deep Top-k Classification”. In: Proceedings of the 6th Interna-
tional Conference on Learning Representations. 2018 (cit. on p. 137).

[5]Gilles Blanchard, Aniket Anand Deshmukh, Ürun Dogan, Gyemin Lee, and
Clayton Scott. “Domain generalization by marginal transfer learning”. In:
The Journal of Machine Learning Research 22.1 (2021), pp. 46–100 (cit. on
p. 92).

[6]Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. “Fast
Differentiable Sorting and Ranking”. In: Proceedings of the 37th International
Conference on Machine Learning. 2020, pp. 950–959 (cit. on pp. 138, 146).

[7]Sebastian Bruch. “An Alternative Cross Entropy Loss for Learning-to-Rank”.
In: arXiv:1911.09798 (2019) (cit. on p. 137).

[8]Sebastian Bruch, Masrour Zoghi, Michael Bendersky, and Marc Najork.
“Revisiting Approximate Metric Optimization in the Age of Deep Neural
Networks”. In: Proceedings of the 42nd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 2019 (cit. on pp. 137,
138, 146).

[9]Christopher J. C. Burges. From RankNet to LambdaRank to LambdaMART:
An Overview. Tech. rep. Microsoft Research, 2010 (cit. on pp. 100, 128).

161

https://arxiv.org/abs/2004.05150

[10]Christopher J. C. Burges, Robert Ragno, and Quoc Viet Le. “Learning to
Rank with Nonsmooth Cost Functions”. In: Proceedings of the 21st Annual
Conference on Neural Information Processing Systems. 2007 (cit. on p. 137).

[11]Christopher J. C. Burges, Krysta M. Svore, Paul N. Bennett, Andrzej Pas-
tusiak, and Qiang Wu. “Learning to Rank Using an Ensemble of Lambda-
Gradient Models.” In: Journal of Machine Learning Research (2011) (cit. on
p. 137).

[12]Stefan Büttcher and Charles LA Clarke. “A document-centric approach to
static index pruning in text retrieval systems”. In: Proceedings of the 15th
ACM international conference on Information and knowledge management.
2006, pp. 182–189 (cit. on p. 20).

[13]Clément Calauzènes and Nicolas Usunier. “On ranking via sorting by esti-
mated expected utility”. In: Proceedings of the 34th Annual Conference on
Neural Information Processing Systems. 2020 (cit. on pp. 136, 138).

[14]Clément Calauzènes, Nicolas Usunier, and Patrick Gallinari. “On the (Non-
)existence of Convex, Calibrated Surrogate Losses for Ranking”. In: Proceed-
ings of the 26th Annual Conference on Neural Information Processing Systems.
2012, pp. 197–205 (cit. on pp. 136, 137).

[15]Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. “Learning to
Rank: From Pairwise Approach to Listwise Approach”. In: Proceedings of
the 24th International Conference on Machine Learning. 2007, pp. 129–136
(cit. on pp. 137, 145).

[16]Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara Caputo, and
Tatiana Tommasi. “Domain generalization by solving jigsaw puzzles”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2019, pp. 2229–2238 (cit. on p. 92).

[17]Olivier Chapelle and Yi Chang. “Yahoo! Learning to Rank Challenge Overview”.
In: Proceedings of the 2010 International Conference on Yahoo! Learning to
Rank Challenge. 2010, pp. 1–24 (cit. on p. 145).

[18]Olivier Chapelle and Mingrui Wu. “Gradient Descent Optimization of
Smoothed Information Retrieval Metrics”. In: Information Retrieval 13.3
(2010), pp. 216–235 (cit. on p. 138).

[19]Tianqi Chen, Thierry Moreau, Ziheng Jiang, et al. “TVM: an automated
end-to-end optimizing compiler for deep learning”. In: Proceedings of the
13th USENIX conference on Operating Systems Design and Implementation.
2018, pp. 579–594 (cit. on p. 19).

162 Bibliography

[20]Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhiming Ma, and Hang Li. “Ranking
Measures and Loss Functions in Learning to Rank”. In: Proceedings of the
23rd Annual Conference on Neural Information Processing Systems. 2009,
pp. 315–323 (cit. on p. 137).

[21]Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. “Generating
Long Sequences with Sparse Transformers”. In: CoRR abs/1904.10509
(2019) (cit. on pp. 18, 64, 65).

[22]Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M
Voorhees. “Overview of the trec 2019 deep learning track”. In: arXiv preprint
arXiv:2003.07820 (2020) (cit. on pp. 64, 67).

[23]J Shane Culpepper, Fernando Diaz, and Mark D Smucker. “Research fron-
tiers in information retrieval: Report from the third strategic workshop on
information retrieval in lorne (swirl 2018)”. In: ACM SIGIR Forum. Vol. 52.
1. ACM New York, NY, USA. 2018, pp. 34–90 (cit. on p. 113).

[24]Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. “Differentiable Rank-
ing and Sorting using Optimal Transport”. In: Proceedings of the 33rd Annual
Conference on Neural Information Processing Systems. 2019 (cit. on pp. 138,
146).

[25]Antonio D’Innocente and Barbara Caputo. “Domain generalization with
domain-specific aggregation modules”. In: German Conference on Pattern
Recognition. Springer. 2018, pp. 187–198 (cit. on p. 92).

[26]Zhuyun Dai and Jamie Callan. “Deeper text understanding for IR with con-
textual neural language modeling”. In: Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information Retrieval.
2019, pp. 985–988 (cit. on pp. 2, 12, 17, 46, 65, 69, 151).

[27]Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu. “Convolutional
neural networks for soft-matching n-grams in ad-hoc search”. In: Proceedings
of the eleventh ACM international conference on web search and data mining.
2018, pp. 126–134 (cit. on pp. 69, 70).

[28]Zihang Dai, Zhilin Yang, Yiming Yang, et al. “Transformer-XL: Attentive
Language Models beyond a Fixed-Length Context”. In: Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics. 2019
(cit. on pp. 17, 18).

[29]Jeffrey Dalton, Chenyan Xiong, and Jamie Callan. “TREC CAsT 2019: The
conversational assistance track overview”. In: arXiv preprint arXiv:2003.13624
(2020) (cit. on pp. 120, 125).

Bibliography 163

[30]Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understand-
ing”. In: CoRR abs/1810.04805 (2018) (cit. on pp. 2, 12, 16, 69).

[31]Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understand-
ing”. In: Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers). 2019, pp. 4171–4186 (cit. on p. 89).

[32]Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understand-
ing”. In: Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics). 2019, pp. 4171–4186 (cit. on
pp. 151, 153).

[33]Ming Ding, Chang Zhou, Hongxia Yang, and Jie Tang. “CogLTX: Applying
BERT to Long Texts”. In: Advances in Neural Information Processing Systems.
Vol. 33. 2020, pp. 12792–12804 (cit. on pp. 13, 19, 20, 23, 35).

[34]Yingjun Du, Jun Xu, Huan Xiong, et al. “Learning to learn with variational
information bottleneck for domain generalization”. In: European Conference
on Computer Vision. Springer. 2020, pp. 200–216 (cit. on p. 92).

[35]Ahmed Elgohary, Denis Peskov, and Jordan Boyd-Graber. “Can You Unpack
That? Learning to Rewrite Questions-in-Context”. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). 2019, pp. 5918–5924 (cit. on pp. 115, 119, 122, 123, 126).

[36]Yixing Fan, Jiafeng Guo, Yanyan Lan, et al. “Modeling diverse relevance
patterns in ad-hoc retrieval”. In: The 41st international ACM SIGIR conference
on research & development in information retrieval. 2018, pp. 375–384 (cit.
on pp. 2, 11).

[37]Hui Fang. “A re-examination of query expansion using lexical resources”.
In: proceedings of ACL-08: HLT. 2008, pp. 139–147 (cit. on p. 29).

[38]Hui Fang and ChengXiang Zhai. “Semantic term matching in axiomatic
approaches to information retrieval”. In: Proceedings of the 29th annual
international ACM SIGIR conference on Research and development in informa-
tion retrieval. 2006, pp. 115–122 (cit. on p. 29).

[39]Christiane Fellbaum. WordNet: An Electronic Lexical Database. Bradford
Books, 1998 (cit. on p. 29).

164 Bibliography

[40]Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, et al. “Domain-adversarial
training of neural networks”. In: The journal of machine learning research
17.1 (2016), pp. 2096–2030 (cit. on p. 92).

[41]Jianfeng Gao, Chenyan Xiong, Paul Bennett, and Nick Craswell. Neural
approaches to conversational information retrieval. Vol. 44. Springer Nature,
2023 (cit. on p. 113).

[42]Luyu Gao and Jamie Callan. “Condenser: a Pre-training Architecture for
Dense Retrieval”. In: Proceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing. 2021, pp. 981–993 (cit. on p. 92).

[43]Luyu Gao and Jamie Callan. “Unsupervised Corpus Aware Language Model
Pre-training for Dense Passage Retrieval”. In: Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). 2022, pp. 2843–2853 (cit. on p. 97).

[44]Tianyu Gao, Xingcheng Yao, and Danqi Chen. “SimCSE: Simple Contrastive
Learning of Sentence Embeddings”. In: Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing. 2021, pp. 6894–6910
(cit. on pp. 92, 104).

[45]Yanjie Gao, Yu Liu, Hongyu Zhang, et al. “Estimating gpu memory con-
sumption of deep learning models”. In: Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 2020, pp. 1342–1352 (cit. on p. 37).

[46]Quentin Grail, Julien Perez, and Eric Gaussier. “Globalizing BERT-based
Transformer Architectures for Long Document Summarization”. In: Proceed-
ings of the 16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume, EACL 2021, Online, April 19 - 23,
2021. Ed. by Paola Merlo, Jörg Tiedemann, and Reut Tsarfaty. Association
for Computational Linguistics, 2021, pp. 1792–1810 (cit. on p. 17).

[47]Scott Gray, Alec Radford, and Diederik P Kingma. “Gpu kernels for block-
sparse weights”. In: arXiv preprint arXiv:1711.09224 3 (2017) (cit. on
p. 19).

[48]Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. “Stochastic
Optimization of Sorting Networks via Continuous Relaxations”. In: Proceed-
ings of the 7th International Conference on Learning Representations. 2019
(cit. on pp. 139, 146, 153).

Bibliography 165

[49]Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. “A deep relevance
matching model for ad-hoc retrieval”. In: Proceedings of the 25th ACM
international on conference on information and knowledge management.
2016, pp. 55–64 (cit. on pp. 2, 11, 15, 17, 38, 64, 69, 70).

[50]Jiafeng Guo, Yixing Fan, Liang Pang, et al. “A deep look into neural ranking
models for information retrieval”. In: Information Processing & Management
57.6 (2020), p. 102067 (cit. on pp. 1, 2, 11, 14, 16, 70, 90).

[51]Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan,
and Allan Hanbury. “Improving efficient neural ranking models with cross-
architecture knowledge distillation”. In: arXiv preprint arXiv:2010.02666
(2020) (cit. on pp. 3, 69, 93).

[52]Sebastian Hofstätter and Allan Hanbury. “Evaluating Transformer-Kernel
Models at TREC Deep Learning 2020”. In: TREC. 2020 (cit. on p. 82).

[53]Sebastian Hofstätter, Bhaskar Mitra, Hamed Zamani, Nick Craswell, and
Allan Hanbury. “Intra-Document Cascading: Learning to Select Passages for
Neural Document Ranking”. In: SIGIR ’21: The 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, Virtual
Event, Canada, July 11-15, 2021. 2021, pp. 1349–1358 (cit. on pp. 20, 65,
66).

[54]Sebastian Hofstätter, Bhaskar Mitra, Hamed Zamani, Nick Craswell, and
Allan Hanbury. “Intra-document cascading: Learning to select passages
for neural document ranking”. In: Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
2021, pp. 1349–1358 (cit. on pp. 70–73, 75, 77, 78).

[55]Sebastian Hofstätter, Hamed Zamani, Bhaskar Mitra, Nick Craswell, and
Allan Hanbury. “Local Self-Attention over Long Text for Efficient Document
Retrieval”. In: Proc. of SIGIR. 2020 (cit. on pp. 71, 79, 80).

[56]Sebastian Hofstätter, Hamed Zamani, Bhaskar Mitra, Nick Craswell, and
Allan Hanbury. “Local self-attention over long text for efficient document
retrieval”. In: Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 2020, pp. 2021–2024
(cit. on pp. 18, 65).

[57]Sebastian Hofstätter, Markus Zlabinger, and Allan Hanbury. “Interpretable
& Time-Budget-Constrained Contextualization for Re-Ranking”. In: ECAI
2020. IOS Press, 2020, pp. 513–520 (cit. on pp. 71, 79).

166 Bibliography

[58]Sebastian Hofstätter, Markus Zlabinger, and Allan Hanbury. “Interpretable
& Time-Budget-Constrained Contextualization for Re-Ranking”. In: ECAI
2020 - 24th European Conference on Artificial Intelligence. Vol. 325. IOS
Press, 2020, pp. 513–520 (cit. on pp. 16–18, 65).

[59]Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. “Convolutional
neural network architectures for matching natural language sentences”. In:
Advances in neural information processing systems. 2014, pp. 2042–2050
(cit. on p. 15).

[60]Po-Sen Huang, Xiaodong He, Jianfeng Gao, et al. “Learning deep structured
semantic models for web search using clickthrough data”. In: Proceedings of
the 22nd ACM international conference on Information & Knowledge Manage-
ment. 2013, pp. 2333–2338 (cit. on pp. 2, 11, 15, 69, 71).

[61]Kai Hui, Andrew Yates, Klaus Berberich, and Gerard De Melo. “Co-PACRR:
A context-aware neural IR model for ad-hoc retrieval”. In: Proceedings of
the eleventh ACM international conference on web search and data mining.
2018, pp. 279–287 (cit. on p. 16).

[62]Kai Hui, Andrew Yates, Klaus Berberich, and Gerard de Melo. “PACRR: A
Position-Aware Neural IR Model for Relevance Matching”. In: Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Processing.
2017, pp. 1049–1058 (cit. on pp. 2, 11, 16, 17, 65).

[63]Eric Jang, Shixiang Gu, and Ben Poole. “Categorical Reparameterization
with Gumbel-Softmax”. In: Proceedings of the 5th International Conference
on Learning Representations. 2017 (cit. on p. 141).

[64]Kalervo Järvelin and Jaana Kekäläinen. “Cumulated Gain-based Evaluation
of IR Techniques”. In: ACM Transactions on Information Systems 20.4 (2002)
(cit. on p. 140).

[65]Seogkyu Jeon, Kibeom Hong, Pilhyeon Lee, Jewook Lee, and Hyeran Byun.
“Feature stylization and domain-aware contrastive learning for domain
generalization”. In: Proceedings of the 29th ACM International Conference on
Multimedia. 2021, pp. 22–31 (cit. on p. 92).

[66]Jyun-Yu Jiang, Chenyan Xiong, Chia-Jung Lee, and Wei Wang. “Long Docu-
ment Ranking with Query-Directed Sparse Transformer”. In: Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing:
Findings. 2020, pp. 4594–4605 (cit. on pp. 4, 12, 19, 63–65, 71, 78).

Bibliography 167

[67]Chris Kamphuis, Arjen P de Vries, Leonid Boytsov, and Jimmy Lin. “Which
BM25 do you mean? A large-scale reproducibility study of scoring variants”.
In: European Conference on Information Retrieval. Springer. 2020, pp. 28–34
(cit. on p. 33).

[68]Purushottam Kar, Harikrishna Narasimhan, and Prateek Jain. “Surrogate
Functions for Maximizing Precision at the Top”. In: Proceedings of the 32nd
International Conference on Machine Learning. 2015, pp. 189–198 (cit. on
p. 137).

[69]Constantinos Karouzos, Georgios Paraskevopoulos, and Alexandros Potami-
anos. “UDALM: Unsupervised Domain Adaptation through Language Model-
ing”. In: Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies.
2021, pp. 2579–2590 (cit. on pp. 91, 94, 104).

[70]Vladimir Karpukhin, Barlas Oguz, Sewon Min, et al. “Dense Passage Re-
trieval for Open-Domain Question Answering”. In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP).
2020, pp. 6769–6781 (cit. on pp. 3, 94, 97).

[71]Alex Kendall, Yarin Gal, and Roberto Cipolla. “Multi-task learning using
uncertainty to weigh losses for scene geometry and semantics”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2018,
pp. 7482–7491 (cit. on pp. 5, 78).

[72]Omar Khattab and Matei Zaharia. “Colbert: Efficient and effective passage
search via contextualized late interaction over bert”. In: Proceedings of the
43rd International ACM SIGIR conference on research and development in
Information Retrieval. 2020, pp. 39–48 (cit. on pp. 3, 5, 69–71, 79, 84, 115,
119).

[73]Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-
mization”. In: Proceedings of the 3rd International Conference on Learning
Representations. 2015 (cit. on p. 147).

[74]Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The Efficient
Transformer. 2020. arXiv: 2001.04451 (cit. on p. 18).

[75]Weiwei Kong, Walid Krichene, Nicolas Mayoraz, Steffen Rendle, and Li
Zhang. “Rankmax: An Adaptive Projection Alternative to the Softmax Func-
tion”. In: Proceedings of the 34th Annual Conference on Neural Information
Processing Systems. 2020 (cit. on p. 139).

168 Bibliography

https://arxiv.org/abs/2001.04451

[76]Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classi-
fication with deep convolutional neural networks”. In: Advances in neural
information processing systems 25 (2012), pp. 1097–1105 (cit. on p. 16).

[77]Robert Krovetz. “Viewing morphology as an inference process”. In: Artificial
intelligence 118.1-2 (2000), pp. 277–294 (cit. on p. 47).

[78]Yanyan Lan, Jiafeng Guo, Xueqi Cheng, and Tie-Yan Liu. “Statistical Consis-
tency of Ranking Methods in A Rank-Differentiable Probability Space”. In:
Proceedings of the 26th Annual Conference on Neural Information Processing
Systems. 2012, pp. 1241–1249 (cit. on p. 137).

[79]Yanyan Lan, Tie-Yan Liu, Zhiming Ma, and Hang Li. “Generalization analysis
of listwise learning-to-rank algorithms”. In: Proceedings of the 26th Annual
International Conference on Machine Learning. 2009, pp. 577–584 (cit. on
p. 137).

[80]Yanyan Lan, Yadong Zhu, Jiafeng Guo, Shuzi Niu, and Xueqi Cheng. “Position-
Aware ListMLE: A Sequential Learning Process for Ranking”. In: Proceedings
of the 30th Conference on Uncertainty in Artificial Intelligence. 2014, pp. 449–
458 (cit. on p. 137).

[81]Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. “Latent Retrieval for
Weakly Supervised Open Domain Question Answering”. In: Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics.
2019, pp. 6086–6096 (cit. on pp. 92, 104).

[82]Canjia Li, Yingfei Sun, Ben He, et al. “NPRF: A Neural Pseudo Relevance
Feedback Framework for Ad-hoc Information Retrieval”. In: Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing.
2018, pp. 4482–4491 (cit. on pp. 2, 11).

[83]Canjia Li, Andrew Yates, Sean MacAvaney, Ben He, and Yingfei Sun. “PA-
RADE: Passage representation aggregation for document reranking”. In:
arXiv preprint arXiv:2008.09093 (2020) (cit. on pp. 2–5, 12, 13, 17, 19, 36,
46, 47, 65, 69–71, 73, 151).

[84]Cheng Li, Mingyang Zhang, Michael Bendersky, et al. “Multi-view embedding-
based synonyms for email search”. In: Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information Retrieval.
2019, pp. 575–584 (cit. on p. 29).

[85]Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. “Learning to
generalize: Meta-learning for domain generalization”. In: Proceedings of the
AAAI conference on artificial intelligence. Vol. 32. 1. 2018 (cit. on p. 92).

Bibliography 169

[86]Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. “Deeper,
broader and artier domain generalization”. In: Proceedings of the IEEE
international conference on computer vision. 2017, pp. 5542–5550 (cit. on
p. 92).

[87]Hang Li. “Learning to rank for information retrieval and natural language
processing”. In: Synthesis lectures on human language technologies 4.1
(2011), pp. 1–113 (cit. on pp. 1, 11).

[88]Minghan Li and Eric Gaussier. “BERT-based Dense Intra-ranking and Con-
textualized Late Interaction via Multi-task Learning for Long Document
Retrieval”. In: Proceedings of the 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval. 2022, pp. 2347–2352
(cit. on pp. 21, 100, 128).

[89]Minghan Li and Eric Gaussier. “KeyBLD: Selecting Key Blocks with Local
Pre-ranking for Long Document Information Retrieval”. In: Proceedings of
the 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval. 2021, pp. 2207–2211 (cit. on pp. 38, 48, 69–73,
80).

[90]Minghan Li, Diana Nicoleta Popa, Johan Chagnon, Yagmur Gizem Cinar, and
Eric Gaussier. “The Power of Selecting Key Blocks with Local Pre-ranking for
Long Document Information Retrieval”. In: arXiv preprint arXiv:2111.09852
(2021) (cit. on pp. 70–72, 75, 76, 78).

[91]Davis Liang, Peng Xu, Siamak Shakeri, et al. “Embedding-based zero-shot
retrieval through query generation”. In: arXiv preprint arXiv:2009.10270
(2020) (cit. on p. 93).

[92]Lukas Liebel and Marco Körner. “Auxiliary tasks in multi-task learning”. In:
arXiv preprint arXiv:1805.06334 (2018) (cit. on pp. 5, 78).

[93]Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. “Contextualized Query
Embeddings for Conversational Search”. In: Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Processing. 2021, pp. 1004–
1015 (cit. on pp. 4, 6, 114, 115, 119, 120, 124, 127, 128).

[94]Chang Liu, Xinwei Sun, Jindong Wang, et al. “Learning causal semantic
representation for out-of-distribution prediction”. In: Advances in Neural
Information Processing Systems 34 (2021), pp. 6155–6170 (cit. on p. 92).

[95]Tie-Yan Liu. Learning to rank for information retrieval. Springer, 2011, pp. I–
XVII, 1–285 (cit. on pp. 1, 11, 135).

170 Bibliography

[96]Yinhan Liu, Myle Ott, Naman Goyal, et al. “Roberta: A robustly optimized
bert pretraining approach”. In: arXiv preprint arXiv:1907.11692 (2019)
(cit. on pp. 18, 65).

[97]Ilya Loshchilov and Frank Hutter. “Decoupled weight decay regularization”.
In: arXiv preprint arXiv:1711.05101 (2017) (cit. on p. 125).

[98]Ilya Loshchilov and Frank Hutter. “SGDR: Stochastic Gradient Descent with
Warm Restarts”. In: International Conference on Learning Representations.
2017 (cit. on p. 103).

[99]Jing Lu, Gustavo Hernández Ábrego, Ji Ma, Jianmo Ni, and Yinfei Yang.
“Neural passage retrieval with improved negative contrast”. In: arXiv preprint
arXiv:2010.12523 (2020) (cit. on p. 48).

[100]Ji Ma, Ivan Korotkov, Yinfei Yang, Keith Hall, and Ryan McDonald. “Zero-
shot Neural Passage Retrieval via Domain-targeted Synthetic Question
Generation”. In: Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main Volume. 2021, pp. 1075–
1088 (cit. on pp. 4, 90, 92, 104).

[101]Xinyu Ma, Jiafeng Guo, Ruqing Zhang, et al. “PROP: Pre-training with Rep-
resentative Words Prediction for Ad-hoc Retrieval”. In: arXiv:2010.10137
(2020) (cit. on p. 153).

[102]Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. “CEDR:
Contextualized embeddings for document ranking”. In: Proceedings of the
42nd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 2019, pp. 1101–1104 (cit. on pp. 2, 12, 16, 38, 46,
48, 69, 150–153).

[103]Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. “The Concrete Dis-
tribution: A Continuous Relaxation of Discrete Random Variables”. In:
Proceedings of the 5th International Conference on Learning Representations.
2017 (cit. on p. 141).

[104]Macedo Maia, Siegfried Handschuh, André Freitas, et al. “WWW’18 Open
Challenge: Financial Opinion Mining and Question Answering”. In: Compan-
ion Proceedings of the The Web Conference 2018. WWW ’18. Lyon, France:
International World Wide Web Conferences Steering Committee, 2018,
pp. 1941–1942 (cit. on p. 100).

[105]Massimiliano Mancini, Samuel Rota Bulo, Barbara Caputo, and Elisa Ricci.
“Best sources forward: domain generalization through source-specific nets”.
In: 2018 25th IEEE international conference on image processing (ICIP). IEEE.
2018, pp. 1353–1357 (cit. on p. 92).

Bibliography 171

[106]Kelong Mao, Zhicheng Dou, Hongjin Qian, et al. “ConvTrans: Transforming
Web Search Sessions for Conversational Dense Retrieval”. In: Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing.
2022, pp. 2935–2946 (cit. on pp. 114, 115, 118, 123).

[107]Ryan McDonald, George Brokos, and Ion Androutsopoulos. “Deep Relevance
Ranking Using Enhanced Document-Query Interactions”. In: Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing.
2018, pp. 1849–1860 (cit. on p. 151).

[108]Ida Mele, Cristina Ioana Muntean, Franco Maria Nardini, et al. “Topic prop-
agation in conversational search”. In: Proceedings of the 43rd International
ACM SIGIR conference on research and development in Information Retrieval.
2020, pp. 2057–2060 (cit. on pp. 114, 116).

[109]Paulius Micikevicius, Sharan Narang, Jonah Alben, et al. “Mixed Precision
Training”. In: International Conference on Learning Representations. 2018
(cit. on pp. 47, 48, 80, 101).

[110]Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
“Distributed Representations of Words and Phrases and their Composition-
ality”. In: Advances in Neural Information Processing Systems. Ed. by C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger. Vol. 26.
Curran Associates, Inc., 2013 (cit. on p. 15).

[111]Iurii Mokrii, Leonid Boytsov, and Pavel Braslavski. “A systematic evaluation
of transfer learning and pseudo-labeling with bert-based ranking models”.
In: Proceedings of the 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval. 2021, pp. 2081–2085 (cit. on
p. 92).

[112]Maziar Moradi Fard, Thibaut Thonet, and Eric Gaussier. “Deep k-Means:
Jointly Clustering with k-Means and Learning Representations”. In: arXiv:1806.10069
(2018) (cit. on p. 141).

[113]Saeid Motiian, Marco Piccirilli, Donald A Adjeroh, and Gianfranco Doretto.
“Unified deep supervised domain adaptation and generalization”. In: Pro-
ceedings of the IEEE international conference on computer vision. 2017,
pp. 5715–5725 (cit. on p. 92).

[114]Cristina Ioana Muntean, Franco Maria Nardini, Raffaele Perego, Nicola
Tonellotto, and Ophir Frieder. “Weighting Passages Enhances Accuracy”.
In: ACM Transactions on Information Systems (TOIS) 39.2 (2020), pp. 1–11
(cit. on p. 20).

172 Bibliography

[115]Hyeonseob Nam, HyunJae Lee, Jongchan Park, Wonjun Yoon, and Donggeun
Yoo. “Reducing domain gap by reducing style bias”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021,
pp. 8690–8699 (cit. on p. 92).

[116]Tri Nguyen, Mir Rosenberg, Xia Song, et al. “MS MARCO: A Human Gen-
erated MAchine Reading COmprehension Dataset”. In: Proceedings of the
Workshop on Cognitive Computation: Integrating neural and symbolic ap-
proaches 2016 co-located with the 30th Annual Conference on Neural Infor-
mation Processing Systems (NIPS 2016), Barcelona, Spain, December 9, 2016.
Ed. by Tarek Richard Besold, Antoine Bordes, Artur S. d’Avila Garcez, and
Greg Wayne. Vol. 1773. CEUR Workshop Proceedings. CEUR-WS.org, 2016
(cit. on p. 100).

[117]Tri Nguyen, Mir Rosenberg, Xia Song, et al. “MS MARCO: A human gen-
erated machine reading comprehension dataset”. In: CoCo@ NIPS. 2016
(cit. on p. 47).

[118]Rodrigo Nogueira and Kyunghyun Cho. “Passage Re-ranking with BERT”.
In: arXiv preprint arXiv:1901.04085 (2019) (cit. on pp. 2, 3, 12, 16, 46, 69,
71, 79).

[119]Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin. “Docu-
ment Ranking with a Pretrained Sequence-to-Sequence Model”. In: Findings
of the Association for Computational Linguistics: EMNLP 2020. 2020, pp. 708–
718 (cit. on pp. 91, 94, 95).

[120]Henrik Nottelmann and Norbert Fuhr. “From retrieval status values to
probabilities of relevance for advanced IR applications”. In: Information
retrieval 6.3 (2003), pp. 363–388 (cit. on p. 33).

[121]Kezban Dilek Onal, Ye Zhang, Ismail Sengor Altingovde, et al. “Neural
information retrieval: At the end of the early years”. In: Information Retrieval
Journal 21.2 (2018), pp. 111–182 (cit. on p. 15).

[122]Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. “Neural Dis-
crete Representation Learning”. In: Proceedings of the 31st Annual Conference
on Neural Information Processing Systems. 2017, pp. 6309–6318 (cit. on
p. 143).

[123]Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation learning
with contrastive predictive coding”. In: arXiv preprint arXiv:1807.03748
(2018) (cit. on p. 18).

Bibliography 173

[124]Hamid Palangi, Li Deng, Yelong Shen, et al. “Deep sentence embedding
using long short-term memory networks: Analysis and application to infor-
mation retrieval”. In: IEEE/ACM Transactions on Audio, Speech, and Language
Processing 24.4 (2016), pp. 694–707 (cit. on pp. 2, 11, 15).

[125]Liang Pang, Yanyan Lan, Jiafeng Guo, et al. “Deeprank: A new deep archi-
tecture for relevance ranking in information retrieval”. In: Proceedings of
the 2017 ACM on Conference on Information and Knowledge Management.
2017, pp. 257–266 (cit. on pp. 2, 11, 15, 19, 20, 38, 44, 46, 48).

[126]Liang Pang, Yanyan Lan, Jiafeng Guo, et al. “Text matching as image recogni-
tion”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 30.
1. 2016 (cit. on pp. 2, 11).

[127]Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. “Bleu: a
method for automatic evaluation of machine translation”. In: Proceedings
of the 40th annual meeting of the Association for Computational Linguistics.
2002, pp. 311–318 (cit. on p. 125).

[128]Rama Kumar Pasumarthi, Sebastian Bruch, Xuanhui Wang, et al. “TF-
Ranking: Scalable TensorFlow Library for Learning-to-Rank”. In: Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. 2019, pp. 2970–2978 (cit. on p. 146).

[129]Adam Paszke, Sam Gross, Francisco Massa, et al. “PyTorch: An Imperative
Style, High-Performance Deep Learning Library”. In: Proceedings of the
33rd Annual Conference on Neural Information Processing Systems. 2019,
pp. 8024–8035 (cit. on p. 146).

[130]Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, et al. “Scikit-learn:
Machine learning in Python”. In: the Journal of machine Learning research
12 (2011), pp. 2825–2830 (cit. on p. 32).

[131]Jeffrey Pennington, Richard Socher, and Christopher D Manning. “Glove:
Global vectors for word representation”. In: Proceedings of the 2014 confer-
ence on empirical methods in natural language processing (EMNLP). 2014,
pp. 1532–1543 (cit. on pp. 46, 81).

[132]Tobias Plötz and Stefan Roth. “Neural Nearest Neighbors Networks”. In:
Proceedings of the 32nd Conference on Neural Information Processing Systems.
2018 (cit. on pp. 138, 141).

[133]Przemyslaw Pobrotyn and Radoslaw Bialobrzeski. “NeuralNDCG: Direct
Optimisation of a Ranking Metric via Differentiable Relaxation of Sorting”.
In: CoRR abs/2102.07831 (2021) (cit. on p. 139).

174 Bibliography

[134]Aayush Prakash, Shaad Boochoon, Mark Brophy, et al. “Structured domain
randomization: Bridging the reality gap by context-aware synthetic data”.
In: 2019 International Conference on Robotics and Automation (ICRA). IEEE.
2019, pp. 7249–7255 (cit. on p. 92).

[135]Sebastian Prillo and Julian Eisenschlos. “SoftSort: A Continuous Relaxation
for the argsort Operator”. In: Proceedings of the 37th International Conference
on Machine Learning. 2020, pp. 7793–7802 (cit. on pp. 139, 146).

[136]Fengchun Qiao, Long Zhao, and Xi Peng. “Learning to learn single domain
generalization”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2020, pp. 12556–12565 (cit. on p. 92).

[137]Tao Qin and Tie-Yan Liu. “Introducing LETOR 4.0 Datasets”. In: arXiv:1306.2597
(2013) (cit. on p. 145).

[138]Tao Qin and Tie-Yan Liu. “Introducing LETOR 4.0 datasets”. In: arXiv
preprint arXiv:1306.2597 (2013) (cit. on pp. 22, 58).

[139]Tao Qin, Tie-Yan Liu, and Hang Li. “A General Approximation Framework
for Direct Optimization of Information Retrieval Measures”. In: Information
Retrieval, 13(4) (2010) (cit. on pp. 138, 146, 152).

[140]Tao Qin, Xu-Dong Zhang, Ming-Feng Tsai, et al. “Query-level loss functions
for information retrieval”. In: Information Processing & Management 44.2
(2008), pp. 838–855 (cit. on p. 137).

[141]Colin Raffel, Noam Shazeer, Adam Roberts, et al. “Exploring the limits of
transfer learning with a unified text-to-text transformer.” In: J. Mach. Learn.
Res. 21.140 (2020), pp. 1–67 (cit. on pp. 5, 6, 93, 95, 115, 121).

[142]Mohammad Mahfujur Rahman, Clinton Fookes, Mahsa Baktashmotlagh,
and Sridha Sridharan. “Multi-component image translation for deep domain
generalization”. In: 2019 IEEE Winter Conference on Applications of Computer
Vision (WACV). IEEE. 2019, pp. 579–588 (cit. on p. 92).

[143]Pradeep Ravikumar, Ambuj Tewari, and Eunho Yang. “On NDCG Consis-
tency of Listwise Ranking Methods”. In: Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics. 2011, pp. 618–626 (cit. on
p. 137).

[144]Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks”. In: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019,
pp. 3982–3992 (cit. on pp. 3, 27, 69, 71, 83, 102).

Bibliography 175

[145]Gary Ren, Xiaochuan Ni, Manish Malik, and Qifa Ke. “Conversational query
understanding using sequence to sequence modeling”. In: Proceedings of the
2018 World Wide Web Conference. 2018, pp. 1715–1724 (cit. on pp. 114,
117).

[146]Jérôme Revaud, Jon Almazán, Rafael S. Rezende, and César Roberto de
Souza. “Learning With Average Precision: Training Image Retrieval With a
Listwise Loss”. In: Proceedings of the 2019 IEEE/CVF International Conference
on Computer Vision. 2019, pp. 5106–5115 (cit. on pp. 138, 145).

[147]Stephen Robertson and Hugo Zaragoza. The probabilistic relevance frame-
work: BM25 and beyond. Now Publishers Inc, 2009 (cit. on pp. 1, 32).

[148]Stephen E Robertson and Steve Walker. “Some Simple Effective Approxi-
mations to the 2-poisson Model for Probabilistic Weighted Retrieval”. In:
Proceedings of the 17th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval. 1994, pp. 232–241 (cit. on
p. 152).

[149]Stephen E. Robertson and Steve Walker. “Some Simple Effective Approx-
imations to the 2-Poisson Model for Probabilistic Weighted Retrieval”. In:
Proceedings of the 17th Annual International ACM-SIGIR Conference on Re-
search and Development in Information Retrieval. Dublin, Ireland, 3-6 July
1994 (Special Issue of the SIGIR Forum). Ed. by W. Bruce Croft and C. J. van
Rijsbergen. 1994 (cit. on p. 28).

[150]Stephen E. Robertson and Hugo Zaragoza. “The Probabilistic Relevance
Framework: BM25 and Beyond”. In: Found. Trends Inf. Retr. 3.4 (2009),
pp. 333–389 (cit. on pp. 32, 76, 79, 89).

[151]Gerard Salton, Anita Wong, and Chung-Shu Yang. “A vector space model
for automatic indexing”. In: Communications of the ACM 18.11 (1975),
pp. 613–620 (cit. on p. 1).

[152]Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. “Distil-
BERT, a distilled version of BERT: smaller, faster, cheaper and lighter”. In:
arXiv preprint arXiv:1910.01108 (2019) (cit. on p. 101).

[153]Shiv Shankar, Vihari Piratla, Soumen Chakrabarti, et al. “Generalizing
Across Domains via Cross-Gradient Training”. In: International Conference
on Learning Representations. 2018 (cit. on p. 92).

176 Bibliography

[154]Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil.
“A latent semantic model with convolutional-pooling structure for informa-
tion retrieval”. In: Proceedings of the 23rd ACM international conference on
conference on information and knowledge management. 2014, pp. 101–110
(cit. on pp. 2, 11, 15).

[155]Ian Steinwart. “How to compare Different Loss Functions and Their Risks”.
In: Constructive Approximation 26.2 (2007), pp. 225–287 (cit. on p. 137).

[156]Michael Taylor, John Guiver, Stephen Robertson, and Tom Minka. “Soft-
Rank: Optimizing Non-Smooth Rank Metrics”. In: Proceedings of the 1st
International Conference on Web Search and Data Mining. 2008, pp. 77–86
(cit. on p. 138).

[157]Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and
Iryna Gurevych. “BEIR: A Heterogeneous Benchmark for Zero-shot Evalua-
tion of Information Retrieval Models”. In: Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 2).
2021 (cit. on pp. 4, 90, 91, 93, 100, 104).

[158]James Thorne, Andreas Vlachos, Oana Cocarascu, Christos Christodoulopou-
los, and Arpit Mittal. “The Fact Extraction and VERification (FEVER) Shared
Task”. In: Proceedings of the First Workshop on Fact Extraction and VERifica-
tion (FEVER). 2018, pp. 1–9 (cit. on p. 18).

[159]Josh Tobin, Rachel Fong, Alex Ray, et al. “Domain randomization for trans-
ferring deep neural networks from simulation to the real world”. In: 2017
IEEE/RSJ international conference on intelligent robots and systems (IROS).
IEEE. 2017, pp. 23–30 (cit. on p. 92).

[160]George Tsatsaronis, Georgios Balikas, Prodromos Malakasiotis, et al. “An
overview of the BIOASQ large-scale biomedical semantic indexing and ques-
tion answering competition”. In: BMC bioinformatics 16.1 (2015), p. 138
(cit. on p. 101).

[161]Peter D Turney. “Mining the web for synonyms: PMI-IR versus LSA on
TOEFL”. In: European conference on machine learning. Springer. 2001,
pp. 491–502 (cit. on p. 29).

[162]Svitlana Vakulenko, Shayne Longpre, Zhucheng Tu, and Raviteja Anantha.
“Question rewriting for conversational question answering”. In: Proceedings
of the 14th ACM international conference on web search and data mining.
2021, pp. 355–363 (cit. on pp. 114, 117).

Bibliography 177

[163]Hamed Valizadegan, Rong Jin, Ruofei Zhang, and Jianchang Mao. “Learning
to Rank by Optimizing NDCG Measure”. In: Proceedings of the 23rd Annual
Conference on Neural Information Processing Systems. 2009 (cit. on p. 137).

[164]Christophe Van Gysel and Maarten de Rijke. “Pytrec_eval: An Extremely
Fast Python Interface to trec_eval”. In: Proceedings of the 41st International
ACM SIGIR conference on Research and Development in Information Retrieval.
2018 (cit. on p. 147).

[165]Christophe Van Gysel and Maarten de Rijke. “Pytrec_eval: An extremely fast
python interface to trec_eval”. In: The 41st International ACM SIGIR Confer-
ence on Research & Development in Information Retrieval. 2018, pp. 873–876
(cit. on p. 49).

[166]Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. “Attention is all you
need”. In: Proceedings of the 31st International Conference on Neural Infor-
mation Processing Systems. 2017, pp. 6000–6010 (cit. on pp. 2, 12, 16, 37,
69, 89).

[167]Riccardo Volpi, Hongseok Namkoong, Ozan Sener, et al. “Generalizing to
unseen domains via adversarial data augmentation”. In: Advances in neural
information processing systems 31 (2018) (cit. on p. 92).

[168]Ellen Voorhees. “Overview of the TREC 2004 Robust Retrieval Track”. en.
In: Special Publication (NIST SP), National Institute of Standards and
Technology, Gaithersburg, MD, 2005-08-01 2005 (cit. on p. 101).

[169]Shengxian Wan, Yanyan Lan, Jun Xu, et al. “Match-SRNN: Modeling the
Recursive Matching Structure with Spatial RNN”. In: Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI.
2016, pp. 2922–2928 (cit. on p. 16).

[170]Jindong Wang, Cuiling Lan, Chang Liu, et al. “Generalizing to unseen
domains: A survey on domain generalization”. In: IEEE Transactions on
Knowledge and Data Engineering (2022) (cit. on pp. 90, 92).

[171]Kexin Wang, Nils Reimers, and Iryna Gurevych. “TSDAE: Using Transformer-
based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Em-
bedding Learning”. In: Findings of the Association for Computational Linguis-
tics: EMNLP 2021. 2021, pp. 671–688 (cit. on pp. 92, 104).

178 Bibliography

[172]Kexin Wang, Nandan Thakur, Nils Reimers, and Iryna Gurevych. “GPL:
Generative Pseudo Labeling for Unsupervised Domain Adaptation of Dense
Retrieval”. In: Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies. Seattle, United States: Association for Computational Lin-
guistics, July 2022, pp. 2345–2360 (cit. on pp. 6, 90–94, 101–104, 107,
125).

[173]M. Wang and W. Deng. “Deep visual domain adaptation: a survey”. In:
Neurocomputing (2018) (cit. on p. 90).

[174]Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael Bendersky, and Marc
Najork. “The LambdaLoss Framework for Ranking Metric Optimization”. In:
Proceedings of the 27th ACM International Conference on Information and
Knowledge Management. 2018 (cit. on pp. 137, 145).

[175]Yining Wang, Liwei Wang, Yuanzhi Li, Di He, and Tie-Yan Liu. “A theoretical
analysis of NDCG type ranking measures”. In: Conference on learning theory.
PMLR. 2013, pp. 25–54 (cit. on p. 4).

[176]Thomas Wolf, Lysandre Debut, Victor Sanh, et al. “HuggingFace’s Trans-
formers: State-of-the-art natural language processing”. In: arXiv preprint
arXiv:1910.03771 (2019) (cit. on p. 47).

[177]Ho Chung Wu, Robert WP Luk, Kam-Fai Wong, and KL Kwok. “A retro-
spective study of a hybrid document-context based retrieval model”. In:
Information processing & management 43.5 (2007), pp. 1308–1331 (cit. on
pp. 13, 20).

[178]Mingrui Wu, Yi Chang, Zhaohui Zheng, and Hongyuan Zha. “Smoothing
DCG for Learning to Rank: A Novel Approach Using Smoothed Hinge
Functions”. In: Proceedings of the 18th ACM Conference on Information and
Knowledge Management. 2009, pp. 1923–1926 (cit. on p. 138).

[179]Fen Xia, Tie-Yan Liu, and Hang Li. “Statistical Consistency of Top-k Rank-
ing”. In: Proceedings of the 23rd Annual Conference on Neural Information
Processing Systems. 2009, pp. 2098–2106 (cit. on p. 137).

[180]Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. “Listwise
approach to learning to rank: theory and algorithm”. In: Proceedings of the
25th International Conference on Machine Learning. 2008 (cit. on pp. 137,
145).

Bibliography 179

[181]Ji Xin, Chenyan Xiong, Ashwin Srinivasan, et al. “Zero-Shot Dense Re-
trieval with Momentum Adversarial Domain Invariant Representations”. In:
Findings of the Association for Computational Linguistics: ACL 2022. 2022,
pp. 4008–4020 (cit. on pp. 3, 4, 91, 93, 94, 104).

[182]Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power.
“End-to-end neural ad-hoc ranking with kernel pooling”. In: Proceedings of
the 40th International ACM SIGIR conference on research and development in
information retrieval. 2017, pp. 55–64 (cit. on pp. 2, 11, 15, 17, 69, 70).

[183]Lee Xiong, Chenyan Xiong, Ye Li, et al. “Approximate Nearest Neighbor
Negative Contrastive Learning for Dense Text Retrieval”. In: International
Conference on Learning Representations. 2020 (cit. on pp. 3, 71, 93, 94, 98,
104).

[184]Jun Xu, Tie-Yan Liu, Min Lu, Hang Li, and Wei-Ying Ma. “Directly optimiz-
ing evaluation measures in learning to rank”. In: Proceedings of the 31st
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. 2008, pp. 107–114 (cit. on p. 137).

[185]Peilin Yang, Hui Fang, and Jimmy Lin. “Anserini: Reproducible ranking
baselines using Lucene”. In: Journal of Data and Information Quality (JDIQ)
10.4 (2018), pp. 1–20 (cit. on pp. 22, 45, 79, 80, 103, 127).

[186]Zhilin Yang, Peng Qi, Saizheng Zhang, et al. “HotpotQA: A Dataset for
Diverse, Explainable Multi-hop Question Answering”. In: Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing. 2018,
pp. 2369–2380 (cit. on p. 18).

[187]Zhuliang Yao, Shijie Cao, Wencong Xiao, Chen Zhang, and Lanshun Nie.
“Balanced sparsity for efficient dnn inference on gpu”. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 33. 01. 2019, pp. 5676–5683
(cit. on p. 19).

[188]Haitao Yu, Adam Jatowt, Hideo Joho, et al. “WassRank: Listwise Document
Ranking Using Optimal Transport Theory”. In: Proceedings of the 12th ACM
International Conference on Web Search and Data Mining. 2019, pp. 24–32
(cit. on p. 138).

[189]Shi Yu, Jiahua Liu, Jingqin Yang, et al. “Few-shot generative conversational
query rewriting”. In: Proceedings of the 43rd International ACM SIGIR confer-
ence on research and development in Information Retrieval. 2020, pp. 1933–
1936 (cit. on p. 114).

180 Bibliography

[190]Shi Yu, Zhenghao Liu, Chenyan Xiong, Tao Feng, and Zhiyuan Liu. “Few-shot
conversational dense retrieval”. In: Proceedings of the 44th International
ACM SIGIR Conference on research and development in information retrieval.
2021, pp. 829–838 (cit. on pp. 4, 6, 114, 115, 118–120, 127, 128, 130).

[191]Manzil Zaheer, Guru Guruganesh, Avinava Dubey, et al. Big Bird: Trans-
formers for Longer Sequences. 2021. arXiv: 2007.14062 (cit. on pp. 18,
19).

[192]Hamed Zamani, Johanne R. Trippas, Jeff Dalton, and Filip Radlinski. Con-
versational Information Seeking. 2023. arXiv: 2201.08808 [cs.IR] (cit. on
p. 113).

[193]Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz.
“mixup: Beyond Empirical Risk Minimization”. In: International Conference
on Learning Representations. 2018 (cit. on p. 92).

[194]Chen Zhao, Chenyan Xiong, Corby Rosset, et al. “Transformer-XH: Multi-
Evidence Reasoning with eXtra Hop Attention”. In: International Conference
on Learning Representations. 2020 (cit. on pp. 18, 64, 65).

[195]Kun Zhou, Yeyun Gong, Xiao Liu, et al. “SimANS: Simple Ambiguous Neg-
atives Sampling for Dense Text Retrieval”. In: Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing: Industry
Track. Abu Dhabi, UAE: Association for Computational Linguistics, Dec.
2022, pp. 548–559 (cit. on pp. 91, 94, 98, 99, 120, 124).

Bibliography 181

https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/2201.08808

List of Figures

2.1 Interpolated curve of the density of the number of blocks per

document for the different datasets. 25

2.2 Average BM25 RSV scores per position of a block in a document

using the original query q. 26

2.3 Average RSV scores (cosine similarity) per position of a block in

a document using the original query q. 27

2.4 Difference in RSV scores between relevant and irrelevant docu-

ments for the original query q, the expanded one qexp and the

random expanded one qrand_exp across block positions. 31

2.5 An illustration of the architecture of KeyB (e.g., TF-IDF or BM25). 34

2.6 Different deep neural IR networks. 34

2.7 An illustration of the architecture of KeyB(vBERT)BinB. 40

2.8 An illustration of the architecture of KeyB(PARADEk)BinB. . . . 41

2.9 An illustration of the architecture of KeyB(PARADEk)BinB2. . . . 43

2.10 GPU memory usage and effectiveness comparisons. 59

2.11 The probabilities of top 8 block appearing locations in KeyB(vBERT)BM25. 62

2.12 The probabilities of top 8 block appearing locations in KeyB(vBERT)BinB. 62

2.13 An example of top 8 blocks selected by the KeyB(vBERT)BinB

model on MQ2007. 63

3.1 The architecture of proposed late-interaction based approach

for long document retrieval. 73

3.2 The NDCG@10 result of different positions compared with the

first position. 83

183

4.1 The overall pipeline of generating self-supervised data with

BM25 hard negative sampling for pseudo-relevance labeling. . . 96

4.2 The overall pipeline of generating self-supervised data with

meticulous pseudo-relevance labeling using SimANS hard nega-

tive sampling. 96

5.1 An example of conversational search user queries, and the rewrit-

ten queries or user intentions. 114

5.2 Overall pipeline of generating pseudo-data for conversational

dense retrieval. 121

5.3 After generating pseudo-labeling data, now do domain adap-

tation for the dense retrieval model for target conversational

search corpus. 122

6.1 Illustration of SmoothI and its positioning in a neural retrieval

system. 143

6.2 NDCG performance (averaged over 5 folds) of SmoothI on

MQ2007’s validation set with different α and δ. 147

184 List of Figures

List of Tables

2.1 Statistics of the datasets used. 23

2.2 Example query and extensions 28

2.3 Statistics: number of blocks selected. 30

2.4 Results on Robust04 dataset. 50

2.5 Results on GOV2 dataset. 51

2.6 Results on MQ2007 dataset. 52

2.7 Results on MQ2008 dataset. 53

2.8 Reranking latencies (seconds) on Robust04 test set for one folder

(50 queries each with 200 documents). 60

2.9 Ranking latencies (seconds) on MQ2007 test set for 100 queries

each with 40 documents. 61

2.10 Statistics of the TREC 2019 DL document ranking task. 64

2.11 Experiment on TREC 2019 DL and comparison with sparse

attention models and IDCM. 65

3.1 Results on TREC 2019 DL collection of MS MARCO v1 and v2

corpus. 82

3.2 Results on TREC 2020 DL dataset, corpus MS MARCO v1. 82

3.3 Average reranking latencies (seconds) on TREC 2019 DL test set,

corpus MS MARCO v1 for 100 documents with a query. 84

3.4 Ablation study on TREC 2019 DL dataset, corpus MS MARCO v1. 84

185

4.1 The top k selected as positive and m as negative for each data

set. The number in parentheses is used for generating training

data, remaining for Dev set. Top k as relevant, m as non-relevant.103

4.2 Results of DoDress-BM25 (D-BERT) on Robust04 with different

random hard negative sampling source. 108

4.3 Domain Adaptation Result of FiQA (during training only use

training set queries). 109

4.4 Domain Adaptation Result of Robust04 (training and develop-

ment set use the first 100 queries, test set is the last 150 queries).110

4.5 Domain Adaptation Result of BioASQ (during training only use

training set queries). 110

5.1 BLEU scores of different approaches for rewriting conversational

queries on CANARD dataset. 126

5.2 BLEU scores of T5-Large for rewriting conversational queries on

TREC CAsT-19 test set, compared to human rewritten queries. . 126

5.3 The top k selected as positive and m as negative for CAsT-19. . . 128

5.4 Domain Adaptation Result of Cast19. 128

6.1 Statistics of the learning to rank datasets, averaged over 5 folds. 145

6.2 Learning to rank retrieval results. 148

6.3 Text-based retrieval results on Robust04. 150

186 List of Tables

List of Tables 187

	Titlepage
	Abstract
	Résumé
	Acknowledgement
	Contents
	1 Introduction
	1.1 Information Retrieval
	1.2 Thesis Outline

	I Long Document Information Retrieval for Transformer-Based Models
	2 Improve Interaction-Based Models based on Transformers for Long Document Retrieval
	2.1 Introduction
	2.2 Related Work
	2.3 A Finer-Grained Look at Documents
	2.3.1 Preliminaries
	2.3.2 Relevance Signals Appear at Different Positions in Documents
	2.3.3 Fuzzy Matching May Help Select Better Blocks on Some Collections

	2.4 Selecting Blocks with Standard IR Functions: TF-IDF and BM25
	2.4.1 KeyB(vBERT)
	2.4.2 KeyB(PARADEk)
	2.4.3 Model Training

	2.5 Learning to Select Blocks
	2.5.1 Improving Vanilla BERT
	2.5.2 Improving PARADE

	2.6 Experiments on Standard IR Collections
	2.6.1 Experimental Design
	2.6.2 Experimental Results
	2.6.3 Memory Usage
	2.6.4 Ranking Speed
	2.6.5 Analysis of the Position of Selected Blocks

	2.7 Experiment on TREC 2019 DL and Comparison With Sparse Attention Based Models and IDCM
	2.7.1 Comparison with Sparse Attention Based Models
	2.7.2 Comparison with IDCM

	2.8 Conclusion

	3 Late-interaction Based Model for Long Document Retrieval
	3.1 Introduction
	3.2 Related Work
	3.3 Method
	3.3.1 Contextualized Document Embedding
	3.3.2 Contextualized Query Embedding
	3.3.3 Intra-Ranking for Key Passage Filtering
	3.3.4 Fine-Grained Late Interaction
	3.3.5 Multi-Task Learning
	3.3.6 Loss Functions

	3.4 Experiments
	3.4.1 Datasets
	3.4.2 Baseline Models
	3.4.3 Experimental Settings
	3.4.4 Results
	3.4.5 Reranking Latency
	3.4.6 Ablation Study

	3.5 Conclusion

	II Domain Adaptation for Dense Retrieval and Conversational Search
	4 Domain Adaptation for Dense Retrieval through Self-Supervision by Meticulous Pseudo-Relevance Labeling
	4.1 Introduction
	4.2 Related Work
	4.3 Background
	4.4 DoDress: Pseudo-Relevance Label Generation
	4.4.1 Global and BM25 Hard Negative Sampling
	4.4.2 Step Further: Meticulous Pseudo-Relevance Labeling with SimANS Hard Negative
	4.4.3 Improving GPL: Combining Pseudo-Relevance Labels and Pseudo-Queries
	4.4.4 Pairwise Loss

	4.5 Experiments
	4.5.1 Data Sets
	4.5.2 Experimental Setting
	4.5.3 Baselines
	4.5.4 Results and Analysis

	4.6 Conclusion

	5 Domain Adaptation for Conversational Search
	5.1 Introduction
	5.2 Related Work
	5.3 Domain Adaptation for Conversational Dense Retrieval: Leveraging Pseudo-Relevance Labels Generated with T5-Large Rewritten Queries
	5.3.1 Quantifying the Requirement of Pseudo-Relevance Data for Training Conversational Dense Retrieval Model
	5.3.2 T5-Large Query Rewriter Module
	5.3.3 Generating Pseudo-Relevance Data on Target Dataset

	5.4 Experiment on Conversational Search
	5.4.1 T5 Rewriter Training
	5.4.2 Baselines and Training
	5.4.3 Experiment Result

	5.5 Conclusion

	III Differentiable Listwise Loss Functions Based on Approximate Rank Indicators
	6 Listwise Learning to Rank Based on Approximate Rank Indicators
	6.1 Introduction
	6.2 Related Work
	6.3 Differentiable IR Metrics
	6.3.1 SmoothI: Smooth Rank Indicators
	6.3.2 Gradient Stabilization in Neural Architectures
	6.3.3 Application to IR Metrics

	6.4 Experiments
	6.4.1 Learning to Rank Experimental Setup
	6.4.2 Learning to Rank Results
	6.4.3 Experiments on Text-based IR

	6.5 Conclusion

	7 Conclusion
	7.1 Conclusion
	7.2 Future Direction
	7.3 Papers Accepted during this Thesis

	Bibliography

