
HAL Id: tel-04344643
https://theses.hal.science/tel-04344643

Submitted on 14 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Description and compilation of ad-hoc arithmetic
operators in the context of High-Level Synthesis

Luc Forget

To cite this version:
Luc Forget. Description and compilation of ad-hoc arithmetic operators in the context of High-Level
Synthesis. Hardware Architecture [cs.AR]. INSA de Lyon, 2023. English. �NNT : 2023ISAL0046�.
�tel-04344643�

https://theses.hal.science/tel-04344643
https://hal.archives-ouvertes.fr

N° d’ordre NNT : 2023ISAL0046

THÈSE DE DOCTORAT DE L’INSA LYON
Membre de l’Université de Lyon

École Doctorale 512
Informatique et Mathématiques

Spécialité / Discipline de doctorat :
Informatique

Soutenue publiquement le 29/06/2023, par :
Luc FORGET

Description and compilation of ad-hoc arithmetic operators
in the context of High-Level Synthesis.

Devant le jury composé de :

RASTELLO Fabrice Directeur de recherches INRIA Grenoble Président

DERRIEN Steven Professeur des Universités Université de Rennes Rapporteur
FERRANDI Fabrizio Professeur des Universités Politecnico Milano Rapporteur
CHOTIN Roselyne Maître de Conférences HDR LIP6 Examinatrice
VOLKOVA Anastasia Maître de Conférences Université de Nantes Examinatrice

DE DINECHIN Florent Professeur des Universités INSA de Lyon Directeur de thèse

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

Département FEDORA – INSA Lyon – Écoles Doctorales
Sigle École doctorale Nom et coordonnées du responsable

CHIMIE

Chimie de Lyon M. Stéphane DANIELE

https://www.edchimie-lyon.fr C2P2-CPE LYON-UMR 5265

Sec: Renée El Melhem Bâtiment F308 bP 2077

Bât: Blaise Pascal, 3ème étage 43 Boulevard du 11 novembre 1918

69616 Villeurbanne

Tél: 04 72 43 80 46 Tél: 04 72 44 53 60

secretariat@edchimie-lyon.fr directeur@edchimie-lyon.fr

E.E.A.

Électronique, Électrotechnique, Automatique M. Philippe Delachartre

https://edeea.universite-lyon.fr Laboratoire Creatis

Sec: Stéphanie Cauvin Bâtiment Blaise Pascal

Bât: Direction INSA Lyon 7 avenue Jean Capelle

69621 Villeurbanne CEDEX

Tél: 04 72 43 71 70 Tél: 04 72 43 88 63

secretariat.edeea@insa-lyon.fr philippe.delachartre@insa-lyon.fr

E2M2

Évolution, Écosystème, Microbiologie,
Modélisation

Mme Sandrine Charles

http://e2m2.universite-lyon.fr Université Claude Bernard Lyon 1

Sec: Bénédicte Lanza UFR Biosciences

Bât: Atrium, UCB Lyon 1 43 boulevard du 11 Novembre 1918

69622 Villeurbanne CEDEX

Tél: 04 72 44 83 62 Tél:

secretariat.e2m2@univ-lyon1.fr sandrine.charles@univ-lyon1.fr

EDISS

Interdisciplinaire Sciences-Santé Mme Sylvie Ricard-Blum

http://ediss.universite-lyon.fr ICBMS - UMR 5246 CNRS - Université Lyon 1

Sec: Bénédicte Lanza Bâtiment Raulin - 2ème étage Nord

Bât: Atrium, UCB Lyon 1 43 boulevard du 11 Novembre 1918

69622 Villeurbanne CEDEX

Tél: 04 72 44 83 62 Tél: 04 72 44 82 32

secretariat.ediss@univ-lyon1.fr sylvie.ricard-blum@univ-lyon1.fr

INFOMATHS

Informatique et Mathématiques M. Hamamache Kheddouci

http://edinfomaths.universite-lyon.fr Université Claude Bernard Lyon 1

Sec: Renée El Melhem Bâtiment Nautibus

Bât: Bâtiment Blaise Pascal, 3e étage 43 boulevard du 11 Novembre 1918

69622 Villeurbanne CEDEX

Tél: 04 72 43 80 46 Tél: 04 72 44 83 69

infomaths@univ-lyon1.fr hamamache.kheddouci@univ-lyon1.fr

Matériaux

Matériaux de Lyon M. Stéphane Benayoun

http://edinfomaths.universite-lyon.fr École Centrale de Lyon

Sec: Yann De Ordenana Laboratoire LTDS

Bât: 36 avenue Guy de Collongue

69134 Ecully CEDEX

Tél: 04 72 18 62 44 Tél: 04 72 18 64 37

yann.de-ordenana@ec-lyon.fr stephane.benayoun@ec-lyon.fr

MEGA

Mécanique, Énergétique, Génie Civil, Acoustique M. Jocelyn Bonjour

http://edmega.universite-lyon.fr INSA Lyon

Sec: Stéphanie Cauvin Laboratoire CETHIL – Bâtiment Sadi-Carnot

Bât: Direction INSA Lyon 9 rue de la Physique

69621 Villeurbanne CEDEX

Tél: 04 72 43 71 70 Tél: /

mega@insa-lyon.fr jocelyn.bonjour@insa-lyon.fr

ScSo

Sciences Sociales: Histoire, Géo., Aménagement,
Urbanisme, Archéo., Science po., Socio., Anthropo.

M. Bruno Milly

https://edsciencessociales.universite-lyon.fr Université Lumière Lyon 2

Sec: Mélina Faveton & J.Y. Toussaint (INSA)

Bât: 86 Rue Pasteur

69365 Lyon CEDEX 07

Tél: 04 78 69 72 79 Tél:

melina.faveton@univ-lyon2.fr christian.montes@univ-lyon2.fr

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

v

Résumé

Les techniques de synthèse de haut niveau permettent aux programmeurs

non spécialistes de générer des descriptions de circuits numériques en util-

isant des langages de programmation généralistes. Cependant, les outils ex-

istants ne supportent qu’un petit nombre de formats numériques et un petit

nombre d’opérateurs standards. Cette thèse présente plusieurs techniques

pour rajouter le support de nouveaux formats et de nouveaux opérateurs.

Dans un premier temps, l’étude se focalise sur ce qui est réalisable en se re-

streignant aux fonctionnalités de métaprogrammation du standard C++ sup-

porté par les outils HLS. Une bibliothèque d’opérateurs élémentaires pour les

formats IEEE-754 et posit de taille arbitraire est proposée. Elle sert de base à

une étude de cas comparant le coût matériel de l’implémentation de ces deux

formats. L’implémentation d’évaluateurs de fonctions mathématiques arbi-

traires se heurte aux limites de la première approche. Dans un second temps,

l’étude se porte sur les possibilités offertes par la modification du flot de com-

pilation HLS, avec comme objectif de supporter cette fonctionnalité. Une bib-

liothèque permettant au développeur de spécifier des opérateurs pour ap-

proximer des fonctions arbitraires enprécision arbitraire est présentée. Deux

approches pour l’interfaçage de cette bibliothèque avec les outils de HLS sont

proposées, selon que l’on a ou pas accès aux sources des compilateurs HLS.

Abstract

High-level synthesis allows non-specialist software developers to generate

digital circuit descriptions using high-level programming languages. How-

ever, existing tools support only few numerical formats and standard arith-

metic operators. This thesis introducesmany technics to support new formats

and new operators. First, the study focuses on what is doable using only the

C++ meta-programming constructs supported by main HLS tools. A library

of elementary operations for IEEE-754 and posit formats of arbitrary sizes is

introduced. It is used as a support to compare the hardware cost of imple-

menting these formats. The implementation of evaluators of arbitrary math-

ematical functions reaches the limit of the meta-programming approach. A

second step is then to study the possibility that are brought by modifying the

HLS compile flow. Implementing arbitrary function evaluator is the objec-

tive of this study. A library allowing developers to specify operators that ap-

proximate arbitrary functions at arbitrary precision is introduced. Twometh-

ods are developed to interface this library with the HLS tools, depending on

whether the HLS compiler sources can be modified.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

Acknowledgement

It has been a real pleasure towork on this thesis. While there have beenmany

ups and downs along the way1, it has been an interesting journey, and many

people have contributed making the interesting part of it more interesting,

and the least enjoyable parts, well, less less enjoyable.

Among these people I would like to thank my supervisor, Florent de

Dinechin, for the many insightful discussions and the support I could get

from him, starting from my first internship on FloPoCo up to the end of the

thesis defense.

I am also grateful to Ronan and Gauthier, who I enjoyed working with at

Xilinx/AMD. In addition to providing interesting points of view on software

development, they have been of great help for the development of the differ-

ent backends for MArTo arbitrary function support.

I am not sure if I need to be grateful to SARS-CoV-2 without which I would

probably not have met them.

I am also thankful to 小泉さん, my former supervisor at NTT Multimedia

Intelligence Laboratory, for his advice about perseverance and failure rela-

tivization, which proved very valuable these last few years.

Working on this thesis wouldn’t have been half as nice without the good

mood of the office. So thank you to Agathe, Benoît, Diane, Lélio, Marie,

Matthias, Orégane, and Pierre for being such nice colleagues!

While I am of course grateful to all my family, a specialmention goes tomy

brother and sister for their continuous support. Another one for the logistic

support I received from my parents and my family in Lyon.

He (probably) did not do it on purpose, but Mochi has also been of a great

help. Indeed, real-life cats are clearly underrated compared to rubber ducks

for debugging purposes.

Finally, despite their constant efforts to give me more time to work on the

manuscript, I do not thank the SNCF.

1The interested reader can discover the (terrible ((Ph.D. student) universe)) in the abundant
related literature on the web.

vii

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

Contents

Introduction 1

1 Context 5

1.1 Logic signals, logic vectors . 5

1.2 Numerical formats . 6

1.2.1 Fixed-point . 8

1.2.2 Floating point . 14

1.2.3 Logarithmic Number System 26

1.3 Hardware arithmetic operators . 27

1.4 Field-Programmable Gate Arrays . 28

1.4.1 FPGA architecture . 28

1.4.2 Computing with FPGAs . 32

1.4.3 From computation graph to FPGA configuration 33

1.4.4 Computation graph descriptions 34

1.5 High-Level Synthesis arithmetic support 39

1.5.1 HDL arithmetic core generators 40

1.5.2 Toward on-demand HLS arithmetic operator implemen-

tation ? . 40

2 A portable HLS-enabled library for custom numerical formats 43

2.1 Hint, a portable abstraction layer for arbitrary width integer

arithmetic . 43

2.1.1 Integers and HLS . 43

2.1.2 Core arithmetic primitives for floating-point operators . . 46

2.1.3 Type safety for arbitrary-precision integers in HLS 48

2.1.4 Others operations . 50

2.1.5 Software design of backend common interface 51

ix

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

x

2.1.6 Evaluation . 53

2.2 Custom floating-point format library 57

2.2.1 Elementary operation support 57

2.2.2 Exact fixed-point accumulation of floating-points products 58

2.2.3 Operator implementations in MArTo 60

2.3 IEEE-754 vs posit hardware cost comparison 73

2.3.1 Comparison of operator area and latency 74

2.3.2 Quire versus standard operations 81

2.3.3 Case study conclusion . 82

2.4 Limits and future work . 83

3 HLS library for arbitrary fixed-point function approximations 85

3.1 Custom C++ HLS compiler supporting C++20 86

3.2 A library to specify arithmetic operators 87

3.2.1 C++ types for fixed-point number 88

3.2.2 Classical arithmetic computations 89

3.2.3 Arbitrary mathematical function specification via its ex-

pression graph . 90

3.3 Fixed-point function approximation architectures 92

3.3.1 Table-based hardware arithmetic operators 92

3.3.2 Polynomial approximation methods 93

3.4 Compiler agnostic specialization generator method 93

3.4.1 C++ types for arithmetic operator evaluation 94

3.4.2 Application example . 97

3.4.3 Limits of the approach by specialization generation 101

3.5 Compiler support for fixed-point functions in HLS 103

3.5.1 Fixed-point function compilation architecture 103

3.5.2 Intermediate representations for fixed-point functions . . 104

3.5.3 Current state of the expression compiler prototype 107

Conclusion and perspectives 109

A Source code for floating-point adders 113

A.1 IEEE-754 Adder . 113

A.2 Posit adder . 120

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

List of Figures

1.1 Representable values and rounding function illustration for ex-

ample format of table 1.1 . 7

1.2 Binary positional notation of 42.75 8

1.3 Superposition of two fixed-point representation windows with

the infinite positional representation. 9

1.4 Visualization of representable values for two 5-bits unsigned

fixed-point formats. 10

1.5 Decomposition of a signed fixed-point formatwith; = 5 and : = −4 10

1.6 Visualization of representable for the two signed fixed-point

schemes with ; = 1 and : = −3. Scheme-specific representable

values are circled in red. 12

1.7 Binary and binary-coded octal positional notation of 42.75 13

1.8 Binary-coded decimal positional notation of 42.75 13

1.9 Basic floating-point representation of 42.75 as 0.333984375 × 27 . 15

1.10 Unique IEEE-754 binary16 representation of 42.75. 17

1.11 Subtraction of two floating-point values of minimal normal ex-

ponent �min. 20

1.12 Bound on relative-error magnitude for IEEE-754 binary16 rep-

resentable range. 22

1.13 Representable values formainstream16bit IEEE-like formats on

[1, 1 + 2−5] . 23

1.14 Posit<8,2> representations decomposition. 24

1.15 Bound on relative-error magnitude for posit<16,2> repre-

sentable range. 25

1.16 Representable positive values of an LNS system with represen-

tation of the exponent being a sfix(2,−3). 26

xi

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

xii LIST OF FIGURES

1.17 Wide adder implementation by Full Adder chaining. 31

1.18 Part of the schematic of the UltraScale fast carry chain 32

1.19 Schematic representation of the compilation stages from com-

putation graph to logical FPGA primitive netlist. 34

2.1 A generic shifter (left) instantiated (right) in a floating-point

adder with E� fraction bits . 47

2.2 Generic leading-bit counters. 47

2.3 Example of product accumulation on the carry-save banks of a

Kulisch-like accumulator. 59

2.4 Architecture of a posit operator in a Posit Arithmetic Unit that

uses posit registers and posit-to-posit operators. 62

2.5 Architecture of a posit to PIF decoder. 65

2.6 Architecture of a UPIF to posit encoder. The PIF to posit encoder

is similar, with the round and sticky logic (including the final

adder) removed. 67

2.7 Architecture of a PIF adder. Exponent comparison block de-

noted with “>” also takes the operand 7 and A bits to detect zero

values, but wires have been omitted here for clarity. 68

2.8 Architecture of a PIF multiplier. 69

2.9 Architecture of a posit quire addition/subtraction. 71

2.10 The bits of a standard quire. 72

2.11 Architecture of a PAU using posits as a memory-only encoding,

with PIF registers and PIF-to-PIF operators. 74

3.1 Custom C++ HLS compiler stages . 87

3.2 Example of function evaluator (here corresponding to listing 3.3). 91

3.3 Example bipartite approximation architecture, here replacing a

table of 26 entries with two tables of 24 entries. 93

3.4 Architecture of the generator of template specializations 94

3.5 Output of an additive synthesis with two frequencies of equal

amplitudes and the computational error (as absolute difference

on a logarithmic scale). 99

3.6 Architecture diagram of fixed-point function extracting compiler.103

3.7 IR and optimization used in the process of lowering high-level

operator specifications to implementation details. 104

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

List of Tables

1.1 Example of an arbitrary numerical format on 2-bits vectors. . . 6

1.2 Field widths for IEEE-754 standard formats. 16

1.3 Interpretation of IEEE-754 binary16 encoding. 19

1.4 Precision - dynamic - special-value representation trade-off for

mainstream 16 -bit IEEE-like floating-point formats. 23

1.5 LUT content for evaluating a 4:1 multiplexer. 29

1.6 Full-adder truth table. 31

2.1 Synthesis of LZC Arria 10 (achieved clock target of 240MHz) . . . 54

2.2 Synthesis of LZC and shifters on Kintex 7 (achieved target delay

of 3ns). The number are obtained with Vitis 2022.2. 54

2.3 Synthesis of shifters+sticky on Arria 10 (achieved clock target of

240MHz) . 55

2.4 Synthesis of shifters+sticky on Kintex 7 (achieved target of 3ns) 55

2.5 Synthesis of normalizers Arria 10 (achieved clock target of

240MHz) . 56

2.6 Synthesis of normalizers on Kintex 7 (achieved target delay of

3ns) . 56

2.7 Parameters of standard posit formats. 61

2.8 Quire bit-width parameters for standard 3.2 posit formats. . . . 70

2.9 Comparison with [34] for standard posit addition and product . 76

2.10 Comparison with [33] on standard posit addition and product . 76

2.11 Comparison with [35] on posit<32,6> addition and product . . . 77

2.12 Comparison with [50] for standard posit addition and product . 77

2.13 Synthesis results of combinatorial operators 79

2.14 Synthesis results of pipelined operators 80

xiii

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

xiv LIST OF TABLES

2.15 Synthesis results for a sum of 1000 products (U: Unsegmented,

S32 and S64: Segment sizes of 32 and 64 bits). 81

2.16 Detailed synthesis results of hardware posit quire 83

3.1 Area and timing metrics comparison between float and vari-

ous FixedNumber for an additive synthesizer of 256 oscillators.

II stands for Initiation Interval, the number of clock cycles that

pass before the pipeline is ready to be fed a new input. 100

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

List of Listings

1.1 Verilog description of a circuit computing (0 + 1) · 2 for 12-bits
inputs. 35

1.2 Chisel description of a circuit computing (0+1) ·2 for 12-bits inputs. 36
1.3 HLS C++ description of a circuit computing (0 + 1) · 2. 37

1.4 Simultaneous definition and call of an FPGA kernel computing

(0 + 1) · 2. 38

1.5 HLS C++ description of a circuit computing (0+ 1) · 2with 12-bits

inputs. 39

1.6 Flopoco command line to produce an IEEE-754 binary32 Fused

Multiply Add operator for Kintex 7 architecture. 40

2.1 Example of a counter-intuitive C intermediate result type. 45

2.2 Undefined behavior on shifts. 46

2.3 Example of hint code computing the leading-zero count of the

sum of two 6-bits integers provided concatenated in a 12-bits

vector. 48

2.4 Pure function wrapping call to the slice template method. . . . 52

2.5 Pure function wrapping call to the slice template method with

cleaner interface using C++20 concepts. 52

2.6 Rewriting of example from listing 2.3 with proposed interface

improvement. 53

2.7 MArTo code example. 57

2.8 MArTo code example. 58

3.1 Construction of a FixedNumber from its representation. 88

3.2 Format inference in the fixed-point library. 89

xv

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

xvi LIST OF LISTINGS

3.3 Construction of the expression tree corresponding to 5 (F) =

log(1 + 4F) (lines 4-6), and construction of an operator for this

function (line 7). 91

3.4 Simple example of template specialization and dispatching. . . . 96

3.5 Outline of the generic ArithOp template class. 97

3.6 Simplified example of generated ArithOp specialization for

log(1 + 4F) with output format ufix(5,−17). 97

3.7 A simplified LNS adder . 98

3.8 Example of expression sharing the same type but representing

distinct expression tree due to the lack of variable instance type

identifying mechanism. 102

3.9 C++ specification of an operator approximating F ↦→ sin(0.5 ∗ F ∗c).105
3.10 High level representation of operator of listing 3.9 using the

approx dialect. 105

3.11 Implementation of listing 3.9 operator in terms of fixed-point

operations described in fixedpt dialect. 105

3.12 LLVM IR corresponding to the implementation of listing 3.9. . . 106

A.1 MArTo code for the IEEENumber class 113

A.2 MArTo code for an IEEE-754 adder 115

A.3 MArTo code for the posit to pif decoder 120

A.4 MArTo code for the PIF to posit encoder 122

A.5 MArTo code for a posit adder . 124

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

Introduction

Transistor density on integrated circuits has stopped to follow Moore’s law

predictions around year 2010. This is around the same time that clock

rate ceased to be improved by new generations of central processing units

(CPU). As a result, the main selling point of new generations of desktop

and server CPUs has shifted towards more parallelism and more hardware-

supported operations. Compute-intensive applications benefit from these

two improvements. Indeed, hardware-accelerated mathematical functions

and fine-grained parallelism (such as Single Instruction Multiple Data (SIMD)

operations or dynamic reordering of instructions for superscalar execution)

reduce the runtime of one kernel iteration, while coarse-grain parallelism

(through multiple cores or simultaneous multithreading) allows running

multiple independent kernel invocations simultaneously, hence reducing the

total execution time.

However, the set of numerical formats and operations supported by CPUs

does not necessarily fit tightly the application needs. Moreover, computation

kernels might expose some parallelism at a degree that cannot be handled

properly via CPUs.

In order to further accelerate applications suffering from this kind of CPU

limitations, application-specific integrated circuits (ASIC) can be developed.

Two main barriers limit this development. The first one consists in the fixed

costs associated with custom integrated circuit production. This barrier can

be lowered by using Field-Programmable Gate Arrays (FPGAs) instead of

ASICs, at the price of some performance loss. The second barrier, common to

ASIC and FPGAs, is the required expertise needed to design those circuits.

Lowering the requested experience to develop this kind of hardware is

one of the objectives of High-Level synthesis tools. These tools allow build-

ing a circuit from a high-level behavioral description written in a classical

1

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

2 Introduction

programming language, such as C++. This thesis focuses on these tools.

While HLS tools allow software developers to write circuits easily, their

support for numerical formats andmathematical functions is limited to those

provided by the source language. For instance, the only floating-point for-

mats supported by C++-based HLS tools are the 32-bits and 64-bits IEEE-754

formats float and double. Yet, using application-specific numerical formats

and operators is a way to improve the quality of results (QoR, which regroups

design latency and surface) of circuit designs. For instance, as elementary

operations on narrower formats operate on smaller bit vectors, their latency

is reduced compared to the same operation on wider a format. Besides, they

also occupy less chip area, which leaves more space for packing more opera-

tors on the chip. This eventually allows running more operations in parallel.

Using for each computation the narrowest format that still allows to verify

the overall application accuracy constraint is then a good way to optimize

this application.

The work presented in this thesis aims at providing support for custom

numerical formats and operators in an HLS context. This support takes the

form of a portable library, MArTo, that a developer can exploit to define and

use custom numerical types in HLS code. This library supports both IEEE-754

andposit numerical formats, which are presented alongwith other numerical

formats, arithmetic operator formalization and FPGA architecture in chapter

1. Using theMArTo allows fast evaluation of the performance/accuracy trade-

off entailed by the usage of a given numerical for a given application. MArTo

is built on top of a second library, hint, that abstract operations on arbitrary

size integers. Both of these libraries use C++ meta-programming constructs

that are supported by HLS tools to implement the basic arithmetic operations

of the supported formats. This design and the usage of the two libraries is

further detailed in chapter 2, which also present a case study comparing the

implementation cost of the two supported floating-point formats, IEEE-754

and posit.

A second optimization opportunities with regard to computation is the

evaluation of mathematical functions. When only a limited set of mathemat-

ical functions is provided to the user (as it is the case with the C libm library),

evaluating a composed function such as F ↦→ cos(sin(F)) requires composing

evaluation of library-supported functions (computing sin(F) first, before eval-
uating cos on the result for the example function). However, ad-hoc function

evaluators can be implemented to evaluate directly arbitrary expressions, al-

lowing reduced latency and better control on precision compared to the com-

position approach. While generating such evaluators is a well studied prob-

lem, especially when both input and output format of the evaluator is fixed-

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

3

point, this functionality is not supported by HLS tools.

The architecture of such evaluators require pre-computed values, such as

coefficients of a polynomial approximating the function to evaluate. Obtain-

ing these values is non-trivial, which prevent computing them in a puremeta-

programmatic fashion. Instead, it is more desirable to use existing tools that

can provide state-of-the-art evaluation plans for arbitrary functions. How-

ever, evaluation plan has to be determined before performing the HLS com-

pilation step.

Two methods to modify the HLS compilation flow are described in chap-

ter 3. The first approach does not require direct modification of the HLS com-

piler. This makes it quite portable, but it requires that extra compilation steps

are performed by the user, and it suffers from some fundamental limitations.

The second approach consists in adding built-in support for arbitrary expres-

sion evaluation directly in the compiler. This method solves the issues of the

first approach, but is not portable anymore. This disadvantage is attenuated

by using a compiler-independent expression compiler that can be used by

multiple HLS compilers.

Evaluation of arbitrary function is only one of the many possible opti-

mized high-level primitives that could be made available to HLS developers,

while providing automatic optimized implementation generation. Some per-

spective on building such “Real High-Level Synthesis” systems are discussed

in the conclusion of this thesis.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

1
Context

The central goal of the work presented in this thesis is to enable the devel-

opment and the integration with software tools of high quality application

specific arithmetic hardware operators. Here, hardware refers to implemen-

tation as digital circuits. This work focuses on digital circuits at the logic level.

At this abstraction level, digital circuits consist in collections of logic signals

combined to produce something useful. How exactly these signals are com-

bined, and how to produce these combinations is detailed in section 1.4. The

”something useful” that results from this combination depends on the appli-

cation. In the case of this work, it consists in computing the result of some

computation. This requires to have some way to interpret the logic signals

of a digital circuit as a numerical value. This is the aim of numerical for-

mats, which are presented in section 1.2. Having a representation for num-

bers allows to perform computation on them. This is the purpose of hard-

ware arithmetic operators, presented in section 1.3. Finally, in the context

of this thesis, hardware operators are implemented on Field-Programmable

Gate Arrays (FPGAs), the architecture and programming model of which are

presented in section 1.4. Before delving into these details, section 1.1 briefly

presents the core concepts of logic signal and logic vector, and introduces the

notations that are used in the rest of this work.

1.1 Logic signals, logic vectors

At the logic level, a logic signal is the core element that digital circuits handle.

A logic signal is at anytime in one of two states, called either high and low, true

or false, set and unset, or ‘1’ and ‘0’. In this work, logic signals are modeled as

variables from B = {0, 1} and are named with lowercase letters.

It is sometime convenient to reason on a whole group of signal as one en-

5

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

6 Numerical formats

tity. These signals can be concatenated to form logic vectors. In this work,

logic vector names start with a capital letter.

Vector component access is denoted using squared bracket notation. For

instance, + [2] is the third component of the vector + . The width of a logic

vector is its number of elements, and is expressed in bits.

In this work, vectors will often be represented as bit string. With this rep-

resentation, the vector first element is the rightmost one. That is, if + = 01,
then + [0] = 1 and + [1] = 0.

1.2 Numerical formats

Performing computationwith digital circuits involves tomanipulate numbers

with them. As these circuits only manipulates logic vectors, it is necessary to

be able to use them to represent numbers. This is the role of numerical for-

mats, which define decoding schemes to interpret a logic vector, the represen-

tation as a value. Table 1.1 gives an example of an arbitrary numerical format

for 2-bits vectors. A value is associated to each representation.

Table 1.1: Example of an arbitrary numerical format on 2-bits vectors.

Representation Associated value

00 −2
3

01 2
10 −8
11 12

All encoded values of table 1.1 example are real numbers. This is the

canonical case, but some formats might also encode non-real special values,

such as infinities.

Formally, a format F is defined by

• its representation width <F (the size of its representations) (2 in case of the

example of table 1.1),

• its (possibly empty) special value set SF . This is the set that contains the non-

real values that should be representable by the format such as infinities.

The format domain is then

DF = R ∪ SF

This set is empty in the example.

• Its decoding function 3F : B<F → DF that maps a representation to the rep-

resented value. In the case of the example, it corresponds to reading the

value associated to the representation from the table.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

7

• The set of representable domain values FF (the image of the representa-

tion domain through the application of the decoding function). This corre-

sponds to the set of values appearing in the second column of table 1.1.

Due to the finite number of representations, F cannot represent exactly all

real values. Rounding functions are used tomap a representable value to any

real value. Two basic directed rounding functions can be defined:

• Round towards +∞ (or rounding up):

=
↑
F :DF → FF

D ↦→

min 7 ∈ FF | 7 ≥ D, if D ∈ R
D otherwise

• Round towards −∞ (or rounding down):

=
↓
F :DF → FF

D ↦→

max 7 ∈ FF | 7 ≤ D, if D ∈ R
D otherwise

Figure 1.1 shows the representable elements of the format defined by table

1.1, and illustrates the value returned by the two directed rounding function

on this format.

D = R

Elements of F

-8 -2/3 2 125

=↑ (5)=↓ (5)
Non repre-
sentable value

Figure 1.1: Representable values and rounding function illustration for ex-
ample format of table 1.1

The F -representable neighborhood of a real value D is defined as:

rnbF (D) =
{
=
↓
F (D), =

↑
F (D)

}
When D has a representation in F , this set only contains D. As figure 1.1

shows, for the example format, rnb(5) = {2, 12}.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

8 Numerical formats

This neighborhood is used to define two rounding modes that this work

focus on. Rounding to nearest, as its name suggests returns the element of

the neighborhood with the smallest distance to the exact value.

=NF (D) = argmin
F∈rnbF (D)

|F − D|

In case of the illustration example, =N(5) = 2 as the distance from 5 to 2 is

smaller than the distance from 5 to 12.

A tie-breaking rule determines which of the neighbor should be returned

when the real value is a midpoint, i.e. when the value is equidistant to the

two neighbors.

The second rounding mode is faithful rounding. It only requires that one

of the neighbors is returned.

Numerical formats with arbitrary mapping such as the example of table

are difficult to reason with and to use when the representation size grows.

For larger formats, it is thus desirable to get some hardware-exploitable regu-

larity in the representation-value mapping. Commonly used regular formats

are fixed-point and floating-point. These specific formats are detailed in the

following sections.

1.2.1 Fixed-point

Unsigned fixed-point formats

Unsigned fixed-point formats values are represented using binary positional

notation. Binary positional notation is very similar to the usual decimal no-

tation: the only difference is the radix. A number written in this system is

expressed as a sum of powers of two. The fractional point in this system is

used to determine which power of to corresponds to which bit. The bit imme-

diately on its left is associated to 20 and the associated weight doubles each

step leftward. Reciprocally, it is halved each step rightward. A bit’s position

> is its distance with the 20 weighted bit, with a positive increase in the left

direction. The weight associated to such a bit is simply 2>.

27

7

26

6

25

5

24

4

23

3

22

2

21

1

20

0

2−1

-1

2−2

-2

2−3

-3

2−4

-4

2−5

-5

Bit weight:

Bit position:

… …1 0 1 0 1 0 1 1

Figure 1.2: Binary positional notation of 42.75

Figure 1.2 illustrates this notation. The position of the bit is reported on

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

9

the axis below the representation, and theirweight iswritten above them. For

instance, the greyed bit is at position −1 and its weight is 2−1. All non-written

bits are implicit zeros, so for instance bits with position above 6 are all zeros.

The represented value is the weighted sum of its bits so here

D = 25 + 23 + 21 + 2−1 + 2−2 = 42.75

The value D of a number written in binary positional notation with bits 17

at position 7 is

D =
+∞∑
7=−∞

17 · 27

However, having an infinity of representation bits is not physically possi-

ble. Practical unsigned fixed-point numeric formats are defined by their high

and low bit positions, respectively ; and :, such that ; ≥ :. Such a format

is denoted ufix(;, :), and has a representation width of <ufix(;,:) = ; − : + 1.
Its representation is a ”chunk” of the infinite positional notation, which is il-

lustrated by figure 1.3. The decoding function is hence a restriction on the

available representation bits of the previous equation, and the value D is ob-

tained with

D =
;∑
7=:

27'[7 − :]

7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5Bit position:

ufix(6, 4) ufix(1,−3)

… …

Figure 1.3: Superposition of two fixed-point representationwindowswith the
infinite positional representation.

The weight of the rightmost bit of the representation is called the unit in

the last place (ulp) of the format. This is the smallest difference that exists

between twodistinct representable values. Formats of the type ufix(;, 0) form
a notable group : they allow to represent all positive integers up to 2;+1 − 1.
By extension, a value D from ufix(;, :) can be thought as a scaled integer

D = 7 · 2:

with 7 an integer representable on ufix(; − :, 0). The plots of representable

values of two 5-bits fixed-point formats of Figure 1.4 illustrates this. The rep-

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

10 Numerical formats

resentable value set of one format is a scaled version of the second format

representable value set.

-1 0 1 2 3 4 5 R

(a) ufix(1,−3)

-2 -1 0 1 2 3 4 5 6 7 8 9 10R

(b) ufix(2,−2)

Figure 1.4: Visualization of representable values for two 5-bits unsigned
fixed-point formats.

Alternative equivalent parametrizations exist for fixed-point formats. One

frequently used parametrization, the &7. 5 notation, describes these formats

with two integers 7 and 5 which are respectively the number of integer and

fraction bits. For instance ufix(4,−2) would be denoted &5.2. While this nota-

tion is good when the decimal point is included in the described formats, it

becomes quite unintuitive when it is not. For instance, the format ufix(−3,−7)
is named & − 2, 5 in this formalism, the −2 integer bits conveying the fact that
in addition to not having integer bits, the format also “lacks” the two leftmost

fractional bits. For this reason, this work uses the ufix(;, :) notation.
Next section present extensions to this system that allow handling nega-

tive values.

Signed fixed-point formats

Two main systems coexist to add support of negative values to fixed-point

formats. These two systems have the same parameters ; and : as unsigned

fixed-point. In these two systems, the leftmost bit is the sign bit A. The re-

maining low bits consist in a representation in ufix(; − 1, :). In the following,

'! denotes these bits and D! the value that they represent. The decomposition

of a signed fixed-point value is detailed on figure 1.5.

A @8 @7 @6 @5 @4 @3 @2 @1 @0

24 23 22 21 20 2−1 2−2 2−3 2−4

@!, ufix(4,−4) representation of D!Sign bit

Figure 1.5: Decomposition of a signed fixed-point formatwith; = 5 and : = −4

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

11

The two systems differs in how the sign bit is interpreted in the decoding

function. In the most natural one, the sign-magnitude encoding, it is used to

determined if the encoded value is D! (when the sign bit is ‘0’) or its oppo-

site −D! (when the sign bit is ‘1’). Formally, the represented value Dsm is given

by the relation

Dsm = (−1)A · D!

It is straightforward to see that the opposite of each representable value

is also a representable value.

While it is quite intuitive, this encoding system has two main disadvan-

tages. First, the algorithm to get the representation of the successor is quite

complicated, as it depends on the sign bit. Indeed, in the general case (when

both the value and its successor have the same sign), @! should be replaced by

the representation of its successor when A is unset, and by the representation

of its predecessor when A is set. And a few additional corner cases have to be

handled. One of them is directly related to the second disadvantage, which is

that these formats have two signed representations for 0.

The second system, two’s complement, keeps the weighted-sum principle

of unsigned fixed-point format. It only differs with this format by the weight

of the leftmost (sign) bit, which is −2; instead of 2;. The represented value D22

is then

D22 = −2; + D:

With two’s complement, the successor computation is greatly simplified

and there is no redundant representation for one given value. Due to that and

to the fact zero is still representable in the format, opposite of representable

values is not always representable itself. This asymmetry is visible on Fig-

ure 1.6b which shows the representable value for a two’s complement signed

fixed-point format defined with ; = 1 and : = −3. Value −2 is representable,
while 2 is not. By contrast, representable values of sign-magnitude fixed-point

with same parameters (represented on figure 1.6a) cannot represent −2 either
and replace this by a second representation for 0. In the following, sfix(;, :)
will denote 2’s complement fixed-point format of parameters ; and :.

Similarly to the unsigned case, sfix(;, 0) defines a notable group of formats

able to represent all integers 7 such that

−2; ≤ 7 < 2;

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

12 Numerical formats

-3 -2 -1 1 2 3±0 R

(a) Sign-magnitude

-3 -2 -1 0 1 2 3 R

(b) Two’s complement

Figure 1.6: Visualization of representable for the two signed fixed-point
schemes with ; = 1 and : = −3. Scheme-specific representable values are
circled in red.

Values D of sfix(;, :) can also be seen as scaled integer:

D = 7 · 2:

with 7 representable on sfix(; − :, 0).

Biased fixed-point formats

It is possible to add an ”implicit” constant offset (i.e. independent of the rep-

resentation) to the summation performed to decode a fixed-point representa-

tion. This shifts the representable values by the added amount. One example

of such biased fixed-point representations is the Half-Unit Biased (HUB) en-

coding families [1]. A HUB representation is defined similarly to fixed-point

formats by its high and low bit positions; and :. The Unit in the format name

refers to the scaled integer vision of the fixed-point the represented number:

HUB decoding function adds a constant offset of half of a scaled unit in the

decoding process. The bias value is then 2:−1.
It has the advantage that rounding a value to the nearest HUB representa-

tion only consists in truncated all bits of position lower than :.

Another application of biased fixed-point is presented along IEEE-754 en-

coding scheme.

Arbitrary radix fixed-point

Using binary positional notation ondigital circuits thatmanipulate binary sig-

nal seems natural. It is however possible to represent number using different

radixes.

Radix V notation decomposes a value D as a sum of weighted V-digits, each

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

13

weight being a power of V depending on the position 7 of the V-digit 97 .

D =
∑
7

97V
7

Similarly to binary fixed-point, the representation in V radix fixed-point

stores a sequence of V-digits. As the circuit can only handle logic signal, these

V-digits are themselves encoded in binary.

When V = 2>, the representation does not differ from radix 2 representa-

tion, only the interpreted meaning of representation bits differs. Indeed, in

this case the contribution of each V-digit can be seen as an integer scaled by a

power of two, and none of these contributions overlap. Figure 1.7 illustrates

this by showing two possible interpretation of the binary-coded representa-

tion of 42.75.

27 26 25 24 23 22 21 20 2−1 2−2 2−3 2−4 2−5

8−18081

22 21 20 22 21 20 22 21 20

… …1 0 1 0 1 0 1 1

Figure 1.7: Binary and binary-coded octal positional notation of 42.75

When V is not a power of two, the binary encoding of the V-digit is waste-

ful. Indeed, E = dlog2(V)e bits are required to store one V-digit, but only V out

of the 2E possible combination of those bits are effectively used. This is illus-

trated with figure 1.8 that gives the binary-coded radix-10 representation of

the value 42.75. This representation requires 15 bits, where the binary repre-

sentation only requires 8 bits.

10−2

23 22 21 20

10−1

23 22 21 20

100

23 22 21 20

101

23 22 21 20

0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1

4 2 7 5

Figure 1.8: Binary-coded decimal positional notation of 42.75

So in one case the representation does not change, and in the other the

representation is wasteful, so why using such a system ? If : = 0, there is def-
initely no interest to use a radix that is not a power of two, as integers are

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

14 Numerical formats

all representable using radix 2. With : < 0 however, the set of exactly rep-

resentable values changes. For instance 49.3 is not exactly representable in

binary, but is representable in radix 10. So financial application for instance

might be interested not to have representation rounding errors when they

perform computation over amount of money which are expressed in decimal

notation.

One way to limit the waste of representation bits is to use a radix that is

very near to the power of two immediately superior to it. For instance, it

might be more interesting to use radix 1000 (103) than radix 10[2]. Indeed,

with radix 1000, 1000 out of the 1024 possible combination of the 10 bits re-

quired to store a 1000-digit effectively used. In the other hand, only 10 out of

the 16 possible combination of the 4 bits required to store a radix-10 digit are

used.

1.2.2 Floating point

Fixed-point formats lack dynamics: representing both high magnitude and

very small numbers is not possible without using very wide (and impracti-

cal) formats. Floating-point formats solve this issue by using a representa-

tion similar to the so-called scientific notation. A value D is represented as a

significand " scaled by some power � of a given radix V.

D = " · V�

The discussion about radix value is analog to the fixed-point case. In the

present work, only binary (V = 2) floating-point formats are considered.

A basic floating-point encoding could be defined by a pair of signed fixed-

point formats (F� , F"), respectively the exponent and significand format. The

representation is the concatenation of a representation @� and @" from each

of the formats. The represented value D is obtained from the two fixed-point

values:

D = 3F" (@6) · 23F� (@�)

The representation width of F" specifies with how many ”significant dig-

its” the format can represent a number. This is called the precision of the

floating-point format. In the other hand, the representation width of F� is

related to the dynamic range of the format. For two floating-point formats

with identical precision, the one with higher dynamic range will be able to

represent higher and lower magnitude values.

Figure 1.9 gives a possible representation for the value 42.75 in such a

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

15

0 0 1 1 1 0 1 0 1 0 1 0 1 1 0

F� = sfix(4, 0) F" = sfix(−1,−10)

7 0.333984375

Figure 1.9: Basic floating-point representation of 42.75 as 0.333984375 × 27

format. However, this format has redundancy. Indeed, if the significand rep-

resentation does not start and end with a 1, it is possible to shift it and reduce

or increase the exponent to keep the same value. For instance, 42.75 can also

be represented as 010000010101011 in the format from figure 1.9. Most of

the time this redundancy is undesirable, as it is “wasting” codes that could

be used to represent other values. Following sections describes well-defined

floating-point encoding schemes that avoid this waste.

IEEE-754 encoding scheme

Compared to fixed-point where possibility of variation is quite limited,

floating-point offers a lot of freedom in their conception. In the early days

of computing, this lead to each CPU manufacturer having its own specific

format. This is reflected in the first version of ANSI C (C89) standard. In this

version the definition of floating-point types in C is very scarce. It is only

specified that C has three floating point type (float, double and long double),
verifying the property

Ffloat ⊆ Fdouble ⊆ Flong double

Outside from this, “the representations of floating-point types are unspeci-

fied”. In addition to have different representation, the semantic of operations

was also not consistent between floating-point implementations. As a result,

standard compliant code could produce completely different outputs when

executed on different machines.

IEEE-754 [3] is the standard that resulted from the industry effort to elim-

inate this heterogeneity. Its first edition was issued in 1985 and defines two

fully specified binary floating-point formats (which C99 later adopted as rep-

resentation for the C float and double types), and the ‘extended” format fam-

ily. It also defines the base operations that should be provided by compliant

implementations. The 2008 revision introduced the concept of interchange

formats, that are intended solely for the purpose of sharing a value, but not

for performing computation. It also specified three decimal floating-point for-

mats.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

16 Numerical formats

An IEEE-754 binary format representation is composed of three fields:

• The sign bit A on 1 bit,

• the biased exponent � on E� bits,

• the fraction part � on E� bits.

Table 1.2: Field widths for IEEE-754 standard formats.

Format E� E�

binary16 5 10
binary32 8 23
binary64 11 52
binary128 15 112
binary256 19 236

Field sizes for fully specified formats are given on table 1.2. The special

value set of IEEE-754 binary encoding schemes contains four values. The first

two, positive and negative infinities are the overflow markers. These are the

values that are returnedwhen an operation has a result which is bigger (resp.

smaller) than the biggest (resp. smallest) representable values. The third and

fourth ones are quiet and signalling Not-a-Number (NaN). They arise as a re-

sult of invalid operation, such as taking the logarithm of a negative number.

The difference between signaling and quiet NaNs concerns the environment

surrounding the computation, so for the rest of this work they will be consid-

ered as a unique value.

The special values are all encoded with all the exponent field bits set to

one. When the fraction bits are set to zero, the represented value is infinity

(with signedness depending on the sign bit). For instance, in binary16 the

representation for −∞ is 1111110000000000. As soon as one bit of the fraction

field differs from zero, the represented value is NaN. Since the 2008 standard

revision, the leftmost bit of NaN representation indicates whether it is a quiet

NaN. In binary16, quiet NaN are then represented as s111111xxxxxxxxx The

remaining bits (marked with x in the previous example) are called the NaN

payload and can be used to store application-defined data. This usage is sim-

plified with the new operations setpayload and getPayload introduced in the

2019 standard revision.

When at least one bit of � is set to 0, the represented value is a numerical

value. The decoding process is very similar towhat has been introduced in the

previous section. A first difference is that it is using sign-magnitude encoding.

The second important difference is that the fraction is normalized in order to

avoid redundant value representations. That is, an implicit bit 7 at position 0

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

17

is prepended to the fraction, the complete explicit significand is (4 = 7.�. In

the general case, the value of 7 is 1.

Finally, the third main difference is that a biased exponent is stored in the

representation. For a binary format of exponent width E�, the bias value is

1 = 2E�−1 − 1

The actual exponent is �− 1. Having a biased exponent ensure that the repre-

sentation ordering is the same as if they were interpreted as sign-magnitude

representation of integers. Indeed, the biased exponent is an unsigned in-

teger to which is concatenated the fraction that is also an unsigned integer.

For the same exponent, the representationwith the biggest fraction represent

the biggest value, and when the exponent differs, the representation with the

biggest exponent encodes the biggest value. When the sign differs only the

sign is relevant.

This property allows efficient comparison of IEEE-754 values by using in-

teger comparison on the representation. This also helps to compute rounding,

as a rounding neighborhood is constituted by values having successive rep-

resentations.

The represented value is then

D = (−1)A · 1.� · 2�−1

A � �

0 1 0 1 0 0 0 1 0 1 0 1 1 0 0 0

Figure 1.10: Unique IEEE-754 binary16 representation of 42.75.

Figure 1.10 gives the encoding in binary16 of the value 42.75. The value

stored in the exponent is 20. As the exponent field has a width of 5, the bias

value is 15, so the unbiased exponent is 5. Stored fraction is 0101011000, so

the significand is 1.0101011000 (1.3359375 in decimal). The represented value

is then 1.3359375 · 25 = 42.75.

Having always the implicit bit set to one does not allow representing 0.

This is solved by adding a special case for numeric values called the subnor-

mal range of the format. When all bits of � are set to 0, the implicit bit becomes

0. To avoid a gap between subnormal and normalized values, the exponent

that corresponds to subnormal significand is the same as theminimal normal

exponent. So the real value decoding process involves computing the actual

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

18 Numerical formats

significand

" = 7.�

and the unbiased exponent

�C = � − 1 + (1 − 7)

with

7 =

0 if � = 0

1 otherwise

to get the encoded value

D = (−1)A · 2�C ·" .

In addition to allowing the representation of zero, the subnormal mech-

anism also brings interesting properties to the format. One of which is the

following equivalence:

Property 1 Given 5 an IEEE-754 binary numerical format, and = a valid IEEE-

754 rounding mode

∀(F, G) ∈ F25 , =(F − G) = 0 ⇔ F = G

Property 1 means that the difference between two representable values

cannot round to zero unless the two values are equal. This property can be

exploited to optimize code (for instance replacing left member of equivalence

by right member, which replaces computing one subtraction and one com-

parison by only one comparison). Figure 1.11 gives an illustration of why

subnormal mechanism is required to get this property to work. Difference

between two very near number that have exponent near to the minimal ex-

ponent can result in a value that is smaller than 2�min , with �min the minimal

normal exponent. Without subnormal mechanism, these values are not ex-

actly representable, so depending on the rounding mode, the result could be

zero even if the two values are not equal.

Table 1.3 summarizes the different decoding ranges for IEEE-754 binary16

format.

Operations

The IEEE-754 standard defines five rounding modes for elementary opera-

tions. The directed rounding modes towards +∞ and −∞ corresponds to the

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

19

Table 1.3: Interpretation of IEEE-754 binary16 encoding.

Representation Value Denomination

1 11111 1111111111
1 11111 …
1 11111 1000000000

Quiet NaN

1 11111 0111111111 Special values
1 11111 …
1 11111 0000000001

Signaling NaN

1 11111 0000000000 −∞
1 11110 1111111111

Negative
normal range

1 … … −1.� · 2�−1
1 00001 0000000000

1 00000 1111111111
1 00000 … −0.� · 2�min

1 00000 0000000001

1 00000 0000000000 −0

Negative
subnormal

range

0 00000 0000000000 +0
0 00000 0000000001
0 00000 … 0.� · 2�min

0 00000 1111111111

Positive
subnormal

range

0 00001 0000000000
0 … … 1.� · 2�−1
0 11110 1111111111

Positive
normal range

0 11111 0000000000 +∞
0 11111 0000000001

Signaling NaN0 11111 …
0 11111 0111111111 Special values

0 11111 1000000000
Quiet NaN0 11111 …

0 11111 1111111111

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

20 Numerical formats

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 1

�min

−

= 1.1111111 · 2�min

= 1.1111110 · 2�min

= 1.0000000 · 2�min−7

= 0.0000001 · 2�min

Figure 1.11: Subtraction of two floating-point values of minimal normal ex-
ponent �min.

one defined in section 1.3, with the notable exception that values above the

maximal representable numerical value are rounded to +∞ (resp. −∞). A

third rounding mode, towards 0, is defined as follows:

=05 (D) =

=
↑
5
(D) if D < 0

=
↓
5
(D) otherwise

Round-to-nearest is also supported with two tie-breaking rules:

• Ties-to-even rule specifies that the neighbor with representation ending

with a 0 bit should be returned. This allows an unbiased rounding error,

as there are as many midpoints above their ”nearest even” than midpoints

below.

• Ties-to-away returns the neighbor with higher magnitude. This rule has

”polarized” rounding error: negative midpoints are always rounded to

lower values, where positive midpoint are always rounded to higher val-

ues. It is however a bit less expensive to compute, as only one extra bit

after the last fraction bit of the result has to be known. In comparison,

computing correct ties-to-even also requires knowing if the value is exactly

a midpoint or not.

Compared to the fixed-point case, the distance between two successive

representable values is not constant. Reasoning in terms of absolute error

with floating-point is then quite complicated, so it makes more sense to use

relative error. For a real value D, and a rounding function =, the relative error

is

n =
=(D) − D

|D|
Inside a binade, the set of all representable normal values that share

the same exponent, the distance between successive values is constant. For

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

21

round-to-nearest, the biggest absolute error is obtained for midpoints. On

a binade of exponent � in the normalized range, distance between repre-

sentable values and midpoints is

X# = 2E�−1 · 2�

The minimal representable value inside the binade is ; = 2�. The relative

error committed on the binade is then bounded by

|nmax | =
; + X# −;
; + X#

=
2�−E�−1)

2� + 2�−(E�+1)

<
2�−(E�+1)

2�
= 2−E�−1

This maximal relative error does not depend on the binade. For directed

rounding, themaximumabsolute error inside a binade is twice themaximum

absolute error of round-to-nearest, so the bound on relative error is also dou-

bled. The same reasoning applies to each subnormal binade, but considering

the effective fraction width of the binade (which takes into account the lead-

ing zero bits in the denormalized fraction). Figure 1.12 shows the relative

error bound per binade when rounding to nearest IEEE-754 binary16 repre-

sentation. The relative error is important for very small values (reaching 1

for values that are rounded to zero), and decreases until the normal range is

reached, on which the error relative error bound is binade-independent.

IEEE-754 binary32 and binary64 fulfill the role of the all-purpose numeric

formats that are used when dealing with non-integral values of unknown

scales. Even the high number of redundant representation for NaN has found

usage, such as compact type information and value packing in dynamically

typed language interpreter, with the technique known as NaN-boxing [4].

However, this redundancy is more annoying with narrower formats, where

having more representable values would be preferable. Machine-learning is

an example of application class that does not need an important precision

but still requires values with an important dynamic range. Multiple encoding

scheme have been developed recently to meet the requirement of efficient

narrow floating-point representation.

DLFloat[5] is such a format. Its 16-bits representations regular decoding

process is those of an IEEE-754 format with E� = 9 and E� = 6. To reduce the

overhead of special values, NaN and infinities are fused so the special value

set of DLFloat only contains one element, NaN-or-Infinity. This element has

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

22 Numerical formats

2−29 2−22 2−15 2−8 2−1 26 213 220
2−12

2−10

2−8

2−6

2−4

2−2

20

F

U
p
p
e
r-
b
o
u
n
d
fo
r
� � �F−=N (

F
)

F

� � �

Figure 1.12: Bound on relative-error magnitude for IEEE-754 binary16 repre-
sentable range.

two redundant representations, that are when the fraction and exponent bits

are all set to one (the value of the sign bit is disregarded). All the other repre-

sentation for NaN and infinity in the regular IEEE-754 scheme are interpreted

as normal values, which increase the exponent range of one. The choice of

having two redundant representation of one special value instead of having

two distinct representation for infinity andNaN is done to simplify the special

case handling. For the same objective, the detailed rule of IEEE-754 specify-

ing which zero should be returned is ignored, and the two representations of

zero are perfectly equivalent. Finally, subnormal value support is dropped,

and the normal range is extended by one instead, which makes zero an irreg-

ular value regarding the encoding scheme.

Simpler NaN overhead reduction consists in taking a bigger exponent

width for the same total representation width. As special value always

reserve one exponent value, increasing the number of available exponents

decrease the proportion of redundant NaN representations. This is the ap-

proach that BFloat16 [6] (a 16-bit format having an exponent width of 8-bits,

similarly to IEEE-754 binary32) or MSFP8 andMSFP9 [7] (8 and 9-bits formats

having the same exponent width of 5 bits than IEEE-754 binary16).

Table 1.4 illustrates the trade-off that the three 16-bits formats binary16,

BFloat and DLFloat offers in terms of representable range, precision, and pro-

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

23

Table 1.4: Precision - dynamic - special-value representation trade-off for
mainstream 16 -bit IEEE-like floating-point formats.

Format wE wF Precision # binades Special value repr.

Binary16 5 10 2−10 40 3.125 %
DLFloat 6 9 2−9 64 ≈ 0.06 %
BFloat16 8 7 2−7 161 ≈ 0.39 %

portion of representation dedicated to special value encoding. Figure 1.13

gives a visual representation of the precision trade-off offered by these for-

mats.

1 1.01 1.02 1.02 1.03

Binary16 DLFloat BFloat

Figure 1.13: Representable values for mainstream 16bit IEEE-like formats on
[1, 1 + 2−5]

Posit encoding scheme

While previous schemes are all variation over the IEEE-754 binary formats,

completely different schemes also exist. This is the case of Posit encoding [8],

[9]. Posit encodes floating-point value using a mixed thermometer/positional

encoding of the exponent. A Posit format is parametrized by two natural in-

tegers, its width < and its exponent shift field width E�(. Regular positive

Posit values have their sign bit A, the leftmost representation bit, set to 0. A
sequence of ' identical bits constitute the regime of the representation, with

1 ≤ ' ≤ < − 1 .

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

24 Numerical formats

0 1 1 0 0 1 1 0

A ' �$' �(�

(a) Posit<8,2> encoding of 48

0 0 0 0 0 0 1 0

A ' �$' �(

(b) Posit<8,2> representation of 2−20.

Figure 1.14: Posit<8,2> representations decomposition.

When ' < <−1, the bit following the range acts as an end-of-regimemarker.

Then up to E�(bits constitutes exponent shift, and all the remaining bits con-

stitutes the fraction bits �. The represented value is decoded using the follow-

ing relation:

D = 1.� · 292E�(· 2�(

With 9 being computed out of the regime:

9 =

' − 1 if '[0] = 1

−' if '[0] = 0

Figure 1.14 presents the decomposition of two positive Posit<8,2> repre-

sentations. In the case of figure 1.14a, the range is constituted of 2 bits with

the value 1, so the encoded value is

[1.10]2 · 21·2
2 · 21 = 1.5 · 25 = 48

The regime can extend up to a point where it “pushes out of representa-

tion” � and �(bits. In this case, pushed out bits are considered having a value

of 0. This is the case on figure 1.14b. Here all the fraction bits and the first �(

bit are pushed out of the representation by the regime. The regime is consti-

tuted of 5 bits with value 0 so the encoded value is

1.0 · 2−5·22 · 20 = 1 · 2−20

Only exception to this scheme are 0, which is encoded with all bit set to 0,

and #0' for Not a Real, the result of invalid operation, that is encoded with

the sign bit set to 1 and all other bits set to 0.

The opposite of each representable posit value is also a representable

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

25

value. Except for 0, the opposite is obtained by taking the two’s complement

of the representation.

Posit arithmetic is saturating: operation results that are greater in magni-

tude that the greatest representable posit value are rounded to this greatest

value. Symmetrically, posit operations having a non-zero result with magni-

tude lower than the lowest non-zero representable magnitude are rounded

away from zero.

2−67 2−48 2−29 2−10 29 228 247 266
2−13

2−11

2−9

2−7

2−5

2−3

2−1

21

23

F

U
p
p
e
r-
b
o
u
n
d
fo
r
� � �F−=N (

F
)

F

� � �

Figure 1.15: Bound on relative-errormagnitude for posit<16,2> representable
range.

In the most recent version of the posit standard, E�(which was before

defined as log2(#) for standard posit formats has been fixed to 2 for all the

formats. Due to the varying length of the fraction encoding, the relative er-

ror of posit value is more binade-dependent than for IEEE binary encoding.

Figure 1.15 gives the bound on the relative error for representable posit val-

ues of the standard posit<16, 2> format. It can be seen that the format gives a

good relative precision for values around 1 (for posit<16,2> the relative pre-

cision is strictly better than IEEE binary 16 between 2−4 and 23), but degrades
when going to high magnitude exponent, similarly to what happens in the

IEEE subnormal range. All exponent in the representable binade range can-

not be properly represented (which corresponds to having the regime push-

ing the ES bits outside the representation), so in extreme cases the relative

error can even be larger than 1.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

26 Numerical formats

1.2.3 Logarithmic Number System

All formats introduced until now are only able to represent rational values.

This is not necessarily the case, as can be seen with Logarithmic Number Sys-

tem [10], [11] (LNS). LNS keeps the idea fromfloating-point of encoding anum-

ber as a value scaled by a power of a given radix V. However, the significand

is always 1, and the exponent is allowed to be non-integral. In radix V LNS,

the representation of a value D is thus a fixed-point number @, such that

D = V@

With this restricted definition, it is not possible to represent negative val-

ues. A sign bit is prepended to the representation to allow a sign-magnitude

encoding of negative values. This still does not allow the representation of 0,

so a special encoding is required for it if having it in the representable value

set is a necessity. For instance, the minimal exponent value can be dedicated

to it.

2−3 2−2 2−1 20 21 22 23

Figure 1.16: Representable positive values of an LNS systemwith representa-
tion of the exponent being a sfix(2,−3).

Figure 1.16 show the representable values for an LNS encoding scheme

having the exponent defined as an sfix(2,−3). The values form a regular grid

on a logarithmic scale. One example of representable irrational value for bi-

nary LNS is
√
2, represented as 2

1
2 . LNS has however the drawback of having

almost no representable successive integers. For instance, binary LNS can

represent 0, 1 and 2, but next representable integers are power of 2.

The rationale behind LNS is that it simplifies some elementary operations

computations. Indeed, the representation of the product of two values is just

the sum of their representations, and the power function evaluation is re-

duced to the computation of a product. However, this comes to the price of a

complex addition.

Indeed, for D0 and D1 two values such that D0 > D1, represented in LNS by

their logarithm :0 and :1, the computation of the representation of DA = D0 + D1
is evaluated as follow:

log2(DA) = log2(D0 + D1)

= log2
(
2:0 + 2:1

)
= log2

(
2:1 ·

(
1 + 2:0−:1

))
= :1 + A(:0 − :1)

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

27

with

A(F) = log2(1 + 2F) .

Contrary to fixed-point addition and product, no evaluation algorithm tak-

ing only the representation bits as input exists to evaluate A. Its evaluation re-

quires dedicated function approximation operators, which increases the cost

of computing it. The problem is similar for subtraction, and amplifies when

trying to compute exact sum of products.

1.3 Hardware arithmetic operators

The motivation of developing arithmetic digital circuits is to be able to per-

form computation. For instance, one can be interested in computing the eu-

clidean distance between two points (F0, G0) and (F1, G1). This consists in eval-

uating the function defined by

3 : (F0, G0, F1, G1) ∈ R4 ↦→
√
(F1 − F0)2 + (G1 − G0)2

Having numerical formats allows to represent the function inputs using

bit vector. The purpose of hardware arithmetic operators is to compute the

result of a given function applied on their inputs. Such an operator is obvi-

ously parametrized by the function it approximates, 5 . In addition, the format

of its inputs is given by its operand format list of, a <-tuple of numeric formats.

The size of the operand list matches the arity of the objective function. In ad-

dition, the destination format df is the numerical format according to which

the operator output is encoded.

As an example, an operator can be defined to approximate the distance

function 3, with all its inputs represented as 4-bits unsigned integers (corre-

sponding to ufix(3, 0)), and having its output encoded as an sfix(4,−2). This

operator would return 00101.00 (5) when applied to (4,0,1,4). A rounding re-

lation = ⊆ Ddf × Fdf specifying which values the operator is allowed to return

when the result is not exactly representable is the last operator parameter.

For instance, using the nearest neighboring as rounding relation for the ex-

ample operator specifies that for the inputs (0, 0, 1, 1) it can only return 1.25

or 1.5, the representable values that surround the (not representable) exact

value
√
2.

The formal semantics of the operator is that given an input tuple D, it re-

turns the representation of a value @̃(D) such that (5 (D), @̃(D)) ∈ =.
For a given input value tuple D, the difference between the operator result

and exact result is n(D), the approximation error of the operator for this input.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

28 Field-Programmable Gate Arrays

n(D) = 5 (D) − @̃(D)

This work mostly focuses on the worst case absolute error of the operator

n = max
D

|n(D) |

Once an arithmetic operator is fully specified, it can be implemented on

real hardware. Implementing an operator consists in finding a succession of

elementary operations that will transform inputs representations to output

representation. These elementary operations depend on the type of circuit

chosen for the implementation. For instance on CPU it consists in what is

available through the instruction set. This thesis is focused on arithmetic on

FPGAs, the next section describes this kind of device.

1.4 Field-Programmable Gate Arrays

The process of developing integrated-circuits comports some very high fixed

costs related to the manufacturing process. In order to avoid paying these

costs for dysfunctional circuits, lots of efforts is made to ensure circuit design

correctness before starting the manufacturing process. Functional correct-

ness can be partially tested through simulation on CPUs. However, it can be

very slow for big design depending on the granularity of the simulation. Be-

sides, this does not always allow to test the circuit system integration. This is

to allow the fast simulation of arbitrary IC designs that Field-Programmable

Gate Arrays (FPGAs) have been originally developed. Nowadays, they are also

used as computation accelerators or used as network stream filters.

1.4.1 FPGA architecture

At a coarse grain FPGAs consist (as their name suggests) in a collection of

reconfigurable logic blocks. Configuring the FPGA “programs” the logic blocks

of the device to make it emulate a specific circuit.

Look-Up Tables

At a finer grain, FPGAs can be seen as a grid of interconnected programmable

boolean function evaluator. The logic element at the core of boolean func-

tion evaluation are Look-Up Tables (LUT). They consists in very smallmemory

blocks. For instance, on Xilinx UltraScale architectures [12], LUTs are 2-bits

memory addressed by a 5-bits word. These LUTs can be used to evaluate any

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

29

boolean function of five inputs, with at most two outputs. Extra logic at the

LUT output enable to choose one of the two outputs based on a sixth input.

This setting allows the LUT to compute any boolean function of 6 inputs.

The competing Intel Stratix 10 architecture [13] is based on 4 inputs LUTs

that are grouped by 4 in what the architecture call an Adaptative Logic Mod-

ule (ALM). In its widest configuration, an ALM can also be used as a 6-bits LUT

of one output.

Table 1.5 show the (compressed) content of a 6-bits LUT that correspond to

a 4:1 multiplexer. The output = of the function is the value of the input signal

7(, with (the selection signal.

Table 1.5: LUT content for evaluating a 4:1 multiplexer.

(73 72 71 70 =

0 0 x x x 0 0
0 0 x x x 1 1
0 1 x x 0 x 0
0 1 x x 1 x 1
1 0 x 0 x x 0
1 0 x 1 x x 1
1 1 0 x x x 0
1 1 1 x x x 1

Eachbit of a vector returnedby a function canbe seen as being the result of

an independent function. As a result, in the general case, it requires < times

more LUTs to compute a function returning a <-bits vector than a function

returning a single bit.

Function ofmore input bits canbe constructed by splitting their truth table

in multiple LUTs, each one adressed by the same input bits. The LUT result

to keep is selected using a multiplexer controlled by the remaining input bits.

The multiplexing can be built using LUTs parametrized with the truth table

of table 1.5, or using fabric built-in multiplexers.

Routing

The role of the routing infrastructure is to allow connecting resulting signals

to LUT inputs, multiplexers or other built-in resources. Routing basically con-

sists in a wire grid surrounding logic elements. Multiplexers programmed

during FPGA configuration select the endpoints for each routing wire. That

way, arbitrary connection pattern can be implemented.

Number of LUTs available in recent high-end FPGAs exceed 106. Having
a dense connection graph between each LUT input and outputs is then im-

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

30 Field-Programmable Gate Arrays

possible. Besides, physical distance between LUTs has also to be taken into

account, as the time needed for a signal to propagate along a wire that cross

the entire die is waymore important than to go fromone LUT to its immediate

neighbor. That is why routing is hierarchical, with low latency and dense con-

nection between neighbor LUTs, and slower and sparser connection between

distant LUTs.

LUTs are grouped to form coarser blocks (called respectively Logic Array

Block and Configurable Logic Block in stratix 10 andUltraScale architectures).

These blocks contain resources to combine efficiently their LUT outputs in

useful ways. For instance, an UltraScale logic CLB slice contains all the multi-

plexers required to group its 8 LUTs into 4 functions of 7 bits, 2 function of 8

bits or one function of 9 bits.

In the general case, connecting a LUT output to the input of another LUT

requires passing through routing, which is at least one order of magnitude

slower than the LUT output computation latency. This is quite detrimental

to computations involving dependency chains. This issue arises for instance

when building adders.

Specialized primitives

A natural way to implement an adder of two E-bits integers is to use E LUTs

configured as (1-bit) full adders. The corresponding truth table is reported in

table 1.6. The input bits are connected to 70 and 71. The output carry of the

<-th full-adder is used as input for the (< + 1)-th adder. The general scheme is

reported on figure 1.17. With this setting, the carry propagation requiresE−1
”routing” steps, which dominates the overall latency of the computation.

For this specific case, UltraScale and Stratix 10 both offer fast carry lines.

These lines allow fast propagation of a carry to the neighbor LUT. Schematic

for UltraScale architecture reported on figure 1.18 illustrates the functioning

of fast carry chain. Each LUT is configured as an half-adder (performing the

addition of two bits, which corresponds to the truth table of table 1.6 keeping

only the lines where 27< = 0). In the UltraScale case, the = result goes to the

LUT output $6 and the 2=CB output goes to $5. The carry propagation is done

after LUT output. The fast 2=CB result of LUT A will be xor-ed with the = result

of LUTB, computing the correct $1 value. And the = value from LUTB controls

the MUXCY multiplexer to send the correct carry signal to COUT. If the LUTB

= value is ‘0’, then the input carry cannot propagate, so the LUTB 2=CB is sent to

COUT. When the value is ‘1’ then the LUTB 2=CB has necessary the value ‘0’ and

a carry will be propagated only if 27< value is ‘1’, that is why in this case the

27< signal is propagated to COUT. As the neighbor LUTs are near to each other

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

31

Table 1.6: Full-adder truth table.

70 71 27< = 2=CB

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

0< 0<−1 … 01 00 + 1< 1<−1 … 11 10

+
71 70

27<
=

2=CB
+

71 70

27<
=

2=CB
+

71 70

27<
=

2=CB
+

71 70

27<
=

2=CB…

=<+1 =< =<−1 . . . =1 =0

Figure 1.17: Wide adder implementation by Full Adder chaining.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

32 Field-Programmable Gate Arrays

and the logic is simpler than full routing logic, fast carry propagation is faster

than routing (and onUltraScale devices at least, has even smaller latency than

LUT read).

Figure 1.18: Part of the schematic of the UltraScale fast carry chain Source:
[12].

Fast-carry is an example of primitive added in the FPGA fabric to allow fast

implementation of frequent operations (wide addition in this case). DSPs are

another example of specialized blocks that provides efficient implementation

of basic operations. They provide for instance fast small product computa-

tion (27x18 bits products in the case of UltraScale DSPs [14], 27x27 for Stratix

10). Other provided operations includes pre-adding or bit-pattern compari-

son. Stratix 10 also offers hard operators for IEEE-754 binary32 floating point

arithmetic.

In addition to computation primitives, memory primitives are also pro-

vided to avoid wasting routing to build large memories out of LUTs. Special-

ized LUT blocks to build distributed RAM or Block RAM are example of such

primitives, with different size/latency trade-off.

1.4.2 Computing with FPGAs

While their original purpose was emulating arbitrary ASIC design, FPGAs are

used nowadays as computation accelerators[15], [16]. They are well suited

for processing data streams. The stream inputs can be read from FPGA in-

terfaces or created out of a block of data retrieved from global memory. On

CPU, the intermediate results of a computation are stored on general purpose

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

33

registers, and spilled back to memory if not enough registers are available.

In opposition, FPGAs can be seen as computation graph processor. One FPGA

configuration corresponding to one computation graph. As long as the input

of a primitive (LUT or DSP for instance) does not change, the intermediate

result computed by this primitive is preserved locally. By using the registers

present at logic block outputs, it is possible to build arbitrary deep computa-

tion pipeline. The critical path between two registers determines the clock

frequency at which the FPGA design can run. The latency to process one ele-

ment is the product of the clock period and the pipeline depth. If the stream is

dense enough to keep the pipeline full, one stream element can be processed

at each clock cycle, ensuring good throughput.

In addition, to reduce the latency, spatial parallelism can be exploited. On

a single computing graph, all independent computations can run in parallel.

Besides, multiple computation graphs can also coexist on the same config-

uration. They can be efficiently synchronized in a dataflow fashion: FIFOs

are inserted at the interface between two computation graphs, and a graph

computation starts only when all its input queues have elements ready to be

processed.

1.4.3 From computation graph to FPGA configuration

The process of getting an FPGA configuration from a computation graph in-

volves multiple steps. The first step, pipelining, requires specifying how to

split the computation graph in multiple pipeline stages. This split will deter-

mine which computation nodes should be registered. The result of this stage

is a register transfer level description of the computation graph.

The second stage of this compilation process is synthesis, which performs

logic optimization before mapping arbitrary computation to FPGA primitives

(e.g. LUTs andDSPs). The resulting is a logical netlist describing each required

FPGA primitive, the connection graph between them and their configuration.

The final stages, place and route, determine the physical location for each

of the primitive of the synthesis netlist and the routing configuration required

to get the specified connectivity. At the end of this stages a physical netlist

fully specifying the FPGA configuration is produced. This netlist can be used

to produce an FPGA bitstream: the binary file that contains the device config-

uration.

Resources and timing analysis are performed on the Synthesis and Routed

netlists to ensure that the computation graph fits on the device and determine

the clock frequency at which the configuration can run.

Figure 1.19 schematizes the different compilation stages for a simple com-

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

34 Field-Programmable Gate Arrays

0 1 2

+

×

=

(a) Computation graph

0 1 2

+
Stage 0

Stage 1×

=

(b) Pipelining

0 1 2

Register
LUT Add

Register

DSP Prod

=

(c) Synthesis

0
1
2

=

LUT
Add

DSP
Prod

(d) Place and Route

Figure 1.19: Schematic representation of the compilation stages from compu-
tation graph to logical FPGA primitive netlist.

putation graph computing = = (0 + 1) × 2. Choices made at an early stage have

impact on the next stages. For instance, the register insertion point specified

at the pipelining stage forces to 0 + 1 as an intermediate result. This hinders

the usage of the DSP pre-adder, which would have otherwise allowed to fuse

all the computation in one DSP Primitive. The task of pipelining is then quite

complicated, as it should be aware of how the computation will be mapped

to hardware primitives.

1.4.4 Computation graph descriptions

Hardware Description Languages

On the traditional FPGA configuration workflow, the pipelining step is done

manually. The pipelined computation graph is given to the tool chain in a

HardwareDescriptionLanguage (HDL) such asVerilog [17] or VHDL [18]. List-

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

35

ing 1.1 gives an example of a Verilog description of a circuit corresponding

to the pipelined computation graph of figure 1.19b. A register is manually

inserted to create a pipelined stage. As it can be seen on this example, tra-

ditional HDL description is at such a low-level that the programmer has to

specify that registers are assigned on clock signal positive edges. Besides, the

distinction between blocking and non-blocking assignment can be confusing.

In addition, despite these languages being standardized, their support in com-

mercial tools is incomplete, each toolchain supporting a different subset of it.

Finally, traditional HDL arewell suited to give a hardware description, but of-

fer only very limited possibility tomanipulate a description. For instance, it is

not easy to get a generic ”protocol” behavior, that would specify a generic in-

terface, and add this behavior easily to existing components. This limits dras-

tically the possibility of developing standalone generic reusable hardware de-

scription in these languages. The reusability and genericity is then obtained

by developing generators in other languages that produce HDL description

on demand.

Listing 1.1: Verilog description of a circuit computing (0 + 1) · 2 for 12-bits
inputs.

1 module PreAddProd(
2 input clock,
3 input reset,
4 input [11:0] A,
5 input [11:0] B,
6 input [11:0] C,
7 output [24:0] result
8);
9 reg [12:0] preadd_res;

10 assign io_result = preadd_res * C;
11 always @(posedge clock) begin
12 if (reset) begin
13 preadd_res <= 13'h0;
14 end else begin
15 preadd_res <= A + B;
16 end
17 end
18 endmodule

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

36 Field-Programmable Gate Arrays

Hardware Construction Languages

All these constraints hinder FPGAs adoption. To relax them, new generation

of languages, hardware construction languages (HCL) have been developed.

Usually, they consist in domain specific languages embedded in a general pur-

pose host programming language. Developing hardwarewith these tools con-

sists inwriting a software application that builds a hardware descriptionwith

the embedded language at runtime. Access to the host language allows the de-

velopment of integrated component libraries, and higher level libraries that

combine these components. Functions are provided to convert these repre-

sentations to traditional HDLs. The most significant example of such tools is

Chisel [19], that uses Scala as host language. Listing 1.2 gives a description

of the same circuit using chisel. The clock and reset signals are completely

hidden in this description. Inserting a register is done using a dedicated class

(here a register with initial value), and the custom assignment operator (:=
symbol) is overloaded in a way that makes sense for register (update on clock

rising edge and reset on reset). It is possible to get a handle on the clock signal

if required, but the goal is to have primitives with good default behavior that

avoid having to manipulate it directly. Line 13 shows how to print the Verilog

corresponding to a PreAddProd.

Listing 1.2: Chisel description of a circuit computing (0+1) ·2 for 12-bits inputs.

1 class PreAddProd extends Module {
2 val io = IO(new Bundle {
3 val A = Input(UInt(12.W))
4 val B = Input(UInt(12.W))
5 val C = Input(UInt(12.W))
6 val result = Output(UInt(25.W))
7 })
8

9 val preadd_res = RegInit(0.U(13.W))
10 preadd_res := io.A + io.B
11 io.result := preadd_res * io.C
12 }
13 println(getVerilog(new PreAddProd))

High-Level Synthesis

While improving the usability by reducing the amount of boilerplate to de-

scribe components, and offering genericity, these recent HCL stay at a very

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

37

lowabstraction level. In order to broaden the audience evenmore, High Level

Synthesis (HLS) tools have been developed. The aim of these tools is allowing

programmers to give behavioral description of circuits as programs written

in high level programming languages. While Modern HDL uses modern lan-

guages to generate circuit description, in HLS the program is the circuit de-

scription. Both AMD and Intel offer an HLS solution to program their FPGA,

respectively Vitis HLS [20] and Quartus HLS. Non-vendor alternatives exist

both in academia, such as Bambu [21] or in the industry, such as LegUp (which

originated from an academic project but is now supported by Microchip).

Most of the tool use C++ as their source language. As with HDL, different

subsets of the language are supported by the different tools. A first point of

divergence is the target C++ standard version, which defines which syntactic

constructs are supported. Apart from this, themain divergences is the level of

support of the standard library constructs, especially regarding multi-thread

and memory allocation related library functions. The work presented in this

thesismostly uses Vitis HLS,which officially supports C++14, without dynamic

allocations and no standard library containers.

Listing 1.3: HLS C++ description of a circuit computing (0 + 1) · 2.

1 int preAddProd(int A, int B, int C) {
2 return (A + B) * C;
3 }

Listing 1.3 shows an example of a pure C++ HLS code describing the same

computation as on the HDL/HCL examples. This code does not contain any

pipeline related information. It is the role of the compiler to find a good

pipelining for the implementation in consideration with the compilation ob-

jective (clock frequency, area or latency minimization).

Describing the computation graph that should be implemented on FPGAs

directly as a language function allows its integration in more sophisticated li-

braries. One example of this is SYCL [22], a C++ library that allows to program

heterogeneous devices in a single-source fashion. Listing 1.4 gives an example

of a SYCL application. The code of the lambda parameter of the submitmethod

call will be compiled for FPGA. Invocation of this FPGA code from the CPU ap-

plication and data synchronization between host and devicememory is taken

care of by the SYCL runtime. While the buffer programmingmodel presented

here is not always suitable for efficient FPGAs implementation, Intel has pro-

posed an extension for a pipe based alternative programming model that is

more fit to FPGAs [23].

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

38 Field-Programmable Gate Arrays

Listing 1.4: Simultaneous definition and call of an FPGA kernel computing
(0 + 1) · 2.

1 int main() {
2 // Declare buffer of one element
3 sycl::buffer<int> abuff{{1}}, bbuff{{1}}, cbuff{{1}}, rbuff{{0}};
4 // Write values inside the buffer on host (CPU) side
5 { abuff.get_access()[0] = 5;
6 bbuff.get_access()[0] = 24;
7 cbuff.get_access()[0] = 17; }
8 // Create a task queue that will run on FPGAs
9 sycl::queue Q{sycl::fpga_selector{}};

10 {
11 Q.submit([&](sycl::handler cgh){
12 // Will be executed on FPGA
13 auto a = abuff.get_access(cgh)[0];
14 auto b = bbuff.get_access(cgh)[0];
15 auto c = cbuff.get_access(cgh)[0];
16 rbuff.get_access(cgh)[0] = (a+b) * c;
17 });
18 }
19 { // Will print the result of (24+5) * 17
20 std::cout << rbuff.get_access()[0] << "\n";
21 }
22 return EXIT_SUCCESS;
23 }

It is possible for the user to specify constraints on the implementation di-

rectly from the code, by using custom pragmas or attributes. For instance, the

latency of the function, the pipeline initiation interval, global limit on primi-

tive usage or specific mapping of intermediate computation to defined prim-

itives is controllable by pragmas. Some tools also allow the manual insertion

of register using a special library type or a built-in function. This is however

not the case anymore in recent Vitis HLS versions.

While HCL targets hardware developers wanting an improved productiv-

ity over traditional HDL flows, HLS tools target software engineers. The ap-

proach is more iterative and holistic. Full algorithm describing the intent of

the circuit is first written. After functional verification, tuning can be per-

formed by using pragmas. A big advantage of using a compiled software lan-

guage for describing the behavior of the circuit is the possibility of very fast

functional verification (by compiling the circuit code as software and run-

ning it on CPUs, with access to regular software debugging tools). Besides, co-

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

39

simulation can be performed to check the correctness of the generated hard-

ware.

1.5 High-Level Synthesis arithmetic support

C++ having initially been designed with CPUs as sole target, current standard

version offers only basic integer type of power of 2 multiple of 8 bits up to 64

bits. While the introduction of the arbitrary width BitInt type of C23 [24] will

probably find its counterpart in next C++ standard, current system provides

their own library types to manipulate arbitrary width integer. For instance,

the equivalent 12-bit circuit in Vitis HLS would be defined as in listing 1.5.

Careful choice of numerical formats for computation is a way to reduce

area and latency by avoiding computing overprecise results. To this extent,

HLS tools offer library types to use custom numeric formats, in addition to

languages built-in types. The first class of these types are arbitrary width

integers. The corresponding types are ac_int and ap_int for Quartus HLS

and Vitis HLS respectively. These types are parametrized by a width and a

boolean indicating whether they are signed. Signed integers negative values

are represented in 2’s complement. Parametrized fixed-point types are also

provided.

Listing 1.5: HLS C++ description of a circuit computing (0 + 1) · 2 with 12-bits
inputs.

1 #include <ap_int.h>
2

3 using uint12_t = ap_uint<12>;
4

5 ap_uint<25> preAddProd(uint12_t A, uint12_t B, uint12_t C) {
6 return (A + B) * C;
7 }

For all these types, only basic arithmetic operations (addition, subtraction,

product, division and modulo) are supported. In particular there is no sup-

port for usual transcendental functions evaluation. To get this functionality,

either the user write its own arithmetic operator (which is a bit tedious if re-

quired for each computation and breaks completely the accessibility purpose

of HLS) or interface with an externally provided operator.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

40 High-Level Synthesis arithmetic support

1.5.1 HDL arithmetic core generators

Externally provided operators can be provided in the form of HDL descrip-

tion. Most of the time, these descriptions are produced by arithmetic cores

generators. These tools take a description of the operator they should produce

(either in text form or by providing a GUI), the hardware target for which to

produce it, and output an HDL description of an implementation of the oper-

ator optimized for this target. An example of such generator is FloPoCo [25].

Listing 1.6 gives an example of the command line to produce a FusedMultiply

Add operator (computing = = 0 · 1 + 2 with a single rounding) using FloPoCo.

flopoco target=kintex7 IEEEFMA WE=8 WF=23

Listing 1.6: Flopoco command line to produce an IEEE-754 binary32 Fused
Multiply Add operator for Kintex 7 architecture.

HDL files produced by a generator can then be integrated into an HLS pro-

gram. Theway to implement this integration is not standardized and depends

on the toolchain. In general, the integration of an exogenous HDL IP inside an

HLS program impacts the synthesis QoR. The external IP is already pipelined

and can require that its inputs are registered. This has the effect that the IP is

seen as a logic and pipelining optimization barrier for the HLS compiler, po-

tentially increasing the latency and surface compared to an integrated HLS

IP.

1.5.2 Toward on-demand HLS arithmetic operator implementa-

tion ?

To summarize, it is possible to programFPGAs at different level of abstraction.

• HDL allow to have fine-grain control over how things are implemented, but

they are very verbose even for frequent operations. Their specification sup-

ports only very limited genericity.

• HCL provide a neat interface to generate HDL, allowing better expressivity

and less verbosity while allowing almost the same fine-grain control than

HLS, and offering more genericity by providing access to a general purpose

programming language.

• HLS provides construct of a higher level of abstraction, enhancing the pro-

ductivity of component writing. Describing a component as a host language

program allows integration in a broader software environment, however

in the current state HLS lacks some possibility of fine-grain tuning of im-

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

41

plementation. One of such limitations is the lack of support of application-

specific arithmetic primitives.

Can we have HLS with custom arithmetic operator support and fine grain

control over their implementation ? This is the question to which this thesis

aims at giving a (partial) answer. Chapter 2 will present a first approach to

solve this issue with pure C++ library code. To support more complex use-

cases, chapter 3 will present alternative solutions that require compiler sup-

port.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

2
A portable HLS-enabled library for custom numerical

formats

This chapter introduces MArTo [26], a proof-of-concept HLS library for basic

operation support on customnumeric formats. This library implements prod-

uct, subtraction anddivision operation for arbitraryfixed-point, IEEE-754 and

posit formats. The library is written in pure C++, in order to be portable on

various HLS toolchains.

The support of the elementary operations is based on arbitrarywidth inte-

gers arithmetic. Main HLS tools provide specific libraries for using this arith-

metic. In order to be portable across toolchains, MArTo operators are built

using a zero-cost abstraction layer for these libraries. This layer comes into

the form of another library: hint [27]. It is introduced in section 2.1.

2.1 Hint, a portable abstraction layer for arbitrary

width integer arithmetic

Arbitrary-sized integers are extremely useful when designing custom opera-

tors: for instance, IEEE-754 operators have 11-bit exponents and 52-bit frac-

tions at the inputs and outputs. The adder data-path comports a 53-bit explicit

fraction and a 56-bit data after effective addition. For multipliers, the inter-

mediate mantissa product has a width of 106 bits. Being able to manipulates

such integers is then an important feature forwritingHLS-enabled arithmetic

operators.

2.1.1 Integers and HLS

The support of arbitrary-sized bit vectors is not standardized among HLS

tools. The nearest to a common standard is the ac_int templatised C++ library

43

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

44 Hint, a portable abstraction layer for arbitrary width integer arithmetic

developed at Mentor Graphics [28]. It is supported by the industrial tools

Intel HLS and CatapultC, and the academic tool GAUT. However, the HLS tool

with the most traction in reconfigurable computing is probably Xilinx Vitis

HLS, and it uses a proprietary library called ap_int.
While ap_int and ac_int provide almost functionally equivalent support

for basic arbitrary-sized signed and unsigned integers, their interfaces differ,

and they do not have equivalent support for operations such as leading zero

count.

Other tools only support widths up to 64-bits: the academic tool Augh [29]

defines 64 new non-standard base types int1 to int64. Two other tools, LegUP

and Panda/Bambu only support the standard C integer types so code must be

written with only 8-, 16-, 32-, and 64-bit integers. If only standard-width types

are available, a 17-bit integermust be emulated in the code using 32-bits num-

bers and bit-masks. These masked operations will hopefully be transformed

to 17-bits integer operations during some optimization step. However, if this

happened late in the process, the HLS schedule can be produced considering

32-bits operations, giving a pessimistic scheduling. Besides, this adds a lot of

clutter in user code, and reduce its readability.

The necessity for the support of arbitrary width integer arithmetic slowly

percolates in C/C++ standard, as it can be seen with the recent inclusion of the

BitInt(n) types in C23. However, the semantics for these new types is under-

specified. For instance, the result of overflowing operations on signed integer

is “undefined behavior” in C/C++. This means that each implementation is

free to return what it wants when such case arises.

Strong semantics

C++ is strongly typed, which means that each value has a type. Being able to

handle bit-precise integer types is a great way to control the bus/register size

of the corresponding hardware. While it is straightforward to control the

type of declared variables, it is more complicated to define the exact meaning

of compound expressions involving implicit intermediate types, and implicit

type conversions.

For instance, the type of intermediate result (a+b) in the expression

(a+b)+c is well specified in C/C++, but this specification is sometime non-

intuitive and error-prone. If both a and b are unsigned 8-bit integers

(declared with type uint8_t), the intermediate result (a+b) is implicitly

promoted to the int type, that is implementation-defined but should have a

width of at least 16 bits. If not optimized out by the compiler, this implicit

conversion entails a waste of at least 7 bits. These rules have been established

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

45

to limit the risk of accidental overflow, but they do not actually catch all cases.

An example is given in listing 2.1 with operands having types of different

signedness. In this example, C/C++ conversion rules specifies that b should

be converted to uint32_t before performing the computation. That is why no

sign extension is performed when the result is affected to a wider type.

1 #include <iostream>
2 #include <cstdint>
3

4 int main() {
5 uint32_t a = 1;
6 int32_t b = -1;
7 int64_t res = a*b;
8 // print 4294967295 (= 2^(32) - 1)
9 std::cout << res <<'\n';

10 return 0;
11 }

Listing 2.1: Example of a counter-intuitive C intermediate result type.

Mainstream tools such as VivadoHLS or CatapultC tend to choose the im-

plicit intermediate types in a way that ensures that no information is lost. For

instance, if both a and b are 32-bit integers, the implicit type of (a+b) should
be a 33-bit integer to hold the possible carry out, unless the result of (a+b)+c
is itself finally stored in a 32-bit integer, in which case all the arithmetic may

happen modulo 232. But this should nevertheless be specified.

Things are a bit trickier with shifts: left shifts may or may not lose the

shifted out bits. Right shifts always loose the shifted-out bits, but in the signed

case they may perform a sign extension, where the size of the intermediate

format will matter. An example is the program from listing 2.2.

With gcc 11.2 for x86_64 architecture, execution of the code from listing

2.2 prints 255 when compiled with the -O0 flag and 0 when compiled with the

-O2 flag. This can be explained by different intermediate types for the inter-

mediate result (a 64-bit int in the -O0 case, a 32-bit type in the -02 case). This

actually conforms to the C++ standard, according which shifting a value of a

number of bits bigger than the format width is undefined behavior. Such cor-

ner cases (C++ standard is full of undefined behavior) advocate for a library

with consistent and completely specified semantics, in order to avoid users

that are not aware of them to fall in this kind of trap.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

46 Hint, a portable abstraction layer for arbitrary width integer arithmetic

1 #include <iostream>
2 #include <cstdint>
3 int main() {
4 int32_t a,b,s;
5 a = 255;
6 s = 33;
7 b = (a<<s) >>s;
8 std::cout << b << "\n";
9 }

Listing 2.2: Undefined behavior on shifts.

2.1.2 Core arithmetic primitives for floating-point operators

Most floating-point operators (be it IEEE-754, posit-like, or other) rely on the

following basic components:

• Arbitrary-precision addition, subtraction, multiplication. Multiplica-

tion canbe implemented out of addition, but on reconfigurable targets it can

also be built by assembling DSP blocks in a clever way. Therefore, multipli-

cation should be a primitive, and its implementation is best left to back-end

tools that know the target. Division and square root can be implemented

either out of addition and tabulation, or out of multiplications. Whether or

not this algorithmic choice should be left to the back-end tools is out of the

scope of this thesis.

• Arbitrary precision shifters. There are standard operators in C/C++ for

shift operations: << and >>. As we have already observed, it doesn’t mean

that their behavior is completely defined by the standard. In a processor, we

usually have shift instructions that input the shift value and an integer, and

output an integer of the same size (with possible loss of information). The

C shift operators expose these instructions. Now if we are generating hard-

ware, it is interesting to generalize as depicted in Figure 2.1: a shifter may

be defined by an input width E7 , a maximum shift distance 3, and an out-

put width E=. The shift input will be an integer on dlog2 3e bits. The shifter
can be errorless (no shifted-out bits) if E= ≥ E7 + 3. Besides, the ”fill” bit of

the shifter can also be specified (for instance to use the sign bit on a right

shifter). Figure 2.9 gives an in-situ illustration of shifter usage.

• Arbitrary precision leading-bit counters. These operators count the num-

ber of successive leftmost bits sharing the same value. Leading-zero coun-

ters (LZC) and Leading-One counters (LOC) return a non-zero count only if

the bits value is what they count (respectively ‘0’ and ‘1’). For instance, LZC

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

47

shifter
by max. 3

E7

dlog2 3 e

E=

shifter

E7

dlog2 (E� + 2) e

2E� + 3

Figure 2.1: A generic shifter (left) instantiated (right) in a floating-point adder
with E� fraction bits

of the signal 0001010 is 3, while LOC of the same value is 0. Leading-Zero

or One counter (LZOC) as an extra input bit to choose what to count at run-

time. This allows for instance to build leading-bit counters, that behaves

like a LZC if the leftmost bit is 0, else like a LOC. The two kind of counters

are presented on figure 2.2.

LZC

,7<

dlog2 (,7<) e

(a) Leading-zero counter

LZOC

,7<1

dlog2 (,7<) e

(b) Leading zero or one counter

Figure 2.2: Generic leading-bit counters.

To reduce the data-path width and improve the delay, it is often useful to

merge these operators:

• Addition with carry-in is in principle no more expensive than plain addi-

tion. Writing 0 + 1 + 1, or 0 + 1 + 2 where one of the three variables is a single

bit, should translate to a single adder.

• A shifter-sticky is a shifter whose output size is the same as the input size.

Therefore, bits may be shifted out. The logical OR of shifted-out bits, histor-

ically called sticky-bit, is computed in parallel with the shift result. When

computing a floating-point sum, fraction alignment is performed, by right-

shifting fraction of the operand with lower exponent. The sticky bit keeps

trace of those shifted-out bits to allow correct rounding. Compared to the

naive alternative of computing a shift on a right-padded input before com-

puting an OR-reduction on the output, performing the steps in parallel al-

lows to reduce the operator latency and avoid the cost of the MUXes to shift

bits that have no other aim than to be OR-reduced.

An in-situ example of shifter-sticky usage is visible on figure 2.7, page 68.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

48 Hint, a portable abstraction layer for arbitrary width integer arithmetic

• A normalizer is a combined leading-zero counter and shifter. It is a

leading-zero counter that, at the same time, shifts the input so that the

leading bit of the output is the first non-zero bit. It outputs the normalized

result, along with the number of zero bits that were counted. Posits make

use of a similar combined leading-bit-counter and shifter, as illustrated on

figure 2.5, page 65.

All the tools support C++ primitives (addition, multiplication, shifts), al-

though the actual behavior does not necessarily follow C++ semantics. Some-

times, they are implemented as highly optimized IP cores. Sometimes, they

are implemented as libraries.

The most notable missing basic operation is the leading bit count. Among

the fused operations, only the add with carry-in is sometimes supported.

2.1.3 Type safety for arbitrary-precision integers in HLS

Current HLS integer libraries perform very little compile-time sanity checks.

This section describes theHint library variable declaration and its elementary

methods along with their semantics and checks. These basic methods are

used to build more complex operators. Code from listing 2.3 is an illustration

of code using the hint library.

1 template<template<unsigned int, bool> class Wrapper>
2 // Takes a 12-bit vector as input,
3 // Consider it as the concatenation of two unsigned integer
4 // Compute the LZC of their sum
5 Wrapper<3, false> computation(Wrapper<12, false> input) {
6 auto high = input.template slice<11, 6>();
7 auto low = input.template slice<5, 0>();
8 auto sum = high + low; // 7 bits, unsigned
9 return lzc(sum); // 3 bits, unsigned

10 }

Listing 2.3: Example of hint code computing the leading-zero count of the
sum of two 6-bits integers provided concatenated in a 12-bits vector.

Variable declaration

The Hint library defines templated wrappers around underlying backends.

A wrapper is a template class parametrized by an unsigned int describing

the width of the represented integer type and a boolean defining whether it

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

49

is signed. The library offers wrappers for the main arbitrary precision in-

teger library: ap_int and ac_int for HLS, and GMP for software libraries.

These wrapper template classes can be used as a template template param-

eter to build backend agnostic functions. The templated computation func-

tion of listing 2.3 illustrates this. It can for instance be instantiated with pa-

rameter of type VivadoWrapper<12, false> (a wrapper around ap_uint<12>),
or IntelWrapper<12, false> (that wraps an ac_int<12, false>). Using C++20
concepts could simplify the syntax, but at the moment of writing this version

of the standard is not supported by HLS toolchains.

Arithmetic operation result type and value assignment

The resulting type of any arithmetic operation is always the smallest type that

ensures that no overflows can occur. For instance, the addition of two 6-bit

integers at line 8 of listing 2.3 results in an 7 bit integer. This is similar to the

choice made by industrial toolchains libraries. In these libraries however,

assignment to a variable of mismatched size is a cause of silent truncation

or padding. This can result in counter-intuitive behavior. For instance, Vi-

tis HLS gives access to a built-in method __builtin_clz that takes an int as

parameter and returns its leading-zero count. This function can be used on

an ap_uint<24> without any error signaled by the compiler. However, as it is

only defined for an int, the value will be silently extended to a 32-bit integer

and the resulting leading-zero count will be too high of 8 compared to the

expected result.

The hint library diverges from this approach by only allowing assignment

of matching expression types. Without explicit truncation or padding, a com-

pilation error fires when attempting to assign non-matching expression to

a variable. In listing 2.3 for instance, if the return type of the function has

been declared as Wrapper<5, false>, the return statement of line 9 would

have been invalid, as the LZC on a 7-bit vector is a 3-bit unsigned value.

Whenporting to hint some arithmetical operators initially developedwith

ap_int, this strict semantics allowed the discovery of some place where in-

ternal computations were silent padding occured. While this issues did not

affect the operator functionality, resizing correctly the relevant intermediate

signals allowed to get a better default pipelining.

Slicing

Slicing consists in extracting a contiguous sub-vector from a bit vector. For

instance, the slice 1101 can be extracted from the bits (3 to 6) of the vector

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

50 Hint, a portable abstraction layer for arbitrary width integer arithmetic

01101101. This operation is pervasive in arithmetic operators. It is for in-

stance used to separate the different fields from an IEEE-754 representation.

Slicingmethods for ac_int and ap_int have different restrictions, andmay

therefore not be interchangeable. In ac_int, a bit slice of size S starting as

bit weight lsb of the variable var is written var.slc<S>(lsb). Conversely,

the ap_int slicing method is var.range(msb,lsb) where msb and lsb are the

weights of the MSB (most significant bit) and LSB (least significant bit) from

which to slice var.
The difference is that the value of Smust be known at compile time (more

specifically, it should be a constexpr value). Therefore, a slice whose size

varies in a loop will compile using ap_int but not using ac_int. However, the

synthesized hardware bus size is fixed for the whole loop block (it makes no

sense to “add dynamically” wires during the loop iterations1). So the choice

made by ac_int seemsmore judicious as it allows compile-time check that the

size of the slice is not bigger than the input value.

The approach followed in hint is even more restrictive, as the position of

both limits of the slice needs to be constexpr values, in order to allow bound

checks. The syntax is var.slice<msb,lsb>() where msb and lsb are the posi-

tions of the MSB and LSB of the slice. The usage of this method is visible on

line 6 and 7 of listing 2.3.

2.1.4 Others operations

The Hint API can be extended with any other methods with the same spirit

that all types must be checked at compile time. The provided operations are:

• concatenation, which join the bits from two variable, resulting in an integer

having for width the sum of the two operand widths.

• bitwise operations such as and, or, xor that from two identical, width vari-

ables returns a, bits variable containing the corresponding bitwise oper-

ation.

• and/or reductions that returns a single bit result,

• a signal inverter,

• an operator that reverse the bit order of the variable (the MSB of the input

becomes the LSB of the output for instance),

• a padding operator,

1It can make sense if the iteration space is known at compile time, and the slice indices
depends only on it. In this case, the loop can be spatially unrolled with each iteration instance
having bus of the required size. The loopunrolling canbe required by a specific pragma inVitis
HLS. However, the intent for this kind of constructs is more clearly expressed with a proper
template unrolling.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

51

• a bit replicator,

• a comparison operators that only compares identical width and sign Hint

variables,

• a multiplexer operator that takes a control bit and two identical width vari-

ables,

• explicit modular arithmetic operations,

• add with carry operation.

A concrete example of hint library usage is presented in listing A.2, which

present the code of an IEEE-754 adder.

2.1.5 Software design of backend common interface

There are several ways to implement a common interface to the many back-

end arbitrary width integer libraries. Polymorphism through virtual inher-

itance is not an option as the library aims at adding no overhead compared

to native library usage, so static polymorphism should be used. This section

presents two possible approaches and their limitations.

Shared implicit interface

A first approach is to have independent classes for each backend. This class

should implement the same shared interface. While being the more direct

way to implement the library, this approach has two major drawbacks. The

first one is that the static checks have to be duplicated in each backend class,

thus being more prone to semantic divergence. The second drawback is that

the common interface is not enforced by the compiler.

Curiously recurring template pattern

An alternative solution that solves these issue is by using the Curiously Re-

curring Template Pattern [30] C++ idiom. This idiom enables static polymor-

phismbyproviding a template class that defines the public library interface as

non-virtual methods. Backend classes inherit from the base class specialized

for themselves. Interface (non-virtual) method delegates the computation to

(also non virtual) derived class private implementation methods via casting

this to a pointer on derived class. This allows the enforcement of a shared

internal interface among backends (the base CRTP class cannot be specialized

for a given backend if it does not provide the internal interface methods). In

addition, the static checks can be factorized in the CRTP public interface code.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

52 Hint, a portable abstraction layer for arbitrary width integer arithmetic

This method uses no runtime polymorphism, so dispatching to the right back-

end method is done at compile time without the need of virtual tables.

This approach worked correctly in software simulation for both Vitis HLS

and Intel HLS. However, neither of the toolsmanaged to pipeline correctly the

code produced by this approach. Investigation tends to point the responsibil-

ity of an incomplete code inlining by the HLS compilers. Due to this issue, the

first approach as been chosen for hint.

Cleaner interface with concepts and functional library

Two opportunities to improve hint interface have been identified. First,

pure functions wrapping hint objects template methods. An example of

such a wrapper is given in listing 2.4 for the slice method. This could im-

prove greatly the readability of hint code by removing the need of prefixing

template method usage with the template keyword in generic operator code.

1 template<unsigned int MSB,
2 unsigned int LSB,
3 unsigned int size,
4 bool isSigned,
5 template<unsigned int, bool> class Wrapper>
6 auto slice(Wrapper<size, isSigned> input) {
7 return input.template slice<MSB, LSB>();
8 }

Listing 2.4: Pure function wrapping call to the slice template method.

The second improvement comes from the concept mechanism introduced

in C++20. Using this mechanism would allow expressing concisely the type

requirement, and dropping the non-intuitive template template parameter.

For instance the slice functional wrapper of listing 2.4 could be rewritten in

the form presented in listing 2.5.

1 template<unsigned int MSB,
2 unsigned int LSB>
3 auto slice(HintWrapper input) {
4 return input.template slice<MSB, LSB>();
5 }

Listing 2.5: Pure function wrapping call to the slice template method with
cleaner interface using C++20 concepts.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

53

With these two improvement, the toy operator of listing 2.3 could be ex-

pressed as in listing 2.6.

1 auto computation(UnsignedHintWrapper<12> input) {
2 auto high = slice<11, 6>(input);
3 auto low = slice<5, 0>(input);
4 auto sum = high + low;
5 return lzc(sum);
6 }

Listing 2.6: Rewriting of example from listing 2.3 with proposed interface im-
provement.

Concepts have not been used due to the lack of support of C++20 standard

by the targeted HLS toolchains. Using functional wrappers to improve the

readability could have been done earlier, but the idea has only been identified

recently, which explains why it is not implemented.

2.1.6 Evaluation

Usage of hint in real applications (floating-point operators) will be presented

in section 2.2. Current section evaluates the individual building blocks pro-

vided by the library.

The evaluation is divided in two parts. The first consists in ensuring that

the library does not add overhead compared to native library usage. The sec-

ond part evaluates combined operators, ensuring that they indeed reduce re-

sources consumption and/or latency compared to their sequential counter-

parts.

All the results presented section are given after place-and-route. At the

time of evaluation, Vivado HLS (the ancestor of Vitis HLS) 2018.1, the latest

available version, was quite unstable, with numerous crashes and silent pro-

duction of incorrect hardware at rare occasions. That is why the more stable

VivadoHLS 2016.3 versionwas used at this time. Most of the results presented

in this section are obtained with this version. Experiments based on this li-

brary and usingmore recent tool version are presented in section 2.3.1. These

experiment results seem to indicate that conclusions obtained with this old

tool version still hold with recent tool. Nevertheless, in order to get recent

numbers, the experiment on LZC comparison for Xilinx toolchain has been

re-run using Vitis HLS 2022.2, the most recent version at time of writing. The

FPGA architecture targeted for experiments on Xilinx HLS toolchain is Kintex

7. For the Intel toolchain, IntelHLS 19.1 is used to target Arria 10.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

54 Hint, a portable abstraction layer for arbitrary width integer arithmetic

Table 2.1: Synthesis of LZC Arria 10 (achieved clock target of 240MHz)

N ALMs FFs MLABs cycles

26 32.5 32 0 1
55 86.5 91 1 5ac_int LZC
256 465.5 710 1 8

26 32.5 32 0 1
55 86.5 91 1 5hint LZC
256 465.5 710 1 8

Table 2.2: Synthesis of LZC and shifters on Kintex 7 (achieved target delay of
3ns). The number are obtained with Vitis 2022.2.

Implementation N LUTs FFs SRLs cycles

26 26 33 1 2
55 71 105 1 4ap_int LZC
256 278 546 3 9

26 26 33 1 2
55 71 105 1 4hint LZC
256 277 546 3 9

Overhead evaluation

The overhead evaluation is performed on the implementation of a leading

zero counter (LZC). The lzc algorithm chosen in this work has been imple-

mented using ac_int, ap_int and Hint. The synthesis results are given in Ta-

bles 2.1 and 2.2 for Intel and Xilinx respectively. The width (N) of the inputs

corresponds to real world examples. Indeed, 26 and 55 bits are the widths

of the LZC needed in single and double precision floating-point adders, while

a 256-bits LZC is needed when dealing with posit32 exact product accumula-

tors.

The comparison between the native type implementation and the hint

type implementation shows no overhead when using Hint.

Combined operators

A combined shifter + sticky has been implemented. This operator computes a

right shift, and a 1-bit signal, the sticky bit, indicating if any of the shifted-out

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

55

Table 2.3: Synthesis of shifters+sticky on Arria 10 (achieved clock target of
240MHz)

Implementation N ALMs FFs MLABs

ac_int 27 134 63 2
(shifter then sticky) 56 277 212 3

27 82 40 0
hint

56 179.5 128 0

Table 2.4: Synthesis of shifters+sticky on Kintex 7 (achieved target of 3ns)

Implementation N LUTs FFs Cycles

ap_int 27 113 110 3
(shifter then sticky) 56 309 234 4

27 84 65 3
hint

56 203 133 3

bits had the value 0. It is useful when computing the addition of two floating

point numbers. The shifter is used to align the fraction, and the sticky bit is

required to compute correctly some rounding modes.

While a naive operation would first right-pad the input, shift the padded

input and finally OR-reduce the slice that corresponds to shifted out bits. This

doubles the size of the vector to shift, and is then quite costly. Instead, the

or-reduction can be performed inline at each shifter stage.

The synthesis results of the shifter+sticky are presented in Tables 2.3 and

2.4. The width (N) of the operators comes once again from what is required

in an IEEE-754 adder for binary32 (27 bits) and binary64 (56 bits). As both

tables show, this optimization saves a considerable amount of logic on both

targets. Table 2.3 does not report the number of cycles required for said oper-

ators. Indeed, IntelHLS was giving untrustworthy latency results. However,

the circuits were co-simulated to ensure that they produced the correct math-

ematical results using ModelSim.

A second useful primitive is the normalizer, that combines a LZC and a

left shifter. The semantic of this operator is to shift the input by its leading

zero count, in order to bring its first ‘1’ bit to the leftmost position. This is for

instance useful to normalize the result of IEEE-754 products involving one

subnormal number. This can be done naively by first computing the LZC,

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

56 Hint, a portable abstraction layer for arbitrary width integer arithmetic

Table 2.5: Synthesis of normalizers Arria 10 (achieved clock target of 240MHz)

Implementation N ALMs FFs MLABs cycles

28 93 106 0 2
57 218.5 213 0 2
64 296.5 340 0 3
256 1487 1238 13 7

hint LZC + native shift

279 1603 1322 14 7

28 88.5 72 0 1
57 212 209 0 2
64 279.5 308 0 3
256 1388 1960 0 6

hint fused Shift and LZC
(normalizer)

279 1455.5 1544 0 4

Table 2.6: Synthesis of normalizers on Kintex 7 (achieved target delay of 3ns)

Implementation N LUTs FFs SRLs cycles

28 96 81 0 8
57 222 144 0 9
64 264 142 0 8
256 1532 1045 0 11

hint LZC + native shift

279 1691 1131 0 12

28 102 122 0 4
57 254 297 0 5
64 292 275 0 6
256 1164 1568 0 8

hint fused shift + LZC
(normalizer)

279 1958 2265 0 10

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

57

and then shifting by this amount. However, the LZC implementation is not

far from computing successive shifts with masking, so it is possible to build

an operator that performs the two operations simultaneously to reduce the

computation latency compared to the naive implementation.

To evaluate such an operator, a combined hint lzc+shift is compared to a

hint LZC followed by a native shift (>>). Tables 2.5 and 2.6 provide synthesis

results of these implementations for both Intel and Xilinx FPGAs. In addition

to sizes previously presented for the LZC.

For both Intel and Xilinx, the latency of the normalizer is improved com-

pared to a serial LZC followed by shifter implementation. In some cases, the

tools are even able to reduce the area of the operator.

2.2 Custom floating-point format library

The hint portability layer allowed to build MArTo [26], a portable HLS library

for custom-size IEEE-754 and posit arithmetic types support. MArTo allows

the programmer to define custom types by specializing the template classes

IEEENumber and PositNumber that are parametrized by the format dimension

(,� and,� for IEEE-754 formats,, and E�(for posit formats) and the hint
backend used for the underlying integer operations. Once a type is defined,

it can be used like a native numerical type.

2.2.1 Elementary operation support

On its current state, MArTo supports for basic operation is limited to addition,

subtraction and product. The five IEEE-754 rouding modes are supported for

IEEENumber operations. An example of code using the library is shown on

listing 2.7. It is easy to replace the numerical format used in this code by

changing the definition of my_fp_type.

1 using my_fp_type = IEEENumber<9, 14, hint::VivadoWrapper>;
2 auto myFunction(my_fp_type a, my_fp_type b, my_fp_type c) {
3 return (a*b) + c;
4 }

Listing 2.7: MArTo code example.

For IEEENumber, the default roundingmodewhenusing overloaded +, - and
* is round to nearest, ties to even. Example from listing 2.8 shows how to use

a non-default rounding mode. In this example, the input type can only be an

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

58 Custom floating-point format library

instance of IEEENumber, as PositNumber does not support alternative rounding
modes.

1 using my_ieee_type = IEEENumber<9, 14, hint::VivadoWrapper>;
2 //computes =↓

(
=N(0 ∗ 1) + 2

)
3 auto myFunction(my_ieee_type a, my_ieee_type b, my_ieee_type c) {
4 auto prod = a * b;// Default rounding to-nearest ties to even
5 return ieee_add(prod, c, IEEERounding::roundDown);
6 }

Listing 2.8: MArTo code example.

In addition to elementary operations, MArTo supports exact accumulation

of products inwide fixed-point accumulators. This operation is detailed in the

next section.

2.2.2 Exact fixed-point accumulation of floating-points products

Sum of product (or vector dot-product) is a pervasive operation in scientific

computation. This is for instance the operation at the core of matrix prod-

uct. This sum of product can be computed by using elementary addition and

product. However, a rounding error is made at each elementary operations,

and those errors accumulate. When the number of components of the vector

is high, the resulting error can be important. This is even worse if this sum of

product is part of the loop of an iterative algorithm.

An obvious solution to reduce the overall error in this case is to reduce the

elementary rounding error by using floating-point formats with higher pre-

cision. However, this increases the memory required to store the elements,

and the cost of elementary operation.

An alternative solution is to offer primitives that allows to compute such

sum of product with only one final rounding. It is possible to provide all-

in-one sum-of-product accumulation operations for fixed number of inputs,

such as the Fused Multiply Add (FMA) of IEEE-754 that computes

FMA(0, 1, 2) = 0 · 1 + 2

with only one rounding.

For arbitrary number of input, a solution initially proposed by Kulisch [31]

is to have fixed-point number wide enough to store exactly any floating-point

product of the source format playing the role of accumulator. Each product

to sum is computed without rounding (resulting in a floating point number

with a fraction width twice bigger than original format, and exponent field

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

59

2425262728 2021222324 2−42−32−22−120… …

0 0 1 1 0 1 1 0 1 1 0 0 1 1 0

0 1 0 1 1 1 1 0 0 1

1 1 1 1 0 0 1

0 1 0 1 0 1 0 1 1 1 0 1 1 1 0

Figure 2.3: Example of product accumulation on the carry-save banks of a
Kulisch-like accumulator.

having one bit more). The resulting fraction is added in the accumulator at

the corresponding position (determined by the product exponent). When all

products have been added, the accumulator stores the exact sum of the input

products. The final operation is to round it back to the original format.

In a basic implementation where the accumulator is stored as one bit vec-

tor, addition of a product is an expensive operation due to the delay required

for carry propagation from the lowest to the highest bit. In order to reduce

this latency, the accumulator can be split inmultiple banks in carry-save fash-

ion. With this setting, there is an overlap bit between two adjacent banks.

When a product is added to the accumulator, the carry bit from the lower

bank is also added, and the resulting carry bit is stored in current bank carry-

out bit waiting next summation to propagate. Figure 2.3 gives an example

of one accumulation step. On this figure, the carry saved for each bank is

highlighted with a gray background. At each accumulation step, bank-wise

additions can be performed in parallel, as the carry bit is stored locally. In

this setting, the cost of complete carry propagation is only paid when round-

ing the accumulator back to the floating-point format.

Posit standard requires the support of accumulator operations. In the

posit world, these accumulators are called quires. The 2019 version of the

IEEE-754 standard recommend support for the dot operation, which com-

putes an approximation of the dot product of twofloating-point vectors. How-

ever, it leaves the accuracy implementation defined.

MArTo defines several types to represent thesewide accumulators in plain

integer or carry save formats, overload the operator to allow convenient syn-

tax for accumulation of custom type products, and provides the rounding op-

erator to convert these accumulators to the elementary format they accumu-

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

60 Custom floating-point format library

late products of.

2.2.3 Operator implementations in MArTo

Implementation of IEEE-754 elementary operations

MArTo IEEE-754 elementary operation implementations are quite standard,

so they will not be described in great details. The adder has a single-path

architecture (which had better QoR on tested targets than dual path imple-

mentation at the time of development). The only ”subtlety” is the use of fused

operators. For instance, the adder uses a combined shifter + sticky opera-

tor for fraction alignment. Architectural choices have been inspired by the

corresponding floating-point architectures produced by FloPoCo [25]. The in-

terested reader is invited to check [32] to find detailed discussion on possible

IEEE-754 operator implementation. To get an idea of the overall design, the

generic adder code is reported in listing A.2. The fused shifter and or reduc-

tion is visible on line 95 of this listing. This code is also interesting to look

at in order to see the relative amount of work of the different computation

“steps”. Indeed, while they occupy an important number of line of code, spe-

cial case handling and rounding logic actually consists in a few or/and reduc-

tion and boolean combination of these reduction results. These operations

are not very expensive in regard to the large shifts required to align the frac-

tion and renormalize the result when required.

On the other hand, there is less literature about Posit operator. That is the

reason why their MArTo implementation is further detailed in the following

sections.

Posit smallest floating-point superset

The general idea behind posit operator implementation is to convert the posit

encoding to a fixed-width fields floating-point format, and perform the oper-

ation on this representation.

The sizes of posit value exponent and fraction depend on the regime size.

However, the hardware bit-widths cannot change dynamically, they have to

be designed for the worst case widths. This worst case therefore corresponds

to the smallest fixed-precision floating-point format that is a superset of posit

numbers. To match posit encoding, this floating-point format only includes

normal numbers with fractions expressed in two’s complement.

The parameters for the smallest fixed precision floating-point superset are

derived as follows. The size,� of a two’s complement fraction is the maxi-

mum precision of a posit value, obtained for the minimum length : = 2 of the

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

61

Table 2.7: Parameters of standard posit formats.

Standard posit smallest FP superset internal formats

N ,�(�max ,� ,� ,pif ,upif

8 0 6 4 5 12 14
16 1 28 6 12 21 23
32 2 120 8 27 38 40
64 3 496 10 58 71 73

regime, therefore

,� = # − (3 +,�()

Themaximal exponent is obtained when the regime length is # −1. In this

case, all the 4A and � bits are pushed out by the regime. Hence, the maximum

exponent value is

�max = (# − 2)2,�((2.1)

As the opposite exponent can also be reached, the number of bits needed to

store the exponent is

,� = 1 + dlog2
(
(# − 2)2,�(

)
e

= 1 +,�(+ dlog2(# − 2)e (2.2)

The,�(parameter allows trading between the range of the format and its

maximal precision.

Table 2.7 gives, for each of the standard posit formats, the exponent and

fraction sizes of the smallest floating-point superset.

The hardware-friendly posit Intermediate Format

With this smallest posit FP superset, it becomes possible to define a new inter-

mediate encoding for numbers in this set that is more adapted to hardware

arithmetic operations, in the sense that all its fields have a fixedwidth. In this

work, this encoding scheme is denoted posit Intermediate Format or PIF.

Figure 2.4 highlights the role of this format in an end-to-end posit arith-

metic operator. Posits are first decoded to PIF. As PIF can represent all posit

values, this operation is exact. Then, the arithmetic operation is performed

on PIF data. Finally, the result is encoded back to posit. Since rounding (to an

exponent-dependent position) must be performed in this encoding step, the

output format of the PIF operation must be an Unrounded PIF, which is a PIF

extended with all the additional information needed for standard-compliant

rounding, detailed below in Section 2.2.3.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

62 Custom floating-point format library

PIF
floating-point
operation

posit to PIF posit to PIF

positN positN

Encode to posit
and round

UPIF

PIF PIF

positN

Figure 2.4: Architecture of a posit operator in a Posit Arithmetic Unit that uses
posit registers and posit-to-posit operators.

We believe the 3-step approach of Figure 2.4 is inevitable for stand-alone

posit operators (except for very small formats where a simple tabulationmay

be used). It is followed (more or less explicitly) by leading hardware posit

implementations [33]–[35].

The PIF should be designed with two objectives in mind:

• Posit to PIF conversion should be as simple as possible,

• Arithmetic operations should be efficiently computed on this representa-

tion.

Because of the second objective, PIF is a simple normalized floating-point

representation that uses the parameters of Table 2.7. To address the first ob-

jective, the proposed PIF encodes both the exponent and significand in two’s

complement (where IEEE-754 uses a biased encoding for exponent and a sign-

magnitude representation for the significand). This avoids two’s complement

to sign-magnitude conversions (which may cost a carry propagation). It also

has the side effect of slightly simplifying PIF addition of values with opposite

signs.

Two’s complement encoding for a normalized significand consists of a sign

bit A and a fraction � on,� bits. The two’s complement significand value is

then

D = −2A + Ā.� . (2.3)

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

63

However, (2.3) does not allow the encoding of zero. The proposed PIF en-

coding scheme introduces an extra bit 7 which is one if and only if the repre-

sented value is strictly positive. The significand value becomes

D = −2A + 7.� . (2.4)

Zero is the only posit value whose PIF representation has both A and 7 set

to zero. This enables efficient zero detection in arithmetic operators. For non

zero values, exactly one of A or 7 is set.

PIF also has an extra isNaR bit, set to one if and only if the represented

value is NaR. An alternative option could have been to use a non-posit value,

for instance with both A and 7 set to one. This would trade one bit of represen-

tation for a few gates of encoding/decoding logic.

To summarize, the PIF encoding scheme is composed of the following

fields:

• a isNaR flag,

• the sign bit A,

• the exponent � stored in two’s complement on,� bits,

• the weight one bit 7,

• the fraction bits � on,� bits.

The encoded value is

D =

NaR if isNaR is one

(−2 + 7 + 0.�) × 2� otherwise
(2.5)

Unrounded PIF encoding of the result of basic operations

In the general case, the result of an operation on two PIF values is not ex-

actly representable as a PIF, and must be rounded. As PIF is a floating-point

format, wemay use textbook techniques [36], [37] for this. For the basic oper-

ations (addition, multiplication, division and square root) the exact result can

always be represented on at most 2,pif bits, then for the purpose of rounding

the extra,pif bits can be condensed into only two bits:

• an extra fraction bit at the LSB, called the round bit;

• a sticky bit, set if and only if the exact value is strictly greater than what is

represented by the fraction 5 extended with the round bit (but still smaller

than the next representable value). In other words, a sticky bit of zero

means that the value represented by the extended fraction is exact.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

64 Custom floating-point format library

We define the UPIF (Unrounded PIF) format as a PIF with these two extra

bits.

The floating-point literature often uses a third additional bit (called the

guard bit), useful in the case when a 1-bit normalization of the significand

may be needed. In the big picture of Figures 2.4, the PIF operator is in charge

of this normalization, so no guard bit is needed in UPIF.

This work only demonstrates the use of the UPIF format on addition/sub-

traction and multiplication, but it is equally suitable for division and square

root. Digit recurrence algorithms [36] compute a remainder along with the

quotient or square root, out of which the round and sticky bits can be com-

puted. Multiplication-based algorithms [36], [37] also can output their result

in UPIF format – for instance by computing the remainder.

Table 2.7 gives the width for PIF and UPIF associated with standard posit

formats.

Saturation management

Posit arithmetic does not offer an overflow detection mechanism to the user.

When the exact result of an operation is bigger than the biggest representable

value, this biggest representable value is returned.

This saturation could in principle be handled in a generic way in the “En-

code to posit and round” block of Figure 2.4. However, as each operation

leads to different overflow situations, it ismore efficient tomanage saturation

in each PIF operator. The UPIF specification exposed previously actually as-

sumes that saturation management has been performed by the operator, oth-

erwise extra bits would have been needed. Another advantage is that some

saturation situations may be detected in parallel with computation, thus re-

ducing latency.

Posit to PIF decoder

The proposed posit decoder is depicted in Figure 2.5.

The “LZOC + Shift” block (LZOC stands for “leading zero/one counter”)

counts the range bits while discarding them, resulting in a normalized frac-

tion.

Themost significant exponent bits �ℎ are computed out of the range count.

If the leading bit is equal to A, then �ℎ = −:(= :̄+1); else �ℎ = :−1. An optimization

is to skip the first range bit when counting, effectively computing :′ = : − 1.
Indeed, if the first range bit is equal to A, �ℎ = :′ + 1+ 1 = :̄′, or �ℎ = :′ otherwise.

This high bit decoding method improves the state of the art by avoiding an

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

65

adder to compute −:. The exponent least significant bits �: are obtained by

xoring with A the,�(first bits of the aligned fraction.

The PIF exponent � is the concatenation of �ℎ and �: (or is equal to �ℎ if

the corresponding format has,�(= 0). The decoder is slightly simplifiedwith

,�(= 0 posit formats, as it saves the XOR gates labeled ∗ on Figure 2.5. The

PIF fraction � consists of the,� least significant bits of the aligned fraction.

An OR reduction over the # − 1 rightmost bits of the posit input is used to

detect both zero and NaR values, in conjunction with A.

Theweight 0 significand bit 7 is computed out of A and the detection of zero

value.

The most expensive parts of this architecture are the “OR reduce” over

− 1 bits to detect NaR numbers, and the combined leading zero/one counter

and shifter.

positN

LZOC + Shift

A

/ # − 1

OR reduce

/ # − 1 / # − 2

�ℎ

:′

∗

�:

/ # − 3

/ ,�(

�

/,�

�

/ ,�

isNaR 7A

Figure 2.5: Architecture of a posit to PIF decoder.

UPIF to posit and PIF to posit

The complete UPIF to posit encoder architecture is shown in Figure 2.6.

First, the rounding bit is appended to the fraction, and the range is com-

puted then prepended. The Shifter+Sticky component then simultaneously

right-shifts this word and ORs the shifted-out bits into a unique sticky bit,

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

66 Custom floating-point format library

which is then ORed to the PIF sticky bit to get the final sticky bit.

Finally a round-up bit is computed (the right AND of Figure 2.6 implement-

ing round to nearest, and the left AND the “ties to even” rule), and added to

the final encoding.

The case ,�(= 0 requires additional logic (not shown in Figure 2.6) to

detect and forbid a special case of rounding up that would cause the output

to round to NaR or 0.

PIF floating-point operations

The architectures of the PIF adder/subtracter (Figure 2.7) and multiplier (Fig-

ure 2.8) first compute the exact result (top part of the figures) using the trans-

position to the PIF format of classical floating-point algorithms.

Although the adder is a single-path architecture [37], its datapath can

be minimized thanks to the classical observation that large shifts in the

two shifters are mutually exclusive. Indeed, the normalizing LZOC+Shift of

Figure 2.7 will only perform a large shift in a cancellation situation, but such

a situation may only occur when the absolute exponent difference is smaller

than 1, which means that the first shift was a very small one. Conversely,

when the first shifter performs a large shift, the rightmost part of the signifi-

cand can be immediately compressed into a sticky bit, since we know that it

will not be shifted back by the second LZOC+Shift. All this allows us to keep

most intermediate signals on,� + 2 to,� + 6 bits, where previous work [33],

[34] seem to use datapaths that are twice as large.

The posit multiplier shown in Figure 2.8 is straightforward. It performs

the addition of the exponent, the signed product of the significands, then if

necessary normalises the result (one-bit fraction shift and exponent update).

This architecture aims at minimal area and delay. If energy efficiency is the

goal, alternative architecture have been proposed that exploit the relation be-

tween exponent magnitude and precision to disable the computation of un-

needed product LSBs [38].

The bottompart of Figures 2.7 and 2.8 normalize the exact result computed

by the top parts to a PIF. For both operators, the exact significand must be

realigned, correcting the exponent accordingly.

Hardware support for exact accumulation

Several existing machine learning accelerators [39], [40] already use varia-

tions of the exact accumulator to compute on IEEE-754 16-bit floating-point.

Other application-specific uses have been suggested [41], [42]. For larger

sizes, this could be a useful instance of “dark silicon” [43].

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

67

�AisNaR � round

Shifter + Sticky

∼

/ ,4
/
, 5

/ , 5 + 1

/ #

range

/
,�(

/ ,�(+ 2

01 10

/
dlog2 (#) e

/,4 −,�(

(M
S
B
)

/# + 1

sticky

sticky

rnd

LSB

+

round up

+1

/# − 1

/# − 1

/
#

NaR

positN

Figure 2.6: Architecture of a UPIF to posit encoder.
The PIF to posit encoder is similar, with the round and sticky logic (including
the final adder) removed.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

68 Custom floating-point format library

isNaR0 isNaR1 �0 �1 70A0 �0 71A1 �1

>

−
shifter+sticky

/, 5 + 2

/, 5 + 4

00

/
,4 + 1

+

/ , 5 + 5
/

, 5 + 2

LZOC + Shift

/
, 5 + 3

−
/

dlog2(, 5 + 4)e

/ ,4

SignificandeisNaR

isNaR 4 57 round sticky

/ , 5 + 4

/
3

/, 5 + 5
/
2 /

1

A

Figure 2.7: Architecture of a PIF adder. Exponent comparison block denoted
with “>” also takes the operand 7 and A bits to detect zero values, but wires
have been omitted here for clarity.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

69

isNaR0 isNaR1 40 41 A0 70 50 A1 71 51

/ , 5 / , 5

Signed product

/ , 5 + 2

/ , 5 + 2

/ 2, 5 + 4
/ 2, 5 + 3
/ 2, 5 + 2
/ 2, 5 + 1

/ 2, 5 + 2
� 1Unsigned Adder

/,4

/,4

4

/,4 + 1
isNaR A normalized product significand

/ 2, 5 + 3

/2, 5 + 2
/ 1

== 0

! = 0

< �min >= �max

Saturation Control
isMinPosit

isMaxPosit

4 A �

/

#
−
E
4A
−
3

si
g
n
ifi
ca
n
d

ro
u
n
d

st
ic
k
y

4 A 57 round stickyisNaR

Figure 2.8: Architecture of a PIF multiplier.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

70 Custom floating-point format library

Table 2.8: Quire bit-width parameters for standard 3.2 posit formats.

Posit Quire sizes

N ,�(� ,& ,$,' ,/

8 0 6 32 12 13 6
16 1 14 128 42 57 28
32 2 30 512 150 241 120
64 3 62 2048 558 993 496

The posit standard, [8], [9] defines fused operations as those expressible as

sums and differences of the exact product of two posits; no other fused oper-

ations are allowed. It also specifies a binary interchange format, the quire,

which consists in a fixed point number of size,& defined by

,& = %max + � − %min + 1

With %max and %min the maximal and minimal possible exponent for a given

posit format product, and � the number of extra-bits used to catch overflows.

In the sequel, we discuss the cost of hardware support for accumulating num-

ber in a quire. For draft standard formats, � is set such that

,& =
#2

2
As the parameter,& is a storage requirement, it defines a lower bound of

the area cost. Figure 2.9 shows a high-level functional description of a quire

accumulation, and shows that there is a,&-bit addition on the critical path

from the quire to itself, which would also entail a large cycle delay. A tech-

nique that relaxes this constraint is reviewed in Section 2.2.3.

The posit standards [8], [9] specifies NaR as a special quire value. This

means that this special value must be tested at each new quire operation. In-

stead, we add to the internal quire an isNaR flag bit, set when a NaR is added

to the quire, and sticky until the quire is cleared. This isNaR bit can be en-

coded and decoded only when transferring quire to/from memory, however

we suggest that it could even replace one of the quire carry bits in the inter-

change format.

In the posit context, it is natural to use two’s complement for managing

signs in the quire. Some implementations of Kulisch’s exact accumulator

seem to use a sign-magnitude representation for the accumulator [44], match-

ing the sign-magnitude representation of IEEE floating-point. However, a

two’s complement representation of the accumulator is more efficient even

in the IEEE-754 context [39], [45].

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

71

isNaR1 4 7 5 7A(C1&C7@4isNaR0

shifter

/ ,>@=3

F + �70A

+

/ ,?

/ ,?

isNaR &C7@4

/ ,?

Figure 2.9: Architecture of a posit quire addition/subtraction.

Addition of products to the quire

The posit quire is able to perform exact sums and sums of products. There-

fore, the input format of the quire is defined as the output of the exact multi-

plier from the top half of figure 2.8 (before the rounding logic).

To add a simple posit to the quire, it is first converted to PIF, then the PIF

value is trivially extended to the exact product format.

The simplest implementation of the quire addition/subtraction is depicted

in Figure 2.9. An exact posit product significand is shifted to the correct place

to the quire format according to its exponent. A large adder then performs the

addition with the previous quire value. The two’s complement subtraction is

performed at the cost of a XOR on the input and a carry-in to the adder, as in

the posit adder/subtracter. For this the shifter must be a sign-extending one.

The simple architecture of Figure 2.9 can be used directly for small sizes

(up to posit16). For larger sizes, the long carry propagation delay of the ad-

dition in this architecture will restrict the maximum frequency achievable.

To address this, a cost-effective solution [41], [45] is to segment the quire into

smaller words (typically standard 32-bit or 64-bit words). Carry propagation

is then limited to a segment, and the carries between segments are stored in

registers and propagated to the next segment during the next cycle. Another

point of view is that the quire is kept in a high-radix carry-save redundant

format (radix is 232 or 264). If such a format is used, its conversion to a non-

redundant format will incur additional overhead to complete carry propaga-

tion. A cheap way of achieving this propagation is simply to dedicate a few

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

72 Custom floating-point format library

cycles to the completion of the carry propagation, duringwhich the summand

input to the quire is kept at zero. The number of carry-propagation cycles is

,?/32 for 32-bit segments. These extra cycles are amortized if the quire is

used for summing large numbers of values.

Conversion from quire to posit
is
N
a
R

s posit rangeoverflow underflow

,$

Overflow detect.

,'

Underflow detect.

,/

‘0’ detect.

Figure 2.10: The bits of a standard quire.

The conversion of the quire value to a posit is divided in two steps. The

quire is first converted to a UPIF value before the latter is encoded to a posit.

There are four distinct cases to take into account when converting the

quire to the UPIF:

• If the quire holds a NaR value, the result is NaR;

• If the quire value is larger in magnitude than the maximum-magnitude

posit (overflow), the latter should be returned (saturation);

• If the quire value belongs to the representable posit range, it should be con-

verted;

• If the quire value is smaller in magnitude than the minimum-magnitude

non-zero posit (underflow), the latter should be returned (saturation);

Figure 2.10 illustrates the different interesting zones of a quire.

Detection of overflow consists in comparing all the bit in the overflowzone

with the sign bit. If at least one differs, the posit overflows. The width of the

overflow zone,$ is given by:

,$ = &msb − �max = �max + �

For quire values inside the posit range, a normalization should be per-

formed, which uses a LZOC + shifter of input width,', with

,' = �max − �min + 1

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

73

Finally, to detect the difference between an underflow value and a real

zero, a wide OR is performed on the underflow zone of width,/ , with

,/ = �min − &lsb = �max

For draft standard posit sizes, the simplified formulas are the following:

,$ =
#2

8
+ 3#

4
− 2

,/ =
#2

8
− #

4

,' =
#2

4
− #

2
+ 1

Associated numerical values reported in Table 2.8.

Verification of functionnal correctness of the operators

In order to verify that the proposed architectures are correct, the following

functional tests were first run in sofware:

• Exhaustive test against softposit of posit8 and posit16 addition and multi-

plication.

• Some corner case tests of quire addition/subtraction and conversion back

to posit for posit16.

• Exhaustive test for addition/product of IEEE16 against SoftFloat, for the five

IEEE-754 rounding modes.

Then the VHDL file produced by the Vivado HLS compiler for a 16-bit posit

adder was exhaustively tested using a VHDL simulator. Scripts and sources

to reproduce this experiment are accessible from the MArTo repository.

Finally, the standard posit16 multiplier was synthesized, placed and

routed for the Zynq FPGA of a Zybo board using the Vivado HLS toolchain,

and the resulting FPGA circuit was exhaustively checked against SoftPosit

executed on the ARM core of the Zynq. All these tests were successful.

2.3 Case study: comparing IEEE-754 and posit hard-

ware implementation cost

Many works have compared the accuracies of posit and IEEE-754 floating-

point formats [46]–[49]. However, these works didn’t evaluate the perfor-

mance implication of replacing IEEE-754 by posit. This is the aim of this case

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

74 IEEE-754 vs posit hardware cost comparison

positN

posit to PIF

PIF

(a) Memory read

PIF
floating-point
operation

PIF PIF

UPIF
in place round

UPIF

PIF

(b) Arithmetic operation

PIF

PIF to posit

positN

(c) Memory write

Figure 2.11: Architecture of a PAU using posits as a memory-only encoding,
with PIF registers and PIF-to-PIF operators.

study, whichwill evaluate two possible architecture for posit arithmetic units.

The first one is the one described on figure 2.4, with posit used both as mem-

ory and internal register format. As shown on the figure however, this mostly

adds a decoding step overhead to a classical floating-point operation (the PIF

have no subnormal to support that simplify a bit these operators compared

to IEEE-754, but the posit encoding is actually very similar to subnormal han-

dling). As an alternative, posit can be used as memory format only, decoded

on the memory path, and PIF as register format. The block-diagram of this

architecture is presented on figure 2.11.

In order to avoid double-rouding and related issues, PIF in register should

always represent the rounded result of the operation. This is the reason of

the “UPIF inplace round” block of Figure 2.11b shows an UPIF in place round

block. This block is roughly equivalent to the UPIF to posit encoder of figure

2.6, with the difference that a mask is shifted instead of the representation to.

PIF to posit conversion that occurswhenwriting the value back tomemory (as

shown on figure 2.11b) is a simplification of the UPIF to posit encoder. Indeed,

PIF values stores exactly representable posit values, so all the rounding logic

can be removed.

2.3.1 Comparison of operator area and latency

Qualitative comparison

A first “qualitative” comparison between posit and IEEE-754 operators can be

performed at the architecture level. There is no 1-to-1 match to the decoder

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

75

step in IEEE-754 arithmetic operator implementation, as the representation

already has fixed-width fields. However, it can be compared with the detec-

tion of special cases. On the IEEE-754 side, one OR reduction on the exponent

bits is needed to detect subnormals, another OR reduction on the significand

bits is needed to detect zeros, and two similar AND reductions are needed to

detect respectively NaN and infinities. The two OR reduction have a similar

input width in total to the posit decoder OR reduction block. Normalization

of subnormal values requires a LZC and a shifter, that operate on the fraction

bits. On the posit side, the combined LZOC + shifter operates on awider value.

Besides, the fact that it is an LZOC and not an LZC inclurs internal AND reduc-

tions that matches the cost of the IEEE-754 ones. All in all, the posit decoding

process cost is expected to be very similar to the handling of special cases and

subnormal values in IEEE-754.

The PIF arithmetic operator implementations are very similar to IEEE-754

operators, so area and latency should be quite similar.

Handling rounding and special cases encoding in IEEE-754 requires one

integer addition of the representation width, a few gates to determine if the

rounding should occur according to the rounding mode, and a few bitwise

masking operations to handle the generation of NaN/infinities if required. By

contrast, posit rounding and encoding process which requires the same addi-

tion, but also a potentially large shift seems more costly.

As a whole, it is expected that posit operators require more resources and

have a higher latency compared to IEEE-754 operators for identical widths

formats. The expected overhead coming mostly from an expensive rounding

and encoding process.

Comparison with state of the art

As we eventually observe that posits are larger and slower than IEEE floats,

it is important to be convincing that we are not using a substandard posit

implementation. For this purpose, Tables 2.9, 2.10, 2.11 and 2.12 gather the

results of best-effort comparisons with the state of the art in posit hardware

at time of writing. It shows that MArTo definitely improved this state of the

art.

There is less pressure to show that the MArTo implementation of IEEE

floats is efficient. A comparison with Xilinx implementation of IEEE floats

is provided in Table 2.14. There, the line labeled Xilinx Float corresponds to

IP used by Vivado HLSwhen using the float and double data types in the HLS

C++ (hence the lack of 16-bit results). This hard IP is the industry standard

when using Vivado, and can be considered a state-of-the-art implementation

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

76 IEEE-754 vs posit hardware cost comparison

Table 2.9: Comparison with [34] for standard posit addition and product

Op Format LUT DSP Delay (ns)

[34]
+ <16, 1> 391 0 32.4

<32, 2> 981 0 40.0

× <16,1> 218 1 24.0
<32, 2> 572 4 33.0

MArTo
+ <16, 1> 299 0 24.2

<32, 2> 704 0 33.9

× <16,1> 213 1 19.4
<32, 2> 483 4 28.9

As no sources is provided, we report as-is the figures from [34], obtained for a Zynq-7000

(xc7z020clg484-1) with Vivado 2017.4. To limit the possible effect of tool improvement on the

synthesis, MArTo synthesis results have been obtained for the same part with Vivado HLS/Vi-

vado 2018.3, the oldest version available for download at time of experimentation.

Table 2.10: Comparison with [33] on standard posit addition and product

Op Format ALM DSP Cycles FMax (MHz)

[33]
+ <16, 1> ∼500 0 ∼49 ∼550

<32, 2> ∼1000 0 ∼51 ∼520

× <16, 1> ∼330 1 ∼35 ∼600
<32, 2> ∼600 1 ∼38 ∼550

MArTo
+ <16, 1> 274 0 11 564

<32, 2> 696 0 17 562

× <16, 1> 280 1 15 600
<32, 2> 452 2 21 445

Synthesis reported in [33] trarget Stratix V FPGA. Results are read from a graphic plot, hence

the approximate values. As there is no version of the Intel HLS toolchain that supports both

Stratix V and the C++ 11 standard used in MArTo, the C++ to HDL compilation is done using

Vivado HLS. The obtained HDL is then synthesised and routed for Stratix V using Quartus.

Despite being baroque, this toolchain seems to give good results, except for the <32, 2> product

where it lacks the knowledge of the target’s DSP possible configurations. Indeed, the product

is computed using a 36x36 configuration of the DSP block, where a 27x27 configuration would

be faster.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

77

Table 2.11: Comparison with [35] on posit<32,6> addition and product

Op LUTs DSPs Cycles Delay (ns)

[35]
+ 946 0 5 4.1
× 854 1 6 4.4

MArTo
+ 792 0 5 3.9
× 435 2 6 4.1

MArTo synthesis have been performed using Vivado HLS/Vivado 2020.1 using part xc7vx330t-

ffg1157-3. Experimental settings of [35] use the same part, but tool version is not reported.

Table 2.12: Comparison with [50] for standard posit addition and product

Op Format LUT DSP Delay (ns)

[50]
+ <16, 1> 383 0 27.25

<32, 1> 939 0 35.8

× <16,1> 201 1 20.9
<32, 1> 571 4 29.2

MArTo
+ <16, 1> 300 0 25.5

<32, 1> 672 0 34.5

× <16,1> 205 1 19.2
<32, 1> 472 4 28.8

MArTo synthesis have been performed using Vivado HLS/Vivado 2020.1 using part

xc7z020clg484-1.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

78 IEEE-754 vs posit hardware cost comparison

of floating-point for Xilinx FPGAs. It supports some of the IEEE features, such

as infinity and NaN encoding. However, it is not IEEE-compliant: although

the memory format is that of IEEE floats, subnormals are flushed to zero to

save resources.

Considering that the Xilinx Float adders useDSP blocks to implement some

of the shifters, the hardware costs of Xilinx adders and IEEE adders (obtained

with MArTo) are really comparable. This illustrates that the overhead of sub-

normal handling in floating-point adders is small. Conversely, there is in Ta-

ble 2.14 a very large difference in the resources used in multipliers. This

demonstrates the cost of hardware subnormal handling in floating-pointmul-

tipliers.

The Xilinx IP pipelining also seems to be fixed, and do not benefit from a

relaxed clock constraint to reduce the latency, hence their large latency.

Since Xilinx floats lack subnormal support, the following bases on MArTo

only the posit versus IEEE comparisons.

Comparison between posit and IEEE-754 operators

Table 2.13 compares combinatorial implementations of posits andfloats of the

same size on addition andmultiplication. In this table, the “posit→posit” lines

present results for the classical posit operators of Figure 2.4. The “PIF→PIF”

lines presents results for the posit-compatible PIF operators that use the ar-

chitecture of Figure 2.11b, including the inplace round component.

A first observation is that posit arithmetic is indisputably both larger and

slower than IEEE-754 arithmetic. This contradicts the comparison in [34],

which seems to use a very poor IEEE implementation.

As expected, the PIF-to-PIF operators are lighter and faster than the posit-

to-posit ones. They still pay the price in area of a wider significand datapath

(see Table 2.7) compared to IEEE operators: for the adders, PIF-to-PIF con-

sume more LUTs than IEEE operators; for multipliers, they consume more

DSP blocks (there is a step effect due to the discrete nature of DSP blocks).

Again we observe in the IEEEmultipliers the logic cost of subnormal support,

but we also observe a comparable cost in the PIFmultiplier, essentially due to

the inplace round logic. Still, the PIF to PIF operators achieve delays that are

closer to those of IEEE operators than to those of posit operators, which was

their main motivation.

Note that the area cost of PIF/posit conversions (altogether about half the

size of a complete IEEE adder) must still be paid in a posit arithmetic unit that

uses the PIF-to-PIF approach. Only its delay (altogether about half the delay

of a complete IEEE adder) is avoided. However, there is another advantage

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

79

Table 2.13: Synthesis results of combinatorial operators

(a) Combinatorial adder

N LUT (ratio) delay (ratio)

16 312 1.33 11.1 ns 1.27
posit→posit 32 647 1.49 15.8 ns 1.33

64 1550 1.59 21.6 ns 1.35

16 237 1.01 9.7 ns 1.10
PIF→PIF 32 562 1.29 12.9 ns 1.08

64 1244 1.27 14.7 ns 0.92

16 234 1 8.8 ns 1
IEEE→IEEE 32 434 1 11.9 ns 1

64 976 1 16.0 ns 1

(b) Combinatorial multiplier

N LUT (ratio) DSP delay (ratio)

16 182 1.03 1 11.3 ns 1.39
posit→posit 32 466 1.37 4 15.8 ns 1.62

64 1213 1.58 16 21.1 ns 1.48

16 120 0.68 1 7.8 ns 0.96
PIF→PIF 32 291 0.86 4 11.5 ns 1.17

64 695 0.90 16 15.3 ns 1.08

16 176 1 1 8.1 ns 1
IEEE→IEEE 32 340 1 2 9.8 ns 1

64 768 1 9 14.3 ns 1

(c) Posit - PIF conversion operators

N LUT delay

posit→PIF
16 61 2.59 ns
32 106 4.74 ns
64 278 5.52 ns

PIF→posit
16 41 2.12 ns
32 98 2.50 ns
64 301 2.83

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

80 IEEE-754 vs posit hardware cost comparison

Table 2.14: Synthesis results of pipelined operators

(a) Pipelined adder

N LUT Reg. DSP cycles delay

Posit
16 320 128 0 4 2.69 ns
32 719 460 0 7 2.83 ns
64 1635 1207 0 10 2.93 ns

IEEE
16 193 137 0 4 2.90 ns
32 435 337 0 6 2.88 ns
64 1001 880 0 10 2.99 ns

Xilinx
Float

32 167 355 2 10 2.43 ns
64 628 758 3 10 2.43 ns

(b) Pipelined multiplier

N LUT Reg. DSP cycles delay

Posit
16 213 80 1 4 2.85 ns
32 443 198 4 6 2.93 ns
64 1140 811 16 12 4.10 ns

IEEE
16 189 122 1 4 2.69 ns
32 381 246 2 6 2.74 ns
64 783 801 9 8 2.67 ns

Xilinx
Float

32 82 151 3 5 2.72 ns
64 115 494 11 10 2.75 ns

in a PIF-to-PIF PAU: the hardware for these conversions is naturally shared

between different operations (such sharing is also possible in principle in a

posit-to-posit PAU, but then it will restrict instruction-level parallelism).

Table 2.14 compares pipelined versions of the same operators, targeting a

frequency of 333 MHz (3ns cycle time), and producing one output per clock

cycle. As the latency estimated by the Vivado HLS tool is usually pessimistic,

the reported latencies are obtained by an automated exploration that finds

the smallest pipeline depth allowing the design to run with the target clock

period. The script performing this exploration is open source, and is also ac-

cessible from the MArTo repository for reproducibility.

There is no PIF to PIF line in this table: for this setup, the PIF to PIF ap-

proach fails to provide any latency improvement (the arithmetic operators

require the same number of cycles, and sometimes require one more cycle).

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

81

Table 2.15: Synthesis results for a sum of 1000 products (U: Unsegmented, S32
and S64: Segment sizes of 32 and 64 bits).

LUT Reg. DSP cycles delay

quire 16
U 1200 1026 1 1019 2.70 ns

S32 978 1062 1 1021 2.68 ns
S64 1004 958 1 1019 2.36 ns

quire 32 (512 bits)
U 5884 6235 4 1031 3.65 ns

S32 3641 7237 4 1040 2.89 ns
S64 3513 5189 4 1033 2.78 ns

Kulisch 32 S32 3624 7632 2 1034 2.937
(559 bits) S64 3612 5165 2 1026 2.801

IEEE Float 32 840 711 2 6012 2.92 ns

IEEE Float 64 1798 1723 9 8015 3.33 ns

Xilinx Float 32 445 544 3 6008 2.72 ns

Xilinx Float 64 809 1386 11 8013 2.70 ns

We therefore choose not to report these results, which we consider synthesis

artifacts as they are inconsistent with the expectations and with Table 2.13.

The cost of supporting all rounding modes in IEEE

Tables 2.13 and 2.14 report result for IEEE operators that only support round

to nearest, ties to even. However, supporting the five IEEE-754 rounding

modes increase only very slightly the hardware cost. For instance, adding

this support to the 32-bit adder increases its area from 434 to 458 LUTs and

actually decreases the delay from 11.9 to 11.7ns (another synthesis artifact).

It remains well below the posit cost.

2.3.2 Quire versus standard operations

Synthesis results for the quire are given in Table 2.15, where we useMArTo to

write a C++ loop that performs the sum of 1000 products and return the result

as a posit. They are compared to a similar loop using floating-point Kulisch

accumulator, and using regular floating-point hardware.

Quire is presented in unsegmented (U) version along with two segmented

versions (S32 and S64 for segments of 32 or 64 bits). For 32 bits, the unseg-

mented version is not able to achieve 3ns cycle time, due to the long carry

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

82 IEEE-754 vs posit hardware cost comparison

propagation.

The Kulisch accumulator used here is also based on a 2’s complement seg-

mented accumulator [45, variant 3], with an IEEE-compliant final conversion

to float (round to nearest, ties to even). The implementation has been vali-

dated against MFPR [51] simulations.

Unsurprisingly, the cost and performance of a posit32 quire and a Kulisch

accumulator for 32 bits floats are almost identical.

An exact accumulator consumes vastly more resources than standard op-

erators: a factor 10 for 32-bit floats (a smaller factor for posits, but only due to

the higher cost of the standard operators). Such factors should not come as a

surprise: the 512 bits of the posit32 quire are indeed 18 times the 27 bits of the

posit32 significand. This is the price of the accuracy of an exact accumulator.

Another advantage of exact accumulation is that it offers a latency reduc-

tion proportional to the latency of the floating-point or posit adder (here a

factor 6-7). This is thanks to the fact that the accumulation loop is an exact

fixed-point addition, which offers opportunities to exploit more parallelism

in its computations[39], [42].

Detailed synthesis results of the quire sub-components are given in Table

2.16. The quire addition line reports the cost for the architecture of Figure 2.9,

including the large shifter and the fixed-point accumulation loop. This com-

ponent accepts a new input every cycle. The two other lines describe the con-

version of the quire result back to posit. The carry propagation is a loop com-

ponent that adds zeroes, and is mostly merged with the quire addition compo-

nent. However, there is an irreducible latency for the final carry propagation

once the accumulation is over.

The latency overhead of the expensive conversion from quire to float or

posits is easily amortized for large loops. However, it is also clear that a hard-

ware quire will be very inefficient when used for small sequences of oper-

ations (e.g. fused multiply and add, complex arithmetic, small matrices or

convolutions, etc).

2.3.3 Case study conclusion

This case study both allowed to demonstrate the relevance of having an HLS

library for arithmetic components, and to compare the hardware cost of posit

and IEEE-754 basic operation implementation.

Regarding the first point, it is simple with such a library to replace the

arithmetic type in use for a given application by using a few typedefs. This

allows easy experimentation to determine the format that gives the best ac-

curacy/performance trade-off for a given application.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

83

Table 2.16: Detailed synthesis results of hardware posit quire

LUT Reg. Cycles Delay (ns)

Quire addition
U 618 885 4 2.576

S32 403 585 3 1.886
S64 444 606 3 1.984

Carry propagation
S32 6 390 3 1.539
S64 2* 261 2 1.651p

o
si
t1
6

Quire to posit 480 166 3 2.735

Quire addition
U 3609 4986 7 3.212

S32 1305 2265 3 2.791
S64 1389 2276 3 2.791

Carry propagation
S32 281 2874 8 2.851
S64 189 2391 7 2.183p

o
si
t3
2

Quire to posit 1845 1457 17 2.878

On the second point, the take-away message of this study is that the in-

disputable complexity of the IEEE-754 standard, much attacked by posit pro-

ponents, does not necessarily translate into expensive hardware. Among the

features that the posit system discards as useless, most (in particular over-

flow management, NaNs, and directed rounding mode) were designed to be

implementable at very little cost. The only really expensive feature is subnor-

mal support, due to rounding happening in a variable position of a bit vector.

Posit arithmetic, despite the simplicity and elegance of the number system,

involves such variable-position rounding, and therefore entail an overhead

that is comparable in nature to subnormal support.

2.4 Limits and future work

A first issue with the current library design is the imposed default choice for

IEEE-754 number rounding mode. This is however only a design issue and

could be solved by adding a policy parameter to the IEEENumber template class

determining the default rounding mode.

A more fundamental issue comes from the limits of C++ template meta-

programming. While the C++ template system has been shown to be Turing-

complete,many obstacles hinders the development of a full library based only

on this system.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

84 Limits and future work

1. the C++ standard version accepted by the tools accepts only very simple

constexpr constructs, limiting a lot what is practically writable,

2. there is no tool to move step-by-step into the template instantiation mech-

anism, making such code difficult to debug and limiting the manageable

complexity of code using this system,

3. template instantiation mechanism has impact on compilation time (while

this overhead is negligible compared to the time required to place and

route an FPGA design, it is very significant when iterating on the software

version of the design to debug it),

4. there is no way to reuse external runtime libraries to precompute useful

values at compilation time.

This last point is quite annoying: a lot of libraries exists to determine

interesting values for arithmetic operators (for instance “good” coefficients

for polynomial approximation of arbitrary functions) which would require

a huge amount of expertise and a lot of work to rewrite as full compile-time

libraries (and suffer from the issues listed above). Next chapter describes two

approaches to solve these issues by getting support from the compiler.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

3
HLS library for arbitrary fixed-point function

approximations

The previous chapter has demonstrated the possibility of creating fully pa-

rametrized HLS operators for basic arithmetic operation using only pure C++

meta-programming. This is an interestingfirst step toward the “ultimate goal”

for arithmetic support in HLS, that would be to allow the construction of

optimized hardware for arbitrary arithmetic operators (in the sense of sec-

tion 1.3). A second step toward this goal consists in supporting operators

approximating arbitrary unary function, with fixed-point input format and

destination format. This is an interesting objective because the generation

of such hardware is a well studied problem (a brief overview of the existing

solutions is given in section 3.3), but no existing HLS tool support it. Besides,

architectures for approximating arbitrary functions requires complex value

pre-computation (for instance polynomial coefficients, or function values for

tabulation). Computing these values fall behind the limit of what can be eas-

ily and efficiently done using C++meta-programming. That is why alternative

methods are required to reach this objective. This chapter introduces these

methods.

On the user side, a library allows HLS developers to build operator spec-

ifications in their code. Two methods to implement the library backend that

convert these specifications to hardware description are proposed. Both of

them require a modification of the HLS compilation flow.

The first method, presented in section 3.4, allows doing so without modi-

fying the HLS compiler, by introducing an intermediate compilation step [52].

This approach is portable (as it is not bound to a specific HLS compiler) but

requires a bit of extra work from the library user.

When modifying the compiler is an option, an alternative method, trans-

parent to the user, is available. It is presented in section 3.5.

85

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

86 Custom C++ HLS compiler supporting C++20

The HLS compiler used to implement this method is a custom C++20 com-

piler targeting Xilinx devices. It is introduced in section 3.1.

3.1 Custom C++ HLS compiler supporting C++20

This section describes the custom C++ compiler that has been developed for

enabling experimentation with C++20/C23 constructs on HLS targeting Xilinx

FPGAs.

This compiler has been initially developed to bring experimental SYCL

support to Xilinx devices [53]. SYCL is a programming standard from the

Khronos Group [22] to program applications using heterogeneous acceler-

ators within a modern single-source C++ framework. Intel has developed

a clang fork that support SYCL on various devices, rebranded the oneAPI

DPC++1 compiler [54]. This fork has been itself forked to add support for Xil-

inx FPGAs. Both forks rebases on the latest Clang/LLVM developments on

a regular basis, which allows using all C++ constructs supported by recent

clang++.
Internally, this custom compiler uses Vitis HLS, as a backend. Vitis HLS

consists in a derivative from Clang/LLVM [55], with added support for custom

pragmas and some specific optimization passes. The tool is frozen at LLVM

version 7. Moving the Vitis frontend back from the past to align it with the

current LLVM 15 seems to represent an enormous amount of work. Instead

of doing so, the strategy is to feed the LLVM IR produced by amodern clang++
15 compiler to Vitis HLS, bypassing the Vitis HLS old clang++ frontend. This

architecture is visible on figure 3.1. The LLVM IR version produced by the

recent Clang/LLVM is not directly compatible with Vitis HLS for two reasons:

• Vitis HLS understands only LLVM 7 IR, and LLVM 15 IR has some constructs

that do not exist or are invalid in LLVM 7 IR,

• it expects some IR patterns that are no longer emitted by clang++. Without

them, the quality of result can degrade abruptly. For instance, the canonical

way to move objects in recent LLVM is via memcpy instructions, while Vitis

works better with loads and stores.

So a few LLVM passes that downgrade modern LLVM IR to Vitis understand-

able IR have been developed. This compiler also offers a few custom C++ dec-

orators to replace Vitis HLS pragmas.

A new Vitis-IP target has been added to the Xilinx SYCL compiler in order

to allow the usage of the tool outside SYCL environments. With this target,

1For data parallel C++.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

87

vitis_ip.cpp clang++ IP.bc

IR Downgrading
Vitis HLS

sycl_vxx.py IP.zip

Figure 3.1: Custom C++ HLS compiler stages

the downgrading passes are run and vitis_hls is invoked on the result, to

produce an IP package that can be imported in a Vivado block design.

A command to launch an IP synthesis is similar to a clang++ invocation,

for instance

1 clang++ --target=vitis_ip-xilinx vitis_ip.cpp -std=c++20 -o ip.zip
--vitis-ip-part=xc7vx330t-ffg1157-1↩→

When targeting vitis_ip-xilinx, the clang driver will schedule the oper-

ations presented on figure 3.1. The modern clang frontend translate the C++

source file to a LLVM15 Intermediate representation (IP.bc). This representa-
tion is then fed to a python script, sycl_vxx.py, that will schedule the different

passes that downgrade the IR version and lower the custom extensions in IR.

The same script fed the produced LLVM 7 IR to Vitis HLS, whic produces the

result IP (IP.zip).

3.2 A library to specify arithmetic operators

As stated earlier, the objective of this work consists in allowing the construc-

tion of hardware arithmetic operators having one fixed-point input and an

arbitrary approximated function. This section introduces the library that is

provided to the user for specifying such operators.

The library is actually made of two layers. A first layer describes elemen-

tary fixed-point operations. It can be seen as the counterpart of the MArTo
library for fixed-point formats, and could actually have been part of it. How-

ever, as the compiler used for the experiments supports C++20 concepts and

C23 BitInt, it was also the opportunity to test the design improvements en-

abled by these features. That is the reason why this fixed-point operations

library is not a regular part of MArTo. In addition, C++20 support enables the

use of functions of the standard library that became constexpr2with this stan-

dard. These functions would have otherwise needed to be reimplemented.

The same work could however have been done using the ancient C++ stan-

2Which means they can be evaluated at compile time and used inside template parameters

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

88 A library to specify arithmetic operators

dard supported by main vendor HLS tools, as shown in the previous chapter.

The fixed-point layer of the library is detailed in section 3.2.1.

The second component of the library allows the definition of mathemat-

ical expressions, that are used to specify the function that the operator ap-

proximates. This library is detailed in section 3.2.3. The same remark as for

the first layer applies: C++20 concepts and constexpr standard functions have
been used beneficiallywithin the library, but it is perfectly possible to develop

an equivalent library without them. This is only a matter of productivity of

library development.

3.2.1 C++ types for fixed-point number

In the fixed-point library, a fixed-point format is represented by the tem-

plate class FixedFormat. The two first template parameters are respectively

the most significant and least significant bit position (similarly to what is

described in section 1.2.1). A third template parameter specifies whether

the format is signed. For instance, the type FixedFormat<31, 0, signed>
represents a fixed-point format which is equivalent to a 32-bit signed integer.

A FixedFormat is used to parametrize the template class FixedNumberwhich

represents a value of a given format.

A FixedNumber can be constructed from the representation of its value. For

instance, in Listing 3.1, the variable X is initialized with the value 2−2 because
only its second bit (of weight -2) is set.

1 using my_format = FixedFormat<4, -3, unsigned>;
2 FixedNumber<my_format> X{0b00000010};

Listing 3.1: Construction of a FixedNumber from its representation.

A FixedNumbermay also be constructed from the value of a standard arith-

metic type, thanks to the static method get_from_value. This conversion re-

turns the value of the target format closest to the source value. The tie break-

ing rule is toward +∞.

Listing 3.2 presents an example of computation performed with the fixed-

point library.

A user-defined literal (UDL) allows to create a FixedNumber from a constant

valuewithout having to specify its format. The narrower format that can rep-

resent exactly the expression will be automatically deduced from the opera-

tor. As decimal floating-point literals may have non-finite representation (for

instance 0.110 = 0.000110011001100...2), only hexadecimal floating-point literals

are accepted by this UDL in the current library state.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

89

1 using radius_fmt = FixedFormat<3, -4, unsigned>;
2 using pi_fmt = FixedFormat<<1, -4, unsigned>;
3 auto circumference(FixedNumber<radius_format> radius) {
4 // Generate a constant of value two
5 // The deduced format is FixedNumber<1, 1, unsigned>{1};
6 constexpr auto two = 2._fixed;
7 // Generate an approximation of PI rounded to 2^(-4)
8 // !! PI is already an approximation of c !!
9 auto pi = FixedNumber<pi_fmt>::get_from_value(PI);

10 // Diameter is a FixedNumber<4, -3, unsigned>;
11 auto diameter = two * radius;
12 // circumference is a FixedNumber<6, -7, unsigned>
13 auto circumference = diameter * pi;
14 // Eventually we get rid of low bits
15 // Return type is FixedNumber<6, -4, unsigned>
16 return circumference.round_to<-4>();
17 }

Listing 3.2: Format inference in the fixed-point library.

Finally, conversion from FixedNumber to standard arithmetic types are ex-

pressed with the get_as template method from FixedNumber. This method

takes a target arithmetic type as template parameter and returns the value

of this type which is the closest to the represented value (with the same tie-

breaking rule as the other conversions).

3.2.2 Classical arithmetic computations

The proposed library defines standard arithmetic operations between

FixedNumber of different FixedFormat, similarly to what the hint library does

with arbitrary width integers. In the current experimental state, the modern

C++ compiler presented in section 3.1 is the only target of this library. This

compiler supports C23 _BitInt, so a backend using these types has been de-

veloped for hint. Fixed-point functions are built on this backend3 to benefit

from the strong semantic checking and useful API of hint4.

3As the library uses languages features that are not supported by IntelHLS or Vitis HLS, it
makes no sense to add genericity to function libraries to support these backends. However,
this is a technical decision for the sake of efficiency of library development. It should be em-
phasized again that there is no conceptual obstacle to build a similar library using pre-C++14
constructs. This is however more tedious and error-prone, hence the technical decision of
using C++20 in this experimental work.

4Another technical point is that in their current specification, 1-bit signed _BitInt are not
supported natively. While this has been “fixed” by adding this support at the compiler level
in the case of the custom compiler presented here, it will also be handled at the hint library

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

90 A library to specify arithmetic operators

Addition, subtraction and multiplication are computed exactly, the

FixedFormat of the result being deduced by the library to be wide enough to

hold the result. Rounding, overflow or saturation must be managed explic-

itly: FixedNumber provides additional methods to slice it, round to a specific

precision, or extend the number to a wider format.

The proper way to handle division and remainder is still not clear.

Some HLS tools provides Arbitrary fixed-point format libraries, as for in-

stance ap_fixed and ac_fixed, the fixed-point counterparts of respectively

ap_int and ac_int. These libraries offer quite similar functionalities in terms

of elementary operation support. They also allow more flexibility in the for-

mat definition, by exposing policy parameters to set the overflow and round-

ing behaviors. They however suffer from the same issue as their integer coun-

terparts concerning the lack of type checking and the transparent casting that

can induce counter-intuitive behavior. The original feature from the pro-

posed library is its ability to evaluate arbitrary mathematical expressions of

fixed-point inputs. Next section describes how to represent such expressions.

3.2.3 Arbitrary mathematical function specification via its ex-

pression graph

Applications often require the evaluation of mathematical functions which

are themselves defined as compositions of elementary operations and func-

tions, for instance 5 (F) = log(1 + 4F). Such a function can be evaluated at

run-time by a composition of library components (here an exponential, an

addition and a logarithm). It is however often more efficient to get a single

component to evaluate this expression, as illustrated by Figure 3.2. For this

purpose, the proposed library also provides a mechanism to describe a func-

tion of one variable, then generate an operator to evaluate this function under

an accuracy constraint.

In the proposed approach, a composite function may be defined as a C++

expression with a specific property: it has a free variable defined by the

FreeVariable constructor. More precisely, this expression must be a tree of

mathematical operations or elementary functions, and the leaves are either

free variables or constants. A valid expression, for the purpose of building an

evaluator, should have at most one free variable. The expression tree defines

the function that the resulting operator should approximate. Its operand

input format is the format of its FreeVariable leaf, and the output format is

defined when requesting an evaluation.

Listing 3.3 shows how a simple expression tree and a hardware operator

level in the future.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

91

functionInput

5 (F) = log(1 + 4F)

functionOutput

FixedFormat<5, -12, unsigned>

FixedFormat<5, -17, unsigned>

Figure 3.2: Example of function evaluator (here corresponding to listing 3.3).

1 FixedNumber<FixedFormat<5, -12, unsigned>> functionInput;
2 functionInput = (...) // HLS code computing functionInput
3 using result_t = FixedFormat<5, -17, unsigned>;
4 FreeVariable x{functionInput}; // defining a free variable
5 auto c = 1_cst;
6 auto f = log(c + exp(x));
7 auto functionOutput = evaluate<result_t>(f);

Listing 3.3: Construction of the expression tree corresponding to 5 (F) = log(1+
4F) (lines 4-6), and construction of an operator for this function (line 7).

to evaluate it can be specified. At line 4, a FreeVariable node is created from

a fixed-point variable. The FreeVariable format is deduced from the source

FixedNumber, and corresponds to the operator input format in the formalism

of section 1.3. At line 5, a Constant leaf is created using a user-defined literal5.

The library also has special constants to represent numbers like c, which

are kept symbolic (infinitely accurate) in the expression tree defining a func-

tion. The deduced type of variable f at Line 6 represents the expression tree

corresponding to the function 5 : F → log(1 + 4F). The call to the evaluate
template function specifies an arithmetic operator:

• the function it approximates is given by its argument (here f),

• the output format is given as template parameter,

• the input format is obtained from the function free variable leaf,

• the rounding relation is implicit, as only faithful rounding at the moment.

An arguably better design in terms of separation of concern would have

consisted in having format-agnostic FreeVariable, and pass the operator in-

put as a second argument to the evaluate function, that could then be called

5It is also possible to create it by specifying the exact type.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

92 Fixed-point function approximation architectures

apply. This might become the new API in future library versions.

Once a specification is obtained, Hardware matching it can be generated.

Next section introduces briefly the architecture used to implement these

hardware operators.

3.3 Fixed-point function approximation architectures

Multiple architecture exists for hardware implementation of arithmetic op-

erators. Two main families exists for general function approximation: table-

based methods and polynomial methods.

3.3.1 Table-based hardware arithmetic operators

The simplest form of table-based function approximation operator is plain

tabulation. A pre-computed table contains the function output value for each

possible input value. The runtime computation consists only in reading the

value associated to the input in the table. This architecture is interesting for

small input width operators, as it has a low latency. However, as the storage

requirement evolves exponentially with the input width, it becomes costly

with wide inputs. In this case, an alternative consists in using a multipartite

table decomposition.

The simplest form of multipartite method is the bipartite[56], [57] table

method. As illustrated by Figure 3.3, this method is based on a piecewise lin-

ear approximation. The input domain is partitioned in 2U sub-intervals by

splitting the input as - = � + 2−U�, where � (the interval index) consists of

the U leading bits of - and � (the index within one interval) consists of the

least significant bits. The linear approximation on each subdomain indexed

by � is 5 (-) ≈ 5 (�) + 2−U� × A(�) where A(�) is the slope of the approximation

segment. The idea of the bipartite method is to tabulate the multiplications

� × A(�). To reduce the cost of this tabulation, the slopes are shared between

23 consecutive intervals, so instead of �× A(�) it is possible to tabulate �× A(�)
where � consists of the U − 3 leading bits of �.

Many evolutions to this method have been developed (see [58] and refer-

ences therein, and [59] for a method for compressing the table of initial val-

ues). Due to lack of time, the current flow only provides a basic bipartite ap-

proximation: its purpose is to demonstrate that the approach is not restricted

to simple tabulation. The current implementation computes the parameters

U and 3, and fills the corresponding tables for a faithful operator. Plain tab-

ulation is used when no bipartite approximation with a better table storage

cost is found.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

93

-

5 (-)

+
+
+
+
+
+
+
+
+
+
+ + + + + +

constant slope
on 23 intervals

(a) The bipartite approximation (before discretiza-
tion)

- =

U
3

A BC

initial value
≈ 5 (�)

offset
≈ � × A(�)

+

'

(b) Bipartite architecture

Figure 3.3: Example bipartite approximation architecture, here replacing a
table of 26 entries with two tables of 24 entries. Source: [32]

3.3.2 Polynomial approximation methods

Polynomial approximation methods consists in finding a polynomial that is

close enough to the function to approximate on the operator input domain.

The approximated function value is then obtained by evaluating the polyno-

mial, using for instance the Horner evaluation scheme. Finding good polyno-

mial for a given function is not trivial, as two optimization goal coexist: the

approximation error should be small enough to respect the overall accuracy

constraint, and at the same time the polynomial has to be efficiently evalu-

ated. The later point implies in particular that the polynomial degree should

not be too high, and that the coefficients should have a compact binary rep-

resentation to avoid wide intermediate products.

Tools like sollya [60] allows finding good polynomial for a specified func-

tion and a specified error bound. These tools are already used by HDL gen-

erators such as FloPoCo [25]. The main contribution of this thesis is not to

improve the underlying methods, but enable the usage of these tools in an

HLS context. The following sections present two methods for achieving this

purpose.

3.4 Compiler agnostic specialization generatormethod

The first method is useful when the HLS compiler is a black box, that cannot

be modified. It consists in splitting the HLS compilation process in two steps.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

94 Compiler agnostic specialization generator method

This process is detailed on figure 3.4. The first involves compiling the applica-

tion for execution on traditional CPU. This compilation step can be done with

any off-the-shelf C++ compiler. The executable resulting from this compilation

is called the specialization generator.

Running the specialization generators produces C++ implementations for

all the operators present in the source application. These specializations

are dumped in a specialization header, called operators.hpp on figure 3.4.

This generated header file can then be included in the application source file

app.cpp, and be compiled with an HLS compiler.

Here again, there is no constraint on the HLS compiler, except that it

should be able to accept both the application and specialization header

code6.

app.cpp
(any)
CPU

Compiler

opgen.elf operators.hpp

Produced by
execution of
opgen.elf

(any)
HLS

Compiler

app.zipArchitecture
generation
library (.so)

Sollya.so

FloPoCo.so

Figure 3.4: Architecture of the generator of template specializations

Following sections detail the internal working of the specialization gener-

ator.

3.4.1 C++ types for arithmetic operator evaluation

Listing 3.4 present a toy example that illustrates the main mechanisms that

are used in the specialization generation method. One of these mechanism is

template specialization. It allows specifying that a different code from the de-

fault template code should be generated when a template is instantiated with

certain parameters. This is visible with the TemplatedClass specialization at

line 9 of the listing. The class definition that follows will be selected when the

template is instantiated with int as its parameter. For all other parameters,

the default template class defined at line 2 is used. The second mechanism

is the dispatching mechanism used to instantiate a template instantiation

based on a function argument type. This is illustrated by the dispatcher

6A last emphasis is made here to highlight that, while it means supporting C++20 with the
proposed library, it is not a strong requirement. Indeed, the concept mechanisms used in the
library can be implemented by exploiting the C++ SFINAE (Substitution Failure Is Not An Error)
rule, and the constexpr functions used can be implemented manually with C++11 constructs.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

95

templated function. When called with a float parameter (line 24), the tem-

plate parameter is deduced to be float, so the argument is forwarded to

TemplatedClass<float> which is instantiated using the default template. At

line 27, the call with an int argument is dispatched to the int specialization
of TemplatedClass.

The evaluate function of the library is used similarly to require a specific

instantiation of a template class that depends on the expression type and out-

put format. The outline of this templated class, ArithOp, is given in listing 3.5.

Its first template parameter, ET, is the type that represents the expression tree

to evaluate. The second template parameter, OutputType, is the destination

type of the operator.

The evaluate method of ArithOp is responsible for computing the result

of the operator evaluation. Instead of dispatching the expression to a static

method of ArithOp, evaluate7 dispatches it to the evaluate member method

of a templated ArithOp variable. This detail is important, as it has for conse-

quence that the constructor of this variable will be called before entering the

main function.
In the default ArithOp template, this constructor has two responsibilities:

• determine an architecture to evaluate the specific expression of its template

parameters,

• generate code that implement this architecture and dump it in the special-

ization header.

The first point is achieved by using an architecture generation library,

which query tools such as sollya and FloPoCo to determine an efficient hard-

ware implementation for the given expression tree. In detail, a runtime rep-

resentation the expression tree is built and converted to a representation un-

derstandable by the external tools.

In the bipartite generation case, sollya is used to build the highly accurate
reference table of the function values. This table is then processed to find a

good bipartite decomposition. If no good decomposition is found, then the

tool falls back to a plain tabulation. The chosen algorithm and associated

tables are then saved in the specialization header.

Listing 3.6 gives a simplified example of what the implementation of the

specialization of ArithOp corresponding to the evaluate call at line 7 of list-

ing 3.3. This specialization is generated when running the opgen.elf exe-

cutable. It can be seen that the type specialization is fully specified by a type

representing the expression tree log(1 + 4F) (with F the free variable).

7The free library function.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

96 Compiler agnostic specialization generator method

1 template<typename T>
2 class TemplatedClass{
3 static void myAction(T) {
4 std::cout << "Default template!\n";
5 }
6 };
7

8 // In our case, would be defined in a specialization header
9 template<>

10 class TemplatedClass<int> {
11 static void myAction(int value) {
12 std::cout << "Int specialization: " << value << "\n";
13 }
14 };
15

16 template<T>
17 void dispatcher(T val) {
18 TemplatedClass<T>::myAction(val){};
19 }
20

21 int main() {
22 // Dispatch to TemplatedClass<float>:
23 // Will print "Default specialization"
24 dispatcher(3.14f);
25 // Dispatch to TemplatedClass<int>:
26 // Will print "Int specialization: 42"
27 dispatcher(42);
28 }

Listing 3.4: Simple example of template specialization and dispatching.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

97

1 template<ExpressionType ET, FixedFormatT OutputType>
2 struct ArithOp {
3 ArithOp(){
4 // Find function evaluation plan
5 // and dump it to the specialization header
6 }
7

8 // empty default implementation
9 FixedNumber<OutputType> evaluate(ET expr) { /*...*/ }

10 };

Listing 3.5: Outline of the generic ArithOp template class.

1 template<>
2 struct ArithOp<
3 /*ExprType=*/
4 LogExpr<
5 SumExpr<
6 Constant<1, ...>,
7 ExponentialExpr<
8 FreeVariable<...>>>>,
9 /*OutputType=*/FixedFormat<5, -17, unsigned>> {

10 auto evaluate(LogExpr<...> expr) {
11 // Detailed instantiation, for instance polynomial evaluation
12 // or table read
13 }
14 };

Listing 3.6: Simplified example of generated ArithOp specialization for log(1+
4F) with output format ufix(5,−17).

Such specializations are generated for each operator specification present

in the program. As a consequence, when including the specialization header,

there is no more use of the default template. As these specializations have an

empty constructor, and their evaluate method are pure functions that only

use fixed point constructs, they can be fed to the HLS compiler.

3.4.2 Application example

The next sections present two applications that have been built using the li-

brary in specialization generator mode[52]. One of these examples is also

shown to integrate well in a SYCL environment.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

98 Compiler agnostic specialization generator method

A narrow LNS adder

As seen in section 1.2.3, sum and subtraction in LNS format requires evalu-

ating the function 5⊕ : F ↦→ log2(1 + 2F). This function is a good example of

composite functions that can be implemented using the techniques described

in this chapter.

In order to demonstrate the capabilities of the library, a simple LNS adder

has been developed. The simplified adder is presented in listing 3.7.

1 // lns_t is a specialization of FixedNumber
2 lns_t LNSAdder(lns_t op1, lns_t op2) {
3 auto min_exp = min(op1, op2);
4 auto max_exp = max(op1, op2);
5 min_exp -= max_exp;
6 auto diff_fv = FreeVariable{min_exp};
7 auto f = log2(1_cst + pow(2_cst, diff_fv));
8 auto rounded_f = f + lns_t::rounding_constant;
9 auto result_exp_diff = evaluate<lns_t::add_eval_t>(rounded_f);

10 max_exp += result_exp_diff;
11 return max_exp;
12 }

Listing 3.7: A simplified LNS adder

The LNS Adder has been synthesized for an lns_t having an exponent of

FixedFormat<5,-6, unsigned>. This requires to evaluate 5⊕ with an accuracy

constraint of 2−8. The report after synthesis and place-and-route shows that

the design uses two BRAM, which matches the expectations.

Additive sound synthesis

Additive synthesis is a sound synthesis technique typically used in electronic

music to create timbres by adding sine waves together [61] as in the following

computation :

G(B) =
 ∑
9=1

@9 (B) sin(2c 59B + q9) .

It allows very rich sounds when a lot of sines are used, but then it is very

compute-intensive. When used in an interactive configuration with hard-

ware in the loop to simulate real instruments interacting in real-time with

the real world physics, it requires very low latency.

In order to check the impact of the library, an additive synthesis kernelwas

developed both with FixedNumber and binary32 computation. Both versions

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

99

0.00 0.25 0.50 0.75 1.00
t

0.75

0.50

0.25

0.00

0.25

0.50

0.75

sin
(2

t)
+

sin
(4

t)
2

binary32
FixedNumber16
FixedNumber8

10 7

10 6

10 5

10 4

10 3

| b
in

ar
y3

2
Fi

xe
dN

um
be

r k
|

0.00 0.25 0.50 0.75 1.00
t

2 23

2 20

2 17

2 14

2 11

2 8

k = 16
k=8

Figure 3.5: Output of an additive synthesis with two frequencies of equal am-
plitudes and the computational error (as absolute difference on a logarithmic
scale).

have an underlying collection of 256 oscillators, having a frequency 59 =
9∗1000
256

and phases q9 = 0. The amplitudes @9 is an input of the kernel. In both ver-

sions, the oscillators are instantiated using template unrolling, to ensure that

they are inlined.

In the FixedNumber implementation, the @9 are fixed-point number of for-

mat FixedFormat<-1, -8, unsigned>. The sine is computed from awave table

of 212 entries generated by the library. The function thus evaluated is 5 (F) =
A7<(2cF) for F in [0; 1)8. Two experiments, FixedNumber8 and FixedNumber16
have been performed with an evaluator accuracy constraint of 2−8 and 2−16

respectively.

In the binary32 implementation, the std::sin function from the mathe-

matical library is used. All the computations are done in binary32.

Function values over one period for all the formats and difference with

binary32 for FixedNumber8 and FixedNumber16 are plotted on Figure 3.5. The

graphs for all the format coincide perfectly, and as expected, the absolute dif-

ference to float is smaller for FixedNumber16 than for FixedNumber8.

The evaluation is performed using our compiler and targeting a Virtex

ultrascale plus FPGAwith part number xcvu13p-fhga2104-3-e. Both pipelined
and unpipelined solutions have been generated for the three formats. Results

are given after place and route. The design metrics are reported in table 3.1.

8Here trigonometric identities could be used to performargument range reduction. See [62]
for an illustration of this technique. The long-term objective of the library is that such opti-
mizations are performed transparently to the user, so this optimization technique is not rele-
vant in user code here.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

100 Compiler agnostic specialization generator method

E
x
p
e
rim

e
n
t

A
re
a

T
im

in
g

P
ip
e
lin

e
F
o
rm

a
t

L
U
T

F
lip

-fl
o
p

D
S
P

B
R
A
M

L
a
te
n
cy

C
ritica

l
p
a
th

(n
s)

II

U
n
p
ip
e
lin

e
d

float
1
2
3
8
9

1
5
2
2
2

1
7
5

0
6
5
3

2
.7
8
7

-
FixedNumber

6
7
9
3
2

6
9
8
5

2
5
6

1
2
9

2
5
7

2
.9
0
7

-
FixedNumber

8
8
8
8
2

7
2
8
4

2
5
6

2
5
7

2
9
7

2
.9
0
1

-
FixedNumber

16
5
7
7
7

6
9
1
7

2
5
6

5
1
3

2
8
4

2
.9
9
5

-
FixedNumber

22
6
5
5
1

7
3
0
4

2
5
6

7
6
9

2
7
0

2
.9
4
5

-

P
ip
e
lin

e
d

float
1
4
1
4
9
1

1
6
6
7
2
3

1
3
0
4

0
2
2
6

2
.9
9
5

1
2
8

FixedNumber
6

7
4
4
2

4
9
7
7

2
5
6

1
2
8

5
2
.8
0
3

1
FixedNumber

8
7
5
6
8

6
5
0
0

2
5
6

2
5
6

5
2
.7
0
1

1
FixedNumber

16
4
5
1
3

8
8
0
6

2
5
6

5
1
2

8
2
.8
0
6

1
FixedNumber

22
5
6
2
7

9
3
8
5

2
5
6

7
6
8

8
3
.0
7
4

1

T
a
b
le

3
.1
:
A
re
a
a
n
d
tim

in
g
m
e
trics

co
m
p
a
riso

n
b
e
tw

e
e
n
float

a
n
d
v
a
rio

u
s
FixedNumber

fo
r
a
n
a
d
d
itiv

e
sy
n
th
e
siz

e
r
o
f
2
5
6

o
scilla

to
rs.

II
sta

n
d
s
fo
r
In
itia

tio
n
In
te
rv
a
l,th

e
n
u
m
b
e
r
o
f
clo

ck
cy
cle

s
th
a
t
p
a
ss

b
e
fo
re

th
e
p
ip
e
lin

e
is
re
a
d
y
to

b
e
fe
d
a
n
e
w

in
p
u
t.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

101

These results show that fixed-point is definitely a good option for this ap-

plication. Three factors can explain this better quality of results. The first one

is a question of bitwidth of the argument that have to bemoved in the design.

Indeed, the 256 8 bits amplitude coefficients input of the FixedNumber case can
be implemented as a very wide input register while it is not possible for the

256 32bits coefficients of the input. Secondly, the intrinsic arithmetic of float-

ing point is more complex than fixed-point on the operation involved in this

application. Lastly, the fact that floating-point arithmetic is based on external

IP integrated by the design can hinder some optimization opportunities.

Single-source end-to-end LNS with SYCL

As the compiler used in our developments also offers an experimental sup-

port for compiling SYCL programs targeting AMD FPGAs, we tried to use the

library in a full end-to-end single-source application. In the SYCL compilation

flow, the computation kernels are outlined by the compiler, and compiled sep-

arately for the hardware targets. Instead of producing a Vitis IP, it generates

a x86 fat binary that embeds the hardware kernel binary, and contains all the

glue to invoke the kernel execution on the FPGA. A small SYCL applicationwas

developed, consisting in one kernel that computes the sum of two LNS num-

ber having an exponent of format FixedFormat<7,-8>, using the adder shown

on listing 3.7. This application has been built to run on Xilinx devices. This re-

quired a bit of manual adjustment of the SYCL compilation flow, but nothing

that could not be automated in the future. It was then possible to run the pro-

gram that moved the operands to the FPGA, launched the kernel, and get the

result back. No resources are reported here, as the hardware synthesized to

ensure communications between the FPGA and host CPU is way bigger than

the small LNS adder.

3.4.3 Limits of the approach by specialization generation

Using the type system to represent the expression raise a fundamental issue.

Indeed, it is not possible to distinguish two variables sharing the same type.

This is in particular problematic with the FreeVariable class. Listing 3.8 illus-
trates this issue: the FreeVariable x and y share the same type due to the fact

they are created with values of the same FixedNumber type. As such, there is

no way to distinguish between a valid expression tree that uses multiple time

the same FreeVariable (line 6) from an invalid expression that mix usages

of x and y (line 8). The approach followed by the library is very conservative:

only expression trees with atmost one free variable leaf are considered valid.

With this approach, code from listing 3.8 raise a compile-issue complaining

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

102 Compiler agnostic specialization generator method

of an invalid expression both for valid_expr and invalid_expr. This avoids
error from the user at a price of reduced expressivity.

1 using input_t = FixedNumber<FixedFormat<5, -12, unsigned>>;
2 auto some_compute(input_t xVal, input_t yVal) {
3 FreeVariable x{xVal}
4 FreeVariable y{yVal};
5 // Valid because only one free variable
6 auto valid_expr = sin(x) + cos(x);
7 // Invalid because two distinct free variables
8 auto invalid_expr = sin(x) + cos(y);
9 using vexpr_t = decltype(valid_expr);

10 using iexpr_t = decltype(invalid_expr);
11 // The assert will pass
12 static_assert(is_same_v<vexpr_t, iexpr_t>);
13 }

Listing 3.8: Example of expression sharing the same type but representing
distinct expression tree due to the lack of variable instance type identifying
mechanism.

An alternative would be to ask the user to manually specify an uniquing

type as parameter to FreeVariable (e.g. FreeVariable<class MyUniqID>{}).
However, thiswould clutter the libraryAPI, stays quite error-prone andwould

have the side effect that identical expression of two distinct variables will no

more share the same architecture generation step.

Another limit of this approach is the relative difficulty to perform opti-

mizations on expression tree. Supposing that the library accept the expres-

sion F + F (which is not the case as F appears twice in the expression tree), it

would be desirable to have a mechanism to optimize it as 2F. Similarly, some

trigonometric identities could be applied to “canonicalize” the expression rep-

resentation and limit the architectural exploration for mathematically iden-

tical expression of different expression graph. This would require a way to

apply a collection of rewriting rules to optimize themathematical expression.

This is actually a good part of the job of optimizing compiler job. However,

these compilers first build intermediate representation (IR) of the program

that are easy to manipulate. Optimizations are then performed on this IR.

Following section explores a method that follows this approach.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

103

3.5 Compiler support for fixed-point functions in HLS

The second approach used to provide support for fixed point function in HLS

using the same user interface relies on compiler support. The overall archi-

tecture is presented in section 3.5.1. In order to support the actual fixed-

function compilation process, intermediate representations have been devel-

oped to represent such expressions. These IR are described in section 3.5.2.

3.5.1 Fixed-point function compilation architecture

The architecture diagram of the solution is presented on figure 3.6. The user

has only one compilation step to launch.

On this backend, operations on expression and FreeVariable constructor
are implemented using custom compiler built-ins. When compiling applica-

tion code, the compiler identify these built-ins, and is able to extract the oper-

ator specification from the rest of the code. The rest of the code that does not

correspond to operator specification is directly compiled into the compiler

internal representation (LLVM IR in this case). This corresponds to the IP.bc
file on figure 3.6. In parallel, the operator specifications are compiled into a

custom IR, which corresponds to ArithOps.ir on the figure. A specific com-

piler (the expression compiler on the figure) is used to convert this high level

specification into low level LLVM IR (ArithOps.bc). This LLVM IR and IR.bc
are fed to sycl_vxx.py, that will link them together and run optimization and

downgrading passes on the resulting code before feeding it to Vitis HLS.

App.cpp clang++

IP.bc

ArithOps.ir
Expression
compiler
(lowering)

ArithOps.bc

sycl_vxx.py App.zip

Figure 3.6: Architecture diagram of fixed-point function extracting compiler.

The lowering done by the expression compiler is a multi-stage process,

that involves multiple intermediate representations of the operator at differ-

ent abstraction level. These intermediate representations and some optimiza-

tions that are (or could be) performed on themare detailed onfigure 3.7. They

consists in MLIR [63] dialects. MLIR, for multi-level intermediate representa-

tion, is a compilation framework that allows the definition of custom interme-

diate representations. These IR are called dialects, and consists in collections

of custom types and operation on these types. TheMLIR compiler framework

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

104 Compiler support for fixed-point functions in HLS

provides all the infrastructure needed to define these dialects, apply rewrit-

ing rules for optimization and define conversion rules to lower a high-level

dialect to a lower-level one.

approx

Function expression

Input format

Output Format

Evaluation method

Algebraic optimizations

(Range reduction …)

Implementation

FloPoCo.so

Sollya.so

fixedpt

Fixed-point operations

Table operations

Bitheap compression

Tiled multiplers

Multiple Constant

Multiplication

…

FloPoCo.so

arith
Integer operations

Table operations

LLVM
Integer operations

Memory references

Italic optimizations are not yet implemented. Dashed IR frames are standard MLIR dialects.

Figure 3.7: IR and optimization used in the process of lowering high-level
operator specifications to implementation details.

A standardMLIRdialect exists to represent LLVMcode. The aimof the low-

ering block is then to translate the high-level operator specification given in

our custom dialect (the approx dialect) to low-level implementation in LLVM

IR dialect. Once this representation is obtained, it can be directly translated

to LLVM IR, that can be linked with the rest of the application. Next section

details these custom MLIR dialects.

3.5.2 Intermediate representations for fixed-point functions

Two custom MLIR dialects describing arithmetic operators have been devel-

oped. The first one, the approx dialect is an almost one to one mapping with

the library constructs for representing mathematical expression. This is il-

lustrated by listing 3.10 that gives the high-level representation produced by

the compiler for the operator specified in listing 3.9. The main difference be-

tween the C++ code and the approx dialect representation of the arithmetic

operator is the requirement of having a named node for each intermediate

node in the expression graph.

A second custom dialect, the fixedpt dialect, is used to represent actual

fixed-point operations. An MLIR conversion pass lowers the approx dialect

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

105

1 auto a = FreeVariable(val_fixed);
2 auto b = a * pi / 0x2p0_cst;
3 auto c = sin(b);
4 auto res = evaluate<
5 FixedFormat<0, -4, signed>,
6 // Force polynomial approximation (default is heuristic based)
7 approx::basic_poly
8 >(c);

Listing 3.9: C++ specification of an operator approximating F ↦→ sin(0.5 ∗ F ∗c).

1 %2 = approx.variable %1 : <0, -4, s>
2 %3 = approx.math "pi"()
3 %cst = approx.constant <2, <2, 0, u>, "2.0">
4 %4 = approx.math "mul"(%2, %3)
5 %5 = approx.math "div"(%4, %cst)
6 %6 = approx.math "sin"(%5)
7 %7 = approx.evaluate basic_poly of %6 as <0, -4, s>

Listing 3.10: High level representation of operator of listing 3.9 using the
approx dialect.

to the fixedpt dialect. This pass interacts with the external tools FloPoCo and

Sollya to determine this plan, and generate the corresponding fixedpt IR. List-
ing 3.11 gives the low-level implementation description of the operator from

listing 3.9 using this dialect. This dialect still exposes some level of abstrac-

tion. For instance, in this dialect addition or product are variadic operations.

This leaves the implementation detail decision to be decided in lower-level

dialects.

1 %1 = fixedpt.constant -9 : <0, -4, s>, "-0.5625"
2 %2 = fixedpt.constant 0 : <1, 0, s>, "0.0"
3 %5 = fixedpt.constant 25 : <1, -4, s>, "1.5625"
4 %8 = fixedpt.constant 1 : <-4, -5, s>, "0.03125"
5 %3 = fixedpt.mul %1 : <0, -4, s>, %0 : <0, -4, s> truncate <1, -8, s>
6 %4 = fixedpt.add %3 : <1, -8, s>, %2 : <1, 0, s> nearest <2, -8, s>
7 %6 = fixedpt.mul %4 : <2, -8, s>, %0 : <0, -4, s> truncate <3, -12, s>
8 %7 = fixedpt.add %6 : <3, -12, s>, %5 : <1, -4, s> nearest <4, -12, s>
9 %9 = fixedpt.mul %7 : <4, -12, s>, %0 : <0, -4, s> truncate <5, -16, s>

10 %10 = fixedpt.add %9 : <5, -16, s>, %8 : <-4, -5, s> nearest <6, -16, s>

Listing 3.11: Implementation of listing 3.9 operator in terms of fixed-point
operations described in fixedpt dialect.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

106 Compiler support for fixed-point functions in HLS

Dialects used for low-level implementation description are standard

MLIR dialects. Fixed-point operations are lowered to integer operations rep-

resented using the arith dialect. Current state of conversion from fixedpt
to arith dialect mainly consists in adding the good shifts and truncations

to ensure good relative positioning of fixed point operands. It also handles

the rounding logic of fixed point ops (with nearest tie breaking rule being

towars +∞ in this case). This dialect is then converted to the llvm dialect and
converted to LLVM IR that is linked with the rest of the application before

starting the HLS process. As the llvm and arith dialect are very similar, and

the former is a one to one mapping of LLVM IR, only the resulting LLVM IR

for the example operator is reported on listing 3.12.

1 %4 = sext i5 %3 to i10 ; extend variable %3 which has type i5 (5-bit integer)
2 ; to i10 (10-bit integer)
3 %5 = mul i10 %4, -9
4 %6 = sext i10 %5 to i11
5 %7 = add i11 %6, 1
6 %8 = ashr i11 %7, 1
7 %9 = trunc i11 %8 to i8
8 %10 = sext i8 %9 to i13
9 %11 = sext i5 %3 to i13

10 %12 = mul i13 %10, %11
11 %13 = sext i13 %12 to i14
12 %14 = add i14 %13, 8
13 %15 = ashr i14 %14, 4
14 %16 = trunc i14 %15 to i9
15 %17 = add i9 %16, 200
16 %18 = sext i9 %17 to i14
17 %19 = sext i5 %3 to i14
18 %20 = mul i14 %18, %19
19 %21 = sext i14 %20 to i15
20 %22 = add i15 %21, 8
21 %23 = ashr i15 %22, 4
22 %24 = trunc i15 %23 to i9
23 %25 = add i9 %24, 4
24 %26 = sext i9 %25 to i10
25 %27 = ashr i10 %26, 3
26 %28 = trunc i10 %27 to i5

Listing 3.12: LLVM IR corresponding to the implementation of listing 3.9.

The tensor and memref standard dialects are used to represent the value

tables at high and low abstraction level respectively, for table based approxi-

mation methods.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

107

3.5.3 Current state of the expression compiler prototype

The described compiler supports plain tabulation and basic polynomial ap-

proximation using Horner scheme. FloPoCo offers other function approxi-

mation methods (the state of the art in multipartite approximation [58] and

very good piecewise polynomial approximation [64]). These methods rely on

fixed-point operations that are already implemented in the fixedpt dialect,

so adding their support to the compiler should not be complicated. However,

this requires refactoring on the FloPoCo side, in order to better separate the

approximation logic from the VHDL generation code (that the complete HLS

compilation flow replaces). This refactoring has been initiated, but complet-

ing it is left for future work.

Correctness of execution has been tested exhaustively in relatively nar-

row formats, and QoR of synthesized solutions has been manually checked

on some examples to ensure sound results. However, there is no automatic

testing tools yet, and this compiler project is still at an early development

stage.

As it can be seen on listing 3.10, the current approx dialect represents all

computation nodeswith the approx.math operation. The first argument of this

operation determines the actual computation performedby thenode. This de-

sign choice was made in order to allow quick addition of computation nodes,

but this is not a good choice when it comes to applying high level expression

rewriting rule.

Besides, a lot of work remains to be done to optimize the evaluation strat-

egy. For instance, the lowering from the approx dialect to the fixedpt di-

alect could benefit from algebraic optimization, for instance detecting how

the evaluation range can be reduced. The lowering from the fixedpt to the

arith dialect could also benefit from low-level optimization, for instance by

using bitheap compression [65] for efficient sum computations.

In its current state the compiler can help an expert to build an optimized

arithmetic operator, and still allow a non-expert to at least get a fixed-point

operator for arbitrary function, but the ultimate goal of easily and automati-

cally generate operator with excellent quality of result is not reached yet.

As a final remark, having an efficient expression compiler is not only ben-

eficial to the integrated workflow. Indeed, there is no fundamental obstacle

to developing a backend that generate HLS-supported C++ code from arith
IR (for instance using the hint library). As such, it is perfectly possible to

integrate the expression compiler in the specialization generator flow, by in-

terfacing it with the “Architecture generation library” from figure 3.4. This

will however not solve the issue of variable type identification. As such, the

integrated flow is preferable when possible.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

Conclusion and perspectives

Theworkpresented on this thesis contributed to bring support for application-

specific arithmetic operators to High Level Synthesis tools.

Part of this can be done using pure host language constructions (in this

thesis, C++ was used as it is the language used by mainstream HLS tools), in

a portable way. On this work, this has been illustrated in chapter 2 with the

implementation of elementary operations for various floating-point formats.

This allows applicationdevelopers towrite their code once and change theun-

derlying numerical format with a simple typedef. This facilitates the choice

of a format that provide a good accuracy vs performance trade-off on a per-

application basis. In the future, this source-only approach can be extended

to other operators, as long as they do not require complex pre-computations.

This includes for instance as mixed-precision or fused operators.

For operators requiring complex pre-computations, the HLS support is

still possible, but requires adaptation of the HLS compilation flow. This is

shown in chapter 3 with operators that evaluate arbitrary mathematical

function with fixed-point input and output format. Implementations of

arbitrary function evaluators use function-specific pre-computed values

such as approximation polynomial coefficients. Computing these values is

complex enough that special tools have been developed in this purpose, such

as FloPoCo or Sollya. Two methods have been proposed to use these tools

to compute function-specific values before injecting the function evaluation

algorithm in the standard HLS compilation flow. The first is based on a

sequence of compilation stages, using unmodified off-the-shelf compilers,

and is therefore portable. It uses a pre-compilation stage that produces

an executable that invoke the existing tools to produce the HLS-enabled

operator implementation. That implementation can then be fed to the HLS

109

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

110 Conclusion

compiler. This approach is however limited due to it being based on the C++

type system to extract the expression graph of the mathematical function to

evaluate. The second method solves this issue by adding built-in support for

these operators inside the HLS compiler.

While this breaks the portability of the solution, as it requires modifying

the compiler, the greatest part of the work can be factored to be reused in dif-

ferent compilers by using a compiler-agnostic intermediate representation

(IR) for the operators. The compiler should produce an IR describing the op-

erator high-level specification. A compiler-independent tool, the expression

compiler, can convert this specification to a low-level implementation, which

can be imported back in the original compiler. This design has been tested

using a customHLS compiler based on clang++ and Vitis HLS. The complexity

of developing the intermediate representation for operators and the mecha-

nism to lower it to implementation details was greatly reduced by the MLIR

framework.

While the work presented in this thesis focuses in providing high level

functionalities that were previously unsupported by HLS tools, the same

technics could be used to port other hardware-specific optimizations to

HLS tools. Part of the reason that operators generated by specialized tools

such as FloPoCo have good latency and area comes from the clever usage

of primitives such as bit heaps [65] or multiple constant multipliers [66]. In

number of cases, it is possible to automatically identify the places where

such primitives could be used beneficially at the abstraction level of fixed

point operations in the IR. Having an IR representation for such operations

could then be of interest to improve area and latency of library-generated

operators. While this is a medium term perspective, a shorter-term goal is

the support of additional functions evaluation architectures.

In a nutshell, supporting a greater part of existing state of the art consti-

tutes a first progression axis for the proposed system. A second progression

axis consists in offering higher level constructs. An example of this would be

to allow the user to create a filter by frequency response specification. This is

in phasewith the objective of allowing non-specialized programmers to write

programswith good productivity, by specifyingwhat should be computed and

delegating to the tool the choice on how to compute it. Embedded domain-

specific languages in the C++ code seems to be a good interface for specifying

such computations. Optimizations can be performed at each abstraction level

view of the operator: from the high level function description (with algebraic

optimizations), to the low level implementation (by using efficient fixed-point

primitives for instance). Having an IR and associated optimizations for each

abstraction level enables efficient implementation of these optimizations. Be-

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

111

sides, the optimizations on low-level implementation details are not specific

to mathematical function evaluation, and can be reused in other contexts.

The current system has two main limitations:

1. Vendor HLS compilers backend are closed-source, and constitutes a black-

box part of the design. It often requires retro-engineering to understand

which IR construct will give good implementation result, and it makes the

system very fragile to backend version change.

2. There is no cost model to estimate reliably the QoR of an implementation

without having to perform the full synthesis, placing and routing steps.

The first limitation could be lifted by integrating with open-source HDL

backend. The CIRCT project[67] is a collection of MLIR dialects represent-

ing digital circuits, that can be lowered to Verilog. Targeting these IR does

not pose fundamental difficulties. While the ideal would be to have an open-

source toolchain for end-to-end source-to-bitstream conversion (as the HDL

can be considered to be another IR in this process), the HDLmapping to FPGA

primitive is a bit more predictable than the source-to-HDL conversion real-

ized by HLS backends. In the current state of the compiler however, only the

operator codes go through theMLIR pipeline. The rest of the code is delegated

to the HLS backend that will, among others, perform all the transformation

required to get hardware that respects the call graph semantics of the original

program. With the CIRCT based solution, this should also be done inside the

MLIR pipeline. This is however not a fundamental issue, as proof of concepts

of HLS compilers using the CIRCT framework have been developed [68].

Lifting the second limitation is more complicated. Indeed, it requires not

only good knowledge of the hardware internal, but also of the synthesis and

placement algorithms used to produce the FPGA bitstream out of the HDL

description. This information is often considered sensitive by hardware ven-

dors, and kept internally. Besides, experiments have shown that current ven-

dor cost model does not performwell on small designs such as arithmetic op-

erators. For instance, some logical optimizations are not taken into account by

HLS cost models, which can result in local overestimates of latency of compo-

nent parts, leading the pipelining system to insert more pipeline stages than

what would really be required.

Improving these models is probably seen by vendors as too costly com-

pared to the benefit they get by providing HLS solutions. This is however a

chicken and egg problem, as the interest of HLS is limited by the QoR it can

produce. Getting a better QoR by providing easy to use and to test libraries

with state-of-the-art implementations is a good first step. The development in

recent year of high quality compilation framework and hardware construc-

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

112 Conclusion

tion languages is of great help to achieve this first step.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

A
Source code for floating-point adders

This annex reports the MArTo library code used to implement addition for

IEEE-754 and posit. In this code, the Wrapper template template parameter

specify the hint backend for which the operator is implemented. See sec-

tion 2.1.3 page 48 for more details.

Listing 2.7 page 57 gives an example of user-written code that will trigger

the instantiation of one of the adder presented here, depending on the actual

type of my_fp_type.

A.1 IEEE-754 Adder

The IEEEadder uses the IEEENumber, which is a helper class built on hintwrap-

pers to provides useful methods such as exponent or fraction field extraction.

The code for this class is presented on listing A.1. Listing A.2 presents the

complete adder algorithm.

Listing A.1: MArTo code for the IEEENumber class

1 template<unsigned int WE,
2 unsigned int WF,
3 template<unsigned int, bool> class Wrapper>
4 class IEEENumber : public Wrapper<WE + WF + 1, false>
5 {
6 private:
7 typedef Wrapper<WE+WF+1, false> basetype; // Underlying storage type
8 template<unsigned int W>
9 using us_wrapper = Wrapper<W, false>;

10 public:
11 static constexpr unsigned int _WE = WE;
12 static constexpr unsigned int _WF = WF;
13 using rounding_type_t = us_wrapper<3>;
14

113

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

114 IEEE-754 Adder

15 IEEENumber(Wrapper<WE + WF + 1, false> const val = {0}):
16 Wrapper<WE+WF+1, false>{val}{}
17

18 inline us_wrapper<1> getSign() const{
19 return basetype::template get<WE+WF>();
20 }
21

22 inline us_wrapper<WE> getExponent() const {
23 return basetype::template slice<WF + WE - 1, WF>();
24 }
25

26 inline us_wrapper<WF> getFractionalPart() const {
27 return basetype::template slice<WF - 1, 0>();
28 }
29

30 inline us_wrapper<WF+WE> getExpFrac() const {
31 return basetype::template slice<WF+WE - 1, 0>();
32 }
33

34 inline us_wrapper<1> getLeadBitVal() const {
35 return getExponent().or_reduction();
36 }
37

38 inline us_wrapper<1> isInfinity() const {
39 return getExponent().and_reduction()
40 .bitwise_and(
41 getFractionalPart().nor_reduction()
42);
43 }
44

45 inline us_wrapper<1> isNaN() const {
46 return (getExponent().and_reduction()) &
47 (getFractionalPart().or_reduction());
48 }
49 };

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

115

Listing A.2: MArTo code for an IEEE-754 adder

1 template<
2 unsigned int WE,
3 unsigned int WF,
4 template<unsigned int, bool> class Wrapper>
5 inline IEEENumber<WE, WF, Wrapper> ieee_add(
6 IEEENumber<WE, WF, Wrapper> const in0,
7 IEEENumber<WE, WF, Wrapper> const in1,
8 IEEERoundingMode const roundingMode = IEEERoundingMode::RoundNearestTieEven
9)

10 {
11 // getExponent etc are syntaxic sugar for call to slice() at the right positions
12 auto exp0 = in0.getExponent();
13 auto exp1 = in1.getExponent();
14

15 auto sign0 = in0.getSign();
16 auto sign1 = in1.getSign();
17

18 auto frac0 = in0.getFractionalPart();
19 auto frac1 = in1.getFractionalPart();
20

21 auto exp0IsZero = exp0.nor_reduction();
22 auto exp1IsZero = exp1.nor_reduction();
23 auto exp0AllOne = exp0.and_reduction();
24 auto exp1AllOne = exp1.and_reduction();
25 auto frac0IsZero = frac0.nor_reduction();
26 auto frac1IsZero = frac1.nor_reduction();
27 auto exp0IsNotZero = exp0.or_reduction();
28 auto exp1IsNotZero = exp1.or_reduction();
29

30 auto expfrac0 = in0.getExpFrac();
31 auto expfrac1 = in1.getExpFrac();
32

33 auto diff0 = exp0.modularSub(exp1);
34 auto diff1 = exp1.modularSub(exp0);
35

36 auto effsub = sign0 ^ sign1;
37

38 auto swap = expfrac1 > expfrac0;
39

40 auto maxExp = Wrapper<WE, false>::mux(swap, exp1, exp0);
41 auto minExp = Wrapper<WE, false>::mux(swap, exp0, exp1);
42 auto expdiff = Wrapper<WE, false>::mux(swap, diff1, diff0);
43

44 auto maxSign = Wrapper<1, false>::mux(swap, sign1, sign0);
45 auto minSign = Wrapper<1, false>::mux(swap, sign0, sign1);
46

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

116 IEEE-754 Adder

47 auto maxFrac = Wrapper<WF, false>::mux(swap, frac1, frac0);
48 auto minFrac = Wrapper<WF, false>::mux(swap, frac0, frac1);
49

50 // Special case detection
51 auto maxExpIsZero = Wrapper<1, false>::mux(swap, exp1IsZero, exp0IsZero);
52 auto minExpIsZero = Wrapper<1, false>::mux(swap, exp0IsZero, exp1IsZero);
53 auto maxExpAllOne = Wrapper<1, false>::mux(swap, exp1AllOne, exp0AllOne);
54 auto minExpAllOne = Wrapper<1, false>::mux(swap, exp0AllOne, exp1AllOne);
55 auto maxFracIsZero = Wrapper<1, false>::mux(swap, frac1IsZero, frac0IsZero);
56 auto minFracIsZero = Wrapper<1, false>::mux(swap, frac0IsZero, frac1IsZero);
57

58 //Special case logic
59 auto maxIsInfinity = maxExpAllOne & maxFracIsZero;
60 auto maxIsNaN = maxExpAllOne & maxFracIsZero.invert();
61 auto maxIsZero = maxExpIsZero & maxFracIsZero;
62 auto minIsInfinity = minExpAllOne & minFracIsZero;
63 auto minIsNaN = minExpAllOne & minFracIsZero.invert();
64 auto minIsZero = minExpIsZero & minFracIsZero;
65

66 auto bothSubNormals = maxExpIsZero;
67 auto maxIsNormal = Wrapper<1, false>::mux(swap, exp1IsNotZero, exp0IsNotZero);
68 auto minIsNormal = Wrapper<1, false>::mux(swap, exp0IsNotZero, exp1IsNotZero);
69

70 auto infinitySub = exp0AllOne.concatenate(exp1AllOne)
71 .concatenate(frac0IsZero)
72 .concatenate(frac1IsZero)
73 .concatenate(effsub)
74 .and_reduction();
75 auto resultIsNan = maxIsNaN.concatenate(minIsNaN)
76 .concatenate(infinitySub)
77 .or_reduction();
78 auto onlyOneSubnormal = minExpIsZero & maxExpIsZero.invert();
79 auto explicitedMaxFrac = maxIsNormal.concatenate(maxFrac);
80 auto explicitedMinFrac = minIsNormal.concatenate(minFrac);
81

82 //alignment
83 auto maxShiftVal = Wrapper<WE, false>{WF+3};
84 auto allShiftedOut = expdiff > maxShiftVal;
85

86 auto shiftValue = Wrapper<WE, false>::mux(
87 allShiftedOut,
88 maxShiftVal,
89 expdiff
90).modularSub(onlyOneSubnormal.template leftpad<WE>());
91

92 Wrapper<WF+3, false> extendedMinFrac = explicitedMinFrac.concatenate(
93 Wrapper<2, false>{0});
94

95 auto shiftedMinFracSticky = shifter_sticky(extendedMinFrac, shiftValue);
96 auto beforeComp = Wrapper<1, false>{0}.concatenate(shiftedMinFracSticky

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

117

97 .template slice<WF + 3, 1>());
98

99 auto shiftedMinFrac = beforeComp ^
100 Wrapper<WF+4, false>::generateSequence(effsub);
101

102 auto stickyMinFrac = shiftedMinFracSticky.template get<0>();
103

104 // Addition
105 auto carryIn = effsub & stickyMinFrac.invert();
106 auto extendedMaxFrac = explicitedMaxFrac.concatenate(Wrapper<1, false>{0})
107 .concatenate(carryIn)
108 .template leftpad<WF+4>();
109

110 auto signifcandResult = extendedMaxFrac + shiftedMinFrac;
111

112 // Renormalization
113 auto isNeg = signifcandResult.template get<WF + 4>();
114 auto z1 = signifcandResult.template get<WF+3>();
115 auto z0 = signifcandResult.template get<WF+2>();
116

117 auto lzcInput = signifcandResult.template slice<WF+3, 1>();
118 auto lzc = lzoc_wrapper(lzcInput, {0});
119

120 constexpr unsigned int lzcsize = hint::Static_Val<WF+3>::_storage;
121

122 static_assert (lzcsize<=WE,
123 "The adder works only for wE > log2(WF).\n"
124 "Are you sure you need subnormals ?\n"
125 "If yes, contact us, we will be happy to make it work for you.");
126

127 auto subnormalLimitVal = Wrapper<lzcsize, false>{WF+3};
128

129 auto maxExpIsOne = (maxExp == Wrapper<WE, false>{1});
130

131 auto lzcGreaterEqExp = (lzc.template leftpad<WE>() >= maxExp);
132 auto lzcSmallerEqExp = (lzc.template leftpad<WE>() <= maxExp);
133 auto lzcSmallerMaxVal = lzcInput.or_reduction();
134 auto fullCancellation = lzcInput.nor_reduction();
135

136 auto normalOverflow = z1;
137 auto lzcOne = z1.invert() & z0;
138 auto subnormalOverflow = lzcOne & maxExpIsZero;
139 auto cancellation = z1.invert() & z0.invert();
140

141 auto overflow = normalOverflow | subnormalOverflow;
142

143 auto isLeftShiftLZC = overflow |
144 (lzcSmallerMaxVal.invert() & bothSubNormals) |
145 (cancellation & maxIsNormal & lzcSmallerEqExp) |
146 (maxIsNormal & lzcSmallerMaxVal.invert());

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

118 IEEE-754 Adder

147 auto isLeftShiftExp = lzcSmallerMaxVal & lzcGreaterEqExp & maxIsNormal;
148

149 auto shiftFirstStage = Wrapper<lzcsize, false>::mux(
150 isLeftShiftLZC,
151 lzc,
152 Wrapper<lzcsize, false>{1}
153);
154 auto normalisationShiftVal = Wrapper<lzcsize, false>::mux(
155 isLeftShiftExp,
156 maxExp.template slice<lzcsize-1, 0>(),
157 shiftFirstStage
158);
159

160 auto normalisedSignif = signifcandResult << normalisationShiftVal;
161 auto significandPreRound = normalisedSignif.template slice<WF+2, 3>();
162 auto lsb = normalisedSignif.template get<3>();
163 auto roundBit = normalisedSignif.template get<2>();
164 auto sticky = stickyMinFrac |
165 normalisedSignif.template slice <1, 0>()
166 .or_reduction();
167

168 auto deltaExpIsZero = ~z1 & (z0 ^ bothSubNormals);
169 auto deltaExpIsMinusOne = z1 | (z0 & bothSubNormals);
170 auto deltaExpIsLZC = ~(z1 | z0 | bothSubNormals) &
171 lzcSmallerEqExp &
172 lzcSmallerMaxVal;
173

174 auto deltaExpExp = ~(deltaExpIsLZC | deltaExpIsZero | deltaExpIsMinusOne);
175

176 auto deltaExpCin = deltaExpExp | deltaExpIsMinusOne | deltaExpIsLZC;
177 auto deltaBigPartIsZero = deltaExpIsZero | deltaExpIsMinusOne;
178

179 auto deltaExpUnmasked = Wrapper<WE, false>::mux(
180 deltaExpIsLZC,
181 ~((lzc.modularSub(Wrapper<lzcsize, false>{1})).template leftpad<WE>()),
182 ~maxExp
183);
184

185 auto maskSequence = Wrapper<WE, false>::generateSequence(~deltaBigPartIsZero);
186 auto deltaExpBeforeCorrection = deltaExpUnmasked & maskSequence;
187

188 auto expPreRound = maxExp.addWithCarry(deltaExpBeforeCorrection, deltaExpCin)
189 .template slice<WE-1, 0>();
190 auto expSigPreRound = expPreRound.concatenate(significandPreRound);
191

192 auto roundUpBit = ieee_getRoundBit(
193 maxSign,
194 lsb,
195 roundBit,
196 sticky,

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

119

197 roundingMode);
198

199 auto unroundedInf = expPreRound.and_reduction();
200

201 auto roundingCode =
202 Wrapper<8, false>{static_cast<uint8_t>(roundingMode)}
203 .template slice<2, 0>();
204 auto b0 = roundingCode.template get<0>();
205 auto b1 = roundingCode.template get<1>();
206 auto b2 = roundingCode.template get<2>();
207 auto forbidden_inf = ((b2 & b0 & (b1 == maxSign)) |

~(roundingCode.or_reduction())) &↩→

208 unroundedInf &
209 ~maxIsInfinity &
210 ~resultIsNan;
211

212 auto expSigRounded = expSigPreRound.modularAdd(
213 roundUpBit.template leftpad<WE+WF>());
214 auto finalExp = expSigRounded.template slice<WF+WE-1, WF>();
215

216 auto resultIsZero = ~(fullCancellation & finalExp.or_reduction());
217 auto resultIsInf = ~resultIsNan & (
218 (maxIsInfinity & minIsInfinity & ~effsub) |
219 (maxIsInfinity ^ minIsInfinity) |
220 finalExp.and_reduction()
221);
222

223 auto constInfNanExp = Wrapper<WE-1, false>::generateSequence({1})
224 .concatenate(resultIsNan | ~forbidden_inf);
225 auto constInfNanSignif = Wrapper<WF, false>::generateSequence(
226 resultIsNan | forbidden_inf);
227

228 auto constInfNan = constInfNanExp.concatenate(constInfNanSignif);
229 auto finalRes = Wrapper<WE+WF, false>::mux(
230 resultIsNan | resultIsInf,
231 constInfNan,
232 expSigRounded);
233

234 auto bothZeros = maxIsZero & minIsZero;
235 auto signBothZero = minSign & maxSign;
236

237 Wrapper<1, false> isRoundDown{roundingMode == IEEERoundingMode::RoundDown};
238 auto negZeroOp = resultIsZero & isRoundDown & (effsub | ~bothZeros);
239 auto signR = ~resultIsNan & // NaN forces sign to be zero
240 ((resultIsZero & (signBothZero | negZeroOp)) | // Special case (+0) + (-0)
241 (~resultIsZero & maxSign));
242

243 return {signR.concatenate(finalRes)};
244 }

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

120 Posit adder

A.2 Posit adder

In the posit case, two helper classes exists that play the same role as

IEEENumber. The PositEncoding provide useful methods related to posit en-

codings. The PositIntermediateFormat is useful to manipulate posit interme-

diate format (PIF) values (see section 2.2.3 for more information). These class

are not reported here as they are very similar to IEEENumber. Before perform-

ing the addition, posit encodings are converted to PIF using a posit decoder

(presented on listing A.3). Then the two PIFs can be added, using the adder

code from listing A.5. Finally, the result has to be rounded back using a posit

encoder, presented on listing A.4.

Listing A.3: MArTo code for the posit to pif decoder

1 template<
2 unsigned int N,
3 unsigned int WES,
4 template<unsigned int, bool> class Wrapper>
5 inline Wrapper<PositDim<N, WES>::WE, true> getExponent(
6 Wrapper<hint::Static_Val<N-2>::_storage + 1, false> range_count,
7 Wrapper<N-3, false> shifted_fraction,
8 Wrapper<1, false> sign,
9 typename enable_if<PositDim<N, WES>::HAS_ES>::type* = 0

10)
11 {
12 auto es = shifted_fraction.template slice<N - 4, N-3-WES>();
13 auto ext_sign = Wrapper<WES, false>::generateSequence(sign);
14 auto decoded_es = es.bitwise_xor(ext_sign);
15 return range_count.concatenate(decoded_es).as_signed();
16 }
17

18 template<
19 unsigned int N,
20 unsigned int WES,
21 template<unsigned int, bool> class Wrapper>
22 inline Wrapper<PositDim<N, WES>::WE, true> getExponent(
23 Wrapper<hint::Static_Val<N-2>::_storage + 1, false> range_count,
24 Wrapper<N-3, false>,
25 Wrapper<1, false>,
26 typename enable_if<not PositDim<N, WES>::HAS_ES>::type* = 0
27)
28 {
29 return range_count.as_signed();
30 }
31

32 template<
33 unsigned int N,
34 unsigned int WES,

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

121

35 template<unsigned int, bool> class Wrapper>
36 inline PositIntermediateFormat<N, WES, Wrapper, true>
37 posit_decoder(PositEncoding<N, WES, Wrapper> positN)
38 {
39 //Sign bit
40 auto s = positN.template get<N-1>();
41 //First regime bit
42 auto count_type = positN.template get<N-2>();
43 //Remainder
44 auto input_shift = positN.template slice<N-3, 0>();
45

46 auto zero_NAR = input_shift.or_reduction().bitwise_or(count_type).invert();
47 auto is_NAR = zero_NAR.bitwise_and(s);
48 auto is_zero = zero_NAR.bitwise_and(s.invert());
49

50 auto implicit_bit = s.invert().bitwise_and(zero_NAR.invert());
51 constexpr int rangeCountSize = hint::Static_Val<N-2>::_storage;
52 auto lzoc_shifted = hint::LZOC_shift<N-2, N-2>(input_shift, count_type);
53

54 auto rangeCount = lzoc_shifted.lzoc.template leftpad<rangeCountSize+1>();
55 auto usefulBits = lzoc_shifted.shifted.template slice<N-4, 0>();
56 auto fraction = usefulBits.template slice<N-4-WES, 0>();
57

58 auto neg_count = s.bitwise_xor(count_type).invert();
59 auto extended_neg_count = Wrapper<rangeCountSize + 1,

false>::generateSequence(neg_count);↩→

60 auto comp2_range_count = rangeCount.bitwise_xor(extended_neg_count);
61

62 auto exponent = getExponent<N, WES>(
63 comp2_range_count,
64 usefulBits,
65 s
66);
67

68 return PositIntermediateFormat<N, WES, Wrapper, true>(
69 is_NAR,
70 final_biased_exp,
71 s,
72 implicit_bit,
73 fraction
74);
75 }

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

122 Posit adder

Listing A.4: MArTo code for the PIF to posit encoder

1 template<
2 unsigned int N,
3 unsigned int WES,
4 template<unsigned int, bool> class Wrapper>
5 inline Wrapper<PositDim<N, WES>::WF + WES, false> buildEsSignifSequence(
6 Wrapper<1, false> sign,
7 Wrapper<PositDim<N, WES>::WF, false> significand,
8 Wrapper<PositDim<N, WES>::WE, false> exponent,
9 typename enable_if<PositDim<N, WES>::HAS_ES>::type* = 0

10)
11 {
12 auto sign_sequence_wes = Wrapper<WES, false>::generateSequence(sign);
13

14 auto es_wo_xor = exponent.template slice<WES-1, 0>();
15 auto es = es_wo_xor.bitwise_xor(sign_sequence_wes);
16 auto ret = es.concatenate(significand);
17 return ret;
18 }
19

20 template<
21 unsigned int N,
22 unsigned int WES,
23 template<unsigned int, bool> class Wrapper>
24 inline Wrapper<PositDim<N, WES>::WF, false> buildEsSignifSequence(
25 Wrapper<1, false>,
26 Wrapper<PositDim<N, WES>::WF, false> significand,
27 Wrapper<PositDim<N, WES>::WE, false>,
28 typename enable_if<not PositDim<N, WES>::HAS_ES>::type* = 0
29)
30 {
31 return significand;
32 }
33

34 template<
35 unsigned int N,
36 unsigned int WES,
37 template<unsigned int, bool> class Wrapper>
38 inline Wrapper<1, false> exp_overflow(
39 Wrapper<PositDim<N, WES>::WE, false>,
40 typename enable_if<PositDim<N, WES>::HAS_ES>::type* = 0
41)
42 {
43 return {0};
44 }
45

46 template<

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

123

47 unsigned int N,
48 unsigned int WES,
49 template<unsigned int, bool> class Wrapper>
50 inline Wrapper<1, false> exp_overflow(
51 Wrapper<PositDim<N, WES>::WE, false> exp,
52 typename enable_if<not PositDim<N, WES>::HAS_ES>::type* = 0
53)
54 {
55 constexpr auto WE = PositDim<N, WES>::WE;
56 Wrapper<WE, false> emax{PositDim<N, WES>::EMax};
57 auto biggerEmax = (exp.as_signed() >= emax.as_signed());
58 auto res = biggerEmax;
59 return res;
60 }
61

62 template<
63 unsigned int N,
64 unsigned int WES,
65 template<unsigned int, bool> class Wrapper>
66 inline PositEncoding<N, WES, Wrapper>
67 posit_encoder(PositIntermediateFormat<N, WES, Wrapper, false> positValue) {
68 constexpr auto S_WF = PositDim<N, WES>::WF;
69 constexpr auto S_WE = PositDim<N, WES>::WE;
70 constexpr auto S_WES = WES;
71 constexpr auto K_SIZE = S_WE - S_WES;
72

73 auto exp = positValue.getExp();
74 auto sign = positValue.getSignBit();
75 auto significand = positValue.getFraction();
76

77 //K_SIZE
78 auto k = exp.template slice<S_WE-1, S_WES>();
79

80 // N-3
81 auto esAndSignificand = buildEsSignifSequence<N, WES, Wrapper>(
82 sign,
83 significand,
84 exp);
85

86 Wrapper<2, false> zero_one{1};
87 Wrapper<2, false> one_zero{2};
88

89 auto isNegative = k.template get<K_SIZE-1>() ^ sign;
90 auto leading = Wrapper<2, false>::mux(isNegative, zero_one, one_zero);
91

92 //N-1
93 auto reverseBitAndEsAndSignificand = leading.concatenate(esAndSignificand);
94

95 // K_SIZE - 1
96 auto low_k = k.template slice<K_SIZE-2, 0>();

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

124 Posit adder

97 auto absK = Wrapper<K_SIZE-1, false>::mux(
98 k.template get<K_SIZE-1>(),
99 low_k.invert(),

100 low_k
101);
102 //N
103 auto rBESSignif = reverseBitAndEsAndSignificand.concatenate(
104 positValue.getGuardBit());
105

106

107

108 //N+1
109 auto shifted = shifter_sticky(
110 rBESSignif,
111 absK,
112 rBESSignif.template get<N-1>()
113); //TODO rajouter le fillbit
114

115 //N-1
116 auto unroundedResult = shifted.template slice<N, 2>();
117

118 auto guard = shifted.template get<1>();
119 auto sticky = shifted.template get<0>().bitwise_or(
120 positValue.getStickyBit());
121

122 auto roundOverflow = exp_overflow<N, WES, Wrapper>(exp);
123 auto forbidRound = ~isNegative & roundOverflow;
124 auto forceRound = isNegative & roundOverflow;
125 auto roundingBit = (forceRound | guard &
126 (sticky | unroundedResult.template get<0>())
127) & ~forbidRound;
128

129 auto roundedResult = unroundedResult.modularAdd(roundingBit.template
leftpad<N-1>());↩→

130

131 auto normalOutput = sign.concatenate(roundedResult);
132 auto zero = Wrapper<N-1, false>::generateSequence({0});
133 auto isNaRBit = positValue.getIsNaR();
134 auto specialCasesValue = isNaRBit.concatenate(zero);
135

136 auto isSpecial = (~positValue.getSignBit() & ~(positValue.getImplicitBit())) |
137 isNaRBit;
138

139 return Wrapper<N, false>::mux(isSpecial, specialCasesValue, normalOutput);
140 }

Listing A.5: MArTo code for a posit adder

1 template<

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

125

2 unsigned int N,
3 unsigned int WES,
4 template<unsigned int, bool> class Wrapper
5 >
6 inline PositIntermediateFormat<N, WES, Wrapper, false> posit_add(
7 PositIntermediateFormat<N, WES, Wrapper, true> in1,
8 PositIntermediateFormat<N, WES, Wrapper, true> in2
9){

10 constexpr auto S_WF = PositDim<N, WES>::WF;
11 constexpr auto S_WE = PositDim<N, WES>::WE;
12 constexpr auto S_WES = WES;
13 constexpr auto K_SIZE = S_WE - S_WES;
14

15 //Sort in order to have exponent of in1 greater than exponent of in2
16 auto in2IsZero = in2.isZero();
17 auto in1IsZero = in1.isZero();
18 auto oneIsZero = in1IsZero | in2IsZero;
19

20 auto input2Significand = in2.getSignedSignificand();
21 auto input1Significand = in1.getSignedSignificand();
22

23 auto exp1 = in1.getExp().as_signed();
24 auto exp2 = in2.getExp().as_signed();
25

26 auto in1IsGreater = (~in1IsZero & (exp1 > exp2)) | in2IsZero;
27

28 auto subExpOp1 = Wrapper<S_WE, true>::mux(in1IsGreater, exp1, exp2);
29 auto subExpOp2 = Wrapper<S_WE, true>::mux(in1IsGreater, exp2, exp1);
30 auto mostSignificantSignificand = Wrapper<S_WF+2, false>::mux(
31 in1IsGreater,
32 input1Significand,
33 input2Significand
34);
35

36 auto lessSignificantSignificand = Wrapper<S_WF+2, false>::mux(
37 in1IsGreater,
38 input2Significand,
39 input1Significand
40);
41

42 auto mostSignifSign = Wrapper<1, false>::mux(
43 in1IsGreater,
44 in1.getSignBit(),
45 in2.getSignBit()
46);
47

48 auto lessSignifSign = Wrapper<1, false>::mux(
49 in1IsGreater,
50 in2.getSignBit(),
51 in1.getSignBit()

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

126 Posit adder

52);
53

54 // Relative shift of exponents
55

56 auto shiftValue = subExpOp1.modularSub(subExpOp2).as_unsigned();
57 auto shiftedSignificand = shifter_sticky(
58 lessSignificantSignificand.concatenate(Wrapper<2, false>{0}),
59 shiftValue,
60 lessSignifSign
61);
62

63 auto shiftedTop = shiftedSignificand.template slice<S_WF+2+2, 3>();
64 auto guards = shiftedSignificand.template slice<2, 1>();
65 auto sticky_low = shiftedSignificand.template get<0>();
66

67 auto addOp1 = mostSignifSign.concatenate(mostSignificantSignificand);
68 auto addOp2 = lessSignifSign.concatenate(shiftedTop);
69

70 auto addRes = addOp1.modularAdd(addOp2);
71 auto toCount = addRes.template get<S_WF+2>();
72 auto usefulRes = addRes.template slice<S_WF+1, 0>();
73

74 auto lzoc_shifted = LZOC_shift<S_WF+4, S_WF+4>(usefulRes.concatenate(guards),
toCount);↩→

75

76

77 auto & lzoc = lzoc_shifted.lzoc;
78 auto & shifted = lzoc_shifted.shifted;
79 auto frac = shifted.template slice<S_WF+3, 3>();
80 auto round = shifted.template get<2>();
81 auto sticky = sticky_low.bitwise_or(
82 shifted.template get<1>()
83 .bitwise_or(shifted.template get<0>()));
84

85 auto final_exp = subExpOp1.subWithCarry(lzoc.template
leftpad<S_WE>().as_signed(), {1})↩→

86 .template slice<S_WE-1, 0>();
87

88 auto isResultNar = in1.getIsNaR().bitwise_or(in2.getIsNaR());
89

90 PositIntermediateFormat<N, WES, Wrapper, false> result {
91 round,
92 sticky,
93 isResultNar,
94 final_exp,
95 toCount,
96 frac.template get<S_WF>(),
97 frac.template slice<S_WF-1, 0>()
98 };
99 return result;

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

127

100 }

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

Bibliography

[1] J. Hormigo and J. Villalba, “New formats for computing with real-numbers under

round-to-nearest,” IEEE Transactions on Computers, vol. 65, no. 7, pp. 2158–2168, 2016,

URL: https://doi.org/10.1109/TC.2015.2479623 (cit. on p. 12).

[2] T. C. Chen and I. T. Ho, “Storage-efficient representation of decimal data,” Commun.

ACM, vol. 18, no. 1, pp. 49–52, Jan. 1975, issn: 0001-0782, URL: https://doi.org/10.
1145/360569.360660 (cit. on p. 14).

[3] “ISO/IEC/IEEE International Standard - Floating-point arithmetic,” IEEE, Tech. Rep. 754-

2019, 2020, URL: https://doi.org/10.1109/IEEESTD.2020.9091348 (cit. on p. 15).

[4] Y. Suzuki, “Buildingmodern javascript engine,” in Proceedings of the 53rd IPSJ program-

ming symposium, vol. 2012, Jan. 2012, pp. 171–176 (cit. on p. 21).

[5] A. Agrawal, S.M.Mueller, B.M. Fleischer, et al., “DLFloat: A 16-b floating point format de-

signed for deep learning training and inference,” in IEEE 26th Symposium on Computer

Arithmetic (ARITH), 2019, pp. 92–95, URL: https://doi.org/10.1109/ARITH.2019.00023
(cit. on p. 21).

[6] “BFloat16 – hardware numerics definition,” Intel, Tech. Rep., Nov. 2018, URL: https://
software.intel.com/sites/default/files/managed/40/8b/bf16-hardware-numerics-
definition-white-paper.pdf (visited on 02/17/2023) (cit. on p. 22).

[7] E. Chung, J. Fowers, K. Ovtcharov, et al., “Serving DNNs in real time at datacenter scale

with project brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8–20, 2018, URL: https://doi.
org/10.1109/MM.2018.022071131 (cit. on p. 22).

[8] “Standard for Posit arithmetic,” PositWorkingGroup, Tech. Rep.,Mar. 2022, URL: https:
//posithub.org/docs/posit_standard-2.pdf (visited on 02/20/2023) (cit. on pp. 23, 70).

[9] “Posit standard documentation,” PositWorkingGroup, Tech. Rep. Release 3.2 Draft, Jun.

2018, URL: https://posithub.org/docs/posit_standard.pdf (visited on 02/20/2023)

(cit. on pp. 23, 70).

[10] E. Swartzlander and A. Alexopoulos, “The sign/logarithm number system,” IEEE Trans-

actions on Computers, vol. C-24, no. 12, pp. 1238–1242, 1975, URL: https://doi.org/10.
1109/T-C.1975.224172 (cit. on p. 26).

[11] N. G. Kingsbury and P. J. Rayner, “Digital filtering using logarithmic arithmetic,” Elec-

tronics Letters, vol. 2, no. 7, pp. 56–58, 1971 (cit. on p. 26).

129

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

https://doi.org/10.1109/TC.2015.2479623
https://doi.org/10.1145/360569.360660
https://doi.org/10.1145/360569.360660
https://doi.org/10.1109/IEEESTD.2020.9091348
https://doi.org/10.1109/ARITH.2019.00023
https://software.intel.com/sites/default/files/managed/40/8b/bf16-hardware-numerics-definition-white-paper.pdf
https://software.intel.com/sites/default/files/managed/40/8b/bf16-hardware-numerics-definition-white-paper.pdf
https://software.intel.com/sites/default/files/managed/40/8b/bf16-hardware-numerics-definition-white-paper.pdf
https://doi.org/10.1109/MM.2018.022071131
https://doi.org/10.1109/MM.2018.022071131
https://posithub.org/docs/posit_standard-2.pdf
https://posithub.org/docs/posit_standard-2.pdf
https://posithub.org/docs/posit_standard.pdf
https://doi.org/10.1109/T-C.1975.224172
https://doi.org/10.1109/T-C.1975.224172

130 BIBLIOGRAPHY

[12] “Ultrascale architecture Configurable Logic Block,” Xilinx, Tech. Rep., Feb. 2017, URL:

https://docs.xilinx.com/v/u/en-US/ug574-ultrascale-clb (visited on 03/09/2023)

(cit. on pp. 28, 32).

[13] “Intel Stratix 10 Logic Array Blocks and Adaptive Logic Modules user guide,” Intel,

Tech. Rep., Mar. 2022, URL: https://cdrdv2.intel.com/v1/dl/getContent/666917?
explicitVersion=true (visited on 03/09/2023) (cit. on p. 29).

[14] “Ultrascale architecture dsp slice,” Xilinx, Tech. Rep., Aug. 2021, URL: https://www.
xilinx.com/content/dam/xilinx/support/documents/user_guides/ug579-ultrascale-
dsp.pdf (visited on 03/13/2023) (cit. on p. 32).

[15] A. M. Caulfield, E. S. Chung, A. Putnam, et al., “A cloud-scale acceleration architecture,”

in 49th Annual International Symposium on Microarchitecture, 2016, pp. 1–13, URL:

https://doi.org/10.1109/MICRO.2016.7783710 (cit. on p. 32).

[16] A. Sarkar and S. Banerjee, “Fpga implementation of dna sequence alignmentwith trace-

back,” in 4th International Conference on Electronics, Communication and Aerospace

Technology, 2020, pp. 47–52, URL: https://doi.org/10.1109/ICECA49313.2020.9297554
(cit. on p. 32).

[17] “Verilog hardware description language,” IEEE, Tech. Rep. 1364-2005, 2006, URL: https:
//doi.org/10.1109/IEEESTD.2006.99495 (cit. on p. 34).

[18] “VHDL language reference manual,” IEEE, Tech. Rep. 1076-2019, 2019, URL: https://
doi.org/10.1109/IEEESTD.2019.8938196 (cit. on p. 34).

[19] J. Bachrach, H. Vo, B. Richards, et al., “Chisel: Constructing hardware in a scala em-

bedded language,” in Proceedings of the 49th Annual Design Automation Conference,

ser. DAC ’12, San Francisco, California: Association for Computing Machinery, 2012,

pp. 1216–1225, isbn: 9781450311991, URL: https://doi.org/10.1145/2228360.2228584
(cit. on p. 36).

[20] “Vitis High-Level Synthesis user guide,” AMD Xilinx, Tech. Rep. UG1399-2022.2,

Dec. 2022, URL: https : / / docs . xilinx . com / viewer / book - attachment /
NsrqATHzUj6if4Toia~ORQ/eysSTISAO7ZIMF3n0HIRrQ (visited on 03/21/2023) (cit. on p. 37).

[21] F. Ferrandi, V. G. Castellana, S. Curzel, et al., “Invited: Bambu: An open-source re-

search framework for the high-level synthesis of complex applications,” in 2021 58th

ACM/IEEE Design Automation Conference (DAC), IEEE, Dec. 2021, pp. 1327–1330, URL:

https://doi.org/10.1109/DAC18074.2021.9586110 (cit. on p. 37).

[22] “SYCL 2020 specification,” Khronos SYCL working group, Tech. Rep. revision 6, 2022,

URL: https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
(visited on 03/27/2023) (cit. on pp. 37, 86).

[23] M. Kinsner, “Sycl intel dataflow pipes,” Tech. Rep. revision 4, Dec. 2, 2021, URL: https:
//github.com/intel/llvm/blob/2022-06/sycl/doc/extensions/supported/sycl_ext_
intel_dataflow_pipes.asciidoc (visited on 03/27/2023) (cit. on p. 37).

[24] A. Ballman, M. Blower, T. Hoffner, and E. Keane, “Adding a fundamental type for n-bit

integers,” ISO/IEC JTC1 SC22 WG14 committee, Tech. Rep. N2709, Apr. 23, 2021, URL:

https : / / www . open - std . org / jtc1 / sc22 / wg14 / www / docs / n2709 . pdf (visited on

03/20/2023) (cit. on p. 39).

[25] F. de Dinechin, “Reflections on 10 years of FloPoCo,” in 26th IEEE Symposium of Com-

puter Arithmetic (ARITH-26), Jun. 2019 (cit. on pp. 40, 60, 93).

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

https://docs.xilinx.com/v/u/en-US/ug574-ultrascale-clb
https://cdrdv2.intel.com/v1/dl/getContent/666917?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/666917?explicitVersion=true
https://www.xilinx.com/content/dam/xilinx/support/documents/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/user_guides/ug579-ultrascale-dsp.pdf
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1109/ICECA49313.2020.9297554
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2019.8938196
https://doi.org/10.1109/IEEESTD.2019.8938196
https://doi.org/10.1145/2228360.2228584
https://docs.xilinx.com/viewer/book-attachment/NsrqATHzUj6if4Toia~ORQ/eysSTISAO7ZIMF3n0HIRrQ
https://docs.xilinx.com/viewer/book-attachment/NsrqATHzUj6if4Toia~ORQ/eysSTISAO7ZIMF3n0HIRrQ
https://doi.org/10.1109/DAC18074.2021.9586110
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://github.com/intel/llvm/blob/2022-06/sycl/doc/extensions/supported/sycl_ext_intel_dataflow_pipes.asciidoc
https://github.com/intel/llvm/blob/2022-06/sycl/doc/extensions/supported/sycl_ext_intel_dataflow_pipes.asciidoc
https://github.com/intel/llvm/blob/2022-06/sycl/doc/extensions/supported/sycl_ext_intel_dataflow_pipes.asciidoc
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2709.pdf

131

[26] Y. Uguen, L. Forget, and F. de Dinechin, “Evaluating the hardware cost of the posit num-

ber system,” in 29th International Conference on Field Programmable Logic and Applica-

tions (FPL), 2019, pp. 106–113, URL: https://doi.org/10.1109/FPL.2019.00026 (cit. on

pp. 43, 57).

[27] L. Forget, Y. Uguen, F. de Dinechin, and D. Thomas, “A type-safe arbitrary precision

arithmetic portability layer for HLS tools,” in Proceedings of the 10th International Sym-

posium on Highly-Efficient Accelerators and Reconfigurable Technologies, HEART 2019,

Nagasaki, Japan, June 6-7, 2019, ACM, 2019, 5:1–5:6, URL: https://doi.org/10.1145/
3337801.3337809 (cit. on p. 43).

[28] A. Takach, Algorithm c (AC) datatypes, https://github.com/hlslibs/ac_types, 2018
(cit. on p. 44).

[29] A. Prost-Boucle, O. Muller, and F. Rousseau, “Fast and standalone design space explo-

ration for high-level synthesis under resource constraints,” Journal of Systems Archi-

tecture, vol. 60, no. 1, pp. 79–93, 2014 (cit. on p. 44).

[30] J. O. Coplien, “Curiously recurring template patterns,” C++ Report, vol. 7, no. 2, pp. 24–

27, 1995 (cit. on p. 51).

[31] U. Kulisch, Computer arithmetic and validity: theory, implementation, and applications.

Walter de Gruyter, 2013, vol. 33 (cit. on p. 58).

[32] F. de Dinechin andM. Kumm, Application-Specific Arithmetic. Springer, 2023, To appear

(cit. on pp. 60, 93).

[33] A. Podobas and S. Matsuoka, “Hardware implementation of POSITs and their applica-

tion in FPGAs,” in International Parallel and Distributed Processing Symposium, IEEE,

2018, pp. 138–145 (cit. on pp. 62, 66, 76).

[34] R. Chaurasiya, J. Gustafson, R. Shrestha, et al., “Parameterized posit arithmetic hard-

ware generator,” in 36th International Conference on Computer Design (ICCD), IEEE,

2018, pp. 334–341 (cit. on pp. 62, 66, 76, 78).

[35] M. K. Jaiswal and H. K.-H. So, “PACoGen: A hardware posit arithmetic core generator,”

IEEE Access, vol. 7, pp. 74 586–74 601, 2019 (cit. on pp. 62, 77).

[36] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann, 2004 (cit. on pp. 63,

64).

[37] J.-M. Muller, N. Brunie, F. de Dinechin, et al.,Handbook of Floating-Point Arithmetic, 2nd

edition, Anglais. Birkhauser Boston, 2018, isbn: 978-3319765259 (cit. on pp. 63, 64, 66).

[38] H. Zhang and S. Ko, “Design of power efficient posit multiplier,” IEEE Transactions on

Circuits and Systems II: Express Briefs, vol. 67, no. 5, pp. 861–865, 2020 (cit. on p. 66).

[39] N. Brunie, “Modified Fused Multiply and Add for exact low precision product accumu-

lation,” in 24th Symposium on Computer Arithmetic (ARITH-24), IEEE, Jul. 2017 (cit. on

pp. 66, 70, 82).

[40] J. Johnson, “Rethinking floating point for deep learning,” arXiv, 1811.01721, 2018 (cit.

on p. 66).

[41] F. de Dinechin, B. Pasca, O. Creţ, and R. Tudoran, “An FPGA-specific approach to floating-

point accumulation and sum-of-products,” in Field-Programmable Technologies, IEEE,

2008, pp. 33–40 (cit. on pp. 66, 71).

[42] Y. Uguen, F. de Dinechin, V. Lezaud, and S. Derrien, “Application-specific arithmetic in

high-level synthesis tools,” ACM Transactions on Architecture and Code Optimization,

vol. 17, no. 1, 2020 (cit. on pp. 66, 82).

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

https://doi.org/10.1109/FPL.2019.00026
https://doi.org/10.1145/3337801.3337809
https://doi.org/10.1145/3337801.3337809
https://github.com/hlslibs/ac_types

132 BIBLIOGRAPHY

[43] M. B. Taylor, “Is dark silicon useful? harnessing the four horsemen of the coming dark

silicon apocalypse,” in Design Automation Conference, ACM, 2012 (cit. on p. 66).

[44] U. W. Kulisch, Advanced Arithmetic for the Digital Computer: Design of Arithmetic Units.

Springer-Verlag, 2002, isbn: 3211838708 (cit. on p. 70).

[45] Y. Uguen and F. de Dinechin, “Design-space exploration for the Kulisch accumulator,”

working paper or preprint, Mar. 2017, URL: https://hal.archives-ouvertes.fr/hal-
01488916 (cit. on pp. 70, 71, 82).

[46] Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L. Gustafson, and D. Kudithipudi,

“Performance-efficiency trade-off of low-precision numerical formats in deep neural

networks,” in Next Generation Arithmetic, ACM, 2019, 3:1–3:9, URL: https://doi.org/
10.1145/3316279.3316282 (cit. on p. 73).

[47] P. Lindstrom, S. Lloyd, and J. Hittinger, “Universal coding of the reals: Alternatives to

IEEE floating point,” in Next Generation Arithmetic, ACM, 2018 (cit. on p. 73).

[48] F. De Dinechin, L. Forget, J.-M. Muller, and Y. Uguen, “Posits: The good, the bad and the

ugly,” in Next Generation Arithmetic, ACM, 2019 (cit. on p. 73).

[49] N. Buoncristiani, S. Shah, D. Donofrio, and J. Shalf, “Evaluating the numerical stability

of posit arithmetic,” in International Parallel and Distributed Processing Symposium,

IEEE, 2020, pp. 612–621 (cit. on p. 73).

[50] F. Xiao, F. Liang, B. Wu, J. Liang, S. Cheng, and G. Zhang, “Posit arithmetic hardware

implementations with the minimum cost divider and square root,” Electronics, vol. 9,

no. 10, 2020, issn: 2079-9292 (cit. on p. 77).

[51] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, “MPFR: A multiple-

precision binary floating-point library with correct rounding,” ACM Transactions on

Mathematical Software, vol. 33, no. 2, 2007 (cit. on p. 82).

[52] L. Forget, G. Harnisch, R. Keryell, and F. de Dinechin, “A single-source C++20 HLS flow

for function evaluation on FPGA and beyond,” in International Symposium on Highly-

Efficient Accelerators and Reconfigurable Technologies (HEART), ACM, 2022, pp. 51–58,

URL: https://doi.org/10.1145/3535044.3535051 (cit. on pp. 85, 97).

[53] “SYCL for vitis: Experimental fusion of triSYCL with intel SYCL oneAPI DPC++ up-

streaming effort into clang/llvm,” AMD. (2022), URL: https://github.com/triSYCL/sycl
(cit. on p. 86).

[54] “OneAPI DPC++,” Intel. (2022), URL: https://github.com/intel/llvm (cit. on p. 86).

[55] “The llvm compiler infrastructure.” (2022), URL: http://llvm.org (cit. on p. 86).

[56] D. Das Sarma and D. Matula, “Faithful bipartite rom reciprocal tables,” in 12th Sympo-

sium on Computer Arithmetic, ACM, 1995, URL: https://doi.org/10.1109/ARITH.1995.
465381 (cit. on p. 92).

[57] D. Sunderland, R. Strauch, S. Wharfield, H. Peterson, and C. Cole, “Cmos/sos frequency

synthesizer lsi circuit for spread spectrumcommunications,” IEEE Journal of Solid-State

Circuits, vol. 19, no. 4, 1984, URL: https://doi.org/10.1109/JSSC.1984.1052173 (cit. on

p. 92).

[58] S.-F. Hsiao, P.-H. Wu, C.-S. Wen, and P. K. Meher, “Table size reductionmethods for faith-

fully rounded lookup-table-based multiplierless function evaluation,” IEEE Transac-

tions on Circuits and Systems II: Express Briefs, vol. 62, no. 5, 2015, URL: https://doi.
org/10.1109/TCSII.2014.2386232 (cit. on pp. 92, 107).

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

https://hal.archives-ouvertes.fr/hal-01488916
https://hal.archives-ouvertes.fr/hal-01488916
https://doi.org/10.1145/3316279.3316282
https://doi.org/10.1145/3316279.3316282
https://doi.org/10.1145/3535044.3535051
https://github.com/triSYCL/sycl
https://github.com/intel/llvm
http://llvm.org
https://doi.org/10.1109/ARITH.1995.465381
https://doi.org/10.1109/ARITH.1995.465381
https://doi.org/10.1109/JSSC.1984.1052173
https://doi.org/10.1109/TCSII.2014.2386232
https://doi.org/10.1109/TCSII.2014.2386232

133

[59] M. Christ, L. Forget, and F. de Dinechin, “Lossless differential table compression for

hardware function evaluation,” IEEE Transactions on Circuits and Systems II: Express

Briefs, vol. 69, no. 3, pp. 1642–1646, 2021 (cit. on p. 92).

[60] S. Chevillard, M. Joldeş, and C. Lauter, “Sollya: An environment for the development of

numerical codes,” inMathematical Software - ICMS 2010, K. Fukuda, J. van der Hoeven,

M. Joswig, and N. Takayama, Eds., ser. Lecture Notes in Computer Science, vol. 6327,

Heidelberg, Germany: Springer, Sep. 2010, pp. 28–31 (cit. on p. 93).

[61] A. L. M. Douglas, The electrical production of music. New York: Philosophical Library,

1957 (cit. on p. 98).

[62] F. de Dinechin, M. Istoan, and G. Sergent, “Fixed-point trigonometric functions on FP-

GAs,” SIGARCHComputer Architecture News, vol. 41, no. 5, pp. 83–88, 2013 (cit. on p. 99).

[63] C. Lattner, M. Amini, U. Bondhugula, et al., “MLIR: Scaling compiler infrastructure for

domain specific computation,” in International Symposium on Code Generation and Op-

timization, IEEE, 2021, pp. 2–14, URL: https : / / doi . org / 10 . 1109 / CGO51591 . 2021 .
9370308 (cit. on p. 103).

[64] F. de Dinechin, M. Joldes, and B. Pasca, “Automatic generation of polynomial-based

hardware architectures for function evaluation,” in Application-specific Systems, Ar-

chitectures and Processors, IEEE, 2010 (cit. on p. 107).

[65] N. Brunie, F. de Dinechin, M. Istoan, G. Sergent, K. Illyes, and B. Popa, “Arithmetic core

generation using bit heaps,” in Field-Programmable Logic and Applications, Sep. 2013

(cit. on pp. 107, 110).

[66] M. Kumm and P. Zipf, “Hybrid Multiple Constant Multiplication for FPGAs,” in IEEE

International Conference on Electronics, Circuits and Systems, (ICECS), 2012, pp. 556–

559 (cit. on p. 110).

[67] “CIRCT – circuit IR compilers and tools.” (2021), URL: https://github.com/llvm/circtl
(cit. on p. 111).

[68] H. Ye, C. Hao, J. Cheng, et al., “Scalehls: A new scalable high-level synthesis framework

onmulti-level intermediate representation,” in IEEE International Symposium on High-

Performance Computer Architecture (HPCA), 2022, pp. 741–755, URL: https://doi.org/
10.1109/HPCA53966.2022.00060 (cit. on p. 111).

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
https://github.com/llvm/circtl
https://doi.org/10.1109/HPCA53966.2022.00060
https://doi.org/10.1109/HPCA53966.2022.00060

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

FOLIO ADMINISTRATIF

THÈSE DE L’INSA LYON, MEMBRE DE L’UNIVERSITÉ DE LYON

NOM : FORGET Date de soutenance : 29/06/2023
Prénoms : Luc

Titre : Description and compilation of ad-hoc arithmetic operators in the context of High-Level Synthesis

Nature : Doctorat Numéro d’ordre : 2023ISAL0046

École doctorale : Informatique & Mathématique (InfoMath)

Spécialité : Informatique

Résumé :
Les techniques de synthèse de haut niveau permettent aux programmeurs non spécialistes de générer des de-
scriptions de circuits numériques en utilisant des langages de programmation généralistes. Cependant, les outils
existants ne supportent qu’un petit nombre de formats numériques et un petit nombre d’opérateurs standards. Cette
thèse présente plusieurs techniques pour rajouter le support de nouveaux formats et de nouveaux opérateurs. Dans
un premier temps, l’étude se focalise sur ce qui est réalisable en se restreignant aux fonctionnalités demétaprogram-
mation du standard C++ supporté par les outils HLS. Une bibliothèque d’opérateurs élémentaires pour les formats
IEEE-754 et posit de taille arbitraire est proposée. Elle sert de base à une étude de cas comparant le coût matériel de
l’implémentation de ces deux formats. L’implémentation d’évaluateurs de fonctions mathématiques arbitraires se
heurte aux limites de la première approche. Dans un second temps, l’étude se porte sur les possibilités offertes par
la modification du flot de compilation HLS, avec comme objectif de supporter cette fonctionnalité. Une bibliothèque
permettant au développeur de spécifier des opérateurs pour approximer des fonctions arbitraires en précision arbi-
traire est présentée. Deux approches pour l’interfaçage de cette bibliothèque avec les outils de HLS sont proposées,
selon que l’on a ou pas accès aux sources des compilateurs HLS.

Mots-clés : Synthèse de haut niveau, formats numériques, IEEE-754, Approximation de fonctions, compilation, Posit

Laboratoire(s) de recherche : Centre of Innovation in Telecommunications and Integration of Service (CITI)

Directeur de thèse : Florent DE DINECHIN

Président du jury : Fabrice RASTELLO

Composition du jury :
Roselyne CHOTIN (Examinatrice)
Steven DERRIEN (Rapporteur)
Fabrizio FERRANDI (Rapporteur)
Anastasia VOLKOVA (Examinatrice)

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0046/these.pdf
© [L. Forget], [2023], INSA Lyon, tous droits réservés

	Notice XML
	Page de titre
	Résumé / Abstract
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Context
	Logic signals, logic vectors
	Numerical formats
	Fixed-point
	Floating point
	Logarithmic Number System

	Hardware arithmetic operators
	Field-Programmable Gate Arrays
	FPGA architecture
	Computing with FPGAs
	From computation graph to FPGA configuration
	Computation graph descriptions

	High-Level Synthesis arithmetic support
	HDL arithmetic core generators
	Toward on-demand HLS arithmetic operator implementation ?

	A portable HLS-enabled library for custom numerical formats
	Hint, a portable abstraction layer for arbitrary width integer arithmetic
	Integers and HLS
	Core arithmetic primitives for floating-point operators
	Type safety for arbitrary-precision integers in HLS
	Others operations
	Software design of backend common interface
	Evaluation

	Custom floating-point format library
	Elementary operation support
	Exact fixed-point accumulation of floating-points products
	Operator implementations in MArTo

	IEEE-754 vs posit hardware cost comparison
	Comparison of operator area and latency
	Quire versus standard operations
	Case study conclusion

	Limits and future work

	HLS library for arbitrary fixed-point function approximations
	Custom C++ HLS compiler supporting C++20
	A library to specify arithmetic operators
	C++ types for fixed-point number
	Classical arithmetic computations
	Arbitrary mathematical function specification via its expression graph

	Fixed-point function approximation architectures
	Table-based hardware arithmetic operators
	Polynomial approximation methods

	Compiler agnostic specialization generator method
	C++ types for arithmetic operator evaluation
	Application example
	Limits of the approach by specialization generation

	Compiler support for fixed-point functions in HLS
	Fixed-point function compilation architecture
	Intermediate representations for fixed-point functions
	Current state of the expression compiler prototype

	Conclusion and perspectives
	Source code for floating-point adders
	IEEE-754 Adder
	Posit adder

	Bibliography
	Folio administratif

