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Résumé: Dans le domaine de la sis-
mologie, les répliques sismiques sont
des séismes de taille moindre qui suiv-
ent un séisme principal. Ces ré-
pliques sont causées par la déstabili-
sation du sol dans les régions proches
de l’épicentre du séisme principal.
Dans cette thèse, nous étudierons
ce phénomène de trois manières dif-
férentes. Dans la première partie,
nous discuterons des liens entre des
modèles simples de réplique et la
statistique des records des processus
stochastiques. Dans la deuxième par-
tie, nous utiliserons les similitudes en-
tre les séquences sismiques et la dy-

namique de glissement de domaines
magnétiques. Dans la troisième par-
tie, nous utiliserons l’apprentissage
machine afin de construire une méth-
ode de prédiction des répliques sis-
miques exploitant les mesures de dé-
formation du sol obtenues par satellite
GPS. Enfin, dans la dernière partie de
cette thèse, nous discuterons d’un su-
jet différent, lequel étant l’écoulement
d’un fluide non newtonien dans un mi-
lieu poreux en utilisant les outils de la
physique des systèmes désordonnés et
des polymères dirigés dans des milieux
aléatoires. ]
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modeling and data analysis
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Abstract: In seismology, aftershocks
are smaller earthquakes originating
from the destabilised crust in the re-
gions close to a larger earthquake, the
mainshock. In this thesis we study
this phenomenon from three distinct
perspectives. In the first one we
unveil the connections between sim-
ple models of aftershocks occurrence
and record statistics of stochastic pro-
cesses. The second approach builds up
on the similarities between earthquake
sequences and mainshock-aftershocks
groups with the creep dynamics of a

domain wall expanding in a thin mag-
netic film. Finally, we use machine
learning tools to construct a forecast-
ing method for aftershock occurrence
by exploiting measurements of surface
deformation coming from Global Po-
sitioning System (GPS) satellites. As
an addendum, in the last part of the
thesis, we discuss the physics of yield-
stress fluids in porous media and its
links to the physics of disorder sys-
tems and directed polymers in random
media.
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Introduction

This thesis aims to investigate the spatial and temporal correlations of systems dis-
playing avalanches. In statistical physics, an avalanche is a reorganization of the
degrees of freedom of a system in response to a generated instability, such as the
change in applied forces, thermal fluctuations, or internal relation mechanism. The
study of avalanche dynamics is as interesting as they are ubiquitous: earthquakes
are the avalanches occurring in seismic faults [1–7], avalanches characterize the de-
formation crystalline structures put under load [8,9], they are precursors of rupture
in brittle materials [10], describe the invasion of porous media by a fluid [11,12] and
even emerge in neuronal activity [13]. Often avalanches have clustering properties,
both in time and space: a principal avalanche occurs that can trigger numerous
"children" avalanches exhibiting rich statistical structures. A prime example and
the main focus of this thesis is in the binomial of mainshocks and aftershocks in
seismology. Characterizing how aftershocks occur is of primal importance, both
for scientific and practical human applications. As such, the central part of the
manuscript is divided into three chapters, each referring to a different treatment of
the subject of aftershocks.

In the first chapter, based on the published paper [14], we develop and exactly
solve a minimal model of avalanches that display aftershocks, generating sequences
similar to the ones observed in actual earthquakes ones. This model is inspired by
mean-field models of avalanches, such as the famous ABBM model [15], and it is
grounded in the class of particles in disordered landscapes. Using extreme value
statistics, we show that this model displays avalanches with a power-law distribu-
tion, which we analytically determine. Moreover, we characterize analytically and
numerically the correlations between avalanches, showing that such a model is one
of the few solvable ones presenting aftershocks.

In the second chapter, we perform the data analysis of the dynamics of a do-
main wall expanding in an ultra-thin magnetic film under the influence of a small
magnetic field. The name creep in magnetic materials is borrowed from the one in
solid mechanics, which corresponds to slow but progressive accumulation of strain
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deformation upon applying external (small) stress over a long time. Here the strain
corresponds to the expansion of the domain wall which is driven by a small exter-
nal magnetic field. The interplay between temperature, impurities present in the
underlying film crystalline structure and driving field give rise to a rich dynamics,
understanding which is extremely important, for example, in spintronics. We frame
the system in the family of driven interfaces in random media, which are the proto-
typical systems showing avalanche behavior, and we test the theoretical predictions
on the experimental data. We show the first experimental observation for the pres-
ence of mainshock-aftershocks pairs in the avalanche dynamics of the domain wall
which previously has been predicted by the theory [16] and observed recently in
numerical simulations [17].

Finally, in the third chapter, we investigate a new approach to earthquake fore-
casting, specifically in aftershock prediction. The starting point is a recent work [18]
that exploited reconstructed underground displacement maps following large earth-
quakes (mainshocks) to infer spatial patterns of the subsequent aftershocks using
machine learning. While very promising, such underground deformation maps need
to be build by employing a precise knowledge of the fault system and are hardly
doable in real-time on in near real-time. Here we explore the possibility of using
surface displacement maps without prior fault knowledge to achieve the same goal
of pattern prediction. In particular, such surface displacement maps can be recon-
structed with relative more ease by using displacement measurements coming from
GPS stations on the ground. GPS stations communicate with satellites for con-
tinuous measurements of their position on the ground and a satisfying reading can
be obtained within a few hours lag, making them appropriate for near real-time
predictions. In practice, we first discuss how to construct such maps and then we
compare a classical statistical method and a machine learning approach to tackle
the problem, discussing both its quirks and limitations.

As an addendum, in the last chapter of this thesis, we study the problem of
characterizing the Darcy’s law of non-Netwonian yield-stress fluids. The standard
Darcy law [19] is a linear law describing flow rate vs pressure characteristics of
a Netwonian fluid in a porous material. However when non-Netwonian fluid are
involved, such as yield-stress fluids, the Darcy’law becomes non-linear in the applied
pressure. In this chapter we use the tools of disordered systems and statistical
physics to describe the flow by employing a mapping to a well known and studied
problem, the directed polymer in random media. In literature, a porous material is
modelled as a network where the fluid flows in its links. In this chapter we solve
analytically the flow in a model where the porous material is modelled as a binary
tree. This allows us to unveil the links between the non-linearity of the Darcy’s law
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and the geometrical organization of the flow in the medium.
Each chapter is based on a different paper:

• Chapter 1: based on "Statistical properties of avalanches via the c-record
process" [14]

• Chapter 2: based on "Earthquake-like dynamics in ultrathin magnetic film"
(in preprint) [20]

• Chapter 3: based on "Assessing the predictive power of GPS-based ground
deformation data for aftershocks forecasting" (in preprint) [21]

• Chapter 4: based on "Darcy’s law of yield stress fluids on a tree-like network"
[22]
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Chapter 1

Records, stick-slip motion
and aftershocks

This chapter is based on the published paper Statistical properties of avalanches
via the c-record process on Physical Review E (Phys. Rev. E 104, 064129) and on
not-yet-published results regarding the same topic.

1.1 . Stick-slip motion

Stick-slip motion refers in general to a phenomenon occurring when two surfaces
are in contact and moving one past the other. Stick-slip is observed, for example,
when a car moves on a wet road, a violin bow acts on a string or in the topical
example of tectonic plates that slide in a seismic fault [5]. As the name suggests,
stick-slip motion is a type of motion where the object involved is either at rest or
undergoes a (fast) movement and the main ingredient regulating these two phases
is friction. The physical picture goes as following: an object is subject to some
applied force and the static friction impedes the motion; as long as the friction is
high enough the object remains still (it sticks). Then when the applied force is high
enough to overcome friction, the object starts to move (it slips) only to (possibly)
be stopped again by friction. Due to the alternant nature of the stick-slip motion,
the two main observables that characterize it are:

• The slip size corresponds to the amount of displacement the object has un-
dergone during the slip phase.

• The time correlation between subsequent slip events.

In the present context, we will focus on stick-slip motion in seismic phenomena and
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its modeling. In doing so, we would like to maintain the main features of seismic
events:

• Earthquake magnitudes m distribution P (m) is well described by the Gutenberg-
Richter (GR) law P (m) ∼ 10−bm. The GR law corresponds to an energy
release (called seismic moment) during an earthquake of M0 ∼ 10

3
2
m. More-

over, M0 ∝ AD, where A is area of the fault that slipped and D the slip size.
The exponential nature of GR law translates to a power law distribution for
M0. In the context of stick-slip motion, the energy release happens during
the slip phase thus by measuring the slip size we measure the energy release
and thus the magnitude.

• The smaller earthquakes following a significant seismic event, called after-
shocks, are correlated for a long time and this correlation is well described by
the Omori-Utsu law [23], stating that the number of aftershocks N(t) after a
time t from a large earthquake decays as N(t) ∼ 1/tp with p ∼ 1.

The main framework we are going to use to model stick-slip motion is the spring-
block model. It consists of an object (i.e., the block) of mass m subject to static
and dynamic friction and pulled by a spring whose loose end moves at a constant
velocity vd. If the coordinate of the mass is x, we denote by u = x− vdt the spring
elongation. Its equation of motion is:

mü = −cu+ Fd if u > Fsc (1.1)

here Fs is static friction, Fd is dynamic friction Fd < Fs, c is the spring stiffness.
If the block is stuck at some position x0 because of friction, the force on u has to
reach Fs which happens when a time ∆t passes:

c(vd∆t− x0) = Fs

∆t =
Fs + cx0

cvd
(1.2)

At the beginning of motion, u̇ = 0 and u evolves as (we set the origin of time as the
moment of the beginning of motion):

u(t) =

(
cu0 − Fd

c

)
cos(ω0t) +

Fd

c

u̇(t) = −ω0

(
cu0 − Fd

c

)
sin(ω0t)

(1.3)
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So u(t) will change until it reaches again zero velocity and thus the stick phase begins
again. This simple model while displaying the essential feature of stick-slip motion,
namely the intermittency between the two phases, lacks one major ingredient which
is heterogeneity in the friction observed in real systems [6,24,25]. Indeed the motion
is perfectly periodic as the value of the static friction remains constant throughout
the dynamics. For a more realistic system, it is essential to exhibit variations in
both the duration and friction force levels during different stick and slip phases.
In order to do so we introduce a more realistic description: a block driven by an
elastic spring in a random frictional landscape. Numerous representations of this
model can be found in the literature; however, for our reference material, we rely on
the comprehensive study conducted in [26]. The model consists of an overdamped
particle (the block, in our case) pulled by a spring whose loose end is fixed at some
position w. Thus the equation of motion reads:

ηẋ(t) = c(w − x(t)) + F [x(t)] (1.4)

here F [x(t)] incorporates the effect of friction and is, in general, a random variable.
As pointed out in the original literature [26], instead of treating x(t) as a continuous
variable, it is more effective to discretize the motion in space and put the block on
a lattice. Using a lattice spacing of 1 and indicating with i the lattice position, in
this approximation the force applied on the block can be written as:

c(w − i)− fi (1.5)

where fi is the friction value at site i. We implement the following rules of motion:
if at some site i we have c(w − i) > fi the block can move by hopping from one
lattice site to the next until at some site i+ n it encounters an high enough friction
force such that c(w− (i+n)) < fi+n. We refer to the friction value that stopped the
motion as a stopping force. Overall during the motion - which is nothing but the
slip phase - the block moves by n steps and its force drops by cn. As the friction
stopped the motion, the block now is in the stick phase and to trigger a new slip
phase the loose end of the spring w must change by a ∆w such that:

c(w +∆w − (i+ n)) = fi+n (1.6)

i.e., the applied force must reach the friction force. Suppose now that the friction
value at each site is independent of the other and follows a distribution p(f) with
cumulative P (f). At fixed w, the probability to find the block at position n in the
lattice is:

P (n|w) = (1− P (c(w − n))
∏
i<n

P (c(w − i)) (1.7)
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with i < n indicating all the lattice points before n. The formula above is easily
understood: the right term expresses the probability that at each site i smaller than
n the applied force must be greater than the friction while the term 1−P (c(w−n))

expresses the probability that exactly at position n friction wins. The above formula
can be generalized to take into account the probability of being stopped at site n

with a stopping force less or equal to some value f :

P (n, f |w) = (P (f)− P (c(w − n))
n−1∏
i=0

P (c(w − i))θ(f − c(w − n)) (1.8)

Finally we can turn equation (1.8) into a recursive equation for stopping forces. If,
say, the particle was stuck at some position i with a stopping force f0 and we want
to know the probability of being stuck again at i+ n with a stopping force at least
f , we need to consider:

P (f, n|f0) = (P (f)− P (f0 − cn))
n−1∏
i=1

P (f0 − cn)θ(f − (f0 − cn)) (1.9)

To obtain it one has to use the fact that at site i the particle starts the motion as
soon as its internal force is f0 and after each step forward it takes the force drops by
c. So the force must be higher than the friction for n−1 steps hence the term under
the product and at step n, when the force reaches f0 − cn, it has to be overcome by
friction. As already pointed out, this model has been analyzed in [26] for various
types of distributions p(f). For our purpose, we need to remember two main results
for this model:

• The marginal distribution for the slip sizes n is exponential π(n) ∼ exp(−n/n0)

with n0 a value depending on c and p(f) (as long as we consider non fat-tailed
distributions).

• The slip sizes are uncorrelated in time.

While this model lacks in reproducing the power-law distributed slip sizes observed
in earthquakes (and thus related to the GR law), it has remarkable application in
describing DNA unzipping as shown in [27]. Finally the uncorrelated nature of the
slip events cannot properly describe aftershocks correlation, which is the second
aspect of seismic phenomena we would like to retain.

1.2 . Connection with record statistics
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Figure 1.1: Probability distribution π(n) for the slip sizes of the discretized driven
particle model for p(f) = exp(−f) and various c. It is evident the exponential
nature of π(n) as proven in [26].

There is a deep connection between models for stick-slip motion and record
statistics. Consider for a moment the case c = 0 in equation (1.9). It reads:

P (f, n|f0) = (P (f)−P (f0))
n−1∏
i=1

P (f0)θ(f − f0) = (P (f)−P (f0))P
n−1(f0))θ(f − f0)

(1.10)
For c = 0 one can immediately recognize that the equation (1.9) reduces to the
probability of finding n − 1 numbers smaller than f0 and one between f0 and f

among n i.i.d. random variables with cumulative P (f) or, in other words, is the
cumulative distribution of the maximum of n random variables conditioned on being
also larger than f0. As originally we were dealing with frictional forces on a lattice,
we can imagine that the fi’s are spatially ordered by lattice site i. We can also say
that, up to position n, equation (1.10) is the conditional record distribution for a
collection of i.i.d. random variable. What is a record, though? The name speaks
for itself, as it is defined as the largest value encountered in a time series (or spatial
series, as in our case) up to some time (or position) n. If say, the last record was f0,
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equation (1.10) expresses the probability that the new record will be smaller than f

and attained after n steps from f0. Now we can plug back a c > 0 and interpret (1.9)
in terms of record statistics. Indeed we can read equation (1.9) as a modified record
problem where each time we encounter a new value in the time/spatial series we
relax the condition of finding a record, namely we discount the record by a constant
value c. Hence, after 1 step from f0, we find a record if our new value f1 is larger
than f0 − c, after 2 steps if f2 is larger than f0 − 2c and so on. As we diminish the
value of record to beat, effectively it is easier to find a new record for c > 0. This
problem in the literature has been regarded as records for linear-trended time series
and we refer to [28–30] for the original literature. In the next section, we review the
main results on record statistics of i.i.d. series.

1.3 . Classical record statistics

We are ready now to formulate more precisely the concept of record statistics.
Consider an infinite time/spatial series of values {fi}∞i=1. We stick to infinite time
series as it greatly simplifies the calculations without losing the main features. We
refer to i as the series index and fi as the series value. Up to index N ≥ 1, the
record is the largest value in the series f1, f2, . . . , fN . As we consider larger N ,
the number of records can either increase or stay constant. We indicate with MN

the number of records up to index N and we label the indices at which the MN

record occurs as i1, i2, . . . , ik . . . iMN
with i1 = 1 by convention. The record values

are thus labelled by R1, R2, . . . Rk, . . . RMN
and they correspond to the series values

fi1 , fi2 , . . . fik , . . . RiMN
. Finally, an important quantity, especially in connection with

the physical problem, is the so-called record age defined as the difference between two
consecutive record locations i.e. nk = ik+1 − ik is the age of the k-th record. Figure
1.2 shows a pictorial representation of these quantities. In the next sections we
describe record statistics for series of i.i.d. random variables and for linear-trended
series, as they connect directly to the block model discussed above.

1.3.1 . IID Random variables

Classic results about record statistics can be easily obtained when considering
a series of i.i.d. random variables i.e. the values fi are drawn independently from a
distribution p(f) with cumulative P (f). First of all we consider the so-called record
rate which is the probability that the N -th value is a record. As we are dealing with
i.i.d. series, all the values fi are equally likely to be the record, this probability is
uniform in N

pN =
1

N
(1.11)
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Figure 1.2: A realization of the classical record statistics. The vertical blue lines
represent the series values fi and we label the record both by their values and the
index at which they occur.

Using this argument we can also say that, up to index N , the expected number of
records is:

N∑
n=1

1

n
= lnN + γ + o(1/N) (1.12)

with γ ≈ 0.577215 the Euler-Mascheroni constant. Consider now the joint proba-
bility that there are M records up to index N and the record has value R:

PN(M,R) = PN−1(M,R)P (R) + p(R)

∫
R′<R

dR′PN−1(M − 1, R′) (1.13)

The formula is read as follows: M records can formed at index N if at index N−1 no
record has formed which happens with probability P (R) where R is the last record
value or if at index N − 1 and a new record is formed with value R distributed
according to p(R) with probability given by

∫
R′<R

dR′PN−1(M − 1, R′). It can be
shown that the generating function of PN(M,R), namely:

G(z, s, R) =
∞∑

N=1

∞∑
M=1

zNsMPN(M,R) (1.14)

satisfies the following integral equation:

G(z, s, R)[1− zP (R)] = zsp(R)

[
1 +

∫
R′<R

G(z, s, R′)dR′
]

(1.15)
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Figure 1.3: Stick-slip interpretation of the classical record statistics. The frictional
landscape fi is depicted by vertical blue lines indexed by the lattice site i. The
records for the series {fi}∞i=1 are indicates by R1, R2, . . . at positions i1, i2, . . . . These
positions correspond to the position at which the system is stuck (stick phase). In
the slip phase, which happens between two consecutive records, the force profile
remains constant (red dotted lines). With small green segment we indicate the
amount of force the system has to gain to start slipping again and each time is equal
to R2−R1, R3−R2, R4−R3 . . . i.e. is the difference between two consecutive record
value.

Considering H(R) =
∫
R′<R

G(R′)dR′ (we omit z and s for simplicity) we can show
that:

H(R) = −1 + (1− zP (R))−s (1.16)

By taking R → ∞ (or, in general, R as the right limit of the support for p(R)) we
obtain the generating function for the probability PN(M) of having M records up
to index N :

G(z, s) = lim
R→∞

G(z, s, R) = (1− z)−s − 1 (1.17)

Using G(z, s) we can easily find that the expected number of records ⟨MN⟩ which
in the large N limit reads:

⟨MN⟩ = lnN + γ +O(1) (1.18)

that is the result derived at the beginning of the section. As the generating function
G(z, s) does not depend on the type of distribution considered, the statistics for
the number of records MN is universal. The same is not true when one focuses

11



on the distribution of the k-th record value which we denote by qk(R) and depends
explicitly on the form of p(f). It can be shown that it satisfies the following recursive
relation:

qk(R) = p(R)

∫
R′<R

dR′ qk−1(R
′)

1− P (R′)
(1.19)

where the integral is understood has going from the left support of p(f) up to R.
By introducing a new generating function:

q̃(y,R) =
∞∑
k=1

qk(R)yk (1.20)

we can obtain an integral equation for it:

q̃(y,R) = yp(R)

∫
R′<R

dR′ q̃(y,R′)

1− F (R′)
+ yp(R) (1.21)

with solution:
q̃(y,R) = yp(R)e−y ln(1−P (R)) (1.22)

The generating function corresponds to the following form for qk(R):

qk(R) =
p(R)

(k − 1)!
[− ln(1− P (R))]k−1 (1.23)

Finally we can compute the distribution of the k-th age. Omitting the details of the
computation we get:

πk(n) =
1

(k − 1)!

∫ 1

0

dx(1− x)xn−1 [− ln(1− x)]k−1 (1.24)

which at variance to qk(R) is universal. For large k it can be also shown that
πk(n) ∼ 1/n which is non-normalizable. As we discussed now the key elements of
records of i.i.d. series, we can back to the stick-slip motion interpretation. Records
for i.i.d. time series thus correspond to a stick-slip model where the ’block’ is stuck
at record positions i1, i2, . . . and the blocking forces correspond to record values
R1, R2, . . . . Moreover the blocking force grow each time and they are distributed
according to qk(R). To make this more clear, figure 1.3 has a schematics were
the mapping is further explained and in the table below where this mapping is
summarized.

records stick-slip motion
series index i lattice position
series values fi friction forces
record age nk = ik − ik−1 displacement in the slip phase / slip size
record value rk = fik stopping force
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1.3.2 . Linear-trended series

As we treated record statistics for i.i.d. series and its connection to the case
c = 0 driven particle model, we focus now on so-called linear-trended time series
which is mapped to the c ̸= 0 case. It consists in finding the records of the following
series:

f̃i = fi + ci (1.25)

where c is a constant and the {fi}∞i=1 are a series of i.i.d. random variables. For
c = 0 it reduces to the classical records discussed above. Let’s start by analyzing
the record condition. If, say, some previous record occurred at index ik with value
R̃′ = fik + cik the new record R̃ will occur at index ik+1 if:

fi + ci < fik + cik for ik < i < ik+1

fik+1
+ cik+1 > fik + cik (1.26)

The first line can be recast to fi < fik − c(i − ik) and the second to fik+1
> fik −

c(ik+1 − ik). So for c > 0, with respect to the case c = 0, it is easier to find
a record while for c < 0 it is harder. We focus on the case c > 0 which has a
direct mapping to the problem of the block pulled by an elastic spring. Indeed the
two subsequent record locations ik and ik+1 described above are nothing but the
stick position of the block and the two values fik and fik+1

are the stopping forces.
Moreover, if we say that ik+1 − ik is equal to some n > 0 and the initial applied
force to the block was fik , the applied force dropped by cn = c(ik+1 − ik) during
the slip phase, as it happens for the block that moved by n steps. We have now
two perfect correspondences, (1) between record values and stopping forces and (2)
between record ages and displacement of the block/slip size. Hence, talking about
record statistics and block model is effectively the same. An important feature of
the linear trend record is that there exists a limiting distribution for the stopping
force distribution. Namely, if we consider the k-th record and we take a very large
k, the distribution for the stopping force can reach a limiting shape, depending on
the type of distribution p(f) (more precisely, depending on its extreme value class).

1.4 . A novel record model

As of now, it should be clear that stick-slip motion can be modeled using records
and we presented two examples of such correspondence. In the following sections we
present and analyze a novel record model that correctly reproduces two features of
stick-slip motion observed in earthquakes, namely a power law distribution in slip
sizes (and hence in record ages) and correlations between slip events. The model can
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be understood informally by stating the record condition. Namely if the previous
record is R′ the next record value is the first element in the series R for which
R > R′ − c, with c a positive constant. This record condition is equivalent to a
constant drop c in the applied force on the block after the slip phase starts. See
figure 1.4 for a pictorial representation. Thus this model, which we dub c-record
model, interpolates between the classical record model where there is no force drop
(thus c = 0) and the linear-trend one (equivalent to the driven particle model) where
the force drop is proportional to the slip size. This version of the c-record is not the
only one interpolating but one could consider a protocol for which the force drop
increase by c for each step the block makes up to a maximum number of steps nmax,
after which the force remains constant. The c-record corresponds to nmax = 1. We
will briefly discuss this variation at the end of the chapter but we anticipate that
the main properties of the c-record model are maintained for any finite nmax. We
focus mostly on nmax = 1 for analytical tractability. It is worth mentioning that
this kind of modified record model was introduced in a different context, namely in
study of fitness landscapes, in [31] without the explicit record interpretation.

1.4.1 . Definition

The definition of the c-record model is better carried out in a recursive way.
Consider the usual series {fi}∞i=1 and label the record values as R1, R2, . . . , RM . . .

and the indices at which they occur i1, i2, . . . , iM , . . . . As the first record R1 is
always f1, we have i1 = 1. The successive records R2, . . . , Rk, . . . RM . . . are defined
recursively:

Rk = fik : fik > Rk−1 − c and fi < Rk−1 − c ik−1 < i < ik (1.27)

In other words, a new record Rk is achieved when a value in the series fik is larger
than the old record value Rk−1 minus a constant c. As for the other record models,
we can introduce the record ages nk = ik − ik−1 as a measure of how long a record
lasts.
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Figure 1.4: Pictorial representation of the c-record model. The solid vertical lines
represent the friction values or equivalently the series {fi}∞i=1. The dashed red lines
is the force profile during the motion. Solid green vertical lines indicate the force
increase between the stick and the slip phase. The elbow-like shape of the force
profile quantifies the effect of the force drop by c at the start of the slip phase.

The type of c-record we are going to focus on are those of i.i.d. series. In
other words we are gonna consider a frictional landscape for our block with no
spatial correlations. We expect from extreme value theory of correlated random
variables [32–34] that these results won’t be qualitatively affected in case of short-
range correlation and will effectively change for strongly correlated random variables
(such as a frictional landscape correlated as a random walk).

Calling p(f) and P (f) respectively the distribution and the cumulative of the
elements of {fi}∞i=1, two successive records can be related using a conditional distri-
bution. Fixing the value of a previous record to R′, the new one will happen after
n steps and will have value ≤ R with probability:

Q(n,R|R′) = (P (R)− P (R′ − c))P (R′ − c)n−1θ(R−R′ + c) (1.28)

It is simple to understand equation (1.28): the new record will have a value R if for
n− 1 steps the values from the series are smaller than R′ − c and the n-th is larger
than R′ − c and smaller than R. By taking a derivative w.r.t. R we can find the
joint probability distribution of record age n and value R:

q(n,R|R′) = p(R)P (R′ − c)n−1θ(R−R′ + c) (1.29)

Equations (1.28) and (1.29) are valid for a distribution p(f) with support on R. We
consider distributions limited from the left, e.g. with a support at [0,∞), the case
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n = 1 changes depending on R′:

q(n,R|R′) =

{
p(R)P (R′ − c)n−1θ(R−R′ + c) R′ > c

δn,1p(R) R′ < c
(1.30)

In the following sections, we will focus precisely on distributions with support [0,∞)

which are the most interesting ones.

1.4.2 . Conditional distributions

In the case of limited support from the left, i.e., [0,∞), we can sum over the
age value n in (1.30) and obtain the conditional distribution of record values:

q(R|R′) = p(R)θ(c−R′) +
p(R)

1− P (R′ − c)
θ(R−R′ + c)θ(R′ − c) (1.31)

The first term in the equation corresponds to the case n = 1 we mentioned before.
By the same reasoning, by integrating over R we can find the conditional probability
for the record age, which we call π(n|R′):

π(n|R′) =

{
δn,1 R′ < c

(1− P (R′ − c))P (R′ − c)n−1 R′ > c
(1.32)

The interpretation for π(n|R′) is straightforward: if R′ < c, the next value in the
series is a c-record, otherwise for R′ > c, the age random variable n follows a
geometric distribution. We can use equation (1.31) to efficiently simulate c-records
if it is possible to apply the inverse transform sampling method for the distribution
p(f). Indeed, given previous record R′, R is distributed according to (1.31) which
can be interpreted as the distribution R drawn from p(R) conditioned on being
larger than R′ − c. Hence if we can invert P (f) we can sample R as follows:

R =

{
P−1(P (R′ − c) + u(1− P (R′ − c))) R′ > c

P−1(u) R′ < c
(1.33)

where u is a uniform random variable in [0, 1].

1.5 . Record value distribution

We are now ready to write equations for qk(R), namely the probability distri-
bution of the k-th record. Using q(R|R′) it is possible to relate qk(R) to qk−1(R):

qk(R) = f(R)

∫ c

0

qk−1(R
′)dR′ + f(R)

∫ R+c

c

qk−1(R
′)

1− F (R′ − c)
dR′ (1.34)
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The first term corresponds to the case when the previous record has a value smaller
than c (that happens with probability

∫ c

0
qk−1(R

′)dR′). On the other hand the second
terms comes from the case of a previous record larger than c. If we differentiate (1.34)
w.r.t. to R

q′k(R) = f ′(R)

∫ c

0

qk−1(R
′)dR′ + f ′(R)

∫ R+c

c

qk−1(R
′)

1− F (R′ − c)
+ f(R)

qk−1(R + c)

1− F (R)
(1.35)

and combine (1.35) with (1.34) we obtain a differential equation for qk(R):

q′k(R) =
f(R)

1− F (R)
qk−1(R + c) +

f ′(R)

f(R)
qk(R) (1.36)

Equation (1.36) can be used to find a solution for qk(R) self-consistently with (1.34).

1.5.1 . Limiting distribution

Solutions for the recursive equation (1.35) are highly non-trivial and they can be
carried out for a few distributions. An interesting question though is the existence
of a limiting distribution limk→∞, qk(R) ≡ q(R) for the record value. The answer
depends on the behavior for large f of p(f). Indeed in [14] it was shown that for a
distribution with a stretched exponential tail p(f) ∼ e−fγ

f to∞ q(R) exists for any
c > 0 as long as γ > 1. Conversely for γ < 1 qk(R) does not have a well-defined limit
and like in the classical record case, the record grows indefinitely without a limiting
form. In figure 1.5 we show the average record for γ > 1 along with a predicted
scaling for it in the c → 0+ limit. The case γ = 1, which corresponds to pure
exponential tail, is special and must be treated on its own. In the following sections,
we are indeed gonna specialize to this case and we will choose the exponential
distribution as a proxy p(f) = e−f , due to its analytical tractability.

1.6 . The exponential distribution

As we anticipated in the previous section the c-records for the exponential distri-
bution represent a limiting case for the existence of a stationary record distribution
q(R). Focusing on p(f) = e−f , the equations for the record distributions become:

qk(R) = e−R

∫ c

0

qk−1(R
′)dR′ + e−R

∫ R+c

c

qk−1(R
′)eR

′−cdR′ (1.37)

q′k(R) = qk−1(R + c)− qk(R) (1.38)

The solution for qk(R) has been found in [31] by a power-series expansion suggested
from solving the simple cases k = 2, 3 with initial condition q1(R) = e−R:

qk(R) = − d

dR

(
k∑

n=0

R
(R + cn)n−1

n!
e−R−cn

)
(1.39)
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Figure 1.5: Average record extracted from exact numerical simulations and the
scaling predicted for c → 0+. Simulations were carried out using the Weibull family
p(f) = γfγ−1e−fγ . Figure from [14].

In the limit k → ∞, the limiting distribution q(R) satisfies:

q′(R) = q(R + c)− q(R) (1.40)

This non-local equation has a simple solution:

q(R) = λe−λR (1.41)

with λ the solution of the self consistent equation:

λ = 1− e−λc (1.42)

One can always find such λ for c > 1. For c ≤ 1 indeed the limiting distribution
does not exists. This result can be also checked by inspecting directly the behaviour
of qk(R) for large k. We thus identify a phase transition at c = 1. The effect of this
transition can be seen either from the existence of the limiting distribution but also
from counting the average number of records ⟨M⟩N in the first N elements of the
time series:

⟨M⟩N =


1

1−c
lnN +O(1) 0 ≤ c < 1

ln2(N) +O(lnN) c = 1

A0(c)N
λ + 1

1−c
lnN +O(1) c > 1

(1.43)

with A0(c) a positive constant depending on c. We remind to the original work for
an in-depth discussion and for the derivation of these results [14].
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Figure 1.6: Phase diagram for the phase transition described in the text. The
exponential distribution is a limiting case between the existence of a stationary
record distribution. This phase diagram is specialized on the Weibull family p(f) =
γfγ−1e−fγ .

1.6.1 . Age distribution

Having found the stationary record distribution for c > 1 we can also recover
the stationary age distribution:

π(n) = lim
k→∞

πk(n) (1.44)

The age distribution πk(n) is obtained by using the conditional age distribution
(1.32) in conjuction with qk(R):

πk(n) =

∫ ∞

0

πk(n|R)qk(R)dR (1.45)

In the limit k → ∞, by using q(R) = λe−λx, this corresponds to:

π(n) = λδn,1 + λ(1− λ)B(n, λ+ 1) (1.46)

with B(a, b) the Beta function B(a, b) = Γ(a)Γ(b)/Γ(a + b) and Γ(x) the gamma
function. This prediction is confirmed by numerical simulations, see figure 1.7. For
large n is it straightforward to show that:

π(n) ∼ λ(1− λ)Γ(1 + λ)/n1+λ (1.47)
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This density is normalizable as long as 1+ λ > 1 which is always the case for c > 1.
Going back to the mapping between the record model and the spring-block one,

the age distribution corresponds to the slip size distribution and thus a power law
in n corresponds to a GR law for the magnitude, here defined as m ∝ log10 n. This
is in sharp contrast with the result for the age/slip size in the driven particle model
presented before, where n has an exponential distribution. In the following section
we investigate numerically the c-records of different probability distribution, with
a particular focus on the Weibull family p(f) = γfγ−1e−fγ . We will show that the
main feature of the exponential case in maintained, namely a power law in π(n).
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Figure 1.7: π(n) for c = 1.5 (blue circles) and for c = 1.1 (green circles). Black
dashed line corresponds to the analytical predictions of (1.46). The inset shows λ(c)
as a function of c.

1.7 . Numerical results on the Weibull family

As anticipated, the Weibull family of probability distributions is particularly
suited for the simulations of c-records. By using equation (1.33) specialized for the
Weibull family:

p(f) = γfγ−1e−fγ

(1.48)

P (f) = 1− e−fγ

(1.49)

(1.50)
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we can write a stochastic equation relating two subsequent records:

Rk = (ηk + (Rk−1 − c)γ+)
1/γ (1.51)

where (x)+ = max(x, 0) and ηk is a number with exponential distribution of mean
1 i.e. p(ηk) = e−ηk . Equation (1.51) allows us to directly simulating the records
without simulating the series {fi}∞i=1. This stochastic equation makes clear that,
whenever Rk−1 < c, the distribution of Rk will be the one of η1/γk which is precisely
a Weibull. In figure 1.8 we show the record age distribution π(n) for various c and

Figure 1.8: Ages distribution simulated using equation (1.51). In the inset we show
how the exponent τ in π(n) ∼ n−τ varies with c.

γ = 2. In all cases the power law behaviour π(n) ∼ n−τ is maintained with τ > 1.
The analytical results on the exponential distribution joint with the numerics of the
Weibull case (which are a representative of any distribution with a tail falling faster
than an exponential) show how the c-records, in their spring-block interpretation,
correctly reproduce the GR law. What is left to investigate now is the correlation
between records. For the record values, it can be analytically carried out in the
exponential case, while for the Weibull case we limit ourselves to numerics.
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1.8 . Correlations and seismic sequences

In the case of distributions p(f) with support limited from the left such as [0,∞),
it is clear that from equation (1.30), when if some record R′ is smaller than c, the
next one R will have a value uncorrelated from R′ and drawn from p(R). In other
words from the point of view of the record value, it is like the record value process
resets as soon as a record reaches a value ≤ c. As this is the case, we can separate
the records in sequences, each stopped precisely by the record that reached a value
≤ c.

Figure 1.9: Example of different sequences for the c-record in the exponential case.
Sequences are separated by the color. The record values are plotted to distinguish
the sequences. Simulations are carried out at c = 1.1.

Focusing now on the exponential case, we can introduce a new quantity, namely
the probability that ℓ − 1 consecutive records had a value > c and the last one is
equal to R:

Pℓ(R) = {probability that Ri ≥ c for i = 1 . . . ℓ− 1 and Rℓ = R} (1.52)

So Pℓ(R) is a form of survival probability, when integrated over R. Indeed as a
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sequence ends when the last record reaches a value ≤ c, the sequence length distri-
bution is obtained by:

Pℓ =

∫ c

0

Pℓ(R)dR (1.53)

Using the conditional record value distribution (1.31) specialized to the exponential
case we can relate Pℓ(R) and Pℓ−1(R):

Pℓ(R) =

∫ ∞

c

q(R|R′)Pℓ−1(R
′)dR′ =

= e−R−c

∫ R+c

c

eR
′
Pℓ(R

′)dR′ (1.54)

For moderate ℓ, We can simply find the explicit form of the correspondent Pℓ(R) :

P1(R) = e−R

P2(R) = Re−R−c

P3(R) =
R(R + 2c)

2
e−R−2c (1.55)

By inspection one can realize that:

Pℓ(R) = e−(R+c(ℓ−1)) R

(ℓ− 1)!
(R + c(ℓ− 1))ℓ−2 (1.56)

Now by integrating over R ∈ [0, c] we can find Pℓ as defined above:

Pℓ =

∫ c

0

Pℓ(R)dR =
1

(ℓ− 1)!

∫ cℓ

c(ℓ−1)

e−zzℓ−2(z − c(ℓ− 1))dz (1.57)

Equation (1.57) can be rewritten using the upper incomplete gamma function Γ(s, x) =∫∞
x

ts−1e−tdt:

Pℓ =
1

(ℓ− 1)!
[(Γ(c(ℓ− 1), ℓ)− Γ(cℓ, ℓ))− c(ℓ− 1) (Γ(c(ℓ− 1), ℓ− 1)− Γ(cℓ, ℓ− 1))]

(1.58)
For large ℓ, Pℓ can be shown to have the following asymptotics:

Pℓ ∼ Nc
1

ℓ3/2
e−ℓ/ℓco (1.59)

with Nc a c-dependent constant and ℓco cutoff length :

ℓco =
1

c− 1− ln(c)
(1.60)

Close to c = 1, ℓco diverges as:

ℓco ∼ (c− 1)−ν (1.61)
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with ν = 2. At the critical point c = 1, in accordance with standard critical
phenomena, the cutoff length disappears and we find a pure power law:

Pℓ ∼
1

2
√
2πℓ3/2

(1.62)

In figure 1.10 we test this result numerically for various values of c finding perfect
agreement.

Figure 1.10: Sequence length distribution Pℓ in the exponential case for various c.
The dots are data from simulations, the black dashed line the analytical expression
from (1.57). As expected the cutoff grows as c approaches 1.

The result on the sequence length is reminiscent of the first passage time in zero
of a Brownian motion with a drift. Indeed we can interpret a sequence in terms of
random walks. Consider again the stochastic equation for two subsequent records
(1.51):

Rk = ηk + (Rk−1 − c)+ (1.63)

with ηk ∼ e−ηk and (x)+ = max(x, 0). If a sequence lasts for ℓ, we have R1, . . . , Rℓ−1 >

c and Rℓ < c. Hence for k = 1, . . . , ℓ− 1:

Rk = ηk +Rk−1 − c (1.64)
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In the variable zk = Rk − c and introducing ξk = ηk − 1 we obtain:

zk = 1− c+ zk−1 + ξk (1.65)

This is an equation for a discrete time random walk with an asymmetric jump
distribution ξi ∼ e−(ξi+1)θ(ξi +1), a drift 1− c and an absorbing boundary in z = 0,
corresponding to the end of sequence when R ≤ c. Thanks to this mapping we
expect that the first passage time of the random walker through zero or, equivalently,
the length of the sequence of records, to have a distribution with a power law tail
Pℓ ∼ ℓ−3/2. The presence of drift introduces a cutoff ℓco as in the standard first
passage time of a Brownian motion [35]. As we already pointed out, the new record
will have a value uncorrelated from the previous one and drawn from p(f). In the
language of Brownian motion, this mechanics corresponds to a Brownian particle
which is reset after each passage though zero. This process is denoted as first passage
stochastic resetting and has been studied, for example, in [36, 37].

The remarkable expression for (1.57) is only valid for the exponential case.
When dealing with other distributions, such as the Weibull already mentioned, the
situation changes and we lose the power law behavior. In either cases we manage to
reproduce another feature of the real stick-slip motion and of earthquakes, namely
a strong correlation between subsequent events.

1.9 . Variations of c-records

Various variation can be introduced of the c-record model [14].
For example one can generalize the new record criterion from Rk > Rk−1 − c to

Rk > Rk−1−h(Rk−1) where hk(R) is some function, possibly k-dependent. Example
are given in [38,39].

Another example can be to take hk(R) = gR, independent of k. The seismic/stick-
slip interpretation of this model is that the loss in the applied force at the onset of
the slip phase is proportional to the initial stopping force: the bigger the record,
the bigger the loss. In this case the recursive record equation, analogous to (1.34),
becomes:

qk+1(R) = f(R)

∫ R/g

0

qk(R
′)

1− F (gR′)
dR′ (1.66)

If we consider a series {fi}∞i=1 with Weibull distribution p(f) = γfγ−1e−fγ , the
associated stochastic equation for the record reads:

Rγ
k = gγRγ

k−1 + ηk (1.67)

with ηk exponentially distributed with mean 1. In terms of zk = Rγ
k and α = gγ:

zk = αzk−1 + ηk (1.68)
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Figure 1.11: Sequence length distribution Pℓ in the Weibull case with γ = 2 for vari-
ous c. At variance with the exponential case, an exponential decay in Pℓ dominates.

which has a solution:

zk =
k∑

i=1

ηiα
k−i (1.69)

with average:

zk =
k∑

i=1

αk−i =
1− αk+1

1− α
(1.70)

Finally a possible generalization would be to promote c, in the c-record model, to a
random variable. This kind of generalization would be more appropriate to model
seismic phenomena then as a bona-fide modified record model.

1.10 . Conclusion

In this chapter we discussed the mapping between models of stick-slip motion
and record statistics. By introducing a new record model, we managed to repro-
duce the main features of seismic catalogues. In particular, we recovered power
law distribution of the slip size which is compatible with the GR law and a strong
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correlation between record sequences, in accordance to the existence of aftershocks.
We showed that the presence of these features are independent of the type of fric-
tion distribution employed but, at the same time, they become special when dealing
with an exponential distribution. Naturally this kind of model has huge limitations
as it ignores the spatial extent of the seismic fault and their elastic interactions.
More realistically, in modeling such a system, driven elastic manifolds in quenched
disorder (the frictional landscape) are often used. A large literature has been pro-
duced [4, 40–42], with more and more realistic models emerging in recent years [7].
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Chapter 2

Earthquake-like dynamics
in ultrathin magnetic
films

This chapter is dedicated to the experimental study of the expansion of a domain
wall in an ultra-thin magnetic film under the influence of a weak magnetic field. The
reason behind the study of this magnetic system is that the dynamics of the wall have
strong similarities with the correlated seismic dynamics of mainshocks/aftershocks.
Indeed as in seismic phenomena, when one portion of the wall moves by a suffi-
cient amount, it can trigger a cascade of events that are spatially and temporally
correlated. The experiment is carried out at room temperature and at a very low
magnetic field, resulting in a creep motion of the wall. Hence in the first part of this
chapter, we are gonna review the creep regime observed in the motion of driven elas-
tic interfaces in random media. In the second part, we carry out the data analysis
of the experiment and compare it with the theoretical results.

2.1 . Driven elastic interfaces in random media

Domain walls in magnetic films can be described by one-dimensional interfaces
embedded in a two-dimensional medium. As the medium contains impurities (mag-
netic defects, for example) the domain wall expansion is not regular, and the front
has a rough nature. The simplest yet effective description of a domain wall is given
by an interface u(x, t) embedded in a random medium:

γ∂tu(x, t) = c∇2u(x, t) + F (x, u(x, t)) + f + η(x, t) (2.1)
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This model is referred to as quenched Edwards-Wilkinson (qEW) interface The first
term 2.1 is the elastic force acting on the interface. One could include a non-linear
KPZ term λ(∇u(x, t))2, that emerges whenever some form of anisotropy is present
[43] or when anharmonicity is relevant [44,45]. We refer to this modified version as
quenched Kardar-Parisi-Zhang (qKPZ) interface. Moreover, f is the driving force
(equivalent to the driving magnetic field in the domain wall experiments), η(x, t)
is a thermal noise with correlations ⟨η(x, t)η(x′, t′)⟩ = 2γTδ(x − x′)δ(t − t′) and
F (x, u(x, t)) is a quenched disorder that models the impurities. The latter can be
derived by a potential VP (x, u) as F (x, u) = −∂uV (x, u), which is uncorrelated along
the x direction. Instead, along the u axis, three different types of disorder emerge
depending on the correlations of V (x, u) :

• Random Bond (RB) where the potential (and the force) are short-range cor-
related i.e. [V (x, u)− V (x′, u′)]2 = δ(x − x′)R(u − u′) with R(u) a function
exponentially decaying.

• Random Field (RF) where the potential is long-range correlated e.g. [V (x, u)− V (x′, u′)]2 ∝
δ(x− x′)|u− u′|.

• Random Periodic (RP) where the correlator is a periodic function of u e.g.
[V (x, u)− V (x′, u′)]2 ∝ δ(x− x′) cos(u− u′).

The dynamical equation (2.1) is well suited for studying the driven interface i.e.
f > 0. However, at zero driving force f = 0 and in the long-time limit, the problem
reduces to study the thermodynamics of the equivalent system at temperature T .
The Hamiltonian reads:

H =
c

2

∫
dx(∇u(x))2 +

∫
dxV (x, u(x)) (2.2)

where the disorder potential has the same correlations described above.

2.2 . Theory: equilibrium

An interface in random medium is characterized by the competition between
elasticity, which tends to flatten the interface, and disorder, which favors more
irregular profiles. Such competition can result in a rough interface and this translates
to the following structure for the fluctuations:

⟨[u(x)− u(x′)]2⟩ ∼ |x− x′|2ζ (2.3)

Here the brackets stand for the thermal average, while the overline for the disorder
one. The exponent ζ > 0 is called the roughness exponent and measures the level of
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roughness of the wall. Moreover a ζ < 1 indicates that the fluctuations over a size
ℓ ∼ |x− x′| grow slower than ℓ grows. A ζ = 0 corresponds to a flat interface. It is
easier to first focus on the static case i.e. f = 0. The values taken by ζ can be found
by using Flory estimates (first devised for self-voiding polymers). Such estimates
start from the idea that roughness emerges when the elastic energy contributions
and disorder one match. We consider for the moment the case of random bond
disorder. In a system of linear size L the elastic part gives:∫

x

(∇u)2 ∼ Ld−2u2

where u is the typical value of u(x). The disorder part gives instead:∫
x

√
δ2V ∼ Ld

√
L−1u−1

We equate the two contributions by using the scaling u ∼ Lζ . It yields:

ζRB,Flory =
4− d

5

Repeating the same argument for the random field case we get ζRF,Flory = 4−d
3

. In
both cases for a dimension d < 4, ζFlory > 0 and thus the interface is indeed rough. In
the Renormalization Group (RG) sense, this implies that the disorder is relevant in
any dimension smaller than 4. The Flory estimates are crude ones and yield wrong
values for the roughness [46]. However, they manage to identify as d = 4 the upper
critical dimension of the model and the fact that the RB and RF cases yield different
values. A more refined analysis is due to Larkin [16, 47, 48]. Consider a subsystem
of linear size ℓ at zero temperature. The discussion on a finite temperature T > 0

is delayed for the moment, and, as we will see, it won’t change the arguments given

here. Over a size ℓ, the interface has a typical displacement w(ℓ) ∼
√

(uℓ − u0)2

and the elastic force can be estimated as fel ∼ cw(ℓ)/ℓ2. Calling ∆(u) = −R′′(u)

the force correlator i.e. F (x, u)F (x′, u′ = δ(x − x′)∆(u − u′), we can estimate the
force due to disorder as fdis ∼

√
∆(0)/ℓd. Balancing the two we obtain:

cw(ℓ)/ℓ2 ∼
√
∆(0)/ℓd

Denoting by rf the correlation length of the disorder, in any dimension d < 4 one
identifies a length scale ℓc:

ℓc =

(
c2r2f
∆(0)

) 1
4−d

called the Larking length for which for any ℓ < ℓc:

w(ℓ) ∼ rf

(
ℓ

ℓc

) 4−d
2
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This results in a rough interface at ℓ < ℓc. For ℓ > ℓc, the situation changes as the
interface fluctuates beyond the correlation length rf , and the interface can be seen
as a series of pieces of length ℓc which are independently pinned by the disorder.
The ℓ < ℓc picture is confirmed by studying interface fluctuations and its roughness
using perturbation theory in the context of the Function Renormalization Group
(FRG) [16]. Beyond the Larkin length, indeed, a new roughness emerges different
from (4− d)/2:

w(ℓ) ∼ rf

(
ℓ

ℓc

)ζeq

We denoted the roughness with ζeq as it is the large-scale roughness at equilibrium
(statics) even though, at the moment, at zero temperature. The ζeq value depends
on the disorder type (RB or RF). An exact solution is available for the RB case in
d = 1 as, in this case the interface is exactly mapped to the ground state of the
directed polymer in a random medium in 1+1 dimensions, solved using the Replica
Bethe Ansatz [49]. Such method yields ζ = 2/3. The value slightly changes for the
RF case and is obtained using perturbation theory [50]. Finally, we address the case
of T > 0 while still considering statics f = 0. The static problem at any T exhibits
Statistical Tilt Symmetry (STS), meaning that if we tilt u(x) by a linear function
i.e. u(x) → u(x) + ax, it can be shown that the system has the same statistical
properties (this can be shown using the replica approach, as discussed in [46]). The
STS has deep implications on the properties of the theory as, in the RG sense, the
elastic constant does not get renormalized by the presence of disorder. This implies
that the ground state energy (T = 0), while being extensive ∝ Ld, fluctuates as
Lθ with θ = 2ζeq + d − 2 because of STS. Additionaly, Moreover, one can show
that temperature is irrelevant in the RG sense [16] and the statics is dominated by
the T = 0 physics. As such, we will refer to any f = 0 case as the equilibrium
fixed-point [16, 46,48,51,52], encompassing the whole T ≥ 0 region.
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Figure 2.1: Left: avalanche as measured at f slightly below fc following an increase
δf . The black line represents the interface at f , while the yellow area is the avalanche
after the increase f → f + δf . Right: the zero-temperature characteristics of
the velocity as a function of the driving force. At f = 0, the interface is at the
equilibrium and is characterized by the equilibrium universality class. For f = fc
the interface is at depinning. For f ≫ fc the fast-flow regime kicks in and velocity
becomes linear in f i.e. v ∼ f . In this regime the quenched disorder acts like a
thermal noise and the interface looks like an EW (or KPZ) thermal interface.

2.3 . Theory: depinning

The second regime relevant for interfaces in random media is the driven regime
at zero temperature i.e. f > 0 and T = 0. In this regime, the interface undergoes a
depinning transition for a f larger than some critical force fc and it acquires a finite
velocity, vanishing at fc as:

v ∼ (f − fc)
β (2.4)

where β is a known exponent [16, 50]. At depinning there is no difference between
the RB and RF classes [16]. The statistical properties of a qEW interface at depin-
ning are described by two independent critical exponents, the roughness ζ and the
dynamical exponent z. The latter describe of the correlation time of the interface
grows with system lateral size i.e. t ∼ Lz. In d = 1, one finds ζ ≈ 1.25 and for
z = 1.43, from which one can obtain β = z−ζ

2−ζ
≈ 0.31. For later use, we also report

the exponent ν describing the growth of the correlation length ζ as one approaches
depinning i.e. ξ ∼ |f − fc|−1/ν with ν = 1/(2− ζ). When the non-linear KPZ term
is relevant the exponents change and we get ζ ≈ 0.63, z = 1 and ν becomes an
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independent exponent ν ≈ 1.733.
Just above fc, the interface moves in an intermittent fashion: a point of the

interface can stay stuck for a long time and then suddenly acquire a large velocity.
The intermittent motion is collective in nature: many pieces are at rest while many
connected portions move fast and coherently [50]. Such motion can be probed by
starting from a pinned interface and a driving force very close to fc. By increasing
f by the minimal δf that destabilizes the interface, an avalanche occurs: a finite
part of size ℓ of the interface advances by a finite amount, spanning an area of size
S, while the other parts remain stuck. The avalanche size S is distributed according
to:

P (S) = f(S/Sm)S
−τ (2.5)

with f(s) a scaling function decaying exponentially and Sm that diverges as f → fc.
One finds, for both qEW and qKPZ case, that τ iτ = 2− (ζ+1/ν)/(d+ζ). Thus, in
d = 1, τ = τqEW ≈ 1.11 for EW and τ = τqKPZ ≈ 1.26 for KPZ [46]. The avalanche
spatial extension ℓ follows a similar scaling form P (ℓ) = g(ℓ/ℓm)ℓ

−κ and, as S ∼ ℓd+ζ ,
one finds κ = 1 + (τ − 1)(d+ ζ). An example of a depinning avalanche is visible in
figure 2.1 left. The depinning point is, however, only the second fixed point (after the
equilibrium one) relevant for elastic interfaces at T = 0. Indeed for very large driving
forces f ≫ fc, the velocity of the interface becomes linear in f and the interface is in
the fast-flow regime. In this regime, the quenched force F (x, u) behaves as thermal
noise and the interface dynamics reduces to the one of the conventional EW or KPZ
interface and it acquires an effective temperature Teff ∝ ∆(0). In this regime, the
roughness is simply ζflow = (2−d)/2. For intermediate forces, between the depinning
and fast-flow regimes, the interface has the depinning roughness at small scales and
the fast flow one at large ones [16,50]. In figure 2.1 right the velocity characteristics
is summarized.
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2.4 . Theory: creep

Figure 2.2: Velocity characteristics of the creep regime (violet) compared to the
zero temperature one of figure 2.1 right. Above the critical force fc the effect of
temperature tends to diminish and the depinning statistics dominates.

Whenever T > 0 and a finite force is applied f > 0, the interface always has a
finite but small velocity (see figure 2.2 for a summary plot). Indeed the presence of a
driving force f > 0 generates an energy landscape unbounded from below. However
disorder induces the presence of metastable states and energy barriers up to fc.
Thus the interface jumps between metastable states and acquires a finite velocity,
described by the celebrated creep law :

v ∼ v0 exp

(
−
(
f0
f

)µ)
(2.6)

with µ = 1/4 the universal creep exponent in d = 1 and v0 and f0 two material-
dependent parameters. The creep law has been first derived in [53], measured in [54]
and subsequently confirmed in many experiments [55].

As the interface is an extended object, when f vanishes, the energy barriers
diverge and this is ta the origin of the stretched expinential behavior of 2.6. When
observed at short times, the interface moves back and forth in an incoherent fashion
while for large times one observes large reorganizations [50]. Due to the presence of
the driving force, backward motion is suppressed and the interface reorganizes from
one local minimum to another, by a sequence of visits through metastable states
with lower and lower energies. In order to understand how such reorganizations
occur, one can evaluate the typical energy barriers seen by the interface. The first
derivations of the creep law, via scaling arguments [56] or FRG [16], employed
the hypothesis that during the dynamical evolution between two metastable states
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the energy barriers scale as the energy fluctuations of the equilibrium fixed point
(f = 0) i.e. Ebarrier ∼ ℓθ = ℓ2ζeq+d−2, with numerical simulations supporting this
hypothesis [57]. The only assumed effect of the driving force f > 0 is only to tilt
the energy barriers by

Etilt ∼ fℓζeq+d (2.7)

Thus in the creep regime, a reorganization between two metastable states occurs
when the tilt and the barrier energies are of the same order. This happens when the
at a scale ℓopt:

ℓopt ∼ f
− 1

2−ζeq (2.8)

with the corresponding energy barrier:

Ebarrier(ℓopt)ℓ
θ
opt ∼ f

− θ
2−ζeq (2.9)

Using 2.9 we can use an Arrhenius-type activation [50,58] to estimate that

ln v ∝ Ebarrier ∼ f
− θ

2−ζeq (2.10)

which is precisely the creep law 2.6. We immediately identify the creep exponent
µ = θ

2−ζeq
= 2ζeq+d−2

2−ζeq
. Using the d = 1 values, we get µ = (1/3)/(2 − 2/3) = 1/4.

The physical picture emerging from the scaling argument above is thus the following.
The interface moves incoherently back-and-forth below the scale ℓopt as it fails to
overcome the barriers. When a reorganization of bigger scale triggers, the interface
finds itself in a new local minimum, leaving room for a new ℓopt reorganization at a
different spatial location. Thus, the interface can be viewed as a collection of pieces
of size ℓopt that reorganize independently and move from one minimum to another
with no further correlations. To this scenario, we can associate an energy landscape
formed by many uncorrelated energy minima, each corresponding to a separate ℓopt

reorganization.
However, theoretical [16] and numerical studies [17, 50] have suggested another

phenomenology completely missed by the simple scaling arguments above. Indeed,
they suggest the existence of other, smaller, length scales in play associated to re-
organizations that develop for shorter time scales. In this second picture, when
a reorganization of size ℓopt occurs, for a short time, new smaller reorganizations
are facilitated in nearby regions. This process is strikingly similar to earthquake
dynamics where, after a mainshock (corresponding to the ℓopt reorganization), nu-
merous aftershocks, smaller in magnitude, occur in the neighboring regions. Indeed,
a mainshock tends to destabilize the regions surrounding its epicenter, resulting in
further earthquakes later in time (the aftershocks). We can refer to each of these re-
organizations (both mainshock and aftershocks-like) as creep avalanches, and when

35



we consider them as a single correlated reorganization, we walk about a cluster. In
parallel to one cluster ℓopt formation, another one can start to form in a different
region, and this novel one is spatially and temporally uncorrelated from the previous
one. This second, richer, picture implies a more complex structure of the minima of
the energy landscape seen by the interface. Indeed, as a reorganization ℓopt occurs,
the landscape is affected as the barriers are lowered, leaving room for such smaller
reorganizations close in space.

Continuing on the second scenario, a remarkable observation of [17] is that the
size of clusters Sc presents a statistics akin to the depinning avalanches. Indeed by
summing over the contribution from each of creep avalanche S(i) one obtains that
the cluster has a size S distributed as

P (S) ∼ S−τdep f̃(S/Sc)

with Sc ∼ ℓ
d+ζeq
opt . This result has huge importance when testing experimentally

the predictions of the second scenario. Indeed, one could measure experimentally
creep avalanches and aggregate them in clusters. By studying the distribution of
such clusters one could understand whether their statistics is compatible with the
depinning exponents, as predicted by the second scenario. On the other hand, if the
first scenario were relevant, one would observe a scaling of clusters compatible with
equilibrium theory. The latter predicts a different τ , i.e. τeq = 2− 2

d+ζeq
≈ 1.39, which

can be viewed as the size of excitations above the ground state of the equilibrium
point.

In the next section, we will study clusters to test for the second scenario by
conducting data analysis on an experiment of creep motion of a magnetic domain
wall in an ultra-thin magnetic film.
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2.5 . Experiment: the setting

Figure 2.3: Snapshot of the resulting data from the experiment at H = 0.16 mT.
The color gradient indicates the successive frames.

The creep regime has been observed most effectively in the expansion of a mag-
netic domain wall in magnetic films and the creep law has been confirmed countless
times, starting from the seminal experiment in [54]. In our context, the domain wall
expansion is carried out in one ultrathin magnetic film of Ta(5)/CoFeB(1)/MgO(2)/Ta(3)
(in the parentheses, the thickness in nanometers). This material exhibits perpen-
dicular magnetic anisotropy (PMA) i.e. when put in a magnetic field, exhibits out-
of-plane magnetization. The depinning field of this film is Hdep ∼ 10mT (equivalent
to fc discussed in the previous section) and presents low density of pinning defects,
at variance with other popular magnetic films used in similar experiments [59]. The
experiment starts by nucleating an initial bubble of radius ∼ 30 µm using a short-
field pulse. Four experimental settings are considered, where the subsequent bubble
expansion is driven by fields of slightly different magnitude H = 0.13, 0.14, 0.15, 0.16

mT. All the fields considered are way below the depinning field and the experiment
is carried out at room temperature: we are in the creep regime.

The domain wall expansion is captured using the Magneto-Optical Kerr Effect
(MOKE). Images are acquired at a rate of 200 ms with a resolution of 400 nm (which
is the pixel size of the acquiring camera). In all four cases the bubble maintains its
circular shape all along the expansion. The relative limited resolution and sampling
rate does not allow to resolve the dynamics at the nanoscale hence the resulting
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images present a coarse grained dynamics. The effect of the change in magnetization
of a portion of the wall results in the change in the gray scale level of the acquired
image and we need to detect the time at which this change occurs to properly
reconstruct the newly activated region, as shown in figure 2.4.
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Figure 2.4: Schematic illustration of the procedure used to determine the
position of the domain wall. (a) All the raw images collected within one mea-
surement of bubble expansion are stacked together into a 3D array. Marked in red
and blue are two representative pixels whose gray level profiles are shown in (b)
and (c), respectively. While pixel A switches its gray level abruptly, the transition
occurs more slowly for pixel B. High/low gray level values correspond to bright/dark
MOKE contrast, respectively.
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Figure 2.5: Radius of the bubble for the field H = 0.16 mT as a function of time.
The time in seconds has been converted from the frame index by considering the
sampling rate of 200 ms. During the first, non-stationary, regime of the expansion
the domain wall is very fast and a lot of activated events occur. Later on, the velocity
stabilizes to a stationary creep velocity. It is worth noticing that this change in the
regime of creep has been observed in other systems showing a creep behavior, such
as ice [60]. The grey area indicates the total velocity span of the points in the wall
as a function of the angle θ. The colored curves are relative to three specific angles
and the velocity is shown in the inset where the intermittent nature of the dynamics
is clearly visible.

Remarkably the set of pixels activated at each sampling is connected in space
and we refer to it as a single frame event. The coarse dynamics shows two important
features:

• The bubble always expands. At scales below ℓopt the domain wall is expected
to move back and forth incoherently, driven by thermal fluctuations. In our
experiment we can estimate ℓopt as:

ℓopt ∼ ℓC(Hc/H)3/4

as given in [16,55], with ℓC ∼ 100 nm the Larkin length and Hc ∼ 10 mT the
depinning field. Using H ∼ 0.13, 0.14, 0.15, 0.16 we get ℓopt goes from ∼ 380

to ∼ 400 nm. This means that ℓopt is smaller or at most at the order the
pixel resolution of 400 nm, hence we cannot observe the backward motion,
and we only record the forward one above ℓopt. This is quantitatively visible
by inspecting the radius of the domain wall as a function of time, as shown
in figure 2.5.
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• The wall motion presents spatial correlation well above the pixel size. As
figure 2.6 depicts, each frame event corresponds to a compact spatial re-
organization and events of subsequent frames tend to cluster together, as
predicted by the second scenario in the previous section.

These two features support the second scenario for which an initial reorganization
of size ℓopt initializes a cascade of events on a much larger scale. At this level
this observation is more qualitative. In the next section, by directly analyzing the
domain wall structure, we will unveil the precise form of correlations supporting the
second scenario.

Figure 2.6: Example of two formation of clusters between a time t = 392 s and
t = 400 s. The blue and the red gradients indicate two different forming clusters.
The darker the color the later the frame event occurs.

2.6 . Experiment: data analysis

Theoretical results [16] and numerical simulations [17, 50] suggest that events
following a reorganization of scale Lopt generate a cascade of correlated events, akin
to mainshock-aftershocks in seismicity. In numerical simulations [17,50], it has been
shown that, by aggregating such correlated events into clusters, their statistics is
compatible with the statistics of avalanches at depinning, which are in nature a zero-
temperature process. In this case, as one has full control over the dynamics of single
activated events following ℓopt, so it is immediate to identify to which cluster an event
belongs. On the other hand, in an experimental setting, the limited acquisition rate
and resolution affect the spatial and temporal mixing of the observed events, hence
one needs to apply extra-care in the cluster identification. To this purpose, we now
discuss an algorithm to construct such clusters.
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We index each frame event in the collected data is indexed by a frame index t.
Each event contains St pixels and we label such pixels as {xi(t), yi(t)}St

i=1. We then
define the spatial distance between two frame events as:

dt,t′ = min
i=1...St,j=1...St′

|xi(t)− xj(t
′)|+ |yi(t)− yj(t

′)| (2.11)

Using dt,t′ , we can build up an algorithm that creates clusters of creep avalanches
based on constructing a network of frame events. Consider an adjacency matrix
At,t′ where the nodes are the frame events. Given a frame event t, consider all
frame events t′ = t + 1, . . . , t + T ∗ and set At,t′ = 1 if dt,t′ ≤ d∗. By repeating
this procedure for each time frame t, we end up with an adjacency matrix At,t′ that
connects only frames close in space and time. Here d∗ and T ∗ are two parameters
of the algorithm. We set d∗ equal to 2 as we want to connect frame events that are
contiguous in space. Increasing it to 3 or 4 does not affect the results. For T ∗ we did
a more refined research and we explored between T=6 and T ∗ = 16 frames, without
observing any drastic change in the algorithm’s results.

The clusters are defined as the connected components of the graph associated
to At,t′ . The size of a cluster S is given by the total number of pixels in the cluster
We can visualize how frame events appear by direct inspection in figure 2.7 left.
Single frame events and the clusters they form show an ellipsoidal shape with an
area precisely equal to S. This observation allows us to set up a procedure that lets
us extract the elongation of clusters ℓ.

Figure 2.7: Raw event frames (left) and the obtained clusters (right). The elongated
nature of the clusters is immediately visible and suggests a roughness for the domain
wall interface smaller than 1.
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Indeed, calling the coordinates of pixels in a cluster {xi, yi}, we can construct
the 2× 2 covariance matrix C between the pixels:

C =

[
x2 − x2 xy − xy

xy − xy y2 − y2

]
(2.12)

where the overline stands for the average among the pixels of the cluster. If we diag-
onalize C, we find two eigenvalues λ+ and λ− which are an estimate of, respectively,
the major and minor axis of the ellipse describe by the cluster. Because of this, we
can relate λ+ and λ− to S as S = πλ+λ−a

2 with a some constant. We find a by
regressing S with the found λ+ and λ− and thus we identify ℓ with aλ+. In figure
2.7 right we show an example of the obtained clusters.

2.7 . Experiment: results

Figures 2.8 left and middle show the results of our analysis. Both figures show
statistics for S and ℓ compatible with a depinning behavior, excluding the equilib-
rium fixed point supported by the first scenario. Thus it is tempting to interpret
these clusters as avalanches at the depinning transition, as suggested by the numer-
ical simulations in [17]. In those simulations, however, avalanches are very fat in the
growth direction (i.e., the direction of propagation of the interface) consistently with
the qEW depinning. Here, clusters are instead elongated objects, as visible from
the scaling S ∼ ℓd+ζ in figure 2.8 right, resulting in a roughness exponent ζ ∼ 0.63.
This exponent excludes the possibility of qEW depinning but is consistent with the
qKPZ depinning. We corroborate this result with an independent measure of the
roughness by directly reconstructing the interface profile. As the interface is circular
in shape, we obtain a collection of radii as a function of the angle, R(θ, t). We can
then compute the structure factor of the interface S(q, t) = |ρ(q, t)|2 where ρ(q, t) is
the discrete Fourier transform of R(θ, t)−R(t) w.r.t. θ (here R(t) is the average of
the radius). For small q we expect the scaling Sq ∼ 1/q1+2ζ . The results for Sq are
visible in figure 2.9. The measured ζ is both compatible with equilibrium ζ = 2/3

and KPZ depinning ζ ≈ 0.63, again leaving out qEW depinning. In conjunction
with the results from the clusters, this leaves out qKPZ depinning as the only fixed
point describing the clusters statistics.
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Figure 2.8: (a) Cluster size S and (b) longitudinal length ℓ distributions for different
magnetic fields. (c) Cluster size versus their longitudinal length. The clusters have
been obtained for T ∗ = 8 frames and d∗ = 2 pixels. The first two panels are
compatible with qEW and qKPZ universality classes but not with the equilibrium
exponents. The value of the roughness exponents from (c) is computed using the
power law scaling S ∼ ℓ1+ζ . The measured value is compatible with both ζqKPZ =
0.63 and ζequilibrium = 2/3, but exclude the qEW universality class ζqEW = 1.25.
Combining these findings leaves the qKPZ universality class as the sole possible
candidate for describing the creep motion in our experiment.

Figure 2.9: Structure factor S(q) computed by averaging over time the Fourier
transform ρ(q, t) of ρ(θ, t) = R(θ, t)−R(t), i.e., S(q) = ⟨ρ(q, t)ρ(−q, t)⟩t. Using the
power law scaling an S(q) ∼ q−(1+2ζ) at small q, we compute a value of the roughness
exponent in perfect agreement with the one obtained in Fig. 2.8 (c).
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2.8 . Conclusion and future work

The celebrated creep formula (2.6) rests on the hypothesis that the key feature
determining a wall motion is optimal excitations of size ℓopt. Our analysis on in-
termittently occurring rapid movements along a magnetic wall unveils their spatial
organization, extending on scales much more extensive than ℓopt. Their size and
shape display the same statistics of the avalanches recorded at the depinning but
with a much slower evolution. In contrast with previous theoretical and experimen-
tal studies [50, 61], our experiment shows that the exponents are compatible with
the qKPZ instead of the qEW universality class. The emergence of KPZ dynamics
at depinning must be sustained by anisotropy in the material [43], thus requiring
future study on similar systems for future understanding.

The scenario emerging from our results suggests that events of size ℓopt lower
the energy barriers accessible by the system, giving rise to a cascade of correlated
events. In the future, this opens up the possibility of testing this scenario in other
examples of elastic disordered systems such as ferroelectric domain walls [62–64] or
crack propagation [65]. Interestingly, similar observations were recently reported
for different disordered systems, such as amorphous solids and glass-forming liquids.
Simulations on elastoplastic models have shown how localized plastic excitations can
trigger cascades of faster events [66,67]. In that case, such avalanches were described
as thermally-facilitated avalanches and they are generated by the same mechanism
as clusters of creep avalanches. If this scenario were confirmed, it would be clear
that the complex nature of disordered energy landscapes cannot be described simply
by a sequence of uncorrelated elementary excitations.

On top of deepening the understanding of the effects of elasticity and tem-
perature in disordered systems, the results reported here can also have significant
influence in the field of spintronics. The analysis of the creep dynamics of a domain
wall is the starting point for the determination of interfacial Dzyaloshinskii-Moriya
interaction (DMI). This is a chiral interaction responsible for the occurrence of
topological spin structures, such as chiral domain walls and skyrmions. The latter
are considered the most promising information carriers in future spintronics tech-
nologies [68]. The determination of the DMI constant is based on the asymmetric
expansion of the bubble under an in-plane magnetic field, with the domain wall
velocity measured by dividing the displacement between two MOKE snapshots over
their time interval. Fig. 2.5 actually suggests that the velocity is constant only at
large times/displacements, and thus that this procedure could be misleading. In
addition, theoretical expressions to evaluate the DMI field from the velocity curve
are primarily phenomenological, and a more accurate description of the domain wall
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dynamics, such as the qKPZ reported here, could highly improve the fits of the data.
We hope these considerations shed some light on a more accurate determination of
DMI value and solve the contradictions with other popular methods, such as the
Brillouin light scattering.
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Chapter 3

Aftershocks and GPS data

In this chapter we focus on the study of data coming from real earthquakes. Specifi-
cally we present a proof of concept and a first implementation of a system to forecast
aftershocks originating from large earthquakes. We focus on earthquakes from Japan
but this method is seamlessly extensible to any region in the world. This new ap-
proach focuses on two types of seismic data:

• Catalog data, which for our purposes gives us the time, location (latitude,
longitude) and magnitude of earthquakes happened in some region

• Global Positioning System (GPS) data, which measures for the three spatial
direction north, east and up the deformation of Earth’s surface due to both
background continental drift and earthquake occurrence.

Earthquakes from catalog data come from the inversion of P and S seismic waves
picked up by seismic stations. The data we are gonna use in this context comes
from the Japan Meteorological Agency (JMA) and can be accessed from here. It
suffices to know that we are gonna use four main pieces of information (features)
of a seismic catalog, namely the time of occurrence t, the epicenter’s longitude and
latitude (x, y) and magnitude m. On the other hand, GPS data are less known,
especially in the statistical physics and deep learning community, henceforth it is
worth spending some time discussing about it.

3.1 . GPS data
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Figure 3.1: Ground deformation (red arrows) due to the magnitude 7.3 earthquake
occurred in offshore Japan (black star) the 9th March 2011. It is evident how the
deformation direction and magnitude is strongly correlated with the location of the
earthquake. GPS data extracted from the Nevada Geodetic Laboratory repository.

In the context of geophysics, GPS data refer to measurements of ground de-
formation due to both the slow and continuous continental drift and the sudden
deformation caused by large earthquakes. To understand the latter type, which is
the most interesting to study seismic phenomena, we can look at the map of Japan
GPS stations the 9 march 2011. In that date the first earthquake (of magnitude
7.3) belonging to the Tōhoku seismic sequence occurred. This is the first event
triggering the tsunami that caused the Fukushima nuclear disaster. In figure 3.1 we
show the measured effect of this earthquake on the ground deformation. Moreover,
as shown in figure 3.2, if we compare the total displacement as a function of the
distance from the earthquake epicenter, we obtain a curve which rapidly falls off as
we consider stations distant from the epicenter to then saturate to an approximately
constant value, which can be seen as a mixture of measurement noise and the effect
of continental drift.

47



Figure 3.2: Ground deformation vs distance from the mainshock. The crosses rep-
resent single measurement while the red dashed line the average behaviour. As the
earthquake occurred offshore, no measurement is available close to the epicenter.
GPS data extracted from the Nevada Geodetic Laboratory repository.

These two connected results can be reproduced for any other large earthquake,
provided close enough station measurements are available. The importance of the
GPS data is thus evident, as it provides informations on the effect of an earthquake
which cannot be easily extracted from waveform data. The deformation at the day
of the earthquake is particularly important as it can tell us which regions have been
more destabilized and thus are a potential recipients for aftershocks occurrence,
which can often be as dangerous as a main shock. With in mind the forecasting,
many works - both using a mixture of classical statistics methods and geophysical
considerations [69–74] or machine learning [18] - started to employ underground
displacements maps (slip maps) to predict the locations of aftershocks. However
this is a remarkably hard task, as it requires, on top of waveform and GPS data,
a knowledge of both the fault geometry and a model for how the rupture occurs.
On the other hand, GPS data can be employed out-of-the-box and, especially in
the cases of shallow earthquakes, can be enough to provide enough information
to attempt the forecasting of aftershocks. This possibility is analyzed in the next
section, where we lay out a (possible) way to deal with GPS ground deformation
data that is suitable for this task.

3.2 . Surface deformation maps

The main technical issue with GPS measurements is that the resulting surface
deformation is inherently available only in discrete space points. To handle such
data structure, one could either directly use the network structure of GPS stations

48



with the associated measurements an "input data" for the forecasting or interpolate
the measurements to obtain a continuum deformation field. The direct use of mea-
surements has been seldom considered in literature [75,76] as the network structure
is harder to handle. In the future, with the current improvement of graph and net-
works oriented machine learning tools, such as Graph Neural Networks, and with the
increase n the quantity and quality of GPS data, such an approach could emerge
again. On the other hand, an interpolation-driven approach has a much broader
history - in the past for statistical analysis [77–79] and recently in more prediction-
oriented tasks [80]. In this section, we present one of the possible ways to elaborate
the networked data to produce a continuum displacement field. We start by making
an initial reasonable approximation, as done by previous literature [79]: we assume
that the earth’s surface can be treated as a thin homogeneous elastic sheet, and
consequently we can employ the elastostatics equations to describe the measured
displacements. We thus discard from the GPS data the deformation measurements
in the upward direction, which have nonetheless larger measurement errors. In this
setting, electrostatics equations [81] tell us how the displacement of the ground is
related to N applied point-like forces (fi,e, fi,n) at locations (xi, yi) for i = 1 . . . N

(here the subscripts e and n refer to the eastward and northward directions, x’s are
longitudes and y’s latitudes):

2

1− ν
∂2
xve +

2ν

1− ν
∂2
xyvn + ∂2

yve + ∂2
xyvn = − 1

µ

∑N
i=1 fi,eδ(x− xi)δ(y − yi)

∂2
xyve + ∂2

xvn +
2ν

1− ν
∂2
xyve +

2

1− ν
∂2
yvn = − 1

µ

∑N
i=1 fi,nδ(x− xi)δ(y − yi) (3.1)

Here we adopted the form of elastostatics with the Poisson ratio and the bulk mod-
ulus as constants [82]. We can absorb the bulk modulus into the definition of the
forces (and thus we set it to 1) and we use ν = 0.5, the typical choice for in-
compressible elastic materials [79]. Starting from 3.1, we proceed as follows. At a
given instant, we have measurements of the deformation (ve, vn) at station locations
(xi, yi). These measurements can be used to find the applied forces (fi,e, fi,n) at the
same locations by inverting the elastostatics equations (3.1). This can be done in
Fourier space with space-frequency (ke, kn):[

2
1−ν

k2
e + k2

y
1+ν
1−ν

kekn
1+ν
1−ν

kekn
2

1−ν
k2
n + k2

e

] [
ṽe(k)
ṽn(k)

]
=

1

4π2µ

∑
i

[
fi,e
fi,n

]
e−ikexi−iknyi (3.2)

The inverse of (3.2) reads:[
ṽe(k)
ṽn(k)

]
=
∑
i

1

8π2µk4

[
2k2 − (1 + ν)k2

e −(1 + ν)kekn
−(1 + ν)kekn 2k2 − (1 + ν)k2

n

] [
fi,e
fi,n

]
e−ikexi−iknyi (3.3)
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with k2 = k2
e + k2

n. By inverting the Fourier transforms [79], we can write:

ve(x, y) =
∑
i

q(x− xi, y − yi)fi,e + w(x− xi, y − yi)fi,n

vn(x, y) =
∑
i

w(x− xi, y − yi)fi,e + p(x− xi, y − yi)fi,n (3.4)

where the function q(x, y), p(x, y) an w(x, y) are:

q(x, y) = (3− ν) ln r + (1 + ν)y
2

r2

p(x, y) = (3− ν) ln r + (1 + ν)x
2

r2

w(x, y) = −(1 + ν)xy
r2

(3.5)

where r =
√

x2 + y2. The next step is to discretize space in the two directions
(x, y) in cells of lateral size a. As we want to interpolate signals from GPS stations,
a should be chosen to be smaller than the typical distance between neighbouring
stations, in order to avoid having more than one station inside single cell. At present
we are gonna choose a = 5 kilometers, based on the typical spatial speration between
japanese GPS stations (for other regions where the station density is lower one has
to choose larger a, such as California, where a good a is of the order of ∼ 10 km [79]).
A final remark is needed before continuing: equations (3.5) are singular when r = 0

hence we need to introduce a small regularization term to r i.e.r → r + ϵ where ϵ

should be on the order of a. We are now ready to find the forces (fi,e, fj,e). Indeed
by using the known deformation measurements at each point (xi, yi), we can write
the linear equation that relate them to the forces:

ve(xi, yi) = vi,e =
∑
j

q(xi − xj, yi − yj)fj,e + w(xi − xj, yi − yj)fj,n

vn(xi, yi) = vi,n =
∑
i

w(xi − xj, yi − yj)fj,e + p(xi − xj, yi − yj)fj,n (3.6)

We rewrite (3.4) using a matrix Gα,β
ij :

vi,α =
∑
β

∑
i

Gαβ
ij fj,β (3.7)

with α = e, n and β = e, n are the component indices. So numerically we can invert
(3.7) and find the forces (fi,e, fi,n) and use equations (3.4) to find the displacement
in any other location (x, y) different from the station ones (xi, yi). In practice the
inversion is made by using the SVD decomposition and by discarding some of the
singular values, which results in the smoothing of the solution [79]. This method
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and analog ones have been tested in numerous works with much success. However,
one has to keep in mind that for regions of the space where the density of station
is low (for example when one considers coastal regions as no station is present in
the sea) or even no station is present, the results of the interpolation do not reflect
the underlying physical displacement. As such, we will exclude from our analysis
regions where interpolation quality is low. Calling dmin(x, y) the distance of a cell
(x, y) from its closest station, our proposal is not to use (mask) all the cells (x, y) for
which dmin(x, y) > d∗. In this work, we will employ d∗ ≈ 90 km. To show the type
of output from such an interpolation method, we show in figure 3.3 the interpolated
surface deformation maps from Japan on the date 9th March 2011.

Figure 3.3: Logarithm of the magnitude (in meters) of the interpolated displacement
as measured at the date 9th March 2011 in Japan. The black dots correspond to
actual station positions.

Moreover, we can visualize the change in displacement by focusing on the days
following the 9th of March.
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Figure 3.4: Interpolated displacement maps from the 8th of March to the 13th
of March 2011 in Japan. Dark red corresponds to displacements of the order of
centimeters, while blue to a few millimeters. The first map on the second row cor-
responds to the Magnitude 9.1 Tohoku earthquake, which indeed shows the largest
possible displacement.

3.3 . Constructing input and output

Any forecasting pipeline has to be divided into two steps: choosing the input
for the forecasting and the corresponding output. First of all, we need to identify
seismic sequences, namely couples of mainshock-aftershocks. There exists a plethora
of method to identify them. One can use the so called stochastic declustering [83],
which uses a non-deterministic method to identify mainshock-aftershocks pair. How-
ever as the output of such an approach is, indeed, stochastic, is less suited for simple
forecasting. Instead, for the sake of simplicity, we consider as mainshocks all earth-
quake with at least magnitude 6 occurring in Japan from the year 2000 to 2019

(the seismic catalog of this period is properly constructed; earthquakes occurring
after 2019 as of now are still being analyzed). Our source is the Japanese Meteoro-
logical Agency, which releases bulletins with earthquakes occurring in the Japanese
area. On the other hand as aftershocks, we pick up all earthquakes occurring after
a mainshock in a radius of 300 km from the mainshock’s epicenter and within a
time window of 45 days. What can occur, in such a manual earthquakes selection,
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is that two or more mainshocks have overlapping aftershocks or even that one iden-
tified mainshock is, in fact, a foreshock (as for Fukushima discussed in the previous
section where one finds an earthquake of magnitude ∼ 7 the 9th of March 2011 and
one of magnitude ∼ 9 on March the 11th). It is worth knowing that this ambiguity
is well known in sequence selection, as there is no unique definition of a mainshock.
We employ the simplest solution i.e. we identify mainshocks with such problems
and we pick the largest one as a mainshock.

Having selected the mainshock-aftershocks pairs, we indicate with t0 the day
of the mainshock. Then we consider GPS data interpolated from the day t0 − 1

to the day t0 + 1 and, as such, we only keep the aftershocks occurring at times
later than t0 + 1. Since we are using daily GPS data, one has to include the day
t0 + 1 as the displacement due to the mainshock might be delayed w.r.t. day t0.
While we lose some aftershocks this way, we are sure we are not mixing information
from overlapping time windows. For each mainshock occurring at some time t0,
the interpolation is carried out using displacement measurements of stations in a
radius of 300 km centered at the epicenter (x0, y0), considering a spatial window
of 250km × 250km. As for the output, namely the aftershocks, we use an image
segmentation approach. We identify and discretize in cells of size a = 5 km the
locations of aftershocks from a given mainshock and we construct a map A(x, y)

that equals to 1 if an aftershock occurred inside the cell (x, y) and is zero otherwise.
This approach is the simplest one and is inspired by [18]. Other approaches, such as
a magnitude-dependent prediction, are theoretically possible and are left for future
work.

3.4 . Training models

Having defined the input (ve(x, y), vn(x, y)) and the output A(x, y), we are ready
to set up a forecasting protocol. We can do two types of forecasting. One, which acts
as a form of baseline, is a pixel-to-pixel prediction, which consists into predicting
A(x, y) by only knowing (ve(x, y), vn(x, y)) at one cell location. The other is an
image-to-image prediction that uses the whole image (ve, vn) to predict A.

For the first type, we are gonna employ the logistic regression. As input we
are gonna use the displacement magnitude vr(x, y) =

√
ve(x, y)2 + vn(x, y)2 at cell

(x, y). The output of the model is given by the probability that the cell (x, y) has
any aftershocks:

π(x, y) = σ(αvr(x, y) + β) (3.8)

where σ(z) = 1/(1 + e−z) is the logistic function and α and β are two fittable
(learnable) parameters. In order to find α and β we need to minimize the following
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loss function:

−
Ntr∑
n=1

∑
(xn,yn)

A(xn, yn) lnπ(xn, y) + (1− A(xn, yn)) ln(1− π(xn, yn)) (3.9)

Such loss function is referred to cross-entropy loss. The sum over n refers to the
number of training samples Ntr while the sum over (xn, yn) is over the pixels of
the n − th training sample. As mentioned before, each pixel in the interpolation
as a different quality, namely cell too far away from stations are less trustable. We
introduce the quality of the cell by adding a weight to the loss:

−
Ntr∑
n=1

∑
(xn,yn)

γ(xn, yn) [A(xn, yn) lnπ(xn, y) + (1− A(xn, yn)) ln(1− π(xn, yn))]

(3.10)
where γ(x, y) = exp

(
−d2min(x,y)

2σ2
q

)
and σq = 8a. This way we give more importance

to pixels close to stations and we try to maximize the performance there. Finally
the number of positive samples, namely the number of cells with A(x, y) = 1, is way
smaller than negative cells (with A(x, y) = 0). In the dataset used the negative cells
comprise the ≈ 98% of the whole cells. In order to compensate for this we reweight
the loss as following:

−
Ntr∑
n=1

∑
(xn,yn)

γ(xn, yn) [w1A(xn, yn) lnπ(xn, y) + (1− w1)(1− A(xn, yn)) ln(1− π(xn, yn))]

(3.11)
where w1 ≈ 0.98 reflects the abundance of negative cells. This way we give more
importance to positive cells, as they are the minority.

This is for the single cell prediction. For the image-to-image one we need to
use a model that can accept as input a whole image. The best candidate for this
is a Convolutional Neural Network (CNN). A CNN is a type of neural network
particularly suited for Computer Vision tasks and at its heart, as the name says,
there is a convolution operation. In this context a convolution operation takes as
input an image of size H × W pixels composed of C channels. For example, in a
regular picture, the channels would correspond to the red (R), green (G), and blue
(B) color components (hence C = 3). The output of the convolution is a new image
of size H ′ ×W ′ and C ′ channels. The convolution operation maps the input to the
output by applying the convolution operator ⋆ to the input:

Iout,c′ = bc′ +
C∑
c=1

Iin,c ⋆ wc′ c′ = 1 . . . C ′ (3.12)
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Here Iin,c is the input image with c being the channel index and Iout,c′ is the cor-
responding output. Here wc′ represents the filter (also called kernel) of the convo-
lution, which is a k1 × k2 matrix. In practice, the convolution operator works as
following:

(I ⋆ w)(x, y) =

k1−1∑
m=0

k2−1∑
n=0

I(x+m, y + n)w(m,n) (3.13)

Finally bc′ is called bias term and is an (optional) constant that is added to the
output of the convolution. Other ingredients can be added to a convolution op-
eration that we do not discuss here as they won’t influence the overall discussion.
Ultimately the scope of the convolution is, by properly choosing the filters, to ex-
tract spatial information from the input image. As a practical example a 3× 3 filter
with w(m,n) = 1/9 for any m,n corresponds to averaging the image in windows of
3× 3 pixels. The simplest CNN is constructed by stacking together multiple convo-
lution operations that, step-by-step, aim to extract specific features from the image.
However a simple chaining of convolutions remains a linear operation and to make
the output of the network richer (and thus able to extract more complex features),
one should also apply non-linear functions to the pixels of each convolutional out-
put. A popular choice is the ReLU function f(z) = max(z, 0). The ReLU enhances
the output of the convolution by throwing out the negative pixels and boosting the
positive ones. Other linear function are used after a convolution. In our case we
will also employ the sigmoid f(z) = 1/(1 + e−z), which maps real values to the
finite interval [0, 1]. Hence the convolution operation and the non-linear function
constitute the building blocks of our CNN. These two are by no means exhaustive
and we refer to the original literature for more ingredients [...]. The choice of the
number of channels and filter sizes in each convolution operation fixes the structure
of the network. The filters and the biases are the network’s parameters and they
are fixed by minimizing a loss function. We are now ready to go back to the CNN
for aftershocks forecasting. For the CNN in this study we use a two-column CNN.
In practice we construct two separate networks, the first one taking as input the
magnitude of the displacement:

vr(x, y) =
√

ve(x, y)2 + vn(x, y)2 (3.14)

while the second one two angular features, namely:

cos θ(x, y) = ve(x,y)
vr(x,y)

(3.15)

sin θ(x, y) = vn(x,y)
vr(x,y)

(3.16)

(3.17)
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Figure 3.5: Schematic summary of the CNN architecture. The norm of the displace-
ment and the angular parts are fed into two separate sequences of convolutions.
The two outputs are concatenated along the channels and fed to a final sequence of
CNNs that outputs a probability of aftershock occurrence.

Hence the first network has 1 channel as input, the second has 2 channels. The two
networks are structurally the same, they each contain 3 convolutional steps with
10 channels and kernels of size 5 × 5 per convolution. Between each convolution,
we apply a ReLU non-linear function. The two outputs are concatenated along
the channels, thus we obtain from two images of 10 channel each one image of 20
channels. To such output we then apply a new series of convolution of, respectively,
20, 5 and 1 channels in output. After the first two we use a ReLU and for the last
one a sigmoid, as we want to map the real values of the pixels into probabilities. A
schematic summary of the CNN structure is given in figure 3.5.

Both in the Logistic or the CNN approach, the output for a mainshock i the
probability πi(x, y) that an aftershock occurs at location (x, y). To assess the quality
of the prediction we need to count how many cells are correctly predicted. As we
deal with a probability, we need to introduce a threshold πth on the πi(x, y) that
determines if a cell is predicted as having an aftershock (is a positive cell) or not (is
a negative cell):

(x, y) is predicted to have an aftershock if πi(x, y) > πth (3.18)

At given fixed threshold, we can properly count the correctly classified cells by
analyzing two quantities:

• The True Positive Rate (TPR), namely the fraction of cells (x, y) that have an
aftershock (Ai(x, y) = 1) and for which the aftershock is correctly predicted
(πi(x, y) > πth).
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• The False Positive Rate (FPR), namely the fraction of cells (x, y) that do
not have an aftershock (Ai(x, y) = 0) and for which an aftershock is wrongly
predicted (πi(x, y) > πth).

By varying the threshold πth we obtain a curve parameterized by πth in the plane
(FPR(πth),TPR(πth)). This curve is called Receiver operating characteristic (ROC).
We associate to a ROC curve its Area Under the Curve, in brief AUC, which is used
as a metric to assess the quality of the model. When the ROC coincides with the line
FPR = TPR (and thus the associated AUC is 0.5) the predictions of the model are
essentially random. When instead the ROC is above the line FPR = TPR the model
performs better than random and any AUC around 0.66 and above is a fingerprint of
decent to good classifier. As a complementary metric we use the balanced accuracy
(ACC) defined as:

ACC = (TPR + 1− FPR)/2 (3.19)

which can be also read as ACC =
(

num. true positives
num. positives + num. true negatives

num. negatives

)
/2. As the

false and true positive rates are both functions of πth we can maximize ACC (and,
equivalently the difference TPR−FPR) to find the best threshold π∗

th. The value of
the balanced accuracy at the optimal threshold will be the second metric to assess
the quality of our models.

3.5 . Training procedure

Before fitting the models’ parameters, the first task to carry out is to divide
the available data in train, validation and test sets. The train data fits the model
parameters while the validation assesses the training quality. When the train score
is significantly higher than the validation score, the model is said to be overfit.
Overfitting occurs when a model memorizes the train set, achieving very high scores,
and cannot give accurate predictions for the validation set. The opposite scenario
can occur - underfitting - where both the train and the validation scores are poor,
signalling the need for either a more complex model (with more parameters and/or a
different structure) or a better training procedure. Thus, a properly trained model
minimizes the difference between validation and train score, keeping the overall
performance high. Moreover, as different models might be used for the same task
(in our case, we could change the convolution kernels, number of channels etc.), one
must compare the validation score coming from different models to adjust for the
best one.

Finally, the test score assesses the true capability of a model as the test set was
never seen by the model, neither in the training phase nor in the validation one.
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It’s the score one would expect when the model is used, for example, in real-life
applications.

The dataset we employed in this study refers to mainshocks occurring in the
Japanese region with at least magnitude 6, in longitude interval [123◦, 148◦] and
latitude one [22◦, 46◦], and between the year 2000 and 2019. For train and validation,
we employed the mainshocks that occurred up to 2015. See figure 3.6.

Figure 3.6: Map of Japan showing the mainshocks used for train (blue) and test
(red). The two insets show two different earthquake sequences (in the test) with the
corresponding aftershocks (in yellow). Small black dots are the station locations.
The hatched regions correspond to the parts where the displacement map will be
discarded, as no close station is available.
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The total number of mainshocks is 71, with 48 in the training set and 23 in
the test set. Such low number of samples is by no means adequate to train modern
deep-learning models and there is a high risk of overfitting. With such a small
dataset, how one splits the samples into train and validation can strongly influence
the model quality. Indeed one can stumble upon a lucky split and obtain a very
good model, while a slightly different one can end up in a poor quality one. To
overcome this issue, we employ an ensemble approach. It consists in first fixing a
model architecture and then training it on different splits of the train-validation
set. In practice, one chooses a fraction fv = 0.2 of samples for validation and
trains a model on the remaining samples. Repeating this procedure Nm times by
changing the validation samples, one obtains Nm different models trained on slightly
different data. Given an earthquake i with input (vr,i(x, y), cos θi(x, y), sin θi(x, y)),
the output of the k-th trained model is πi,k(x, y) ∈ [0, 1]. From the Nm different
prediction, we can construct a single prediction by aggregating the πi,k(x, y)’s. One
can use different protocols, but we stick to the most robust one, the median:

πi(x, y) = mediank=1...Nmπi,k(x, y) (3.20)

The median is the most robust predictor. Indeed two other extremal protocols
could be considered. For example, to maximize the predicted aftershocks one could
consider taking the maximum along k. On the other hand, to minimize the number of
false prediction, one could use the minimum. However both protocols are extremely
sensitive w.r.t. to fluctuations in the train set used. In the following two section we
show the results on the test set by using both the Logistic Regression approach and
the CNN.

3.6 . Logistic Regression Baseline (LRB)

We first explore the results coming from logistic regression. As anticipated,
a single model contains only two parameters; for the ensemble approach, we use
Nm = 50 different models coming from the Nm different train/validation split. By
combining these models and using the median aggregation we obtain the ROC curve
in figure 3.7. In this case we obtain an AUC of 0.74 and an accuracy of 0.71: this
shows that the amount of displacement at some location manages to predict strongly
the occurrence of an aftershock.

59



0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

 AUC: 0.74 ACC: 0.71

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

1

AC
C

Figure 3.7: Logistic Regression Baseline (LRB) model: the ROC curves are obtained
on the 23 mainshocks of the test set. The point of optimal balanced accuracy
is outlined with a circle. Insets: balanced accuracies computed for each test set
sample.

However, while the global metrics are promising, we must understand what
happens to the single mainshocks analyzed. Specifically, we compute the accuracies
of the prediction for each of the 23 mainshocks, as shown in the inset of figure 3.7.
The red bars indicate an accuracy ≤ 0.5, the green one above it. As visible, only the
minority of earthquakes have good accuracy (7 in total, with only 6 sensibly above
0.5), while for the rest the accuracy lands on 0.5, indicating the inability to make
a meaningful prediction. What is crucial to understand is why such an imbalance
occurs. We postpone this discussion to the next sections. Below instead we show
the prediction maps for 3 mainshocks for which the LRB performs well:
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Figure 3.8: Top row: input of the logistic regression the color (blue to red) in-
dicates the relative magnitude of displacement, the arrow the direction. The maps
correspond to mainshocks number 1, 7, 21 (see appendix for details). Bottom row:
the logistic regression prediction. Red pixels correspond to those with π(x, y) > π∗

th,
with π∗

th chosen to maximize the overall balanced accuracy. N.B.: we use the same
π∗
th for all the maps. Yellow dots are aftershocks, the red one the mainshock.

3.7 . CNN

As for the simpler logistic regression, we trained Nm = 50 models and we used
them to construct the prediction maps πi(x, y) using the median aggregation. In
figure 3.9 we report the ROC with the corresponding AUC and ACC, specialized
for the 23 mainshocks. The global accuracy and AUC is lower in the CNN case,
however when specializing to single earthquakes we obtain 9 mainshocks with good
predictions and none of them with poor one (the minimal accuracy for a mainshock
is ≈ 0.65). The exploitation of spatial correlations, while not improving the global
accuracy of the LRB method, manages to extract more information (as expected).
This is even more clear when one looks at the prediction maps in figure 3.10, as in the
CNN case they are not simply obtained by thresholding on the input displacement,
thus showing more structure.
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Figure 3.9: CNN model: the ROC curves are obtained on the 23 mainshocks of the
test set. The point of optimal balanced accuracy is outlined with a circle. Insets:
balanced accuracies computed for each test set sample.

Figure 3.10: Top row: input of the CNN the color (blue to red) indicates the
relative magnitude of displacement, the arrow the direction. The maps correspond
to mainshocks number 1, 7, 21 (see appendix for details). Bottom row: the CNN
prediction. Red pixels correspond to those with π(x, y) > π∗

th, with π∗
th chosen to

maximize the overall balanced accuracy. N.B.: we use the same π∗
th for all the maps.

Yellow dots are aftershocks, the red one the mainshock.
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3.8 . Interpreting the results

Figure 3.11: Study on the mainshock labelled as 9. Top: Input: surface displacement
map. Bottom: Output: the prediction π(x, y). Neither the CNN (left) nor the LRB
(right) manages to outperform a random classifier. A possible origin of this failure
is the fact that the main shock and most of the aftershocks happen in the sea. Thus,
the interpolated surface deformation in those off-shore areas is not reliable.

With the LRB and CNN results in mind, we are ready to discuss the implica-
tions of the usage of GPS data in aftershocks forecasting. To begin, we find some
earthquakes for which neither the LR not the CNN manage to make a satisfying
prediction. One example is mainshock 9, for which we show the prediction map at
the optimal threshold (obtained as explained before) in figure 3.11. For other, such
as mainshock 10 in figure 3.12, the displacement magnitude is not sufficient to make
meaningful predictions and thus the CNN outperforms the LRB. Overall we noticed
that two different elements can influence the predictive power:

• The mainshock magnitude. As visible in summary table of appendix A, the
better part of large earthquakes (with magnitude ≥ 6.7) are well classified.

• More importantly, the density of stations. All the earthquakes with only 1

station inside the image are poorly predicted (mainshocks 4, 5, 11, 18). When
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the number of stations is moderate (3 or slightly above) we obtain slighlty
better performances, especially using the CNN. Japan is one of the regions
in the world where GPS stations are more prominent. However, most of the
epicenters are located offshore and as such the displacement measurements in-
shore are not sufficient to reconstruct a sufficiently informative displacement
map.

Figure 3.12: Study on the mainshock labeled as 10. Top: Input: surface displace-
ment map. Bottom: Output: the prediction π(x, y). The CNN (left) outperfoms
the LRB (right). Such imbalance originates from the ability of the CNN to exploit
better signals with low quality (large hatched areas).

3.9 . Conclusion and future work

In this chapter we dicussed the relevance of GPS data can in forecasting af-
tershocks. While having obtained satisfying results, we showed the limitations of
such an approach, as it is heavily reliant on the station density and distribution.
As anticipated, one possible improvement could come from extending the study to
high-frequency GPS data (5 mins) in order to (1) include the aftershocks immedi-
ately following the mainshocks (2) have a more refined control over the earthquake
dynamics. While the latter approach could be extremely promising, it could easily
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lead to overfitting and, as such, it would require a strong preprocessing of the data
in order to extract the main features, keeping the complexity of the model (rela-
tively) low. On top of these improvements, one could have access to more data by
including other regions in the world where the GPS station density is relatively high,
such as the USA (especially California), New Zealand, Italy. For the purpose of en-
larging the dataset, one could try to include synthetic GPS data constructed from
ground rupture model, such as the popular Okada model [84]. Such an approach
has been taken very recently in [80], where synthetic GPS data is used to predict
the mainshock magnitude and location building up precisely on the Okada model,
with promising results. Finally a heterogeneous approach would benefit enormously
to the aftershocks prediction task i.e. one could include multiple data sources, such
as waveforms, past catalog data and other geophysically relevant features.

65



Chapter 4

Darcy law and yield-stress
fluids

In this chapter, based on the published paper "Darcy’s law of yield stress fluids on
a tree-like network" [22], we study the problem of the flow of a yield-stress fluid
(a particular type of non-Netwonian fluid) embedded in a porous material. We
first briefly review the Darcy’s law, which describes the flow of Netwonian fluid in
porous media to then discuss the numerical and analytical challenges introduced
when dealing with a yield-stress fluid. We finally introduce an exactly solvable
model that allows us to understand how the flow of such fluids grows in porous
material.

4.1 . Darcy’s law

Figure 4.1: Left: schema for the Poiseuille law, with a tube filled with a Netwonian
fluid (e.g. water). Right: schema for a tube filled with a porous material (e.g. sand)
highlighting the small channels used in Darcy’s derivation of his law.

Understanding the flow of fluids in complex structures is crucial for both human
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and industrial applications. Seminal experiments [19] carried out by Henri Darcy
in 1856 in Dijon showed that the mean flow rate Q of water passing through a
porous material (in his case a cylinder filled with sand) is proportional to the applied
pressure gradient and to a material dependent factor which he called permeability:

Q = κR2 P

ηL
(4.1)

Here R the cylinder radius, L its length, η the fluid viscosity, P the pressure and κ

the permeability. While Darcy originally believed that such a relation would hold
only for water, it was later understood that the form of this law also holds for any
Newtonian fluid. Thus, The only difference comes from different porous materials,
solely affecting the permeability. For example, the permeability of sand or gravel is
orders of magnitude larger than the one of clay. In its original form, Darcy’s law 4.1
is in contrast with Poiseuille law that describes the flow of a Newtonian fluid in an
empty cylinder (see figure 4.1 left):

QPois =
πR4

8η

P

L
(4.2)

Darcy noted this difference in the proportionality factor and he gave a simple ex-
planation, which is crucial for understanding how flow develops in porous materials.
Consider now a cylinder of length L and radius R filled with a porous material, say
sand. A fluid is embedded in the material, and a pressure difference ∆P from top to
bottom of the cylinder. Darcy imagined that the fluid could only flow along empty
thin paths or channels present in the medium due to its intrinsic heterogeneity. In
a first approximation, we can imagine that all the channels are non-intersecting and
they all have a typical radius Rc ≪ R. See figure 4.1 for a pictorial representation.
As these channels can be treated effectively as empty cylinders of size L and radius
Rc, we can apply the Poiseuille law to each of them individually, resulting in a flow
rate per channel of:

Qc =
πR4

c

8η

∆P

L
(4.3)

As the channels are non-intersecting and identical in size the total flow rate in the
cylinder is the sum of each flow rate coming from the individual channels. If we
indicate with Nc the number of such channels we obtain:

Q = Nc
πR4

c

8η

∆P

L
(4.4)

Now we want to relate this microscopic effective description to the macroscopic
features i.e. to the radius of the cylinder. The total area covered by the tiny
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channels is NcπR
2
c and the total area of the cylinder is πR2 hence the density of

channels is nc = NcπR
2
c/πR

2 = NcR
2
c/R

4. By expressing the number of channels Nc

w.r.t. its density we get:

Q = Nc
πR4

c

8η

∆P

L
= nc

R2

R2
c

πR4
c

8η

∆P

L
=

(
nc

πR2
c

8

)
R2∆P

L
(4.5)

By defining the permeability as κ = ncπR
2
c/8 we recover Darcy’s law 4.1. This simple

derivation reflects the fact that the permeability is a material property and depends
essentially on the availability of channels in the porous medium. A natural question
is: what would happen if we were to drop the non-intersecting channel assumption?
In this case the permeability would be linked to the geometrical properties of the
channels without affecting the linear form of the Darcy law and only the value of κ.

However, the linear nature of the Darcy’s law is only valid for Netwonian fluids.
Indeed, when considering non-Newtonian ones, the picture changes drastically as
the form 4.2 of Poiseuille’s law is no longer valid. Plenty of non-Netwonian fluids,
natural or synthetic, exist. Among the many we find suspensions [85], gels [86],
heavy oil [87], slurries, cement [88], and blood. Understanding how such fluids
behave in porous structures is an important problem with many applications such
as hydraulic fracturing, soil consolidation, and also medicine in the context of blood
flow modeling.

Among non-Newtonian fluids, a relevant class is one of the yield-stress fluids for
which a minimal applied stress is needed to make the fluid flow. Recent experiments
[89] and numerical studies [90] on yield-stress fluids in porous material also showed
that a minimal pressure P0 below which no flow is observed. Moreover, it is observed
that the permeability is not constant anymore and depends on the applied pressure,
resulting in a non-linear flow curve (at variance with 4.1). In this chapter, after
introducing some other known facts about the Darcy law for Newtonian fluids, we
will attack the problem of yield-stress fluids and the corresponding Darcy law using
tools from disordered systems and in the context of pore network models, which we
describe in the following section.
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4.2 . Pore Network Models

Figure 4.2: Example of a pore network. To each node/pore i we associate a pressure
pi and the in and out flows Q(in)

k→i and Q
(out)
i→j , with the constraint of flow conservation

by the Kirchoff’s law 4.6. In a link/throat, the relation between the flow Q
(out)
i→j and

pi − pj is given by Poiseuille’s law, which changes according depends to the type of
fluid considered (Netwonian, yield-stress...).

The pore network model is one of the most popular and effective model used
for describing a porous material. As in the original Darcy derivation, the porous
medium presents one or more inlets (where a pressure P is applied) and one or more
outlets (set at zero pressure). The inlet(s) and outlet(s) are connected by paths,
also called channels, divided into nodes and links. The nodes represent the pores,
which are void regions within the material and the links are the narrow channels,
also called throats, that connect the pores together. Intuitively, the pore network
model is equivalent to an electrical circuit where the links, the electrical current in
a link is equivalent to the flow rate and the pressure to the electrical voltage.

The model’s main assumption is that, when a fluid is present in the medium,
the pressures are well-defined only at the level of the nodes. At the level of the
link/throat, we impose the Poiseuille’s law law relating the flow to the pressure
difference between the nodes. The form of the Poiseuille’s law however depends on
the type of fluid considered i.e. Newtonian, yield-stress... Moreover, at the level of
a pore/node, we impose the Kirchhoff’s law: the incoming flow in a node i must be
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equal to its outgoing flow: ∑
k

Q
(out)
i→k =

∑
k

Q
(in)
k→i (4.6)

where Qm→n denotes the flow from node m to n. See figure 4.2 for a schematic
example.

We will use another non-restrictive assumption, namely that we will only deal
with directed networks i.e. between two nodes, the fluid has a preferential flow
direction. This assumption greatly simplifies the calculations as the fluid is not
allowed to come back on its path and is non-restrictive as the pressure gradient sets
a preferential direction by itself.

4.3 . Newtonian fluids

Figure 4.3: Geometry of the single channel. The inlet and the outlet are at pressure
P > 0 and 0, respectively. The flow goes from left to right and the flow between the
pores i and j is given by 4.7.

The first type of fluid we will treat is Newtonian fluid. While the objective of
this chapter is to discuss yield-stress fluids, it is useful first to obtain results for the
Newtonian case which is a limiting case of the non-Newtonian in the regime of high
pressure. For the sake of simplicity, we are going to employ a reduced version of 4.2
for Newtonian fluids, namely that in a single throat/link the flow reads:

Qi→j = pi − pj (4.7)

In this reduced version, we assume that each link has the same radius and we
measure the flow in units of πR4/8η. By using 4.6, we immediatly obtain that a
single a channel with L links has a flow:

Q =
P

L
(4.8)

where P is the pressure difference between the inlet and the outlet. See also figure
4.3 for a pictorial representation.
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4.3.1 . Independent channels

Figure 4.4: Geometry of the independent channels model. This network is obtained
by combining N independent channels with L links each. The inlet and the outlet
are at pressure P > 0 and 0, respectively.

If we combine together N independent channels with L throats (see figure 4.4),
each with the same pressure drop, we reproduce Darcy’s original derivation of its
law. the same. Each channel sustains a flow Qc = P/L (see 4.8) and, as they are
independent, the overall flow is:

Q = NQc = N
P

L
(4.9)

The permeability here is simply proportional to the number of channels in the system
i.e. κ = N , as in the original Darcy derivation.

4.3.2 . Tree-like network
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Figure 4.5: Flow of a fluid in a tree-like network of t levels. At the root a pressure
P is applied and from the node (at pressure P ′) connected to the root two other
independent tree of t − 1 levels grow. The recursive structure of the tree allows a
simple treatment of the Netwonian flow by recursion on t.

The first non-trivial case is the one of a Network with the geometry of a tree.
Consider thus a tree with t levels and a branching ratio z (see ??. We use the
convention that the level t = 1 case is composed of two nodes, like in figure 4.5.
The tree has a mathematically amenable structure that allows to write a recursive
equation for the flow of a system with t levels in terms of one with t − 1 levels.
Indeed consider a tree with t levels where we apply a pressure P at the tree root. It
can be thought as a collection of z trees with t−1 levels that are joint from the root
to a new segment. See figure 4.5. Hence the flow satisfies the following relation:

Qt(P ) = zQt−1(P − P ′) (4.10)

where P ′ is the pressure applied at the top of the z trees with t − 1 levels. By
Poiseuille 4.7 the flow on the top segment is equal to the pressure drop:

P − P ′ = zQt−1(P
′) (4.11)

The left-hand side is the incoming flow from the inlet and the right hand side the one
going inside the z trees. As the flow is linear in P , we can use the form Qt(P ) = κtP

and rewrite the equations for the permeability κt:

P − P ′ = zκt−1P
′ (4.12)
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which implies P ′ = P/(1 + zκt−1). Using 4.10 in conjunction with Qt(P ) = κtP we
get:

κtP = z
κt−1

1 + zκt−1

P (4.13)

As P ̸= 0:
κt =

zκt−1

1 + zκt−1

(4.14)

Since κ1 = 1 (a tree with one level is a single throat/link):

κt =
(z − 1)zt−1

z(zt − 1)
(4.15)

It is worth noticing that as t → ∞

κ∞ =
z − 1

z
(4.16)

which implies:

Q∞(P ) =
z − 1

z
P (4.17)

A small remark: we use here the permeability as the constant of proportionality
between Q and P . When expressing the flow with respect to the pressure gradient,
here P/t, the permeability would read tκt ≈ t/2 for large t.

4.4 . Darcy law for yield-stress fluids

So far we dealt with Newtonian fluids, for which the Poiseuille’s law with the
form 4.2 and 4.7 holds. However for the class of yield-stress fluids the Poiseuille law
changes and is no longer linear in the pressure gradient: the fluid responds like a
solid for low pressures (namely no flow is observed). In this case the Poiseuille gets
modified as:

Q =
πR4

8η

(
P

L
− σY

R

)n

+

(4.18)

with (x)+ = max(x, 0), σY the yield-stress threshold and n describes the non-
linearity of the fluid. As mentioned before, recent numerical studies [90–93] on
the flow of such fluids in porous material have shown how there exists a minimal
applied pressure P0 below which no flow is observed. On top of this the flow rate
displays three regimes for P > P0:

Q(P ) ∝


(P − P0) P ≳ P0

(P − P ∗)β P0 ≪ P ≪ Psat

(P − Psat) P ≫ Psat

(4.19)
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where P0 is the minial opening pressure, P ∗ and Psat are the pressure at which the
non-linear and Netwonian regime occur. The first linear regime has a very small
permeability, as only one of few channels flow. The non-linear regime is associated
instead with a quick growth of the permeability of the system and this regime is
the one we want to focus on. Finally the last regime, linear in P , is the Netwonian
regime, called as such because when the pressure is sufficiently high, the permeability
saturates to the Netwonian value κ∞ as all the channels start to flow. .

We mainly focus on n = 1, the class of Bingham fluids. To simply the calcula-
tions we used a reduced form of 4.18 by setting to one its prefactor and we relabel
the pressure σYL/R as τ . This form of the Poiseuille law thus becomes:

Q =
1

L
(P − τ)+ (4.20)

where L still represents the length of the throat, that we also set to 1:

Q = (P − τ)+ (4.21)

4.4.1 . Single-channel system

The first and most simple pore network model we study is the one-channel
model. Namely we consider a porous medium with a single channel made of a
number t throats. To model material heterogeneity the yield stress threshold in
each throat is a random variable distributed according to a distribution ρ(τ). We
can thus label the nodes as i = 1, . . . , t + 1, and each node will hold a pressure pi.
The boundary conditions are p1 = P and pt+1 = 0. The flow from node i to node
i+ 1 is thus:

Qi,i+1 = (pi − pi+1 − τi)+ (4.22)

where τi is defined for i = 1, . . . , t. As we are dealing with a single channel system
in order to have a non-zero flow rate at each throat the pressure drop pi−pi+1 must
be larger than the corresponding threshold τi. So assuming this hold Kirchoff’s law
imposes on a node:

Qi−1,i = Qi,i+1 (4.23)

As the throats are all in series, the flow is the same in each throat and equal to a
value Q. Using thus

Q = pi − pi+1 − τi (4.24)

and summing over i = 1 . . . t we get:

tQ =
t∑

i=1

Pi −
t∑

i=1

Pi+1 −
t∑

i=1

τi = p1 − pt+1 −
t∑

i=1

τi (4.25)

74



as p1 = P and pt+1 = 0 we get:

Q =
P −∑t

i=1 τi
t

≡ P − P0

t
(4.26)

Equation 4.26 gives thus the condition for a non-zero flow which simply reads:

P > P0 ≡
∑
i

τi (4.27)

which also reads:

Q(P ) =

{
0 P < P0

P−Pc

t
P > P0

(4.28)

with P0 a random variable distributed as the sum of t random variables with p.d.f.
ρ(τ), which we call ρt(P0). For large t we can assume, as long as ρ(τ) has a first and
second moment, that:

ρt(P0) ∼
1√

2πσ2t
exp

(
−(P0 − tτ̄)2

2σ2t

)
as t → ∞ (4.29)

hence P0 ha an average tτ̄ with τ̄ =
∫
R τρ(τ)dτ and variance σ2t with σ2 =

∫
(τ −

τ̄)2ρ(τ)dτ .

4.4.2 . Independent channels or the fiber-bundle model

As we did for the Newtonian case, a straight generalization of the single channel
model is a pore network with independent N channels each of length t all put at
the same pressure gradient (see schema 4.4). In literature, this model of a porous
network is also known as fiber-bundle model. As each individual channel has a
minimal opening pressure P0,i with i = 1 . . . N distributed according to ρt(P0,i) in
4.29, there will be a minimal opening pressure among the N

P0 = min
i=1...N

P0,i (4.30)

The minimal pressure P0 is such that for P < P0 no flow rate is measured Q(P ) = 0

and just above it P > P0, Q(P ) > 0.
As the individual opening pressures P0,i are independent random variables we

can use extreme value statistics tools to determine the behavior of P0.
We are interested in the limits of large channel lengths t → ∞ and large number

of channels N → ∞. Thanks to the Gaussian nature of the P0,i’s for large t 4.29,
we can limit ourselves to the extreme value statistics of gaussian random variables.
The probability to have P0 larger than some value ϵ reads:

Prob[P0 > ϵ] = Ft(ϵ)
N (4.31)
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with Ft(ϵ) =
∫∞
ϵ

dτρt(τ) the inverse cumulative distribution of ρt(P0,i):

Ft(ϵ) =
1

2
erfc

(
ϵ− tτ̄√
2tσ2

)
(4.32)

with erfc(τ) = 2√
π

∫∞
τ

e−x2
dx. As we are interested in the minimum, the relevant

limit at which we need to look is ϵ → −∞:

Ft(ϵ) ∼ 1 +

√
tσe−

(ϵ−tτ̄)2

2σ2t√
2π(ϵ− tτ̄)

(4.33)

To find the typical value of P0 we shift the variable ϵ = aN + bNu and try to look at
a finite limit of:

Ft(aN + bNu)
N (4.34)

as N → ∞. Following the derivation in [34] we obtain:

aN = tτ̄ − σ
√
t

[
√
2 lnN − ln(2

√
π lnN)√

2 lnN

]
+ . . .

bN =
σ
√
t√

2 lnN
+ . . . (4.35)

We now consider a precise scaling for N with t, namely N = kt with k > 1. In this
case equation 4.35 becomes:

aN=kt = tτ̄ − σt
√
2 ln k + σ

ln(2
√

πt ln k)

2
√
2 ln k

+ . . .

bN=kt =
σ√
2 ln k

+ . . . (4.36)

(4.37)

As bN at leading order is independent of t we label 1/bN = βc, for reasons that will
become clear later. This derivation implies that the minimum pressure P0 has a
typical value P0 (at leading order in t):

P0 ∼ t(τ̄ − σ
√
2 ln k) (4.38)

Its fluctuations are given by u, a random variable with law:

lim
N→∞

FN
t (aN + bNu) = e−eu (4.39)

which corresponds to a Gumbel random variable. Now that we characterized the
minimal pressure we are ready to study the full flow curve. Consider thus Q(P ) for
a given realization of the P0,is:

Q(P ) =
N∑
i=1

(P − P0,i)+
t

(4.40)
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As for P < P0 the flow is zero, it is convenient to express P as P = x+P0. Therefore
the flow reads:

Q(x) ≡ Q(x+ P0) =
N∑
i=1

(x+ P0 − P0,i)+
t

(4.41)

We can now introduce the quantity:

m(x) =
N∑
i=1

θ(x− (P0,i − P0)) (4.42)

which counts the number of channels flowing at the pressure P . Using the derivative
of m(x):

dm(x)

dx
=

N∑
i=1

δ(x− (Pc,i − Pc)) (4.43)

we can express the flow in an integral form:

Q(x) =
1

t

∫ x

0

dx′(x− x′)
dm

dx′ (x
′) (4.44)

As m(x) is a random variable, we can study it using order statistics. The probability
of it being equal to n+ 1 reads

P (m(x) = n+ 1) = N

(
N − 1

n

)∫
ρt(ϵ)[Ft(ϵ)− Ft(x+ ϵ)]nFN−n−1

t (ϵ+ x) (4.45)

Its average value thus reads:

m(x) =
N−1∑
n=0

(1+n)P (m(x) = n+1) = 1+N(N−1)

∫
dϵρt(ϵ)[Ft(ϵ)−Ft(x+ϵ)]Ft(ϵ+x)N−2

(4.46)
By using the scaling ϵ = aN + bNu for N = kt → ∞ obtained before we get:

m(x) = 1 +

∫
due2u−eu(eβcx − 1) = eβcx (4.47)

Thus the average flow reads:

Q(x) =
1

t

∫ x

0

dx′(x− x′)
dm

dx′ (x
′) =

eβcx − 1

βct
(4.48)

The average permeability can be obtained by taking a derivative w.r.t. x:

κ(x) =
dQ(x)

dx
=

1

t
eβcx (4.49)
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Figure 4.6: Left: Flow, rescaled by t, in the fiber bundle model. The two linear
regimes, the low-pressure and high-pressure Netwonian regimes are clearly visible
and the non-linear one connects the two. In the non-linear regime, the permeability
has an abrupt growth from order 1/t to order kt/t. We compare the flow curves for
moderate t = 12, 14, 16, 18 and we see a slow but definite convergence towards the
exponential behavior. Right: permeability, scaled such that tκt(0) = 1. As for the
flow, the convergence towards the limiting behaviour eβcx is extremely slow in t.

One can notice a striking similarity (and, in fact, a one-to-one mapping) between
this fiber-bundle model and the Random Energy Model (REM) in statistical physics
[94]. And indeed the quantity m(x) coincides with the counting statistics of the
states in the REM and the number βc, which here has the interpretation of an
inverse pressure, coincides with the freezing inverse temperature of the REM i.e.
the temperature below which the entropy of the REM freezes and remains constant.
Going back to the permeability, its maximal value is kt/t as it is reached as soon as
all the kt channels flow. We can thus identify a typical pressure xsat = Psat − P0 for
which the permeability stops growing:

κ(xsat) =
kt

t
(4.50)

i.e.

Psat =
1

βc

ln t+ P0 (4.51)

This result implies that only a small pressure increase above P0 is needed to reach a
maximal value for the permeability and this pressure increase grows sub-linearly with
the system size t. In figure 4.6 we compare these anaytical results with numerics. As
it is known from extreme value statistics [32], the t → ∞ convergence is extremely
slow and thus we expect a slow convergence to the exponential law in 4.48.
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4.5 . Two-dimensional models

As the channels are non-intersecting, the fiber bundle model works as a ’mean-
field’ of the pore network models. This results is no competition in the sequence of
opening channels between the quenched randomness of the yield-stress thresholds
and the spatial organization of the channels. However, it is extremely challenging
to study analytically a model where channels are overlapping. A step forward has
been made in [95] where the flow of a yield-stress fluid has been considered in a more
realistic two-dimensional medium. The geometry considered is a two-dimensional
grid tilted by 45 degrees, like a diamond-shaped lattice (see figure 4.8). The fluid is
put at pressure P at the top pore of the grid (inlet) and pressure 0 the bottom pore
(outlet). A single channel flowing from the inlet pore to the outlet can contain, a
priori, loops. However such configurations are negligible [95] and thus only directed
paths are considered. Each inlet-outlet channel has a length L, namely L throats
participate to it. As before, between two nodes/pores i and j the following Poiseuille
law is considered:

Qij = (pi − pj − τij) (4.52)

where τij is a random number. As before, in order to characterize the flow, it is
important to first study the statistics of the minimal opening pressure P0 and the
corresponding first opening channel. The important point of [95] is that there is a
direct mapping between the this channel and the ground state of a directed polymer
in a random medium. The mapping works as follows. Consider all the possible paths
between the inlet and the outlet when no flow occurs. Each single channel has an
opening pressure equal to the sum along the channel of all its thresholds τij. So to
open the first channel we need to find the one with the minimal opening pressure.
In formula:

P0 ≡ min
(i,j)∈C

τij ≡ min
C

τ(C) (4.53)

where C denotes a path from the inlet to the outlet and τ(C) indicates the sum of the
thresholds along the channel. As we consider only directed paths, we can identify
the various τ(C) with energies of a directed polymer in 1 + 1 dimensions. As such,
first channel Cmin has an opening pressure P0 that identifies with the ground state of
the model of the directed polymer in random media. As such it is known that [49]:

P0 = −p0L+ L1/3χ (4.54)

where χ is a random variable with Tracy-Widom distribution [96]. Numerically,
a brute-force approach to search this minimum is unfeasible, as one would need to
sort 2L variables. However, as pointed out in [95], the Djistrka algorithm can help
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Figure 4.7: Left: typical value of P0 in the 2d Darcy problem. Inset: fluctuations
of P0 around its typical value. As predicted by the theory of directed polymer in
random media [49], fluctuations grow as L1/3. Right: average flow curve for a yield-
stress fluid in a 2d porous medium, from [95]. The three regime are highlighted,
with the non-linear regime connecting the low to the Newtonian permeability ones.
Colors stand for different distributions of disorder (gaussian and uniform). Inset:
a single realization of the flow. As a function of pressure, the flow is a piecewise
linear function. The slope corresponds to the (increasing) permeability and each
new linear portion corresponds to a newly flowing channel.

in the task reducing the complexity to O(L2). In figure 4.7 left, we show the average
opening pressure’s linear scaling and its fluctuations in the inset.

Having found the ground state channel, we need to find the opening pressures
P1, P2, P3, . . . of subsequent flowing channels. In the [95] this task was attacked
numerically in two ways: by extending the Djistrka algorithm and by using a gradient
descent technique (this latter useful for the high-pressure limit). Here, we will follow
the first method and we remind to the original work for a derivation [95]. The method
can be described as following:

• First, at a given channels configuration, one solves Kichoff’s equation and
finds how the pressure pn at a node n depends on the inlet pressure P i.e.
one obtains pn = anP + bn for all the flowing nodes.

• Second, one fixes two pores m and n and finds the channel with minimal
energy τm,n between m and n using the Djistrka algorithm.

• Finally, the new channel is the one that minimizes (τm,n−(bm−bn))/(am−an)

among any two pores m,n.

By using this modified Djistrka algorithm, the flow curve observed is compatible with
the experimental observation for which a non-linear behavior kicks in as soon as the
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first few channels have opened i.e. Q(P ) ∼ (P−P0)
β with β ≈ 1.9 as shown in figure

4.7 right. Close to P0 the behavior is linear as the ground state typically dominates
the flow. The non-linear regime stops for high pressures: in this regime permeability
starts to saturate as the opening of new channels does not affect it sensibly, kicking
a Newtonian-like regime. In [95], it was understood that the non-linear of both the
flow and the permeability is determined by the opening of new channels with low
overlap (i..e low number of common links) with the already flowing configuration.
However quantifying this mechanism is particularly challenging in the 2d model, for
both numerical and analytical difficulties. In the next section, we study a model for
which this observation can be properly tested. Indeed we consider the geometry of a
porous medium with a tree-like structure. The tree-like structure, while less realistic
than the 2d one as no loops can be formed i.e. two channels after separating never
cross again, has the important feature of being analytically tractable (besides the
determination of P0).

Figure 4.8: A spatial depiction of the three regimes of the flow in the 2d model. On
the left the system is at pressure close to P0 and thus only one channel flows. As more
channel start to open the growth of the flow rate grows non-linearly (middle figure)
until the system has been fully ’invaded’ and thus the flow resembles a Netwonian
one (right figure).

4.6 . Darcy flow in a tree-like pore network

In this section we present the problem of the flow of yield-stress fluids in a tree-
like pore network. As it often occurs in statistical physics, models on a tree as they
exhibit recursive structures, are more amenable to analytical prediction and can
give us important insights on systems on a regular lattice. In our case, the model is
indeed analytically tractable and gives us important information on the role of the
overlap between flowing channels in the growth of the flow and the permeability as
pressure increases

Consider thus a binary tree with t levels. To each link in the tree is associated a
yield stress threshold τij distributed according to some ρ(τ). In a binary tree there
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are NP = 2t−1 paths/channels that connect the inlet (the tree root) to the outlets
(see figure 4.5). The inlet has a pressure P and the outlet a pressure 0. As in the
case of a two-dimensional pore network, we can associate to each path α an energy
ϵα by summing all the thresholds in the links along the given path:

ϵα =
∑
(ij)∈α

τij (4.55)

Each channel α is thus a directed polymer connecting the inlet to the corresponding
outlet carrying an energy ϵα. As in the two dimensional case, the first channel that
flows in the system corresponds to the channel with minimal energy i.e. to the
ground state of a directed polymer in random media. If now we re-label the paths
according to their energies ϵ0 < ϵ1 < . . . , the minimal energy identifies with ϵ0 and
thus P0 = ϵ0. Denoting with Pi the pressure at which the (i + 1)-th channel starts
to flow, flow rate Qt(P ) reads

Qt(P ) =
1

t
(P − P0) P ∈ [P0, P1) (4.56)

To understand what happens for subsequent channels we can use a simple physical
argument, grounded in the flow continuity (Kirchoff). When a single channel flows,
if we increase the pressure from P to P + δP , the pores at the top of the channel
will feel an increase in their pressure of order δP while channels at the bottom an
increase of δP/t. As such, it is easier for channels originating from the top to start to
flow with respect to the bottom ones. In other words, channels sharing few common
links with the flowing one i.e. channels with low-overlap are favored to start flowing
at lower pressures. We can precisely quantify how the overlap affects the flow of
new channels by looking at the expression for P1 (the pressure at which the second
channel starts to flow, see appendix B for a derivation):

P1 = ϵ0 +min
α̸=0

ϵα − ϵ0
1− q̂0α/t

≡ ϵ0 +
ϵα1 − ϵ0
1− q̂0α1/t

(4.57)

with α1 denoting the channel minimizing (4.57). Here α labels any channel different
from the ground state and q̂0α their overlap i.e. the number of common links (see
figure 4.9). By construction q̂0α can range from 1 to t − 1. The expression for P1

explicitly involves two factors. The first is (as might be expected) the difference in
energy between any channel α and the ground state: a channel with lower energy is
more likely to flow. The second factor, as anticipated, is the overlap, which biases
the minimization towards channels with low q̂0α. This mechanism holds also for
the pressure of subsequent channels P2, P3, . . . . In appendix B we explicitly show
that this is also the case for P2. For the other channels the analysis becomes too
complicated. However in the next section we show how a major simplification occurs
for large t, leading to an explicit determination of the flow.

82



4.6.1 . Large t limit

We already discussed the mapping between the channels and the directed poly-
mer. The directed polymer problem on a tree has been introduced in the seminal
paper by Derrida and Spohn in [97] and extensively studied thereafter [98–102] using
the tools of the Kolmogorov–Petrovsky–Piskunov (KPP) equation. We review some
of the main known results in appendix C. Using the tools from the KPP equation
one can show that the typical value taken by P0 = ϵ0(t) is:

ϵ0(t) = τ̄ t− c(βc)t+
3

2βc

ln t+O(1) (4.58)

where τ̄ is the average value of ρ(τ) and c(βc) and βc are defined by

c(β) = 1
β
log
(
2
∫
dτρ(τ)e−βτ

)
βc = argminβ c(β) (4.59)

Both β and βc, as in the case of the REM, have the interpretation of inverse tem-
perature. Precisely βc is the inverse freezing transition temperature of the directed
polymer on the tree and, more generally, of a family of log-correlated random en-
ergy models (Log-REM), all in the same universality class. The freezing transition,
namely the fact that the entropy of the polymer remains zero for β > βc, has
important consequences on the distribution of states above the minimum and this
fact will be important later on. Moreover, the fluctuations of ϵ0(t) around its typical
value are also known and they deviate from the Gumbel distribution of the standard
fluctuations of minima of uncorrelated random variables [32].

Now that we have enough information above P0, we need to study the states
above the ground state in order to connect them to the subsequent flowing channels.
The directed polymer on a tree shows one-step replica symmetry breaking (1-RSB).
Systems with 1-RSB, at low temperatures, display an organization of the states
above the ground state with either q̂/t → 0 or q̂/t → 1 for t → ∞. Moreover,
because of the freezing transition, the number of states close in energy to the ground
state is size independent, as the extensive entropy is zero. Consequently, such states
have either a small q̂ ∼ 0 or large overlap q̂ ∼ t. From equation 4.57 the channels
with high overlap with the ground states would have large opening pressure P1.
Hence among the low-energy states the first channels to open will coincide with
those with low-overlap among them. A series of channels with low overlap display
energies that are almost uncorrelated and the total flow in the system comes from
the individual contribution of each low-overlap path, much like the independent
channels/fiber bundle case. Thus finding the flow curve reduces to the problem of
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enumerating the low-energy states above ϵ0(t) with the constraint of having low
overlap among them.
To confirm this intuition we can perform a rigorous calculation: we introduce a
quantity mq̂,t(x) which counts the number of states above ϵ0(t) that have at most
x + ϵ0(t) energy and maximal overlap q̂ among them (see figure 4.9 for a pictorial
example of maximal overlap).

The quantity mq̂,t(x) is different with respect to the density of states above
ϵ0(t), which we label m(full)

t (x). It counts, in a tree with t levels, the number of
states with energy below x + ϵ0(t). These states, in the large t limit, have either
q̂ ∼ 1 or q̂ ∼ t and their number, thanks to the freezing transition, is constant and
size independent. Thus for energy gaps x = O(1), in the limit t → ∞, m(full)

t (x)

exists finite. The study of m(full)
t (x) has been extensively studied by Derrida and

Brunet [101] using the tools from the KPP equation. They have shown that its
average value m

(full)
t (x), for large t, grows as:

lim
t→∞

m
(full)
t (x) = Axeβcx (4.60)

with A a constant [101]. In appendix C we discuss the methods to obtain m
(full)
t (x).

The existence of a finite limit for m
(full)
t (x) implies that the t → ∞ limit of mq̂,t(x)

exists finite, as by construction 0 < mq̂,t(x) < m
(full)
t (x) for any t.

q̂α1,α2
= q̂

q̂0,α1
= q̂0,α2

t = 8

ε0

εα1
εα2

Figure 4.9: Example of three channels 0, α1, α2 flowing with maximal overlap q̂ = 3
for a tree with t = 8 levels. Channel 0 (the ground state) and the other two α1, α2

share an overlap q̂0α1 = q̂0α2 = 1 and α1 and α2 an overlap q̂α1α2 = 3 hence the
maximal overlap is precisely q̂ = 3.

On the other hand, a numerical or analytical study of mq̂,t(x) is not feasible
for a finite t. However in the limit t → ∞ (keeping q̂ fixed) we can use a pruning
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procedure to obtain limt→∞mq̂,t(x) = mq̂(x). The exact methodology and idea
is described in C section 3. In practice, we construct a tree with q̂ + 1 levels,
where the first q̂ levels have links threshold distributed as ρ(τ) while the last ones
have thresholds distributed as the minimal energy of an infinite tree. Technically
such minimal energy it is a divergent quantity we consider thresholds distributed as
χ = limt→∞ ϵ0(t)−ϵ0(t) which exists (see also C section 3). A pictorial representation
of this modified tree is shown in figure 4.10.

Figure 4.10: Example of the pruning procedure for q̂ = 7. The bottom links’
thresholds are distributed according to the ground state energy of an infinite tree.

The methods introduce by [97] and reviewed in appendix C that are used to
obtain 4.60 can be generalized for mq̂(x) (see C section 3).
As the limit t → ∞ is taken at fixed q̂, the overlap q̂/t will vanish even if we take
q̂ → ∞. In this limit, we show numerically (see figure 4.11) that

lim
q̂→∞

mq̂(x) = eβcx (4.61)

In the last section of appendix C, we give an analytical argument that proves 4.61.
Intuitively, if we take paths with vanishing overlap their energies become uncorre-
lated and as such the sub-system of zero-overlap states behaves as a REM which has
precisely the density of states of the form 4.61. So by the arguments given above
about the opening pressures, for a large tree t → ∞ the number of channels nch,t(x)

flowing below a pressure P = x + P0 identifies with the number of channels with
vanishing overlap and low energy. Thus, on average:

lim
t→∞

nch,t(x) = lim
q̂→∞

mq̂(x) = eβcx (4.62)
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As the channels have vanishing overlap, they contribute to the flow independently.
Each of them has an opening pressure x′ + P0, thus its contribution to the flow is
(P − (x′ + P0)+)/t = (x− x′)+/t from which the average flow reads:

lim
t→∞

tQt(x) =

∫ x

0

dx′(x− x′) lim
t→∞

d

dx′nch,t(x′) =
eβcx − 1

βc

(4.63)

to which the following permeability is associated:

lim
t→∞

tκt(x) =
d

dx
lim
t→∞

tQt(x) = eβcx (4.64)

The expression for the flow 4.63 catches both the initial linear regime Qt(P ) ∼ P−P0

t

for x → 0 and the non-linear one for larger x. At very high pressure the Newtonian
regime takes over, where the permeability reaches its maximal value κ∞ = 1/2 (see
previous section) and the flow becomes again linear in P :

Q(P ) = κ∞(P − P ∗) (4.65)

where P ∗ ∼ τ̄ t corresponds to the average pressure at which all channels flow. The
cross-over between the non-linear regime and the Newtonian linear one occurs when
the permeability κt(x) ∼ eβcx/t reaches the Netwonian value κ∞ at Psat = P0 + xsat

:
xsat ∼

1

βc

ln t (4.66)

As consequence, at Psat, the number of flowing channels is ∼ t. Let us comment
on this result. When the pressure is slightly above the minimal value P0, only
a single channel is open and κt is ∼ 1/t. Increasing the pressure slightly more
(∼ ln t) is enough to have the ∼ t channels with very small overlap flowing and
consequently to reach the total permeability κ. Note that this number is very small
compared to 2t−1, the total number of directed paths. At very high pressure, the
fluid flows indeed in more and more channels, but this does not affect much the
permeability of the network. the flow cannot increase indefinitely and this can be
seen in two equivalent ways. In the next section we test these predictions using
extensive numerical simulations.

86



4.7 . Numerical results
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Figure 4.11: Left: Numerical study of mq̂(x) and comparison with the prediction
eβcx and full density of states. Right: Monte Carlo simulation of the average (scaled)
overlap between the ground state and the second channel i.e. q = q̂α1,0. As discussed,
the first channels to flow present low overlap with the ground state and thus resulting
in a sub-linear growth of q̂α1,0 with t.

We first test the limit of q̂ → ∞ of mq̂(x). By employing the KPP methods
reported in appendix C, we numerically compare mq̂(x) for increasing q̂ with the
standard density of states m(full)

t (x) ∼ xeβcx and with the prediction limq̂→∞ mq̂(x) =

eβcx. The results are reported in figure 4.11 where we find perfect agreement in the
large q̂ limit.
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Figure 4.12: Left: permeability κ as a function of the number of flowing channels.
Inset: average number of flowing channels needed to reach 95% of κ∞ as a function
of t. Right: permeability vs (scaled) maximal overlap. It is evident how low-
overlapping channels dominate in the growth of permeability.

However, it is extremely challenging to probe directly the t → ∞ as the number
of channels in the system grow exponentially with the system size. In the figure
reported here we limit ourselves to t = 12, 15, 17, 19, 21. The simulation of the
system at a given t use the same algorithm as the two-dimensional case, where now
a major simplification occurs, as the channels after separating do not cross anymore.
Indeed the Djistrka part of the algorithm reduces to finding the minimal energy path
from a the sub-tree originating a given node, which is particularly efficient in a tree
structure. For a given realization of the disorder, between two opening pressures
Pk ≤ P < Pk+1 the flow is linear in P :

Q(P ) = κk(P − P ∗
k ) (4.67)
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Figure 4.13: Distance of P ∗
k to P ∗ (Netwonian pressure threshold). At variance

with the permeability, the pressure P ∗
k slowly approaches the Netwonian value. It

is worth noticing that the rate, as a function of k, does not depend on t.

where κk is the permeability (precisely the one showed in figure 4.12 left) and P ∗
k

is a pressure threshold that ensures the continuity of the flow when a new channel
opens. The various P ∗

k can be obtained from the relation κk−1(Pk−P ∗
k−1) = κk(Pk−

P ∗
k ). Since in the exact numerical simulation, we have access to both κk and Pk we

can reconstruct the P ∗
k . We then compare in figure 4.13 P ∗

k to the pressure threshold
P ∗ ∼ τ̄ t relative to the Newtonian regime. What we find is that P ∗

k approaches the
Netwonian limit logarithmically in the number of flowing channels k: at variance
with the permeability, this growth is extremely slow, which confirms an exponential
growth of the flow in the system. Finally, to corroborate further the low-overlap
bias of the Darcy problem, we performed simulations for larger t at the level of the
second flowing channel, confirming the anticipated decay towards zero of q̂0,α1 as t

grows. See figure 4.11 right.
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4.8 . Conclusion and future work

In this chapter we discussed the disordered systems approach to the study of the
Darcy’s law of yield-stress fluids. Thanks to the mapping to the directed polymer
in random media it is possible to study the the low pressure regime in the two
dimensional case and to fully solve the system in the tree case. From the latter
the importance of low-overlap states has emerged and thanks to the tools of the
KPP equation we were able to fully study such states. It would be interesting to
precisely understand the role of low-overlapping exictations in the finite dimensional
case. In mean-field models exhibiting a glass transition the low energy low overlap
excitations are abundant. However they usually are suppressed in finite dimension.
On the otehr hand, the bias on the overlap induced by the flow problem does not
depend on the system dimension and that is why we believe that the tree solution
can give important insights on the flow of yield-stress fluids also in finite-dimensional
porous media. Indeed, a prediction that should also hold there is the fast growth of
κk and the slow growth of P ∗

k .
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Conclusion

In this thesis, we focused on three different approaches to the characterization of
aftershocks. For the first one, we introduced a simple model of avalanches display-
ing correlations i.e. aftershocks. The model is based on a simple construction, that
essentially, an avalanche releases a constant amount of stress each time the system
fails, and the quenched disorder determines the total displacement. We managed to
solve the model with a mixture of analytical and numerical techniques, showing the
existence of a phase transition when the distribution of disorder is exponential. The
presence of correlations is, on the other hand, independent of the disorder distribu-
tion. For future work, we look forward to completing the analysis of correlations
(characterizing the maximum of the avalanche size in a sequence, for example) and
extending the model to other types of disorders, such as a force landscape corre-
lated as a random walk. In the second approach, we analyzed an experiment of an
expansion of a domain wall in the creep regime. We showed how the domain ex-
pands in a correlated fashion, akin to mainshock-aftershocks group in earthquakes,
and we characterized the statistics of such events confirming previous theoretical
and numerical predictions for the first time. For further developments, it would
be interesting to analyze similar experiments for field closer to the depinning one,
where a first deviation from the creep law has been observed. Moreover, thanks to a
collaboration with the experimentall group that carried out the experiments, we will
use the techniques develop at this stage to compute the strength of the Dzyaloshin-
skii–Moriya interaction (DMI, responsible for magneto-electric effects in a material
called multiferroics) with possible future applications to spintronics. The last chap-
ter dedicated to aftershocks is the closest to the earthquakes phenoemon as it deals
directly with their prediction starting from surface displacement data as measured
by GPS stations. We showed how it is possible to handle this type of data and how
to set up a prediction method, obtaining satisfying results for aftershocks prediction
in Japan. While not overcoming the performances of catalog-driven methods, such
the famous Epidemic-Type Aftershocks Sequence (ETAS) model, we were able to
show that indeed GPS data carries information relevant to aftershocks prediction.
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Thus a natural step would be to unify in one single method all the different types of
independent seismic data - waveforms, GPS, past catalog - with the hope that their
interplay could boost the overall performances and one source would compensate
for the flaws of the other. Moreover, from a more descriptive point of view, it would
be interesting to characterize the statistical properties of the slip maps measured by
GPS data, relating them to the predictions given by the theory of interfaces in ran-
dom media and its more earthquake-oriented variations. In spirit, while requiring
more effort - knowledge of the seismic fault geometry and the associated propagation
models - such an approach would transfer the type of analysis carried out for the
domain walls to the fault dynamics.

As for the last chapter, dedicated to porous media, we solved a model of in-
teracting channels by characterizing the flow rate and the associated increase in
permeability by exploiting the relevance of channel overlap in the process. To this
purpose, we adapted the methods of the KPP equation to the study of low overlap
states in the directed polymer in random media on a tree and showed that an exact
mapping exists between the Darcy and the polymer problem. For future develop-
ments, one straightforward extension would be to fully understand to which extent
the results on the tree geometry generalize to the 2D and 3D cases, thus reconciling
the overlap picture of yield stress fluids in porous media.
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Résumé en français

Cette thèse vise à étudier les corrélations spatiales et temporelles des systèmes
présentant des avalanches. En physique statistique, une avalanche est une réorgan-
isation des degrés de liberté d’un système en réponse à une instabilité générée, telle
que le changement de forces appliquées, les fluctuations thermiques ou le mécanisme
de relation interne. L’étude de la dynamique des avalanches est aussi intéressante
qu’ubiquitaire : les séismes sont des avalanches se produisant dans des failles sis-
miques [1–7], les avalanches caractérisent la déformation de structures cristallines
soumises à une charge [8,9], elles sont des précurseurs de la rupture dans des matéri-
aux fragiles [10], décrivent l’invasion de milieux poreux par un fluide [11,12] et émer-
gent même dans l’activité neuronale [13]. Souvent, les avalanches présentent des
propriétés de regroupement, à la fois dans le temps et dans l’espace : une avalanche
principale se produit pouvant déclencher de nombreuses avalanches "filles" exhibant
des structures statistiques riches. Un exemple phare et le principal sujet de cette
thèse se trouve dans le binôme des chocs principaux et des répliques en sismologie.
Caractériser la manière dont surviennent les répliques est d’une importance primor-
diale, tant pour des applications scientifiques que pratiques pour l’homme. En tant
que tel, la partie principale du manuscrit est divisée en trois chapitres, chacun se
référant à un traitement différent du sujet des répliques. Dans le premier chapitre,
basé sur l’article publié [14], nous développons et résolvons exactement un modèle
minimal d’avalanches présentant des répliques, générant des séquences similaires à
celles observées dans les tremblements de terre réels. Ce modèle s’inspire des modèles
de champ moyen d’avalanches, tels que le célèbre modèle ABBM [15], et est ancré
dans la classe des particules dans des paysages désordonnés. En utilisant la statis-
tique des valeurs extrêmes, nous montrons que ce modèle présente des avalanches
avec une distribution de loi de puissance, que nous déterminons analytiquement. De
plus, nous caractérisons analytiquement et numériquement les corrélations entre les
avalanches, montrant que ce modèle est l’un des rares modèles solubles présentant
des répliques. Lors de la modélisation des failles sismiques et des tremblements de
terre en physique statistique, le paradigme des interfaces dans des milieux aléatoires
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est souvent adopté. En termes simples, l’interface modélise la section de la faille
sismique, et l’avalanche observée dans le modèle est interprétée comme des tremble-
ments de terre. En pratique, le mouvement de l’interface est décrit par l’équation
suivante u(x, t) :

γ∂tu(x, t) = c∇2u(x, t) + f + F (x, u(x, t))

où f est une force motrice, et F (x, u(x, t)) est un désordre figé provenant d’un
potentiel F (x, u) = −∂uV (x, u), modélisé comme une variable aléatoire gaussienne
de moyenne nulle et de corrélation V (x, u)V (x′, u′) = δ(x − x′)∆(u − u′). Il peut
être démontré qu’à la force critique fc, l’interface subit une transition de dépiégeage
: en dessous de fc, l’interface a une vitesse nulle dans la limite des grands t, tandis
qu’elle acquiert une vitesse finie au-dessus de celle-ci. À f = fc, le mouvement est
intermittent, et u(x, t) se réorganise en couvrant une zone S suivant une distribution
à queues épaisses P (S) ∼ S−τ . En interprétant une telle réorganisation comme un
tremblement de terre, on mesurerait sa magnitude par m = 2

3
log10 S, qui, par un

simple changement de variable, serait distribuée de manière exponentielle P (m) ∼
10−bm. Dans les tremblements de terre réels, une telle distribution de magnitude
est effectivement observée et est appelée loi de Gutenberg-Richter [103]. Le modèle
ABBM dont nous nous inspirons, comme mentionné précédemment, est une version
de champ moyen de telles interfaces dans des milieux aléatoires au dépiégeage. Dans
le deuxième chapitre, nous effectuons l’analyse des données de la dynamique d’une
paroi de domaine s’étendant dans un film magnétique ultra-mince sous l’influence
d’un petit champ magnétique. Le terme "creep" dans les matériaux magnétiques
est emprunté à celui de la mécanique des solides, correspondant à l’accumulation
lente mais progressive de la déformation de contrainte lors de l’application d’une
contrainte externe (faible) sur une longue période. Ici, la déformation correspond à
l’expansion de la paroi de domaine qui est entraînée par un petit champ magnétique
externe. L’interaction entre la température, les impuretés présentes dans la structure
cristalline du film sous-jacent et le champ magnétique d’entraînement donne lieu
à une dynamique riche, dont la compréhension est extrêmement importante, par
exemple, en spintronique. Nous encadrons le système dans la famille des interfaces
entraînées dans des milieux aléatoires et nous testons les prédictions théoriques sur
les données expérimentales.
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Figure 4.14: Caractéristiques de vitesse du régime de fluage (violet) comparées à la
température zéro (vert). Au-dessus de la force critique fc, l’effet de la température
a tendance à diminuer et les statistiques de dépiégeage dominent.

En particulier, nous travaillons maintenant dans un contexte de température
finie du modèle d’interface décrit ci-dessus

γ∂tu(x, t) = c∇2u(x, t) + f + F (x, u(x, t)) + η(x, t)

où ⟨η(x, t)η(x′, t′)⟩ = Tδ(x− x′)δ(t− t′) est un désordre recuit modélisant une tem-
pérature finie. Le régime de fluage émerge pour des forces f < fc et les fluctuations
thermiques permettent à l’interface d’avoir une vitesse finie v évoluant avec f comme
ln v ∼ f−µ avec µ = 1/4, un exposant universel. Ce dernier est la célèbre loi de
fluage et a été observé pour la première fois dans [54]. Nous montrons l’observation
expérimentale de la présence de paires chocs principaux-répliques dans la dynamique
d’avalanche de la paroi de domaine qui avait été prédite par la théorie [16] et observée
récemment dans des simulations numériques [17].
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Figure 4.15: Logarithme de l’amplitude du déplacement interpolé tel que mesuré
à la date du 9 mars 2011 au Japon, après le séisme précurseur de la séquence de
Tohoku. Les points noirs correspondent aux positions réelles des stations.

Finalement, dans le troisième chapitre, nous explorons une nouvelle approche
de la prévision des tremblements de terre, plus précisément dans la prédiction des
répliques. Le point de départ est un travail récent [18] qui a exploité des cartes
de déplacement souterrain reconstruites à la suite de grands tremblements de terre
(séismes principaux) pour déduire les motifs spatiaux des répliques ultérieures en
utilisant l’apprentissage automatique. Bien que très prometteuses, de telles cartes
de déformation souterraine nécessitent une connaissance précise du système de failles
et sont difficilement réalisables en temps réel ou presque en temps réel. Ici, nous
explorons la possibilité d’utiliser des cartes de déplacement en surface sans connais-
sance préalable du système de failles pour atteindre le même objectif de prédiction
de motifs. En particulier, de telles cartes de déplacement en surface peuvent être
reconstruites plus facilement en utilisant des mesures de déplacement provenant de
stations GPS au sol. Les stations GPS communiquent avec des satellites pour des
mesures continues de leur position sur le sol, et une lecture satisfaisante peut être
obtenue avec un délai de quelques heures, les rendant appropriées pour des prévisions
quasi temps réel. Dans la pratique, nous abordons d’abord le problème de la con-
struction de telles cartes. En effet, tandis que les mesures sont discrètes dans l’espace
(au niveau des stations GPS), les répliques peuvent survenir partout dans l’espace,
et nous devons donc extrapoler ces mesures discrètes à l’ensemble de l’espace. Nous
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abordons ce problème en nous appuyant sur les méthodes de [79] qui décrivent une
interpolation de mesures discrètes à la surface de la Terre, particulièrement adap-
tée aux données GPS. Après avoir construit les cartes, nous combinons les données
GPS avec les données du catalogue contenant les emplacements des répliques en
nous concentrant sur les données du jour d’un séisme principal et en associant les
répliques survenues 45 jours après celui-ci. Nous visons à prédire les motifs spatiaux
de ces répliques en utilisant une méthode statistique classique (régression logistique)
et une approche d’apprentissage automatique plus moderne, en discutant à la fois
de ses particularités et de ses limites.

q̂α1,α2
= q̂

q̂0,α1
= q̂0,α2

t = 8

ε0

εα1
εα2

Figure 4.16: Exemple d’un arbre binaire avec t = 8 niveaux. Dans le cadre actuel,
seuls trois canaux s’écoulent (bleu, orange, vert). Dans le chapitre, nous montrons
que les canaux les plus susceptibles de s’écouler sont ceux ayant une faible overlap
(nombre d’arêtes en commun) entre eux.

En tant qu’addendum, dans le dernier chapitre de cette thèse, nous étudions
le problème de caractérisation de la loi de Darcy des fluides à seuil de contrainte
non newtoniens. La loi de Darcy standard [19] est une loi linéaire décrivant les
caractéristiques du débit par rapport à la pression d’un fluide newtonien dans un
matériau poreux. Cependant, lorsque des fluides non newtoniens sont impliqués, tels
que les fluides à seuil de contrainte, la loi de Darcy devient non linéaire en fonction
de la pression appliquée. De nombreuses preuves numériques et expérimentales
ont montré que dans de tels fluides, il existe un gradient de pression minimal en
dessous duquel aucun écoulement macroscopique n’est observé. Un tel problème a
été récemment étudié, par exemple, dans [89–92, 95] où une pression minimale de
ce type a été caractérisée. Dans ce chapitre, nous utilisons les outils des systèmes
désordonnés et de la physique statistique pour décrire l’écoulement en utilisant une
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correspondance avec un problème bien connu et étudié, le polymère dirigé dans un
milieu aléatoire. Nous résolvons analytiquement l’écoulement dans un modèle où le
matériau poreux est modélisé comme un arbre binaire, où les chemins représentent
les canaux par lesquels le flux peut se produire. Cette géométrie nous permet non
seulement d’étudier la pression minimale, mais aussi de relier la non-linéarité de la
loi de Darcy pour les fluides à seuil de contrainte à l’arrangement géométrique de la
partie du système où le fluide circule à une pression donnée.
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Appendix A

Mainshocks: test set

Table A.1: List of the 23 earthquakes employed for the test.

INDEX CODE-NAME DATE (UTC) MAG EPI. NUM-STATS CNN-ACC LRB-ACC
1 Ofunato 2015-5-12 6.8 38.86N 142.15E 22 0.65 0.58
2 Shizunai 2016-1-14 6.7 41.97N 142.80E 11 0.39 0.50
3 Kumamoto 2016-4-15 7.3 32.75N 130.76E 58 0.70 0.65
4 Hualien1 2016-5-12 6.5 24.66N 121.92E 1 0.50 0.50
5 Yonakuni 2016-6-23 6.2 23.50N 123.33E 1 0.48 0.50
6 Kurayoshi 2016-10-21 6.6 35.38N 133.86E 41 0.88 0.92
7 Namie 2016-11-21 7.4 37.35N 141.60E 23 0.79 0.74
8 Daigo 2016-12-28 6.3 36.72N 140.57E 46 0.47 0.55
9 Hachinohe 2017-9-26 6.1 40.27N 142.46E 13 0.49 0.50
10 Misawa 2018-1-24 6.3 41.01N 142.45E 6 0.77 0.50
11 Hualien 2018-2-6 6.7 24.09N 121.68E 1 0.50 0.50
12 Matsue 2018-4-8 6.1 35.18N 132.59E 31 0.99 0.50
13 Osaka 2018-6-17 6.1 34.84N 135.62E 75 0.44 0.50
14 Chiba 2018-7-7 6.0 35.17N 140.59E 29 0.48 0.50
15 Chitose 2018-9-5 6.7 42.69N 142.01E 31 0.69 0.86
16 Hokkaido 2018-11-4 6.3 44.61N 145.81E 4 0.50 0.50
17 Nishinoomote 2019-1-8 6.0 30.57N 131.16E 15 0.50 0.48
18 Volcano Islands 2019-3-11 6.1 25.67N 141.03E 1 0.50 0.50
19 Hualien2 2019-4-18 6.5 24.01N 121.51E 2 0.50 0.50
20 Miyazaki 2019-5-9 6.3 31.80N 131.97E 20 0.48 0.50
21 Tsuruoka 2019-6-18 6.7 38.61N 139.48E 28 0.98 0.95
22 Namie 2019-8-4 6.4 37.71N 141.63E 25 0.50 0.50
23 Yilan 2019-8-7 6.4 24.37N 121.87E 3 0.88 0.50
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Appendix B

Opening pressures for the
first few channels

In this section we report the derivation of the expression for P1 used in the chapter
and we also derive P2.

The fluid starts to flow only above the critical pressure P0 = ϵ0(t) and only
along the channel that coincides with the ground state of the directed polymer:

Q0,t(P ) =
P − P0

t
(B.1)

The subscript 0 in Q indicates that flow is possible only along the ground state.
Such a formula holds for P > P0 and smaller than P1, the pressure at which a
second channel opens.

The two channels problem

Figure B.1: Schematics for the tree with two open channels.

Here, flow is possible along two channels (see figure B.1): the ground state with
energy ϵ0, depicted in blue and a second channel with energy ϵα, depicted in orange.
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These two channels have a common part of length q̂0α; we denote with ϵ0α the sum
of the thresholds along this common portion and P ′ the pressure at the bottom of
the common part, hence the flow along it reads:

Q1,t(P ) =
P − P ′ − ϵ0α

q̂0α
(B.2)

The pressure P ′ can be determined using the conservation of the flow:

P − P ′ − ϵ0α
q̂0α

= Q
(0)
0,t−q̂0α

(P ′) +Q
(1)
0,t−q̂0α

(P ′) (B.3)

where Q(0)
0,t−q̂0α

(P ′) is the flow along the subtree containing the ground state, Q(1)
0,t−q̂0α

(P ′)

containing the other channel (see the two branches of figure B.1). Since each of these
is a single channel of length t− q̂0α, we can use once again Eq. (B.1). One has

Q
(0)
0,t−q̂01

(P ′) =
P ′ − (ϵ0 − ϵ0α)

t− q̂0α
, Q

(1)
0,t−q̂0α

(P ′) =
P ′ − (ϵα − ϵ0α)

t− q̂0α
(B.4)

From equation (B.3) we derive first the expression for P ′(P ) and then Q1,t(P ):

P ′(P ) =
q̂0α(ϵ0 + ϵα) + (t− q̂0α)P

t+ q̂0α
− ϵ0α , Q1,t(P ) =

2

t+ q̂0α

(
P − ϵ0 + ϵα

2

)
(B.5)

We can now determine the pressure P̃1 such that Q0,t(P̃1) = Q1,t(P̃1), namely

P̃1 = ϵ0 +
t

t− q̂0α
(ϵα − ϵ0) (B.6)

For pressure P ∈ (P0, P̃1) we have Q0,t(P̃1) > Q1,t(P̃1), this means that the fluid
cannot flow in the second channel and the flow rate is given by Q0,t(P ). Above P̃1

the second channel is open and the flow rate is given by Q1,t(P̃1). The criterion to
select the first excited channel that opens above P0, is that the pressure P1 is the
smallest among all the P̃1 computed for all possible two-channel geometries. This
translates into

P1 = min
P̃1

P̃1 = ϵ0 +min
α ̸=0

t

t− q̂0α
(ϵα − ϵ0) (B.7)

The channel satisfying the minimum condition is denoted by α1. Notice that the
equation for P1 B.7 remains the same for the tree and the 2d geometries.

The three channels problem

There are three possible configurations for the position of the second excited
channel with respect to the ground state and the first one. They each lead to a
slightly different expression for the pressure P2, but all simplify to P2 = ϵα2 in the
limit t → ∞.
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Figure B.2: Schematics for the Cayley tree with three open channels in the three
possible geometrical arrangements.

The first case is the simplest: the second channel opens with a common overlap
q̂0α2 = q̂α1α2 with the ground state and the first channel. See figure B.2 left. By
construction, q̂0α2 < q̂0α1 .
The pressure P2 reads:

P2 = min
α2 ̸={α1,0}

[
ϵα2 −

q̂0α2

t+ q̂0α1 − 2q̂0α2

(ϵα1 + ϵ0 − 2ϵα2)

]
(B.8)

In the limit t → ∞, we saw that q̂0α1 = O(1); from this and q̂0α2 < q̂0α1 , it follows
that q̂0α2 = O(1) and P2 = ϵα2 .

The second case corresponds to the opening of the second excited channel from
the ground state with an overlap q̂0α2 > q̂α1α2 = q̂0α1 . See figure B.2 middle. The
pressure P2 reads:

P2 = ϵ0 −
q̂0α1

t− q̂0α1

(ϵα1 − ϵ0) + min
α2 ̸={α1,0}

t+ q̂0α1

t− q̂0α2

(ϵα2 − ϵ0) (B.9)

When t → ∞, the previous argument for the first excited channel sets q̂0α1/t ≈ 0.
In this limit, the resulting expression for P2 is:

P2 = ϵ0 + min
α2 ̸={α1,0}

t

t− q̂0α2

(ϵα2 − ϵ0) when t → ∞ (B.10)

This expression is identical to equation (B.7) with the substitution α → α2, and
applying the same arguments of the first channel we arrive at setting q̂0α2/t ≈ 0,
leading P2 = ϵα2 .

The last case is the mirror of the previous one, with the second channels that
opens from the first one with overlap q̂α1α2 > q̂0α1 = q̂0α2 . See figure B.2 right. The
pressure P2 reads:

P2 = ϵ0 +
t

t− q̂0α1

(ϵα1 − ϵ0) + min
α2 ̸={α1,0}

t+ q̂0α1

t− q̂α1α2

(ϵα2 − ϵα1) (B.11)
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When t → ∞, the previous argument for the first excited channel sets q̂0α1/t ≈ 0.
In this limit, the resulting expression for P2 is:

P2 = ϵ1 + min
α2 ̸={α1,0}

t

t− q̂α1α2

(ϵα2 − ϵα1) when t → ∞ (B.12)

This expression is again similar to equation (B.7) and applying the same arguments
of the first channel we arrive at setting q̂α1α2/t ≈ 0, leading P2 = ϵα2 .
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Appendix C

Discrete KPP equation

In this appendix we give a complete summary for the techniques used for the study
of the Darcy flow in a tree that employ the discrete KPP equation

C.1 . The equation

The discrete KPP equation has the general form:

Gt+1(x) =

∫
dτρ(τ)Gt(x− τ)2 (C.1)

where ρ(τ) is a probability distribution and the initial condition on Gt(x) is given
by a function g(x) i.e. G0(x) = g(x). By labelling the (ordered) energies of the
directed polymer as ϵα(t) with α = 0 . . . 2t−1 − 1, we can show if Gt(x) has the
following multiplicative form

Gt(x) =
∏
α

g(x− ϵα(t)) (C.2)

it satisfies (C.1). Indeed a tree of t + 1 levels can be constructed from two trees of
t levels that we combined together by adding an edge like as in figure C.1.
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Figure C.1: Caption

The energies ϵα(t + 1) are constructed by summing the new edge energy τ to
any other energy coming from either of the two subtrees. Hence:

Gt+1(x) =
2t−1∏
α=0

g(x− ϵα(t+ 1)) = (C.3)

=

∫
dτρ(τ)

2t−1−1∏
α=0

g(x− τ − ϵ
(1)
α (t))

2t−1−1∏
α=0

g(x− τ − ϵ
(2)
α (t)) = (C.4)

=

∫
dτρ(τ)G2

t (x− τ) (C.5)

The overline, which stands for the average over the energies, can be split by explic-
iting first the edge energy τ and using the fact the the two subtrees of t levels have
independent energies. Different choiches for the initial condition G0(x) = g(x) cor-
respond to different type of statistics over the energies. One general result holds, as
proven by [104]. If g(x) → 0 for x → ∞ and g(x) → 1 for x → −∞, Gt(x) becomes
for large t a travelling wave form with negative velocity i.e. Gt(x) = w(x + ct).
where c depends on g(x).

C.2 . Ground state energy

To study the minimal energy ϵ0(t) (the ground state) that correspond to the
critical pressure P0 in the case of a yield stress fluid on the tree, we can make use
of the following initial condition dependent on a parameter β:

gβ(x) = exp(−eβx) (C.6)
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In this section we will use instead of Gt(x) the label Ωt(x; β). Hence Ω0(x; β) =

gβ(x). This choice corresponds to to the study of the cumulant generating function
of the partition function associated to the directed polymer, when interpreted as a
random energy model:

ZDP,t(β) =
∑
α

e−βϵα(t) (C.7)

Indeed:

∞∑
n=0

(−1)n
(eβxZDP,t(β))n

n!
= exp(−eβxZDP,t(β)) =

∏
α

exp(−eβ(x−ϵα(t))) =
∏
α

gβ(x− ϵα(t))

(C.8)
When interested in the ground state energy taking the limit β → ∞ corresponds to:

lim
β→∞

gβ(x) = θ(−x) (C.9)

which for Ωt(x; β) means: ∏
α

θ(ϵα(t)− x) = θ(ϵ0(t)− x) (C.10)

which corresponds to the inverse cumulative distribution of ϵ0(t), namely the prob-
ability P[ϵ0(t) ≥ x]. We can now start by analyzing the discrete KPP equation
with the initial condition gβ(x). We start by studying the left tail, namely the limit
x → −∞ and we do so by linearizing (C.1) using a travelling wave ansatz with
velocity −c:

ωt(x; β) ≈ 1− eβ(x+ct) x → −∞ (C.11)

By plugging this form into (C.1) we get a consistency condition on c

1− ϵβ(ϵ+c(t+1)) =

∫
ρ(τ)(1− 2ϵβ(ϵ−τ+ct)) (C.12)

that translates to
c(β) =

1

β
log

(
2

∫
dτρ(τ)e−βτ

)
(C.13)

It can be shown [97,104] that the travelling wave velocity freezes at a value βc that
corresponds to the minimum of c(β):

βc = argmin
β

c(β) (C.14)

Namely that:

c(β) =

{
c(β) β < βc

c(βc) β ≥ βc

(C.15)

106



In other words, the travelling wave solution exists only above a minimal velocity
c(βc). This freezing phenomenon has been extensively observed in other systems,
for example in the Derrida’s random energy model and generally in spin glasses.
Thus the typical value for the minimal energy is given by, at leading order

ϵ0(t) = −c(βc)t+O(t) (C.16)

However important logarithmic corrections are present. They have been obtained
by the discrete KPP equation in [99] (see [97, 104] for the continuum version) and
they read:

ϵ0(t) = −c(βc)t+
3

2βc

ln t+O(1) (C.17)

The fluctuations of the minimum around the typical value ϵ0(t) are given by the
travelling front solution wmin(x) that satifsies the fixed point of (C.1) :

wmin(x+ c(βc)) =

∫
dτρ(τ)w2

min(x− τ) (C.18)

More precisely, the fluctuations χ have a distribution −w′(χ) in the large t limit.
In the following section we will denote with Ωt(x) the solution of the KPP equation
Ωt(x; β) when β ≥ βc.

C.3 . Density of states above the minimum

Using the KPP formalism we can also study the average density of states:

nt(x) =
∑
α

θ(x− ϵα(t)) (C.19)

and and the average density of states above the minimum:

m
(full)
t (x) =

∑
α

θ(x+ ϵ0(t)− ϵα(t)) (C.20)

For this we are gonna follow the techniques presented in [101] and summarized in
[...]. The quantity nt(x) does not have a well define limit as ϵ0(t) diverges with t.
On the other hand m

(full)
t (x) for x ∼ O(1) has a well defined form as shown in [101]:

lim
t→∞

m
(full)
t (x) = Axeβcx x ∼ O(1) (C.21)

with A an unknown constant of order one. Let’s start by considering the following
multiplicative function of the energies:

χt(x;λ) = λm
(full)
t (x) (C.22)
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It can be rewritten using the following identity:

χt(x;λ) =

∫
dx′λnt(x+x′)δ(x′ − ϵ0(t)) = 1 + ∂x

∫
dx′λnt(x+x′)θ(ϵ0(t)− x′) (C.23)

By using the definition of nt(x):

χt(x;λ) = 1 + ∂x

∫
dx′
∏
α

λθ(x+x′−ϵα(t))θ(ϵα(t)− x′) (C.24)

The inner part of the integral corresponds to a multiplicative function (in the variable
x′) of the energies with initial condition g(x′;x, λ) = λθ(x+x′)θ(−x′). Now we can
use χ(x;λ) to study m

(full)
t (x) as we can take a derivative w.r.t λ:

m
(full)
t (x) = ∂λχ(x;λ)|λ=1 (C.25)

Expanding thus λ = 1− ε for small ϵ we get:

λnt(x+x′)θ(ϵ0(t)− x′) = Ωt(x
′)− εRt(x

′;x) +O(ε2) (C.26)

with:
Rt+1(x

′;x) = 2

∫
dτ ρ(τ)Ωt(x

′ − τ)Rt(x
′ − τ ;x) (C.27)

and initial condition R0(x
′;x) = θ(x′ + x)θ(−x′). By using Rt(x

′;x) we can thus
obtain m

(full)
t (x):

m
(full)
t (x) =

∫
dx′ ∂zRt(x

′;x) ≡
∫

dx′ rt(x
′;x) (C.28)

Moreover because of the linearity of (C.27), rt(x′;x) satisfies

rt+1(x
′;x) = 2

∫
dτ ρ(τ)Ωt(x

′ − τ)rt(x
′ − τ ;x) = 2

∫
dy ρ(x′ − y)Ωt(y)rt(y;x)

(C.29)
with r0(x

′;x) = δ(x′ + x). As in [101], we can numerically solve equation (C.29)
together with the solution of Ωt(x) and numerically integrate rt(x

′;x).

C.4 . Density of states above the minimum with maximal
overlap

Another important quantity that can be studied using the KPP formalism is
the average density of states above minimum with the constraint that the overlap
among these states is at most q̂. We denote this quantity by mq̂,t(x). The physical
picture is the one in figure [...].mq̂,t(x) is hard to study when t is finite. However in
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the t → ∞ limit, to study limt→∞mq̂,t(x) = mq̂(x), we can use a pruning procedure
(illustrated first in [...]). At the level q̂ of the full tree, there are 2q̂ subtrees labelled
by a = 0, . . . , 2q̂ − 1. We replace each of these subtrees with a single edge with a
minimum energy ϵ

(a)
0 . This way we obtain a tree of q̂ levels containing the 2q̂ low

energies paths with maximal overlap q̂. This procedure is equivalent to growing a
tree with q̂ levels where the leaves thresholds are drawn from the distribution of the
minimum of an infinite tree. Technically in the limit t → ∞ the subtrees thresholds
all diverge, we can subtract the deterministic part ϵ0(t) from each of the pruned
trees, leaving a distribution for such new edges precisely −w′

min(x). The structure
for the computation of mq̂,t(x) is the same as the m

(full)
t (x) and we do not carry out

again. In summary:

mq̂(x) =

∫
dx′r̃q̂(x

′;x) (C.30)

Ω̃q̂+1(x) =

∫
dτρ(τ)Ω̃2

q̂(x− τ) Ω̃q̂=0(x) = wmin(x) (C.31)

=⇒ Ω̃q̂(x) = wmin(x+ c(βc)q̂) (C.32)

r̃q̂+1(x
′;x) = 2

∫
dτ ρ(τ)Ω̃q̂(x

′ − τ)r̃q̂(x
′ − τ ;x) r̃q̂=0(x

′;x) = −w′
min(x+ x′)

(C.33)

C.5 . Large q̂ limit of maximal overlap energy levels

In this section we present an analytical argument for the convergence at large-q̂
of mq̂(x) to eβcx. We start by introducing the shifted quantity r

(s)
q̂ (x′;x) = rq̂(x

′ −
c(βc)q̂;x) in the last equation of C.33. It becomes:

r
(s)
q̂+1(x

′;x) = 2

∫
dτ ρ(τ)wmin(x

′−τ−c(βc))r
(s)
q̂ (x′−τ−c(βc);x) =

∫
dx′′L(x′, x′′)r

(s)
q̂ (x′′;x)

(C.34)
where in the last equality we changed the integration variable setting x′′ = x′ −
τ − c(βc) and implicitly defined the linear operator L. Thus, one can pass from
q̂ → q̂ + 1 by applying a fixed matrix L(x′, x′′)1. Since the matrix L is independent
of q̂, iterating this equation q̂ times, we can express r

(s)
q̂ in terms of the initial

condition at q̂ = 0

r
(s)
q̂ (x′;x) =

∫
dx′′Lq̂(x′, x′′)r

(s)
0 (x′′;x) = −

∫
dx′′Lq̂(x′, x′′)w′

min(x
′′ + x) (C.35)

where we denoted as Lq̂ the q̂-th matrix power of L and in the last equality we used
C.33 . In the limit q̂ → ∞, L acts as a projector on the eigenspace with largest

1We use the expression matrix, although compact linear operator would be more appropriate
in the mathematical jargon.
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eigenvalues. Taking the derivative of Eq. (C.18) with respect to x′, we obtain

w′
min(x

′) =

∫
dx′′L(x′, x′′)w′

min(x
′′) . (C.36)

which shows that w′
min(x

′) is an eigenvector with eigenvalue 1. We also have −w′
min(x

′) >

0, as it corresponds to the probability density of the minimum. Since L(x′, x′′) > 0,
Perron-Frobenius theorem ensures that it corresponds to the largest eigenvalues
which equals 1. Therefore, without further knowledge of the full spectrum of L, we
know that the remaining eigenvectors lie inside the unit circle. We can thus expand
the initial condition on the eigenvectors as

r
(s)
0 (x′;x) ≡ −w′

min(x
′ + x) = −A(x)w′

min(x
′) +R(x′;x) (C.37)

where the first term contains the components on the leading eigenvector and R(x′;x)

stays for the remainder. The repeated application of L projects on w′
min(x

′) and thus

lim
q̂→∞

r
(s)
q̂ (x′;x) = −A(x)w′

min(x
′) ⇒ lim

q̂→∞
mq̂(x) = −A(x)

∫
dx′w′

min(x
′) = A(x)

(C.38)
where we used C.33 and in the last equality we performed the integration over x′

using that −w′
min(x

′) is a normalised probability density. Thus, the large−q̂ asymp-
totic behavior mq̂(x) is given by the coefficient A(x) in (C.37). However, since the
operator L is not self-adjoint, in order to compute the projector on the eigenvector in
(C.36), we need to determine the left eigenvector ℓmin(x

′) corresponding to w′
min(x

′),
which satisfies∫

dx′ℓmin(x
′)R(x′;x) = 0 ,

∫
dx′ℓmin(x

′)w′
min(x

′) ̸= 0 . (C.39)

so that we can express the coefficient A(x) as

A(x) =

∫
dx′ℓmin(x

′)w′
min(x

′ + x)∫
dx′ℓmin(x′)w′

min(x
′)

(C.40)

Computing the adjoint of L, we see that ℓmin(x
′) must satisfy

ℓmin(x
′) = 2wmin(x

′)

∫
dx′′ ℓmin(x

′′)p(x′′ − x′ − c(βc)) (C.41)

The explicit form of ℓmin(x) cannot be determined in general as it depends on the
specific form of the threshold distribution p(τ). So, it might look surprising that
eventually the large q̂ drastically simplify to a universal form, but a subtle mecha-
nism is at play. Indeed, in the limit x′ → −∞, we assume ℓmin(x

′) ∼ e−β̃x′ . Plugging
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it in Eq. (C.41) and using that wmin(x → −∞) = 1, we can determine the value of
β̃. We obtain

2

∫
dx′ e−β̃x′

p(x′ − x− c(βc)) = e−β̃x (C.42)

and after the change of variables τ = x′ − x − c(βc), it coincides with equation
(C.13) with β̃ = βc. Since w′

min(x
′)

x′→−∞−→ x′eβcx′ , we see that both the numerator
and denominator in Eq. (C.40) are formally infinite as the integrand diverges for
x′ → −∞. So the ratio in Eq. (C.40) needs to be evaluated by a limiting procedure.
In order to regularize we introduce a cutoff Λ on the left tail, replacing ℓmin(x) →
ϑ(x+ Λ)ℓmin(x), so that the result should be recovered in the limit Λ → ∞. Then,
we have

lim
q̂→∞

mq̂(x) ≡ A(x) = lim
Λ→∞

∫∞
−Λ

dx′ ℓmin(x
′)w′

min(x+ x′)∫∞
−Λ

dx′ ℓmin(x′)w′
min(x

′)
= lim

Λ→∞

eβcx
∫ 0

−Λ
dx (x′ + x) +O(1)∫ 0

−Λ
dx′ x′ +O(1)

= eβcx

(C.43)
which gives the expected exponential behavior.
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