Co-simulation is widely used in the industry due to the recent emergence of modular dynamical models made up of interconnected, black-boxed systems. Indeed, IP protection issues, usage of field-specific technical know-how, software tools interoperability, usage of tailored solvers or simply modular designs are all motivating reasons to work with decoupled models instead of a single monolithic model. Nevertheless, despite the convenient aspect of handling composite systems made of interconnected black-boxed systems, numerical effects often appear as consequences of the equation partitioning. For this reason, co-simulation techniques have gained a lot of interest these last few years and active groups of research are working on the design of robust, performant and accurate co-simulation algorithms.

This thesis proposes an overview of the notion of partitioning differential systems in the broadest sense, followed by a framework definition and clarification of the co-simulation we are interested in. A second review of the literature is then conducted within the defined context we defined. Our contributions are proposed in response to the challenge of robustness. The contribution are in the form of co-simulation algorithms and techniques developed to handle partitioned differential systems (mainly of ODEs, yet the generalisable methods are shown with hybrid cases mixing ODEs, DAEs, discrete-events systems, ...). The numerical integrator inside of the systems will not be considered, for generalization purpose.

The notion of robustness can be separated into two aspects. On the one side, numerical robustness consists in solving co-simulation problems with sufficient accuracy to make the results reliable. This aspect of the notion of robustness is common with the classical problematics around the numerical integrators of differential systems, for instance. On the other side, software robustness reflects a challenge directly related to the industrial usage of co-simulation: it characterizes the ability of a co-simulation method to be technically compatible with a given configuration of interconnected systems (so-called composite system). Standardization efforts can be observed in the sense that a given set of possible actions a system can do (and information a system can provide) is nowadays recognized by most of the modeling and simulation tool, however there are lots of platforms providing black-boxed systems with only the basic mandatory capabilities to handle a co-simulation, making it challenging (sometimes even impossible) to design or apply an advanced co-simulation method. Industrial practical constraints have to be taken into account in the mathematical process while elaborating co-simulation techniques.

The notion of adaptivity is central to this work as a trade-off between numerical and software robustness can mostly be reached by co-simulation method adapting themselves to the capabilities (or lack of capabilities) of the systems they run on. A first contribution, the F 3 ORNITS algorithms, is adaptive-incapability, adaptive-in-time, adaptive-in-order and adapts the signal reconstruction of interface variable between the systems. Its goal is to reach the best software robustness so that industrial applications can use it regardless of the modeling and simulation platforms from which the involved systems come from. The genericity of F 3 ORNITS allows interoperability, heterogenous composite systems handling, and also performance and accuracy focus in case the method detects that the involved systems enable it. The second contribution is a co-simulation method called IFOSMONDI, with strong requirements (hence not that robust in terms of software robustness), but based on a formulation of the co-simulation making it iii Abstract resolve the problems with a very small (and controllable) error. After these two proposed methods, one on the software robustness side and the other on the numerical robustness side, a step in the direction of adaptivity is made: a co-simulation technique called COSTARICA is introduced and proposes to gain software robustness with a small concession on the side of the numerical robustness. COSTARICA is not a co-simulation algorithm, it is a estimator that replaces the rollback on the systems that do not support it, making it possible to involve them in iterative co-simulation methods (normally requiring that all systems are rollback-capable) such as IFOSMONDI, for instance. Finally, a last co-simulation method called MISSILES is proposed as a trade-off between numerical robustness (as the results are almost as accurate as the ones with the IFOSMONDI method), and software robustness (as the systems are required to have a certain amount of capabilities not all systems have, yet these capabilities are less rare, in practice, than the rollback).

Across the different contributions, several test-cases are used to demonstrate various aspects of the presented co-simulation methods. Some of them are well-known benchmark models or slight modifications, and some of them have been designed within this work in order to show particular limitations co-simulation methods can have, and how our contributions enable to solve them.

Résumé

La cosimulation est largement utilisée dans le domaine de l'industrie en raison de l'émergence récente de systèmes dynamiques modulaires constitués de systèmes en boîte noire connectés les uns aux autres. En effet, les questions de protection de la propriété intellectuelle, l'utilisation d'un savoir-faire technique spécifique aux domaines de chaque système, l'interopérabilité des outils logiciels, l'utilisation de solveurs sur-mesure ou simplement les conceptions modulaires sont autant de raisons qui motivent de travailler avec des modèles découplés plutôt qu'avec un unique modèle monolithique. Néanmoins, malgré l'aspect pratique que présente la manipulation de systèmes composites faits de systèmes interconnectés en boîte noire, des effets numériques néfastes peuvent apparaître suite au partitionnement des équations. Pour cette raison, les techniques de cosimulation ont gagné beaucoup d'intérêt ces dernières années et la recherche sur la conception d'algorithmes de cosimulation robustes, performants et précis est très active.

Cette thèse propose une vue d'ensemble de la notion de partitionnement de systèmes d'équations différentielles au sens large, suivie d'une définition du cadre et d'une clarification de la cosimulation au sens qui nous intéresse. Un second état de l'art est ensuite réalisée dans le contexte que nous préalablement défini. Nos travaux proposent des réponses à l'un des défis majeurs de la cosimulation qu'est la recherche de robustesse. Ces contributions se présentent sous la forme d'algorithmes et techniques de cosimulation développés pour traiter des systèmes différentiels partitionnés (principalement des ODEs, bien que certaines méthodes proposées soient généralisables et sont par conséquent testées avec des cas hybrides mélangeant ODEs, DAEs, systèmes purement discrets, ...).

La notion de robustesse peut être séparée en deux aspects. D'une part, la robustesse numérique consiste à résoudre les problèmes de cosimulation avec une précision suffisante justifiant la fiabilité des résultats. Cet aspect de la notion de robustesse est commun avec les problématiques classiques autour des intégrateurs numériques de systèmes différentiels, par exemple. D'autre part, la robustesse logicielle ou technique reflète un défi directement lié aux usages industriels de la cosimulation : elle caractérise la capacité d'une méthode de cosimulation à être techniquement compatible avec une configuration donnée de systèmes interconnectés (système composite). La plupart des outils de modélisation et de simulation reconnaissent un ensemble donné d'intéractions qu'un système peut réaliser avec son environnement grâce à des efforts de standardisation. Cependant, de nombreuses plateformes logicielles produisent des systèmes en boîte noire avec guère plus que le support des interactions minimales requises pour gérer une cosimulation, ce qui rend difficile (voire impossible) l'application d'une méthode de cosimulation avancée. Les contraintes industrielles pratiques doivent être prises en compte dans le processus mathématique d'élaboration de méthodes de cosimulation.

La notion d'adaptativité est centrale dans ce travail, car un compromis entre la robustesse numérique et la robustesse logicielle peut être atteint en adaptant les méthodes de cosimulation aux capacités (ou à leur absence) des systèmes sur lesquels elles s'appliquent. Notre premier algorithme proposé, nommé F 3 ORNITS , est adaptatif à la fois en terme de capacité, en temps, en ordre et en stratégie de reconstruction des signaux des variables d'interface entre les systèmes. Son objectif est d'atteindre la meilleure robustesse logicielle afin d'être applicable dans le monde de l'industrie, indépendamment des plateformes v Résumé de modélisation et de simulation dont sont issus les systèmes concernés. La généricité de l'algorithme F 3 ORNITS permet l'interopérabilité, la gestion de systèmes composites hétérogènes, ainsi que la recherche de performance et de précision dans le cas où la méthode détecte que les systèmes en jeu le permettent (lorsqu'ils proposent plus que les simples interactions de base, par exemple). La deuxième contribution est une méthode de cosimulation appelée IFOSMONDI, avec des exigences fortes en terme de capacités avancées des systèmes (donc faible sur le plan de la robustesse logicielle), mais basée sur une formulation du problème de cosimulation lui permettant de résoudre ce dernier avec une erreur faible (et contrôlable). Une fois ces deux méthodes proposées, l'une orientée du côté de la robustesse logicielle et l'autre penchant du côté de la robustesse numérique, un pas dans la direction de l'adaptativité de la cosimulation au manque de capacité des systèmes est fait : une technique de cosimulation appelée COSTARICA est introduite et propose donc de gagner en robustesse logicielle avec une légère concession sur la robustesse numérique. COSTARICA n'est pas un algorithme de cosimulation mais un estimateur voué à remplacer le rollback (la capacité de refaire une intégration sur un pas de cosimulation sur lequel une intégration a déjà été réalisée) sur les systèmes qui ne le supportent pas, ce qui permet de les impliquer dans des méthodes de cosimulation itératives (nécessitant normalement que tous les systèmes supportent le rollback) comme IFOSMONDI, par exemple. Enfin, une dernière méthode de cosimulation, appelée MISSILES, fondée sur une formulation globale des contraintes de couplages de type IFOSMONDI et utilisant les estimateurs COSTARICA sur les sysèmes en jeu, est proposée comme un compromis entre la robustesse numérique (car les résultats sont presque aussi précis que ceux de la méthode itérative IFOSMONDI) et la robustesse logicielle (car les systèmes impliqués dans la cosimulation n'ont pas l'obligation de supporter le rollback qui est rare en pratique).
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List of Notations

Here are presented the notations that are used in this thesis. Despite they are gathered in this section, they are defined within the document. Most of them are introduced in 1.3 as the aim of the latter is precisely to set the framework. As all quantities in the document cannot necessary be found here as we use composed notations. For instance, [m] x [N] k,i is not in the list, but x, left square bracket superscript, right square bracket superscript, double subscript and tilde accent are all in the list.

Notations with a short bold description are designated by a term that is defined in the glossary hereafter. Time-derivation operator (1.2), p.9

Notation Definition

( q p )
Binomial coefficient of q choose p, also referred to as the combinations in the literature. (4.18), p.141

δ j1,j2
Kronecker coefficient: 1 in case j 1 = j 2 , 0 otherwise (5.15), p.171 L Laplace transform operator [START_REF] Widder | Chapter II. The Laplace Transform[END_REF] (see [START_REF] Gille | Systèmes et signaux déterministes Transformées et abaques[END_REF] for tables and abacuses in French) (4.21), p.141

L -1
Inverse Laplace transform operator (4.30), p.143 F Function defining the differential system (1.1), p.9 t [init] Initial time (left bound of the time-domain) (1.1), p.9 t [end] Final time (right bound of the time-domain) 1. 3 Directional derivative operator in the direction of v 1 (the function to derivate and/or v 1 can be vectorial, the result would be tensorized in that case: gradient or Jacobian matrix) (4.4), p.137

∂ v1,v2
Second order directional derivative operator in the directions of v 1 and then v 2 (the function to derivate and/or v 1 and/or v 2 can be vectorial, the result would be tensorized in that case) ( Polynomial of degree p calibrated on p + 1 points by extrapolation. An extended version, written the same way (as there is no possible confusion), has as argument, in addition to the time variable, the coordinates of the set of points used for the calibration.

Ω CLS p

Polynomial of degree p calibrated on p + 2 points by constrained least squares (CLS). An extended version, written the same way (as there is no possible confusion), has as argument, in addition to the time variable, the coordinates of the set of points used for the calibration.

H

Hermite interpolation polynomial of degree 3 calibrated on 2 points. An extended version, written the same way (as there is no possible confusion), has as argument, in addition to the time variable, the coordinates of the set of points used for the calibration as well as the derivative constraints.

2.2.2

M

Maximum degree for polynomial inputs in F 3 ORNITS . In this work: M = 2. This is juste the rule for the polynomial prediction, but inputs might be represented by polynomial of higher order, even in F 3 ORNITS (because of the smoothness enhancement).

(2.10), p.51

µ k
Maximum supported polynomial degree for inputs representation by the k th system. Low (or null) µ k is a technical limitation. None of our methods require µ k strictly higher than 3.

M k

Effective maximum polynomial degree for inputs representation by the k th system in F 3 ORNITS method.

(2.11), p.51

p k,i
Order function (see glossary). As we always focus on a particular variable, the double indexing is always used. This namely avoid conflicts with the usage of p for other purposes, like index of summations, for instance. Absolute error that an extrapolation of degree q would have made if it were used to represent an input connected to the i th output of the k th system over the N th macro-step.

(2.13), p.51 κ rel , κ abs Relative and absolute critical thresholds, respectively, used for macro-discontinuities detection.

Not to be confused with a simple κ (without subscripts) namely used as index of summation in (5.31).

( Relative and absolute critical thresholds, respectively, used for macro-discontinuities detection.

Not to be confused with a simple κ (without subscripts) namely used as index of summation in (5.31).

(2.16), p.52

g λ
Coupling function (see glossary) the λ subscript is a literal subscript inherited from the notion of Lagrange multipliers in systems coupling [START_REF] Schweizer | Predictor/corrector co-simulation approaches for solver coupling with algebraic constraints[END_REF] (3.1), p.100

E u k
Extractor, matrix of zeros and ones allowing to retrieve the inputs of a given system from the global input vector. The k subscript denotes the index of the system concerned, whereas the u superscript is a literal subscript.

(3.3), p.101

R y

Rearrangement operator, matrix of zeros and ones rearranging a concatenation of output values and derivatives of all systems into a concatenation of output values of all systems and output derivatives of all systems. The y superscript is a literal subscript.

( Tolerances for convergence of an iterative method within IFOSMONDI, the ε notation is used when ε abs = ε rel (3.16), p.110

A [N ] , B [N ] Directional derivatives of the derivatives function of the considered system with respect to the states and the inputs, respectively (4.2), p.137 xxvi List of Notations C [N ] , D [N ] Directional derivatives of the outputs function of the considered system with respect to the states and the inputs, respectively In particular, R would be the transfer function of the system considered if the controls were not the inputs but the combination of the initial time-derivatives of the states and the sensitivity of the derivatives function to the simulation time.

( 

A V elem A D elem
Vectors representing the relation between a set of constraint (respectively in value an derivative) and the coefficients of the corresponding Hermite interpolation polynomial, the other constraints being fixed by the context. Coefficients are only partially computed with this relation, B elem must still be added.

(5.20), p.172

A

Global composite tensor based on A V elem and A D elem to compute coefficients of several Hermite interpolation polynomials at a time. Coefficients are only partially computed with this relation, B must still be added.

(5.38), p.180

B elem
Additive contribution to the coefficients of a Hermite interpolation, corresponds to the part that does not depend on the value and derivative of the point already taken into account with A V elem and A D elem operators (5.20), p.172 xxvii

B

Global composite matrix based on B elem to compute coefficients of several Hermite interpolation polynomials at a time. The B contribution completes the coefficients once A operator has been applied..

(5.39), p.180

C [N ] k
Tensor of order 4 transforming the coefficients of all inputs of k th system at N th macro-step into their time-shifted version (relates to the use of the ˇsymbol also in this list)

(5.14), p.171

C

Composite tensor of order 4 playing the same role than C

[N ]

k , yet on all inputs of all systems at once (5.40), p.180

L literal subscript "Linear part" of a quantity, the split into "parts" (COSTARICA-related concept) being detailed in chapter 4.3 Analogous to η [N ] , yet the underlying evaluations of simulation functions are replaced by COSTARICA estimations. The MISSILES subscript is literal.

(5.25), p.174

⋆ left superscript Solution of a zero-finding problem (5.26), p.177 xxviii Glossary

Glossary

Here is a help on the technical terms used in this thesis, however they are all also defined in the manuscript. Most of them are introduced in the framework section 1.3 with a more detailed description than in this glossary.

All terms in bold in the definitions in terms in this glossary are also terms that are defined in this glossary.

Term Definition Introduced in

Advanced capability

Subset of the so-called capabilities containing the optional ones. Their availability on the open systems involed in a co-simulation conditions the possibility to use certain non-trivial co-simulation algorithms. This aspect is related to the notion of software robustness.

1.3.7

Asynchronous discretization

Type of macro-discretization where the different open systems of a composite model are not mandatorily discretized with the same communication times (and thus not the same macro-steps either).

1.3.4.1.2

Asynchronous co-simulation method

Co-simulation method relying on a asynchronous discretization.

1.3.4.1.2

Basic capability

Subset of the so-called capabilities containing the mandatory ones to, at least, conduct a co-simulation with the simplest co-simulation algorithms that exist.

1.3.7

Benchmark

Well-known tests-case, seen in the literature either for its simplicity to be analyzed (academic test-cases often have known equations) or for testing purposes highlighting a particular challenge or phenomenon.

3.5.1

Callback function

In the context of this work, the callback function can either be the function of which the zero is searched (function given to a Newton-like method or any Jacobian-free method, for instance), or the function of which the fixedpoint is searched. 

Capability

Thing that an practical implementation of an open system can do, standardized interactions between an open system and the worker program responsible for it. Some are mandatory so that a co-simulation can be conducted: those are the basic capabilities. Some are optional and depend on the platform from which the practical implementation of the open system comes from: those are the advanced capabilities.

1.3.7

Closed system

Model of differential equation without inputs or outputs, and a solver associated to it.

1.3.2.1

Communication step

See communication step (equivalent).

1.3.4.1.1

Communication times

Nodes of the mesh of the time-domain called the macro-discretization. The communication times are at the borders of the macro-steps and consist in punctual moments where the open systems might communicate their respective output variables and setup their respective input variables for the upcoming macro-step (for instance via a simple dispatching among the whole composite system). These times are denoted by t [N ] (with eventually an additional system subscript in the asynchronous discretization case), where N denotes the time index.

1.3.4.1.1

Composite system

Manifold of interconnected open systems making, when connected to one another in a determined way, a decoupled systems for which each part (called the open systems) is solved with its own local solver. As far as a composite system is made of more than one open system, it can only be solved with a co-simulation algorithm.

1.1.1

Computational time

Wall-clock measured elapsed time in the real world. Performance usually means a reduction of this time.

1.4.1.3

Connections matrix

Matrix, denoted by Φ, characterizing the correspondence between each and every input variable and each and every output variable of all open systems involved in a composite system. The transposed version of this matrix is namely very useful for the dispatching stage thanks to the correspondence of the coordinates of this matrix and the global indices of the interface variables.

1.3.3

Constrained Least Squares

Polynomial calibration when the desired degree of the polynomial is lower than the theoretical degree it should have for a classical Lagrange interpolation for a given set of points. Moreover, the polynomial calibrated by Constrained Least Squares must pass through one of the points of the set of points on which it is calibrated.
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Convergence criterion

Mathematical relation that, when satisfied, leads to the end of the internal loop of an iterative co-simulation algorithm with the status "converged", leading to acceptance of the corresponding macro-step. This notion makes no sense in the context of non-iterative co-simulation algorithms.

1.3.6

Co-simulation

Simulation of a composite system, done with a co-simulation algorithm.

1.1.1

Co-simulation algorithm

Rule used to process the co-simulation of a composite system. It can be written in the orchestrator/workers paragidm with an orchestrator program and a worker program (the latter being instantiate as many times as the number of open systems involved in the composite system). The particular distinction bewteen iterative co-simulation algorithms and non-iterative cosimulation algorithm is usually done, both in the literature and in this thesis.

1.1.2

Co-simulation discretization

See macro-discretization (equivalent).

1.3.4

Co-simulation method

See co-simulation algorithm (equivalent).

1.1.2

Co-simulation step

See macro-step (equivalent).

1.3.4.1.1

Co-simulation step loop

Iterative structure (loop) nested in the time loop. In an iterative cosimulation algorithm, the co-simulation step loop corresponds to the attempt to validate (integrate, converge, ...) a macro-step starting from the lastly validated communication time. Each new iteration of this loop may, for instance, correspond to a new end-of-upcoming-macro-step definition. Regarding non-iterative co-simulation algorithms, one can equivalently consider that a single integration of all open systems is done in the single iteration of the co-simulation step loop, or that these loops do not exist and the integration of all systems is simply done once for each iteration of the time loop.

1.3.6

Coupling condition

Condition on the coupling function ensuring, when satisfied, that the input variables and the output variables are close enough regarding their respective corresponding values.

3.2.2

Coupling function

Function taking in arguments instantaneous evaluations of all input variables and all output variables of the composite system and returning the error in terms of differences between the interfaces and their connected ones (strongly related to the notion of dispatching).

3.2.2

Coupling variables

See Interface variables (equivalent).
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Glossary

Derivatives function

Function characterizing the relation between the state vector of a differential equation and their time-derivatives. The derivatives function might also require the time, and the input vector (in case of an open system). It if denoted by f .

1.3.2.1

Dilatation coefficient

Ratio between the sizes of two consecutive macro-steps. The dilatation coefficient with a time index N is the ratio of the size of the macro-step starting at the communication time t [N ] by the size of the macro-step endind at the communication time t [N ] .

2.3.2.1

Dispatching

Stage where the input variables of all open systems are respectively set to the values of their connected output variables.

1.3.3.3

Dispatching matrix

See connections matrix (equivalent).

1.3.3

Divergence criterion

Mathematical relation that, when satisfied, leads to the end of the internal loop of an iterative co-simulation algorithm with the status "diverged", leading to rejection of the corresponding macro-step. This notion makes no sense in the context of non-iterative co-simulation algorithms.

1.3.6

Do-a-step function

See step function (equivalent).

1.3.5

Downstream set

Functional set of indices of systems which have inputs connected to outputs of a given system. The index of the latter is the argument of the downstream functional set. A symetrical concept exists: the upstream set.

2.2.1

Explicit coupling scheme

See non-iterative co-simulation algorithm (equivalent).

1.3.9

Funceval

See derivatives function (equivalent).

1.3.2.2

Global indices

Indices refering to coordinates of an overall vector (id est a vector concatenation among all systems of a given composite system. They are denoted with a bar on top of them (ī, ȷ, ...). Opposed to the local indices.

1.3.2.3

Global link function

Function of two integers enabling to retrieve the local indices of the input variable from the local indices of its connected output variable in the context of a composite system. This function is denoted by L and its definition is eased by the usage of the system's link functions.
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Glossary

Ideal step function

Proper mathematical definition of the step function representing an integration of an open system on a macro-step. Ideal step function of the k th system is denoted by S ideal,k .

1.3.5.1

Implicit coupling scheme

See iterative co-simulation algorithm (equivalent). 1.3.9

Inputs

See input vector (equivalent).

1.3.2.2

Input variables

Components (coordinates) of the input vector.

1.3.2.2

Input vector

Vector of input variables, data denoted by the letter u and controlling a differential equation.

1.3.2.2

Instantaneous evaluation

Real quantity, scalar, vectorial or matricial, corresponding to an evaluation at a certain punctual time of a time-dependent quantity. Instantaneous quantities are denoted by a tilde ˜symbol over the corresponding time-dependent quantity they are evaluations of. Usually, a time index also specifies the communication time at which the evaluation is made. For quantities that are discontinuous at communication times, a + symbol enables to remove the ambiguity near the time symbol, as explained in 1.3.4.2.3.

1.3.4.2.2

Interfaces

See interface variables (equivalent).

1.3.2.2

Interface variables

Generic naming to denote both the input variables and the output variables of the open systems.

1.3.2.2

Internal discretization

See micro-discretization (equivalent).

1.3.4

Internal loop

Iterative structure (loop) nested in the co-simulation step loop. In an iterative co-simulation algorithm, the internal loop corresponds to the attempt to satisfy the convergence criterion without reaching the divergence criterion on a given macro-step. As the internal loop is usually based on an underlying iterative method (fixed-point method, Newton method, ...) on a function of the interface variables, each new iteration of this loop usually corresponds to a new definition of the inputs of all open systems and a corresponding call to their respective step functions over the considered macro-step. Regarding non-iterative co-simulation algorithms, one can equivalently consider that a single integration of all open systems is done in the single iteration of the internal loop constituting the only iteration of the co-simulation step loop too, or that these loops do not exist and the integration of all systems is simply done once for each iteration of the time loop.
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Glossary

Iteration index

Integer identifying the number of time a given macro-step has already been integrated by the systems. The iteration index is usually denoted by m and placed in left superscript of quantities it refers to, within square brackets. Only iterative co-simulation algorithms require to use an iteration index on some quantities. In the case of non-iterative co-simulation algorithms, the iteration indices can be considered as always zero, and the corresponding left superscript is not even written. 

Iterative co-simulation method

See iterative co-simulation algorithm (equivalent).

1.3.4.2.1 1.3.6

Jacobian-free method

Jacobian-free versions of an iterative method that are designed to find the zero(s) of a given function, and that normally require the computation of the Jacobian matrix of this function. In particular, a fixed-point method does not meet these criteria: it never requires the computation of a Jacobian matrix, hence it is not a Jacobian-free method.

3.2.1

Link function

Ambiguous. Either report to system's link function of a given system, or to the global link function. When nothing is specified, the preferred definition is the global link function's one.

1.3.3

Local indices

Indices refering to coordinates of an vector defined for a given system. For instance, the i th coordinate of a vector refering to the k th system of a composite system will be denoted by a subscript i,k on the letter denoting this vector. Opposed to the global indices.

1.3.2.4

Macro-discontinuity

Behavior change detected at the co-simulation level (through the interfaces of the systems) where the interfaces become hard to accurately predict. A co-simulation method might want to behave safer when a macrodiscontinuity is detected.

2.3.1.2

Macro-discretization

Discretization of the time-domain into macro-steps. This discretization is a mesh with each cell being discretized at a smaller scale (see microdiscretization).

1.3.4

Macro-step

Cell of the mesh of the time-domain called the macro-discretization. A textbfmacro-step is a time interval on which an open system is integrated independently of the other open systems of a given composite system. This integration is handled by the so-called step function.
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Micro-discretization

Discretization of the time-domain in micro-steps. This discretization is the one used by the internal solver of a considered system and, in case of a composite system, the micro-discretization has no need to be the same for every interconnected open system (even in the case of a synchronous discretization, as the latter concerns the macro-discretization). In case of a co-simulation, the micro-discretization is a subdivition within each macrostep.

1.3.4

Micro-step

Cell of the mesh of the time-domain called the micro-discretization. A micro-step is a time interval used by a solver (integration method) to solve a differential equation.

1.3.4.1.1

Modified extended step function

Wrapping of the concatenation of the state-hiding practical step function and its dot version together with the computation of the inputs to prode it with prior to the underlying integration. IFOSMONDI-related concept.

3.3.2

Modular model

See composite system (equivalent).

1.1.1

Monolithic system

See closed system (equivalent). 

1.3.2.1

Non-iterative co-simulation algorithm

Numerical robustness

Expectation, for a given co-simulation algorithm, to produce relevant results on a given composite system. Not to be confused with the software robustness (another aspect of the generic notion of robustness). Usually, iterative co-simulation algorithms have a better numerical robustness than non-iterative co-simulation algorithms.

1.1.2 1.5.1

ODE's function

See derivatives function (equivalent).

1.3.2.2

Open system

Model of differential equation with any number of inputs or outputs, and a solver associated to it. A connected set of open systems make a composite system. The k th open system of a composite system is denoted by (S k ).
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Orchestrator program

In the orchestrator/worker paradigm, the orchestrator program is the algorithm implementing the among-all-systems tasks of a given co-simulation algorithm, and responsible of the communication with the several worker programs.

1.3.6

Order function

Function giving, at any given time, the best polynomial order (to a defined criteria for "best") that should be used to represent an interface variable at times close to this one. The order function is a F 3 ORNITS concept.

2.3.1

Outputs

See output vector (equivalent).

1.3.2.2

Outputs function

Function computing the output vector of a system from the time, the state vector and the input vector of this system. It is denoted by g.

1.3.2.2

Output variables

Components (coordinates) of the output vector.

1.3.2.2

Output vector

Vector of input variables, data denoted by the letter y and acting as observers of a differential equation. Their computation is handled by the outputs function.

1.3.2.2

Polynomial-inputs ideal step function

Restriction of the ideal step function where the input vector argument is restricted to a polynomial vector with real coefficients. This function is denoted by S ideal,poly(n),k for the one corresponding to the k th open system, and n denotes the maximal polynomial degree of the input vector argument.

1.3.5.2

Robustness

Might be ambiguous. Either report to software robustness of a given cosimulation algorithm, to its numerical robustness, or both. When nothing is specified, the abstract notion of robustness both gathers the two aspects of software robustness and numerical robustness.

1.1.2 1.5.1

Rollback

The most advanced among the advanced capabilities in the sense where it's the most rarely available in practical implementations of open systems as very few modeling and simulation platforms provide it. This capability consists in being capable to re-integrate a macro-step that has already beein integrated before. Namely, it is mandatory, for iterative co-simulation algorithms, that all involved systems are rollback-capable, otherwise the cosimulation step loop and the internal loop cannot do more than one single iteration.

1.3.6 1.3.7

Scheduler

Procedure that may both edit the size of the macro-step determined by the scheduler, but also choose which system to trigger or to stop.
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simulation function

See step function (equivalent).

1.3.5

Simulation time

Virtual time in the simulations we are interested in in this work. This is the same "time" as in "time-domain simulation".

1.1

Simulation unit

See open system (equivalent).

1.3.9

Smoothness

Belonging to the C 1 class (for a given signal). The smoothness the of cosimulation interface variables is the one cared about in this work.

2.3.1.5

Snapshot

See instantaneous evaluation (equivalent).

1.3.4.2.2

Software robustness

Technical possibility to handle a given composite system. A robust cosimulation algorithm in terms of software robustness does not have strong requirements about the advanced capabilities the open systems must have. Not to be confused with the numerical robustness (another aspect of the generic notion of robustness). Usually, non-iterative co-simulation algorithms have a better software robustness than iterative co-simulation algorithms (because of the rollback requirement).

1.1.2 1.5.1

Solver discretization

See micro-discretization (equivalent).

1.3.4

Solver step

See micro-step (equivalent).

1.3.4.1.1

State-hiding practical step function

Abuse of notation of the polynomial-inputs ideal step function where the states are ommited as underlying co-simulation hypothesis remove the choice on the latter. This function is denoted by S k for the one corresponding to the k th open system.

1.3.5.3

States

See state vector (equivalent).

1.3.2.2

State variables

Components (coordinates) of the state vector.

1.3.2.2

State vector

Vector of state variables, solution of a differential equation, the latter being a relation between the state vector and its componentwise time-derivative.
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Step function

Function representing the integration of an open system over a macro-step.

The proper mathematical definition if the ideal step function, however practical versions can be used to simplify the notations (state-hiding practical step function, time-indexed preactical step function, concatenated versions with their dot versions, ...). Despite enabling to retrieve different quantities after a call, all of the different versions of the step function are equivalent in the sense that they all represent a single integration over a single macrostep.

1.3.5

Step size

Ambiguous. Either report to the size of the macro-step, or to the size of the micro-step. When nothing is specified, the preferred definition is the size of the macro-step, especially in this work.

1.2.3.2

Synchronous discretization

Particular type of macro-discretization where the different open systems of a composite model are mandatorily discretized with the same communication times, and thus with the same macro-steps too.

1.3.4.1.2

Synchronous co-simulation method

Co-simulation method relying on a synchronous discretization.

1.3.4.1.2

System

Ambiguous. Either report to composite system, closed system or open system. When nothing is specified, the preferred definition is the open system's one.

1.1.1

System for co-simulation

See open system (equivalent).

1.3.2.2

System's link function

Function enabling to retrieve the local indices of the input variable from the local index of its connected output variable of the system this function refers to. This function is denoted by L l where l denotes the index of the system it refers to (in the context of a composite system. This function eases the definition of the global link function.

1.3.3

Time

Ambiguous. Either report to computational time or to simulation time.

When nothing is specified, the preferred definition is the simulation time's one.

1.1

Time index

Integer identifying a given macro-step among a macro-discretization. The time index is usually denoted by N and placed in right superscript of quantities it refers to, within square brackets (to avoid confusion with a power exponent). For instance: t [N ] is the communication time at the beginning of the N th macro-step.

1.3.4.1.1 1.3.4.2.1 xxxviii Glossary

Time-indexed practical step function

Abuse of notation of the polynomial-inputs ideal step function where the macro-step argument is ommited and replaces by a time-index that characterizes the macro-step (in a given known macro-discretization). This function is denoted by S

[N ] k

for the one corresponding to the k th open system, at the N th macro-step (N being the time index).

1.3.5.4

Time loop

Iterative structure (loop) in a co-simulation algorithm corresponding to the forward movement in simulation time. Each new iteration of this loop corresponds to a new macro-step definition, right after the last validated (integrated, converged, ...) communication time.

1.3.6

Time-stepper

Rule defining the evolution of the size of the macro-step across a cosimulation.

2.3.2

Upstream set

Functional set of indices of systems which have outputs connected to inputs of a given system. The index of the latter is the argument of the upstream functional set. A symetrical concept exists: the downstream set.

2.2.1

Worker program

In the orchestrator/worker paradigm, the worker program is the algorithm implementing the tasks that a system must do. In the implementation of a given co-simulation algorithm, one worker program is instantiated for each involved open system. A worker program only communicates with the orchestrator program, not with other worker programs. 

Contenu du chapitre

Dans ce chapitre, le concept de cosimulation est défini. Après une première définition rapide, un mot sur le rôle attendu de l'algorithme sur lequel porte ce travail et la motivation scientifique, un état de l'art est réalisé. Ce dernier est séparé en deux partie. Une première revue de la littérature présente à grande échelle les différentes approches de la notion globale de "systèmes découplés". En effet, la cosimulation peut être parfois également dénotée, dans la littérature, par les notions de "systèmes découplés", "systèmes partitionés", "couplage de simulateurs", "modèles modulaires"... Derrière certains de ces termes se trouve cependant parfois des stratégies de couplage différentes de la cosimulation telle que considérée dans cette thèse. Pour cette raison, un cadre doit être établi. Une section dédiée présente donc le formalisme mathématique dans lequel notre travail s'insère, ainsi que les notations associées et les concepts correspondants au sens de la norme FMI. Une fois ce formalisme présenté, un second état de l'art est réalisé autour des travaux connexes qui s'inscrivent (ou presque) dans le cadre ainsi défini. Enfin, nos contributions sont résumées dans une synthèse explicitant la motivation de chaque méthode, les décrivant brièvement et mettant en évidence le fil conducteur existant dans le fil de leur développement.

Summary of the chapter

In this chapter, the concept of co-simulation is defined. After a rapid definition of the concept, a word on the expected role of the algorithm this work deals with, and the scientific motivation, a state of the art is conducted. This state of the art is separated into two stages. A first literature review generally presents different approaches of the global notion of "partitioned systems". Indeed, co-simulation might be referred to as "partitioned systems", "simulator coupling", "modular models", and a lot more of other denominations in the literature. Some of these terms reflect different coupling strategies than the co-simulation we consider in this work. For this reason, a framework has to be settled. A dedicated section therefore presents the mathematical formalism in which our work will be inserted, together with the associated notations and corresponding concepts in the functional mock-up interface (FMI) standard. Once the formalism is presented, a second state of the art is conducted around related work that fits (or almost fits) in the framework of the defined formalism. Finally, our contributions are summed up in an overview expliciting the motivation of each method, briefly describing them, and highlighting the common thread.

Co-simulation definition and motivations

Here is an overview of the co-simulation for time-domain simulations of differential systems. The main principles will be broadly defined so that the motivations and challenges can be identified. The detailed principles and associated framework and notations are not required to grasp the motivations, so they will be given afterward, in section 1.3.

What is co-simulation?

Numerical simulation nowadays has a wide range of facets. Among them: the simulation in time (sometimes called 0D simulation) of industrial multiphysics models is a challenge that is mainly solved by the use of composite equations. In other words, the model is made of interconnected domain-specific smaller models. A co-simulation consists of a simulation of interconnected systems exchanging coupling data between them, each of them embedding its own solver. The overall system made up of these interconnected systems (or, equivalently, subystems) is called a composite system, and we will equivalently refer to the underlying model as a modular model. Industrial applications of numerical simulations have reached a point where these modular models are not only practical but mandatory. Indeed, model providers are often specialized in a specific range of physical domains such as thermodynamics, mechanics, fluids or electrical circuits. One of the consequences of this situation is the need for co-simulation methods to deal with composite systems built by connecting several systems where each of them integrates a part of the physics of the global model. As the systems integrate a solver (which may be domain specific depending on the system and thus different from one system to another), the simulation of the overall system can be performed by simulating each system separately with regular data communications between the systems. This is the basic principle common to all co-simulation methods.

Several motivations to conduct a co-simulation can appear, here is a non-exhaustive list:

• Multiphysics models might benefit from the usage of different domain-specific solvers on their different subparts. For instance, the electrical part of a model can use a dedicated method based on the known shape of the electrical signals, the fluid part can benefit from a solver preserving the conservation laws, etc. • system providers might want to provide a black-box that only has a restricted number of interfaces (inputs and outputs) and known interactions. The equations and/or the solver inside thus do not need to be disclosed in order to simulate the system. Among the related industrial applications, we can mention the protection of the intellectual property around the modelling and simulation technologies. • Huge equations with a limited number of stiff variables and a significant proportion of non-stiff variables may over-constrain the solver if the global model is solved globally, splitting the system may improve the performances of the simulation as a stiff solver may solve the stiff part (of a limited size), and a non-stiff solver (usually faster) can solve the non-stiff part. This motivation is however quite rare regarding industrial cases. • Modular models ease the tests of different configuration of a global system by changing only subparts of it (software-in-the-loop approach).

The first and the last motivations of this list can be combined: designing a system representing the physics of a given field (electricity, mechanics, fluids, thermodynamic, etc) allows the use of a specific and adapted tailored solver for this field, or even the modelling with a specific third party software. Regarding industrial applications, a modular model is preferred because system providers can focus on a part of the global system without taking the rest into account.

By-design co-simulations (cases where a co-simulation is the imposed by the modular nature of the system) have to be distinguished from intentional co-simulation (where the monolithic equivalent of the global model is available for a monolithic simulation). Indeed, most of the times, the requirement of domainspecific solvers in the systems, their black-box aspects and the fact that they may originate from different third-party modelling and simulation platforms make it impossible to gather the systems into a monolithic version of the global system. In this document, however, most of the test-cases originate from monolithic systems that have been split into a modular model so that the co-simulation results can be compared to a monolithic reference. Although it is usually not possible in practice, it is convenient for computing error measures and comparing the accuracy of various co-simulation methods.

Role of the cosimulation algorithm

The co-simulation method (or equivalently co-simulation algorithm) is the rule used to process the simulation on modular systems. The co-simulation field of research focuses on the numerical methods behind these algorithms that can be used to process these co-simulations. From the simplest implementations to very advanced methods, co-simulation methods have been developed in different fields, showing that the underlying problems to be tackled are not straightforward. Some arising problems could clearly be identified since the moment it has become a center of interest for researchers, such as the delay between the given inputs and the retrieved outputs of a system (corresponding to the so-called "co-simulation step" or "macro-step"), the instabilities that might occur as a consequence of this delay, the discontinuities produced at each communication between systems, the error estimation, the techniques to solve the so-called "constraint function" (defined later in this document) corresponding to the interface of the systems, and so on. Moreover, performance issues usually arise when co-simulation codes are implemented in practice, for instance: idling systems (in Gauss-Seidel-like methods systems are simulated sequentially, one at a time, and in Jacobi-like methods the time taken by a co-simulation step is the one of the slowest system due to synchronization points where faster systems have to wait for slower ones). Many of these problems have been addressed in papers, either proposing an analysis, a method to solve them, or both.

Lots of operating margins are available for the co-simulation methods to tackle a problem. Amongst others, it namely deals with: the determination of the times of the data communications, the computation of the inputs that must be used by each system at each step, the way to use the outputs in these computations, ... In the section 1.3, the possible actions of the co-simulation algorithm will be formalized.

Three main challenges arise from the co-simulation field. They identify what is expected from the co-simulation methods.

Accuracy:

Each system of a modular model only has a limited knowledge of what is happening in the rest of the global system (the other systems) during the co-simulation. The interfaces will be detailed later in the document, but the main idea of the accuracy challenge in co-simulation consists in limiting the error due to the fact that each system does not have a full knowledge on what is happening in the other systems.

Performance: Regular data exchanges between the different systems may be heavy in terms of computational cost. Indeed, in practice, continuous systems (that is to say, systems of continuous equations) may use variablestep integrators that require a restart after each and every data-communication caused by the co-simulation process. Such restarts are the main cause of the time overhead due to the co-simulation compared to a monolithic simulation.

An example of a trade-off between performance and accuracy is the size of the intervals between each data communication: the smaller these intervals are, the more up-to-date the data are and therefore the more accurate the results are expected to be (in general), but this generates a significant time overhead. To reduce this overhead, larger intervals can be considered, but this usually deteriorates the accuracy.

Genericity/Robustness: A generic co-simulation algorithm is a method that can be applied regardless of systems specificities. Aspects such as the number of interconnected systems or the nature of the exchanged variable between them (force, flux, signal, ...) are not supposed generate limitations of usage of a co-simulation method for the latter to be qualified as generic.

A robust co-simulation algorithm is an algorithm that is able to handle most of the modular models. A common way to make a co-simulation method robust is to make it adaptive: this way, the specificities of the handled systems are taken into account by the method itself. For instance, an analogy with variablestep integration methods can be made: they are more robust than fixed-step integration methods in the sense that the latter need a fixed-step size to be defined (and this size strongly depend on the dynamics of the system), whereas variable-step integration methods dynamically adapt the step size so that the dynamics are caught for any system it runs on. Regarding co-simulation methods, several aspects can also be adaptive instead of predefined, and this adaptivity brings robustness to the method.

There are two aspects of such a robustness in a co-simulation algorithm: the software robustness and the numerical robustness. The first one is about the technical possibility to handle a given modular model, and the second one is about the expectations that the considered co-simulation algorithm will produce accurate results.

Scientific motivation

Simply simulating the interconnected systems separately is not possible as far as a system's behavior depends on data produced by the other systems. Conducting several small simulations over successive small time intervals and providing each system with the data of the others (simplest co-simulation method described later, referred to as non-iterative Jacobi, and widely used in the industry due to its simplicity) partially solves the problem, however this solution is not robust: the time interval between data exchanges has to be explicitly chosen, and depending on it the accuracy/performance trade-off might be unbalanced. Moreover, if every system represents its incoming data by a constant value over one of these small time intervals (zero-order hold) and if the corresponding data is not constant and its dynamic has a strong importance for the considered system, a significant error may appear.

In that sense, the design of a co-simulation method is not straightforward and requires scientific investigations in order to obtain an algorithm facing the above-mentioned challenges.

Some related work regarding partitioned systems 1.2.1 Different interpretations

A first glance at the research related to coupled systems, partitioned systems and modular simulation shows that these concepts arose in various fields at various levels and with various implementations.

For instance, Stig Skelboe developed methods for partitioned systems of ODEs [START_REF] Skelboe | Methods for Parallel Integration of Stiff Systems of ODEs[END_REF] where the solver is parallel. This method is affected by the way the system if partitioned, and further research focused on criteria used to help the systems' split [START_REF] Skelboe | Integration of Partitioned Stiff Systems of Ordinary Differential Equations[END_REF], or benefit from natural partitioning for a specific type of system [START_REF] Skelboe | Exploiting the natural partitioning in the numerical solution of ODE systems arising in atmospheric chemistry[END_REF]. These methods, referred to as "decoupled discretization formulas" (in the accuracy analysis [START_REF] Skelboe | Accuracy of Decoupled Implicit Integration Formulas[END_REF]), can be philosophically seen as "co-simulation" in the sense that they exploit the partitioning of systems to simulate the global equations. In the same direction, partitioned Runge-Kutta methods in [START_REF] Günther | Multirate partitioned Runge-Kutta methods[END_REF] enters in the definition as well.

Another interpretation of coupled systems is presented and studied in [START_REF] Ascher | Implicit-Explicit Methods for Time-Dependent Partial Differential Equations[END_REF] and consists in decoupling parts of time-dependent PDEs so that a given method solves a part of it and another method another part of it. The idea here is close to what we want to reach in the sense where subparts of a global equation are solved with different numerical methods.

Multiphysics simulations also motivates the use of modular simulation methods: when different-bynature systems are connected in order to form a global heterogeneous system that needs to be simulated. The fluid-structure PDEs, for instance, require this kind of modular simulation [START_REF] Keyes | Multiphysics simulations: Challenges and opportunities[END_REF]. Even when the PDEs do not necessary represent multiphysics, structural domain decomposition such as dual Shur method [START_REF] Nakshatrala | On dual Schur domain decomposition method for linear first-order transient problems[END_REF] can lead to modular simulations.

Along all these interpretations of simulator coupling, it is clear that a framework must be defined to restrict the research to some bounds. Industrial co-simulation we want to tackle deals with industrial models, usually black-boxes with a solver embedded with each system. Thus, decoupled discretization formulas [Ske92; Ske96; SZ97; Ske00] do not enter our framework as the solver itself is partitioned (which is incompatible with the fact that every system may embed a solver without even disclosing it).

In this work, we only consider 0D systems, also sometimes called "circuits" or "lumped parameter system" (in [START_REF] Viot | Solving coupled problems of lumped parameter models in a platform for severe accidents in nuclear reactors[END_REF], for instance). They might come from discretized PDEs, but the PDE structure is thus hidden and these systems are treated like classical ODEs (or DAEs, to a certain extend). Hence, decoupling techniques explicitly using the PDE form of the equations (like [START_REF] Ascher | Implicit-Explicit Methods for Time-Dependent Partial Differential Equations[END_REF]) are also not part of our framework.

Finally, we want to focus on industrial application regarding desktop numerical simulation (or HPC), but not hardware-in-the-loop aspects. Despite co-simulation being often used in the software-in-theloop development phase, the related problematics lead to considerations about delays that are excluded from this work. Such delays-related research has namely been investigated in works like [START_REF] Garbey | A parallel adaptive coupling algorithm for systems of differential equations[END_REF] (cover hardware delay by computation for parallel efficiency), [START_REF] Gahinet | Software for modeling and analysis of linear systems with delays[END_REF] (taking into account controls with delays), or [START_REF] Ochel | OMSimulator -Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP[END_REF] (explicitly modelling the transmission line taking into account the finite information propagation speed of the physical elements, as in [START_REF] Krus | Robust Modelling Using Bi-Lateral Delay Lines for High Speed Simulation of Complex Systems[END_REF]).

At this point, the interpretation of co-simulation we want to consider is simply the simulation technique to use for time dependent coupled problems involving one (low interest), two or more systems connected to one another with a defined number of interfaces while each of them embed its own solver and where the solvers may be independent (black-boxes). A state of the art [GG+17; GG+18b] realized by Cláudio Gomes et al. has been conducted and published around this definition of co-simulation in 2017-2018. The formalism is explained in a common way to include most of the related research that arose in various fields where co-simulation techniques have been developed (discrete world, physics-based simulation, control theory, ...). The state of the art of this thesis (especially the second part, after the framework introduction, that is to say section 1.4) mostly focuses on the co-simulation methods from a numerical point of view.

Motivations for partitioning systems

The main motivation to do co-simulation is the coupling of existing simulators. Indeed, by-design cosimulation arises when black-boxed systems exist and have to be coupled to be simulated. In this case, there is usually no way to reassemble a monolithic equivalent of the global model, and no discussions about the best way to split the model for co-simulation: it is imposed by the interfaces of the given systems. This motivation, namely handled with proposed general co-simulation methods in [START_REF] Kübler | Two Methods of Simulator Coupling[END_REF], is the one usually occurring in industrial context as different systems might come from different providers, from different modelling and simulation platforms and with potentially domain-specific solvers.

Another industrial motivation for co-simulation (related to the previous one) is the intellectual property (IP) protection. Indeed, the black-box representation of systems with a restricted defined interface enables the know-how to be protected (could it be the equations of the model or the domain-specific solver). Cosimulation techniques enable to simulate modular models made of these black-boxes without disclosing them. This motivation can namely be observed in Bei Gu et al. research in the evolution of the method presented in [START_REF] Gu | Co-Simulation of Algebraically Coupled Dynamic Subsystems[END_REF] into an adaptation of it that is explicitly make to avoid disclosure of proprietary system models [START_REF] Gu | Co-Simulation of Algebraically Coupled Dynamic Subsystems Without Disclosure of Proprietary Subsystem Models[END_REF].

Due to several communications at discrete points in time, co-simulations are usually slower than monolithic simulations due to necessary solver restarts [START_REF] Kossel | Effects of Tool Coupling on Transient Simulation of a Mobile Air-Conditioning Cycle[END_REF], however in some precise cases the opposite phenomenon may appear: local dynamics in the model can be isolated in a system so that they don't affect the whole resolution. In thas case, co-simulation can be used to speed-up the simulation by isolating the numerical difficulties. An example of this usage is [START_REF] Busch | Coupled simulation of multibody and finite element systems: An efficient and robust semi-implicit coupling approach[END_REF] where multibody mechanics is connected to finite element systems: the Jacobian computation with respect to the global state vector is too time consuming, but when it is isolated in the finite element system and the communication with the multibody mechanics is done with a reduced number of interface variables, the efficiency is enhanced.

Heterogeneous systems coupling can be achieved with co-simulation, both in terms of physics (domainspecific solvers can be used, as mentioned previously), and in terms of nature. For instance, discrete systems can be connected with continuous system through a co-simulation to get a hybrid simulation (or equivalently a hybrid co-simulation). This kind of co-simulation is mentioned in the state of the art [GG+17; GG+18b] with a clear distinction between the discrete events systems and the continuous time ones. In this case, the co-simulation also arises by design, and enables to simulate a composite system that could not be simulated in a monolithic manner dur to its strongly hybrid nature. For instance, applications to electric power grids and communication network simulation can be highlighted [START_REF] Kelley | A federated simulation toolkit for electric power grid and communication network co-simulation[END_REF].

The last motivation mentioned in this section is the preparation for real-time. Without entering too deep into the model-based design approach, once the model-in-the-loop validation stage is complete a software-in-the-loop validation stage is required. As mentioned previously, delays implied by this typical design will not be a problematic handled in the methods proposed in this work, however, our cosimulation methods can still be applied to that stage as this is an existing motivation for co-simulation: the preparation of the real-time. Software-in-the-loop stage is typically a design for which co-simulation is a possible answer. Targeted evolutions to real-time co-simulation (last stage of model-based design) is namely presented in the work of Stettinger at al. [START_REF] Stettinger | Extending Co-Simulation to the Real-Time Domain[END_REF] with dedicated methods especially designed for this [START_REF] Stettinger | A Model-Based Approach for Prediction-Based Interconnection of Dynamic Systems[END_REF] in the ACoRTA project (Advanced Co-simulation methods for Real-Time Applications) [START_REF] Stettinger | Model-based Coupling Approach for non-iterative Real-Time Co-Simulation[END_REF].

Systems information dependent literature review

Among the previous research, several aspects of co-simulation have been studied, from the definition of the decoupled model (where to split a global model) to the basic co-simulation methods analysis and proposition of advanced co-simulation methods either to a restricted domain-specific range of usage, to a particular class of models or for generic purpose.

Systems information dependent splitting

A definition of the inferfaces (definition of the model split) so that the amount of coupling variables is the smallest possible for the highest possible level of information has been handled in [START_REF] Duc | Proper Orthogonal Decomposition In Decoupling Large Dynamical Systems[END_REF] using proper orthogonal decomposition (POD). This interesting method does unfortunately not fit our framework as far as the interface variables are not sufficient data to act on to implement this method: the internal function of the differential equation must be changed by the procedure, which is not possible in a black-box context.

In the multibody mechanics field, systems coupling is often driven by constitutive laws. Different splits correspond to different mechanical approaches studied in [START_REF] Schweizer | Explicit and Implicit Cosimulation Methods: Stability and Convergence Analysis for Different Solver Coupling Approaches[END_REF] [START_REF] Kraft | Efficient Parallelization of Multibody Systems Incorporating Co-Simulation Techniques[END_REF][START_REF] Meyer | Co-Simulation Methods with Variable Communication Step Size and Alternative Approaches for Solving Constrained Mechanical Systems[END_REF]. The link between the different coupling approaches relying on different mechanical joint types has been namely shown in [START_REF] Schweizer | Stabilized index-2 co-simulation approach for solver coupling with algebraic constraints[END_REF] as well as other coupling approaches (Baumgarte, weighted multipliers, ...) [START_REF] Schweizer | Implicit co-simulation methods: Stability and convergence analysis for solver coupling approaches with algebraic constraints[END_REF].

It can be observed that having a co-simulation configuration of systems with restricted interfaces (with respect to the internal complexity of the systems) is a challenge, and that multibody mechanics is a field where the definition of the interface themselves are challenging to define (depending on the different approaches). These problems have been commonly addressed using a reduced interface model (RIM) approach in [START_REF] Peiret | Co-Simulation of Multibody Systems With Contact Using Reduced Interface Models[END_REF].

Systems information dependent co-simulation methods

Once the decoupled model is chosen, a co-simulation method must be used to run the co-simulation. Basic and advanced algorithms will be presented in 1.4 (once the framework is introduced), yet here is a first overview on the proposed advanced co-simulation methods in the literature. This overview is intended to motivate the definition of a framework.

A problem that has been identified in most of the co-simulation algorithms is the violation of energy conservation principles (or generalized equivalents of the energy) due to the coupling, either through an accumulation of artificial energy or through energy loss. "One of the negative aspects of discrete-time communication [due to co-simulation] is the introduction of artificial energy in the system dynamics, which can render the simulation unstable if it accumulates over time." [START_REF] González | Energy-leak monitoring and correction to enhance stability in the co-simulation of mechanical systems[END_REF]. When the information is known that some identified coupling variables between different systems work together from an energetical point of view, a "power bound" is said to be known. Such information namely enables Francisco Gonzalez et al. to add artificial damping to compensate the energy accumulation by correcting the input coupling variables, and Martin Benedikt et al.'s NEPCE (Nearly energy-Preserving Coupling Element) method [START_REF] Benedikt | NEPCE -A nearly energy-preserving coupling element for weak-coupled problems and co-simulation[END_REF] to add corrections avoiding the energy accumulation or loss. A different approach with a similar goal is Severin Sadjina et al.'s ECCO approach (Energy Conservation-based Co-simulation method) in [START_REF] Sadjina | Energy conservation and power bonds in co-simulations: non-iterative adaptive step size control and error estimation[END_REF], where the authors "directly study the flow of energy throughout a co-simulation in detail using the concept of power bonds" and they "show that, if coupling variables are given in quantities whose product is a physical power -such as force and velocity, pressure and flow rate, or voltage and current -the energy exchanges between simulators are directly accessible". Both approaches are combined in further work of Severin Sadjina et al. [START_REF] Sadjina | Energy conservation and coupling error reduction in noniterative co-simulations[END_REF].

The PhD thesis of Christian Anderson [START_REF] Anderson | Methods and Tools for Co-Simulation of Dynamic Systems with the Functional Mock-up Interface[END_REF] also addresses co-simulation challenges, namely the effect of the discontinuities generated at each communication time. Restarts occurring in internal solvers is indeed often time-consuming: it usually causes the main overhead in the execution time of a co-simulation compared to a monolithic simulation. An approach mentioned to solve this issue is the modification of the state variables (internal variables of the systems) history so that the internal solver can smoothly continue the integration after a communication time has passed.

The step size, also called macro-step size or co-simulation step size (that will be formally defined in 1.3) is a quite critical choice in co-simulation methods. A "too big" step size is dangerous as it may lead to inaccuracy results, but taking a very small one is usually not a good idea as it slows down the co-simulation run drastically. This problem has been tackled throught different angles in the literature. Avoiding big steps stepping over discontinuous behaviors in systems is namely the object of [START_REF] Uwe | A priori step size adaptation for the simulation of non-smooth systems[END_REF], and usage of a so-called "sensitivity model" to prevent such phenomena is presented in [START_REF] Farkas | Adaptive Step Size Control for Hybrid CT Simulation without Rollback[END_REF]. In addition to problem of the discontinuities between consecutive co-simulation times, the step size has a real effect on the accuracy of the co-simulation. For this reason, adaptive step-size methods have been developed. For instance, [START_REF] Kraft | Parallel Co-Simulation Approach With Macro-Step Size and Order Control Algorithm[END_REF] bases the step size adaptation on a criterion analog to the adaptive step solver SUNDIALS in [START_REF] Hindmarsh | SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers[END_REF]. Effects of a not thin enough time grid such as aliasing in the coupling signals has been identified in [START_REF] Benedikt | Modelling and analysis of the noniterative coupling process for co-simulation[END_REF]. The latter shows the benefits of restricting the step size to a relevant value depending on co-simulation techniques (namely order representation of coupling variables). Another related research is [START_REF] Ângelo | Approximated stability analysis of bi-modal hybrid co-simulation scenarios[END_REF] from Cláudio Gomes et al. where the aim is to find the biggest yet suitable co-simulation step size. Safe values can be computed for the given structure of systems studied in the paper (bi-modal hybrid co-simulation scenarii), which illustrates the fact that information about the structure and/or nature of involved systems enables a better insight on the co-simulation method. This trend is evidenced in the Hint-Co framework [START_REF] Ângelo | HintCO -Hint-based Configuration of Co-simulations[END_REF], a hint-based co-simulation configuration using all extra information about the systems (interface signal natures, systems frequencies, controller rates, power bonds, ...), so-called "hints", to choose and adapt the co-simulation method to be used.

Among related work presented in this section (1.2), several interpretations of the systems coupling concept have been evoked, and several related techniques have been mentioned. However, in this work, despite the interest of all cited research efforts, a restricted area of co-simulation is considered: the generic co-simulation algorithms for black-boxed time-dependent systems. In order to clarify the scope of our research, a framework needs to be formally defined.

Framework and notations

Industrial constraints motivated framework

The aim of this work is to design industrial co-simulation methods to be integrated in Simcenter System Simulation portfolio [Sofb] for Siemens Digital Industries Software. Therefore, among the various interpretations of systems partitioning that can be found in the literature (as shown in 1.2.1), the scope of this research is restricted to co-simulation of 0D systems.

Among the challenges mentioned in the papers referenced in 1.2.2, the coupling of existing simulators exactly matches the industrial use case we want to tackle. Indeed, in practice, a co-simulation method to be integrated in the Simcenter System Simulation product is expected to solve an already-existing (user assembled) configuration of interconnected systems. Moreover, the IP protection (no need for disclosure of internal data of systems), the seek for accuracy and the time efficiency are goals that we want to achieve to reach an industrially valuable co-simulation method.

However, the constraints implied by this scope make it not possible to use all proposed methods in the literature. For instance, unlike the work referenced in 1.2.3.1, the interface is seen as a given topological data and cannot be changed, although these researches show that the quality of the co-simulation results may depend on this split. Another consequence of having an already-decoupled model is that the connection rules are driven by the [Sofb] software rules: causal connections only are possible and algebraic couplings like presented in [GA01; GA04; SLL15; SL15b] cannot be obtained. Black-box aspects of the involved systems make it impossible to know in advance the nature of the coupling (constitutive laws for instance, or mechanical nature of the variables), so techniques such as Baumgarte stabilization [START_REF] Schweizer | Predictor/corrector co-simulation approaches for solver coupling with algebraic constraints[END_REF] or weighted multipliers [START_REF] Schweizer | Implicit co-simulation methods: Stability and convergence analysis for solver coupling approaches with algebraic constraints[END_REF] cannot be implemented in our case.

The main drawback of the methods presented in 1.2.3.2 is the lack of genericity. Indeed, extra information of possible interactions that some systems may provide are not always there, and some co-simulation methods cannot run on configuration involving systems with limited information or capabilities. For ex-ample, in industrial simulation involving black-boxed systems: the power bonds are usually not known (making it impossible to use [Gon+19; Ben+13; Sad+17; SP20]), the internal solver data cannot be modified on black-boxed systems (making it impossible to use [START_REF] Anderson | Methods and Tools for Co-Simulation of Dynamic Systems with the Functional Mock-up Interface[END_REF]), sensitivity model may not be available (making it impossible to use [START_REF] Farkas | Adaptive Step Size Control for Hybrid CT Simulation without Rollback[END_REF]), output function (g, formerly defined as 1.3) may be inaccessible (making it impossible to use [START_REF] Kraft | Parallel Co-Simulation Approach With Macro-Step Size and Order Control Algorithm[END_REF] or the second method of [KS00]), et caetera .

However, in case some systems have extra capabilities, using them can enhance the co-simulation, as explained previously. The remaining question is: where is the limit? To what extend a co-simulation method can take into account available information and advanced capabilities when possible, but stay generic in its usage?

A solution to answer these questions is to clarify the framework: the expected structure of the systems, the representation of the modular model and the basic expected interactions with the systems are hence formally detailed in 1.3. Moreover, the advanced interactions and information about the systems are restricted to a "standard catalog" of optional advanced systems capabilities: the FMI standard (Functional Mock-up Interface) [START_REF]FMI: The functional mockup interface[END_REF][START_REF] Blochwitz | The Functional Mockup Interface for Tool independent Exchange of Simulation Models[END_REF][START_REF] Blochwitz | Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation Models[END_REF]Despite this standard does not cover all possible hints [JB; KNS14] (namely, the power bonds are not representable in a standard way until FMI 2.0), FMI is nowadays so well integrated in the industry that the assumption that industrial systems can be represented by FMUs (Functional Mock-up Units) is a fair assumption.

Multiple open systems 1.3.2.1 Differential equation of time

This thesis focuses on the cases of modular models made of interconnected 0D systems, also sometimes called circuits or lumped parameter models [START_REF] Viot | Solving coupled problems of lumped parameter models in a platform for severe accidents in nuclear reactors[END_REF]. Application of the methods developed here to other cases (DAE, PDE) can be imagined, yet this adaptation is not straightforward and will not be discussed in this work.

A system, regardless of whether or not it communicates with other systems, is represented by its equation. As the context is about time integration, this equation is a differential equation of time. The time is denoted by the variable t. First of all, we present the general form (1.1) of a monolithic system, in other words a closed system (without interfaces for communication with other systems) represented by a 1 st order differential equation which covers, among other things, ODE, DAE and IDE (implicit differential equations). The solution of such equation is the time-dependent state vector x whose all components are called the state variables.

   F ( d dt x(t), x(t), t) = 0 x(t [init] ) = x [init]
(1.1)

In (1.1), we consider the following quantities as given:

• n st ∈ N * (the number of state variables),

• x [init] ∈ R nst (the initial state of the problem),

• [t [init] , t [end] ] with t [init] ∈ R and t [end] ∈]t [init] , +∞[ (the time domain),

• F : R nst × R nst × [t [init] , t [end] ] → R nst (the function defining the evolution rule of the system), and ] , t [end] ] → R nst the solution.

• x : [t [init
This work will mainly cover the ODEs (Ordinary Differential Equations). For such equations, there exists a function f : [t [init] , t [end] ] × R nst → R nst so that (1.1) can be equivalently written under the form (1.2).

   d dt x(t) = f (t, x(t))
x(t [init] ) = x [init] (1.2)

In (1.2), f can be referred to as the funceval (this naming is mostly used in industrial contexts), the derivatives function or simply the ODE's function. The result of the funceval is the time-derivatives of the state, which can equivalently be denoted with the differential operator of with a dot d dt x = ẋ.

Open equation

In a co-simulation context, the principle of linking the derivatives of the states to themselves (and potentially with time) is the same as in the monolithic case, yet inputs and outputs also have to be considered for each system. A system with outputs and/or inputs will be equivalently denoted by system, open system or system for co-simulation. In order to be as generic as possible, a system with an amount of zero inputs and zero outputs is also considered as a system (open systems namely cover the closed systems).

Let n sys ∈ N * denote the number of systems involved in a modular model. Please note that the particular case n sys = 1 corresponds to a single monolithic simulation where a single system is simulated, without connections to any other system, and where no co-simulation method is required. The cases that will be considered here are connected systems, that is to say n sys ⩾ 2 systems that need to exchange data to one another: each input of each system has to be fed by an output of another system. A system will be referenced by its subscript index k ∈ [[1, n sys ]] so that system-dependent functions or variables can have an index indicating the system they are attached to. For all modular models considered from know, we will thus consider n sys ∈ N\{0, 1}.

With k ∈ [[1, n sys ]] being the index of a system, the system is denoted as (S k ) and the following topological quantities are defined:

• n in,k ∈ N the number of input variables of system (S k ),

• n out,k ∈ N the number of output variables of system (S k ), and • n st,k ∈ N the number of state variables of system (S k ).

Equivalently, the time-dependent internal states and external interfaces of a system are written: [init] , t [end] [, R n st,k ) the state vector (containing state variables) of system (S k ),

• x k ∈ L([t
• u k ∈ L([t [init] , t [end] [, R n in,k ) the input vector (containing input variables) of system (S k ), and • y k ∈ L([t [init] , t [end] [, R n out,k ) the output vector (containing output variables) of system (S k ).

We can now write the equation (1.3) of the system (S k ) as the open version of (1.2).

(S k ) :

d dt x k (t) = f k (t, x k (t), u k (t)) y k (t) = g k (t, x k (t), u k (t)) (1.3)
The functions introduced in (1.3) are:

• f k : [t [init] , t [end] ] × R n st,k × R n in,k → R n st,k
the derivatives function of system (S k ), and

• g k : [t [init] , t [end] ] × R n st,k × R n in,k → R n out,k the outputs function of system (S k ).
The initial time t [init] and the final time t [end] are supposed to be the same on every system of a modular model, so that the co-simulation occurs on the common time domain [t [init] , t [end] ].

Local vectorial quantities

As the quantities x k , u k and y k may be vectors (in case n st,k > 1, respectively n in,k > 1 or n out,k > 1), let's denote their coordinates by a second subscript index. [init] , t [end] ], R) [init] , t [end] ], R)

x k = (x k,i ) i∈[[1,n st,k ]] with ∀i ∈ [[1, n st,k ]], x k,i = (x k ) i ∈ L([t [init] , t [end] ], R) u k = (u k,i ) i∈[[1,n in,k ]] with ∀i ∈ [[1, n in,k ]], u k,i = (u k ) i ∈ L([t
y k = (y k,i ) i∈[[1,n out,k ]] with ∀i ∈ [[1, n out,k ]], y k,i = (y k ) i ∈ L([t
(1.4)

L(A, B) denotes the set of functions of domain A and co-domain B.

An example is presented later on figure 1.1. As systems might be black-boxed in practice, no assumption will be done on the nature of the input and output variables for the sake of genericity, contrary to co-simulation algorithms using this information in order to control their behavior, like and input and an output belonging to a common power bond for instance [START_REF] Sadjina | Energy conservation and power bonds in co-simulations: non-iterative adaptive step size control and error estimation[END_REF][START_REF] Sadjina | Energy conservation and coupling error reduction in noniterative co-simulations[END_REF][START_REF] Benedikt | NEPCE -A nearly energy-preserving coupling element for weak-coupled problems and co-simulation[END_REF]. Dots can be used to denote time-derivatives quantities of the vectorial and scalar functions of time of (1.4), as shown in (1.5).

ẋk = d dt x k and ∀i ∈ [[1, n st,k ]], ẋk,i = d dt x k,i uk = d dt u k and ∀i ∈ [[1, n in,k ]], uk,i = d dt u k,i ẏk = d dt y k and ∀i ∈ [[1, n out,k ]], ẏk,i = d dt y k,i
(1.5)

Global vectorial quantities

Let n st,tot , n in,tot and n out,tot respectively denote the total amount of states, inputs, and outputs:

n st,tot = nsys k=1 n st,k , n in,tot = nsys k=1 n in,k , n out,tot = nsys k=1 n out,k (1.6)
Let also the total state, total input and total output vectors be the concatenation of all states, inputs and outputs (respectively) of all systems (1.7). In the whole thesis, underline quantities will denote a quantity "upon all systems".

x = (x k ) k∈[[1,nsys]] ∈ L([t [init] , t [end] [, R nst,tot ) u = (u k ) k∈[[1,nsys]] ∈ L([t [init] , t [end] [, R nin,tot ) y = (y k ) k∈[[1,nsys]] ∈ L([t [init] , t [end] [, R nout,tot ) (1.7)
The notation ( k ) k∈ [[1,nsys]] denotes a vector concatenation in (1.7). A clearer way to visualize x, u and y is presented in (1.8).

x : t → x 1,1 (t), ..., x 1,nst,1 (t), x 2,1 (t), ..., x 2,nst,2 (t), ..., x nsys,1 (t), ..., x nsys,nst,n sys (t) T u : t → u 1,1 (t), ..., u 1,nin,1 (t), u 2,1 (t), ..., u 2,nin,2 (t), ..., u nsys,1 (t), ..., u nsys,nin,n sys (t) T y : t → y 1,1 (t), ..., y 1,nout,1 (t), y 2,1 (t), ..., y 2,nout,2 (t), ..., y nsys,1 (t), ..., y nsys,nout,n sys (t)

T (1.8)
Indices with bars (ī, ȷ, ...) will be used for global quantities, for the sake of clarity. For instance: y = (y ī) ī∈ [[1,nout,tot]] . These indices will be called global indices, as opposed to the local indices (i, j, ...). As the composition of the global quantities is a simple concatenation (see (1.7) and (1.8)), the correspondence (1.9) between global and local indices can be made. The total quantities are also illustrated in the example given further, in figure 1.1.

x k,i = x ī = x i+ k-1 p=1 nst,p state i of system (S k ) has global index ī = i + k-1 p=1 n st,p u l,j = u ȷ = u j+ l-1 p=1 nin,p input j of system (S l ) has global index ȷ = j + l-1 p=1 n in,p y k,i = y ī = y i+ k-1 p=1 nout,p output i of system (S k ) has global index ī = i + k-1 p=1 n out,p
(1.9) Analogously to (1.5), we can write the total derivatives (1.10). Global functions f and g are defined as concatenations of functions f k and g k upon all systems k ∈ [[1, n sys ]] as well, as defined in (1.11) and (1.12). f: [init] , t [end] ]×R nst,tot ×R nin,tot → R nst,tot

   [t
(t, x, ũ) → f k t, xi+ k-1 p=1 nst,p i∈[[1,n st,k ]] , ũj+ k-1 p=1 nin,p j∈[[1,n in,k ]] k∈[[1,nsys]]
(1.11) ] , t [end] ]×R nst,tot ×R nin,tot → R nst,tot

g:    [t [init
(t, x, ũ) → g k t, xi+ k-1 p=1 nst,p i∈[[1,n st,k ]] , ũj+ k-1 p=1 nin,p j∈[[1,n in,k ]] k∈[[1,nsys]]
(1.12) In (1.11) and (1.12), notations x and ũ represent elements of the co-domain of x and u respectively, that is to say elements of R nst,tot and R nin,tot respectively. The tilde notation is used here for consistency with instantaneous evaluations introduced further in 1.3.4.2.2 (elements of R nst,tot or R nin,tot instead of functions of L([t [init] , t [end] [, R nst,tot ) or L([t [init] , t [end] [, R nin,tot )).

As equation (1.3) is the equation representing a given system, from now on we dispose of the minimal data required to entirely characterize (but not simulate!) any system. However, they do not define the whole modular model: connections are missing.

Connections

The connections between the systems are required in order to entirely characterize the modular model. The connections contain the information stating which input of which system corresponds to which output of which system. Many ways to represent the connections between systems have been proposed in co-simulation related articles. As the most convenient way depends on the context, we introduce two equivalent formalisms here: the link function and the dispatching matrix (also equivalently called the connections matrix).

Link function

For l ∈ [[1, n sys ]], we can define the system's link function L l of the system l as:

L l : [[1, n in,l ]] → N 2 j → (k, i) (1.13)
where input j of system l is connected to output i of system k,

where k ∈ [[1, n sys ]], and i ∈ [[1, n out,k ]].
It is now possible to define the global link function or simply the link function L:

L : (l, j) → L l (j) (1.14) where l ∈ [[1, n sys ]] and j ∈ [[1, n in,l ]].
The link function is illustrated in the example of figure 1.1.

For the sake of notation, the index of the system holding the output connected to input j of system l will be written L(l, j) 1 (instead of (L(l, j)) 1 ), and the index of this output will be written L(l, j) 2 (instead of (L(l, j)) 2 ).

To lighten the notations, we will also allow the usage of double indices so that y L(l,k)1,L(l,j)2 can be simply written y L(l,j) .

Dispatching matrix

The connections between the systems can equivalently be denoted by a matrix filled with zeros and ones, with n out,tot rows and n in,tot columns denoted by Φ. Φ ∈ M nout,tot,nin,tot ({0, 1})

(1.15)

The set M a,b (A) classically represents the set of matrices of a rows and b columns with coefficients in the set A.

∀ī ∈ n out,tot , ∀ȷ ∈ n in,tot , Φ ī,ȷ = 1 if output ī is connected to input ȷ 0 otherwise (1.16)
Please note that if each output is connected to exactly one input, Φ is a square matrix, and even a permutation matrix. Otherwise, if an output is connected to several inputs, more than one 1 appears at the corresponding row of Φ. Without loss of generality, let's consider that there can neither be more nor less than one 1 on each column of Φ considering that an input can neither be connected to none nor several outputs. Indeed, a system with an input connected to nothing is not possible (a value has to be given), and a connection of several outputs in the same input can always be decomposed regarding a relation (sum, difference, ...) so that this situation is similar to distinct inputs connected to a single output each, with these inputs are combined (added, subtracted, ...) inside of the system considered. An example of a Φ matrix is presented in figure 1.1.

The Φ matrix representation is more convenient in a context using global indexing whereas the link function representation is more convenient in a context using local indexing. However, it is possible to define Φ from L thanks to the global-local indexing correspondence (1.9), as done in (1.17).

Φ = 1 ∃(k,l)∈[[1,nsys]] 2 , ∃i∈[[1,n out,k ]], ∃j∈[[1,n in,l ]], ī=i+ k-1 p=1 nst,p and ȷ=j+ l-1 p=1 nst,p and L(l,j)=(i,k) ī∈[[1,nout,tot]] ȷ∈[[1,nin,tot]]
(1.17)

Dispatching relationship and example

The dispatching term refers to the relationship linking the outputs and the inputs using either the link function (1.18) or the Φ matrix (1.19).

∀l ∈ [[1, n sys ]], ∀j ∈ [[1, n in,l ]], u l,j = y L(l,j)1,L(l,j)2
(1.18)

u = Φ T y (1.19)
Finally, here is an example of modular model with n sys = 3 systems to illustrate the concepts introduced so far. The Φ matrix and the link function are given, as well as the vectorial quantities in their local and global (total) forms.

Figure 1.1: Example of a 3-system modular model with its interfaces and its connections

Time discretization

As for classical integrators of differential equations, most of the co-simulation methods require a discretization in time of the whole time-domain [t [init] , t [end] ]. Co-simulation methods can be classified according to two types of discretizations: the synchronous ones (where the discretization is the same on every system), and the asynchronous ones (where each system might have a different time discretization). The first case is a particular situation of the second one.

In any case, the time discretization we are interested in is the macro-discretization, also called the co-simulation discretization, as opposed to the micro-discretization, also called the solver discretization or internal discretization. Figures 1. 3 and 1.4 show the distinction between these scales of discretization both in the synchronous case and in the asynchronous case.

Time grid 1.3.4.1.1 Macro-step partitioning the time domain

In the context of co-simulation, the f k and g k functions in (1.3) are usually not available directly [START_REF]FMI: The functional mockup interface[END_REF][START_REF] Blochwitz | The Functional Mockup Interface for Tool independent Exchange of Simulation Models[END_REF][START_REF] Blochwitz | Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation Models[END_REF]. Indeed, black-box representation of systems usually hides the equations internally, either for IP protection (non-disclosure requirement, patented technology, secret know-how, ...) or simply due the the implementation of the system itself. The only guarantee is the possibility to to call a simulation function (also equivalently sometimes referred to as step function and described further in 1.3.5) over cells of a unidimensional time mesh meshing the time domain [t [init] , t [end] ]. These cells are called macro-steps (or co-simulation steps, or sometimes communication step in the literature [SAC12; GG+18a; Mey+19; Mey22]), as opposed to the micro-steps (or solver steps), finer grid inside each macro-step that can be visualized on figures 1.3 and 1.4 and which utility is introduced further in subsection 1.3.5. The nodes of the macro time grid are the communication times, and they will be denoted by a superscript [N ] where square brackets are used to avoid the confusion with power exponents. N denotes the time index, and the mesh partitioning the time domain is presented in figure 1.2 and in equation (1.20). A macro-step is a connected space of the form [t [N ] , t [N +1] [ and is defined by its starting and ending times respectively denoted as t [N ] and t [N +1] for the so-called N th macro-step. [N ] (1.20)

                 [t [init] , t [end] [ = Nmax-1 N =0 [t [N ] , t [N +1] [ t [0] = t [init] t [Nmax] = t [end] ∀N ∈ [[0, N max -1]], t [N +1] > t
Let δt [N ] denote the size of the N th macro-step:

         ∀N ∈ [[0, N max -1]], δt [N ] = t [N +1] -t [N ] > 0 Nmax-1 N =0
δt [N ] = t [end] -t [init] (1.21) Let T denote the set of possible macro-steps.

T ∆ = {[a, b[ | t [init] ⩽ a < b ⩽ t [end] } (1.22)
An element of this set is a macro-step: for instance τ ∈ T with τ = [t [N ] , t [N +1] [. 

Synchronous case and asynchronous case

In case nothing else is specified about the time discretization of a method, the nodes (communication times) are supposed to be the same among all the systems involved in the co-simulation. In this case, the method, as well as the discretization, are said to be synchronous. Figure 1.3 shows an example of a synchronous discretization with n sys = 2. As some of the synchronous methods presented in this thesis are moreover iterative, this aspect is also illustrated on figure 1.3. This aspect is explained in more details further in subsection 1.3.6. Conversely, some co-simulation method can require/enable the systems to communicate at different times [START_REF] Müller | An Explicit Approach for Asynchronous Step Size Control in Co-simulation[END_REF]. This produces as many macro-discretizations as systems and such methods, as well as the corresponding discretizations, are said to be asynchronous. An extra subscript is then added to the communication times to specify the system they refer to. Hence, system (S k ) (with k ∈ [[1, n sys ]]) has its macro-discretization defined by the nodes t 

∀N ∈ [[0, N max,k -1]], δt [N ] k = t [N +1] k -t [N ] k > 0 (1.23)
The only asynchronous method mentioned in this thesis (presented in chapter 2) is non-iterative, thus there is no need to define iterative asynchronous concepts (such as a by-system iteration index presented hereafter, for instance). Let's introduce the notations of the time restricted version of the quantities introduced in 1.3.2. On a given macro-step [t [N ] , t [N +1] [, N ∈ [[0, N max ]], for all systems, the restrictions of the piecewise equivalents of x k , u k and y k will use the time index N to be denoted by x

[N ] k , u [N ] k and y [N ]
k respectively. The coordinate of these vectors are denoted with an extra subscript index.

∀k ∈ [[1, n sys ]], ∀N ∈ [[0, N max ]], ∀i ∈ [[1, n st,k ]], x [N ] k,i ∈ L([t [N ] , t [N +1] [, R) ∀j ∈ [[1, n in,k ]], u [N ] k,j ∈ L([t [N ] , t [N +1] [, R) ∀i ∈ [[1, n out,k ]], y [N ] k,i ∈ L([t [N ] , t [N +1] [, R) (1.24)
Some co-simulation methods require the macro-steps to be integrated more than once. Each of these integrations might be done with different inputs, generating different states and outputs as a result of the integration, making the notations (1.24) not sufficient to determine the functions we are considering. To solve this issue, we introduce the iteration index m used as a left superscript in square brackets (1.25). Let m max (N ) denote the iteration index of the last iteration done on the macro-step [t [N ] , t [N +1] [. In other words, m max (N ) denotes the number of iterations (minus one, as the first one starts at m = 0) done on the N th macro-step. m max (N ) across N can be plotted in order to see where the method needs to proceed more or less iterations.

∀k ∈ [[1, n sys ]], ∀N ∈ [[0, N max ]], ∀m ∈ [[0, m max (N )]], ∀i ∈ [[1, n st,k ]], [m] x [N ] k,i ∈ L([t [N ] , t [N +1] [, R) ∀j ∈ [[1, n in,k ]], [m] u [N ] k,j ∈ L([t [N ] , t [N +1] [, R) ∀i ∈ [[1, n out,k ]], [m] y [N ] k,i ∈ L([t [N ] , t [N +1] [, R) (1.25)
Analogously to (1.5), we can write the time-derivatives (1.26) of the restrictions (1.25).

∀k ∈ [[1, n sys ]], ∀N ∈ [[0, N max ]], ∀m ∈ [[0, m max (N )]], ∀i ∈ [[1, n st,k ]], [m] ẋ[N] k,i = d dt x [N ] k,i ∀j ∈ [[1, n in,k ]], [m] u[N] k,j = d dt u [N ] k,j ∀i ∈ [[1, n out,k ]], [m] ẏ[N] k,i = d dt y [N ] k,i (1.26)
All derived notations introduced in this subsection can also be applied to the total quantities. For instance, on the N th co-simulation step (of the form [t [N ] , t [N +1] [), the total state, total input and total output vectorial functions are the concatenation of all states, inputs and outputs (respectively) of all systems on a this step.

∀N ∈ [[0, N max ]], ∀m ∈ [[0, m max (N )]], ∀ī ∈ n st,tot , [m] x [N ] ī ∈ L([t [N ] , t [N +1] [, R) ∀ȷ ∈ n in,tot , [m] u [N ] ȷ ∈ L([t [N ] , t [N +1] [, R) ∀ī ∈ n out,tot , [m] y [N ] ī ∈ L([t [N ] , t [N +1] [, R) (1.27)
As in (1.7), the notation ( k ) k∈ [[1,nsys]] denotes a vector concatenation in (1.28).

[m] x [N ] = ( [m] x

[N ] k ) k∈[[1,nsys]] ∈ L([t [N ] , t [N +1] [, R nst,tot ) [m] u [N ] = ( [m] u [N ] k ) k∈[[1,nsys]] ∈ L([t [N ] , t [N +1] [, R nin,tot ) [m] y [N ] = ( [m] y [N ] k ) k∈[[1,nsys]] ∈ L([t [N ] , t [N +1] [, R nout,tot ) (1.28)
At any time t in any step [t [N ] , t [N +1] [, the total input, total output and total state vectors are big column vectors:

[m] x [N ] : t → [m] x [N ]
1,1 (t), ..., [m] x

[N ] 1,n st,1 (t), [m] x [N ]
2,1 (t), ..., [m] x

[N ] 2,n st,2 (t), ..., [m] x

[N ]
nsys,1 (t), ..., [m] x

[N ] nsys,n st,nsys (t) T [m] u [N ] : t → [m] u [N ]
1,1 (t), ..., [m] u

[N ] 1,n in,1 (t), [m] u [N ]
2,1 (t), ..., [m] 

u [N ]
2,n in,2 (t), ..., [m] u

[N ]
nsys,1 (t), ..., [m] u

[N ] nsys,n in,nsys (t) T [m] y [N ] : t → [m] y [N ]
1,1 (t), ..., [m] 

y [N ] 1,n out,1 (t), [m] y [N ]
2,1 (t), ..., [m] 

y [N ]
2,n out,2 (t), ..., [m] y

[N ]
nsys,1 (t), ..., [m] 

y [N ]
nsys,n out,nsys (t) T (1.29) Analogously to (1.10), we can write the time-derivatives (1.30) of the restrictions of the total quantities (1.28).

∀N ∈ [[0, N max ]], ∀m ∈ [[0, m max (N )]], [m] ẋ[N] = d dt [m] x [N ] = ( [m] ẋ[N] ī ) ī∈[[1,nst,tot]] = ( d dt [m] x [N ] ī ) ī∈[[1,nst,tot]] [m] u[N] = d dt [m] u [N ] = ( [m] u[N] ȷ ) ȷ∈[[1,nin,tot]] = ( d dt [m] u [N ] ȷ ) ȷ∈[[1,nin,tot]] [m] ẏ[N] = d dt [m] y [N ] = ( [m] ẏ[N] ī ) ī∈[[1,nout,tot]] = ( d dt [m] y [N ] ī ) ī∈[[1,nout,tot]]
(1.30)

Non-iterative schemes can use all the notations introduced so far (in (1.25), (1.26), (1.27), (1.28), (1.29) and (1.30)) without the [m] left superscript for the sake of clarity. As far as it is possible to consider that non-iterative co-simulation methods satisfy the property (1.31), we state here that m cannot have another value than 0 in that case. Hence, quantities such as states, inputs, outputs and derivatives of those won't have their iteration index m not precised (no superscript [m] ) in a non-iterative context.

"Considered method is non-iterative" ⇒ ∀N ∈ [[0, N max ]], m max (N ) = 0
(1.31)

Instantaneous evaluations at nodes

Throughout this thesis, quantities corresponding to an evaluation of a vectorial or scalar time-dependent function at a given time will be denoted by the name of the function with a tilde symbol ˜added to it. This quantity belongs to the co-domain of the corresponding function, and can be referred to as a snapshot or an instantaneous evaluation.

States and outputs snapshots correspond to left-sided limits at the communication times (1.32), that is to say that a snapshot at time t [N ] corresponds to the limit at the end of the (N -1) th macro-step (id est [t [N -1] , t [N ] [). The snapshots at the end of the N th macro-step (id est [t [N ] , t

[N +1] [) are indexed with the time-index N + 1. ∀k ∈ [[1, n sys ]], ∀N ∈ [[1, N max ]], ∀m ∈ [[0, m max (N -1)]], ∀i ∈ [[1, n st,k ]], [m] x[N] k,i = lim t→t [N ] t<t [N ] [m] x [N -1] k,i (t) ∈ R ∀i ∈ [[1, n out,k ]], [m] ỹ[N] k,i = lim t→t [N ] t<t [N ] [m] y [N -1] k,i (t) ∈ R (1.32)
State vectors and output vectors of each system do also correspond to a snapshot quantity (1.33).

∀k

∈ [[1, n sys ]], ∀N ∈ [[1, N max ]], ∀m ∈ [[0, m max (N -1)]], [m] x[N] k = lim t→t [N ] t<t [N ] [m] x [N -1] k (t) = ( [m] x[N] k,i ) i∈[[1,n st,k ]] ∈ R n st,k [m] ỹ[N] k = lim t→t [N ] t<t [N ]
[m] y

[N -1] k (t) = ( [m] ỹ[N] k,i ) i∈[[1,n out,k ]] ∈ R n out,k
(1.33)

Total state vector and total output vector do also correspond to a snapshot quantity (1.34). The notation ( k ) k∈ [[1,nsys]] denotes a vector concatenation in (1.34).

∀N ∈ [[1, N max ]], ∀m ∈ [[0, m max (N -1)]], [m] x[N] = lim t→t [N ] t<t [N ] [m] x [N -1] (t) = ( [m] x[N] k ) k∈[[1,nsys]] ∈ R nst,tot [m] ỹ[N] = lim t→t [N ] t<t [N ] [m] y [N -1] (t) = ( [m] ỹ[N] k ) k∈[[1,nsys]] ∈ R nout,tot
(1.34)

To sum-up, we introduced the notation

[m] x[N] i,k (respectively [m] ỹ[N] i,k
) for the m th snapshot at t [N ] of the i th state (respectively the i th output) of system (S k ), the notation [m] x [N] k (respectively [m] ỹ[N] k ) for the m th snapshot at t [N ] of the state vector (respectively the output vector) of system (S k ), and the notation [m] x[N] (respectively [m] ỹ[N] ) for the m th snapshot at t [N ] of the total state vector (respectively the total output vector).

Non-iterative schemes can use the notations of (1.32), (1.33) and (1.34) without the [m] left subscript (analogously to the continuous quantities as mentioned in the very end of 1.3.4.2.1). This generates the notation

x[N] i,k (respectively ỹ[N] i,k
) for the snapshot at t [N ] of the i th state (respectively the i th output) of system (S k ), the notation

x[N] k (respectively ỹ[N] k )
for the snapshot at t [N ] of the state vector (respectively the output vector) of system (S k ), and the notation x[N] (respectively ỹ[N] ) for the snapshot at t [N ] of the total state vector (respectively the total output vector).

Finally, at the first node, it is supposed that the initial states x init k and the initial coupling values y init k for every system k ∈ [[1, n sys ]] are given as a known data of the co-simulation problem. We can thus define the instantaneous initial quantities (1.35).

∀k ∈ [[1, n sys ]], x[0] k = x init k ∈ R n st,k ∀k ∈ [[1, n sys ]], ỹ[0] k = y init k ∈ R n out,k (1.35)
For the sake of genericity of further formula, we state that the left subscript m can be seamlessly set to 0 at the first time node so that the iteration index can also be used at this node (1.36). For the same reason, we can state that m max (-1) = 0, as if the initial data were the result of the integration of a virtual macro-step ending at time t [init] .

∀k ∈ [[1, n sys ]], [mmax(-1)] x[0] k = [0] x[0] k = x init k ∈ R n st,k ∀k ∈ [[1, n sys ]], [mmax(-1)] ỹ[0] k = [0] ỹ[0] k = y init k ∈ R n out,k
(1.36)

The tilde symbol for instantaneous evaluations can be used on time-derivatives as well, and it also corresponds to left-sided limits of the corresponding functions.

∀k ∈ [[1, n sys ]], ∀N ∈ [[0, N max ]], ∀m ∈ [[0, m max (N -1)]], [m] x[N] k = ( [m] x[N] k,i ) i∈[[1,n st,k ]] = lim t→t [N ] t<t [N ] [m] ẋ[N-1] k,i (t) i∈[[1,n st,k ]] [m] ỹ[N] k = ( [m] ỹ[N] k,i ) i∈[[1,n out,k ]] = lim t→t [N ] t<t [N ] [m] ẏ[N-1] k,i (t) i∈[[1,n out,k ]]
(1.37)

∀N ∈ [[0, N max ]], ∀m ∈ [[0, m max (N -1)]], [m] x[N] = ( [m] x[N] ī ) ī∈[[1,nst,tot]] = lim t→t [N ] t<t [N ] [m] ẋ[N-1] ī (t) ī∈[[1,nst,tot]] [m] ỹ[N] = ( [m] ỹ[N] ī ) ī∈[[1,nout,tot]] = lim t→t [N ] t<t [N ] [m] ẏ[N-1] ī (t) ī∈[[1,nout,tot]]
(1.38)

Moreover, as the derivatives of the states of a system (S k ) are given by the function f k , their instantaneous evaluation at a time t [N ] can be equivalently denoted by the letter f (for the sake of convenience and consistency with previous papers published in the context of this work), see (1.39) and its generalization to the total quantity (1.40).

∀k ∈ [[1, n sys ]], ∀N ∈ [[0, N max ]], ∀m ∈ [[0, m max (N -1)]], [m] f [N ] k = [m] x[N] k = lim t→t [N ]
t<t [N ] f k t, [m] x

[N -1] k (t), [m] u [N -1] k (t) (1.39) ∀N ∈ [[0, N max ]], ∀m ∈ [[0, m max (N -1)]], [m] f [N ] = [m] x[N] = lim t→t [N ] t<t [N ] f t, [m] x [N -1] (t), [m] u [N -1] (t) (1.40)

Right-sided limit evaluations at nodes

The instantaneous evaluation presented in 1.3.4.2.2 are left-sided limits. Regarding the state variable x k , being a left-sided limit or a right-sided one doesn't change the value as it is a solution of an ODE (1.3). However, in case the g k function (for a system (S k )) has a direct feed-through at a node t [N ] , that is to say if ∂ u g k (t [N ] ) ̸ = 0, the outputs y k might be discontinuous at this node depending on the inputs u

[N -1] k and u [N ]
k . In that case, the right-sided limit of y k is different from its left-sided limit at t [N ] . No only regarding the outputs, many other quantities can be discontinuous at nodes (inputs, state derivatives, et caetera ). We thus introduce the notation of the right-sided limit as a tilde symbol (as it is an instantaneous quantity) coupled with a + symbol near the time index superscript. For instance, for the inputs and the outputs, their right-sided limits are given in (1.41).

∀k ∈ [[1, n sys ]], ∀N ∈ [[0, N max -1]], ∀m ∈ [[0, m max (N )]], ∀j ∈ [[1, n st,k ]], [m] ũ[N] + k,j = lim t→t [N ] t>t [N ] [m] u [N ] k,j (t) ∈ R ∀i ∈ [[1, n out,k ]], [m] ỹ[N] + k,i = lim t→t [N ] t>t [N ]
[m] y

[N ] k,i (t) ∈ R (1.41)
The same notation will seamlessly be used for by-system vectorial quantities such as [m] u

[N ] k and [m] y [N ] k (respectively leading to [m] ũ[N] + k and [m] ỹ[N] + k
for right-sided limits at node t [N ] ), overall vectorial quantities such as [m] u [N ] and [m] y [N ] (respectively leading to [m] ũ[N] + and [m] ỹ[N] + for right-sided limits at node t [N ] ), by-system time-derivatives such as [m] 

ẋ[N] k , [m] u[N] k and [m] ẏ[N] k (respectively leading to [m] x[N] + k , [m] ũ[N] + k and [m] ỹ[N] + k
for right-sided limits at node t [N ] ), overall time-derivatives, et caetera .

Simulation function

Any system that aims at being involved in a co-simulation embeds a solver (or something equivalent) inside of it. Abstractly, a solver embedded in a system enables to get the output response of the latter to a certain stimulus (input) which can be seen like a vectorial command, and on a small time domain: a macro-step (cell of the mesh introduced in 1.3.4.1.1). At the starting time of the macro-step, the states must have an initial value so that the solver solves a valid ODE problem. This solver is expected to solve this ODE problem and might introduce a finer time-grid inside of the macro-step, made of the micro-steps evoked previously in 1.3.4.1.1. This is the reason why micro-steps can equivalently be referred to as solver steps, as mentioned in 1.3.4.1.1. To keep the potential black-box aspect of a system, no assumptions are done on the solver inside of the systems. It can equivalently be tailored to the physics represented inside of the system, a generic integrator of [START_REF] Hairer | Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems[END_REF], the widely used Sundials suite [START_REF] Hindmarsh | SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers[END_REF], or anything else, even including extensions to DAE solvers [START_REF] Deuflhard | One-step and extrapolation methods for differentialalgebraic systems[END_REF] (despite ODE is considered in the formalism, the blackbox representations make extensions to DAE systems quite straightforward). In the test-case examples presented in the other chapters of this thesis, the solver used for ODEs is LSODA [START_REF] Petzold | Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential Equations[END_REF], and the solver used for the few DAEs is DASSL [START_REF] Petzold | A description of DASSL: A differential/algebraic system solver[END_REF] (these solvers are delivered with the Simcenter Amesim software [Sofa; Sofb]).

In practice, the output response (as well as its time derivative, in some cases) can rarely be retrieved on the whole macro-step but only at its final time. For this reason, the instantaneous evaluation at the communication times (end of macro-steps) introduced previously in 1.3.4.2.2 will be useful. The ability to retrieve intermediate values might exist in some cases yet it is not standard, as mentioned in [START_REF] Benedikt | Modelling and analysis of the noniterative coupling process for co-simulation[END_REF].

Over the N th macro-step, the ODE of a system can then be represented by a restricted (in time) ODE over [t [N ] , t [N +1] [ is analogous to the one on the full time domain (1.3). The ODE of a system (S k ) with k ∈ [[1, n sys ]] over the N th macro-step is denoted by (S

[N ] k ) and is presented in (1.42). (S [N ] k ) :    d dt [m] x [N ] k (t) = f k (t, [m] x [N ] (t), [m] u [N ] (t)) [m] y [N ] k (t) = g k (t, [m] x [N ] k (t), [m] u [N ] k (t)) (1.42)
The resolution of the system (1.42) over a macro-step and the outputs recovery at the end of it is formalized by a function called the simulation function or the do-a-step function, or more simply the step function ("step" refers to the macro-step in the last naming).

Ideal step function

Let S ideal,k , k ∈ [[1, n sys ]] be the ideal step function of the k th system, that is to say the function which takes the system to its future state one macro-step forward. In other words, this ideal step function solved the ODE (1.42) for a given input vector and a given initial state vector.

S ideal,k : T × R n st,k × L([t [init] , t [end] [, R n in,k ) → R n st,k × R n out,k (τ, xk , u k ) → S ideal,k (τ, xk , u k ) (1.43) When called with arguments τ = [t [N ] , t [N +1] [, x[N] k and u [N ]
k , the ideal step function enables to retrieve the outputs and states at time t [N +1] , leading to the property (1.44).

S ideal,k ([t [N ] , t [N +1] [, [mmax(N -1)] x[N] k , [m] u [N ] k ) = ( [m] x[N+1] k , [m] ỹ[N+1] k ) (1.44)
This function is the one called when an integration over a co-simulation step (local resolution) is done during the so-called do-a-step stage. As industrial system impose to integrate any macro-step with the initial condition being the state values reach at the end of the previous macro-step (its last iteration, in case it has been integrated more than once), we expect to call this step function with the second argument always corresponding to the ones in expression (1.44). This is namely the motivation of an abuse of notation presented further in 1.3.5.3, formalized in (1.48).

In practice, the second argument (inputs vector) only need to be defined on τ (instead of the whole domain [t [init] , t [end] [) for a call to S ideal,k to be made (id est for ODE (1.42) to be integrated over τ ). Moreover, inputs often have a known form so that an assumption can be made on it to handle a restricted version of S ideal,k denoted by S ideal,poly(n),k . In addition to that, for the sake of clarity, two abuses of notations will be introduced in 1.3.5.3 and 1.3.5.4 respectively. Despite their unproper definitions, they will be more convenient than S ideal,poly(n),k depending on the context, but always equivalent to the usage of S ideal,poly(n),k .

As several variants will be introduced hereafter, a small summary of them (through the properties that characterize them over a given macro-step) will be presented afterwards, in table 1.1.

Polynomial inputs

Please note that R n [t] ⊂ L(R, R) for all n ∈ N, with R n [t] denoting the set of polynomials of degree n or less, of coefficients in R, and of the variable t. Moreover, any element of R n [t] can be restricted to the time domain [t [N ] , t [N +1] [ for any n ∈ N and for any macro-step [t [N ] , t [N +1] [. Hence, any polynomial of R n [t] can be identified as a function of L([t [N ] , t [N +1] [, R) and we can write the inclusions (1.45) and (1.46).

R n [t] ⊂ L([t [init] , t [end] [, R)

(1.45)

R n [t] ⊂ L([t [N ] , t [N +1] [, R) (1.46)
As it is standard for industrial systems to support polynomial inputs, and as this is a subset of the possible inputs (due to (1.45)), we consider that the inputs are always polynomial in time in this thesis. The integer n ∈ N denotes the maximum polynomial degree among all the n in,k inputs, so that u

[N ] k ∈ (R n [t]) n in,k .
In most of the co-simulation methods, the inputs are not known on [t [N ] , t [N +1] [ when the integration of (1.42) is being performed, so an extrapolation has to be made on this interval. Most of these extrapolations (or interpolations) used in practice are covered by the polynomial form assumption: zeroorder hold [START_REF] Sicklinger | Interface Jacobian-based Co-Simulation[END_REF], first-order hold, Hermite entries [START_REF] Busch | Stability of Co-Simulation Methods Using Hermite and Lagrange Approximation Techniques[END_REF], smooth polynomial extrapolations [Bus19], ... For this reason, lets define the polynomial-inputs ideal step function the restriction S ideal,poly(n),k of S ideal,k that only deals with polynomial inputs of degree n or less, with n ∈ N.

S ideal,poly(n),k = S ideal,k T×R n st,k ×(Rn [t]) n in,k
(1.47)

State-hiding practical step function

In practice, one may want to avoid expliciting the state vector x. Indeed, it will be embedded inside of the system (S k ) and successive calls will either be done:

• with τ beginning where the τ at the previous call of S ideal,poly(n),k ended (moving on),

• with τ beginning where the τ at the previous call of S ideal,poly(n),k started (step replay),

• with τ of the shape [t [init] , t [1] [ with t [1] ∈]t [init] , t [end] ] (first step). Indeed, the system keeps its states from a call to the other, at the corresponding time both being the end of a macro-step and the beginning of the upcoming one. The possible shapes of the time-step τ at the successive calls of the step function are detailed in subsection 1.3.6. As a co-simulation system interacts through its inputs and outputs, the initialization of the state values at each macro-step is done with respect to their ending values at the end of the previous macro-step. In other words, the initial condition of (1.42) is (1.48), using the notation introduced previously in 1.3.4.2.2.

∀N ∈ [[0, N max ]], x [N ] k (t [N ] ) =      x init k if N = 0 [mmax(N -1)] x[N] k if N ∈ [[1, N max ]], for iterative methods x[N] k if N ∈ [[1, N max ]], for non-iterative methods (1.48)
The function associating a macro-step and polynomial inputs to the output values at the end of this macro-step by integrating ODE (1.42) with (hidden) initial condition (1.48) is denoted by S k , see (1.49).

S k : T × (R n [t]) n in,k → R n out,k (τ, u k ) → S k (τ, u k ) (1.49)
The state-hiding practical step function is related to the polynomial-input ideal step function via the property (1.50) standing that the states to be given to S ideal,poly(n),n are the final states of the previous macro-step and that, among the result of the integration, only the outputs are given by the state-hiding practical step function.

S k ([t [N ] , t [N +1] [, u k ) = S ideal,poly(n),k ([t [N ] , t [N +1] [, x [N ] k (t [N ] ) , u k ) i+n st,k i∈[[1,n out,k ]]
as determined in (1.48)

(1.50) Despite S k is not properly mathematically defined (the state variables do not appear despite different state values will generate different outputs and thus a different value given by S k ), it does not lead to any problem, considering the hypotheses above. The S k function, called the state-hiding practical step function in this work, is the one available in practice, namely in the FMI (functional Mock-up Interface) standard. It is then possible to write the instantaneous outputs at the end of a macro-step [t [N ] , t [N +1] [ as the image of this macro-step and input signals under

S k , see (1.51). S k ([t [N ] , t [N +1] [, [m] u [N ] k ) = [m] ỹ[N+1] k (1.51)

Time-indexed practical step function

Let's now introduce another abuse of notation:

S [N ] k (with k ∈ [[1, n sys ]]), which corresponds to the version of S ideal,poly(n),k without its first argument, where τ is assumed to correspond to the macro-step [t [N ] , t [N +1] [. S [N ] k : R n st,k × (R n [t]) n in,k → R n st,k × R n out,k (x k , u [N ] k ) → S ideal,poly(n),k ([t [N ] , t [N +1] [, xk , u [N ] k ) (1.52)
The function S

[N ] k

associates the states at the beginning of the N th macro-step and the inputs over this step (in a polynomial form, also vectorial if n in,k > 1) to the states and the outputs at the end of this step, see (1.53).

S [N ] k ( [mmax(N -1)] x[N] k , [m] u [N ] k ) = ( [m] x[N+1] k , [m] ỹ[N+1] k ) (1.53)
Less formally, yet more comprehensively, a call to the time-indexed practical step function S

[N ] k acts as stated in (1.54).

states at the end of the step outputs at the end of the step

T = S step index
states at the beginning of the step input command over the step T (1.54) Please note that, in informal notation (1.54), the transposition if just here to make the writing more compact. Indeed, one of the argument of the function is a vector of reals, and the other is a vector of polynomials.

Getting output derivatives

The values of the output variables might not be sufficient for every co-simulation scheme. It is namely the case for both IFOSMONDI and IFOSMONDI-JFM methods (see chapter 3). Indeed, the time-derivatives of the outputs are sometimes also needed.

Dot versions

A dot symbol above all of the previously introduced simulation function versions will thus denote their dot versions, that is to say their equivalent providing the output time-derivatives instead of the output values.

Hence, the equivalent dot versions of properties (1.51) and (1.53) are respectively (1.55) and (1.56).

Ṡk ([t

[N ] , t [N +1] [, [m] u [N ] k ) = [m] ỹ[N+1] k (1.55) Ṡ[N] k ( [mmax(N -1)] x[N] k , [m] u [N ] k ) = [m] ỹ[N+1] k (1.56)
Please note that the dot version of the time-indexed practical step function does not give the states at the end of the integration, but only the output time-derivatives.

Concatenated versions

Behind a call to the step function, whether it is formally represented by one of the practical step functions of the ideal one, an integration is done. This is also the case for the dot versions. However, the outputs values and time-derivatives can be obtained at the end of a macro-step without needing to replay the integration. In order to reflect this practical aspect in the mathematical formalism, we introduce here the concatenated versions of the practical step functions making it possible to obtain both the instantaneous output values and time-derivatives at the end of a macro-step once the latter has been integrated.

The concatenation of the state-hiding practical step-function and its dot version, defined for each system and denoted by S k , is presented in (1.57); and the concatenation of the time-indexed practical step-function and its dot version, defined for each system and denotes by S

[N ] k for the N th macro-step, is presented in (1.58). S k : T × (R n [t]) n in,k → R n out,k × R n out,k (τ, u k ) → S k (τ, u k ), Ṡk (τ, u k ) (1.57) S [N ] k : R n st,k × (R n [t]) n in,k → R n st,k × R n out,k × R n out,k (x k , u k ) → S [N ] k (x k , u k ), Ṡ[N] k (x k , u k ) (1.58)
From the definition (1.57) and the properties (1.51) and (1.55), it is possible to write the property (1.59) for the concatenation S k of the state-hiding practical step-function and its dot version.

S k ([t [N ] , t [N +1] [, [m] u [N ] k ) = ( [m] ỹ[N+1] k , [m] ỹ[N+1] k ) (1.59)
Analogously, from the definition (1.58) and the properties (1.53) and (1.56), it is possible to write the property (1.60) for the concatenation S k of the time-indexed practical step-function and its dot version.

S [N ] k ( [mmax(N -1)] x[N] k , [m] u [N ] k ) = ( [m] x[N+1] k , [m] ỹ[N+1] k , [m] ỹ[N+1] k ) (1.60)

Hat dot versions

If the considered systems are not all capable to provide the output time-derivatives (exempli gratia for technical reasons), an approximation with left finite differences over the macro-step can be used. This finites differences approximation is the base of the estimation of the hat dot version of the simulation function: approximation of the dot version of the simulation function.

The properties of the hat dot versions are consequences of the properties of the practical step functions. Thus, the property of the hat dot version of the state-hiding practical step function (1.61) enables to compute it on non-first macro-steps (N > 1).

Ŝk ([t

[N ] , t [N +1] [, [m] u [N ] k ) = 1 δt [N ] S k ([t [N ] , t [N +1] [, [m] u [N ] k ) -S k ([t [N -1] , t [N ] [, [mmax(N -1)] u [N -1] k ) = 1 δt [N ] S k ([t [N ] , t [N +1] [, [m] u [N ] k ) -[mmax(N -1)] ỹ[N] k (1.61)
The same reasoning can be applied to the hat dot version of the time-indexed practical step function. However, this must only be used on the output components (the time-indexed practical step function also gives the states). Hence, (1.62) enables to compute it in the iterative case on non-first macro-steps (N > 1).

Ŝ[N]

k

( [mmax(N -1)] x[N] k , [m] u [N ] k ) = 1 δt [N ] S [N ] k ( [mmax(N -1)] x[N] k , [m] u [N ] k ) -S [N ] k ( [mmax(N -2)] x[N-1] k , [mmax(N -1)] u [N -1] k ) i+n st,k i∈[[1,n out,k ]] = 1 δt [N ] S [N ] k ( [mmax(N -1)] x[N] k , [m] u [N ] k ) i+n st,k i∈[[1,n out,k ]] -[mmax(N -1)] ỹ[N] k
(1.62) Please consider that the use of the hat dot versions instead of the dot versions should be used on small macro-steps only so that the time derivative of y k does not vary too much, otherwise inconsistent data may be introduced (the finite differences approach done in the hat dot version is of order 1, which means that if the outputs are C 1 or more regular, the consistency of this approximation is of order 1 across the macro-step size).

Analogously to (1.57) and (1.58), we define the functions Ŝk and Ŝ[N] k using the hat dot versions of the corresponding practical step functions instead of their dot versions. Their definition, as variants of (1.57) and (1.58), are given in (1.63) and (1.64) respectively.

Ŝk :

T

× (R n [t]) n in,k → R n out,k × R n out,k (τ, u k ) → S k (τ, u k ), Ŝk (τ, u k ) (1.63) Ŝ[N] k : T × (R n [t]) n in,k → R n st,k × R n out,k × R n out,k (x k , u k ) → S [N ] k (x k , u k ), Ŝ[N] k (x k , u k )
(1.64)

Visualization of a call to a simulation function

As several versions of the step function have been introduced so far, table 1.1 sums up the properties that characterize each of them over a given macro-step. 

version S k ([t [N ] , t [N +1] [, [m] u [N ] k ) = [m] ỹ[N+1] k S [N ] k ( [mmax(N -1)] x[N] k , [m] u [N ] k ) =   [m] x[N+1] k [m] ỹ[N+1] k )   T Dot version Ṡk ([t [N ] , t [N +1] [, [m] u [N ] k ) = [m] ỹ[N+1] k Ṡ[N] k ( [mmax(N -1)] x[N] k , [m] u [N ] k ) = [m] ỹ[N+1] k Concatenation S k ([t [N ] , t [N +1] [, [m] u [N ] k ) =   S k ([t [N ] , t [N +1] [, [m] u [N ] k ) Ṡk ([t [N ] , t [N +1] [, [m] u [N ] k )   T =   [m] ỹ[N+1] k [m] ỹ[N+1] k   T S [N ] k ( [mmax(N -1)] x[N] k , [m] u [N ] k ) =   S [N ] k ( [mmax(N -1)] x[N] k , [m] u [N ] k ) Ṡ[N] k ( [mmax(N -1)] x[N] k , [m] u [N ] k )   T =      [m] x[N+1] k [m] ỹ[N+1] k ) [m] ỹ[N+1] k      T
To evaluate any of the versions of the simulation function introduced in this subsection, a system

(S k ) (with k ∈ [[1, n sys ]]) is integrated over the time-domain τ = [t [N ] , t [N +1
] [ (first argument, or implicitly underlying macro-step in case of the time-indexed versions) with inputs given as argument: vectorial polynomials (of dimension n in,k ) of the time, of degree equal or lower than a given degree n, and the values and derivatives of the outputs (vectorial function of the time, of dimension n out,k ) are returned, evaluated at the time corresponding to the end of the corresponding macro-step (this time is t [N +1] = sup(τ ). Figures 1.5 and 1.6 illustrate this workflow and show the corresponding quantities in the practical step functions usage in an iterative context. For non-iterative equivalent, the left superscript (iteration index) of any quantity can simply be removed in any quantity of these figures. 

Iterations, rollback, convergence criterion and nested loops

As evoked while introducing the iteration index [m] in 1.3.4.2.1, co-simulation methods can be iterative. This is namely the case for methods designed to find very accurate input commands by iterating on the set of interconnected systems until a satisfactory result is found. When such a method is used, the ability of the systems to be able to integrate a macro-step more than once is called the rollback, or sometimes the step revision [START_REF] Cremona | Step revision in hybrid Co-simulation with FMI[END_REF]. With the formalism introduced in 1.3.5, a rollback-capable system is simply a system on which the simulation function can be called several times successively on the same macro-step [t [N ] , t [N +1] [. The iteration index [m] introduced in 1.3.4.2.1 will evolve across these successive calls: this phenomenon is illustrated on figure 1.7 with the time-indexed version of the practical step function.

A convergence criterion can be any rule deciding if a macro-step is converged or not. Usually, it consists in comparing the interface variables at the final time of the considered macro-step through using given norm (1.65).

lim t→t [N +1] t<t [N +1] [m] u [N ] (t) -Φ T [m] ỹ[N] U D (1.65)
In (1.65), notation ∥ ∥ U D denotes a used-defined norm (weights can be used, or absolute/relative coefficients for each coordinate, ...). In case this quantity is small enough, the convergence is said to be reached. In other words, the co-simulation converged at t [N +1] . The comparison of quantity (1.65) to a given tolerance is just an example of a convergence criterion, one could imagine a criterion also taking into account the difference of the time-derivatives (in addition to the values), a simple condition on m (fixed number of iteration), and so on.

A divergence criterion, equivalently called rejection criterion or rejection rule, can be any rule stating the moment where the co-simulation method should stop trying to reach convergence on a given macrostep. Examples of divergence criterions can be the comparison of the norm 1.65 to this quantity at m = 0: in case it increases "too much" (where "too much" has to be defined), the macro-step can be rejected. It might also be a limit on m: after a given number of iterations, the co-simulation method might want to reject the step in order to avoid iterating a loo large (or infinite) number of times.

In case the co-simulation step [t [N ] , t [N +1] [ is rejected, iterative co-simulation algorithms might redefine the end of the current co-simulation step t [N +1] , for instance when they are based on a numerical iterative method that diverged or that did not converge fast enough. In this case, a macro-step restarting from t [N ] but with a different ending time t [N +1] is redefined, and the iterative process restarts in the newly defined macro-step. This namely occurs in the context of adaptive step size iterative co-simulation methods. For the sake of readability, no supplementary subscript of superscript index will be added to the quantities introduced above. We will simply consider that, when the macro-step starting at t [N ] is considered, the method can redefine t [N +1] . The iteration index [m] restarts at m = 0 in this case, and at each macro-step N we can consider that m max (N -1) corresponds to the iteration that led to convergence and acceptance on the previous macro-step. The divergence phenomenon is also illustrated on figure 1.7.

For the sake of genericity, let's consider an abstraction of an implementation of an iterative co-simulation method. Such a method can be seen as a set of two algorithms, also called programs:

• an orchestrator program, running in parallel with • as many clones of a worker program as there are systems.

Each clone of the worker program is responsible for one system, also called simulation unit in this context (that can, in practice, come from any modelling and simulation tool, for instance Simcenter Amesim, Simulink, ... or anything represented with the FMI co-simulation standard). Figure 1.8 schematically shows the architecture of such a way to represent an implementation of a given co-simulation algorithm. Other paragidms are possible regarding the abstraction of a co-simulation algorithm, namely the masterslave one [START_REF] González | Weak Coupling of Multibody Dynamics and Block Diagram Simulation Tools[END_REF], however we stick to the orchestrator-worker one in the whole thesis for its genericity (orchestrator may also sometimes be referred to as manager [START_REF] González | Energy-leak monitoring and correction to enhance stability in the co-simulation of mechanical systems[END_REF]).

Chapter 1 | Introduction to co-simulation: framework and related work An abstraction of the worker program is presented in algorithm 1. Please note that, on this algorithm, the computations of [m] u

[N ] k and t [N +1] at each step are not detailed as they depend on the algorithm itself (they might be determined using data received from the orchestrator program, deduced from the past of the connected output, computed from a numerical method, ...). Also, t [N +1] -t [N ] might change across t [N ] in the case of adaptive step size co-simulation methods. As algorithm 1 is an abstraction of a worker program of an iterative co-simulation method, some iterative co-simulation methods might need to have their formalism slightly adapted in order to fit in with this formalism, without loss of generality. As mentioned previously, this work does not contain any asynchronous iterative method, hence as algorithm 1 is an abstraction of a worker of an iterative method, the macro-discretization is supposed to be synchronous.

Algorithm 1: Worker program responsible for (S k ) of an iterative co-simulation method

1 N := 0; 2 t [0] := t [init] ; 3 while t [N ] < t [end] do // Time loop 4 while
Step starting on t [N ] is not converged do // Co-simulation step loop

5 m := 0; 6 Method (re)computes t [N +1] ; 7 while True do // Internal loop 8 Method computes [m] u [N ] k ; 9 Compute [m] ỹ[N+1] k by step integration S [N ] k with inputs [m] u [N ] k , as in (1.53); 10 From [m] ỹ[N+1]
k and outputs of other systems on other workers, method decides if the step is converged, to-be-redone or rejected; In algorithm 1, three nested loops can be identified:

11 if Step [t [N ] , t [N +1] [ is to-be-
• the time loop, denoting the global forward movement of time during the co-simulation, • the co-simulation step loop, denoting the attempts to locally move forward once a time t [N ] has been reached (in other words, this loop tries to reach convergence until a time strictly further than the currently farthest time where a convergence has been obtained), and • the internal loop, corresponding to the attempt to validate a given macro-step [t [N ] , t [N +1] [ either by convergence of an iterative numerical method, with a given procedure requiring several evaluations of the step function on a macro-step, or with any other methodology.

In order to visualize how these nested loops work, the scenario presented previously in figure 1.7 is shown together with these different loops in figure 1.9. 

Basic and advanced capabilities

The theoretical framework regarding the systems involved in a co-simulation has been introduced previously, yet in practice the black-boxed systems do not always allow to set or evaluate every quantity as we want. Many interactions are standardized in the FMI standard, so even if the FMI framework is not mandatory to define, apply or implement the methods presented in this thesis, the standardized naming of these interactions according to the FMI standard will be used here for the sake of clarity and genericity.

The interactions we are interested in in this thesis are presented in table 1.2. Notations used in the "Description" column are the ones of an iterative method, however the [m] superscript can be removed if a non-iterative method is considered. Enables δt [N ] to vary across N Advanced Provide inputs fmi2SetReal

Specify [m] u [N ] k (t [N ] ) (zero- order hold is used across the macro-step by default) Basic Provide time- dependent inputs canInterpolateInputs fmi2SetReal- InputDerivatives Specify non-constant [m] u [N ] k (usually polynomial) Advanced

Do a step fmi2DoStep

Proceed to the underlying integration at the call of the simulation function

Basic

Retrieve outputs fmi2GetReal

Obtain [m] ỹ[N+1] k Basic Retrieve outputs time-derivatives maxOutput- DerivativeOrder fmi2GetReal- OutputDerivatives Obtain [m] ỹ[N+1] k Advanced

Retrieve state values and derivatives

Internal state variables and their derivatives must be exposed in the system

fmi2GetReal Obtain [m] x[N+1] k and [m] f [N +1] k Advanced Retrieve linearization

providesDirectional-Derivatives fmi2GetDirectional-Derivative

Obtain the derivatives of the f k and g k functions with respect to the states and the inputs, respectively Advanced Rollback canGetAndSetFMUstate fmi2GetFMUstate, and fmi2SetFMUstate

Re-integrate a macro-step that has already been integrated Advanced *The column named "Type" in table 1.2 indicates whether the interaction is "Basic", i.e. possible in every system for co-simulation, or "Advanced", i.e. not mandatory, only available on some systems, depending on the modelling and simulation platform used and submitted to a capability flag (in case of the FMI standard) or a similar mechanism (system generation parameters, for instance).

A visualization of these interactions is presented in figure 1.10 on a single system (the k th one) and on a macro-step of the form [t [N ] , t [N +1] [. The previous macro-step [t [N -1] , t [N ] [ is supposed to have its convergence reached after m max (N -1) = p iterations (with p ∈ N). For a non-iterative methods, p is mandatorily 0. Advanced interactions are detailed around the m th integration over [t [N ] , t [N +1] [ (m being 0 for a non-iterative method).

Figure 1.10: Possible interactions with a system for co-simulation The advanced interactions are not equivalently rare in practice: lots of simulation and modelling platforms can generate systems with the possibility to represent polynomial inputs for instance, yet the rollback is very seldom possible on a system for co-simulation. As the rollback is mandatory to use iterative co-simulation methods or implicit co-simulation methods, lots of industrial models cannot benefit from the advantages of such methods (unless the COSTARICA process that will be presented in chapter 4 is used).

NIZOHJA reference co-simulation method

As this work introduces new co-simulation methods, the latter must be compared to a reference one. As the aim of this thesis is to use the developed methods in an industrial product, the reference must be a co-simulation method usable in an industrial context.

The most used method in practice is the non-iterative zero-order hold Jacobi-type method, that will be noted as NIZOHJA in this thesis. It fits in the framework introduced in this section, it requires no advanced capabilities, and it is really simple to implement. In its simplest form, it is synchronous and works as shown in algorithm 2.

Algorithm 2: NIZOHJA co-simulation method

1 N := 0; 2 t [0] := t [init] ; 3 Choose δt ref ∈ R * ; 4 while t [N ] < t [end] do 5 t [N +1] := t [N ] + δt ref ; 6 Define ũ[N] + as the dispatching ũ[N] + := Φ T ỹ[N] ; 7 for k ∈ [[1, nsys]] do 8 Define zero-order hold inputs u [N ] k : t → ũ[N] + j+ k-1 p=k-1 n in,k j∈[[1,n in,k ]]
; 9

Integrate and get ỹ[N+1]

k

:= S k ([t [N ] , t [N +1] [, u [N ] k ); 10 Assemble ỹ[N+1] := (y [N +1] k ) k∈[[1,nsys]] ; 11 N := N + 1;
Another representation of the NIZOHJA method fitting the orchestrator/worker paradigm introduced in 1.3.6 and especially the scheme of figure 1.8 can be obtained by splitting the loop on all systems of algorithm 2 on all workers. This representation consists of algorithm 3 as orchestrator, and n sys instances of worker algorithm 4.

Algorithm 3: NIZOHJA co-simulation method: orchestrator program

1 N := 0; 2 t [0] := t [init] ; 3 Choose δt ref ∈ R * ; 4 while t [N ] < t [end] do 5 Send t [N +1] := t [N ] + δt ref to all nsys workers; 6 for l ∈ [[1, nsys]] do 7 Send dispatched inputs ũ[N] + l = (ỹ [N ] L(l,j) 1 ,L(l,j) 2 ) j∈[[1,n in,l ]] to l th worker; 8 for k ∈ [[1, nsys]] do 9

Receive outputs ỹ[N+1]

k from k th worker;

10

N := N + 1;
Algorithm 4: NIZOHJA co-simulation method: worker 

1 N := 0; 2 t [0] := t [
k := S k ([t [N ] , t [N +1] [, u [N ] k ); 9 Send outputs ỹ[N+1] k to orchestrator; 10 N := N + 1; 11 while t [N ] < t [end] ;
The NIZOHJA method is fully compatible with the FMI standard: indeed, the interactions of the worker program (algorithm 4) with the system it is responsible of are basically just setting the inputs, doing a step (macro-step) and retrieving outputs. As the inputs are constant function on each macro-step, this both fits the polynomial hypothesis made in this section and the usecase covered by the basic capabilities (see table 1.2). Moreover, the integration on all systems for a given macro-step can be done parallely which makes the NIZOHJA method scalable with respect to the number of systems involved in the co-simulation.

Evolution and variants of this method have been proposed and studied, and this work also adds some co-simulation algorithms to the existing state of the art. As the context has been clarified so far, a second state of the art can be conducted in order to present the related work that fits the framework defined hereabove.

Similar frameworks in the literature

In 2000, R. Kübler and W. Schielen published an article presenting two methods of simulator coupling [START_REF] Kübler | Two Methods of Simulator Coupling[END_REF] in a so general formulation that they can be seen as abstractions (skeletons) of co-simulation methods. The first one can be iterative and formalizes the co-simulation methods and the lever on which they can act: the calibration of the time-dependent inputs so that they are defined on the upcoming macro-step, the possibility to use past exchanged data to extrapolate them, the possibility to iterate on a macro-step in order to find satisfactory input functions for all systems, and so on. A second method is proposed but this one requires on-demand calls to the output function g k of every system (see (1.3)) instead of iterations on the macro-steps. The methods fitting in this abstraction do not require the rollback, but they are quite intrusive as the function g k must be callable in the simulation units.

The first method of [KS00] is compatible with the framework introduced in this section and it is possible to fit it in the abstraction of algorithm 1 in an orchestrator/workers paradigm as shown on figure 1.8. In other words, most of the co-simulation algorithms can be seen either as variants or particular cases of the first co-simulation method of [START_REF] Kübler | Two Methods of Simulator Coupling[END_REF].

In the book [START_REF] Schöps | Progress in Differential-Algebraic Equations[END_REF], one of the chapter wrote by Martin Arnold introduces, among other things, a similar framework where the modular model is denoted as a block-structured coupled system. Systems being DAEs are explicitly taken into account in addition to ODEs, and the co-simulation is described as a modular time integration.

In the PhD thesis of Michał Maciejewski [START_REF] Maciejewski | Co-Simulation of Transient Effects in Superconducting Accelerator Magnets[END_REF], the notions of "time window" and "convergence loops" directly echo the need to name the different nested iterative structures in a co-simulation algorithm, as done in 1.3.6. Strong woupling and waveform relaxation methods are mentioned and can be seen as particular cases of the second and first co-simulation methods of [START_REF] Kübler | Two Methods of Simulator Coupling[END_REF], respectively. Non-iterative methods are also mentioned, citing Kevin Burrage's book [START_REF] Burrage | Parallel and sequential methods for ordinary differential equations[END_REF] with, among others, the non-iterative zero-order hold Jacobi method NIZOHJA exposed previously in 1.3.8.

The possibility to transparently apply co-simulation to PDEs is described in [START_REF] Viot | Solving coupled problems of lumped parameter models in a platform for severe accidents in nuclear reactors[END_REF]: the paradigm of lumped parameter models indeed enables to see the already-discretized PDEs parts as open systems for co-simulation, embedding an ODE and able to communicate through outputs and inputs exactly as the systems denoted as 0D systems in our framework, described in 1.3.2 (the "0D systems" naming is also mentioned in [START_REF] Viot | Solving coupled problems of lumped parameter models in a platform for severe accidents in nuclear reactors[END_REF]). The distinction between non-iterative and iterative co-simulation method is also done in this article, with the same definition (necessity or not to integrate several times over a given macrostep). The naming used in [START_REF] Viot | Solving coupled problems of lumped parameter models in a platform for severe accidents in nuclear reactors[END_REF] for this distinction is: ECSs (Explicit Coupling Schemes), equivalent to our "non-iterative" naming, and ICSs (Implicit Coupling Schemes), equivalent to out "iterative" naming.

Examples of similar frameworks are numerous in the literature. At this point, the simulators coupling in which we are interested in this work is clearly defined, and it is one of the various interpretations of the wide notion of "simulating partitioned systems", as shown in the first related work review in 1.2. Now, as the context is precisely known, a second state of the art can be conducted within the same notion of co-simulation than this work.

Related work within the defined framework

Contrary to the wide range of interpretations of simulators coupling and the numerous approaches detailed in articles introduced in section 1.2, the literature that is reviewed in this section relates to the co-simulation context as defined in section 1.3. An exhaustive state of the art has been conducted in 2017 by Cláudio Ângelo Conçalves Gomes et al [START_REF] Ângelo | Co-simulation: State of the art[END_REF], leading to a big survey in 2018 [START_REF] Ângelo | Co-simulation : A Survey[END_REF]. In those papers, some similar concepts than the ones of our framework have been defined (such as the orchestrator, the simulation units equivalent to our so-called systems, et caetera ) and distinctions between the CT (Continuous Time) and DE (Discrete Events) systems have been made. In this work, we mainly restrict our research to the continuous time systems even if one of the method (the F 3 ORNITS one, presented in chapter 2) can also be applied to discrete events systems, or even to hybrid cases as shown by some examples at the end of chapter 2.

Issues with straightforward approaches

A first question that immediately arises once the formalism is set is: as we dispose of an algorithm that solves the co-simulation problem (NIZOHJA method, 1.3.8), why not simply use it to solve each cosimulation problem? The literature shows that this method is far from ideal, and tests of NIZOHJA on co-simulation test-cases show performance and accuracy issues.

As straightforward methods, the non-iterative zero-order hold Gauss-Seidel method can also be cited: the idea is to sequentially call the simulation functions of the systems so that the inputs is an extrapolation on the first system, but an interpolation on the second one. Extensions to cases with more than two systems can be imagined. In that case, the choice of the first system to be called (with extrapolated inputs) and the second system to be called (using interpolated inputs) is generalized in the so-called trigger sequence. Finding the optimal trigger sequence is the object of the research [START_REF] Franz | Optimal Trigger Sequence for Non-Iterative Co-simulation[END_REF]. On the other side, the parallel aspect of the Jacobi approach make it straightforward to generalize it to any number of systems (this generalization is namely the one presented in 1.3.8).

Literature about the Jacobi and Gauss-Seidel methods

First of all, as the Jacobi approach has been presented in the NIZOHJA algorithm, let's present the Gauss-Seidel approach. Both are very classical, mentioned in 1995 in Kevin Burrage's book [START_REF] Burrage | Parallel and sequential methods for ordinary differential equations[END_REF] as two weak coupling schemes. Algorithm 5 is the NIZOHGS (Non-Iterative Zero-Order Hold Gauss-Seidel) cosimulation method, all-in-one (no distinction of the orchestrator/worker program, despite it can easily be done from its full form like for the Jacobi equivalent). Please note that algorithm 5 only covers the 2systems case n sys = 2, where system (S 1 ) has been chosen as the system using extrapolated inputs, and system (S 2 ) has been chosen as the system using interpolated inputs.

Algorithm 5: NIZOHGS co-simulation method for n sys = 2

1 N := 0; 2 t [0] := t [init] ; 3 Choose δt ref ∈ R * ; 4 while t [N ] < t [end] do 5 t [N +1] := t [N ] + δt ref ; 6 Define zero-order hold extrapolated inputs u [N ] 1 : t → (ỹ [N ] L(1,j) ) j∈[[1,n in,1 ]] ; 7 Integrate and get ỹ[N+1] 1 := S 1 ([t [N ] , t [N +1] [, u [N ]
1 );

8

Define zero-order hold interpolated inputs u

[N ] 2

: t → (ỹ

[N +1] L(2,j) ) j∈[[1,n in,2 ]] ; 9 Integrate and get ỹ[N+1] 2 := S 2 ([t [N ] , t [N +1] [, u [N ]
2 );

10

N := N + 1;
The non-iterative Jacobi and Gauss-Seidel approaches, both in their zero-order hold and higher order versions (defining inputs as interpolations or extrapolations based on the past values of the interface variables at more than one communication times), have been studied on mechanical test-cases for different values of the macro-step size δt ref in [START_REF] Arnold | Multi-Rate Time Integration for Large Scale Multibody System Models[END_REF], showing a significant bound between the latter and the overall error. These two classical approached, also sometimes denoted as "weak coupling approaches", are usually the starting point of advanced co-simulation methods development, like for instance in the PhD thesis of Martin Busch [START_REF] Busch | Zur effizienten Kopplung von Simulationsprogrammen[END_REF] from where figure 1.11 is extracted. The notations of the figure have been updated to match the framework of this thesis. On some studied cases with a special type of coupling, Bryan Olivier et al's proceeding [START_REF] Olivier | Stability and Error Analysis of Applied-Force Co-simulation Methods Using Mixed One-Step Integration Schemes[END_REF] shows a better accuracy with the Gauss-Seidel approach than with the Jacobi approach. This better accuracy of the Gauss-Seidel approach compared to the Jacobi one has also been observed on co-simulation applied to HIL (Hardware-In-the-Loop) in 2022 on an engine test bench [START_REF] Glumac | Co-simulation perspective on evaluating the simulation with the engine test bench in the loop[END_REF].

Classical iterative co-simulation methods

Iterative versions of the abovementioned co-simulation techniques can be used. The equivalent versions of NIZOHJA and NIZOHGS, respectively referred to as IZOHJA (Iterative Zero-Order Hold Jacobi) and IZOHGS (Iterative Zero-Order Hold Gauss-Seidel) in this work, are respectively given (as a whole, not with the orchestrator/worker structure, but this is still possible to implement them under that form) in algorithms 6 and 7.

Algorithm 6: IZOHJA co-simulation method

1 N := 0; 2 t [0] := t [init] ; 3 Choose δt ref ∈ R * ; 4 while t [N ] < t [end] do 5 t [N +1] := t [N ] + δt ref ; 6 m := 0; 7 while True do 8 Define [m] ũ[N] + as the dispatching [m] ũ[N] + := Φ T [mmax(N -1)] ỹ[N] if m = 0 Φ T [m-1] ỹ[N+1] otherwise ; 9 for k ∈ [[1, nsys]] do 10 Define zero-order hold inputs [m] u [N ] k : t → [m] ũ[N] + j+ k-1 p=k-1 n in,k j∈[[1,n in,k ]]
; 11 Algorithm 7: IZOHGS co-simulation method for n sys = 2 Define zero-order hold extrapolated inputs [m] u

Integrate and get

[m] ỹ[N+1] k := S k ([t [N ] , t [N +1] [, [m] u [N ] k ); 12 Assemble [m] ỹ[N+1] := ( [m] y [N +1] k ) k∈[[1,nsys]] ; 13 if Convergence is not reached on macro-step [t [N ] , t [N +1]
1 N := 0; 2 t [0] := t [init] ; 3 Choose δt ref ∈ R * ; 4 while t [N ] < t [end] do 5 t [N +1] := t [N ] + δt ref ;
[N ] 1 : t → ( [mmax(N -1)] ỹ[N] L(1,j) ) j∈[[1,n in,1 ]] if m = 0 ( [m-1] ỹ[N+1] L(1,j) ) j∈[[1,n in,1 ]] otherwise ; 9 Integrate and get [m] ỹ[N+1] 1 := S 1 ([t [N ] , t [N +1] [, [m] u [N ] 1 ); 10 Define zero-order hold interpolated inputs [m] u [N ] 2 : t → ( [m] ỹ[N+1] L(2,j) ) j∈[[1,n in,2 ]] ; 11 Integrate and get ỹ[N+1] 2 := S 2 ([t [N ] , t [N +1] [, u [N ]
2 ); These iterative co-simulation methods are sometimes referred to as waveform relaxation [LRSV82] or dynamic iteration [START_REF] Miekkala | Convergence of Dynamic Iteration Methods for Initial Value Problems[END_REF]. These two articles introduce and use iterative co-simulation in order to enhance the accuracy, as they iterate until "satisfactory convergence is achieved" [START_REF] Lelarasmee | The Waveform Relaxation Method for Time-Domain Analysis of Large Scale Integrated Circuits[END_REF]. Algorithms 6 and 7 aim at visualizing the iterative process either with a Jacobi and a Gauss-Seidel communication type, yet one can notice that, in case of non-convergence, infinite loops may appear.

12 if Convergence is not reached on macro-step [t [N ] , t [N +1] [ then 13 m := m + 1;
The zero-order hold aspect of these methods can be extended to higher interpolation/extrapolation orders, however it has been shown that too high orders lead to less stable numerical behavior [START_REF] Arnold | Stability of Sequential Modular Time Integration Methods for Coupled Multibody System Models[END_REF], but orders reasonably higher than zero lead to more accurate results (smaller error) [START_REF] Busch | Zur effizienten Kopplung von Simulationsprogrammen[END_REF][START_REF] Kraft | Efficient Parallelization of Multibody Systems Incorporating Co-Simulation Techniques[END_REF]. For instance, when systems are not only ODEs but might be DAEs, the condition to get the convergence is harder to fulfill for high extrapolation orders on examples of [START_REF] Schierz | Stabilized overlapping modular time integration of coupled differential-algebraic equations[END_REF]. Indeed, when coupling DAEs, conditions (related to Lipschitz constant) have to be respected for the coupling to converge [START_REF] Bartel | Dynamic iteration for coupled problems of electronic circuits and distributed devices[END_REF]. The polynomial order of the inputs is not the only parameter in the inputs definition process. Indeed, other interpolation/extrapolation type than Lagrange can be done: for instance, when the instantaneous timederivative of the outputs (thus, of the interface variables) are available, a Hermite interpolation can be made. This is shown to lead to a more stable behavior in the waveform relaxation method [START_REF] Busch | Stability of Co-Simulation Methods Using Hermite and Lagrange Approximation Techniques[END_REF].

Iterative co-simulation methods, sometimes also called implicit co-simulation methods [SLL15; SLL16a; Li+17; VSDV18; KMS19a; MKS21] due to the necessity to make several calls to the simulation functions on the same step (rollback, described earlier in the formalism in subsection 1.3.6), have been shown to be more stable than the equivalent explicit ones, see namely [START_REF] Li | Numerical stability of explicit and implicit co-simulation methods[END_REF].

Further analysis can be processed when the internal solver is known [START_REF] Sand | Stability of Backward Euler Multirate Methods and Convergence of Waveform Relaxation[END_REF], however this work aims at proposing co-simulation methods usable with black-boxed systems in order to be compatible with an industrial usage, so we will mainly focus on the papers making no hypothesis on the internal solvers.

Today's challenges in co-simulation

Despite the nice stability and accuracy properties found on some cases with the previously introduced methods, co-simulation nowadays faces a strange contradiction: on the one hand the best way to choose or design a tailored co-simulation strategy is to use the biggest amount of insight about the involved systems (exchanged signals frequencies [START_REF] Benedikt | Modelling and analysis of the noniterative coupling process for co-simulation[END_REF], presence of power bonds [Ben+13; Sad+17], sensitivity models [START_REF] Farkas | Adaptive Step Size Control for Hybrid CT Simulation without Rollback[END_REF], or any other hint [START_REF] Ângelo | HintCO -Hint-based Configuration of Co-simulations[END_REF]), but on the other hand the use of co-simulation is mainly motivated by industrial purposes with black-boxed systems hiding information about the equations inside, the internal solver and sometimes even the nature of the exchanges data. Some industrial applications may take advantage of the domain if the latter is known, like for instance the electric power grid in the case of [START_REF] Kelley | A federated simulation toolkit for electric power grid and communication network co-simulation[END_REF]: thus a dedicated toolkit is designed; or regarding multibody mechanics, the coupling type has known effects on the co-simulation numerical properties [OVK19; OVK20]. Analysis is also eased when the model is known [START_REF] Viel | Implementing stabilized co-simulation of strongly coupled systems using the Functional Mock-up Interface 2.0[END_REF][START_REF] Viot | Solving coupled problems of lumped parameter models in a platform for severe accidents in nuclear reactors[END_REF].

However, generic and robust co-simulation strategies are rare. This either refers to generic enough methods able to solve any co-simulation problem instead of being tailored to any system, or adaptive enough so that a very limited number of choices has to be made (macro-step size, trigger sequence, polynomial order for inputs calibration, et caetera ). Recent research goes in that direction, namely with the recent PhD thesis of Jan Kraft and Tobias Meyer [START_REF] Kraft | Efficient Parallelization of Multibody Systems Incorporating Co-Simulation Techniques[END_REF][START_REF] Meyer | Co-Simulation Methods with Variable Communication Step Size and Alternative Approaches for Solving Constrained Mechanical Systems[END_REF], and the trend to move to the most adaptive possible co-simulation method can clearly be identified when reading more and more recent literature.

It is indeed now expected that most of the co-simulations are done by-design, because systems are connected together, instead of the will to decouple a large system into a modular model. In [JB], the following sentence illustrates how nowadays motivation to conduct co-simulations is no more the split of large systems: "Where should we cut the system? The only right answer is: don't cut, if you can avoid it.". The power of co-simulation is often counterbalanced by numerical drawbacks, as highlighted in [START_REF] Kalmar | Can complex systems really be simulated?[END_REF]: "Co-simulation, while a very useful computational tool, needs to be performed carefully". The title of [KNS14] also clearly illustrates this: "Can complex systems really be simulated?".

In order to best answer to these challenges, many advanced co-simulation algorithms have been proposed. Subsection 1.4.2 presents a review of these methods across different aspects of concrete difficulties arising in co-simulation.

Proposed advanced co-simulation methods

About the drop in simulation quality

The simulation quality, in terms of error with respect to theoretical solution, is usually affected when a cosimulation is done compared to the monolithic equivalent of a system [KNS14; JB]. Indeed, during a given macro-step, whether the inputs are computed through an extrapolation or an interpolation, the systems are solved on estimations of the interface quantities and thus cannot properly react to a behavior change if the latter occurs within the macro-step. Depending on the sensitivity of the global model to such changes, integrations over a macro-step may fail [START_REF] Uwe | A priori step size adaptation for the simulation of non-smooth systems[END_REF]. A priori criteria can sometimes be used to prevent too large macro-steps [START_REF] Uwe | A priori step size adaptation for the simulation of non-smooth systems[END_REF][START_REF] Farkas | Adaptive Step Size Control for Hybrid CT Simulation without Rollback[END_REF], but this either requires extra information than the basic capabilities of a system, or an extra implementation on the systems themselves so that they can communicate information about these changes: namely the sensitivity model, in [START_REF] Farkas | Adaptive Step Size Control for Hybrid CT Simulation without Rollback[END_REF], or a zero-crossing detector that might allow to find the discontinuity time through macro-step revision [START_REF] Cremona | Step revision in hybrid Co-simulation with FMI[END_REF]. Not only when discrete changes of the behavior occur, co-simulation, especially with explicit (non-iterative) schemes, "yields poor accuracy [...] issues. [...] the weak coupling reached by explicit coupling schemes is often not enough and only a strong coupling at the end of the time step can ensure proper stability properties" [START_REF] Viot | Solving coupled problems of lumped parameter models in a platform for severe accidents in nuclear reactors[END_REF].

Among the co-simulation methods explicitly designed to enhance the accuracy of a co-simulation by reducing the error, many derive from the will to use the iterative ones (waveform relaxation, dynamic iteration). For instance, a pre-conditioned version of the waveform relaxation presented in [START_REF] Arnold | A pre-conditioned method for the dynamical simulation of coupled mechanical multidoby systems[END_REF] is designed to guarantee the convergence of it so that co-simulation can benefit from the good accuracy properties of it. With respect to algebraic component, the pre-conditioning has also been studied [START_REF] Arnold | Preconditioned Dynamic Iteration for Coupled Differential-Algebraic Systems[END_REF], the will being to keep on using the waveform relaxation method for its nice properties while avoiding non-convergence issues.

As other accuracy-oriented aspects of a co-simulation method than the iterative nature, the interpolation of the inputs (instead of extrapolation) can be cited. Indeed, as seen previously in 1.4.1.1, it has been shown in the literature that the Gauss-Seidel approach produced a lower error than the Jacobi approach. The method presented in [START_REF] Franz | Optimal Trigger Sequence for Non-Iterative Co-simulation[END_REF] proposes a generalization of the Gauss-Seidel approach for any number of connected systems (not only two), together with a way to compute the optimal trigger sequence among these systems. The aim of the proposed method is thus to extend the usability of the Gauss-Seidel approach in order to benefit from its advantages.

Another approach to diminish the error of a co-simulation is to correct the input signals. Indeed, whether an extrapolation or an interpolation is used, the fact that the inputs are only estimations on each systems on each macro-step may lead to an error in the local resolutions. Indeed, even in case the integration is correct, if the system is controlled by an input that is unproper compared to what this signal would have been in the monolithic equivalent, the outputs can be badly affected by the coupling process. "One of the negative aspects of discrete-time communication is the introduction of artificial energy in the system dynamics, which can render the simulation unstable if it accumulates over time." [START_REF] González | Energy-leak monitoring and correction to enhance stability in the co-simulation of mechanical systems[END_REF]. Some methods propose a relevant correction of the input signals, to monitor energy-leak [START_REF] González | Energy-leak monitoring and correction to enhance stability in the co-simulation of mechanical systems[END_REF] or to conserve (a generalized form of) energy [Ben+13; Sad+17; SP20], the aim still being to have more accurate results than with the classical co-simulation methods.

The main problem on these methods is that they require insight on the systems, which is not always possible to have (this issue is describe later in 1.4.2.4). In general, the more insight on the systems we have, the more it is possible to design a tailored co-simulation method that will be accurate on these cases. For instance, [START_REF] Li | Explicit Co-simulation Approach with Improved Numerical Stability[END_REF] makes explicit co-simulation more stable on the studied multibody mechanical models, but constitutive laws and variables nature must be known. In [START_REF] Li | Improved explicit cosimulation methods incorporating relaxation techniques[END_REF], relaxation techniques are used on explicit co-simulation schemes on known mechanical quantities (mechanical states, constant acceleration, linear acceleration).

A research group of TU Darmstadt actively contributes to proposing co-simulation methods designed to reach satisfactory accuracy, by adapting the macro-step size (smaller macro-steps avoid big extrapolation errors around high dynamics of interface variables) [KMS19a; Kra21; Mey+19; MKS21; Mey22], by defining inputs easing the convergence at the communication times [SL15a; Kra+21], by adapting the polynomial degree of these inputs to both truthfully approximate the signals and avoid high-order instabilities [KMS19a; Kra21] (just like classical integrators, such as [START_REF] Hindmarsh | SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers[END_REF] that namely inspired the strategy in [START_REF] Kraft | Parallel Co-Simulation Approach With Macro-Step Size and Order Control Algorithm[END_REF]), et caetera Studies and analysis on a wide range of mechanical co-simulation problems have been conducted [SLL15; SL15b; SL15a; SLL16b; SLL16a; Li+17; Li+19; Li+20]. The definition of the inputs to ease the convergence of the co-simulation method can be seen as an evolution of IZOHJA method (algorithm 6), in the same way that [Arn00; AU01] improved the underlying iterative problem, the latter can be formulated as a fixed-point problem for which an equivalent zero-finding problem can be stated. This zero-finding problem can be resolved by a Newton-like method, and [SL15b; SL15a; SLL16b] can be seen as similar to the approach of resolving this zero-finding problem through a Newton iteration. The Jacobian matrix of the problem therefore is a Jacobian on the interfaces, so-called interface Jacobian, and Alfred Sicklinger's research formalizes this approach [START_REF] Sicklinger | Interface Jacobian-based Co-Simulation[END_REF]. An extended version can be found in his PhD thesis [START_REF] Alfred | Stabilized Co-Simulation of Coupled Problems Including Fields and Signals[END_REF], and Jan Kraft, Stefan Klimmek, Tobias Meyer and Bernhard Schweizer from the group of TU Darmstadt also studied efficient calculation of it and the sensitivity of this computation [START_REF] Kraft | Implicit Co-Simulation and Solver-Coupling: Efficient Calculation of Interface-Jacobian and Coupling Sensitivities/-Gradients[END_REF].

Among the actions that can be taken by the co-simulation algorithm listed above, the macro-step size is one of the most critical. First, it always have to be defined, even in the most basic co-simulation methods (NIZOHJA, NIZOHGS, IZOHJA, IZOHGS need a δt ref ). Then, a macro-step can have a relevant size at one moment of the simulation, and not at another moment (in case dynamics of the interface variables evolve faster after a while, for instance, making δt ref too big to properly catch the interface signals with the inputs extrapolations). This can be balanced with macro-step size adaptive methods, as cited in the previous paragraph, however a question naturally arises: why not considering a really small macro-step size, for instance of the same order of magnitude than the micro-steps, in order to ensure inputs fidelity in their extrapolations in the different systems? Indeed, [START_REF] Benedikt | Modelling and analysis of the noniterative coupling process for co-simulation[END_REF] proposes a method to find a small-enough macro-step size to avoid the aliasing phenomenon, and [START_REF] Ângelo | Approximated stability analysis of bi-modal hybrid co-simulation scenarios[END_REF] shows the maximum acceptable macrostep size for a given structure of systems (bi-modal hybrid scenarios), but there does not seem to be a minimum size limitation.

About the drop in simulation performance

The reason motivating to consider not-so-small macro-steps is naturally the performance. Indeed, just like the numerical integrators of ODEs of DAEs, the step size is strongly related to the computational efficiency. Moreover, in co-simulation, the internal solvers of all systems start/restart at each call of the simulation function. In case these solvers are variable-step solvers, these restarts make them take very small micro-steps for each integration over each macro-step, drastically taking down the performance compared to a monolithical simulation.

The parallel aspect of co-simulation method may, in some cases, lead to a reduction of the computational time (for instance, when the monolithic equivalent would be stiff due to very different time scales, or when the solver has to compute wide Jacobian matrices due to a huge number of states). However, these cases are very specific and despite they exist [START_REF] Kraft | Reduction of the Computation Time of Large Multibody Systems with Co-simulation Methods[END_REF], most of the times the successive solver restarts, due to the co-simulation communication times, do produce a drop in performance that overtakes the time reduction provided by the parallelization and/or the smaller dimensions of the equations in each system [START_REF] Kossel | Effects of Tool Coupling on Transient Simulation of a Mobile Air-Conditioning Cycle[END_REF].

Hence, the method adapting the macro-step size across the co-simulation must dynamically find a compromise between:

• big enough macro-steps, to avoid repeated solver restarts when it is not relevant to have too small steps to catch the dynamics of the interface variables, as they might be costly with respect to the computational efficiency, and • small enough macro-steps, to:

• maintain an acceptable extrapolation/interpolation error on the inputs, • avoid losing the global behavior (even for interpolated inputs like in Gauss-Seidel-like methods, the independent resolutions of the systems may drift compared to the behavior of the monolithic equivalent of the global modular model), • reduce the risk to jump over a discrete event [Pfa07; FBH19], and increase the chance to have a communication time taking into account the after-discontinuity regime close to the corresponding discontinuity time, especially when there is no way to revise the step like in [START_REF] Cremona | Step revision in hybrid Co-simulation with FMI[END_REF],

• avoid aliasing effect [START_REF] Benedikt | Modelling and analysis of the noniterative coupling process for co-simulation[END_REF].

Methods to adapt the macro-step size dynamically during the co-simulation, the so-called time-steppers, are usually based on an local (in time) error estimation. For instance, [START_REF] Schierz | Co-simulation with communication step size control in an FMI compatible master algorithm[END_REF] processes a Richardson extrapolation to be able to use a heuristic telling the time-stepper if the next macro-step should be bigger or smaller than the current one, and giving the ratio between those: the so-called dilatation ratio or dilatation factor.

One can notice that the need for such a time-stepper is analog to the motivation of it in numerical integrators (either adapting the step size according to error measurements [Hin+05; CS10] or with other techniques [START_REF] Wei | A chaos detectable and time stepsize adaptive numerical scheme for nonlinear dynamical systems[END_REF]) in the sense of the dynamical search of a good time/accuracy compromise. Despite the framework is not the same in the numerical integration and in the co-simulation domains, general ideas of this first field can be inspiring to develop time-steppers in the second one. This inspiration can be seen in the time-stepper developments in the literature.

Regarding the work of the research group of TU Darmstadt, method [START_REF] Kraft | Parallel Co-Simulation Approach With Macro-Step Size and Order Control Algorithm[END_REF] uses a time-stepper also based on the local error estimation coming from a comparison between a predictor and a corrector.

Known polynomial orders enable a known error expected order [Mey+19, 11.5.2], and a variable macrostep strategy can thus be derived from this information [START_REF] Meyer | Error Estimation Approach for Controlling the Communication Step-Size for Explicit Co-simulation Methods[END_REF]11.7]. Further work [START_REF] Meyer | Co-Simulation: Error Estimation and Macro-Step Size Control[END_REF] is based on a similar principle, and Tobias Meyer's PhD thesis details this idea [START_REF] Meyer | Co-Simulation Methods with Variable Communication Step Size and Alternative Approaches for Solving Constrained Mechanical Systems[END_REF].

Finally, a different noticeable approach to handle the drop of performance due to the solver restarts is the one of Christian Anderson's PhD thesis [START_REF] Anderson | Methods and Tools for Co-Simulation of Dynamic Systems with the Functional Mock-up Interface[END_REF]. The idea is to avoid the solver restarts rather than minimizing their occurrences. Broadly, the method corrects the history array directly in the systems' solvers using the partial derivatives of f k with respect to the state variables and to the inputs. Hence, the solvers can start the successive integrations as if they were coming from a continuous integration, and not as a full restart following a discontinuity (as classically). This approach is quite intrusive for industrial applications, yet it raises the following topic: could the reason of the solvers restart be excluded? In other words, the restarts occur due to discontinuities of the interface variables (inputs) at the communication times, but is it mandatory to have such discontinuities?

About the non-natural jumps at communication times

The jumps inherently occurring at the communication times due to inputs updates (there is no reason a priori for an input u to be, at it left limit at t [N +1] , equal to u

[N +1] k (t [N +1]
). In the best cases, due to a converged iterative process such as IZOHJA (algorithm 6), these values may be close, but then all non-first iterations of a given step, in zero-order hold case, will start according to the corresponding output value at the end of the current macro-step and thus there is no reason for this value to be equal to the on at the beginning of the current macro-step. As this is namely the object of smoothness enhancement techniques presented in F 3 ORNITS and IFOSMONDI methods in chapters 2 and 3 respectively, the previous description will be clarified and made visual in these chapters. Please note that smoothness enhancement techniques here must not be confused with the so-called smoothness techniques of [START_REF] Benedikt | Relaxing Stiff System Integration by Smoothing Techniques for Non-iterative Co-simulation[END_REF].

Continuous and smooth input signals, even in a non-iterative context, have been proposed by Martin Busch in [START_REF] Busch | Continuous approximation techniques for co-simulation methods: Analysis of numerical stability and local error[END_REF] and continued in [START_REF] Busch | Performance Improvement of Explicit Co-simulation Methods Through Continuous Extrapolation[END_REF], based on the idea to extend the continuous (C 0 class) interface signal reconstruction proposed in 2006 by Sven Dronka and Jochen Rauh [START_REF] Dronka | Co-simulation-interface for user-force-elements[END_REF]. The idea is to define the inputs as the polynomial reaching the value at the end of the macro-steps that a classical approach would do, but explicitly calibrating the polynomial so that the smoothness of the desired class (C 0 , C 1 , et caetera ) is not broken at the beginning of the macro-step. This is possible as the inputs expression has been provided by the co-simulation method itself at the previous steps and thus is known. A visualization of these techniques is presented in figure 1.12. Figure 1.12: Example of smoothness enhancement on a given input This method, often denoted as EXTRIPOL (for Extrapolated Interpolation), may enable internal numerical integrators to take advantage of the continuity of the inputs.

About the standardization and the intrusiveness

The standardization is another strong challenge in co-simulation. Indeed, the modular structure of the models make it possible to handle a co-simulation with each system coming from a different platform, mixing various authoring tools, each one having its own specific tailored local modeling and integration strategy. This leads to a need for standardization of the possible interactions that systems can handle, but also a controlled intrusiveness: each system must explicitly state what information about it can be provided or not. Sometimes, too basic systems do not provide enough data or cannot process enough advanced requests so that advanced co-simulation methods can be used: "Application in weakly coupled co-simulations is not straightforward due to the limitations enforced by the commercial simulation tools used for mechatronics design" [START_REF] González | Weak Coupling of Multibody Dynamics and Block Diagram Simulation Tools[END_REF].

This standardization of the interactions and the available supplementary capabilities is nowadays widely resolved thanks to the FMI standard, as introduced in 1.3 with capabilities detailed in 1.3.7. The official specification and the associated C code can be found on the FMI website [FMI], the standard has been "initiated by Daimler AG within the ITEA2 MODELISAR project, and is now maintained by the Modelica Association" [START_REF] Tavella | Toward an Hybrid Co-simulation with the FMI-CS Standard[END_REF]. Publications started in 2011 during the 8 th International Modelica Conference with [START_REF] Blochwitz | The Functional Mockup Interface for Tool independent Exchange of Simulation Models[END_REF] and the version 2.0, now the most used, has been proposed one year later at the 9 th International Modelica Conference in [START_REF] Blochwitz | Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation Models[END_REF]. At the moment these lines are being written, the FMI 3.0 standard has just been released. The possibility to use FMUs (Functional Mock-up Units) to represent systems involved in a co-simulation "inspired new research on theoretical aspects of co-simulation", as written in Martin Arnold's chapter in Sebastian Schöps and al's book [START_REF] Schöps | Progress in Differential-Algebraic Equations[END_REF]. Of course, FMI is just a standard and does not make the systems more or less capable, it is "not magic" [JB], and "a closer look at the FMI specification reveals one of the problems in co-simulation, especially when using commercial tools: the limited access to the involved submodels.", as written in [START_REF] Müller | An Explicit Approach for Asynchronous Step Size Control in Co-simulation[END_REF], because a standard for each system to explicit what it can or cannot do does not make these systems capable to do more. However, widely used commercial simulation tools as well as academic ones started to implement an FMI-compatibility, at least to produce FMUs: OpenModelica [START_REF] Fritzson | Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach[END_REF], for instance, but also Simcenter Amesim by Siemens, the Dassault Systèmes' tool Dymola, Simulink (making it possible today to interact through a more convenient way with these models than using an S-function like in [START_REF] González | Weak Coupling of Multibody Dynamics and Block Diagram Simulation Tools[END_REF], which was not the case back in 2009), et caetera . The motivation of the standard and the possibility to use more advanced co-simulation methods is a motivation to work on features for the authoring tools to make their systems capable of more interactions.

Indeed, emergence of the FMI standard could be clearly noticed in the co-simulation-related publications once the standard was released. SNiMoWrapper, published in [START_REF] Arnold | Error analysis for co-simulation with force-displacement coupling[END_REF], is a co-simulation tool explicitly supporting systems represented by FMUs. Used as a testbed for co-simulation algorithms, it eased a lot the research in that field [START_REF] Hante | The SNiMoWrapper: An FMI-Compatible Testbed for Numerical Algorithms in Co-simulation[END_REF] while ensuring the genericity of usage of the developed methods as the interactions are standardized. Other testbed tools have also been developed to work with FMUs: MODELISAR, explicitly a "Master for co-simulation using FMI" [START_REF] Bastian | Master for co-simulation using FMI[END_REF], used for "[tests] of basic cosimulation algorithms unsing FMI" [START_REF] Petridis | Test of Basic Co-Simulation Algorithms Using FMI[END_REF]. OMSimulator is another co-simulation tool that supports FMUs: it "supports supports large-scale simulation and virtual prototyping using models from multiple sources utilizing the FMI standard" [START_REF] Ochel | OMSimulator -Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP[END_REF]. Some articles presenting new co-simulation methods explicitly claim their compatibility with the FMI standard, like [START_REF] Müller | An Explicit Approach for Asynchronous Step Size Control in Co-simulation[END_REF] or [START_REF] Schierz | Co-simulation with communication step size control in an FMI compatible master algorithm[END_REF], the latter stating explicitly in the title that the proposed method is "in an FMI compatible master algorithm". SSP [SSP], a companion standard used to represent a full modular model with all its systems as FMUs in addition to the connections and extra data, has arisen from that trend of standardization, and motivated research in co-simulation to adopt it as well [START_REF] Ochel | OMSimulator -Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP[END_REF].

Nevertheless, the standardization has a cost. Finding a compromise between wide usability and advanced information or interactions is not easy. Such a compromise has been resolved by the FMI standard through the mechanism of optional advanced capabilities. The latter are quite exhaustive, yet they do not enable every advanced co-simulation method to be implemented with FMIs. Proceedings like [START_REF] Brembeck | Nonlinear State Estimation with an Extended FMI 2.0 Co-Simulation Interface[END_REF] and [START_REF] Viel | Implementing stabilized co-simulation of strongly coupled systems using the Functional Mock-up Interface 2.0[END_REF] explicitly give examples of extensions of the FMI standard making FMU systems compatible with advanced co-simulation methods enabling to gain accuracy and stability. Another suggestion of extension that would help avoiding jumping over discrete events during a macro-step is presented in [START_REF] Tavella | Toward an Hybrid Co-simulation with the FMI-CS Standard[END_REF]. Other methods propose non-intrusive extensions of the standard: simple modifications in the co-simulation environment may allow to process advanced co-simulation while using real FMUs with additional information which do not break the standard. As an example, the sensitivity model in [START_REF] Farkas | Adaptive Step Size Control for Hybrid CT Simulation without Rollback[END_REF] can interact with FMUs either through additional ports or with information obtained during preliminary runs, which does not require to break the black-box (and potentially IP-protecting) aspect of the involved FMUs. Another example is the hint-wrapped versions of FMUs used by the Hint-Co environment [START_REF] Ângelo | HintCO -Hint-based Configuration of Co-simulations[END_REF]: additional hints are given on top of each FMU, adding information without corrupting the FMUs.

About the modeling of the interface

It can be tricky to partition a large system in such a way that the downside of a partitioning is limited. As cited before, Junghanns wrote "don't cut, if you can avoid it" in [JB]. Nonetheless, some ways of cutting a large systems are more damaging than others, and different interfacing strategies can influence the sensitivity of the decoupled model in a significant way. For instance, the contractivity condition that is critical for the pre-conditioning method presented in [START_REF] Arnold | Preconditioned Dynamic Iteration for Coupled Differential-Algebraic Systems[END_REF] is explicitly said to "be achiev[able] by a suitable splitting". Other strategies consist in enhancing the performances on a given partitioning by using "interface models, i.e. reduced representations of one or more systems that provide physically meaningful input values to the other systems between communication points" [START_REF] Peiret | Co-Simulation of Multibody Systems With Contact Using Reduced Interface Models[END_REF].

In the field of multibody mechanical systems, [START_REF] Schweizer | Explicit and Implicit Cosimulation Methods: Stability and Convergence Analysis for Different Solver Coupling Approaches[END_REF] explicitly focuses on the effects of various coupling types on co-simulation performances. The choice of the quantities defined as inputs/outputs affects the accuracy. In further works of this research group [SL15b; SLL16b; SLL16a] as well as the PhD thesis of Tobias Meyer (from the TU Darmstadt group as well) [START_REF] Meyer | Co-Simulation Methods with Variable Communication Step Size and Alternative Approaches for Solving Constrained Mechanical Systems[END_REF], algebraic couplings, involving the so-called "constrained mechanical systems", are studied. Broadly speaking, this coupling type consists in "connecting an output to another". This case was denoted by Bei Gu and Harry Asada as "incompatible boundary conditions", or "causal conflict" in [START_REF] Gu | Co-Simulation of Algebraically Coupled Dynamic Subsystems[END_REF] and its continuation (and adaptation for non-intrusiveness) [START_REF] Gu | Co-Simulation of Algebraically Coupled Dynamic Subsystems Without Disclosure of Proprietary Subsystem Models[END_REF]. This case won't be considered in this thesis. In other words, only causal cases will be considered in this work, in the sense that outputs can always be dispatched in inputs of other systems as described in 1.3.3.

Finally, the distinction must be clearly established between the aspects of a co-simulation given by the modular model when the latter is given, and the possible interactions and computations that can be externally made while designing a co-simulation method. In industrial applications, the systems and connections are imposed and the co-simulation method can only be used a by-design partitioned system. In other words, this work considers advances in the "coupling approach", but stays blind and non-intrusive to gain agnosticity and genericity with respect to the "coupling type", to stick to the distinction between the "coupling approach" and the "coupling type" made in [START_REF] Olivier | Effect of applied force cosimulation schemes on recoupled vehicle/track problems[END_REF].

Our contribution 1.5.1 Specifications and common thread

The aim of this work is to define co-simulation algorithms

• within the framework introduced in 1.3, • usable in an industrial context (not too intrusive, using standardized concepts),

• robust (numerical robustness), in the sense that the methods must solve the problem on a wide variety of different cases, • robust (software robustness), in the sense that systems may not have certain advanced capabilities and we don't want to exclude them, • user-friendly: not too many user options or parameters must be required, • adaptive, so that input order, macro-step size and other data must be automatically and relevantly evolving across the co-simulation, • performant in terms of computational time, and • accurate "enough" (exempli gratia to a given tolerance) so that the results at the end of a co-simulation are reliable.

These are high-level specifications of the methods developed during this thesis. The challenges mentioned in 1.4.2 be be taken into account while designing the new algorithms. In total, four co-simulation algorithms and one utility tool for co-simulation methods have been developed, each of them arising from a need highlighted by the previous development. Figure 1.13 shows an overview of these five contributions, also described briefly in 1.5.2. The developments made in this thesis can be seen in two stages, as shown by the double arrow at the bottom of figure 1.13. The starting point is a non-iterative method seeking for usability in an industrial context, and from that starting point accuracy is targeted. IFOSMONDI, and then IFOSMONDI-JFM, sacrifice the software robustness to gain in terms of precision. The idea is to request more capabilities on the systems to process a more advanced co-simulation leading to more accurate results. Then, the software robustness is once again brought to the forefront, and the COSTARICA tool is explicitly designed in order to extend the usability of the previous developments. Finally, general application of the COSTARICA tool make it possible to simplify the previous contributions and leads to MISSILES, a good compromise between usability (software robustness) and reliability of the results (numerical robustness).

Contributions overview

F 3 ORNITS , standing for Flexible Order Representation of New Inputs, Flexible Time-stepper ad Flexible Scheduler, is the most industry-oriented method of this work. Presented in chapter 2, this method's number one specification is the ability to run on any valid co-simulation configuration. Even if none of the involved systems have any advanced capability, the method should work. F 3 ORNITS is said to be adaptivein-capabilities (to make the parallel with adaptive-in-time and adaptive-order methods). Even the worst case scenarii have been taken into account, for instance: if no systems have the ability to support variable macro-step size, and if all systems have their own dedicated fixed macro-step size, we can nor assume that these macro-step sizes are equal, neither assume that they are multiple of one another. For this reason, a fully robust (software robustness) co-simulation method must support asynchronousness (defined in the framework, in 1.3.4.1.2), like [START_REF] Müller | An Explicit Approach for Asynchronous Step Size Control in Co-simulation[END_REF] for instance. Moreover, when the systems have the capabilities to represent polynomial inputs and to support variable macro-step sizes, a mathematical order analysis of the error, combined with an a posteriori error estimation, enabled us to design a flexible time-stepping strategy as well as an order selection rule input-by-input. Difficulties have been selected to design challenging cases to test the method. One of them is hybrid in the sense that a purely discrete is connected with two continuous systems communicating together. Another one involves a continuous controller with an imposed pacing frequency that must be synchronized with the co-simulation step, and a plant system that is also partitioned into two systems with different physical domains (one mechanical, one electrical), with a physical coupling between them. Another is an industrial-scale modular model with 11 interconnected systems. Another is a well-known masses-springs-dampers benchmark found in the literature. Finally, an extension to usage with DAEs has been shown in a difficult (and realistic) case where the velocity of a car is controlled by a controller only accessing GPS coordinates of that car at each co-simulation data exchange, making it impossible to solve the problem with simple zero-order hold co-simulation methods even with a very small macro-step size. F 3 ORNITS method has been entirely designed, developed, tester and integrated in an industrial product in the context of this thesis, and published in 2022 in [START_REF] Eguillon | F3ORNITS: a Flexible Variable Step Size Non-Iterative Co-simulation Method Handling Subsystems with Hybrid Advanced Capabilities[END_REF].

IFOSMONDI, standing for Iterative and Flexible Order, SMOoth and Non-Delayed Interfaces, is an iterative co-simulation method that aims at using its iterative aspect not only to reach a better accuracy than non-iterative methods, but also to remove the inherent delay obtained by non-iterative methods avoiding the non-natural jumps at the interfaces variables using smoothness enhancement techniques as mentioned previously in 1.4.2.3 and illustrated on figure 1.12. This method is presented in chapter 3 and was the first one developed in this work and has been presented in the Simultech 2019 International Conference in Prague, Czech Republic, which led to the proceeding [START_REF] Eguillon | IFOSMONDI: A Generic Co-simulation Approach Combining Iterative Methods for Coupling Constraints and Polynomial Interpolation for Interfaces Smoothness[END_REF].

IFOSMONDI-JFM, standing for IFOSMONDI with Jacobian-Free Methods, is an evolution of IFOS-MONDI (the latter being hence called "classical IFOSMONDI" or "IFOSMONDI fixed-point"). A JFM has to be understood as a Jacobian-free versions of an iterative method that is designed to find the zero(s) of a given function and that normally requires the computation of the Jacobian matrix of this function. In particular, a fixed-point method does not meet these criteria: it is not a JFM (in the sense introduced here of a JFM), contrary to matrix-free versions of the Newton method, the Anderson method [START_REF] Anderson | Iterative Procedures for Nonlinear Integral Equations[END_REF] or the non-linear GMRES method [START_REF] Oosterlee | Krylov Subspace Acceleration of Nonlinear Multigrid with Application to Recirculating Flows[END_REF]. Indeed, as the classical IFOSMONDI method is based on an underlying fixed-point method, some cases cannot be solved with this algorithm. The IFOSMONDI-JFM co-simulation method is also presented in chapter 3 and, in particular, a test-case with a split on an algebraic loop is introduced in this chapter. This case shows that, even when all systems are simple ODEs, a modular model can correspond to a monolithic DAE and the coupling condition (solved by the underlying JFM) might be based on a non-contracting underlying function, making it impossible to solve the co-simulation problem with the classical IFOSMONDI method. All other properties of the classical IFOS-MONDI method are kept in the IFOSMONDI-JFM algorithm (smooth interfaces, no delay on the coupling quantities, et caetera ). An analyse of the tricky test-case shows the need for the evolution of IFOSMONDI in IFOSMONDI-JFM in chapter 3. This method was published in [START_REF] Eguillon | IFOSMONDI Co-simulation Algorithm with Jacobian-Free Methods in PETSc[END_REF].

COSTARICA, standing for Cautiously Obtrusive Solution To Avoid Rollback in Iterative Co-simulation Algorithms, is not a co-simulation method but a helpful tool to bypass the problem of having a nonrollback-capable system involved in a co-simulation on which one wants to use an iterative co-simulation method. Published on open archives [START_REF] Eguillon | COSTARICA estimator for rollback-less systems handling in iterative co-simulation algorithms[END_REF] after having been patented, this tool is an estimator of the outputs of a system making it possible to get its outputs at the end of a macro-step without really integrating it. The main motivation of this tool is, on a given macro-step, to replace the non-last calls of the simulation functions of the non-rollback-capable systems by an computation of the estimated outputs. This estimation is based on some quantities that the systems must be able to provide (directional derivatives, instantaneous state values, et caetera ), and the possibility to provide them is an advance capability. However, these advanced capabilities are less rare than the rollback itself in practice. Hence, COSTARICA enhances the software robustness of the previously introduced iterative co-simulation methods (IFOSMONDI and IFOSMONDI-JFM), as they can now be applied on a mix of rollback-capable and non-rollback-capable systems. COSTARICA is presented in chapter 4, together with a mathematical analysis of the error made while estimating the integration of the systems instead of integrating them. Examples where the rollback has been replaced by COSTARICA estimations with IFOSMONDI-JFM are also presented in this chapter on a linear and a non-linear test-cases. Numerical tests have been conducted to confirm the expected error order given by the analysis.

MISSILES, standing for Mock Iteration for Solving Smooth Interfaces with Linear Estimations of Systems, is the last co-simulation algorithm developed in this work. Presented in chapter 5, it consists in a formulation showing how the properties of IFOSMONDI-JFM can be simply obtained without even iterative when all systems are estimated by a COSTARICA. Indeed, the relationship between the inputs (as polynomials over a macro-step) and the estimated output values at the end of the considered macro-step is known. In case this relationship is known for every system, the function whose zero is looked for by the JFM is fully known, and an analytical formulation shows that its zero can be directly found by solving a (large but) linear problem. The conditions ensuring non-delayed smooth (C 1 class) interfaces, connections between the inputs and their corresponding outputs, and computation of the outputs from the inputs expressions can be assembled together and lead to a tensor-matrix multiplication. This is the object of [START_REF] Eguillon | MISSILES: an Efficient Resolution of the Co-simulation Coupling Constraint on Nearly Linear Differential Systems through a Global Linear Formulation[END_REF], currently under-review, but available on open archives. Underlying linear algebra is detailed in chapter 5, and the method is tested on test-cases to show how this enables to benefit from the features of IFOSMONDI-JFM iterative co-simulation method without requiring the rollback capability on any of the involved systems.

A concluding chapter finally proposes evolutions and enhancements of these methods. 

Contenu du chapitre

Ce chapitre présente l'algorithme de cosimulation non itératif F 3 ORNITS dans lequel F 3 représente les 3 aspects flexibles de la méthode, à savoir : la représentation flexible des variables de couplage (polynomiale d'ordre variable et adaptatif par coordonnée), adaptation flexible et variable du pas de temps sur les systèmes le permettant, et ordonnanceur flexible orchestrant les temps de rencontre entre les systèmes et capable d'asynchronisme lorsque les contraintes des systèmes l'exigent. La motivation de la méthode F 3 ORNITS est d'accepter n'importe quel type de modèle de cosimulation tel que décrit dans le chapitre 1, y compris n'importe quel types de systèmes, indépendamment des interactions avancées qu'ils supportent ou non. En d'autres termes, cette première méthode a pour but d'atteindre la meilleure robustesse logicielle possible. En effet, l'un des problèmes majeurs dans l'industrie est que les systèmes ont généralement des contraintes ou un manque de capacités avancées rendant impossible l'implémentation de la plupart des algorithmes de cosimulation avancés sur ces mêmes systèmes. La méthode F 3 ORNITS permet de préserver la dynamique des contraintes de couplage lorsque cela est nécessaire et d'éviter de rompre la régularité de classe C 1 aux temps de communication, ainsi que d'adapter la taille du pas de cosimulation d'une manière qui soit robuste à la fois aux évènements discrets (contrairement aux critères classiques basés sur l'erreur relative) et aux sauts. Cinq cas tests sont présentés pour illustrer la robustesse de la méthode F 3 ORNITS ainsi que sa plus grande recherche de précision par rapport à l'algorithme de couplage NIZOHJA (la méthode la plus couramment utilisée dans l'industrie) pour un plus petit nombre de pas de cosimulation.

Summary of the chapter

This chapter introduces the F 3 ORNITS non-iterative co-simulation algorithm in which F 3 stands for the 3 flexible aspects of the method: flexible polynomial order representation of coupling variables, flexible time-stepper applying variable co-simulation step size rules on systems allowing it, and flexible scheduler orchestrating the meeting times among the systems and capable of asynchronousness when systems' constraints require it. The motivation of the F 3 ORNITS method is to accept any kind of co-simulation model as described in chapter 1, including any kind of system (open circuits), regardless on their available capabilities. In other words, this first method aims at reaching the best possible software robustness. Indeed, one of the major problems in industry is that systems usually have constraints or lack of advanced capabilities making it impossible to implement most of the advanced co-simulation algorithms on them. The method makes it possible to preserve the dynamics of the coupling constraints when necessary as well as to avoid breaking C 1 smoothness at communication times, and also to adapt the co-simulation step size in a way that is robust both to zero-crossing variables (contrary to classical relative error-based criteria) and to jumps. Five test-cases are presented to illustrate the robustness of the F 3 ORNITS method as well as its higher accuracy than the NIZOHJA coupling algorithm (the most commonly used method in industry) for a smaller number of co-simulation steps.

Introduction

As briefly introduced in 1.5.2, the F 3 ORNITS method has been designed to be the most robust possible in terms of software robustness. In other words, the aim of this method is to be able to run on any modular model regardless of the (lack of) capabilities of the involved systems.

The systems, in our case, are ODEs, but the method is, in practice, usable with DAEs, discrete systems (difference equations, for instance) and purely algebraic equations (which can be seen as a particular case of ODE with 0 state variables). Test-cases of section 2.4 illustrates, among others, DAEs and discrete systems involved in co-simulation models.

The first consequence of the software robustness specification is that F 3 ORNITS is non-iterative (in order to accept rollback-less systems) and asynchronous (in order to accept modular models with systems with an imposed step, even when several systems have imposed steps which are not multiple of one another). Such a method is presented on figure 1.4 in 1.3.4.1.2. F 3 ORNITS also represents the inputs as time-dependent polynomial for the systems which support it. In that sense, it is assumed that a system does not support polynomial inputs when this is not relevant, for instance in DE (Discrete Events) systems. This will be detailed in subsection 2.3.1 and an example of a DE system with irrelevant polynomial inputs will be presented in 2.4.4. In addition to the input signals reconstruction, the F 3 ORNITS method also adapts the macro-step size of the systems which can handle variable communication step sizes. This both allows accuracy win when frequent exchanges are needed, and saves time when coupling variables can be represented with a high enough accuracy.

This algorithm is based on a variable order polynomial representation of every input (the polynomial degree might be different for each input variable at a same time) determined by an a posteriori criterion and redefined at each macro-step. A smoother version can be triggered by interpolating on the extrapolated values, as done in [START_REF] Busch | Performance Improvement of Explicit Co-simulation Methods Through Continuous Extrapolation[END_REF] with the so-called "EXTRIPOL" technique. This technique avoids the nonphysical jumps on coupling variables at each communication time, and may help the solvers of the systems to restart faster after a discontinuity since we can guarantee the C 1 smoothness of the input variables. The F 3 ORNITS method adapts this smoothing with flexible order polynomials, variable step size systems, and asynchronous cases.

The three main aspects of the F 3 ORNITS method (time-stepper, scheduler and flexible polynomial representation of inputs) combine with one another to form a robust and generic co-simulation method. Each of its aspects might be isolated to show its contribution to the added value of the method. Tailored modular models have been considered (built on purpose, reused from literature or generated by modifying an academic test-case) to show these aspects and take advantage of the F 3 ORNITS method.

The chapter is structured as follows. Section 2.2 extends the mathematical formalism of 1.3 with concepts specifically introduced for the F 3 ORNITS method. This formalism extension namely introduces systems topologies detailing and common polynomial techniques. Section 2.3 presents the F 3 ORNITS algorithm through its three pillars. Firstly, the way time-dependent inputs are determined and reconstructed will be shown. Secondly, the way the macro-step size determination is handled will be explained. Thirdly, the scheduler will be presented (its role and operating mode). Section 2.4 gives the results of F 3 ORNITS method on five test-cases: a controlled speed model, a variant of the classical linear two-masses oscillator benchmark [SLL16a; MKS21], a modular system with 3 connected systems handling heterogeneous interfaces (physical coupling and controller input/command), a truly hybrid model (implying a purely discrete and two continuous systems), and an industrial-scale model. Comparison of F 3 ORNITS algorithm with different options and basic NIZOHJA method is also achieved. The conclusion is given in section 2.5.

Additional mathematical formalism for the method

This section extends the common framework introduced in 1.3 with additional definitions and notations that will be useful in the description of the F 3 ORNITS co-simulation method.

Because of the nature of the F 3 ORNITS method, two preliminary remarks must be made regarding the usage of the common formalism:

Remark 1: asynchronousness As the method we introduced in this chapter is asynchronous, many of the time-related notations from 1.3 will be used with an extra subscript specifying the system, as they won't share the same time grid. This was also stand in 1.3.4.1.2.

Remark 2: non-iterative

As the method is also non-iterative, no iteration index will be written (left superscript in brackets). The letter M will be used together with N for different time indices (as well as N 1 , N 2 , ...), yet as they will be used in the right superscript place no confusion is possible. M never denotes an iteration index in this chapter.

Causal topology

Let the upstream set of a system be the functional set K defined in (2.1). K(l) is the set of indices of systems which have outputs connected to inputs of (S l ).

K :    [[1, n sys ]] → P([[1, n sys ]]) l → k ∈ [[1, n sys ]]\{l} ∃i ∈ [[1, n out,k ]], ∃j ∈ [[1, n in,l ]], L(l, j) = (k, i) (2.1)
where P denotes the power set.

Let the downstream set of a system be the functional set L defined in (2.2). L(k) is the set of indices of systems which have inputs connected to outputs of (S k ).

L :    [[1, n sys ]] → P([[1, n sys ]]) k → l ∈ [[1, n sys ]]\{k} ∃j ∈ [[1, n in,l ]], ∃i ∈ [[1, n out,k ]], L(l, j) = (k, i) (2.2)
For instance, upstream and downstream sets corresponding to the example presented in figure 1.1 (page 13) are:

K(1) = {3} , K(2) = {1} , K(3) = {1, 2} L(1) = {2, 3} , L(2) = {3} , L(3) = {1} (2.3)
Depending on the emptiness of the upstream and downstream sets of a given system, a status is attributed to describe its topology. This status is namely useful to treat different behaviors is the scheduler part of the F 3 ORNITS method (described later in this chapter). A system 

(S k ) (with k ∈ [[1, n sys ]]) is: • [IO] when #K(k) > 0 and #L(k) > 0 (⇔ n in,k > 0 and n out,k > 0) • [NI] when #K(k) =

Polynomial calibration

For q ∈ N * , let A(q) ⊊ R q be the set of real vectors that do not have any common values at different coordinates:

A(q) = (τ [r] ) r∈[[1,q]] ∈ R q ∀(r 1 , r 2 ) ∈ [[1, q]] 2 , r 1 ̸ = r 2 ⇒ τ [r1] ̸ = τ [r2]
(2.4)

For a given set of q points (τ [r] , z[r] ) r∈ [[1,q]] whose abscissas satisfy (τ [r] ) r∈ [[1,q]] ∈ A(q), and with the z letter denoting an arbitrary real quantity, we define the two following polynomials:

Ω Ex q-1 :        A(q) × R q × R → R   (t [r] ) r∈[[1,q]] (z [r] ) r∈[[1,q]] t   → Ω Ex q-1 (t) (2.5 
)

Ω CLS q-2 :        A(q) × R q × R → R   (t [r] ) r∈[[1,q]] (z [r] ) r∈[[1,q]] t   → Ω CLS q-2 (t) (2.6)
respectively called the Extrapolation and the Constrained Least Squares (CLS) polynomials1 . These polynomials are defined in order to satisfy

Ω Ex q-1 ∈ R q-1 [t] and Ω CLS q-2 ∈ R q-2 [t]
, where ∀p ∈ N, R p [t] is the set of polynomials of the variable t with coefficients in R and with a degree lower or equal to p. We have:

∀r ∈ [[1, q]], Ω Ex q-1 (t [r] ) = z[r] (2.7
)

Ω CLS q-2 : t → q-2 i=0 a i t i where (a i ) i∈[[0,q-2]] = arg min (āi) i∈[[0,q-2]] Ω CLS q-2 (τ [1] )=z [1] q r=1 z[r] - q-2 i=0 āi (τ [r] ) i 2 (2.8)
In practice, the z variables will be either inputs u or outputs y, and index will correspond to a time index where z [1] is the latest one, so that the constraint on the least squares (2.8) is the equality on the most recent point. Using the time index on the t time variable, we will choose, in practice:

τ [r] = t [N -r] .
When we will consider one of these polynomials of degree p (either extrapolation on p + 1 points or constrained least squares on p + 2 points) without specifying which one is used, we will use the generic notation Ω p .

The coefficients of Ω Ex p can be computed by several methods (Lagrange polynomials, Newton's formula, barycentric approach [START_REF] Berrut | Barycentric lagrange interpolation[END_REF]), and the coefficients of Ω CLS p can be obtained with a constrained linear model (formula (1.4.11) page 22 of [START_REF] Amemiya | Advanced econometrics[END_REF]).

Finally, we define the Hermite interpolation polynomial H in the specific case with two points and first order derivatives:

H : R 2 × R 2 × R 2 × R → R ( t [1] t [2] , z[1] z[2] , z[1] z[2] , t) → H(t)
where

H ∈ R 3 [t] and ∀r ∈ [[1, 2]], H(t [r] ) = z[r] and dH dt (t [r] ) = z[r]
(2.9)

The coefficients of H can be computed with the square of the Lagrange polynomial basis or by using divided differences [START_REF] Hildebrand | Introduction to Numerical Analysis[END_REF]. As there is no possible confusion, we equivalently can denote an evaluation of the Hermite interpolation polynomial with or without the set of calibration constraints as arguments (like for Ω q ). Despite this unformal writting, this will lighten the notation when needed, of clarify the set of calibrating points when required, see namely further usage in 5.2.

Hermite interpolation will be used for smoothness enhancement in 2.3.1.5.

F 3 ORNITS algorithm

We introduce here the F 3 ORNITS method, standing for Flexible Order Representation of New Inputs, including flexible Time-stepper (with variable step size, when applicable) and flexible Scheduler (asynchronouscapable, when applicable). The method stems from the desire to keep the dynamical behavior of the coupling variables, what ZOH (zero order hold) does not do. At a given communication time, the outputs of the past data exchange will be reused in order to fit polynomial estimations for the future (the upcoming step). This is done in several co-simulation methods [KS00; Bus16], yet usually the polynomial order is decided in advance. F 3 ORNITS has a flexible order (like in [START_REF] Kraft | Parallel Co-Simulation Approach With Macro-Step Size and Order Control Algorithm[END_REF]) and will moreover decide of an order for each coupling variable at each communication time. The time-stepper is expected to keep the co-simulation steps (starting from a small one) at sizes which make the interface variables predictable during these steps. Moreover, we will focus on the way to use these estimations in an asynchronous context (as it is not always possible to pass information at the same simulation time from one system to another). The error, depending on the polynomial order, will also be used to decide the evolution of the macro-step size (see figure 1.4). Regarding systems with limited capabilities for holding time-dependent inputs, strategies are proposed to take advantage of the variable order thanks to an adaptation of the data to the capabilities of such systems. The latter strategies fit the specification to handle any modular model regardless the missing capabilities in every system.

The time-stepping strategy will also be presented in this section. This includes the flexible time-stepper and the flexible scheduler of the algorithm. The time-stepper, presented in 2.3.2, is based on the error made by the estimation described in 2.3.1. The normalization of this error has a strong impact on the timestepping criterion, so several normalization methods will be described and a new one will be introduced: the damped amplitude normalization method. The scheduler, third pillar of the F 3 ORNITS method, occurs once the time-stepper produced an estimation of the upcoming step sizes. Presented in section 2.3.3, it ensures the coherence of the rendez-vous times of all systems based on their connections, topologies and constraints.

The smoothness enhancement [Bus19; DR06] will also be presented as it is compliant with the F 3 ORNITS method. Nevertheless, we adapted it to the context of a flexible order and variable step size method. In the case where systems do not have sufficient capabilities (up to 3 rd order polynomial inputs), the F 3 ORNITS method can still run without smoothness enhancement.

The software robustness of the F 3 ORNITS method in terms of genericity (it can run regardless of the lack of advanced co-simulation capabilities of one or several systems) is complemented by a robustness in its agnostic character. In other words, for the method to be usable on black-boxed systems it should not use additional knowledge about the nature of exchanged data (except the ability to be represented in a polynomial way, but the latter is usually easier to expose, like in the case of the Functional Mockup Interface (FMI)). This approach is challenging as, most of the time, the details about the nature of the exchanged data (coupling variables) can be a precious information in order to enhance the accuracy of a cosimulation. Contrary to this model-based approach [Ben+13; Ste+14b; Ste+14a] and to the methods that can benefit from such additional knowledge about the involved systems [Sad+17; SP20], the F 3 ORNITS algorithm is a model-agnostic approach (yet an adaptive-in-capabilities method), the genericity leads to a method that is easier to industrialize, but less accurate on a given model on which a model-based approach can be used.

Finally, the method is auto-adaptive. This means that, except a reduced number of parameters (tolerances, signal reconstruction method and error normalization strategy, all of them being described later in this section) that can be chosen before the co-simulation, the method automatically evolves across its different aspects in a dynamical way. This last aspect echoes the user-friendly specification mentionned in 1.5.1.

Flexible polynomial inputs

This subsection will describe this first pillar of the F 3 ORNITS algorithm: the inputs reconstruction (also motivated by the error reduction, like in [START_REF] Meyer | Co-Simulation: Error Estimation and Macro-Step Size Control[END_REF]). Let's arbitrary set the maximum degree for polynomial inputs to 2 (as we plan, among other things, to process extrapolations, the degree must not be too high to avoid stability issues [START_REF] Arnold | Stability of Sequential Modular Time Integration Methods for Coupled Multibody System Models[END_REF]).

M = 2 (2.10) Let (µ k ) k∈[[1,nsys]]
be the maximum degrees for polynomial inputs supported for each system. As we want to support every kind of system, we cannot assume anything on µ k (we only know that ∀k ∈ [[1, n sys ]], µ k ⩾ 0). In practice, the systems are usually able to represent polynomial inputs up to a given order. For instance, this order can be determined in the case of an FMU by calling several times the fmi2SetRealInputDerivatives function (see table 1.2) if the FMU system reconstructs its inputs from their derivatives as polynomials (very classical, namely done by FMU exported from the Simcenter Amesim software [Sofa; Sofb]). When this function is called with a derivative order implying to a non-representable polynomial order, it will notify that the maximum degree for polynomial inputs µ k has been reached and exceeded.

Let's define the effective maximum degree for each system, by adding the constraint (2.10):

∀k ∈ [[1, n sys ]], M k := min(M, µ k ) (2.11)
The time-dependent inputs that will be generated will always satisfy (2.12), and for each degree in these ranges, the maximum supported degree for each system will never be exceeded thanks to (2.11).

∀k ∈ [[1, n sys ]], ∀N ∈ [[0, N max ]], u [N ] k ∈ (R M k [t]) n in,k (2.12)
The determination of the order to use for polynomial inputs is quite straightforward. However, as this order may be different for each variable and as it is determined in the system holding the corresponding variable as an output, some complications due to the asynchronousness may appear on systems having an input connected to this variable.

In order to clarify the process and to deal with properly defined mathematical concepts, we will split this explanation into three parts:

To begin with, we will define the order function for every output variable and see how the values of this function are found. Then, we will define the estimated output variables based on the order function. Finally, we will see how these estimated output variables are used from the connected input's perspective.

Order function

Let's consider a system (S k ) with k ∈ [[1, n sys ]]. Let's consider we have already done N macro-steps with

N ∈ [[1, N max,k ]], id est at least one. For i ∈ [[1, n out,k ]] and q ∈ [[0, min (M k , N -1)]], we define q err [N +1] k,i
the following way:

q err [N +1] k,i = ỹ[N+1] k,i -Ω Ex q t [N +1] k (2.13)
where Ω Ex q is calibrated on (t

[N -r] k
) r∈ [[0,q]] and (ỹ

[N -r] k,i
) r∈ [[0,q]] as explained in (2.5) and (2.7). In other words the value obtained at t

[N +1] k
is compared to the extrapolation estimation based on the (q + 1) exchanged values before t

[N +1] k (excluded), that is to say at t [N -q] k , t [N -q+1] k , t [N -q+2] k , ..., t [N ]
k as shown on figure 2.2. We now define the order function p k for system (S k ), which is a vectorial function for which each coordinate corresponds to one output of the system (S k ). It is a step function defining the "best order" of extrapolation for each macro-step, based on the previous macro-step. This includes a delay that makes it possible to integrate the systems simultaneously.

p k :    [t [init] , t [end] [ → [[0, M k ]] n out,k t → (p k,i (t)) i∈[[1,n out,k ]]
(2.14)

For i ∈ [[1, n out,k ]],
the p k,i functions are defined this way:

p k,i :    [t [init] , t [end] [ → [[0, M k ]] t → p k,i (t) with: p k,i (t) = N max,k -1 N =1 1 [t [N ] k ,t [N +1] k [ (t) arg min q∈[[0,min(M k ,N -1)]] q err [N ] k,i (2.15)
where N max,k , satisfying t

[N max,k ] k = t [end]
, has been introduced in 1. 

Macro-discontinuity

A threshold can be implemented so that, when q err [N +1] k,i exceeds this threshold for all values of q ∈ [[0, M k ]], the chosen order is 0 (zero-order hold reduces the risk of out-of-range values) and the method triggers a "new start" state: smoothness enhancement will be disable (described further in 2.3.1.5) and amplitude (classical or damped) will be reset (described later in 2.3.2). Temporary switching to zero-order hold in a signal reconstruction context when the signal becomes hard to predict is namely seen in [START_REF] Ben | CHOPtrey: contextual online polynomial extrapolation for enhanced multi-core co-simulation of complex systems[END_REF].

This is called a macro-discontinuity, and can be detected on a single output independently of the other outputs.

When such an event is detected, the other coupling variables can keep on being reconstructed normally. The idea is to handle a detected macro-discontinuity both locally in space and locally in time. The locality in space means that only the variable(s) concerned are forced to use a zero-order hold and have their amplitude reset (described later in 2.3.2). The locality in time means that, if no macro-discontinuity is detected in the next co-simulation steps on these variables, the F 3 ORNITS method restarts to predict the variables as expected, as described in this section 2.3.1.

Such threshold can either be defined for every output of every system, or more generically by a criterion using a relative critical threshold κ rel > 0 and an absolute critical threshold κ abs > 0 of the form:

if ∀q ∈ [[0, M k ]], q err [N +1] k,i > κ rel • ỹ[N+1] k,i
+ κ abs then this is a macro-discontinuity (2.16)

The benefit of such generic criterion is that one does not need to define a criterion for each and every output (the interest of having these two tolerances, relative and absolute, enables to adapt the threshold to the order of magnitude of each outputs). However, there exist no perfect way to choose the values of the κ rel and κ abs tolerances, as it is impossible to strictly define what a discontinuous behavior is as far as discretized systems are used. Only a rule of thumb can be given: for instance, in the test-cases presented in section 2.4, the values κ rel = 10 -1 and κ abs = 10 -4 have been used. The trend is to generate more macro-discontinuities, safer but less performant, for small values of these tolerances. For bigger κ rel and κ abs tolerance values though, the out-of-range risk arises when the signal is badly reconstructed.

This strategy enables to react when something might have occured. The main drawback is that the macro-dicontinuity is always detected too late (when a macro-step stepped over it), but this method require no extra capability from the systems as the detection is done at the interface level. Other method have the same goal (detect macro-discontinuity), but by requiring extra data they can avoid the late reaction (a priori step criterion [START_REF] Uwe | A priori step size adaptation for the simulation of non-smooth systems[END_REF], sensitivity model [START_REF] Farkas | Adaptive Step Size Control for Hybrid CT Simulation without Rollback[END_REF], step revision [START_REF] Cremona | Step revision in hybrid Co-simulation with FMI[END_REF], ...).

Estimated outputs

We still consider the system (S k ) and its n out,k outputs. Let's admit the step [t

[N ] k , t [N +1] k [ is computed. Therefore, for all i ∈ [[1, n out,k ]], the value of p k,i (t) for t in [t [N +1] k , t [N +2] k [ is known. We can now determine the estimated outputs ŷ[N+1] k ∈ (R q [t]) n out,k , t ∈ [t [N +1] k , t [N +2] k
[ (degree q precised below, potentially different for each output). We have two choices for the way this estimation is made: Extrapolation mode and Constrained Least Squares (CLS) mode.

For the sake of genericity, we will define the abstraction of this choice Ω q introduced in 2.2.2. Estimated outputs are defined the following way on the step [t

[N +1] k , t [N +2] k [: ŷ[N+1] k :    [t [N +1] k , t [N +2] k [ → R n out,k t → ŷ[N+1] k,i (t) i∈[[1,n out,k ]] (2.17) 
where

ŷ[N+1] k,i :    [t [N +1] k , t [N +2] k [ → R t → Ω q t [N +1] k , t [N +2] k (t) (2.18)
and where Ω q is calibrated on (t

[N +1-r] k , ỹ[N+1-r] k,i
) r∈ [[0,p]] in extrapolation mode (see (2.7)), or on (t

[N +1-r] k , ỹ[N+1-r] k,i ) r∈[[0,p
in CLS mode (see (2.8)), and where q := p k,i (t

[N +1] k
) so that deg(ŷ

[N +1] k,i ) = p k,i (t [N +1] l
) (order determined previously).

Let y[N+1]

k,i be the extension of the polynomial

ŷ[N+1] k,i
on the whole R domain.

y[N+1] k,i ∈ R p k,i (t [N +1] k ) [t], and ∀t ∈ [t [N +1] k , t [N +2] k [, y[N+1] k,i (t) = ŷ[N+1] k,i (t) (2.19)
The degree of

y[N+1] k,i
is given by p k,i (t

[N +1] k
) as shown on figure 2.3. As in (2.18), for the rest of 2.3.1.3, we will use the following notation (for the sake of readability):

q = p k,i (t [N +1] k ) (2.20)
The definition of Ω q varies depending on the mode. In "Extrapolation" mode, the oldest point is forgotten (id est not taken into account in the extrapolation): (t

[N -q] k , ỹ[N-q] k,i
). This point, taken into account to choose the order q but not used in extrapolation calibration, is represented as striped in figure 2.4.

On the other hand, the idea of "CLS" mode is to take into account the point described above in the estimation of the output. An idea can be to forget the most recent point, that is to say:

(t [N +1] l , ỹ[N+1] l,j
), but this would mean that the value given by the system's integrator would be unused, so we will introduce a delay in the coupling process. Thus, the strategy is to take into account all the (q +1) points that have been used in the determination of the chosen order, and the most recent point as well. We thus have (q+2) points to adjust a polynomial of degree at most q: an extrapolation process cannot be made, but the "best fitting" polynomial can be found for the CLS criterion (2.8). Please note that removing the constraint

Ω CLS q-2 (t [1] ) = z[1] in (2.8
) corresponds to the relaxation technique on the past referred to as "method 1" in [START_REF] Li | Improved explicit cosimulation methods incorporating relaxation techniques[END_REF] in the particular case of q = 0. 

[N +1] k , t [N +2] k [ once step [t [N ] k , t [N +1] k
[ has been done (so that p k,i (t [N +1] ) could be computed)

Estimated inputs

From the inputs perspective, the order function of the connected output is used. Let's consider a system (S l ) with l ∈ [[1, n sys ]], which have n in,l > 0 inputs. As the case n in,l = 0 should not be excluded, let's admit that nothing is done from the inputs perspective in this case (because there is no input). From here and for the whole 2.3.1.4 section, we will consider n in,l ∈ N * .

We will consider the input j with j ∈ [[1, n in,l ]] and, to properly consider the connected output, we stand k ∈ [[1, n sys ]] and i ∈ [[1, n out,k ]] so that input j of system l is fed by output i of system k. In other words, L(l, j) = (k, i).

As asynchronousness should be supported, a special care should be made when the step [t

[N ] l , t [N +1] l [ does not fit into one single definition domain of ŷ[M] k,i for an M ∈ [[0, N max,k ]].
In this case, we will use:

u [N ] l,j : [t [N ] l , t [N +1] l [ → R t → y[M] k,i (t) (2.21)
where y is defined in 2.3.1.3, and where

M = max M ∈ [[0, N max,k ]] t [M ] k ⩽ t [N ] l (2.22)
Asynchronous time-dependent inputs definition (2.21) (2.22) can be visualized figure 2.5.

Figure 2.5: Estimated input using corresponding extended estimated output Some systems cannot hold polynomial inputs, and some other can but not necessary at any order. As F 3 ORNITS method only requires to hold up to order 2 (except when smoothness enhancement is triggered (see 2.3.1.5), which is a particular case), we will consider 9 cases represented in the table 2.1. Table 2.1: Alternatives to decrease polynomial input degree for systems with limited capabilities

Smoothness enhancement

Smoothness enhancement can be triggered to enable C 1 inputs. This mode will only be applicable on systems supporting at least TOH (third-order hold), that is to say 3 rd order polynomial inputs. In other words, only systems for which µ k ⩾ 3 can benefit from it. Otherwise, it is not critical not to use it: F 3 ORNITS method can still run. Moreover, in case a system has µ k < 3, it does not prevent from using smoothness enhancement on the other systems.

The idea is to guarantee that C 1 smoothness is not broken at the communication times, unless a macrodiscontinuity is detected. In other word, we will remove the "jump" at these times. Moreover, as several consecutive steps are concerned, the C 1 smoothness won't be broken on the whole time domain (union of the step intervals). The idea of such smoothness enhancement has been introduced in [DR06] regarding C 0 continuity, and then in [START_REF] Busch | Continuous approximation techniques for co-simulation methods: Analysis of numerical stability and local error[END_REF] and [START_REF] Busch | Performance Improvement of Explicit Co-simulation Methods Through Continuous Extrapolation[END_REF] for C 1 smoothness. Nonetheless, in the case of the F 3 ORNITS method, the interpolation is applied to the polynomial expression computed by the method, and the smoothness enhancement simply occurs as an optional stage improving the signal (instead of being the definition of the signal itself). That way, the value and derivative of an input signal at the end of a co-simulation step are still determined by the flexible order estimation described in 2.3.1.1, 2.3.1.3 and 2.3.1.4, even when smoothness enhancement is proceed. Moreover, when this smoothness enhancement is irrelevant, it is stopped in order to avoid a high risk of instability or Runge effect (see 2.3.1.2).

Let's consider a system

(S l ) with l ∈ [[1, n sys ]]. Let's consider the step [t [N ] l , t [N +1] l [ with N ∈ [[1, N max,l ]
]. We will also consider only the input j of this system, with j ∈ [[1, n in,l ]]. As the smoothness enhancement process should be applied on every input separately, it will be detailed only on u l,j here.

Regardless of the original degree of the polynomial input determined by the procedure described in 2.3.1.4, we will extend it to a third order polynomial using Hermite interpolation, as shown on figure 2.6. l , we know the expression of the time-dependent input u

[N -1] l,j that has been used for [t [N -1] l , t [N ]
l [, so we can compute the left constraints as application of the idea of snapshot described in 1.3.4.2.2. We however add an extra litteral superscript lef t as the left-sided limits (2.23) will be used in an Hermite interoplation at the point on the left of the upcoming macro-step.

ũ[N], lef t l,j := lim t→t [N ] l t<t [N ] l u [N -1] l,j (t) ũ[N], lef t l,j := lim t→t [N ] l t<t [N ] l u[N-1] l,j (t) (2.23)
Moreover, before performing the simulation on the step [t

[N ] l , t [N +1] l
[, we compute the polynomial input (of degree 0, 1, or 2, computed by extrapolation or by CLS) u

[N ] l,j . We thus compute the right constraints and use a litteral superscript analog to (2.23). These constraints aren't right-sided limits like the ones introduced in 1.3.4.2.3: they are the left-sided limits of the estimated input as computed by the procedure presented in 2.3.1.4, at the end of the not-yet-integrated macro-step. They will later, however, also act as smoothness constraints for the next macro-step (shown in (2.24)).

ũ[N], right l,j := ũ[N+1], lef t l,j := lim t→t [N +1] l t<t [N +1] l u [N ] l,j (t) ũ[N], right l,j := ũ[N+1], lef t l,j := lim t→t [N +1] l t<t [N +1] l u[N] l,j (t) (2.24)
Finally, instead of using u

[N ] l,j on [t [N ] l , t [N +1] l
[, we will use the "smooth" version of it:

smooth u [N ] l,j : t → H t [N ] l t [N +1] l , ũ[N], lef t ũ[N], right , ũ[N], lef t ũ[N], right , t (2.25)
where H denotes the Hermite interpolation polynomial described in section 2.2.2.

Using Hermite interpolation on values known by extrapolation is sometimes referred to as "extrapolated interpolation" [Bus19; DR06].

Please note that smoothness enhancement might slightly deteriorate the accuracy of the method. The reason for this can be observed on figure 2.6: right after t

[N ] l , the value of u [N ]
l,j is not the value of the polynomial computed from the corresponding output (blue curve). This gap counts as error and the integral of the absolute difference between the red and blue curves contribute to the error. Nonetheless, this error is meant to have no big effect as the value of the red curve (the one used in practice, as input, when the smoothness enhancement is enabled) match the value of the originally computed polynomial at the end of every co-simulation step (at t

[N +1] l
for the step presented on figure 2.6). Moreover, this small accuracy loss can be largely compensated by a performance gain: indeed, a big speed-up can arise from the smoothness guarantee on the systems that support quick restarts. This means that the internal solvers of such systems are not required to completely restart after each and every communication time.

Flexible time-stepper

The second pillar of F 3 ORNITS algorithm (the first one being the flexible polynomial inputs) is the timestepper, making F 3 ORNITS being a variable-step method (also called "adaptive" co-simulation algorithm), analogously to [START_REF] Meyer | Co-Simulation: Error Estimation and Macro-Step Size Control[END_REF], for instance. The time-stepper defines the next communication time after a macro-step is finished.

Dilatation coefficient

Let's consider a system

(S k ), k ∈ [[1, n sys ]] that is either [IO] or [NI] (see figure 2.1). We have: n out,k > 0. Let's consider an output y k,i , i ∈ [[1, n out,k ]] of (S k ).
The aim of the time-stepper is to determine t

[N +2] k once step [t [N ] k , t [N +1] k
[ has been integrated. For the sake of readability, we will use the notation p := p k,i (t

[N ]
k ) (different from q in (2.20) as here we focus on the lastly computed step, and not the upcoming one).

As a recall, the macro-step size (for an asynchronous disretization) was defined in (1.23) as δt

[N ] k = t [N +1] k -t [N ]
k . Let's now introduce the dilatation coefficient ρ

[N +1] k in (2.26). ρ [N +1] k = δt [N +1] k /δt [N ] k (2.26)
They will be detailed later in this subsection, but for now we only need to know that the dilatation coefficients are bounded:

∃(ρ min , ρ max ) ∈ R * + , ∀k ∈ [[1, n sys ]], ∀N ∈ [[0, N max,k ]], ρ [N ] k ∈ [ρ min , ρ max ].

Output a posteriori error

For this section, we slightly extend the definition domain of some macro-step-dependent quantities (see 1.3.4.2). Let for instance y

[N ] k,i ∈ L t [N -p]
, t [end] , R denote the theoretical i th output of system (S k ) that have been co-simulated until time t [N ] (it can be seen as a prolongation of its definition from 1.3.4.2).

y [N ] k,i = t [N -p] k , t [end] → R t → y [N ] k,i (2.27)
where

∀M ∈ [[N -p, N -1]], ∀t ∈ t [M ] k , t [M +1] k , y [N ] k,i = g k t, x [N ] k (t), u [M ] k (t) (2.28) 
and

∀t ∈ t [N ]
k , t [end] , y

[N ] k,i = g k t, x [N ] k (t), u [N ] k (t) (2.29) 
and where, for all M in [[N -p, N ]], the x

[N ]
k functions are the solutions of the differential equation (2.30) on t ∈ t

[M ] k , t [M +1] k .          dx [M ] k dt = f k t, x [M ] k (t), u [M ] k (t) x [M ] k (t [M ] k ) = lim t→t [M ] k t<t [M ] k x [M -1] k (t) (2.30)
In other words, y

[N ]
k,i represents the i th output of system (S k ) both in the past, from the determined time t

[N -p] k
, and in the future, from current time t

[N ] k until an undetermined future time that we can consider being t [end] for now. Figure 2.7 shows the different components of y , t [end] Please note that, in the definition of y

[N ]
k,i in (2.27) (2.28) (2.29) (2.30) and in figure (2.7), p is determined as presented in 2.3.1.1. In case this order is p = 0, for instance, either because it has been determined as 0 or due to a detected macro-discontinuity, y

[N ]
k,i is only defined on the future domain t

[N ] k , t [end] . We are now considering the behavior of this system (S k ) from current time t [N ] until a (yet) undetermined future time t [N +1] . During the following analysis, we will consider that the function y

[N ]
k,i has derivative of order p + 1 at least, and that there exists a number c 0 ∈ R + for which:

∀t ∈ [t [N ] , t [end] ],

d (p+1) y [N ] k,i dt (p+1) (t) ⩽ c 0 (2.31)
Let c 1 denote the positive quantity c 1 = c 0 (p + 1)!

. We can now write:

∀t ∈ [t [N ] , t [end] ], 1 (p + 1)!

d (p+1) y [N ] k,i dt (p+1) (t) ⩽ c 1 (2.32)
Let c 2 denote the following positive quantity:

c 2 = p r=0 r s=0 1 ρmin s (2.33)
In extrapolation mode, [START_REF] Stoer | Introduction to Numerical Analysis[END_REF] shows that, it exists

ζ t ∈ t [N -p] k , t [end] so that ỹ[N+1] k,i - y[N] k,i (t [N +1] k ) = y [N ] k,i (t [N +1] ) - y[N] k,i (t [N +1] k ) = 1 (p + 1)! d (p+1) y [N ] k,i dt (p+1) (ζ t ) p r=0 (t [N +1] k -t [N -r] k ) = 1 (p + 1)! d (p+1) y [N ] k,i dt (p+1) (ζ t ) p r=0 r s=0 δt [N -s] k = 1 (p + 1)! d (p+1) y [N ] k,i dt (p+1) (ζ t ) left member of (2.32) p r=0 δt [N ] k 1 + r s=1 s c=1 1 ρ [N +1-c] k ∈[ρ min ,ρmax] ⩽ c 1 • p r=0 δt [N ] k 1 + r s=1 s c=1 1 ρmin ⩽ c 1 • δt [N ] k p+1 p r=0 r s=0 1 ρmin s c2, as in (2.33) ⩽ c 1 • δt [N ] k p+1 • c 2 ⩽ c 1 • δt [N ] k p+1 • c 2 (2.34)
where c 1 and c 2 are independent of δt [N ] k . Please note that, thanks to the maximum step dilatation ratio, such a ζ t can even be found in t

[N -p] k , t [N ] k +δt [N ] k,max instead of t [N -p] k
, t [end] , where δt

[N ] k,max = δt [N -1] k •ρ max .
Final expression of error in (2.34) shows that the error is of order (p + 1) on the macro-step size δt [N ] k . Analogously, we will consider that the error is of the same order in CLS mode: (p + 1) for a polynomial of degree p (generated with a constrained least square fitting on (p + 2) points).

The time-stepper uses this known error and error order to adapt the step size accordingly. We use a formula similar to the one in [START_REF] Schierz | Co-simulation with communication step size control in an FMI compatible master algorithm[END_REF] (also mentioned in [START_REF] Ângelo | Co-simulation : A Survey[END_REF]) or [START_REF] Meyer | Co-Simulation: Error Estimation and Macro-Step Size Control[END_REF] to define a dilatation coefficient candidate per output

i ∈ [[1, n out,k ]].
The dilatation (or contraction, if such coefficient is smaller than 1) is meant to be applied to the last co-simulation step size in order to determine the size of the upcoming co-simulation step.

ρ [N +1] k,i := p+1 1 error [N +1] k,i
(2.35)

Output error normalization

In (2.35), the error term is expected to be a relative error either relative to the values of the concerned variable and to a relative tolerance given which will determine the error threshold over which the step size is expected to decrease. Given such a relative tolerance tol rel and an absolute tolerance tol abs , a first approach referred to as Magnitude relies on the order of magnitude of the variable at the moment of the communication. In that case, the error is defined as follows.

M agn. error

[N +1] k,i def. = ỹ[N+1] k,i - y[N] k,i (t [N +1] k ) tol abs + tol rel • ỹ[N+1] k,i (2.36)
The problem in this approach is that when values of ỹl,j are close to zero, the trend is to give a big error (and the step size will then be reduced). It is particularly problematic with variables with a great order of magnitude and periodically crossing the value zero, such as sinusoids.

An approach that might reduce this effect is to normalize the error according to the amplitude (observed since the beginning of the simulation) instead of the order of magnitude. This approach will be referred to as Amplitude and defines the error as follow.

Ampl. error

[N +1] k,i def. = ỹ[N+1] k,i - y[N] k,i (t [N +1] k ) tol abs + tol rel max M ∈[[0,N +1]] ỹ[M] k,i -min M ∈[[0,N +1]] ỹ[M] k,i
(2.37)

Please note that if a macro-discontinuity is detected (see 2.3.1.2), the min and max operators at the denominator of formula (2.37) does not parse all outputs history from M = 0, but only from the last macro-discontinuity detected on the corresponding output.

The problem in this approach is that when the values of ỹk,i undergoes a great "jump" at one single moment (e.g. at initialization), the trend will be to produce artificially small errors. Therefore, the timestepper will produce big step sizes and the accuracy may consequently dwindle.

In order to solve this problem, we designed a new error computation strategy consisting in damping the amplitude, in order to progressively erase the effects of jumps while keeping the local amplitude of the variable ỹk,i . The error produced with this principle will refer to the Damped Amplitude strategy, and will be defined as follow.

Damped

Ampl. error

[N +1] k,i def. = ỹ[N+1] k,i - y[N] k,i (t [N +1] k ) tol abs + tol rel damp max ỹ[N+1] k,i - damp min ỹ[N+1] k,i (2.38)
Expression (2.38) refers to the damped minimal and damped maximal sequences which are recursively defined in (2.39).

                           α [0] = 0 damp max ỹ[0] k,i = ỹ[0] k,i damp min ỹ[0] k,i = ỹ[0] k,i α [M ] = damp max ỹ[M] k,i - damp min ỹ[M] k,i damp max ỹ[M] k,i = max ỹ[M] k,i , damp max ỹM-1 k,i - ν•δt [M -1] k 2 • α [M -1] damp min ỹ[M] k,i = min ỹ[M] k,i , damp min ỹM-1 k,i + ν•δt [M -1] k 2 • α [M -1]
(2.39)

where ∀N ∈ [[0, N max,k ]], δt [N ] k = t [N +1] k -t [N ]
k denotes the step size. The damping coefficient ν ⩾ 0 has to be defined. The greater it will be, the faster an event such as a jump will be "forgotten"; the smaller it will be, the closer Damped Ampl. error

[N +1] k,i
will be to Ampl. error

[N +1] k,i
. Please also note that the damped minimal and damped maximal sequences might be reset if a macrodiscontinuity is detected (see 2.3.1.2).

In the examples of section 2.4, ν is computed relatively to the total co-simulation time t [end] -t [init] , with the following rule of thumb: ν = 10 t [end] -t [init] (2.40)

The above formula gives a satisfactory estimation of the order of magnitude of a given variable's amplitude with progressive damping of the extrema, as shown on a given interface variable in the examples section on figure 2.25.

Upcoming communication time estimation

We can now provide a proper definition of the system's dilatation ratio mentioned in (2.26): the safest ρ among the candidates (2.35). A safety coefficient β ∈]0, 1] may be used (β = 1 changes nothing, β = 0.9 is widely used in order to avoid being on the exact limit where the tolerances requirements are met).

ρ [N +1] k = β min i∈[[1,n out,k ]] ρ [N +1] k,i (2.41)
With this dilatation ratio, we obtain an estimation of the next communication time for system (S k ):

δt [N ] k = t [N +1] k -t [N ] k δt [N +1] k = ρ [N +1] k • δt [N ] k t[N+2] k = t [N +1] k + δt [N +1] k (2.42)
where the hat symbol ˆdenotes an estimation. Indeed, the upcoming communication time produced by the time-stepper might be modified afterwards by the scheduler presented in 2.3.3. This next estimation temporary solves the problematic introduced at the beginning of 2.3.2, the determination of t

[N +2] k once [t [N ] k , t [N +1] k
[ is computed. Nonetheless, this is only an estimation as explained above.

Some practical remarks

Remark 1 (setting of the tolerances): In the three different error normalization strategies (2.36), (2.37) and (2.38), the tolerances must be chosen. In order to understand how to set them, let's focus on how they act. On the three different error formula, the tolerances appear at the denominator as the sum of the absolute tolerance tol abs and a quantity representing a nominal value of the variable (either the magnitude, the progressive amplitude or the damped amplitude) that might be denoted by y nomin multiplied by tol rel . The idea is that, if tol abs is neglectable with respect to tol rel • y nomin , the error is comparable to error rel tol rel where

error rel = ỹ[N+1] k,i -y [N ]
k,i (t

[N +1] k ) y nomin
. In that case, the relative tolerance tol rel corresponds to the threshold at which the relative error error rel generates an error lower or higher than 1, generating then a dilatation ratio ρ

[N +1] k,i
lower or higher than 1, conditioning the growth or the reduction of the upcoming co-simulation step size.

(tol abs = 0 and error rel < tol rel ) ⇒ error

[N +1] k,i < 1 ⇒ ρ [N +1] k,i > 1 ⇒ δt [N +1] k > δt [N ] k
(tol abs = 0 and error rel > tol rel ) ⇒ error

[N +1] k,i > 1 ⇒ ρ [N +1] k,i < 1 ⇒ δt [N +1] k < δt [N ] k (2.43)
Otherwise, in case tol rel • y nomin is neglectable with respect to tol abs , the error is comparable to error abs tol abs where

error abs = ỹ[N+1] k,i - y[N] k,i (t [N +1] k
) . In that case, the absolute tolerance tol abs corresponds to the threshold at which the absolute error error abs generates an error lower or higher than 1, generating then a dilatation ratio ρ

[N +1] k,i
lower or higher than 1, conditioning the growth or the reduction of the upcoming co-simulation step size.

(tol rel • y nomin = 0 and error abs < tol abs ) ⇒ error

[N +1] k,i < 1 ⇒ ρ [N +1] k,i > 1 ⇒ δt [N +1] k > δt [N ] k (tol rel • y nomin = 0 and error abs > tol abs ) ⇒ error [N +1] k,i > 1 ⇒ ρ [N +1] k,i < 1 ⇒ δt [N +1] k < δt [N ] k (2.44)
One can force one of the two cases (2.43) (2.44) to be used by setting one of the tolerances to zero (either tol abs or tol rel ), yet setting a non-zero value to both tolerances generates a hybrid behavior between (2.43) and (2.44), which both takes into account the relative error and the absolute error. Moreover, depending on the variables, this hybrid behavior can be useful to avoid dividing by zero in the error computations. Finally, in the examples of section 2.4, the following values are used: tol rel = 10 -2 and tol abs = 10 -8 , so that the limited relative error is about 1% of the nominal value of the variable (on each output), and so that the variables for which the nominal value is too small can have an absolute error up to 10 -8 . Although those values are arbitrary, they generate satisfactory results in practice. If a co-simulation generates too dodgy (inaccurate) or too cumbersome (accurate but slow) results, these tolerances can respectively be reduced or increased.

Remark 2 (ratio bounds):

In practice, a minimal and a maximal value for the dilatation ratio (2.41) can be define in order to avoid unsafe extreme step size reduction/increase. In section 2.4, the dilatation coefficient is kept in the interval [10%, 105%].

Remark 3 (systems without outputs): The above procedure only works for systems having at least one output variable. For the other types of systems ([NO] and [NINO]), we will use the following rule (overriding (2.42)).

∀k ∈ {k ∈ [[1, n sys ]] | n out,k = 0} , ∀N ∈ [[2, N max,k ]], t[N] k = t [end] (2.45)
The scheduler is very likely to restrict the time-steps to smaller ones (otherwise, the whole time domain would be simulated in a single step for such systems), especially for [NO] ones. [NINO] systems are isolated, so a single co-simulation step covering the whole time domain is completely relevant.

Remark 4 (co-simulation start):

The rules presented above do not enable to set the two first times. We will obviously set the first one with ∀k ∈ [[1, n sys ]], t[0] k = t [init] and the next one by using an initial step δt

[0]
k given as co-simulation parameter for every system. This initial step size will have a limited influence on the whole co-simulation (as the step size will quickly be adapted). We then set t

[1] k = t [init] + δt [0]
k for each system.

Flexible scheduler

The scheduler, third and last pillar of the F 3 ORNITS method, is intended to adjust the communication times of the systems according to the times they reached individually. It is based on topological data (link function, system types ([NI], [IO], ...) and the set of constraints regarding step sizes on each system) and can handle asynchronousness in a way that makes it robust to co-simulation involving systems with imposed co-simulation step sizes, so-called "fixed-step" systems. Several stages happen sequentially once every system has produced an estimation of the upcoming communication time (see 2.3.2). Among them, some stages are dedicated to avoid the use of an interface variable further than the time it is supposed to be used according to the time-stepper (trying to avoid phenomena like the one happening on figure 2.5), and others act as optimizations, as they avoid to communicate data when this has no effect ([NI] systems feeding a [NO] system with a large imposed step size, for instance).

Although the stages of the scheduler will be detailed in this subsection, it can be seen as a black-box producing the effective next macro-steps sizes once the time-stepper produced the estimated ones.

In other words, once ∀k ∈ [[1, n sys ]] the step [t

[N k ] k , t [N k +1] k
[ has been computed (n k might be different per systems as some systems may be idle when other keep on going, this will be explained in 2.3.3.1), the time-stepper has produced ( t[N k +1] ) k∈ [[1,nsys]] , and the scheduler can be seen as the black-box Sch below:

(t

[N l +2] l ) l∈[[1,nsys]] := Sch [topological data], (t [N l +1] l ) l∈[[1,nsys]] , ( t[N l +2] l ) l∈[[1,nsys]]
(2.46)

Triggering and stopping

During the co-simulation, systems will be able to run in parallel. As asynchronousness is supported, a special care have to be considered regarding delay between the systems. Indeed, at one moment, systems may have their states at different time, and these times should not be too far from one another.

To do so, at each iteration, some systems are triggered and the others are stopped. They will be denoted as active and idle systems respectively, and this part of the scheduling can be visualized on figure 2.8. Figure 2.8: Active and idle systems depending on the triggered ones and the stopped ones. Abscissa is the elapse time, not the simulation time (the latter evolves separately and asynchronously inside of each system) Figure 2.8 shows that the time indices do not increase at the same time for every system. In order to consider all systems and to be able to represent the simulation times reached by each of them, we will consider the following vector of indices:

(N l ) l∈[[1,nsys]]
(2.47)

so that ∀k ∈ [[1, n sys ]], t [N k ] k
is the latest communication time reached by (S k ). At the right of figure 2.8,

(N k ) k∈[[1,nsys]] has the value (3, 2, 2, 1) T .
The triggering of systems will be determined at every iteration accordingly to algorithm 8. Algorithm 8: Triggering algorithm for F 3 ORNITS method

1 for l ∈ [[1, nsys]] do 2 if ∃k ∈ [[1, nsys]]\{l}, t [N k +1] k ⩽ t [N l ] l then 3 Stops (S l ) at t [N l ] l .; 4 else 5 Triggers (S l ) for step [t [N l ] l , t [N l +1] l [;
Algorithm 8 ensures the following property at any time:

¡ ∃(k, l) ∈ [[1, n sys ]] 2 , t [N k +1] k ⩽ t [N l ] l ∧ (S l ) is active for [t [N l ] l , t [N l +1] l [ (2.48)
where the wedge symbol ∧ denotes the "and" logical operator.

In other words, a system (S k ) will never been triggered before all other systems reached the starting time of the upcoming step of (S k ). This guarantees that no system starts a step with inputs that could have been more up-to-date if this very system was idle.

Important note: A variant of algorithm 8 could consists in replacing ∃k ∈ [[1, n sys ]]\{l} (line 2) by ∃k ∈ K(l). This also guarantees that no system starts a step with inputs that could have been more up-to-date if this very system was idle. However, this might lead to a big asynchronousness in practice: systems might have very different local times, and a huge buffer has to be implemented in order to keep a track of the outputs of the systems that have the biggest local times. Moreover, doing as if all systems were connected to one another during the triggering stage (as algorithm 8 does) does not produce slower co-simulation: indeed, the co-simulation ends when every system reach the final time, so enabling some systems to run faster does not change the total co-simulation execution time.

Expansions and restrictions

For all macro-step size modification presented below, the systems will be seen as inputs-sensitive on one side, and their outputs will be considered affected by the inputs. In practice, it is possible that inputs or outputs are artificial (sinks, pre-defined signals, ...), but the systems can, in that case, be rearrange so that "noisy" connections are avoided. Indeed, a system used only to "complete" ports (with unused inputs only) may be implemented as a [NO] system; thus, F 3 ORNITS will adapt its step size consequently. If these unused inputs are part of a system that also has outputs, the method has no way to known that the outputs are independent of the inputs, and the co-simulation can be over constrained. It is the responsibility of the systems makers (modelers) to build proper systems. If this hypothesis is respected, the F 3 ORNITS method can run on a model made of interconnected black-box systems, such as co-simulation FMUs [FMI].

Pseudo-infinite expansion

The step size dilatation technique of the time-stepper presented in 2.3.2 is applicable to 2 among 4 topologies of systems. Indeed, the [NO] and [NINO] systems cannot undergo this method as far as they do not have any output.

How to deal with [NO] systems:

Let (S l ) be a [NO] system. Hence we have n in,l ∈ N * and n out,l = 0. Let's consider that the step [t

[N ] l , t [N +1] l
[ has just been computed (there is no problem if N = 0 as far as the initial step size must be user-provided). The system (S l ) is only constrained by its inputs: the criterion (2.49) can be used. It fixes the estimated next communication time to the next time where an input will be able to be updated by a new expression of a connected output.

t[N+2] l := min k∈K(l) t min M ∈[[0,N max,k ]] | t [M ] k >t [N +1] l k δt [N +1] l := t[N+2] l -t [N +1] l (2.49)
where K(l) denotes the upstream set of (S l ) described in 2.2.1.

How to deal with [NINO] systems:

[NINO] systems are completely isolated systems, as shown on figure 2.1. Therefore, the sizes of the steps of such systems will not affect in any way the co-simulation.

For this reason, if (S l ) is a [NINO] system, when the time t

[N ] l have been reached (N can be 0 if no steps have been computed yet), the estimated next communication time can be estimated with the criterion (2.50).

t[N+1]

l := t [end] δt

[N +1] l := t [end] -t [N ] l (2.50)
More generically: How to deal with systems without outputs:

It can be noticed that setting the step to a pseudo-infinite step, that is to say a step directly reaching the end of the simulation, works both in [NO] and [NINO] cases.

Indeed, regarding the [NINO] case, it is exactly what is done (2.50) and, regarding [NO] cases, the criterion (2.49) corresponds to a pseudo-infinite step restricted according to the inputs-based restriction presented hereafter.

Inputs-based restriction

The estimated next communication time for a given system is based on the outputs of this system. The size of its upcoming macro-step is chosen so that his outputs will stay accurate enough, given a defined tolerance (see time-stepper in 2.3.2). Nonetheless, if this system has inputs, the step shouldn't be too big in order to avoid inaccurate inputs. Hence, the step size of the systems providing these inputs has to be taken into account. Therefore, a restriction has to be implemented.

An illustration of the implementation of such a step size restriction is presented on figure 2.9. Figure 2.9: Restriction scenarii for a system (S l ) around a connection K(l) = {k} A special care has to be made about the parsing order of the systems. Indeed, restricting the systems in a wrong order may lead to unsafe results. Let's take the example shown on figure 2.10. If the restriction are computed on system (S 3 ), then (S 2 ) and then (S 1 ), the result is the one at the bottom of the figure: a wrong restriction. Indeed, (S 2 ) has to be constrained by its input coming from (S 1 ), so it is completely possible that the output from (S 1 ) will change drastically at t[N1+1]

1 as this communication time has been determined precisely by y 1 (see 2. has to be restricted to that time); therefore (S 3 ) must not assume that its input coming from (S 2 ) will be coherent after that time. The restriction of t[N3+1] ) l∈ [[1,nsys]] . Important note: A variant of the inputs-based restriction could consist in applying the inputs-based restriction as if every system was connected to all the other ones. In other words, "virtual bonds" are added to non-connected systems (in all senses), and the latter are only considered in the application of the inputs-based restriction. This leads in practice to a better natural synchronicity of the communication times of the systems.

Insensitivity-based expansion

It is possible that a system (S k ) produces outputs that are connected to inputs of fixed-step systems (S l1 ), ..., (S ln ), so that ∀l ∈ L(k), l ∈ {l 1 , ..., l n }. When this case appears, these fixed-step systems will not be able to restrict their upcoming steps accordingly, id est they will not be able to process inputs-based restriction 2.3.3.2.2.

If all outputs of a given system are connected to such inputs (of fixed-step systems), and if this system is not constrained by a restriction due to his inputs, id est when K(k) = ∅, his step can be extended. A simple example is presented on figure 2.11. In this case, we see that the insensitivity-based expansion should occur before the triggering and stopping choice. Indeed, a system which is currently between the first estimation of t However, if the system (S k ) on which we are trying to perform insensitivity-based expansion is constrained by an input (or more): that is to say, when K(k) ̸ = ∅, the expansion should not occur in a way that discards the inputs-based restriction, as shown on figure 2.12. The way to guarantee that the inputs-based restriction is always satisfied even when an insensitivitybased expansion occur (figure 2.12) is to:

• First, extend the time to the nearest fixed-step communication time (among systems in the downstream set), and • Then, apply the inputs-based restriction.

The order is very important in this case. See algorithm 9. Important note: The expansion of the step is motivated by the idea of avoiding multiple stop/restarts on systems producing outputs feeding inputs of fixed-step systems. Nevertheless, such intermediate communications are not completely useless: indeed, these intermediate values might be used in the calibration process (see 2.3.1) of the polynomial that will be used by the fixed-step systems when it will start its upcoming step. Hence, a variant of the F 3 ORNITS method could consist in bypassing the insensitivity-based expansion. Yet, in practice, most of the fixed-step systems do not support polynomial inputs, so µ k = 0 for them (in (2.11)). In that case, insensitivity-based expansion is relevant.

Interval projection

The model might require a minimum step size δt min > 0 and a maximum step size δt max ⩾ δt min . Let's consider δt min = 0 in case no minimum step size is provided, and δt max = +∞ when no maximum step size if provided.

Let π [δtmin,δtmax] be the projection on [δt min , δt max ], that is to say:

π [δtmin,δtmax] : R * + → [δt min , δt max ] δt → min (δt max , max (δt min , δt)) (2.51)
Replacing a step size by its projection ensures that the obtained step size is compliant with the min / max requirements. Nevertheless, a fixed-step system that has a step size outside of the range will keep its "out of the range" size.

Scheduling algorithm

Here is finally the scheduling algorithm for the F 3 ORNITS method, behind Sch in (2.46): Algorithm 9: Scheduling algorithm for F 3 ORNITS method Data: (δt

[N k ] k
) k∈ [[1,nsys]] sizes of the lastly computed macro-steps on each system (y

[N k +1] k
) k∈ [[1,nsys]] output values at the end of the previous macro-steps (y

[N k ] k ) k∈[[1,nsys]]
estimated outputs among the previous macro-step 

(
[N k +1] k
) k∈ [[1,nsys]] upcoming macro-step sizes Triggered and stopped systems + δt

1 for k ∈ [[1, nsys]] do 2 if (S k ) has an imposed step δt fixed,k then 3 δt [N k +1] k := δt fixed,k ; 4 else if L(k) = ∅ then 5 ∀k ∈ [[1, nsys]], δt [N k +1] k := t [end] -t [N k +1] k ; // pseudo-
8 δt [N k +1] k := ρ [N k +1] k δt [N k ] k ; 9 Compute insensitivity-based expansion on ( δt [N k +1] k ) k∈[[1,nsys]] ; //
[N l +1] l , min k∈K(l) t [N k +1] k + δt [N k +1] k -t [N l +1] l ; // δt [N k +1] k
cannot be negative thanks to (2.48).

// Indeed: δt ; // set line 3

[N k +1] k ⩽ 0 =⇒ ∃l ∈ L(k), t [N l +1] l + δt [N l +1] l ⩽ t [N k +1] k so (S

Results and behavior on five test-cases

Five test-cases will be presented in this section. All modular models (including monolithic systems and decoupled systems) have been built with Simcenter Amesim, a 0D modelling and simulation software developed by Siemens Industry Software [Sofb; Sofa]. For the sake of reproducibility, the equations of most of the cases will be given below each of them.

The first model will present the importance that keeping the dynamics on the coupling variables may have. This is actually done with the polynomial inputs in F 3 ORNITS method. The second model is a variation of the 2-masses-springs-dampers [START_REF] Busch | Continuous approximation techniques for co-simulation methods: Analysis of numerical stability and local error[END_REF] and performances will be measured on several cosimulations. The third model originates from an Amesim demonstration model and will highlight the role of the scheduler thanks to it's heterogeneous aspect (sampled controller and variable-step co-simulation in decoupled plant parts). The fourth model involves two continuous systems and a purely discrete one (not only sampled, but intrinsically discrete) in order to show that the F 3 ORNITS method can handle such cases, and that the underlying continuous "subcoupling" between the two continuous systems still benefits from the advantageous properties of the method. Finally, the fifth model is an industrial-scale model, presented to show the robust behavior of the F 3 ORNITS algorithm on models of a size that does not enable to undertake a preliminary study.

The most widely used co-simulation method is the NIZOHJA algorithm (see 1.3.8). Therefore, the comparisons will be made between the latter and F 3 ORNITS algorithm.

The method then automatically adapts dynamically depending on the coupling variables' behaviors and the systems' capabilities. This adaptation is autonomous, except the following few parameters that must be chosen: tol abs , tol rel , κ abs , κ rel , δt [0] , reconstruction strategy (extrapolation of constrained least squares), error normalization strategy). Table 2.2 gathers the rule of thumb values and default choices that can be made if no specific parameterization is wanted. These values will be used in the following test-cases except when a different choice is clearly specified. 

Car with controlled speed

This model is a newly proposed test-case introduced in this work (it has been published in the F 3 ORNITS article [START_REF] Eguillon | F3ORNITS: a Flexible Variable Step Size Non-Iterative Co-simulation Method Handling Subsystems with Hybrid Advanced Capabilities[END_REF]). It has been designed in order to show the importance of the dynamics at the interfaces.

In other words, filtering the derivatives of the exchanged variables will lead to a wrong behavior, and this test-case shows how, in real industrial cases, this phenomenon may arise.

Test-case presentation

The model consists in two interconnected systems. The first one corresponds to a 1000 kg car (simplified as a mass) moving on a 1D axis (straight road). It is modelled with Newton's second law, which takes a force on entry and gives its position as output. The second system is controller, producing a force and using the car position on input. The connections are simply: L(1, 1) = (2, 1) and L(2, 1) = (1, 1) which means that the input u 1 is connected to the output y 2 , and the input u 2 is connected to the output y 1 . No double-indexing is needed as every system has a single input and a single output (sometimes referred as SISO systems, as opposition to MIMO systems).

For the sake of reproducibility, the equations of the systems (S 1 ) and (S 2 ) are respectively given in (2.52) and (2.53), as well as the equation of the monolithic model in (2.54). The mass of the car is m car = 1000 kg and its initial position and speed are respectively x car (0) = 0 m and v car (0) = 0 m s -1 . For the sake of consistency, initial conditions in the controller are x sensed (0) = 0 m and v ctrl (0) = 0 m s -1 .

During the whole co-simulation, the system (S 1 ) represents the car, and has the following equations (in state-space shape):

           ẋcar vcar = 0 1 0 0 x car v car + 0 1 /mcar u 1 + 0 f wind/m car y 1 = 1 0 x car v car + 0 u 1 (2.52)
As it can be seen on figure 2.13, the car system (S 1 ) adds a random perturbation to the input force (this may be seen as a 1D wind, for instance) that can be seen on figure 2.14. Then, when t ∈ [10, 50], the output of the controller system becomes the output of a "P" controller [START_REF] Michael A Johnson | PID control: New Identification and Design Methods[END_REF] based on the vehicle speed and which is designed to make the vehicle reach (and maintain) a target speed of 16 m s -1 . The velocity needed by the "P" controller is computed from the input position u 2 , using an explicit equation ẋsensed = v ctrl and a constraint equation x sensed -u 2 = 0 where v ctrl denotes the computed speed, x sensed a hidden variable representing the position, and u 2 the position input in the controller system. The usage of x sensed is mandatory in order to estimate the speed: the latter is indeed the derivative of the position u 2 . The position of the car being sent to the controller as interface variable illustrates, for instance, GPS coordinates regular communications.

             0 0 -1 0 ẋsensed vctrl + 1 0 0 1 x sensed v ctrl + -1 0 u2 = 0 0 y2 = f preset if t ∈ [0, 10[ 0 -kp x sensed v ctrl + 0 u2 + kpv target otherwise
(2.53) Finally, the equation of the monolithic systems after t = 10 s is given in (2.54).

    1 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0         ẋcar vcar ẋsensed vctrl     +     0 -1 0 0 0 0 0 k P /mcar -1 0 1 0 0 0 0 1         x car v car x sensed v ctrl     +     0 - k P v target +f wind mcar 0 0     =     0 0 0 0    
(2.54) The case on t ∈ [0, 10[ is trivial: u 1 has to be replaced by f preset in (2.52) the equation of the car (S 1 ).

Results

Due to the zero order hold, the NIZOHJA co-simulation method does not allow (S 2 ) to properly retrieve the vehicle speed. Indeed, on every co-simulation step, the input position will be constant and the DAE will produce a null speed (see figure 2.16, as it can be seen on the zoom on [13, 13.2]. The consequence of this is that the controller will put force to push the vehicle in order to increase the speed (attempting to make it reach 16m s -1 ) without even realizing that the vehicle has a non-null velocity. Therefore, the velocity will keep on increasing indefinitely (curve with triangles on figure 2.17). Inversely, F 3 ORNITS represents the dynamics of the coupling variables (Force and vehicle position) when needed (this is the "flexible order" part presented in 2.3.1). The velocity computed from such a position input is more reliable, and the controller (S 2 ) will send proper force to make the vehicle maintain its target velocity.

The effective vehicle velocity inside of (S 1 ) across the time is presented in figure 2.17 in the three cases of (co-)simulation.

Figure 2.17: Vehicle speed in (S 1 ) in the monolithic reference and in co-simulations with respectively the NIZOHJA method and the F 3 ORNITS algorithm Please note that the F 3 ORNITS method is not the only one that may solve this particular problem. Indeed, any first-order time-derivative preserving method won't generate the zero-speed problem shown on figure 2.16. For instance, the FOH (first-order hold) fixed-step explicit co-simulation method calibrating the inputs with the 2 last values enables the controller system to retrieve a non-null speed from a FOH position input, which makes it capable of sending a relevant controlling force to the vehicle system. The latter thus has a macroscopically relevant speed (see figure 2.18). The automatic and dynamical adaptation of the F 3 ORNITS method enabled the co-simulation to be solved in a better way than the other methods. The results are more relevant than with a simple NIZOHJA method, and even more accurate than with the FOH explicit method. Indeed, the latter always use firstorder hold where F 3 ORNITS disables it when non-relevant or dangerous, as shown in section 2.3.1. With respect to the monolithic reference, the explicit FOH method produces a L 2 error of 2 • 10 -4 % on the vehicle's position over the whole simulation (this is totally acceptable), yet the F 3 ORNITS method reaches a L 2 error of 4 • 10 -5 %: the latter is thus five times more accurate. This can namely be explained by the steps where first-order hold is dangerous and where F 3 ORNITS detects it, but the explicit FOH method no. An example of this phenomenon is presented in figure 2.19, where we can see that the explicit FOH method generates an exaggerated jump implying a delay that is never recovered afterwards. 

Two masses, springs and dampers

Test-case presentation

This model is a uni-dimensional linear mechanical model. It consists of two masses coupled with force, displacement and velocity as shown on figure 2.20. The two bodies (inertias) of 10 000 kg are interconnected to one another and to zero-speed points (walls) with springs and dampers. After the instantaneous transition time t = 100 s, the body on the right vanishes and the corresponding system spontaneously acts as a constant pulling force of 1000 N. A representation of this model within the Simcenter Amesim software is presented in figure 2.21 for the monolithic system, and on figures 2.22 and 2.23 for the decoupled version. It is a variant of the test-cases presented in [START_REF] Busch | Continuous approximation techniques for co-simulation methods: Analysis of numerical stability and local error[END_REF] or in [START_REF] Meyer | Co-Simulation: Error Estimation and Macro-Step Size Control[END_REF], the modification being the behavior change after the transition time. This generates a discontinuity on coupling variables and different behaviors before and after. This is detected as macro-discontinuity (introduced in 2.3.1.2) on the affected interface variables. The three connections of this model are L(1, 1) = (2, 1), L(1, 2) = (2, 2), and L(2, 1) = (1, 1). In other words, input u 1 of (S 1 ) is connected to output y 2 of (S 2 ) and inputs u 2,1 and u 2,2 are respectively connected to outputs y 1,1 and y 1,2 of (S 1 ). Interface variables with a single subscript denote scalar interface variables in the case where a system has only one input or one output (u 1 is equivalent to u 1,1 , and y 2 is equivalent to y 2,1 ). LB and RB literal subscripts refer to "left body" and "right body" respectively.

c1 = 1 kN/m c2 = 1 kN/m c3 = 1 kN/m d1 = 1 kN/(m/s) d2 = 0 kN/(m/s) d3 = 1 kN/(m/s) m1 = 10000 kg m2 = 10000 kg x1(t [init] ) = -1 m x2(t [init] ) = 0 m v1(t [init] ) = 0 m/s v2(t [init] ) = 0 m/s [t [init] , t [end] ] = [0 s, 200 s]
For the sake of reproducibility, the equations of (S 1 ) and (S 2 ) are presented below, as well as the equation of the monolithic system, and all required parameters to reproduce the case are given on figure 2.20.

Let's detail the equations of the left body system and denote it by (S 1 ) whose open version (interfacable) is presented on figure 2.22. This system has n in = 1 input (the force coming from the right), n out = 2 outputs (the displacement and velocity of the left body), and n out = 2 state variables (the position and speed of the body, modelled as a mechanical inertia). The state variables are denoted by x 1 = (x LB , v LB ) T (for "left body"), the input force by u 1 (input) and the outputs by y 1,1 and y 1,2 respectively. The spring of rate c 1 and the damper of rate d 1 (see figure 2.22) in the left of the body generate forces -c 1 x L and -d 1 v L respectively (measured positively from left to right). Second Newton's law gives: m 1 vL = -c 1 x L -d 1 v L -u 1 as the force at the interface is measured positively from right to left. Finally, the equations of system (S 1 ) are given in the state-space shape in (2.55).

           ẋLB vLB = 0 1 -c1 m1 -d1 m1 x LB v LB + 0 -1 m1 u 1 y 1,1 y 1,2 = 1 0 0 1 x LB v LB + 0 0 u 1 (2.55)
Let's detail the equations of the right body system and denote it by (S 2 ). It has n in = 2 inputs (the position and the velocity of the body in (S 1 )), n out = 1 output (the force at the left of the spring-damper component on the left of figure 2.23) and n in = 2 state variables (the position and speed of the body). As shown on the figure 2.21, the force interface variable produced by (S 2 ) (output of it) and used by (S 1 ) (input of it) is measured positively from right to left. The other quantities (forces of the springs and dampers around the body, position and velocity of the body) will be measured positively from left to right. The body has a mass m 2 and is modelled as a mechanical inertia which position and speed are the state variables denoted by x 2 = (x RB , v RB ) T (for "right body"). It is submitted to 4 forces (measured positively from left to right): the spring of rate c 2 , the damper with a damper rating of d 2 , the spring of rate c 3 and the damper with a damper rating of d 3 (see figure 2.21). Let's focus on this situation which corresponds to the behavior of (S 2 ) before the transition time t = 100 s.

The forces coming from the left of the body in (S 2 ) come from a spring and a damper and are respectively -c 2 (x R -u 2,1 ) and -d 2 (v R -u 2,2 ). They indeed depend on the left body's position (input u 2,1 ) and the left body's velocity (input u 2,2 ). The forces coming from the right of the right body also come a spring and a damper, and they are respectively -c 3 x R and -d 3 v R . Second Newton's law gives:

m 2 vR = -c 2 (x R -u 2,1 ) -d 2 (v R -u 2,2 ) -c 3 x R -d 3 v R .
Finally, the equations of system (S 2 ) are written in state-space shape in (2.56).

               ẋRB vRB = 0 1 -c2-c3 m2 -d2-d3 m2 x RB v RB + 0 0 c2 m2 d2 m2 u 2,1 u 2,2 y 2 = -c 2 -d 2 x RB v RB + c 2 d 2 u 2,1 u 2,2 if t ∈ [0, 100[
-1000 otherwise (2.56) Finally, the equation of the equivalent monolithic system, whose sketch in Simcenter Amesim was presented on figure 2.21 is presented in (2.57). The behavior on t ∈ [100, 200[ is trivial: u 1 has to be replaced by -1000 N in (2.55) the equation of (S 1 ).

    ẋLB vLB ẋRB vRB     =     0 1 0 0 -c1-c2 m1 -d1-d2 m1 c2 m1 d2 m1 0 0 0 1 c2 m2 d2 m2 -c2-c3 m2 -d2-d3 m2         x LB v LB x RB v RB    
(2.57)

Results

First of all, for the sake of performance and accuracy comparisons, the model have been co-simulated using the NIZOHJA method with five fixed step size values: 0.01s, 0.05s, 0.1s, 0.2s and 0.4s. Then, F 3 ORNITS method was used with δt

[0] 1 = δt [0]
2 = 0.01s (also used as "minimal step size value"), for different strategies regarding polynomial calibration (extrapolation / CLS, see 2.2.2), smoothness enhancement (disabled / make interfaces C 1 , see 2.3.1.5) and error normalization (w.r.t. amplitude / magnitude / damped amplitude with ν = 5%, see 2.3.2). Figure 2.24: RMSE/#steps trade-off (on x 1 and v 1 ) for various sets of parameters of F 3 ORNITS algorithm on 2 masses model All co-simulations run instantly (measured elapsed time: 0.0s), but a good performance indicator can be the number of steps proceeded. Indeed, the main cost of a co-simulation run is the frequent restart of systems' solvers after each discontinuity introduced by a communication time. On the other side, bigger co-simulation steps are expected to produce inaccurate results: the larger a co-simulation step is, the older an input value might be used. The precision criterion will be the RMSE (root mean square error) compared to the monolithic reference.

The error normalization criterion in the time-stepper has a strong impact on the results: as expected, M agn. error generates larger errors and smaller co-simulation steps. The total amount of steps is bigger than the other normalization methods, but the results are also more accurate. The trade-off is: results are either more accurate than with NIZOHJA for the same total number of steps, or obtained in less steps than NIZOHJA to achieve the same accuracy (see right-hand dashed circled sets of points on figure 2.24).

In order to reduce the effect of artificial step size reduction when coupling variables cross zero, the error normalization Ampl. error method may be used in the time-stepper. The steps are larger, and the total numbers of steps are the smallest ones on every case (compare the 3 rd sub-table of table 2.3 to the 2 nd and the 4 th ones). However, as the model is damped (d 1 = d 3 > 0), the initial highest and lowest values of the variables are not forgotten throughout the whole co-simulation (this can be observed on the blue curve of figure 2.25). The trade-off is still better than NIZOHJA on every case.

In order to improve the accuracy of the results obtained using the Ampl. error, the damped amplitude alternative for error normalization has been proposed in subsection 2.3.2. Indeed, damping the amplitude with a factor ν = 5% allows the coupling to progressively forget the initial high values, as the minimum and maximum values will "follow" the order of magnitude of the variables amplitude. The 1,1 sequences can be seen on figure 2.25, y 1,1 being the coupling variable associated to x 1 . Figure 2.25: Evolution of y 1,1 (coupling variable corresponding to the position of the left mass x 1 ) and its damped bounds sequences a defined in (2.39) These three error computation methods generate co-simulation steps smaller (safer), bigger (faster), and in-between (compromise) as expected, regarding respectively M agn. error, Ampl. error, and Damped Ampl. error formulas. This can be observed on the step size evolution on figure 2.26. Please note that, for each of the the 3 cases presented on this figure, the evolution of the co-simulation step size is the same for both systems (left mass and right mass). Indeed, both systems can handle a variable co-simulation step size, and they are connected to each other. Consequently, the scheduler automatically synchronizes the systems communication times (see 2. 2.3 compiles the results of figure 2.24 and shows precisely the rmse values. Among others, it shows that the polynomial inputs calibration method (either with an extrapolation Ω Ex q or a CLS fitting Ω CLS q ) has minor incidence on the final results on the two masses test-case. Nonetheless, it can be observed on this table that the smoothness enhancement (presented in 2.3.1.5) slightly damages accuracy, except when the error is normalized using M agn. error. The reason of this is the fact that the value of the inputs is not the one given as output by its connected system at the beginning of the step (as explained in 2.3.1.5). In other word, this phenomena generates a small extra error at the beginning of every cosimulation step, but the value of the input is quickly adapted to match the one it would have had without the smoothness enhancement (this will be observed further, in the third test-case, on the figure 2.32). The smaller the steps are, the less this phenomenon can be observed: that is the reason why the subtable regarding M agn. error does not show it. The co-simulations processed with F 3 ORNITS with error normalized regarding amplitude damped with a coefficient ν = 5% (shapes in the middle dashed circles on figure 2.24) achieve, with approximately 20 times less co-simulation steps (and as many avoided discontinuities), an accuracy similar to the one obtained with the NIZOHJA method (or even slightly more accurate results, as NIZOHJA method does not reach an rmse lower than 0.03% for x 1 even with 20 000 steps). From another point of view, a similar amount of communication times produces an error 38 times smaller with F 3 ORNITS than with the NIZO-HJA method. Moreover, a co-simulation step size does not need to be chosen in advance as F 3 ORNITS automatically adapts it thanks to its time-stepper.

Sampled controller and physical coupling 2.4.3.1 Test-case presentation

This model originates from the Amesim demonstration model PIDtunerSpeedControl: a PID (proportional integral derivative) controller is used to control the angular velocity of a load by acting on the voltage source of an electrical motor. This circuit has been decoupled into three systems in order to simulate separately the electrical part, the mechanical part, and the controller. As controllers are often sampled in the real world, the latter has been exported into a co-simulation FMU [FMI] with an imposed step: this will highlight the role of the scheduler. As previously, interface variables with a single indice denote scalar interface variables in the case where the system has only one input or one output (u 1 is equivalent to u 1,1 , y 1 is equivalent to y 1,1 , y 2 is equivalent to y 2,1 , and u 3 is equivalent to u 3,1 .

For the sake of reproducibility, the equations of (S 1 ), (S 2 ) and (S 3 ) are presented below, as well as the equation of the monolithic system.

System (S 1 ) is a PID controller [Joh+05]: a time-dependent angular speed target ω target is predefined, and the difference between this target and the effective angular speed u 1 is controlled (the purpose is to bring this error to zero). The action of this controller is y 1 . This action is the sum of x P , x I and x D (respectively called the "proportional", "integral" and "derivative" actions) respectively multiplied by k P , k I and k D (respectively called the "proportional", "integral" and "derivative" gains). In our case, we used: k P = 0.037, k I = 7.07 and k D = 6.1 • 10 -4 .

The proportional action is simply x P = ω target -u 1 . The integral action is defined by ẋI = ω target -u 1 and x I (0) = 0. In order to avoid using an implicit variable to compute the derivative action, we estimate it with a first order lag. Using τ a small time constant (in our case: τ = 1.65 • 10 -5 ), we can use a dummy state variable d with d(0) = 0 and ḋ = (ω target -u1)-d τ

. To a certain extent, d is an approximation of the error ω target -u 1 with a delay of τ seconds. The derivative action is simply x D = ḋ. Finally, in order to compute the control y 1 = k P x P + k I x I + k D x D , system (S 1 ) uses the ODE system (2.58).

           ḋ ẋI = -1 /τ 0 0 0 d x I + -1 /τ -1 u 1 + 1 /τ 1 ω target y 1 = -k D /τ k I d x I + - k D τ -k P u 1 + k D τ + k P ω target (2.58)
System (S 2 ) represents an electric motor producing a torque and commanded by a potential on entry u 2,1 . The physical coupling consists in the interface variables with system (S 3 ): indeed, the motor in (S 2 ) produced a torque y 2 and receives an angular velocity u 2,2 . The current i in the electrical circuit is the only state variable of this system. As the motor includes a resistance R and an inductance L, and receives the angular velocity from which a counter-electromotive force, the ODE of (S 2 ) can be written as (2.59). Our tests have been made with a resistance R = 0.2 Ω, an inductance L = 0.86 mH, and an electromotive force K 0 = 0.13 V s rad -1 .

           i = - R L i + 1 /L -K0 /L u 2,1 u 2,2 y 2 = K 0 i + 0 0 u 2,1 u 2,2 (2.59) 
System (S 3 ) consists in a rotating load of interest J 2 connected to the electrical motor through a reducer (including a reducer gear, a reducer shaft and a coupler). The load of interest is also subject to a disturbance torque T dist . In the physical coupling with the electrical system (S 2 ), the torque coming from the electrical motor is used as entry of the coupler which produces an angular velocity as output, used by the electrical motor. On the other side of (S 3 ), the angular velocity of the load ω 2 is sensed and sent to the controller (S 1 ). The equation of the open system (S 3 ) can thus be written as (2.60). As specified on figure 2.27, J 1 and J 2 respectively denote the moments of inertia of the reducer shaft and the load of interest. In our simulations, the considered moments of inertia were J 1 = 0.001 kgm 2 and J 2 = 0.04 kgm 2 . The load of interest also has a viscous friction of r vis = 0.03 Nm/(rev/min). ω 1 and ω 2 respectively represent the rotational velocities of these shafts (in terms of revolutions per unit of time). The reducer gear ratio used in our tests was k red = 10, and the coupler has a stiffness of k tor = 10 Nm/degree and a damper rating of r tor = 0.001 Nm/(rev/min). Its relative angular displacement (in terms of angle, in degree) is denoted by θ rel . At the initial time, every angle and velocity is null.

                     ω1 θrel ω2   =   -r tor /J1 k tor /J1 r tor /J1 -1 0 1 r tor /J2 -k tor /J2 -r tor -r vis J2     ω 1 θ rel ω 2   +   k red/J 1 0 0   u 3 +   0 0 T dist/J 2   y 3,1 y 3,2 = k red 0 0 0 0 1   ω 1 θ rel ω 2   + 0 0 u 3
(2.60) Finally, the equation of the monolithic systems is given in (2.61).

        ḋ ẋI i ω1 θrel ω2         =         -1 /τ 0 0 0 0 -1 /τ 0 0 0 0 0 -1 -k D/τ L k I L -R L -K0 L k red 0 - k D/τ +k P L 0 0 k red J1 K 0 -r tor /J1 k tor /J1 r tor /J1 0 0 0 -1 0 1 0 0 0 r tor /J2 -k tor /J2 -r tor -r vis J2                 d x I i ω 1 θ rel ω 2         +         ω target /τ ω target k D/τ +k P L ω target 0 0 T dist/J 2         (2.61)

Results

Synchronous co-simulation algorithms have three strategies for solving this kind of problems:

• the communication times are paced at the controller's frequency, • the communication times are paced at a high frequency to catch the dynamics of the physical coupling, • the communication time-step is variable.

In the first case, there is a high risk of information loss in the physical coupling, as the signals need a higher frequency than 1ms to be reliably represented. In the second case, the controller makes several useless stop/restarts because of communication times in the middle of 1ms steps. Moreover, if the system cannot split the 1ms step in smaller ones, the co-simulation cannot even run (it is the case for FMUs [START_REF] Tavella | Toward an Hybrid Co-simulation with the FMI-CS Standard[END_REF] without the canHandleVariableStepSize capability flag [START_REF] Blochwitz | The Functional Mockup Interface for Tool independent Exchange of Simulation Models[END_REF], for instance). The third case observes the same remark concerning the FMU capability flag. Although, even if the controller can handle variable co-simulation step size, the stop/restart effect might occur like in the second case.

The asynchronous scheduler of F 3 ORNITS solves this problem in a way that enables the controller to maintain its 1ms sampling, while adapting the steps of the plant systems according to the evolution of the dynamics of the physical coupling (thanks to the time-stepper). Figures 2.30 and 2.31 show this behavior.

The step plot of figure 2.28 shows the cumulative steps (reached time) across the simulation time. The physical systems (S 2 ) and (S 3 ) communicate at the same times, and communicate with the controller system (S 1 ) (dashed line) every 1ms, as expected.

Figure 2.29 shows the cumulated steps (reached time) across iterations (time index, corresponding to N in the notation t [N ] ). One iteration can be seen as a clock cycle. It can be noticed that the controller system (dashed-line) "waits" the other systems while the latter simulate their small co-simulation steps which vary according to the physical coupling. Depending on how this physical coupling evolves, the controller system might wait for more or less iterations, yet it will never restart before the other systems reached its current time. Graphically, this is shown by the fact that the dashed line does not "rise" (id est integrates a 1ms step) before the continuous superimposed lines reached the y-value of it.

While the controller lives its 1ms fixed sampling, the time-stepper acts on the other systems (physical coupling). Indeed, as detailed in subsection 2.3.2, the steps sizes depend on the evolution of the interface variables. The scheduler enables the time-stepper to act in parallel of a constant sampled system, and this naturally leads to points of synchronization which can be observed on figure 2.30 showing the cosimulation step size across simulation time. When (S 2 ) and (S 3 ) almost reached the time at which (S 1 ) (the controller) waits for them, they do not overcome this time. Instead, they exactly reach it (due to inputs-based restriction, see 2.3.3.2.2) so that they can start the next step with the most precise inputs they can have. The controller then also starts its upcoming step with recent inputs. These synchronization times might lead to very small steps. In order to avoid restarting from such small steps, the minimum and maximum dilatation ratios (remark 1 of 2.3.2) are corrected according to the ratio between the previous step's size determined by the time-stepper, and the one that was really used (taking into account the restrictions implemented by the scheduler). Thus, the artificially small steps that are used only to reach a synchronization time do not lead to a bad influence on the rest of the co-simulation.

This phenomenon can be observed on figure 2.30, where the co-simulation steps right after t = 0.32s are not starting from the very small step (around δt = 3•10 -6 s) that was used to reach the synchronization time of 0.32s. The same effects can be seen at t = 0.321s and, in an even clearer way, at t = 0.319s.

Stepping back on 2.30 leads to the upper graph of figure 2.31. The latter shows that the time-stepper does its job: the co-simulation step size evolves according to the dynamics of the coupling variables. The scheduler and the time-stepper work in symbiosis, each of them working as expected. All the effects and behaviors described above and illustrated on figures 2.28, 2.29, 2.30 and 2.31 are natural consequences of the time-stepper and the scheduler described in 2.3.2 and 2.3.3. Concepts such as synchronization times, waiting systems, variable stepping following physical coupling naturally arise from the definitions of the time-stepper and the scheduler. Once implemented, the method auto-adapts to the modular systems on which it runs. This genericity is convenient in the sense that no parameters need to be given so that all the behaviors shown above appear (or at least generic default values can be used, such as dilatation ratio bounds at 10% and 105%).

Regarding the flexible inputs, this test-case can also show the behavior of the mechanism explained in 2.3.1. Figure 2.32 shows, on the torque coupling variable, how the input in (S 3 ) is reconstructed based on the data received in (S 3 ) from (S 2 ).

Here is the step-by-step trace of the scenario that occur at a given communication (numbering corresponding to stages on figure 2.32):

1. Electrical motor system (S 2 ) produced the torque value (black point) and communicates it (exact continuous torque in (S 2 ) is represented with a continuous line in the upper plot). 2. According to the past communicated values given by (S 2 ) regarding this torque, the order p is determined to be 1 (see 2.3.1.1 for order determination). 3. According to this order, the previous communicated values, and the next communication time (computed by the time-stepper and the scheduler), mechanical system (S 3 ) calibrates a polynomial of degree p = 1 (see 2.3.1.3 and 2.3.1.4). This polynomial is represented with a dotted line in the upper plot. 4. The value and derivative of this polynomial are evaluated at the time of the end of the upcoming co-simulation step. 5. Base on this value and this derivative, and on the ones that have been computed at the end of the previous co-simulation step (that is to say, at the beginning of the upcoming one), a Hermite interpolation is made in order to produce a "smooth" version of the input. This smooth version is the dashed line on the upper plot. One can notice that this dashed line is always C 1 , even at the communication times. 6. The co-simulation step is simulated, system (S 2 ) uses the smooth version of the reconstructed inputs (dashed line), and things occur again for every co-simulation step, and for every coupling variable.

Figure 2.32: Focus on the torque coupling variable (y 2 , connected to u 3 ): data communication, signal reconstruction, dynamically determined order and input smoothening Figure 2.32 also shows the phenomenon saw on the first test-case, on table 2.3: the smoothness enhancement slightly increases the error. Indeed, the space between the dashed curve and the continuous curve is bigger than the space between the dotted curve and the continuous curve. Nonetheless, the signal represented by the dashed curve is smoother (C 1 ) than the one of the dotted curve (as expected), and this can lead to possible optimizations in the systems (faster solver restarts after each communication time). Figure 2.33 shows how the target rotational speed behaves (with regards to its target ω target and the disturbance T dist ) on the monolithic simulation and with F 3 ORNITS (parameters are: CLS for polynomial calibration, smoothness enhancement enabled, and damped amplitude error formula used). The error stays in [-1, 1] rev/min on ω 2 , representing a relative error of 0.33% as this state variable of interest has an order of magnitude around 300 rev/min. Figure 2.33: Comparison of the rotational velocity of the load of interest in a monolithic simulation and on a co-simulation with F 3 ORNITS : compared evolutions, absolute signed error and zoom on a time domain where a torque disturbance is applied Finally, a quick look on the performances shows that this test-case is simulated monolithically in 0.25 s with Simcenter Amesim (using the default variable-step solver LSODA [START_REF] Petzold | Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential Equations[END_REF]), and in 1.0 s in the case of the co-simulation with the F 3 ORNITS algorithm, the model being decoupled in three systems as presented in this section. A speed-down due to the numerous restarts of the solvers of each system after every communication time is normal and, in this case, this speed-down is 4 for a reliable result (curves obtained on a variable of interest with a monolithic simulation and with a co-simulation with F 3 ORNITS are compared on figure 2.33 and are visually very close). This result is qualitatively acceptable. The speed-down, in this case, reflects the fact that such discontinuities (due to the communication times) lead to solvers restarts. The latter raise the total number of solver steps over the whole simulation time. Indeed, regarding the monolithic simulation, the LSODA solver requires 15528 micro-steps to reach the final time whereas in the co-simulation with F 3 ORNITS the electrical and mechanical systems respectively require 102379 and 101809 micro-steps. As the ratio between these solver steps is around 6.6 and the speed-down is only 4, we can reasonably induce that the smaller micro-steps in the co-simulation case were faster (easier to converge). A part of this difference also arises from the fact that the systems are smaller than the monolithic one, which make the solvers in these systems run faster.

The three pillars of the F 3 ORNITS method showed their benefits on this test-case. Indeed, as seen previously, we can observe the consequences they had on the co-simulation:

• The flexible order representation of inputs enabled a nice reconstruction of the signal at the interfaces. In this test-case, figure 2.32 shows that the reconstructed signal is way closer to the real curve (continuous curve) than a simple zero-order hold sampling (not drawn). It keeps the trend (increasing / decreasing / constant) as close as it can. Moreover, this pillar, enhanced by the smoothness enhancement, enables to represent interface variables as smooth in time (or not, if irrelevant, thanks to the macro-discontinuity mechanism). This might enable systems to speed-up their simulation or, in a more immediate way, this leads to nicer signals for inputs (in the sense of "visually closer to the expected behavior"). • The flexible time-stepper pillar automatically adjusts the steps when applicable: this test-case showed that, even when all systems do not support such a time-stepper, the latter can still be applied to the rest of the modular model. In this case, the time-stepper enabled to follow dynamically the dynamics of the coupling signals, as shown in figure 2.31. This, in a way, adapted the co-simulation steps sizes of the physical coupling (the coupling between both physical systems, in opposition to the controller system). The automatic aspect of it is important as it enables to run such co-simulation without any previous knowledge on the systems. The only mandatory parameter to be set is the initial co-simulation step, and it can be chosen very small (safer) as the time-stepper will quickly adapt it. Other fine tuning (error computation strategy, eventual ν setting) can be done afterwards in order to improve the time/accuracy trade-off, but this is not mandatory. • The flexible scheduler enabled the co-existence of the different couplings: a fixed one around the controller system, and an adaptive one (implementing the time-stepper) around the physical connections. In addition to making it possible to co-simulate such an hybrid modular model, it also takes advantage of the systems able to process advanced capabilities (variable co-simulation step-size in this case) rather than forcing each and every system to stick to basic actions as far as not every system can't do better. In other words, systems capable of advanced actions benefit from the method, even is the other systems are not capable of such actions.

The combination of these three pillars leads to a generic, auto-adaptive and robust method in the sense that it can run on a modular model without a very fine-tuning of the co-simulation algorithm. Non-experts can use it in order to get reliable results on such models. It takes advantages of the systems capabilities as far as it is relevant and each aspect enable the other ones to work well (the scheduler enables the time-stepper to play its role on every system that enables variable step, the time-stepper enables inputs reconstruction to estimate reliable signal predictions, thanks to the time-stepper the inputs reconstruction is guaranteed to be used only in a range in which it is valid or if an update wouldn't change anything, ...).

Hybrid model: discrete hunters and continuous prey predator dynamics 2.4.4.1 Test-case presentation

In the model presented in section 2.4.3, each system is continuous. Indeed, even if the controller is sampled at a fixed co-simulation time step, an integration occurs at each of these steps in order to compute the state variables in the PID.

Let's consider another model with two interconnected continuous systems and a controller, but let the latter be a discrete system. Indeed, the model presented on figure 2.34 arises from a continuous preypredator model with Lotka-Volterra equations [START_REF] Volterra | Variations and Fluctuations of the Number of Individuals in Animal Species living together[END_REF] in which a hunter is added. The hunter is a system modelling hunters that might reduce the proportion of predators (by increasing their death rate) in order to make the amount of prey reach a target p target = 2. The hunters can only choose once a day their action: once a day, they observe the amount of prey and decide the rate to add to the predators' death rate. Also, they can only hunt four months per year from September until the end of the year, as this is the legal hunting period. The connections of this model are: L(1, 1) = (2, 1), L(2, 1) = (3, 1), L(3, 1) = (2, 1) and L(3, 2) = (1, 1). Please note that the output of (S 2 ) is both connected to an input of systems (S 1 ) and (S 3 ): this case is not forbidden, it is namely shown in the example of figure 1.1 in 1.3.3.

For the sake of reproducibility, the equations of (S 1 ), (S 2 ) and (S 3 ) are presented below, as well as the equation of the monolithic system. System (S 1 ) is a discrete PID controller of sample period h = 1 day with an integration-stopping antiwindup mechanism. Its role is to bring the number of prey u 1 to the target p target . In other words, the discrete PID in (S 1 ) tries to bring the error p target -u 1 to zero. The action of the controller is y 1 , the sum of the proportional, integral and derivative gains x P , x I and x D respectively multiplied by the gains k P , k I and k D . In our case, we used: k P = 3, k I = 0.2 and k D = 10.

As this controller is a discrete system, and as the co-simulation is completely explicit, the values of the actions only depend on the passed values of the inputs in the system. For this reason, (S 1 ) has difference equations (instead of differential equations, like the controller of the model in section 2.4.3). Also, timedependent inputs have no sense for such systems, so (S 1 ) has m 1 = 0 which makes M 1 = 0 (maximum degree of polynomial inputs, see subsection 2.3.1).

The proportional action is: x

[N +1] P = k P (p target -u [N ]
1 ). The integral action is defined by a simple forward Euler rule of step h, which leads to: -d [N ] )/h. Finally, in order to compute the control (total action) ŷ1 = k P x P + k I x I + k D x D , system (S 1 ) uses the differences system (2.62) during the legal hunting period, that is to say when N • h ∈ [365 * (Y + 1) -122, 365 * (Y + 1)] for all Y ∈ N where t = N • h is in days, and Y is the index of the year. The final total action y 1 is the saturated version of ŷ1 .

x[N+1] = h(p target -u [N ] 1 +x [N ] I ) with x
                           x[N+1] I d [N +1] = h 0 0 0 x [N ] I d [N ] + -h -1 u [N ] 1 + h 1 p target ŷ[N+1] 1 = k I -k D h x [N ] I d [N ] + -k P -k D h u [N ] 1 + k P + k D h p target x [N +1] I = x[N+1] I if ŷ[N+1] 1 ⩾ 0 x [N ] I otherwise y [N +1] 1 = ŷ[N+1] 1 if ŷ[N+1] 1 ⩾ 0 0 otherwise (2.62)
The variables d and x I are reset to zero at each hunting reopening period, that is to say each first September, so when t = 365(Y + 1) -122 for every Y ∈ N.

System (S 2 ) represents the prey. Their dynamic follows the Lotka-Volterra equations. The input being the proportion of predators, the output being the proportion of prey, and the α and β parameters being the natural birth rate and the rate of predation upon the prey respectively, the equation of the system (S 2 ) can be written the following (non-linear) way:

ẋ2 = x 2 (α -βu 2 )κ y 2 = x 2 (2.63)
where, in our case, α = 0.67, β = 1.33, and κ = 0.1 (time scale to render realistic evolutions). System (S 3 ) represents the predators. Their dynamic also follows the Lotka-Volterra equations, but with an extra action due to the hunters. The inputs are the proportion of prey and the extra death rate due to the hunters, and the output is the proportion of predators. The γ and δ parameters are the natural death rate and growth rate upon predators (due to predation) respectively. The action if the hunters is the input u 3,2 and it is added to the natural death rate in order to create a total predator's death rate γ + u 3,2 representing the cumulating of natural and artificial deaths. The other input is u 3,1 and represents the proportion of prey. The (non-linear) equations of (S 3 ) are:

ẋ3 = x 3 δu 3,1 -(γ + u 3,2 ) κ y 3 = x 3 (2.64)
where, in our case, γ = 1, δ = 1, and κ = 0.1 (same time scale than in (S 2 )).

In this test-case, the monolithic system is not a monolithic ODE as the model itself is hybrid by nature, yet Simcenter Amesim handles such models (see model sketch on figure 2.34) a discontinuous ODE, coupling a Lotka-Volterra model controlled by a (piecewise constant) hunting action λ = λ [N ] where N = ⌊ t /h⌋:

ẋ2 ẋ3 = x 2 (α -βx 3 )κ x 3 δx 2 -(γ + λ) (2.65)
and a discrete equation:

                           x[N] I = x [N -1] I + h(p target -x [N -1] 2 ) λ[N] =      k P (p target -u [N ] 2 ) + k I x[N] I + k D (p target -u [N ] 2 )-(p target -u [N -1] 2 ) h if ∃Y ∈ N, N ∈ [[(Y + 1) * 365 -122, (Y + 1) * 365]] 0 otherwise x [N ] I = x[N] I if λ[N] ⩾ 0 x [N -1] I otherwise λ [N ] = λ[N] I if λ[N] ⩾ 0 0 otherwise (2.66)
where x

[N ] 2 := x 2 (N * h) is given by (2.65). Please note that the discrete equation (2.66) is not equivalent to the equation (2.62) of (S 1 ) as the control λ takes into account the immediate value of u 2 in the (almost-) monolithic system (2.65)-(2.66).

In both the monolithic and the decoupled systems, we have the following parameters, initial conditions and resets:

               x 2 (0) = 2 x 3 (0) = 0 t [init]
= 0 t [end] = 1460 (1460 days: 4 non-leap years)

∀Y ∈ [[0, 3]],
x 

Results

In the same way as for the model presented in 2.4.3, the scheduler of F 3 ORNITS solves the co-simulation in a way where the dynamics between the prey and the predators can be reliably caught, and where the hunters (control) has its imposed step (h = 1 day) respected. The main difference here, compared to the previous case, is that the controller system cannot represent time-dependent inputs due to its discrete nature.

The step plot in figure 2.35 and the cumulated plot in figure 2.36 show analogous behaviors to the model in 2.4.3: an imposed step for (S 1 ) and co-simulation step size adaptation for (S 2 ) and (S 3 ), with some synchronization points as a consequence of the scheduling process of F 3 ORNITS described in 2.3.3. On figure 2.36, the x-axis shows the time iteration and y-axis shows corresponding successive values of the time reached by every system. A horizontal portion corresponds to an iteration where the corresponding system is "idle" (not triggered).

The macro-step adaptation occurs between the variable-step continuous systems (S 2 ) and (S 3 ), so that the co-simulation benefits from the time-stepper of F 3 ORNITS described in 2.3.2. A zoom on this step size adaptation (in parallel to the regular sampling of (S 1 )) can be seen on figure 2.37, and the adaptation during the whole co-simulation time is shown on figure 2.38. On figure 2.37, the natural synchronization times of the prey and predators systems (S 2 )-(S 3 ) can be observed: these are the lowest points, corresponding to small steps used to reach the time of (S 1 ). It can also be seen that these small co-simulation steps do not "break" the global step size growth in a growing step size stage: e.g. the t ∈ [258, 270] period is globally a period on which the co-simulation step size increases on (S 2 )-(S 3 ) despite the artificial smaller steps due to the need to reach the communication times of the hunter system (S 1 ). • On the first 8 months of each year, the prey-predator dynamics evolve as in a classical Lotka-Volterra process, • During the 4 last months of each year, the hunting rate acts on the system (hunting is legal during this period), and the hunters manage to act on the predators so that the proportion of prey reaches p target = 2, and • When the legal hunting period stops, the Lotka-Volterra system restarts on the same orbit than previously, as the initial values were the ones corresponding the p target prey and the corresponding stable amount of predators, with a stabilized hunting control.

This behavior is the expected one. This can namely be shown by comparing one of these variables (e.g. the proportion of prey) to its evolution in the (almost-) monolithic simulation realized with Simcenter Amesim. This is shown on figure 2.39. 2.39 shows that the co-simulation with F 3 ORNITS is the most accurate one (the closest to the monolithic reference). NIZOHJA algorithm generate very unstable results the first year, and then reaches a point where there is no more prey, never anymore. This is not surprising as the micro-step (internal solver's variable step size) of the monolithic reference reaches as small sizes as 0.8 s at some points, so one can expect that a co-simulation with a fixed macro-step size of 1 day is not accurate enough. The results have also been compared with an adaptation of the explicit fixed-step ZOH method in which the systems (S 2 ) and (S 3 ) can communicate every hour (instead of once a day) to each other, and once a day with the hunter system (S 3 ). The latter generates better results, yet still less accurate than F 3 ORNITS , despite the fact that F 3 ORNITS only require a total of 2864 steps on the 4-years co-simulation period, where the adapted explicit Jacobi method requires 35040 steps (as many as the number of hours in 4 years).

In conclusion, smart (adaptive) adaptation of the co-simulation step size and the signal reconstruction of the F 3 ORNITS method can be used in a hybrid case, coupling discrete and continuous systems, even with heterogeneous capabilities. This gives good results on the presented test-case, both in terms of efficiency (regarding the number of required steps) and accuracy (see figure 2.39). The need to disable some features on some systems (e.g. the step-size adaptation and the time-dependent inputs on the discrete system (S 1 )) does not affect the other systems and the total co-simulation can still benefit from the co-simulation method.

Industrial-scale thermal-electric model 2.4.5.1 Test-case presentation

The four test-cases presented in 2.4.1, 2.4.2, 2.4.3 and 2.4.4 are models which equations can be written (they have been given for the sake of reproducibility), and have been used to show different aspects of the F 3 ORNITS method (flexibility, adaptation, ability to handle heterogeneity, ...). Nonetheless, the robustness of the method can be questioned. One way to get convinced about it is the test on an industrial model.

To this end, this section presents an industrial-scale model made of 11 interconnected systems with signal, thermal, ambient air and electrical couplings. Due to the size and the complexity of the model, the equations cannot be given: 324 state variables are present in this test-case, with a total of 148 interface variables (meaning 148 inputs connected to 148 outputs in a one-to-one way).

The model represents a battery pack (represented on figure 2.43) with an air cooling system. The battery pack is made of 10 modules of 6 cells each (see figure 2.40), all module being connected by several moist air ports (to represent air flow as different points in space as the air is circulating), thermal connections (representing thermal conduction) and electrical connections. In practice, the need of a co-simulation for this kind of model arises when an external tool (simulation and modelling platform) provides a black-box system of each module. Indeed, in this case, doing a cosimulation is the only way to test the battery pack made up of these modules (in a flexible configuration regarding the number of modules) regarding a given battery load/unload scenario.

In this context, the monolithic system of figure 2.43 will only act as a reference, and we will consider 11 black-box systems respectively corresponding to the 10 modules and the external load/unload scenario. The sketch of one of the black-box module systems is given as example in figure 2.41, and the load/unload scenario (in the 11 th system) is presented in figure 2.42. Li-Ion cells. The charge and discharge (smooth) steps that can be seen on figure 2.42 simulate critical cases where the highest thermal load occur (as the battery is submitted to high currents). The pack is in a 20 °C air environment. When the air flow (cooling system) comes from the bottom of module 1 and exits the pack at the top of module 10, the temperature is distributed along the modules and cells like as shown in figure 2.44 at the end of the 5000 s scenario. This result is obtained with the monolithic reference model. 

Results

Co-simulations of this model have been made both with the F 3 ORNITS method and with the NIZOHJA method. Due to the time scale of the battery pack system, the NIZOHJA method has been run with a fixed co-simulation step size of 1s and 0.01s. The results are presented in table 2.4.

In order to show both the robustness and the ease of use of the F 3 ORNITS method, a single run with this method has been made, with all options let by default (see table 2.2) and with δt [0] = 0.01s as initial co-simulation step size.

Table 2.4 shows that the F 3 ORNITS method proposes a better time/accuracy trade-off than the NI-ZOHJA method. Indeed, on one case (NIZOHJA with δt = 0.01s), F 3 ORNITS is both 14 times faster and 7 times more accurate. On the other case (NIZOHJA with δt = 1s), F 3 ORNITS is almost 3 times slower, but for a 842 times more accurate result. The macro-step size adaptation is completely synchronous in this model as every system supports variable macro-step size, so the scheduler naturally synchronizes them. Thus, the macro-step size (same on all systems) can be plotted and compared with some of the coupling variable (not every of them as they are too numerous). Figure 2.45 shows such a comparison, and it can be noticed that the step size evolution follows the dynamics of the plotted coupling variables. The (fixed) macro-step size of the two NIZOHJA cases of table 2.4 have also be plotted on figure 2.45, and it can be observed that:

• F 3 ORNITS sometimes requires a co-simulation step size reduction way below 0.01s in order to reach an acceptable accuracy, and • at some points, F 3 ORNITS takes big co-simulation steps (several seconds) as the required accuracy is reached, which drastically accelerates the co-simulation.

These two phenomena show why the F 3 ORNITS adaptive step size method reaches a better time/accuracy trade-off than the fixed-step NIZOHJA one.

Finally, figure 2.46 shows a coupling variable on the 4 simulations (monolithic reference and the three co-simulation cases mentioned in table 2.4). It can clearly be seen, on the successive zooms, that at the moments where the time-stepper of F 3 ORNITS chose a "small" co-simulation step size, the fixed-step methods have generated lags as these methods were not able to decrease the macro-step size.

Figure 2.46: Comparison of the results regarding one central and representative coupling variable: zooming on an extremum shows that the co-simulation with F 3 ORNITS generates more accurate results than the NIZOHJA method, even when the latter uses small co-simulation steps

Conclusions regarding the F 3 ORNITS method

In most cases, the co-simulation is motivated by design. Indeed, accuracy is generally lower than a monolithic simulation (due to the sampling and a non-perfect signal reconstruction, especially with zero-order hold), and the execution time is longer (due to the discontinuities generated at each communication time). A trade-off has to be found between an accurate but long co-simulation with numerous discontinuities caused by numerous communication times (because of small co-simulation steps) on one side, and a fast co-simulation with wide co-simulation steps resulting in a bad accuracy because of poor reliability of the representation of the interface variables.

The F 3 ORNITS co-simulation algorithm has several purposes. Firstly, unlike other co-simulation methods such as NIZOHJA, F 3 ORNITS automatically and dynamically adapts the several aspects of the run (macro-steps sizes, interface variables representation, ...) so that no strong knowledge about the dynamics of the systems is required to reach a satisfying trade-off as mentioned above. Secondly, a finetuning of some aspects of the method (error normalization method, tolerances and thresholds for macrodiscontinuities detections, bounds for macro-step dilatation, ...) might be done to improve both aspects of the trade-off. Moreover, if the dynamics of the systems are not equally distributed across the time domain, the method can take advantage of it by adapting the step size so that on the one hand slow dynamics periods do not lead to numerous unnecessary discontinuities (wider macro-steps generate less discontinuities), and on the other hand high dynamics periods do not lead to inaccurate results thanks to a diminution of the sizes of the co-simulation steps. Thirdly, the combination of the three pillars of the method (flexible inputs reconstruction, flexible time-stepper and flexible scheduler) entails a technical robustness in the sense that any modular model made of output-to-input(s) interconnected systems can be simulated regardless of the lack of advanced capabilities of each of the systems (as far as the minimum capabilities are there). Moreover, the systems with advanced capabilities are valuable regardless of the capabilities (or lack of advances capabilities) of the other systems. It is therefore possible to integrate the method on an industrial product that must handle systems coming from a wide range of platforms (producing systems with heterogeneous advanced capabilities available). As seen on the first test-case (car with controlled speed), using such capabilities (namely for the signal reconstruction) might not only be better in terms of accuracy, but critical for the model to behave as expected. As seen on the third and fourth test-cases (connecting variable-step systems with a system having an imposed co-simulation step size), the newly introduced scheduler (third pillar of the F 3 ORNITS algorithm) orchestrates systems with a controlled asynchronousness, which opens the use of F 3 ORNITS to hybrid co-simulations of several fixed-step, discrete and continuous systems in an agnostic approach, letting the algorithm itself handling the communication times distribution.

The F 3 ORNITS coupling algorithm used with a time-stepping criterion based on the local error estimation normalized with respect to magnitude gives a good error/#steps trade-off. For instance, on the second test-case (masses, springs and dampers), it gives a better trade-off than the NIZOHJA method. The fine tuning of the error normalization method and the involved coefficient (referred to as ν damping coefficient) even reduces the number of co-simulation steps. In other words, a safe approach could be to start with a co-simulation with F 3 ORNITS using the error normalized with respect to the order of magnitude and, if the total number of steps is not satisfactory, the strategy can be to use the damped amplitude with a decent ν coefficient and to progressively decrease it (ν = 0% corresponds to the classical amplitude approach). A more generic approach could be to use the default values to parameterize the method, as presented in the table 2.2. It has been seen on the fifth test-case (industrial-scale model) that this approach gives satisfactory results.

Co-simulations generally run slower than monolithic simulations of a monolithic equivalent of the modular model. Some exceptions exist, yet this trend is observed on most of the modular systems. Despite the dimension of the equations being smaller in the systems than in the monolithic model, the numerous solver restarts at each communication time are responsible for this speed-down in co-simulation. As an enhancement of the whole process, the smoothness enhancement (when applicable and when relevant) acts as an improvement of the signals reconstruction. Indeed, the C 1 smoothness of the considered variables results from this improvement, and keeps their behavior as close as the one they were supposed to have before the smoothness enhancement process. This way, the smoothed signals are guaranteed to be C 1 in addition to all other aspects of the F 3 ORNITS method, instead of being reconstructed only in order to be C 1 . Guaranteeing that all inputs of a given system are C 1 at a given communication time might lead to a speed-up regarding the internal solver restart of this system. This is not yet implemented, but the F 3 ORNITS algorithm makes it possible to consider pushing forward these kinds of enhancements on the systems side. In the test-cases, we observed that the accuracy loss induced by the smoothness enhancement is reasonable. As this might lead to way faster co-simulations, this may be worthwhile. La formulation du problème de couplage conduit à la définition d'une fonction de couplage non-linéaire incluant à la fois les valeurs et les dérivées temporelles des variables de couplage. Une formulation en point fixe et une formulation en recherche de zéro de ce problème de couplage conduisent respectivement à l'algorithme IFOSMONDI point fixe (également appelé méthode IFOSMONDI classique) et à l'algorithme IFOSMONDI-JFM. Ces algorithmes adaptent automatiquement la taille des macro-pas entre les échanges de données entre les systèmes en fonction de la difficulté de résolution de la contrainte de couplage. La plupart des implémentations des méthodes de type Newton pour trouver les zéros de la fonction de couplage nécessitent une matrice jacobienne qui, hormis dans le cas ZOH, peut être difficile à calculer dans un contexte de cosimulation. IFOSMONDI-JFM est conçu pour résoudre le couplage par des méthodes de type Newton sans jacobienne (JFM). Par conséquent, les évaluations successives de la fonction de couplage consistent en de multiples simulations des systèmes sur chaque pas de cosimulation, utilisant ainsi le rollback. La structure "orchestrator-worker" de l'algorithme nous permet de combiner l'utilisation de la bibliothèque PETSc du côté de l'orchestrateur pour les solveurs non-linéaires de type Newton avec les intégrations parallèles des systèmes du côté des travailleurs (workers) grâce aux processus MPI. Différentes méthodes non-linéaires de recherche de zéro sont comparées entre elles et à l'implémentation en point fixe sur différents cas-tests : l'oscillateurs à deux masses [START_REF] Busch | Continuous approximation techniques for co-simulation methods: Analysis of numerical stability and local error[END_REF] montrant l'avantage du couplage IFOSMONDI en termes de compromis entre le temps de calcul et la précision, un cas-test académique à deux systèmes nouvellement proposé dans ce chapitre avec un direct feed-through bilatéral et un modèle industriel de large échelle afin d'étudier les performances de la méthode.

Summary of the chapter

This chapter introduces IFOSMONDI co-simulation algorithms that combine iterative coupling methods and a smooth representation of interface variables. In explicit (i.e. non-iterative) coupling methods, representing smooth interface variables requires the introduction of a delay [START_REF] Busch | Continuous approximation techniques for co-simulation methods: Analysis of numerical stability and local error[END_REF] because the values of the interface variables at the end of a given macro-step are not known when the co-simulation only reached the beginning of this very macro-step. One of the advantages of implicit co-simulation (i.e. iterative coupling methods) is that the values of the interface variables can be known at the end of a macro-step with the possibility to replay the integration on this very macro-step. Combining this with a polynomial representation of the interface variables allows us to use interpolation instead of extrapolation across the macro-steps [START_REF] Kübler | Two Methods of Simulator Coupling[END_REF]. Taking into account time-derivatives of interface variables makes it possible to ensure C 1 smoothness even with no history of the past exchanged data: then, no delay is introduced. This is an important point, in terms of futureproofness, for the co-simulation algorithms as the smoothness at each communication time will allow to be less restrictive on the restart of systems solvers.

The formulation of the coupling problem leads to the definition of a non-linear coupling function including both the values and the time-derivatives of the coupling variables. A fixed point formulation and a zero-finding formulation of this coupling problem respectively lead to the fixed point IFOSMONDI algorithm (also called the classical IFOSMONDI method) and the IFOSMONDI-JFM algorithm. These algorithms automatically adapt the size of the steps between data exchanges among the systems according to the difficulty of the solving of the coupling constraint. Most implementations of Newton-like methods for finding zeros of the coupling function require a Jacobian matrix which, except in the zero-order hold case, can be difficult to compute in a co-simulation context. IFOSMONDI-JFM is well designed for solving the coupling through Jacobian-free Newton-type methods (JFM). Consequently, successive evaluations of the coupling function consist in multiple simulations of the systems on a co-simulation step using the rollback. The orchestrator-workers structure of the algorithm enables us to combine the PETSc framework on the orchestrator side for the non-linear Newton-type solvers with the parallel integrations of the systems on the workers' side thanks to MPI processes. Different non-linear zero-finding methods will be compared to one another and to the fixed-point implementation on different test-cases: the two mass oscillators [START_REF] Busch | Continuous approximation techniques for co-simulation methods: Analysis of numerical stability and local error[END_REF] showing the advantage of IFOSMONDI coupling in terms of trade-off between elapsed time and accuracy, a newly proposed 2-system academic test-case with direct feedthrough on both sides and an industrial model to investigate the performance of the method.

Introduction

In this chapter we present a synchronous and iterative co-simulation algorithm (see figure 1.3) called IFOS-MONDI. Two versions of this methods will be presented: the classical IFOSMONDI method (that can also be called fixed-point version of IFOSMONDI), presented in 2019 in the Simultech conference [START_REF] Eguillon | IFOSMONDI: A Generic Co-simulation Approach Combining Iterative Methods for Coupling Constraints and Polynomial Interpolation for Interfaces Smoothness[END_REF], and the IFOSMONDI-JFM method, published in 2022 [START_REF] Eguillon | IFOSMONDI Co-simulation Algorithm with Jacobian-Free Methods in PETSc[END_REF]. The advanced capabilities required by IFOSMONDI (both versions) are: the rollback (as it's an iterative method), the ability to represent timedependent inputs (polynomial up to order 3 at least), and the ability to obtain the time-derivatives of the outputs at the communication times (unless hat dot versions are used, see 1.3.5.5.3). These capabilities are parts of the table 1.2 presented in the framework in 1.3.7.

This algorithm is inspired by two main methods previously developed in [START_REF] Kübler | Two Methods of Simulator Coupling[END_REF] and [START_REF] Busch | Continuous approximation techniques for co-simulation methods: Analysis of numerical stability and local error[END_REF] (the latter being inspired by [START_REF] Dronka | Co-simulation-interface for user-force-elements[END_REF]). [START_REF] Kübler | Two Methods of Simulator Coupling[END_REF] presents how to iterate on the system of non-linear algebraic equations on the outputs, after having proceeded to the elimination of the inputs between systems using the dispatching relationship analogous to the one introduced in this thesis in 1.3.3. Their simulator coupling with iteration on the global integration step uses interpolation for the inputs in the integration procedure based on the history of inputs at past macro-steps and the updated inputs given by the quasi-Newton. In [START_REF] Busch | Continuous approximation techniques for co-simulation methods: Analysis of numerical stability and local error[END_REF][START_REF] Busch | Performance Improvement of Explicit Co-simulation Methods Through Continuous Extrapolation[END_REF], an approximation method denoted as extrapolated interpolation (EXTRIPOL) is proposed in order to circumvent the discontinuity issue of the input at the end of each macro-step but only in the context of non-iterative communication schemes. This chapter proposes an algorithm that takes advantage of these two approaches which, once combined, allow us to have a more numerically efficient method than each independently.

Both the classical IFOSMONDI and the IFOSMONDI-JFM versions of the IFOSMONDI method are iterative co-simulation methods that satisfies the consistency of the interface variables while avoiding discontinuities at each communication time. Classical IFOSMONDI is based on a fixed-point iterative method. Its evolution, IFOSMONDI-JFM, is based on iterative methods that normally require Jacobian matrix computation, yet we use their Jacobian-free version. The name IFOSMONDI stands for "Iterative and Flexible Order, SMOoth and Non-Delayed Interfaces" [START_REF] Eguillon | IFOSMONDI: A Generic Co-simulation Approach Combining Iterative Methods for Coupling Constraints and Polynomial Interpolation for Interfaces Smoothness[END_REF], and the JFM suffix stands for "based on Jacobian-Free Methods" [START_REF] Eguillon | IFOSMONDI Co-simulation Algorithm with Jacobian-Free Methods in PETSc[END_REF]. The improvements that IFOSMONDI-JFM brings to the classical IFOSMONDI method allow to solve cases that could not be solved by this previous version. This switch of the underlying method from the fixed-point one to a zero-finding Newton-type problem is analogous to [START_REF] Fang | Two classes of multisecant methods for nonlinear acceleration[END_REF], in a different field. In our case, the integration of an easily modulable Jacobian-free method to solve the constraint function will be presented in this chapter. The software integration of IFOSMONDI-JFM, in particular, was made possible thanks to the PETSc framework [START_REF] Balay | PETSc Web page[END_REF], a library that provides modulable numerical algorithms. The interfacing between PETSc and the co-simulation framework dealing with the systems, interfaces and polynomial representations will be detailed.

The plan of the chapter is as follows. Section 3.2 extends the mathematical framework introduced in 1.3 with namely the mandatory tools to define a coupling constraint and the associated so-called callback function used by the method. Then, section 3.3 presents the IFOSMONDI coupling algorithm showing how the combination of the iterative method and the continuity constraints interact. The two versions of the IFOSMONDI method mentionned hereabove are fully detailed, their common principles as well as their specificities. Section 3.4 proposes hints for implementation, namely ways to benefit from the powerfull set of zero-finding methods from the PETSs library while keeping an efficient and parallel co-simulation process. Section 3.5 shows the behavior of the different versions of the IFOSMONDI algorithm on three test-cases. The first one is the classical linear two-masses oscillator test-case (see [START_REF] Schweizer | Implicit co-simulation methods: Stability and convergence analysis for solver coupling approaches with algebraic constraints[END_REF] for example) and the aim of this one is simply to show the enhancements obtained by the IFOSMONDI method compared to the different approaches it relies on separately. Hence, only the classical IFOSMONDI method is presented with this benchmark, and compared with a particular case or the iterative algorithm of [START_REF] Kübler | Two Methods of Simulator Coupling[END_REF], the algorithm of [DR06; Bus16] and the reference NIZOHJA method. Then, a test-case made as part of this work is introduced for its nice property of mastered difficulty. The coupling can be easy or tricky in a quantifiable way. The two IFOSMONDI versions are presented together with the reference NIZOHJA method on this case. Finally, the large-scale industrial composite model introduced in the previous chapter is used as third test-case for testing the two versions of the IFOSMONDI algorithm. Section 3.6 finally gives the conclusions.

Additional mathematical formalism for the method

This section extends the common framework introduced in 1.3 with additional definitions and notations that will be useful in the description of the IFOSMONDI and IFOSMONDI-JFM co-simulation methods.

A word on the JFM accronym

In the whole thesis, the JFM abbreviation will denote Jacobian-free versions of iterative methods that are designed to bring a given function (the further-defined so-called callback) to zero and that normally require the computation of the Jacobian matrix of the callback function. In particular, a fixed-point method does not meet these criteria: it never requires the computation of a Jacobian matrix, hence it is not a JFM. On the other hands, matrix-free versions of the Newton method, the Anderson method [START_REF] Anderson | Iterative Procedures for Nonlinear Integral Equations[END_REF] or the non-linear GMRES method [START_REF] Oosterlee | Krylov Subspace Acceleration of Nonlinear Multigrid with Application to Recirculating Flows[END_REF] are derived from zero-finding methods that normally require the computation of a Jacobian matrix: they are JFM.

Coupling function and coupling condition

The coupling function (3.1) will denote the absolute difference between corresponding connected variables in a total input vector and a total output vector. In other words, it represents the absolute error beween a total input vector and the dispatching of a total output vector. The λ subscript does not correspond to any quantity, it is a simple notation inherited from a "Lagrange multipliers" approach of system coupling [START_REF] Schweizer | Predictor/corrector co-simulation approaches for solver coupling with algebraic constraints[END_REF].

g λ : R nin,tot × R nout,tot → R nin,tot (ũ, ỹ) → |ũ -Φ T ỹ| (3.1)
The coupling condition (3.2) is the situation where every output of the total output vector corresponds to its connected input in the total input vector.

g λ (ũ, ỹ) = 0 R n in,tot (3.2)

Extractors and rearrangement

In order to easily switch from global to local inputs, extractors are defined. For k ∈ [[1, n sys ]], the extractor E u k is the matrix defined by (3.3).

E u k = 0 I n in,k 0 n in,k × k-1 l=1 n in,l n in,k × n in,k n in,k × nsys l=k+1 n in,l (3.3)
where ∀n ∈ N, I n denotes the identity matrix of size n by n.

The extractors enable to extract the inputs of a given system from the global inputs vector with a relation of the form ũk = E u k ũ. We have:

∀k ∈ [[1, n sys ]], E u k ∈ M n in,k
,nin,tot ({0, 1}). A rearrangement operator will also be needed to handle concatenations of outputs and output derivatives. For this purpose, we will use the rearrangement matrix R y ∈ M nout,tot,nout,tot ({0, 1}) defined blockwise in (3.4).

R y = R y K,L K∈[[1, 2 nsys]] L∈[[1, 2 nsys]]
where

R y K,L =    I n out,K if K ⩽ n sys and L = 2K -1 I n out,K-nsys if K > n sys and L = 2(K -n sys ) 0 otherwise (3.4)
The R y operator makes it possible to rearrange the outputs and output derivatives with a relation of the form (3.5).

        ỹ ỹ         =               ỹ1 ỹ2 . . . ỹnsys ỹ1 ỹ2 . . . ỹnsys               =               I nout,1 0 0 0 • • • 0 0 0 0 I nout,2 0 • • • 0 0 . . . . . . . . . . . . . . . . . . . . . 0 0 0 0 • • • I nout,n sys 0 0 I nout,1 0 0 • • • 0 0 0 0 0 I nout,2 • • • 0 0 . . . . . . . . . . . . . . . . . . . . . 0 0 0 0 • • • 0 I nout,n sys                          ỹ1 ỹ1 ỹ2 ỹ2 . . . ỹnsys ỹnsys            R y (3.5)
As classicaly in co-simulation, it is advised to deal with partitioned systems with a reduced number of inputs and outputs. On the extractors and rearrangement operators, a high number of interface variables will produce large matrices. However, the operations implying such matrices will not be strongly impacted as they are not explicitly constructed in practice. Indeed, these operators only help to define the mathematical formalism (namely the callback function, further introduced in 3.3.3). Practical implementation may for instance use the MPI (Message Passing Interface) library [START_REF] Gropp | Using MPI: Portable Parallel Programming with the Message Passing Interface[END_REF] for orchestrator-workers communication. With this framework, the application of the extractor operators can be done while communicating with a simple call to the MPI_Scatterv function, and the application of the rearrangement operator can be done while communicating with a simple call to MPI_Gatherv function (such workflow will be presented further in this chapter and illustrated in figure 3.9). In this implementation, the E u k (for all k in [[1, n sys ]]) and R y matrices will never be assembled.

IFOSMONDI methods (classical and JFM)

The idea of the method is to combine an iterative approach of co-simulation and a smooth representation of interface variables. In explicit (i.e. non-iterative) coupling methods, representing smooth interface variables requires the introduction of a delay [START_REF] Busch | Continuous approximation techniques for co-simulation methods: Analysis of numerical stability and local error[END_REF] because the values of the interface variables at the end of a given macro-step are not known when the co-simulation only reached the begining of this very macro-step. One of the advantages of implicit co-simulation (i.e. iterative coupling methods) is that the values of the interface variables can be known at the end of a macro-step with the possibility to replay the integration on this very macro-step. Combining this with a polynomial representation of the interface variables enables to use interpolation instead of extrapolation across the macro-steps [START_REF] Kübler | Two Methods of Simulator Coupling[END_REF]. Taking into account time-derivatives of interface variables makes it possible to ensure C 1 smoothness even with no history of the past exchanged data: then, no delayed is introduced. A new possibility arises: the solvers of each systems may take into account this smoothness and be less restrictive on their restarts due to the communication times.

Motivations

This subsection describes how the IFOSMONDI methods will tackle the two following issues: the satisfaction of the coupling condition both at the right-side and at the left-side limits of the communication times, and the C 1 smoothness preservation of the inputs coupling variables.

Coupling condition around communication times

The inputs can then be represented as constants over a macro-step (ZOH, see figure 3.1), or with constant time-derivatives over a macro-step (FOH, see figure 3.2) which can be determined by extrapolation on the passed exchanged values, except for the first macro-step of the co-simulation. Higher extrapolation orders are also possible, yet some stability problems may arise [START_REF] Arnold | Stability of Sequential Modular Time Integration Methods for Coupled Multibody System Models[END_REF].

An intuitive solution for bringing the coupling function to zero is to feed the inputs with their connected outputs. This is exactly what the straightforward NIZOHJA co-simulation method (see 1.3.8) does. Indeed, we can notice that feeding the inputs with their corresponding outputs at communication times satisfies the coupling condition (3.2), but only at the very beginning of each macro-step. At the end of them, (3.2) is no longer satisfied, see figures 3.1 and 3.2. Moreover, the update due to the outputs-to-inputs communication may introduce huge discontinuities which are not always physically coherent depending on the model.

First order extrapolation (figure 3.2) may improve convergence around the communication times (on the right-side limit), yet it creates a risk to reach non-physical values. E.g., if the average slope of an input over one macro-step is strongly negative (system (S 1 ), figure 3.2) the corresponding variable may be represented on the upcoming macro-step by a first order polynomial reaching non-positive values. If the corresponding quantity is a pressure, this is forbidden and the simulation will crash due to impossible values. Alternatives have been proposed so that the values that can be reached are always in an interval bounded by already reached values [START_REF] Busch | Continuous approximation techniques for co-simulation methods: Analysis of numerical stability and local error[END_REF], but this introduces a delay of at least the size of 1 macrostep.

In Gauss-Seidel schemes [START_REF] Burrage | Parallel and sequential methods for ordinary differential equations[END_REF], the simulation functions of each system are called sequentially for each macro-step so that the inputs of the last ones are fed with the outputs of the first ones. This satisfies one part of the coupling condition at the begining of the macro-steps and the other part at the end. Although this enables to keep parts of (3.2) satisfied either at the beginings and ends of the macro-steps, it has drawbacks such as the sequential implementation and the fact that there is no time at which the coupling condition is guaranteed to be fully satisfied.

The idea of the IFOSMONDI methods is to use an iterative scheme in order to satisfy the coupling condition at the end of the macro-steps. Moreover, if this is done at every macro-step, using at least a first order polynomial representation of the inputs may enable us to keep this property at the beginning of the step, and furthermore avoid the introduction of discontinuities (see figure 3.3). 

ζ k ([t [N ] , t [N +1] [, •, •) = S k ([t [N ] , t [N +1] [, [0] u [N ]
k ) computed with (3.9) (3.10) 2 nd and 3 rd arguments of ζ k are unused.

Case 2:

Step replay:

In this case, the last call to ζ k was done with a τ ∈ T starting at current t [N ] . In other words, the system did not manage to reach the ending time of the previous τ (either because the method did not converge, or because the step has been rejected, or another reason).

Two particular subcases have to be considered here: either the step we are computing is following the previous one in the iterative method detailed after this section, or the previous iteration has been rejected and we are trying to re-integrate the step starting from τ with a smaller size δt [N ] .

Subcase 2.1: Following a previous classical step:

In this subcase, the last call of ζ k was not only done with the same starting time, but also with the same step ending time t [N +1] . The inputs were, at this last call:

[m-1] u [N ] k
with m ⩾ 1, and satisfied the two conditions at t [N ] of (3.10).

The JFM (or the fixed-point method) will ask for given input values ũk and time-derivatives ũk (constituting the arguments of the callback function detailed further, in 3.3.3) that will be used as constraints at t [N +1] , thus [m] u

[N ] k will be defined as the 3 rd order polynomial (or less) satisfying the four constraints depicted in (3.11).

[m] u

[N ] k (t [N ] ) = [mmax(N -1)] u [N -1] k (t [N ] ) = [m-1] u [N ] k (t [N ]
)

d [m] u [N ] k dt (t [N ] ) = d [mmax(N -1)] u [N -1] k dt (t [N ] ) = d [m-1] u [N ] k dt (t [N ] ) [m] u [N ] k (t [N +1] ) = ũk d [m] u [N ] k dt (t [N +1] ) = ũk (3.11)
To highlight that constraints are on [m] u

[N ] j , long notations are used in (3.11), still one can notice that [N ] ) is equivalent to the right-sided limit [m] 

[m] u [N ] k (t
ũ[N] + k , that [m] u [N ] k (t [N +1] ) is equivalent to the left- sided limit [m] ũ[N+1] k , et caetera
The two firsts constraints in (3.11) ensure the (3.7) smoothness property, and the third and fourth ones will enable the iterative method to find the best values and derivatives to satisfy the coupling condition.

In this subcase, ζ k in (3.8) is defined by the specification (3.12).

ζ k ([t [N ] , t [N +1] [, ũk , ũk ) = S k ([t [N ] , t [N +1] [, [m] u [N ]
k ) computed with (3.11) (3.12)

Subcase 2.2:

Re-integrate a step starting from t [N ] but with different δt [N ] than at the previous call of ζ k :

In this subcase, current t [N +1] is different from sup (τ ) with τ being the one used at the last call of ζ k .

As it shows that a step rejection just occured, we will simply do the same than in case 1, as if we were moving on from t [N ] . In other words, all calls to ζ k with τ starting at t [N ] are "forgotten".

Please note that

[mmax(N -1)] u [N -1] k (t [N ] ) and d [mmax(N -1)] u [N -1] k dt (t [N ]
) can be retrieved using the values and derivatives constraints at t [N ] of the inputs at the last call of ζ k thanks to the smoothness constraint (3.7).

Case 3: First step:

In this particular case, we will do the same as in the other cases, except that we won't impose any constraint for the time-derivative at t [init] . That is to say:

• at the first call of ζ k , we have N = m = 0, we will only impose [0] u

[0] k (t [init] ) = [0] u [0] k (t [1] ) = u init
k to have a zero order polynomial satisfying the initial conditions u init k (supposed given), • at the other calls, case 2 will be used without considering the constraints for the derivatives at t [init] (this will lower the polynomial's degrees). For (3.11), the first condition becomes [m] u

[N ] k (t [init] ) = u init
k , the second one vanishes, and the third ans fourth ones remain unchanged. For the subcase 2.2, it can be considered that [mmax(-1)] u

[-1] k (t [init] ) = u init k , and 
d [mmax(-1)] u [-1] k dt (t [init]
) will not be needed as it is a time-derivative in t [init] .

Finally, we have ζ k defined in every case, wrapping both the computation of the polynomial inputs and the integration done with S k (see definition in 1.3.5.5.2).

Visualization of the successive cases

The workflow of the calibration of the inputs, consisting in the succession of the cases detailed above, can be visualized on figure 3.7. An example on a given single input of a given single system is presented in figure 3.8 on 2 successive co-simulation steps. Squared number 1 to 6 denote the order of the successive input computations. It can be noticed that the constraints at the beginning of the steps come from the last iteration of the previous co-simulation step, and the constraints at the end of the steps come from the method (or is artificial, for the first iteration). ] has been detailed among all the possible cases. However, the constraints at the end of the co-simulation steps have been described as "coming from the method". Indeed, the JFM will decide of the constraints to use as they will exactely be the variables of the function to zero (the aforementioned callback function, see section 3.3.3).

Iterative method's callback function

The callback is not the same for a JFM (or, more generally, a zero-finding method) and for a fixed-point algorithm. Indeed, in the first case, the variable zeroing the callback is searched, whereas in the second case the searched value is the one leading to itself by applying the function (the so-called fixed-point).

The possibility to tranform one callback on the other callback's type is not unique, yet a straightforward one exists. First, in 3.3.3.1 the zero-finding formulation is tackled to obtain the corresponding callback function. Then, in 3.3.3.2, a callback for the fixed-point fomulation is derived from the zero-finding-type callback.

Zero-finding formulation

The aim is to solve the co-simulation problem by using a Jacobian-free version of an iterative method that usually requires a Jacobian computation (see 3.2.1). Modern matrix-free versions of such algorithms make it possible to avoid perturbating the systems and re-integrating them for every input, as done in [START_REF] Schweizer | Predictor/corrector co-simulation approaches for solver coupling with algebraic constraints[END_REF], in order to compute a finite-differences Jacobian matrix. This saves a lot of integrations over each macro-step and saves time.

Nevertheless, on every considered macro-step τ , a function to be brought to zero has to be defined. This so-called JFM's callback (standing for Jacobian-Free Method's callback) presented hereafter will be denoted by γ τ . In zero-order hold co-simulation, this function if often ũ -Φ T ỹ (or equivalent) where ỹ are the output at t [N +1] generated by constant inputs ũ over [t [N ] , t [N +1] [.

In IFOSMONDI-JFM, we will only enable to change the inputs at t [N +1] , the smoothness condition at t [N ] guaranteeing that the coupling condition (3.2) remains satisfied at t [N ] if it was satisfied before moving on to the step [t [N ] , t [N +1] [. The time-derivatives will also be considered in order to maintain C 1 smoothness, so the coupling condition (3.2) will also be applied to these time-derivatives.

Finally, the formulation of the JFM's callback for IFOSMONDI-JFM is:

γ τ :            R nin,tot × R nin,tot → R nin,tot × R nin,tot ũ ũ → ũ ũ - Φ T 0 0 Φ T R y     ζ 1 τ, E u 1 ũ, E u 1 ũ . . . ζ nsys τ, E u nsys ũ, E u nsys ũ     (3.13)

Fixed-point formulation

The formulation (3.13) can be used to represent the expression of the Ψ τ function of which the fixedpoint is searched (Ψ τ can be called, by abuse of language, by the fixed-point function). The latter slightly differs from the Ψ fixed-point function introduce in 2019 in [START_REF] Eguillon | IFOSMONDI: A Generic Co-simulation Approach Combining Iterative Methods for Coupling Constraints and Polynomial Interpolation for Interfaces Smoothness[END_REF] presenting the classical IFOSMONDI algorithm, and we will stick to the formulation Ψ τ here for its genericity1 .

We can now rewrite a proper expression of Ψ τ including the time-derivatives.

Ψ τ :                    R nin,tot × R nin,tot → R nin,tot × R nin,tot ũ ũ → ũ ũ -γ τ ( ũ ũ ) = Φ T 0 0 Φ T R y     ζ 1 τ, E u 1 ũ, E u 1 ũ . . . ζ nsys τ, E u nsys ũ, E u nsys ũ     (3.14)
When the result of the m th iteration is available, a fixed-point iteration on macro-step τ = [t [N ] , t [N +1] [ is simply done by:

[m+1] ũ [m+1] ũ := Ψ τ ( [m] ũ [m] ũ ) (3.15)

First and last integrations of a step

The first iteration of a given macro-step τ ∈ T is a particular case to be taken into account. Considering the breakdown presented in subsection 3.3.2, this corresponds to case 1, case 2 subcase 2.2, case 3 first bullet point, and case 3 second bullet point when falling into subcase 2.2. All these cases have something in common: they denote calls to ζ k using a τ argument that has never been used in a previous call of ζ k . In these cases, the latter function is defined by (3.10).

For this reason, the first call of γ τ for a given macro-step τ will be completed before applying the JFM. Then, every time the JFM will call γ τ , the (ζ k ) k∈ [[1,nsys]] functions called by γ τ will behave the same way.

Once the iterative method (either JFM or fixed-step) ends, if it converged, a last call to γ τ is made with the solution ( [mmax(N )] ũ[N] ) T , ( [mmax(N )] ũ[N] ) T T for the systems to be in a good state for the next step (as explained in 1.3.5.3, the state of a system is hidden but affected at each call to a step function).

Step size control

The step size control is not defined on an error-based criterion such as in [START_REF] Schierz | Co-simulation with communication step size control in an FMI compatible master algorithm[END_REF], but instead with a predefined rule based on the convergence of the iterative method (yes/no).

A minimal step size δt min ∈ R + * , a maximal step size δt max ∈ R + * and an initial step size δt [0] ∈ [δt min , δt max ] are defined for any simulation with IFOSMONDI-JFM method. At certain times (the communication times), the method will be allowed to reduce this step in order to help the convergence of the JFM.

The convergence criterion for the iterative method, of the same type than (1.65) is defined by the rule (3.16).

Given (ε abs , ε rel ) ∈ (R * + ) 2 , convergence is reached when:

Ψ τ ũ ũ -ũ ũ < ũ ũ ε rel + 1 . . . 1 ε abs for classical IFOSMONDI, or γ τ ũ ũ < ũ ũ ε rel + 1 . . . 1 ε abs for IFOSMONDI-JFM (3.16) 
• work1_n_out_tot and work2_n_out_tot two arrays of size n out,tot for temporary storage (as double*),

• out_sizes and out_offsets two arrays analogous to in_sizes and in_offsets respectively, considering the outputs, • n_sys tot number of systems n sys (as size_t),

• double_res an array of size 2 n in,tot dedicated to the storage of the result of γ τ (as double*), and • connections any structure to represent the connections between the systems Φ T (a full matrix might be a bad idea as Φ is expected to be very sparse).

The function dispatch is expected to process the dispatching (1.19) of the values given in its first argument into the array pointed by its fourth argument.

Please note that the orchestrator process has to explicitly send an order different from DO_A_STEP (with MPI_Bcast) to notify the workers that the callback will not be called anymore. Nonetheless, this order might not be send right after the call to SNESSolve on the orchestrator side. Indeed, if the procedure converged, a last call has to be made explicitly in the orchestrator (see 3.3.4).

An other explicit call to JFM_callback should also be explicitly made on the orchestrator side before the call of SNESSolve (as also explained in 3.3.4).

Figure 3.9 presents a schematic view of these two snippets running parallely.

Figure 3.9: Workflow of the callback function called by SNESSolve: example with n sys = 2 (external first call to the callback is supposed to be already made before SNESSolve is called)

Results on test-cases

Three test-cases will be treated here. The first one is a common mechanical benchmark case presented, among others, in [START_REF] Busch | Continuous approximation techniques for co-simulation methods: Analysis of numerical stability and local error[END_REF]. The second one is a simple case that enables to understand the kind of configurations that really benefit from the IFOSMONDI-JFM method (id est when the function of the fixed-point formulation is not contractant), and the third one is an industrial-scale model with 148 interface variables that allows the comparison of classical IFOSMONDI (based on the fixed-point method), IFOSMONDI-JFM and the reference NIZOHJA method (introduced in 1.3.8) in terms of time/accuracy trade-off.

Two-masses benchmark model 3.5.1.1 Test-case presentation

The model that will be considered is the two masses oscillator [START_REF] Busch | Continuous approximation techniques for co-simulation methods: Analysis of numerical stability and local error[END_REF] presented on figure 3.10 with the chosen unbalanced parameters to avoid instantaneous simulations, and to enable comparisons of execution time. The model is similar to the one presented in 2.4.2, yet only before the transition time of the latter.

c 1 = 1000 N/m d 1 = 10 N/(m/s) c 2 = 1000 N/m d 2 = 10 N/(m/s) c 3 = 100000 N/m d 3 = 0 N/(m/s) m 1 = 1 kg m 2 = 1 kg x 1 (t [init] ) = -1 m x 2 (t [init] ) = -3 m v 1 (t [init] ) = 0 m v 2 (t [init] ) = 0 m t [init] = 0 s t [end] = 100 s
Figure 3.10: two masses model with coupling on force, displacement and velocity and the chosen unbalanced parameters

Let the model of figure 3.10 be decoupled in two systems: the k = 1 denoting the left part (carrying them mass m 1 ) and the k = 2 denoting the right part (carrying the mass m 2 ). The interfaces are:

(S 1 ) :            n in,1 = 1 u 1,1 = f 2 n out,1 = 2 y 1,1 = x 1 y 1,2 = v 1 (S 2 ) :            n in,2 = 2 u 2,1 = x 1 u 2,2 = v 1 n out,2 = 1 y 2,1 = f 2 L(1, 1) = (2, 1) L(2, 1) = (1, 1) L(2, 2) = (1, 2) (3.18)

Results

Results are presented on tables 3.1 and 3.2 in order to notice the benefits of combining the iterative method and enhanced smoothness of interfaces.

The NIZOHJA method, in table 3.1, has a strong link between the accuracy and the macro-step size δt. Indeed, target precision may be reached by reducing this macro-step size, however this substantially increases the computation time.

Enhancing smoothness of the interface variables by having C 0 inputs [START_REF] Busch | Continuous approximation techniques for co-simulation methods: Analysis of numerical stability and local error[END_REF] leads to a similar behavior.

The benefits on accuracy produced by the fixed-point method of the second coupling algorithm of [KS00] enable to reach higher precisions than non-iterative methods for bigger macro-steps (see left column of table 3.2). However, IFOSMONDI with fixed-point algorithm presents the lowest computation time to reach the accuracy of 0.2% of mean relative error: 7.6s. It should be noted that the macro-step δt ref only gives a trend: indeed, it will not necessarily stay constant as explained in subsection 3.3.5.

Nevertheless, when the macro-step becomes too small2 , the third-order polynomial inputs in the case of IFOSMONDI coupling behave similarly to first-order polynomial inputs in the case of [START_REF] Kübler | Two Methods of Simulator Coupling[END_REF]. The consequence is that the computation time and accuracy reach the same values for these methods (see first line of table 3.2). However, it can be investigated to implement a smarter restart of the internal solvers (with bigger micro-steps just after the communication times) on each system in the case where the C 1 smoothness of inputs is garanteed: this may lead to a smaller computation time on IFOSMONDI coupling even with a small macro-step (top-right case of table 3.2). 

Mechanical model with multiple direct feed-through

Difficulties may appear in a co-simulation problem when the coupling is not straightforward. Some of the most difficult cases to solve are the algebraic coupling (addressed in [START_REF] Gu | Co-Simulation of Algebraically Coupled Dynamic Subsystems Without Disclosure of Proprietary Subsystem Models[END_REF]) arising from causal conflicts, and the multiple feed-through. The causal conflicts do not fit our framework, as explained in 1.4.2.5, however techniques to adapt these model to a topologically valid composite system usually generate configurations with multiple feed-through. In some cases, these multiple feed-through create algebraic loops on the coupling itself: systems can be ODEs, but the monolithic equivalent has algebraic loops and is thus a DAE. This case may lead to a non-contractant Ψ τ function. This section presents a test-case we designed, belonging to this second category. The fixed-point convergence can be accurately analyzed so that its limitations are highlighted.

Please note that this test-case is intentionally simple in order to easily enlight the enhancements brought by the IFOSMONDI-JFM method compared to the fixed-point IFOSMONDI method. Although very simple, this example enables to understand the convergence properties of the proposed JFM, as the latter is not objected by the non-contractance of Ψ τ (contrary to a fixed-point underlying method like in classical IFOSMONDI).

Test-case presentation

The test-case has been modeled, parameterized and simulated with Simcenter Amesim software, a 0D modeling and simulation software developed by Siemens Industry Software. The co-simulations have been run with our code (implementing fixed-point IFOSMONDI and IFOSMONDI-JFM algorithms), coupled with the systems modeled in Simcenter Amesim for underlying S k (or equivalently S k and Ṡk , whose evaluation can be visualized on figure 1 We propose the parameters values in table 3.3. x L (0) Initial position of the body in

(S 1 ) 0 m v L (0) Initial velocity of the body in (S 1 ) 0 m/s x D (0) Initial position of the plate in (S 2 ) 0 m t [init]
Initial time 0 s t [end] Final time 10 s All variables will be denoted by either f , v or x (corresponding to forces, velocities and positions, respectively) with an index specifying its role in the model (see figure 3.11).

The predefined force f L is a C ∞ function starting from 5 N and definitely reaching 0 N at t = 2 s. The expression of f L is (3.19) and the visualization of it is presented on figure 3.12. The spring pulls the body forward as the inertia made it go too far in the backward direction

f L :              [0, 10] → [0, 5] t →          5 e -1 e t 2 2 -1 -1 if t < 2 0 if t ⩾ 2 (3.19)
5 front front
The body is still moving frontward with inertia, so the compressed spring pushes the plate forward

The behavior presented in table 3.4 might slightly change while parameter D D changes (all other parameters being fixed, see table 3.3).

Equations and eigenvalues of the fixed-point callback Ψ τ

The displacement of the mass M L is due to the difference of the forces applied on its left side (f L , generated from a force source, cf. figure 3.12) and on its right side (f SD , resulting from spring compression/dilatation and damper effect). This movement can be computed using the acceleration of the mass. Indeed, second Newton's law gives:

vL = (f L + f SD )M -1 L ẋL = v L (3.20)
and the spring and damper forces can be expressed the following way:

f SD = K SD (x C -x L ) + D SD (v C -v L ) f C = -f SD f D = -D D (0 -v C ) f C = f D v C = f C /D D (3.21)
leading to the following expressions of the coupled systems:

(S 1 ) :

       vL ẋL = -D SD M L -K SD M L 1 0 v L x L + D SD M L K SD M L 0 0 v C x C + f L M L 0 f C = (D SD K SD ) v L x L + (-D SD -K SD ) v C x C (S 2 ) :    ẋD = 0 x D + 1 D D f C v C x C = 0 1 x D + 1 D D 0 f C (3.22
) At a given time t, we can state the Jacobian of Ψ τ introduced in (3.14) using the expressions of the coupling quantities (3.22). Indeed, the output variables got at a call are at the same time than the one at which the imposed inputs are reached (end of the macro-step) thanks to the definitions of ζ k .

J Ψτ (         f C v C x c ḟ C v C ẋc         ) =           0 -D SD -K SD 0 0 0 1 /D D 0 0 0 0 0 0 0 0 0 0 0 0 -D SD -K SD Block 1 /D D 0 0 0 0 0           (3.23) 
The framed zeros are "by-design" zeros: indeed, systems never produce outputs depending on inputs given to other systems. The block called "Block" in (3.23) depends on the methods used to retrieve the time-derivatives of the coupling quantities (see 1.3.5.5). Nevertheless, this block does not change the eigenvalues of J Ψτ as it is a block-triangular matrix. Indeed, the characteristic polynomial of I 6 -λJ Ψτ is the product of the determinant of the two 3 × 3 blocks on the diagonal of I 6 -λJ Ψτ . The eigenvalues of J Ψ are:

0, +1i D SD D D , -1i D SD D D (each with a multiplicity of 2) (3.24)
Hence, the following relation between the parameters and the spectral radius can be shown (given

D D > 0 and D SD = 1 > 0): ϱ (J Ψτ ) < 1 if D SD < D D ⩾ 1 if D SD ⩾ D D (3.25)
We can thus expect that the classical IFOSMONDI co-simulation algorithm, as based on a fixed-point method, cannot converge on this model when the damping ratio of the component on the right of the model (see figure 3.11) is smaller than the damping ratio of the spring-damper component.

We will process several simulations with different values of D D leading to different values of ϱ(J Ψτ ). These values and the expected movement of the body of the system is plotted in figure 3.14. 

Results

As the PETSc library enables to easily change the parameters of the JFM (as explained in subsection 3.4.2), three methods have been used in the simulations:

• NewtonLS: a Newton based non-linear solver that uses a line search, • NGMRES: the non-linear generalized minimum residual method [START_REF] Oosterlee | Krylov Subspace Acceleration of Nonlinear Multigrid with Application to Recirculating Flows[END_REF], and • Anderson: the Anderson mixing method [START_REF] Anderson | Iterative Procedures for Nonlinear Integral Equations[END_REF] (close to the NGMRES method [START_REF] Homer | Anderson Acceleration for Fixed-Point Iterations[END_REF]) First of all, simulations have been processed with all these JFMs (with parameters exhaustively defined in appendix A) within IFOSMONDI-JFM, the fixed-point IFOSMONDI algorithm (denoted hereafter as "Fixed-point"), and the reference NIZOHJA method introduced in 1.3.8. The error is defined as the mean of the normalized L 2 errors on each state variable of both systems on the whole [t [init] , t [end] ] domain. The reference is the monolithic simulation (of the non-coupled model) done with Simcenter Amesim. Such errors are presented for a contractant case (D D = 4 N, so ϱ(J Ψτ ) = 0.5) in figure 3.15. For a noncontractant case (D D = 0.64 N, so ϱ(J Ψτ ) = 1.25), analog plots are presented in figure 3.16. As expected, the simulations failed (diverged) with fixed-point method for the non-contractant case. Moreover, the values given to the system were too far from physically-possible values with the NIZOHJA co-simulation algorithm, so the internal solvers of systems (S 1 ) and (S 2 ) failed to integrate. These are the reason why these two methods lead to no curve on figure 3.16.
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Nonetheless, the three versions of IFOSMONDI-JFM algorithm keep producing reliable results with an acceptable relative error (less than 1%) when δt ref ⩾ 0.1 s. On figures 3.15 and 3.16, IFOSMONDI-JFM method seems to solve the problem with a good accuracy regardless of the value of the damping ratio D D . In order to confirm that, several other values have been tried: the ones for which the solution has been computed and plotted in figure 3.14. The error is presented, but also the number of iterations and the number of integrations (calls to ζ k , i.e. calls to γ τ for IFOSMONDI-JFM or to Ψ τ for fixed-point IFOSMONDI). Although for the fixed-point IFOSMONDI the number of iteration is the same than the number of integration, for the IFOSMONDI-JFM algorithm the number of iterations is the one of the underlying non-linear solver (NewtonLS, NGMRES or Anderson), and there might be a lot more integrations than iterations of the non-linear method. These results are presented in figure 3.17. As expected, the threshold of ϱ(J Ψτ ) = 1 (id est D D = D SD = 1) is critical for the fixed-point method. The IFOSMONDI-JFM method not only can overpass this threshold, but no significant extra dificulty appears to solve the problem in the non-contractant cases, except for the NGMRES non-linear solver (which failed to converge with D D = 0.01, so with ϱ(J Ψτ ) = 10). However, regarding the NGMRES method, the variant that uses line search converges in all cases. Eventhough the latter requires more integrations than other JFMs, it is more robust to high values of ϱ(J Ψτ ). The parameters of this line search are detailed on table 3.11 in appendix A.

The NewtonLS and Anderson methods show a slightly bigger error on this "extreme" case of ϱ(J Ψτ ) = 10, yet it stays under 0.001% which is completely acceptable.

Among those two JFMs (NewtonLS and Anderson), the trend that can be observed on figure 3.17 shows that NewtonLS is always more accurate than Anderson, yet it always requires a bigger amount of integrations. We can stand that IFOSMONDI-JFM is more accuracy-oriented on this model when it is based on the NewtonLS JFM, and more speed-oriented on this model when it is based on the Anderson JFM (for the same δt ref and ε). For high values of ϱ(J Ψτ ), accuracy-oriented simulations are achieved thanks to the NGMRES JFM with line search more than the NewtonLS one.

Finally, smaller errors are obtained with IFOSMONDI-JFM and with less iterations than fixed-point IFOSMONDI. Yet, the time consumption is directly linked with the number of integrations, not with the number of iterations of the underlying non-linear solver. The total number of integrations does not increase across the problem difficulty (increasing with ϱ(J Ψτ )), and the non-linear methods within IFOSMONDI-JFM do not even require more integrations that the fixed-point one for most of the values of D D for which the fixed-point IFOSMONDI algorithm does not fail.

Industrial-scale thermal-electric model

Regarding industrial-scale test-cases, it is not always possible to determine in advance if the fixed-point formulation is contractant or not. Indeed, the analytical analysis (as done for the first test-case) is not always possible due to the model dimensions and its potential non-linear behavior.

For this reason, this subsection considers the large-scale industrial model presented in the previous chapter, in 2.4.5. As the variable of the callback function is the vector of all inputs and their derivatives, the JFM (or the fixed-point method) solves a problem of size 296 (the model has 148 inputs).

The problem is compliant with the fixed-point IFOSMONDI and the NIZOHJA methods, so that comparisons in terms of time/accuracy trade-off can be conducted. This analysis is namely possible thanks to the scale of the system, making it run non-instantaneously.

Test-case presentation

Since the model has already been introduced in 2.4.5 (see page 90), please refer to that subsection for test-case details.

Results

Results have been generated on a HPC cluster so that the processes can run in parallel. Indeed, due to the 10 modules of the model and the system containing the scenario, the battery load, and the reference potential, 11 workers are instanciated for a co-simulation. In addition to the orchestrator process (see architecture on figure 3.9), a total of 12 processes run parallely.

Due to the small number of integrations required by the Anderson method (as it recombines the previously evaluated iterates, [START_REF] Anderson | Iterative Procedures for Nonlinear Integral Equations[END_REF]), this JFM is chosen in IFOSMONDI-JFM. The results are obtained with several values or ε both with IFOSMONDI-JFM and fixed-point IFOSMONDI methods. A strong knownledge of the model is not required with these methods, yet an idea of the order of magnitude of the co-simulation step size always helps. For this reason, we used the following parameters:

• δt min = 1 ms, to be able to catch the fast interfaces dynamics, if any,

• δt max = 1 s, to avoid missing events (peaks, slope changes, etc...), and • δt [0] = 1 ms for safety reasons (catch high dynamics at initialization).

In contrast, the NIZOHJA co-simulation method requires the macro-step size to be chosen at the beginning, which implies that the user has a strong knowledge of the system. For this reason, we ran co-simulations with different values of the fixed co-simulation step size δt.

Please note that co-simulation with the NIZOHJA method ran with the same architecture than the IFOSMONDI methods. In other words, each co-simulation required 12 processes to run, regardless of the method. This by-design parallelism will therefore not bias the results below. Please note that, in the case of fixed-point IFOSMONDI, one iteration correspond to a single integration. Table 3.7: Results on the Battery pack cooling system with NIZOHJA NIZOHJA δt = 10 -3 δt = 10 -2 δt = 10 -1 δt = 1 δt = 10 Error (in %) 0.0016 0.0154 0.154 1.806 15.047

Elapse time 10h23 ′ 03 ′′ 1h01 ′ 35 ′′ 9 ′ 05 ′′ 1 ′ 09 ′′ 12 ′′
#integrations 5 000 000 500 000 50 000 5 000 500 average step size (s) 10 -3 10 -2 10 -1 1 10

Please note that, in the case of NIZOHJA, one co-simulation step correspond to a single integration. On the trade-off graph on figure 3.18, the more a co-simulation is valuable, the more it is close to the bottom-left corner, meaning that the run is accurate and fast. Every method follows a well-known phenomenon: the more a co-simulation is accurate, the slower it is. Graphically, this means that point corresponding to a given method goes on the right on the x-axis when they go down on the y-axis.

Nonetheless, both IFOSMONDI methods' curves are lower than the NIZOHJA's curve and more on the left. This can be interpreted in two equivalent ways:

• at equivalent accuracy as NIZOHJA, the IFOSMONDI methods (fixed-point and JFM) are faster • at equivalent computational time as NIZOHJA, the IFOSMONDI methods are more accurate. Also, the trade-off curve of IFOSMONDI-JFM is lower and more on the right than the trade-off curve of fixed-point IFOSMONDI. It means that, with the same ε convergence criterion, IFOSMONDI-JFM is more accuracy-oriented than the fixed-point IFOSMONDI method .

Let's focus on the ε = 10 -8 cases. The average step size was 0.831 s for IFOSMONDI-JFM and 0.986 s for fixed-point IFOSMONDI, so let's compare the results with the run with the NIZOHJA method with a fixed co-simulation step size of 1 s. Two variables of interest are plotted on figure 3.19. To see the differences of accuracy between the runs, a focus on t ∈ [3730, 3830] is presented on figure 3.20. On the latter, we can clearly see that both IFOSMONDI methods visually match the monolithic reference solution whereas the NIZOHJA has a delay and an overshoot. Finally, the step size adaptation with the rule described in 3.3.5 can be visualize in both IFOSMONDI fixed-point and JFM methods with ε = 10 -8 together with the number of integrations (including the rejected steps) and one of the variable of interests of the system. Figures 3.21 and 3.22 show that the methods focus on the one hand on the stiff parts of the simulation by integrating more time and reducing the co-simulation step size, and on the other hand they save time on the non-stiff parts by increasing the co-simulation step size and iterating a smaller amount of time. This phenomenon can be explained by the fact that non-stiff models (or non-stiff parts of a simulation of models with variable stiffness) produce a version of the coupling constraint that is easier to satisfy (at a given ε tolerance) than stiff models (or stiff parts of a simulation of models with variable stiffness). Figure 3.21: Visualization of the connection between the co-simulation step size (upper straight curve, right y-scale), the number of integrations (lower straight curve, right y-scale) and a representative variable of interest of the system (superimposed red curve with round markers) in the case of the IFOSMONDI-JFM method applied on the Battery Pack Cooling system Figure 3.22: Visualization of the connection between the co-simulation step size (upper straight curve, right y-scale), the number of integrations (lower straight curve, right y-scale) and a representative variable of interest of the system (superimposed blue curve with triangle markers) in the case of the fixed-point IFOSMONDI method applied on the Battery Pack Cooling system

Conclusions regarding the IFOSMONDI methods

The IFOSMONDI co-simulation algorithms takes advantages from the C 1 smoothness without the delay that this smoothness implies in [DR06; Bus19] (thanks to its iterative aspect), and the coupling constraint is satisfied both at left and right of every communication time thanks to the underlying iterative method (fixed-point or zero-finder, depending on the folurmation of the coupling condition). This combination of iterative coupling method and smooth representations of interface variables gives similar to better results than each approach taken separately. It allows IFOSMONDI co-simulation algorithms to have a good trade-off between accuracy and computational time.

On the test-cases considered here, the IFOSMONDI-JFM method either requires less iterations to converge, or has a better accuracy than the one obtained with the fixed-point IFOSMONDI method when the parameterization enables both methods to solve the problem. The matrix-free aspect of the underlying zero-finding methods used with IFOSMONDI-JFM and their fast convergence are two of reasons explaining the small amount of integrations per macro-step. Indeed, finite differences estimation of the Jacobian matrices like in [START_REF] Schweizer | Predictor/corrector co-simulation approaches for solver coupling with algebraic constraints[END_REF] or a reconstruction of it like in [START_REF] Alfred | Stabilized Co-Simulation of Coupled Problems Including Fields and Signals[END_REF] would increase the computational time of the co-simulation. The resulting algorithm even solves co-simulation problems for which the fixed-point formulation implies a non-contractant coupling function Ψ τ . This participate to the robustness of the IFOSMONDI-JFM algorithm it is not always possible, in practice, to analyze the contractance of the fixedpoint coupling function (in particular in case of industrial-scale cases). The academic test-case introduced in 3.5.2.1 exhibiting an algebraic loop at the interface is a good candidate to benchmark the robustness of various co-simulation methods as its difficulty can easily be increased or decreased in a quantifiable way.

Investigations on further enhancements are made possible in a context where IFOSMONDI co-simulation methods are used. Regarding the main possible enhancements, the time-stepper can be cited. Indeed, the contraction/dilatation of the macro-step based on the converge or not is a simplistic rule that does not take into account the order of the method as, in case of convergence, we expect the error to be zero (up to the given tolerance). We can also point out a faster restart of embedded solvers inside of the systems when C 1 smoothness of inputs is garanteed at the communication times. These internal solvers indeed no more need to handle discontinuities, like in the context of smoothness enhancement usage in F 3 ORNITS presented in chapter 2. pas le rollback ne peut qu'avancer dans le temps et chaque intégration sur un macro-pas est donc définitive. En pratique, les outils industriels de modélisation et de simulation ne produisent que très rarement des systèmes capables de revenir en arrière. Ce chapitre propose une solution qui change légèrement la méthodologie de cosimulation et qui permet d'utiliser des méthodes de cosimulation itératives sur un modèle de cosimulation qui contient des systèmes ne supportant pas le rollback dans le cas où ces derniers représentent des équations différentielles ordinaires. L'idée est de remplacer un tel système par une version simplifiée: l'estimateur COSTARICA, qui est utilisé pour estimer les résultats des intégrations au lieu de réellement intégrer le système. Une fois que ces fausses itérations ont permis à la méthode de cosimulation de prédire la convergence sur le macro-pas, les systèmes ne supportant pas le rollback intègrent véritablement le pas de cosimulation en utilisant la solution estimée sur les autres systèmes avant d'avancer, transformant ainsi la méthode de cosimulation itérative en une méthode non-itérative. L'estimateur COSTARICA est basé sur la linéarisation du système, récupérable avec des capacités avancées qui sont moins rares que le rollback. L'estimation est séparée en une estimation de la partie linéaire qui est évaluée numériquement et une estimation de la partie "contrôle" provenant de la partie du système non prise en compte par la linéarisation en raison du manque de standardisation quant à la récupération des dérivées temporelles de second ordre des variables d'état (c'est-à-dire la dérivée partielle en temps de la "fonction des dérivées" f ). Une analyse d'erreur de l'approximation du système par la linéarisation (non-complète, donc) est menée dans ce chapitre. Cette analyse nous permet d'obtenir l'ordre de convergence de l'estimateur COSTARICA conditionnellement à la forme de la fonction des dérivées f . Des expériences numériques sont également présentées, confirmant empiriquement le résultat de cette analyse. Les résultats numériques sur des cas-tests de cosimulation impliquant des systèmes ne supportant pas le rollback montrent l'amélioration apportée par l'estimateur COSTARICA sur la précision car il permet d'utiliser des méthodes de cosimulation itératives. En d'autres termes : COSTARICA permet d'augmenter significativement la robustesse numérique d'un algorithme de cosimulation itérative (en ne nécessitant plus que les systèmes soient capables de revenir en arrière), et diminue la robustesse numérique d'une manière raisonnable (l'estimation via COSTARICA est moins précise que les intégrations réelles sur chaque macro-pas, mais nous connaissons l'ordre de cette erreur).

Summary of the chapter

Among co-simulation algorithms, the most accurate and reliable ones, the ones that have the best numerical robustness, are the iterative ones, although they have a main drawback in common: the involved systems are required to be capable of rollback, which deteriorates their software robustness as defined in the first chapter. Non-rollback-capable system can only go forward in time and every integration on a macrostep is definitive. In practice, the industrial modelling and simulation platforms rarely produce rollbackcapable systems. This chapter proposes a solution that slightly changes the co-simulation methodology and that enables to use iterative co-simulation methods on a modular model which contains non-rollbackcapable systems in case the latter represent ordinary differential equations. The idea is to replace such a system by a simplified version: the COSTARICA estimator, which is used to estimate the results of the integrations instead of integrating the real system. Once the co-simulation method's surrogate iterations on these estimators predict the convergence on the co-simulation step, the non-rollback-capable systems genuinely integrate the step using the estimated solution on the other systems before moving forward, transforming the iterative co-simulation method into a non-iterative one. The COSTARICA estimator is based on the linearization of the system, retrievable with advanced capabilities that are less scarse than the rollback. The estimation is then split in a linear part estimation that is numerically evaluated and a control part estimation coming from the part of the system not taken into account by the linearization due to the lack of standardization to access to second order time-derivatives of the state variables (id est the partial derivative in time of the "derivatives function" f ). An error analysis of the approximation of the system by the (non-complete) linearization is conducted in this chapter. This analysis allows us to obtain the order of convergence of the COSTARICA estimator conditionally to the form of the derivatives function f . Numerical experiments are also presented, confirming the result of this analysis. Numerical results on co-simulation test-cases involving non-rollback-capable systems show the improvement brought by the COSTARICA estimator on the accuracy as it enables to use iterative co-simulation methods. In other words: COSTARICA enables to significantly increase the numerical robustness of an iterative cosimulation algorithm (by making it no more requiring the systems to be rollback-capable), and decreases in a controlled way the numerical robustness (the estimation is less accurate that real integrations over each macro-step, yet we show that we know the order of this error).

Introduction

As seen in the previous chapters, advanced co-simulation algorithms try to tackle the balance between accuracy and computational time. A high accuracy can usually be reached when additional information can be retrieved from the systems. Among others, the model-based methods [Ben+13; Ste+14b; Ste+14a] use structural information in order to adapt the co-simulation so that it leads to very accurate results, usually through preservation of some quantities (for instance: energy on a physical coupling [Sad+17; SP20]). The main drawback of such methods is that the systems must be disclosed. As this drawback is significant in our case (we seek genericity of use and industrial-friendly methods), we focus on another path that advanced co-simulation methods take in order to reach a high accuracy: the advanced capabilities. We indeed handle (and want to handle) modular models made of interconnected, black-boxed systems. Such advanced co-simulation methods (for instance [Och+19; GG+19; Kra+21] or the IFOSMONDIs introduced in chapter 3) usually require the systems to perform advanced actions in addition to the minimal set of possible interactions (advanced capabilities mentioned namely in the framework introduced in the first chapter). These approaches are looking for numerical robustness more than software robustness. Some of these advanced capabilities, formalized in the FMI standard, are well-known and lots of cosimulation methods use them, some other are exotic, and some capabilities are very rare in practice. Among the latter, the rollback is one of the most promising, yet scarce. As a recall: the rollback is the ability of a system to re-integrate itself on a time slice on which it has already undergone integration. When every system of a modular model has this capability, an iterative co-simulation algorithm can be used: [KS00; AU01; Bar+13; Kra+21; Sic+14; SL15a], IZOHJA, IZOHGS, IFOSMONDIs methods, all methods referred to as ICSs (implicit coupling schemes) in [START_REF] Viot | Solving coupled problems of lumped parameter models in a platform for severe accidents in nuclear reactors[END_REF]... Iterative methods, when they converge, are a good way to reach a required accuracy on a wide range of models while supporting black-boxed systems. The only problem of these methods is the scarcity, in practice, of rollback-capable systems.

This chapter introduces an alternative that mimics the rollback on rollback-less systems corresponding to ODEs (ordinary differential equations) so that iterative co-simulation algorithms can be adapted into a version that can be applied on modular models even if the latter involve rollback-less systems. This adaptation consists in replacing the rollback-free systems by a simplified version which is used to estimate the results of the integrations instead of integrating them for real. These simplified systems are estimators which require advanced capabilities that are less rare than the rollback on most of the black-boxed systems embedding a tailored solver. Once the co-simulation method's surrogate iterations on these estimators predict the convergence on the co-simulation step, the non-rollback-capable systems genuinely integrate the step using the estimated solution on the other systems before moving forward, thus transforming the iterative co-simulation method into a non-iterative adaptation of it.

On each non-rollback-capable system, the associated estimator used in the surrogate iterative stage of the co-simulation method is designed to imitate the integration as if it was done for real. The predicted quantities are the data of the system that will be used by other systems: the output coupling variables (and eventually related data such as their time-derivatives). This estimation depends, among other things, on its input coupling variables (determined by the co-simulation method). Such an estimator, possible on most of the systems given very common capabilities that do not require system disclosure, lead to a surrogate system on the coupling variables. The basics of this estimator are the following: the ODE of the system is linearized at the most recent reached time, and thanks to a Laplace transform of this linearized system, a relation can be established between the input coupling variables and the output coupling variables. In case the input coupling variables can be expressed as polynomials (which is the case in the overwhelming majority of cases), the output values at the time to reach have a linear expression in terms of the coefficients of the polynomial of the input coupling variables. This linear expression involves transfer matrices that can be obtained using Misra & Patel method [START_REF] Misra | Computation of Transfer Function Matrices of Linear Multivariable Systems[END_REF] and their inverse Laplace transform that can be computed with the Gaver-Stehfest algorithm [START_REF] Stehfest | Algorithm 368: Numerical Inversion of Laplace Transforms[END_REF][START_REF] Jacquot | The Gaver-Stehfest algorithm for approximate inversion of Laplace transforms[END_REF]. This chapter is structured as follows: the motivation of a step estimator and the associated formalism will be described first, then the COSTARICA itself will be detailed both formerly (mathematically) and practically (pseudo-code). An analysis of the consequences of using a non-complete linearization as base for the COSTARICA estimator will be made and numerical confirmations of the findings of this analysis will be presented. Finally, a few examples will be presented in order to convince the reader about the practical aspect of the COSTARICA process.

Important remark about the notations in this chapter: As the COSTARICA process is an estimator of a single open system, working in a single worker program, this chapter and the associated calculations only refer to quantities of a single system. Hence, to lighten the notations and to make calculations more readable, the system index will be omitted in this chapter (on states, inputs, outputs, functions f and g, ...). They will be reintroduced with the examples on composite systems in 4.5.2 and 4.5.3 (mainly in 4.5.3, as the equations of the test-case in 4.5.2 have already been presented in 2.4.2).

Motivations and specifications

COSTARICA stands for Cautiously Obtrusive Solution To Avoid Rollback in Iterative Co-simulation Algorithms. The way it avoids requiring the rollback is explained in 4.2.1, and the "cautiously obtrusive" part is detailed in 4.2.2.

The estimator itself will not be defined in this section but in the next one: 4.3.

Replacing the rollback with a step estimator

The idea behind COSTARICA is to replace the stages on which the rollback is required by something else imitating the integrations. Indeed, replacing the latter by estimations on the non-rollback-capable systems would enable the latter to avoid moving forward in time in a macro-step before convergence.

In other words, the idea is to replace all integrations inside of the co-simulation step loop and the internal loop by an estimation in order to let the co-simulation algorithm find the inputs that lead to a convergence. Once convergence is reached, the forward movement in time is done by a single genuine integration.

Algorithm 10 represents this adaptation applied on the abstraction of a worker program as presented in algorithm 1 in 1.3.6.

Algorithm 10: Worker program of an iterative co-simulation method adapted to a rollback-less system 1 N := 0; 2 t [0] := t [init] ; 3 while t [N ] < t [end] do // Time loop

while

Step starting on t [N ] is not converged do // Co-sim. step loop Method computes [m] u [N ] ; 9 Compute [m] ỹ[N+1] by step integration S [N ] with inputs [m] u [N ] ;

10 Compute [m] ŷ[N+1] , estimator of [m] ỹ[N+1] , depending on [m] u [N ] ; 11 From [m] y [N +1
] and outputs of other systems on other workers, method decides if the step is converged, to-be-redone or rejected;

if

Step [t [N ] , t [N +1] [ is to-be-redone then )] ỹ[N+1] by step integration S [N ] with inputs [mmax(N )] u [N ] ;
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N := N + 1;
In algorithm 10, the strikethrough line has been removed from the original algorithm 1 (page 28), and the boxed lines added to it.

The real integrations now only occur on successive steps of the time loop: a first one on [t [0] , t [1] [, and then a single one on [t [1] , t [2] [, and then a single one on [t [2] , t [3] [ and so on until the last one on [t [Nmax-1] , t [Nmax] ] where t [Nmax] = t [end] . This way, the system behaves as if it were used by a non-iterative co-simulation method, and the iterative co-simulation method can still iterate thanks to the estimations on the nested loops (co-simulation step loop and internal loop).

The estimator suggested in this chapter is the COSTARICA one, yet this process can be used with any estimator (reduced versions of the concerned systems, surrogate models, ...). Moreover, workers only need to be transformed from algorithm 1 to algorithm 10 when they are attached to a system that is not capable of rollback (see figure 1.8). Indeed, hybrid configurations both involving rollback-capable and rollback-less systems can be implemented. In this case, only the workers attached to rollback-less systems must be adapted.

Cautious obtrusiveness

The COSTARICA process has been conceived to be usable in industrial co-simulations. One of the main constraints this specification brings is the need for genericity: the software robustness. Although COSTAR-ICA is not a co-simulation algorithm (it is an estimator, acting as described in 4.2.1), it must comply with the genericity specification.

Among these standardized required advanced interactions presented in 1.3.7, we distinguish here the capabilities that COSTARICA must mimic (in case the algorithm on which this process is used requires them) from the capabilities COSTARICA requires (in order to produce the estimations of the calls to the step function).

Capabilities required by the co-simulation algorithm:

The aim of COSTARICA is to replace the rollback by estimating the results of the step function. Knowing that, a legitimate question could be: does COSTARICA mimics calls to the step function on a system that has advanced capabilities, such as time-depending inputs? The answer is yes for two advanced capabilities: the time-dependent inputs (as far as the latter are polynomial in time), and the ability to retrieve the time-derivatives of the outputs at the end of a macro-step (imitation of the dot version of the simulation function, see 1.3.5.5.1).

In other words, a co-simulation method that requires these two advanced interactions in addition to the rollback can still use COSTARICA as far as this process can mimic these interactions during the estimated steps.

Capabilities required by COSTARICA:

The COSTARICA estimator requires some advanced capabilities from the system on which the rollback will be mimicked. These capabilities are the possibility for the system to provide its internal state variables and directional derivatives at a given time (in practice: the reached time). The cautiously obtrusive wording arises from the fact that these capabilities are standardized (part of table 1.2 and described in [START_REF]FMI: The functional mockup interface[END_REF][START_REF] Blochwitz | The Functional Mockup Interface for Tool independent Exchange of Simulation Models[END_REF][START_REF] Blochwitz | Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation Models[END_REF]) and way more common than the rollback itself.

Capabilities required by COSTARICA:

The relation between the above-mentioned interactions, capabilities, and COSTARICA are presented in table 4.1 where the names of the interactions refers to the ones of table 1.2. Yes (this is its purpose) * In the FMI standard, nothing forces a modelling and simulation platform to reconstruct inputs with a polynomial shape when the capability canInterpolateInputs is active. We only consider here the case where the inputs are reconstructed with a polynomial shape (which is, in practice, widely used).

* * The linearization of the ODE of the system cannot be fully retrieved, but a non-complete version of it can. This is detailed further in this chapter and an analysis of the consequence of the fact that this linearization is not complete is proposed in section 4.4.

COSTARICA estimator definition and computation

As explained in the end of 4.1, the notations in this section won't use the system indexing as we consider here being describing COSTARICA on a single given open system.

Let's consider that the system over which we want to implement COSTARICA already reached a time t [N ] . To avoid the loss of generality, at the beginning of the co-simulation we can consider that the system "reached" t [0] = t [init] . Let's build the COSTARICA estimator based on quantities that the system can compute without moving forward in time.

The estimator is supposed to estimate the behavior of the system to a certain stimulus. At the iteration m, this stimulus is [m] u [N ] as seen in 1.3.4.2.1. The COSTARICA estimator only works on polynomial inputs (mimicking S ideal,poly(n),k , see 1.3.5.2), covering the zero-order hold case among others, as the latter can be seen as polynomial of degree 0. Let's define n the maximum polynomial order of the inputs produced by the co-simulation algorithm. We denote by a the coefficients of the polynomials of every coordinate of the polynomial inputs:

∀N ∈ [[0, N max ]], ∀m ∈ [[0, m max (N )]], [m] u [N ] : t → n k=0 [m] a [N ] jk t k j∈[[1,nin]] (4.1)
Let's consider the first-order approximation of (1.3) (id est its linearization): A [N ] , B [N ] , C [N ] and D [N ] matrices contain the instantaneous directional derivatives at time t [N ] . They are recoverable thanks to the providesDirectionalDerivatives capability (see table 4.1), but only as a linearization regarding the states and inputs, the derivative in direction of the time variable of f and g are not retrievable in a standard way.

                           d [m] x [N ] dt = f t [N ]
, [m] x [N ] (t [N ] ), [m] u [N ] (t [N ] )

+A [N ] ( [m] x [N ] -[m] x [N ] (t [N ] )) +B [N ] ( [m] u [N ] -[m] u [N ] (t [N ]
))

[m] y [N ] = y [N ] (t [N ] )

+C [N ] ( [m] x [N ] -[m] x [N ] (t [N ] )) +D [N ] ( [m] u [N ] -[m] u [N ] (t [N ] ))
where

A [N ] ∈ M nst,nst (R) B [N ] ∈ M nst,nin (R) C [N ] ∈ M nout,nst (R) D [N ] ∈ M nout,nin (R) (4.2) 
Remark: Please note the link with the state-space representation: if f and g are of the form f : t, x, u → Ax + Bu and g : t, x, u → Cx + Du, equation (4.2) becomes (4.3).

     dx [N ] dt = A [m] x [N ] + B [m] u [N ] [m] y [N ] L = C [m] x [N ] + D [m] u [N ] (4.3)
In case the time-derivatives of the state variables cannot be retrieved (for instance, they haven't been exposed in the FMU), we can only assume (4.4) (which is not true in general, and which is a worse approximation than the linearization (4.2)). Only a down-graded version of COSTARICA, based on (4.3), can be implemented in this case. An example is presented in subsection 4.5.3 and illustrates how this lack of capability affects the accuracy obtained with this degradation.

f (t, x, u) = ∂f ∂x (t, x, u)x + ∂f ∂u (t, x, u)u (4.4)
In the general case, system (4.2) can be re-written under the form (4.5):

         d [m] x [N ] dt = A [N ] [m] x [N ] + B [N ] [m] u [N ] + f [N ] C [m] y [N ] L = C [N ] [m] x [N ] + D [N ] [m] u [N ] [m] y [N ] = [m] y [N ] L + y [N ] C (4.5)
where we define

f [N ] C = f (x [N ] (t [N ]
), and [m] y

[N ]
L and y

[N ]

C are detailed hereafter. In (4.5), [m] 

y [N ] L ∈ L([t [N ] , t [N +1] [, R nout )
is the linear part of the output response of the system to the stimulus [m] u [N ] on [t [N ] , t [N +1] [. Two phenomena can explain the difference between [m] 

y [N ]
L and [m] y [N ] :

• the non-linearity of the system (in case the system has a non-linear output equation), and • time-dependent outputs, in case of a predefined signal, for instance, or an added offset (converting physical units like degrees Celsius into degrees Fahrenheit, for instance).

To take this difference into account, we define the control part of the outputs as the difference between them and their linear part.

y [N ] C = [m] y [N ] -(C [N ] [m] x [N ] + D [N ] [m] u [N ] ) ∈ L([t [N ] , t [N +1] [, R nout ) (4.6)
Please note that, at the beginning of the step, we have (4.7).

y [N ] C (t [N ] ) = [m] y [N ] (t [N ] ) -(C [N ] [m]
x [N ] (t [N ] ) + D [N ] [m] u [N ] (t [N ] )) (4.7)

Remark: In case the co-simulation method guarantees the continuity of the inputs (like in [DR06; Bus16; Bus19], F 3 ORNITS [START_REF] Eguillon | F3ORNITS: a Flexible Variable Step Size Non-Iterative Co-simulation Method Handling Subsystems with Hybrid Advanced Capabilities[END_REF] and IFOSMONDI methods [ELTD19; ELTD22c], among others), and as the continuous states are continuous, we can use the known quantities at the end of the converged co-simulation step [t [N -1] , t [N ] [ to compute y C (see 4.3.2). As the system has already reached the time t [N ] , and as the co-simulation algorithm is supposed to use COSTARICA at the stage where an estimation of the step function is required, the following quantities are known: Table 4.2: Known quantities at t [N ] Quantity Definition Source Domain

ũ[N] lim t→t [N ] t<t [N ] [mmax(N-1)] u [N-1] (t)
The co-simulation algorithm, as it is responsible for the inputs computation

R n in ỹ[N] lim t→t [N ] t<t [N ]
[mmax(N-1)] y [N-1] (t)

The system, thanks to the basic mandatory interaction to provide its outputs (last call to

S [N -1] ) R n out x[N] lim t→t [N ] t<t [N ]
[mmax(N-1)] x [N-1] (t)

The system, with the "Getting internal state variables" interaction (see table 4.1)

R n st f [N ] f t [N ] , x[N] , ũ[N] with x[N] and ũ[N] defined hereabove
The system, with the "Getting internal state derivatives" interaction (see table 4.1)

R n st A [N ] B [N ] C [N ] D [N ]
instantaneous directional derivatives

The system, with the "Getting directional derivatives" interaction (see table 4.1) matrices, see (4.2) for the sizes

[m] u [N ] t → n k=0 [m] a [N ] jk t k j∈[[1,n in ]]
The co-simulation algorithm, as shown in algorithm 10

vectorial polynomial (Rn[t]) n in
The estimator should use the quantities from table 4.2 (and potentially their equivalent at previous communication times, like t [N -1] , t [N -2] , ...) to compute the estimated quantities of table 4.3. Output response of the system to the stimulus [m] u [N ] at the end of the macro-step

R n out [m] ŷ[N+1]
Time-derivative of the output response of the system to the stimulus [m] u [N ] at the end of the macro-step R n out

These estimators1 will be split into two terms: their control part and their linear part:

[m] ŷ[N+1] = ŷ[N+1] C + [m] ŷ[N] L [m] ŷ[N+1] = ŷ[N+1] C + [m] ŷ[N] L (4.8)
Please note that, in expressions (4.8), the control terms have no iteration indices. Indeed, as the linear terms are supposed to be the ones already taking into account the behavior of the (linearized) system with the inputs, the control terms might not depend on these inputs. Moreover, none of the different estimation strategies for such terms presented in 4.3.1 depend on the inputs. Consequently, instead of having [0] ŷ[N+1] , [1] ŷ[N+1] , ... being equals, we simply removed the iteration index.

Control part estimation

In order to estimate the control parts of the estimators at time t [N +1] , we use the following vectorial sequences ỹ[N]

C N ∈[[0,Nmax]]
defined by:

∀N ∈ [[0, N max ]], ỹ[N] C = ỹ[N] -C [N ] x[N] + D [N ] x[N] (4.9)
where, by convention, we consider that [mmax(-1)] u [-1] is constant and equal to the initial inputs of the system, which are known data on every system of a given co-simulation model.

Once the system reached time t [N ] , the C need to be computed. Any reconstruction algorithm can be used.

ỹ[N] C N ∈[[0,N ]]

Simplest reconstruction:

The simplest definition of the control terms of the estimators has to be understood as: the one using the least amount of points.

In the case of the output values, this corresponds to a simple zero-order hold:

ŷ[N+1] C,ZOH = ỹ[N] C (4.10)
As the zero-order hold cannot provide non-zero time-derivatives, it cannot be used for the control term of the output time-derivatives estimator. Therefore, ZOH estimation for control part can only be used when output time-derivatives do not need to be estimated, in other words: when the co-simulation algorithm does not require the time-derivatives of the outputs of the systems.

First order reconstruction:

In case the co-simulation algorithm requires the time-derivative of the outputs, we can increase the number of points to obtain a first-order hold estimator for the outputs

ŷ[N+1] C,F OH = ỹ[N] C + t [N +1] -t [N ] t [N ] -t [N -1] ỹ[N] C - ỹ[N-1] C (4.11)
so that the time-derivatives can be estimated analogously:

ŷ[N+1] C,F OH = 1 t [N ] -t [N -1] ỹ[N] C - ỹ[N-1] C (4.
12)

The problem with this method is that the estimations can only occur from t [2] as two previous points need to exist. At t [0] , all data are supposed to be known (initialization of the co-simulation model), but for the estimation at t [1] , first-order hold cannot be used. During this estimation, only ŷ[1] C,ZOH can be used regarding the output values, and (artificially, arbitrary) 0 regarding the output time-derivatives.

Flexible order reconstruction:

As it might be difficult to know which reconstruction order is relevant (zero, one, or more), autoadaptive methods can be used. For instance, [START_REF] Kraft | Parallel Co-Simulation Approach With Macro-Step Size and Order Control Algorithm[END_REF] or the flexible order signal reconstruction method presented in 2.3.1 enable to try to catch the best order at each step and for each coordinate (as outputs might be vectorial), and this is easily adaptable to the output time-derivatives.

This flexible order reconstruction method (the one in F 3 ORNITS ) is the one that has been used in the examples presented at the end of this chapter.

Linear part estimation

In order to estimate the outputs at time t [N +1] using the known data at t [N ] as presented in table 4.2, we will consider a linear ODE problem from 0 to δt [N ] where the latter denotes the macro-step size.

δt [N ] = t [N +1] -t [N ] (4.13)

In order to express the time-shifted problem, we need to dispose of a time-shifted version of the inputs. This will be denoted with a caron symbol ˇ.

∀ ť ∈ [0, δt [N ] [, [m] ǔ[N] (t) = n k=0 [m] ǎ[N] jk ťk j∈[[1,nin]] = [m] u [N ] ( ť + t [N ] ) (4.14)
We will now compute the value of the time-shifted version of the linear system (4.2), that is to say:

     d [m] x[N] dt = A [N ] [m] x[N] + B [N ] [m] ǔ[N] + f [N ] C [m] y[N] L = C [N ] [m] x[N] + D [N ] [m] ǔ[N] with [m] x[N] (0) = x[N]
as defined in table

The estimator we are computing is given by:

[m] ŷ[N+1] L = lim ť→δt [N ]
ť<δt [N ] [m] y[N] L ( ť) (4.16)

The

f [N ]
C term corresponds to the constant terms of the linearization (4.2). These terms have been gathered in the single term (4.5). This term can simply be computed using the known quantities at the converged iteration of the previous co-simulation step (as introduced in table 4.2) so that

f [N ] C in
f [N ]
C is corresponds to the point around which the linearzation (4.2) occurred.

∀N ∈ [[0, N max ]], f [N ] C = f [N ] -A [N ] x[N] + B [N ] ũ[N] (4.17)
Let's compute the polynomial coefficients of the time-shifted inputs based on the polynomial coefficients of the inputs.

∀j ∈ [[1, n in ]], ( [m] ǔ[N] (t)) j = ( [m] u [N ] ( ť + t [N ] )) j = n k=0 [m] a [N ] jk ( ť + t [N ] ) k = n k=0 [m] a [N ] jk k l=0 k l ťl (t [N ] ) k-l = 0⩽l⩽k⩽n [m] a [N ] jk k l ťl (t [N ] ) k-l = n l=0 n k=l [m] a [N ] jk k l ťl (t [N ] ) k-l = n l=0 ťl n k=l [m] a [N ] jk k l (t [N ] ) k-l = n l=0 ťl [m] ǎ[N] jl (4.18)
By switching l and k in the above computations, we get the expressions of the polynomial coefficients of the vectorial polynomial [m] 

ǔ[N] : ∀j ∈ [[1, n in ]], ∀k ∈ [[0, n]], [m] ǎ[N] jk = n l=k [m] a [N ] jl l k (t [N ] ) l-k (4.19)
Note: For the sake of readability, for the following computations in this subsection, the newly introduced quantities won't have any [m] and [N ] left and right superscripts despite the fact that they change depending on the macro-step and the iteration. This will only apply to the computations that will lead to the [m] y[N+1] outputs estimator.

Let Ξ ∈ M nin,(n+1) (R) be the matrix representation of the coefficients of the polynomial of all coordinates of the time-shifted inputs.

Ξ = [m] ǎ[N] jk j∈[[1,nin]] k∈[[0, n]] (4.20)
The rows and columns indexing of the Ξ matrix are intentionally numbered starting from 1 and starting from 0 respectively as the rows represent the different coordinates (from 1 to n in ), and the columns represent the successive terms of the polynomials (from 0 for constant term, to n for the term of maximum degree).

Let's define the Laplace transforms [START_REF] Widder | Chapter II. The Laplace Transform[END_REF] of the inputs, outputs and states of the time-shifted linear system (4.15).

X = X(s) = L( [m] x[N] )(s) ∈ L(R + , R nst ) Ǔ = Ǔ (s) = L( [m] ǔ[N] )(s) ∈ L(R + , R nin ) Y = Y (s) = L( [m] y[N] L )(s) ∈ L(R + , R nout ) (4.21)
We can now write the Laplace transform of the time-shifted linear system (4.15).

s X -x[N] = A [N ] X + B [N ] Ǔ + 1 s f [N ] C Y = C [N ] X + D [N ] Ǔ (4.22)
Let P , G and R be the matrix functions of the Laplace domain as defined in (4.23) (in particular, G is the resolvant [START_REF] Boyd | Solution via Laplace transform and matrix exponential[END_REF], transfer function of the linear system).

P = P (s) = C [N ] (sI -A [N ] ) -1 ∈ L(R + , M nout,nst (R)) G = G(s) = P (s) B [N ] + D [N ] ∈ L(R + , M nout,nin (R)) R = R(s) = 1 s P (s) ∈ L(R + , M nout,nst (R)) (4.23)
With P , G and R as defined in (4.23), we can use (4.22) to write:

Y = G Ǔ + P x[N] + R f [N ] C (4.24)
The next step consists in splitting Ǔ into two parts: one depending on the coefficients and one depending only on n.

Ǔ = L( [m] ǔ[N] )(s) j∈[[1,nin]] = L ť → n k=0 [m] ǎ[N] jk ťk (s) j∈[[1,nin]] = ť → n k=0 ǎjk L ťk (s) j∈[[1,nin]] = Ξ Ū (4.25)
where

Ū = L ť → ťk (s) k∈[[0,n]] = k! s k+1 k∈[[0,n]] (4.26)
In order to remove ambiguity in the upcoming calculations, let's define the notation ⊗ as the outer product (particular case of tensor product). In particular, applied to a matrix M and vector v, the outer product gives a 3 rd order tensor:

∀(n 1 , n 2 , n 3 ) ∈ (N * ) 3 , ∀M ∈ M n1,n2 (R), ∀v ∈ R n3 , M ⊗ v T = ((M ) i1,i2 (v) i3 ) i1∈[[1,n1]] i2∈[[1,n2]] i3∈[[1,n3]] (4.27)
In (4.27), the vector v is transposed so that v T is a row vector. Indeed, this enables an analogy with the Kronecker product ⊗ Kron .

∀(n 1 , n 2 , n 3 ) ∈ (N * ) 3 , ∀M ∈ M n1,n2 (R), ∀v ∈ R n3 , ∀Q ∈ M n2,n3 (R), M ⊗ v T Q = n2 i2=1 n3 i3=1 M ⊗ Kron v T i1,(i2-1)n3+i3 (Q) i2,i3 i1∈[[1,n1]] = n2 i2=1 n3 i3=1 (M ) i1,i2 (v) i3 (Q) i2,i3 i1∈[[1,n1]] = M ⊗ Kron v T vec(Q T ) (4.28)
where vec(Q T ) denotes the vectorization of the matrix Q T , formed by stacking the columns of Q T into a single column vector. This can also be seen as the concatenated rows of the matrix Q, transposed into a single column vector.

Among other properties, we notice the following: the reordering of a matrix-matrix-vector product.

∀(n 1 , n 2 , n 3 ) ∈ (N * ) 3 , ∀M ∈ M n1,n2 (R), ∀v ∈ R n3 , ∀Q ∈ M n2,n3 (R), M Q v = M n3 i3=1 (Q) i2,i3 (v) i3 i2∈[[1,n2]] = n2 i2=1 (M ) i1,i2 n3 i3=1 (Q) i2,i3 (v) i3 i1∈[[1,n1]] = n2 i2=1 n3 i3=1 (M ) i1,i2 (Q) i2,i3 (v) i3 i1∈[[1,n1]] = M ⊗ v T Q (4.29)
Thanks to all the elements introduced above, we can express the linear contribution to outputs estimator as the inverse Laplace of Y on the step size δt [N ] as this is the final time of the time-shifted system (4.15).

[m] ŷ[N+1] L = L -1 Y (δt [N ] ) = L -1 G Ǔ + P x[N] + R f [N ] C (δt [N ] ) from (4.24) = L -1 G Ǔ (δt [N ] ) + L -1 P x[N] + R f [N ] C (δt [N ] ) from L -1 linearity = L -1 G Ξ Ū (δt [N ] ) + L -1 P x[N] + R f [N ] C (δt [N ] ) from (4.25) = L -1 (G ⊗ Ū T ) Ξ (δt [N ] ) + L -1 P x[N] + R f [N ]

C

(δt [N ] ) from (4.29)

= L -1 G ⊗ Ū T (δt [N ] ) Ξ + L -1 P x[N] + R f [N ] C (δt [N ] ) from L -1 linearity = G V Ξ + P V x[N] + R V f [N ] C from L -1 linearity (4.30)
with [N ] )

G V = L -1 G ⊗ Ū T (δt
P V = L -1 (P ) (δt [N ] ) R V = L -1 (R) (δt [N ] ) (4.31) 
Analogously, we can write the expression of ŷ[N+1] L the estimator of the time-derivative of the outputs:

[m] ŷ[N+1] L = d L -1 G ⊗ Ū T Ξ + L -1 (P ) x[N] + L -1 (R) f [N ] C dt (δt [N ] ) = d L -1 G ⊗ Ū T dt (δt [N ] ) Ξ + d L -1 (P ) dt (δt [N ] ) x[N] + d L -1 (R) dt (δt [N ] ) f [N ] C = G D Ξ + P D x[N] + R D f [N ] C (4.32) with G D = d L -1 G ⊗ Ū T dt
(δt [N ] )

P D = d L -1 (P ) dt (δt [N ] ) R D = d L -1 (R) dt (δt [N ] ) (4.33)

Linear part numerical evaluation

The remaining problem lies in the evaluation of the quantities G V , P V , R V , G D , P D and R D . Indeed, the inverse Laplace transform of a function F of the Laplace variable s can be evaluated at a given time t with several numerical methods [START_REF] Abate | A Unified Framework for Numerically Inverting Laplace Transforms[END_REF]. Our implementation, to generate the results of section 4.5, used the Gaver-Stehfest method [START_REF] Jacquot | The Gaver-Stehfest algorithm for approximate inversion of Laplace transforms[END_REF], based on [START_REF] Stehfest | Algorithm 368: Numerical Inversion of Laplace Transforms[END_REF]. First of all, the inverse Laplace transform of a matrix (in our case P and R) or a tensor of order 3 (in our case: G ⊗ Ū T ) is the matrix (or a tensor of order 3, respectively) of the inverse Laplace transforms of every element. The resulting matrix (or tensor of order 3, respectively) has the same size as the one in the Laplace domain.

Let F either denote a matrix or tensor function of the Laplace variable s. The numerical computation of L -1 (F )(t) for a given time t requires several evaluations of F at different values of s.

In our case, any evaluation of G⊗ Ū T , P or R requires, among others, a matrix inversion (see expressions (4.23)) and several matrix products.

In case A [N ] is diagonalizable, it can be written as K∆K -1 where ∆ is diagonal. The matrices P , R and G can then be written as follows:

P (s) = C [N ] (sI -A [N ] ) -1 = C [N ] (sI -K∆K -1 ) -1 = C [N ] (sKIK -1 -K∆K -1 ) -1 = C [N ] K(sI -∆)K -1 -1 = C [N ] K(sI -∆) -1 K -1 (4.34) G(s) = P (s)B [N ] + D [N ] = C [N ] K(sI -∆) -1 K -1 B [N ] + D [N ] (4.35) R(s) = 1 s P (s) = 1 s C [N ] K(sI -∆) -1 K -1 (4.36)
In that case, the products C [N ] K and K -1 B [N ] can be computed only once when A [N ] is known, that is to say, once for each iteration of the time-loop. Indeed, they do not depend on s. Moreover, the inversion (sI -∆) -1 is immediate.

(sI -∆) -1 =      1 s-(∆)1,1 0 . . . 0 1 s-(∆)n st ,n st      (4.37)
However, this approach has two main drawbacks:

• in case A [N ] is not diagonalizable this cannot be done (for instance: in case A [N ] is nilpotent but not zero), and • in case an evaluation at a given value s corresponding to an eigenvalue of A [N ] is required, (sI -∆) -1 cannot be computed (in (4.37), at least one of the diagonal coefficients becomes 1 /0).

Consequently, the approach we used in our implementation is the explicit computation of every coefficient in the matrices G, P and R. Indeed, every element of G is a rational function in terms of s, and every coefficient of the rational functions of every element of G can be computed with the Misra & Patel method [START_REF] Misra | Computation of Transfer Function Matrices of Linear Multivariable Systems[END_REF]. The Hessenberg decomposition occurring in the Misra & Patel method can be computed using the corresponding procedure in [START_REF] Golub | Matrix Computations. Fourth[END_REF].

Regarding matrix P , we can notice that, despite it is not strictly speaking a transfer function, it would be the same as G in the following conditions:

• if n in were equal to n st , • if B [N ] were I nst the identity matrix of size n st × n st , and • if D [N ] were 0 nout×nst the null matrix of size n out × n st .

Hence, running the Patel & Misra method on the fake state-space system made of matrices A [N ] , I nst , C [N ] and 0 nout×nst , we obtain all the coefficients of the rational functions of every element of P .

Finally, regarding matrix R, it can easily be computed from P as elements of the latter are rational fractions, and R : s → 1 s P (s) (see (4.23)). The tensor G V and the matrices P V and R V can finally be computed as every coefficient of G(s), P (s), R(s) and Ū (s) (see (4.26)) are known rational functions of s. Regarding G V = L -1 (G ⊗ Ū T ) in particular, the outer product G ⊗ Ū T works as defined in (4.27). However, due to the indexing of Ξ and Ū (see (4.20) and (4.26), respectively), we consider the indexing (4.38) for the outer product G ⊗ Ū T .

G ⊗ Ū T = (G) ij ( Ū ) k i∈[[1,nout]] j∈[[1,nin]] k∈[[0,n]] = (G ⊗ Ū T ) ijk i∈[[1,nout]] j∈[[1,nin]] k∈[[0,n]] (4.38)
The Gaver-Stehfest method being applied element-wise, we obtain:

G V = (G V ) i,j,k i∈[[1,nout]] j∈[[1,nin]] k∈[[0,n]] = L -1 (G ⊗ Ū T ) i,j,k δt [N ]
i∈ [[1,nout]] j∈ [[1,nin]] k∈ [[0,n]]

P V = (P V ) i,j i∈[[1,nout]]
j∈ [[1,nst]] = L -1 (P ) i,j δt [N ] i∈ [[1,nout]] j∈ [[1,nst]]

R V = (R V ) i,j i∈[[1,nout]] j∈[[1,nst]] = L -1 (R) i,j δt [N ]
i∈ [[1,nout]] j∈ [[1,nst]] (4.39)

In case the Gaver-Stehfest method requires an evaluation with s being a pole of P , R or G, the cosimulation step will diverge and t [N +1] will change leading to a different value of δt [N ] making the Gaver-Stehfest method evaluate G, P and R at different values of s.

If an estimation of the time-derivatives of the outputs is required, G D , P D and R D must be computed in order to evaluate [m] ŷ[N+1] L (see (4.32) and (4.33)). Additional evaluations of the inverse Laplace of G⊗ Ū T , P and R at different times than δt [N ] can help compute these quantities.

Let h denote a small strictly positive quantity with respect to δt [N ] . A simple first-order estimation of G D and P D can be achieved by an additional inverse Laplace computation for each of these quantities.

G D,F O = 1 h G V -L -1 G ⊗ Ū T (δt [N ] -h) P D,F O = 1 h P V -L -1 (P ) (δt [N ] -h) R D,F O = 1 h R V -L -1 (R) (δt [N ] -h) (4.40)
Higher order estimations can also be used, for instance the implementation that has been used to present the results in 4.5 uses a 2 nd order Richardson (2Rich) approximation (4.41) with h = 0.2 δt [N ] .

G D,2Rich = L -1 G ⊗ Ū T (δt [N ] -h) -4L -1 G ⊗ Ū T (δt [N ] -h 2 ) + 3GV h P D,2Rich = L -1 (P ) (δt [N ] -h) -4L -1 (P ) (δt [N ] -h 2 ) + 3PV h R D,2Rich = L -1 (R) (δt [N ] -h) -4L -1 (R) (δt [N ] -h 2 ) + 3RV h (4.41)
Indeed, these estimations have a consistency order of 2. Let's take an arbitrary regular enough real scalar function f . Taylor formula of f (t -h) and f (th

2 ) give:

f (t -h) -4f (t -h 2 ) + 3f (t) h = f ′ (t) - h 2 12 f ′′′ (t) + o(h 2 ) = f ′ (t) + O(h 2 ) (4.42)
which shows the 2 nd order of consistence of the 2Rich formula used in (4.41).

Estimator update

Let's recap the intermediate computations required the get the estimators of table 4.3 from the known quantities of table 4.2. Figure 4.1 shows the intermediate quantities, and the quantities they require to be computed. Algorithm 11 enables the usage of COSTARICA in an optimized way. Every time the co-simulation method needs to iterate on a given macro-step (internal loop), the cost of the estimation of the outputs is:

• the Ξ computation (4.19),
• the tensor-matrix product G V Ξ, • the matrix-vector product P

V x[N] , • the matrix-vector product R V f [N ]
C , and • three vectors sums. This might be multiplied by 2 in case the time-derivatives of the outputs are required as well.

Other computations are required, yet they can be done outside of the internal loop, which enables the co-simulation method to iterate a lot internally in order to get a high convergence in case the internal part is due to an iterative numerical method (for instance the IFOMONDI methods, chapter 3).

Finally, the computational cost of the estimators only depends on the sizes n in , n out , n st and n. Unlike a minimal solver being responsible for the resolution of the linearized system (4.2), the dynamics of the linearized system do not affect the computational cost.

Algorithm 11: Lazy COSTARICA injection in single worker process in an iterative co-simulation method

1 N := 0; 2 t [0] := t [init] ;
3 while t [N ] < t [end] do // Time loop 4 Ask system to provide A [N ] , B [N ] , C [N ] , D [N ] ; // update 1 From these quantities and t [N ] , ỹ[N] and ũ

[N] (known), compute ỹ[N] C , f [N ]
C and coefficients of rational functions at each element of s : → G ⊗ Ū T (s), of s : → P (s) and of s : → R(s) ; // update 1

while

Step starting on t [N ] is not converged do // Co-sim. step loop Method computes [m] u [N ] ;

15 Compute [m] ỹ[N+1] by step integration S [N ] with inputs [m] u [N ] ;

16

From [m] u [N ] , compute matrix Ξ; // update 3 17 Estimate outputs:

[m] ŷ[N+1] := G V Ξ + P V x[N] + R V f [N ] C + ŷ[N+1] C ; 18 Estimate outputs: [m] ŷ[N+1] := G D Ξ + P D x[N] + R D f [N ] C + ŷ[N+1] C ; 19
From [m] )] ỹ[N+1] by step integration S [N ] with inputs [mmax(N )] u [N ] ;

Relevance of the linearization over time

As the COSTARICA estimator is based on the linearization (4.2), its quality directly depends on the quality of this linearization. Moreover, this linearization is not complete in the sense that partial derivatives of f and g functions in x and u variables contribute to the linearization, but the t variable is missing. This directly comes from the fact that there is no standardized ways to get partial derivatives of f and g across t in practice (namely in the FMI standard). The numerical effect of the choice (non-complete linearization) made in the development of the numerical technique (COSTARICA estimator based on this very linearization) is studied hereafter. This analysis of the relevance of the non-complete linearization over time shows that the error order of this linearization directly characterizes the quality of the COSTARICA estimatior.

Error analysis regarding the state response

In order to perform an analysis of the error of the linearization, we first need some prerequisites derived from the Landau notation o. The latter are shown in 4.4.1.1. Then, in 4.4.1.2, the error order calculations are given.

Prerequisite: asymptotic order of states and inputs

Landau's notation o, when applied to the state variables, bring the existence of a function ε x with a limit of 0 in 0 so that we can write:

o (x(τ ) -x[N] ) 2 = ε x (x(τ ) -x[N] ) • (x(τ ) -x[N] ) 2 = ε x (x(τ ) -x[N] ) • x[N] + x[N] + • (τ -t [N ] ) + 1 2 x[N] + • (τ -t [N ] ) 2 + o((τ -t [N ] ) 2 ) -x[N] 2 = ε x (x(τ ) -x[N] ) • x[N] + • (τ -t [N ] ) + 1 2 x[N] + • (τ -t [N ] ) 2 + o((τ -t [N ] ) 2 ) 2 = ε x (x(τ ) -x[N] ) • x[N] + • (τ -t [N ] ) + 1 2 x[N] + • (τ -t [N ] ) 2 + ε xt (τ -t [N ] ) • (τ -t [N ] ) 2 2 = ε x (x(τ ) -x[N] ) • ( x[N] + ) 2 • (τ -t [N ] ) 2 + 1 4 ( x[N] + ) 2 • (τ -t [N ] ) 4 + ε xt (τ -t [N ] ) 2 • (τ -t [N ] ) 4 + x[N] + x[N] + (τ -t [N ] ) 3 + 2 x[N] + ε xt (τ -t [N ] ) • (τ -t [N ] ) 3 + x[N] + ε xt (τ -t [N ] ) 4 = ε x (x(τ ) -x[N] ) • ( x[N] + ) 2 + 1 4 ( x[N] + ) 2 • (τ -t [N ] ) 2 + ε xt (τ -t [N ] ) 2 • (τ -t [N ] ) 2 + x[N] + x[N] + (τ -t [N ] ) + 2 x[N] + ε xt (τ -t [N ] ) • (τ -t [N ] ) + x[N] + ε xt (τ -t [N ] ) 2 • (τ -t [N ] ) 2
(4.43) As we have a finite limit (4.44) of a term in the last expression of (4.43), we can write the zero limit of the product (4.45). lim τ →t [N ] τ >t [N ] (

x[N] + ) 2 + 1 4 ( x[N] + ) 2 • (τ -t [N ] ) 2 + ε xt (τ -t [N ] ) 2 • (τ -t [N ] ) 2 + x[N] + x[N] + (τ -t [N ] ) + 2 x[N] + ε xt (τ -t [N ] ) • (τ -t [N ] ) + x[N] + ε xt (τ -t [N ] ) 2 = ( x[N] + ) 2 (4.44) lim τ →t [N ] τ >t [N ] ε x (x(τ ) -x[N] ) • ( x[N] + ) 2 + 1 4 ( x[N] + ) 2 • (τ -t [N ] ) 2 + ε xt (τ -t [N ] ) 2 • (τ -t [N ] ) 2 + x[N] + x[N] + (τ -t [N ] ) + 2 x[N] + ε xt (τ -t [N ] ) • (τ -t [N ] ) + x[N] + ε xt (τ -t [N ] ) 2 = 0 (4.45)
By defining an epsilon function ϵ xt by (4.46), we dispose of a function with a limit of zero in zero (4.47) and we can thus rewrite the last expression of (4.43) as (4.48), showing that an order 2 error in the states corresponds to an order 2 error in time.

ϵ xt : ξ → ε x (x(ξ+t [N ] )-x [N ] )• ( x[N] + ) 2 + 1 4 ( x[N] + ) 2 •ξ 2 +ε xt (ξ) 2 •(ξ) 2 + x[N] + x[N] + ξ+2 x[N] + ε xt (ξ)•ξ+ x[N] + ε xt (ξ) 2 (4.46) lim τ →t [N ]
τ >t [N ] ϵ xt (τ -t [N ] ) = 0 (4.47)

o (x(τ ) -x[N] ) 2 = ε x (x(τ ) -x[N] ) • ( x[N] + ) 2 + 1 4 ( x[N] + ) 2 • (τ -t [N ] ) 2 + ε xt (τ -t [N ] ) 2 • (τ -t [N ] ) 2 + x[N] + x[N] + (τ -t [N ] ) + 2 x[N] + ε xt (τ -t [N ] ) • (τ -t [N ] ) + x[N] + ε xt (τ -t [N ] ) 2 • (τ -t [N ] ) 2 = ϵ xt (τ -t [N ] ) • (τ -t [N ] ) 2 see (4.46) = o (τ -t [N ]
) 2 because of (4.47) (4.48)

Analogously, an order 2 error in the inputs corresponds to an order 2 error in time (4.49).

o (u(τ ) -ũ[N]+ ) 2 = o (τ -t [N ]
) 2 (4.49)

Theoretical error order due to the linearization

Let's consider the states at a given time t within the macro-step [t [N ] , t [N +1] [. Its theoretical expression is (4.50).

x(t) = x[N] + t t [N ] f (τ, x(τ ), u(τ ))dτ (4.50)

The limited development of (4.50) can be done, leading to (4.51).

x(t) = x[N] + t t [N ] f [N ] + + ∂ t f [N ] + (τ -t [N ] ) + ∂ x f [N ] + (x(τ ) -x[N] ) + ∂ u f [N ] + (u(τ ) -ũ[N]+ ) + 1 2 ∂ tt f [N ] + (τ -t [N ] ) 2 + 1 2 ∂ tx f [N ] + (τ -t [N ] )(x(τ ) -x[N] ) + 1 2 ∂ tu f [N ] + (τ -t [N ] )(u(τ ) -ũ[N]+ ) + 1 2 ∂ xt f [N ] + (x(τ ) -x[N] )(τ -t [N ] ) + 1 2 ∂ xx f [N ] + (x(τ ) -x[N] ) 2 + 1 2 ∂ xu f [N ] + (x(τ ) -x[N] )(u(τ ) -ũ[N]+ ) + 1 2 ∂ ut f [N ] + (u(τ ) -ũ[N]+ )(τ -t [N ] ) + 1 2 ∂ ux f [N ] + (u(τ ) -ũ[N]+ )(x(τ ) -x[N] ) + 1 2 ∂ uu f [N ] + (u(τ ) -ũ[N]+ ) 2 +o (τ -t [N ] ) 2 + o (x(τ ) -x[N] ) 2 + o (u(τ ) -ũ[N]+ ) 2 dτ (4.51)
The limited development of the states and the inputs in (4.51) can also be done, leading to (4.52).

x(t) = x[N] + t t [N ] f [N ] + + ∂ t f [N ] + (τ -t [N ] ) + ∂ x f [N ] + (x(τ ) -x[N] ) + ∂ u f [N ] + (u(τ ) -ũ[N]+ ) + ∂ttf [N ] + 2 (τ -t [N ] ) 2 + ∂txf [N ] + 2 (τ -t [N ] ) x[N] + (τ -t [N ] ) + x[N] + 2 (τ -t [N ] ) 2 + o((τ -t [N ] ) 2 ) + ∂tuf [N ] + 2 (τ -t [N ] ) ũ[N] + (τ -t [N ] ) + ũ[N] + 2 (τ -t [N ] ) 2 + o((τ -t [N ] ) 2 ) + ∂xtf [N ] + 2 x[N] + (τ -t [N ] ) + x[N] + 2 (τ -t [N ] ) 2 + o((τ -t [N ] ) 2 ) (τ -t [N ] ) + ∂xxf [N ] + 2 x[N] + (τ -t [N ] ) + x[N] + 2 (τ -t [N ] ) 2 + o((τ -t [N ] ) 2 ) 2 + ∂xuf [N ] + 2 x[N] + (τ -t [N ] ) + x[N] + 2 (τ -t [N ] ) 2 + o((τ -t [N ] ) 2 ) • ũ[N] + (τ -t [N ] ) + ũ[N] + 2 (τ -t [N ] ) 2 + o((τ -t [N ] ) 2 ) + ∂utf [N ] + 2 ũ[N] + (τ -t [N ] ) + ũ[N] + 2 (τ -t [N ] ) 2 + o((τ -t [N ] ) 2 ) (τ -t [N ] ) + ∂uxf [N ] + 2 ũ[N] + (τ -t [N ] ) + ũ[N] + 2 (τ -t [N ] ) 2 + o((τ -t [N ] ) 2 ) • x[N] + (τ -t [N ] ) + x[N] + 2 (τ -t [N ] ) 2 + o((τ -t [N ] ) 2 ) + ∂uuf [N ] + 2 ũ[N] + (τ -t [N ] ) + ũ[N] + 2 (τ -t [N ] ) 2 + o((τ -t [N ] ) 2 ) 2 +o (τ -t [N ] ) 2 + o (x(τ ) -x[N] ) 2 + o (u(τ ) -ũ[N]+ ) 2 dτ (4.
52) Gathering all the o terms and merging them thanks to the properties described in the prerequisites 4.4.1.1, we get (4.53).

x(t) = x[N] + t t [N ] f [N ] + + ∂ t f [N ] + (τ -t [N ] ) + ∂ x f [N ] + (x(τ ) -x[N] ) + ∂ u f [N ] + (u(τ ) -ũ[N]+ ) + ∂ttf [N ] + 2 (τ -t [N ] ) 2 + ∂txf [N ] + 2 (τ -t [N ] ) x[N] + (τ -t [N ] ) + x[N] + 2 (τ -t [N ] ) 2 + ∂tuf [N ] + 2 (τ -t [N ] ) ũ[N] + (τ -t [N ] ) + ũ[N] + 2 (τ -t [N ] ) 2 + ∂xtf [N ] + 2 x[N] + (τ -t [N ] ) + x[N] + 2 (τ -t [N ] ) 2 (τ -t [N ] ) + ∂xxf [N ] + 2 x[N] + (τ -t [N ] ) + x[N] + 2 (τ -t [N ] ) 2 2 + ∂xuf [N ] + 2 x[N] + (τ -t [N ] ) + x[N] + 2 (τ -t [N ] ) 2 ũ[N] + (τ -t [N ] ) + ũ[N] + 2 (τ -t [N ] ) 2 + ∂utf [N ] + 2 ũ[N] + (τ -t [N ] ) + ũ[N] + 2 (τ -t [N ] ) 2 (τ -t [N ] ) + ∂uxf [N ] + 2 ũ[N] + (τ -t [N ] ) + ũ[N] + 2 (τ -t [N ] ) 2 x[N] + (τ -t [N ] ) + x[N] + 2 (τ -t [N ] ) 2 + ∂uuf [N ] + 2 ũ[N] + (τ -t [N ] ) + ũ[N] + 2 (τ -t [N ] ) 2 2 +o (τ -t [N ] ) 2 dτ (4.53)
Developping (4.53) and absorbing the terms in (τ -t [N ] ) k where k ⩾ 3 leads to (4.54)

x(t) = x[N] + t t [N ] f [N ] + + ∂ t f [N ] + (τ -t [N ] ) + ∂ x f [N ] + (x(τ ) -x[N] ) + ∂ u f [N ] + (u(τ ) -ũ[N]+ ) + ∂ttf [N ] + 2 (τ -t [N ] ) 2 + ∂txf [N ] + 2 x[N] + (τ -t [N ] ) 2 + ∂tuf [N ] + 2 ũ[N] + (τ -t [N ] ) 2 + ∂xtf [N ] + 2 x[N] + (τ -t [N ] ) 2 + ∂xxf [N ] + 2 ( x[N] + ) 2 (τ -t [N ] ) 2 + ∂xuf [N ] + 2 x[N] + ũ[N] + (τ -t [N ] ) 2 + ∂utf [N ] + 2 ũ[N] + (τ -t [N ] ) 2 + ∂uxf [N ] + 2 ũ[N] + x[N] + (τ -t [N ] ) 2 + ∂uuf [N ] + 2 ( ũ[N] + ) 2 (τ -t [N ] ) 2 +o (τ -t [N ]
) 2 dτ (4.54) Factorizing the elements of (4.54) leads to (4.55).

x(t) = x[N] + t t [N ] f [N ] + + ∂ t f [N ] + (τ -t [N ] ) + ∂ x f [N ] + (x(τ ) -x[N] ) + ∂ u f [N ] + (u(τ ) -ũ[N]+ ) + 1 2 ∂ tt f [N ] + + ∂ tx f [N ] + x[N] + + ∂ tu f [N ] + ũ[N] + (τ -t [N ] ) 2 + 1 2 ∂ xt f [N ] + x[N] + + ∂ xx f [N ] + ( x[N] + ) 2 + ∂ xu f [N ] + x[N] + ũ[N] + (τ -t [N ] ) 2 + 1 2 ∂ ut f [N ] + ũ[N] + + ∂ ux f [N ] + ũ[N] + x[N] + + ∂ uu f [N ] + ( ũ[N] + ) 2 (τ -t [N ] ) 2 +o (τ -t [N ] ) 2 dτ (4.55)
We can now regroup terms of (4.55) so that we get the expression (4.56).

x(t) = x[N] + t t [N ] f [N ] + + ∂ t f [N ] + (τ -t [N ] ) + ∂ x f [N ] + (x(τ ) -x[N] ) + ∂ u f [N ] + (u(τ ) -ũ[N]+ ) + 1 2 ∂ tt f [N ] + + ∂ xx f [N ] + ( x[N] + ) 2 + ∂ uu f [N ] + ( ũ[N] + ) 2 + ∂ xt f [N ] + x[N] + + ∂ xu f [N ] + x[N] + ũ[N] + + ∂ ut f [N ] + ũ[N] + •(τ -t [N ] ) 2 + o (τ -t [N ] ) 2 dτ (4.56)
Expression (4.56) can be written in the clearer way (4.57) with a term ∆ [N ] defined in (4.58).

x(t) = x[N] + t t [N ] f [N ] + + ∂ t f [N ] + (τ -t [N ] ) + ∂ x f [N ] + (x(τ ) -x[N] ) + ∂ u f [N ] + (u(τ ) -ũ[N]+ ) +∆ [N ] (τ -t [N ] ) 2 + o (τ -t [N ] ) 2 dτ (4.57) ∆ [N ] = 1 2 ∂ tt f [N ] + + ∂ xx f [N ] + ( x[N] + ) 2 + ∂ uu f [N ] + ( ũ[N] + ) 2 + ∂ xt f [N ] + x[N] + + ∂ xu f [N ] + x[N] + ũ[N] + + ∂ ut f [N ] + ũ[N] + (4.58)
On the other side, the states estimated by the COSTARICA estimator are computed by solving the linearized system. Their theoretical expression is thus (4.59).

x L (t) = x[N] + t t [N ] f

[N ] + + ∂ x f [N ] + (x L (τ ) -x[N] ) + ∂ u f [N ] + (u(τ ) -ũ[N]+ )dτ (4.59)
The error between the estimator (4.59) and the theoretical states (using the full system instead of a linearization) (4.57) is denoted as e and its expression is given in (4.60).

e(t) = x(t) -x L (t) = t t [N ] f [N ] + + ∂ t f [N ] + (τ -t [N ] ) + ∂ x f [N ] + (x(τ ) -x[N] ) + ∂ u f [N ] + (u(τ ) -ũ[N]+ ) +∆ [N ] (τ -t [N ] ) 2 + o (τ -t [N ] ) 2 -f [N ] + + ∂ x f [N ] + (x L (τ ) -x[N] ) + ∂ u f [N ] + (u(τ ) -ũ[N]+ ) dτ = t t [N ] ∂ t f [N ] + (τ -t [N ] ) + ∂ x f [N ] + (x(τ ) -x L (τ )) + ∆ [N ] (τ -t [N ] ) 2 + o (τ -t [N ] ) 2 dτ = t t [N ] ∂ t f [N ] + (τ -t [N ] ) + ∂ x f [N ] + e(τ ) + ∆ [N ] (τ -t [N ] ) 2 + o (τ -t [N ] ) 2 dτ (4.60)
The value of e at t [N ] is zero. Indeed, (4.60) clearly shows this (the integral becomes null as the real quantity under it is integrated on a punctual set if t = t [N ] ), and it can also been seen as both the states and the estimated states start with the same value at t [N ] (4.61).

e(t [N

] ) = x(t [N ] ) -x L (t [N ] ) = x[N] -x[N] = 0 (4.61) 
From (4.60) and (4.61), we can write the ODE (4.62).

ė(t) = ∂ t f [N ] + (t -t [N ] ) + ∂ x f [N ] + e(t) + ∆ [N ] (t -t [N ] ) 2 + o (t -t [N ] ) 2 e(t [N ] ) = 0 (4.62)
To study the error, let's consider a scalar version of (4.62). The scalar analog of ∂ x f

[N ] + is denoted by λ (one may consider that it is a relevant eigenvalue of the Jacobian ∂ x f

[N ] + of the system), the scalar analog of ∂ t f

[N ] + is denoted by σ, the scalar analog of ∆ [N ] is denoted as ∆, and the scalar analog of e is denoted as ε. Finally, the scalar equivalent of ODE (4.62) is (4.63).

ε(t) = λε(t) + σ(t -t [N ] ) + ∆(t -t [N ] ) 2 + o (t -t [N ] ) 2 ε(t [N ] ) = 0 (4.63)
To simplify the study, let's introduce the affine change of variable (4.64).

ϵ : τ → ε(τ + t [N ] ) (4.64) As t ∈ [t [N ] , t [N +1] [, we have τ ∈ [0, δt [N ] [ with τ = t -t [N ]
. Hence, we can write ε in terms of ϵ and a similar relation for the derivative as the change of variable is affine, see (4.65).

ε(τ ) = ϵ(τ -t [N ] ) ε(τ ) = ε(τ -t [N ] ) (4.65)
The ODE (4.63) can be rewritten in terms of the unknown ϵ (4.66). 

ε(t -t [N ] ) = λϵ(t -t [N ] ) + σ(t -t [N ] ) + ∆(t -t [N ] ) 2 + o (t -t [N ] ) 2 ϵ(0) = 0 ( 
ϵ(τ ) = -1 λ 3 λ 2 ∆ τ 2 + (λσ + 2∆) -1 + λτ + λ 2 τ 2 2 + λ 3 τ 3 6 + o(τ 3 ) + λτ + 1 = -1 λ 3 λ 2 ∆ τ 2 + (λσ + 2∆) - λ 2 τ 2 2 - λ 3 τ 3 6 + o(τ 3 ) = -1 λ 3 λ 2 ∆ τ 2 + λσ - λ 2 τ 2 2 - λ 3 τ 3 6 + o(τ 3 ) + 2∆ - λ 2 τ 2 2 - λ 3 τ 3 6 + o(τ 3 ) = -1 λ 3 λ 2 ∆ τ 2 - λ 3 στ 2 2 - λ 4 στ 3 6 - 2∆λ 2 τ 2 2 - 2∆λ 3 τ 3 6 + o(τ 3 ) = -∆ τ 2 λ + στ 2 2 + λστ 3 6 + 2∆ τ 2 2λ + 2∆ τ 3 6 + o(τ 3 ) = σ τ 2 2 + (λσ + 2∆) τ 3 6 + o(τ 3 ) (4.69)
The last line of (4.69) is the result we are interested in, here. Indeed, is shows that we can expect an error of order two or more between the states of the linearized system and the states of the full system. A closer look at the final expression of ϵ in (4.69) even shows that this error is of order three or more when the derivatives function of the system does not explicitly depend on the time variable. Indeed, σ was defined as the scalar version of ∂ t f

[N ] +
, which means that a null sigma is implied by a null partial derivative in terms of time. This can be locally true if f only has a term in t 2 , for instance, but it is clearly implied if t does not even appear in the expression of the function. Please note that this result is namely a consequence of the fact that the linearization (4.2), on which the COSTARICA estimator is based, takes into account the partial derivatives in the directions of the states and the input but not the time. This limitation is directly related to the industrial limitation of available partial derivatives in the systems (see table 1.2 in the first chapter).

Higher orders can be reached with σ = 0 and the extra condition ∆ = 0 that is far from being straightforward to be verified, in practice. However, we can notice the particular case of a state-space system where f is of the form f : t, x, u → Ax + Bu for given A and B matrices. In this case, the linearization (4.2) is exact and we expect to have no error. Is is consistent with our analysis as, in this case, the partial derivative of f is null in the direction of time, and ∆ [N ] , which scalar version is ∆, is null as well as f has all its second order derivatives being null (see definition of ∆ [N ] (4.58): it is a sum of second order derivatives of f ).

Corroborative empirical observations

In order to illustrate the error order determined in 4.4.1, empirical observations of error across macro-step size are made here. The measured errors will all be given by comparing the states at the end of a single macro-step in this section. For errors over a whole co-simulation, section 4.5 will treat entire co-simulations on test-cases.

First, the models will be chosen and described in 4.4.2.1 in order to highlight the result found in 4.4.1. Then, the difference of behavior between a non-linear system and its linearized version will be shown in 4.4.2.2.1; and when the linearized version is not computed with an integration but estimated (over the macro-step) with the COSTARICA estimator, the difference between this estimation and the integration of the non-linear system is presented in 4.4.2.2.2.

Model choice and design

As shown in 4.4.1.2, the error order depends on the f function of a system: in case the latter does not depend on the time variable, the error order increases. Hence, the academic Lotka-Volterra model [START_REF] Volterra | Variations and Fluctuations of the Number of Individuals in Animal Species living together[END_REF] will be used in a decoupled version where each species is represented by one system, and a modified version with a time-dependency on f will be introduce to compare the error in these two approaches.

Classical Lotka-Volterra

The classical Lotka-Volterra test-case will be used as non-linear test model here. Figure 4.2 shows how the prey system is extracted to be the system on which the observations will be made. The linearized version of (4.70) around t [init] in the way linearizations are done in COSTARICA, that is to say with repect to x and u but not t (see (4.2)), is presented in (4.71).

ẋ(t) = (α -βu(t [init] ))x(t) -βx(t [init] )u(t) + βx(t [init] )u(t [init] ) y(t) = x(t) (4.71)
We want to study the error on the prey system only, so our tests will feed both systems (4.70) and (4.71) with a stimulus signal as input that corresponds to a polynomial approximation of the amount of predator obtained by a preliminary monolithic simulation, as shown on figure 4.3. The parameters of the model and corresponding input predator stimulus signal for the prey system are given in table 4.4, where namely x(t [init] ) denotes the initial amount of prey, and u(t [init] ) the initial amount of predators. The input predator stimulus signal u for the prey system is also given in table 4.4. 

α = 0.67 β = 1.33 γ = 1 δ = 1
Isolated prey:

x(t [init] ) = 0.8 u(t [init] ) = 0.8
Input stimulus u : t → 0.8 -0.16 t -0.11008 t 2

Lotka-Volterra with time dependency

A modification of the classical Lotka-Volterra test-case will be used to introduce a dependency of the f function of the prey system to the time. The interactions between the prey and the predator are, in this modified Lotka-Volterra model, conditioned by the time of the day. The non-linear terms are multiplied by a sinusoid signal s(t) going from 10% to 100% with a period of 2.4s (which makes it analogous, with a second-to-ten-hours change of variable, to a full day). As we study the linearization at the initial time, this sinusoid signal is considered as having no phase delay (so that its time-derivative is non-null at t = 0). The equation of the isolated prey system is given in (4.72) where the state is also the output, corresponding to the amount of prey.

ẋ(t) = x(t)(α -s(t)βu(t)) y(t) = x(t) (4.72)
In (4.72), we observe that the underlying function f of the system is f : t, x, u → x(α -s(t)βu) and does depend on the time, contrary to the one of the prey system of the classical Lotka-Volterra model. Parameters α and β are the same real fixed parameters as in the non-modified model. The input u is still expected to be the amount of predators, however this input is not the same than in the previous case as far as the model modification affects the monolithic simulation as well.

The linearized version of (4.72) around t [init] , still in the way linearizations are done in COSTARICA, is presented in (4.73). ẋ(t) = (α -s(t [init] )βu(t [init] ))x(t) -βs(t [init] )x(t [init] )u(t) + βs(t [init] )x(t [init] )u(t [init] )

y(t) = x(t) (4.73)
The stimulus input signal aiming at feeding both (4.70) and (4.71) and coming from a preliminary monolithic simulation differs from the prvious case. The parameters of the model (including the sinusoid signal s) and corresponding input predator stimulus signal u for the prey system are given in table 4.5. micro-step, we want to get the error of the COSTARICA estimation over macro-steps of various sizes. Hence, one COSTARICA estimation is realized for each macro-step size and compared to the real integration of the corresponding isolated prey in its real non-linear form.

The difference of amount of prey at the end of the macro-steps have been compared and the results for different macro-step sizes are presented in figure 4.7 for the classical Lotka-Volterra case, and on figure 4.8 for the modified Lotka-Volterra case. The theoretical error orders of 3 for the classical Lotka-Volterra case and 2 for the modified Lotka-Volterra case are matched by the measurements presented on figures 4.7 and 4.8, respectively. This means that the numerical processes involved in the COSTARICA estimator computation do preserve the error order driven by the linearization process. However, when the macro-step becomes too small, these numerical effects can still deteriorate the error decreasing, see namely the left of the curve of figure 4.7.

Examples and test-cases

This section presents the use of COSTARICA on concrete cases. First of all, a simple generic equation is used to show the behavior of COSTARICA on a tough case where the linearization is not representative of the system. Then, co-simulations on modular models will be presented. The iterative co-simulation algorithm on which the COSTARICA process is injected is IFOSMONDI-JFM, see chapter 3.

One of these modular models is a simple mechanical model made of two systems connected by a force and velocity/displacement coupling. This model has been introduced in chapter 2 and is strongly inspired by test-cases in [START_REF] Busch | Continuous approximation techniques for co-simulation methods: Analysis of numerical stability and local error[END_REF] and [START_REF] Meyer | Co-Simulation: Error Estimation and Macro-Step Size Control[END_REF], and it enables us to show the different terms of the estimators. It will be presented in subsection 4.5.2. The second modular model, presented in subsection 4.5.3, consists in the non-linear Lotka-Volterra model [START_REF] Volterra | Variations and Fluctuations of the Number of Individuals in Animal Species living together[END_REF] decoupled in two non-linear systems.

For the sake of reproducibility, the equations of the latter models will be detailed.

Important remark 1: please note that, for the modular models presented in 4.5.2 and 4.5.3, the inputs u(t) of a system corresponds to the outputs y(t) of the other system and vice-versa (the output of a system is connected to the input of the other one). The formalism of this chapter was centered around one cosimulation system, however the modular models are made of several such systems connected to one another. In order to remove ambiguity, system indices have been re-introduced on u, y and x quantities in subsections 4.5.2 and 4.5.3 (mainly in 4.5.3, as the equations of the test-case in 4.5.2 have already been presented in 2.4.2).

Important remark 2: regarding the modular models of subsections 4.5.2 and 4.5.3, co-simulations with IFOSMONDI-JFM using rollback and with replacement of the rollback by the COSTARICA process have been run and compared to the monolithic system (acting as reference results) simulated with Simcenter Amesim. Please note that, in the context of industrial cases, such monolithic references can usually not be assembled as the systems are black-boxes. The models presented in this chapter have been designed on purpose so that error measurements can be done.

Tough case: time-only dependent terms

The COSTARICA estimator is based on the linearization of the considered system. The assumption is made that, in case the system is not a linear ODE, it behaves similarly to its linearization in a neighborhood of the currently reached time. The co-simulation step size must therefore be small enough to stay in an acceptable neighborhood.

An example of model involving such non-linear systems is presented further in 4.5.3. However, tough cases can arise from very simple systems without non-linearities: namely when the ODE contains, among others, a term that is completely independent of the state variable x and the input u.

Let a and b be real scalar functions of times. Let's consider the simple following system:

dx dt = a(t) y = x + b(t) (4.74)
This system is not sensitive to any input. We can either consider the system as inputs-less (with n in = 0), or as having unused inputs (with n in = 1 for instance) to avoid degenerated matrices. Fortunately, these two choices will generate the same results.

Let's consider the case where there is one unused input n in = 1, so that we can detail here all the involved matrices. An equivalent version of system (4.74) is:

dx dt = 0 • x + 0 • u + a(t) y = 1 • x + 0 • u + b(t) (4.75)
This system can be sketched in a modelling and simulation software: an example is shown on figure 4.9. Figure 4.9: Tough system with time-only dependent terms in Simcenter Amesim At any point in time, the linearization of (4.74) is the same (i.e. the directional derivatives are the same regardless of the time index), so let's use the notations A, B, C and D instead of A [N ] , B [N ] , C [N ] and D [N ] .

The state-space version (application of (4.3)) of (4.74) around a time t [N ] is

dx dt = 0 y L = x (4.76)
because the directional derivatives are

A = 0 ∈ M 1,1 (R) B = 0 ∈ M 1,1 (R) C = 1 ∈ M 1,1 (R) D = 0 ∈ M 1,1 (R) (4.77)
The linearized version (application of (4.5)) of (4.74) around a time t [N ] is dx dt = a(t [N ] )

y L = x (4.78)
We notice that the state-space system (4.76) has a significant lack of information compared to (4.74), due to the terms that are transparent in the linearization regarding the directional derivatives. On its side, the linearized system (4.78) also has a lack of information (dynamical behavior of a is hidden and b completely disappeared).

Let's detail the COSTARICA estimator on a general co-simulation step [t [N ] , t [N +1] [ to see the consequences of this information loss.

First, we have:

   G(s) = C(sI -A) -1 B + D = s -1 • 0 + 0 = 0 P (s) = C(sI -A) -1 = s -1 R(s) = C(sI -A) -1 /s = s -2
(4.79) so, regarding the inverse Laplace matrices, we have:

                                       G V = L -1 (G ⊗ Ū T )(δt [N ] ) = 0 P V = L -1 (P )(δt [N ] ) = 1 R V = L -1 (R)(δt [N ] ) = δt [N ] G D = d( ť → 0) dt (δt [N ] ) = 0 P D = dH dt (δt [N ] ) = 0 R D = d( ť → ťH( ť)) dt (δt [N ] ) = 1 (4.80)
where H denotes the Heaviside function, and where the size of G V and G D is 1 × 1 × n where n does not matter as it is the maximum polynomial degree of an unused input. Whatever the value of n is, G V and G D are filled with zeros.

Finally, the expression of the linear parts of the estimators for the output value and derivative are:

∀m ∈ [[0, m max (N )]],    [m] ŷ[N+1] L = x[N] + δt [N ] a(t [N ] ) [m] ŷ[N+1] L = a(t [N ] ) (4.81)
In other words, the linear part of the outputs estimator exactly acts as a first-order hold estimator (we would have obtained a zero-order hold with a state-space representation (4.76) instead of (4.78), for instance if we wouldn't have had access to the state derivatives).

Regarding the control part of the estimator of the output, if a zero-order hold is used (see (4.10)), the estimator is:

ŷ[N+1] C = ỹ[N] C = ỹ[N] -C x[N] + D [mmax(N -1)] ũ[N-1] (t [N ] ) = ỹ[N] -x[N] = x[N] + b(t [N ] ) -x[N] = b(t [N ] ) (4.82)
Finally, summing the terms (see (4.8)), the COSTARICA estimator for the output is:

[m] ŷ[N+1] = [m] ŷ[N+1] L + ŷ[N+1] C = x[N] + δt [N ] a(t [N ] ) + b(t [N ] ) (4.83)
which exactly corresponds to a first-order hold estimation (recall: in (4.74), we have:

y = x + b(t))
where the slope is only drived by the slope of the state. Using a higher order estimator for the control part would have catched a slope made of one contribution by the state's slope, and one given by the first-order approximation of b function's slope over the co-simulation step.

Regarding the estimation of the derivative of the output, either the control term ŷ[N+1]

C will be added to the linear term [m] ŷ[N+1] L = a(t [N ] ) (see (4.81)), or, in case the state-spare representation was used only, the control term will be the only one that matters (as [m] ŷ[N+1] L would be 0 in that case). In the first case (normal case, all required capabilities in table 4.1 are satisfied and thus a real linearization can be used instead of a state-space approximation only, the estimator of the derivative of the output will be able to take into account both the a(t [N ] ) part (instantaneous derivative of the state), and the derivative of the b(t) part in case the estimation is done with a few past values ỹ

[N] C , ỹ[N-1] C , .
.. This tough case shows that, even when the system is different from its linearization due to lost information (difference between (4.74) and (4.78)), the COSTARICA estimator is not worse than a first-order hold estimation (as it reproduces it). Even on a state-space representation, where the lack of information is even more significant (difference between (4.74) and (4.76)), the COSTARICA estimator is not worse than a zero-order hold estimation (as it reproduces it).

Please note that, while on the one hand the main drawback of such estimations is that the inputs are not taken into account (m does not appear in final expression of (4.83)), on the other hand this example has no inputs (or an unused one, equivalently) so it does not matter in this particular case. If the system had inputs (and used them), the B and D matrices wouldn't have been null, and thus, the estimator would have taken them into account.

Mechanical bodies with behavior change

This subsection considers the linear model presented in chapter 2, in 2.4.2 more precisely.

Test-case presentation

Since the model has already been introduced in 2.4.2 (see page 73), please refer to that subsection for test-case details (including model parameters and equations).

Results

As explained in the remark of the introduction of section 4.5, co-simulations with IFOSMONDI-JFM using rollback and with replacement of the rollback by the COSTARICA process have been run and compared to the reference monolithic system presented in figure 2.21.

A fixed-step version of the IFOSMONDI-JFM method has been used, so that errors can be computed for various values of the co-simulation step size. The following results use the "Anderson" version of IFOSMONDI-JFM, with an epsilon of 1 • 10 -6 . Figure 4.10: Comparison of the convergence graphs of IFOSMONDI-JFM method on the mechanical testcase depending on the way to iterate on the co-simulation steps Figure 4.10 shows that both the rollback and the COSTARICA process make IFOSMONDI-JFM method reach an order 3 of convergence on the characteristic variable of the modular model: x R . Regardless of the numerical effects for small values of the co-simulation step size, the estimators involved in the COSTARICA process are very accurate which enables the IFOSMONDI-JFM co-simulation method to be unaffected by the rollback avoidance. Indeed, both systems (S 1 ) and (S 2 ) (see (2.55) and (2.56)) are linear. This makes their linearizations (4.2) exact (and, in this particular case, their state-space representation (4.3) do represent them exactely as well).

The left body's displacement (position) is indeed very close to the monolithic reference in both cases (rollback and COSTARICA), as shown on figure 4.11. Therefore, co-simulations on this test-case with an iterative co-simulation method could have been performed even if the systems were not capable of rollback, thanks to the COSTARICA process, and without loss of accuracy. System (S 2 ) represents the predator. A sketch of it is presented on figure 4.14. The population of predator, denoted by P , is the single state variable of (S 2 ). It is also the output. The single input to this system is the population of prey. The γ and δ parameters are the natural death rate and the growth rate upon predator (due to predation) respectively. The (non-linear) equations of (S 2 ) are given in (4.85). 

Results

As for the previous test-case, IFOSMONDI-JFM has been used as co-simulation method to compare the COSTARICA process to the rollback usage. The reference results are the ones obtained from the simulation of the monolithic system of figure 4.12.

A fixed-step version of the IFOSMONDI-JFM method has been used, as well as the "Anderson" version of the algorithm. The epsilon parameter (see 3.3.5) has been set to 1 • 10 -6 . Figure 4.15 shows that the COSTARICA process injected in IFOSMONDI-JFM does not achieve the same accuracy than the real usage of the rollback. The fact that the estimators used in COSTARICA are based on the systems' linearizations (4.2) explains the higher error than the cases where the successive iterations of IFOSMONDI-JFM are done with the real systems' integrations. The COSTARICA on the state-space representation (called "COSTARICA on SSR only" on the figure) is what is obtained when the systems are not able to provide the time-derivatives of the state variables (assumption (4.4) thus has to be made, and state-space representation (4.3) has to be used instead of full linearization 4.2). Nevertheless, a method of order two (measured) is obtained, which allows any desired precision to be reached by simply refining the co-simulation step size. In case the systems are not capable of rollback, this example shows that the IFOSMONDI-JFM method (or any other iterative co-simulation method [SLL16a; VSDV18; Kra+21] ...) can be used thanks to COSTARICA.

Regarding the results (proportion of prey and proportion of predator), figure 4.16 shows that the results are satisfactory even on the co-simulation replacing the rollback usage by the COSTARICA estimators. The differences between the different co-simulations can be observed more easily on the zoom on figure 4.17. 

Conclusions regarding the COSTARICA technique

The introduced COSTARICA process enables to use iterative co-simulation methods on modular models made of interconnected systems even in the case where not every of these systems is capable of rollback. Through the use of estimators of the local behavior of the systems, the iterative part of the co-simulation methods prepares the final integration on every co-simulation step.

These estimators are based on the local linearizations of the non-rollback-capable systems at the lastly reached time, which might be more or less accurate depending on each system' nature. In case a system is linear or nearly linear, the estimators of COSTARICA can reach a precision similar to the one that would have been obtained by a real integration: in that case, the rollback replacement by the COSTAR-ICA process does not (or slightly) affect the accuracy of the co-simulation. Otherwise, in case a system is non-linear, the estimators of COSTARICA only generate approximations of the behavior of the system, and the co-simulation step should not be too large in order to prevent this approximation from causing an unreasonable error. It is anyway worth it to use this process on non-rollback-capable systems as, in the worst case, the first-order hold behavior behavior is recreated (or zero-order hold in case the states time-derivatives cannot be retrieved), and in the better cases extra information about the behaviors of the systems will enable the iterative co-simulation method to compute a solution on each step that couldn't have been obtained due to the rollback requirement.

Enhancement will be tacked in further work of the authors, such as the use of the final guess of the last iteration of the co-simulation method with the COSTARICA process in a comparison involving the result of the genuine integration. Such an error estimation could be used in a co-simulation step size controlling strategy, as the whole chapter was written without supposing that the co-simulation step size was constant. A criterion estimating the urgency to reevaluate the matrices of the linearizations of the systems can also be developed to save numerical computations.

As the linear algebra operations required by the COSTARICA process may be costly in terms of computational time, further work will focus on acceleration of this process. The main bottlenecks are: the Misra & Patel method for computing the G, P and R transfer functions [START_REF] Misra | Computation of Transfer Function Matrices of Linear Multivariable Systems[END_REF], the underlying Hessenberg decomposition [START_REF] Golub | Matrix Computations. Fourth[END_REF], and the tensor-matrix products required to get the estimators. Among ideas for performances enhancement, we can cite: the parallel application of the Misra & Patel method, or even its replacement by an approximation of the transfer functions using the efficient BlockAAA method for rational interpolation [GG21] that we can apply on lower degrees, and the usage of sparse representations of tensors and matrices in the Hessenberg decomposition process and in the tensor-matrix product necessary to get the output estimations.

En effet, dans ce cas, non seulement on peut toujours utiliser la méthode de cosimulation itérative IFOSMONDI (ou toute autre méthode), mais il est possible de revenir dans la motivation première de la méthode afin de court-circuiter la partie itérative. Une estimation via COSTARICA est réalisée par l'application d'une relation connue entre les entrées et les estimateurs des sorties d'un système (cette relation est expliquée en détail dans le chapitre 4). Par conséquent, dans la formulation de la fonction de couplage d'IFOSMONDI, la fonction de simulation (do-a-step, dans sa version étendue couvrant à la fois la calibration des entrées et l'intégration) peut être remplacée par cette relation connue. Par conséquent, la fonction dont on recherche le zéro est entièrement connue, et il n'est alors plus nécessaire d'utiliser une méthode de type JFM ni de tout autre processus itératif pour trouver le zéro recherché : il est possible de le trouver directement. Cette résolution produit des expressions pour les entrées de tous les systèmes, et ces derniers ne peuvent intégrer qu'une seule fois le macro-pas avec ces entrées. Cette intégration réelle (unique pour chaque macro-pas) donne des résultats d'autant plus proches des résultats prédits (pour satisfaire la contrainte de couplage) que les estimateurs COSTARICA sous-jacents sont corrects, c'est-à-dire aussi proches que les systèmes se comportent de manière similaire à leur linéarisation (COSTARICA étant basé sur ces linéarisations). Ce chapitre détaille la transformation de la formulation du problème sousjacent de recherche de zéro d'IFOSMONDI (dans sa version JFM) impliquée par l'utilisation des estimateurs COSTARICA sur chaque système. Il est ensuite démontré que le problème résultant est un système linéaire tensoriel à résoudre. Enfin, des résultats sont présentés sur des cas tests démontrant comment MISSILES hérite profondément des propriétés de robustesse numérique de la méthode IFOSMONDI tout en étant plus pratique en termes de robustesse logicielle grâce à l'utilisation de COSTARICA.

Summary of the chapter

In the previous chapters, we introduced an iterative co-simulation algorithm (IFOSMONDI) with a high numerical robustness but a low software robustness (due to the rollback capability requirement on the systems). Then, we enhanced the software robustness by introducing the COSTARICA process, enabling to relax the rollback requirement in order to handle composite systems for which not every system is rollback-capable. The idea of this chapter is to go a little further in this idea of increasing an aspect of the robustness without affecting too much the other.

The motivation of the MISSILES method is the answer to the following question: what would happen if IFOSMONDI co-simulation method is used on a composite system where each and every system uses the COSTARICA process to overcome the fact that they are not rollback-capable? Indeed, in that case, not only we can still use the IFOSMONDI (and any other) iterative co-simulation method, but it is possible to jump back in the motivation of the method in order to shortcut the iterative part. COSTARICA estimations is a known relation between the inputs and the estimated outputs (this relation is explained in details in chapter 4). Therefore, in the formulation of the callback of IFOSMONDI, the modified extended step function can be replaced by this known relation. Finally, the callback is fully known, and we no more need a JFM or any other iterative process to find the solution of the zero-finding problem: it is possible to solve it directly. This resolution produces expressions for the inputs of all systems, and the latter can integrate only once the step whith these inputs. This real integration (single for each macro-step) gives results as close to the predicted ones (for satisfying the coupling contraint) as the underlying COSTARICA estimators were correct, that is to as close as the systems where behaving closely to their linearization. This chapter details the transformation of the formulation of the underlying zerofinding problem of IFOSMONDI (in its JFM version) implied by the usage of COSTARICA estimators on every system. Then, it is shown that the resulting problem is a tensorial linear system to solve. Finally, results are shown on test-cases demonstrating how MISSILES deeply inherits the numerical robustness properties of the IFOSMONDI method while being more convenient in terms of software robustness thanks to the COSTARICA usage.

Introduction

Chapter 3 showed the critical role played by the rollback capability: designing accurate and reliable iterative co-simulation methods rely on the expectation that all systems of a given composite system have it. These methods use the results of several integrations on a given co-simulation step in order to converge to a reliable solution regarding the coupling quantities.

The rollback being a rare capability in practice, iterative co-simulation methods can usually only be applied on very academic test-cases and most of the industrial modular models cannot benefit from the advantages of the iterative co-simulation methods due to the involved non-rollback-capable systems. Moreover, model-based methods are usually challenging to apply on black-boxed systems when the structure of the circuit inside of the system is hidden (including the equations). In order to avoid being restricted to non-iterative and non-disclosing co-simulation methods on industrial systems, the COSTARICA estimator based on more common capabilities than the rollback has been developed and presented in chapter 4. It can be an alternative to use iterative algorithms such as the IFOSMONDI-JFM to predict the outputs before performing the single real integration of the systems, while avoiding the rollback requirement.

Furthermore, in the case where each system in a modular model uses COSTARICA, the underlying problem of satisfying the coupling constraints that the IFOSMONDI-JFM method solves can be transformed into a global linear problem involving the expressions of the COSTARICA estimators on all systems. The solution of this global linear system gives directly the expressions of the coupling quantities. This chapter presents MISSILES, the co-simulation method consisting in building and solving this linear system to obtain coupling quantities in the real simulation of the systems at each co-simulation step.

The chapter is structured as follows: a numerical toolbox is quickly gathered using the concepts introduced in the previous chapters (namely in the formalism in 1.3, in the presentation of IFOSMONDI in chapter 3 and in the introduction of the COSTARICA technique in chapter 4). These recalls and reformulations are here for the sake of easing the read, as concepts introduced in various different parts of this manuscript are combined together in MISSILES. Then, the MISSILES method is introduced and the procedure is detailed both regarding the non-iterative co-simulation method and regarding the practical implementation. Finally, the behavior of MISSILES is shown on two test-cases before a discussion about the outcomes and the future of the method to conclude.

Preliminary numerical toolbox

This section recalls, without entering into the details, among the notions introduced in the previous chapters, the ones that will be mandatory tools to build up the MISSILES co-simulation method.

COSTARICA estimator

The COSTARICA process, introduced in chapter 4, is a modification applicable to any co-simulation method requiring the rollback as far as:

• the inputs to provide to the systems can be represented by polynomials of a known maximum degree n ∈ N (we thus expect that ∀k ∈

[[1, n sys ]], µ k ⩾ n),
• non-rollback-capable systems have the "Retrieve state values and derivatives" and the "Retrieve linearization" capabilities (see table 1.2), less rare than the rollback in practice, and • the systems' equations are ODEs (current ongoing developments tend to extend this restrictions to DAEs, differential algebraic equations).

When both output values and derivatives are required, this modification consists in replacing calls to the function S

[N ] k (see 1.3.5.5.2) on every non-rollback-capable system by estimations of it that do not require to integrate the system. By integrating such systems once the definitive inputs for all of them are known, the resulting method does not require the rollback anymore.

The COSTARICA estimators (denoted by a hat symbol ˆ) for output values and time-derivatives are the following ones: regarding a system (S k ), at a step [t [N ] , t 

[N+1] k = ŷL [N +1] k + ŷC [N +1] k ∈ R n out,k ŷ[N+1] k = ŷL [N +1] k + ŷC [N +1] k ∈ R n out,k (5.1)
where ŷC are called the linear parts and can be computed with:

ŷL [N +1] k = G V [N ] k Ξ[N] k + P V [N ] k x[N] k + R V [N ] k fC [N ] k ŷL [N +1] k = G D [N ] k Ξ[N] k + P D [N ] k x[N] k + R D [N ] k fC [N ] k (5.2) where G V [N ] k and G D [N ] k are tensors of size n out,k × n in,k × (n + 1), where P V [N ] k , P D [N ] k , R V [N ] k and R D [N ] k
are matrices of size n out,k × n st,k , and where fC

[N ] k is a vector of size n st,k . All seven depend on the current macro-step size δt [N ] , on the values at t [N ] of the inputs, states and state derivatives, and the linearization of the system (S k ) at time t [N ] in the form of the matrices referred to as A

[N ] k , B [N ] k , C [N ] k and D [N ] k
on figure 1.10. Their expressions are given in (5.3) (5.4) (5.5) (5.6) (5.7) (5.8), and (5.9) yet further computation details are given in chapter 4. [N ] (5.3) [N ] (5.4)

G V [N ] k = L -1   s → C [N ] k (sI -A [N ] k ) -1 B [N ] k + D [N ] k ⊗ p! s p+1 p∈[[0,n]] T   δt
G D [N ] k = d dt L -1   s → C [N ] k (sI -A [N ] k ) -1 B [N ] k + D [N ] k ⊗ p! s p+1 p∈[[0,n]] T   δt
P V [N ] k = L -1 s → C [N ] (sI -A [N ] ) -1 δt [N ]
(5.5)

P D [N ] k = d dt L -1 s → C [N ] (sI -A [N ] ) -1 δt [N ] (5.6) R V [N ] k = L -1 s → 1 s C [N ] (sI -A [N ] ) -1 δt [N ] (5.7) R D [N ] k = d dt L -1 s → 1 s C [N ] (sI -A [N ] ) -1 δt [N ]
(5.8)

Regarding the column vector fC

[N ]
k , it is given by: fC

[N ] k = lim t→t [N ] t<t [N ] f k t, x [N -1] k (t), u [N -1] k (t) -A [N ] x [N -1] k (t) -B [N ] u [N -1] k (t) = f [N ] k -A [N ] x[N] k -B [N ] ũ[N] k (5.9) In (5.2), Ξ[N]
k is a matrix of size n in,k × (n + 1) and corresponds to the coefficients of the time-shifted polynomials of the input variables u

[N ] k . On the whole chapter, the polynomial degree will be the only dimension in the matrices and tensors whose indexing starts by zero (instead of 1, like the system index for instance), so that the p th element correspond to the monomial of degree p with p ∈ [[0, n]]. The coefficients of the polynomials of the input variables u k can be written as:

Ξ [N ] k = a [N ] j,p j∈[[1,n in,k ]] p∈[[0,n]] where ∀j ∈ [[1, n in,k ]], u [N ] k,j = u [N ] k j = t → n p=0 a [N ] j,p t p ∈ R n [t]
(5.10) as the inputs are considered polynomial, with a maximum degree of n. However, the Ξ[N] k required in (5.2) for the COSTARICA estimators is slightly different than Ξ

[N ] k , due to a time-shift.

Time shift

The Ξ[N] k matrix in (5.2) is filled with the coefficients of the time-shifted polynomials of the input variables:

Ξ[N] k = ǎ[N] j,p j∈[[1,n in,k ]] p∈[[0,n]]
(5.11)

where the ǎ[N] j,p are the coefficients of ǔ

[N] k , the time-shifted inputs (∀ ť ∈ [0, δt [N ] [, ǔ[N] k ( ť) = u [N ] k (t [N ] + ť)), as follows: ∀j ∈ [[1, n in,k ]], ǔ[N] k,j = ǔ[N] k j = ť → n p=0 ǎ[N] j,p ťp ∈ R n [t]
(5.12)

These coefficients can be computed using formula (5.13) proven in 4.3.2.

∀j ∈ [[1, n in,k ]], ∀p ∈ [[0, n]], ǎ[N] j,p = n q=p a [N ] j,q ( q p ) (t [N ] ) q-p (5.13)
The time-shift coefficient transformation (5.13) can be written as a tensor of order 4 of size n in,k × (n + 1) × n in,k × (n + 1), denoted by C

[N ] k and satisfying:

Ξ[N] k = C [N ] k Ξ [N ] k (5.14)
Such a tensor is defined by:

C [N ] k = δ j1,j2 • 1 q⩾p • ( q p ) (t [N ] ) q-p j1∈[[1,n in,k ]] p∈[[0,n]] j2∈[[1,n in,k ]] q∈[[0,n]]
(5.15)

where δ j1,j2 denotes the Kronecker coefficient: 1 in case j 1 = j 2 , and 0 otherwise. As the coefficients of a single time-shifted input of index j only depends on the original input of index j and none other inputs, C

[N ] k is a diagonal tensor with respect to its first and third dimensions. This is precisely the role of the Kronecker coefficient in (5.15), and the diagonal elements with respect to these dimensions is the following matrix:

∀j ∈ [[1, n in,k ]], (C [N ] k ) j,p,j,q p∈[[0,n]] q∈[[0,n]] =      ( 0 0 ) (t [N ] ) 0-0 ( 1 0 ) (t [N ] ) 1-0 • • • ( n 0 ) (t [N ] ) n-0 0 ( 1 1 ) (t [N ] ) 1-1 • • • ( n 1 ) (t [N ] ) n-1 . . . . . . . . . . . . 0 0 • • • ( n n ) (t [N ] ) n-n     
(5.16)

Hermite interpolation

At some point in the method, a Hermite interpolation will be required by the IFOSMONDI-JFM method for smoothness purpose, see 3.3.1.2. The interpolation has to occur on two points in time, with values and first-order time-derivative constraints. The aim of this subsection is to give a linear relationship between the value and time-derivative contraints on one of the points and the coefficients of the Hermite interpolating polynomial. Let's consider the one-dimensional Hermite interpolation introduce with F 3 ORNITS method in 2.2.2. It is calibrated on 2 generic points at times t 1 and t 2 (with t 2 ̸ = t 1 ), with values v 1 and v 2 and derivatives v1 and v2 respectively:

H : R → R t → H(t) H(t 1 ) = v 1 dH dt (t 1 ) = v1 H(t 2 ) = v 2 dH dt (t 2 ) = v2
(5.17) Such polynomial has the following expression (5.18). We use, as mentionned in (2.2.2), equivalently the notation with and without the calibrating points as arguments.

H(t) = H t1 t2 , ( v1 v2 ) , v1 v2 , t = a 3 t 3 + a 2 t 2 + a 1 t + a 0 (5.18)
where the coefficients of H have the following linear expressions with respect to v 2 and v2 constraints:

a 3 = 1 (t2-t1) 2 -2 t2-t1 1 v 2 v2 + 1 (t2-t1) 2 v1 + 2v1 t2-t1 a 2 = 1 (t2-t1) 2 1 + 2(t2+2t1) t2-t1 -(t 2 + 2t 1 ) v 2 v2 + 1 (t2-t1) 2 v 1 -(t 1 + 2t 2 )( v1 + 2v1 t2-t1 ) a 1 = 1 (t2-t1) 2 t 1 -4t2 t2-t1 -2 -2t1 t2-t1 t 1 (2 + t 1 ) T v 2 v2 + 1 (t2-t1) 2 t 2 2 ( v1 + 2v1 t2-t1 )t 1 -v 1 + t 2 ( v1 + 2v1 t2-t1 ) a 0 = 1 (t2-t1) 2 t 2 1 (1 + 2t2 t2-t1 ) -t 2 1 t 2 v 2 v2 + 1 (t2-t1) 2 t 2 2 v 1 -( v1 + 2v1 t2-t1 )t 1 (5.19) Finally, we can write:     a 0 a 1 a 2 a 3     = (A V elem |A D elem ) v 2 v2 + B elem (5.20)
where (A V elem |A D elem ) is the 4 × 2 matrix concatenation of the 4 × 1 column vectors A V elem and A D elem , and where A V elem , A D elem and the third 4 × 1 column vector B elem have the following expressions:

A V elem = 1 (t2-t1) 2         t 2 1 (1 + 2t2 t2-t1 ) t 1 -4t2 t2-t1 -2 -2t1 t2-t1 1 + 2(t2+2t1) t2-t1 -2 t2-t1         , A D elem = 1 (t2-t1) 2     -t 2 1 t 2 t 1 (2 + t 1 ) -(t 2 + 2t 1 ) 1     B elem = 1 (t2-t1) 2       t 2 2 v 1 -( v1 + 2v1 t2-t1 )t 1 t 2 2 ( v1 + 2v1 t2-t1 )t 1 -v 1 + t 2 ( v1 + 2v1 t2-t1 ) v 1 -(t 1 + 2t 2 )( v1 + 2v1 t2-t1 ) v1 + 2v1 t2-t1       (5.21)

Connecting systems into a modular model

The connections will be formalized using the connection matrix Φ defined in 1.3.3.2.

IFOSMONDI-JFM's underlying non-linear problem

The IFOSMONDI-JFM co-simulation method is based on the following principle: on each macro-step [t [N ] , t [N +1] [, the inputs are defined so that their value and time-derivative at t [N +1] correspond to the connected outputs' value and time-derivative at t [N +1] too (hence, after the integration of the systems on this step). This target, coupling condition both on the interface values and derivatives, is presented (5.22).

     u [N ] (t [N +1] ) = Φ T ỹ[N+1] du [N ] dt (t [N +1] ) = Φ T ỹ[N+1]
(5.22)

As the outputs and their derivatives are given, at t [N +1] , by the function S

[N ] k on every system (for k ∈ [[1, n sys ]]), and as this function requires the expressions of all inputs, this problem is implicit. IFOSMONDI-JFM uses Newton-like methods to solve this implicit problem, see details in chapter 3. As each evaluation of the S

[N ]

k functions with different inputs require an integration of the systems, the method requires the rollback capability (see 1.3.7).

To solve the coupling constraint (5.22), a Newton-like zero-finding method is used in IFOSMONDI-JFM. The problem formulation requires the definition of a callback function called γ τ in chapter 3, equation (3.13). The latter relies on a ζ k function (3.8) for every system, and that does different polynomial input calibrations before integrating the system, depending on the iteration and macro-step being done.

In this numerical toolbox, we will only consider the "normal" case (not first iteration, not first macrostep, ...), id est the case in the bottom-right hand corner of figure 3.7. This particular case leads to a specific version a the ζ k function: they do a Hermite interpolation of the last known values from the previous macro-step, and the values at which the callback γ τ has been called.

Hence, we introduce the alternative notation η [N ] here, equivalent to γ τ at the macro-step τ = [t [N ] , t [N +1] [, and in the "normal" call context (case denoted as "Subcase 2.1: Following a previous classical step" in 3.3.2.2.1). Moreover, as we exactely know the inputs calibration rule in this case, we can use the Hermite interpolation operator from 5.2.3. This is presented in (5.23).

η [N ] : R nin,tot × R nin,tot → R nin,tot × R nin,tot ũ ũ

→ η [N ] ũ ũ

with (5.23) It is also possible to apply the rearrangement operator in the expression of (5.23) to get the form (5.24) that will be more convenient for the upcoming calculations.

η [N ] ũ ũ = ũ ũ -Φ T 0 0 Φ T R y         S [N ] 1 x[N] 1 , t → H t [N ] t [N +1] , ũ[N ] 1,i (E u 1 ũ) i , ũ[N ] 1,i (E u 1 ũ) i , t i∈[[1,n
η [N ] ũ ũ = ũ ũ -Φ T 0 

0 Φ T                     S [N ] 1 x[N] 1 ,
                   
(5.24) Please note that, both in (5.23) and in (5.24), the zeros in the composite connection matrix denotes the null matrix 0 nin,tot×nout,tot of size n in,tot × n out,tot .

Hence, once the zero of η [N ] is found by the zero-finding method, it is used to define u [N ] with the Hermite interpolation ((5.24), with details on H in 5.2.3). This u [N ] satisfies the coupling constraint (5.22), and the validated inputs are C 1 in t [N ] .

More details about the underlying computations are given in chapter 3, namely for the first macro-step and the starting point of the zero-finding of γ τ (the general version of cthe callback, where η [N ] is just a particular case) on each new macro-step.

MISSILES method

Based on the tools recalled in 5.2 and on the willingness to get benefit from the benefits of the IFOSMONDI-JFM method without the rollback capability requirement, we define in this section the MISSILES cosimulation method, standing for Mock Iteration for Solving Smooth Interfaces with Linear Estimations of Systems.

General idea

Of course, a first idea could be to simply replace the non-rollback capable systems by a COSTARICA (it is indeed the aim of the COSTARICA process). However, in case every system is replaced by a COSTARICA, the relationship between the inputs at a given macro-step and the outputs at the end of this macro-step is known (cf. subsection 5.2.1). We can therefore replace the occurrences of S k ) for all systems k ∈ [[1, n sys ]] in the expression of the callback function η [N ] (5.23) (5.24) (the function whose zero is searched) and use the resulting expression of the obtained function to directly find its zero. This modified version of η [N ] will be denoted by η

[N ]
MISSILES and is presented in (5.25).

η [N ] MISSILES : ũ ũ → ũ ũ -Φ T 0 0 Φ T                G V [N ] 1 Ξ[N] 1 + P V [N ] 1 x[N] 1 + R V [N ]
1 fC

[N ]

1 + ŷC

[N +1] 1 . . . G V [N ] nsys Ξ[N] nsys + P V [N ] nsys x[N] nsys + R V [N ]
nsys fC

[N ] nsys + ŷC

[N +1] nsys G D [N ] 1 Ξ[N] 1 + P D [N ] 1 x[N] 1 + R D [N ]
1 fC

[N ]

1 + ŷC

[N +1] 1
. . . nsys matrices. This relationship will be detailed further in 5.3.2.

MISSILES removes the iterative part of the IFOSMONDI-JFM method and replaces it by a single resolution (detailed further in this chapter) to satisfy the coupling constraint. However, this resolution is based on the COSTARICA estimators on each system (the "Linear Estimations of Systems" part of MISSILES' acronym comes from here). Therefore, this is not really an iteration on the systems, but a single fake iteration as the systems are not integrated at this stage (the "Mock Iteration" part in MISSILES' acronym comes from here).

Once this resolution is done (zero-finding of η

[N ] MISSILES ), the input values and time-derivatives satisfying the coupling constraint (on the COSTARICA surrogates) are use together with the input values and timederivatives at the end of the previous macro-step (i.e. beginning of the current macro-step) to directly define the input expressions u [N ] . The systems can then be integrated on the macro-step [t [N ] , t [N +1] [ parallely with their respective inputs. The whole process is shown on figure 5.1. Three main characteristics of the MISSILES method can be noticed so far:

• Synchronicity: The communication times (t [N ] ) N ∈[[0,Nmax]] are the same on every system. The method is synchronous, and this characteristic is directly inherited from the link between MISSILES and the IFOSMONDI method. • Explicit nature: The polynomial inputs of all systems are predicted on [t [N ] , t [N +1] [ when time t [N ] is reached. This prediction is then used in every system for their single (first and last on this very macro-step) integration on the current macro-step. The rollback capability is therefore not required. • Parallelizability: The stage where the systems have to be integrated for real can be done in parallel in the sense that the inputs for each system can be computed using only data known when all systems have been simulated until time t [N ] , contrary to Gauss-Seidel-based co-simulation methods [START_REF] Burrage | Parallel and sequential methods for ordinary differential equations[END_REF] or others like [START_REF] Franz | Optimal Trigger Sequence for Non-Iterative Co-simulation[END_REF].

From the required capabilities point of view, the rollback, mandatory in the case of IFOSMONDI-JFM, is no more required on MISSILES. However, the linearization and the state variables retrievals are now required due to the use of the COSTARICA estimators, despite these capabilities were not required in the case of the IFOSMONDI-JFM method. However, as the rollback is way scarser than the ability to retrieve the linearization and the state variables in practice, we can reasonably stand that the MISSILES co-simulation algorithm has a better software robustness than IFOSMONDIs methods, and is therefore more usable in an industrial context. Table 5.1 sums up the required available interactions in the co-simulation systems. Each interaction is referred to by its designation in table 1.2. The method can run in fixed-step

Provide inputs Yes

Basic interaction required for all co-simulation methods

Provide timedependent inputs Yes

As in IFOSMONDI-JFM, the inputs must be C 1 at the communication times, satisfy the coupling constraint at t [N +1] on values and timederivatives, and at t [N ] (de facto, due to their C 1 character). Constant functions cannot do so on non-constant signals.

Do a step Yes

Basic interaction required for all co-simulation methods

Retrieve outputs Yes

Basic interaction required for all co-simulation methods

Retrieve outputs time-derivatives No

Despite IFOSMONDI-JFM needs to know the outputs time-derivatives to evaluate the coupling constraint, the COSTARICA estimators can estimate them based on GD 

Retrieve state values and derivatives Yes

The substitution of the S 

Retrieve linearization Yes Rollback No

Contrary to evaluations of η [N ] , the evaluations of η

[N ]

MISSILES do not require to integrate the systems. The zero finding process hence does not require to roll back the systems to re-evaluate the function.

The remaining question is: How to find the zero of η

[N ] MISSILES ? Indeed, on figure 5.1, the stage called "find zero of this application" hasn't been discussed so far. Following subsection is dedicated to the assembly of a linear problem which solution is the zero of η

[N ] MISSILES .

Global linear problem

Let's gather the elements introduced previously in section 5.2 in order to find the zero of η MISSILES function is defined on COSTARICAs and thus the solution of a zero-finding on this function is an estimation, as the function itself is an estimation of η [N ] . By definition of η

[N ] MISSILES in (5.25), we have:

η [N ] MISSILES   ⋆ û[N+1] ⋆ û[N+1]   = 0 ⇔   ⋆ û[N+1] ⋆ û[N+1]   =   Φ T 0 0 Φ T                  G V [N ] 1 Ξ[N] 1 + P V [N ] 1 x[N] 1 + R V [N ]
1 fC

[N ]

1 + ŷC

[N +1] 1 . . . G V [N ] nsys Ξ[N] nsys + P V [N ] nsys x[N] nsys + R V [N ]
nsys fC

[N ] nsys + ŷC

[N +1] nsys G D [N ] 1 Ξ[N] 1 + P D [N ] 1 x[N] 1 + R D [N ]
1 fC

[N ]

1 + ŷC

[N +1] 1
. . . Therefore, to generate the solution to (5.26), the outputs solutions must write:

  ⋆ ŷ[N+1] ⋆ ŷ[N+1]   =                G V [N ] 1 Ξ[N] 1 + P V [N ] 1 x[N] 1 + R V [N ]
1 fC

[N ]

1 + ŷC

[N +1] 1 . . . G V [N ] nsys Ξ[N] nsys + P V [N ] nsys x[N] nsys + R V [N ]
nsys fC

[N ] nsys + ŷC

[N +1] nsys G D [N ] 1 Ξ[N] 1 + P D [N ] 1 x[N] 1 + R D [N ]
1 fC

[N ]

1 + ŷC

[N +1] 1
. . . k mentioned in step 2 are calibrated with the Hermite interpolation (5.24) (the latter acts on the total input vector, yet we can do it system by system as subparts of the vector u [N ] , see (1.8)). 4. The coefficients of the inputs can be expressed linearly with respect to the input constraints at t [N +1] of the Hermite interpolation mentioned in step 3. This linear expression has been introduced in subsection 5.2.3. The matrix and vector or this linear expression only depend on the times and the input constraints at t [N ] , known and independent of

  ⋆ ŷ[N+1] ⋆ ŷ[N+1]
  due to the C 1 condition.

5. Finally, the input constraints at t [N +1] mentioned in step 4 can be obtained from the output constraints at the same time, that is to say

  ⋆ ŷ[N+1] ⋆ ŷ[N+1]
  , using the dispatching relationship (5.27).

The application of these steps to equation (5.28) gives: where the underline tensors and matrices are composition of previously introduced by-system quantities. These global operators are described below using by-system operators introduced in section 5.2. Please note that, despite the maximum input polynomial degree is n = 3 (due to the Hermite interpolation shown in 5.2.3), is it still written as n below for the sake of genericity. Let's recall that the degree is the only dimension in the tensors that starts by zero so that the p th element correspond to the monomial of degree p.   RD [N ]   is a matrix of size 2 n out,tot ×n st,tot . It represents the effect of the difference fCk k∈ [[1,nsys]]

GV [N ] GD [N ]
between the linearization and the state-space representation of the systems (see 4. 

fC

[N ] = fC

[N ]
1,1 , ... , fC (5.36) A [N ] is a tensor of order 3 and of size n in,tot ×(n+1)×2n in,tot , and B [N ] is a matrix of size n in,tot ×(n+1). elem evaluations. These quantities are defined in (5.37) from concrete applications on [t [N ] , t [N +1] [ of the quantities introduced in (5.20) (5.21) in subsection 5.2.3.

With

t 1 = t [N ] t 2 = t [N +1] we define (5.37) With (5.37), we apply the generic problem (5.17) to the case (5.24), where constraints v 2 and v2 in (5.17) represent the solution of (5.26) we are looking for. Global composite tensor A [N ] is then defined in (5.38) and global matrix B [N ] in (5.39).

                   A V [N ] elem ∆ = A V elem
∀l 1 ∈ [[1, n sys ]], ∀j 1 ∈ [[1, n in,l1 ]] ∀p ∈ [[0, n]], ∀l 2 ∈ [[1, n sys ]], ∀j 2 ∈ [[1, n in,l2 ]],
A [N ] (j1+ C [N ] is a tensor of order 4 and of size n in,tot × (n + 1) × n in,tot × (n + 1). It represents the time-shift of the coefficients of all polynomial inputs from [t [N ] , t [N +1] [ to [0, δt [N ] [ as described in 5.2.2. Problem (5.42) can be resolved when all systems reached t [N ] , and gives a solution at t [N +1] by dispatching the solution of (5.42) using (5.27). This solves the "Find zero of this application" stage in figure 5.1, and answers the the final question of subsection 5.3.1.

Implementation and first step

In practice, it is possible to do the Hermite interpolation and the time-shift at the same time. Indeed, instead of computing C [N ] , A [N ] and B [N ] operators, it is possible to compute C [N ] A [N ] and C [N ] B [N ] directly to assemble the linear problem (5.27).

The underlying meaning of this replacement is that, instead of computing an interpolation on t [N ] and t [N +1] and shifting it on 0 and δt [N ] , the interpolation is directly done on 0 and δt [N ] with the same values and derivatives constraints. Indeed, no correction is required as t [N +1] -t [N ] = δt [N ] -0.

Practically, a way to implement consists in:

• Replacing the C [N ] operator by the identity tensor of order 4, or equivalenty simply remove it from problem (5.42), and • Computing A [N ] and B [N ] operators as explained in (5.37) (5.38) (5.39), but replacing t [N ] and t [N +1] by 0 and δt [N ] respectively. Let's denote by ǍV elem , ǍD elem and Belem the elementary quantities (5.21) with this change. Their (simpler) expressions in that case is given in (5.43).

ǍV elem = 0, 0, 3 (δt

[N ] ) 2 , -2 (δt [N ] ) 3 T ,
ǍD elem = 0, 0, -1 δt [N ] ,

1 (δt [N ] ) 2 T , Belem = v 1 , v1 , -3v 1 (δt [N ] ) 2 -2 v1 δt [N ] , v1 (δt [N ] ) 2 + 2 v 1 (δt [N ] ) 3 T (5.43)
Regarding the first macro-step, despite it is expected to know the initial values of all coupling variables (outputs and their corresponding inputs), there is usually no available time-derivatives of these coupling variables at t [0] = t [init] . This makes it impossible to compute Belem and thus B

[N ] elem in (5.37) ( v1 is not available).

In this case, the problem (5.42) can still be assembled, but the underlying Hermite polynomials will simply be calibrated on three constraints: the input values at the beginning of the macro-step, and the input values and derivatives end the end of the macro-step. Analogously to the computations of subsection 5.2.3, and calibrating the polynomials on 0 and δt [N ] as explained above in this subsection, we obtain the expressions of ǍV elem, first step , ǍD elem, first step and Belem, first step in (5.44).

ǍV elem, first step = 0, 2 δt [N ] , -1

(δt [N ] ) 2 T
, ǍD elem, first step = 0, -1, 1 δt [N ] T , Belem, first step = v 1 , -2v 1 δt [N ] , v 1 (δt [N ] ) 2 T (5.44)

Results on test-cases

This section presents results on benchmark co-simulation test-cases. The MISSILES method is compared to the explicit fixed-step zero-order hold co-simulation method NIZOHJA (see 1.3.8). Comparisons are also done with the IFOSMONDI-JFM method from chapter 3. As the latter uses an iterative Newton-like method (Jacobian-free), the convergence criterion might affect the performance of a co-simulation. This criterion, further described in 3.3.5, is based on a parameter called ε. The smaller this ε is, the less tolerant the iterative method is on the validation of a solution.

The cases presented below here have been implemented in a way that enables all required capabilities, including the rollback, so that comparisons between the co-simulation methods can be made. However, in practice, as most of the modelling and simulation platforms provide non-rollback capable systems, neither IFOSMONDI-JFM nor classical IFOSMONDI methods can be used. Moreover, in order to get error measurements, we dispose of a monolithic simulation for each test-case like in the test sections of the previous chapters. That is to say, the simulation referred to as monolithic reference denotes the simulation of the global model on a single solver, without coupling. Such simulations will be used as reference in this section. Please note that such monolithic simulation cannot be done in practice as the need for co-simulation usually arises when black-boxed systems (that might come from various simulation and modelling platforms) are connected to one another.

Despite the MISSILES method can handle variable-step co-simulation (different values of δt [N ] across N can be taken), the time-stepping strategy was not discussed in this chapter. Hence, results will be compared on co-simulation with a fixed macro-step size. The size of the macro-steps will be denoted by δt fixed , and we will simply have:

∀N ∈ [[0, N max [[, δt [N ] = δt fixed (5.45)

Linear mechanical benchmark

Test-case presentation

This model is made of n sys = 2 systems. It is similar to the two-masses test case presented in 3.5.1, however a different parameterization is used here (in order to voluntarily unbalance the model). Moreover, in 3.5.1, the aim was to dispose of a simple case to compare IFOSMONDI (in its classical version) to methods exibiting one of the aspects of IFOSMONDI at a time. The aim of this test case, in this chapter, is to dispose of a linear model for which the linearization used by COSTARICA perfectly matches the system in order to see the effect on the MISSILES method. A sketch of it is presented on figure 5.2. [init] ) Left body position -1 m x 1,2 (t [init] ) Left body velocity 0 m/s x 2,1 (t [init] ) Right body position -3 m x 2,2 (t [init] ) Right body velocity 0 m/s Co-simulation parameters Expression Value [t [init] , t [end] ] [0, 2] s

Initial coupling conditions Input

Output Definition Value u 1,1 (t [init] ) y 2,1 (t [init] ) Force on right of left mass -20 000 N u 2,1 (t [init] ) y 1,1 (t [init] )

Left body velocity 0 m/s u 2,2 (t [init] ) y 1,2 (t [init] )

Left body position -1 m

Results

The results are presented in table 5.3. The ε parameter denotes the convergence criterion parameter of the iterative method used by IFOSMONDI-JFM, as described in the introduction of this section. Several elements can be noticed on results of table 5.3. The IFOSMONDI-JFM is slower than NIZOHJA and MISSILES as its iterative aspect make it require a larger amount of systems internal solvers restarts, which might be costly in terms of computational time.

Contrary to the IFOSMONDI-JFM method, when the accuracy is not satisfactory with MISSILES, there is no ε parameter to tune to get a lower error for a given macro-step size, as the method is based on a direct solving of the coupling problem on each step. However, the macro-step size can be decreased in order to enhance the accuracy.

MISSILES is slower than NIZOHJA method (for a given fixed macro-step size) as the latter requires almost no computation in addition to the systems integrations. Please note that, in this case, as the macrostep size does not change and the systems (S 1 ) and (S 2 ) of figure 5.2 are linear, the matrix of the linear problem (5.42) could be computed, assembled and factorized only once. However, in order to be as close as possible to a real use of co-simulation in practice, with black-boxed systems, we recomputed this operator at each macro-step, in order to mimic the case where the content of the systems is not known (modular models in industrial applications, for example). Nonetheless, this overhead in terms of computational time with respect to the NIZOHJA method is balanced by a better accuracy on MISSILES, as expected.

Finally, despite the linear nature of the systems (making the COSTARICA estimators theoretically exact), the MISSILES method is not exact. Several causes can be mentioned: the inverse Laplace is done numerically with the Stehfest method [Ste70; JSR83], the global linear problem (5.42) is solved numerically too (the accuracy is driven by the condition number of the matrix of this problem), the successive local polynomial approximations of non-polynomial solutions (coupling variables), ... Generally, MISSILES also relies on the data provided by the systems. For instance, the matrices of the linearizations are supposed to be exact, as their computation is done inside of the black-boxed systems. Nevertheless, the error reached by MISSILES on table 5.3 is satisfactory.

Indeed, figure 5.3 presents a superimposed view of the position of the left body (x 1,1 state, also y 1,2 output variable of system (S 1 )) across the time, and it is noticable that the co-simulation with MISSILES is close to the monolithic reference quite as much as the co-simulation with the IFOSMONDI-JFM method. This is even more apparent on a zoom on a peak of this variable, as shown in figure 5 This proves the usefullness of the MISSILES method on such model, keeping in mind that the IFOSMONDI-JFM cannot be used in case all involved systems are not rollback-capable. MISSILES is a good way to reach an almost-similar accuracy, as shows figure 5.4.

Non-linear model: Lotka-Volterra equations

Test-case presentation

Since the model has already been introduced in 4.5.3 (see page 163), please refer to that subsection for test-case details.

Results

As well as in the first test-case, we observe a smaller error with the MISSILES method than with the NIZOHJA method for similar macro-step sizes. IFOSMONDI-JFM stays the method with the highest accuracy with δt fixed = 10 -3 , which is not surprising as the model is non-linear. Indeed, the rollback is the only way to exactely solve the non-linear problem (5.22) with (5.23). The COSTARICA estimators used by MISSILES are only locals and can thus only approximate the behavior of the systems on each step. This is namely the reason why, for smaller steps (δt fixed = 10 -4 ), the MISSILES method reaches a similar accuracy than the IFOSMONDI-JFM method (using real rollback). These results are presented in table 5.4. Regarding the comparison between the NI-Jacobi and the MISSILES method, an overshoot phenomenon cannot be seen on table 5.4 but can be observed on the solutions. Figure 5.5 shows the amount of prey (x 1,1 state, also y 1,1 output variable of system (S 1 )). Macroscopically, all curves are superimposed, yet on the zoom on a peak presented in figure 5.6 we can observe that the NIZOHJA co-simulation produces an overshoot on the solution, where the MISSILES co-simulation produces results that are significantly more accurate and close to the monolithic reference solution.

The overshoot is a dangerous behavior in practice as it adds energy into the system. This is even more obvious on even greater macro-steps, if we look as the orbit of the solution. Such orbits are presented in figure 5.7, comparing the orbit of the solution on the monolithic simulation with the orbits with the NIZOHJA and the MISSILES method with a macro-step size of 0.01 s. It can be notices on the plot in the middle that the NIZOHJA produced a solution with an diverging orbit, which is not the case with the MISSILES method. 

Conclusions regarding the MISSILES method

The introduced MISSILES co-simulation method manages to properly approximate the implicit coupling constraint on the coupling variables between systems that are not capable of rollback, although the latter is a mandatory capability for the implicit coupling formulations' resolution methods. This approach makes it possible to satisfy an approximation of the whole set of contraints on all systems through the resolution of a single global system of linear equations. The coefficients of the polynomial expression of all coupling quantities can then be computed from the solution to this problem.

On linear co-simulation systems, this approach reaches a good time / accuracy trade-off: the computational time stays competitive with the classical NIZOHJA method due to the avoidance of repeated solver restarts (contrary to iterative co-simulation methods), an the accuracy stays competitive with implicit methods (requiring the rollback capability) as the solved constraint concerns the coupling variables at the end of the co-simulation steps.

Regarding non-linear systems, the MISSILES methods stays a satisfactory co-simulation method for large co-simulation steps in case not all systems are capable of rollback. Even if taking the non-linearities into account brings a significant improvement to the quality of the results in the context of an implicit co-simulation method (like it is the case in the rollback-based IFOSMONDI-JFM method), it is usually not possible to do it due to the scarsity of the rollback in practice. The accuracy of MISSILES on non-linear cases is related to the validity of the local linearizations of the systems. For this reason, small enough cosimulation steps can make the MISSILES method reach a accuracy that is competitive with the iterative IFOSMONDI-JFM co-simulation method. Depending on the case, the convenient co-simulation step size can be different, the aim being to stay on intervals where the linearization stays close enough to the systems' behaviors. Even in a given modular model, the satisfactory macro-step size might vary across the simulation time. For these reasons, the MISSILES method would benefit from an adaptive co-simulation time-stepper. Moreover, this would not be an obstacle to the construction of the core global system of linear equations of the method. Indeed, the whole chapter was written without supposing a constant macro-step size.

In addition to that, as MISSILES provides an estimation of the coupling variables at the end of a macrostep before integrating the systems on it, this estimation can act as a predictor, a corrector being the coupling variables' values once the systems reach this time. Further research will investigate the usage of MISSILES' estimations in a time-stepper that could benefit the method. The global linear system to be solved in the method may be large and thus its resolution might affect the performances. An efficient resolution of the global linear system in MISSILES will be investigated in further research. It can namely be done using sparse representation of the involved tensors and matrices and by applying parallel resolution methods (PETSc [START_REF] Balay | PETSc Web page[END_REF]) makes it possible to apply parallel Krylov methods, for instance). Tracks for reducing the elapsed time of the computation of the COSTARICA operators required by MISSILES have also been proposed in he conclusion of the previous chapter, and can thus help accelerating the global co-simulation with the MISSILES method.

the first one developed in this thesis. A formalism was developed to both satisfy the coupling condition around the communication times while avoiding discontinuities at the interface variables without introducing a delay as explicit co-simulation methods do. This method works on simple cases and indeed enable to reach a great accuracy and the smooth interface variable would allow, in the future, the internal solvers embedded within the system, to restart quicker at each co-simulation step which is an open door to performance gain. However, the classical IFOSMONDI co-simulation algorithm inherited from a drawback of its underlying fixed-point method: the impossibility to converge on non-contracting functions. A test-case has namely been designed for this purpose and presented in chapter 3 and, indeed, the classical IFOSMONDI co-simulation method cannot solve it. Therefore, an evolution of it, based on a zero-finding problem derived from the fixed-point one, has been proposed: IFOSMONDI-JFM [START_REF] Eguillon | IFOSMONDI Co-simulation Algorithm with Jacobian-Free Methods in PETSc[END_REF]. Using the PETSc framework together with the MPI environment, it became possible to seamlessly solve the new formulation of the coupling condition using advanced zero-finding methods (Anderson, NGM-RES, Newton with line search, ...). The IFOSMONDI-JFM co-simulation method had namely no problem to solve the voluntary difficult co-simulation test-case on which the classical IFOSMONDI algorithm failed. This showed a step forward in the direction of numerical robustness, with no sacrifice of the software robustness compared to the classical version of IFOSMONDI: the JFM version indeed need has the same advanced capabilities requirement than the classical version. This proposed model has the advantage to be as easy or difficult as desired as the spectral radius of the coupling matrix can be controlled by a simple setting of real parameters (mechanical damping rates).

Once disposing of a robust co-simulation method in each aspect of the notion of robustness (F 3 ORNITS regarding the software robustness, and IFOSMONDI-JFM regarding the numerical robustness), the continuation aimed at reaching a compromise. The biggest issue with the IFOSMONDI-JFM co-simulation method is the rollback requirement, and it is common with all iterative co-simulation algorithm from the literature: they all inherently require the systems to be rollback-capable, and this ruins the hope to reach a satisfactory software robustness as far as very few industrial platforms can provide the used with rollbackcapable systems. Our next contribution is an attempt to reduce this technical constraint: by making a small sacrifice on the accuracy side, we remove the obligation for the systems to be rollback-capable to run in an iterative co-simulation method. Moreover, this solution is cautiously obtrusive in the sense that the only disclosure is requires from the systems is a set of standardized capabilities, part of the FMI specification. Not all systems do fit these requirements, yet they are still less rare in practice than the rollback itself. This solution is COSTARICA [START_REF] Eguillon | COSTARICA estimator for rollback-less systems handling in iterative co-simulation algorithms[END_REF] and it has to be noticed that it is not a co-simulation method but a "trick", a cautiously obtrusive solution to avoid rollback in iterative co-simulation algorithms, as the acronyms stands for. Using a COSTARICA on the systems that are not rollback-capable enables to estimate their reaction to any polynomial input stimulus (even multi-dimensional). Hence, the systems using it are not obliged to integrate the macro-steps so that the co-simulation algorithm iterates over its nested loops (co-simulation step loop and internal loop), however the COSTARICA replacing the system only produces estimations of the behavior: it can be seen as a surrogate. Hence, once the iterative co-simulation converged, the non-rollback capable systems can integrate for real but with inputs that have been computed from estimations only. Here is the origin of the accuracy drop compared to real iterative co-simulation. However, on the conducted tests of chapter 4, we could see that this loss of precision is acceptable. Moreover, an analysis conducted in this chapter also highlighted the fact that, even with non-linear systems, COSTARICA estimations might be of order 3 (with respect to the co-simulation step size) as far as the derivatives function of the system does not depend on the time variable. Even if it does, the order only drops to 2. Moreover, the numerical effects occurring in the evaluation of the estimators based on the partially-linearized system do not affect the error order, as shown in 4.4.2.

Finally, the last contribution of this work is the MISSILES method [START_REF] Eguillon | MISSILES: an Efficient Resolution of the Co-simulation Coupling Constraint on Nearly Linear Differential Systems through a Global Linear Formulation[END_REF] starting from the principle that, in case every systems uses a COSTARICA, their reaction to any polynomial input stimulus is known (as it is the one of the estimator), and thus there is no need to use a non-linear zero-finder method such as a JFM to find the inputs satisfying the coupling condition. A big linear system is assembled by gathering the formalism of IFOSMONDI-JFM's callback function and the COSTARICA estimators, and a single resolution of it produces the inputs solving the coupling condition on the estimators. As the estimators are approximations, these inputs are not necessary the ones IFOSMONDI-JFM would have found with the rollback, but they can still be used to integrate the co-simulation step once only, after the fake iteration made of the big linear system resolution. This mock iteration helped (approximatively) solving the coupling condition, with smooth interfaces, using linear estimators of the systems' behavior, as MISSILES acronym stands for. Tests on co-simulation cases, even non-linear, showed that the MISSILES method reaches an accuracy that is not far from the one of the real iterative methods it is based-on (IFOSMONDI-JFM). In the end, on the one hand, the numerical robustness of MISSILES is slightly lower than the one of a real iterative co-simulation methods, and on the other hand its software robustness is way more acceptable than the one of an iterative co-simulation method: MISSILES represents therefore a good compromise between these two aspect of the notion of robustness.

A fallback could be: to a given composite system, a co-simulation can be conducted with our work as far as all involved systems are standardized. If all of them are rollback-capable, IFOSMONDI-JFM can be used as it's a robust method able to grasp the subtleties on non-linear behaviors of the systems. In case only some of the systems are rollback-capable, the other can be replaced by COSTARICA estimators during the iterative stages of the iterative co-simulation method. In case none of them is rollback-capable, MISSILES method can be used: the non-linear subtleties cannot be caught before the unique integration on each macro-step, but the accuracy is satisfactorily close to the one we could expect with an iterative cosimulation method. Finally, if the systems have too few advanced capabilities (non-exposed state variables, incapacity to provide directional derivatives, et caetera ), F 3 ORNITS method can always be used.

Perspectives for future work

As shown in chapter 2 during the presentation of the time-stepper of F 3 ORNITS , the knowledge about the error order can bring benefits for macro-step size adaptation. As IFOSMONDI-JFM converges or not at a given macro-step, a very simple step adaptation rule was used, but in MISSILES, the story can be different. Indeed, once the mock iteration is done, the inputs are known for the current macro-step. Then, the different systems use them and produce the real outputs that might differ from their corresponding input their used for this very step. However, the analysis of chapter 4 showed that the error order between the states computed by a COSTARICA estimator and the real ones is known. Future development will extend this analysis to the outputs and use this insight: known error order and error estimation, by comparing the interface values systems should have reached based on their COSTARICA estimations, and interface values they indeed reached. This can enable to design a time-stepper for the MISSILES method.

The linear algebra operations required by the COSTARICA process (Misra & Patel method for computing the G, P and R transfer functions [START_REF] Misra | Computation of Transfer Function Matrices of Linear Multivariable Systems[END_REF], the underlying Hessenberg decomposition [START_REF] Golub | Matrix Computations. Fourth[END_REF], the tensor-matrix products required to get the estimators, ...) and the global linear system to be solved in the MISSILES method may affect the performances, especially for large scale systems. Several tracks for performance enhancement will be studied in the future. The first one is the efficient resolution of the global linear system in MISSILES, that can be reached by sparse representation of the involved tensors and matrices and by applying parallel resolution methods (PETSc makes it possible to apply parallel Krylov methods, for instance). The second idea consists in approximating the transfer functions in the COSTARICA estimators, instead of computing them exactely, by processing efficient parallel rational approximation of lower degrees using BlockAAA efficient parallel method [START_REF] Victor | Algorithms for the Rational Approximation of Matrix-Valued Functions[END_REF], inspired by [START_REF] Nakatsukasa | The AAA Algorithm for Rational Approximation[END_REF]. The third idea consists in using sparse representations of the matrices involved in the Hessenberg decomposition process in order to accelerate it.

On another aspect, IFOSMONDI-JFM, MISSILES, and F 3 ORNITS (when the systems enable it) can provide C 1 inputs from a macro-step to the next one. The usage of this smoothness, when guaranteed, could be really beneficial to reduce the restart effect of the internal solvers of the systems which, nowadays, are the main cause of the performance issue in co-simulations.
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 2 Figure 2.12: Insensitivity-based expansion on (S 2 ) (because L(2) = {3} and (S 3 ) is a fixed-step system), when an inputs-based restriction must occur because K(2) = {1} ̸ = ∅. The value to use for next-time for (S 2 ) is circled in red.
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 2 Figure 2.14: Perturbation added to the force received by the controller that pushes the car: every 0.1 s, a random value of f wind is generated with the uniform distribution in [-1000, 1000]System (S 2 ) represents the controller. The latter has two stages. First, when t ∈ [0, 10[ a predefined force is given, that will bring the car to a speed of approximately 16 m s -1 . This predetermined force can be seen on figure2.15.
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Figure 2 .

 2 Figure 2.19: Controller force: input of (S 1 ). Time-variable inputs in explicit FOH and F 3 ORNITS cosimulation methods are compared to the corresponding signal in the monolithic reference -zoom on t ∈ [9.98, 10.39]
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 2 Figure 2.23: Right body system (S 2 ) in Simcenter Amesim
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 2 Figure 2.26: Co-simulation step size evolution of both systems on 3 co-simulations configurations using CLS inputs calibration and smoothness enhancement. The changing parameter between them is the error computation formula Table2.3 compiles the results of figure2.24 and shows precisely the rmse values. Among others, it shows that the polynomial inputs calibration method (either with an extrapolation Ω Ex
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 2 Figure 2.28: Visualization of the variable samplings through a steps graph, zoom on t ∈ [0.319, 0.3210]
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 2 Figure 2.29: Visualization of the communication times on every system across the time iterations (x-axis shows N and y-axis shows corresponding successive values of t [N ] for every system). A horizontal portion corresponds to an iteration where the corresponding system is "idle" (not triggered). Time subdomain t ∈ [0.32, 0.33] corresponds to N ∈ [[2970, 3050]]
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 2 Figure 2.30: Visualization of the macro-step size evolutions on every system on t ∈ [0.3185, 0.3210]
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 2 Figure 2.31: Visualization of the macro-step size evolutions on every system on the whole time domain [0, 1.4] and comparison of the macro-step size evolution of the systems (S 2 ) and (S 3 ) with the interface variables between these two systems
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 2 Figure 2.34: Discrete controller and decoupled prey-predator system: hybrid co-simulation model
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  ) depending on the relevance of the total action. The derivative action is based on finite differences, so by introducing a lag d [N +1] = p target -u [N ] 1 we can write: x [N +1] D = (p target -u [N ] 1

  not count derivate action at N = (Y + 1) * 365 -122 (2.67)
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 2 Figure 2.35: Visualization of the variable samplings through a steps graph, zoom on t ∈ [247, 250]

Figure 2 .

 2 Figure 2.36: Visualization of the communication times on every system across the time iterations, on t ∈ [245, 252]

Figure 2 .

 2 Figure 2.37: Visualization of the macro-step size evolutions on every system on t ∈ [240, 305]

Figure 2 .

 2 Figure 2.38: Visualization of the macro-step size evolution with F 3 ORNITS on every system on the whole time domain [0, 1460] and comparison with the interface variables of the whole model

Figure 2 .

 2 Figure 2.39: Comparison of the proportion of prey x 2 , state variables of (S 2 ), with different co-simulation methods and in the (almost-) monolithic simulation

Figure

  Figure2.39 shows that the co-simulation with F 3 ORNITS is the most accurate one (the closest to the monolithic reference). NIZOHJA algorithm generate very unstable results the first year, and then reaches a point where there is no more prey, never anymore. This is not surprising as the micro-step (internal solver's variable step size) of the monolithic reference reaches as small sizes as 0.8 s at some points, so one can expect that a co-simulation with a fixed macro-step size of 1 day is not accurate enough. The results have also been compared with an adaptation of the explicit fixed-step ZOH method in which the systems (S 2 ) and (S 3 ) can communicate every hour (instead of once a day) to each other, and once a day with the hunter system (S 3 ). The latter generates better results, yet still less accurate than F 3 ORNITS , despite the fact that F 3 ORNITS only require a total of 2864 steps on the 4-years co-simulation period, where the adapted explicit Jacobi method requires 35040 steps (as many as the number of hours in 4 years).
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 2 Figure 2.40: Sub sketch inside of a single module of the battery pack: the 6 cells can be seen
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 2 Figure 2.41: Black-box system of module 2 only: sketch representation of a single system for co-simulation in Simcenter Amesim

Figure 2 .

 2 Figure 2.42: Battery load/unload signal

Figure 2 .

 2 Figure 2.43: Battery pack cooling system modelled with Simcenter Amesim (each module contains 6 cells as shown on figure 2.40) -Monolithic model

Figure 2 .

 2 Figure 2.44: Battery temperature distribution at t = t [end] = 5000 -Arrows represent the air flow -Module 1 is on the left and module 10 is on the right

Figure 2 .

 2 Figure 2.45: Visualization of the macro-step size (naturally synchronous among every system) evolution on the whole time domain [0, 5000] and comparison of this evolution with two repesentative interface variables
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 332 Figure 3.1: NIZOHJA coupling issue visualization on a small example
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 33 Figure 3.3: Satisfying the coupling condition around communication times thanks to an iterative method and FOH inputs

Figure 3 . 4 :

 34 Figure 3.4: Satisfying the coupling condition around communication times and preserving C 1 interfaces smoothness thanks to an iterative method and TOH inputs Due to conditioning issues that may appear on small macro steps [t [N ] , t [N +1] [, it may be necessary to process the Hermite polynomial computation through a variable change on [0, 1[. It implies a scaling on the

Figure 3 .

 3 Figure 3.7: Algorithm's workflow visualization on a single input

  .5) in ζ k evaluation (polynomial input computations stage in ζ k happens in our code).

Figure 3 .

 3 Figure 3.11: Mass spring damper with damping reaction modelled with Simcenter Amesim -Parameters are above, variables are below Figure 3.11 represents a 1-mass test-case with a classical mechanical coupling on force, velocity and position. These coupling quantities are respectively denoted by f c , v c and x c . The component on the right represents a damper with a massless plate, computing a velocity (and integrating it to compute a displacement) by reaction to a force input.We propose the parameters values in table 3.3.
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 3 Figure 3.12: Predefined force f L The expected behavior of the model is presented in table 3.4 referring to conventionnal directions of figure 3.13.
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 3 Figure 3.13: Test model visualized with Simcenter Amesim

Figure 3 .

 3 Figure 3.14: Displacement of the mass (x L ) for different damping ratios of the right damper (D D ) simulated on a monolithic model (no co-simulation). Associated spectral radii of J Ψ are recalled for futher coupled formulations.
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 3 Figure 3.15: Error across δt ref with different methods on a contractant case (D D = 4.0, ρ(J P si ) = 0.5)

2 Figure 3 .

 23 Figure 3.16: Error across δt ref with different methods on a non-contractant case (D D = 0.64, ρ(J P si ) = 1.25)

Figure 3 .

 3 Figure 3.17: Total number of iterations, integrations, and error across spectral radius of J Ψ for different methodsε = 10 -4 and δt ref = 10 -2

Figure 3 .

 3 Figure 3.18: Graphical visualization of results in tables 3.5, 3.6 and 3.7

Figure 3 .

 3 Figure 3.19: Two variables of interest in the Battery Pack Cooling model, results for different (co-)simulation methods
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  (t[N ] ) (see 4.3.1) and f[N ] 
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 41 Figure 4.1: Quantity dependencies to get the output estimators We notice, on figure 4.1, that some intermediate quantities can be computed before the moment where the estimators are needed. Therefore, instead of computing the estimators when required (algorithm 10), a lazy update version of COSTARICA usage in a co-simulation worker program can be achieved. This lazy version avoids re-computing intermediate quantities at stages where they are not supposed to change from the previous computations. This is presented in algorithm 11.Algorithm 11 enables the usage of COSTARICA in an optimized way. Every time the co-simulation method needs to iterate on a given macro-step (internal loop), the cost of the estimation of the outputs is:

9[11/ update 2 12update 2 13while

 22 Method (re)computes t[N +1] ;10 From t [N ] , t [N +1] , [m] ỹ[N]C and eventually (ỹCompute δt[N ] := t [N +1] -t[N ] ; /From expressions of s : → G ⊗ Ū T (s), s : → P (s)and s : → R(s), and as we now know δt[N ] , compute several inverse Laplace transforms to get G V , P V , R V , G D , P D and R D ; // True do // Internal loop 14

  ŷ[N+1] and outputs of other systems on other workers, and eventually the time-derivative estimations too, method decides if the step is converged, to-be-redone or rejected; 20 if Step [t [N ] , t [N +1] [ is to-be-redone then 21 m := m + 1; 22 else // either step is converged or has been rejected 23 Break; 24 mmax(N ) = m; 25 Compute [mmax(N
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 42 Figure 4.2: Isolation of the prey system in a classical Lotka-Volterra model in Simcenter AmesimThe equation of the isolated prey system is given in (4.70) where the state is also the output, corresponding to the amount of prey.ẋ(t) = x(t)(α -βu(t)) y(t) = x(t) (4.70)In (4.70), we observe that the underlying function f of the system is f : t, x, u → x(α -βu) and does not depend on the time. Parameters α and β are real fixed parameters. The input u is expected to be the amount of predators.The linearized version of (4.70) around t[init] in the way linearizations are done in COSTARICA, that is to say with repect to x and u but not t (see (4.2)), is presented in (4.71).
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 43 Figure 4.3: Prelimirary monolithic simulation of the classical Lotka-Volterra model to determine the predator stimulus for prey system

Figure 4 .

 4 4 shows this modification on the model.

Figure 4 . 4 :

 44 Figure 4.4: Isolation of the prey system in a modified Lotka-Volterra model in Simcenter Amesim

  Figure 4.3 shows the results of the modified Lotka-Volterra model.
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 45 Figure 4.5: Prelimirary monolithic simulation of the modified Lotka-Volterra model to determine the predator stimulus for prey system

Figure 4 . 7 :

 47 Figure 4.7: Error on numerical COSTARICA estimation or the prey of a classical Lotka-Volterra model

Figure 4 . 8 :

 48 Figure 4.8: Error on numerical COSTARICA estimation or the prey of a Lotka-Volterra-with-time model

Figure 4 .

 4 Figure 4.11: Left body's motion comparison depending on the (co-)simulation method: co-simulation with IFOSMONDI-JFM using rollback (co-simulation step size: 2 • 10 -1 ), co-simulation with IFOSMONDI-JFM replacing the need for rollback by the COSTARICA process (co-simulation step size: 2•10 -1 ) and monolithic simulation (reference)

Figure 4 .

 4 Figure 4.14: Predator system (S 2 ) in Simcenter Amesim

Figure 4 .

 4 Figure 4.15: Comparison of the convergence graphs of IFOSMONDI-JFM method on the Lotka-Volterra test-case depending on the way to iterate on the co-simulation steps

Figure 4 .

 4 Figure 4.16: Prey and predator proportions depending on the (co-)simulation method: co-simulation with IFOSMONDI-JFM with a co-simulation step size of 10 -2 with different methods to replay a co-simulation step, and monolithic simulation (reference)

  k by a call to S [N ] k , we get the estimation (5.1).

  ŷ

  control parts and can be obtained by any signal reconstruction method (ZOH, FOH, F 3 ORNITS , ...) as described in 4.3.1, and where ŷL [N +1] k and ŷL [N +1] k

  used to calibrate the polynomial inputs (with Hermite interpolation) whose coefficients, once time-shifted (see 5.2.2), are stored in the Ξ[N] 1 , ..., Ξ[N]

Figure 5 .

 5 Figure 5.1: Schematic view of MISSILES co-simulation method

  k ∈ [[1, nsys]] by the COSTARICA estimators in η



  is the solution to the zero-finding problem. The hat symbol ˆ, denoting estimations, stands for the fact that the η[N ] 

  now consider the outputs (and their time-derivatives) estimations at t[N +1] , denoted by dispatched according to the modular model's topology, generate the solution to(5.26). Due to the structure of the Φ matrix (1.16) presented in 1.3.3.2 (either permutation or not, by with a single 1 on each and every column), to a given can thus calculate the solution on the outputs instead of the inputs. The solution to (5.26) will then be retrievable with (5.27).

  problem (5.28) leads, with dispatching (5.27), to the solution of (5.26). Let's detail the five stage to get, from theΞ[N] 1 , ..., Ξ[N]nsys matrices in (5.28) (mentionned in the toolbox in (5nsys matrices contain the coefficients of the time-shifted version of the timedependent inputs, as mentioned earlier. For all system k ∈ [[1, n sys ]], this time-shift corresponds to the tensor-matrix product Ξ[N] step 1 contains the coefficients of the polynomial inputs u

  is a tensor of order 3 

 3 and of size 2 n out,tot × n in,tot × (n + 1). It represents the action of all inputs in the COSTARICA estimators, and is a concatenation of the two tensors G V[N ] and G D [N ] , both of order 3 and of size n out,tot × n in,tot × (n + 1).∀(ī, ȷ, p) ∈ [[1, 2 n out,tot ]] × [[1, n in,tot ]] × [[0, n]], if ī ∈ [[1, n out,tot ]] nout,tot),ȷ,p if ī ∈ [[n out,tot + 1, 2 n out,tot ]] (5.30) ∀k ∈ [[1, n sys ]], ∀l ∈ [[1, n sys ]], ∀i ∈ [[1, n out,k ]], ∀j ∈ [[1, n in,l ]], ∀p ∈ [[0, n]], is a matrix of size 2 n out,tot × n st,tot . It represents the effect of the initial states on the current macro-step in the COSTARICA estimators, and is a concatenation of the two matrices P V[N ] and P D[N ] , both of size n out,tot × n st,tot .∀(ī, σ) ∈ [[1, 2 n out,tot ]] × [[1, n st,tot ]], if ī ∈ [[1, n out,tot ]] nout,tot),σ if ī ∈ [[n out,tot + 1, 2 n out,tot ]] (5.32) ∀k ∈ [[1, n sys ]], ∀l ∈ [[1, n sys ]], ∀i ∈ [[1, n out,k ]], ∀σ ∈ [[1, n st,l ]],

  3.1). It is a concatenation of the two matrices R V[N ] and R D [N ] , both of size n out,tot × n st,tot .∀(ī, σ) ∈ [[1, 2 n out,tot ]] × [[1, n st,tot ]], if ī ∈ [[1, n out,tot ]] nout,tot),σ if ī ∈ [[n out,tot + 1, 2 n out,tot ]] (5.34) ∀k ∈ [[1, n sys ]], ∀l ∈ [[1, n sys ]], ∀i ∈ [[1, n out,k ]], ∀σ ∈ [[1, n st,l ]], is a column vector of size n st,tot . It corresponds to a concatenation of the fCk parts in the COSTARICA estimators introduced in 5.2.1, equation (5.9).

  They represent the Hermite interpolation, transforming the constraints upon inputs values and derivatives at the end of the current macro-step into the coefficients of the polynomial inputs on this step. They are compositions of A V

  j) ∈ {(l, j)|l ∈ [[1, n sys ]] and j ∈ [[1, n in,l ]]}

l 1 - 1 λ=1n

 1 in,λ ),p,(j2+l 2 -1 λ=1 n in,λ ) = (A V elem ) p if (l 1 , j 1 ) = (l 2 , j 2 ) elem ) p if (l 1 , j 1 ) = (l 2 , j 2 ) 0 otherwise (5.38) ∀l ∈ [[1, n sys ]], ∀j ∈ [[1, n in,l ]] ∀p ∈ [[0, n]], B [N ]

∀l 1 ∈n

 1 [[1, n sys ]], ∀j 1 ∈ [[1, n in,l1 ]], ∀p 1 ∈ [[0, n]], ∀l 2 ∈ [[1, n sys ]], ∀j 2 ∈ [[1, n in,l2 ]], ∀p 2 ∈ [[0, n]], in,λ ),p1,(j2+ l 2 -1 λ=1 n in,λ ),p2 = C [N ] l1 j1,p1,j2,p2if (l 1 , j 1 ) = (l 2 , j 2 ) is a column vector of size 2n out,tot . It corresponds to a concatenation of the control parts in the COSTARICA estimators introduced in 5.2.1. , every quantity appearing in (5.29) has been defined. By manipulating the problem (5.29), we can finally obtain the linear problem (5.42).
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 52 Figure 5.2: Benchmark co-simulation modular model: two linear mechanical bodies with springs and dampersFor the sake of reproducibility, the parameters of the bodies, springs, dampers and co-simulation run are given in table 5.2. Physical quantities are measured positively from left to right, and negatively from right to left.
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 53454 Figure 5.3: Left body's position -Comparison of co-simulation methods with δt fixed = 10 -3 s -The framed zone is zoomed on figure 5.4
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 5556557 Figure 5.5: Amount of prey -Comparison of co-simulation methods with δt fixed = 10 -3 s -The framed zone is zoomed on figure 5.6
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Subset of co-simulation algorithms that does not require the open systems to integrate several times over the macro-steps. The rollback is namley an advanced capability that is not required by such algorithms, making it good in terms of software robustness, yet usually also sacrificing accuracy and/or stability. (equivalent).
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  by Bernhard Schweizer et al..

	This group of research in Technical University Darmstadt has shown a great interest in co-simulation and
	co-simulation methods, especially regarding applications in multibody mechanics [SLL15; SL15b; SL15a;
	SLL16b; SLL16a; KMS19b; KMS19a; Kra+21; Mey+19; MKS21; Li+17; Li+19; Li+20] with namely two
	recent thesis in this domain

Table 1

 1 

	Version and role	State-hiding practical step function	Time-indexed practical step function
	Classical		

.1: Summary of the versions of the step function

Table 1 .

 1 2: Interactions possible with a system for co-simulation

	Name	Capability name in the FMI 2.0 standard	Entry point in the FMI 2.0 standard	Description	Type*
	Variable macro-step	canHandleVariable-CommunicationStepSize	fmi2DoStep		

  2.4.4.1 Test-case presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 2.4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 2.4.5 Industrial-scale thermal-electric model . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 2.4.5.1 Test-case presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 2.4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 2.5 Conclusions regarding the F3ORNITS method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

  δt fixed,k ) k∈[[1,nsys]] fixed-steps (dummy (unused) for systems without imposed fixed step) tol abs , tol rel , β parameters for adaptive macro-step (see 2.3.2)

	δtmin, δtmax	min/max steps sizes
	Result: (δt	

  infinite expansion, see 2.3.3.2.1 using tol abs , tol rel and β; // time-stepper, see 2.3.2, and (2.41)

	6	else	
	7	Compute ρ	[N k +1] k

  see 2.3.3.2.310 Choose active and idle systems for the upcoming step using algorithm 8.;

11 for l ∈ [[1, nsys]] in increasing order of t[N l +1] l do // inputs-base restriction, see 2.3.3.2.2 12 if (S l ) is active ∧ (S l ) does not have an imposed step then 13 δt [N l +1] l := replace min t [N l +1] l

Table 2 .

 2 2: Default values that can be used to tune the F 3 ORNITS algorithm in most of the cases (recall of the hints given in the method's description in this chapter)

	Parameters	Default values	Location	Usage
	κ abs , κ rel	10 -4 , 10 -1	2.3.1.2 macro-discontinuities
	reconstruction strategy	Constrained Least-Squares (CLS)	2.3.1.3 signal reconstruction
	C 1 smoothness enhancement	enabled	2.3.1.5	
	tol abs , tol rel	10 -8 , 1%		
	ρ min , ρ max	10%, 105%	2.3.2	time-stepper
	error normalization	damped amplitude, with		
	strategy	ν = 10 • (t [end] -t [init] ) -1		
	δt min , δt max	0, +∞ (no bounds)	2.3.3.2.4	scheduler

Table 2 .

 2 3: Results on 2 masses test model -comparing number of co-simulation steps and rmse on 2 state

	variables		
			NIZOHJA
		δt	#steps rmse on x1	rmse on v1
		0.01	20000 0.030%	0.074%
		0.05	4000 0.197%	0.462%
		0.1	2000 0.412%	0.981%
		0.2	1000 0.772%	2.044%
		0.4	500 1.928%	5.194%
			F 3 ORNITS
	Ω q Smoothness #steps rmse on x1	rmse on v1
		time-stepper using M agn. error
	Ω Ex q	disabled 1935 0.017% enhanced 1848 0.014%	0.024% 0.019%
	Ω CLS q	disabled 1768 0.017% enhanced 1786 0.017%	0.024% 0.024%
		time-stepper using Ampl. error
	Ω Ex q	disabled enhanced 674 0.122% 669 0.083%	0.183% 0.269%
	Ω CLS q	disabled enhanced 672 0.104% 636 0.083%	0.188% 0.227%
	time-stepper using damped amplitude error
	Ω Ex q	disabled enhanced 1007 0.024% 989 0.019%	0.030% 0.048%
	Ω CLS q	disabled 1071 0.020% enhanced 911 0.025%	0.037% 0.048%

Table 2 . 4 :

 24 Results on battery pack model -comparing computation time and rmse on the states variables

	Co-simulation method	Computation time Average error on all state variables
	NIZOHJA (ZOH) δt = 1s	46s	1.684%
	NIZOHJA (ZOH) δt = 0.01s	1817s	0.014%
	F 3 ORNITS (default options)	129s	0.002%

  3.5.3.1 Test-case presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 3.5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 3.6 Conclusions regarding the IFOSMONDI methods . . . . . . . . . . . . . . . . . . . . . . . . . . 127 A Parameters of the PETSc non-linear solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Ce chapitre présente les algorithmes de cosimulation IFOSMONDI qui combinent un côté itératif avec une représentation lissée des variables d'interface. Dans le cas des méthodes de couplage explicites (nonitératives), la représentation de variables d'interface lisses nécessite l'introduction d'un retard [Bus16] car les valeurs des variables d'interface à la fin d'un macro-pas donné ne sont pas connues lorsque la cosimulation n'a atteint que le début de ce macro-pas. L'un des avantages de la cosimulation implicite (c'est-à-dire des méthodes de couplage itératives) est que les valeurs des variables d'interface peuvent être connues à la fin d'un macro-pas, avec la possibilité de refaire l'intégration sur ce même macro-pas. En combinant cela avec une représentation polynomiale des variables d'interface, nous pouvons utiliser l'interpolation au lieu de l'extrapolation sur les macro-pas [KS00]. La prise en compte des dérivées temporelles des variables d'interface permet d'assurer la régularité de classe C 1 même sans historique des données échangées dans le passé : aucun retard n'est alors introduit. C'est un point important en termes de pérennité pour les algorithmes de cosimulation car le lissage à chaque temps de communication pourra permettre des redémarrages moins brutaux des solveurs à chaque nouvelle intégration.

	Contenu du chapitre

Table 3 .

 3 1: Results on 2 masses oscillator benchmark on non-iterative methods

	δt ref		NIZOHJA	[DR06; Bus16] with C 0 interfaces
	1 • 10 -5	0.1% 1868s	0.2% 1813s
	5 • 10 -5	0.7% 379s	0.9% 378s
	1 • 10 -4	1.2% 203s	1.5% 179s
	5 • 10 -4	2.6% 40s	2.8% 36s
	1 • 10 -3	3.2% 18s	3.3% 20s
	5 • 10 -3	3.7% 5.4s	3.7% 5.1s
	1 • 10 -2	3.7% 3.9s	3.7% 4.1s
	5 • 10 -2	4.3% 1.1s	9.0% 1.4s
	Table 3.2: Results on 2 masses oscillator benchmark on iterative methods
			Kübler & al, 2000 IFOSMONDI
	δt	with p E = 1 for continuous interfaces algorithm coupling
			ε = 10 -3 and m max = 10
	1 • 10 -3		0.1% 27s	0.1% 27s
	5 • 10 -3		1.0% 8.3s	0.2% 7.6s
	1 • 10 -2		3.7% 6.0s	0.6% 5.3s

Table 3 .

 3 

		3: Parameters and initial values of the test-case model
	Notation Description	Value
	M L	Mass of the body in (S 1 )	1 kg
	K SD	Spring rate of the spring in (S 1 )	1 N/m
	D SD	Viscosity coefficient in the damper in (S 1 ) 1 N/(m/s)
	D		

D Viscosity coefficient in the damper in (S 2 ) ∈ [0.01, 4]

Table 3 .

 3 5: Results on the Battery pack cooling system with IFOSMONDI-JFM IFOSMONDI-JFM (Anderson) ε = 10 -8 ε = 10 -6 ε = 10 -4 ε = 10 -2

	Error (in %)	0.001	0.0016	0.0017	0.0035
	Elapse time	52 ′ 24 ′′	12 ′ 46 ′′	11 ′ 28 ′′	5 ′ 27 ′′
	#iterations	347 189 68 015	56 464	23 229
	#integrations	366 702 83 107	71 536	38 301
	average step size (s) 0.831	0.994	0.995	0.995
	#rejected steps	734	4	0	0

Table 3 .

 3 6: Results on the Battery pack cooling system with fixed-point IFOSMONDI Classical IFOSMONDI (fixed-point) ε = 10 -8 ε = 10 -6 ε = 10 -4 ε = 10 -2

	Error (in %)	0.0017	0.0017	0.0046	0.07
	Elapse time	17 ′ 10 ′′	10 ′ 31 ′′	5 ′ 00 ′′	2 ′ 37 ′′
	#integrations	103 951 65 350	30 176	17 433
	average step size (s) 0.986	0.995	0.995	0.995
	#rejected steps	47	0	0	0

Table 3

 3 

	.8: Parameters of the NewtonLS method	
	PETSc argument: -snes_linesearch_<...>	Description	Value
	type	Select line search type	bt
	order	Selects the order of the line search for bt	3
	norms	Turns on/off computation of the norms for ba-sic line search	TRUE
	alpha	Sets alpha used in determining if reduction in function norm is sufficient	0.0001
	maxstep	Sets the maximum stepsize the line search will use	10 8
	minlambda	Sets the minimum lambda the line search will tolerate	10 -12
	damping	Damping factor used for basic line search	1
	rtol	Relative tolerance for iterative line search	10 -8
	atol	Absolute tolerance for iterative line search	10 -15
	ltol	Change in lambda tolerance for iterative line search	10 -8
	max_it	Maximum iterations for iterative line searches 40
	keeplambda	Use previous lambda as damping	FALSE
	precheck_picard	Use a correction that sometimes improves convergence of Picard iteration	FALSE
	Table 3.9: Parameters of the Anderson method	
	PETSc argument: -snes_anderson_<...>	Description	Value
	m	Number of stored previous solutions and residuals	30
	beta	Anderson mixing parameter	1
	restart_type	Type of restart	NONE
	restart_it	Number of iterations of restart conditions be-fore restart	2
	restart	Number of iterations before periodic restart	30

Table 3 .

 3 10: Parameters of the NGMRES method (not NGMRES with line search)

	PETSc argument: -snes_ngmres_<...>	Description	Value
	select_type	Choose the select between candidate and combined solution	DIFFERENCE
	restart_type	Choose the restart conditions	DIFFERENCE
	candidate	Use NGMRES variant which combines candi-date solutions instead of actual solutions	FALSE
	approxfunc	Linearly approximate the function	FALSE
	m	Number of stored previous solutions and residuals	30
	restart_it	Number of iterations the restart conditions hold before restart	2
	gammaA	Residual tolerance for solution select between the candidate and combination	2
	gammaC	Residual tolerance for restart	2
	epsilonB	Difference tolerance between subsequent so-lutions triggering restart	0.1
	deltaB	Difference tolerance between residuals trig-gering restart	0.9
	single_reduction	Aggregate reductions	FALSE
	restart_fm_rise	Restart on residual rise from x_M step	FALSE

Table 3 .

 3 11: Parameters of the NGMRES with linsearch method

	PETSc argument: -snes_ngmres_<...>	Description	Value
	select_type	Choose the select between candidate and combined solution	LINESEARCH
		. . .	
	All other options of table 3.10 are the same	
		. . .	
	PETSc argument: -snes_linesearch_<...>	Description	Value
	type	Select line search type	basic
	order	Selects the order of the line search for bt	0
	norms	Turns on/off computation of the norms for ba-sic linesearch	TRUE
	maxstep	Sets the maximum stepsize the line search will use	10 8
	minlambda	Sets the minimum lambda the line search will tolerate	10 -12
	damping	Damping factor used for basic line search	1
	rtol	Relative tolerance for iterative line search	10 -8
	atol	Absolute tolerance for iterative line search	10 -15
	ltol	Change in lambda tolerance for iterative line search	10 -8
	max_it	Maximum iterations for iterative line searches	1
	keeplambda	Use previous lambda as damping	FALSE
	precheck_picard	Use a correction that sometimes improves convergence of Picard iteration	FALSE

Table 4 .

 4 1: Capabilities related to COSTARICA

	Interaction name	Capability name	Required by COSTARICA
	as in table 1.2	in FMI 2.0 standard	COSTARICA mimics it
	Provide time-dependent * inputs	canInterpolateInput	No	It can
	Retrieve state	not a capability: internal		
	values and	state variables and their	Yes	No
	derivatives	derivatives must be exposed		
	Retrieve linearization * *	providesDirectionalDerivative	Yes	No
	Retrieve outputs time-derivatives	maxOutputDerivativeOrder	No	It can
	Rollback	canGetAndSetFMUstate	No	

Table 4 .

 4 3: Estimators at t[N +1] 

	Estimator notation	Estimated quantity	Domain
	[m] ŷ[N+1]		

  Equation (4.67) can be solved by removing its asymptotic error term and the solution is (4.68).

	ϵ : τ →	-1 λ 3 λ 2 ∆ τ 2 + (λσ + 2∆)(-exp(λτ ) + λτ + 1)	(4.68)
	Around τ = 0, we can write the limited development (4.69) of the solution (4.68).	

4.66)

Moreover, we can use the new variable τ (affine time-shift of t) to write (4.67).

ε(τ ) = λϵ(τ ) + στ + ∆ τ 2 + o(τ 2 ) ϵ(0) = 0 (4.67)

Table 4 . 4 :

 44 Parameter set of the classical Lotka-Volterra model

	Full model:

Table 4 .

 4 5: Parameter set of the modified Lotka-Volterra model

	Full model:	
	α = 0.67	β = 1.33
	γ = 1	δ = 1
	s : t → 0.55 + 0.45 sin(2πt/2.4)
	Isolated prey:	

x(t

[init] 

) = 0.8 u(t

[init] 

) = 0.8

Input stimulus u : t → 0.8 -0.448 t + 0.5173559185 t 2

  in,1 ]]

								
	S [N ] nsys	x[N]	. . . nsys,i ũ[N ] (E u nsys ũ) i	,	ũ[N ] nsys,i (E u nsys ũ) i	, t	i∈[[1,n in,nsys ]]	      

nsys , t → H t [N ] t [N +1] ,

  t → H

					t [N ] t [N +1] ,	ũ[N ] 1,i (E u 1 ũ) i	,	ũ[N ] 1,i (E u 1 ũ) i	, t	i∈[[1,n in,1 ]]
							. . .	
	S [N ] nsys	x[N] nsys , t → H	t [N ] t [N +1] ,	ũ[N ] nsys,i (E u nsys ũ) i	,	ũ[N ] nsys ,i (E u nsys ũ) i	, t	i∈[[1,n in,nsys ]]
		Ṡ[N] 1	x[N] 1 , t → H	t [N ] t [N +1] ,	ũ[N ] 1,i (E u 1 ũ) i	,	ũ[N ] 1,i (E u 1 ũ) i	, t	i∈[[1,n in,1 ]]
							. . .	
	Ṡ[N]			t [N ] t [N +1] ,	ũ[N ] nsys,i (E u nsys ũ) i	,	ũ[N ] nsys ,i (E u nsys ũ) i	, t	i∈[[1,n in,nsys ]]

nsys x[N]

nsys , t → H

Table 5 .

 5 1: Interaction with the co-simulation systems for the MISSILES method and justification

	Interaction name as in table 1.2	Is it required?	Why? (justification)
	Variable macro-step	No	

Table 5 .

 5 2: Parameters of the linear mechanical test-case Physical parameters Name Definition Value d 1 Damper rating 10 N/(m/s) d 2 Damper rating 10 N/(m/s) d 3 Damper rating 40 N/(m/s)

				Initial states
			Expression	Definition	Value
			x 1,1 (t
	c 1	Sprint rate	10 000 N/m
	c 2	Sprint rate	10 000 N/m
	c 3	Sprint rate 100 000 N/m
	m 1	Body mass	5 kg
	m 2	Body mass	80 kg

Table 5 .

 5 3: Results on linear mechanical model: relative error on left body's position (in %) and computational time (in s)

		NIZOHJA	IFOSMONDI-JFM ε = 10 -2 ε = 10 -5	MISSILES
	δt fixed = 10 -3	5.80 % 0.26 s	7.55 • 10 -4 % 0.62 s	2.66 • 10 -4 % 0.95 s	7.82 • 10 -3 % 0.31 s
	δt fixed = 10 -4 2.93 • 10 -1 % 1.80 s	4.80 • 10 -5 % 5.35 s	2.27 • 10 -5 % 7.48 s	1.34 • 10 -3 % 3.01 s

Table 5 .

 5 4: Results on Lotka-Volterra model: relative error on prey (in %) and computational time (in s)

	NIZOHJA	IFOSMONDI-JFM ε = 10 -2 ε = 10 -5	MISSILES
	δt fixed = 10 -3 1.34 • 10 -1 % 1.01 s	6.86 • 10 -4 % 2.63 s	6.86 • 10 -4 % 3.39 s	6.79 • 10 -3 % 2.20 s
	δt fixed = 10 -4 1.35 • 10 -2 % 13.27 s	6.82 • 10 -4 % 21.43 s	6.82 • 10 -4 % 22.60 s	3.48 • 10 -4 % 18.52 s

For the sake of readability, we will sometimes write only the last variable of Ω Ex q-1 and Ω CLS q-2 .

Ψτ takes into account both the interfaces values and derivatives, whereas Ψ function in[START_REF] Eguillon | IFOSMONDI: A Generic Co-simulation Approach Combining Iterative Methods for Coupling Constraints and Polynomial Interpolation for Interfaces Smoothness[END_REF] was only taking into account the values and a post-tratment after each fixed-point iteration was required to smooth the derivatives.

In this precise case, too small stands for: too small to produce a significative difference between the first and third order polynomials.

Please note that, as always in this thesis, the hat ˆsymbol denotes an estimator, however in table 4.3 these are the COSTARICA estimators, the[m] ŷ[N+1] notation should not be confused with the finite differences estimator example in 1.3.5.5.3, for instance.

N := N + 1;

Dans les chapitres précédents, nous avons introduit un algorithme de cosimulation itérative (IFOSMONDI) avec une grande robustesse numérique mais une faible robustesse logicielle (due à l'exigence de support du rollback par les systèmes). Ensuite, nous avons amélioré la robustesse logicielle en introduisant le processus COSTARICA qui permet de s'absoudre de l'exigence de support du rollback afin de traiter des systèmes composites pour lesquels tous les systèmes ne sont pas capables de retourner en arrière. L'idée de ce chapitre est d'aller un peu plus loin dans cette idée d'augmenter un aspect de la robustesse sans trop affecter l'autre.La motivation de la méthode MISSILES est la réponse à la question suivante : que se passerait-il si la méthode de cosimulation IFOSMONDI était utilisée sur un système composite où chaque système utilise le processus COSTARICA pour surmonter le fait qu'il ne soit pas capable de revenir en arrière ?

The reciprocal is not always true: in case an output is connected to several inputs, a row of Φ has several 1 coefficients, as in figure1.1. In this case, if the inputs connected to the same output have different values, no output vector corresponds to the input vector.
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An adaptive and flexible method: F 3 ORNITS Contents derivatives at t [N ] and t [N +1] (respectively becoming the derivatives at 0 and 1), but it may avoid failures when t [N ] >> 0 and t [N +1] -t [N ] is very small (because of the

) 2 factor in the coefficients of the polynomial.

To make the IFOSMONDI methods preserves the C 1 smoothness of the interface variables at the communication times, the input functions for every system will all satisfy the property (3.7) when a time t [N ] has been reached. This is analog to the (2.23) and (2.24) of 2.3.1.5 in F 3 ORNITS , yet here we must take into account the iterative characteristic of the method (see iteration indices in (3.6) and its development (3.7)).

Property (3.6) guarantees the C 1 smoothness of the inputs between their last iteration of the macostep ending at t [N ] and all forther iterations on the macro-step beginning at t [N ] . Developping the snapshots expressions of (3.6) indeed leads to (3.7).

) 

Modified extended step function

The IFOSMONDI methods represent the inputs as 3 rd order polynomial (maximum) in order to satisfy the smoothness condition (3.7) and to respect imposed values and derivatives at t [N +1] for every macrostep. Knowing these constraints, it is possible to write a specification of the practical step function; in particular we will focus on the concatenation of the state-hiding practical step funcion and its dot version S k as introduced in 1.3.5.5.2 (for any system (S k ) with k ∈ [[1, n sys ]]) for the IFOSMONDI methods:

where the three cases discussed in 1.3.5.3 have to be considered. Once each of these cases has been detailed, we will show the way they are successively linked in a visual way in figures 3.7 and 3.8.

In order to remove possible ambiguity at nodes (id est communication times), the snapshot notation (with the tilde ˜)will only be used for the constraints coming from the iterative method (detailed further in this section). Constraints coming from previously played steps will be written in developped notations.

Case 1: Moving on:

In this case, the last call to ζ k was done with a τ ∈ T ending at current t [N ] . In other words, the system k "reached" time t [N ] . The inputs were, at this last call:

. Inputs for the macro-step [t [N ] , t [N +1] [ need to be smoother than ZOH in order to avoid time-derivative continuity break. Indeed, figure 3.6 shows that at least FOH should be used to keep C 1 inputs. However, using FOH at the first fixed-point iteration on a given macro-step can only be done with extrapolation (as no other information can be known), so the dangers showed on figure 3.2 may appear. To reduce (but not remove) the risk of out-of-range values, SOH (standing for Second-Order Hold) can be done by forcing the polynomial to rejoin at the end of the macro-step the value it had at the beginning. To produce this behavior, the inputs [0] u

[N ] k will be defined as the 2 nd order polynomial satisfying the three following constraints:

)

The two first constraints guarantee the smoothness property (3.7), and the third one minimizes the risk of out-of-range values (as shown on figure 3.6).

When the iterative method does not converge on the step [t [N ] , t [N +1] [, either because a maximum number of iterations is reached or for any other reason (linear search does not converge, a Krylov internal method finds a singular matrix, ...), the step will be rejected and retried on the half (3.17) without subceeding δt min . Otherwise, once the method converged on [t [N ] , t [N +1] [, the next integration step τ tries to increase the size of 30%, without exceeding δt max .

Once the iterative method exits on τ old , the next step τ new is defined by:

sup(τ old ), min t [end] , sup(τ old ) + min δtmax, 1. (3.17)

When ε abs = ε rel , these values will be denoted by ε. When δt max = δt [0] , these values will be denoted by δt ref .

When the step size cannot be reduced as δt min is reached, the co-simulation stops with an error. One can retry with a smaller δt min , or with δt min = 0.

Note on the implementation of the JFM version

Our implementation is based on an orchestrator-worker architecture, where n sys + 1 processes are involved. One of them is dedicated to global manipulations: the orchestrator. It is not responsible of any system and only deals with global quantities (such as the time, the step τ , the ũ and ỹ vectors and the corresponding time-derivatives, and so on). The n sys remaining processes, the workers, are reponsible of one system each. They only deal with local quantities related to the system they are responsible of.

Parallel evaluation of γ τ using MPI

An evaluation of γ τ consists in evaluations of the n sys functions (ζ k ) k∈ [[1,nsys]] , plus some manipulations of vectors and matrices (3.13). An evaluation of a single ζ k for a given k ∈ [[1, n sys ]] consists in polynomial computations and an integration (3.10) (3.12) through a call of the corresponding S k simulation function, see 1.3.5.

A single call to γ τ can be evaluated parallely by n sys processes, each of them carying out the integration of one of the systems. To achieve this, the MPI standard [START_REF] Gropp | Using MPI: Portable Parallel Programming with the Message Passing Interface[END_REF] has been used, as the latter provides routines to handle multi-process communications of data.

As the k th system only needs E u k ũ and E u k ũ (see (3.3)) among ũ and ũ, the data can be send in an optimized manner from the orchestrator process to n sys workers by using the MPI_Scatterv routine.

Analogously, each worker process will have to communicate their contribution both to the outputs and their derivatives (assembling the block vector at the right of the expression (3.13)). This can be done by using the MPI_Gatherv routine.

Finally, the communication of global quantities such as τ , m, the notifications of statuses and so on, can be done easily thanks to the MPI_Broadcast routine.

In all cases, the communications are organized in a "bus" architecture (all workers communicate with the orchestrator, but not to one another). Synchronization points before and after each evaluation of all ζ k functions for all k in [[1, n sys ]] (in a single call of γ τ ) would generate, in the worst case (when every system has connection with every other system), n sys (n sys -1) communications for every input / output dispatching or gathering in a point-to-point architecture, whereas only 2 n sys communications are needed for a bus architecture, with the same total amount of exchanged data. Thus, our code uses the bus architecture.

Using PETSc for the JFM

PETSc [Bal+19; Bal+97] is a library used for parallel numerical computations. For this thesis, the several matrix-free versions of the Newton method and variants implemented in PETSc were very attractive. Indeed, the flexibility of this library at runtime enables the use of command-line arguments to control the resolution: -snes_mf orders the use of a matrix-free non-linear solver, -snes_type newtonls, anderson [START_REF] Anderson | Iterative Procedures for Nonlinear Integral Equations[END_REF] and ngmres [START_REF] Oosterlee | Krylov Subspace Acceleration of Nonlinear Multigrid with Application to Recirculating Flows[END_REF] are various usable solving methods that can be used as JFMs, -snes_atol, -snes_rtol and -snes_max_it control the convergence criterion, -snes_converged_reason, -snes_monitor and -log_view produce information and statistics about the run, ... This subsection proposes a solution to use these PETSc implementations in a manner that is compliant with the parallel evaluation of the JFM's callback (3.13). This implementation has been used to generate the results of section 3.5.

First of all, PETSc needs a view on the environment of the running code: the processes, and their relationships. In our case, the n sys +1 processes of the orchestrator-worker architecture are not dedicated to the JFM. Thus, PETSc runs on the orchestrator process only. In terms of code, this can be done by creating PETSc objects referring to PETSC_COMM_SELF communicator on the orchestrator process, and creating no PETSc object on the workers.

The callback γ τ implements internally the communications with the workers, and is given to the PETSc SNES object. The SNES non-linear solver will call this callback blindly, and the workers will be triggered behind the scene for integrations, preceded by the communications of the

values asked by the SNES and followed by the gathering of the outputs and related derivatives. The latters are finally returned to PETSc by the callback on the orchestrator side, after reordering and dispatching them as in (3.13).

JFM's callback implementation

In this section, a suggestion of implementation is proposed for the γ τ function, both on the orchestrator side and on the workers side. Precisions about variables in the snippets are given below them.

By convention, the process of rank 0 is the orchestrator, and any process of rank k ∈ [[1, n sys ]] is responsible of system k. The aim is not to show the code that has been used to generate the results of section 3.5, but to figure out how to combine the PETSc and MPI standard (PETSc being based on MPI) to implement a parallel evaluation of γ τ .

In the code snippet 3.1, the function JFM_callback is the one that is given to the PETSc SNES object with SNESSetFunction. The context pointer ctx can be anything that can be used to have access to extra data inside of this callback. The principle is: when SNESSolve is called, the callback function which has been given to the SNES object will be called an unknown number of times. For this example, we suggested a context structure MyCtxType at least containing:

• t_N, t_Np1 the boundary times of τ , id est t [N ] and t [N +1] (as double each),

• n_in_tot the total number of inputs n in,tot (as size_t),

• double_u_and_du an array dedicated to the storage of (ũ T , ũT ) T (as double*),

• in_sizes the array containing the number of inputs for each process (n in,k ) k∈ [[0,nsys]] including process 0 (with the convention n in,0 = 0) (as int*),

• in_offsets the memory displacements

for inputs scattering for each process (as int*),

Appendix A Parameters of the PETSc non-linear solvers

The JFMs mentionned in this document (see definition in 3.2.1) refer to PETSc non-linear solvers, so-called 'SNES' in the PETSc framework. The parameters of these methods where the default one, except the explicitely mentionned ones. For the sake of reproducibility, the following tables recaps these options. For further definition of their meaning, see [Bal+19; And65; OW00].
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An estimator for rollback-less systems: COSTARICA 

.2.1 Ideal error due to the linearization only

The ideal error is the difference between the simulation realized with the non-linear version of the isolated prey systems and the linearization in terms of x and u. In other words, it would be the error in the response to a given stimulus over a single macro-step in case the only approximation made were to use the linearized system instead of the non-linear real one.

This error is expected to be of order 3 and 2 for the classical Lotka-Volterra model and its modified version, respectively (object of the analysis in 4. In each modeling version (classical and modified Lotka-Volterra), the difference between the non-linear and linear versions of the mocked prey system, submitted to the same predator stimulus, have been computed at each micro-step. These results, shown on figure 4.6, show the error we could expect if the macro-step size were of the size of the corresponding ascissa. A micro-step size of 10 -5 has been chosen here. The error a macro-step of size δt would be, in case the only approximation made were to use the linearized system instead of the non-linear real one, the y-value of the point in the corresponding curve at the abscissa δt in figure 4.6. On the latter, "LV with time" denotes the modified Lotka-Volterra. This error shown in figure 4.6 is ideal in the sense that it characterizes the error due to the linearization process only. However, over a macro-step estimated with COSTARICA, numerical calculations are made (numerical Laplace inverse, numerical computation of the G, P and R matrices using Misra & Patel method [START_REF] Misra | Computation of Transfer Function Matrices of Linear Multivariable Systems[END_REF], including numerical Hessenberg decomposition, et caetera ). Therefore, a similar error observation with numerical COSTARICA estimations have to be conducted in order to measure a practical error.

Practical error on the linearization-based numerical estimation

The process to measure the practical error is slightly different than simulations comparisons used to highlight the ideal error. Indeed, instead of conducting four simulations and comparing the results at each The parameters of the model are given in table 4.6 for the sake of reproducibility. 

Initial states Expression

Definition Value x 1,1 (t [init] ) Amount of prey 1 x 2,1 (t [init] ) Amount of predator 1 Co-simulation parameters Expression Value [t [init] , t [end] ] [0, 20] s Initial coupling conditions Input Output Definition Value u 1,1 (t [init] ) y 2,1 (t [init] ) Amount of predator 1 u 2,1 (t [init] ) y 1,1 (t [init] ) Amount of prey 1

System (S 1 ) represents the prey. A sketch of it is presented on figure 4.13. The population of prey, denoted by p, is the single state variable of (S 1 ). It is also the output. The single input to this system is the population of predator. The α and β parameters are the natural birth rate and the rate of predation upon the prey respectively. The (non-linear) equations of (S 1 ) are given in (4.84). 

Conclusion and outlook

Summary of contributions

To sum-up, the common thread of this work was the development of co-simulation techniques in order to find a satisfactory compromise between the numerical robustness and the software robustness, the first one being related to the quality of the results obtained with a given co-simulation algorithm, and the second one being the technical capacity to use it in an industrial context.

Once the framework defined, the overview of the related work within the context of this research clearly highlighted the difficulty to balance these two aspects of the notion of robustness: proposed advanced co-simulation methods in the literature enable to reach a good accuracy and even nice physical properties (preserved conservation laws, stabilized behavior, step revision avoiding integration failures, ...), yet such methods require more insight than the basics any system can provide. Here was precisely the tough aspect of this trade-off between numerical and software robustness: advanced co-simulation methods cannot run an any system, the latter indeed needs to provide either information about the nature of the interfaces, the possibility to perform advanced interactions (rollback, handling time-dependent input, providing directional derivatives, et caetera ).

Based on the FMI standard, we could identify a clearly defined set of basic and advanced possible interactions with the systems. From that point, the first goal was the development of an industrial-friendly co-simulation method with the best possible software robustness. Such a method already exists: NIZO-HJA, however the latter does not take benefits of the advanced capabilities of the systems when they have it. Our first contribution (not chronologically), the F 3 ORNITS algorithm [START_REF] Eguillon | F3ORNITS: a Flexible Variable Step Size Non-Iterative Co-simulation Method Handling Subsystems with Hybrid Advanced Capabilities[END_REF], is adaptive in capabilities. In other words, by-design, it can run on any composite system for a co-simulation as far as this composite system is correct (no causal conflict, no unconnected input, ...). In the worst case, when none of the involved systems is capable of any advanced operation, the F 3 ORNITS method re-creates the behavior of the basic NIZOHJA method. However, as far as some systems have advanced capabilities (even the most common ones like the variable macro-step support or the polynomial inputs compliancy), F 3 ORNITS takes advantage of it. The method handles heterogenous cases in terms of capabilities (if different systems involved in the same composite system have different available advanced capabilities, the method can still take advantage of them). The flexible design of this algorithm in the first chapter, together with the mathematical development of the time-stepper using an adaptation error-order-based heuristic, enabled the method to be not only robust in terms of software robustness, but also to perform accurate and efficient co-simulations and therefore to seek for numerical robustness as well. Various test-cases, heterogenous, large-scale, tough (namely using an input as constraint variable in a DAE context), hybrid, ... have shown the capacity of adaptation of the method together with its competitiveness with other industrial-friendly methods (NIZOHJA, usage of FOH for the case involving a DAE, ...).

The F 3 ORNITS method being introduced it can act as a fallback: less applicable methods can be developed as far as, in case a modular model cannot run with this method, there is a possibility to use the F 3 ORNITS algorithm. Therefore, in order to seek for numerical robustness, we proposed an iterative cosimulation algorithm: IFOSMONDI [START_REF] Eguillon | IFOSMONDI: A Generic Co-simulation Approach Combining Iterative Methods for Coupling Constraints and Polynomial Interpolation for Interfaces Smoothness[END_REF]. Chronologically, the classical IFOSMONDI algorithm was