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“What has been is what will be,
and what has been done is what will be done,
and there is nothing new under the sun.

Is there a thing of which it is said, “See, this
is new”?
It has been already in the ages before us.

There is no remembrance of former things,
nor will there be any remembrance of later
things

yet to be among those who come after.”

Ecclesiastes, c. 450–330 BCE.

“Ce qui a existé, c’est cela qui existera ;
ce qui s’est fait, c’est cela qui se fera ;
rien de nouveau sous le soleil.

Y a-t-il une seule chose dont on dise: “Voilà
enfin du nouveau !”
– Non, cela existait déjà dans les siècles
passés.

Mais, il ne reste pas de souvenir d’autrefois ;

de même, les événements futurs ne laisseront

pas de souvenir après eux.”

L’Ecclésiaste, env. IIIe siècle av. J.-C.





Résumé en français

La médecine moderne, aussi dite médecine fondée sur les preuves, place les essais contrôlés randomisés
(ECRs) au premier plan de la preuve clinique. En effet, la randomisation permet une estimation
de l’effet causal du traitement, au lieu de la simple association ou corrélation. Cependant, de plus
en plus de limites sont trouvées aux ECRs, du fait de leurs stricts critères d’éligibilité, des condi-
tions de réalisation, des périodes de temps trop restreintes qu’ils couvrent, ou encore de leur petite
taille d’échantillon. Toutes ces raisons entament ce que l’on appelle la validité externe des résultats.
L’utilisation de données observationnelles – ou dites de vie réelle – constitue une potentielle solution.
Les autorités sanitaires comme le régulateur américain (Food and Drug Administration) ou encore
la Haute Autorité de la Santé (HAS) soutiennent ces nouvelles pratiques. Mais les données de vie
réelle ne sont pas non plus une panacée, car leur analyse repose sur des hypothèses non vérifiables
pour la plupart. Des travaux plus récents proposent de combiner les deux sources de données, afin
de renforcer les faiblesses de l’une par les forces de l’autre. Ainsi, cette thèse propose d’abord une
revue de toutes les méthodes existantes sur le sujet, que ce soit pour déconfondre une base de données
observationnelles à partir de données expérimentales ou bien pour généraliser à d’autres populations
une étude randomisée. Ce travail de thèse propose ensuite d’approfondir ce dernier aspect, en util-
isant la représentativité des données de vie réelle pour re-pondérer les résultats d’un ECR. Cette
thèse étudie les propriétés théoriques de ces méthodes, telles que les propriétés d’estimation à taille
finie ou asymptotique (biais et variance). Ces résultats permettent d’obtenir des recommandations
pratiques pour la recherche clinique, notamment concernant la sélection de covariables. Cette thèse
propose également une analyse de sensibilité lorsque les covariables sont partiellement ou totalement
observées. La plupart des travaux existants définissent l’effet d’un traitement comme une différence
absolue. Pourtant, d’autres métriques, comme le ratio, sont préférées dans la recherche clinique. Par
conséquent, cette thèse ouvre également la voie à la généralisation de toutes les mesures causales, et
non pas seulement de l’une d’entre elles. Ce faisant, nous relions la généralisation à une préoccupation
plutôt ancienne de la causalité, à savoir la collapsibilité d’une mesure. Nous proposons également une
autre façon d’appréhender ce que l’on appelle l’hétérogénéité d’un effet. Ceci nous permet de montrer
que les méthodes pour généraliser un effet causal dépendent de la nature de l’outcome (continu ou
binaire) ainsi que de la nature de la mesure d’intérêt (ratio ou différence). Tous les travaux de cette
thèse sont développés en lien avec la recherche clinique, notamment via le consortium français de la
Traumabase.



Abstract

Modern evidence-based medicine places Randomized Controlled Trials (RCTs) at the forefront of
clinical evidence. Randomization enables the estimation of the average treatment effect (ATE) by
eliminating the confounding effects of spurious or unwanted associated factors. More recently, concerns
have been raised on the limited scope of RCTs: stringent eligibility criteria, unrealistic real-world
compliance, short timeframe, limited sample size, etc. All these possible limitations threaten the
external validity of RCT studies to other situations or populations. The usage of complementary non-
randomized data, referred to as observational or from the real world, brings promises as additional
sources of evidence. Today, there is a growing incentive to rely on this new data, which is also endorsed
by health authorities such as the Food and Drug Administration (FDA) in the U.S. and the Haute
Autorité de la Santé (HAS) in France. Combining both data types – randomized and observational –
is a new venue that could make the most of both worlds. First, this thesis proposes a review of all the
existing methods combining several data types to build clinical evidence. Then, the thesis is focused
on improving the external validity of RCTs. In other words, how can we use representative sample of
the target population of interest to re-weight or to generalize the trial’s findings? Such methods are
quite recent and have been proposed in the early 2010’s. This thesis investigates theoretical properties
of these methods, such as finite and large sample properties (bias and variance) of the estimation,
which helps to provide practical guidelines about covariates selection and the impact of both samples’
sizes. This thesis also proposes a sensitivity analysis when covariates are either partially or totally
unobserved. Most – if not all – current statistical works concern the generalization of the effect
on the scale of the absolute difference, while our clinicians collaborators pointed to us the need to
encompass several causal measures (e.g. ratio, odds ratio, number needed to treat). Therefore, this
thesis also opens the door to the generalization of all causal measures of interest. Doing so, we link
generalization with a rather old concern of causality, namely collapsibility of a measure. We also
propose a new framing to apprehend heterogeneity of a treatment effect. Finally, it turns out that
assumptions required for generalization depend on the nature of the outcome and the causal measure
of interest. All our research questions are motivated by clinical applications, and in particular by the
Traumabase consortium.
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ii



pour votre bonne humeur, vos conseils de vie, ou de survie en recherche. Le laboratoire a de la chance
de vous avoir, et je suis ravie de connâıtre une relève aussi brillante.
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même temps: Pierre, Corentin, Robin, Victor, El Mehdi et Rubing. Nos exposés respectifs ont été des
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ablement pas par hasard. Merci.

Marc, merci d’être mon compagnon de route.



Avant-propos

En tant que fonctionnaire – en particulier ingénieure du corps des mines – j’ai eu la chance d’effectuer
ma thèse dans les meilleures conditions qui soient. Je remercie tout particulièrement mon employeur
Inria, ainsi que le corps des mines pour avoir accepté mon détachement. Merci à la commission
scientifique et technique du corps des mines, présidée par Yannick d’Escatha, ainsi qu’à Catherine
Lagneau de leur soutien et de leur confiance dans ce projet de recherche.

Beaucoup de nos concitoyens ne connaissent pas l’existence des grands corps d’État, en particulier
les corps techniques. J’en ai moi-même découvert l’existence lors de ma scolarité à l’École polytech-
nique. En quelques mots, ils constituent un vivier de fonctionnaires-ingénieurs, généralement recrutés
à la sortie des dites Grandes Écoles comme l’École polytechnique, les Mines de Paris, Telecom, ou
encore les Écoles Normales Supérieures (ENS). Depuis quelques années, le recrutement tend à s’élargir
légèrement, avec notamment l’ouverture d’une voie de recrutement sur doctorat.

Débuter par la recherche scientifique n’a pas été un chemin facile, à la fois pour la réflexion person-
nelle que cela implique, mais aussi parce que cette possibilité, si elle existe, n’est pas encouragée. À
certains égards, faire le choix d’obtenir un doctorat est perçu par certains comme une perte de temps
ou l’option du confort de rester un éternel étudiant. Demander à aller en institut de recherche ou
à l’université pour quelques années alors que d’autres postes nous sont proposés peut donc passer
pour un luxe. Consciente de la position privilégiée que j’occupe, ces questions me tiennent à coeur.
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scientifique. Le changement le plus visible est une connaissance dite experte sur un sujet et une
légitimité nouvelle. Mais plus important: ma relation au savoir a changé. Désormais, ce que j’appelle
savoir - ou connaissance - est quelque chose qui se découpe entre plusieurs notions: ce qui est écrit
dans les livres, ce que les autres disent, ce qui est considéré comme une preuve, ce dont j’ai entendu
parler, et ce que je mâıtrise partiellement ou réellement. D’une certaine façon, me suis émancipée de
mon rapport encyclopédique à la connaissance.

J’en mesure le bénéfice personnel. Mais était-ce de l’argent bien investi par la Nation? C’est aux
citoyens d’apporter la réponse. Le recrutement, la formation, et la vocation des hauts-fonctionnaires
est une question politique, qui évolue avec la société et les besoins qui la traversent.

Ces dernières années, la France a connu une phase de questionnnement sur la légitimité de ses élites.
Je pense notamment à la manifestation des gilets jaunes ou encore aux débats sur la (perte de)
souveraineté énergétique française. À une époque bouleversée par le retour de la guerre aux portes de
l’Europe, l’inflation, les conflits sociaux, et les prémices des bouleversements climatiques et écologiques
à venir, l’expertise scientifique est nécessaire. Dans mes réflexions sur ces sujets, j’ai récemment
découvert l’existence du décret Suquet (Figure 1 ci-dessous), paru au début de la Seconde Guerre
Mondiale. Ce Décret résonne avec notre époque, indiquant une perte de compétences scientifiques
et techniques en interne des corps techniques. Il pointe notamment le manque de temps pour se
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former, les effectifs réduits, ou encore la pénurie de formation scientifique (et non pas scolaire) alors
même que des vocations se présentent. En conséquence, ce Décret propose d’augmenter le nombre de
recrutements de fonctionnaires ingénieurs pour permettre à une partie d’entre eux de débuter par une
période de recherche de quatre ans minimum au côté d’un savant de son domaine. Le propos conclut
ainsi que “Certes, ce remède excellent et d’un effet sûr nécessite quelques créations d’emplois dans
certains corps dont l’effectif est déjà très réduit: il se traduit donc par une dépense nouvelle. Mais
celle-ci est assurément faible eu égard aux services d’ordre national et aux économies que procurera
l’organisation proposée.”.

Figure 1: Journal Officiel de la République Française en date du Mercredi 30 Août 1939 – Extraits du Décret relatif
à l’organisation de la recherche scientifique dans les corps techniques de l’État, aussi appelé Décret Suquet.
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Chapter 1

Introduction

“Statistical inference is an unusually wide-ranging discipline, located as it is

at the triple-point of mathematics, empirical science, and philosophy.”

Brad Efron and Trevor Hastie, Computer Age Statistical Inference

Contents

1 The emergence of modern clinical evidence . . . . . . . . . . . . . . . . . . 1

2 Rising concerns about external validity . . . . . . . . . . . . . . . . . . . . 5

3 The promise of detailed and larger observational data . . . . . . . . . . . 9

4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.A L’émergence de l’évidence clinique dite moderne . . . . . . . . . . . . . . 20

1.B Limites des essais randomisés contrôlés dans la recherche clinique . . . . 24

1 The emergence of modern clinical evidence

Currently, medical recommendations made by clinicians or regulatory agencies (e.g. Food and Drug
Administration (FDA) or World Health Organization (WHO)) are grounded on what is known as
evidence. But over the past two centuries, the notion of evidence that would guide medical practices
has evolved significantly, with a notable increase in the use of clinical data, particularly through
statistical analysis. The idea of using data to address clinical questions has gained traction since
the 19th century. Many methods, ways of thinking, and types of evidence that we use today were
developed during this era. As illustration, we detail some of the following pioneers’s contributions.

– Pierre-Charles-Alexandre Louis (1787–1872) was a doctor in the former Paris hospital
called La Charité. He developed new methodologies on diseases (e.g., typhoid and tuberculosis),
along with efficacy evaluation of a popular technic at the time: bloodletting (Morabia, 2006;
Chemla and Abastado, 2012). His work on bloodletting contains many of the key elements
that are today advocated as modern robust clinical research. Louis (1828) discusses the target
population (i.e. patients suffering from a certain type of pneumonia), patients stratification (i.e.
whether they had been bled early after the start of the disease or not), and the precise definition
of an outcome (i.e. duration of disease), to name a few. What is striking in Pierre-Charles-
Alexandre Louis’s work is (i) the notion of comparing similar groups and (ii) the idea of a
target population. These two elements are cornerstones of modern randomized controlled trials
(RCTs), along with randomization.

– William Farr (1807-1883) was a pioneering demographer and civil servant at the General
Register Office where he was first appointed as the compiler of statistical abstract before being
appointed Superintendent of the Statistical Department. In parallel to his work as a civil servant,
he was a regular contributor of the Lancet (Langmuir, 1976). His work involved a broad range
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of topics, including normalization of datasets’ nomenclature. He is also famous for improving
the statistical definition of the life expectancy with his British Life Table (Farr, 1864), while
also developing the tenets of what is today called surveillance (of disease, see Langmuir, 1976).
According to Rothman (2011), William Farr also took a great place in the scientific discussion
about the causes of cholera (see below with John Snow). William Farr was a social reformer,
deeply concerned by the impacts of industrialization on public health. This could explain his
data-based investigations about the causes of diseases, in order to prevent them from happening
and to urge effective sanitary reforms (Farr, 1839; Langmuir, 1976; Rothman, 2011).

– John Snow (1813-1858) was a physician. He is known for his work about cholera, and is
now introduced in every epidemiology lectures or books as the founding father of epidemiology
(Rothman, 2011). In 1854, London faced a cholera outbreak. According to the textbooks de-
scribing the story, John Snow started recording the cases on a map of London, which corresponds
to what we call today descriptive statistics. He tested the hypothesis of water as the vector of
contamination, and therefore added the water pumps on the map. He could identify a correla-
tion between the two: concentration of cholera cases was the highest around some water pumps
(Tulchinsky, 2018). Snow is known for having convinced authorities to remove the handle from
the pump suspected to be at the origin of the outbreak, and the spread of the disease ended1.
A memorial in his honor is now standing at the location of this pump. Note that at the time
another hypothesis was that cholera was transferred in the air: the miasma theory. This theory
was shared by many – including William Farr (Eyler, 2004). Miasma theory was supported by
the observations that people living in altitude – supposed to be exposed to fresh air – were less
subject to cholera. But altitude is also related to the flow of water, with individuals living at
lower altitudes being more likely to drink contaminated water. What made the difference at
the time was Snow’s intuition that, because the symptoms were gastrointestinal, the disease
could only be transmitted by food or water. He somehow unraveled the hidden covariates while
associating houses with their exact water suppliers. In other words, this allowed to clearly see
the link between the water pump and the inhabitants suffering from cholera, and not only the
spurious correlation with air quality through altitude (Rothman, 2011).

– Janet Lane-Claypon (1877-1967) was a physician, and was also the first woman ever to
receive a research scholarship from the British Medical Society. Beyond many research works,
one of her aim was to compare the benefits of breast feeding versus cow’s milk feeding (she
published a 60-pages report in 19122). According to Winkelstein Jr (2004), she authored one of
the first case-control study, which included a detailed discussion about sources of confounding,
and finite sample random error. She applied a Student t-test to reject the assumption of random
sampling explaining the difference associated with feeding in infants body weights. Note that the
Student t-test had been proposed only four years before Janet Lane-Clayton’s work (Student,
1908), illustrating how much this work using state-of-the-art’s statistics. She also highlighted
the social class as a possible unobserved confounding factor (Winkelstein Jr, 2004; Rothman,
2011). In 1926, she also worked on another case-control study unraveling risk factors of breast
cancers, most of them being still accurate as of today (Lane-Claypon et al., 1926).

All these researchers and scientists derived their conclusions from collective empirical data, rather
than from individual experiences. At the same period, mathematical concepts were evolving. A
new mathematical science was emerging with probabilities and statistics. One can mention the book
entitled A Philosophical Essay on Probabilities from Pierre-Simon Laplace (1749-1827) published in
1814, illustrating the premises of a new kind of reasoning: data collection, probabilistic thinking, and
its application in medicine:

1Some recent works advocate that John Snow’s intervention was too late, as the disease was already naturally
decreasing. Therefore, his action was not what ended the cholera outbreak. See Chapter 4 of Rothman (2011), showing a
reconstitution of the epidemic curve, already decreasing at the time of John Snow’s intervention. Still, the whole process
of going from description to hypothesis testing remains notable and novel.

2We have not found the original article.

2



1. The emergence of modern clinical evidence

“The calculation of probabilities can help appreciate the advantages and disadvantages of
the methods used in conjectural sciences. For example, to recognize the best treatment used
to cure a disease, it suffices to test each one on the same number of patients, while making
all circumstances perfectly similar. The superiority of the most advantageous treatment
will become increasingly apparent as this number grows, and calculation will reveal the
corresponding probability of its advantage, and the ratio by which it is superior to the
others.” – page 134, in Marquis de Laplace (1825)3

It is no coincidence that the term epidemiology could be traced back in 1850, with the creation of
the Royal Society of Medicine’s Epidemiological Society in London. The objective of this institute
was “to investigate the causes and conditions which influence the origin, propagation, mitigation, and
prevention of epidemic disease” (Evans, 2001). The apparition of the term epidemiology indicates the
birth and establishment of a new methodological approach to characterize disease propagation and
public health. One of its typical characteristics: interdisciplinarity (at least with medicine, physiology,
and mathematics). The Royal Society of Medicine’s Epidemiological Society was later incorporated
into the Royal Society of Medicine, showing how epidemiology was not only shaped by clinicians, but
also (if not mostly) by scientists. As an example of the spirit of the time, Claude Bernard (1813-1878)
recalls a very witty anecdote to illustrate the urge to merge different scientific communities:

The desire that I express here would roughly correspond to Laplace’s thought, when he was
asked why he had proposed to include doctors in the Academy of Sciences since medicine
is not a science: ‘It is,’ he replied, ‘so that they can be with scientists.’ – page 285, in
Bernard (1865)4

An interesting parallel can be made with today’s situation, where interdisciplinary collaborations be-
come more and more sought after, in fields such as data science (e.g. Chambers (2022)).

Note that the increasing role of statistics –also named conjectural science in the mid-19th century–
to build evidence was discussed and challenged. For example, Claude Bernard is often quoted as an
opponent to the use of statistics to build clinical evidence. Bernard (1865) indeed considered that true
medical knowledge had to be acquired by individualization of cases and the understanding of variability
across individuals, rather than hiding such differences in averages. His underlying idea being that if
the mechanism is truly understood, then there should be no more uncertainty in the outcome and/or
treatment effect. But reality is not binary, and Claude Bernard also recognized empirical data as an
intermediate tool to build conjectures. For example, and as shown by Morabia (2018), Claude Bernard
implicitly (i.e. without naming it) discusses experiments from Pierre-Charles-Alexandre Louis in his
book, praising the experimental evaluation about bloodletting.

Current practice The use of statistics in clinical research, which was introduced in the 19th century,
has continued to be widely disseminated. The modern approach to teaching statistics for public health
and clinical research follows a clear framework and notation, as outlined in various textbooks (Rothman
and Greenland, 2000; Rothman, 2011; Guyatt et al., 2015). Currently, researchers rely primarily on
collecting data from multiple sources to build evidence and draw conclusions about diseases or risk
factors. The strength of this evidence ranges from relatively weak to highly robust, depending on
the type and amount of data collected. By type of data, we mean how the data were collected and
whether or not data result from an observational or experimental design. There is also a broad

3Original French version: “Le calcul des probabilités peut faire apprécier les avantages et les inconvénients des
méthodes employées dans les sciences conjecturales. Ainsi, pour reconnâıtre le meilleur des traitements en usage dans
la guérison d’une maladie, il suffit d’éprouver chacun d’eux sur un même nombre de malades, en rendant toutes les
circonstances parfaitement semblables : la supériorité du traitement le plus avantageux se manifestera de plus en plus
à mesure que ce nombre s’accrôıtra ; et le calcul fera connâıtre la probabilité correspondante de son avantage, et du
rapport suivant lequel il est supérieur aux autres.”

4Original French version: “Le désir que j’exprime ici répondrait à peu près à la pensée de Laplace, à qui on demandait
pourquoi il avait proposé de mettre des médecins à l’Académie des sciences puisque la médecine n’est pas une science :
“C’est, répondit-il, afin qu’ils se trouvent avec des savants.””
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Chapter 1. Introduction

variety of sources of evidence, that is to say of data collection and analysis: two-stage designs, ecologic
studies, retrospective cohort, case-control studies, and randomized controlled trials (RCTs). Among
these, RCTs are widely considered as the best evidence that can be obtained from a single study,
earning them the title of “gold standard” for measuring causal effects:

Because no other study design can provide the safeguards agains bias associated with ran-
domization, randomized controlled trials (RCTs) yield stronger evidence than other study
designs. – (Guyatt et al., 1995)

The RCT which assessed the efficacy of streptomycin (Crofton and Mitchison, 1948) is often quoted
as the landmark RCT for modern guidelines. This trial was conducted in a context where the great
success of penicillin spearheaded research to detect other potential antibiotics. Penicillin was found
to be inefficient against a pathogen named Mycobacterium tuberculosis (or Koch’s bacillus) causing
pulmonary tuberculosis. At the time, streptomycin was a promising new antibiotic with positive
experiments in tubes and animals. Crofton (2006), one of the member of the Medical Research
Council (MRC) Tuberculosis Unit at the time with Austin Bradford Hill (1897-1991), tells the story
of how this landmark trial was designed and conducted. The current standard treatment (or control
group) of pulmonary tuberculosis was bed rest. Bradford and the committee defined a trial following
all the modern standards: eligibility criteria (for e.g. disease stage, age, etc), randomization (through
envelopes with two options, control or treatment), double blinded treatment allocation (for patients
and clinicians), confidentiality, collection of longitudinal clinical data for each patient during the whole
trial.

I like to believe that, together with the MRC Tuberculosis Research Unit, we helped to
promote the adoption of a study design for which the MRC streptomycin trial is often seen
as a symbol. – Crofton (2006)

While streptomycin provided good results at first in this trial, investigators could observe side effects
and a slow shrinking of efficacy with time. It turns out that to be efficient, streptomycin has to be
combined to other treatments and requires a strict observance to avoid bacterial resistance. Note that
Crofton, who was a clinician, proposes an interesting personal opinion which echos the one of Claude
Bernard:

Randomized trials like these were of great practical importance in developing effective treat-
ment strategies, but they were not intellectually challenging. Our major intellectual chal-
lenge in tuberculosis research was to identify the causes of failed drug treatment. – Crofton
(2006)

As of today, Randomized Controlled Trials have a central place in pharmaceutical regulations. Trials
are divided in different clinical phases, to assess first the toxicity, and then estimate efficacy on
larger populations. Taxonomies of empirical studies are often presented in a hierarchical structure,
which ranks the strength of evidence that each study can provide. This hierarchy is often depicted
in a pyramid diagram that illustrates the various levels of evidence. (see Figure 1.6, where RCT
corresponds to Randomized Controlled Double Blind Studies).

Figure 1.1: Example of a typical pyramid of evidence;
this exact pyramid can be found in the SUNY Downstate
Medical Research Library of Brooklyn (see Evidence-Based
Medicine Course, available online). Several similar pyra-
mids can be found in textbooks or research articles (e.g.
Ahn and Kang (2018)), sometimes showing slightly differ-
ent ranking or naming. Some sociological works question
their origin, role, and usage, e.g. Blunt (2015).
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2. Rising concerns about external validity

What could be better than a single randomized controlled trial (RCT)? Multiple RCTs! In addition
to studies conducted on a single population, systematic reviews and meta-analyses represent the fi-
nal layer of modern clinical evidence according to the usual hierarchy promoted in clinical research.
Systematic review is the approach of collecting and reviewing the available research about a specific
question, and analyzing their results. A meta-analysis pools the different estimates from several trials
(see a presentation of how to run a meta-analysis in Ahn and Kang, 2018). Pooling several studies
estimate as an additional statistical layer is tempting, but require to ensure that the population of
interest is clearly defined. The so-called PICO criteria are often mentioned (Population, Intervention,
Comparison, Outcomes). Results of a meta-analysis are usually presented as a forest plots. Recently,
in 2009, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Liberati
et al., 2009) has proposed updated guidelines for review and meta-analysis. The former ones were
proposed in 1999 (Moher et al., 1999) (named QUality Of Reporting Of Meta-analysis (QUOROM)).
Such guidelines contain a checklist to ensure review and meta-analysis are correctly performed. For
example, authors have to report the protocol, to detail eligibility criteria, to provide the summary
measures used (e.g. risk ratio, risk difference), or to attach a flow chart to describe the process.

Finally, note that the prevalent use of statistics to quantify the causes and effects of habits or drugs is
also under some critics. To give one example, one manifestation of modern evidence is the proliferation
of publications citing so-called risk factors. However, the approach of systematically breaking down
an effect into sub-effects has its limitations (Krieger, 1994). Furthermore, there are concerns about
how society and the media perceive and interpret these findings, as illustrated in Figure 1.7.

Figure 1.2: The cartoon by Jim
Borgman in 1997, conveys several ideas,
in particular that (i) many diseases are
multifactorial and can hardly be decom-
posed in a single risk factor and that (ii)
communicating key results in the media
can be misleading due to the numerous
scientific papers currently published.

2 Rising concerns about external validity

If modern evidence-based medicine (EBM) puts Randomized Controlled Trial (RCT) at the core of
clinical evidence, there have been recent concerns about the limited scope of RCTs. One of the main
current concerns is the external validity (or generalizability) of a trial. Generalizability of trial findings
is crucial as, most often, clinicians use causal effects from published trials to (i) estimate the expected
response to treatment for a specific patient based on his/her baseline risks, and therefore to (ii) choose
the best treatment. Beyond each practitioner’s point of view, the same reasoning is valid for regulatory
agencies having to expose clear guidelines and promote a standard-of-care. While usually less pointed
out in scientific papers, trial’s conclusions have also an impact on pharmaceutical regulation, since the
price of a drug is mainly driven by its efficacy (assessed through clinical studies).

The formalism and principle of a RCT is detailed below (see Sections 3), but for now, one can admit
the idea that a RCT’s output is an estimated so-called Average Treatment Effect (ATE), also named
average causal effect of a treatment to emphasized that the effect reported is not an association. In
practice, a RCT mainly aims to report one point estimate with its confidence intervals, for e.g. the
risk ratio, usually highlighted in the abstract as the main results, along with population’s size and
confidence intervals. Hence, it is of main importance to understand how valid this number is when
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considering other populations.

The issue of whether study results can be extrapolated to other populations is not a new concern. In
1957, Campbell (1957) introduced the concept of internal and external validity within social science.
This concept – also referred to as generalizability or representativeness in the original paper – raises
questions about the populations, settings, and variables to which a given effect can be generalized. This
definition and naming have been promoted more recently by the Consolidated Standards of Reporting
Trials (Consort) (Altman et al., 2001). Even if not shared by all (see, e.g. Rothman et al., 2013),
generalizability is gaining interest in clinical research (Concato et al., 2000; Blanco et al., 2008; Deeks,
2002; Rothwell, 2007; Green and Glasgow, 2006; Frieden, 2017; Berkowitz et al., 2018):

“Neither Cochrane nor Bradford Hill were practising clinicians, but they understood the
limitations of the methodology that they had pioneered. Although what little systematic
evidence we now have confirms that RCTs do often lack external validity, this issue is
neglected by current researchers, medical journals, funding agencies, ethics committees,
the pharmaceutical industry, and governmental regulators alike.” – Rothwell (2007)

To ensure external validity, there must be a strong resemblance between the population used in the
experiment and the target population of interest. This may explain why this concept is sometimes
referred to as a matter of judgment (Altman et al., 2001). Below are some typical concerns that have
been raised about the limit scope of RCTs:

– Eligibility and exclusion criteria help to define the population recruited in a randomized
controlled trial, and are therefore part of the design. Usually a certain age limit and typology of
diseases are required to be enrolled. Such criteria are both used to (i) protect the weak or at-risk
population (e.g. pregnant women) and to (ii) conduct the study on a sufficiently homogeneous
group of patients to maximize the estimated treatment effect. Beyond the exclusion criteria
which define a limit on the typology of patients selected, there can also be some over- or under-
representation of some population, due for example to the hospitals or places chosen to conduct
the trials. Such biases are much harder to track and report than exclusion criteria.

– Unrealistic real-world compliance of trials is often reported as a limit to extend the validity
of trials. In a RCT, individuals are carefully monitored, so that, during the trial, the treatment
is given in optimal conditions with a very good observance: doses and treatment scheduling.
Outside experimental conditions, individuals may deviate from the norm, for example forgetting
to take a pill that was prescribed, or stopping the treatment earlier than expected. Beyond
absent-mindedness, this can be for good reasons such as side effects or painful treatment admin-
istration. Therefore, the effect observed in practice may differ from the one evaluated during the
trial, because the real-life treatment is no longer the same as than the one administrated during
the trial. Some people refer to this phenomenon as effectiveness (real-world conditions) versus
efficacy (experimental conditions) (Singal et al., 2014).

– The short timeframe of a trial, due to the associated financial cost, prevents individuals to be
followed for many years, making results of randomized controlled trial potentially narrow.

– The limited sample size, a widely shared concern about RCT, prevents the estimation of
conditional (or stratified) treatment effects due to a lack of statistical power.

Although guidelines, such as the ones provided by Consort (Altman et al., 2001), exist to outline
eligibility and exclusion criteria, there is a widespread concern regarding the inadequate reporting
provided in clinical publications (Rothwell, 2007). It should be noted that this lack of clarity is
not necessarily intentional, but may be the consequence of willingness to present a concise message to
readers. Below, we detail our motivating example and epitome we tackle in this research work. Finally,
note that more recently, another type of RCT pragmatic trials are now more and more proposed. Those
trials aim at maximizing the generalizability with smooth eligibility criteria and more flexibility in the
intervention management (Godwin et al., 2003).
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2. Rising concerns about external validity

An illustration from critical care As highlighted by Rothwell (2007), the problem of the lack
of external validity is even more concerning when the treatment is only moderately effective. In such
situations, any small variation of experimental conditions may endanger the study main conclusions,
especially when transferring this knowledge to another populations. To illustrate this phenomenon,
consider a case addressed by our clinician collaborators, in which they try to cure patients suffering
from a traumatic brain injury (TBI). TBI is a brain damage caused by a blow or jolt to the head.
Tranexamic acid (TXA) is an antifibrinolytic agent that limits excessive bleeding, commonly given
to surgical patients. Previous clinical trial showed that TXA decreases mortality in patients with
traumatic extracranial bleeding (Shakur-Still et al., 2009). Consequently, TXA may also be effective in
TBI, because intracranial hemorrhage is common in TBI patients, with risks of increased intracranial
pressure, brain herniation, and death.

Table 1.1: Screenshot of the Table 1 from
CRASH-3 (2019).

Following this intuition, a randomized controlled trial
CRASH-3 has been launched to assess the question
of the effectiveness of TXA in TBI (CRASH-3, 2019).
CRASH-3 is a multi-centric randomized and placebo-
controlled trial launched over 175 hospitals in 29 dif-
ferent countries (Dewan et al., 2012). This trial re-
cruited 9,202 adults, which is unusually large for a
medical RCT. All suffering from TBI without major
extracranial bleeding. The summary of baseline de-
mographic and clinical characteristics of study partici-
pants are usualy presented at the beginning of each
clinical study, under the name Table 1 (see Ta-
ble 1.2 as a typical example). Here, six covari-
ates are measured at baseline, being age, sex, time
since injury, systolic blood pressure, Glasgow Coma
Scale score (GCS)5, and pupil reaction All participants
were randomly administrated TXA. The primary out-
come studied is head-injury-related death in hospital
within 28 days of injury in patients included and ran-
domized within 3 hours of injury. The study con-
cludes that the risk of head-injury-related death is
18.5% in the TXA group versus 19.8% in the placebo
group. The causal effect, measured as a Risk Ra-
tio (RR) was not significant (RR = 0.94 [95% CI
0.86 - 1.02])). But CRASH-3 revealed a positive ef-
fect of TXA only when considering mild and mod-
erate cases (i.e., moderate and high Glasgow scores).
As trial reports usually include the baseline clini-
cal and demographic characteristics of randomized pa-
tients (see Table 1.2), so that it is believed that
clinicians can assess external validity by comparison
with their target population and typical patients (Alt-
man et al., 2001). How different is the CRASH-
3 population compared to the patients encountered by
our clinicians collaborators? To answer this ques-
tion, we have at hand a large cohort: the Traum-
abase.

The Traumabase regroups 23 French Trauma centers that collect detailed clinical data from major
trauma patients, from the scene of the accident to hospital discharge, in the form of a registry. The

5The Glasgow Coma Scale (GCS) is a neurological scale which aims to assess a person’s consciousness. The lower the
score, the higher the severity of the trauma.
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data, currently counting over 30,000 patient records, are of unique granularity and size in Europe.
However, they are highly heterogeneous, with both categorical – sex, type of illness, ...– and quan-
titative – blood pressure, hemoglobin level, ...– features, multiple sources, and many missing data
(98% of the records are incomplete). Within this data set, 8, 270 patients are suffering from TBI.
As stated, the Traumabase contains many missing values. Luckily some covariates are almost always
observed, such as the Glasgow score. This enables the comparison of the CRASH-3 sample with the
patients from TBI in the Traumabase. The barplot is presented in Figure 1.8, making clear that the
two samples are different. While the CRASH-3 trial more or less homogeneously covers the full range
of Glasgow scores, the Traumabase contains relatively more patients with either high or low Glasgow
scores.
Now, considering that the response to the treatment is varying with the severity of the TBI (assessed
through the Glasgow score), the average effect reported in the CRASH-3 report is necessarily anchored
in the choice of population. Assume that the true probability to die from TBI is the one depicted in
Figure 1.9 (hypothetical drawing). This drawing is supposed to depict a situation where low injured
patients (high GCS) have a low probability to die from TBI, while severely injured patients (low GCS)
have a high probability to die. In both cases, the treatment cannot drastically decrease the baseline
risk, due to the extreme condition (either good or bad) of the patient. Under such situations, the
average effect estimated in the CRASH-3 RCT would be higher than the actual effect observed in the
Traumabase population, thus leading to erroneous conclusion when transferring directly conclusions
from CRASH-3 onto a population similar to that of the Traumabase.

Figure 1.3: Univariate comparison of the Glasgow score distribution between the CRASH-3 sample (9, 202 individ-
uals) and the subsample of the Traumabase suffering from TBI (8, 270 individuals, data extraction made in 2019).

Figure 1.4: Schematic of an
hypothetical response to Tranex-
amic acid (TXA) when suffer-
ing from traumatic brain injury
(TBI) as a function of the Glas-
gow score (GCS). This hypothet-
ical drawing was imagined while
talking to clinicians, and only
aims to illustrate the problem.

How can we generalize trial’s findings? As far as we know, in the applied clinical research the
question of the trial’s representativeness has mostly been asked through the lens of what endangers
the validity. For example, some clinical works compare the baseline covariates of the individuals re-
cruited in the trial with that of the target population (e.g. comparing the so-called Tables 1 such as
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3. The promise of detailed and larger observational data

in Figure 1.8), or derive the ineligibility rates – that is the percentage of ineligible patients within
the population suffering from the disease (Kennedy-Martin et al., 2015). For example Van Eijk et al.
(2019) review that for some RCTs investigating treatments to cure amyotrophic lateral sclerosis, only
14% of the actual population affected by the disease could have been recruited.

Others methods have recently been proposed to quantify how the population’s shift impacts the
treatment effect amplitude. Such methods – named generalization – have been introduced in the
2010’s (Stuart et al., 2011; Pearl and Bareinboim, 2011a), and have the particularity to rely on several
data sources. Having one trial (e.g. CRASH-3) and a sample of the target population of interest (e.g.
Traumabase) is a typical situation were those methods can apply.

This method can be found under other wordings, such as transportability (Pearl and Bareinboim,
2011a; Rudolph and van der Laan, 2017; Westreich et al., 2017b), portability (Xiao et al., 2022), or
recoverability (Bareinboim and Pearl, 2012a; Bareinboim et al., 2014). This topic is also related to
covariate shift and generalization in machine-learning. Links between causality and distributional
robustness in machine-learning exist (Meinshausen, 2018), but are not tackled in this thesis. Note
that this question is also termed as selection bias:

“Definition of selection bias: The systematic error in creating intervention groups,
causing them to differ with respect to prognosis. That is, the groups differ in measured or
unmeasured baseline characteristics because of the way in which participants were selected
for the study or assigned to their study groups. The term is also used to mean that the
participants are not representative of the population of all possible participants”. – Altman
et al. (2001) (Consort)

Consort explicitly relates selection bias to external validity. In the literature, this can imply sligthly
different estimation strategies, in particular when the trial’s population is nested within the target
population of interest (Dahabreh et al., 2020). We detail the difference in Chapter 2. All other chap-
ters focus on the most standard design of one already conducted trial, for which someone wants to
generalize the effect (e.g, CRASH-3 and Traumabase).

In this PhD thesis, the aim is to develop and improve statistical approaches to generalize trial’s findings
to another population of interest. Applied to the Traumabase illustrative example, this means that
we want to answer the following question: what would have been measured in the RCT if individuals
were rather sampled from the Traumabase?

3 The promise of detailed and larger observational data

Data science has infused into every domain without exception, as Pearl and Mackenzie (2018) high-
lights: Courses in “data science” are proliferating in our universities, and jobs for “data scientists”
are lucrative in the companies that participate in the “data economy.”. This expansion is partly due
to the digitization of information, which has made data collection, storage, and accessibility easier. In
addition, computational power improvements have also transformed the way statistics are performed,
with the invention of more computationally intensive machine learning technics.

Healthcare is no exception to this data tidal wave. Hospitals are adopting Electronic Health Records
(EHRs) on a large scale. For example, in the U.S., nearly all reported hospitals of the American
Hospital Association (96% of non-Federal acute care hospitals6) possessed a certified EHR technology
in 2015, while this number was slightly below 10% in 2008 (Henry et al., 2016). France is another
example, with a growing number of Clinical Data Warehouses starting in 2007, which is intensifying
in the past five years (Doutreligne et al., 2023). While many of these data sets remain under private
access, some are publicly available, like the Mimic data set composed of almost 40, 000 individuals

6Includes acute care general medical and surgical, general children’s, and cancer hospitals owned by private/not-for-
profit, investor-owned/for-profit, or state/local government
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(Johnson et al., 2016).

Collecting such large data sets can help to solve a variety of tasks: predicting (e.g. predicting the
remission time or the probability to suffer from a disease), variable identification (e.g. screening for
risk factors of multifactorial diseases such as diabete). But another purpose of such clinical data is
policy evaluation via real-world treatment effect estimation, therefore enriching all the existing clinical
evidence toolkits. Data collected in such disease registries, cohorts, biobanks, epidemiological studies,
or electronic health records are promising as they are readily available, include large and representative
samples, and are less cost-intensive than RCTs. Those data are of high external validity. However,
data quality can be poor (e.g. many missing values), and they are collected without following a
prespecified design study, which opens the door to confounding biases.

Extracting causal information from observational samples Statistical tools have been pro-
posed to de-counfound observational (i.e. non-experimental or non-randomized) data, and hopefully
draw causal conclusions from such observational data sets. In non-randomized studies, the effect
of treatment cannot be estimated by simply comparing outcomes between treatment groups as it is
possible on a RCT. Below, we detail a formalization of the problem through the so-called potential
outcomes framework. The potential outcomes framework was proposed by Neyman in 1923 (in polish)
and further popularized by Rubin (1974) (see Imbens and Rubin (2015) for a review and the histor-
ical context). Another formalism is also commonly used: the Structural Causal Model (SCM) with
causal diagrams and the do-operators (Pearl, 2009a). In this work, we adopt the former, while we also
propose discussion about links with the latter (see Chapter 2).

Assume that we have access to n independent and identically distributed observations labeled i =
1, . . . , n, each one consisting in a feature vector Xi ∈ X , a response Yi ∈ Y, and a binary treatment
indicator Ai ∈ {0, 1}. We further denote Dn = {(Xi, Ai, Yi), i ∈ {1, . . . , n}} the data set at hand.

Following the potential outcomes framework, we then posit the existence of potential outcomes Y
(1)
i

and Y
(0)
i corresponding respectively to the response the ith subject would have experienced with

and without the treatment. This notation is based on our intuition about causality, which typically
involves holding everything constant except for certain interventions. The goal is to understand how
the counterfactual situation would differ from the actual state, that is

Y
(1)
i

?
= Y

(0)
i . (1.1)

As a consequence, Yi is used to denote the observed outcome for individual i. The so-called consistency
assumption (totally unrelated to estimator consistency) states that when treatment is assigned, the
observed potential outcomes is the one corresponding to the treatment actually allocated, that is

Yi = Ai Y
(1)
i + (1−Ai)Y (0)

i . (1.2)

While this equation seems to hold in all cases, it truly encodes an assumption difficult to verify in
practice, namely that individuals actually do what they were asked to do (taking treatment). There
are famous examples where individuals swapped or shared their treatment, typically when the issue
can be fatal (e.g. HIV, see Pool et al., 2010). Besides, eq. 1.2 also implicitly assumes that the output
of any individual is not influenced by the treatments assigned to other individuals. Formally, for n
observations, denoting A = (A1, A2, . . . , An) the vector of treatment allocations of all the n units,
then,

Y
(A)
i = Y

(Ai)
i ,

that is the output Yi only depends on the treatment allocation Ai and not on all other assignments
Aj ̸=i. Again, this may seem quite obvious, but encodes the complex practical assumption of no
interference between individuals. This assumption can be violated, especially when considering public
policies impacting individual interactions due to social interactions, or when considering vaccine as
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treatment. For instance, when someone is vaccinated, it can impact someone who isn’t vaccinated by
preventing the spread of the disease. Note that interference is not always a threat to validity, as it can
be of interest in some cases. For example, in an educational setting, one may want to know the effect
of acting positively on one child, and how this can spread to peers. There is a recent and increasing
literature dealing with interference (Ogburn and VanderWeele, 2014; Aronow and Samii, 2017; Hu
et al., 2022; Ogburn et al., 2022). Having both assumptions of consistency and no interference is
equivalent to the so-called Stable Unit Treatment Value Assumption (SUTVA). In this work, we will
always assume that SUTVA holds.

Assumption 1 (SUTVA - page 33 of Imbens and Rubin (2015)). Treatment assignments for other
units do not affect the outcomes for unit i. Besides, each treatment defines a unique outcome for each
unit.

Unfortunately, one cannot observe the two worlds for a single individual, and thus comparing the

potential outputs Y
(0)
i and Y

(1)
i for any individual i (as in eq. 1.1) is practically impossible. However,

we can compare the expected values of each potential outcome Y (a), as it requires a population-level
approach. In this case, the usual target quantity to infer is a distributional parameter called the
Average Treatment Effect (ATE), corresponding to the average difference of the potential outcomes
over the entire population,

τ = E
[
Y

(1)
i − Y (0)

i

]
.

Another common quantity of interest is the conditional average treatment effect (CATE) or average
effect across sub-populations of subjects7, defined as

τ(x) = E
[
Y

(1)
i − Y (0)

i | Xi = x
]
.

The ATE is a causal effect because it compares what would happen if the same people were treated of
not. Note that in general E[Y (a)] ̸= E[Y |A = a], because E[Y |A = a] reads as the expected value of Y
given A = a, which is a restriction to the sub-population that actually received the treatment A = a.
To properly measure the causal effect, two similar groups of people are needed. Luckily, by design,
we have access to such groups in a RCT: in such settings, because randomization is ensured, we have{

Y
(0)
i , Y

(1)
i

}
⊥⊥ Ai,

and thus

E [Y | A = 1] = E [Y A | A = 1] Binary nature of A

= E
[
Y (1)A2 | A = 1

]
Consistency Yi = Ai Y

(1)
i + (1−Ai)Y (0)

i

= E
[
Y (1) | A = 1

]
Binary nature of A

= E
[
Y (1)

]
Randomization,

and similarly for A = 0, so that

τ = E [Y | A = 1]− E [Y | A = 0] .

The key assumption used in a RCT is randomization, which appears in the above derivation (those
assumptions are sometimes qualified as causal). Being able to write a causal quantity – here τ – as a
function of distributional parameters that only involves observable quantities – here E [Y | A = a] – is
called identification or identifiability. Identifiability is a population-level property which is not related
to any estimation issue. Therefore having more data does not help to solve identifiability problems.

7Doing so, the ATE corresponds to the integral of the CATE over x.
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Confounding variables When extracting causal evidence from observational data, randomization
usually does not hold. Most of the time, treatment has been assigned preferentially to some individuals
(e.g. sick or aged individuals). This is typically what occurs in the Traumabase. Among patients
suffering from Traumatic Brain Injury (TBI), mortality is much higher on individuals who received
Tranexamic Acid (TXA) than those who did not (38% vs. 16%). This situation arises because patients
who seemed to be in a more critical condition were both more likely to receive TXA treatment but
also more likely to pass away, irrespective of whether they received the treatment or not (Mayer et al.,
2020). In such situation, treatment effect is said to be confounded, and the severity of the trauma is
said to be a confounding variable. Controlling or adjusting on all the confounding variables is a way
to extract causal information in some simple cases8. A set X is said to de-counfound the analysis
when the following well-known and fundamental unconfoundedness assumption is satisfied.

Assumption 2 (Unconfoundedness - Rosenbaum and Rubin (1983b); Rubin (1990)). For all subject
i, {

Y
(0)
i , Y

(1)
i

}
⊥⊥ Ai | Xi.

This assumption can also be found under the name ignorability, or conditional independence assump-
tion (Angrist and Pischke, 2008). Interestingly, this process of extracting causal information from
observational data is usually presented as the emulation of a randomized experiment (Hernán and
Robins, 2016). Assumption 2 corresponds to randomization, but conditional on the covariate X.
Doing so, the spirit of the hierarchy exposed above (Figure 1.6) appears again, where the aim is to
emulate the gold standard from observational data.

Another assumption is required to ensure that treatment assignment is not completely deterministic,
that is the probability of receiving the treatment is different from 0 or 1, for any observation.

Assumption 3 (Overlap or positivity). For some η ∈ (0, 1), and for any x ∈ X ,

η ≤ P[A = 1 | X = x] ≤ 1− η.

Indeed, would some individuals be certain to receive or not the treatment, then the counterfactual
could not be estimated, and therefore the average effect would not be identifiable. One could be
tempted to add as many covariates as possible (even non-necessary ones) into the set X to ensure ig-
norability (Assumption 2), but this is likely to break overlap due to the high dimensionality. D’Amour
et al. (2021) detail this phenomenon.

Finally, note that for some public policies, the treatment assignation is completely deterministic,
except for a subset of individuals close to the decision rule - for example, individuals near the public
policy threshold for treatment allocation. This specific situation is called a regression discontinuity
designs. Such set-up has been proposed by Thistlethwaite and Campbell (1960), while the modern
formalism has been proposed more recently (Hahn et al., 2001).

Estimation Estimation is another challenge to properly estimate the causal parameters once this
parameter is assumed to be identified (e.g. with randomization under a RCT design or with Assump-
tions 2 and 3 for observational data). Under a RCT design, the most intuitive and common estimator
is the difference-in-means estimator.

Definition 1 (Difference-in-means - Neyman (1923) and its English translation Splawa-Neyman et al.
(1990)). The Difference-in-means estimator is denoted τ̂DM,n and defined as

τ̂DM,n =
1

n1

∑
Ai=1

Yi −
1

n0

∑
Ai=0

Yi, where na =

n∑
i=1

1Ai=a.

8This corresponds to the simplest – or, let’s say standard – situations, also called backdoor criterion within the
Structural Causal Model (SCM) literature. See also Pearl (2009b) for more complex identification situations such as the
front door criterion.
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The Difference-in-means is also referred to as the simple difference estimator (Miratrix et al., 2013)
or difference in the sample means of the observed outcome variable between the treated and control
groups (Imai et al., 2008). This estimator is consistent (see Chapter 4 for the proof under a Bernoulli
design). Note that this is not the estimator with the lowest asymptotic variance that can be proposed
to estimate causal effect τ from RCT data. Using covariates - even if not needed for identification -
can help precision. The intuition lies in the fact that even if randomized, the effective sample may
suffer from little confounding simply due to the sample randomly deviating from the mean (Imai et al.,
2008). Using covariates can help reduce large sample variance, for example using methods such as
OLS regression of the outcome (Imbens and Rubin, 2015) or post-stratification (Miratrix et al., 2013).
Note that this can be at the cost of a finite sample bias (Imbens and Rubin, 2015; Colnet et al., 2022b).

When it comes to the estimation of τ from an observational sample, other estimation strategies have
to be adopted. To do so, an important object is the propensity score. The propensity score is defined
as the probability of treatment assignment, conditional on baseline covariates.

Definition 2 (Propensity score). For any x ∈ X , e(x) := P[A = 1 | X = x].

Propensity scores were introduced by Rosenbaum and Rubin (1983b), who presented their property
as a balancing score, that is conditional on propensity score, the baseline covariates are expected to be
balanced between treated and untreated groups. The propensity score suggests a natural estimation
strategy based on re-weighting. Currently, one of the most popular estimation tool is to re-weight
individuals using propensity scores, a method called Inverse Propensity Weighting (IPW). IPW is
also named the transformed outcomes regression in the medical community (Wendling et al., 2018) or
IPTW (Austin and Stuart, 2015).

Definition 3 (Inverse Propensity Weighting - IPW - Hirano et al. (2003)).

τ̂IPW =
1

n

n∑
i=1

(
AiYi
ê (Xi)

− (1−Ai)Yi
1− ê (Xi)

)
,

where ê(.) is the estimated propensity score e(.) obtained using Dn.

IPW can be interpreted as a simple difference-in-means (see Definition 1), but where individuals are
weighted by the inverse of the propensity to be treated or untreated. Beyond the IPW estimator
(Definition 3), once this probability is estimated, it can be used in several ways to estimate the
ATE. Four methods of using the propensity score have been described in the statistical literature:
covariate adjustment using the propensity score, stratification or subclassification on the propensity
score, matching on the propensity score (and IPW). Another popular estimator is the plug-in G-
formula.

Definition 4 (Plug-in G-formula - Robins (1986)). The plug-in G-formula estimator is denoted τ̂G,
and defined as

τ̂G =
1

n

n∑
i=1

(µ̂1(Xi)− µ̂0(Xi)) ,

where µ̂a(Xi) is an estimator of µa(Xi) := E
[
Y (a) | Xi

]
obtained using the data Dn.

The plug-in G-formula estimator is present under different names such as conditional mean regression
(Wendling et al., 2018), G-standardization (Vansteelandt and Keiding, 2011), or even G-computation
or simple substitution estimation. Note that, when using a logistic regression, and in particular in
the epidemiology field, it has been named the Q-model (Snowden et al., 2011). Part of the literature
does not recommend this estimator for two reasons. Because (i) the asymptotic properties of such
estimator is unknown if there is no parametric assumption on the surface responses µa, and (ii)
because of a regularization bias when using non parametric estimators for the regressions (Künzel
et al., 2017; Chernozhukov et al., 2018a; Athey et al., 2018).Finally, there is an increasing popularity
of the doubly-robust approaches.
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Definition 5 (Augmented IPW (Robins et al., 1994) ). The AIPW estimator is denoted τ̂AIPW and
defined as

τ̂AIPW =
1

n

n∑
i=1

(
µ̂1 (Xi)− µ̂0 (Xi) +Ai

Yi − µ̂1 (Xi)

ê (Xi)
− (1−Ai)

Yi − µ̂0 (Xi)

1− ê (Xi)

)

where µ̂a(Xi) (resp. ê(.)) is an estimator of µa(Xi) := E
[
Y (a) | Xi

]
(resp. e(.)) obtained using the

data Dn.

Historically, the AIPW estimator was designed to tackle a problem of missing outcome variables when
willing to learn a predictor of this outcome from covariates. Robins et al. (1994) identified the AIPW as
the most efficient estimator for this purpose, that is having asymptotic normality property along with
the smallest possible asymptotic variance. This missing value problem can be understood in the light of
the causal inference problem, where Assumption 2 is equivalent to the missing at random assumption.
The doubly robust adjective used to name this estimator refers to another interesting property: the
AIPW estimator remains consistent if either the treatment model or the outcome model is correctly
specified up to a parametric form (Scharfstein et al., 1999). Note that recent statistical works advocate
to use flexible regression models (aka machine-learning) for nuisance parameters estimation such as the
propensity score e(.) and the so-called response surfaces µa(.) (Westreich et al., 2010; Laan and Rose,
2011; Kennedy, 2016; Athey and Imbens, 2017; Chernozhukov et al., 2018a; Kreif and DiazOrdaz,
2019). Such practices can considerably reduce the chance of mispecification as the flexible regression
models is resilient to a variety of generative models. Finally, other promising estimation methods have
been proposed for the CATE τ(X) estimation such as the R-learner (Nie and Wager, 2020).

Current practices in clinical research In practice estimation methods relying on the propensity
scores are the most common approaches for estimation within the medical community. In particular,
Grose et al. (2020) discuss the approach of hundreds of surgical studies using the propensity score,
showing a diversity of practices with propensity matching being the most used method. Ali et al. (2015)
also reports a predominance of propensity score usage within the medical field, with the predominance
of matching (∼ 69%) over inverse-propensity weighting (∼ 7%). Still, applications with IPW remains
quite recent and Austin and Stuart (2015) document that no applied studies using IPW has been
published before 2000, and an effective application has started in 2007 (see Figure 1.5).

Figure 1.5: Number of published IPW
studies, showing an increase in the num-
ber of publications quite recently com-
pared to the statistical invention of the
method that can be grounded in 1983
with the propensity score’s invention
(Rosenbaum and Rubin, 1983b). The-
oretical characterization of IPW can be
traced back in 2003 (Hirano et al., 2003).
The plot is taken from Austin and Stuart
(2015).

Combining data sources to strenghthen clinical evidence Most of the current literature fo-
cuses on estimation of causal effect either from observational data or from Randomized Controlled
Trials (RCTs). In practice, it is possible that an observational analysis leads to an estimated treat-
ment effect of τ̂obs, while a previous RCT reported τ̂exp for a certain treatment effect on an outcome.
Facing such apparent paradox, which one should we trust? Three main reasons can be mentioned to
explain such a difference:
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1. The treatments and/or outcomes reported in both studies are not exactly the same. Typically,
the conditions under which treatment is given in the observational sample does not follow the
exact conditions of the RCT (Lodi et al., 2019). This can also be linked to poor compliance in
the real-world condition (see external validity discussion above).

2. The population under which the treatment effect was assessed in the RCT is different from the
one in the observational sample. Under treatment effect heterogeneity, it is very likely that both
estimates are different (see Figures 1.8 and 1.9 above for an illustration). This reason is deeply
linked to the lack of external validity we mentioned above, and in particular the population lack
of representativeness.

3. The observational data analysis is undermined by an unobserved confounder (that is Assump-
tion 2 does not hold).

The fear of an unobserved confounder (third hypothesis) is usually the ideal culprit in current applied
literature. When a confounder is unobserved, solutions have been proposed at the price of additional
assumptions, for example the front-door criterion (Pearl, 1993), instrumental variables (Angrist et al.,
1996; Hernán and Robins, 2006; Imbens, 2014), and sensitivity analysis (Cornfield et al., 1959; Rosen-
baum and Rubin, 1983a; Imbens, 2003).

In fact, to investigate whether assumptions two and three hold, we could leverage several data sources,
in order to strengthen observational data against confounding, or correct trial’s lack of representative-
ness. Indeed, a trial assessing the efficacy of a treatment A on an outcome Y , and an observational
database recording individuals treated or not by A and the outcome Y could be jointly used to:

1. Enrich external validity of the trial As highlighted in the Section 1.B, and in particular
in the critical care illustration (see Figure 1.8), one concern of randomized controlled trials is
the distributional shift between the population recruited and the target population on which
the trial’s findings are applied. The idea is to use an observational sample to generalize or
transport the trial’s findings into the distribution of the target population of interest. Doing
so, a large cohort could be used to re-weight the trial observations. Such approach has been
proposed in the 2010’s both by Pearl and Bareinboim (2011a) and Stuart et al. (2011). While
Pearl and Bareinboim (2011a) proposed a framework to reason about the assumptions enabling
such generalization (called transportability in this literature) through an enrichment of causal
diagram into selection diagram, Stuart et al. (2011) has directly proposed an estimation strategy
based on population re-weighting, extending the definition of the propensity score (Definition 2)
into a sampling score. This method is usually called Inverse Propensity Sampling Weighting
(IPSW). Since then, other estimators have been proposed to generalize a causal effect, following
the spirit of what can be done on a single observational sample. Therefore an equivalent of
the plug-in G-formula (Kern et al., 2016) has been proposed, and a doubly-robust approach
(Dahabreh et al., 2020). One of the main difference with the classical situation is the fact that
two samples are involved in the estimation process, preventing the theoretical results from the
observational literature to directly apply to this situation. Note that to generalize trial’s findings
there is no need to observe the treatment in the target population, but only the covariates X
(and sometimes the baseline outcome Y (0) for some methods as presented in Chapter 5).

2. Enrich internal validity of observational studies Former RCTs can be used as negative
controls to ensure the observational study does not suffer from confounding. The intuition is
that the causal effect estimated on the trial should be recovered at least on a subpopulation of
the observational sample. The term negative control comes from standard routine precaution in
biological laboratory experiments, where such controls are used to – at least partially – check
that the experiment is not undermined. For example, it can test the absence of reagents or
components that are necessary for a detection of something particular. In particular, one of the
two bars of covid antigenic tests is one of these controls. The analogy of this principle in causal
inference is detailed in Lipsitch et al. (2010). For instance, in a recent observational study on a
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COVID-19 vaccine, Dagan et al. (2021) use such approach to ensure that previous trial results
could be retrieved. Recent methodological developments have also been proposed by Kallus
et al. (2018)

Other practical applications of data sources combination exist (see Chapter 2 for all purposes of
combining data sources), as, for example, enabling the usage of hybrid control arms. A hybrid control
arm is a control arm constructed from a combination of randomized patients and patients receiving
usual care in standard clinical practice, as introduced by Pocock (1976) and pursued by Hobbs et al.
(2012); Schmidli et al. (2014). Recently, the FDA has detailed their usage in regulatory purposes
(FDA, 2018).

Note that having data from different sources can also be used in the context of anchor regression
(Rothenhäusler et al., 2021).

4 Contributions

This PhD thesis is motivated by the clinical situation presented in Section 1.B: are the findings of the
CRASH-3 trial generalizable toward the Traumabase’s population?

Contributions This manuscript is divided into five chapters. Chapter 2 proposes a review of cur-
rent statistical methods that combine several data sources in order to build or strengthen clinical
evidence. As missing data are ubiquitous in observational data sets, we propose, in Chapter 3, a
sensitivity analysis to deal with totally or partially missing covariates when generalizing a treatment
effect. Going back to the complete case scenario where all covariates are observed, we carry out, in
Chapter 4, a finite and large sample analysis of the Inverse Propensity Sampling Weighting (IPSW)
estimator, along with a discussion about the impact of additional non-necessary covariates on the
variance estimator. While Chapters 3 and 4 focus on the generalization of the risk difference (as most
of the current literature), we question, in Chapter 5, the generalization of different causal metrics such
as the ratio, number needed to treat, or odds ratio. Doing so, we also propose general considerations
about causal measure, such as the collapsibility of causal effects.

The contributions of each chapter, which are summarized below, have led to four articles as first-
authors:

• Chapter 2 published in Statistical Science, co-authored with Imke Mayer,

• Chapter 3 published in Journal of Causal Inference,

• Chapter 4 submitted to Journal of the Royal Statistical Society: Series A,

• Chapter 5 submitted to Statistics in Medicine.

Beyond these methodological works, contributions in applied fields have also been conducted, leading
to two others research works. The first project is linked to educational public policy, and the second
to climate change:

• Schooling induces a gender gap in math: Evidence from two million children, co-
authored with Stanislas Dehaene and Pauline Martinot (et al.). This work has been submitted
to Nature (second-position author).

On this project I helped all along the data cleaning and preparation process (in particular with
missing values) and on the design and implementation of statistical analysis. This research
work makes use of modern causal inference technics such as matching, propensity weighting,
g-formula, and causal forests.

• Decrease of the spatial variability and local dimension of the Euro-Atlantic eddy-
driven jet stream with global warming, co-authored with Robin Noyelle and Pascal Yiou
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(et al.). This work is currently in a major review process to Climate Dynamics (middle-position
author).

In this work, I contributed to the redaction of the methodological section along with the sen-
sitivity analysis. Principal investigators were willing to estimate the effect of the temperature
increase on the jet stream’s variability. Through our discussions, I helped them in explaining
what is a causal graph and how to draw one, which was later used to identify a necessary set of
covariates for identification. Estimation is done using a plug-in g-formula with linear assump-
tions on the generative process. I also applied a sensitivity analysis to assess the impact of a
missing confounder on the conclusion (Cinelli and Hazlett, 2020).

These two works are mostly applications and do not require development of new statistical tools or
theoretical guarantees. Therefore their content is not detailed in this manuscript.

Chapter 2: Combining experimental and observational data, a review This chapter reviews
the current state of the art on combining experimental and observational sources. For now, most
existing methods aim to (i) generalize trial’s findings to a target population or (ii) strengthen the
observational data analysis with interventional data as a negative control. While this thesis is anchored
in the potential outcomes framework, Chapter 2 also contains a review of the so-called structural causal
model framework with a presentation of the selection diagram’s framework to encode transportability
assumptions. Chapter 2 also contains the implementation of the different generalization estimators,
along with a comparison on a simulation. Finally, an extensive discussion about the critical care
application is provided, opening the door to current open methodological questions: covariate selection,
missing values, finite and large sample behavior (to name a few). Some of these challenges motivate
the research works presented in Chapters 3, 4, and 5.

Chapter 3: A sensitivity analysis to handle missing covariates While implementing the gen-
eralization of CRASH-3 trial’s findings, we faced an important identification problem. An important
treatment effect modifier is missing in the Traumabase: the time between treatment (TTT) and the
accident. There is already evidence that this covariate is a major treatment effect modulator, e.g.
Mansukhani et al. (2020) reveal a 10% reduction in treatment effectiveness for every 20-min increase
in TTT. As TTT is probably shifted between the two populations, this prevented to conclude on the
generalized effect. Therefore our first methodological contribution is to develop a sensitivity analysis
for this specific situation. In Chapter 3, we present and investigate the problem of a missing covariate
that affects the identifiability of the target population average treatment effect (ATE) when generaliz-
ing trial’s findings to a target population, a common situation when combining different data sources.
We propose a quantification of the bias due to unobserved covariates, assuming a semi-parametric
generative process (linear conditional average treatment effect, CATE), and under a transportability
assumption of links across covariates between the two populations. Our derivation of this bias is not
estimator specific and remains valid for the three main estimators for generalization (IPSW, G-formula
plug-in estimator, and AIPSW). We also prove that a linear imputation of a partially missing covariate
cannot replace a sensitivity analysis. Relying on this result, we provide a sensitivity analysis frame-
work. In practice, experts must usually provide sensitivity parameters that reflect plausible properties
of the missing confounder. Classic sensitivity analyses, dedicated to ATE estimation from observa-
tional data, use as sensitivity parameters the impact of the missing covariate on treatment assignment
probability along with the strength on the outcome of the missing confounder. However, given that
these quantities are hardly directly transposable when it comes to generalization, these approaches
cannot be directly applied to estimate the population treatment effect. Our sensitivity analysis deals
with all the possible missing data patterns, including the case of a proxy variable that would replace
the missing one. Therefore these results can be useful for users as they may be tempted to consider
the intersection of common covariates between the RCT and the observational data. We detail how
the different patterns involve either one or two sensitivity parameters. To give users an interpretable
analysis, and due to the specificity of the sensitivity parameters at hands, we propose an adaptation
of sensitivity maps that are commonly used to communicate sensitivity analysis results.

17



Chapter 1. Introduction

Chapter 4: Finite sample error and variable selection when re-weighting a trial When
applying generalization’s estimator to our motivating example, we faced another open question. While
theoretical results related to consistency exist in the literature, we have found no theoretical charac-
terization of (i) the finite sample properties or (ii) the effect of the target sample size m relative to
the trial sample size n on the estimators. We also questioned ourselves about the impact of adding
non-necessary covariates for generalization in the adjustment set. Non-necessary covariates in the
adjustment set is a widely known topic when facing a single observational sample (Lunceford and
Davidian, 2004; Brookhart et al., 2006), but was an open research question when it comes to gener-
alization. For instance, existing results on the IPW estimator (see Definition 3) can not be directly
transferred to the generalization case as the equivalent for the generalization estimator (the Inverse
Propensity Sampling Weighting - IPSW) implies different weights and two samples. In Chapter 4,
we address simultaneously the impact of the two sample sizes on the IPSW estimator together with
its dependence on adding additional covariates. Doing so, we consider several variants of the IPSW,
for which the weights are oracle, semi-oracle, or estimated. In this context, we derive the asymptotic
variance of all the variants of IPSW, and we show that several asymptotic regimes exist, depending
on the relative size of the RCT compared to the target sample. Denoting τ̂n,m the IPSW estimator,
where weights are completly estimated, we show that this estimator is asymptotically unbiased when
n tends to infinity, that is

lim
n→∞

E [τ̂n,m] = τ.

Besides, letting lim
n,m→∞

m/n = λ ∈ [0,∞], the asymptotic variance of the estimated IPSW satisfies

lim
n,m→∞

min(n,m)Var [τ̂n,m] = min(1, λ)

(
Var [τ(X)]

λ
+ Vso

)
,

where τ(X) is the CATE previously introduced and Vso is a constant depending on (i) the distributional
shift between the trial population and the target population, and on (ii) the variance of the potential
outcomes. Interestingly, the variance is a function of both sample sizes, whereas the bias only depends
on the trial sample size. Depending on the relative sample size of n and m (through λ), different
convergence regimes can be defined. We also provide finite sample expression of the bias and variance
for all the IPSW variants introduced, allowing us to bound the risk on these estimators for any samples
sizes (trial and target population). From these theoretical results, we explain why the addition of
some additional but non-necessary covariates in the adjustment set has a large impact on precision,
for the best or the worst. Indeed, while non-shifted treatment effect modifiers improve precision by
lowering the variance, adding shifted covariates that are not treatment effect modifiers of the outcome
considerably reduces the statistical power of the analysis by inflating the variance. For this latter
situation, we provide an explicit formula of the variance inflation when the additional covariate set
is independent of the necessary one. These results have important consequences for practitioners
because they allow to give precise recommendations about how to select covariates. Note that we
link our work to seminal works in causal inference, showing that semi-oracle estimation outperforms
a completely oracle estimation, while the exact result on IPW on efficient estimation can not be
completely extended to the case of generalization. All our results assume neither a parametric form
of the outcome nor the sampling process, but are established at the cost of restricting the scope to
categorical covariates for adjustment. Within the medical domain, scores or categories are often used
to characterize individuals, which justifies this approach.

Chapter 5: Risk ratio, odds ratio, risk difference... Which causal measure is easier to
generalize? We have noticed that very few works exist on which covariate sets are required to
identify causal effects that are not the absolute difference, e.g. ratios or odds ratios. Huitfeldt et al.
(2018) highlighted that the assumptions to generalize the causal effects depend on the causal measure
of interest. In Chapter 5, we pave the way toward the generalization of other causal metrics such as the
ratio, odds ratio, or number-needed-to-treat. This research question was motivated by our clinician
collaborators, which are mostly interested in reporting ratios rather than absolute differences. While
investigating the generalizability of the different causal measures leaded us toward a reviewing work
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on causal measures. In particular we proposed a formalization of the so-called collapsibility properties,
proposing three different definitions unifying different existing definitions in the literature. Besides
reviewing and formalizing properties, our main contribution is to reverse the thinking: rather than
starting from the causal measure, we propose to start from a non-parametric generative model of
the outcome. This enable the following observations: depending on the nature of the outcome, some
causal measures disentangle treatment modulations from baseline risk. For example, if the outcome
is continuous, it is possible to disentangle baseline level with the treatment effect in a very general
generative process. Assuming that E

[
|Y (1)|

∣∣X] <∞ and E
[
|Y (0)|

∣∣X] <∞, we show that there exist
two functions b,m : X → R such that

Y (a) = b(X) + am(X) + εa,

where b(X) := E[Y (0) | X], m(X) := E[Y (1) − Y (0) | X] and a noise εA satisfying E [εA | X] = 0
almost surely. This model allows interpreting the difference between the distributions of treated and
control groups as the alteration m(X) of a generative model b(X) by the treatment. The function b
corresponds to the baseline, and m to the modifying function due to treatment. It is then possible to
notice that the difference and the ratio grasp different parts of the generative process:

τRD = E
[
Y (1)

]
− E

[
Y (0)

]
= E [m(X)] , τRR =

E
[
Y (1)

]
E
[
Y (0)

] = 1 +
E [m(X)]

E [b(X)]
.

In these simple derivations, one can see that the ratio depends on both the baseline b and the modifying
effect m, whereas the difference only depends on the modifying effect m(X). Note that m(X) := τ(X)
previously introduced for the risk difference. We extend this idea to a binary outcome, for which the
conclusion of the causal measure interpretation is different. In particular, the modifying effect function
m(X) can no longer be written as an effect on the difference, making the ratio the more generalizable
measure to use.

Our analysis outlines an understanding what heterogeneity and homogeneity of treatment effect mean,
not through the lens of the measure, but through the lens of the covariates. As our goal is the
generalization of causal measures, we show that different sets of covariates are needed to generalize an
effect to a different target population depending on (i) the causal measure of interest, (ii) the nature
of the outcome, and (iii) a conditional outcome model or local effects are used to generalize.
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Traduction en français du propos introductif

1.A L’émergence de l’évidence clinique dite moderne

Les recommandations médicales formulées par les cliniciens ou les organismes de réglementation (ex.
Food and Drug Administration (FDA) ou l’Organisation mondiale de la santé (OMS)) sont fondées
sur ce que l’on appelle les la médecine par les preuves. Toutefois, au cours des deux derniers siècles, la
notion d’évidence clinique a considérablement évoluée. Désormais, les données cliniques et l’analyse
statistique sont centrales. L’idée d’utiliser des données pour répondre à des questions cliniques s’est
progressivement imposée à partir du XIXe siècle. De nombreuses approches et méthodes que nous
utilisons aujourd’hui ont été développées à cette époque. À titre d’illustration, nous détaillons certaines
des contributions des pionniers suivants.

– Pierre-Charles-Alexandre Louis (1787-1872) était médecin dans l’ancien hôpital parisien
La Charité. Il a développé de nouvelles méthodologies sur des maladies (par exemple, la typhöıde
et la tuberculose), ainsi qu’une évaluation de l’efficacité d’une technique très populaire à l’époque:
la saignée (Morabia, 2006; Chemla and Abastado, 2012). Son travail sur la saignée contient de
nombreux éléments clés qui sont aujourd’hui préconisés comme relevant de la recherche clinique
moderne. Par exemple, Louis (1828) restreint son étude à une population cible de la même façon
que dans les études modernes, stratifie les patients selon la nature du traitement et la gravité de
leur maladie, et enfin définit un outcome (ici la durée de la maladie). Ce qui frappe dans l’œuvre
de Pierre-Charles-Alexandre Louis, c’est (i) la notion de comparaison de groupes similaires et
(ii) la notion de population cible. Ces deux éléments sont des éléments standards des essais
contrôlés randomisés (ECR) modernes.

– William Farr (1807-1883) était un démographe pionnier et un fonctionnaire du General Reg-
ister Office où il a d’abord été nommé compilateur d’extraits statistiques avant d’être nommé
Superintendent of the Statistical Department (surintendant du département statistique). Par-
allèlement à son travail de fonctionnaire, il était un collaborateur régulier de la revue Lancet
(Langmuir, 1976). Ses travaux ont porté sur un large éventail de sujets, notamment la normalisa-
tion de la nomenclature des ensembles de données. Il est également célèbre pour avoir amélioré
la définition statistique de l’espérance de vie avec sa British Life Table (Farr, 1864), tout en
développant les principes de ce que l’on appelle aujourd’hui surveillance (de la maladie, voir
Langmuir, 1976). Il s’est attaché à trouver les causes des maladies, tout en étant très préoccupé
par l’impact de l’industrialisation sur la santé publique. Selon Rothman (2011), William Farr a
également joué un rôle important dans la discussion scientifique sur les causes du choléra (voir
ci-dessous avec John Snow). William Farr était un réformateur social, profondément préoccupé
par les effets de l’industrialisation sur la santé publique. Cela pourrait expliquer ses enquêtes
basées sur des données concernant les causes des maladies, afin de prévenir leur apparition et
d’encourager des réformes sanitaires efficaces (Farr, 1839; Langmuir, 1976; Rothman, 2011).

– John Snow (1813-1858) était médecin. Il est connu pour ses travaux sur le choléra et est
aujourd’hui présenté dans tous les cours ou livres d’épidémiologie comme le père fondateur de
l’épidémiologie (Rothman, 2011). En 1854, Londres a été confrontée à une épidémie de choléra.
Selon le récit communément raconté aujourd’hui, John Snow a commencé à reporter les cas
sur une carte de Londres. Cette pratique correspond à ce que nous appelons aujourd’hui les
statistiques descriptives. Il a testé l’hypothèse de l’eau comme vecteur de contamination du
choléra, et a donc indiqué les pompes à eau sur la carte. Il a pu identifier une corrélation entre
les deux : la concentration de cas de choléra était la plus élevée autour de certaines pompes à eau
(Tulchinsky, 2018). Snow est connu pour avoir convaincu les autorités de retirer la poignée de la
pompe suspectée d’être à l’origine de l’épidémie, entrâınant la fin de l’épidémie9. L’emplacement

9Certains travaux récents défendent l’idée que l’intervention de John Snow a été trop tardive, car la maladie était déjà
en régression naturelle. Ce n’est donc pas son action qui aurait mis seule fin à l’épidémie de choléra. Voir le chapitre 4 de
Rothman (2011), montrant une reconstitution de la courbe épidémique, déjà en décroissance au moment de l’intervention
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de la pompe est aujourd’hui marqué par une plaque en l’honneur de John Snow. Il convient de
noter qu’à l’époque, une autre hypothèse voulait que le choléra soit transmis par l’air : la théorie
dite des miasmes. Cette théorie était partagée par de nombreuses personnes, dont William
Farr (Eyler, 2004). La théorie des miasmes était étayée par les observations selon lesquelles les
personnes vivant en altitude - censées être exposées à l’air frais - étaient moins sujettes au choléra.
Mais l’altitude est également liée à l’écoulement de l’eau, les personnes vivant à basse altitude
étant plus susceptibles de boire de l’eau contaminée. Ce qui a fait la différence à l’époque, c’est
l’intuition de Snow selon laquelle, les symptômes étant gastro-intestinaux, la maladie ne pouvait
être transmise que par l’eau ou la nourriture. Il a réussi à démêler les covariables cachées en
associant les maisons à leurs fournisseurs d’eau exacts. En d’autres termes, cela a permis de voir
clairement le lien entre la pompe à eau et les habitants souffrant du choléra, et pas seulement la
corrélation fallacieuse avec la qualité de l’air par le biais de l’altitude (Rothman, 2011).

– Janet Lane-Claypon (1877-1967) était médecin et fut également la première femme à re-
cevoir une bourse de recherche de la British Medical Society. Outre ses nombreux travaux de
recherche, l’un de ses objectifs était de comparer les avantages de l’allaitement maternel par
rapport à l’alimentation au lait de vache (elle a publié un rapport de 60 pages en 1912). Selon
Winkelstein Jr (2004), elle est l’auteur de l’une des premières études cas-témoins, qui comprend
une discussion détaillée sur les sources de confusion et l’erreur aléatoire de l’échantillon fini. Elle
a appliqué un test t de Student pour rejeter l’hypothèse d’un échantillonnage aléatoire expli-
quant la différence associée à l’alimentation dans le poids corporel des nourrissons. Il convient
de noter que le test t de Student n’a été proposé que quatre ans avant les travaux de Janet
Lane-Clayton (Student, 1908), ce qui montre à quel point ces travaux utilisent les statistiques
les plus récentes. Elle a également mis en évidence la classe sociale comme un possible facteur
de confusion non observé (Winkelstein Jr, 2004; Rothman, 2011). En 1926, elle a également
travaillé sur une autre étude cas-témoins visant à déterminer les facteurs de risque des cancers
du sein, dont la plupart sont encore valables aujourd’hui (Lane-Claypon et al., 1926).

Tous ces chercheurs et scientifiques ont tiré leurs conclusions de données empiriques collectives, plutôt
que d’expériences individuelles. À la même époque, les concepts mathématiques évoluent. Une nou-
velle science mathématique émerge alors avec les probabilités et les statistiques. L’ouvrage de Pierre-
Simon Laplace (1749-1827) intitulé Essai philosophique sur les probabilités publié en 1814 est un bon
exemple de ce mouvement. Ce livre illustre les prémisses d’un nouveau type de raisonnement : la
collecte de données, la pensée probabiliste et son application en médecine :

“Le calcul des probabilités peut faire apprécier les avantages et les inconvénients des méthodes
employées dans les sciences conjecturales. Ainsi, pour reconnâıtre le meilleur des traite-
ments en usage dans la guérison d’une maladie, il suffit d’éprouver chacun d’eux sur un
même nombre de malades, en rendant toutes les circonstances parfaitement semblables :
la supériorité du traitement le plus avantageux se manifestera de plus en plus à mesure
que ce nombre s’accrôıtra ; et le calcul fera connâıtre la probabilité correspondante de son
avantage, et du rapport suivant lequel il est supérieur aux autres.”. – page 134, de l’ouvrage
de l’Essai philosophique sur les probabilités du Marquis de Laplace.

On peut ainsi attribuer l’apparition du terme épidémiologie en 1850 à la création de la Royal Society
of Medicine’s Epidemiological Society à Londres. L’objectif de cet institut était “d’étudier les causes
et les conditions qui influencent l’origine, la propagation, l’atténuation et la prévention des maladies
épidémiques” (Evans, 2001). L’apparition du terme épidémiologie symbolise ainsi la naissance et
l’établissement d’une nouvelle approche méthodologique pour caractériser la propagation des maladies,
et plus généralement ce que l’on appelle aujourd’hui la santé publique. L’épidémiologie est par essence
interdisciplinaire, comptant au moins la médecine, la physiologie et les mathématiques. Par la suite,
la Royal Society of Medicine’s Epidemiological Society a été intégrée à la Royal Society of Medicine,
prenant ainsi toutes ses lettres de noblesse. L’épidémiologie n’a pas seulement été façonnée par des

de John Snow. Il n’en reste pas moins que l’ensemble du processus qui consiste à passer de la description à la vérification
de l’hypothèse reste remarquable et inédit pour la période.
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cliniciens, mais surtout par des scientifiques. Claude Bernard (1813-1878) souligne dans son livre
comment cette nouvelle science supppose la fusion des différentes communautés scientifiques :

Le désir que j’exprime ici répondrait à peu près à la pensée de Laplace, à qui on demandait
pourquoi il avait proposé de mettre des médecins à l’Académie des sciences puisque la
médecine n’est pas une science : “C’est, répondit-il, afin qu’ils se trouvent avec des sa-
vants.” – page 285, dans Bernard (1865)

Un parallèle intéressant peut être fait avec la situation actuelle, où les collaborations interdisciplinaires
sont de plus en plus recherchées, dans des domaines tels que la science des données (Chambers, 2022).

A cette époque le rôle croissant des statistiques - également appelées sciences conjecturales au milieu du
19eme siècle - n’a pas été si naturel. Claude Bernard est souvent cité comme un opposant à l’utilisation
des statistiques dans la science médicale. Bernard (1865) considérait en effet que la véritable connais-
sance médicale devait être acquise par l’individualisation des cas et la compréhension de la variabilité
entre les individus, plutôt que par la dissimulation de ces dernières dans des moyennes. L’idée sous-
jacente étant que si le mécanisme est vraiment compris, il ne devrait plus y avoir d’incertitude quant
au résultat et/ou à l’effet du traitement. Ceci étant dit, une lecture plus précise des travaux de
Claude Bernard montre une réalité moins caricaturale. Par exemple, Claude Bernard discute dans
son Introduction à l’étude de la médecine expérimentale sans le nommer les expériences de Pierre-
Charles-Alexandre Louis. Il y fait l’éloge de l’évaluation expérimentale et statistique de la saignée,
reconnaissant ainsi les atouts de ces méthodologies nouvelles.

La recherche clinique moderne et les données L’utilisation des statistiques dans la recherche
clinique, introduite au 19eme siècle siècle, a continué à être largement diffusée. L’approche moderne
de l’enseignement des statistiques pour la santé publique a désormais un cadre clair (Rothman and
Greenland, 2000; Rothman, 2011; Guyatt et al., 2015). Ainsi, la pratique actuelle pour construire ce
que l’on appelle ”l’évidence clinique” est très encadrée. Les chercheurs s’appuient principalement sur
la collecte de données provenant de sources multiples pour établir des preuves et tirer des conclusions
sur les maladies ou les facteurs de risque. La force de ces preuves va de relativement faible à très
robuste, en fonction du type et de la la quantité des données collectées. Par type de données, il
faut comprendre la manière dont les données ont été collectées et le fait qu’elles résultent ou non d’un
modèle observationnel ou d’un modèle expérimental. Il existe une grande variété de sources de preuves,
c’est-à-dire de collecte et d’analyse de données : les études en deux étapes, les études écologiques, les
cohortes rétrospectives, les études cas-témoins et les essais contrôlés randomisés (ECR). Actuellement,
les essais contrôlés randomisés sont largement considérés comme la meilleure preuve pouvant être
obtenue à partir d’une seule étude, ce qui leur vaut le titre d’étalon-or pour la mesure des effets
causaux :

Parce qu’aucun autre modèle d’étude ne peut offrir les garanties contre les biais associés
à la randomisation, les essais contrôlés randomisés (ECR) fournissent des preuves plus
solides que les autres modèles d’étude. – (Guyatt et al., 1995)10

L’essai clinique randomisé qui a évalué l’efficacité de la streptomycine (Crofton and Mitchison, 1948)
est souvent cité comme l’essai clinique randomisé fondateur des standards actuels. Cet essai clinique a
été réalisé dans un contexte de recherche de nouveaux antibiotiques. La pénicilline s’avairait inefficace
contre un agent pathogène appelé Mycobacterium tuberculosis (ou bacille de Koch) responsable de la
tuberculose pulmonaire. Pourtant à l’époque, la streptomycine était un nouvel antibiotique prometteur
ayant fait l’objet d’expériences positives sur des tubes et des animaux. Crofton (2006), l’un des
membres de l’unité Tuberculose du Medical Research Council (MRC) de l’époque avec Austin Bradford
Hill (1897-1991), raconte l’histoire de la conception et de la réalisation de cet essai historique. Le
traitement standard (ou groupe de contrôle) de la tuberculose pulmonaire était le repos au lit. Bradford
et le comité ont défini un essai respectant toutes les normes modernes : critères d’éligibilité (par

10Translated from English.
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exemple, stade de la maladie, âge, etc.), randomisation (au moyen d’enveloppes avec deux options,
contrôle ou traitement), répartition du traitement en double aveugle (pour les patients et les cliniciens),
confidentialité, collecte de données cliniques longitudinales pour chaque patient pendant toute la durée
de l’essai.

Il me plâıt de croire que, avec l’unité de recherche sur la tuberculose du MRC, nous avons
avons contribué à promouvoir l’adoption d’un modèle d’étude pour lequel l’essai de l’essai
de streptomycine du MRC est souvent considéré comme un symbole. – Crofton (2006)11

Bien que la streptomycine ait donné de bons résultats au début de cet essai, les chercheurs ont pu
observer des effets secondaires et une lente diminution de l’efficacité au fil du temps. Il s’avère que pour
être efficace, la streptomycine doit être associée à d’autres traitements et nécessite une observation
stricte pour éviter la résistance bactérienne. Notons que Crofton, qui était clinicien, propose une
opinion personnelle intéressante qui fait écho à celle de Claude Bernard :

Les essais randomisés de ce type ont été d’une grande pour développer des stratégies de
traitement efficaces, mais mais ils n’étaient pas intellectuellement stimulants. Notre prin-
cipal intellectuel dans la recherche sur la tuberculose était d’identifier d’identifier les causes
de l’échec des traitements médicamenteux. – Crofton (2006)12

À l’heure actuelle, les essais contrôlés randomisés (ECRs) occupent une place centrale dans les
réglementations pharmaceutiques. Les essais sont divisés en différentes phases cliniques selon leur
amplitude et objectifs, et on parle ainsi de différentes ”phases”, allant de un à trois. Les d’études
empiriques sont souvent présentées dans une structure hiérarchique, qui classe la force des preuves que
chaque étude peut fournir. Cette hiérarchie est souvent représentée par un diagramme pyramidal qui
illustre les différents niveaux de preuve. (voir Figure 1.6, où RCT correspond à Études randomisées
contrôlées en double aveugle).

Figure 1.6: Exemple d’une pyramide de l’évidence
clinique ; cette pyramide exacte se trouve à la SUNY
Downstate Medical Research Library de Brooklyn (voir
Evidence-Based Medicine Course, disponible online).
Plusieurs pyramides similaires peuvent être trouvées dans
des manuels ou des articles de recherche (par exemple
Ahn and Kang (2018)), parfois avec un classement ou une
dénomination légèrement différents. Certains travaux so-
ciologiques remettent en question leur origine, leur rôle et
leur utilisation, par exemple Blunt (2015).

Qu’y a-t-il de mieux qu’un seul essai contrôlé randomisé (ECR) ? Plusieurs essais contrôlés randomisés
! Outre les études menées sur une seule population, les examens systématiques et les méta-analyses
représentent la dernière couche de preuves cliniques modernes selon la hiérarchie actuellement promue
dans la recherche clinique. La méta analyse est une approche qui consiste à collecter et à examiner les
recherches disponibles sur une question spécifique et à en analyser les résultats (Ahn and Kang, 2018).
La mise en commun des estimations de plusieurs études comme couche statistique supplémentaire est
tentante, mais nécessite de s’assurer que la population d’intérêt est clairement définie. Les critères
dits PICO sont souvent mentionnés (Population, Intervention, Comparaison, Résultats). Les résultats
d’une méta-analyse sont généralement présentés sous forme de forest plots. En 2009, le Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Liberati et al., 2009) a proposé
des lignes directrices actualisées concernant les méta-analyses. Les premières avaient été proposées en
1999 (Moher et al., 1999) (appelées QUality Of Reporting Of Meta-analysis (QUOROM)). Ces lignes
directrices contiennent une liste de bonnes pratiques visant à garantir que les méta-analyses sont ef-
fectués correctement. Par exemple, les auteurs doivent rapporter le protocole, détailler les critères

11Translated from English.
12Translated from English
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d’éligibilité, fournir les mesures sommaires utilisées (par exemple, le rapport de risque, la différence
de risque) et joindre un organigramme pour décrire le processus.

Enfin, il convient de noter que l’utilisation courante de statistiques pour quantifier les causes et les
effets des habitudes ou des drogues fait également l’objet de critiques, du fait de la prolifération
d’études mesurants un effet ou un autre, sans forcément apporter un recul global (Krieger, 1994).
En outre, la façon dont la société et les médias perçoivent et interprètent ces résultats suscite des
inquiétudes, comme l’illustre la Figure 1.7.

Figure 1.7: La caricature de Jim
Borgman en 1997, véhicule plusieurs
idées, en particulier que (i) de nom-
breuses maladies sont multifactorielles et
peuvent difficilement être décomposées
en un seul facteur de risque et que (ii) la
communication de résultats clés dans les
médias peut être trompeuse en raison des
nombreux articles scientifiques actuelle-
ment publiés.

1.B Limites des essais randomisés contrôlés dans la recherche clin-
ique

Si la médecine moderne fondée sur des preuves (evidence-based medicine, EBM ) place les essais
contrôlés randomisés (ECRs) au cœur de la preuve clinique, des préoccupations ont récemment été
exprimées quant à la portée limitée de ces études L’une des principales préoccupations actuelles con-
cerne ce que l’on qppelle la validité externe (ou généralisabilité) d’un essai. La généralisation des
résultats des essais est cruciale car, le plus souvent, les cliniciens utilisent les effets causaux des essais
publiés pour (i) estimer la réponse attendue au traitement pour un patient spécifique en fonction de
ses risques de base, et donc pour (ii) choisir le meilleur traitement. Au-delà du point de vue de chaque
praticien, le même raisonnement est valable pour les organismes de réglementation qui doivent ex-
poser des lignes directrices claires et promouvoir une norme de soins. Bien qu’elles soient généralement
moins soulignées dans les articles scientifiques, les conclusions des essais ont également un impact sur
la réglementation pharmaceutique, puisque le prix d’un médicament dépend principalement de son
efficacité (évaluée au moyen d’études cliniques).

Le formalisme et le principe d’un ECR sont détaillés ci-dessous (voir Sections 3), mais pour l’instant,
on peut admettre l’idée que le résultat d’un ECR est une estimation de ce que l’on appelle l’effet moyen
du traitement (ATE, average treatment effect), également appelé effet moyen causal d’un traitement
afin de souligner que l’effet rapporté n’est pas une association. Dans la pratique, un ECR vise prin-
cipalement à présenter une estimation ponctuelle avec ses intervalles de confiance, par exemple le
rapport de risque, généralement mis en évidence dans le résumé en tant que résultats principaux, avec
la taille de la population et les intervalles de confiance. Il est donc essentiel de comprendre la validité
de ce chiffre si l’on considère d’autres populations.

La question de savoir si les résultats d’une étude peuvent être extrapolés à d’autres populations n’est
pas nouvelle. En 1957, Campbell (1957) a introduit le concept de validité interne et externe dans
les sciences sociales. Ce concept - également appelé généralisation ou représentativité dans l’article
original - soulève des questions sur les populations, les contextes et les variables auxquels un effet donné
peut être généralisé. Cette définition et cette dénomination ont été promues plus récemment par les
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Consolidated Standards of Reporting Trials (Consort) (Altman et al., 2001). Même si ce souci n’est
pas partagée par tous (voir, par exemple Rothman et al., 2013), cette question gagne en intérêt dans
la recherche clinique (Concato et al., 2000; Blanco et al., 2008; Deeks, 2002; Rothwell, 2007; Green
and Glasgow, 2006; Frieden, 2017; Berkowitz et al., 2018) :

“Ni Cochrane ni Bradford Hill n’étaient cliniciens, mais ils comprenaient les limites de la
de la méthodologie dont ils étaient les pionniers. Le peu de preuves dont nous disposons
aujourd’hui confirme que les que les essais contrôlés randomisés manquent souvent de va-
lidité externe, or cette question est négligée par les chercheurs actuels, les revues médicales,
les chercheurs en médecine, les agences de financement, les comités d’éthique, l’industrie
pharmaceutique, ainsi que les régulateurs gouvernementaux.” – Rothwell (2007)13

Pour garantir la validité externe, il doit y avoir une forte ressemblance entre la population utilisée dans
l’expérience et la population cible. Cela inclut : l’efficacité de la population, la définition des résultats,
la manière dont le traitement a été administré, l’importance des lieux et la chronologie. Cela explique
peut-être pourquoi ce concept est parfois qualifié de matière de jugement (Altman et al., 2001). (même
si les deux concepts ne sont pas strictement équivalents, ce qui conduit à des notations mathématiques
différentes). Voici quelques préoccupations typiques qui ont été soulevées au sujet de la portée limitée
des ECRs :

– Les critères d’éligibilité et d’exclusion permettent de définir la population recrutée dans
le cadre d’un ECR et font donc partie de la conception. En général, une certaine limite d’âge
et une certaine typologie de maladies sont requises pour être recruté. Ces critères servent à
la fois à (i) protéger la population faible ou à risque (par exemple, les femmes enceintes) et
à (ii) mener l’étude sur un groupe de patients suffisamment homogène pour maximiser l’effet
estimé du traitement. Au-delà des critères d’exclusion qui définissent une limite à la typologie
des patients sélectionnés, il peut également y avoir une sur- ou sous-représentation de certaines
populations, en raison par exemple des hôpitaux ou des lieux choisis pour mener les essais. Ces
biais sont beaucoup plus difficiles à repérer et à signaler que les critères d’exclusion.

– La conformité irréaliste au monde réel des essais est souvent considérée comme une lim-
ite à l’extension de la validité des essais. Dans un essai clinique randomisé, les individus sont
soigneusement suivis, de sorte que, pendant l’essai, le traitement est administré dans des condi-
tions optimales avec une très bonne observance : doses et calendrier de traitement. En dehors
des conditions expérimentales, les individus peuvent s’écarter de la norme, par exemple en ou-
bliant de prendre une pilule prescrite ou en arrêtant le traitement plus tôt que prévu. Au-delà de
l’étourderie, cela peut être pour de bonnes raisons telles que des effets secondaires ou une admin-
istration douloureuse du traitement. Par conséquent, l’effet observé en pratique peut différer de
celui évalué lors de l’essai, car le traitement en vie réelle n’est plus le même que celui administré
lors de l’essai. Certains appellent ce phénomène l’efficacité (conditions réelles) par opposition à
l’efficacité (conditions expérimentales) (Singal et al., 2014).

– Le court délai d’un essai, en raison du coût financier associé, empêche les individus d’être suivis
pendant de nombreuses années, ce qui rend les résultats d’un ECR potentiellement étroits.

– La taille limitée de l’échantillon, une préoccupation largement partagée au sujet des essais
contrôlés randomisés, empêche l’estimation des effets conditionnels (ou stratifiés) du traitement
en raison d’un manque de puissance statistique.

Bien qu’il existe des lignes directrices, telles que celles fournies par Consort (Altman et al., 2001),
existent pour définir les critères d’éligibilité et d’exclusion, il existe une inquiétude généralisée concer-
nant les rapports inadéquats fournis dans les publications cliniques (Rothwell, 2007). Il convient de
noter que ce manque de clarté n’est pas nécessairement intentionnel, mais peut être la conséquence
de la volonté de présenter un message concis aux lecteurs. Nous détaillons ci-dessous notre exemple

13Translated from English
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motivant et l’épitomé que nous abordons dans ce travail de recherche. Enfin, il convient de noter que,
plus récemment, un autre type d’essais contrôlés randomisés (ECR) pragmatiques est de plus en plus
proposé. Ces essais visent à maximiser la généralisabilité avec des critères d’éligibilité plus souples et
une plus grande flexibilité dans la gestion de l’intervention (Godwin et al., 2003).

Table 1.2: Exemple d’une Table 1, ici issue
CRASH-3 (2019).

Illustration du problème avec un exemple de la
médecine de réanimation Comme le souligne Rothwell
(2007), le problème du manque de validité externe est encore
plus préoccupant lorsque le traitement n’est que modérément
efficace. Dans de telles situations, toute petite variation
des conditions expérimentales peut invalider les conclusions
de l’étude, en particulier lorsqu’il s’agit de transférer ces
connaissances à d’autres populations. Pour illustrer ce
phénomène, considérons le cas traité par nos collaborateurs
cliniciens, dans lequel ils tentent de sauver des patients souf-
frant d’une lésion cérébrale traumatique (TBI). Le trauma-
tisme cérébral est une lésion cérébrale causée par un coup ou
une secousse à la tête. L’acide tranexamique (TXA) est un
agent antifibrinolytique qui limite les saignements excessifs et
qui est couramment administré aux patients en chirurgie. Des
essais cliniques antérieurs ont montré que le TXA réduisait
la mortalité chez les patients souffrant d’une hémorragie
traumatique extracrânienne (Shakur-Still et al., 2009). Par
conséquent, le TXA est suspecté comme potentiellement
efficace dans le traitement des lésions crâniennes, car les
hémorragies intracrâniennes sont généralement associées aux
traumatismes crâniens, avec des risques d’augmentation de la
pression intracrânienne, d’hernie cérébrale et de décès.

Suite à cette intuition, un essai randomisé contrôlé CRASH-
3 a été lancé pour estimer l’effet causal (CRASH-3, 2019).
CRASH-3 est un essai multicentrique randomisé et contrôlé
par placebo lancé dans 175 hôpitaux de 29 pays différents
(Dewan et al., 2012). Cet essai a recruté 9 202 adultes, ce
qui est inhabituellement important pour un essai clinique ran-
domisé médical. Tous souffraient d’un traumatisme crânien
sans hémorragie extracrânienne majeure. Le résumé des car-
actéristiques démographiques et cliniques de base des partici-
pants à l’étude est généralement présenté au début de chaque
étude clinique, sous le nom de tableau 1, et l’étude CRASH-3
ne fait pas défaut à cette pratique (voir le tableau 1.2 comme
exemple typique). Ici, six covariables sont mesurées lors de
l’entrée dans l’étude, à savoir l’âge, le sexe, le temps écoulé
depuis la blessure, la pression artérielle systolique, le score
de l’échelle de coma de Glasgow (GCS)14, et la réaction de la pupille. Tous les participants ont reçu
au hasard du TXA. Le principal résultat étudié est le décès lié à un traumatisme crânien survenu à
l’hôpital dans les 28 jours suivant la blessure chez les patients inclus et randomisés dans les 3 heures
suivant la blessure. L’étude conclut que le risque de décès lié à un traumatisme crânien est de 18,5%
dans le groupe TXA contre 19,8 % dans le groupe placebo. L’effet causal, reporté via le rapport des
risques (RR), n’est pas significatif (RR = 0,94 [IC 95 % 0,86 - 1,02]). Ceci dit CRASH-3 a révélé
un effet positif de l’acide tranéxamique sur des sous-populations, et notamment pour les cas légers
et modérés (c’est-à-dire avec des scores de Glasgow modérés et élevés). Mais dans quelle mesure la

14L’échelle de coma de Glasgow (GCS) est une échelle neurologique qui vise à évaluer l’état de conscience d’une
personne. Plus le score est bas, plus le traumatisme est grave
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population de CRASH-3 est-elle représentatives des patients qui entrent en soin dans les hôpitaux de
la Traumabase ? Pour répondre à cette question, nous disposons d’une vaste cohorte: la Traumabase.

La base de données Traumabase regroupe 23 centres de traumatologie français qui recueillent des
données cliniques détaillées sur les patients souffrant de traumatismes majeurs, depuis le lieu de
l’accident jusqu’à la sortie de l’hôpital, sous la forme d’un registre. Les données, qui comptent actuelle-
ment plus de 30 000 dossiers de patients, sont d’une granularité et d’une taille uniques en Europe.
Cependant, elles sont très hétérogènes, avec des caractéristiques catégorielles (sexe, type de maladie,
...) et quantitatives (tension artérielle, taux d’hémoglobine, ...), des sources multiples et de nombreuses
données manquantes (98 Dans cet ensemble de données, 8270 patients souffrent de TBI. Comme in-
diqué, la base de données Traumabase contient de nombreuses valeurs manquantes. Heureusement,
certaines covariables sont presque toujours observées, comme le score de Glasgow. Cela permet de
comparer l’échantillon CRASH-3 avec les patients souffrant de TBI dans la base de données Traum-
abase. Il est par exemple possible de comparer les patients selon le score de Glasgow lors de l’entrée
en centre de réanimation (Figure 1.8), indiquant que les deux populations sont différentes. Alors que
l’essai CRASH-3 couvre de manière plus ou moins homogène l’ensemble des scores de Glasgow, la base
de données Traumabase contient relativement plus de patients avec des scores de Glasgow élevés ou
faibles.
Or, si l’on considère que la réponse au traitement varie en fonction de la gravité du traumatisme
crânien (évaluée par le score de Glasgow), l’effet moyen rapporté dans le rapport CRASH-3 dépend
nécessairement de la population dans laquelle il est estimé. Supposons que la véritable probabilité
de mourir d’un traumatisme crânien soit celle décrite dans la Figure 1.9 (dessin hypothétique). Ce
dessin est censé illustrer une situation dans laquelle les patients faiblement blessés (GCS élevé) ont
une faible probabilité de mourir d’un traumatisme crânien, tandis que les patients gravement blessés
(GCS faible) ont une forte probabilité de mourir. Dans les deux cas, le traitement ne peut pas réduire
radicalement le risque de base, en raison de l’état extrême (bon ou mauvais) du patient. Dans de telles
situations, l’effet moyen estimé dans l’essai clinique randomisé CRASH-3 serait plus élevé que l’effet
réel observé dans la population de la base de données Traumabase, ce qui conduirait à des conclusions
erronées si l’on transposait directement les conclusions de l’essai CRASH-3 à une population similaire
à celle de la base de données Traumabase.

Figure 1.8: Comparaison univariée de la distribution du score de Glasgow entre l’échantillon CRASH-3 (9 202
individus) et le sous-échantillon de la Traumabase souffrant de TBI (8 270 individus, extraction des données effectuée
en 2019).

Comment pouvons-nous généraliser les résultats d’un essai ? En recherche clinique, la ques-
tion de la représentativité de l’essai est souvent posée sous l’angle de ce qui la compromet. Par exemple,
certains travaux cliniques comparent les covariables des personnes recrutées dans l’essai avec celles de
la population cible (par exemple, en comparant ce que l’on appelle les tableaux 1, comme dans la
Figure 1.8), ou dérivent les taux d’inéligibilité - c’est-à-dire le pourcentage de patients inéligibles au
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Figure 1.9: Schéma d’une
réponse hypothétique à l’acide
tranexamique (TXA) en cas
de lésion cérébrale traumatique
(TBI) en fonction du score de
Glasgow (GCS). Ce dessin hy-
pothétique a été imaginé en dis-
cutant avec des cliniciens et ne
vise qu’à illustrer le problème.

sein de la population souffrant de la maladie (Kennedy-Martin et al., 2015). Par exemple, Van Eijk
et al. (2019) examine que pour certains ECR portant sur des traitements visant à guérir la sclérose
latérale amyotrophique, seuls 14% de la population réellement touchée par la maladie aurait pu être
recrutée.

Pourtant, d’autres méthodes ont récemment été proposées pour directement quantifier l’impact du
changement population sur l’effet du traitement. Ces méthodes - appelées généralisation - ont été
introduites par Stuart et al. (2011); Pearl and Bareinboim (2011a) aux alentours des années 2010, et
ont la particularité de s’appuyer sur plusieurs sources de données. L’existence d’un essai (par exemple
CRASH-3) et d’un échantillon de la population cible (par exemple Traumabase) est une situation
typique dans laquelle ces méthodes peuvent s’appliquer.
On retrouve cette méthode sous d’autres appellations, comme transportabilité (Pearl and Bareinboim,
2011a; Rudolph and van der Laan, 2017; Westreich et al., 2017b), portabilité (Xiao et al., 2022), ou
récupérabilité (Bareinboim and Pearl, 2012a; Bareinboim et al., 2014). Ce sujet est également lié à ce
que l’on appelle le problème du covariate shift dans le machine-learning. Si il existe des liens entre la
causalité et les changements de distribution en machine-learning (Meinshausen, 2018), ces derniers ne
sont pas abordés dans cette thèse. Il convient de noter que cette question est également en lien avec
ce que l’on appelle le biais de sélection en statistique.
Dans cette thèse de doctorat, l’objectif est de développer et d’améliorer les approches statistiques
pour généraliser les résultats des essais à une autre population d’intérêt. Du fait de leur relative
nouveauté, ces méthodes ne sont pas complètement caractérisées théoriquement, et de nombreuses
questions pratiques sont encore en suspens. Ce travail de recherche propose de nouvelles clefs de
compréhension de ce problème, sur un plan théorique et méthodologique.
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Chapter 2

Combining experimental and
observational data: a review

This chapter corresponds to the article entitled Causal inference methods for combining random-

ized trials and observational studies: a review accepted for publication in Statistical Science,

co-authored with Imke Mayera, Guanhua Chen, Awa Dieng, Ruohong Li, Gaël Varoquaux,

Jean-Philippe Vert, Julie Josse, Shu Yang.

aequal contribution as first authors.

Chapter’s content
In this chapter, we review the growing literature on methods for causal inference combining experimental
and observational data. We first discuss identification and estimation methods that improve generalizability
of trial using the representativeness of observational data. Classical estimators include weighting, difference
between conditional outcome models, and doubly robust estimators. We then discuss methods using trial to
ensure uncounfoundedness of the observational analysis or to improve (conditional) average treatment effect
estimation. We also connect and contrast works developed in both the potential outcomes literature and the
structural causal model literature. We compare the main methods using a simulation study and real world data
to analyze the effect of tranexamic acid on the mortality rate in major trauma patients. A review of available
codes and new implementations is also provided.
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1 Introduction

Experimental data, collected through carefully designed and randomized protocols, are usually consid-
ered the gold standard approach for assessing the causal effect of an intervention or a treatment on an
outcome of interest. In particular, the intensive use of randomized controlled trials (RCTs) grounds
the so-called “evidence-based medicine”, a keystone of modern medicine. In an RCT, the treatment
allocation is under control, ensuring a balanced distribution of treated and control individuals; as a
consequence, simple estimators can be used to measure the treatment effect, e.g., with the difference
in mean effect between the treated and control individuals (Imbens and Rubin, 2015). Still, RCTs
come with practical drawbacks such as cost and time, but also with methodological issues such as
restrictive inclusion/exclusion criteria which can lead to a trial sample that differs markedly from the
population potentially eligible for the treatment. Therefore, the findings from RCTs can lack gener-
alizability to a target population of interest. This concern is related to the aim of external validity,
central in medical research (Concato et al., 2000; Rothwell, 2007; Green and Glasgow, 2006; Frieden,
2017) policy research (Martel Garcia and Wantchekon, 2010; Deaton and Cartwright, 2018; Deaton
et al., 2019; Jeong and Namkoong, 2022), and other fields such as advertising (Gordon et al., 2019).

In contrast, observational data – collected without systematically designed interventions, such as dis-
ease registries, cohorts, biobanks, epidemiological studies, or electronic health records – are promising
as they are readily available, include large and representative samples, and are less cost-intensive than
RCTs. However, there are often concerns about the quality of these “big data”, given that the lack of
a controlled experimental intervention opens the door to confounding bias. This concern is referred to
as a lack of internal validity. Under assumptions such as unconfoundedness it is possible to estimate
a causal treatment effect from observational data. In practice, methods such as matching, inverse
propensity weighting (IPW), or augmented IPW (AIPW) are used (Imbens and Rubin, 2015). Even
when a confounder is unobserved, solutions exist at the price of additional assumptions, for example
the front-door criterion (Pearl, 1993), instrumental variables (Angrist et al., 1996; Hernán and Robins,
2006; Imbens, 2014), and sensitivity analysis (Cornfield et al., 1959; Rosenbaum and Rubin, 1983a;
Imbens, 2003).

Combining information gathered from experimental and observational data opens the door to new
tools for,
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1. accounting for the lack of representativeness of RCT, as observational data can constitute an
external representative sample of a target population of interest;

2. making observational evidence more credible using RCT ground observational analysis, such as
detecting a confounding bias;

3. improving statistical efficiency, for example to better estimate heterogeneous treatment effects
as RCTs are often under-powered in such settings.

As of today, there is abundant literature about the different ways and purposes of combining both
sources of information. Terms used to refer to similar problems are generalizability (Cole and Stu-
art, 2010; Stuart et al., 2011; Hernán and VanderWeele, 2011; Tipton, 2013; O’Muircheartaigh and
Hedges, 2014; Stuart et al., 2015; Keiding and Louis, 2016; Dahabreh et al., 2019; Buchanan et al.,
2018; Cinelli and Pearl, 2020; Dahabreh et al., 2020), representativeness (Campbell, 1957), external
validity (Rothwell, 2007; Stuart et al., 2018; Westreich et al., 2018), transportability (Pearl and Barein-
boim, 2011a; Rudolph and van der Laan, 2017; Westreich et al., 2017b), recoverability (Bareinboim
and Pearl, 2012a; Bareinboim et al., 2014) and finally data fusion (Bareinboim and Pearl, 2016); this
review will explain the commonalities or differences between the terminologies. They have connec-
tions to inference from non-probability samples in survey sampling (Yang et al., 2020a; Yang and Kim,
2020) and to the covariate shift problem in machine learning (Sugiyama and Kawanabe, 2012). This
problem of data integration for causal inference is tackled by two main bodies of literature, namely the
potential outcomes (PO) framework (Neyman, 1923; Rubin, 1974), and the work on structural causal
models (SCM) using directed acyclic graphs (DAGs), pioneered by Pearl (1995) and his collaborators.

The present paper reviews this literature on combining experimental and observational data. Section 2
introduces the notations from the PO literature, as well as the common designs. Section 3 details how
an observational sample can be used to generalize RCT findings to another population point (a). We
detail the corresponding identifiability assumptions and present the main estimation methods that
have been suggested to account for distributional shifts. In this section, only baseline covariates are
required in the observational data. In Section 4, we consider the case where observational data also
contain treatment and outcome data. This setting in particular provides the opportunity to tackle
different scientific questions such as hidden confounding or statistical efficiency (oints (b) and (c)). In
Section 5, we present the SCM literature, using different notations and ways to formulate assumptions,
thus capturing richer and more diverse identifiability scenarios. In Section 6, we first present existing
implementations and software and then we illustrate the properties of the generalization estimators
on simulated data with new implementations. In Section 7, we apply the various methods presented
in Section 3 on a medical application involving major trauma patients. The aim of this study is to
assess the effect of the drug tranexamic acid on mortality in head trauma patients. Both an RCT
(the CRASH-3 trial) and an observational database (the Traumabase registry) are available. In this
section, we also review methods for addressing data quality issues such as missing values.

2 Problem setting

2.1 Notations in the PO framework

Each individual in the RCT or observational population is described by (X,Y (0), Y (1), A, S), a ran-
dom tuple with distribution P , whereX is a p-dimensional vector of covariates, A the binary treatment
assignment (with A = 0 for the control and A = 1 for the treated individuals), Y (a) is the binary or
continuous outcome had the subject been given treatment a (for a ∈ {0, 1}), and S a binary variable
indicating trial eligibility and willingness to participate1. We model the individuals belonging to an
RCT sample of size n and to an observational data sample of size m by n +m independent random
tuples: {Xi, Yi(0), Yi(1), Ai, Si}n+mi=1 , where the RCT samples i = 1, . . . , n are identically distributed

1Note that in the literature, S can have a slightly different meaning, for example other works use two separate
indicators, one for participation and one for eligibility (Nguyen et al., 2018; Dahabreh et al., 2019).
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according to P (X,Y (0), Y (1), A, S | S = 1), and the observational data samples i = n+ 1, . . . , n+m
are identically distributed according to P (X,Y (0), Y (1), A, S). The sampling mechanisms of the RCT
and observational samples are assumed to be independent, which corresponds to a so-called non-nested
design as explained in Section 2.2.1. We also denote R = {1, . . . , n} the set of indices of units observed
in the RCT study, and O = {n+1, . . . , n+m} the set of indices of units observed in the observational
study. For each RCT sample i ∈ R, we observe (Xi, Ai, Yi, Si = 1), while for observational data i ∈ O,
we consider two settings: (i) we only observe the covariates Xi (Section 3), (ii) we also observe the
treatment and outcome (Xi, Ai, Yi) (Section 4).

In this review we consider the absolute difference, and do not consider other contrast measures2. Doing
so, we denote respectively by τ(x) and τ1(x) the conditional average treatment effect (CATE) in the
observational population and the RCT population:

∀x ∈p , τ(x) = E[Y (1)− Y (0) | X = x] , τ1(x) = E[Y (1)− Y (0) | X = x, S = 1] .

We also denote τ and τ1 the population average treatment effect (ATE) in the observational population
and the RCT one:

τ = E[Y (1)− Y (0)] = E[τ(X)] , τ1 = E[Y (1)− Y (0) | S = 1] ,

where the population ATE can be different from the RCT ATE, i.e., τ ̸= τ1 in general.
We denote respectively by e(x) and e1(x) the propensity score in the observational population and in
the RCT population:

e(x) = P (A = 1 | X = x) , e1(x) = P (A = 1 | X = x, S = 1) ,

where e1(x) is usually known in an RCT. We also denote by µa(x) and µa,1(x) the conditional mean
outcome under treatment a ∈ {0, 1} in the observational population and in the RCT population,
respectively:

µa(x) = E[Y (a) | X = x] , µa,1(x) = E[Y (a) | X = x, S = 1] .

Finally, we denote by α(x) the conditional odds that an individual with covariates x is in the RCT or
in the observational sample:

α(x) =
P(i ∈ R | ∃i ∈ R ∪O, Xi = x)

P(i ∈ O | ∃i ∈ R ∪O, Xi = x)
=
πR(x)

πO(x)
=

πR(x)

1− πR(x)
,

where πR(x) (resp. πO(x)) is the probability that an individual with covariates x known to be in the
concatenated data (RCT sample and observational sample) is in the RCT (resp. in the observational
sample). In the literature another widely used quantity is the selection score – or sampling propensity
score (in particular this name was proposed by Tipton (2013)) – denoted πS(x) and defined as

πS(x) = P(S = 1 | X = x) .

Because πS(x) is the probability of being sampled in the trial given covariates values x, it is different
from πR(x). πS(x) is often used with a nested design (see Section 2.2.1 for a definition), but is not of
interest in our setup (non-nested design) because it cannot be identified. Indeed,

πS(x) = P(S = 1)× P(X = x | S = 1)

P(X = x)
= P(S = 1)× P(Xi = x | i ∈ R)

P(Xi = x | i ∈ O)
= P(S = 1)︸ ︷︷ ︸

Not known

× n
m

πR(x)

πO(x)︸ ︷︷ ︸
= α(x)

.

derivations can be found in the appendix (see Section 2.C). The quantity P(S = 1) is unknown because,
individuals in the target population could have participated in the RCT or not: S can be equal to
1 and 0 in the observational sample but this information is not known. Table 2.1 illustrates the
considered type of data, and Table 2.2 summarizes the notations.

2Considering other measures such as the ratio or odds ratio can have an impact on the assumptions considered, for
example in generalization (Huitfeldt et al., 2019). As the large majority of the literature is focused on the absolute
difference, this review reflects the practices, and therefore considers the absolute difference.
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Table 2.1: Illustration of data structure of RCT data (Set R) and observational data (Set O) with covariates X,
trial eligibility S, binary treatment A and outcome Y . Left: with observed outcomes, Right: with potential outcomes.
Note that the S covariate can be either 0 or 1 in the observational data set (it is unknown in the non-nested design,
hence the NA for not available), and is always equal to 1 for observations in the RCT. In the nested design (cf.
Appendix 2.E), S = 0 for all individuals in the observational data set.

Covariates Treatment Outcome

S Set X1 X2 X3 A Y

1 1 R 1.1 20 F 1 1
1 R -6 45 F 0 1

n 1 R 0 15 M 1 0
n+ 1 NA O . . . . . . . . .

NA O -2 52 M 0 1
NA O -1 35 M 1 1

n+m NA O -2 22 M 0 0

Covariates Treatment Outcome(s)

S Set X1 X2 X3 A Y (0) Y (1)

1 R 1.1 20 F 1 NA 1
1 R -6 45 F 0 1 NA

1 R 0 15 M 1 NA 1
NA O . . . . . . . . . . . .
NA O -2 52 M 0 1 NA

NA O -1 35 M 1 NA 1
NA O -2 22 M 0 0 NA

Table 2.2: List of notations.

Symbol Description

X Covariates (also known as baseline covariates when measured at inclusion of the patient)

A Treatment indicator (A = 1 for treatment, A = 0 for control)

Y Outcome of interest

S Trial eligibility (S = 1 for eligibility, S = 0 for non-eligibility)

n Size of the RCT study

m Size of the observational study

R Index set of units observed in the RCT study; R={1,. . . ,n}
O Index set of units observed in the observational study; O={n+1,. . . ,n+m}
πR(x) Probability that a unit in R∪O with covariate x is in R
πO(x) Probability that a unit in R∪O with covariate x is in O
α(x) Conditional odds α(x) = πR(x)/πO(x)

τ Population average treatment effect (ATE) defined as τ = E[Y (1)− Y (0)]

τ1 Trial (or sample) average treatment effect defined as τ1 = E[Y (1)− Y (0) | S = 1]

τ(x) Conditional average treatment effect (CATE) defined as τ(x) = E[Y (1)− Y (0) | X = x]

τ1(x) Trial conditional average treatment effect defined as τ1(x) = E[Y (1)− Y (0) | X = x, S = 1]

e(x) Propensity score defined as e(x) = P(A = 1 | X = x)

e1(x) Propensity score in the trial defined as e1(x) = P(A = 1 | X = x, S = 1), known by design

µa(x) Outcome mean defined as µa(x) = E[Y (a) | X = x] for a = 0, 1

µa,1(x) Outcome mean in the trial defined as µa,1(x) = E[Y (a) | X = x, S = 1] for a = 0, 1

πS(x) Selection score defined as πS(x) = P(S = 1 | X = x)

f(X) Covariate distribution in the target population

f(X|S = 1) Covariate distribution conditional to trial-eligible individuals (S = 1)

2.2 Study designs and goals

2.2.1 Nested and non-nested study designs

Following Dahabreh et al. (2021) and Dahabreh et al. (2020), the study design to obtain the trial and
observational samples can be categorized into two types: nested study designs and non-nested study
designs as illustrated on Figure 2.1. Designs imply different identifiability conditions and therefore
estimators. This review focuses on what is called the non-nested design, as the trial sample and the
observational sample are obtained separately. On the contrary the nested design involves a two-stage
nested sampling. For example it can correspond to an embedded trial in a broader health system. As
a concrete example one can mention the Women Health Initiative, or the recent study on Medicaid
where part of the participants are randomized (Degtiar et al., 2021). In this situation, data are not
really combined as the overall data comes from one initial sampling in which two treatment assignment
regimes (randomized or not) coexist. The nested design estimators are detailed in Appendix 2.E.
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Step1:
Get a total sample of size n+m
from the target population

Step2:
- select a subsample for trial
- remaining sample used
in parallel observational
study

.

.

Figure 2.1: Schematics of the nested (left) and non-nested (right) designs, a similar schematic can be found
in Josey et al. (2021).

2.2.2 Transportability, generalizability, and recoverability

Several terms are currently present in the literature to describe the process of predicting the effect
of the treatment from an RCT to another population: generalization (Stuart et al., 2011; Buchanan
et al., 2018; Dahabreh et al., 2019), transportability (Hernán and VanderWeele, 2011; Bareinboim
and Pearl, 2016; Westreich et al., 2017b), or recoverability (Bareinboim et al., 2014). Differences in
the definitions can be found in the literature, underlying a specific design such as the existence of a
common superpopulation or assumptions such as the support overlap between different populations.
For example, Dahabreh et al. (2020) highlights that several definitions are given,

We use the term generalizability when the target population coincides or is a subset of the
trial-eligible population and transportability when the target population includes at least
some individuals who are not trial-eligible (and who, by definition, cannot be trial partici-
pants) (others have proposed different definitions).

Due to different definitions in the literature, several terms can be found to describe the same scien-
tific goal. In this review, we call generalization the task that extends the RCT result to its larger
population, where it was sampled with a bias (detailed in Section 3). The SCM literature also uses dif-
ferent terminologies corresponding to different assumptions –and corresponding diagrams– as detailed
in Section 5. For example what is called transportability refers to two distinct populations, and not
necessarily about different covariate supports as suggested by Dahabreh et al. (2020). In particular,
in this literature the task that we study in Section 3 is termed recoverability from a sampling bias,
rather than generalization. This terminology has the merit of indicating that generalization can have
a much broader coverage, including other types of problems. Note that granting some assumptions
about a common support or non-zero probability to be sampled, then the two problems – namely
recovering from a sampling bias and transportability – rely on the same estimators and procedure, as
highlighted in Section 3.1.3 and in Pearl (2015).

34



3. When observational data have no treatment and outcome information

3 When observational data have no treatment and outcome infor-
mation

We start by considering the case where only the covariates from the observational study are available or
used. We consider the observational data as a random sample from the target population. Considering
this set-up, the question tackled in this section is how to generalize or transport the trial findings
toward a target population of interest. Applied examples can be found in Dong et al. (2020); Lesko
et al. (2016); Tipton et al. (2016); Li et al. (2021); Yang and Wang (2022). In particular He et al.
(2020) review current practice, revealing that generalization’s implementation is still at the stage of
prototyping without real usage for clinical and public health decisions yet.

3.1 Assumptions needed to identify the ATE on the target population

A fundamental problem in causal inference is that we can observe at most one of the potential outcomes
for an individual subject. In order to identify nonetheless the ATE from RCT and observational
covariate data, we require some of the following assumptions.

3.1.1 Internal validity of the RCT

Assumption 4 (Consistency). Y = AY (1) + (1−A)Y (0).

Assumption 4 implies that the observed outcome is the potential outcome under the actual assigned
treatment.

Assumption 5 (Randomization). {Y (0), Y (1)} ⊥⊥ A | S = 1, X

Assumption 5 corresponds to internal validity. It holds by design in a completely randomized exper-
iment, where the treatment is independent of all the potential outcomes and covariates. The more
general case of conditional randomization is assumed throughout this review.

If Assumptions 4 and 5 hold, then the RCT is said to be compliant. In addition, in an RCT, it is
common that the probability of treatment assignment, e1(x), is known. In a complete randomized
trial, the propensity score is fixed as a constant, and usually e1(x) = 0.5 for all x.

3.1.2 Assumptions ensuring generalizability of the RCT to the target population

The literature proposes different assumptions to generalize trial’s findings to a target population.

Assumption 6 (Ignorability assumption on trial participation). {Y (0), Y (1)} ⊥⊥ S | X. (Hotz et al.,
2005; Stuart et al., 2011; Tipton, 2013; Hartman et al., 2015; Buchanan et al., 2018; Degtiar and
Rose, 2023; Egami and Hartman, 2021)

A parallel can be made with the strong ignorability condition in causal inference with observational
data (see Assumption 14 in Appendix), but applied to the sample selection rather than treatment
assignment. In other words, these assumptions require to control for all covariates being shifted and
predictive of Y . We call shifted covariates, all the baseline covariates along which the two populations
– trial and target – do not follow the same distribution. A weaker version of Assumption 6 can be
found in Dahabreh et al. (2019, 2020):

Assumption 7 (Mean exchangeability). E [Y (a) | X = x, S = 1] = E [Y (a) | X = x] (mean exchange-
ability over trial participation), for all x and a = 0, 1.

Another assumption can be found, relying on the transportability of treatment effect rather than the
potential outcomes.

Assumption 8 (Sample ignorability for treatment effects - Kern et al. (2016); Nguyen et al. (2018)).
Y (1)− Y (0) ⊥⊥ S | X.

35



Chapter 2. Combining experimental and observational data: a review

A weaker version can be found:

Assumption 9 (Transportability of the CATE). τ1(x) = τ(x) for all x.

To meet these last two assumptions, one requires variables that are both treatment effects modifiers and
shifted. Epidemiologists often use the term “effect modification” to indicate that the treatment effect
varies across strata of baseline covariates, such baseline covariates being treatment effect modifiers.
These assumptions are implied by Assumption 6, but this is not reciprocal s all covariates predictive
of the outcome are not necessarily treatment effect modifiers. Note that a treatment effect modifier
depends on the chosen scale, here we focus on the absolute difference, but if we had considered a risk
ratio the variables being treatment effects modifiers would not be the same. Mathematical definitions
of a treatment effect modifier are hard to find, but we quote one from VanderWeele and Robins (2007)
for the absolute scale.

Definition 6 (Treatment effect modifier). We say that a variable X is a treatment effect modifier for
the causal risk difference of A on Y if X is not affected by A and if there exist two levels of A, a0 and
a1, such that E

[
Y (a1) | X = x

]
− E

[
Y (a0) | X = x

]
is not constant in x.

In this work, we only rely on Assumption 8 for identification formula. Finally a last assumption is
needed, the positivity of trial participation assumption.

Assumption 10 (Positivity of trial participation, also called overlap). There exists a constant c > 0
such that, almost surely, P(S = 1 | X) ≥ c.

Assumption 10 requires adequate overlap of the covariate distribution between the trial sample and the
target population (in other words, all members of the target population have non-zero probability of
being selected into the trial). Other formulation of this assumption can be found under the assumption
of the target population’s support included in the trial sample support (Nie et al., 2021; Colnet et al.,
2022b)

3.1.3 Identifications formulae

Under Assumptions 4, 5, 9, and 10 the ATE can be identified based on the following formulas (deriva-
tions in Appendix 2.C):

1. Reweighting formulation:

τ = E
[

n

mα(X)
τ1(X) | S = 1

]
= E

[
n

mα(X)

(
A

e1(X)
− 1−A

1− e1(X)

)
Y | S = 1

]
. (2.1)

Note that Equation 2.1 can be understood as a transportability problem considering two distri-
butions P1 and P , and transporting evidence from population P1 to population P ,

τ = EP [τ(X)] =

∫
X
τ(x) f(x) dx︸ ︷︷ ︸
Integral on P

=

∫
X
τ1(x)

f(x)

f1(x)
f1(x) dx︸ ︷︷ ︸

Integral on P1

=

∫
X
τ1(x)

n

m

1

α(x)
f1(x) dx,

noting that α(x) = P(i∈R|∃i∈R∪O,Xi=x)
P(i∈O|∃i∈R∪O,Xi=x)

= P(i∈R)
P(i∈O) ×

P(Xi=x|i∈R)
P(Xi=x|i∈O) = n

m ×
f1(x)
f(x) , and using the

transportability assumption (see Assumption 9) stating that τ(x) = τ1(x).

2. Regression formulation:

τ = E [µ1,1 (X)− µ0,1 (X)] = E [τ1 (X)] . (2.2)

Different identification formulas motivate different estimation strategies as discussed next. These
strategies are illustrated in Figure 2.2.
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IPSW G-formula

Figure 2.2: Illustrative schematics for the estimation strategies: On this drawing the trial findings τ̂1,n would
over-estimate the target treatment effect τ (on an absolute scale). On the left, the IPSW (Definition 7) strategy,
relying on weighting the RCT observations; on the right, the plug-in g-formula (Definition 9) strategy, relying on
modeling the response using the RCT observations. Notations are the same as introduced in Table 2.2, i.e., fX
(fX|S=1) denotes the density of the target (resp. trial) population, and µ̂a,n(·) denotes the fitted response surface
using the n trial observations.

3.2 Estimation methods to generalize trial findings to a target population of in-
terest

All along this review, estimators are indexed with the number of observations used for estimation. For
example, τ̂n indicates that the finite sample estimator only relies on the RCT individuals, or τ̂n,m if it
depends on both data sets.

3.2.1 IPSW and stratification: modeling the probability of trial participation

To overcome the bias due to covariate shift between populations, most existing methods rely on direct
modeling of the selection score previously introduced. The selection score adjustment methods include
IPSW (Cole and Stuart, 2010; Stuart et al., 2011; Lesko et al., 2017; Buchanan et al., 2018; Colnet
et al., 2022b) and stratification (Stuart et al., 2011; Tipton, 2013; O’Muircheartaigh and Hedges,
2014).

Inverse probability of sampling weighting (IPSW). The IPSW approach can be seen as the
counterpart of IPW methods for estimating the ATE from observational studies by controlling for
confounding (see Appendix 2.B for details on IPW). Based on the identification formula eq. 2.1, the
IPSW estimator of the ATE is defined as the weighted difference of average outcomes between the
treated and control group in the trial. The observations are weighted by the inverse odds 1/α(x) =
πO(x)/πR(x) to account for the shift of the covariate distribution from the RCT sample to the target
population. The larger α(Xi), the smaller the weight of the observation i (as illustrated on Figure 2.2).
The shape of the IPSW estimator is slightly different from the shape of the IPW estimator. In the
latter, each observation is weighted by the inverse of the probability to be treated whereas in the
former it is weighted by the inverse of the odds of the probability to be in the trial sample. This is
due to the non-nested sampling design (see the IPSW estimator for the nested design eq. 2.14), as
highlighted by Kern et al. (2016) and Nguyen et al. (2018).

Definition 7 (Inverse probability of sampling weighting - IPSW). The IPSW estimator is defined as
follows:

τ̂IPSW,n,m =
1

n

n∑
i=1

n

m

Yi
α̂n,m(Xi)

(
Ai

e1(Xi)
− 1−Ai

1− e1(Xi)

)
,

where α̂n,m is an estimate of the odds of the indicatrix of being in the RCT.

The IPSW estimator is consistent when the quantity α is consistently estimated by α̂n,m (Buchanan
et al., 2018; Colnet et al., 2022a). In practice, various methods are used to estimate α: for e.g. by
logistic regression (Stuart, 2010), while recent works rely on non-parametric methods such as random
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forest and Gradient boosting (Kern et al., 2016) or Hájek-style estimator to target the density ratio
(Huang et al., 2021; Nie et al., 2021). Similar to IPW estimators, IPSW estimators are known to
be highly unstable, especially when the weights are extreme. This can occur if the observational
study contains units with very small probabilities of being in the trial. Normalized weights can be
used to overcome this issue (Dahabreh et al., 2020). Still, the major challenge remains that IPSW
estimators require a correct model specification of the weights. Avoiding this problem requires either
very strong domain expertise or turning to doubly robust methods (Section 3.2.4). Current theoretical
guarantees and theorems are detailed in Appendix (see Section 2.D). For example Buchanan et al.
(2018) propose a derivation of the asymptotic variance under parametric assumptions in the nested
case, while Zivich et al. (2022) extends this to a non-nested design. Dahabreh et al. (2019) propose the
use of sandwich-type variance estimators (for both nested and non-nested design) or non-parametric
bootstrap approaches, and note that the latter may be preferred in practice. Colnet et al. (2022a) has
formalized consistency results for any consistent estimator of α, including non-parametric estimators.

Assumption 11 (Consistency assumptions for α). Denoting by n
mα̂n,m(x) the estimated weights on

the set X,

the following conditions hold,

• supx∈X | n
mα̂n,m(x) −

fX(x)
fX|S=1(x)

| = ϵn,m
a.s.−→ 0 , when n,m→∞,

• for all n,m large enough E[ε2n,m] exists and E[ε2n,m]
a.s.−→ 0 , when n,m→∞,

• Y is square integrable.

Theorem 1 (IPSW consistency - Colnet et al. (2022a)). Under causal assumptions (Assumptions 4,
5, 9, 10), (identifiability), and Assumption 11 (consistency), then, τ̂IPSW,n,m converges toward τ in L1

norm,

τ̂IPSW,n,m
L1

−→
n,m→∞

τ.

More recently Colnet et al. (2022b) has proposed a finite sample characterization of IPSW when X
only contains categorical covariates.

Stratification. The stratification approach – or subclassification – is introduced by Cochran (1968)
for a single observational data set, and has been further extended by Stuart et al. (2011), Tipton
(2013), and O’Muircheartaigh and Hedges (2014) for the generalization’s context. It is proposed as a
solution to mitigate the risks of extreme weights in the IPSW formula. First, one has to estimate the
conditional odds α̂n,m in the same manner as for the IPSW detailed above. Then, based on the values
of the conditional odds obtained, L strata are defined (usually 5 as reported in (O’Muircheartaigh and
Hedges, 2014), following the empirical seminal work of (Cochran, 1968)). In the trial, for each strata
l one has to compute the average effect on this strata defined as Y (1)l − Y (0)l, where Y (a)l denotes
the average value of the outcome for units with treatment a in stratum l in the RCT. The generalized
ATE is defined by the aggregation of the treatment effect estimates on each strata l weighted by the
proportion of the strata in the target population ml

m , where ml is the number of individuals in strata
l in the target sample.

Definition 8 (Stratification). The stratification estimator denoted τ̂,n,m is defined as,

τ̂,n,m =

L∑
l=1

ml

m

(
Y (1)l − Y (0)l

)
︸ ︷︷ ︸

from RCT

.

Buchanan et al. (2018) has proposed asymptotic normality result for this estimator. Theoretical results
for the stratification estimator are detailed in the appendix (Section 2.D).
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3.2.2 Plug-in g-formula estimators: modeling the conditional outcome in the trial

Other estimators to generalize RCT findings to a target population leverage the regression formulation
eq. 2.2, in the inspiration of(Robins, 1986). Known as plug-in g-formula estimators, they fit a model
of the conditional outcome mean among trial participants, rather than modeling the probability of
trial participation (as illustrated on Figure 2.2). Then a marginalization is done over the empirical
covariate distribution of the target population.

Definition 9 (Plug-in g-formula). The plug-in g-formula (or outcome model-based) estimator is then
defined as:

τ̂G,n,m =
1

m

n+m∑
i=n+1

(µ̂1,1,n(Xi)− µ̂0,1,n(Xi)) ,

where µ̂a,1,n(Xi) is an estimator of µa,1(Xi) fitted using the RCT data.

In practice, any model can be use to fit µa,1(Xi), for e.g. standard ordinary least squares (OLS).
Dahabreh et al. (2020) announce3 consistency of the plug-in g-formula for parametric estimator of
the response model µa(X). Note that derivations are made in the context of a nested design but
said to extend to a non-nested design. They also recommend the use of sandwich-type variance for
confidence intervals estimation when correctly specified parametric models are used. Machine-learning
algorithms such as random forests can also be used to estimate µa,1(Xi) (Kern et al., 2016). As shown
by Colnet et al. (2022a) if the model is correctly specified (see Assumption 12 below), the estimator
is consistent.

Assumption 12 (Consistency of surface response estimators). Denote µ̂0,n (respectively µ̂1,n) an
estimator of µ0 (respectively µ1). Let Dn the RCT sample, so that

For a ∈ {0, 1}, E [|µ̂a,n(X)− µa(X)| | Dn]
p→ 0 when n→∞,

For a ∈ {0, 1}, there exist C1, N1 so that for all n ⩾ N1, a.s., E[µ̂2a,n(X) | Dn] ⩽ C1.

Theorem 2 (Consistency of the plug-in g-formula - Colnet et al. (2022a)). Under causal assumptions
(Assumptions 4, 5, 9, 10), and Assumption 12 the plug-in g-formula converges toward τ in L1 norm,

τ̂G,n,m
L1

−→
n,m→∞

τ.

3.2.3 Calibration weighting: balancing covariates

Beyond propensity scores, other schemes use sample reweighting. Dong et al. (2020) propose a calibra-
tion weighting approach, similar to the idea of entropy balancing weights introduced by Hainmueller
(2012). They calibrate subjects in the RCT sample in such a way that after calibration, the covariate
distribution of the RCT sample empirically matches the target population.

Definition 10 (Calibration weighting - CW). Let g(X) be a vector of functions of X to be calibrated,
e.g., the moments, interactions, and non-linear transformations of components of X. Then, assign a
weight ωi to each subject i in the RCT sample by solving the following optimization problem:

min
ω1,...,ωn

n∑
i=1

ωi logωi,

subject to ωi ≥ 0, for all i,
n∑
i=1

ωi = 1,
n∑
i=1

ωi g(Xi) = g̃, (the balancing constraint)

3see their Appendix, Section A, pages 6-7.
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where g̃ = m−1
∑m+n

i=n+1 g(Xi) is a consistent estimator of E[g(X)] from the observational sample.
Based on the calibration weights, the CW estimator is then

τ̂CW,n,m =
n∑
i=1

ω̂n,m(Xi)Yi

(
Ai

e1(Xi)
− 1−Ai

1− e1(Xi)

)
,

where ω̂n,m(.) is the estimated ω(.) using the RCT and observational data.

The optimization problem in Definition 10 corresponds to the negative entropy of the calibration
weights; thus, minimizing this criterion ensures that the empirical distribution of calibration weights
is not too far away from the uniform distribution. This aims at minimizing the variability due to
heterogeneous weights. This optimization problem can be solved using convex optimization with
Lagrange multipliers. For an intuitive understanding of the calibration weighting framework, consider
g(X) = X. In such a setting, the balancing constraint is forcing the means of the observational
data and of the RCT to be equal after reweighting. More complex constraints can enforce balance
on higher-order moments. The calibration algorithm is inherently imposing a log-linear model on the
sampling propensity score and solving the corresponding parameters by a set of estimating equations
induced by covariate balance. Other objective functions of the weights correspond to different models
for the sampling propensity score (Chu et al., 2022). Wu and Yang (2022b) propose a cross-validation
procedure to select the calibration weights that target at the smallest mean squared error of the
resulting estimator.

The CW estimator τ̂CW,n,m is doubly robust in that it is a consistent estimator for τ if the selection
score of RCT participation follows a log-linear model, i.e., πS(X) = exp{⊤0 g(X)} for some 0, or if the
CATE is linear in g(X), i.e., τ(X) = γ⊤

0 g(X), though not necessarily both. The authors suggest a
bootstrap approach to estimate its variance.

3.2.4 Doubly-robust estimators

The model for the expectation of the outcomes among randomized individuals (used for the plug-in
g-formula estimator in Definition 9) and the model for the probability of trial participation (used in the
IPSW estimator in Definition 7) can be combined to form an Augmented IPSW estimator (AIPSW).

Definition 11 (Augmented IPSW -AIPSW). The augmented IPSW estimator, denoted τ̂AIPSW,n,m, is
defined as

τ̂AIPSW,n,m =
1

n

n∑
i=1

n

m α̂n,m(Xi)

(
Ai (Yi − µ̂1,1,n(Xi))

e1(Xi)
− (1−Ai) (Yi − µ̂0,1,n(Xi))

1− e1(Xi)

)

+
1

m

m+n∑
i=n+1

(µ̂1,1,n(Xi)− µ̂0,1,n(Xi)) ,

where µ̂a,1, are estimated on the RCT sample (see Definition 9), and α̂n,m (see Definition 7) on the
concatenated RCT and observational samples.

It can be shown that this estimator is doubly robust, i.e., consistent when either one of the two models
for α̂n,m(·) and µ̂a,1(·) (a = 0, 1) is correctly specified. Dahabreh et al. (2020) has proposed a proof
in the nested-case (see their appendix, Section A) said to follow the same principle in the non-nested
design (Section B page 25). In the plain text we recall the results from Colnet et al. (2022a).

Assumption 13 (Consistency assumptions - AIPSW). The nuisance parameters are bounded, and
more particularly

• There exists a function α0 bounded from above and below (from zero), satisfying

lim
m,n→∞

sup
x∈X

∣∣∣∣ n

mα̂n,m(x)
− 1

α0(x)

∣∣∣∣= 0,
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• There exist two bounded functions ξ1, ξ0 : X →, such that ∀a ∈ {0, 1},

lim
n→+∞

sup
x∈X
|ξa,1(x)− µ̂a,1,n(x)| = 0.

Theorem 3 (AIPSW consistency - Colnet et al. (2022a)). Assuming causal assumptions (Assump-
tions 4, 5, 9, 10), and Assumption 25 (consistency), and considering that estimated surface responses
µ̂a,1,n(.) where a ∈ {0, 1} are obtained following a cross-fitting estimation, then if Assumption 12 or
Assumption 11 also holds then, τ̂AIPSW,n,m converges toward τ in L1 norm,

τ̂AIPSW,n,m
L1

−→
n,m→∞

τ.

This estimator is also shown to be asymptotically normal when both the outcome mean and condi-
tional odds model are consistently estimated at least at rate n1/4 in Dahabreh et al. (2020) and Li
et al. (2021). Note that machine-learning tools are tempting to avoid model mis-specification when es-
timating nuisance parameters. Still, this practice requires specific caution, such as using cross-fitting,
due to overfitting and regularization. These issues are well described in the situation of a single obser-
vational data set. We refer to Chernozhukov et al. (2018b) for a detailed explanation, and to Zhong
et al. (2021); Bach et al. (2021, 2022) for implementations.

More recently, Dong et al. (2020) propose an augmented calibration weighting (ACW) estimator.

Definition 12 (Augmented CW - ACW). The ACW estimator, denoted τ̂ACW,n,m, is defined as

τ̂ACW,n,m =
n∑
i=1

ω̂n,m(Xi)

(
Ai (Yi − µ̂1,1,n(Xi))

e1(Xi)
− (1−Ai) (Yi − µ̂0,1,n(Xi))

1− e1(Xi)

)

+
1

m

m+n∑
i=n+1

(µ̂1,1,n(Xi)− µ̂0,1,n(Xi)),

where the estimation of ω̂n,m(.) is detailed in Definition 10, and where µ̂a,1,n are estimated on the
RCT sample (see Definition 9).

They show that τ̂ACW,n,m achieves double robustness and local efficiency, i.e., its asymptotic variance
achieves the semiparametric efficiency bound when both the calibration weights and the outcome mean
model are correctly specified. Moreover, the convergence rate of the ACW estimator corresponds to
the product of the convergence rates of the nuisance estimators, enabling the use of machine-learning
estimation of nuisance functions while preserving the

√
n-consistency of the ACW estimator, when

both the outcome mean and calibration weights model are consistently estimated at rate n1/4 (Dong
et al., 2020). Furthermore, Lee et al. (2022) and Lee et al. (2022) extend the framework for handling
survival outcomes.

3.2.5 Practical issues: non-parametric estimation, overlap and unobserved covariates

Lack of overlap. The overlap assumption (see Assumption 10) is restrictive because RCT inclusion
and exclusion criteria can be strict as the goal of RCTs (at least in early stages) is to show a clear
effect even on a restricted population. Whenever Assumption 10 does not hold, it is still possible
to generalize on a different target population, such as the subset of the target population for which
eligibility criteria of the trial are ensured. This has also been suggested before, for e.g. by Tipton
(2013) (p.245). The question asked would rather be “What would have been the estimated treatment
effect in a situation where the trial has sampled individuals from the target population who meet the
trial eligibility criteria?”. Another approach has been proposed by Chen et al. (2021). Similarly to
the idea of trimming propensity scores for dealing with limited overlap between treated and control
groups, they propose a generalizability score: a function of participation probability and propensity
score, to select subpopulations from the observational data for causal generalization when the overlap
is limited.
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Unobserved treatment effect modifiers. Finally, we point out the important caveat that all
methods assume the ignorability conditions (see Assumptions 6, 7, 8, or 9): given the covariates X,
the conditional treatment effect must be the same in the observational data and the RCT. In particular,
this assumption could be violated if some shifted treatment effect modifiers are not captured in the
concatenated data, which is a plausible scenario given that data are seldom collected jointly and thus
typically measure different covariates.
In case of a richer set of covariates in the RCT than in the observational study (which doesn’t nec-
essarily mean that a sufficient set of pre-treatment covariates can be chosen, see for e.g. M-bias, see
Pearl (2000), page 186), Egami and Hartman (2021) propose a method to select a sufficient set of
covariates. But in the case of a low number of common covariates, standard practice is to consider the
subset of covariates present in both data sets, but this violates the identifiability condition. Recently,
sensitivity analyses have been proposed to mitigate the consequences of missing covariatesin the RCT,
or in the observational sample or even in both data sets (Nguyen et al., 2017; Andrews and Oster,
2019; Nguyen et al., 2018; Dahabreh et al., 2019; Colnet et al., 2022a; Nie et al., 2021; Huang, 2022).

4 When observational data contain treatment and outcome infor-
mation

Section 3 studied how to correct RCT selection bias (with respect to the target population) while
leveraging covariate distribution of an observational sample. When the observational sample also
contains treatment and outcome information (Y,A), efficiency improvements can be obtained (Huang
et al., 2021). But beyond the generalization question, such additional covariates enable different
questions of interest. These questions are the purpose of Section 4. Indeed, RCTs can make causal
conclusions from the observational sample more trustworthy, either by removing confounding bias
(detailed in Section 4.1) or via more efficient estimation (detailed in Section 4.2). For completeness,
we recall in Appendix 2.B how to perform causal inference from purely observational data.

4.1 Dealing with unmeasured confounders in observational data

Motivation. Unmeasured confounding implies that {Y (1), Y (0)} ̸⊥⊥ A | X, where X are the ob-
served covariates. In such situations, standard causal inference estimators τ̂Om(x) (resp. τ̂Om) of the
CATE τ(X) (resp. ATE τ), that are designed for purely observational data of size m, face a so-called
hidden confounding bias for these quantities, i.e.,

lim
m→+∞

τ̂Om(x) ̸= τ(x), and lim
m→+∞

τ̂Om ̸= τ.

In practice, former RCTs can be used as negative controls4, to ensure the observational study does not
suffer from confounding. For example, in a recent observational study on a COVID-19 vaccine, Dagan
et al. (2021) use such approach to ensure that previous trial results conclusion could be retrieved.
When confounding remains, solutions such as sensitivity analysis have been developed to handle such
situations (Rosenbaum, 2005; Imbens, 2003), but they typically rely on sensitivity parameters which
are difficult to set. Including additional experimental data brings interesting promises to handle such
identification bias. Recent works described below propose to use an RCT to ground the observational
analysis and debias the estimator that would be obtained on purely confounded observational data.

Using an assumption on secondary outcomes or surrogates. The use of surrogate outcomes
arises in different contexts, for example in clinical studies (Prentice, 1989; Begg and Leung, 2000),
where it may be difficult to observe long-term outcomes, e.g., the effect of early childhood medical
or economic interventions. Athey et al. (2020) observe that the effect of class size reduction leads

4The term negative controls comes from usual routine precaution in biological laboratory experiments, where such
controls are used to – at least partially – check that the experiment is not undermined. For example it can test the
absence of reagents or components that are necessary for a detection of something particular. For example one of the
two bars of the covid antigenic test is one of these controls. The analogy of this principle in causal inference is detailed
in (Lipsitch et al., 2010).
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to a decrease in children 3rd grades in the observational data, while a famous RCT, the Tennessee
Student/Teacher Achievement Ratio (STAR) study (Krueger, 1999a), concludes on a positive effect.
This difference could come from the fact that the two populations are different, but they assume the
apparent difference can be entirely explained by confounding5. In their set-up, they consider two
outcomes, a primary long-term outcome Y 1st (8th grades) and a secondary short-term outcome Y 2nd

(3rd grades). The RCT contains information on the surrogate but not the long-term outcome while
this is the opposite for the observational sample. Their central assumption to recover identifiability is
called latent unconfoundedness, i.e.,

A ⊥⊥ Y 1st(a) | Y 2nd
(a), i ∈ R, , for a = 0, 1,

which corresponds to the assumption that hidden confounders violating identification of the effect on
Y 1st are the same than for Y 2nd

. In other words, their method consists in adjusting the estimates of
the treatment effects on the primary outcome using the differences observed on the secondary outcome.
Their assumptions can be understood as a missing data problem, i.e., the missing data in the primary
outcomes are missing at random in the concatenated data (Rubin, 1976). For estimation, they suggest
three methods, namely, i) imputing the missing primary outcome in the RCT, ii) weighting the units
in the observational sample, and iii) using control function methods.

Deconfound using the bias/confounding function. Kallus et al. (2018) propose to use an
RCT sample to deconfound the CATE estimated on a single observational data set, denoted τ̂Om(x).
Due to possible unmeasured confounding, τ̂Om(x) may be biased for τ(x), that is η(x) ̸= 0 where
η(x) := τ(x) − τ̂Om(x) is the bias function. To correct for this bias, they assume they have at hand a
narrow RCT (as it is usually the case with strict eligibility criteria in trial) with high internal validity,
and with covariate support included in the observational sample support. Given that τ̂Om(x) is obtained
from the observational data, one can estimate η(·) on the common support between the RCT and the
observational data using the (unconfounded) RCT data. Another assumption is required, being that
the bias can be well approximated by a function with low complexity, e.g., a linear function of the
covariates x: η(x) = θTx. Kallus et al. (2018) then propose to estimate the bias as η̂m,n(x) = θ̂Tm,nx
by solving the following minimization:

θ̂m,n = argminη

n∑
i=1

(
Y∗

i − τ̂Om (Xi)− η(Xi)
)2

= argminθ

n∑
i=1

(
Y∗

i − τ̂Om (Xi)− θTXi

)2
,

where Y ∗
i =

(
e(Xi)

−1Ai − {1− e(Xi)}−1(1−Ai)
)
Yi, which satisfies E[Y ∗

i | Xi] = τ(Xi).

Note that the linear assumption guarantees the validity of the framework even if the observational data
does not fully overlap with the experimental data as the bias, ı.e, the confounding error is assumed
to be extrapolable. Finally, τ̂m,n(x) = τ̂Om(x)+ η̂m,n(x) is the estimated conditional average treatment
effect. They prove that under conditions of parametric identification of η, τ̂m,n(x) is a consistent
estimate of τ(x) which converges at a rate governed by the rate of estimating E[τ̂Om(x)] by τ̂Om(x).
More recently, Yang et al. (2020) proposed another approach. Rather than η(x), they consider what
they call the confounding function λ(x),

λ(x) = E[Y (0) | A = 1, X = x]− E[Y (0) | A = 0, X = x],

summarizing the impact of unmeasured confounders on the potential outcome distribution between
the treated and untreated patients. In the absence of unmeasured confounding, λ(x) is zero for any
x ∈ X , while if there is unmeasured confounding, λ(x) ̸= 0 for some x. Assuming a parametric model
assumption for the CATE τ(x) := τφ0(x) with φ0 ∈p1 , and for λ(x) := λϕ0(x) with ϕ0 ∈p2 , the coupling
of RCT and observational data allows identifiability of τ(x) and λ(x). The key insight is to introduce
the following random variable

Hψ0 = Y − τφ0(X)A− (1− S)λϕ0(X){A− e(X)} ,
5Assuming the bias comes from an unobserved confounder and not from inherent differences between populations can

be stated as, S ⊥⊥ {Y (1), Y (0)} , which means that the two samples come from comparable populations (see Section 3).
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where ψ0 = (φ0, ϕ0)is the full vector of model parameters in the CATE and confounding function, and
where here S = 1 (resp. S = 0) denotes trial participation (resp. observational study participation).
By separating the treatment effect τφ0(X)A and (1−S)λϕ0(X){A− e(X)} from the observed Y , Hψ0

mimics the potential outcome Y (0). They then derive the semiparametric efficient score of ψ0:

Sψ0(V ) =

(
∂τφ0 (X)
∂φ0

∂λϕ0 (X)

∂ϕ0
(1− S)

)(
σ2S(X)

)−1
(Hψ0 − E [Hψ0 | X,S]) (A− e(X)) , (2.3)

where σ2S(X) = V[Y (0) | X,S]. A semiparametric efficient estimator of ψ0 can be obtained by solving
the estimating equation based on (2.3). If the predictors in τφ0(X) and λϕ0(X) are not linearly
dependent, they show that the integrative estimator of the CATE is strictly more efficient than the
RCT estimator. As a by-product, this framework can be used to generalize the ATEs from the RCT
to a target population without requiring an overlap covariate distribution assumption between the
RCT and observational data. Wu and Yang (2022a) propose an integrative R-learner that extends the
framework of Yang et al. (2020) to allow flexible machine learning methods for approximating CATE,
confounding function, and nuisance functions.

4.2 Toward more efficient estimation

Under Assumptions 4, 5, and 9, the CATE can be estimated based on the RCT, while under the
classical unconfoundedness assumption (see Appendix 14), the CATE can be estimated using the
observational sample. Therefore when both sets of assumptions are met, the two data sources can be
pooled to improve estimation efficiency.
Toward this end, Yang et al. (2022) use the semiparametric efficiency theory to derive the semipara-
metrically efficient integrative estimator of φ0 for the CATE τφ0(X). However, if the unconfoundedness
assumption is violated, integrating the observational sample would bias the CATE estimation. Lever-
aging the design advantage of RCTs, Yang et al. (2022) derive a preliminary test statistic for the
comparability and reliability assessment of the observational data and decide whether to use it in an
integrative analysis. Denote the efficient score based solely on the RCT and observational data as
Srct,φ0(V ) and Sos,φ0(V ), respectively, where V is a full vector of variables. Their basic idea is to
derive an RCT estimator φ̂rct for φ0 and construct the preliminary test statistics based on Sos,φ̂rct

(V ).
The rationale is that if the observational sample is comparable to the RCT sample for estimating φ0,
Sos,φ̂rct

(V ) is expected to be close to zero; otherwise, Sos,φ̂rct
(V ) is expected to deviate from zero. This

thought process leads to the test statistics

T =

{
n−1/2

n+m∑
i=n+1

Sos,φ̂rct
(Vi)

}T

Σ̂−1
SS

{
n−1/2

n+m∑
i=n+1

Sos,φ̂rct
(Vi)

}
, (2.4)

where Σ̂SS is a consistent estimator for the asymptotic variance of n−1/2
∑n+m

i=n+1 Sos,φ̂rct
(Vi). Under

H0 that the observational sample is comparable to the RCT sample, T → χ2
p, a Chi-square distribu-

tion with degrees of freedom dim(φ0), as n → ∞. This result serves to detect the violation of the
assumption required for the observational data.
Yang et al. (2022) propose the elastic integrative estimator by solving

n∑
i=1

Ŝrct,φ(Vi) + I(T < cγ)

n+m∑
i=n+1

Ŝos,φ(Vi) = 0, (2.5)

where cγ is the 100(1 − γ)th percentile of χ2
p, serving as a switch to decide combining or not. The

methodological contribution of Yang et al. (2022) is to derive a data-adaptive selection of cγ such
that the resulting estimator has the smallest mean squared error and thus performs at least similar to
the RCT-only estimator, if not better. Moreover, the elastic integrative estimator is non-regular and
belongs to pre-test estimation by construction. The theoretical contributions of Yang et al. (2022) in-
clude characterizing the distribution of the elastic integrative estimator under local alternatives, which
better approximates the finite-sample behaviors, and providing data-adaptive confidence intervals that
are uniformly valid.
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4.3 Other use cases

Beyond generalizability or overcoming confounding, there are other purposes motivating the combi-
nation of experimental and observational data. We provide a brief list of these purposes and method-
ologies. A detailed or exhaustive survey is beyond the scope of this review.

Using hybrid controls. A hybrid control arm is a control arm constructed from a combination
of randomized patients and patients receiving usual care in standard clinical practice, as introduced
by Pocock (1976) and pursued by Hobbs et al. (2012); Schmidli et al. (2014). Recently the FDA has
detailed their usage in the regulatory purposes (FDA, 2018). Using hybrid controls has the potential
to decrease the cost of randomized trials, and to reduce ethic constraints on control groups.

Case-control studies. In certain applications, e.g., in epidemiology, the observational data at hand
comes from a case-control study where the selection of observations is driven by the outcome of interest
Y . Thus, the RCT and observational data differ in terms of the outcome distribution, typically a
preferential selection on the outcome for the observational data set. Several solutions have been
proposed to handle this type of selection bias. Robins (2000) and Hernán et al. (2005) propose
marginal structural model approaches to eliminate this bias given sufficient knowledge of the selection
model given treatment. Guo et al. (2021) propose a control variates technique (Tan, 2006; Yang
and Ding, 2020) identifying and estimating an estimand that is sufficiently correlated with the target
estimand of interest for the observational cohort.

Encouragement design intervention An encouragement design intervention is a design in which
some individuals or groups are randomly assigned to receive encouragement to take up the program.
(Rudolph and van der Laan, 2017) provide a semiparametric efficiency score for transporting the ATE
from one study following an encouragement design, to another population. Due to the design, their
set-up is a variant of the generalization work from Section 3, but with treatment allocation information
in the target population.

5 Structural causal models (SCM) and transportability

Within the SCM framework (Pearl, 1995, 2009b), Bareinboim and Pearl (2016) have proposed answers
for transportability and combination of different data-sources – also called data fusion. This section
is split off from the previous section as it builds on additional concepts.

Let us first briefly introduce the SCM framework, using as much as possible the notations of Section 2.1
that we introduced for the PO framework (Appendix 2.F gives a more general primer on the SCM
framework, and in particular the do-operator). The covariates X, treatment A, and response Y
are modeled in the SCM framework as random variables with joint distribution P (X,A, Y ). Each
intervention, such as setting A to a = 0 or a = 1, defines an alternative distribution over (X,A, Y )
that can be systematically deduced from the no-intervention (or observational) distribution P using
the SCM model, and which is written P (X,A, Y | do(A = a)). In this framework, the CATE is written:

τ(x) = E [Y | do(A = 1), X = x]− E [Y | do(A = 0), X = x] ;

and the ATE:

τ = E[Y | do(A = 1)]− E[Y | do(A = 0)].

These expressions mirror the corresponding expressions in the PO framework (Table 2.2) when one
identifies the variable Y (a) in the PO framework to the variable Y under the intervention do(A = a)
in the SCM framework, namely when we set P (Y (a), X) = P (Y,X | do(A = a)). In fact this analogy
is valid in the sense that any theorem that holds for SCM counterfactuals holds in the PO framework,
and vice-versa (Pearl, 2009b, Chapter 7; Pearl, 2009a, Chapter 4). In spite of this formal equivalence,
the two frameworks differ in how they allow practitioners to express causal assumptions, and to
derive corresponding estimands of causal effects. The SCM framework provides a convenient graphical
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representation known as causal diagram to encode potentially complex causal assumptions between
variables, and provides a complete language known as do-calculus to express causal effects (i.e., some
expectation under the do(A = a) probability) as a function of observational data (i.e., some expectation
under the no-intervention distribution) (Pearl, 1995, 2009b). When this reduction is possible, the
causal effect is called identifiable. In addition, the do-calculus is complete in the sense that a causal
effect is identifiable if and only if it can be reduced to a function of observational data using do-
calculus (Huang and Valtorta, 2006; Shpitser and Pearl, 2006). Interestingly, this provides a variety
of formulas to correctly infer causal effects even in the presence of unmeasured confounders, which
cannot be handled by the PO framework (without additional structural and modeling assumptions),
such as the front-door adjustment formula (Pearl, 1995).

5.1 Formulating transportability in the SCM framework

The SCM literature and do-calculus naturally cover the problem of generalizing an RCT experiment
to a different target population. Following our notations in the PO setting (Section 2.1), we again
denote by S a binary random variable that indicates which individuals can be in the RCT. The RCT
population then follows the distribution P (X,Y,A |S = 1), and by design the RCT allows estimating
the conditional distributions P (Y | do(A = a), X, S = 1) for a = 0, 1. The problem of generalization
to the target population in this setting is then to deduce the distributions of P (Y | do(A = a), X)
for a = 0, 1 from these two distributions and the observed distribution of the covariates P (X) in the
target distribution (as in Section 3), or of the covariates, treatments and responses P (X,A, Y ) in the
target population (as in Section 4). If this deduction (using do-calculus) is possible, then the causal
effect on the target population is identifiable, and the deduction provides a formula for the causal
effect that can then be estimated from a finite population using some consistent estimator.

Interestingly, this formalism covers two important situations: (i) the sample selection bias problem,
when the RCT population is a subset of the target population that fulfills some eligibility criterion6,
and (ii) the transportability problem, where the RCT population differs more drastically from the
target, e.g., when one wants to generalize an RCT conducted in one country to a population in
another country (Pearl, 2015). To model sample selection bias, on the one hand, one typically adds a
node S with incoming edges to a causal graph in order to capture the eligibility conditions that may
depend on pre- or post-treatment variables. It is then possible to derive conditions under which one
can recover from selection bias when the probability of selection is available (Cooper, 1995; Lauritzen
and Richardson, 2008; Geneletti et al., 2008) or when no quantitative knowledge is available about
probability of selection (Didelez et al., 2010; Bareinboim and Pearl, 2012a). We provide examples
of such conditions in Appendix 2.F.1.2. To model transportability to a different population, on the
other hand, the node S has typically no incoming edge, and instead points to variables that differ
between the RCT and the target population, either in their functional dependency to their parents in
the causal graph, or in the distribution of their exogenous variables. The resulting graph is called a
selection diagram and allows to encode graphically detailed assumptions about the differences between
populations (Pearl and Bareinboim, 2011a; Bareinboim and Pearl, 2012b; Pearl and Bareinboim, 2014;
Bareinboim and Pearl, 2013). Note that even if the two situations imply different causal diagrams,
the problem of selection bias “has some unique features, but can also be viewed as a nuance of the
transportability problem, thus inheriting all the theoretical results of transportability” (Pearl, 2015);
this remark is connected to the discussion from Section 2.2.

The SCM approach thus provides powerful machinery to generalize causal effect across populations,
and entails a detailed description of the causal assumptions between variables in the selection diagram,
including the selection variable S. The two selection diagrams of Figure 2.3 represent for example
transportability problems with a distributional change of covariates X between the RCT and target
populations (with an arrow from S to X), and where the interventional nature of the RCT versus the
target population is also represented with an arrow from S to A.

In addition, in Figure 2.3(a) the arrow from S to Y indicates that the conditional distribution of
Y given X and A differs between the two populations, which in general prevents any transporta-

6This setting has been termed as generalizability in the introduction of the different study designs in Section 2.2.
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(a)

S

Y

X

A

(b)

S

Y

X

A

Figure 2.3: Illustration of selection diagrams depicting differences between source and target populations:
In (a) and (b), the two populations differ by covariate distributions (indicated by S pointing to X) and the two
populations differ in their interventional nature (S pointing to A). Assumption 9 (transportability assumption) is
assumed on (b), but not on (a) (since S points to Y in (a)). These two examples are inspired by Pearl and Bareinboim
(2011a).

bility of causal effect, while the lack of arrow from S to A in Figure 2.3(b) encodes the indepen-
dence assumption P(Y |X,A) = P(Y |X,A, S = 1), which implies the transportability assumption
P(Y | do(A = a), X, S = 1) = P(Y | do(A = a), X) (which itself implies Assumption 9 in the PO
framework).

In that case, one easily deduces by simple conditioning on X that the distribution of Y under inter-
vention on the whole population is given by

P(Y | do(A = a)) =
∑
x

P(Y | do(A = a), X = x, S = 1)︸ ︷︷ ︸
RCT

P(X = x)︸ ︷︷ ︸
Obs.

. (2.6)

This transport formula, also known as re-calibration, re-weighting or post-stratification formula (Pearl,
2015), thus combines experimental results obtained in the RCT population and the observational
description of the target population to estimate the causal effect in the target population. In particular,
we easily deduce the ATE on the target population by integrating (2.6) in Y to get

τ =
∑
x

τ1(x)︸ ︷︷ ︸
RCT

P(X = x)︸ ︷︷ ︸
Obs.

, (2.7)

where

τ1(x) is by design identifiable by conditioning on treatment in the RCT population. This formula (2.7)
is equivalent to the regression formula (2.2) in the PO framework, which is valid under Assumption 9.

Interestingly, (Pearl and Bareinboim, 2011a) show that the transport formula (2.6) holds more gener-
ally as soon as X is a set of pre-treatment variables which is S-admissible, i.e., if S ⊥⊥ Y | X, do(A = a)
for a = 0, 1. Graphically, S-admissibility holds whenever X blocks all paths from S to Y after deleting
from the graph all incoming arrows into A. We note that S-admissibility implies the mean exchange-
ability assumption (Assumption 7) and is equivalent to the S-ignorability assumption S ⊥⊥ Y (a) | X
(Assumption 6) used in the PO literature when X and S are pre-treatment variables, and entails
similar transport formula in that situation.

However, the two notions differ for treatment-dependent selection and covariates, as discussed by Pearl
(2015), where several examples illustrate how the S-admissibility assumption can lead to different
transport formulas when both pre- and post-treatment variables are leveraged. Such an example is
presented on Figure 2.4, where the covariate X is a post-treatment variable, for example a biomarker,
believed to mediate between treatment and outcome.
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S

A X Y

Figure 2.4: Post-treatment covariate adjustment: On this selection diagram the
arrow from S to X indicates the assumption of different effect of A on X in the
two populations. Here, X is S-admissible but not S-ignorable, and the corresponding
transport formula is
P(Y | do(A = a)) =

∑
x P(Y | do(A = a), X = x, S = 1)P(X = x | A = a), where it

invokes an unconventional average of the CATE weighted by a conditional probability
in the target population. This example is taken from Pearl (2015).

Here, we presented how Assumptions 5, 6 and 7 are translated in the SCM literature and how another
scenario with post-treatment covariates can be identified. More identifiability scenarios have been
discussed in the SCM literature (Huang and Valtorta, 2006; Bareinboim et al., 2013; Pearl, 2015;
Lee et al., 2020b), and to our knowledge we have found no similar identifiability scenario in the
PO literature. It is worth mentioning that the transportation problem discussed so far, to export a
causal effect estimated in an RCT to a general population is only one specific instance of the more
general problem of data fusion (Pearl and Bareinboim, 2011a; Bareinboim and Pearl, 2012b, 2016;
Hünermund and Bareinboim, 2019; Lee et al., 2020a), which simultaneously accounts for confounding
issues of observational data, sample selection issues, as well as extrapolation of causal claims across
heterogeneous environments. The SCM framework, with its elegant way of formalizing the problem,
helps practitioners formulate and discuss causal assumptions across variables and environments. In
particular, subject to a good knowledge of the graph, it helps selecting sets of variables that are
sufficient to establish identifiability and exclude variables that would bias the analysis. As we will
see in Section 7, already in the early phase of a study, the causal and selection diagrams offer a very
convenient tool to discuss with clinicians and explicitly lay out conditional independence assumptions.
Once a diagram encodes assumptions about a system, algorithmic solutions implementing the do-
calculus are available to determine whether non-parametric identifiability holds, and to provide correct
formula if it holds (Correa et al., 2018; Tikka et al., 2019).

While the SCM literature provides powerful and versatile sets of concepts and tools to identify causal
effects, practical estimators with publicly available implementations and detailed consistency, conver-
gence rates or robustness results are still scarce. Some recent work has proposed solutions for this
estimation task in the context of either experimental or observational data by extending weighting-
based methods developed for the back-door case to more general settings (Jung et al., 2020a,b), or
extending the double/debiased machine learning (DML) approach proposed by Chernozhukov et al.
(2018b) under ignorability assumption to any identifiable causal effect (Jung et al., 2021). In the
same spirit, Karvanen et al. (2020) propose combination of data from a survey and a meta-analysis
of 34 trials, where identifiability and transport formula are the output of the algorithm do-search

(see Section 6), and estimation is performed with the real data at hand.Additionally, even if a causal
effect is not identifiable, partial-identifiability techniques have been proposed for deriving bounds for
the causal effect (Tian and Pearl, 2000; Dawid et al., 2019). Cinelli and Pearl (2020) give an example
illustrating partial identifiability on real data, with experiments assessing the effect of the Vitamin
A supplementation. In this setting the existence of experimental data from one source population
leads to identify bounds on the transported causal effect, but the availability of two trials instead of
one leads to a point estimate. Finally, Dahabreh et al. (2019, 2020) propose an alternative approach
for generalizability and integrative analyses of trials and observational studies using structural equa-
tion models under weaker error assumptions and represented using single world intervention graphs
(Richardson and Robins, 2013).

6 Software for combining RCT and observational data

6.1 Review of available implementations

An important point to bridge the gap between theory and practice is the availability of software.
In recent years, there have been more and more solutions for users interested in causal inference
and causation, see Tikka and Karvanen (2017); Guo et al. (2020); Yao et al. (2021) for surveys
and Mayer et al. (2022) for a task view of R implementations. Regarding the specific subject of
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this article, we present in Table 2.3 the implementations available about both identifiability and
estimators. The available implementations are often dedicated to specific sampling designs and, as
mentioned, estimators are different from nested and non-nested framework. As a consequence, a new
user has to pay attention to all of these practical – but fundamental – details.

6.2 Simulation study of generalization estimators

This part presents simulations results to illustrate the different estimators introduced in Section 3
and their behavior under several mis-specifications patterns. The code to reproduce the results is
available on Github7. We implement in R (R Core Team, 2021) our own version of the estimators
to match exactly the formulas introduced in the review (IPSW and IPSW.normd see Definition 7,
stratification; Definition 8, plug-in g-formula; Definition 9, and AIPSW; Definition 21), except
for the CW and ACW estimators (Definitions 10) and 12) for which we use the genRCT package.

Scenario 1: well-specified models. Similarly to Dong et al. (2020), We generate non-nested trial
settings as follow. First, we draw a sample of size 50, 000 from a covariate distribution with four
covariates are generated independently as with Xj ∼ N (1, 1) for each j = 1, . . . , 4. From this sample,
we then select an RCT sample of size n ∼ 1000 with trial selection scores defined using a logistic
regression model:

logit {πS(X)} = −2.5− 0.5X1 − 0.3X2 − 0.5X3 − 0.4X4. (2.8)

Then, we generate the treatment according to a Bernoulli distribution with probability equals to 0.5,
e1(x) = e1 = 0.5 and the outcome according to a linear model:

Y (a) = −100 + 27.4 aX1 + 13.7X2 + 13.7X3 + 13.7X4 + ϵ with ϵ ∼ N (0, 1). (2.9)

This outcome model implies a target population ATE of τ = 27.4, and E [X1] = 27.4. Finally, we
generate an observational sample by drawing a new sample of size m = 10, 000 from the distribution
of the covariates.
Figure 2.5 presents estimated ATE over 100 simulations. The true ATE is represented with a dash
line. The ATE estimated only with the RCT sample is also displayed as a baseline. As expected it is
biased downward (its mean is equal to 14.24) as the distribution of the covariates and in particular
the treatment effect modifiers such as X1 is not the same in the trial sample and in the population
(as illustrated in Table 2.14 in Appendix 2.G). Note that in this simulation all the estimators are
unbiased. The variability of the two IPSW estimators are larger than the others. The number of
strata in the stratification estimator plays an important role. As shown in Figure 2.16 in Appendix
2.G, the results are biased when the number of strata is smaller than 10.

Scenario 2: mis-specification of the sampling propensity score or outcome model. To
study the impact of mis-specification of the sampling propensity score model, we generate the RCT
selection according to the model

logit {πS(X)} = −2.5− 0.5 eX1 − 0.3 eX2 − 0.5 eX3 − 0.4 eX4 + 3,

and outcome according to the model

Y (a) = −100 + 27.4 aX1X2 + 13.7X2 + 13.7X3 + 13.7X4 + ϵ.

The analysis is then performed using classical logistic and linear estimators on the four covariates. As
shown in Figure 2.6, when the sampling propensity score model is mis-specified, the IPSW estimators
are biased; whereas when the outcome model is mis-specified, the plug-in g-estimator is biased. In both
settings, the double robust estimator (AIPSW) is unbiased and robust to mis-specification. In the case
where both models are mis-specified, all estimators are biased except the CW and ACW estimators.
This demonstrates some robust properties of calibration against slight model mis-specification.
Appendix 2.G investigates the effect of a missing covariate, homogeneous treatment effect, and the
impact of a stronger covariate shift, i.e., poorly satisfied Assumption 10.

7https://github.com/BenedicteColnet/combine-rct-rwd-review
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Table 2.3: Inventory of publicly available code for generalization (top: software for identification; bottom: software
for estimation).

Name Method - Setting Source & Reference

Identification

causaleffect
Identification and transportation of
causal effects, e.g., conditional
causal effect identification algorithm

R package on CRAN,
Tikka and Karvanen (2017)

dosearch

Identification of causal effects
from arbitrary observational and
experimental probability distributions
via do-calculus

R package on CRAN,
Tikka et al. (2019)

Causal Fusion
Identifiability in data fusion
framework, (Section 5)

Browser beta version upon request
Bareinboim and Pearl (2016)

Estimation

ExtendingInferences

IPSW (Definition 7),
plug-in g-formula equation eq. 2.16 - Nested
AIPSW eq. 2.18 - Nested
Continuous outcome

R code on GitHub,
Dahabreh et al. (2020)

generalize
IPSW (Definition 7),
TMLE (Section 3.2.4)

R package on GitHub
Ackerman et al. (2021)

genRCT
IPSW (Definition 7),
calibration weighting (Section 3.2.4)
Continuous and binary outcome

R package
Dong et al. (2020)

IntegrativeHTE Integrative HTE (Section 4.1)
R package on GitHub,
Yang et al. (2022)

IntegrativeHTEcf
Includes confounding functions
(Section 4.1)

R package on GitHub,
Yang et al. (2022)

generalizing
SCM with probabilistic graphical
model for Bayesian inference
Binary outcome

R package on GitHub,
Cinelli and Pearl (2020)

RemovingHiddenConfounding
Unmeasured confounder
(Section 4.1)

R package on GitHub,
Kallus et al. (2018)

senseweight
Sensitivity analysis
(IPSW Definition 7)

R package on Github
Huang (2022)

transport
Targeted maximum likelihood estimators (TMLEs)
Transport

R package on GitHub,
Rudolph et al. (2018)

combine-rct-rwd-review Generalization estimators of Section 3 R code on GitHub
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Figure 2.5: Well-specified
model Estimated ATE with the
inverse propensity of sampling
weighting with and without
weights normalization (IPSW
and IPSW.norm; Definition 7),
stratification (with 10 strata; Defi-
nition 8), plug-in g-formula (Def-
inition 9), calibration weighting
(CW; Definition 10), augmented
IPSW (AIPSW; Definition 21) and
ACW (Definition 12)) over 100
simulations.
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7 Application: Effect of Tranexamic Acid

To illustrate the methodological question of combining experimental and observational data and
demonstrate some of the previously discussed methods, we consider an open medical question about
major trauma patients. We focus on trauma patients suffering from a traumatic brain injury (TBI):
brain damage caused by a blow or jolt to the head. Tranexamic acid (TXA) is an antifibrinolytic agent
that limits excessive bleeding, commonly given to surgical patients. Previous clinical trials showed
that TXA decreases mortality in patients with traumatic extracranial bleeding (Shakur-Still et al.,
2009). Such prior result raises the possibility that it might also be effective in TBI, because intracranial
hemorrhage is common in TBI patients, with risks of raised intracranial pressure, brain herniation,
and death. Therefore the aim here is to assess the potential decrease of mortality in patients with
intracranial bleeding when using TXA. To answer this question, we have at our disposal both an RCT,
CRASH-3, and an observational study, the Traumabase. Both data have previously been analyzed
separately in CRASH-3 (2019) (for the RCT) and in Mayer et al. (2020) (for the observational study)
and the medical teams of both studies want to share their respective data to answer both medical
and methodological questions. Such initiatives allow to: (1) collate the results from the observational
study with the RCT findings; (2) assess the generalizability methods, considering the Traumabase as
the target population, and assess the estimators presented in this review in a real application. We first
present the two data sources, treatment effect analyses and findings from these, before turning to the
combined analysis in Section 7.2. The code to reproduce all these analyses is available on Github8,
however the medical data cannot be publicly shared for privacy concerns.

7.1 The observational data: Traumabase

7.1.1 Context

The Traumabase regroups 23 French Trauma centers that collect detailed clinical data from major
trauma patients from the scene of the accident to hospital discharge in form of a registry. The data,
currently counting over 30,000 patient records, are of unique granularity and size in Europe. However,
they are highly heterogeneous, with both categorical – sex, type of illness, ...– and quantitative – blood
pressure, hemoglobin level, ...– features, multiple sources, and many missing data (98% of the records
are incomplete). Here, we use 8,270 patients suffering from TBI extracted from the Traumabase. Mayer
et al. (2020) performed a first, purely observational, study to assess the effect of TXA on mortality
for traumatic brain injury patients from this data: the treatment variable is the administration of

8https://github.com/BenedicteColnet/combine-rct-rwd-review
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Figure 2.6: Mis-specified models Estimated ATE when selection in RCT and/or outcome models are mis-specified.
Estimators used being IPSW (IPSW and IPSW.norm; Def. 7), stratification (with 10 strata; Def. 8), plug-in g-formula
(Def. 9), calibration weighting (CW; Def. 10), augmented IPSW (AIPSW; Def. 21), and ACW (Def. 12) over 100
simulations.

TXA during pre-hospital care or on admission to a Trauma Center9 within three hours of the initial
trauma. The Traumabase analysis contains many missing values (see Appendix 2.H.1), which implies
additional assumptions to perform causal inference.

7.1.2 Purely-observational results from two different estimation strategies

The direct causal effect of TXA on 28-day intra-hospital TBI-related mortality and on all cause intra-
hospital mortality among traumatic brain injury patients is estimated by adjusting for confounding
using 17 confounding variables. In addition, 21 variables predictive of the outcome but not related
to the treatment are included (see Mayer et al. (2020) for the detailed adjustment set). We recall
the results from this study which put a focus on how to estimate treatment effects in the presence
of incomplete data. The presented methods rely either on logistic regressions or generalized random
forests (Athey et al., 2019) for the nuisance components, denoted respectively by GLM and GRF in
Table 2.4. The doubly robust results (AIPW) in Table 2.4 show that from this study there is no
evidence for an effect of TXA on mortality of TBI patients. These findings —obtained prior to the
publication of CRASH-3—are consistent with the main conclusion of the CRASH-3 study. However,
the results from IPW conclude on a possible deleterious effect. In such a situation, the possibility to
generalize the treatment effect from the RCT is also a step to comfort the results. In Appendix 2.H.4,
we additionally recall results on sub-groups obtained by stratifying along trauma severity.

9More precisely, to the resuscitation room of a hospital equipped to treat major trauma patients.
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Table 2.4: ATE estimations from the Traumabase for TBI-related 28-day mortality. Red cells conclude on
deteriorating effect, white cells can not reject the null hypothesis of no effect. GLM stands for Generalized Linear
Models and GRF for Generalized Random Forests to estimate nuisance components. Two estimators of the treatment
effect are considered: IPW and AIPW, as well as two methods to deal with missing values: multiple imputation or
missing incorporated in attribute (MIA) in GRF.

Multiple imputation (MICE) GRF-MIA
IPW

(95% CI)
×102

AIPW
(95% CI)
×102

IPW
(95% CI)
×102

AIPW
(95% CI)
×102

Unadjusted ATE
×102

Total
(n=8248)

GLM 15 (-6.8, 23)
GRF 11 (6.0, 16)

GLM 3.4 (-9.0, 16)
GRF -0.1 (-4.7, 4.4)

9.3
(4.0, 15)

-0.4
(-5.2, 4.4)

16

7.1.3 Context

CRASH-3 is a multi-centric randomized and placebo-controlled trial launched over 175 hospitals in
29 different countries (Dewan et al., 2012). This trial recruited 9,202 adults –unusually large for a
medical RCT–, all suffering from TBI with only intracranial bleeding, i.e., without major extracranial
bleeding. All participants were randomly administrated TXA (CRASH-3, 2019; ?). The primary
outcome studied is head-injury-related death in hospital within 28 days of injury in patients included
and randomized within 3 hours of injury. The study concludes that the risk of head-injury-related
death is 18.5% in the TXA group versus 19.8% in the placebo group. The causal effect, measured as a
Risk Ratio (RR) was not significant (RR = 0.94 [95% CI 0.86 - 1.02])). Note that CRASH-3 revealed
a positive effect of TXA only when considering mild and moderate cases. In the Appendix 2.H.4, we
provide a complementary analysis to study this sub-group.

7.1.4 RCT selection

Six covariates are present at baseline, being age, sex, time since injury, systolic blood pressure, Glasgow
Coma Scale score (GCS)10, and pupil reaction. The inclusion criteria of the trial are patients with a
GCS score of 12 or lower or any intracranial bleeding on CT scan (computed tomography), and no
major extracranial bleeding. We provide a DAG summarizing the trial selection and predictors of the
outcome present in CRASH-3 in Figure 2.7.

Figure 2.7: Structural causal diagram representing treatment, outcome, inclusion criteria with S and other
predictors of outcome (Figure generated using the Causal Fusion software presented in Section 6 from Bareinboim
and Pearl (2016)).

7.2 Transporting the ATE on the observational data

With the two separate analyses in mind, we can now turn to the combined analysis, more specifi-
cally, the generalization from the RCT results to the target population defined by the observational
Traumabase registry. Before any analysis aiming to compare and combine two data sets an impor-
tant step is to assess that baseline covariates, treatment, and outcome are the same (for details, see
Appendix 2.H.2).

10The Glasgow Coma Scale (GCS) is a neurological scale which aims to assess a person’s consciousness. The lower the
score, the higher the severity of the trauma.
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overall mean, numeric values: group mean (resp. proportion for binary variables). Graph obtained with the catdes

function of the FactoMineR package (Lê et al., 2008).

7.2.1 Descriptive analyses

Missing values. The RCT contains almost no missing values, whereas the variables for determining
eligibility in the observational data contain important fractions of missing values, ranging from 0.27
to 29 %. Thus the methods discussed in this review must be adapted to account for missing values11

In order to estimate the nuisance components, i.e., the conditional odds and the outcome model(s),
despite the missing data, we explore two alternative strategies: (1) logistic regression with incomplete
covariates using an expectation maximization algorithm (Dempster et al., 1977), a computationally
efficient variant of this method using stochastic approximation is implemented in the R package misaem
(Jiang et al., 2020); (2) generalized regression forest with missing incorporated in attributes (Twala
et al., 2008; Josse et al., 2019), this method is implemented in the R package grf (Tibshirani et al.,
2020).

Table 2.5: Sample sizes for both studies.

Traumabase CRASH-3
m #treated #death n #treated #death

8248 683 1411 9168 4632 1745

Distribution shift. Simple comparisons of the means of the covariates between the treatment
groups of the two studies –Figure 2.8– reveal the fundamental difference between the two studies,
namely the treatment assignment bias in the observational study and the balanced treatment groups
in the RCT. In Appendix 2.H.3.1 we further explore the distribution shift with univariate histograms
(Figures 2.21–2.25).

7.2.2 Analyses

Notations and estimator details. We use two consistent ATE estimators from the CRASH-3 data,
namely the difference in mean estimator (Difference in means; Section 2.A) and the difference in

11If we assumed the missing values being missing completely at random (MCAR), we could “throw away” the incom-
plete observations and perform the analyses on the complete observations, but this would reduce the total sample size to
917 observations. And as explained in Section 7.1, the MCAR assumption is not plausible for the present observational
data, thus such a complete case analysis would be biased.
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conditional mean relying on OLS (Difference in conditional means). We also present the results
from the purely observational study outlined earlier: AIPW coupled with multiple imputation (MI
AIPW) and AIPW based on nuisance parameters estimated via generalized random forest (GRF AIPW)
that can directly handle missing values when needed with missing incorporated in attribute strategy.

To generalize the ATE to the target population, we apply the estimators discussed in this review
while implementing strategies to handle the missing values. The resulting estimators are presented in
Table 2.6.

Table 2.6: Overview of generalization estimators based on different missing values handling strategies used in the
data analysis.

Missing values strategy
Logistic regression with missing values Generalized random forests (grf) - MIA

τ̂n,m

IPSW EM IPSW GRF IPSW

Plug-in g-formula EM Plug-in g-formula GRF Plug-in g-formula

AIPSW EM AIPSW GRF AIPSW

The confidence intervals of these estimators are computed with a stratified bootstrap in the RCT and
the observational data set in order to maintain the ratio of relative size of the two studies (with 100
bootstrap samples). Note that the Calibration Weighting estimators (CW and ACW) are not used in
this analysis as they would require a specific adaptation to the case of the missing values.

Results of the combined analysis. Figure 2.9 gives the generalization from the RCT to the
target population using all the observations from both data sets, showing certain discrepancies with
respect to the separate analysis results. On the one hand, one half of the generalization estimators
support the CRASH-3 conclusion about the treatment effect: no significant effect. On the other hand,
some estimators point towards a deleterious treatment effect. Recall that the AIPW ATE estimations
from the purely observational data study do not reject the null hypothesis of no treatment effect.
Note that these results are to be interpreted carefully due to the potential impact of missing values
on the performance of the chosen estimators. For example, the large confidence intervals for the GRF

estimators when used to estimate weights are likely to be due to the imbalanced proportions of missing
values in the RCT and the observational data. Indeed, the variance is much smaller using the plug-in
g-formula with GRF. Dealing with missing values when generalizing a treatment effect remains an
open research question.

Here we present the results transported onto the total TBI Traumabase population, but the CRASH-3
study highlights a specific subgroup of patients (mild and moderate patients) for which a positive effect
of the tranexamic acid is measured. The generalization of the CRASH-3 findings onto this subgroup
in the Traumabase raises multiple methodological issues that still need to be addressed in future works
(detailed in Appendix 2.H.4.3).

Overall this data analysis highlights the interest of combining two different data sets, but also some
challenges: the need for a good understanding of the common covariates, exposure, and outcome
of interest before combining the data sets, different missing data patterns, and poor overlap when
considering specific target (sub-)populations.

8 Conclusion

Combining observational data and RCTs can improve many aspects of causal inference, from increased
statistical power to better external validity. A large part of this review is dedicated to generalizability
and transportability of RCT from one population to another. The corresponding rich and prolific
literature answers a real practical concern: external validity. Indeed, questions about external validity
arise as soon as there are treatment effect heterogeneities in the populations under study. We find that,
as any growing scientific field, the ideas are in flux: notations differ, implementations are scattered,
and the proposed methods proposed still lack real-world benchmarks, generated hand in hand with
practitioners. In addition, many open questions still remain as detailled below.
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Figure 2.9: Juxtaposition of different estimation results with ATE estimators computed on the Traumabase
(observational data set), on the CRASH-3 trial (RCT), and transported from CRASH-3 to the Traumabase target
population. All the observations are used. Number of variables used in each context is given in the legend.

Discrepancies between RCTs and observational data. The application on tranexamic acid
effect hinted to moderate external validity of the RCT as the generalized ATE is concordant with
the findings from the RCT, at least for half of the estimators. Additionally, the purely observational
data study also supports the results from the RCT. Determining which analysis to trust depends on
the assumptions we are willing to make – either related to transportability or unconfoundedness – as
well as the suitability of the selected variables. Beyond these assumptions, caution is needed when
interpreting the results, as observing the methods in action reveals threats to validity. The target
population of interest and overlap also raise concerns. Considering certain strata revealed violated
positivity, which leads to a non-transportable treatment effect on the strata of interest: mild and
moderate patients. Therefore, further discussions and analyses with the medical expert committee are
necessary to re-define a target population of interest on which generalization is possible and medically
relevant. As it is generally the case, beyond methodological and theoretical guarantees, a major step
to be taken before applying a set of methods is to clearly state the causal question and estimand(s) and
the associated identifiability requirements. This task is even more complex when combining data sets.
A primary and fundamental concern is whether outcome, treatment, and covariates are comparable
in the two studies (Lodi et al., 2019).

Right choice of covariates to answer the question. Domain expertise can be used to postulate
a causal graph: a directed acyclic graph representing the mechanisms (as Figure 2.7). The SCM
framework is then convenient to assess whether the question of interest can be formulated in an
identifiable way. This approach offers a principled way of selecting variables needed for identification of
the causal effect and to avoid biased causal effect estimates. Without such an approach, identifiability
claims are limited. A common practical recommendation is to include as many variables as possible to
avoid violation of any assumption as proposed for e.g. by Stuart and Rhodes (2017); Ling et al. (2022)
and Dahabreh et al. (2020): “it is probably best to include as many outcome predictors as possible in
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regression models for the expectation of the outcome or the probability of trial participation”. On the
contrary, a recent work alerts about the bad consequences of adding covariates that are shifted between
the two populations while not being treatment effect modifiers, resulting in variance inflation (Colnet
et al., 2022b). In its current state, the field probably lacks work on covariate selection and its impact
on bias and variance. Some recent works propose the use of causal graphs to select optimal adjustment
sets that allow the reduction of the variance of the final estimation (Smucler et al., 2021; Witte et al.,
2020; Guo and Perković, 2022), but such methods have not yet been developed for generalization or
data fusion.

Challenges in handling missing values. In our data analysis, we have seen the need to account
for missing values, and in particular different missing value patterns between data sources. Missing
values typically occur more often in observational data since in RCTs, investigators typically deploy
significant efforts to avoid them. RCTs may however suffer from participants missing scheduled visits
or completely dropping out from the study. The literature for RCT mainly focuses on missing outcome
data and calls for sensitivity analysis given that available strategies to handle such missing data
(weighting, multiple imputation) rely on untestable assumptions about the missing values mechanism
(Carpenter and Kenward, 2007; National Research Council, 2012; Kenward, 2013; O’Kelly and Ratitch,
2014; Li and Stuart, 2019; Cro et al., 2020). Missing values may lead to subtle biases in the inferences,
as they are seldom uniformly distributed across both data sets – occurring more in one than in
the other. While a recent research work proposes an assessment of the effect of different missing
data patterns (Mayer et al., 2021), further research is needed to clarify identifiability conditions and
estimators in this setting in order to better understand the scope of each method.
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Appendix of Chapter 2

2.A Randomized controlled trial

This section recalls assumptions and estimators for average treatment estimation in the case of a
single RCT. The assumptions for average treatment effect identifiability in RCTs are the SUTVA
assumption and assumptions 4 (consistency) and 5 (random treatment assignment within the RCT).
These assumptions allow the average treatment effect to be identifiable. The most intuitive estimators
coming from these assumptions is the difference-in-means estimators:

τ̂DM,n =
1

n1

∑
Ai=1

Yi −
1

n0

∑
Ai=0

Yi (2.10)

With n1 being the number of individuals in the trial that have been treated and n0 the number of
individuals in the trial who have not been treated (n0 + n1 = n). This estimator is unbiased and√
n-consistent if the trial is a random sample of the target population. If not, it is a biased estimation

of the population average treatment effect.

2.B Estimation of ATE in observational data

Under classical identifiability assumptions, it is possible to estimate the ATE and CATE based only
on the observational data. In what follows, we briefly recall the usual assumptions, which can be seen
as an introduction to Section 4.

Assumption 14 (Unconfoundedness). Y (a) ⊥⊥ A | X for a = 0, 1.

Assumption 14 (also called ignorability assumption) states that treatment assignment is as good as
random conditionally on the attributes X. In other words, all confounding factors are measured. Un-
like the RCT, in observational studies, its plausibility relies on whether or not the observed covariates
X include all the confounders that affect the treatment as well as the outcome.

Assumption 15 (Overlap). There exists a constant η > 0 such that for almost all x, η < e(x) < 1−η.

Assumption 15 (also called positivity assumption) states that the propensity score e(·) is bounded
away from 0 and 1 almost surely.

Under Assumptions 14 and 15, the ATE can be identified based on the following formulas from the
observational data:

1. Reweighting formulation:

τ = E[
AY

e(X)
− (1−A)Y

1− e(X)
]; (2.11)

2. Regression formulation:
τ = E[τ(X)] = E[µ1(X)− µ0(X)]. (2.12)

For example the identification formulas, and more particularly the reweighting formulation, motivates
the Inverse Propensity Weighting (IPW) estimator (Hirano et al., 2003),

τ̂,m =
1

m

m∑
i=1

{
AiYi
e(Xi)

− (1−Ai)Yi
1− e(Xi)

}
, (2.13)

where e(x) = P (A = 1 | X = x) is the propensity score, i.e., the probability to be treated given
the covariates. The rationale of IPW is to upweight treated observations with a small propensity
score (and the other way around) to balance the two groups, treated and non treated, with respect
to their covariates. These identification formula motivate also the regression estimators or doubly
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robust estimators based solely on the observational data. Efficient estimation of the ATE with one
single observational data set and non-parametric models is detailed in Laan and Rose (2011); Kennedy
(2016); Chernozhukov et al. (2018b). There are also many available methods to estimate the CATE,
based on the observational data such as causal forests (Wager and Athey, 2018), causal BART (Hill,
2011; Hahn et al., 2020), or causal boosting (Powers et al., 2018). There are also meta-learners such as
the S-Learner (Künzel et al., 2019), T-learner (Künzel et al., 2019), X-Learner (Künzel et al., 2019),
and R-learner (Nie and Wager, 2020), which build upon any base learners for regression or supervised
classification. Knaus et al. (2021) and Powers et al. (2018) conduct comprehensive simulation studies
to compare these methods.

2.C Identification formula

This part focuses on the non-nested design only, as it corresponds to the central design of this review.
Identification by the g-formula or regression formula in the target population

Proof.
E[Y (a)] = E [E[Y (a) | X]] Law of total expectation

= E [E[Y (a) | X,S = 1]] Assump. 7

= E [E[Y (a) | X,S = 1, A = a]] Assump. 5

= E [E[Y | X,S = 1, A = a]] Assump. 4

This last quantity can be expressed as a function of the distribution of X in the target population:

E [Y (a)] =

∫
E[Y | X = x, S = 1, A = a]df(x) ,

where f(X) denotes the distribution of X in the target population.

Identification by weighting

Proof.
τ = E[τ(X)] Law of total expectation

= E[τ1(X)] Assump. 9

= E[
f(X)

f(X | S = 1)
τ1(X) | S = 1] Assump. 10.

Using Bayes’ rule, we note that

f(x)

f(x | S = 1)
=

P(S = 1)

P(S = 1 | X = x)
=

P(S = 1)

πS(x)
.

In this expression, however, it is important to notice that neither πS(x) nor P(S = 1) can be estimated
from the data, because we do not observe the S indicator in the observational study (Figure 2.1). On
the other hand, the conditional odds α(x) can be estimated by fitting a logistic regression model that
discriminates RCT versus observational samples, and Bayes’ rule gives:

α(x) =
P(i ∈ R | ∃i ∈ R ∪O, Xi = x)

P(i ∈ O | ∃i ∈ R ∪O, Xi = x)

=
P(i ∈ R)
P(i ∈ O)

× P(Xi = x | i ∈ R)
P(Xi = x | i ∈ O)

=
n

m
× f(x | S = 1)

f(x)
,

59



Chapter 2. Combining experimental and observational data: a review

and therefore

τ = E
[

n

mα(X)
τ1(X) | S = 1

]
.

This quantity can be further developed, underlying τ1(X) identification as presented in the following
proof 2.C.

Proof.
τ1(x) = E[Y (1)− Y (0) | X = x, S = 1]

= E[Y (1) | X = x, S = 1]− E[Y (0) | X = x, S = 1]

=
E[A | X = x, S = 1]E[Y (1) | X = x, S = 1]

e1(x)

− E[1−A | X = x, S = 1]E[Y (0) | X = x, S = 1]

1− e1(x)

=
E[AY (1) | X = x, S = 1]

e1(x)
− E[(1−A)Y (0) | X = x, S = 1]

1− e1(x)
Assump. 5

=
E [AY | X = x, S = 1]

e1(x)
− E [(1−A)Y | X = x, S = 1]

1− e1(x)
Assump. 4

= E
[

A

e1(x)
Y − 1−A

1− e1(x)
Y | X = x, S = 1

]
.

2.D Sources of formal statements of estimators described in Sec-
tion 3.2

This section proposes formal statements on the statistical properties of the exposed estimators in the
form of theorems. As part of a review work, this section only reports results that are stated along a
Theorem environment and with explicit proof in the original papers.

2.D.1 Inverse Propensity of Sampling Weighting

Beyond the result from Colnet et al. (2022a) recalled in plain document, other theoretical results on
the IPSW can be found in:

• Egami and Hartman (2021), which provides finite sample unbiasedness, consistency and asymp-
totic normality of an oracle version of the IPSW, that is an estimator where the true α is known
(see their appendix, Section SM-2).

• Buchanan et al. (2018), which provides consistency and asymptotic normality assuming that
the conditional odds are well approached by a parametric model (for e.g. a logistic regression).
Results are detailed both in the main paper (p.7) and in appendix for detailed derivations.
Note that they also obtain asymptotic normality and consistency for an oracle version of the
IPSW. Their proof rely on M-estimation methods (Stefanski and Boos, 2002; Lunceford and
Davidian, 2004), writing the estimation problem as a stacked equation, with the specificity that
the observations are not necessarily identically distributed. The authors retrieve a well-known
result in causal inference: estimating the weights leads to a gain in variance. Note that the
proof is done in the context of a nested design, which is not exactly the purpose of the review.
Without stating theoretical results, Zivich et al. (2022) extends this work to non-nested design
showing how to compute the sandwich type confidence intervals. Buchanan et al. (2018) also
propose sandwich-type estimation of variance, while noting that estimation of the variance of
the oracle version of IPSW would provide conservative but valid confidence intervals.
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2.E. Nested study design

• Dahabreh et al. (2020), which announces consistency of the IPSW for parametric estimator of
the RCT selection model α(X), and sketches the proof in Appendix for both a normalized and
non-normalized version of the IPSW (see Section A). Note that derivations are made in the
context of a nested design but said to extend to a non-nested design.

• Colnet et al. (2022a), which provides consistency (i.e. asymptotically unbiased) for any consistent
parametric or non-parametric method to estimate α.

• Colnet et al. (2022b), which provides finite and large sample bias and variance when the ad-
justment set is constituted of categorical covariates. The consistency is a by-product of their
results. To our knowledge, their results is the only one characterizing different variance regimes
depending on the size of the two data sample (RCT and observational). They also recommend
to estimate the probability to be treated in the trial e1(X) to decrease the asymptotic variance.

2.D.2 Stratification

• O’Muircheartaigh and Hedges (2014) provide a formula of the variance under the situation where
the strata estimates are assumed independent and the estimation of the strata proportion ml/m
is without error (i.e. infinite target sample).

• Buchanan et al. (2018) provide asymptotic normality for the stratification estimator, assuming
that the estimator is the average of L independent, within-stratum, treatment effect estimators
(Lunceford and Davidian, 2004; Tipton, 2013). They propose a formula for the asymptotic
variance.

2.D.3 Calibration Weighting

Dong et al. (2020) provide regularity conditions and theoretical properties of the CW and ACW
estimators in terms of consistency, asymptotic normality, and inference procedures. The proof can be
found in the supplementary material of Dong et al. (2020).

2.E Nested study design

The nested trial design has different impacts on the estimators expressions previously introduced, and
even on the causal quantity of interest. In a nested trial design the randomized trial is embedded in a
cohort (e.g. a large cohort - considered as a sample from the target population - in which eligible people
are proposed to participate in the trial, but if they refuse they are still included in the cohort study). As
a consequence, S is the binary indicator for trial participation, with S = 1 for participants
and S = 0 for non-participants. Therefore the sampling probability of non-randomized individuals
is known in nested trial designs (Lesko et al., 2017; Buchanan et al., 2018; Dahabreh et al., 2021).
Mathematically it means that the quantity P(S = 1) is identifiable. In addition, two causal quantities
can be identified: E[Y (1)− Y (0)] and E[Y (1)− Y (0) | S = 0]. It is important to note that the second
quantity can have a scientific interest in order to better understand heterogeneities within the cohort,
and variables that influence the sampling selection and/or the treatment effect on the outcome.

2.E.1 When observational data have no outcome and treatment information

Main estimators, such as IPSW, plug-in g-formula, and doubly-robust estimators are presented for
the specific case of nested trial design.

2.E.1.1 IPSW

In this design the weights in the IPSW estimators are different, because the quantity πS can be
estimated directly from the observed data as the indicator S is observed. This allows the IPSW
formula to be closer to the classic IPW expression without the need to use the odds to weight data.
The IPSW expression is the following:
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τ̂IPSW-nested,n,m =
1

n

n∑
i=1

n

n+m

AiYi
π̂S,n,m(Xi)e1(Xi)

− 1

n

n∑
i=1

n

n+m

(1−Ai)Yi
π̂S,n,m(Xi)(1− e1(Xi))

. (2.14)

The normalized version is the following one:

τ̂IPSW-nested norm.,n,m =

∑n
i=1(π̂S,n,m(Xi)e1(Xi))

−1AiYi∑n
i=1(π̂S,n,m(Xi)e1(Xi))−1Ai

−
∑n

i=1(π̂S,n,m(Xi)(1− e1(Xi)))
−1(1−Ai)Yi∑n

i=1(π̂S,n,m(Xi)(1− e1(Xi)))−1(1−Ai)
.

(2.15)

Proof.
τ = E [τ(X)] Law of total expectation

= E [τ1(X)] Assump. 9

= E
[

f(X)

f(X | S = 1)
τ1(X) | S = 1

]
Assump. 10

= E
[
P (S = 1)

πS(X)
τ1(X) | S = 1

]
Bayes law

= E
[

n

n+m
πS(Xi)

−1τ1(X) | S = 1

]
P [S = 1] =

n

n+m
in the nested design

Where πS can be estimated directly using the randomized and the non randomized data. τ1 is further derived as presented
in proof 2.C.

2.E.1.2 G-formula

The g-formula formulation in the case of nested trial design depends on the causal quantity of interest.
When the target population is the causal quantity of interest, then the identification expression is the
same as in the non-nested design. But, because f ̸= f.|S=0, the estimator’s expression is slightly
different:

τ̂g−nested,n,m =
1

n+m

n+m∑
i=1

(µ̂1,1,n(Xi)− µ̂0,1,n(Xi)) , (2.16)

In the case where the population of interest is the non-randomized one, the identification of the causal
quantity of interest is the following:

E [Y a | S = 0] = E [E [Y | X,S = 1, A = a] | S = 0] = E [µ1,1(X)− µ0,1(X) | S = 0] (2.17)

The Proof 2.E.1.2 details the calculus. And the estimator is the same as given in Definition 9 as the
integration is done on the law f.|S=0.

Proof.
E [Y (a)|S = 0] = E [E [Y (a) | X] | S = 0] Law of total expectation

= E [E [Y (a) | X,S = 1] |S = 0] Assump. 7

= E [E [Y (a) | X,S = 1, A = a] |S = 0] Assump. 7

= E [E [Y | X,S = 1, A = a] |S = 0] Assump. 4

This last quantity can be expressed as a function of the distribution of X in the non-randomized population:

E [Y (a)] =

∫
E [Y | X = x, S = 1, A = a] f(x|S = 0)dx

where f(X|S = 0) denotes the density function of X in the non-randomized population.

62



2.E. Nested study design

2.E.1.3 Doubly-robust estimator

Similarly to the doubly-robust estimation in the non-nested case (Section 3.2.4), the g-formula and
the IPSW methods can be leveraged into a doubly-robust estimator. The AIPSW expression for the
nested case is the following:

τ̂AIPSW-nested,n,m =
1

n+m

n+m∑
i=1

SiAi
π̂S,n,m(Xi)e1(Xi)

(Yi − µ̂1,1,n(Xi))

− 1

n+m

n+m∑
i=1

Si(1−Ai)
π̂S,n,m(Xi)(1− e1(Xi))

(Yi − µ̂0,1,n(Xi))

+
1

m+m

m+n∑
i=1

{µ̂1,1,n(Xi)− µ̂0,1,n(Xi)} .

(2.18)

2.E.2 Combining treatment-effect estimates from both sources of data

Under Assumptions 4, 5 and 6 for the RCT and Assumptions 14 and 15 for the observational data,
separate estimators of the ATEs from the two data sources can be constructed. Lu et al. (2019)
considered the ATEs for the comprehensive cohort studies (CCS) which include participants who
would like to be randomized, constituting the RCT, and participants who would like to choose the
treatment by their preference, constituting the observational sample. In particular, they considered
the ATE over the CCS study population τ2 and the ATE over the trial population τ1. Note that
τ2 is different from τ in our setting because τ2 is defined with respect to the combined RCT and
observational sample; while τ is defined with respect to the observational sample only. In order
to construct improved estimators by combining study-specific estimators, they derived the optimal
influence functions for τ1 and τ2, which suggest that the efficient estimators of τ1 and τ2 can be
obtained by

τ̂1,eff =
1

n

n+m∑
i=1

[
π̂S (Xi)AiYi

ê (Xi)
+ {Si −

Aiπ̂S (Xi)

ê (Xi)

}
µ̂1 (Xi)

− π̂S (Xi) (1−Ai)Yi
1− ê (Xi)

−
{
Si −

(1−Ai) π̂S (Xi)

1− ê (Xi)

}
µ̂0 (Xi)

]
,

and

τ̂2,eff =
1

n+m

n+m∑
i=n

Ai{Yi − µ̂1(Xi)}
ê(Xi)

− (1−Ai){Yi − µ̂0(Xi)}
1− ê(Xi)

+ {µ̂1(Xi)− µ̂0(Xi)},

where ê1(Xi), µ̂0,1(Xi), and µ̂1,1(Xi) for units in the RCT are simplified as ê(Xi), µ̂0(Xi), and µ̂1(Xi).

2.E.3 Softwares: Examples of implementations

This part completes Section 6 and proposes specific examples of implementations, such as identifiability
questions with the package causaleffect, the beta version of causalfusion, and implementation
examples for the nested case.

2.E.3.1 R package causaleffect

The R packages causaleffect (Tikka and Karvanen, 2017) and dosearch (Tikka et al., 2019) can be
used for causal effect identification, with the later handling transportability, selection bias and missing
values (bivariates) issues simultaneously. In this package, the dosearch function takes the observable
distributions, a query, and a semi-Markovian causal graph as the input and outputs a formula for
the query over the input distributions, or decides that it is not identifiable. It is based on a search
algorithm that directly applies the rules of do-calculus. Their general identification procedure is not
necessary complete given an arbitrary query and an arbitrary set of input distributions In order to
retrieve the backdoor criterion in theorem 4, one can write:
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1 data <- "P(Y, X,Z)"

2 query <- "P(Y|do(X))"

3 graph <- "X -> Y

4 Z -> X

5 Z -> Y"

6 dosearch(data , query , graph)

1 $identifiable
2 [1] TRUE

3 $formula
4 [1] "[sum_{Z} [p(Z)*p(Y|X,Z)]]"

2.E.3.2 Beta version of causalfusion

The beta version of causal fusion (Bareinboim and Pearl, 2016) can be used, with a user-friendly
interface requiring no coding skills. For example, if uploading the selection diagrams from Figure 2.3
onto this interface, it will state that diagram (a) is not transportable, while (b) is transportable along
with the correct transport formula. The authors also propose to load their diagrams from previous
publications and research works, some of which have been discussed in this review.

2.E.3.3 IPSW for the nested case

Te IPSW estimator can be implemented using the available code from Dahabreh et al. (2019). It
requires as input a data.frame (here called study) which columns represent treatment, denoted by
A (binary), the RCT indicator, denoted as S (binary), the outcome as Y (continuous), and the
quantitative covariates. The current available code for 3 quantitative covariates denoted X1, X2, X3

is presented below. A first function generate weights() estimates the sampling propensity score and
the propensity score as logistic regressions, and compute the according weights to each data point.
The variance is estimated with the geex library (Saul and Hudgens, 2020) through the m estimate

function which computes the empirical sandwich variance estimator.

1 # Compute selection score model and propensity score in the trial (logit)

2 weights <- generate_weights(Smod = S~X1+X2+X3 , Amod = A~X1+X2+X3 , study)

3

4 # Use these scores to compute IPSW

5 IOW1 <- IOW1_est(data = weights$dat)
6

7 # Compute the empirical sandwich variance

8 param_start_IOW1 <- c(coef(weights$Smod) , coef(weights$Amod),
9 m1 = IOW1$IOW1_1 , m0 = IOW1$IOW1_0 , ate = IOW1$IOW1)

10 IOW1_mest <- m_estimate( estFUN = IOW1_EE , data = study ,

11 root_control = setup_root_control(start = param_start_IOW1 ))

12

13 # Format the output

14 IOW1_ate <- extractEST(geex_output = IOW1_mest ,

15 est_name ="ate",

16 param_start = param_start_IOW1)

The output is:

1 print(IOW1_ate)

2 > ate SE

3 > -0.16961 0.02751

2.E.3.4 G-formula for the nested case

The G-formula can also be implemented in the nested design using the available code from Dahabreh
et al. (2019). It takes a similar entry as the IPSW previously presented. The variance is estimated
with the geex library (Saul and Hudgens, 2020) through the m estimate function which computes the
empirical sandwich variance estimator.
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1 # Linear regression cond. outcome mean as a function of covariates on the RCT

2 # Compute ATE on the observational data

3 OM <- OM_est(data = study)

4

5 # Compute the empirical sandwich variance

6 param_start_OM <- c(coef(OM$OM1mod), coef(OM$OM0mod),
7 m1=OM$OM_1 , m0=OM$OM_0 , ate=OM$OM)
8 OM_mest <- m_estimate( estFUN = OM_EE , data = study ,

9 root_control = setup_root_control(start = param_start_OM ))

10

11 # Format the output

12 OM_ate <- extractEST(geex_output = OM_mest , est_name = "ate",

13 param_start = param_start_OM)

The output is:

1 > ate SE

2 > -0.1934 0.0300

2.F Additional information on the SCM framework

2.F.1 Notations and Assumptions

This supplementary introduction aims to provide an introduction to the whole SCM framework, and
introduce the graphical representation, along with the do-calculus concepts and notations.

Structural Causal Models. Formally (Pearl, 2009b, p.203), an SCM is a 4-tuple M = (U, V, F, P )
where:

1. U is a set of background or exogenous variables, which are not explicitly modeled but which can
affect relationships within the model.

2. V = {V1, . . . , Vn} is a set of endogenous variables, that are deterministically determined by
variables in U ∪ V ; in the setting of this paper, one typically chooses V = {X,A, Y } or V =
{X,A, Y, S} to respectively model covariates, treatment, outcome and selection.

3. F is a set of functions {f1, .., fn} such that each fi uniquely determines the value of Vi ∈ V by
the so-called structural equation vi = f(pai, ui), where PAi ⊂ V \{Vi} are called the parents of
Vi and Ui ⊂ U .

4. P is a probability distribution for U .

The causal diagram corresponding to an SCM is a graph with V as vertices, directed edges from each
parent to its children, and undirected dotted edges between vertices Vi and Vj such that Ui ∩ Uj ̸= ∅.
Alternatively, the U can be explicitly represented, with directed dotted edges from Ui to Vi, as in
Figure 2.10 which represents the SCM with V = (X,A, Y ), U = (Ux, Ua, Uy), and structural equations:

x← fx(ux)

a← fa(x, ua),

y ← fy(a, x, uy).

Often, no parametric assumptions is made on the function F or the distribution P [U ]. The distribution
P (U) induces a distribution PM (V ) through V = F (U), and in the case where the causal diagram is a
directed acyclic graph and variables in U are independent, then the distribution PM (V ) is a Bayesian
network. In particular, the causal diagram encodes the conditional independence relationships among
variables in V .
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Figure 2.10: Left: (a) example of an SCM M and corresponding DAG; right: (b) Post-intervention graph of M for
do(A = a0).

Interventions. At the core of the SCM framework is the do-operator which enables the use of struc-
tural equations to represent causal effects and counterfactuals. The do(A = a0) operation marks the
replacements of the mechanism fa with a constant a0, while keeping the rest of the model unchanged,
resulting in the following post-treatment model for our toy example:

x← fx(ux)

a← a0

y ← fy(a, x, uy)

In the causal graph, this corresponds to deleting all incoming arrows in A (Figure 2.10(b)). We denote
Q = P [Y | do(A = a0)] the post-intervention distribution, i.e., the distribution of a random variable
Y after a manipulation on A. From this distribution, the ATE can be written as:

τ = E [Y | do(A = a1)]− E [Y | do(A = a0)]

=
∑
y

y (P [(Y = y | do(A = a1)]− P [Y = y | do(A = a0)]) .

Note that the post-intervention distribution can also be denoted in counterfactual notation as

P [Y = y | do(A = a)] = P [Y (a) = y] .

The distinction between P [Y | A = a] and P [Y | do(a)] corresponds in the PO framework to the dif-
ference between P [Y | A = a] and P [Y (a)].

D-separation. Conditional independences between variables can be read from the DAG induced by
an SCM using a graphical criterion known as d-separation. This criterion will be useful in identifying
the causal effect.

Definition 13 (d-separation). A set X of nodes is said to block a path p if either

• p contains at least one arrow-emitting node that is in X, or

• p contains at least one collision node that is outside X and has no descendant in X.

If X blocks all paths from set A to set Y , it is said to “d-separate A and Y ” and then it can be shown
that A ⊥⊥ Y | X. As an illustration, let us consider a path with A → D ← B → C. Since B emits
arrows on that path, it blocks the path between A and C, and A ⊥⊥ C | B. D is a collider (two arrows
incoming) and consequently it blocks the path without conditioning A ⊥⊥ C; but conditioning on D
would open the path and thus would imply that A ̸⊥⊥ C | D. Furthermore, in the SCM framework it
is generally assumed that faithfulness holds, i.e., that all conditional independences are encoded in the
graph, allowing to infer dependencies from the graph structure (Peters et al., 2017). In other words,
if the Global Markov property (i.e., d-separation implies conditional independence), and faithfulness
hold, then the resulting equivalence between conditional independences and d-separation allows to
move back and forth between the graphical and the probabilistic model.
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Figure 2.11: Application of the backdoor criterion in large graphs: Based on the admissible set definition 15,
eq. 2.19 present all the following sets that are admissible and can be used for adjustment. For example, the set
{W2,W3} blocks all backdoor paths between A and Y . W2 block the path A←W2 →W3 →W5 → Y .

Identifiability. We are interested in answering the identifiability question: can the post-intervention
distribution Q be estimated using observed data (such as pre-intervention distribution)?

Definition 14 (identifiability). A causal query Q is identifiable from distribution P (y) compatible
with a causal graph G, if for any two (fully specified) models M1 and M2 that satisfy the assumptions
in G, we have

P1 [V ] = P2 [V ] =⇒ Q(M1) = Q(M2).

Specifically, if a causal query Q in the form of a do-expression can be reduced to an expression no longer
containing the do-operator (i.e, containing only estimable expressions using nonexperimental, observed
data) by iteratively applying the inference rules of do-calculus, then Q is identifiable. The language
of do-calculus is proved to be complete for queries in the form Q = P [Y = y | do(A = a), X = x]
meaning that if no reduction can be obtained using these rules, Q is not identifiable.

The application of previous rules and the backdoor criterion in the graph of Figure 2.11 allows to list
all possible admissible adjustment sets for identifying P (y | do(a)):

X = {W2}, {W2,W3}, {W2,W4}, {W3,W4}, {W2,W3,W4}, {W2,W5}, {W2,W3,W5},
{W4,W5}, {W2,W4,W5}, {W3,W4,W5}, {W2,W3,W4,W5} (2.19)

The analyst can select from this list which is preferable. Note that conditioning on W1 would induce
bias as it is a collider.

2.F.1.1 Confounding bias

In order to estimate the causal effect P [Y | do(A = a)] using only available observational data, fol-
lowing the observational distribution P (A,X, Y ), the idea is to identify—on the basis of the causal
graph—a set of admissible variables such that measuring and adjusting for these variables removes
any bias due to confounding. The backdoor criterion defined below provides a graphical method for
selecting admissible sets for adjustment.

Definition 15 (Admissible sets - the backdoor criterion). Given an ordered pair of treatment and
outcome variables (A, Y ) in a causal DAG G, a set X is backdoor admissible if it blocks every path
between A and Y in the graph GA, with GA the graph that is obtained when all edges emitted by node
A are deleted in G.

The backdoor criterion can be seen as the counterpart of unconfoundedness in Assumption 14: If a
set X of variables satisfies the backdoor condition relative to (A, Y ), then Y (a) ⊥⊥ A | X. Iden-
tifying backdoor admisible variables is important because it allows to estimate causal effects from
observational data as follows:
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Theorem 4 (Backdoor adjustment criterion). If a set of variables satisfies the backdoor criterion rel-
ative to (A, Y ), the causal effect of A on Y can be identified from observational data by the adjustment
formula:

P [Y = y | do(A = a)] =
∑
x

P [Y = y | A = a,X = x]P [X = x] .

The adjustment formula can be seen as part of the identifiability formula in Equation 2.12.
The backdoor criterion is one of the graphical methods for identifying admissible sets. In cases where it
is not applicable, an extended definition called the frontdoor criterion can be applied using mediators
in the graph.
Figure 2.12 provides a summary of the identifiability conditions when the available data is either
observational data or data from surrogate experiments.

Yes

No

Yes

NoYes

No

Condition
( -identifibility)Observational and

Experimental data

+

intercepts all directed
paths from to
and

is identifiable
in

Figure 2.12: Summary of identifiability results to control for confounding bias: If there exists a set of observed
variables that satisfies the backdoor criterion, then the causal effect of A on Y can be identified using nonexperimental
data alone. In the case where no set of observed variables satisfies the backdoor condition but the effect of A can be
mediated by an observed variable M (mediator), if there exists a set of observed variables that satisfies the frontdoor
criterion, then the causal effect if also identifiable from observational data alone. If none of these conditions holds,
the query is not identifiable. If, in addition to observational data, RCTs through surrogate experiments are available,
the z-identifiability condition is sufficient to determine if the query is identifiable or not.

2.F.1.2 Sample selection bias

To tackle sample selection bias, i.e., preferential selection of units, the authors consider an indica-
tor variable S such that S = 1 identifies units in the sample. The data at hand can be seen as
P [A, Y,X | S = 1] and the target is P [Y | do(A = a)].

Figure 2.13: Cases with sample
selection bias: A is the treatment
and Y the outcome, S is the selec-
tion process and the aim is to esti-
mate P (y | do(a)) when data avail-
able come from P [a, y | S = 1] in
(a) and (b).

Figure 2.13 (b) presents a case where the selection process is d-separated (definition in Appendix 2.F)
from Y by A, then P [Y | A] = P [Y | A,S = 1]; since A and Y are unconfounded, P [A | do(A)] =
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P [Y | A] so that the experimental distribution is recoverable from observed data. This is not the
case for Figure 2.13 (a) without further assumptions. When both confounding bias and selection
bias are present in the data (Figure 2.13 (c)), the graphical framework can help selecting among the
list of adjustment sets, {W1,W2}, {W1,W2, X}, {W1, X}, {W2, X}, and X, (these sets control for
confounding), the one that can be used as available from biased data; here it will be X as it is the only
one separated from S, leading to P [Y | do(A)] =

∑
x P [Y | A,X, S = 1]P [X | S = 1]. This ability

to select relevant covariates for identifiability is presented as an important advantage of the SCM
framework.

Combined biased and unbiased data. Note that the previous examples in Figure 2.13 concern
only one set of data but the approach is extended to combine data, biased (with a selection) data, and
unbiased data (for example covariates from the target population) as follows. To do so, Bareinboim
and Pearl (2016) define the S-backdoor admissible criterion which is a sufficient condition but
not necessary. It states that if X is backdoor admissible, A and X block all paths between S and Y ,
i.e. Y ⊥⊥ S | A,X, and that X is measured in both population-level data and biased data, then, the
causal effect can be identified as

P [Y | do(A = a)] =
∑
x

P [Y | do(A = a), X = x, S = 1]P [X = x] ,

where P [X = x] denotes the probability in the target population. If the set X contains post-treatment
covariates, then this formula is generally wrong. Indeed S-ignorability is rarely satisfied in that case,
as illustrated with several examples by Pearl (2015). This formula is called the post-stratification
formula, to define this action of re-calibrate or re-weight (Pearl, 2015). This expression shows that
one can generalize what is observed on the selected sample by reweighting or recalibrating by P [X = x]
that is available from the target population (unbiased data). More complex setting can be handled,
such as dealing with post-treatment variables. In such a case, they show that generalizibility can be
obtained by another weighting strategy (not by P [X = x]), which can also be seen as a benefit of this
framework.

2.F.2 Proof of the transport formula (2.6)

We compute:

P [Y | do(A = a)] =
∑
x

P [Y | do(A = a), X = x]P [X = x | do(A = a)]

=
∑
x

P [Y | do(A = a), X = x, S = 1]P [X = x | do(A = a)]

=
∑
x

P [Y | do(A = a), X = x, S = 1]P [X = x] ,

where the first equation follows by conditioning, the second one by S-admissibility assumption of X,
and the third one from the fact X are pre-treatment variables.

2.G Additional simulation results

This section follows Section 6.2 and provides additional results for the simulations.

2.G.1 Distributional shift between RCT and observational samples

The simulation design proposed simulates a situation where the RCT data reveals a distributional
shift with the observational sample. In the RCT all the covariates tend to have lower values than in
the observational sample. Still, the overlap assumption (Assumption 10) is valid as each observation
in the target sample has a non-zero probability to be included in the experimental sample. Summary
statistics obtained for a simulation with ∼ 1000 observations in the RCT and 10 000 observations in
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Figure 2.14: Covariates distributions differences between experimental sample and observational sample when
simulating according to eq. 3.7 as detailed in Section 6.2 (left), with a focus on the X1 distributional shift with
histograms overlap for the two samples (right).

the observational sample is given on Figure 2.14, in addition with an histogram illustrating overlaps
and the distributional shift for the covariate X1.

The sampling propensity score model used to generate the simulated data eq. 3.7 implies a weak co-
variate shift between the RCT sample and the observational sample. A stronger shift can be obtained,
at least on covariate X1, swapping the coefficient −0.5X1 with −1.5X1. Figure 2.15 shows that the
variance of the weighted and CW estimators have increased in the setting with a stronger covariate
shift.

2.G.2 Stratification

Within the weighted estimators, the stratification estimator (Section 3.2.1) supposes to choose an
additional parameter being the number of strata used. Simulations are launched with the number
of strata varying from 3 to 15, and the results are presented on Figure 2.16. We observed that the
number of strata has an impact on the results, the higher the number of strata used, the better the
prediction.

2.G.3 Impact of a hidden treatment effect modifier

In this part, we consider a heterogeneous treatment effect setting where X1 impacts the RCT sampling
while also being a treatment effect modifier. We consider the IPSW estimator and its variations
without usingX1 (labeled as IPSW.without.X1) and using onlyX1 (labeled as IPSW.X1). As shown in
Figure 2.17, IPSW.X1 is still unbiased when using onlyX1 in the sampling propensity score estimation,
as it is the only covariate being the shifted treatment effect modifier. However, if X1 is missing, the
resulting estimator IPSW.without.X1 is strongly biased. Therefore, by including all variables that
affect both sampling and outcome one can ensure identifiability. A recent work suggests to add non-
shifted treatment effect modifier for precision (Colnet et al., 2022b).

Note also that if the treatment effect were homogeneous (does not depend on X1), then the estimated
ATE on the RCT would be unbiased (as shown Figure 2.18 in the section below, Section 2.G.4) so
in this setting there is no need to use the observational data and associated methods to transport
the ATE from the trial to the target population as the causal effect investigated is on the absolute
different scale.
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Figure 2.15: Weak versus strong dis-
tributional shift between experimen-
tal and observational data with es-
timated ATE when RCT is weakly or
strongly shifted from the target popula-
tion distribution. Estimators used being
IPSW (IPSW and IPSW.norm; Def. 7),
stratification (with 10 strata; Def. 8),
g-formula (Def. 9), calibration weight-
ing (CW; Def. 10), augmented IPSW
(AIPSW; Def. 21), and ACW (Def. 12)
over 100 simulations.

Figure 2.16: Effect of strata
number Estimated ATE obtained
while varying the number of strata
L ∈ {3, 5, 7, 9, 11, 13, 15} with 100
repetitions each time. All oth-
ers simulation parameters being the
same as the standard case de-
scribed in 6.2 and in Figure 2.5.
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Figure 2.17: Impact of the
treatment-effect modifiers Esti-
mated ATE when IPSW estima-
tor includes all covariates, only
X1, or all covariates except X1

(IPSW; Section 3.2.1), with g-
formula (Section 3.2.2) presented
as a control, over 100 simula-
tions. Simulations are still per-
formed with eq. 3.7 for RCT eligi-
bility and eq. 3.8 for outcome mod-
eling.

2.G.4 Homogeneous treatment effect

It is always interesting to note that in the case of an homogeneous treatment effect the RCT sample
contains all the information to estimate the population ATE, in other words τ1 is a consistent estimator
of the ATE. We performed simulation with an homogeneous treatment effect (results are presented on
Figure eq. 2.18) such as:

Y (a) | X = −100 +X1 + 13.7X2 + 13.7X3 + 13.7X4 + 27.4a+ ϵ

Figure 2.18: Homogeneous
treatment effect Estimated ATE
with a homogeneous treatment ef-
fect Y (a) | X = −100 +
X1+13.7X2+13.7X3+13.7X4+
27.4a + ϵ. All others simulation
parameters being the same as the
standard case described in eq. 6.2
and in Figure 2.5.
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2.H Supplementary information on Traumabase and
CRASH-3

2.H.1 Additional information on the Traumabase

2.H.1.1 Missing values

The problem of missing values is ubiquitous in data analysis practice and particularly present in
observational data, as they are not necessarily collected for research purposes. The Traumabase is a
high-quality data set but, nevertheless, missing values occur. Figure 2.19 represents the percentage
of missing values for the covariates selected by the medical doctors from the Traumabase. It varies
from 0 to nearly 60% for some features. In addition, there are different codes for missing values giving
hints on the reason of their occurrence, e.g., not available (NA), impossible (imp), not made (NM),
etc. Some of these values can be seen as missing completely at random (MCAR), e.g., the information
has not been recorded simply because the form was not filled out, but they can be informative and
missing not at random (MNAR), e.g., when the state of the patient is such that it was impossible to
take a measurement.
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Figure 2.19: Percentage of missing values for a subset of Traumabase variables relevant for traumatic brain
injury. Different encodings of missing values are available such as: NA (not available), but also not informed, not
made, not applicable, impossible.

There is an abundant literature available on how to deal with missing values in a general context
and Mayer et al. (2019) identify more than 150 R (R Core Team, 2021) packages available on the
topic. Missing values add a layer of complexity to conducting causal analyses as they require coupling
conventional hypotheses of causal effect identifiability in the complete case with hypotheses about the
mechanism that generated the missing data (Rubin, 1976), or defining new hypotheses, to establish
conditions of causal effect identifiability with missing data. Mayer et al. (2020) survey available works,
classify the methods in three families that differ with respect to the different assumptions and provide
associated estimators to estimate the ATE from an observational data set with missing values in the
covariates. More precisely, they advocate the use of multiple imputation (van Buuren, 2018) by IPW or
doubly robust estimators when missing values can be considered to be missing (completely) at random
(M(C)AR) and the classical unconfoundedness assumption (Assump. 14) holds (Seaman and White,
2014). As an alternative, they recommend using a doubly robust estimator adapted to missing values.
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More specifically an estimator that makes use of random forests with a missing incorporate in attributes
splitting criterion (Twala et al., 2008; Josse et al., 2019) to estimate the generalized propensity scores
(Rosenbaum and Rubin, 1984) and the regression function with missing values12; this approach does
not require a particular missing values mechanism but an adapted unconfoundedness hypothesis with
missing data. Finally, when covariates can be seen as noisy incomplete proxies of true confounders,
latent variable models can be a solution to estimate causal effect with missing values (Kallus et al.,
2018; Louizos et al., 2017). Note that for the generalization task, IPSW weights are also computed
after imputation in Susukida et al. (2016).

2.H.1.2 Covariate adjustment

Since the Traumabase is an observational registry, straightforward treatment effect estimation on these
data is not possible due to confounding. The causal graph in Figure 2.20 is the result of a two-stage
Delphi method (Linstone and Turoff, 1975) in which six anesthetists and resuscitators specialized
in critical care—and therefore familiar with the allocation process for TXA—first select covariates
related to either treatment or outcome or both, and second classify these covariates into confounders
and predictors of only outcome. Even though it is not possible to test for unobserved confounding,
this Delphi procedure is an attempt to gather as much expert knowledge about the studied question
as possible to manually identify possible confounders and qualitatively assess the plausibility of the
unconfoundedness assumption. Note that this approach is an explicit example where we leverage
the advantages of the SCM and PO frameworks: the causal graph helps to select relevant variables
during the conception phase of the study and to assess identifiability of the target estimand, and the
treatment effect analysis uses different estimation methods from the PO framework.

Pre-hospital (and before treatment)

Intra-hospital (and after treatment)

NAs

NAs

NAs

NAs

NAs

NAs

NAs

NAs
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NAs
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NAs

NAs

NAs

NAs

NAs

NAs

NAs

NAs

NAs

NAs

Figure 2.20: Causal graph representing treatment, outcome, confounders and other predictors of outcome (Figure
generated using DAGitty (Textor et al., 2011); NAs indicates variables that have missing values).

12This doubly robust method is implemented in the R package grf (Athey et al., 2019).
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2.H.2 Common covariates description between CRASH-3 and
Traumabase

In the following, we discuss definitions of common variables, outcome, treatment, and designs in order
to leverage both sources of information. We recall the causal question of interest: “What is the effect
of the TXA on head-injury related death in patients suffering from TBI?” This part is important for
the alignment of the study protocol.

Treatment exposure. The treatment protocol of CRASH-3 precisely frames the timing and mean
of administration (a first dose given by intravenous injection shortly after randomization, i.e., within 3
hours of the accident, and a maintenance dose given afterwards (Dewan et al., 2012)). For consistency
with the original CRASH-3 study described above, we also only keep observations from the RCT with
administration within 3 hours. The Traumabase study being a retrospective analysis, this level of
granularity concerning TXA is not available. Neither the exact timing, nor the type of administration
are specified for patients who received the drug. However, the expert committee agreed that the
assumption of treatment within 3 hours of the accident is plausible since this drug is administered in
pre-hospital phase or within the first 30 minutes at the hospital.

Outcome of interest. The CRASH-3 trial defines its primary outcome as head injury related death
in hospital within 28 days of injury. For the Traumabase data we also look at death in hospital within
28 days but with a wider range of possible causes of death, namely TBI, brain death, multiple organ
failure, brain death, or withdrawal of life-sustaining therapy.

Multi-centered design. Both studies are multi-centered, but while the Traumabase is a French
registry with over 20 participating Trauma Centers, the CRASH-3 trial enrolled patients in various
countries on different continents. This large spectrum of participating centers is likely to contribute
to external validity of the CRASH-3 trial, it should nevertheless be noted that more than 65% of the
patients included are from developing countries; regions of the world that differ from developed coun-
tries by a prolonged pre-hospital care period, limited access to brain imaging tests and neurosurgery
within short periods of time, and the absence of expert centers for major trauma and neuro-intensive
care. Thus, on top of the restrictive inclusion criteria of the RCT, this aspect of large heterogeneity
in the participating Trauma centers motivates the combination of both studies to estimate the effect
for a population with access to a specific high level of care, here represented by the French Trauma
centers.

Covariates accounting for trial eligibility. In total, four criteria depending on five variables
determined inclusion in the CRASH-3 trial: age (only adults were eligible), presence of TBI (defined
as presence of intracranial bleeding on the CT scan, or a GCS of less than 13 in the case of no available
CT scan), absence of major extracranial bleeding (defined explicitly in CRASH-3 and defined via the
number of packed red blood cells transfused in the first 6 hours of admission or by colloid injection
in the Traumabase), and delay of less than 8 hours (later reduced to 3 hours) between the injury and
the randomization. The necessary variables are also available in the Traumabase, either exactly or in
form of close proxies, which allows the estimation of the trial inclusion model on the combined data.

Additional covariates. Note that other covariates are available in both data sets, while not di-
rectly related to trial inclusion according to CRASH-3 investigators. But as they could be covariates
moderating the treatment effect, we include them. According to the two studies, we can add three of
them: sex (binary), systolic blood pressure (continuous), and pupils reactivity (categorical, ranging
from 0 to 2, being the number of active pupils). Note that these three covariates are all mentioned as
baselines for the CRASH3 study (CRASH-3, 2019), where the authors argue that they are likely to
impact the outcome.
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2.H.3 Additional analysis

This part proposes additional analysis to the data analysis part (Section 7). We first propose additional
visualization of the distributional shift between CRASH-3 and the Traumabase, then we present a
principal component analysis of the combined database. Propensity scores obtained either with the
logistic regression or the forest are analyzed with histograms and scatter plots. Finally, a focus on the
different patients strata, based on the severity of the injury, is presented.

2.H.3.1 Distributional shift between CRASH-3 and Traumabase

Distributional shift between CRASH-3 and the Traumabase data can be illustrated with histograms.
Figures 2.21 – 2.25 presents the empirical distribution shift between the Traumabase and CRASH-3
for age, Glasgow score, systolic blood pressure, sex and pupils reactivity (respectively). Differences
can be observed, and for example the fact that the CRASH-3 study contains more young patients,
while the Traumabase contains more moderate case (corresponding to a high Glasgow score). It is
interesting to notice that the overlaps assumption seems to hold in our situation.

Figure 2.21: Distributional shift of Age between the Traumabase and the CRASH-3 studies.

Figure 2.22: Distributional shift of the Glasgow score between the Traumabase and the CRASH-3 studies.
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Figure 2.23: Distributional shift of the systolic blood pressure between the Traumabase and the CRASH-3
studies.

Figure 2.24: Distributional shift of the sex between the Traumabase and the CRASH-3 studies.

Figure 2.25: Distributional shift of the pupils reactivity between the Traumabase and the CRASH-3 studies.

2.H.3.2 Principal component analysis

A principal component analysis is performed on the combined data set for the Traumabase and the
CRASH-3 data using the FactoMineR package (Lê et al., 2008), results are presented on Figure 2.26.
As expected the Glasgow coma scale score and the pupils reactivity are related (paralysis of the cranial
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nerves leading to pupillary anomalies being closely related to the presence of an intracranial lesion,
itself linked to the state of consciousness encoded in the Glasgow.). Additionally, the link between
age and systolic blood pressure can be explained by the fact that atherosclerosis of the arteries is the
source of an increase in blood pressure and is related to age.
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Figure 2.26: PCA of the data set combining CRASH-3 and Traumabase data.

2.H.3.3 Conditional odds

The conditional odds obtained while performing the generalization from the CRASH-3 patients to the
observational data are presented on Figures 2.27 (logistic regression) and 2.28 (forest). We observe
that extreme coefficient values are obtained, and that the forest grf strengthens this trend. We
can further investigate the differences in between the two methods to infer the propensity scores
noticing that the forest method uses the NAs from the Traumabase to learn the propensity scores
model. Figure 2.29 shows that the NAs present in the systolic blood pressure covariate are used by the
random forest to predict S, leading to more extreme values at the end. This importance of different
missing values patterns when combining two data sets are of importance and highlight the need for a
better understanding of the impact of missing values in the present framework.

2.H.4 Evidence on other patient strata

The data analysis part only focuses on all the patients from the two studies CRASH-3 and Traumabase.
This part proposes a focus on different patients type, based on the severity of the brain trauma
(measured either with the Glasgow score or the pupils reactivity).

2.H.4.1 Traumabase: evidence on different strata

When stratifying along different criteria of severity as in the CRASH-3 study, namely pupil reactivity
and the Glasgow Coma Scale as illustrated in Table 2.7 with Mild/moderate and Severe strata, the two
studies provide different evidence: no average treatment effect in any of the strata for the Traumabase,
while the CRASH-3 study finds a beneficial effect for mild forms of TBI.
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Figure 2.27: Conditional odds histogram (glm) obtained with the misaem R package.
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Figure 2.28: Conditional odds histogram (grf) obtained with random forests.

2.H.4.2 CRASH-3: evidence on different strata

The CRASH-3 trial presents a significant treatment effect only on some strata (in particular on less
severe injured patients). As the brain-injury gravity has an effect on the outcome—most patients with
TBI with a GCS score of 3 (corresponding to a coma or unconsciousness state) and those with bilateral
non-reactive pupils have a very poor prognosis regardless of treatment—, the treatment effect is likely
to be biased towards the null. Therefore the CRASH-3 authors observe the maximal treatment effect
and statistical strength on mild to moderate injured patients, which is what we retrieve from the data.
This evidence is computed from the data, with a link between the risk ratio (RR) and the average
treatment effect (ATE) on Table 2.8.
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Figure 2.29: Scatter plot of the two conditional odds obtained with glm in x-axis and grf in the y-axis. Color
is set according to the systolic blood pressure covariate values (while missing values are in grey).

Table 2.7: ATE estimations from the Traumabase for TBI-related 28-day mortality. Red cells conclude on
deteriorating effect, white cells conclude on no effect.

Multiple imputation (MICE) MIA Unad-
justed
ATE
×102

IPW
(95% CI)
×102

AIPW
(95% CI)
×102

IPW
(95% CI)
×102

AIPW
(95% CI)
×102

GLM GRF GLM GRF

Total
(n = 8248)

15
(6.8, 23)

11
(6.0, 16)

3.4
(-9.0, 16)

-0.1
(-4.7, 4.4)

9.3
(4.0, 15)

-0.4
(-5.2, 4.4)

16

Mild/moderate
(GCS > 8,
n = 5228)

17
(-7.9, 42)

11
(3.3,18)

15
(-47, 77)

2.1
(-8.5, 13)

6.8
(2.6, 11)

-0.1
(-4.9, 4.7)

8.7

Severe
(GCS ≤ 8,
n = 2855)

10
(-7.0, 27)

7.7
(-6.6, 22)

2.2
(-14, 18)

-1.3
(-14, 11)

7.1
(-1.0, 15)

-0.3
(-4.6, 4.0)

9.5

Table 2.8: Results reproduction for CRASH-3, with four possible stratifications based on the gravity level of the
injury. Results are both presented as risk ratio (in accordance with CRASH-3 (2019)) and as ATE (in accordance
with our framework, Section 2.1).

Relative risk Average Treatment Effect
RR 95% CI ATE 95% CI

Total (within 3 hours) 0.94 (0.855, 1.02) -0.12 (−0.28, 0.004)
GCS > 3 or at least 1 pupil reacts 0.90 (0.78, 1.01) -0.02 (−0.03, 0.0005)
Mild/moderate (GCS > 8) 0.78 (0.59, 0.98) −0.2 (−0.03, −0.003)
Severe (GCS ≤ 8) 0.99 (0.91, 1.07) −0.004 (−0.04, 0.03)
Both pupils react 0.87 (0.74, 1.00) -0.015 (−0.03, −0.001)

2.H.4.3 Generalizing treatment effect on patient strata

As found by the CRASH-3 study, the group with potential benefit from TXA seems to be mild to
moderate TBI patients (Table 2.1), defined as patients with a Glasgow Coma Scale between 9 and 15,
while the evidence obtained from the Traumabase has not found a significant treatment effect for this
group. However, in this stratum, for the CRASH-3 study, none of the patients has major extracranial
bleeding, leading to a constant variable for this group. Conversely, in the Traumabase, in this stratum,
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Table 2.9: Sample sizes of both studies and different strata along the Glasgow Coma Scale. #maj.Ex corresponds
to the number of patients with a major extracranial bleeding.

Traumabase CRASH-3
m #treated #death #maj.Ex n #treated #death #maj.Ex

Total (within 3 hours) 8248 683 1411 5583 9168 4632 1745 5

Mild/moderate (GCS > 8) 5456 535 527 3392 5844 3075 600 0

Severe (GCS ≤ 8) 3083 596 1322 2224 3717 1985 1601 5

only four patients without major extracranial bleeding are treated (while 1867 are not treated with
TXA). Since the practitioners are interested in the treatment effect transported on patients with mild
to moderate TBI and with major extracranial bleeding, we cannot restrict the target population to
those patients without major extracranial bleeding. The current methodology does not allow to satisfy
the necessary assumptions for transporting the effect using the presented estimation strategies and
defining a clinically relevant target population. Further methodological investigations are required to
transport the effect on the stratified subpopulations (see Table 2.9 for the corresponding sample sizes).
This issue does not apply to the complementary stratum of severe TBI patients (corresponding to a
low Glasgow score, GCS ≤ 8). We can thus provide the results for this stratum in Figure 2.30. We
observe that on this strata discrepancies between the solely Traumabase estimators and the generalized
estimators are presents. The generalization supports either no-effect or a deleterious effect, while the
RCT and the observational estimators support the no-effect hypothesis.

EM AIPSW

EM plug−in g−formula

EM IPSW

EM IPSW.norm

GRF AIPSW

GRF plug−in g−formula

GRF IPSW

GRF IPSW.norm

GRF AIPW

MI AIPW

Difference in means

Difference in conditional means

−0.25 0.00 0.25 0.50 0.75
ATE

Generalization 
(3+3 variables)

Observational data 
(17+21 variables)

RCT 
(0 variables)

Figure 2.30: Juxtaposition of different estimation results for target population corresponding to the severe
Traumabase patients with ATE estimators computed on the Traumabase (observational data set), on the CRASH-3
trial (RCT), and transported from CRASH-3 to the Traumabase target population (severe TBI patients). Number of
variables used in each context is given in the legend.
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Chapter 3

A sensitivity analysis to handle missing
covariates

This chapter corresponds to the article entitled Causal effect on a target population: A sensitivity

analysis to handle missing covariates published in Journal of Causal Inference,

co-authored with Julie Josse, Gaël Varoquaux, and Erwan Scornet.

Chapter’s content
The previous Chapter contains a review of existing methods and theoretical guarantees of all the standard
generalization’s estimators to transport trial’s findings to a target population: namely weighting (IPSW),
outcome modeling (plug-in g-formula), or doubly robust approaches (AIPSW). All the consistency results we
found for these estimators were done under the assumption of a certain parametric generative process. This
Chapter proposes L1-consistency results for these three estimators when no parametric assumptions is made.
Chapter 2 ends on an application: the generalization of CRASH-3 findings to the Traumabase’s population.
In this application, there are good reasons to fear that the target causal effect can not be correctly identified
due to a missing covariate in the Traumabase’s data sets: the time between injury and treatment’s allocation.
As generalization’s technics are recent, very few work existed on how to deal with such a situation through a
sensitivity analysis, In this chapter, we derive the expected bias induced by a missing covariate, assuming a
Gaussian distribution, a continuous outcome, and a semi-parametric model. Under this setting, we propose a
sensitivity analysis for each missing covariate pattern and compute the sign of the expected bias. We also show
that there is no gain in linearly imputing a partially unobserved covariate. Finally, we study the substitution of a
missing covariate by a proxy. We illustrate all these results on simulations, as well as semi-synthetic benchmarks
using data from the Tennessee student/teacher achievement ratio (STAR). This method is also implemented on
our motivating example from critical care medicine.
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1 Introduction

Context Randomized Controlled Trials (RCTs) are often considered the gold standard for esti-
mating causal effects (Imbens and Rubin, 2015). Yet, they may lack external validity, when the
population eligible to the RCT is substantially different from the target population of the intervention
policy (Rothwell, 2007). Indeed, if there are treatment effect modifiers with a different distribution in
the target population than that in the trial, some form of adjustment of the causal effects measured on
the RCT is necessary to estimate the causal effect in the target population. Using covariates present
in both RCT and an observational sample of the target population, this target population average
treatment effect (ATE) can be identified and estimated with a variety of methods (Hotz et al., 2005;
Cole and Stuart, 2010; Stuart et al., 2011; Pearl and Bareinboim, 2011b; Tipton, 2013; Bareinboim
et al., 2014; Pearl and Bareinboim, 2014; Kern et al., 2016; Bareinboim and Pearl, 2016; Buchanan
et al., 2018; Stuart et al., 2018; Dong et al., 2020), reviewed in Colnet et al. (2020) and Degtiar and
Rose (2023).
In this context, two main approaches exist to estimate the target population ATE from a RCT. The
Inverse Probability of Sampling Weighting (IPSW) reweights the RCT sample so that it resembles
the target population with respect to the necessary covariates for generalization, while the G-formula
models the outcome, using the RCT sample, with and without treatment conditionally on the same
covariates, and then marginalizes the model to the target population of interest. These two methods
can be combined in a doubly-robust approach –Augmented Inverse Probability of Sampling Weighting
(AIPSW)– which enjoys better statistical properties. These methods rely on covariates to capture the
heterogeneity of the treatment and the population distributional shift. But the datasets describing the
RCT and the target population are seldom acquired as part of a homogeneous effort and as a result
they come with different covariates (Pearl and Bareinboim, 2011b; Susukida et al., 2016; Lesko et al.,
2016; Stuart and Rhodes, 2017; Egami and Hartman, 2021; Li et al., 2021). Restricting the analysis to
the covariates in common raises the risk of omitting an important one leading to identifiability issues.
Controlling biases due to unobserved covariates is of crucial importance for causal inference, where it
is known as sensitivity analysis (Cornfield et al., 1959; Imbens, 2003; Rosenbaum, 2005).

Prior work The problem of missing covariates is central in causal inference as, in an observational
study, one can never prove that there is no hidden confounding. In that setting, sensitivity analysis
strives to assess how far confounding would affect the conclusion of a study (for example, would the
ATE be of a different sign with such a hidden confounder). Such approaches date back to a study
on the effect of smoking on lung cancer (Cornfield et al., 1959), and have been further developed for
both parametric (Imbens, 2003; Rosenbaum, 2005; Dorie et al., 2016; Ichino et al., 2008; Cinelli and
Hazlett, 2020) and semi-parametric situations (Franks et al., 2019; Veitch and Zaveri, 2020). Typically,
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the analysis translates expert judgment into mathematical expression of how much the confounding
affects treatment assignment and the outcome, and finally how much the estimated treatment effect
is biased. In practice the expert must usually provide sensitivity parameters that reflect plausible
properties of the missing confounder. Classic sensitivity analysis, dedicated to ATE estimation from
observational data, use as sensitivity parameters the impact of the missing covariate on treatment
assignment probability along with the strength on the outcome of the missing confounder. However,
given that these quantities are hardly directly transposable when it comes to generalization, these
approaches cannot be directly applied to estimating estimate the population treatment effect. These
parameters have to be respectively replaced by the covariate shift and the strength of a treatment
effect modifier Existing sensitivity analysis methods for generalization usually consider a completely
unobserved covariate. Andrews and Oster (2019) rely on a logistic model for sampling probability and a
linear generative model of the outcome. Dahabreh et al. (2019) propose a sensitivity analysis assuming
a model on the identification bias of the conditional average treatment effect. Very recent works
propose two other approaches: (i) Nie et al. (2021) rely on the IPSW estimator and bound the error
on the the density ratio and then derive the bias on the ATE following the spirit of Rosenbaum (2005);
(ii) Huang et al. (2021) present a method with very few assumptions on the data generative process
leading to three sensitivity parameters, including the variance of the treatment effect. As the analysis
starts from two data sets, the missing covariate can also be partially observed in one of the two data set,
which opens the door to new dedicated methods, in addition to sensitivity methods for totally-missing
covariates. Following this observation, Nguyen et al. (2017, 2018) handle the case where a covariate
is present in the RCT but not in the observational data set, and establish a sensitivity analysis under
the hypothesis of a linear generative model for the outcome. When the missing covariate is partially
observed, practitioners sometimes impute missing values based on other observed covariates, though
this approach is poorly documented. For example, Lesko et al. (2016) impute a partially-observed
covariate in a clinical study using a range of plausible distributions. Imputation has also been used
in the context of individual participant data in meta-analysis (Resche-Rigon et al., 2013; Jolani et al.,
2015).

Contributions In this work we investigate the problem of a missing covariate that affects the
identifiability of the target population average treatment effect (ATE), a common situation when
combining different data sources. This work comes after the identifiability assessment, that is we
consider that the necessary set of covariates to generalize is known, but a necessary covariate is totally
or partially missing. Section 2 recalls the context along with the generic notations and assumptions
used when coming to generalization. In Section 3, we quantify the bias due to unobserved covariates
under the assumption of a semi-parametric generative process, considering a linear conditional average
treatment effect (CATE), and under a transportability assumption of links between covariates in both
populations. This bias is not estimator-specific and remains valid for the IPSW, G-formula, and
AIPSW estimators. We also prove that a linear imputation of a partially missing covariate can not
replace a sensitivity analysis. As mentioned in the introduction, and unlike classic sensitivity analysis,
several missing data patterns can be observed: either totally missing or missing in one of the two
sets. Therefore Section 3 provides sensitivity analysis frameworks for all the possible missing data
patterns, including the case of a proxy variable that would replace the missing one. These results
can be useful for users as they may be tempted to consider the intersection of common covariates
between the RCT and the observational data. We detail how the different patterns involve either one
or two sensitivity parameters. To give users an interpretable analysis, and due to the specificity of the
sensitivity parameters at hands, we propose an adaptation of sensitivity maps (Imbens, 2003) that are
commonly used to communicate sensitivity analysis results. Section 4 presents an extensive synthetic
simulation analysis that illustrates theoretical results along with a semi-synthetic data simulation
using the Tennessee Student/Teacher Achievement Ratio (STAR) experiment evaluating the effect of
class size on children performance in elementary schools (Krueger, 1999b). Finally, Section 5 provides
a real-world analysis to assess the effect of acid tranexomic on the Disability Rating Score (DRS) for
trauma patients when a covariate is totally missing.
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2. Problem setting: generalizing a causal effect

2 Problem setting: generalizing a causal effect

This section recalls the complete case context and identification assumptions. Any reader familiar
with the notations and willing to jump to the sensitivity analysis can directly go to Section 3.

2.1 Notations

Notations are grounded on the potential outcome framework (Imbens and Rubin, 2015). We model
each observation in the RCT or observational population as described by (Xi, Yi(0), Yi(1), Ai, Si), a
random tuple for i ∈ {1, . . . , n} drawn from a distribution (X,Y (0), Y (1), A, S) ∈ Rp × R2 × {0, 1}2,
such that the observations are iid. For each observation, Xi is a p-dimensional vector of covariates,
Ai denotes the binary treatment assignment (with Ai = 1 if treated and Ai = 0 otherwise), Yi(a) is
the continuous outcome had the subject been given treatment a (for a ∈ {0, 1}), and Si is a binary
indicator for RCT eligibility (i.e., meet the RCT inclusion and exclusion criteria) and willingness to
participate if being invited to the trial (Si = 1 if eligible and Si = 0 if not). Assuming consistency of
potential outcomes, and no interference between treated and non-treated subject (SUTVA assumption),
we denote by Yi = AiYi(1) + (1 − Ai)Yi(0) the observed outcome under treatment assignment Ai.
Assuming the potential outcomes are integrable, we define the conditional average treatment effect
(CATE):

∀x ∈ X , τ(x) = E [Y (1)− Y (0) | X = x] ,

and the population average treatment effect (ATE):

τ = E [Y (1)− Y (0)] = E [τ(X)] .

Unless explicitly stated, all expectations are taken with respect to all variables involved in the ex-
pression. We model the patients belonging to an RCT sample of size n and in an observational
data sample of size m by n +m independent random tuples: {Xi, Yi(0), Yi(1), Ai, Si}n+mi=1 , where the
RCT samples i = 1, . . . , n are identically distributed according to P(X,Y (0), Y (1), A, S | S = 1),
and the observational data samples i = n + 1, . . . , n + m are identically distributed according to
P(X,Y (0), Y (1), A, S). We also denote R = {1, . . . , n} the index set of units observed in the RCT
study, and O = {n+ 1, . . . , n+m} the index set of units observed in the observational study.
For each RCT sample i ∈ R, we observe (Xi, Ai, Yi, Si = 1), while for observational data i ∈ O, we
consider the setting where we only observe the covariates Xi, which is a common case in practice. A
typical data set is presented on Table 3.1.

Because the RCT sample and observational data do not follow the same covariate distribution, the
ATE τ is different from the RCT’s (or sample1) average treatment effect τ1 which can be expressed
as:

τ ̸= τ1, where τ1 := E [Y (1)− Y (0) | S = 1] .

This difference is the core of the lack of external validity introduced in the beginning of the work, but
formalized with a mathematical expression2. Throughout the paper, we denote µa(x) := E [Y (a) | X = x]
the conditional mean outcome under treatment a ∈ {0, 1} (also called responses surfaces). and
e1(x) := P(A = 1 | X = x, S = 1) the propensity score in the RCT population. This function
is imposed by the trial characteristics and is usually a constant denoted by e1 (other cases include
stratified RCT trials).

1Usually τ1 is also called the Sample Average Treatment Effect (SATE), when τ is named the Population Average
Treatment Effect (PATE) (Stuart et al., 2011; Miratrix et al., 2017; Egami and Hartman, 2021; Degtiar and Rose, 2023).

2We would like to emphasize the fact that the target quantity is not E [Y (1)− Y (0) | S = 0], but τ := E [Y (1)− Y (0)].
This notation highlights that the trial sample is a biased sample from a superpopulation, while the observational data
is an unbiased sample of this population. In other words, the target population contains individuals with S = 1 or
S = 0. Note that the generalizability problem tackled in this work - aiming to recover from a sampling bias - can also
be equivalently seen as a transportability problem with two separate populations and a common support. See Colnet
et al. (2020) for a discussion, or Nie et al. (2021) for a similar sensitivity analysis method, presented as a transportability
problem.
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For notational clarity, estimators are indexed by the number of observations used for their computation.
For instance, response surfaces can be estimated using controls and treated individuals in the RCT to
obtain respectively µ̂0,n and µ̂1,n. Similarly, we denote by τ̂n an estimator of τ depending only on the
RCT samples (for example the difference-in-means estimator), and by τ̂n,m an estimator computed
using both datasets.

2.2 Identifiability (or causal) assumptions

The consistency of treatment assignment assumption (Y = AY (1) + (1 − A)Y (0)) has already been
introduced in Section 2. To ensure the internal validity of the RCT, we need to assume randomization
of treatment assignment and positivity of trial treatment assignment.

Assumption 16 (Treatment randomization within the RCT). ∀a ∈ {0, 1}, Y (a) ⊥⊥ A | S = 1, X.

In some cases, the trial is said to be completely randomized, that is ∀a ∈ {0, 1}, Y (a) ⊥⊥ A | S = 1,
thus removing any potential stratification of the treatment assignment.

Assumption 17 (Positivity of trial treatment assignment). ∃η1 > 0,∀x ∈ X , η1 ≤ e1(x) ≤ 1− η1

Under these two assumptions, along with the SUTVA assumption (see, e.g., Imbens and Rubin (2015)),
the most classical difference-in-means estimator is consistent for τ1. In order to generalize the RCT
estimate to the target population, three additional assumptions are required for identification of the
target population ATE τ .

Assumption 18 (Representativity of observational data). For all i ∈ O, Xi ∼ P(X) where P is the
target population distribution.

Then, a key assumption concerns the set of covariates that allows the identification of the target pop-
ulation treatment effect. This implies a conditional independence relation being called the ignorability
assumption on trial participation or S-ignorability (Hotz et al., 2005; Stuart et al., 2011; Tipton, 2013;
Hartman et al., 2015; Pearl, 2015; Kern et al., 2016; Stuart and Rhodes, 2017; Nguyen et al., 2018;
Egami and Hartman, 2021).

Assumption 19 (Ignorability assumption on trial participation - Stuart et al. (2011)).

Y (1)− Y (0) ⊥⊥ S | X.

Assumption 19 indicates that covariates X needed to generalize correspond to covariates being both
treatment effect modifiers and subject to a distributional shift between the RCT sample and the target
population.
Different strategies have been proposed to assess whether a treatment effect is constant or not, and
usually relies on marginal variance, CDFs or quantiles comparison (Ding et al., 2016). Other techniques
are possible such as comparing Var [Y | Xobs, A = 1, S = 1] to Var [Y | Xobs, A = 0, S = 1], in order to
assess whether or not an important treatment effect modifier is missing. In our work, we assume that
the user is aware of which variables are treatment effect modifiers and subject to a distributional shift.
We call these covariates as key covariates.

Assumption 20 (Positivity of trial participation - Stuart et al. (2011)). There exists a constant c
such that for all x with probability 1, P(S = 1 | X = x) ≥ c > 0

2.3 Estimation strategies

To transport the ATE, several methods exist: the G-formula (Lesko et al., 2017; Pearl and Bareinboim,
2011b; Dahabreh et al., 2019), Inverse Propensity Weighting Score (IPSW) (Cole and Stuart, 2010;
Lesko et al., 2017; Buchanan et al., 2018), and the Augmented IPSW (AIPSW) estimators. Note
that other methods exist, such as calibration (Dong et al., 2020; Chattopadhyay et al., 2022). For
example the G-formula estimator consists in modeling the expected values for each potential outcome,
conditional on the covariates.
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3. Impact of a missing key covariate for a linear CATE

Definition 16 (G-formula - Dahabreh et al. (2019)). The G-formula is denoted τ̂G,n,m, and defined
as

τ̂G,n,m =
1

m

n+m∑
i=n+1

(µ̂1,n(Xi)− µ̂0,n(Xi)) , (3.1)

where µ̂a,n(Xi) is an estimator of µa(Xi) obtained on the RCT sample. These intermediary estimates
are called nuisance components.

Beyond causal assumptions stated above, the behavior of the G-formula estimator strongly depends
on that of the surface response estimators µ̂a,n for a ∈ {0, 1}. To analyze the G-formula, we introduce
below assumptions on the consistency of the nuisance parameters µ̂0,n and µ̂1,n.

Assumption 21 (Consistency of surface response estimators). Denote µ̂0,n (respectively µ̂1,n) an
estimator of µ0 (respectively µ1). Let Dn the RCT sample, so that

(H1-G) For a ∈ {0, 1}, E [|µ̂a,n(X)− µa(X)| | Dn]
p→ 0 when n→∞,

(H2-G) For a ∈ {0, 1}, there exist C1, N1 so that for all n ⩾ N1, almost surely, E
[
µ̂2a,n(X) | Dn

]
⩽ C1.

Proposition 1 (Informal - L1-consistency of G-formula, IPSW, and AIPSW). Under causal assump-
tions (Assumptions 16, 17, 18, 19, and 20) and Assumption 21, the G-formula is L1-consistent
(asymptotically unbiased). In appendix we recall definitions of IPSW and AIPSW estimators and give
the precise conditions under which L1-consistency of those estimators is achieved (see Section 3.A).

Proofs and a more formal statement are in Section 3.B. The sensitivity analysis presented below holds
for any L1-consistent estimator.

3 Impact of a missing key covariate for a linear CATE

3.1 Situation of interest: a missing covariate in one dataset

We study the common situation where both data sets (RCT and observational) contain a different
subset of the total covariates X. X can be decomposed as X = Xmis ∪Xobs where Xobs denotes the
covariates that are present in both data sets, the RCT and the observational study. Xmis denotes the
covariates that are either partially observed in one of the two data sets or totally unobserved in both
data sets. We do not consider (sporadic) missing data problems as in Mayer et al. (2021), but only
cases where the covariate is totally observed or not per data sources. We denote by obs (resp. mis)
the index set of observed (resp. missing) covariates. An illustration of a typical data set is presented
in Table 3.1, with an example of two missing data patterns.

Covariates
Set X1 X2 X3 A Y

1 R 1.1 20 5.4 1 10.1
R -6 45 8.3 0 8.4

n R 0 15 6.2 1 14.5
n+ 1 O . . . . . . . . .

O -2 52 NA NA NA

O -1 35 NA NA NA

n+m O -2 22 NA NA NA

Covariates
Set X1 X2 X3 A Y

1 R 1.1 20 NA 1 10.1
R -6 45 NA 0 8.4

n R 0 15 NA 1 14.5
n+ 1 O . . . . . . . . .

O -2 52 3.4 NA NA

O -1 35 3.1 NA NA

n+m O -2 22 5.7 NA NA

Figure 3.1: Typical data structure, where a covariate would be available in the RCT, but not in the observational
data set (left) or the reverse situation (right). In this specific example, obs = {1, 2} (mis = {3}), corresponds to
common (resp. different) covariates in the two datasets.

In our context, due to (partially-)unobserved covariates, estimators of the target population ATE may
be implemented on Xobs only.
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To make the notations clear, we add a subscript obs on any estimator applied on the set Xobs rather
than X. Such estimators may suffer from bias due to Assumption 19 violation, that is:

Y (1)− Y (0) ⊥⊥ S | X but Y (1)− Y (0) ̸⊥⊥ S | Xobs

We denote τ̂n,m,obs any generalization estimator (G-formula, IPSW, AIPSW) applied on the covariate
set Xobs rather than X.

3.2 Expression of the missing-covariate bias

3.2.1 Model and hypothesis

To analyze the effect of a missing covariate, we introduce a nonparametric generative model. In
particular, we focus on zero-mean additive-error representation,
where the CATE depends linearly on X. We admit that there exist δ ∈ Rp, σ ∈ R+, and a function
g : X → R, such that:

Y = g(X) +A⟨X, δ⟩+ ε, where ε ∼ N
(
0, σ2

)
, (3.2)

assuming τ(X) := ⟨X, δ⟩. In appendix (see Section 3.D) we prove why this assumption on the
generative model for Y does not come with a loss of generality.
Under this model, the Average Treatment Effect (ATE) takes the following form:

τ =

∫
E [Y (1)− Y (0) | X = x] f(x)dx =

∫
⟨δ, x⟩f(x)dx = δTE[X].

Only variables that are both treatment effect modifier (δj ̸= 0) and subject to a distributional change
between the RCT and the target population are necessary to generalize the ATE. If some of these key
covariates are missing, the estimation of the target population ATE will be biased. Our goal here is to
express the bias of a missing variable on the transported ATE. But first, we have to specify a context
in which a certain permanence of the relationship between Xobs and Xmis in the two data sets holds.
Therefore, we introduce the Transportability of covariate relationship assumption.

Assumption 22 (Transportability of covariate relationship). The distribution of X is Gaussian, that
is, X ∼ N (µ,Σ), and transportability of Σ is true, that is, X | S = 1 ∼ N (µRCT ,Σ).

This assumption, and in particular, the transportability of Σ, is of major importance for the sensi-
tivity analysis develop below. Indeed, as soon as the correlation pattern changes in amplitude and
sign between the two populations, the sensitivity analysis can be invalidated. The plausibility of As-
sumption 22 can be partially assessed through a statistical test on Σobs,obs for example a Box’s M test
(Box, 1949), supported with vizualizations (Friendly and Sigal, 2020). A discussion can be found in
the experimental study (Section 4) and in appendix (Section 3.G), showing that this assumption is
plausible in many situations.

3.2.2 Main result

Theorem 5. Assume that Assumptions 16, 17, 18, 19, 20 (identifiability) hold, along with Model
eq. 3.2 and Assumption 22 (sensitivity model). Let B be the following quantity:

B = −
∑
j∈mis

δj

(
E [Xj ]− E [Xj | S = 1]− Σj,obsΣ

−1
obs,obs (E [Xobs]− E [Xobs | S = 1])

)
, (3.3)

where Σobs,obs is the submatrix of Σ composed of rows and columns corresponding to variables present
in both data sets. Similarly, Σj,obs is composed of the jth row of Σ and has columns corresponding
to variables present in both data sets. Consider a procedure τ̂n,m that estimates τ with no asymptotic
bias (for example the G-formula introduced in Definition 16 under Assumption 21). Let τ̂n,m,obs be the
same procedure but trained on observed data only. Then

lim
n,m→∞

E [τ̂n,m,obs]− τ = B. (3.4)

Proof is given in appendix (see Section 3.C).
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3. Impact of a missing key covariate for a linear CATE

Comment on L1-consistency Theorem 5 is valid for any L1-consistent generalization estimator.
In particular, we provide in appendix the detailed assumptions (similar as Assumption 21) under which
two other popular estimators, IPSW and AIPSW, are asymptotically unbiased (see Section 3.A). Note
that most of the existing works on estimating the target population causal effect focus on identification
or establish consistency for parametric models or oracle estimators which are not bona fide estimation
procedures as they require knowledge of some population data-generation mechanisms (Cole and
Stuart, 2010; Stuart et al., 2011; Lunceford and Davidian, 2004; Buchanan et al., 2018; Dahabreh
et al., 2019; Egami and Hartman, 2021). To our knowledge, no general L1-consistency results for the
G-formula, IPSW, and AIPSW procedures are available in a non-parametric case, when either the
CATE or the weights are estimated from the data without prior knowledge.

What if outcomes are also available in the observational sample? Who can do more can do
less, therefore this outcome covariate could be dropped and the analysis conducted without it. But
alternative strategies exist. First, the outcome in the observational data – even if present in only
one of the treatment group – would allow to test for the presence or absence of a missing treatment
effect modifier (Degtiar and Rose, 2023) (see their Section 4.2), and therefore its strength. Moreover
this would allow to rely on strategies to diminish the variance of the estimates (Huang et al., 2021).
Finally, the assumption of a linear CATE could be reconsidered and softened, but we let this question
to future work.

3.3 Sensitivity analysis

The above theoretical bias B (see equation 3.3) can be used to translate expert judgments about the
strength of missing covariates, which corresponds to sensitivity analysis. In the rest of our work, we
exemplify Theorem 5 in scenarios for which there is a totally unobserved covariate (Section 3.3.1),
a missing covariate in RCT (Section 3.3.2), or a missing covariate in the observational sample (Sec-
tion 3.3.2). Section 3.3.3 completes the previous sections presenting an adaptation to sensitivity maps.
Finally Section 3.3.4 details the imputation case, and Section 3.3.5 the case of a proxy variable. All
these methods rely on different assumptions recalled in Table 3.1.

Missing covariate pattern Assumption(s) required Procedure’s label

Totally unobserved covariate Xmis ⊥⊥ Xobs 1
Partially observed in observational study Assumption 22 2
Partially observed in RCT No assumption 3
Proxy variable Assumptions 22 and 23 5

Table 3.1: Summary of the assumptions and results pointer for all the sensitivity methods according to the
missing covariate pattern when the generative outcome is semi-parametric with a linear CATE eq. 3.2.

3.3.1 Sensitivity analysis when a key covariate is totally unobserved

When a covariate is totally unobserved, a common and natural assumption is to assume independence
between this covariate and the observed ones (Imbens, 2003). Although strong, this assumption allows
us to estimate the identification bias.

Corollary 1 (Sensitivity model). Assume that Model eq. 3.2 holds, along with Assumptions 16, 17,
18, 19, 20, and 22. Assume also that Xmis ⊥⊥ Xobs, Xmis ⊥⊥ Xobs | S = 1. Consider a procedure τ̂n,m
that estimates τ with no asymptotic bias. Let τ̂n,m,obs be the same procedure but trained on observed
data only. Then

lim
n,m→∞

E[τ̂n,m,obs]− τ = −δmis∆m

where ∆m = E[Xmis]− E[Xmis | S = 1].

Corollary 1 is a direct consequence of Theorem 5, particularized for the case where Xobs ⊥⊥ Xmis and
Xobs ⊥⊥ Xmis | S = 1. In this expression, ∆m and δmis are called the sensitivity parameters. To
estimate the bias implied by an unobserved covariate, we have to determine how strongly Xmis is a
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treatment effect modifier (through δmis), and how strongly it is linked to the trial inclusion (through
the shift between the trial sample and the target population ∆m = E [Xmis]− E [[Xmis | S = 1]).

Table 3.2 summarizes the similarities and differences with Imbens (2003), Andrews and Oster (2019)’s
approaches, and our approach.

Imbens (2003) Andrews and Oster (2019) Sensitivity model
Assumption on covariates Xmis ⊥⊥ Xobs Xmis ⊥⊥ Xobs Xmis ⊥⊥ Xobs

Model on Y Linear model Linear model Linear CATE eq. 3.2
Other assumption Model on A (logit) Model on S (logit) -
First sensitivity parameter Strength on Y , using δmis Strength on Y , using δmis Strength on Y , using δmis

Second sensitivity parameter Strength on A (logit’s coefficient) Strength on S (logit’s coefficient) ∆m: shift of Xmis

Table 3.2: Summary of the differences between Imbens (2003)’s method, being a prototypical method for sensitivity
analysis for observational data and hidden counfounding, Andrews and Oster (2019)’s method and our method.

In the setting of Corollary 1, sensitivity analysis can be carried out using Procedure 1 described below.
To represent the bias magnitude as a function of the sensitivity parameters, we develop a graphical
aid adapted from sensitivity maps(Imbens, 2003; Veitch and Zaveri, 2020).

Procedure 1: A totally-unobserved covariate

init : δmis := [. . . ]; // Define a range for plausible δmis values

init : ∆m := [. . . ] ; // Define arange for plausible ∆m values

Compute all possible bias −δmis∆m (see Lemma 1)
return Sensitivity map

A partially-observed covariate could always be removed so that this sensitivity analysis could be con-
ducted for every missing data patterns (the variable being missing in the RCT or in the observational
data). However dropping a partially-observed covariate (i) is inefficient as it discards available in-
formation, (ii) amounts to considering the variable as totally unobserved which, in turn, leads us to
assume independence between observed and unobserved covariates, a very strong hypothesis. There-
fore, in the following subsections, we propose methods that use the partially-observed covariate – when
available – to improve the bias estimation.

3.3.2 Sensitivity analysis when a key covariate is partially unobserved

When partially available, we propose to use Xmis to have a better estimate of the bias. Unlike the
above, this approach does not need the partially observed covariate to be independent of all other
covariates, but rather captures the dependencies from the data.

Observed in observational study Suppose one key covariateXmis is observed in the observational
study, but not in the RCT. Under Assumption 22, the asymptotic bias of any L1-consistent estimator
τ̂n,m,obs is derived in Theorem 5. The quantitative bias is informative as it depends only on the
regression coefficients δ, and on the shift in expectation between covariates. Indeed, the bias term can
be decomposed as follows:

B = − δmis︸︷︷︸
Xmis’s strength

E [Xmis]− E [Xmis | S = 1]︸ ︷︷ ︸
Shift of Xmis: ∆m

−Σmis,obsΣ
−1
obs,obs(E [Xobs]− E [Xobs | S = 1])︸ ︷︷ ︸
Can be estimated from the data

 .

Using the observational study where the necessary covariates are all observed, one can estimate the
covariance term Σmis,obsΣ

−1
obs,obs together with the shift for the observed set of covariates. Unfortu-

nately, the remaining parameters δmis, corresponding to the coefficient of the missing covariates in the
complete linear model, and ∆m = E[Xmis] − E[Xmis | S = 1] are not identifiable from the observed
data. These two parameters correspond respectively to the strength of the treatment effect modifier
and the distributional shift of the missing covariate. These two quantities are used as sensitivity pa-
rameters to estimate a plausible range of the bias (see Procedure 2). Simulations illustrate how these
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sensitivity parameters can be used, along with graphical visualization derived from sensitivity maps
(see Section 4).

Procedure 2: Observed in observational

init : δmis := [. . . ]; // Define a range for plausible δmis values

init : ∆mis := [. . . ] ; // Define a range for plausible ∆mis values

Estimate Σobs,obs, Σmis,obs, and E[Xobs] on the observational dataset;
Estimate E[Xobs | S = 1] on the RCT dataset;
Compute all possible biases for the predefined ranges of δmis and ∆mis, according to
Theorem 5.

return Sentivity map

Data-driven approach to determine sensitivity parameter Note that guessing a good range
for the shift ∆mis is probably easier than giving a range for the coefficients δmis. We propose a
data-driven method to estimate δmis. First, learn a linear model of Xmis from observed covariates
Xobs on the observational data, then impute the missing covariate in the trial, and finally obtain δ̂mis
with a Robinson procedure on the imputed trial data (Robinson, 1988; Wager, 2020; Nie and Wager,
2020). The Robinson procedure is recalled in Appendix (see Section 3.E). This method is used in the
semi-synthetic simulation (see Section 4.2).

Observed in the RCT The method we propose here was already developed by Nguyen et al. (2017,
2018), and we briefly recall its principle in this part. Note that we extend this method by considering
a semi-parametric model eq. 3.2, while they considered a completely linear model. For this missing
covariate pattern, only one sensitivity parameter is necessary. As the RCT is the complete data set,
the regression coefficients δ of eq. 3.2 can be estimated for all the key covariates, leading to an estimate
δ̂mis for the partially unobserved covariate. Nguyen et al. (2017, 2018) showed that:

τ = ⟨δobs,E [Xobs]⟩ + ⟨δmis, E [Xmis]︸ ︷︷ ︸
Unknown

⟩. (3.5)

In this case, and as the influence of Xmis as a treatment effect modifier can be estimated from the
data through δ̂mis, only one sensitivity parameter is needed, namely E[Xmis]. Therefore, we assume
to be given a range of plausible values for E[Xmis], for example according to a domain expert prior.

Note that δmis can be estimated following a Robinson procedure. This allows extending Nguyen et al.
(2018)’s work to the semi-parametric case. Softening even more the parametric assumption where
only Xmis is additive in the CATE is a natural extension, but out of the scope of the present work.

Procedure 3: Observed in RCT

init : E[Xmis] := [. . . ] ; // Define a range for plausible values of E[Xmis]
Estimate δ with the Robinson procedure, that is:
Run a non-parametric regression Y ∼ X on the RCT, and denote
m̂n(x) = E[Y | X = x, S = 1]the obtained estimator;

Define the transformed features Ỹ = Y − m̂n(X) and Z̃ = (A− e1(X))X.
Estimate δ̂ running the OLS regression on Ỹ ∼ Z̃;
Estimate E[Xobs] on the observational dataset;
Compute all possible biases for yhe range of E[Xmis] according to eq. 3.5.
return Sensitivity map

3.3.3 Vizualization: sensitivity maps

From now on, each of the sensitivity method suppose to translate sensitivity parameter(s) and to
compute the range of bias associated. A last step is to communicate or visualize the range of biases,
which is slightly more complicated when there are two sensitivity parameters. Sensitivity map is a
way to aid such judgement (Imbens, 2003; Veitch and Zaveri, 2020). It consists in having a two-
dimensional plot, each of the axis representing the sensitivity parameter, and the solid curve is the set
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Figure 3.2: Sensitivity maps: On this figure X3 is supposed to be a missing covariate. (Left) Regular sensitivity
map showing how strong an key covariate would need to be to induce a bias of ∼ 6 in function of the two sensitivity
parameters ∆m and partial R2 when a covariate is totally unobserved. (Right) The exact same simulation data are
represented, while using rather δmis than the partial R2, and superimposing the heatmap of the bias which allows to
reveal the general landscape along with the sign of the bias.

of sensitivity parameters that leads to an estimate that induces a certain bias’ threshold. Here, we
adapt this method to our settings with several changes. Because coefficients interpretation is hard, a
typical practice is to translate a regression coefficient into a partial R2. For example, Imbens (2003)
prototypical example proposes to interpret the two parameters with partial R2. In our case, a close
quantity can be used:

R2 ∼ V[δmisXmis]

V[
∑

j∈obs δ̂j Xj ]
(3.6)

where the denominator term is obtained when regressing Y on Xobs. If this R2 coefficient is close
to 1, then the missing covariate has a similar influence on Y compared to other covariates. On the
contrary, if R2 is close to 0, then the impact of Xmis on Y as a treatment effect modifier is small
compared to other covariates. But in our case one of the sensitivity parameter is really palpable as it
is the covariate shift ∆m.

We advocate keeping the regression coefficient and shift as sensitivity parameter rather than a R2 to
help practitioners as it allows to keep the sign of the bias, than can be in favor of the treatment or
not and help interpreting the sensitivity analysis. Furthermore, even if postulating an hypothetical
value of a coefficient is tricky, when the covariate is partially observed an imputation procedure can
be proposed to have a grasp of the coefficient true value.

On Figure 3.2 we present a glimpse of the simulation result, to introduce the principle of the sensitivity
map, with on the left the representation using R2 and on the right a representation keeping the raw
sensitivity parameters. In this plot, we consider the covariate X3 to be missing, so that we represent
what would be the bias if we missed X3?, The associated sensitivity parameters are represented on
each axis. In other word, the sensitivity map shows how strong an unobserved key covariate would
need to be to induce a bias that would force to reconsider the conclusion of the study because the
bias is above a certain threshold, that is represented by the blue line. For example in our simulation
set-up, X3 is below the threshold as illustrated on Figure 3.2. The threshold can be proposed by
expert, and here we proposed the absolute difference between τ̂n,m,obs and the RCT estimate τ̂1 as a
natural quantity. In particular, we observe that keeping the sign of the sensitivity parameter allows
to be even more confident on the direction of the bias.

3.3.4 Partially observed covariates: imputation

Another practically appealing solution is to impute the partially-observed covariate, based on the
complete data set (whether it is the RCT or the observational one) following Procedure 4. We analyse
theoretically in this section the bias of such procedure in Corollary 2, and show there is no gain in
linearly imputing the partially-observed covariate.

To ease the mathematical analysis, we focus on a G-formula estimator based on oracles quantities:
the best imputation function and the surface responses are assumed to be known. While these are not
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available in practice, they can be approached with consistent estimates of the imputation functions
and the surface responses. The precise formulations of our oracle estimates are given in Definition 17
and Definition 18.

Definition 17 (Oracle estimator when covariate is missing in the observational data set). Assume
that the RCT is complete and that the observational sample contains one missing covariate Xmis. We
assume that we know

(I) the true response surfaces µ1 and µ0,

(II) the true linear relation between Xmis as a function of Xobs.

Our oracle estimate τ̂G,∞,m,imp consists in applying the G-formula with the true response surfaces µ1
and µ0 (I) on the observational sample, in which the missing covariate has been imputed by the best
(linear) function (II).

Definition 18 (Oracle estimator when covariate is missing in the RCT data set). Assume that the
observational sample is complete and that the RCT contains one missing covariate Xmis. We assume
that we know

(I) the true linear relation between Xmis as a function of Xobs, which leads to the optimal imputation
X̂mis,

(II) the conditional expectations, E
[
Y (a)|Xobs, X̂mis, S = 1

]
, for a ∈ {0, 1}.

Our oracle estimate τ̂G,∞,∞,imp consists in optimally imputing the missing variable Xmis in the RCT
(I). Then, the G-formula is applied to the observational sample, with the surface responses that have
been perfectly fitted on the completed RCT sample.

Corollary 2 (Oracle bias of imputation in a Gaussian setting). Assume that the CATE is linear
eq. 3.2 and that Assumption 22 holds. Let B be the following quantity:

B = δmis

(
E [Xmis]− E [Xmis | S = 1]− Σj,obsΣ

−1
obs,obs(E [Xobs]− E [Xobs | S = 1])

)
.

• Complete RCT. Assume that the RCT is complete and that the observational data set contains
a missing covariate Xmis. Consider the oracle estimator τ̂G,∞,m,imp in Definition 17. Then,

τ − lim
m→∞

[τ̂G,∞,m,imp] = B

• Complete Observational. Assume that the observational data set is complete and that the
RCT contains a missing covariate Xmis. Consider the oracle estimator τ̂G,∞,∞,imp in Defini-
tion 18. Then,

τ − E [τ̂G,∞,∞,imp] = B

Derivations are detailed in appendix (see Subsection 3.C.2). Corollary 2 highlights that there is no
gain in linearly imputing the missing covariate compared to dropping it. Simulations (Section 3.F)
show that the average bias of a finite-sample imputation procedure is similar to the bias of τ̂G,∞,∞,obs.

Procedure 4: Linear imputation

Model Xmis a linear combination of Xobs on the complete data set;
Impute the missing covariate with X̂mis with the previous fitted model;
Compute τ̂ with the G-formula using the imputed data set Xobs ∪ X̂mis;
return τ̂
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3.3.5 Using a proxy variable in place of the missing covariate

Another solution is to use a so-called proxy variable. The impact of a proxy in the case of a linear
model is documented in econometrics (Chen et al., 2005, 2007; Angrist and Pischke, 2008; Wooldridge,
2015). An example of a proxy variable is the height of children as a proxy for their age. Note that in
this case, even if the age is present in one of the two datasets, only the children’s height is kept in for
this method. Here, we propose a framework to handle a missing key covariate with a proxy variable
and estimate the bias reduction accounting for the additional noise brought by the proxy.

Assumption 23 (Proxy framework). Assume that Xmis ⊥⊥ Xobs, and that there exists a proxy variable
Xprox such that,

Xprox = Xmis + η,

where E[η] = 0, Var[η] = σ2prox, and Cov (η,Xmis) = 0. In addition we suppose that Var[Xmis] =
Var[Xmis | S = 1] = σ2mis.

Definition 19. Let τ̂G,n,m,prox be the G-formula estimator where Xmis is substituted by Xprox as
detailed in assumption 23.

Lemma 1. Assume that the generative linear model eq. 3.2 holds, along with Assumption 22 and the
proxy framework eq. 23. Then the asymptotic bias of τ̂G,n,m,prox is:

lim
n,m→∞

E[τ̂G,n,m,prox]− τ = −δmis∆m

(
1− σ2mis

σ2mis + σ2prox

)

We denote δ̂prox the estimated coefficient for Xprox. Such an estimation can be obtained using a
Robinson procedure when regressing Y on the set Xobs ∪Xprox.

Corollary 3. The asymptotic bias in lemma 1 can be estimated using the following expression:

lim
n,m→∞

E[τ̂G,n,m,prox]− τ = −δ̂prox
(
E[Xprox]− E[Xprox | S = 1]

)σ2prox
σ2mis

.

Proofs of Lemma 1 and Corollary 3 are detailed in Appendix (Proof 3.C.3). Note that, as ex-
pected, the average bias reduction strongly depends on the quality of the proxy. In the limit case,
if σprox ∼ 0 so that the correlation between the proxy and the missing variable is one, then the
bias is null. In general, if σprox ≫ σmis then the proxy variable does not diminish the bias. Fi-
nally, we propose a practical approach in Procedure 5. Note that it requires to have a range
of possible σprox values. We recommend to use the data set on which the proxy along with the
partially-unobserved covariate are present, and to obtain an estimation of this quantity on this subset.

Procedure 5: Proxy variable

init : σprox := [. . . ] ; // Define a range for plausible σprox values

if Xmis is in RCT then
init : ∆mis := [. . . ] ; // Define a range for plausible ∆mis values

Estimate δmis with the Robinson procedure (see Procedure 3 for details);
Compute all possible biases for the range of σprox according to Lemma 3.C.3.

else
Estimate δprox with the Robinson procedure (see Procedure 3 for details);
Estimate E[Xprox] and E[Xprox | S = 1];
Compute all possible bias for range of σprox according to Corollary 3.

return Biases’s range
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4 Synthetic and semi-synthetic simulations

More information on simulation settings can be found in Appendix see Section 3.F.

4.1 Synthetic simulations

Figure 3.3: Variance-covariance preservation in
the simulation set-up highlighted with pairwise co-
variance ellipses for one realization of the simulation
(package heplots).

While results presented in Section 3 apply to any func-
tion g (see eq. 3.2), we choose g as a linear function to
illustrate our findings. All simulations are available
on github3, and include non-linear forms for g.

Simulations parameters We use a similar simula-
tion framework as in Dong et al. (2020) and Colnet
et al. (2020), where 5 covariates are generated inde-
pendently, except for X1 and X5 whose correlation is
set at 0.8, except when explicitly mentioned. We sim-
ulate marginals as Xj ∼ N (1, 1) for all j = 1, . . . , 5.
The trial selection process is defined using a logistic
regression model, such that:

logit {P (S = 1 | X)} = βs,0 + βs,1X1 + · · ·+ βs,5X5.
(3.7)

This selection process implies that the variance-
covariance matrix in the RCT sample and in the target
population may be different depending on the (abso-
lute) value of the coefficients βs. In our simulation set-up, the overall variance-covariance structure
is kept identical as visualized on Figure 3.3. The outcome is generated according to a linear model,
following Model 3.2, that is

Y (a) = β0 + β1X1 + · · ·+ β5X5 + a(δ1X1 + · · ·+ δ5X5) + ε with ε ∼ N (0, 1). (3.8)

In this simulation, we set β = (5, 5, 5, 5, 5), and other parameters as described in Table 3.3.

Covariates X1 X2 X3 X4 X5

Treatment effect modifier Yes Yes Yes No No
Linked to trial inclusion Yes No Yes Yes No

δ δ1 = 30 δ2 = 30 δ3 = −10 δ4 = 0 δ5 = 0
βs βs,1 = −0.4 βs,2 = 0 βs,3 = −0.3 βs,4 = −0.3 βs,5 = 0
. ⊥⊥ X1 - X2 ⊥⊥ X1 X3 ⊥⊥ X1 X4 ⊥⊥ X1 X5 ̸⊥⊥ X1

Table 3.3: Simulations parameters.

First a sample of size 10, 000 is drawn from the covariate distribution. From this sample, the selection
model eq. 3.7 is applied which leads to an RCT sample of size n ∼ 2800. Then, the treatment
is generated according to a Bernoulli distribution with probability equal to e1 = 0.5. Finally, the
outcome is generated according to eq. 3.8. The observational sample is obtained by drawing a new
sample of size m = 10, 000 from the covariate distribution. In this setting, the ATE equals τ =∑5

j=1 δjE[Xj ] =
∑5

j=1 δj = 50. Besides, the sample selection (S = 1) in eq. 3.7 is biased toward lower
values of X1 (and indirectly X5), and higher values of X3. This situation illustrates a case where
τ1 ̸= τ . Empirically, we obtain τ1 ∼ 44.

Illustration of Theorem 5 Figure 3.4 presents results of a simulation with 100 repetitions with
no missing covariates (on the Figure see none), and the impact of missing covariate(s) when using the
G-formula or the IPSW to generalize. The theoretical bias from Theorem 5 is also represented.

3BenedicteColnet/unobserved-covariate
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Figure 3.4: Illustration of
Theorem 5: Simulation results
for the linear model with miss-
ing covariate(s) when general-
izing the treatment effect using
the G-formula (Definition 16) or
IPSW (see Definition 20 in ap-
pendix) estimators on the set
of observed covariates. Miss-
ing covariate are indicated on
the x-axis. The theoretical bias
(orange dot) is obtained from
Theorem 5. Simulations are re-
peated 100 times.
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The absence of covariates X2, X4 and/or X5 does not affect ATE generalization because these co-
variates are not simultaneously treatment effect modifiers and shifted (between the RCT sample and
the target population). In addition, the signs of the biases depend on the signs of the coefficients
associated to the missing variables, as highlighted by settings for which X1 and X3 are missing. As
shown in Theorem 5, variables acting on Y without being treatment effect modifiers and linked to trial
inclusion can help to reduce the bias, if correlated to a (partially-) unobserved key covariate. This is
stressed out in our experiment by comparing the settings for which X1, X5 are missing and the one
where only X1 is missing.

A totally-unobserved covariate (from Section 3.3.1) To illustrate this case, the missing co-
variate has to be supposed independent of all the others. For this paragraph we consider X3. Then,
according to Lemma 1, the two sensitivity parameters δmis and the shift ∆m can be used to produce a
sensitivity map for the bias on the transported ATE. The procedure 1 summarizes the different steps,
and the sensitivity map’s output result was presented in Figure 3.2.

A missing covariate in the RCT (from Section 3.3.2) In this case, we need to specify ranges
of values for the two sensitivity parameters δmis and ∆m. The experimental protocol is designed such
that all covariates are successively partially missing in the RCT. Because each missing variable implies
a different landscape due to the dependence relation to other covariates (as stated in Theorem 5), each
variable requires a different heatmap (except if covariates are all independent). Results are depicted in
Figure 3.5. Figure 3.5 illustrates the benefit of Protocol 2 accounting for other correlated covariates,
and compared to a protocol assuming independent covariates. Indeed, X1 and X2 are strong treatment
effect modifiers (see Table 3.3, where δ1 = δ2), but X1 is correlated to other completely observed
covariates, which allows to ”lower” the bias if X1 is completely removed from the analysis compared
to a similar covariate that would be independent of all other covariates. This is highlighted with a
non-symetric bias landscape for X1 on Figure 3.5. As a consequence, for a same value of δmis value,
a guessed shift of ∆mis = 0.25 allows to conclude on a lower bias on the map for X1, while it would
not be the case for covariate X2 (which is completely independent).

A missing covariate in the observational data (from Section 3.3.2) In this case, we need to
specify a range for the values of only one sensitivity parameter, namely E[Xmis] (see eq. 3.5). In our
experimental protocol, we assume that X1 is missing and apply Procedure 3. Results are presented in
Table 3.4.

Simulations illustrating imputation (Corollary 2) and usage of a proxy (Lemma 1) are available in
appendix, in Section 3.F.
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Figure 3.5: Simulations results when applying procedure 2: Heatmaps with a blue curve showing how strong an
unobserved key covariate would need to be to induce a bias of τ1−τ ∼ −6 in function of the two sensitivity parameters
∆m and δmis when a covariate is totally unobserved. Each heatmap illustrates a case where the covariate would
be missing (indicated on the top of the map), given all other covariates. The cross indicate the coordinate of true
sensitivity parameters, in adequation with the bias empirically observed in Figure 3.4. The bias landscape depends
on the dependence of the covariate with other observed covariates, as illustrated with an asymmetric heatmap when
X1 is partially observed, due to the presence of X5.

Sensitivity parameter E[Xmis] 0.8 0.9 1.0 1.1 1.2

Empirical average τ̂G,n,m,obs 44 47 50 53 56

Empirical standard deviation τ̂G,n,m,obs 0.4 0.4 0.3 0.3 0.4

Table 3.4: Simulations results when applying procedure 3: Results of the simulation considering X1 being
partially observed in the RCT, and using the sensitivity method of Nguyen et al. (2017), but with a Robinson
procedure to handle semi-parametric generative functions. When varying the sensitivity parameters, the estimated
ATE is close to the true ATE (τ = 50) when the sensitivity parameter is closer to the true one (E[Xmis] = 1). The
results are presented for 100 repetitions.

βs,1 Averaged p-value

0 0.44
-0.2 0.37
-0.4 0.31
-0.6 0.14
-0.8 0.04
-1 0.012
-1.2 0.0001
-1.4 1 · 10−9

-1.6 1 · 10−10

-1.8 3 · 10−15

-2 1.4 · 10−23

Figure 3.6: Empirical
link between the logistic
regression coefficient for
sampling bias βs,1 and
the p-value of a Box-M
test. The average p-value
is computed by repeating 50
times the simulation. We
recall that in Figure 3.4,
βs,1 := −0.4.
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Figure 3.7: Impact of poor transportability of the variance-covariance ma-
trix which is simulated with a decreasing coefficient βs,1, responsible of the co-
variate shift between the RCT sample and the observational sample. The lower
βs,1, the higher the absolute empirical bias (boxplots), and the higher the differ-
ence between the predictionsgiven by Theorem 5 (orange dots) compared to the
effective empirical biases (boxplots).
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Violation of Assumption 22 To assess the impact of a lack of transportability of the variance-
covariance matrix (Assumption 22) we propose to observe the effect of an increasing (in absolute
value) coefficient involved in the sampling process (Equation 3.7). We observe that the bigger the
coefficient, the bigger the deviations from the theory, as expected. To illustrate this phenomenon, we
associate the logistic regression coefficient (the further away from the zero, the more Assumption 22
is unvalidated) to the p-value of a Box-M test assessing if the variance covariance matrix from the two
sources are different. Empirically, the bias is still well estimated by procedures described in Section 3
even if the p-value is lower than 0.05. Results are available on Figures 3.6 and 3.7.

4.2 A semi-synthetic simulation: the STAR experiment

The semi-synthetic experiment is a mean to evaluate the methods on (semi) real data where neither
the data generation process nor the distribution of the covariates are under control.

4.2.1 Simulation details

We use the data from a randomized controlled trial, the Tennessee Student/Teacher Achievement
Ratio (STAR) study. This RCT is a pioneering randomized study from the domain of education
(Angrist and Pischke, 2008), started in 1985, and designed to estimate the effects of smaller classes in
primary school, on the children’s grades. This experiment showed a strong payoff to smaller classes
(Krueger, 1999b). In addition, the effect has been shown to be heterogeneous, where class sizes have
a larger effect for minority students and those on subsidized lunch. For our purposes, we focus on the
same subgroup of children, same treatment (small versus regular classes), and same outcome (average
of all grades at the end) as in Kallus et al. (2018).

4 218 children are concerned by the treatment randomization, with treatment assignment at first grade
only. On the whole data, we estimated an average treatment effect of 12.80 additional points on the
grades (95% CI [10.41-15.2]) with the difference-in-means estimator. We consider this estimate as
the ground truth τ as it is the global RCT. Then, we generate a random sample of 500 children to
serve as the observational study. From the rest of the data, we sample a biased RCT according to a
logistic regression that defines probability for each class to be selected in the RCT, and using only the
variable g1surban informing on the neighborhood of the school, which can be considered as a proxy
for the socioeconomic status. The final selection is performed using a Bernoulli procedure, which leads
to 563 children in the RCT. The resulting RCT is such that τ̂1 is 4.85 (95% CI [-2.07-11.78]) which
is underestimated. This is due to the fact that that the selection is performed toward children that
benefit less from the class size reduction according to previous studies (Krueger, 1999b; Kallus et al.,
2018). When generalizing the ATE with the G-formula on the full set of covariates, estimating the
nuisance components with a linear model, and estimating the confidence intervals with a stratified
bootstrap (1000 repetitions), the target population ATE is recovered with an estimate of 13.05 (95%
CI [5.07-22.11]) Not including the covariate on which the selection is performed (g1surban) leads to
a biased generalized ATE of 5.87 (95% CI [-1.47-12.82]). These results are represented on Figure 3.8,
along with AIPSW estimates. The IPSW is not represented due to a too large variance.

4.2.2 Application of the sensitivity methods

We now successively consider two different missing covariate patterns to apply the methods from
Section 3.3.2.

Considering g1surban is missing in the observational study Nguyen et al. (2017)’s method
(recalled in Section 3.3.2) can be applied, if we are given a set of plausible values for E[g1surban].
Specifying the following range ]2.1, 2.7[ (containing the true value for E[g1surban]) leads to a range
for the generalized ATE of ]9.5, 16.7[ . Recalling that the ground truth is 12.80 (95% CI[10.41-15.2]),
the estimated range has a good overlap with the ground truth. In other words, with this specification
of the range, a user would correctly conclude that without this key variable, the generalized ATE is
probably underestimated.

98



5. Application on critical care data

Figure 3.8: Simulated STAR data: True target pop-
ulation ATE estimation using all the STAR’s RCT data
is represented (difference-in-means). This is highlighted
with a red dashed line to represent the ground truth. The
ATE estimate of a biased RCT (difference-in-means) is
also represented showing a lower treatment effect due
to a covariate shift along the covariate g1surban. Two
estimators are used for the generalization, the G-formula
(Definition 16) and the AIPSW (Definition 21); both re-
lying on linear or logistic models for the nuisance compo-
nents. The generalized ATE is either estimated with all
covariates (blue) or with all covariates except g1surban
(orange). The confidence intervals are estimated with
a stratified bootstrap (1000 repetitions). Similar results
are obtained when nuisance components are estimated
with random forest.
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Considering g1surban is missing in the RCT Figure 3.9 illustrates the method when the missing
covariate is in the RCT data set (see Procedure 2). This method relies on Assumption 22, which we
test with a Box M-test on Σ (though in practice such a test could only be performed on Σobs,obs).
Including only numerical covariates would reject the null hypothesis (p − value = 0.034). Note
that beyond violating Assumption 22, some variables are categorical (eg race and gender). Further
discussions about violation of this assumption are available in appendix (Section 3.G).

In this application, applying recommendations from Section 3.3.2 (see paragraph entitled Data-driven
approach to determine sensitivity parameter) allow us to get δg1surban ∼ 11. We consider that the
shift is correctly given by domain expert, and so the true shift is taken with uncertainty corresponding
to the 95% confidence interval of a difference in mean. Finally, Figure 3.9 allows to conclude on a
negative bias, that is E[τ̂n,m,obs] ≤ τ . Note that our method underestimate a bit the true bias, with
an estimated bias of −6.4 when the true bias is −7.08, delimited with the continue red curve on the
top right.

Figure 3.9: Sensitivity analysis of STAR data: con-
sidering the covariate g1surban is missing in the RCT.
The black cross indicates the point estimate value for
the bias would an expert have the true sensitivity values
(−6.4) and the true bias value is represented with the
red line (−7.08). Dashed lines corresponds to the 95%
confidence intervals around the estimated sensitivity pa-
rameters.
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5 Application on critical care data

A motivating application of our work is the generalization to a French target population – represented
by the Traumabase registry – of the CRASH-3 trial (CRASH-3, 2019), evaluating Tranexamic Acide
(TXA) to prevent death from Traumatic Brain Injury (TBI).

CRASH-3 A total of 175 hospitals in 29 different countries participated to the randomized and
placebo-controlled trial, called CRASH-3 (Dewan et al., 2012), where adults with TBI suffering from
intracranial bleeding were randomly administrated TXA (CRASH-3, 2019). The inclusion criteria
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of the trial are patients with a Glasgow Coma Scale (GCS)4 score of 12 or lower or any intracranial
bleeding on CT scan, and no major extracranial bleeding. The outcome we consider in this application
is the Disability Rating Scale (DRS) after 28 days of injury in patients treated within 3 hours of injury.
Such an index is a composite ordinal indicator ranging from 0 to 29, the higher the value, the stronger
the disability. This outcome can be considered as a secondary outcome. This outcome has some
drawbacks in the sense that TXA diminishes the probability to die from TBI, and therefore may
increase the number of high DRS values (Brenner et al., 2018). Therefore, to avoid a censoring or
truncation due to death, we keep all individuals and set the DRS score of deceased ones to 30. The
difference-in-means estimators gives an ATE of -0.29 with [95% CI -0.80 0.21]), therefore not giving a
significant evidence of an effect of TXA on DRS.

Traumabase To improve decisions and patient care in emergency departments, the Traumabase
group, comprising 23 French Trauma centers, collects detailed clinical data from the scene of the
accident to the release from the hospital. The resulting database, called the Traumabase, comprises
23,000 trauma admissions to date, and is continually updated. In this application, we consider only the
patients suffering from TBI, along with considering an imputed database. The Traumabase comprises
a large number of missing values, this is why we used a multiple imputation via chained equations
(MICE) (van Buuren, 2018) prior to applying our methodology.

Predicting the treatment effect on the Traumabase data We want to generalize the treatment
effect to the French patients - represented by the Traumabase data base. Six covariates are present at
baseline, with age, sex, time since injury, systolic blood pressure, Glasgow Coma Scale score (GCS),
and pupil reaction. Sex is not considered in the final sensitivity analysis as a non-continuous covariate,
and pupil reaction is considered as continuous ranging from 0 to 2. However an important treatment
effect modifier is missing, that is the time between treatment and the trauma. For example, Man-
sukhani et al. (2020) reveal a 10% reduction in treatment effectiveness for every 20-min increase in
time to treatment (TTT). In addition TTT is probably shifted between the two populations. There-
fore this covariate breaks assumption 19 (ignorability on trial participation), and we propose to apply
the methods developed in Section 3.

Sensitivity analysis The concatenated data set with the RCT and observational data contains
12 496 observations (with n = 8977 and m = 7743). Considering a totally-missing covariate, we
apply Procedure 1. We assume that time-to-treatment (TTT) is independent of all other variables,
for example the ones related to the patient baseline characteristics (e.g. age) or to the severity of
the trauma (e.g. the Glasgow score). Clinicians support this assumption as the time to receive the
treatment depends on the time for the rescuers to come to the accident area, and not on the other
patient characteristics. We first estimated the target population treatment effect with the set of
observed variables and the G-formula estimator, leading to an estimated ATE τ̂n,m,obs of -0.08 (95%
CI [-0.50 0.44]). The nuisance parameters are estimated using random forests, and the confidence
interval with non-parametric stratified bootstrap. As the omission of the TTT variable could affect
this conclusion, the sensitivity analysis gives insights on the potential bias.

We apply the method relative to a completely missing covariate (Section 3.3.1). A common practice
in sensitivity analysis is to use observed covariates as benchmark to guess the impact of an unobserved
covariates. For example, the Glasgow score is also suspected to be a treatment effect modifier and
is shifted between the two populations. We place it on a sensitivity map (Figure 3.10) along with
the true corresponding values for δglasgow and ∆glasgow. As the Traumabase contain more individuals
with a higher Glasgow score, a positive shift is reported. In addition, the higher the Glasgow score
the higher the effect (low DRS), so that δglasgow < 0. Finally, removing the Glasgow score from the
analysis would lead to τ̂obs,n,m > τ . The sensitivity map does not allow to conclude that this bias is big
enough compared to the confidence intervals previously mentioned for τ̂obs,n,m. Is the TTT a stronger
or more shifted covariate than the Glasgow score? Previous publications have suggested a huge impact

4The Glasgow Coma Scale (GCS) is a neurological scale which aims to assess a person’s consciousness. The lower the
score, the higher the gravity of the trauma.
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of TTT, and therefore one could expect a bigger impact on the bias. On Figure 3.11 we represent
a sensitivity map for TTT that could be drawn by domain experts. Here, sensitivity parameters are
guessed. For example, one can suspect that treatment is given on average 20 minutes earlier in the
Traumabase (for example interviewing nurses and doctors in Trauma centers), and the coefficient δTTT

is inferred from a previous work on TXA. On Figure 3.11, one can see that not observing TTT has a
bigger impact on the bias than not observing the Glasgow score (almost 10 times bigger), suggesting
another conclusion: a positive and significant effect of TXA on the Traumabase population, if the
sensitivity parameters are correctly guessed. Also, as soon as there is a risk of a treatment given later
than in the CRASH3 trial, this sensitivity map would help raising an alarm on a negative effect on
the Traumabase population.
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Figure 3.10: Sensitivity map if the Glasgow score
covariate was missing: the true corresponding val-
ues for δglasgow and ∆glasgow are computed with respec-
tively a Robinson proceadure and a mean difference.
Intervals correspond to 95% confidence intervals.
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inspired from Mansukhani et al. (2020).

Conclusion

In this work, we have studied sensitivity analyses for causal-effect generalization to assess the impact
of a partially-unobserved confounder (either in the RCT or in the observational data set) on the ATE
estimation. In particular:

1. To go beyond the common requirement that the unobserved confounder is independent from the
observed covariates, we instead assume that their covariance is transported (Assumption 22).
Our simulation study (4) shows that even with a slightly deformed covariance, the proposed
sensitivity analysis procedure gives useful estimates of the bias.

2. Leveraging the high interpretability of our sensitivity parameter, our framework concludes on
the sign of the estimated bias. This sign is important as accepting a treatment effect highly
depends on the direction of the generalization shift. We integrate the above methods into the
existing sensitivity map visualization, using a heatmap to represent the sign of the estimated
bias.

3. Our procedures use a sensitivity parameter with a direct interpretation: shift in expectation ∆m

of the missing covariate between the RCT and the observational data. We hope that this will
ease practical applications of sensitivity analyses by domain experts.

Our proposal inherits limitations from the more standard sensitivity analysis methods with observa-
tional data, namely the semi-parametric assumption of the outcome model along with an hypothesis
on covariate structures (Gaussian inputs). Therefore, future extensions of this work could explore ways
to relax either the parametric assumption or the distributional assumption to support more robust
sensitivity analyses. Another possible extension to a missing binary covariate could be deduced from
this work, in the case where this covariate is independent of the others in both populations.
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Appendix of Chapter 3

3.A Estimators of the target population ATE

In this section, we grant assumptions presented in Section 2.1 and study the asymptotic behavior –
and in particular the L1-consistency – of three estimators: the G-formula, the IPSW, and the AIPSW.

3.A.1 G-formula

The G-formula procedure and its consistency assumption are detailed in the core text, see Section 3,
and in particular Definition 16 and Assumption 21. Here, we present the Theorem for consistency.

Theorem 6 (G-formula consistency). Consider the G-formula estimator in Definition 16 along with
Assumptions 16, 17, 18, 19, 20 (identifiability), and Assumption 21 (consistency), then the G-formula
estimator converges toward τ in L1 norm,

τ̂G,n,m
L1

−→
n,m→∞

τ.

3.A.2 IPSW

Another approach, called Inverse Propensity Weighting Score (IPSW), consists in weighting the RCT
sample so that is ressembles the target population distribution.

Definition 20 (Inverse Propensity Weighting Score - IPSW - Stuart et al. (2011); Buchanan et al.
(2018)). The IPSW estimator is denoted τ̂IPSW,n,m, and defined as

τ̂APSW,n,m =
1

n

n∑
i=1

n

m

Yi
α̂n,m(Xi)

(
Ai

e1(Xi)
− 1−Ai

1− e1(Xi)

)
, (3.9)

where α̂n,m is an estimate of the odd ratio of the indicatrix of being in the RCT:

α(x) =
(i ∈ R | ∃i ∈ R ∪O, Xi = x)

(i ∈ O | ∃i ∈ R ∪O, Xi = x)
.

This intermediary quantity to estimate, α(.), is called a nuisance component.

Similarly to the G-formula, we introduce here an assumption on the behavior of the nuisance compo-
nent α to carry out the mathematical analysis of the IPSW.

Assumption 24 (Consistency assumptions - IPSW). Denoting by n
mα̂n,m(x) the estimated weights on

the set of observed covariates X, the following conditions hold,

• (H1-IPSW) supx∈X | n
mα̂n,m(x) −

fX(x)
fX|S=1(x)

| = ϵn,m
a.s.−→ 0 , when n,m→∞,

• (H2-IPSW) for all n,m large enough E[ε2n,m] exists and E[ε2n,m]
a.s.−→ 0 , when n,m→∞,

• (H3-IPSW) Y is square integrable.

Theorem 7 (IPSW consistency). Consider the IPSW estimator in Definition 20 along with Assump-
tions 16, 17, 18, 19, 20 (identifiability), and Assumption 24 (consistency). Then, τ̂IPSW,n,m converges
toward τ in L1 norm,

τ̂IPSW,n,m
L1

−→
n,m→∞

τ.

Theorem 7 establishes the consistency of IPSW in a more general framework than that of Cole and
Stuart (2010); Stuart et al. (2011); Buchanan et al. (2018); Egami and Hartman (2021), assuming
neither oracle estimator, nor parametric assumptions on α(.).
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3.A.3 AIPSW

The model for the expectation of the outcomes among randomized individuals (used in the G-estimator
in Definition 16) and the model for the probability of trial participation (used in IPSW estimator in
Definition 20) can be combined to form an Augmented IPSW estimator (AIPSW) that has a doubly
robust statistical property.

Definition 21 (Augmented IPSW - AIPSW - Dahabreh et al. (2019)). The AIPSW estimator is
denoted τ̂AIPSW,n,m, and defined as

τ̂AIPSW,n,m =
1

n

n∑
i=1

n

m α̂n,m(Xi)

[
Ai (Yi − µ̂1,n(Xi))

e1(Xi)
− (1−Ai) (Yi − µ̂0,n(Xi))

1− e1(Xi)

]

+
1

m

m+n∑
i=n+1

(µ̂1,n(Xi)− µ̂0,n(Xi)) .

Recently, it has been shown that the AIPSW estimator can be derived from the influence function of
the parameter τ (see Dahabreh et al., 2019). Under additional conditions on the rate of convergence
of the nuisance parameters, it is possible to obtain asymptotic normality results5. As in this work we
only require L1-consistency for the sensitivity analysis to hold, we therefore do not detail asymptotic
normality conditions.

To prove AIPSW consistency, we make the following assumptions on the nuisance parameters.

Assumption 25 (Consistency assumptions - AIPSW). The nuisance parameters are bounded, and
more particularly

• (H1-AIPSW) There exists a function α0 bounded from above and below (from zero), satisfying

lim
m,n→∞

sup
x∈X

∣∣∣∣ n

mα̂n,m(x)
− 1

α0(x)

∣∣∣∣= 0,

• (H2-AIPSW) There exist two bounded functions ξ1, ξ0 : X →, such that ∀a ∈ {0, 1},

lim
n→+∞

sup
x∈X
|ξa(x)− µ̂a,n(x)| = 0.

Theorem 8 (AIPSW consistency). Consider the AIPSW estimator in Definition 21, along with As-
sumptions 16, 17, 18, 19, 20 hold (identifiability), and Assumption 25 (consistency). Considering that
estimated surface responses µ̂a,n(.) where a ∈ {0, 1} are obtained following a cross-fitting estimation,
then if Assumption 21 or Assumption 24 also holds then, τ̂AIPSW,n,m converges toward τ in L1 norm,

τ̂AIPSW,n,m
L1

−→
n,m→∞

τ.

3.B L1-convergence of G-formula, IPSW, and AIPSW

This appendix contains the proofs of theorems given in Section 3.A. We recall that this work completes
and details existing theoretical work performed by Buchanan et al. (2018) on IPSW (but focused on
a so called nested-trial design and assuming parametric model for the weights) and from Dahabreh
et al. (2020) developing results within the semi-parametric theory.

5A primer for semiparametric theory can be found in Kennedy (2016).
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3.B.1 L1-convergence of G-formula

This section contains the proof of Theorem 6, which assumes Assumption 21. For the state of clarity,
we recall here Assumption 21. Denoting µ̂0,n(.) and µ̂1,n(.) estimators of µ0(.) and µ1(.) respectively,
and Dn the RCT sample, so that

• (H1-G) For a ∈ {0, 1}, E [|µ̂a,n(X)− µa(X)| | Dn]
p→ 0 when n→∞,

• (H2-G) For a ∈ {0, 1}, there exist C1, N1 so that for all n ⩾ N1, almost surely, E[µ̂2a,n(X) | Dn] ⩽
C1.

Proof of Theorem 6. In this proof, we largely rely on a oracle estimator τ̂∗G,∞,m (built with the true
response surfaces), defined as

τ̂∗G,∞,m =
1

m

n+m∑
i=n+1

µ1(Xi)− µ0(Xi).

The central idea of this proof is to compare the actual G-formula τ̂G,n,m - on which the nuisance
parameters are estimated on the RCT data - with the oracle.

L1-convergence of the surface responses

For the proof, we will require that the estimated surface responses µ̂1,n(.) and µ̂0,n(.) converge toward
the true ones in L1. This is implied by assumptions (H1-G) and (H2-G). Indeed, for all n > 0 and all
a ∈ {0, 1}, thanks to the triangle inequality and linearity of expectation, we have

E [|µ̂a,n(X)− µa(X)| | Dn] ≤ E [|µ̂a,n(X)| | Dn] + E [|µa(X)| | Dn]
= E [|µ̂a,n(X)| | Dn]︸ ︷︷ ︸

(*)

+E [|µa(X)|]︸ ︷︷ ︸
(**)

.

First, note that the quantity (*) is upper bounded thanks to assumption (H2-G), using Jensen’s
inequality. Also note that the quantity (**) is upper bounded because the potential outcomes are
integrables, that is E[|Y (1)|] and E[|Y (0)|] exist (see Section 2.1).
Therefore E [|µ̂a,n(X)− µa(X)| | Dn] is upper bounded. Consequently, using (H2-G) and a general-
ization of the dominated convergence theorem, one has

E [|µ̂a,n(X)− µa(X)|] = E [E [|µ̂a,n(X)− µa(X)| | Dn]] −→
n→∞

0,

which implies

∀a ∈ {0, 1}, µ̂a,n(X)
L1

−→
n→∞

µa(X).

L1-convergence of τ̂G,n,m toward τ

For all m,n > 0,

τ̂G,n,m − τ̂∗G,∞,m =
1

m

n+m∑
i=n+1

(µ̂1,n(Xi)− µ̂0,n(Xi))− (µ1(Xi)− µ0(Xi))

=
1

m

n+m∑
i=n+1

(µ̂1,n(Xi)− µ1(Xi))− (µ̂0,n(Xi)− µ0(Xi)) .

Therefore, taking the expectation of the absolute value on both side, and using the triangle inequality
and the fact that observations are iid,

E
[∣∣τ̂G,n,m − τ̂∗G,∞,m

∣∣] = E

[∣∣∣∣∣ 1m
n+m∑
i=n+1

(µ̂1,n(Xi)− µ1(Xi))− (µ̂0,n(Xi)− µ0(Xi))

∣∣∣∣∣
]

≤ E [|µ̂1,n(X)− µ1(X)|] + E [|µ̂0,n(X)− µ0(X)|] .
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Note that this last inequality can be obtained because different observations are used to (i) build
the estimated surface responses µ̂a,n (for a ∈ {0, 1}) and (ii) to evaluate these estimators. Indeed,
the proof would be much more complex if the sum was taken over the n observations used to fit the
models. Due to the L1-convergence of each of the surface response when n→∞ (see the first part of
the proof), we have

lim
n→∞

E
[∣∣τ̂G,n,m − τ̂∗G,∞,m

∣∣] = 0.

In other words,

∀m, τ̂G,n,m
L1

−→
n→∞

τ̂∗G,∞,m. (3.10)

This equality is true for any m, and intuitively can be understood as the fitted response surfaces
µ̂a,n(.) can be very close to the true ones as soon as n is large enough. Then, the G-formula estimator,
no matter the size of the observational data set, is close to the oracle one in L1. Hence one can deduce
a result on the difference between τ and the G-formula,

E [|τ̂G,n,m − τ |] ≤ E
[∣∣τ̂G,n,m − τ̂∗G,∞,m

∣∣]+ E
[∣∣τ̂∗G,∞,m − τ

∣∣] .
According to the weak law of large number, we have

τ̂∗G,∞,m
L1

−→
m→∞

τ

Combining this result with equation eq. 3.10, we have

τ̂G,n,m
L1

−→
n,m→∞

τ,

which concludes the proof.

3.B.2 L1-convergence of IPSW

This section provides the proof of Theorem 7, and for the sake of clarity, we recall Assumption 24.
Denoting n

mα̂n,m(x) , the estimated weights on the set of covariates X, the following conditions hold,

• (H1-IPSW) supx∈X | n
mα̂n,m(x) −

fX(x)
fX|S=1(x)

| = εn,m
a.s.−→ 0 , when n,m→∞,

• (H2-IPSW) we have for all n,m large enough E[ε2n,m] exists and E[ε2n,m]
a.s.−→ 0 , when n,m→∞,

• (H3-IPSW) Y is square integrable.

Proof of Theorem 7. First, we consider an oracle estimator τ̂∗IPSW,n that is based on the true ratio
fX(x)

fX|S=1(x)
, that is

τ̂∗IPSW,n =
1

n

n∑
i=1

Yi
fX(Xi)

fX|S=1(Xi)

(
Ai

e1(Xi)
− 1−Ai

1− e1(Xi)

)
.

Note that Egami and Hartman (2021) also consider such an estimator and document its consistency
(see their appendix). Indeed, assuming the finite variance of Y , the strong law of large numbers (also
called Kolmogorov’s law) allows us to state that:

τ̂∗IPSW,n
a.s.−→ E

[
Y

fX(X)

fX|S=1(X)

( A

e1(X)
− 1−A

1− e1(X)

)
| S = 1

]
= τ, as n→∞. (3.11)

Now, we need to prove that this result also holds for the estimate τ̂IPSW,n,m where the weights are
estimated from the data. To this aim, we first use the triangle inequality comparing τ̂IPSW,n,m with
the oracle IPSW:
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∣∣∣τ̂IPSW,n,m − τ̂∗IPSW,n

∣∣∣ = ∣∣∣ 1
n

n∑
i=1

(
AiYi
e1(Xi)

− (1−Ai)Yi
1− e1(Xi)

)(
n

α̂n,m(Xi)m
− fX(Xi)

fX|S=1(Xi)

) ∣∣∣
≤ 1

n

n∑
i=1

∣∣∣ ( AiYi
e1(Xi)

− (1−Ai)Yi
1− e1(Xi)

)(
n

α̂n,m(Xi)m
− fX(Xi)

fX|S=1(Xi)

) ∣∣∣ Triangular inequality

=
1

n

n∑
i=1

∣∣∣ AiYi
e1(Xi)

− (1−Ai)Yi
1− e1(Xi)

∣∣∣∣∣∣ n

α̂n,m(Xi)m
− fX(Xi)

fX|S=1(Xi)

∣∣∣
≤ ϵn,m

n

n∑
i=1

∣∣∣ AiYi
e1(Xi)

− (1−Ai)Yi
1− e1(Xi)

∣∣∣,

where last row uses Assumption 24 (H1-IPSW).
Taking the expectation on the previous inequality gives,

E
[∣∣∣τ̂IPSW,n,m − τ̂∗IPSW,n

∣∣∣] ≤ E

[
εn,m

1

n

n∑
i=1

∣∣∣ AiYi
e1(Xi)

− (1−Ai)Yi
1− e1(Xi)

∣∣∣]

≤
√

E
[
ε2n,m

]√√√√√E

( 1

n

n∑
i=1

∣∣∣ AiYi
e1(Xi)

− (1−Ai)Yi
1− e1(Xi)

∣∣∣)2
 C.S., square integ, H3-IPSW

≤
√

E
[
ε2n,m

]√√√√√E

( 1

n

n∑
i=1

2|Y |
min(η1, 1− η1)

)2
 Assumption 17

≤
√

E
[
ε2n,m

]√√√√E

[
1

n

n∑
i=1

4|Y |2
min(η21, (1− η1)2)

]
Jensen

=
√
E
[
ε2n,m

] 2
√
E [Y 2]

min(η1, (1− η1))
iid

Therefore, using (H2-IPSW),

E
[∣∣∣τ̂IPSW,n,m − τ̂∗IPSW,n

∣∣∣]→ 0, as n,m→∞. (3.12)

Finally, note that

E
[∣∣∣τ̂IPSW,n,m − τ

∣∣∣] ≤ E
[∣∣∣τ̂IPSW,n,m − τ̂∗IPSW,n

∣∣∣]+ E
[∣∣∣τ̂∗IPSW,n − τ

∣∣∣] .
The second right-hand side term tends to zero by the weak law of large numbers (same reasoning as
for the G-formula) and the first term tends to zero using eq. 3.12, which leads to

τ̂IPSW,n,m
L1

−→
n,m→∞

τ.

3.B.3 L1 convergence of AIPSW

The proof of Theorem 8 is based on Assumption 25 and either Assumption 21 or Assumption 24.
Therefore the proof contains two parts. for clarity, we recall here Assumption 25:

• (H1-AIPSW) There exists a function α0 bounded from above and below (from zero), satisfying

lim
m,n→∞

sup
x∈X
| n

mα̂n,m(x)
− 1

α0(x)
| = 0,
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• (H2-AIPSW) There exist two bounded functions ξ1, ξ0 : X → R, such that ∀a ∈ {0, 1},

lim
n→+∞

sup
x∈X
|ξa(x)− µ̂a,n(x)| = 0,

and, for all i ∈ {1, . . . , n},
lim

n→+∞
sup
x∈X
|ξa(x)− µ̂−k(i)a,n (x)| = 0.

Proof of Theorem 8. Note that the cross-fitting procedure supposes to divide the data into K evenly
sized folds, where K is typically set to 5 or 10 (for example see Chernozhukov et al. (2017)). Let k(.)
be a mapping from the sample indices i = 1, . . . , n to the K evenly sized data folds, and fit µ̂0,n(.) and
µ̂1,n(.) with cross-fitting over the K folds using methods tuned for optimal predictive accuracy. For

i ∈ {1, . . . , n}, µ̂−k(i)0,n (.) and µ̂
−k(i)
1,n (.) denote response surfaces fitted on all folds except the k(i)-th.

Let us also denote by µ̂0,n(.) and µ̂1,n(.), the surface responses estimated using the whole data set.

First case - Assumption 21.

Grant Assumption 21. In this part, we show that, due to this assumption, surface responses are
consistently estimated. Recall that the AIPSW estimator τ̂AIPSW,n,m is defined as

τ̂AIPSW,n,m =
1

n

n∑
i=1

n

mα̂n,m(Xi)

Ai

(
Yi − µ̂−k(i)1,n (Xi)

)
e1(Xi)

An,m

− 1

n

n∑
i=1

n

mα̂n,m(Xi)

(1−Ai)
(
Yi − µ̂−k(i)0,n (Xi)

)
1− e1(Xi)

Bn,m

+
1

m

m+n∑
i=n+1

(µ̂1,n(Xi)− µ̂0,n(Xi)) Cn,m

Note that τ̂AIPSW,n,m is composed of three terms, where the last Cm,n corresponds to the G-formula
τ̂G,n,m.

Now, considering E [|τ̂AIPSW,n,m − τ |], and using the triangle inequality and linearity of the expectation,

E [|τ̂AIPSW,n,m − τ |] ≤ E [|An,m|] + E [|Bn,m|] + E [|τ̂G,n,m − τ |] . (3.13)

Because Assumption 21 holds and according to Theorem 6, we have

E [|τ̂G,n,m − τ |]−→0, when n,m→∞. (3.14)

Now, consider the term An,m, so that,

An,m =
1

n

n∑
i=1

(
n

mα̂n,m(Xi)
− 1

α0(Xi)

) Ai

(
Yi − µ̂−k(i)1,n (Xi)

)
e1(Xi)

An,m,1

+
1

n

n∑
i=1

1

α0(Xi)

Ai

(
Yi − µ̂−k(i)1,n (Xi)

)
e1(Xi)

An,m,2.

Regarding An,m,1, we have

E [|An,m,1|] ≤
1

η1
sup
x∈X

∣∣∣∣ n

mα̂n,m(x)
− 1

α0(x)

∣∣∣∣ (E [Ai|Yi − µ̂−k(i)1,n (Xi)|
])

≤ 1

η1
sup
x∈X

∣∣∣∣ n

mα̂n,m(x)
− 1

α0(x)

∣∣∣∣ (E[|Y (1)|] + E[|ξ1(X)|] + ε) ,
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which tends to zero according to (H1-AIPSW). Regarding An,m,2, by the weak law of large numbers,

1

n

n∑
i=1

1

α0(Xi)

Ai

(
Yi − µ̂−k(i)1,n (Xi)

)
e1(Xi)

L1

−→
n→∞

E

 1

α0(Xi)

Ai

(
Yi − µ̂−k(i)1,n (Xi)

)
e1(Xi)


= E

[
1

α0(Xi)
E
[(
Yi − µ̂−k(i)1,n (Xi)

)
|Xi,D−k(i)

n

]]
= E

[
1

α0(Xi)
E
[
µ1(X)− µ̂−k(i)1,n (X)|D−k(i)

n

]]
,

where∣∣∣∣E [ 1

α0(Xi)
E
[
µ1(X)− µ̂−k(i)1,n (X)|D−k(i)

n

]]∣∣∣∣ ≤ sup
x∈X

(
1

α0(x)

)
E
[
E
[
|µ1(X)− µ̂−k(i)1,n (X)||D−k(i)

n

]]
,

which tends to zero according to Assumption 21. Therefore

An,m
L1

−→
n→∞

0. (3.15)

Using equations eq. 3.14 and eq. 3.15 in eq. 3.13 along with the L1-convergence of the G-formula toward
τ allows us to conclude that

τ̂AIPSW,n,m
L1

−→
n,m→∞

τ.

Second case - Assumption 24.

Grant Assumption 24. In this part, we show that, due to this assumption, weights are consistently
estimated. Note that the AIPSW estimate can be rewritten as

τ̂AIPSW,n,m =
1

n

n∑
i=1

n

mα̂n,m(Xi)

(
AiYi
e1(Xi)

− (1−Ai)Yi
1− e1(Xi)

)
Dn,m

− 1

n

n∑
i=1

(
n

mα̂n,m(Xi)
− fX(Xi)

fX|S=1(Xi)

)(
Aiµ̂

−k(i)
1,n (Xi)

e1(Xi)

)
En,m

+
1

n

n∑
i=1

(
n

mα̂n,m(Xi)
− fX(Xi)

fX|S=1(Xi)

)(
(1−Ai)µ̂−k(i)0,n (Xi)

1− e1(Xi)

)
Fn,m

− 1

n

n∑
i=1

fX(Xi)

fX|S=1(Xi)

(
Aiµ̂

−k(i)
1,n (Xi)

e1(Xi)
−

(1−Ai)µ̂−k(i)0,n (Xi)

1− e1(Xi)

)
Gn

+
1

m

m+n∑
i=n+1

(µ̂1,n(Xi)− µ̂0,n(Xi)) . Cn,m

Again, using the expectation and the triangle inequality, one has,

E [|τ̂AIPSW,n,m − τ |] ≤ E [|Dn,m − τ |] + E [|En,m|] + E [|Fn,m|] + E [|Gn + Cn,m|] (3.16)

Note that the term Dn,m corresponds to the IPSW estimator (Definition 20). According to Assump-
tion 24 and Theorem 7, E [|Dn,m − τ |] converges to 0 as n,m → ∞. Now, we study the convergence
of each of the remaining terms in equation eq. 3.16.
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3.B. L1-convergence of G-formula, IPSW, and AIPSW

Considering En,m and Fn,m

Let us now consider the term En,m. First, note that, according to Assumption 25 (H2-AIPSW), the
estimated surface responses are uniformly bounded for n large enough, that is, there exists µM > 0
such that, for all a ∈ {0, 1}, for all n large enough,

sup
x∈X
|µ̂a,n(x)| ≤ µM .

It follows that, for all n large enough,

|En,m| ≤
1

n

√√√√ n∑
i=1

(
n

mα̂n,m(Xi)
− fX(Xi)

fX|S=1(Xi)

)2

√√√√ n∑
i=1

(
Aiµ̂

−k(i)
1,n (Xi)

e1(Xi)

)2

Cauchy-Schwarz

≤ 1

n

√√√√ n∑
i=1

(
n

mα̂n,m(Xi)
− fX(Xi)

fX|S=1(Xi)

)2 1

η1

√√√√ n∑
i=1

(
µ̂
−k(i)
1,n (Xi)

)2
Assumption 17

≤ 1√
n

√√√√ n∑
i=1

(
n

mα̂n,m(Xi)
− fX(Xi)

fX|S=1(Xi)

)2µM
η1

Assumption 25 (H2-AIPSW)

→ 0, when n,m→∞. Assumption 24

The reasoning is the same for the term Fn,m, which also converges uniformly toward 0 when n,m→∞.

Considering Gn and Cn,m

By Assumption (H2-AIPSW), for all ε > 0, for all n large enough, for all x ∈ X ,

µ̂1,n(x) ∈ [ξ1(x)− ε, ξ1(x) + ε].

Therefore, for all n large enough, and for all m,∣∣∣∣∣ 1m
m+n∑
i=n+1

µ̂1,n(Xi)−
1

m

m+n∑
i=n+1

ξ1(Xi)

∣∣∣∣∣ ≤ 1

m

m+n∑
i=n+1

|µ̂1,n(Xi)− ξ1(Xi)|

≤ ε.

Consequently, ∣∣∣∣∣Cn,m − 1

m

m+n∑
i=n+1

ξ1(Xi) +
1

m

m+n∑
i=n+1

ξ0(Xi)

∣∣∣∣∣ ≤ 2ε.

Therefore,

∣∣Cn,m − E[ξ1(X)] + E[ξ0(X)]
∣∣ ≤ 2ε+

∣∣∣∣∣ 1m
m+n∑
i=n+1

ξ1(Xi)− E[ξ1(X)]

∣∣∣∣∣+
∣∣∣∣∣ 1m

m+n∑
i=n+1

ξ0(Xi)− E[ξ0(X)]

∣∣∣∣∣ .
Hence, by the law of large numbers,

Cn,m
L1

−→
n,m→∞

E[ξ1(X)]− E[ξ0(X)].

We can apply the same reasoning for the term Gn, by taking into account the fact that it uses a
cross-fitting strategy. By Assumption 25 (H2-AIPSW), for all ε > 0, for all n large enough, for all
x ∈ X , for all i ∈ {1, . . . , n},

µ̂
−k(i)
1,n (x) ∈ [ξ1(x)− ϵ, ξ1(x) + ϵ].
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Using this inequality, we obtain∣∣∣∣∣ 1n
n∑
i=1

fX(Xi)

fX|S=1(Xi)

Ai
e1(Xi)

µ̂
−k(i)
1,n (Xi)−

1

n

n∑
i=1

fX(Xi)

fX|S=1(Xi)

Ai
e1(Xi)

ξ(Xi)

∣∣∣∣∣ ≤ ε

η1
sup
x∈X

(
1

α0(x)

)
.

Besides, by the law of large numbers,

lim
n→∞

1

n

n∑
i=1

fX(Xi)

fX|S=1(Xi)

Ai
e1(Xi)

ξ1(Xi) = E
[

fX(Xi)

fX|S=1(Xi)

Ai
e1(Xi)

ξa(X)

]
= E[ξa(X)].

Consequently, as above

Gn,m
L1

−→
n,m→∞

E[ξ0(X)]− E[ξ1(X)].

Finally,

Cn,m +Gn,m
L1

−→
n,m→∞

0,

which concludes the proof.

3.C Proofs for the missing covariate setting

This section gathers proofs related to the case where key covariates (treatment effect modifiers with
distributional shift) are missing. In particular this appendix contains the proofs of results presented
in Section 3.

3.C.1 Proof of Theorem 5

Proof. The Theorem 5 is essentially a statement about the observed distribution. One can first derived
what is the partial-identification of τ under the observed distribution τobs, that is,

τobs = E [E [Y (1)− Y (0) | Xobs = xobs, S = 1]]

= E [E [⟨δ,X⟩ | Xobs = xobs, S = 1]] Linear CATE

= E [E[⟨δ,Xobs⟩+ ⟨δ,Xmis⟩ | Xobs = xobs, S = 1]] X = (Xmis, Xobs)

= E [⟨δ,Xobs⟩] + E [E [⟨δ,Xmis⟩ | Xobs = xobs, S = 1]] . Ignorability

As the covariates X are assumed to be a Gaussian vector distributed as N (µ,Σ), and considering the
assumption on the variance-covariance matrix (Assumption 22), one can have an explicit expression
of the conditional expectation (Ross, 2020).

E [Xmis | Xobs = xobs] = E[Xmis] + Σmis,obs (Σobs,obs)
−1 (xobs − E[Xobs]) .

Therefore, pluging this expression into τobs and comparing it to τ ,

τ − τobs = ⟨δ,E[Xmis]− E[Xmis | S = 1]− Σmis,obsΣ
−1
obs,obs(E[Xobs]− E[Xobs | S = 1]⟩

=
∑
j∈mis

δj

(
E[Xj ]− E[Xj | S = 1]− Σj,obsΣ

−1
obs,obs(E[Xobs]− E[Xobs | S = 1]

)
Note that the last row is only a different way to write the scalar product into a sum.

Then, any L1-consistent estimator hatτn,m,obs of τ on the observed set of covariates will follow

lim
n,m→∞

E[τ̂n,m,obs]− τ = −
∑
j∈mis

δj

(
E[Xj ]− E[Xj | S = 1]− Σj,obsΣ

−1
obs,obs(E[Xobs]− E[Xobs | S = 1]

)
.
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3.C.2 Imputation

This part contains the proof of Corollary 2.

Proof. This proof is divided into two parts, depending on the missing covariate pattern.

Consider the RCT as the complete dataset We assume that the linear link between the missing
covariate Xmis and the observed one Xobs in the trial population is known, so is the true response
surfaces µ1(.) and µ0(.). We consider the estimator τ̂G,∞,m,imp based on the two previous oracles
quantities. We denote by c0, . . . , c#obs the coefficients linking Xobs and Xmis in the trial, so that, on
the event S = 1,

Xmis = c0 +
∑
j∈obs

cjXj + ε, (3.17)

where ε is a Gaussian noise satisfying [ε | Xobs] = 0 almost surely. Since we assume that the true link
between Xmis and Xobs is known (that is we know the coefficients c0, . . . , cd), the imputation of the
missing covariate on the observational sample writes

X̂mis := c0 +
∑
j∈obs

cjXj . (3.18)

We denote X̃ the imputed data set composed of the observed covariates and the imputed one in the
observational sample. The expectation of the oracle estimator τ̂G,∞,m,imp is defined as,

E[τ̂G,∞,m,imp] = E

[
1

m

n+m∑
i=n+1

µ1(X̃i)− µ0(X̃i)

]
By definition of τ̂G,∞,m,imp

= E

[
1

m

n+m∑
i=n+1

⟨δ, X̃i⟩

]
Linear CATE eq. 3.2

= E

 1

m

n+m∑
i=n+1

∑
j∈obs

δjXj,i

+ δmisX̂mis,i



Because of the finite variance of Xobs and X̂mis the law of large numbers allows to state that:

lim
m→∞

E[τ̂G,∞,m,imp] =

∑
j∈obs

δjE[Xj ]

+ δmisE[X̂mis].

Due to Assumption 22, the distribution of the vector X is Gaussian in both populations, and one can
use the conditional expectation for a multivariate gaussian law to write the conditional expectation
in the trial population, that is

E[Xmis | Xobs, S = 1] = E[Xmis | S = 1] + Σmis,obsΣ
−1
obs,obs(Xobs − E [Xobs | S = 1]). (3.19)

Combining eq. 3.17 and eq. 3.19, one can obtain:

c0 +
∑
j∈obs

cjXj = E[Xmis | S = 1] + Σmis,obsΣ
−1
obs,obs(Xobs − E [Xobs | S = 1]). (3.20)

Now, we can compute,

E[X̂mis] = E[c0 +
∑
j∈obs

cjXj ]

= E
[
E[Xmis | S = 1] + Σmis,obsΣ

−1
obs,obs(Xobs − E [[Xobs | S = 1])

]
eq. 3.20

= E[Xmis | S = 1] + Σmis,obsΣ
−1
obs,obs(E [Xobs]− E [Xobs | S = 1]).
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This last result allows to conclude that,

lim
m→∞

E[τ̂G,∞,m,imp] =

∑
j∈obs

δjE[Xj ]

+ δmis

(
E[Xmis | S = 1] + Σmis,obsΣ

−1
obs,obs(E [Xobs]− E [[Xobs | S = 1])

)
.

Finally, as τ =
∑p

j=1 δjE[Xj ],

τ − lim
m→∞

E[τ̂G,∞,m,imp] = δmis

(
E[Xmis]− E[Xmis | S = 1]− Σmis,obsΣ

−1
obs,obs(E [Xobs]− E [Xobs | S = 1])

)
,

which concludes this part of the proof.

Consider the observational data as the complete data set We assume here that the true
relations between Xmis and Xobs is known and the true response model is also known. We denote by
τG,∞,∞,imp the estimator based on these two quantities.

More precisely, we denote by c0, . . . , c#obs the coefficients linking Xobs and Xmis in the observational
population, so that

Xmis = c0 +
∑
j∈obs

cjXj + ε, (3.21)

where ε is a Gaussian noise satisfying E [ε | Xobs] = 0 almost surely.

As the estimator is an oracle, the relation in eq. 3.21 is used to impute the missing covariate in the
observational sample, so that

X̂mis := c0 +
∑
j∈obs

cjXj . (3.22)

We denote X̃ the imputed data set composed of the observed covariates and the imputed one in the
trial population. Note that the X̂mis is a linear combination of Xobs in the trial population, and thus
a measurable function of Xobs. This property is used below and labelled as eq. 3.22. As τG,∞,∞,imp is
an oracle, one have:

E[τG,∞,∞,imp] = E
[
E[Y (1)− Y (0) | X̃, S = 1]

]
= E

[
E[Y (1)− Y (0) | X̂mis, Xobs, S = 1]

]
= E [E[Y (1)− Y (0) | Xobs, S = 1]] eq. 3.22

= E

(∑
j∈obs

δjXj) + δmisE[Xmis | Xobs, S = 1]

 . eq. 3.2

=

∑
j∈obs

δjE[Xj ]

+ δmisE [E[Xmis | Xobs, S = 1]]

=

∑
j∈obs

δjE[Xj ]


+ δmis

(
E [Xmis | S = 1] + Σmis,obsΣ

−1
obs,obs(E[Xobs]− E [[Xobs | S = 1])

)
. eq. 3.19

Finally, as τ =
∑p

j=1 δjE[Xj ],

τ − E[τG,∞,∞,imp] = δmis

(
E[Xmis]− E[Xmis | S = 1]− Σmis,obsΣ

−1
obs,obs(E [Xobs]− E [Xobs | S = 1])

)
,

which concludes this part of the proof.
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3.C.3 Proxy variable

Proof of Lemma 1. Recall that we denote τ̂G,n,m,prox the G-formula estimator using Xprox instead of
Xmis in the G-formula. The derivations of τ̂G,n,m,prox give:

E[τ̂G,n,m,prox] = E [E[Y | Xobs, Xprox, S = 1, A = 1]− E[Y | Xobs, Xprox, S = 1, A = 0]]

Definition of τ̂G,n,m,prox

= E [E[g(X) + ⟨δ,X⟩ | Xobs, Xprox, S = 1]− E[g(X) | Xobs, Xprox, S = 1]]

= E [E[⟨δ,X⟩ | Xobs, Xprox, S = 1]]

=
∑
j∈obs

δjE[Xj ] + δmisE [E[Xmis | Xobs, Xprox, S = 1]]

Linearity of Y eq. 3.2

=
∑
j∈obs

δjE[Xj ] + δmisE [E[Xmis | Xprox, S = 1]]

Xmis ⊥⊥ Xobs eq. 23 and Assumption 16

The framework of the proxy variable eq. 23 allows to have an expression of the conditional expectation
of Xmis (Ross, 2020):

E [E[Xmis | Xprox, S = 1]] = E[Xmis | S = 1] +
(Xmis, Xprox)

V[Xprox]
(Xprox − E[Xprox | S = 1]),

where

V[Xprox] = V[Xmis + η]

= V[Xmis] + V[η] + 2Cov (η,Xmis)︸ ︷︷ ︸
=0eq. 23

= σ2mis + σ2prox

and

(Xmis, Xprox) = E[XmisXprox]− E[Xprox]
2 E[Xmis] = E[Xprox]

= E[X2
prox − ηXprox]− E[Xprox]

2

= E[X2
prox]− E[Xprox]

2 − E[ηXprox]

= V[Xprox]− E[ηXmis]− E[η2]
= σ2mis + σ2prox − 0− σ2prox
= σ2mis

Therefore, we have

E [E[Xmis | Xprox, S = 1]] = E[Xmis | S = 1] +
σ2mis

σ2mis + σ2prox
(Xprox − E[Xprox | S = 1]),

which allows us to complete the first derivation:

E[τ̂G,n,m,prox] =
∑
j∈obs

δjE[Xj ] + δmisE

[
E[Xmis | S = 1] +

σ2mis
σ2mis + σ2prox

(Xprox − E[Xprox | S = 1])

]

=
∑
j∈obs

δjE[Xj ] + δmis

(
E[Xmis | S = 1] +

σ2mis
σ2mis + σ2prox

(E[Xprox]− E[Xprox | S = 1]))

)

=
∑
j∈obs

δjE[Xj ] + δmis

(
E[Xmis | S = 1] +

σ2mis
σ2mis + σ2prox

(E[Xmis]− E[Xmis | S = 1]))

)
,
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since E[Xprox | S = 1] = E[Xmis | S = 1] and E[Xprox] = E[Xmis]. Recalling that τ =
∑
δjE[Xj ], the

final form of the bias of τ̂G,n,m,prox can be obtained as

τ − E[τ̂G,n,m,prox] = δmis (E[Xmis]− E[Xmis | S = 1])

(
1− σ2mis

σ2mis + σ2prox

)
.

Proof of Corollary 3. Note that the final expression of the bias obtained in the previous proof can
not be estimated in all missing covariate patterns. For example, if Xmis is partially observed in the
RCT, then an estimate of δmis can be computed, and therefore the bias can be estimated. But in all
other missing covariate pattern, a temptation is to estimate δprox from the regression of Y against
X = (Xobs, Xprox) with an OLS procedure. Wooldridge (2015) details the infinite sample estimate of
such a coefficient:

lim
n,m→∞

E
[
δ̂prox

]
= δmis

σ2mis
σ2mis + σ2prox

Note that the quantity
σ2
mis

σ2
mis+σ

2
prox

is always lower than 1, therefore if δmis ≥ 1, then δ̂prox underesti-

mates δmis. This phenomenon is called the attenuation bias. This point is documented by Wooldridge
(2015), and is due to heteroscedasticity in the plug-in regression:

Cov[Xprox, ε] = Cov [Xmis + η, ϵ− δmisη] = −δmisσ2η ̸= 0

This asymptotic estimate can be plugged-in into the previous bias estimation:

τ − E[τ̂G,n,m,prox] = δ̂prox (E[Xprox]− E[Xprox | S = 1])
σ2prox
σ2mis

3.D Toward a semi-parametric model

This section completes Model 3.2, and justifies why this the assumption of a linear CATE is somewhat
natural when considering a continuous outcome Y .

For a continuous outcome Y , the outcome model can be written with two terms, a baseline and the
CATE. Indeed, when focusing on zero-mean additive-error representations leads to assume that the
potential outcomes are generated according to:

Y (A) = µ(A,X) + εA, (3.23)

for some function µ ∈ L2({0, 1} × X → R) and a noise εA satisfying E [εA | X] = 0 almost surely.

Lemma 2. Assume that the nonparametric generative model of Equation eq. 3.23 holds, then there
exists a function g : X → R such that

Y (A) = g(X) +Aτ(X) + εA, where τ(X) := E[Y (1)− Y (0) | X]. (3.24)

Lemma 2 follows from rewriting Equation eq. 3.23, accounting for the fact that A is binary and Y ∈ R.
Such a decomposition is often used in the literature (Nie and Wager, 2020). This model allows to have
a simpler expression of the treatment effect without any additional assumptions, due to the discrete
nature of A.

In other words, this model enables placing independent functional form on the CATE τ(X), sometimes
relying on the idea that the CATE is smoother, while the baseline response can be more complex (Gao
and Hastie, 2021). In the context of the sensitivity analysis, this model has the interest of highlighting
treatment effect modifier variables, such as variables that intervene in the CATE τ(X).
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3.E Robinson procedure

This appendix recall the so-called Robinson procedure that aims at estimating the CATE coefficients
δ in a semi-parametric equation such as eq. 3.2. This method was developed by Robinson (1988) and
has been further extended (Chernozhukov et al., 2017; Wager, 2020; Nie and Wager, 2020). Such a
procedure is called a R-learner, where the R denotes Robinson or Residuals. We recall the procedure,

1. Run a non-parametric regressions Y ∼ X using a parametric or non parametric method. The
best method can be chosen with a cross-validation procedure. We denote m̂n(x) = E[Y | X = x]
the estimator obtained.

2. Define the transformed features Ỹ = Y − m̂n(X) and Z̃ = (A − e1(X))X, using the previous
procedure m̂n.

3. Estimate δ̂n running the OLS regression on the transformed features Ỹ ∼ Z̃.

If the non-parametric regressions of m(x) satisfies E
[
(m̂(X)−m(X))2

] 1
2 = oP

(
1

n1/4

)
, then the pro-

cedure to estimate δ is
√
n-consistent and asymptotically normal,

√
n
(
δ̂ − δ

)
⇒ N (0, VR) , VR = Var

[
Z̃
]−1

Var
[
Z̃Ỹ
]
Var

[
Z̃
]−1

See Chernozhukov et al. (2017); Wager (2020) for details.

3.F Synthetic simulation - Extension

This section completes the synthetic simulation presented in Section 4.

Simulation parameters Parameters chosen highlight different covariate roles and strength impor-
tance. In this setting, covariates X1, X2, X3 are the so-called treatment effect modifiers due to a
non-zero δ coefficients, and X1, X3, X4 are shifted from the RCT sample and the target population
distribution due to a non-zero βs coefficient. Therefore covariates X1 and X3 are necessary to general-
ize the treatment effect, because in both groups. Because in the simulationX2 andX4 are independent,
the set X1 and X3 is also sufficient to generalize. Only X2 has the same marginal distribution in the
RCT sample and in the observational study. Note that the amplitude and sign of different coefficients
used, along with dependence between variables allows to illustrate several phenomenons. For example
X3 is less shifted in between the two samples compared to X1 because |βs,1| ≤ |βs,3|.

Additional comments on Figure 3.4 Note that depending on the correlation strength between
X1 and X5, the missingness of X1 can lead to different coefficients estimations when using the G-
formula estimation, and different bias on the ATE. Table 3.5 illustrates this situation, where the
higher the correlation, the higher the error on the coefficients estimations, but the lower the bias on
the ATE when only X1 is missing.

Table 3.5: Coefficients estimated in the simulation:
Simulation with X1 as the missing covariate repeated 100
times, means of estimated coefficients for X5 and bias on
ATE using the Robinson procedure.

ρX1,X5 δ5 − δ̂5 τ̂G,obs − τ
0.05 6.34 -8.32
0.5 16.83 -6.29
0.95 28.53 -0.81
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Imputation When a covariate is partially observed, at temptation is to imputed the missing part
with a model learned on the complete part as detailed in procedure 4. Section 3 illustrates Corollary 2,
as it shows that linear imputation does not diminish the bias compared to a case where the generaliza-
tion is performed using only the restricted set of observed covariates. On Figure 3.12 we simulated all
the missing covariate patterns (in RCT or in observational) considering X1 is partially missing, with
varying correlation strength between X5 and X1, and fitting a linear imputation model. Imputation
does not lead to a lower bias than totally removing the partially observed covariate. Therefore, in
case of a partially missing covariate we advocate running a sensitivity analysis rather than a linear
imputation.
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Figure 3.12: Simulations results when imputing (procedure 4): Results when imputing X1 with a linear model
fitted on the complete data set (either the RCT or the observational). All the missing covariate pattern are simulated
using either the G-formula or the IPSW estimators. The impact of the correlation between X1 and X5 is investigated.
Each simulation is repeated 100 times. All procedures have a similar bias as the procedure ignoring the partially-
missing covariate (totally.missing), so that a linear imputation (procedure 4) improves neither the bias nor the
variance.

Proxy variable Finally and to illustrate Lemma 1, the simulation is extended to replace X1 by
a proxy variable, generated following eq. 23 with a varying σprox. The generalized ATE is estimated
with the G-formula. The experiments is repeated 20 times per σprox values. Results are presented
on Figure 3.13. Whenever σprox is small compared to σmis (which is equal to one in this simulation),
therefore the bias is small.
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Figure 3.13: Simulation results for proxy variable (procedure 5) Simulation when a key covariate is replaced by
a proxy following the proxy-framework (see Assumption 23). The theoretical bias eq. 1 is represented along with the
empirical values obtained when generalizing the ATE with the plugged-in G-formula estimator.

116



3.G. Homogeneity of the variance-covariance matrix

3.G Homogeneity of the variance-covariance matrix

Recall that Assumption 22 states that the covariance matrices in both data sets are identical. This
assumption, which may appear to be very restrictive, can be partially tested on the set of observed
covariates. In this section, we present such a test (Box’s M-test Box, 1949), which illustrates the
validity of Assumption 22 on some particular data set. Taking one step further, we study the impact
of Assumption 22 violation on the resutling estimate.

3.G.1 Statistical test and visualizations

Friendly and Sigal (2020) detail available tests to assess if covariance matrices from two data sample
are equal. Despite its sensitivity to violation, Box’s M-test (Box, 1949) can be used test the equality.
In particular the package heplots contains the tests and visualizations in R. The command line to
perform the test is detailed below.

1 library(heplots)

2 boxM(data[, c("X1", "X2", "X3", "X4")], group = data$S)

Figure 3.14: Pairwise data ellipses for the
STAR data, centered at the origin. This view
allows to compare the variances and covari-
ances for all pairs of variables.

Even if we cannot bring a general rule to know if the co-
variance matrices are equal, we can display some examples
in which Assumption 22 holds. For instance, Friendly and
Sigal (2020) report that the skull data is an example of
a real data set with multiple sources where there are sub-
stantial differences among the means of groups, but little
evidence for heterogeneity of their covariance matrices.

3.G.1.1 Semi-synthetic experiment: STAR

While doing the semi-synthetic experiment on the STAR
data set, the Box M-test rejects the null hypothesis when
considering only numerical covariates (age, g1freelunch,
gkfreelunch, and g1surban) with a p-value of 0.022. This
indicates that the preservation of the variance-covariance
structure between the two simulated sources does not hold.
To help support conclusions, one can visualize how the variance covariance matrix vary in between
the two sources, as presented on Figure 3.14, supporting that the changes in the variance-covariance
are not very strong.

3.G.1.2 Traumabase and CRASH-3

Note that this part’s purpose is only to illustrate the principle as the application performed in Sec-
tion 5 relies on the independence between the time to treatment and all other covariates, and not
Assumption 22.
One can inspect how far the variance and covariance change in between the two sources. Pairwise
data ellipses are presented on Figure 3.15 for CRASH-3 and Traumabase patients, suggesting rather
strong difference in the variance-covariance matrix. As expected Box M-test largely rejects the null
hypothesis.
It is interesting to note that in some cases the variance covariance matrix is identical in between
two populations. For example we tested whether the two major trauma centers in France present
heterogeneity in the variance-covariance matrix, and the Box M test does not reject the null hypothesis.

3.G.2 Extension of the simulations

Simulations presented in Section 4 can be extended to illustrate empirically the consequences of a
poorly specified Assumption 22. Suppose X1 is the unobserved covariate, and that the variance-
covariance matrix is not the same in the randomized population (S = 1) as in the target population.
But the heterogeneities in between the two sources can be different in their nature, affecting covariates
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Figure 3.15: Pairwise data ellipses for the CRASH-3 and Traumabase data, centered at the origin. CRASH-3
data are in blue and Traumabase data in red. This view allows to compare the variances and covariances for all pairs
of variables. While the mean are really different in the two sources, the variances and covariances are not so different.

depending or not from X1. We can imagine two situations, a situation (A) where the link in between
X1 and X5 is different in the two sources, and another situation (B) where the link in between X2 and
X3 is not the same. The situation is illustrated on Figures 3.16a and 3.16b with pairwise data ellipses.
Note that with n = 1000 andm = 10000 a Box-M test largely rejects the null-hypothesis with a similar
statistic value for both situations. When computing the bias according to Theorem 5 and repeating
the experiment 50 times, empirical evidence is made that the localization of the heterogeneity impacts
or not the bias computation. As presented on Figure 3.16c, situation A affects the bias computation,
when situation B keeps the bias estimation valid.

3.G.3 Recommendations

Our current recommendations when considering the Assumption 22 is, first, to visualize the hetero-
geneity of variance-covariance matrix with pairwise data ellipses on Σobs,obs. A statistical test such as a
Box-M test can be applied on Σobs,obs. We also want to emphasize that a statistical test depends on the
size of the data sample, when what really matters in this assumption for the sensitivity analysis to be
valid is the permanence of covariance structure of the missing covariates with the strongly correlated
observed covariates. Simulations presented on Figure 3.16c is somehow an empirical pathological case
where the variance-covariance matrix are equivalently different when considering a statistical test, but
leads to different consequences on the validity of Theorem 5, and therefore the sensitivity analysis.

3.G.4 Comment about the notations

The notations used in this work inherits from the generalization literature and reflects the idea of a
plausibility to be sampled from a target superpopulation. The point of view of two population with
support inclusion is equivalent for our purpose. Still, thinking to the problem of a sampling bias, then
Assumption 22 imposes unusual restrictions for P (X | S = 0), that is a subpopulation of the target
population. As we do not do any inference on that population and as it has no practical interpretation,
we do not discuss this in this work.
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(a) Situation A - Centered pairwise data ellipses (b) Situation B - Centered pairwise data ellipses
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(c) ATE estimation in the two situations where τ̂G,obs is estimated considering X1 is missing and denoted ATE.uncomplete,
while the bias B is estimated following Theorem 5 giving ATE.corrected (τ̂G,obs + B̂).

Figure 3.16: Effect of a different variance-covariance matrix on the ATE estimation, where heterogeneity
between the two variance-covariance matrix is introduced as presented in (a) and (b), and on (c) the impact on the
estimated average treatment effect (ATE). Situations A and B result in a similar statistics when using a Box-M test,
but leads to very different impact on the bias estimation as visible on (c). The simulation are repeated 50 times,
with a similar outcome generative model as in eq. 3.8, and n = 1000 and m = 10000.
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Chapter 4

Reweighting the RCT for
generalization: finite sample error and
variable selection

This chapter corresponds to the article entitled Reweighting the RCT for generalization: finite

sample error and variable selection submitted to the Journal of the Royal Statistical Society:

Series A,

co-authored with Julie Josse, Gaël Varoquaux, and Erwan Scornet.

Chapter’s content
This Chapter proposes to investigate properties of one of the seminal estimator proposed to generalize trial’s
findings to a target population: the Inverse Propensity Weighting Estimator (IPSW). While Chapter 2 reviews
how this estimator was proposed and Chapter 3 proposes a large sample consistency results, this Chapter aims
to propose stronger guarantees for any sample size. The results proposed are made under one assumption: the
adjustment set being constituted of categorical covariates only. In this work, we establish the exact expressions
of the finite and large samples bias and variance of IPSW. Results also reveal that IPSW performances are
improved when the trial probability to be treated is estimated (rather than using its oracle counterpart). In
addition, we study choice of variables: how including covariates that are not necessary for identifiability of the
causal effect may impact the asymptotic variance. Including covariates that are shifted between the two samples
but not treatment effect modifiers increases the variance while non-shifted but treatment effect modifiers do
not. We illustrate all the takeaways in a didactic example, and on a semi-synthetic simulation inspired from
critical care medicine.
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1 Introduction

Motivation Modern evidence-based medicine puts Randomized Controlled Trial (RCT) at the core
of clinical evidence. Indeed, randomization enables to estimate the average treatment effect (called
ATE) by avoiding confounding effects of spurious or undesirable associated factors. But more recently,
concerns have been raised on the limited scope of RCTs: stringent eligibility criteria, unrealistic real-
world compliance, short timeframe, limited sample size, etc. All these possible limitations threaten
the external validity of RCT studies to other situations or populations (Rothwell, 2007; Gatsonis
and Sally, 2017; Deaton and Cartwright, 2018). The usage of complementary non-randomized data,
referred to as observational or from the real world, brings promises as additional sources of evidence,
in particular combined to trials (Kallus et al., 2018; Athey et al., 2020; Liu et al., 2021). For example,
assume policy makers are studying an RCT which comes with great promises about a new treatment.
But when reading the report, they may discover that the RCT is composed of substancially younger
people than the target population of interest. Such a situation can be uncovered from the so-called
Table 1 of this newly published trial, which summarizes the demographics of the study population. In
case of treatment effect heterogeneities, e.g. if the younger individuals respond better to the treatment,
the ATE estimated from the trial is over-estimated and then biased. Now, assume these policy makers
have also at disposal a sample of the actual patients in the district, being a representative sample of
the true distribution of age in this population (typically without information on the outcome or the
treatment). Can they use this representative sample of the target population of interest to re-weight or
to generalize the trial’s findings? The answer is yes: the strategy has been formalized and popularized
lately (Stuart et al., 2011; Pearl and Bareinboim, 2011a; Bareinboim and Pearl, 2012a,b; Tipton, 2013;
O’Muircheartaigh and Hedges, 2013; Hartman et al., 2015; Kern et al., 2016; Dahabreh et al., 2020)
(reviewed in Colnet et al. (2020); Degtiar and Rose (2023)) and can come under many variants named
generalization, transportability, recoverability, and data-fusion. In fact, the idea of re-weighting a trial
can be traced back before the 2010’s. Several epidemiology books had already presented the core idea
under the name standardization (Rothman and Greenland, 2000; Rothman, 2011).

In this work, we focus on one estimator used to generalize RCTs: the Inverse Propensity of Sampling
Weighting (IPSW) (Cole and Stuart, 2010; Stuart et al., 2011), also named Inverse Odds of Sampling
Weights (IOSW) (Westreich et al., 2017a; Josey et al., 2021) or Inverse probability of participation
weighting (IPPW) (Degtiar and Rose, 2023). Despite an increasing literature on generalization, im-
portant practical questions remain open (Kern et al., 2016; Tipton et al., 2016; Stuart and Rhodes,
2017; Ling et al., 2022). For instance, which covariates – for e.g. age, and others – should be used
to build the weights? Are some covariates increasing or lowering the overall precision? What is the
impact of the size of the two samples (trial and representative sample) on the IPSW’s properties?
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Outline We start by illustrating the principles of trial re-weighting and some key results of this
article on a toy example (Section 2). Section 2 ends with related works. Then Section 3 introduces the
mathematical notations, assumptions, and the precise definition of the IPSW estimator. In particular,
we present several versions of the IPSW estimator: whether the covariates probability of the trial or
the target population are estimated from the data or assumed as an oracle. This links our results to
classic work in causal inference and epidemiology. Section 4 contains all the theoretical results, such
as finite sample bias, variance, bounds on the risk, consistency, and large sample variance. We also
detail why another version of the IPSW, where the probability of treatment assignment in the trial is
also estimated, has a lower variance. Finally, we discuss in Section 4 how additional and non-necessary
covariates can either improve or damage variance, depending on their status: whether they are only
shifted between the two populations or only treatment-effect modifiers. Section 5 completes the toy
example and illustrates all theoretical results on an extensive semi-synthetic example inspired from the
medical domain. Finally, Section 6 summarizes all practical takeaways for this research and discusses
it.

2 Problem setting

2.1 Toy example

2.1.1 Context and intuitive estimation strategy

Figure 4.1: Treatment effect esti-
mates (absolute difference) measured on
a simulated trial of size n = 150 sampled
according to the trial population PR. On
the left the estimate on all individuals,
and on the right the two estimate strati-
fied (X = 0 and X = 1) showing treat-
ment effect heterogeneities along the ge-
netic mutation X.

Assume that we would like to measure the average effect of a
treatment (ATE) A on a outcome Y in a target population of
interest PT (for target), and that an existing Randomized Con-
trolled Trial (RCT) had already been conducted on n = 150
individuals, sampled from a population PR (for randomized), to
assess the average effect of A on Y . Usually, the average treat-
ment effect is estimated from a trial via an Horvitz-Thomson
estimator (Horvitz and Thompson, 1952),

τ̂HT,n =
1

n

∑
i∈Trial

(
YiAi
π
− Yi(1−Ai)

1− π

)
, (4.1)

where π is the probability of treatment allocation in the trial
(in most applications, π = 0.5). Figure 4.1 presents results of a
simulated trial with an average treatment effect around 8.2. In
addition, assume that the trial provides evidence that the treat-
ment effect is heterogeneous with respect to a certain genetic
mutation denoted X (with X = 1 for the mutation, and X = 0
if no mutation). More specifically, the average treatment effect
conditional to X is larger for individuals with X = 1 than for
those with X = 0. This situation is illustrated on Figure 4.1
where the average effect per strata X is also represented. We have at hand a representative sample
of m = 1000 individuals from the target population we are interest in (for example from an exist-
ing observational database). We observe that individuals with the genetic mutation (X = 1) are
over-represented in the trial compared to the target population of interest (see Figure 4.2). As a
consequence, the trial overestimates the target population’s ATE we are interested in.

Figure 4.2: Covariate shift along the genetic mutation
X between the trial population PR and target population
PT, highlighting the distributional shift between the two data
sources. Such population’s difference questions what is named
the external validity of a trial.

Target (PT) Trial (PR)
X = 1 30% 75%
X = 0 70% 25%
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Fortunately, the representative sample of the target population can be used to learn weights, and
re-weight the trial data in the following way,

τ̂n,m =
1

n

∑
i∈Trial

ŵn,m(Xi)︸ ︷︷ ︸
Weights

(
YiAi
π
− Yi(1−Ai)

1− π

)
︸ ︷︷ ︸

Horvitz-Thomson

. (4.2)

As detailed later on, the weights ŵn,m aims at estimating the probability ratio pT(x)
pR(x) , where pT (x) (resp.

pR (x)) is the probability of observing an individual with characteristics X = x in the target (resp.
randomized) population. The weights ŵn,m depend on the sizes of the randomized and observational
data sets, namely n and m. Consequently, the ATE estimator τ̂n,m depends on the size of two data
sets, raising questions on how this estimator behaves (bias and variance) as function of n and m.

2.1.2 Simulations and first observations
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(a) Toy example’s data gener-
ative model: where individuals
with X = 1 have a higher av-
erage treatment effect compared
to individuals with X = 0. The
baseline, centered on 0, is the
same for both stratum.
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(b) Re-weighting in action: Simulations’s results with a trial of size n = 150,
a target sample of size m = 1, 000 with 1, 000 repetitions, where the naive trial
estimate corresponds Equation 4.1, and re-weighted trial to Equation 4.2. As
expected re-weighting allows to recover the ATE of the target population (red
dashed line). It is also possible to estimate π from the data, giving another
re-weighting estimator with lower variance (later introduced in Definition 31).
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(c) Two data sets leading to two asymptotic regimes: where two situations are considered, one with
a large target sample (m = 2000) or a small target sample (n = 50). Then, increasing n leads to a
variance stagnation if m is small, while increasing n allows to further gain in precision if n ≤ m.

Figure 4.3: Toy example’s simulations - Minimal adjustment set.

To investigate empirically how τ̂n,m behaves, we run simulations following the Data Generative Process
(DGP) described in Section 2.1.1 and represented in Figure 4.3a. Figure 4.3b shows the different
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estimators in action, showing that the re-weighted trial compensates for the distribution shift as
expected.
Figure 4.3b also shows that estimating π from the data and plugging it in Equation 4.2 leads to a
clear gain in variance. This phenomenon is linked to seminal works in causal inference, and is further
demonstrated in Section 4.2. Finally, Figure 4.3c shows that if m remains small compared to n or if
n remains small compared to m, then the asymptotic variance regime differs (see Corollary 5 for a
formal statement, and Figure 4.6 for an illustration of the theoretical results).

For correct trial generalization, all shifted treatment effect modifier baseline covariates (see Defini-
tion 32 and 33, Section 4.3), such as the genetic mutation X, are necessary (Stuart et al., 2011). But,
in practice one may be tempted to add as many covariates V as available to account for all possible
sources of external validity bias.
Doing so, we may add covariates V that are not needed to properly estimates the weights. This is the
case if (i) V is shifted between the two data sets, but in reality is not a treatment effect modifier or if
(ii) V is a treatment effect modifier, but not shifted between the two data sets. Figure 4.4a shows that
in (i), the covariate V should not be added, as it can considerably inflate the variance and therefore
damage the precision (see Corollary 7 for a formal statement);
while in (ii), Figure 4.4b highlights that
the covariate V should be added as
the precision can be augmented by adding such covariates (see Corollary 8 for a formal statement).
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(a) Adding shifted covariate that is not a treatment ef-
fect modifier leads to a variance inflation. Simulation rep-
resents the situation of a binary shifted covariate V added or
not in the adjustment set. The y-axis represents how much
the variance with the minimal set is multiplied compared to a
situation with this additional shifted covariate. The plain lines
comes from the Theory (see Corollary 7) while dots are empir-
ical variance (obtained from 1, 000 repetitions with n = 150
and m = 1, 000). The more shifted the covariate, the higher
the inflation. The phenomenon is amplified if the covariate is
imbalanced in the trial (in opposition with a balanced).
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(b) Adding non-shifted treatment effect
modifier leads to a gain in precision com-
pared to a situation with only the necessary
covariate. In this plot DGP from Figure 4.3a
is adapted to add one non-shifted treatment
effect modifier. Adding such covariate (ex-
tended set) compared to an adjustment set
with only X (minimal set) lowers the vari-
ance.

Figure 4.4: Toy example’s simulations - Extended adjustment set.

In Section 4, we prove these phenomenons, deriving explicit finite sample and asymptotic results to
characterize the re-weighting process.

2.2 Related work

The estimator τ̂n,m introduced in the toy example (Equation 4.2) is an exact implementation of the
so-called Inverse Propensity of Sampling Weighting (IPSW) where the word sampling comes from
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the popular habit of modeling the problem as the one of a randomized trial suffering from selection
bias (Cole and Stuart, 2010; Bareinboim and Pearl, 2012a; Tipton, 2013; Dahabreh et al., 2019).
Note that the estimator introduced in Equation 4.2 can also be linked to post-stratification (Imbens,
2011; Miratrix et al., 2013), where post-stratification belongs to the family of adjustment methods on
a single RCT. Note that beyond trial re-weighting, other estimation strategies can be chosen when
it comes to generalization, for example stratification (Tipton, 2013; O’Muircheartaigh and Hedges,
2013), modeling the response (G-formula or Outcome Modeling) (Kern et al., 2016; Dahabreh et al.,
2019), using both strategies in a so-called doubly-robust approach (AIPSW) (Dahabreh et al., 2019,
2020), or entropy balancing (Josey et al., 2021; Dong et al., 2020).

Link with IPW The IPSW can be related – to a certain extent – to the well-known Inverse Propen-
sity Weighting (IPW) estimator in the context of a single observational data set (Hirano et al., 2003).
Indeed, this corresponds to a mirroring situation, where the weights are no longer the probability
ratio, but the probability to be treated (propensity score, Rosenbaum and Rubin, 1983b). Robins
et al. (1992); Hahn (1998); Hirano et al. (2003) showed that IPW is more efficient when weights are
estimated, rather than relying on oracle weights. This curious phenomenon can even be found in other
areas of statistics (Efron and Hinkley, 1978). Beyond efficient estimation with a minimal adjustment
set, it is known that additional and non-necessary baseline covariates in the adjustment set of the
IPW can either increase the variance (the so-called instruments) (Velentgas et al., 2013; Schnitzer
et al., 2015; Wooldridge, 2016), while another class of covariates (the ones linked only to the outcome
– and also called outcome-related covariates or risk factors or precision covariates) improves precision
(Hahn, 2004; Lunceford and Davidian, 2004; Brookhart et al., 2006; Lefebvre et al., 2008; Witte and
Didelez, 2018). A recent crash-course about good and bad controls recalls this phenomenon (Cinelli
et al., 2022). Finally, another very recent line of research consists in determining – given a Directed
Acyclic Graph (DAG) – the asymptotically-efficient adjustment set for ATE estimation. This is also
named ‘optimal’ valid adjustment set (O-set), corresponding to the adjustment set ensuring the small-
est asymptotic variance compared to other adjustment sets. Henckel et al. (2019) propose a result for
linear model, and Rotnitzky and Smucler (2020) extend this work for any non-parametrically adjusted
estimator. Such methods are meant for complex DAGs where several possible adjustment sets can be
used.

Theoretical results on IPSW Expression of the variance has been proposed for an estimator
related to the IPSW: the stratification estimator (O’Muircheartaigh and Hedges, 2013; Tipton, 2013).
These results only consider the situation of an infinite target sample. Similar expressions can also be
found in Rothman and Greenland (2000), also assuming an infinite target sample compared to the
trial sample size. Buchanan et al. (2018) propose theoretical properties such as asymptotic variance
of a variant of IPSW under a parametric model, using M-estimation methods for the proof (Stefanski
and Boos, 2002). Why a variant? Because their proof is under the situation of a so-called nested
design, that is a trial embedded in a larger observational population, so that there is only one single
data set to consider and not two. In addition, we have found no discussion - neither empirical nor
theoretical - about the impact of adding non-necessary covariates on the IPSW (or any other general-
ization’s estimator) properties (e.g., bias, variance). Egami and Hartman (2021) propose a method to
estimate a separating set – i.e. a set of variables affecting both the sampling mechanism and treatment
effect heterogeneity – and in particular when the trial contains many more covariates than the target
population sample. However, their work focus on identification. Huitfeldt et al. (2019) also consider
covariate selection for generalization, but focus on which covariates are necessary depending on the
causal measure chosen (ratio, difference, or other). Yang et al. (2020b) addresses a similar problem
(for non-probability sample and mean estimation), where they advocate selecting all variables, even
instrumental variables, for robustness, although it may come at the cost of drop in efficiency. Note
that some existing practical recommendations advocate to add as many covariates as possible (Stuart
and Rhodes, 2017).
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Contributions This work considers several variants of the IPSW, whether or not the weights are
oracle, semi-oracle, or estimated. In this context, we derive the asymptotic variance of all the variants
of IPSW and we show that several asymptotic regimes exist, depending on the relative size of the RCT
compared to the target sample. We also provide finite sample expression of the bias and variance for
all the IPSW variants introduced, allowing to bound the risk on this estimator for any samples sizes
(trial and target population). From these theoretical results, we explain why the addition of some
additional but non-necessary covariates in the adjustment set has a large impact on precision, for the
best or the worst. Indeed, while non-shifted treatment effect modifiers improve precision by lowering
the variance, adding shifted covariates that are not predictive of the outcome considerably reduces
the statistical power of the analysis by inflating the variance. For this latter situation, we provide
an explicit formula of the variance inflation when the additional covariate set is independent of the
necessary one. These results have important consequences for practitioners because they allow to give
precise recommendations about how to select covariates. Note that we link our work to seminal works
in causal inference, showing that semi-oracle estimation outperforms a completely oracle estimation,
while the exact result on IPW on efficient estimation can not be completely extended to the case of
generalization.

All our results assume neither a parametric form of the outcome nor the sampling process, but are
established at the cost of restricting the scope to categorical covariates for adjustment. Within the
medical domain, scores or categories are often used to characterize individuals, which justifies this
approach.

3 Notations and assumptions for causal identifiability

3.1 Notations

3.1.1 Problem setting

The notations and assumptions used in this work are grounded in the potential outcome framework
(Imbens and Rubin, 2015). We assume to have at hand two data sets:

A randomized controlled trial denoted R (for randomized), assessing the efficacy of a binary
treatment A on an outcome Y (ordinal, binary, or continuous) conducted on n iid observations.
Each observation i is labelled from 1 to n and can be modelled as sampled from a distribution
PR(X,Y

(1), Y (0), A) ∈ X×R2×{0, 1}, whereX is a categorical support. For any observation i, Ai
denotes the binary treatment assignment (with Ai = 0 if no treatment and Ai = 1 if treated), and

Y
(a)
i is the outcome had the subject been given treatment a (for a ∈ {0, 1}), which is assumed to

be squared integrable. Yi denotes the observed outcome, defined as Yi = Ai Y
(1)
i +(1−Ai)Y (0)

i .
In addition, this trial is assumed to be a Bernoulli trial with a constant probability of treatment
assignment for all units and independence of treatment allocation between units (see in appendix
Definition 34)1. We denote PR [Ai = 1] = π. Xi is a p-dimensional vector of categorical covariates
accounting for individual characteristics on the observation i;

A sample of the target population of interest denoted T (for target), containing m iid individ-
uals samples drawn from a distribution PT(X,Y

(1), Y (0), A) ∈ X × R2 × {0, 1}, labelled from
n+ 1 to n+m. In this data set, we only observe individual categorical characteristics Xi. For
simplicity, we further use the notation PT(X) for the marginal of X on distribution PT.

Finally, the probability of X in the target population (resp. trial population) is denoted pT(x) (resp.
pR(x)). Mathematically, a covariate shift between the two populations occurs when there exists x ∈ X
such that pR(x) ̸= pT(x). The setting and notations are summarized on Figure 4.5.

1For a review of trial designs, in particular explaining the difference between a Bernoulli and a completely randomized
design, we refer the reader to Chapter 2 of Imbens and Rubin (2015).
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Figure 4.5: Summary of the data at
hand: on the left, a randomized controlled
trial R of size n sampled according to PR

and informing about the effect of a treat-
ment A on the outcome Y . On the right, a
sample T of size m sampled from the target
population of interest PT, containing only in-
formation on covariates X. As suggested on
the drawing, n is often smaller than m, as
trials are usually of limited size compared to
large national data base or cohort.

Comments on the notations Note that a large part of the literature models the problem with a
sampling mechanism from a super population. Doing so, the target and the trial samples are assumed
sampled from this super population, with different mechanisms leading to a distributional shift of the
trial (e.g. the framing in Stuart et al., 2011; Hartman, 2021). Still, as soon as we are not working
with a nested trial (that is a trial embedded in the target sample) and if only baseline covariates are
considered for adjustment, the framing with a sampling model is equivalent to the problem setting
introduced above (Colnet et al., 2020; Westreich et al., 2017a). Note that the literature is increasing
adopting the framing that we use here (Kern et al., 2016; Nie et al., 2021; Chattopadhyay et al., 2022).

3.1.2 Target quantity of interest

Recall that two distributions, indexed by R and T are involved in our problem setting (Section 3.1.1).
Therefore, we will use these indices to denote quantities (expectations, probabilities) taken with respect
to these distributions, for example ER [.] (resp. ET [.]) for an expectation over PR (resp. PT).

We define the target population average treatment effect ATE (sometimes called TATE for Target):

τ := ET

[
Y (1) − Y (0)

]
. (4.3)

Because the randomized controlled data R are not sampled from the target population of interest,
the sample average treatment effect τR (sometimes called SATE for Sample) estimated from this
population,

τR := ER

[
Y (1) − Y (0)

]
,

may be biased, that is τR ̸= τ . While not being the target quantity of interest, we also introduce the
so-called Conditional Average Treatment Effect (CATE), as

∀x ∈ X, τ(x) := ET

[
Y (1) − Y (0) | X = x

]
.

3.2 Identification assumptions

Assumptions are needed to be able to generalize the findings from the population data PR toward the
population PT.

Assumptions on the trial We first need validity of the trial, also called internal validity. These
assumptions are the usual ones formulated in causal inference, and in particular for randomized con-
trolled trials within the potential outcomes framework (Imbens and Rubin, 2015; Hernan, 2020).

Assumption 26 (Representativity of the randomized data). For all i ∈ R, Xi ∼ PR(X) where PR is
the population distribution from which the RCT was sampled.

Assumption 27 (Trial’s internal validity). The RCT at hand R is assumed to be internaly valid,
such that
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(i) Consistency and no interference hold, that is: ∀i ∈ R, Yi = Ai Y
(1)
i +(1−Ai)Y (0)

i –an assumption
often termed SUTVA (stable unit treatment value);

(ii) Treatment randomization holds, that is: ∀i ∈ R,
{
Y

(1)
i , Y

(0)
i

}
⊥ Ai;

(iii) Positivity of trial treatment assignment holds, that is: 0 < π < 1 (usually π = 0.5).

Assumptions for generalization The two following assumptions are specific to generalization or
transportability.

Assumption 28 (Transportability). ∀x ∈ X, PR(Y
(1) − Y (0) | X = x) = PT(Y

(1) − Y (0) | X = x).

The transportability assumption (Stuart et al., 2011; Pearl and Bareinboim, 2011a), also called sample
ignorability for treatment effects (Kern et al., 2016) or Conditional Ignorability (Hartman, 2021), is
probably the most important assumption to generalize or transport the trial findings to the target
population, as this requires to have access to all shifted covariates being treatment modifiers. In
other words, it assumes that all the systematic variations in the treatment effect are captured by
the covariates X (O’Muircheartaigh and Hedges, 2013). The covariates X are usually named the
adjustment or separating set. Note that the concept of treatment effect modifiers depends on the
causal measure chosen; in this paper, we only consider the absolute difference most common for
a continuous outcome as detailed in Equation 4.3. Would we have chosen the log-odd-ratio, for
instance, then the covariates being treatment effect modifiers could be different. Finally, note that
Pearl and Bareinboim (2011a) introduces selection diagram to formalize this assumption relying on
causal diagrams. Pearl (2015) details why diagrams can contain more identification scenarii. But in
this work, we only consider baseline covariates for the transportability assumption (i.e no front-door
adjustment).

Assumption 29 (Support inclusion). ∀x ∈ X, pR(x) > 0, and supp(PT (X)) ∈ supp(PR(X)).

Note that this last assumption is sometimes referred as the positivity of trial participation and can
also be viewed as a sampling process with non-zero probability for all individuals.

3.3 Estimators

In this work, we denote any estimator targeting a quantity τ as τ̂n,m where the the index n or m is
employed to characterise which data were used in the estimation strategy. For example, an estimator
τ̂n (resp. τ̂m) only uses the trial data (resp. observational data) whereas τ̂n,m uses both data sets.

3.3.1 Within-trial estimators of ATE

Two classical estimators targeting τR from trial data are the Horvitz-Thomson and Difference-in-means
estimators.

Definition 22 (Horvitz-Thomson - Horvitz and Thompson (1952)). The Horvitz-Thomson estimator
is denoted τ̂HT,n and defined as,

τ̂HT,n =
1

n

n∑
i=1

(
AiYi
π
− (1−Ai)Yi

1− π

)
.

Under a Bernoulli design (constant and independent probability to be treated π) the Horvitz-Thomson
estimator τ̂HT,n is an unbiased and consistent estimator of τR, and its variance satisfies, for all n,

nVar [τ̂HT,n] = ER

[(
Y (1)

)2
π

]
+ ER

[(
Y (0)

)2
1− π

]
− τ2R := VHT. (4.4)
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Definition 23 (Difference-in-means - Neyman (1923) and its English translation Splawa-Neyman
et al. (1990)). The Difference-in-means estimator is denoted τ̂DM,n and defined as

τ̂DM,n =
1

n1

∑
Ai=1

Yi −
1

n0

∑
Ai=0

Yi, where na =
n∑
i=1

1Ai=a.

The Difference-in-means is also referred to as the simple difference estimator for e.g. in Miratrix
et al. (2013) or difference in the sample means of the observed outcome variable between the treated
and control groups for e.g. in Imai et al. (2008). Under a Bernoulli design, the difference-in-means
estimator is a consistent estimator of τR, and its finite sample variance is bounded by

nVar [τ̂DM,n] ≤
Var

[
Y (1)

]
π

+
Var

[
Y (0)

]
1− π

+O
(
n−1/2

)
, (4.5)

and its large sample variance satisfies,

lim
n→∞

nVar [τ̂DM,n] =
Var

[
Y

(1)
i

]
π

+
Var

[
Y

(0)
i

]
1− π

:= VDM,∞. (4.6)

An explicit expression of the finite sample bias and variance of τ̂DM,n are given in appendix (see
Lemma 4). What will be used later on, is the fact that the Difference-in-Means estimator can be
viewed as a variant of the Horvitz-Thomson estimator, where the probability to be treated π (or
propensity score) is estimated, that is,

τ̂DM,n =
1

n

n∑
i=1

(
Ai Yi
π̂
− (1−Ai)Yi

1− π̂

)
, where π̂ =

∑n
i=1Ai
n

.

Counter-intuitively, the benefit of estimating π is to lower the variance. Even if the true probability
is π = 0.5, the actual treatment allocation in the sample can be different (e.g., π̂ = 0.48), and using π̂
rather than π leads to a smaller large sample variance by adjusting to the exact observed probability
to be treated in the trial. In particular, it is possible to be convinced of this phenomenon when
comparing the two variances,

VDM,∞ = VHT −

(√
1− π
π

ER[Y
(1)] +

√
π

1− π
ER[Y

(0)]

)2

≤ VHT. (4.7)

Appendix 4.D recalls derivations to obtain eq. 4.4 to eq. 4.7.
Other estimators of τR exist, and rely on prognostic covariates (also called adjustement) such as
outcome-modeling or post-stratification. Below (Section 4.2), we introduce the post-stratification
estimator, corresponding to the Horvitz-Thomson estimator where π is estimated according to different
stratum.

3.3.2 Re-weighting estimator for generalizing the trial findings

As mentioned in Subsection 2.2, in this work we focus on the reweighting strategy, that is the Inverse
Propensity of Sampling Weighting (IPSW) estimator (Cole and Stuart, 2010; Stuart et al., 2011).

Definition 24 (Completely oracle IPSW). The completely oracle IPSW estimator is denoted τ̂∗π,T, R,n,
and defined as

τ̂∗π,T,R,n =
1

n

n∑
i=1

pT(Xi)

pR(Xi)
Yi

(
Ai
π
− 1−Ai

1− π

)
, (4.8)

where pT(Xi)
pR(Xi)

are called the weights or the nuisance components.

Definition 24 corresponds to a completely oracle IPSW, where pT, pR, and the trial allocation proba-
bility π are known.
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3.3.3 Probability ratio estimation

In practice neither pR nor pT are known, and therefore one needs to estimate these probabilities. As
explained in Subsection 3.1.1, we consider the case where X is composed of categorial covariates only.
In such a situation, a practical IPSW estimator can be built from Definition 24 by estimating each
probability pT and pR by their empirical counterpart (that is counting how many observations fall in
each categories in the trial and target samples).

Definition 25 (Probability estimation). Under the setting defined in Subsection 3.1.1,

∀x ∈ X , p̂T,m(x) :=
1

m

∑
i∈T

1Xi=x and, p̂R,n(x) :=
1

n

∑
i∈R

1Xi=x.

Having defined a method for probability estimation, one can build practical IPSW variants.

Definition 26 (Semi-oracle IPSW). The semi-oracle IPSW estimator τ̂∗π,T,n is defined as

τ̂∗π,T,n =
1

n

n∑
i=1

pT(Xi)

p̂R,n(Xi)
Yi

(
Ai
π
− 1−Ai

1− π

)
, (4.9)

where p̂R,n is estimated according to Definition 25.

Note that this semi-oracle estimator corresponds to the so-called standardization procedure described
in Rothman and Greenland (2000).

Definition 27 (IPSW). The (estimated) IPSW estimator τ̂π,n,m is defined as

τ̂π,n,m =
1

n

n∑
i=1

p̂T,m(Xi)

p̂R,n(Xi)
Yi

(
Ai
π
− 1−Ai

1− π

)
, (4.10)

where p̂R,n and p̂T,m are estimated according to Definition 25.

Definition 27 corresponds to the classical implementation of the IPSW since, practically, the proba-
bilities p̂R,n and p̂T,m are not known and must be estimated.

Another interpretation of IPSW Note that the IPSW can be understood differently, thanks to
the fact that covariates used to adjust are categorical. Indeed, it is possible to re-write the IPSW
estimator from Definition 27 as,

τ̂π,n,m =
∑
x∈X

mx

m

n∑
i=1

1Xi=x
1

nx

(
AiY

(1)
i

π
−

(1−Ai)Y (1)
i

1− π

)
=
∑
x∈X

mx

m
τ̂HT,nx ,

where mx =
∑m

i=n+1 1Xi=x and nx =
∑n

i=1 1Xi=x. This corresponds to a procedure where stratum
average treatment effects are estimated with an Horvitz-Thomson procedure, and then aggregated
with weights corresponding to the target sample proportions. Miratrix et al. (2013) also discusses a
similar approach in their section 5, but where the sample proportions corresponds to the true target
population of interest. In a way, our work extends this situation to a more general case, considering
the noise due to the sampling process from two populations.

Comment about oracle and semi-oracle interest The completely-oracle and the semi-oracle
estimators are not used in practice, as usually none of the true probabilities are known. Still, they both
correspond to some asymptotic situations that are of interest to understand the IPSW. For instance:

• Studying τ̂∗π,T,R,n allows us to observe the effect of averaging over the trial sample R, without
the variability due to covariates probabilities estimation (p̂R,n and p̂T,m);

• Studying τ̂∗π,T,n allows to understand the situation where the target sample T is infinite (m→∞).
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In addition, studying these estimators allows us to link our results with seminal works in causal in-
ference showing that the estimated propensity score can lead to better properties than an oracle one
(Robins et al., 1992; Hahn, 1998; Hirano et al., 2003). Note that we could introduce another semi-
oracle estimator, where pR is known but not pT. This specific estimator does not correspond to a
limit situation helping to figuring out the results, as it is as if the covariates probabilities in the trial
are learned on a infinite data sample, but where the treatment effect estimate is still averaged on a
finite sample. Finally, since all covariates are assumed to be categorical in our framework, trial and
observational densities (continuous covariates) turn into trial and observational probabilities (cate-
gorical covariates). Oracles and semi-oracles will be different when considering continuous covariates
as the weights will be replaced by density estimation or estimation of the probability of being in the
target population (instead of the experimental sample) (e.g. see Kern et al., 2016; Nie et al., 2021)),
sometimes directly estimating the ratio by binding the two data sources and therefore making the
notion of semi-oracle outdated.

4 Theoretical results

4.1 Bias and variance of IPSW variants in finite-sample regime

In this section, we expose our main theoretical results on the three variants of the IPSW estimator
(Definition 24, 26 and 27). The following results rely on the variance of the Horvitz-Thomson estimator
on a given strata x (see Definition 22), denoted VHT(x), and defined as ,

VHT(x) := ER

[(
Y (1)

)2
π

| X = x

]
+ ER

[(
Y (0)

)2
1− π

| X = x

]
− τ(x)2. (4.11)

In this equation, we removed the index R of τ(x) as τR(x) = τT(x) = τ(x), thanks to Assumption 28.
Removing the index on the two conditional expectations would require to go beyond the classical
transportability assumption, by assuming that

∀a ∈ {0, 1}, PR(Y
(a) | X = x) = PT(Y

(a) | X = x),

i.e. X contains all the covariates being shifted and predictive of the outcome, which is stronger than
Assumption 28.

4.1.1 Properties of the completely oracle IPSW

The following result establishes consistency and finite sample bias and variance for the oracle IPSW,
which extends the preceding results from Egami and Hartman (2021) (see their appendix, Section
SM-2).

Theorem 9 (Properties of the completely oracle IPSW). Under the general setting defined in Subsec-
tion 3.1.1, granting Assumptions 26-29, the completely oracle IPSW is unbiased and has an explicit
variance expression, that is, for all n,

E
[
τ̂∗π,T,R,n

]
= τ, and Var

[
τ̂∗π,T,R,n

]
=
Vo
n
, where Vo := VarR

[
pT(X)

pR(X)
τ(X)

]
+ ER

[(
pT(X)

pR(X)

)2

VHT(X)

]
.

As a consequence, for all n, the quadratic risk of the completely oracle IPSW is given by,

E
[(
τ̂∗π,T,R,n − τ

)2]
=
Vo
n
,

which implies its L2-consistency as n tends to infinity, that is,

τ̂∗π,T,R,n
L2

−→ τ.
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The finite-sample variance Vo depends on the probability ratio, the amplitude of the heterogeneity of
treatment effect (through τ(x)), and variances of the potential outcomes. In particular if for some
category x, the pT(x) and pR(x) are very different implies a large variance when generalizing the
trial’s findings. Note that the convergence rate is a usual one in ∝ 1

n . Although it is not our main
contribution, Theorem 9 is of primary importance for comparing the impact of sample sizes on the
performances of the different IPSW variants. Appendix 4.A.1 provides a detailed proof of Theorem 9
and sheds light on the technical tools used for more complex IPSW variants.

4.1.2 Properties of the semi-oracle IPSW

In this section, we study the behaviour of the semi-oracle IPSW (Definition 26), for which the prob-
ability pT is known but the probability pR is estimated. One can obtain for a certain x, p̂R,n(x) = 0
for some x ∈ X, even if the true probability is non-negative pR(x) > 0. This phenomenon, occurring
when no observations in the trial correspond to the covariate vector x, induces a finite sample bias
of the IPSW estimate. The performance of the semi-oracle IPSW estimate is thus closely related to
1Zn(x)>0 where Zn(x) =

∑n
i=1 1Xi=x, as stated in our next results.

Proposition 2. Under the general setting defined in Subsection 3.1.1, granting Assumptions 26-29,
the bias of the semi-oracle IPSW satisfies, for all n,

E
[
τ̂∗π,T,n

]
− τ = −

∑
x∈X

pT(x) (1− pR(x))n τ(x),

and

∣∣∣∣E [τ̂∗π,T,n]− τ ∣∣∣∣ ≤ (1−min
x
pR(x)

)n
ET [|τ(X)|] .

Moreover, under the same set of assumptions, the variance of the semi-oracle IPSW satisfies, for all
n,

nVar
[
τ̂∗π,T,n

]
=
∑
x∈X

pT (x)
2 VHT(x)ER

[
1Zn(x)>0

p̂R,n(x)

]
+ nVar

[
ET

[
τ(X)1Zn(X)=0|Xn

]]
,

and Var
[
τ̂∗π,T,n

]
≤ 2Vso
n+ 1

+

(
1−min

x∈X
pR(x)

)n
ET

[
τ(X)2

]
,

with Vso :=ER

[(
pT(X)

pR(X)

)2

VHT(X)

]
.

The proof is detailed in Subsection 4.A.2.1. Proposition 2 establishes the exact finite-sample bias
and variance of the semi-oracle IPSW estimate. Unlike the completely oracle IPSW, the semi-oracle
IPSW is biased for small trials (i.e. small n), which can be understood by undercoverage of some
categories in the trial. Indeed, for small trials, the probability that a category is not represented at
all in the RCT may not be negligible. Fortunately, as shown in Proposition 2, this bias converges to
zero exponentially with the trial size n. Note that, as soon as τ(x) is of constant sign, the sign of
the bias is known and opposite to that of τ(x). In fact, because of potentially empty categories in
the trial, the expectation of the semi-oracle IPSW estimate E

[
τ̂∗π,T,n

]
is pushed toward zero, if τ(x)

is of constant sign. Proposition 2 also gives the exact finite-sample expression of the variance for the
semi-oracle IPSW estimate. Corollary 4 provides asymptotic results derived from these finite-sample
expressions:

Corollary 4 (Asymptotics). Under the same assumptions as in Proposition 2, the semi-oracle IPSW
is asymptotically unbiased, and its asymptotic variance satisfies,

lim
n→∞

E
[
τ̂∗π,T,n

]
= τ, and lim

n→∞
nVar

[
τ̂∗π,T,n

]
= Vso.

The proof is detailed in Subsection 4.A.2.2. The quantity Vso already exist in the literature, for
example in Rothman and Greenland (2000), where a form of semi-oracle IPSW was introduced under
the name standardization. Here, we clarify the fact that this formula is valid only for large sample and
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we provide detailed derivations. Therefore, Corollary 4 is the first theoretical result establishing the
asymptotic variance of the semi-oracle IPSW. One can observe from the explicit derivations that the
semi-oracle estimator τ̂∗π,T,n has a lower asymptotic variance than the oracle IPSW τ̂∗π,T,R,n recalled in
Theorem 2. In particular,

Vso = Vo − VarR

[
pT(X)
pR(X)τ(X)

]
.

Always positive

This phenomenon has similar explanations2 with the common (and often surprising) result stating
that an estimated propensity score lowers the variance when re-weighting observational data com-
pared to an estimator relying on oracle propensity score (see Robins et al., 1992; Hahn, 1998; Hirano
et al., 2003; Lunceford and Davidian, 2004, regarding IPW estimator). Intuitively, we only need to
generalize from the actual sample to the target population, and not from a source trial population to
a target population.

The semi oracle estimate has a lower asymptotic variance compared to the estimated IPSW but is also
biased. One can thus wonder how the risk of the two estimates compare. Theorem 10 upper bounds
the risk of the semi-oracle estimate:

Theorem 10 (Properties of the semi-oracle IPSW). Under the general setting defined in Subsec-
tion 3.1.1, granting Assumptions 26-29, the quadratic risk of the completely oracle IPSW satisfies,

E
[(
τ̂∗π,T,n − τ

)2] ≤ 2Vso
n+ 1

+ 2
(
1−min

x
pR

)n
ET

[
τ(X)2

]
,

which implies its L2-consistency as n goes to infinity, that is,

τ̂∗π,T,n
L2

−→ τ.

Subsection 4.A.2.3 details the proof. The second term in the upper bound of Theorem 10 decreases
exponentially with n, whereas the first term decreases at rate 1/n. At first, it is not easy to compare
this upper bound to the risk of the completely oracle IPSW, due to the factor two before Vso. Close
inspection of the proof of Theorem 10 reveals that the factor 2 can be replaced by (1 + ε), for all ε,
assuming that n is large enough (see Lemma 5). The bound presented here is valid for all n and can
be improved if n is taken large enough. Therefore, for all n large enough, the first term in the upper
bound is close to Vso/(n + 1) which is smaller than Vo/(n + 1) (see above), which makes the risk of
the semi-oracle smaller than that of the completely oracle, for n large enough. This bound opens the
doors to guarantees even on small sample size. Also note that, unlike Vo, Vso can be estimated with
the data.

4.1.3 Properties of the (estimated) IPSW

Previous results on IPSW are valid when the size of the target population goes to infinity. In this
subsection, we establish theoretical guarantees for the estimated IPSW in a more complex setting: we
consider finite trial and target population datasets and establish bounds depending on both sample
sizes (n and m).

Proposition 3. Under the general setting defined in Subsection 3.1.1, granting Assumptions 26-29,
the bias of the estimated IPSW is the same as that of the semi-oracle IPSW, that is, for all n,m,

E [τ̂π,n,m]− τ = −
∑
x∈X

pT(x) (1− pR(x))n τ(x).

2In fact, similar considerations appear outside causal inference, for example Efron and Hinkley (1978) argued that
the observed information rather than the expected Fisher information should be used to characterize the distribution of
maximum-likelihood estimates.
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Moreover, under the same set of assumptions, the variance of the estimated IPSW satisfies, for all
n,m,

Var [τ̂π,n,m] = Var
[
τ̂∗π,T,n

]
+

1

m

(
VarT

[
τ(X)1Zn(X )̸=0

]
−Var

[
ET

[
τ(X)1Zn(X)=0|Xn

]])
+

1

nm

∑
x∈X

VHT(x) pT(x) (1− pT(x))E
[
1Zn(x)̸=0

p̂R,n (x)

]

and Var [τ̂π,n,m] ≤
2Vso
n+ 1

+
VarT [τ(X)]

m
+

2

m (n+ 1)
ER

[
pT (X) (1− pT (X))

pR (X)2
VHT(X)

]
+
(
1−min

x
pR(x)

)n/2
ET

[
τ(X)2

](
1 +

4

m

)
. (4.12)

A proof is given in Subsection 4.A.3.1. Note that the term VarT [τ(X)] can be replaced by Var [τ(X)]
thanks to Assumption 28. Proposition 3 is the first result to establish the bias and variance of the
estimated IPSW in a finite-sample setting. A first observation is that the bias of the (estimated)
IPSW is the same as that of the semi-oracle, showing that only a limited trial sample size can explain
a finite sample bias. On the other side, the variance terms differ, due to the additional estimation of
the target probability pT in the estimated IPSW. All additional terms compared to the variance of the
semi-oracle τ̂T,π,n therefore depend on m. The explicit expression of the variance shows that n and m
must go to infinity for the variance to go to zero.

In this setting, the variance is dominated by the first two terms in inequality 4.12. If m ≫ n, the
variance is dominated by the first term, which is the dominant term of the semi-oracle variance.
Following this idea, Corollary 5 establishes the asymptotic bias and variance of the estimated IPSW
in different sample size regimes.

Corollary 5. Under the same assumptions as in Proposition 3, the estimated IPSW is asymptotically
unbiased when n tends to infinity, that is

lim
n→∞

E [τ̂π,n,m] = τ.

Besides, letting lim
n,m→∞

m/n = λ ∈ [0,∞], the asymptotic variance of the estimated IPSW satisfies

lim
n,m→∞

min(n,m)Var [τ̂π,n,m] = min(1, λ)

(
Var [τ(X)]

λ
+ Vso

)
.

A proof is detailed in Subsection 4.A.3.2.

As highlighted in Corollary 5, there is not a unique asymptotic variance for the estimated IPSW. Its
asymptotic variance depends on how the sample sizes n and m compare to each other asymptotically.
For example,

• If m/n→∞, (i.e., λ =∞) then the asymptotic variance of the estimated IPSW corresponds to
the semi-oracle’s one;

• If we consider an asymptotic regime where the observational sample is about ten times big-
ger than the trial (λ = 10), then the asymptotic variance is equal to lim

n,m→∞
nVar [τ̂π,n,m] =

Var [τ(X)] /10 + Vso > Vso;

• Finally, if m/n → 0, (i.e., λ = 0) then the asymptotic variance of the estimated IPSW has no
more link to that of the semi-oracle IPSW, and lim

n,m→∞
mVar [τ̂π,n,m] = Var [τ(X)].
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This formula can be used to guide data collection. For example, and using the formula, one could say
that at some point gathering N additional individuals information in the target population (which
has a cost) could lead to less gain in precision than gathering a bit more data on the trial (if possible).
This phenomenon is illustrated on Figure 4.6.

Upper bound on the risk of the estimated IPSW can be established, based on Proposition 3.

Theorem 11 (Properties of the IPSW). Under the general setting defined in Subsection 3.1.1, granting
Assumptions 26-29, the quadratic risk of the estimated IPSW satisfies,

E
[
(τ̂π,n,m − τ)2

]
≤ 2Vso
n+ 1

+
Var [τ(X)]

m
+

2

m(n+ 1)
ER

[
pT (X) (1− pT (X))

pR (X)2
VHT(X)

]
+ 2

(
1−min

x
pR (x)

)n
ET[τ(X)2]

(
1 +

2

m

)
, (4.13)

which implies its L2-consistency as m,n tends to infinity, that is,

τ̂π,n,m
L2

−→ τ.

Figure 4.6: Illustration of Corol-
lary 5

Proof is detailed in Subsection 4.A.3.3. The first and fourth
terms in inequality eq. 4.13 correspond to the bound of the semi-
oracle estimator (see Theorem 10). Following the intuition, the
bound on the risk of the estimated IPSW is larger than the
one of the semi-oracle. This is due to the cost of estimat-
ing pT from a finite sample of size m. However, when m ≫
n, the dominant terms in the risk of the estimated and semi-
oracle IPSW are the same. Indeen, consistency of the (esti-
mated) IPSW for continuous covariates has been proven in the
literature, for e.g. Buchanan et al. (2018) demonstrate consis-
tency and asymptotic normality under a nested-design and as-
suming a parametric selection process. Colnet et al. (2022a)
demonstrate consistency assuming uniform convergence of the
probability ratio under a cross-fitting procedure and no para-
metric assumption. Our results are the first to establish the
bias and the variance of the estimated IPSW in finite and
asymptotic regimes, with an explicit dependence on both sample
sizes.

What if the probability to be treated depends on x? In some trials, the probability to receive
treatment depends on the strata (for e.g. for ethical reason). If so, all the previous results are kept
unchanged, replacing π by π(x), and the proofs are written with π(x), even if the main results are
reported with a constant π for briefness. In particular, all the covariates used to stratify the propensity
to receive treatment in the trial should be used in the IPSW.

4.2 Estimating the probability to be treated in the trial?

So far, we have considered an estimation procedure where π, the probability to be treated in the
trial, is plugged in the formula. Still, one may want to estimate it for the purpose of precision.
This idea follows the same spirit of what can be done with the Horvitz-Thomson (Definition 22)
and the Difference-in-means (Definition 23), where the large-sample gain in variance is recalled in
Equation eq. 4.7. To our knowledge, different version of IPSW are currently present in the literature,
with or without an estimated π (see Table 4.1 in appendix for a non-exhaustive review). In our work,
we propose to estimate π per strata, and then adapt the semi-oracle IPSW (Definition 26) and the
estimated IPSW (Definition 27).
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Definition 28 (Estimation of π̂ for each strata). Under the setting defined in Subsection 3.1.1,

∀x ∈ X, π̂n(x) =
∑

i∈R 1Xi=x1Ai=1∑
i∈R 1Xi=x

.

Strange as it may seem, estimating π per strata and not on the whole sample can also be beneficial
in RCTs to improve precision. Imbens (2011); Miratrix et al. (2013) introduce the post-stratification
procedure, a technique aiming to use covariate information for precision when estimating the ATE
from a single trial. These two research works detail why a so-called post-stratification estimator
yields a lower variance compared to the Difference-in-Means – and therefore a Horvitz-Thomson – as
soon as the covariates used for stratification are predictive of the outcome. More particularly, the
post-stratification estimator on a single trial is defined as follows.

Definition 29 (Post-stratification - Imbens (2011); Miratrix et al. (2013)). The post-stratification
estimator is denoted τ̂PS,n and defined as,

τ̂PS,n =
1

n

n∑
i=1

AiYi
π̂n(x)

− (1−Ai)Yi
1− π̂n(x)

,

where π is estimated according to Definition 28.

The different displays of the post-stratification estimator τ̂PS,n in literature are recalled in Section 4.D.
The gain in efficiency of an IPSW version with estimated π follows this intuition.

Definition 30 (Semi-oracle IPSW with π̂). The semi-oracle IPSW estimator τ̂∗T,n with estimated
propensity scores π̂n is defined as

τ̂∗T,n =
1

n

n∑
i=1

pT(Xi)

p̂R,n(Xi)
Yi

(
Ai

π̂n(Xi)
− 1−Ai

1− π̂n(Xi)

)
, (4.14)

with p̂R,n(x) and π̂n(x) defined in Definitions 25 and 28.

Definition 31 (IPSW with π̂). The completely-estimated IPSW estimator τ̂n,m with estimated propen-
sity scores π̂n is defined as

τ̂n,m =
1

n

n∑
i=1

p̂T,m(Xi)

p̂R,n(Xi)
Yi

(
Ai

π̂n(Xi)
− 1−Ai

1− π̂n(Xi)

)
, (4.15)

where p̂T,m(x), p̂R,n(x), and π̂n(x) defined in Definitions 25 and 28.

Before stating the formal results, and following the spirit of what was done with the variance of the
Horvitz-Thomson per strata eq. 4.11, we introduce VDM,n(x):

VDM,n(x) = nVarR [τ̂DM,n|X = x] . (4.16)

The explicit variance of the Difference-in-Means under a Bernoulli design is provided in Appendix (see
Lemma 4), and not displayed here for conciseness.

Proposition 4 (IPSW’s properties when also estimating π). Under the general setting defined in
Subsection 3.1.1, granting Assumptions 26-29, the bias of the estimated IPSW with estimated π̂n (see
Definition 28) is given by

E [τ̂n,m]− τ =
∑
x∈X

pT(x)E
[
Y (0) | X = x

](
1− pR(x) (1− π(x))

)n
−
∑
x∈X

pT(x)E
[
Y (1) | X = x

] (
1− pR(x)π(x)

)n
.
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Besides, the variance of the estimated IPSW with estimated π̂n satisfies, for all n

Var [τ̂n,m] =
1

m
Var [τ(X)− Cn(X)] +

(
1− 1

m

)
Var [E [Cn(X)|Xn]]

+
∑
x∈X

(
pT(x)(1− pT(x))

m
+ p2T(x)

)
E
[
1Zn(x)>0

Zn(x)

]
VDM,n(x),

where Cn(X) = E
[
Y (1) | X

]
(1− π(X))Zn(X) − E

[
Y (0) | X

]
π(X)Zn(X).

Furthermore, Var [τ̂n,m] ≤
2 Ṽso
n+ 1

+
Var [τ(X)]

m
+

2

(n+ 1)m
ER

[
pT (X) (1− pT (X))

pR (X)2
VDM(X)

]
+ 2

(
1 +

3

m

)(
1−min

x

(
(1− π̃(x)2)pR(x)

))n/2
E
[
(Y (1))2 + (Y (0))2

]
,

where π̃(x) = max (π(x), 1− π(x)) and Ṽso := ER

[(
pT (X)

pR (X)

)2

VDM,n(X)

]
.

Proof is detailed in Subsection 4.A.4.1. Note that the bias takes a simpler form in the most usual case
if π(x) = 1/2,

E [τ̂n,m]− τ = −
∑
x∈X

pT(x)τ(x)

(
1− pR(x)

2

)n
.

In this case, the bias of the estimated IPSW with estimated π̂n is larger than the one of all three
previous IPSW (completely oracle, semi-oracle and estimated with oracle π), but still decreases expo-
nentially with n. Another difference comes from the fact that the sign and magnitude of the bias no
longer depends on the sign and magnitude of τ(x) but also of E[Y (0)] and E[Y (1)]. The bound on the
variance of τ̂n,m is very close to the one of τ̂π,n,m, and in particular for any fixed m,

Var [τ̂n,m] ≤
2 Ṽso
n+ 1

+
Var [τ(X)]

m
+

2

(n+ 1)m
ER

[
pT (X) (1− pT (X))

pR (X)2
VDM(X)

]
+ o

(
1

n

)
,

where the main difference comes from Ṽso that contains VDM,n(X) rather than VHT(X). Combining
eq. 4.6 and eq. 4.7 allows to have

nVar [τ̂DM,n] ≤ VHT(x) +O
(
n−1/2

)
,

which allows to conclude that for all n large enough, the bound on the variance of τ̂n,m is tighter than
the bound on the variance of τ̂π,n,m. This can also be observed on the large sample variance.

Corollary 6. Under the same assumptions as in Proposition 4, the completely estimated IPSW is
asymptotically unbiased when n tends to infinity, that is

lim
n→∞

E [τ̂n,m] = τ.

Besides, letting lim
n,m→∞

m/n = λ ∈ [0,∞], the asymptotic variance of completely estimated IPSW

satisfies

lim
n,m→∞

min(n,m)Var [τ̂n,m] = min(1, λ)

(
Var [τ(X)]

λ
+ Ṽso,∞

)
,

where Ṽso,∞ :=ER

[(
pT (X)

pR (X)

)2

VDM,∞(X)

]
,

and VDM,∞(x) :=
VarR

[
Y (1) | X = x

]
π

+
VarR

[
Y (0) | X = x

]
1− π

.
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Proof is detailed in Subsection 4.A.4.2. Because ∀x ∈ X, VDM,∞(x) ≤ VHT(x), then Ṽso,∞ ≤ Vso, so
that the large sample variance of the semi-oracle and completely estimated IPSW are smaller than
with an oracle π, regardless of the regime at which n and m tend to infinity. Similarly to the result
on τ̂π,n,m, upper bound on the risk of the completely estimated IPSW can be established, based on
Proposition 4.

Theorem 12 (Properties of the IPSW). Under the general setting defined in Subsection 3.1.1, granting
Assumptions 26-29, the quadratic risk of the completely estimated IPSW with estimated π̂ satisfies,

E
[
(τ̂n,m − τ)2

]
≤ 2Ṽso
n+ 1

+
Var [τ(X)]

m
+

2

m(n+ 1)
ER

[
pT (X) (1− pT (X))

pR (X)2
VDM(X)

]
+ 2

(
2 +

3

m

)(
1−min

x
((1− π̃(x))pR(x))

)n/2
E
[
(Y (1))2 + (Y (0))2

]
. (4.17)

Consequently, the estimator τ̂n,m is L2-consistent as m,n tends to infinity, that is,

τ̂n,m
L2

−→ τ.

Proof is detailed in Subsection 4.A.4.3. For the risk, and for the same arguments than for the bound
on the variance, it can be shown that for a reasonable n, the bound on the risk of τ̂n,m is tighter than
for τ̂π,n,m. All the previous results establish theoretical guidance explaining why an estimator also
estimating π per strata should be preferred in practice, at least for a reasonable trial sample size n.
To our knowledge we have not found work explicitly stating that estimating π in the IPSW should
be preferred, even if Dahabreh et al. (2020) uses a logistic regression to estimate the propensity to
receive treatment in the trial.

4.3 Extended adjustment set: when using extra covariates

In this section, we detail the impact of adding covariates that are not necessary for adjustment – for
example being only shifted or only treatment effect modifiers – on the IPSW performances. Indeed,
in the literature, one of the natural approach is to adjust on all shifted covariates, also named the
sampling set (Cole and Stuart, 2010; Tipton, 2013). Another adjustment set is also possible, being
the heterogeneity set comprising all the treatment effect modifiers (Hartman, 2021), even if, knowing
which covariate is treatment effect modifier is harder. As mentioned in the related work (Subsec-
tion 2.2), there is an important literature about optimal adjustment set for precision in the causal
inference literature, but to our knowledge the topic has not been tackled yet when it comes to effi-
ciency in generalization. Egami and Hartman (2021) discuss extensively the usage of these two sets
for identification but do not study their impact on the asymptotic variance.

In this section the theoretical results hold for a specific regime, where the target sample is bigger
than the trial sample, that is m ≫ n. In other word, this situation is equivalent as considering the
semi-oracle IPSW with estimated π (Definition 30).

Formalization Consider that the user has at disposal an external set of baseline categorical co-
variates denoted V . We assume that Assumptions 28 and 29 are preserved when adding V to the
adjustment set X previously considered3. As mentioned above, this external covariates set can be of
two different natures.

Definition 32 (V is not a treatment effect modifier). V does not modulate treatment effect modifier,
that is

∀v ∈ V, ∀s ∈ {T,R}, Ps(Y
(1) − Y (0) | X = x, V = v) = Ps(Y

(1) − Y (0) | X = x).

3Note that if preserving transportability is pretty straitghforward as V is a baseline covariate too (for e.g. no collider
bias), the support inclusion’s assumption can be more challenging when adding too many covariates (see D’Amour et al.
(2017) for a discussion).
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Definition 33 (V is not shifted). V is not shifted, that is

∀v ∈ V, pT(v) = pR(v).

To distinguish estimator using the set X or the extended set X,V , we denote τ̂(X) and τ̂(X,V ) the
two estimations strategies. One can show that adding only shifted covariates V leads to a loss of
precision, when the set V is independent of the set X.

Corollary 7 (Adding shifted and independent covariates). Consider the semi-oracle IPSW estimator
τ̂∗T,n (Definition 30), and a set of additional shifted covariates V (Definition 32) independent of X,
which are not treatment effect modifiers. Then,

lim
n→∞

nVarR
[
τ̂∗T,n(X,V )

]
=

(∑
v∈V

pT(v)
2

pR(v)

)
lim
n→∞

nVarR
[
τ̂∗T,n(X)

]
.

Proof is detailed in Subsection 4.B.1. This results states that the asymptotic variance of the semi-
oracle estimator is always bigger if an additional independent shifted covariate set V is added in the
adjustment. Moreover, the stronger the shift, the bigger the variance inflation. Note that this specific
rule was retrieved in the toy example, where the plain line (corresponding to Corollary 7) matches the
empirical dots on Figure 4.4a.

On the contrary, adding an additional treatment effect modifier covariate set leads to a gain in preci-
sion.

Corollary 8 (Adding non-shifted treatment effect modifiers). Consider the semi-oracle IPSW esti-
mator τ̂∗T,n (Definition 30). Consider an additional non-shifted treatment effect modifier set (Defini-
tion 33) independent of X. Then,

lim
n→∞

nVarR
[
τ̂∗T,n(X,V )

]
= lim

n→∞
nVarR

[
τ̂∗T,n(X)

]
− ER

[
pT(X)

pR(X)
Var [τ(X,V ) | X]

]
.

In particular, lim
n→∞

nVarR
[
τ̂∗T,n(X,V )

]
≤ lim

n→∞
nVarR

[
τ̂∗T,n(X)

]
.

Proof is detailed in Subsection 4.B.2. This result follows a similar spirit as Rotnitzky and Smucler
(2020) due to the comparison of two asymptotic variances, even though the context and the theoretical
tools are different.

5 Synthetic and semi-synthetic simulations

In this section, one additional analysis based on the toy example is provided to illustrate the different
asymptotic regimes from Section 4. In addition, results are also illustrated on a semi-synthetic simu-
lation aiming to mimic a medical scenario. The code to reproduce the simulations and the different
figures is available on Github4.

5.1 Synthetic: additional experiment from the toy example

While most of the results are illustrated at the beginning of the article through the toy example,
here we more thoroughly investigate empirically the different asymptotic regimes of the IPSW and its
variants. In particular we complete Figure 4.3c that highlights the phenomenon of different asymptotic
regimes, with a complete visualization of risks and variances allowing to more precisely illustrate the
theoretical results, and in particular Corollary 5. More precisely, the quadratic risk is depicted in
Figure 4.7b, while the variance via min(n,m)Var [τ̂n,m] is displayed in Figure 4.7a. In both figures,
different estimators (oracle or not) are considered with different regimes for m, as n grows to infinity.
In particular, this simulation confirms that

4BenedicteColnet/IPSW-categorical.
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(i) all IPSW variants are consistent, even though their convergence speeds depend on the regime
(Figure 4.7b),

(ii) the completely oracle IPSW has a bigger variance than the semi-oracle IPSW (Figure 4.7a),

(iii) the asymptotic variance depends on the asymptotic regime (Figure 4.7a),

(iv) the completely estimated IPSW reaches the variance of the semi-oracle one if the target popu-
lation sample is bigger than the trial (Figure 4.7a).

(a) Asymptotic variance (b) Quadratic-error or Risk

Figure 4.7: Risks and different asymptotic regimes: Based on the toy example simulation (see Section 2 and
data-generative process from Figure 4.3a) where empirical variance from either the completely oracle (Definition 24),
the semi-oracle (Definition 26) or the estimated IPSW (Definition 27) are estimated repeating 6, 000 times each
simulation for each trial sample size (x-axis). Simulations cover different regimes of size n and m. On the y-axis the
empirical variance min(n,m)Var [τ̂n,m] is plotted (with the exception of min(n,m) = n for completely- and semi-
oracle variants, represented in plain lines). Each color represents one specific estimator and regime.

5.2 Semi-synthetic

In the semi-synthetic simulation, the data are taken from an application in critical care medicine, and
only the outcome generative model is simulated, such that the covariate distribution and in particular
the distribution shift between populations is inherited from a real situation.

5.2.1 Design

Two data-sets are used to generate two sources:

1. A randomized controlled trial (RCT), called CRASH-3 (Dewan et al., 2012), aiming to measure
the effect of Tranexamic Acide (TXA) to prevent death from Traumatic Brain Injury (TBI). A
total of 175 hospitals in 29 different countries participated to the RCT, where adults with TBI
suffering from intracranial bleeding were randomly administrated TXA (CRASH-3, 2019). The
inclusion criteria of the trial are patients with a Glasgow Coma Scale (GCS)5 score of 12 or
lower or any intracranial bleeding on CT scan, and no major extracranial bleeding.

2. An observational cohort, called Traumabase, comprising 23 French Trauma centers, collects
detailed clinical data from the scene of the accident to the release from the hospital. The
resulting database, called the Traumabase, comprises 23,000 trauma admissions to date, and is
continually updated, representing a fair, almost-exhaustive data base about actual individuals
taken in charge in France and suffering from trauma.

5The Glasgow Coma Scale (GCS) is a neurological scale which aims to assess a person’s consciousness. The lower the
score, the higher the gravity of the trauma.
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These two data sources are turned into two source populations representing a real-world situation with
six covariates so that the distribution structure and, in particular, the distributional shift mimics a
real-world situation. The six covariates kept in common are: GCS (categorical), gender (categorical),
pupil reactivity (categorical), age (continuous), systolic blood pressure (continuous), and time-to-
treatment (TTT) (continuous). The continuous covariates are then turned into categories. Additional
details about data preparation are available in Appendix (see Section 4.C). In this semi-synthetic
simulation, only the outcome model is completely synthetic, and follows

Y := f(GCS, Gender) +Aτ(TTT, Blood Pressure) + ϵTTT, (4.18)

where f and τ are two functions of the covariates, and ϵTTT is a gaussian noise such that E[ϵTTT | X] = 0,
but where heteroscedasticity is observed along the covariate TTT. The higher the time-to-treatment,
the higher Var [ϵTTT | TTT], and so the noise on Y (see Section 4.C for the detailed generated function).
This outcome model is such that only time-to-treatment (TTT) and blood pressure are effect modifiers,
while other covariates only affects the baseline value or have no impact. Each time a simulation is
conducted observations are sampled from the two populations with replacement, and the outcome is
created following equation eq. 4.18. The trial is such that π = 0.5.

5.2.2 Results

Minimal adjustment set is sufficient to generalize The minimal adjustment set to generalize
the trial results is constituted of the time-to-treatment(TTT) and the systolic blood pressure (blood).
Using only these two covariates, the simulations illustrate how the re-weighting procedure allows to
correct for the population shift between the trial and the target population as presented on Figure 4.8
(1, 000 repetitions).

Figure 4.8: IPSW estimat-
ing π or not: Simulations with
n = 500, m = 10 000 where
the IPSW estimator from Defi-
nitions 27 and 31 are compared
to the estimates of the non-
reweighted trials (Definitions 22
and 23) showing that the IPSW
allow to recover the true ATE
on the target population repre-
sented by the red dashed line (il-
lustrating consistency from The-
orem 11). Estimating π leads
to a lower variance as expected
(Corollary 6).

Estimating π lowers the variance Simulations also illustrate the fact that estimating π (Defini-
tion 31) compared to not estimating it (Definition 27) lowers the variance, as shown on Figure 4.8.
This is expected from Corollary 6.

The generalized (or re-weighted) estimate is not necessarily noisier than the trial’s esti-
mate Note that the variance of the IPSW - with estimation of π or not - has a similar variance as
the estimates coming from the RCT only (Horvitz-Thomson or difference-in-means). This is due to
the presence of heteroscedasticity in the generative model (see equation eq. 4.18). Indeed, we would
like to emphasize that re-weighting the trial does not necessarily lead to wider confidence intervals.
This somehow challenges a common and intuitive idea present in the literature and stating that a
re-weighted trial always has a larger variance than the trial itself (Gatsonis and Sally, 2017; Ling
et al., 2022). This intuition comes from the multiplication of weights that can take large values (in
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particular if, for some x, pR(x) ≪ pT(x)), making this idea valid as soon as the outcome noise is ho-
moscedastic. However, the asymptotic variance of the semi-oracle IPSW from Corollary 4 highlights
that this intuitive and reasonable idea is not necessarily true, as soon as there is heteroscedascity,
which occurs if some categories for which potential outcomes have higher uncertainty (larger noise)
are more represented in the trial than in the target population:

Vso =
∑
x∈X

p2T(x)

pR(x)

(
Var[Y (1)|X=x]

π +
Var[Y (0)|X=x]

1−π

)Weights

Can be small for some x with high weights
p2T(x)

pR(x)

In particular in this simulation, having a variance of the IPSW estimate smaller than that of the treat-
ment effect estimator on the trial is possible because individuals treated earlier have less uncertainty
in the response than individuals with high TTT (encoded in ϵTTT), and the simulation is made such
that in the target population such individuals are more present than in the trial.

Shifted and not treatment effect modifier covariate increases variance: the example of
Glasgow score (GCS) It is possible to illustrate the results from Section 4.3 with the semi-synthetic
simulation. For example, the Glasgow score (GCS) can be added to the minimal adjustment set
previously used (see Figure 4.8), and leads to a loss of precision as this covariate is relatively strongly
shifted between the two data sets and is not a treatment effect modifier (even if in the simulation this
covariate has an impact on the outcome). The increase in variance can be observed on Figure 4.9,
where the green boxplot on the left represents such situation.

Figure 4.9: Effect of non-necessary
covariates on the variance: IPSW
(Definition 31) with n = 3000 and
m = 10 000 showing that the addi-
tion of the covariate GCS (shifted co-
variate not being a treatment effect
modifier) increases the variance of the
IPSW, while the addition of a non-
shifted treatment effect modifier
(here simulated as no covariates from
the actual data base where not shited)
leads to an improvement in variance,
compared to the minimal set. Simu-
lations are repeated 1, 000 times.
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While a non-shifted but treatment effect modifier lowers the variance To illustrate a gain
in precision due to the addition of a non-shifted treatment effect modifier, it was not possible to use
the natural covariates from the two original data sets as a distributional shift was always present in all
covariates. To model such a situation, we added a categorical covariate X sup (5 levels), independent
with all other covariates and without shift, in the data generative model to represent such a situation:

Y := f(GCS, Gender) +Aτ(TTT, Blood Pressure, X sup) + ϵTTT. (4.19)

Doing so, it is possible to illustrate that adding X sup in the adjustment set allows to lower the
variance, and Figure 4.9 presents such situation with the purple boxplot on the right.
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6 Conclusion and future work

In this work, we establish finite-sample and asymptotic results on different versions of the so-called
Inverse Propensity Sampling Weights estimator, when the adjustment set is constituted of categorical
covariates. We give the explicit expressions of the biases and variances for all estimates, together with
their quadratic risk. Our detailed analysis allows us to compare this different estimate in differente
finite-sample regimes. Indeed, to the best of our knowledge, our work is the first to study the impact
of finite trial and observational data sets on IPSW performance in the context of generalization,
by providing rate of convergence for several IPSW estimates. By doing so, we link these results
with previous results in epidemiology where one data source was considered infinite, and also explain
how certain observations can be seen through the eyes of seminal work in causal inference (efficient
estimation with IPW).

Which covariate to include? This work also reveals that care should be taken when selecting
the covariates to generalize. From applied literature, we have noticed that practitioners usually select
almost all available covariates to build the weights, which is encouraged by the fear of missing an
important shifted treatment effect modifier. We show that inclusion of many covariates comes with
the risk of adjusting on shifted covariates that are not treatment effect modifiers, which can drastically
damage the precision. On the contrary, even though adding some non-shifted covariates may sound
counterintuitive, we show that such practice improves asymptotic precision, as soon as the non-shifted
additional covariate set modulates treatment effect. Still, adding too many covariates endangers
overlap and therefore can lead to finite sample bias. In light of these theoretical results, we believe
that physicians and epidemiologists have an important role to play in selecting a limited number of
covariates when generalizing trial’s findings.

Future work Studying only categorical covariates is probably the main restriction of this work, as
data can be hybrid and composed of continuous and categorical information. However, even when
facing a hybrid set of covariates - continuous and categorical - the user can still create bins for contin-
uous covariates. Even if such data-processing is not necessarily recommended, for a limited number of
covariates this should allow to extend the analysis. Indeed, binning covariate leads to within-stratum
confounding, that is a residual confounding due to rough bins, and therefore to an asymptotic bias due
to factors that are poorly controlled on. To avoid within-stratum residual confounding, it is desirable
to create more bins and split the data into more strata, but stratifying too finely with a finite sample
may lead to (i) a variance inflation and (ii) the support inclusion assumption’s invalidity. Indeed,
the performances of the IPSW in a high-dimensional setting can be limited. For example, if all input
variables are binary, the finite-sample bias and variance can be rewritten as a function of n/2d (where
d is the number of input variables) and can thus spin out of control if the sample sizes are too small
compared to the dimension of the problem. Future work should investigate how our conclusion on the
different asymptotic regimes and the covariates selection’s impact on variance can be extended to set-
tings with mixed-type covariates (for e.g. a smoother version of IPSW with density ratio estimation).

In practice, the limitation due to categorical covariates is balanced by the fact that within the medical
field, clinical indicators and covariates are often scores and categories. For example, Berkowitz et al.
(2018) apply the IPSW to generalize the effect of blood pressure control relying on many categorical
covariates such as health insurance status (insured, uninsured), tobacco smoking status (never, current,
former), and so on. When facing continuous covariates in practice, and having in mind the current
theoretical understanding of the different generalization estimators, this IPSW version has interests.
A solution would be found at the crossroads between identification bias (due to imprecise bins) and
variance inflation or finite sample bias (due to numerous bins). Quantifying such a tradeoff in specific
settings would definitely help the practitioners by providing clear guidelines.
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Appendix of Chapter 4

4.A Main proofs

4.A.1 Proof of Theorem 9 - Completely oracle estimator τ̂ ∗π,T,R,n

We first recall the expression of the completely oracle estimator introduced in Definition 24,

τ̂∗π,T,R,n =
1

n

n∑
i=1

pT (Xi)

pR (Xi)

(
YiAi
π
− Yi(1−Ai)

1− π

)
.

This estimator can be rewritten as,

τ̂∗π,T,R,n =
∑
x∈X

pT(x)

pR(x)

(
1

n

n∑
i=1

1Xi=x

(
YiAi
π
− Yi(1−Ai)

1− π

))
,

since Xi take values in a categorical set X. This rewriting is extensively used in the proof.

Bias

Recall that, for all x ∈ X, pR(x) and pT(x) are not random variables. We have

E
[
τ̂∗π,T,R,n

]
= E

[∑
x∈X

pT(x)

pR(x)

1

n

n∑
i=1

1Xi=x

(
YiAi
π
− Yi(1−Ai)

1− π

)]
By definition

=
∑
x∈X

E

[
pT(x)

pR(x)

1

n

n∑
i=1

1Xi=x

(
YiAi
π
− Yi(1−Ai)

1− π

)]
Linearity of E[.]

=
∑
x∈X

pT(x)

pR(x)
E

[
1

n

n∑
i=1

1Xi=x

(
YiAi
π
− Yi(1−Ai)

1− π

)]
pR(x) and pT(x) are not random

=
∑
x∈X

pT(x)

pR(x)
ER

[
1Xi=x

(
YiAi
π
− Yi(1−Ai)

1− π

)]
Linearity & iid trial

=
∑
x∈X

pT(x)

pR(x)
ER

[
1Xi=x

(
Y

(1)
i Ai
π

−
Y

(0)
i (1−Ai)
1− π

)]
SUTVA (see Assumption 27).

Noting that,

pR(x) = PR[X = x] = PR[Xi = x] = ER [1Xi=x] ,

one can condition on the random variable Xi, yielding

ER

[
1Xi=x

(
Y

(1)
i Ai
π

−
Y

(0)
i (1−Ai)
1− π

)]
= ER

[
Y

(1)
i Ai
π

−
Y

(0)
i (1−Ai)
1− π

| Xi = x

]
ER [1Xi=x]︸ ︷︷ ︸

=pR(x)

.
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Then,

E
[
τ̂∗π,T,R,n

]
=
∑
x∈X

pT(x)ER

[
Y

(1)
i Ai
π

−
Y

(0)
i (1−Ai)
1− π

| Xi = x

]
From previous derivations

=
∑
x∈X

pT(x)

ER

[
Y

(1)
i Ai | Xi = x

]
π

−
ER

[
Y

(0)
i (1−Ai) | Xi = x

]
1− π

 π is constant

=
∑
x∈X

pT(x)

(
ER

[
Y

(1)
i | Xi = x

]
ER [Ai | Xi = x]

π

−
ER

[
Y

(0)
i | Xi = x

]
ER [(1−Ai) | Xi = x]

1− π

)
Assumption 27

=
∑
x∈X

pT(x)
(
ER

[
Y

(1)
i | Xi = x

]
− ER

[
Y

(0)
i | Xi = x

])
ER [Ai | Xi = x] = π

=
∑
x∈X

pT(x)ER

[
Y

(1)
i − Y (0)

i | Xi = x
]

Linearity of E[.]

=
∑
x∈X

pT(x)ET

[
Y

(1)
i − Y (0)

i | Xi = x
]

Assumption 28

= τ, Law of total probability

which concludes the first part of the proof.

Note that the previous derivations, relying on iid, Assumption 27 (Trial internal validity with SUTVA,
definition of π, and randomization), Assumption 28, and the law of total probability, lead to the
following intermediary result,

ER

[
Y

(1)
i Ai
π

−
Y

(0)
i (1−Ai)
1− π

| Xi = x

]
= ET

[
Y

(1)
i − Y (0)

i | Xi = x
]
= τ(x). (4.20)

eq. 4.20 will be used in other proofs.

Variance

To shorten notation, we denote by Xn ∈ Xn the vector composed of the n observations in the trial.
We then use the law of total variance, conditioning on Xn,

Var
[
τ̂∗π,T,R,n

]
= Var

[
E
[
τ̂∗π,T,R,n | Xn

]]
+ E

[
Var

[
τ̂∗π,T,R,n | Xn

]]
. (4.21)

Considering the first term in the right-hand side of eq. 4.21,

E
[
τ̂∗π,T,R,n | Xn

]
= E

[∑
x∈X

pT(x)

pR(x)

1

n

n∑
i=1

1Xi=x

(
Y

(1)
i Ai
π

−
Y

(0)
i (1−Ai)
1− π

)
| Xn

]
By definition (and SUTVA)

=
∑
x∈X

pT(x)

pR(x)

1

n
E

[
n∑
i=1

1Xi=x

(
Y

(1)
i Ai
π

−
Y

(0)
i (1−Ai)
1− π

)
| Xn

]
. Linearity of E[.]

Note that this last derivation also uses the fact that neither pT(x) nor pR(x) are random variables.
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E
[
τ̂∗π,T,R,n | Xn

]
=
∑
x∈X

pT(x)

pR(x)

n∑
i=1

1Xi=x

n
E

[
Y

(1)
i Ai
π

−
Y

(0)
i (1−Ai)
1− π

| Xi

]
iid individuals

=
∑
x∈X

pT(x)

pR(x)

n∑
i=1

1Xi=x

n
τ(Xi)

=
1

n

∑
x∈X

pT(x)

pR(x)
τ(x)

n∑
i=1

1Xi=x Transportability (see Assumption 28)

Now, this last term can be written as a unique sum on i ∈ {1, . . . , n}, that is,

1

n

∑
x∈X

pT(x)

pR(x)
τ(x)

n∑
i=1

1Xi=x =
1

n

n∑
i=1

pT(Xi)

pR(Xi)
τ(Xi).

Taking the variance of this term leads to,

Var
[
ER

[
τ̂∗π,T,R,n | Xn

]]
= Var

[
1

n

n∑
i=1

pT(Xi)

pR(Xi)
τ(Xi)

]

=
1

n
VarR

[
pT(X)

pR(X)
τ(X)

]
. iid observations on trial (Assumption 27)

(4.22)

Regarding the second term,

Var
[
τ̂∗π,T,R,n | Xn

]
= VarR

[
1

n

n∑
i=1

pT (Xi)

pR (Xi)

(
YiAi
π
− Yi(1−Ai)

1− π

)
| Xn

]

=
1

n2

n∑
i=1

(
pT (Xi)

pR (Xi)

)2

VarR

[(
YiAi
π
− Yi(1−Ai)

1− π

)
| Xn

]

=
1

n2

n∑
i=1

(
pT (Xi)

pR (Xi)

)2

VarR

[(
YiAi
π
− Yi(1−Ai)

1− π

)
| Xi

]
. (4.23)

Recall that the variance of the Horvitz-Thomson estimator (see Definition 22) conditioned on Xi is
given by

VarR [τ̂HT,n | Xi] =
1

n
VarR

[(
YiAi
π
− Yi(1−Ai)

1− π

)
| Xi

]
. (4.24)

Then, one can use Lemma 3 (see Section 4.D) to have

nVar [τ̂HT,n | Xi] = ER

[(
Y (1)

)2
π

| Xi

]
+ ER

[(
Y (0)

)2
1− π

| Xi

]
− τ(Xi)

2 := VHT(Xi). (4.25)

Then, coming back to eq. 4.23,
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ER

[
Var

[
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∑
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n

]

=
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VHT(x)pR (x) Assumption 26

=
∑
x∈X
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)
, (4.26)

Combining eq. 4.26 and eq. 4.22 into eq. 4.21 leads to, for all n,

Var
[
τ̂∗π,T,R,n

]
=
Vo
n

where

Vo = Var

[
pT(Xi)

pR(Xi)
τ(Xi)

]
+
∑
x∈X

p2T (x)

pR (x)
VHT(x).

Note that it is also possible to write the result such as,

Vo = Var

[
pT(X)

pR(X)
τ(X)

]
+ ER

[
p2T (X)

p2R (X)
VHT(X)

]
,

noting that

∑
x∈X

p2T (x)

pR (x)
VHT(x) = ER

[
p2T (X)

p2R (X)
VHT(X)

]
Quadratic risk and consistency

For any estimate τ̂ , we have

E
[
(τ̂ − τ)2

]
= (E [τ̂ ]− τ)2 +Var [τ̂ ] .

Therefore, the risk of the completely oracle IPSW estimate satisfies

E
[
(τ̂ − τ)2

]
=
Vo
n
.

The L2 consistency holds by letting n tend to infinity.
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4.A.2 Proofs for the semi-oracle IPSW τ̂ ∗π,T,n

4.A.2.1 Proof of Proposition 2

Proof. We first recall the definition of the semi-oracle estimator introduced in Definition 26:

τ̂∗π,T,n =
1

n

n∑
i=1

pT (Xi)

p̂R,n(Xi)

(
YiAi
π
− Yi(1−Ai)

1− π

)
,

where, for all x ∈ X,

p̂R,n (x) =

∑n
i=1 1Xi=x

n
. (4.27)

Similarly to the completely oracle estimator, the semi-oracle estimator can be written as,

τ̂∗π,T,n =
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x∈X

pT(x)
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(
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n
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1Xi=x

(
YiAi
π
− Yi(1−Ai)

1− π

))
,

since Xi take values in a categorical set X.

Bias

To shorten notation, we denote the full vector of covariates Xn ∈ Xn, comprising the n observations
X1, X2, . . . Xn ∈ X in the trial. We have

E
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Linearity and SUTVA
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Law of total expect.
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pT(x) is deterministic

=
∑
x∈X

E

[
pT(x)

p̂R,n(x)
E

[(
1

n

n∑
i=1

1Xi=x

(
Y

(1)
i Ai
π

−
Y

(0)
i (1−Ai)
1− π

))
| Xn

]]

=
∑
x∈X

E

[
pT(x)

p̂R,n(x)

1

n

n∑
i=1

1Xi=xE

[
Y

(1)
i Ai
π

−
Y

(0)
i (1−Ai)
1− π

| Xn

]]

This last line uses the fact that
∑n

i=1 1Xi=x

n is measurable with respect to Xn. Then, note that,
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Then, recall from the proof in Subsection 4.A.1, and in particular from eq. 4.20 that
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Indicator forcing X = x.

= 1Xi=xτ(x) Transportability.
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Therefore,

E
[
τ̂∗π,T,n

]
=
∑
x∈X

E
[
pT(x)

p̂R,n(x)

∑n
i=1 1Xi=x

n
τ(x)

]

=
∑
x∈X

E
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pT(x)∑n
i=1 1Xi=x

n

∑n
i=1 1Xi=x

n
τ(x)

]
Estimation procedure - Equation 4.27

Let Zn(x) =
∑n

i=1 1Xi=x distributed as B(n, pR(x)). Note that, by convention, the term inside the
expectation is null if Zn(x) = 0. 6 This leads to the following equality,

E
[
τ̂∗π,T,n

]
=
∑
x∈X

E
[
pT(x)τ(x)1Zn(x)>0

]
=
∑
x∈X

pT(x)τ(x)E
[
1Zn(x)>0

]
=
∑
x∈X

pT(x)τ(x) (1− (1− pR(x))n).

Upper bound of the bias.

If pR(x) = 0, then pT(x) = 0 (due to the support inclusion assumption, see Assumption 29). Therefore,
for all x ∈ X, 0 < pR(x). Then, it is possible to bound the bias for any sample size n, noting that,

|E
[
τ̂∗π,T,n

]
− τ | =

∣∣∣∣∣∑
x∈X

pT(x)τ(x) (1− (1− pR(x))n)− τ

∣∣∣∣∣
=

∣∣∣∣∣∑
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∑
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pT(x)τ(x)

∣∣∣∣∣
=

∣∣∣∣∣∑
x∈X

pT(x)τ(x) (1− pR(x))n
∣∣∣∣∣

≤
(
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x
pR(x)

)n∑
x∈X

pT(x) |τ(x)|

≤
(
1−min

x
pR(x)

)n
ET [|τ(X)|] .

Variance

The proof follows the same track as that of the completely oracle IPSW, conditioning on Xn, and
using the law of total variance,

Var
[
τ̂∗π,T,n

]
= Var

[
E
[
τ̂∗π,T,n | Xn

]]
+ E

[
Var

[
τ̂∗π,T,n | Xn

]]
. (4.28)

6Note that to be clearer we could have introduced the multiplication by 1Zn(x)>0in the formula summing over the
categories from the beginning. Indeed, this was implicit as it is the re-writing of a sum on the trial’s observations. But
this also leads to heavy notations.

149



Chapter 4. Finite sample error and variable selection

For the first inside term,
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By definition (and SUTVA)
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Linearity of E[.]
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∑
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1

n

n∑
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=
∑
x∈X
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Re-writing the sum as expectancy.

Note that
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[
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, (4.29)

as the only source of randomness comes from ET

[
τ(X)1Zn(X)=0|Xn

]
.

Therefore, the first inside term of eq. 4.28 corresponds to,
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On the other hand,
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]

=
1

n2

n∑
i=1

(
pT (Xi)

p̂R,n (Xi)

)2

VHT(Xi),

where the last row comes from intermediary results in the completely oracle proof (see equation eq. 4.25),
with

VHT(x) := ER

[(
Y (1)

)2
π

| Xi

]
+ ER

[(
Y (0)

)2
1− π

| Xi

]
− τ(X)2.

Then,

E
[
Var

[
τ̂∗π,T,n | Xn

]]
= E

[
1

n2

n∑
i=1

(
pT (Xi)

p̂R,n (Xi)

)2

VHT(Xi)

]
From previous derivations

= E

[∑
x∈X

(
1

n2

n∑
i=1

1Xi=x

(
pT (Xi)

p̂R,n (Xi)

)2

VHT(Xi)

)]
Categorical X

= E

[∑
x∈X

1

n2

(
pT (x)

p̂R,n (x)

)2

VHT(x)

(
n∑
i=1

1Xi=x

)]

=
∑
x∈X

1

n2
pT (x)

2 VHT(x)E

[(
1

p̂R,n (x)

)2
(

n∑
i=1

1Xi=x

)]
.
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Replacing p̂R,n (x) by its explicit expression,

E
[
Var

[
τ̂∗π,T,n | Xn

]]
=

1

n

∑
x∈X

pT (x)
2 VHT(x)E

( 1
1
n

∑n
i=1 1Xi=x

)2(
1

n

n∑
i=1

1Xi=x

) . (4.31)

As in the study of the bias, we introduce Zn(x) =
∑n

i=1 1Xi=x, distributed as B(n, p). One can then
write,

E
[
Var

[
τ̂∗π,T,n | Xn

]]
=

1

n

∑
x∈X

pT (x)
2 VHT(x)ER

[
1Zn(x)>0

1
n

∑n
i=1 1Xi=x

]
.

Recalling eq. 4.28 and eq. 4.30, we have

Var
[
τ̂∗π,T,n

]
= Var

[
E
[
τ̂∗π,T,n | Xn

]]
+ E

[
Var

[
τ̂∗π,T,n | Xn

]]
= Var

[
ET

[
τ(X)1Zn(X)=0|Xn

]]
+

1

n

∑
x∈X

pT (x)
2 VHT(x)E

[
1Zn(x)>0

1
n

∑n
i=1 1Xi=x

]
. (4.32)

Upper bound on the variance

According to Arnould et al. (2021) (see page 27), since Zn(x) is distributed as B(n, pR(x)), we have

∀x ∈ X, E
[
1Zn(x) ̸=0

Zn(x)

]
≤ 2

(n+ 1)pR (x)
.

Besides,

Var
[
ET

[
τ(X)1Zn(X)=0|Xn

]]
≤ ET

[
τ(X)21Zn(X)=0

]
≤ ET

[
τ(X)2 (1− pR(X))n

]
≤ ET

[
τ(X)2

](
1−min

x∈X
pR(x)

)n
.

Combining these inequalities with eq. 4.32 yields, for all n,

Var
[
τ̂∗π,T,n

]
≤ ET

[
τ(X)2

](
1−min

x∈X
pR(x)

)n
+

2

n+ 1

∑
x∈X

pT (x)
2

pR (x)
VHT(x).

This expression can be further simplified in,

Var
[
τ̂∗π,T,n

]
≤ 2Vso
n+ 1

+

(
1−min

x∈X
pR(x)

)n
ET

[
τ(X)2

]
,

where

Vso :=
∑
x∈X

pT (x)
2

pR (x)
VHT(x) = ET

[(
pT(X)

pR(X)

)2

VHT(X)

]
.

4.A.2.2 Proof of Corollary 4

Proof. Asymptotically unbiased

Recall the expression of the semi-oracle IPSW bias from Proposition 2.

E
[
τ̂∗π,T,n

]
=
∑
x∈X

pT(x)τ(x) (1− (1− pR(x))n).
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According to Assumption 29, we have ∀x ∈ X, 0 < pR(x) < 1. As a consequence,

lim
n→∞

(1− (1− pR(x))n = 1,

which leads to

lim
n→∞

E
[
τ̂∗π,T,n

]
= τ.

Asymptotic variance

Recall the expression of the variance of the semi-oracle IPSW from Proposition 2:

nVar
[
τ̂∗π,T,n

]
= nVar

[
E
[
τ̂∗π,T,n | Xn

]]
+
∑
x∈X

pT (x)
2 VHT(x)ER

[
1Zn(x)>0

1
n

∑n
i=1 1Xi=x

]
. (4.33)

Note that the first term tends to zero since

0 ≤ nVar
[
E
[
τ̂∗π,T,n | Xn

]]
≤ ET

[
τ(X)2

](
1−min

x∈X
pR(x)

)n
.

Therefore,

lim
n→∞

nVar
[
τ̂∗π,T,n

]
= lim

n→∞

∑
x∈X

pT (x)
2 VHT(x)ER

[
1Zn(x)>0

1
n

∑n
i=1 1Xi=x

]
. (4.34)

The next part of the proof consists in characterizing how the term ER

[
1Zn(x)>0

Zn(x)/n

]
converges. Let ε > 0.

Since, for all x, pR(x) > 0, we have

E

[
1Zn(x)>0

Zn(x)
n

]
= E

[
1Zn(x)>0

Zn(x)
n

1|Zn(x)
n

−pR(x)|≥ε

]
+ E

[
1Zn(x)>0

Zn(x)
n

1|Zn(x)
n

−pR(x)|<ε

]
. (4.35)

Regarding the first term in eq. 4.35, we have

E

[
1Zn(x)>0

Zn(x)
n

1|Zn(x)
n

−pR(x)|≥ε

]
≤ nP

[
|Zn(x)

n
− pR(x)| ≥ ε

]
,

since, on the event Zn(x) > 0, Zn(x) ≥ 1. Now, by Chernoff’s inequality,

P
[
|Zn(x)

n
− pR(x)| ≥ ε

]
≤ 2 exp

(
−2ε2n

)
,

which yields

E

[
1Zn(x)>0

Zn(x)
n

1|Zn(x)
n

−pR(x)|≥ε

]
≤ 2n exp

(
−2ε2n

)
. (4.36)

Regarding the second term in equation eq. 4.35, since

1Zn(x)>0

Zn(x)
n

1|Zn(x)
n

−pR(x)|<ε

is bounded above, for ε < pR(x)/2 and converges in probability to 1/pR(x), we have

E

[
1Zn(x)>0

Zn(x)
n

1|Zn(x)
n

−pR(x)|<ε

]
→ 1

pR(x)
, as n→∞. (4.37)

Combining eq. 4.36 and eq. 4.37, we have

E
[
1Zn(x)>0

Zn(x)/n

]
→ 1

pR(x)
, as n→∞.

Using equation eq. 4.34, we finally obtain

lim
n→∞

nVar
[
τ̂∗π,T,n

]
=
∑
x∈X

pT (x)
2

pR (x)
VHT(x) = E

[(
pT (X)

pR (X)

)2

VHT(X)

]
:= Vso.
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4.A.2.3 Proof of Theorem 10

Proof. For any estimate τ̂ , we have

E
[
(τ̂ − τ)2

]
= (E [τ̂ ]− τ)2 +Var [τ̂ ] .

Therefore, the risk of the semi-oracle IPSW estimate can be bounded using results from Subsec-
tion 4.A.2.1 (or Proposition 2), and in particular the bounds on the variance and the bias,

E
[
(τ̂ − τ)2

]
≤
(
1−min

x
pR(x)

)2n
ET [|τ(X)|]2 + 2Vso

n+ 1
+

(
1−min

x∈X
pR(x)

)n
ET

[
τ(X)2

]
≤ 2Vso
n+ 1

+ 2

(
1−min

x∈X
pR(x)

)n
ET

[
τ(X)2

]
,

In particular thanks to the fact that,

VarT [|τ(X)|] = ET

[
τ(X)2

]
− ET [|τ(X)|]2 ,

so that,

ET [|τ(X)|]2 ≤ ET

[
τ(X)2

]
.

The L2 consistency holds by letting n tend to infinity.

4.A.3 Proofs for (estimated) IPSW τ̂π,n,m

We first recall the definition of a fully estimated estimator introduced in Definition 27.

τ̂π,n,m =
1

n

n∑
i=1

p̂T,m (Xi)

p̂R,n(Xi)

(
YiAi
π
− Yi(1−Ai)

1− π

)
,

where, for all x ∈ X,

p̂R,n (x) =

∑n
i=1 1Xi=x

n
, and p̂T,m (x) =

∑n+m
i=n+1 1Xi=x

m
. (4.38)

Similar to the completely oracle estimator, this estimated IPSW can be written as,

τ̂π,n,m =
∑
x∈X

p̂T,m (x)

p̂R,n(x)

(
1

n

n∑
i=1

1Xi=x

(
YiAi
π
− Yi(1−Ai)

1− π

))
.

All the proofs below rely on this decomposition.

4.A.3.1 Proof of Proposition 3

Proof. Expression of the bias

Using the exact same derivations as in Subsection 4.A.2.1 (Bias), but using the law of total expectation
when conditioning onXn+m ∈ Xn+m (i.e. comprising the n andm observationsX1, X2, . . . Xn, Xn+1 . . . Xn+m ∈
X in the trial and target population, one has,

E [τ̂π,n,m] =
∑
x∈X

E
[
p̂T,m(x)

p̂R,n(x)

∑n
i=1 1Xi=x

n
τ(x)

]

=
∑
x∈X

E

[
p̂T,m(x)∑n
i=1 1Xi=x

n

∑n
i=1 1Xi=x

n
τ(x)

]
Estimation procedure - Equation 4.38

=
∑
x∈X

E
[
p̂T,m(x)τ(x)1Zn(x) ̸=0

]
.
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Note that Zn(x) only depend on the trial sample R and p̂T,m(x) on the observational sample. In
addition, τ(x) is deterministic, therefore

E [τ̂π,n,m] =
∑
x∈X

τ(x)E [p̂T,m(x)]E
[
1Zn(x) ̸=0

]
.

Note that E [p̂T,m(x)] = pT(x). Besides, according to the proof of the semi-oracle IPSW,

E
[
1Zn(x)̸=0

]
= (1− (1− pR(x))n).

Therefore,

E [τ̂π,n,m] =
∑
x∈X

pT(x)τ(x) (1− (1− pR(x))n),

that is

E [τ̂π,n,m]− τ = −
∑
x∈X

pT(x)τ(x) (1− pR(x))n .

Upper bound on the bias

It is possible to bound the bias for any sample size n, using the exact same derivations than for the
semi-oracle IPSW.

Expression of the variance

The proof follows a similar spirit as the proof for the completely oracle estimator, conditioning on all
observations Xn+m.

Var [τ̂π,n,m] = Var [E [τ̂π,n,m | Xn+m]] + E [Var [τ̂π,n,m | Xn+m]] . (4.39)

E [τ̂π,n,m | Xn+m] = E

[∑
x∈X

p̂T,m (x)

p̂R,n(x)

(
1

n

n∑
i=1

1Xi=x

(
YiAi
π
− Yi(1−Ai)

1− π

))
| Xn+m

]

=
∑
x∈X

E

[
p̂T,m (x)

p̂R,n(x)

(
1

n

n∑
i=1

1Xi=x

(
YiAi
π
− Yi(1−Ai)

1− π

))
| Xn+m

]
Linearity of E[.]

=
∑
x∈X

p̂T,m (x)

p̂R,n(x)
E

[
1

n

n∑
i=1

1Xi=x

(
YiAi
π
− Yi(1−Ai)

1− π

)
| Xn+m

]
.

Indeed, p̂R,n(x) and p̂T,m(x) are measurable with respect to Xn+m.
Pursuing the computation, we have

E [τ̂π,n,m | Xn+m] =
∑
x∈X

p̂T,m (x)

p̂R,n(x)
E

[
1

n

n∑
i=1

1Xi=x

(
YiAi
π
− Yi(1−Ai)

1− π

)
| Xn+m

]

=
∑
x∈X

p̂T,m (x)

p̂R,n(x)

1

n

n∑
i=1

E
[
1Xi=x

(
YiAi
π
− Yi(1−Ai)

1− π

)
| Xn+m

]
Linearity of E[.]

=
∑
x∈X

p̂T,m (x)

p̂R,n(x)

1

n

n∑
i=1

1Xi=xE
[(

YiAi
π
− Yi(1−Ai)

1− π

)
| Xn+m

]
Conditioning on Xn

=
∑
x∈X

p̂T,m (x)

p̂R,n(x)
τ(x)

1

n

n∑
i=1

1Xi=x Transportability

=
∑
x∈X

p̂T,m (x) τ(x)1Zn(x) ̸=0,
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where Zn(x) =
∑n

i=1 1Xi=x. Then,

Var [E [τ̂π,n,m | Xn+m]] = Var

[∑
x∈X

p̂T,m (x) τ(x)1Zn(x)̸=0

]

= Var

[∑
x∈X

∑n+m
i=n+1 1Xi=x

m
τ(x)1Zn(x)̸=0

]

= Var

[
1

m

n+m∑
i=n+1

τ(Xi)1Zn(Xi )̸=0

]
Note that, contrary to the semi-oracle IPSW, this term is non-null due to estimation of p̂T,m. By the
law of total variance,

Var

[
1

m

n+m∑
i=n+1

τ(Xi)1Zn(Xi )̸=0

]
= E

[
Var

[
1

m

n+m∑
i=n+1

τ(Xi)1Zn(Xi )̸=0|Xn

]]

+Var

[
E

[
1

m

n+m∑
i=n+1

τ(Xi)1Zn(Xi )̸=0|Xn

]]

=
1

m
E
[
Var

[
τ(X)1Zn(X )̸=0|Xn

]]
+Var

[
E
[
τ(X)1Zn(X )̸=0|Xn

]]
=

1

m
Var

[
τ(X)1Zn(X) ̸=0

]
+

(
1− 1

m

)
Var

[
E
[
τ(X)1Zn(X )̸=0|Xn

]]
,

where the last line comes from the law of total variance applied to Var
[
τ(X)1Zn(X) ̸=0

]
. Recalling

similar derivations from the semi-oracle IPSW proof, and in particular eq. 4.29, one has

Var
[
E
[
τ(X)1Zn(X )̸=0|Xn

]]
= Var

[
ET

[
τ(X)1Zn(X)=0|Xn

]]
,

so that

Var [E [τ̂π,n,m | Xn]] =
1

m
Var

[
τ(X)1Zn(X )̸=0

]
+

(
1− 1

m

)
Var

[
ET

[
τ(X)1Zn(X)=0|Xn

]]
. (4.40)

For the other term of eq. 4.39,

Var [τ̂π,n,m | Xn+m] = Var

[
1

n

n∑
i=1

p̂T,m (Xi)

p̂R,n (Xi)

(
YiAi
π
− Yi(1−Ai)

1− π

)
| Xn+m

]

=
1

n2

n∑
i=1

(
p̂T,m (Xi)

p̂R,n (Xi)

)2

VHT(Xi).

Derivations are very similar to the semi-oracle estimator, using the fact that p̂R,n(x) and p̂T,m(x) are
measurable with respect to Xn+m. We have

E [Var [τ̂π,n,m | Xn+m]] = E

[
1

n2

n∑
i=1

(
p̂T,m (Xi)

p̂R,n (Xi)

)2

VHT(Xi)

]
From previous derivations

= E

[∑
x∈X

(
1

n2

n∑
i=1

1Xi=x

(
p̂T,m (Xi)

p̂R,n (Xi)

)2

VHT(Xi)

)]
Categorical X

= E

[∑
x∈X

1

n2

(
p̂T,m (x)

p̂R,n (x)

)2

VHT(x)

(
n∑
i=1

1Xi=x

)]

=
∑
x∈X

1

n2
VHT(x)E

[(
p̂T,m (x)

p̂R,n (x)

)2
(

n∑
i=1

1Xi=x

)]

=
∑
x∈X

1

n
VHT(x)ER

[
(p̂T,m (x))2

p̂R,n (x)
1Zn(x) ̸=0

]
.
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In particular, the last term can be simplified in

E [Var [τ̂π,n,m | Xn+m]] =
∑
x∈X

1

n
VHT(x)E

[
(p̂T,m (x))2

]
E
[
1Zn(x)̸=0

p̂R,n (x)

]
. (4.41)

This last derivation is possible because p̂T,m (x), which depends on T , and p̂R,n (x), which depends on
R, are independent. The difference from the semi-oracle estimator comes from the term

E
[
(p̂T,m (x))2

]
= E

[(∑m
i=n+1 1Xi=x

m

)2
]

=
1

m2
E

( m∑
i=n+1

1Xi=x

)2


=
1

m2

(
mpT(x)(1− pT)(x) +m2p2T(x)

)
=
pT(x)(1− pT(x))

m
+ p2T(x). (4.42)

Using eq. 4.40 and eq. 4.42 in eq. 4.39, we have

Var [τ̂π,n,m] = Var [E [τ̂π,n,m | Xn+m]] + E [Var [τ̂π,n,m | Xn+m]]

=
1

m
VarT

[
τ(X)1Zn(X )̸=0

]
+

(
1− 1

m

)
Var

[
ET

[
τ(X)1Zn(X)=0|Xn

]]
+

1

n

∑
x∈X

VHT(x)
pT(x)(1− pT(x))

m
E
[
1Zn(x)̸=0

p̂R,n (x)

]
+

1

n

∑
x∈X

VHT(x)p
2
T(x)E

[
1Zn(x) ̸=0

p̂R,n (x)

]
=

1

m

(
VarT

[
τ(X)1Zn(X )̸=0

]
−Var

[
ET

[
τ(X)1Zn(X)=0|Xn

]])
+Var

[
τ̂∗π,T,n

]
+

1

nm

∑
x∈X

VHT(x)pT(x)(1− pT(x))E
[
1Zn(x) ̸=0

p̂R,n (x)

]
. (4.43)

Upper bound on the variance.

We first bound eq. 4.40, corresponding to

Var [E [τ̂π,n,m | Xn+m]] =
1

m
VarT

[
τ(X)1Zn(X) ̸=0

]
+

(
1− 1

m

)
Var

[
E
[
τ(X)1Zn(X)=0|Xn+m

]]
.

We have

VarT
[
τ(X)1Zn(X )̸=0

]
= VarT

[
τ(X)− τ(X)1Zn(X)=0

]
= VarT [τ(X)]− 2CovT(τ(X), τ(X)1Zn(X)=0) + VarT

[
τ(X)1Zn(X)=0

]
≤ VarT [τ(X)] + 2

(
VarT[τ(X)] VarT

[
τ(X)1Zn(X)=0

])1/2
+VarT

[
τ(X)1Zn(X)=0

]
,

with

VarT
[
τ(X)1Zn(X)=0

]
≤ E

[
τ(X)21Zn(X)=0

]
≤ E

[
τ(X)2E

[
1Zn(X)=0 | X

]]
≤ E

[
τ(X)2(1− pR(X))n

]
≤
(
1−min

x
pR(x)

)n
ET

[
τ(X)2

]
.
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Consequently,

VarT
[
τ(X)1Zn(X )̸=0

]
≤ VarT [τ(X)] + 2ET

[
τ(X)2

] (
1−min

x
pR(x)

)n/2
+
(
1−min

x
pR(x)

)n
ET

[
τ(X)2

]
≤ VarT [τ(X)] + 4ET

[
τ(X)2

] (
1−min

x
pR(x)

)n/2
.

One can also bound the other term of eq. 4.40 following the same derivations as the semi-oracle IPSW,

Var
[
E
[
τ(X)1Zn(X)=0|Xn+m

]]
≤ E

[
τ(X)21Zn(X)=0

]
= E

[
τ(X)2E

[
1Zn(X)=0|X

]]
= E

[
τ(X)2P [Zn(X) = 0|X]

]
≤ E

[
τ(X)2

] (
1−min

x
pR(x)

)n
. (4.44)

The first bound is obtained using the fact that the variance of a random variable is bounded by the
expectancy of the squared random variables, and either the law of total variance or Jensen inequality.

Then, using the fact that 1− 1
m ≤ 1,

Var [ET [τ̂π,n,m | Xn+m]] ≤
VarT [τ(X)]

m
+

4ET

[
τ(X)2

]
m

(
1−min

x
pR(x)

)n/2
+ ET

[
τ(X)2

] (
1−min

x
pR(x)

)n
≤ VarT [τ(X)]

m
+ ET

[
τ(X)2

]( 4

m
+ 1

)(
1−min

x
pR(x)

)n/2
. (4.45)

Then, for the other term of the asymptotic variance, one can use the results from Arnould et al. (2021)
(see page 27) to bound the variance, which leads to

E [Var [τ̂π,n,m | Xn+m]] =
∑
x∈X

1

n
g(x)E

[
(p̂T,m (x))2

]
E

[
1Zn(x)̸=0

Zn(x)
n

]

≤
∑
x∈X

g(x)E
[
(p̂T,m (x))2

] 2

(n+ 1)pR (x)
Arnould et al. (2021) (p.27)

=
∑
x∈X

g(x)

(
pT (x) (1− pT (x))

m
+ pT (x)

2

)
2

(n+ 1)pR (x)

Finally, using eq. 4.45, and eq. 4.43,

Var [τ̂π,n,m] ≤
VarT [τ(X)]

m
+ ET

[
τ(X)2

]( 4

m
+ 1

)(
1−min

x
pR(x)

)n/2
+

2

n+ 1

(
ER

[(
pT (X)

pR (X)

)2

VHT(X)

]
+

1

m
ER

[
pT (X) (1− pT (X))

pR (X)2
VHT(X)

])
. (4.46)

4.A.3.2 Proof of Corollary 5

Asymptotic bias

The proof is exactly the same as for the semi-oracle IPSW, see Subsection 4.A.2.2.

Asymptotic variance

We recall that the explicit expression of the variance is
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Var [τ̂π,n,m] =
1

m
VarT

[
τ(X)1Zn(X )̸=0

]
+

(
1− 1

m

)
Var

[
E
[
τ(X)1Zn(X)=0|Xn

]]
+

1

n

∑
x∈X

VHT(x)
pT(x)(1− pT(x))

m
E
[
1Zn(x)̸=0

p̂R,n (x)

]
+Var

[
τ̂∗π,T,n

]
.

Let’s consider a slightly different quantity, multiplying by min(n,m),

min(n,m)Var [τ̂π,n,m] =
min(n,m)

m
VarT

[
τ(X)1Zn(X )̸=0

]
+min(n,m)

(
1− 1

m

)
Var

[
E
[
τ(X)1Zn(X)=0|Xn

]]
+

min(n,m)

nm

∑
x∈X

VHT(x)pT(x)(1− pT(x))E
[
1Zn(x)̸=0

p̂R,n (x)

]
+min(n,m)Var

[
τ̂∗π,T,n

]
.

Now, we study an asymptotic regime where n and m can grow toward infinity but at different paces.
Let lim

n,m→∞
m
n = λ ∈ [0,∞],where λ characterizes the regime.

Case 1: If λ ∈ [1,∞], one can replace min(n,m) by n, so that

lim
n,m→∞

nVar [τ̂π,n,m] = lim
n,m→∞

 n

m︸︷︷︸
1
λ

VarT
[
τ(X)1Zn(X )̸=0

]
+ n

(
1− 1

m

)
Var

[
E
[
τ(X)1Zn(X)=0|Xn

]]


+ lim
n,m→∞

(
1

m

∑
x∈X

VHT(x)pT(x)(1− pT(x))E
[
1Zn(x)̸=0

p̂R,n (x)

])
︸ ︷︷ ︸

=0

+ lim
n,m→∞

(
nVar

[
τ̂∗π,T,n

])
︸ ︷︷ ︸

=Vso

,

where we also used Corollary 4 and from former proof, eq. 4.36 and eq. 4.37 stating that

E
[
1Zn(x)>0

Zn(x)/n

]
→ 1

pR(x)
, as n→∞.

Recalling eq. 4.44,

0 ≤ Var
[
E
[
τ(X)1Zn(X)=0|Xn

]]
≤ τ

(
1−min

x
pR(x)

)2n
,

due to the exponential convergence one has,

lim
n→∞

nVar
[
E
[
τ(X)1Zn(X)=0|Xn

]]
= 0,

and therefore,

lim
n,m→∞

n

(
1− 1

m

)
Var

[
E
[
τ(X)1Zn(X)=0|Xn

]]
= 0. (4.47)

Besides,

lim
n→∞

VarT
[
τ(X)1Zn(X )̸=0

]
= VarT [τ(X)] ,

To summarize, if λ ∈ [1,∞], one can conclude that

lim
n,m→∞

nVar [τ̂π,n,m] =
Var [τ(X)]

λ
+ Vso. (4.48)
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Case 2: If λ ∈ [0, 1], one can replace min(n,m) by m, so that

lim
n,m→∞

mVar [τ̂π,n,m] = lim
n,m→∞

VarT
[
τ(X)1Zn(X )̸=0

]
+ lim
n,m→∞

m

(
1− 1

m

)
Var

[
E
[
τ(X)1Zn(X)=0|Xn

]]
+ lim
n,m→∞

1

n

∑
x∈X

VHT(x)pT(x)(1− pT(x))E
[
1Zn(x) ̸=0

p̂R,n (x)

]
+ lim
n,m→∞

λ
∑
x∈X

VHT(x)p
2
T(x)E

[
1Zn(x) ̸=0

p̂R,n (x)

]
.

In particular,

lim
n,m→∞

VarT
[
τ(X)1Zn(X )̸=0

]
= VarT [τ(X)] .

As above, we have

lim
n,m→∞

m

(
1− 1

m

)
Var

[
E
[
τ(X)1Zn(X)=0|Xn

]]
= 0,

because,

0 ≤ m
(
1− 1

m

)
Var

[
E
[
τ(X)1Zn(X)=0|Xn

]]
≤ n

(
1− 1

m

)
Var

[
E
[
τ(X)1Zn(X)=0|Xn

]]
.

In addition, eq. 4.36 and eq. 4.37 ensure that

lim
n,m→∞

λ
∑
x∈X

VHT(x)p
2
T(x)E

[
1Zn(x)̸=0

p̂R,n (x)

]
= λVso.

As an intermediary conclusion, if λ ∈ [0, 1],

lim
n,m→∞

min(n,m)Var [τ̂π,n,m] = Var [τ(X)] + λVso (4.49)

General conclusion: It is possible to gather equations eq. 4.48 and eq. 4.49 in one single conclusion.
Therefore, letting lim

n,m→∞
m/n = λ ∈ [0,∞], the asymptotic variance of estimated IPSW satisfies

lim
n,m→∞

min(n,m)Var [τ̂π,n,m] = min(1, λ)

(
Var [τ(X)]

λ
+ Vso

)
.

4.A.3.3 Proof of Theorem 11

Proof. For any estimate τ̂ , we have

E
[
(τ̂ − τ)2

]
= (E [τ̂ ]− τ)2 +Var [τ̂ ] .

Therefore, the risk of the (estimated) IPSW estimate can be bounded using results from Subsec-
tion 4.A.3.1 (or Proposition 3), and in particular the bounds on the variance and the bias,

E
[
(τ̂ − τ)2

]
≤ (1−min

x
pR(x))

2nET[τ(X)2] +
VarT [τ(X)]

m
+
(
1−min

x
pR(x)

)n/2(4ET

[
τ(X)2

]
m

+ τ

)

+
2

n+ 1

(
ER

[(
pT (X)

pR (X)

)2

VHT(X)

]
+

1

m
ER

[
pT (X) (1− pT (X))

pR (X)2
VHT(X)

])

≤ 2Vso
n+ 1

+
VarT [τ(X)]

m
+

2

m(n+ 1)
ER

[
pT (X) (1− pT (X))

pR (X)2
VHT(X)

]
+
(
1−min

x
pR (x)

)n/2(
1 + ET[τ(X)2] +

4ET

[
τ(X)2

]
m

)
.

The L2 consistency holds by letting n and m tend to infinity.
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4.A.4 Estimated IPSW with estimated π̂n(x)

4.A.4.1 Proof of Proposition 4

Proof. Bias

We start by computing the bias of

E [τ̂n,m] = E

[
1

n

n∑
i=1

p̂T,m(Xi)

p̂R,n(Xi)
Yi

(
Ai

π̂n(Xi)
− 1−Ai

1− π̂n(Xi)

)]

=
1

n
E

[
E

[∑
x∈X

p̂T,m(x)

p̂R,n(x)

n∑
i=1

1Xi=xYi

(
Ai

π̂n(x)
− 1−Ai

1− π̂n(x)

)
| Xn,An,Yn

]]

=
1

n
E

[∑
x∈X

E [p̂T,m(x) | Xn,An,Yn]

p̂R,n(x)

n∑
i=1

1Xi=xYi

(
Ai

π̂n(x)
− 1−Ai

1− π̂n(x)

)]

=
1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=xYi

(
Ai

π̂n(x)
− 1−Ai

1− π̂n(x)

)]
.

This derivation is possible as p̂T,m is estimated on a different data set than the trial.
Using SUTVA (Assumption 27), one can replace observed outcomes by potential outcomes, and

E [τ̂n,m] =
1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=x

(
Y

(1)
i Ai
π̂n(x)

−
Y

(0)
i (1−Ai)
1− π̂n(x)

)]

=
1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=xE

[(
Y

(1)
i Ai
π̂n(x)

−
Y

(0)
i (1−Ai)
1− π̂n(x)

)
|Xn,Y

(1)
n ,Y(0)

n

]]
.

Let us consider, for any fixed x ∈ X,

E

[
Y

(1)
i Ai
π̂n(x)

|Xn,Y
(1)
n ,Y(0)

n

]
= Y

(1)
i E

[
Ai

π̂n(x)
|Xn

]
.

Up to reordering the Xi’s, we have

E
[

Ai
π̂n(x)

|Xn

]
= E

 Ai∑Zn(x)
j=1 Aj

Zn(x)

|Xn


= Zn(x)E

[
Ai∑Zn(x)

j=1 Aj
|Xn

]

= Zn(x)π(x)E

[
1

1 +
∑Zn(x)

j=2 Aj
|Xn

]
.

The last rows uses the law of total probability. According to Lemma 11 (i) in Biau (2012), and
considering Bn(x) ∼ B(n, p), for any x ∈ X,

E
[

1

1 +Bn(x)

]
=

1

(n+ 1)p
− (1− p)n+1

(n+ 1)p
.

Since, conditional on Xn,
∑Zn(x)

j=2 Aj is distributed as B(Zn(x)− 1, π(x)),

E
[

Ai
π̂n(x)

|Xn

]
= Zn(x)π(x)

(
1

Zn(x)π(x)
− (1− π(x))Zn(x)

Zn(x)π(x)

)
= 1− (1− π(x))Zn(x).
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Similarly,

E
[
(1−Ai)
1− π̂n(x)

|Xn

]
= 1− π(x)Zn(x).

Consequently,

E

[(
Y

(1)
i Ai
π̂n(x)

−
Y

(0)
i (1−Ai)
1− π̂n(x)

)
|Xn,Y

(1)
n ,Y(0)

n

]
= Y

(1)
i

(
1− (1− π(x))Zn(x)

)
− Y (0)

i

(
1− π(x)Zn(x)

)
=
(
Y

(1)
i − Y (0)

i

)
− Y (1)

i (1− π(x))Zn(x) + Y
(0)
i π(x)Zn(x).

Therefore,

E [τ̂n,m] =
1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=x(Y
(1)
i − Y (0)

i )

]
(4.50)

+
1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=xY
(0)
i π(x)Zn(x)

]
(4.51)

− 1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=xY
(1)
i (1− π(x))Zn(x)

]
. (4.52)

On one hand, considering eq. 4.50,

1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=x(Y
(1)
i − Y (0)

i )

]
=

1

n

∑
x∈X

E

[
pT(x)

p̂R,n(x)

n∑
i=1

1Xi=x(Y
(1)
i − Y (0)

i )

]
=
∑
x∈X

E
[
pT(x)1Zn(x)>0τ(x)

]
,

corresponding to the bias in the semi-oracle and the estimated IPSW. Indeed, we recall from the
semi-oracle IPSW proof that,∑

x∈X
E
[
pT(x)1Zn(x)>0τ(x)

]
=
∑
x∈X

pT(x)(1− (1− pR(x))n)τ(x).

On the other hand, considering eq. 4.51,

1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=xY
(0)
i π(x)Zn(x)

]
=

1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=xE
[
Y

(0)
i | Xi = x

]
π(x)Zn(x)

]

= E

[∑
x∈X

pT(x)1Zn(x)>0E
[
Y

(0)
i | Xi = x

]
π(x)Zn(x)

]
=
∑
x∈X

pT(x)E
[
Y

(0)
i | Xi = x

]
E
[
1Zn(x)>0π(x)

Zn(x)
]

=
∑
x∈X

pT(x)E
[
Y

(0)
i | Xi = x

]
E
[(
1− 1Zn(x)=0

)
π(x)Zn(x)

]
=
∑
x∈X

pT(x)E
[
Y

(0)
i | Xi = x

] (
E
[
π(x)Zn(x)

]
− E

[
1Zn(x)=0

])
.

Now, note that P [Zn(x) = 0] = (1− pR(x))n and

E
[
π(x)Zn(x)

]
=

n∏
j=1

E
[
π(x)1Xi=x

]
= (π(x)pR(x) + (1− pR(x)))n .
= (1− pR(x) (1− π(x)))n .
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Therefore,

1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=xY
(0)
i π(x)Zn(x)

]
=
∑
x∈X

pT(x)E
[
Y

(0)
i | Xi = x

] (
(1− pR(x) (1− π(x)))n − (1− pR(x))n

)
.

Similarly, considering eq. 4.52,

− 1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=xY
(1)
i (1− π)Zn(x)

]
= −

∑
x∈X

pT(x)E
[
Y

(1)
i | Xi = x

] (
(1− pR(x)π(x))n − (1− pR(x))n

)
.

Finally, the bias of the estimated IPSW with estimated treatment proportion is given by

E [τ̂n,m]− τ = −
∑
x∈X

pT(x)τ(x) (1− pR(x))n

+
∑
x∈X

pT(x)
(
E
[
Y

(1)
i | Xi = x

]
− E

[
Y

(0)
i | Xi = x

])
(1− pR(x))n

+
∑
x∈X

pT(x)E
[
Y

(0)
i | Xi = x

]
(1− pR(x) (1− π(x)))n

−
∑
x∈X

pT(x)E
[
Y

(1)
i | Xi = x

]
(1− pR(x)π(x))n ,

such that,

E [τ̂n,m]− τ =
∑
x∈X

pT(x)E
[
Y

(0)
i | Xi = x

]
(1− pR(x) (1− π(x)))n

−
∑
x∈X

pT(x)E
[
Y

(1)
i | Xi = x

]
(1− pR(x)π(x))n .

Variance

As above, we have

Var [τ̂n,m] = Var [E [τ̂n,m | Xm+n]] + E [Var [τ̂n,m | Xm+n]] . (4.53)

Let us examine the first term. We have

E [τ̂n,m | Xm+n] = E

[
1

n

n∑
i=1

p̂T,m(Xi)

p̂R,n(Xi)
Yi

(
Ai

π̂n(Xi)
− 1−Ai

1− π̂n(Xi)

)
| Xm+n

]

=
1

n

n∑
i=1

p̂T,m(Xi)

p̂R,n(Xi)
E

[
Y

(1)
i Ai
π̂n(Xi)

−
Y

(0)
i (1−Ai)
1− π̂n(Xi)

| Xm+n

]

=
1

n

n∑
i=1

p̂T,m(Xi)

p̂R,n(Xi)
E

[
E

[
Y

(1)
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π̂n(Xi)

−
Y

(0)
i (1−Ai)
1− π̂n(Xi)

| Xm+n,Y
(1)
n ,Y(0)

n

]
| Xm+n

]
.

A similar computation as the one used in the derivation of the bias above shows that

E

[
Y

(1)
i Ai
π̂n(Xi)

−
Y

(0)
i (1−Ai)
1− π̂n(Xi)

| Xm+n,Y
(1)
n ,Y(0)

n

]
=
(
Y

(1)
i − Y (0)

i

)
− Y (1)

i (1− π(Xi))
Zn(Xi) + Y

(0)
i π(Xi)

Zn(Xi),

which leads to

E [τ̂n,m | Xm+n] =
1

n

n∑
i=1

p̂T,m(Xi)

p̂R,n(Xi)
E
[(
Y

(1)
i − Y (0)

i

)
− Y (1)

i (1− π(Xi))
Zn(Xi) + Y

(0)
i π(Xi)

Zn(Xi) | Xm+n

]
=

1

n

n∑
i=1

p̂T,m(Xi)

p̂R,n(Xi)

(
τ(Xi)− E

[
Y

(1)
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]
(1− π(Xi))

Zn(Xi) + E
[
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(0)
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]
π(Xi)

Zn(Xi)
)
.
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Rewriting the previous sum yields

E [τ̂n,m | Xm+n] =
1

n

∑
x∈X

n∑
i=1

1Xi=x
p̂T,m(Xi)

p̂R,n(Xi)
(τ(Xi)− E

[
Y

(1)
i | Xi

]
(1− π(Xi))
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+ E
[
Y

(0)
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]
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Zn(Xi))

=
∑
x∈X

p̂T,m(x)
(
τ(x)− E

[
Y

(1)
i | Xi = x

]
(1− π(x))Zn(x) + E

[
Y

(0)
i | Xi = x

]
π(x)Zn(x)

)
=

1

m

n+m∑
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Un(Xi),

where

Un(Xi) :=
(
τ(Xi)− E

[
Y

(1)
i | Xi

]
(1− π(Xi))

Zn(Xi) + E
[
Y

(0)
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]
π(Xi)
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)
.

By the law of total variance,

Var [E [τ̂n,m | Xm+n]]

=Var

[
1

m

n+m∑
i=n+1

Un(Xi)

]

=E

[
Var

[
1

m

n+m∑
i=n+1

Un(Xi)|Xn

]]
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[
E

[
1

m

n+m∑
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Un(Xi)|Xn

]]

=
1

m
E [Var [Un(X)|Xn]] + Var [E [Un(X)|Xn]]

=
1

m
Var [Un(X)] +

(
1− 1

m

)
Var [E [Un(X)|Xn]] ,

where the last line comes from the law of total variance applied to Var [Un(X)]. Since

Var [E [Un(X)|Xn]]

=Var
[
E
[(
τ(X)− E

[
Y (1) | X

]
(1− π(X))Zn(X) + E

[
Y (0) | X

]
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E
[
E
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Y (0) | X

]
π(X)Zn(X) − E

[
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]
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]]
,

as the only source of randomness comes from Zn(X) (and not from τ(X)), we have

Var [E [τ̂n,m | Xm+n]] =
1

m
Var [τ(X)− Cn(X)] +

(
1− 1

m

)
Var [E [Cn(X)|Xn]] , (4.54)

where

Cn(X) = E
[
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]
(1− π(X))Zn(X) − E

[
Y (0) | X

]
π(X)Zn(X).

Regarding the other term, and first re-writing τ̂n,m,
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=

n∑
i=1

p̂T,m(Xi)

Zn(Xi)

(
AiY

(1)
i

π̂n(Xi)
−

(1−Ai)Y (0)
i

1− π̂n(Xi)

)

=
∑
x∈X

p̂T,m(x)

Zn(x)

n∑
i=1

1Xi=x

(
AiY

(1)
i

π̂n(x)
−

(1−Ai)Y (0)
i

1− π̂n(x)

)
.
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Hence,

Var [τ̂n,m | Xn+m]

=Var

∑
x∈X

p̂T,m(x)

Zn(x)

n∑
i=1

1Xi=x

(
AiY

(1)
i

π̂n(x)
−

(1−Ai)Y
(0)
i

1− π̂n(x)

)
| Xn+m


=
∑
x∈X

(p̂T,m(x))2 Var

[
1

Zn(x)

n∑
i=1

1Xi=x

(
AiY

(1)
i

π̂n(x)
−

(1−Ai)Y
(0)
i

1− π̂n(x)

)
| Xn+m

]
+

+
∑

x,y∈X,x ̸=y

Cov

 p̂T,m(x)

Zn(x)

n∑
i=1

1Xi=x

(
AiY

(1)
i

π̂n(x)
−

(1−Ai)Y
(0)
i

1− π̂n(x)

)
,
p̂T,m(y)

Zn(y)

n∑
j=1

1Xj=y

AjY
(1)
j

π̂n(y)
−

(1−Aj)Y
(0)
j

1− π̂n(y)

 | Xn+m

 .
Note that the term

Var

[
1

Zn(x)

n∑
i=1

1Xi=x

(
AiY

(1)
i

π̂n(x)
−

(1−Ai)Y (0)
i

1− π̂n(x)

)
| Xn+m

]
corresponds to the variance of the difference-in-means estimator on the strata X = x (where n is
replaced by Zn(x)) and therefore equals

VDM,n(x)1Zn(x)>0/Zn(x),

where (see Lemma 4),

VDM(x) =

(
E
[
1π̂>0

π̂

]
Var

[
Y

(1)
i

]
+ E

[
1(1−π̂)>0

1− π̂

]
Var

[
Y

(0)
i

])
+O (Zn(x)max(π, 1− π)n) .

Consequently,

Var [τ̂n,m | Xn+m]

=
∑
x∈X

(p̂T,m(x))2VDM,n(x)1Zn(x)>0

Zn(x)

+
∑

x,y∈X,x ̸=y

p̂T,m(x)

Zn(x)

p̂T,m(y)

Zn(y)

∑
i,j

1Xi=x1Xj=y Cov

(AiY
(1)
i

π̂n(x)
−

(1−Ai)Y
(0)
i

1− π̂n(x)

)
,

AjY
(1)
j

π̂n(y)
−

(1−Aj)Y
(0)
j

1− π̂n(y)

 | Xn+m

 .
Note that for x ̸= y, π̂n(x) ⊥⊥ π̂n(y). Consequently, for i ̸= j,(

AiY
(1)
i

π̂n(x)
−

(1−Ai)Y (0)
i

1− π̂n(x)

)
⊥⊥

(
AjY

(1)
j

π̂n(x)
−

(1−Aj)Y (0)
j

1− π̂n(x)

)
.

Consequently,

Var [τ̂n,m | Xn+m] =
∑
x∈X

(p̂T,m(x))
2VDM,n(x)1Zn(x)>0

Zn(x)
,

and, taking the expectation with respect to Xn+m, we have

E [Var [τ̂n,m | Xn+m]] =
∑
x∈X

E
[
(p̂T,m(x))

2
]
E
[
1Zn(x)>0

Zn(x)

]
VDM,n(x)

=
∑
x∈X

(
pT(x)(1− pT(x))

m
+ p2T(x)

)
E
[
1Zn(x)>0

Zn(x)

]
VDM,n(x). (4.55)

Gathering eq. 4.54 and eq. 4.55, we finally obtain,

Var [τ̂n,m]

=
1

m
Var [τ(X)− Cn(X)] +

(
1− 1

m

)
Var [E [Cn(X)|Xn]]

+
∑
x∈X

(
pT(x)(1− pT(x))

m
+ p2T(x)

)
E
[
1Zn(x)>0

Zn(x)

]
VDM,n(x),
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where

Cn(X) = E
[
Y (1) | X

]
(1− π(X))Zn(X) − E

[
Y (0) | X

]
π(X)Zn(X).

Note that, by Jensen’s inequality,

Var [E [Cn(X)|Xn]]

≤ E
[
Cn(X)2

]
≤ 2E

[
E
[
Y (1) | X

]2
(1− π(X))2Zn(X)

]
+ 2E

[
E
[
Y (0) | X

]2
π(X)2Zn(X)

]
≤ 2E

[
E
[
Y (1) | X

]2
E
[
(1− π(X))2Zn(X) | X

]]
+ 2E

[
E
[
Y (0) | X

]2
E
[
π(X)2Zn(X) | X

]]
≤ 2E

[
E
[
Y (1) | X

]2 (
1−

(
1− π(X)2

)
pR(X)

)n]
+ 2E

[
E
[
Y (0) | X

]2 (
1−

(
1− (1− π(X))2

)
pR(X)

)n]
≤ 2

(
1−min

x

(
(1− π̃(x)2)pR(x)

))n
E
[
(Y (1))2 + (Y (0))2

]
,

where π̃(x) = max(π(x), 1− π(x)), and we have used the fact that

E
[
π(X)2Zn(X) | X

]
=
(
π(X)2pR(X) + 1− pR(X)

)n
=
(
1−

(
1− π(X)2

)
pR(X)

)n
.

Besides, we have

Var [τ(X)− Cn(X)] ≤ VarT [τ(X)] + 2 (VarT[τ(X)] VarT [Cn(X)])1/2 +VarT [Cn(X)] ,

where

VarT [Cn(X)] ≤ E
[
Cn(X)2

]
≤ 2

(
1−min

x

(
(1− π̃(x)2)pR(x)

))n
E
[
(Y (1))2 + (Y (0))2

]
.

Consequently,

Var [τ(X)− Cn(X)] ≤ VarT [τ(X)] + 4
(
1−min

x

(
(1− π̃(x)2)pR(x)

))n/2
E
[
(Y (1))2 + (Y (0))2

]
+ 2

(
1−min

x

(
(1− π̃(x)2)pR(x)

))n
E
[
(Y (1))2 + (Y (0))2

]
≤ VarT [τ(X)] + 6

(
1−min

x

(
(1− π̃(x)2)pR(x)

))n/2
E
[
(Y (1))2 + (Y (0))2

]
.

Finally,

Var [τ̂n,m] ≤
2

n+ 1
ER

[(
pT (X)

pR (X)

)2

VDM(X)

]
+

Var [τ(X)]

m
+

2

(n+ 1)m
ER

[
pT (X) (1− pT (X))

pR (X)2
VDM,n(X)

]
+ 2

(
1 +

3

m

)(
1−min

x

(
(1− π̃(x)2)pR(x)

))n/2
E
[
(Y (1))2 + (Y (0))2

]
.

4.A.4.2 Proof of Corollary 6

Proof. The proof follows exactly the same structure as that of the proof of Corollary 5.
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Proof. We recall the explicit expression of the variance of τ̂n,m,

Var [τ̂n,m]

=
1

m
Var [τ(X)− Cn(X)] +

(
1− 1

m

)
Var [E [Cn(X)|Xn]]

+
∑
x∈X

(
pT(x)(1− pT(x))

m
+ p2T(x)

)
E
[
1Zn(x)>0

Zn(x)

]
VDM(x),

where

Cn(X) = E
[
Y (1) | X

]
(1− π(X))Zn(X) − E

[
Y (0) | X

]
π(X)Zn(X).

Recall that using eq. 4.36 and eq. 4.37, one has

lim
n→∞

E
[
1Zn(x)>0

Zn(x)/n

]
=

1

pR(x)
,

and we also have

lim
n→∞

VarT [τ(X)− Cn(X)] = VarT[τ(X)] = Var[τ(X)].

Finally, note that the term Var [E [Cn(X)|Xn]] can be bounded by a term proportional to (1−min(π, 1−
π))n, so that the convergence toward 0 it at an exponential pace with n.

Multiplying the explicit variance by min(n,m) one has,

min(n,m)Var [τ̂n,m]

=
min(n,m)

m
Var [τ(X)− Cn(X)] + min(n,m)

(
1− 1

m

)
Var [E [Cn(X)|Xn]]

+
min(n,m)

n

∑
x∈X

(
pT(x)(1− pT(x))

m
+ p2T(x)

)
E
[
1Zn(x)>0

Zn(x)/n

]
VDM(x).

Now, we study an asymptotic regime where n and m can grow toward infinity but at different paces.
Let lim

n,m→∞
m
n = λ ∈ [0,∞],where λ characterizes the regime.

Case 1: If λ ∈ [1,∞], one can replace min(n,m) by n, so that

min(n,m)Var [τ̂n,m] = nVar [τ̂n,m]

=
1

λ
Var [τ(X)− Cn(X)] +

(
n− 1

λ

)
Var [E [Cn(X)|Xn]]

+
∑
x∈X

(
pT(x)(1− pT(x))

m
+ p2T(x)

)
E
[
1Zn(x)>0

Zn(x)

]
VDM(x),

such that

lim
n,m→∞

nVar [τ̂n,m] =
Var [τ(X)]

λ
+ Ṽso,

where

Ṽso := ER

[(
pT(X)

pR(X)

)2

VDM,∞(X)

]
.

Case 2: If λ ∈ [0, 1], one can replace min(n,m) by m, so that,
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min(n,m)Var [τ̂n,m] = mVar [τ̂n,m]

= Var [τ(X)− Cn(X)] +m

(
1− 1

m

)
Var [E [Cn(X)|Xn]]

+ λ
∑
x∈X

(
pT(x)(1− pT(x))

m
+ p2T(x)

)
E
[
1Zn(x)>0

Zn(x)/n

]
VDM(x).

Because m ≤ n, then

m

(
1− 1

m

)
Var [E [Cn(X)|Xn]] ≤ n

(
1− 1

m

)
Var [E [Cn(X)|Xn]] ,

so that

lim
n,m→∞

m

(
1− 1

m

)
Var [E [Cn(X)|Xn]] ≤ lim

n,m→∞
n

(
1− 1

m

)
Var [E [Cn(X)|Xn]] = 0.

Finally,

lim
n,m→∞

mVar [τ̂n,m] = Var [τ(X)] + λṼso.

4.A.4.3 Proof of Theorem 12

Proof. According to Proposition 4, the bias of the IPSW estimator with estimated π̂n can be upper
bounded via

|E [τ̂n,m]− τ | ≤
∑
x∈X

pT(x)
∣∣∣E [Y (0) | X = x

]∣∣∣ (1− pR(x) (1− π(x)))n
+
∑
x∈X

pT(x)
∣∣∣E [Y (1) | X = x

]∣∣∣ (1− pR(x)π(x))n
≤
(
1−min

x
((1− π̃(x))pR(x))

)n
ET

[∣∣∣E [Y (1) | X
]∣∣∣+ ∣∣∣E [Y (0) | X

]∣∣∣] .
Therefore, the risk of the (estimated) IPSW estimate with estimated π̂n satisfies,

E
[
(τ̂n,m − τ)2

]
≤
(
1−min

x
((1− π̃(x))pR(x))

)2n
ET
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pT (X)
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]

+
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m
+

2
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ER

[
pT (X) (1− pT (X))

pR (X)2
VDM(X)

]
+ 2

(
1 +

3

m

)(
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x

(
(1− π̃(x)2)pR(x)

))n/2
E
[
(Y (1))2 + (Y (0))2

]
≤ 2
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VDM(X)

]
+
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m
+

2
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]
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(
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m
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E
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(Y (1))2 + (Y (0))2
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.
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4.B Extended adjustment set

4.B.1 Proof of Corollary 7

Proof. According to Corollary 4, we have

lim
n→∞

nVar
[
τ̂∗T,n(X)

]
= Vso, (4.56)

where

Vso := ER

[(
pT(X)

pR(X)

)2

VHT(X)

]
,

with

VHT(x) = ER

[(
Y (1)

)2
π

| X = x

]
+ ER

[(
Y (0)

)2
1− π

| X = x

]
− τ(x)2.

Since, by assumption, V is composed of covariates that are not treatment effect modifiers, using
Definition 32, we have, for all (x, v),

VHT(x, v) = VHT(x). (4.57)

Now, considering the set (X,V ) instead of X in the expression eq. 4.56 leads to

lim
n→∞

nVarR
[
τ̂∗T,n(X,V )

]
= ER

[(
pT(X,V )

pR(X,V )

)2

VHT(X,V )

]

=
∑

x,v∈X ,V

p2T(x, v)

pR(x, v)
VHT(x, v)

=
∑

x,v∈X ,V

p2T(x, v)

pR(x, v)
VHT(x) Equation. eq. 4.57

=
∑

x,v∈X ,V

p2T(x)p
2
T(v)

pR(x)pR(v)
VHT(x) V ⊥⊥ X

=

(∑
v∈V

pT(v)
2

pR(v)

)∑
x∈X

p2T(x)

pR(x)
VHT(x)

=

(∑
v∈V

pT(v)
2

pR(v)

)
lim
n→∞

nVarR
[
τ̂∗T,n(X)

]
,

Now, note that ∑
v∈V

pT(v)
2

pR(v)
= ER

[
pT(V )2

pR(V )2

]

≥
(
ER

[
pT(V )

pR(V )

])2

≥

(∑
v∈V

pT(v)

)2

≥ 1,

where the first inequality results from Jensen’s inequality. Consequently,

lim
n→∞

nVarR
[
τ̂∗T,n(X,V )

]
≥ lim

n→∞
nVarR

[
τ̂∗T,n(X)

]
.
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4.B.2 Proof of Corollary 8

Proof. By the law of total variance, we have, for all x,

VDM(x) = E [VDM(x, V )] + Var [τ(x, V )] . (4.58)

Indeed, according to the law of total variance, for all random variables Z,X1, X2, we have, a.s.,

Var [Z | X1] = E [Var [Z | X1, X2] | X1] + Var [E [Z | X1, X2] | X1] .

Letting X1 = X,X2 = V and Z = (Y A/π)− (Y (1−A)/π) yields equation eq. 4.58. Now, we can write

lim
n→∞

nVarR
[
τ̂∗T,n(X,V )

]
= ER

[(
pT(X,V )

pR(X,V )

)2

VDM(X,V )

]

=
∑

x,v∈X ,V

p2T(x, v)

pR(x, v)
VDM(x, v)

=
∑

x,v∈X ,V

p2T(x)p
2
T(v)

pR(x)pR(v)
VDM(x, v) V ⊥⊥ X

=
∑
xX

p2T(x)

pR(x)

∑
v∈V

p2T(v)

pR(v)
VDM(x, v)

=
∑
xX

p2T(x)

pR(x)

∑
v∈V

pT(v)VHT(x, v) by Definition 33

=
∑
xX

p2T(x)

pR(x)
(VDM(x)−Var [τ(x, V )]) Equation eq. 4.58

= lim
n→∞

nVarR
[
τ̂∗T,n(X)

]
− ER

[
pT(X)

pR(X)
Var [τ(X,V ) | X]

]
,

which concludes the proof.

4.C Semi-synthetic simulation’s data preparation

4.C.1 Context

The semi-synthetic simulation is made of real world data, a trial called CRASH-3 (Dewan et al.,
2012; CRASH-3, 2019) and an observational data base called Traumabase. The covariates of both
data sources are used to generate the true distribution from which the simulated data are generated.
This part details the pre-treatment performed on the covariates, which is contained in the R notebook
entitled Prepare-semi-synthetic-simulation.Rmd. As explained in the main document, in this
semi-synthetic simulation we only consider six baseline covariates:

• Glasgow Coma Scale score7 (GCS) (categorical);

• Gender (categorical);

• Pupil reactivity (categorical);

• Age (continuous);

• Systolic blood pressure (continuous);

• Time-to-treatment (continuous), being the time between the trauma and the administration of
the treatment.

7The GCS is a neurological scale which aims to assess a person’s consciousness. The lower the score, the higher the
severity of the trauma.
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As three covariates out of 6 are continuous, we categorize them to obtain a completely categorical
data. The time-to-treatment is categorized in 4 levels, systolic blood pressure in 3 levels, and age in
3 levels. To further reduce the number of categories, and follow the CRASH-3 trial stratification, the
Glasgow score is also gathered in 3 levels, from severe to moderately injured individuals, based on
their Glasgow score.

CRASH-3 trial The CRASH-3 trial data contains information on 12, 737 individuals. Over the six
covariates of interest and the 12, 737 individuals, 108 values are missing. We imputed them using the
R package missRanger.

Traumabase observational data The complete Traumabase data contains 20, 037 observations,
but when keeping only the individuals suffering from Traumatic Brain Injury (TBI) as it is the case
in the CRASH-3 trial, only 8, 289 observations could be kept. Many data are missing, in particular
2, 660 missing values for 8, 289 individuals and along 5 baseline covariates considered. We impute
them with the R package missRanger, using 35 other available baseline covariates. Because the time
to treatment is not observed in the Traumabase this covariate is generated following a beta law, and
considering a shifted distribution compared to the trial, in particular toward lower time-to-treatment
values than in the trial.

Ensuring overlap When binding the two data sets, we had to ensure that the support inclusion
assumption (Assumption 29) was verified. Out of the 586 modalities present in the target data,
only 192 are also present in the trial data. Therefore only these observations are kept, such that the
observational sample finally contains 8, 058 observations (8, 289 at the beginning). All the observations
in the trial are kept as there is no restriction for the trial to contain a larger support as presented in
Assumption 29.

4.C.1.1 Covariate shift vizualization

For each of the six baseline and categorical considered, visualization of the covariate shift between the
two data source is represented on Figures 4.10, 4.11, 4.12, 4.13, 4.14, and 4.15.
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Figure 4.10: Bar plot of categorized age in the semi-synthetic simulation

4.C.2 Synthetic outcome model

As detailed above, for now the covariate support reflects a true situation, where only the time-to-
treatment covariate was created as it is missing in the target population sample (Colnet et al., 2022a).
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Figure 4.11: Bar plot of categorized systolic blood pressure in the semi-synthetic simulation
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Figure 4.12: Bar plot of gender in the semi-synthetic simulation
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Figure 4.13: Bar plot of the glasgow score in the semi-synthetic simulation

For the purpose of simulation, the outcome model is completely synthetic, and for each strata a number
is affected, from 1 to the number of strata, starting to the lowest category (for example youngest strata,
or lowest Glasgow score, or lower systolic blood pressure), to the highest one.
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Figure 4.14: [Bar plot of pupil reactivity in the semi-synthetic simulation]Bar plot of pupil reactivity (−1 encoding
not able to measure) in the semi-synthetic simulation
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Figure 4.15: Bar plot of categorized time-to-treatment in the semi-synthetic simulation

Doing so, the outcome model considered is such as,

Y = 10− Glasgow+ (if Girl:− 5 else:0)

+A
(
15(6− TTT) + 3 ∗ (Systolic.blood.pressure− 1)2

)
+ εTTT,

where εTTT is a random Gaussian noise with a standard deviation depending on the value of the
covariate TTT. In particular if the treatment is given later, then the noise is stronger.

4.D Useful results about RCTs under a Bernoulli design

Here we recall the definition of a Bernoulli trial (see Definition 34) and results such as variance
expression of the Horvitz-Thomson and difference-in-means estimators under this design. We also
provide details about variance inequality between the variance of the Horvitz-Thomson compared to
the variance of the difference-in-means. In the literature we have not found detailed derivations about
the finite sample bias and variance of the difference-in-means under a Bernoulli design. Extensively
detailed derivations are available in Chapter two of Imbens and Rubin (2015), but for a completely
randomized design. Also note that in this work we assume a superpopulation framework, and a large
part of the existing literature focuses on inference on a finite population. Indeed, when considering
a finite sample, bias and variance of the Horvitz-Thomson and difference-in-means are not the same
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4.D. Useful results about RCTs under a Bernoulli design

as when inferring the superpopulation treatment effect (Splawa-Neyman et al., 1990; Imbens, 2011;
Miratrix et al., 2013; Harshaw et al., 2021).

Note that all the results in this section considers one population, and not two populations with two
distributions (target and randomized), therefore no index is placed on the expectation. When the
following results on RCTs are used in the main paper and/or in the proofs, we use the index R in the
expectation as the trial in the main paper is sample according to PR.

4.D.1 Bernoulli trial

A Bernoulli trial is a trial where the treatment assignment vector, being A = (A1, . . . , An) follows a
Bernoulli law with a constant probability. More formally,

Definition 34 (Assignment mechanism for a Bernoulli Trial). If the assignment mechanism is a
Bernoulli trial with a probability π, then

∀i, P[Ai] = π,

and considering a sample for n units,

P [A | i ∈ R] =
n∏
i=1

[
πAi · (1− π)1−Ai

]
,

where A denotes the vector of treatment allocation for the trial sample R.

In this design the treatment allocation is independent of all other treatment allocations. A disad-
vantage of such design is the fact that there is always a small probability that all units receive the
treatment or no treatment. This is why other designs are possible, such as the so-called completely
randomized design, where the number of treated units is selected prior to treatment allocation (usually
n/2 units are given treatment). The interest is to ensure a balanced group of treated and controls,
and avoid a possible pathological case of high unbalance between the number of treated and control
individuals.

Mathematically, treating the situation of a completely randomized design is different than a Bernoulli
design, as in the former the probability of treatement is not independent between units, for example

∀i, j ∈ R, PComp. rand. [Ai = 1 | Aj = 1] ̸= PComp. rand. [Ai = 1] = π.

4.D.2 Horvitz-Thomson’s

The Horvitz-Thomson estimator is unbiased and has an explicit finite sample variance.

Lemma 3 (Finite sample bias and variance of the Horvitz-Thomson estimator). Assuming trial in-
ternal validity (Assumption 27), then

∀n, E[τ̂HT]− τ = 0,

and

∀n, nVar [τ̂HT,n] = E

[(
Y (1)

)2
π

]
+ E

[(
Y (0)

)2
1− π

]
− τ2.

Note that the following proof can be extended to any π(x) depending on baseline covariates, and
therefore extends to the oracle IPW in the causal inference literature.

Proof. Bias
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E[τ̂HT] =
E
[
AiY

(1)
i

]
π

−
E
[
(1−Ai)Y (0)

i

]
1− π

Linearity & SUTVA

=
E [Ai]E

[
Y

(1)
i

]
π

−
E [(1−Ai)]E

[
Y

(0)
i

]
1− π

Randomization

=
πE
[
Y

(1)
i

]
π

−
(1− π)E

[
Y

(0)
i

]
1− π

Def. of π - Bernoulli design

= τ, Linearity.

Variance

Var [τ̂HT,n] = Var

[
1

n

n∑
i=1

AiYi
π
− (1−Ai)Yi

1− π

]

=
1

n2
Var

[
n∑
i=1

AiY
(1)
i

π
−

(1−Ai)Y (0)
i

1− e

]
Assumption 27

=
1

n
Var

[
AY (1)

π
− (1−A)Y (0)

1− π

]
. iid

Then,

Var [τ̂HT,n] =
1

n

(
Var

[
AY (1)

π

]
+Var

[
(1−A)Y (0)

1− π

]
− 2 Cov

[
AY (1)

π
,
(1−A)Y (0)

1− π

])
. (4.59)

The first two terms can be simplified, noting that

E

(AY (1)

π

)2
 = E

1{Ai=1}

(
Y (1)

π

)2
 A is binary

= E

[(
Y (1)

)2
π2

]
ER

[
1{Ai=1}

]
Randomization of trial

= E

[(
Y (1)

)2
π

]
Definition of π

Similarly,

E

((1−A)Y (0)

1− π

)2
 = E

[(
Y (0)

)2
1− π

]
.

So,

Var

[
AY (1)

π

]
= E

(AY (1)

π

)2
− E

[
AY (1)

π

]2

= E

[(
Y (1)

)2
π

]
− E

[
Y (1)

]2
.

Similarly,

Var

[
(1−A)Y (0)

1− π

]
= E

[(
Y (0)

)2
1− π

]
− E

[
Y (0)

]2
.

The third term in equation eq. 4.59 can also be decomposed, so that,
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Cov

[
AY (1)

π
,
(1−A)Y (0)

1− π

]
= ER

[(
AY (1)

π
− E

[
Y (1)

])((1−A)Y (0)

1− π
− ER

[
Y (0)

])]

= ER

AY (1)

π

(1−A)Y (0)

1− π︸ ︷︷ ︸
= 0

− ER

[
Y (0)

]
ER

[
Y (1)

]
.

Finally,

nVar [τ̂HT,n] = ER

[(
Y (1)

)2
π

]
+ ER

[(
Y (0)

)2
1− π

]
− τ2 := VHT.

4.D.3 General results about the Difference-in-means

First, note that the Difference-in-Means estimator (in Definition 23) can be re-written as,

τ̂DM,n =
1

n

n∑
i=1

AiYi∑n
i=1 Ai

n

− 1

n

n∑
i=1

(1−Ai)Yi∑n
i=1 1−Ai

n

,

which corresponds to the Horvitz-Thomson where the probability to be treated is estimated with the
data.

This estimator is always defined, even if due to the Bernoulli design it possible that all observations
were allocated treatment or control. For example, if all units are given control, then

n∑
i=1

Ai = 0,

and because for all i, Ai = 0, the ratio 1
n

∑n
i=1

AiYi∑n
i=1

Ai
n

is defined and equal to 0
0 = 0 by convention.

Lemma 4 (Finite sample and large sample properties of the difference-in-means estimator). Assuming
trial internal validity (Assumption 27), then

∀n, E [τ̂DM,n]− τ = πnE
[
Y

(0)
i

]
− (1− π)nE

[
Y

(1)
i

]
,

and

∀n, Var [τ̂DM,n] =
1

n

(
E
[
1π̂>0

π̂

]
Var

[
Y

(1)
i

]
+ E

[
1(1−π̂)>0

1− π̂

]
Var

[
Y

(0)
i

])
+Dn,

where Dn = E
[
Y

(1)
i

]2
(1− π)n + E

[
Y

(0)
i

]2
πn −

(
E
[
Y

(1)
i

]
(1− π)n + E

[
Y

(0)
i

]
πn
)2

.

Asymptotically, the difference-in-means is unbiased

lim
n→∞

E [τ̂DM,n] = τ,

and has the following variance

lim
n→∞

nVar [τ̂DM,n] =
Var

[
Y (1)

]
π

+
Var

[
Y (0)

]
1− π

:= VDM,∞.
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The difference-in-means under a Bernoulli design has a finite sample bias due to the possibility of a
sample where everyone receive treatments or control. But the bias is exponentially decreasing with n.
Also note that,

Dn = O (max(π, 1− π)n)

The asymptotic variance of the difference-in-means is the variance usually reported in textbooks, and
corresponds to the finite sample of the Difference-in-Means estimator under a completely random-
ized trial. Note that we could also show that the Difference-in-Means is asymptotically normally
distributed, for example using M-estimation technics (Stefanski and Boos, 2002). As this result is not
used in this paper, we do not detail the proof.

Note that for a completely randomized design, the difference-in-means is unbiased and its finite sample
variance is,

Var [τ̂DM,n] =
Var

[
Y (1)

]
n1

+
Var

[
Y (0)

]
n0

,

where n1 is the number of treated units (∼ πn) and n0 is the number of control units (∼ (1 − π)n).
This formula is extensively used in the literature, but under a Bernoulli design this formula is true
only in large sample as detailed in Lemma 4.

Proof. Bias

One can use the law of total expectation, conditioning on the treatment assignment vector denoted
A,

E [τ̂DM] = E [E [τ̂DM | A]]

= E

[
1
n

∑n
i=1Ai

1
n

∑n
i=1Ai

E
[
Y

(1)
i | A

]
−

1
n

∑n
i=1(1−Ai)

1
n

∑n
i=1(1−Ai)

E
[
Y

(0)
i | A

]]

= E

[
1
n

∑n
i=1Ai

1
n

∑n
i=1Ai

E
[
Y

(1)
i

]
−

1
n

∑n
i=1(1−Ai)

1
n

∑n
i=1(1−Ai)

E
[
Y

(0)
i

]]
{Y (1)

i , Y
(0)
i } ⊥⊥ Ai

= E
[
1∑n

i=1 Ai>0E
[
Y

(1)
i

]
− 1∑n

i=1 1−Ai>0E
[
Y

(0)
i

]]
= E

[
Y

(1)
i

]
E
[
1∑n

i=1 Ai>0

]
− E

[
1∑n

i=1 1−Ai>0

]
E
[
Y

(0)
i

]
= (1− (1− π)n)E

[
Y

(1)
i

]
− (1− πn)E

[
Y

(0)
i

]
= E

[
Y

(1)
i − Y (0)

i

]
− (1− π)nE

[
Y

(1)
i

]
+ πnE

[
Y

(0)
i

]
= τ − (1− π)nE

[
Y

(1)
i

]
+ πnE

[
Y

(0)
i

]
,

where the second row uses linearity of expectation and the conditioning on A. To summarize, the
difference-in-means has a finite sample bias,

E [τ̂DM,n]− τ = πnE
[
Y

(0)
i

]
− (1− π)nE

[
Y

(1)
i

]
.

Variance

Using the law of total variance, and conditioning on the treatment assignment vector A, one has

Var [τ̂DM] = Var [E [τ̂DM | A]] + E [Var [τ̂DM | A]] .

Recall from derivations about the bias that,
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E [τ̂DM | A] = 1∑n
i=1 Ai>0E

[
Y

(1)
i

]
− 1∑n

i=1 1−Ai>0E
[
Y

(0)
i

]
.

Note that if the number of treated was fixed, we would have E [τ̂DM | A] = τ , and therefore, Var [E [τ̂DM | A]] =
0.
Here, one has,

Var [E [τ̂DM | A]] = Var
[
1∑n

i=1 Ai>0E
[
Y

(1)
i

]
− 1∑n

i=1 1−Ai>0E
[
Y

(0)
i

]]
= E

[
Y

(1)
i

]2
Var

[
1∑n

i=1 Ai>0

]
+ E

[
Y

(0)
i

]2
Var

[
1∑n

i=1 1−Ai>0

]
− 2E

[
Y

(1)
i

]
E
[
Y

(0)
i

]
Cov

[
1∑n

i=1 Ai>0,1
∑n

i=1 1−Ai>0

]
.

Besides,

Var
[
1∑n

i=1 Ai>0

]
= E

[
12∑n

i=1 Ai>0

]
− E

[
1∑n

i=1 Ai>0

]2
= (1− π)n (1− (1− π)n) ,

and similarly,

Var
[
1∑n

i=1 1−Ai>0

]
= πn (1− πn) .

On the other hand,

Cov
[
1∑n

i=1 Ai>0,1
∑n

i=1 1−Ai>0

]
= E

[(
1∑n

i=1 Ai>0 − (1− (1− π)n)
)(
1∑n

i=1 1−Ai>0 − 1− πn
)]

= E
[
1∑n

i=1 Ai>01
∑n

i=1 1−Ai>0

]
− (1− (1− π)n) (1− πn)

= 1− (1− π)n − πn − (1− πn − (1− π)n − πn(1− π)n)
= πn(1− π)n,

such that,

Var [E [τ̂DM | A]] = E
[
Y

(1)
i

]2
(1− π)n (1− (1− π)n) + E

[
Y

(0)
i

]2
πn (1− πn)− 2E

[
Y

(1)
i

]
E
[
Y

(0)
i

]
πn(1− π)n

= E
[
Y

(1)
i

]2
(1− π)n + E

[
Y

(0)
i

]2
πn −

(
E
[
Y

(1)
i

]
(1− π)n + E

[
Y

(0)
i

]
πn
)2

≤ E
[
Y

(1)
i

]2
(1− π)n + E

[
Y

(0)
i

]2
πn

≤
(
E
[
Y (1)

]2
+ E

[
Y (0)

]2)
max(π, 1− π)n.

Now,

Var [τ̂DM | A] = Var

[
1

n

n∑
i=1

(
AiY

(1)
i

π̂
−

(1−Ai)Y (0)
i

1− π̂

)
| A

]

=
1

n
Var

[
AiY

(1)
i

π̂
−

(1−Ai)Y (0)
i

1− π̂
| A

]
iid

=
1

n

(
Var

[
AiY

(1)
i

π̂
| A

]
+Var

[
(1−Ai)Y (0)

i

1− π̂
| A

]
− 2Cov

[
AiY

(1)
i

π̂
,
(1−Ai)Y (0)

i

1− π̂
| A

])
.

Now, developing the covariance term, it is possible to show that,

Cov

[
AiY

(1)
i

π̂
,
(1−Ai)Y (0)

i

1− π̂
| A

]
= −E

[
(1−Ai)Y (0)

i

1− π̂
| A

]
E

[
AiY

(1)
i

π̂
| A

]

= −
(1−Ai)E

[
Y

(0)
i | A

]
1− π̂

AiE
[
Y

(1)
i | A

]
π̂

Linearity and conditioned on A

= 0. Ai(1−Ai) = 0
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Now, also using linearity of expectation, and the fact that we conditioned on A, one has

Var [τ̂DM | A] =
1

n

((
Ai
π̂

)2

Var
[
Y

(1)
i | A

]
+

(
1−Ai
1− π̂

)2

Var
[
Y

(0)
i | A

])

=
1

n

((
Ai
π̂

)2

Var
[
Y

(1)
i

]
+

(
1−Ai
1− π̂

)2

Var
[
Y

(0)
i

])
, using {Y (1)

i , Y
(0)
i } ⊥⊥ Ai.

Taking the expecation of the previous term leads to,

E [Var [τ̂DM | A]] = E

[
1

n

((
Ai
π̂

)2

Var
[
Y

(1)
i

]
+

(
1−Ai
1− π̂

)2

Var
[
Y

(0)
i

])]

=
1

n

(
E

[(
Ai
π̂

)2
]
Var

[
Y

(1)
i

]
+

1

n
E

[(
1−Ai
1− π̂

)2
]
Var

[
Y

(0)
i

])
, by linearity.

Note that,

E

[(
Ai
π̂

)2
]
= E

[
Ai

(π̂)2

]
=

1

n

(
E
[
A1

π̂2

]
+ E

[
A2

π̂2

]
+ · · ·+ E

[
An
π̂2

])
= E

[
π̂

π̂2

]
= E

[
1π̂>0

π̂

]
,

so that

E [Var [τ̂DM | A]] =
1

n

(
E
[
1π̂>0

π̂

]
Var

[
Y

(1)
i

]
+ E

[
1(1−π̂)>0

1− π̂

]
Var

[
Y

(0)
i

])
.

Coming back to the law of total variance, one has,

Var [τ̂DM] = Var [E [τ̂DM | A]] + E [Var [τ̂DM | A]]

= E
[
Y

(1)
i

]2
(1− π)n + E

[
Y

(0)
i

]2
πn −

(
E
[
Y

(1)
i

]
(1− π)n + E

[
Y

(0)
i

]
πn
)2

+
1

n

(
E
[
1π̂>0

π̂

]
Var

[
Y

(1)
i

]
+ E

[
1(1−π̂)>0

1− π̂

]
Var

[
Y

(0)
i

])
In particular, for any sample size,

Var [τ̂DM] =
1

n

(
E
[
1π̂>0

π̂

]
Var

[
Y

(1)
i

]
+ E

[
1(1−π̂)>0

1− π̂

]
Var

[
Y

(0)
i

])
+O (max(π, 1− π)n) ,

and more particularly,

lim
n→∞

nVar [τ̂DM] =
Var

[
Y (1)

]
π

+
Var

[
Y (0)

]
1− π

:= VDM,∞.
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4.D.4 Variance inequality between a Horvitz-Thomson and difference-in-means

In this work we use an inequality to compare the variance of the Horvitz-Thomson with the variance
of the difference-in-means under a Bernoulli design. We propose two inequalities, one for the finite
sample and one for the asymptotic variance. The result in finite sample depends on another equality
on Binomial law, and in particular π̂, that we detail in Lemma 5.

Lemma 5 (Inequality on π̂). Consider a Bernoulli trial (Definition 34) and the estimated propensity
score π̂ defined as,

π̂ =

∑n
i=1Ai
n

.

Then, for all n ≥ 1 and for all α ∈ (0, 12),

E
[
1π̂>0

π̂

]
≤ 1 + Cα,πn

−α

π
,

where Cα,π = 1 + 2
(

16
π2(1−2α)

) 2
1−2α

.

Proof. Let ε > 0. (and later in the proof, we will more precisely posit ε = π
4n

−α with α ∈ (0, 12))
The law of total expectation leads to,

E
[
1π̂>0

π̂

]
= E

[
1π̂>0

π̂
1|π̂−π|<ε

]
+ E

[
1π̂>0

π̂
1|π̂−π|≥ε

]
.

For the first term,

E
[
1π̂>0

π̂
1|π̂−π|<ε

]
≤ 1

π − ε
E
[
1π̂>01|π̂−π|<ε

]
≤ 1

π − ε
,

and for the second term,

E
[
1π̂>0

π̂
1|π̂−π|≥ε

]
≤ nE

[
1π̂>01|π̂−π|≥ε

]
≤ nP (|π̂ − π| ≥ ε)

≤ 2ne−2ε2n.

The last row is obtained through Chernoff’s inequality in a similar manned as in the proof for the
semi-oracle (see eq. 4.35). As a consequence, and gathering the two previous inequalities,

E
[
1π̂>0

π̂

]
≤ 1

π − ε
+ 2ne−2ε2n

=
1

π

1

1− ε
π

+ 2ne−2ε2n.

One can show using function analysis, that, for all 0 ≤ x < 1
2 , we have

1

1− x
≤ 1 +

x

1− 2x
.

Then, as soon as ε is small enough, then ε
π <

1
2 , so that,

E
[
1π̂>0

π̂

]
≤ 1

π

1

1− ε
π

+ 2ne−2ε2n

≤ 1

π

(
1 +

ε
π

1− 2 επ

)
+ 2ne−2ε2n.
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Letting ε = π
4n

−α with α ∈ (0, 12), we have

E
[
1π̂>0

π̂

]
≤ 1

π
+

1

4π

n−α

1− n−α

2

+ 2ne−
π2

8
n1−2α

Now, using the fact that

∀x ≥ 1, ∀α ∈ (0,
1

2
), x2e−

π2

8
x1−2α ≤

(
16

π2(1− 2α)

) 2
1−2α

︸ ︷︷ ︸
Cα,π

,

allows to have

E
[
1π̂>0

π̂

]
≤ 1

π
+

1

4π

n−α

1− n−α

2

+ 2
Cα,π
n

≤ 1

π
+
n−α

π
+ 2

Cα,π
πnα

=
1 + n−α(1+2Cα,π)

π
.

Lemma 6 (Variance inequality). Considering the Horvitz-Thomson estimator (Definition 22) and
the difference-in-means estimator (Definition 23), with an internally valid randomized controlled trial
of size n (Assumption 27), then asymptotic variance of the difference-in-means is always smaller or
equal than the Horvitz-Thomson, such as

VDM,∞ = VHT −

(√
1− π
π

ER[Y
(1)] +

√
π

1− π
ER[Y

(0)]

)2

≤ VHT.

In addition, and using the previous inequality, Lemma 4 and Lemma 5, one can bound the finite sample
difference-in-means’s variance:

Var [τ̂DM,n] =≤
1

n

(
Var

[
Y (1)

]
π

+
Var

[
Y (0)

]
1− π

)
+O

(
n−3/2

)
≤ VHT +O

(
n−3/2

)
.

Proof. Asymptotic inequality

Recall that,

VHT = E

[(
Y (1)

)2
π

]
+ E

[(
Y (0)

)2
1− π

]
− τ2.

Noting that,

τ2 =
(
E
[
Y (1) − Y (0)

])2
= E

[
Y (1)

]2
+ E

[
Y (0)

]2
− 2E

[
Y (1)

]
E
[
Y (0)

]
,

and that for any a ∈ {0, 1},

Var
[
Y (a)

]
= E

[(
Y (a)

)2]
− E

[
Y (a)

]2
,

allows to obtain,
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VHT =
Var

[
Y (1)

]
π

+
Var

[
Y (0)

]
1− π

− (1− 1

π
)E
[
Y (1)

]2
− (1− 1

1− π
)E
[
Y (0)

]2
+ 2E

[
Y (1)

]
E
[
Y (0)

]
= VDM,∞ +

(√
1− π
π

ER[Y
(1)] +

√
π

1− π
ER[Y

(0)]

)2

.

Finite sample inequality
Recall the finite sample variance of the difference-in-means from Lemma 4, and using the inequality
from Lemma 5,

Var [τ̂DM,n] = E
[
Y

(1)
i

]2
(1− π)n + E

[
Y

(0)
i

]2
πn −

(
E
[
Y

(1)
i

]
(1− π)n + E

[
Y

(0)
i

]
πn
)2

+
1

n

(
E
[
1π̂>0

π̂

]
Var

[
Y

(1)
i

]
+ E

[
1(1−π̂)>0

1− π̂

]
Var

[
Y

(0)
i

])
≤ E

[
Y

(1)
i

]2
(1− π)n + E

[
Y

(0)
i

]2
πn −

(
E
[
Y

(1)
i

]
(1− π)n + E

[
Y

(0)
i

]
πn
)2

+
1

n

(
1 + C1/4,πn

− 1
4

π
Var

[
Y

(1)
i

]
+

1 + C1/4,1−πn
− 1

4

1− π
Var

[
Y

(0)
i

])
,

where Lemma 5 is applied with α = 1/4 and we recall that C1/4,π = 1 + 2
(
32
π2

)4
. Note that, at this

stage, it is possible to write that,

Var [τ̂DM,n] =
1

n

(
Var

[
Y (1)

]
π

+
Var

[
Y (0)

]
1− π

)
+O

(
n−3/2

)
. (4.60)

But the overall goal here is to compare Var [τ̂DM,n] with Var [τ̂HT,n].

Var [τ̂DM,n] ≤ Var [τ̂HT,n]−
1

n

(√
1− π
π

ER[Y
(1)] +

√
π

1− π
ER[Y

(0)]

)

+
1

n

(
C1/4,πn

− 1
4

π
Var

[
Y

(1)
i

]
+
C1/4,1−πn

− 1
4

1− π
Var

[
Y

(0)
i

])
≥ 0

+ E
[
Y

(1)
i

]2
(1− π)n + E

[
Y

(0)
i

]2
πn −

(
E
[
Y

(1)
i

]
(1− π)n + E

[
Y

(0)
i

]
πn
)2

4.D.5 Post-stratification estimator

The post-stratified estimator (see Definition 29) is an estimator of the average treatment effect from
a RCT sample. The principle is to divide the RCT sample into strata, to compute the difference-
in-means per strata, and then to average the estimand on each strata, weighting by the strata size.
Indeed, the post-stratification estimator introduced in Definition 29 can be re-written as follows.

τ̂PS,n =
∑
x∈X

nx,1 + nx,0
n

 1

nx,1

∑
Ai=1,Xi=x

Yi −
1

nx,0

∑
Ai=0,Xi=x

Yi

 , where nx,a =

n∑
i=1

1Xi=x1Ai=a.

Therefore, the post-stratification estimator can be understood as a weighted estimate of each strata
level difference-in-means estimates,

τ̂PS,n =
∑
x∈X

nx
n
τ̂DM,nx , where nx =

n∑
i=1

1Xi=x.
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Proof. Recalling the definition of π̂n(x) (Definition 28) and denoting nx,a =
∑n

i=1 1Xi=x1Ai=a

τ̂PS,n =
1

n

n∑
i=1

AiYi
π̂n(x)

− (1−Ai)Yi
1− π̂n(x)

=
1

n

n∑
i=1

AiYi
nx,1/nx

− (1−Ai)Yi
nx,0/nx

Definition 28

=
∑
x∈X

1

n

n∑
i=1

1Xi=x
AiYi

nx,1/nx
− (1−Ai)Yi

nx,0/nx
Categorical covariates

=
∑
x∈X

nx
n

n∑
i=1

1Xi=x
AiYi
nx,1

− (1−Ai)Yi
nx,0

Re-arranging nx

=
∑
x∈X

nx
n
τ̂DM,nx .

The post-stratified estimator is extensively detailed in Miratrix et al. (2013), but largely focused on
inference on a finite population (except in their Section 5). In particular the variance of the post-
stratified estimator under a Bernoulli or a completely randomized design is given in Miratrix et al.
(2013) (see their Equation (16)). Imai et al. (2008) also present derivation to compare the variance of
a difference-in-means with a post-stratified estimator, quantifying the gain in precision (see Appendix
A).

4.E (Non-exhaustive) Review of the different IPSW versions in the
literature

Within the generalization literature, the IPSW can be found under slightly different forms, such as
with estimated π or not, or with or without normalization. Here, and to help the reader navigates,
we reference some of the different formulas found in the literature and in implementations.

Reference IPSW formula Comments

Huang (2022) 1
n

∑
i∈Trial ŵn,m(Xi)

(
YiAi
π̂n
− Yi(1−Ai)

1−π̂n

)
π estimated once π̂n =

∑n
i=1Ai/n

Josey et al. (2021) 1
n

∑
i∈Trial ŵn,m(Xi)

(
YiAi
π̂n
− Yi(1−Ai)

1−π̂n

)
π estimated by any consistent estimator

Nie et al. (2021) 1
n

∑
i∈Trial ŵn,m(Xi)

(
YiAi
π −

Yi(1−Ai)
1−π

)
Oracle π

Dahabreh et al. (2020) 1
n

∑
i∈Trial ŵn,m(Xi)

(
YiAi
π̂n(X) −

Yi(1−Ai)
1−π̂n(X)

)
π̂n(X) estimated with logistic regression

Buchanan et al. (2018) 1
n

∑
i∈Trial ŵn,m(Xi)

(
YiAi
π̂n
− Yi(1−Ai)

1−π̂n

)
π estimated once π̂n =

∑n
i=1Ai/n

Table 4.1: Non-exhaustive review of the different IPSW versions, illustrating that different approaches exist.
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Chapter 5

Which causal measure is easier to
generalize?

This chapter corresponds to the article entitled Risk ratio, odds ratio, risk difference... Which

causal measure is easier to generalize? submitted to Statistics in Medicine,

co-authored with Julie Josse, Gaël Varoquaux, and Erwan Scornet.

Chapter’s content
In all the previous chapters, the causal effect is systematically defined as an absolute difference of the two
conditional expectations of the outcome under treatment or not. This practice is consistent with the statistical
literature’s practice. But when coming to more applied clinical publications, one can find many more measures
to report so-called treatment or causal effect: ratio, odds ratio, number needed to treat, and so on. The
choice of a measure, e.g. absolute versus relative, is often debated because it leads to different appreciations of
the same phenomenon. More importantly, it also implies different heterogeneity patterns of treatment effect.
In addition some measures but not all have appealing properties such as collapsibility. In this Chapter, we
review common measures, and their pros and cons typically brought forward. Doing so, we clarify notions of
collapsibility and treatment effect heterogeneity, unifying different existing definitions. As previous chapters
are focused on generalizability, this leaded us to think more carefully on the definition of effect heterogeneity.
Covariates modulating the treatment effect are the cornerstone of the transportability assumption used in the
previous chapters. Having this idea in mind, we propose to reverse the thinking: rather than starting from the
measure, we propose to start from a non-parametric generative model of the outcome. Depending on the nature
of the outcome, some causal measures disentangle treatment modulations from baseline risk. As our goal is the
generalization of causal measures, we show that different sets of covariates are needed to generalize a effect to a
different target population depending on (i) the causal measure of interest, (ii) the nature of the outcome, and
(iii) the identification method itself (i.e. modeling either conditional outcomes or local effects).
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1 The age-old question of how to report effects

From the physician to the patient, the term effect of a drug on an outcome usually appears very
spontaneously, within a casual discussion or in scientific documents. Overall, everyone agrees that an
effect is a comparison between two states: treated or not. But there are various ways to report the
main effect of a treatment. For example, the scale may be absolute (e.g. the number of migraine days
per month is expected to diminishes by 0.8 taking Rimegepant (Edvinsson, 2021)) or relative (e.g. the
probability of having a thrombosis is expected to be multiplied by 3.8 when taking oral contraceptives
(Vandenbroucke et al., 1994)). Choosing one measure or the other has several consequences. First,
it conveys a different impression of the same data to an external reader (Forrow et al., 1992; Guyatt
et al., 2015; Xiao et al., 2022). Such subjective impression may be even more prominent in newspapers,
where most effects are presented in relative rather than absolute terms, creating a heightened sense
of sensationalism (Moynihan et al., 2000). Second, the treatment effect heterogeneity – i.e. different
effects on sub-populations – depends on the chosen measure (Rothman, 2011, see p.199). The choice
of the measure to report an effect is still actively discussed (Spiegelman and VanderWeele, 2017;
Spiegelman et al., 2017; Baker and Jackson, 2018; Feng et al., 2019; Doi et al., 2020, 2022; Xiao et al.,
2021, 2022; Huitfeldt et al., 2021; Lapointe-Shaw et al., 2022; Liu et al., 2022). Publications on the
topic come with many diverging opinions and guidelines (see Appendix 5.F for quotes). And yet the
question of the measure (or metric) of interest is not new; Sheps (1958) was already raising it in the
New England Journal of Medicine (see also Huitfeldt et al. (2021)):

“ We wish to decide whether we shall count the failures or the successes and whether we
shall make relative or absolute comparisons ” –

Beyond impression conveyed and heterogeneity captured, different causal measures lead to different
generalizability towards populations (Huitfeldt et al., 2018). The problem of generalizability (or
portability) encompasses a range of different scenarii, and refers to the ability of findings to be carried
over to a broader population beyond the study sample.

Generalizability of trials’ findings is crucial as most often clinicians use causal effects from published
trials (i) to estimate the expected response to treatment for a specific patient based on his/her baseline
risks, and (ii) therefore to choose the best treatment. In this work we show that some effect measures
are less sensitive than others to population’s shift between the study sample and the target population.
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2. Problem setting and key results

Section 2 starts with a didactic clinical example to introduces the question, the notation, and our
main results. Reading it suffices for an executive summary of the paper. For the mathematical
underpinnings, each of the following sections (Section 3-5) is dedicated to one of the three contributions
exposed in Section 2. Section 3 first clarifies and discusses typical properties of causal measures such as
treatment effect homogeneity, heterogeneity, and collapsibility and then explicitly links collapsibility
with generalizability (i.e. re-weighting of local effects to get the population effect). In Section 4, we
reverse the thinking; we propose to start from a non-parametric generative model of the outcome, and
then observe what each measure captures. This approach leads to a new view on treatment effect
heterogeneity: accounting for covariates that may act as treatment effect modulators, as opposed to
those that only affect baseline levels. Section 5 presents the consequences on the generalizability of a
causal measure. We show that some measures are easier to generalize, in the sense that they require
adjustment only on the treatment effect modulators introduced in Section 4, and not on all shifted
prognostic covariates. Section 6 illustrates the takeaways through simulations.

2 Problem setting and key results

2.1 Causal effects in the potential outcomes framework

We use the potential outcome framework to characterize treatment (or causal) effects. This framework
has been proposed by Neyman in 1923 (English translation in Splawa-Neyman et al., 1990), and
popularized by Donald Rubin in the 70’s (Imbens and Rubin, 2015; Hernan, 2020). It formalizes the

concept of an intervention by studying two possible values Y
(1)
i and Y

(0)
i for the outcome of interest

(say the pain level of headache) for the two different situations where the individual i has been exposed
to the treatment (Ai = 1) or not (Ai = 0) –we will only consider binary exposure. The treatment has
a causal effect if the potential outcomes are different, that is testing the assumption:

Y
(1)
i

?
= Y

(0)
i . (5.1)

Unfortunately, one cannot observe the two worlds for a single individual. Statistically, it can still be
possible to compare the expected values of each potential outcome Y (a) but it requires a population-
level approach, broadening from a specific individual. The paradigmatic example is a randomized
experiment (called Randomized Controlled Trial –RCT– in clinical research or A/B test in marketing):
randomly assigning the treatment to half of the individuals enables the average comparison of the two
situations. Doing so, the previous question of interest amounts to comparing or contrasting two
expectations:

E
[
Y (1)

]
?
= E

[
Y (0)

]
, (5.2)

where E[Y (a)] is the expected counterfactual outcome had all individuals in the population received the
treatment level a. This quantity is defined with respect to a population: statistically the expectation
is taken on a distribution, which we denote PS (reflecting the source or study sample from which
evidence comes from, for example a RCT). Many methodological efforts have focused on estimating
the two expectations (namely Ê

[
Y (1)

]
and Ê

[
Y (0)

]
). Our focus is different: we propose theoretical

guidance for choosing among different measures to compare those two expectations at the population
level, e.g. ratio, difference, or odds. What are the properties of these measures? How do they impact
the conclusions of a study?

2.2 Comparing two averaged situations: different treatment effect measures

We focus on two types of outcomes: continuous (e.g. headache pain level) and binary (e.g. death).
Binary outcomes are frequent in medical questions, often related to the occurrence of an event.

Continuous outcome For continuous outcomes, a common measure is the absolute difference (usu-
ally referred to as the Risk Difference - RD):

τRD := E
[
Y (1)

]
− E

[
Y (0)

]
.
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A null effect corresponds to τRD = 0. If the outcomes are of constant sign and different from 0 one
can also consider relative measures1 such as the ratio (Risk Ratio - RR), or the (Excess Risk Ratio -
ERR):

τRR :=
E
[
Y (1)

]
E
[
Y (0)

] , τERR :=
E
[
Y (1)

]
− E

[
Y (0)

]
E
[
Y (0)

] = τRR − 1.

A null effect now corresponds to τRR = 1 or τERR = 0. Note that the ranges of the three metrics are
very different, for e.g. if E

[
Y (1)

]
= 200 and E

[
Y (0)

]
= 100. Then τRD = 100, while τRR = 2 and

τERR = 1.

Binary outcome Due to the binary nature of the outcome, the two expectations of eq. 5.2 can
now also be understood as the probability of the event to occur, P

[
Y (a) = 1

]
= E

[
Y (a)

]
, and as

a consequence P
[
Y (a) = 0

]
= 1 − E

[
Y (a)

]
. As long as the phenomenon is non-deterministic (i.e.

1 > P
[
Y (a) = 1

]
> 0), previous relative measures τRR and τERR can also be used with binary outcomes.

But others measures exist when the outcome is binary. For example the Risk Ratio (RR) can be
reversed, rather counting the null events. It is called the Survival Ratio (SR). The Odds Ratio (OR) is
another very common measure, in particular as it serves as a link between follow-up studies and case-
control studies (Greenland, 1987; King and Zeng, 2002). Another measure called the Number Needed
to Treat (NNT) has been proposed more recently (Laupacis et al., 1988); it helps the interpretation
of the Risk Difference by counting how many individuals should be treated to observe one individual
answering positively to treatment. Depending on the direction of the effect, NNT can also be called
Number Needed to Harm (NNH) when the events are side effects or Number of Prevented Events
(NPE) when it comes to prevention. For simplicity of the exposition, in this work we only consider
NNT. The exact expression of the above measures are given here:

τSR :=
P
[
Y (1) = 0

]
P
[
Y (0) = 0

] , τOR :=
P[Y (1) = 1]

P[Y (1) = 0]

(
P[Y (0) = 1]

P[Y (0) = 0]

)−1

, τNNT := τ−1
RD .

Other measures can be found in the literature, such as the log Odds Ratio (log-OR). We recall each
measure in Appendix 5.A where Figure 5.7 illustrates the differences between measures, for different
values of the expected outcomes of controls and treated. We also compute all these measures on a
clinical example in Section 2.3.

Treatment effects on subgroups Treatment effects can also be reported within subgroups of a
population (i.e. stratified risks) to show how sub-populations react to the treatment. Therefore,
one could also define each of the previously introduced measures on sub-populations. For the rest
of the work, we denote X a set of baseline covariates2. We denote τ(x) the treatment effect on the
subpopulation X = x for any causal measure. For example τRD(x) denotes the Risk Difference on the
subgroup for which X = x. This quantity is often referred to as the Conditional Average Treatment
Effect (CATE).

2.3 Key messages: from effect measures to generalization

2.3.1 An illustrative example

We consider clinical data assessing the benefit of antihyperintensive therapy (A) against stroke (Y )
(MacMahon et al., 1990; Cook and Sackett, 1995). We denote Y = 1 a stroke, and Y = 0 no stroke.
Individuals can be categorized into two groups depending on their diastolic blood pressure: either
moderate (X = 0) or mild (X = 1). Moderate patients have a higher baseline risk of stroke than

1Allowing situations where the outcomes can be null or change sign is at risk of having undefined ratio due to

E
[
Y (0)

]
= 0. This is why, when considering relative measure we assume that the continuous outcome is of constant

sign. Note that this is often the case in medicine. For example with blood glucose level, systolic blood pressure, etc.
2Those covariates are baseline or pre-treatment covariates. See VanderWeele and Robins (2007) for a detailed expla-

nation.
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mild patients, which corresponds to P
[
Y (0) = 1 | X = 0

]
≥ P

[
Y (0) = 1 | X = 1

]
. In particular in this

example, X = 0 (resp. X = 1) corresponds to a baseline risks of 2 events for 10 individuals (resp.
15 events for 1,000 individuals). All the measures previously introduced are computed from values
reported in the original articles and presented in Table 5.1.

Table 5.1: Different treatment measure
give different impressions of the phe-
nomenon: The outcome is stroke in 5 years
(Y = 1 denoting stroke and Y = 0 no
stroke) and stratification is done along a
binary covariate X (moderate X = 0 or
mild X = 1). Each measure are computed
from aggregated data taken from MacMa-
hon et al. (1990); Cook and Sackett (1995).
No confidence intervals are represented as
our focus is the interpretation of the mea-
sure and not statistical significance.

τRD τRR τSR τNNT τOR

All (PS) −0.0452 0.6 1.05 22 0.57

X = 1 −0.006 0.6 1.01 167 0.6

X = 0 −0.08 0.6 1.1 13 0.545

A risk ratio below 1 means there is an inverse association: is a decreased risk of stroke in the treated
group compared with the treated group. More precisely, the treated group has 0.6 times the risk of
having a stroke outcome when compared with the non-treated group. On this example, one can also
recover that the Odds Ratio approximates the Risk Ratio in a stratum where prevalence of the outcome
is low (X = 1), but not if the prevalence is higher (X = 0) (derivations recalled in Appendix 5.A). The
survival ratio of 1.05 captures that there is an increased chance of not having a stroke when treated
compared to the control by a factor 1.05. Note that the Survival Ratio takes really different values
than the Risk Ratio: it corresponds to the Risk Ratio where labels Y are swapped for occurrences
and non-occurrences, illustrating that Risk Ratio is not symmetric to the choice of outcome 0 and 1
–e.g. counting the living or the dead (Sheps, 1958). This lack of symmetry is usually considered as
a drawback of the survival ratio and risk ratio compared to the odds ratio. Indeed, the odds ratio is
robust to a change of labels: swapping labels leads to changing the odds ratio τOR by its inverse τ−1

OR

(see Appendix 5.A). There is no such formula to understand the effect of a change of labels on the
risk ratio or the survival ratio.

Finally, the Risk Difference translates the effect on a absolute scale: treatment reduces by 0.045 the
probability to suffer from a stroke when treated3. The NNT is the number of patients you need to
treat to prevent one additional bad outcome. Here the NNT is of 22, meaning that one has to treat
22 people with the drug to prevent one additional stroke. The Number Needed to Treat represents
the same Risk Difference on a way bigger amplitude than the Risk Difference, especially when looking
at the effect on subgroups. This is one of the interest of the NNT, making the measure more explicit
than a difference of probabilities.

2.3.2 Contributions: considerations to choose an effect measure

Contribution 1: A collapsible measure is needed to generalize local effects [Section 3] If
we were only provided subgroups’ effects, and not the population effect (PS or All on Figure 5.1), an
intuitive procedure to obtain the population effect from local effects would be to average subgroups
effects. More explicitly,

Collapsibility τRD = pS(X = 1) · τRD(X = 1) + pS(X = 0) · τRD(X = 0), (5.3)

% individuals with X = 1 in PS % individuals with X = 0 in PS

denoting PS the source population from which the study was sampled, and pS(x) the proportion of
individual with X = x in this population. In our example study above pS(X = 0) is 0.53 (Cook and

3When it comes to binary outcomes, such absolute effects are rather presented as reducing by 45 events over 1, 000
individuals.
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Sackett, 1995), thus for the risk difference the formula recovers the population effect from the sub-
group effects: −0.47 ·0.006−0.53 ·0.08 = 0.0452. When a population-effect measure can be written as
a weighted average of subgroup effects, it is said to be collapsible, and directly collapsible if the weights
are equal to the population’s proportions. While the Risk Difference is directly collapsible, this is not
true for all measures (e.g. for the Number Needed to Treat, 0.47 · 167 + 0.53 · 13 = 85 ̸= 22). We
precisely define collapsibility and which measures are collapsible (or not) in Section 3.2, summarized
in Table 5.3.

Collapsibility comes into play when one is interested in the population effect on a target population
PT different from the original source population PS, e.g. with a different proportion of individuals
with diastolic pressure (∀x ∈ {0, 1}, pS(x) ̸= pT(x)). Here, one must account for distributional shift
across the two populations in baseline covariates that are prognostic of the outcome.
Intuitively, one would wish that the procedure from eq. 5.3 remains valid, only changing the weights
for example swapping pS(X = 0) for pS(X = 1) (resp. pT(X = 0) for pT(X = 1)). More explicitly,

Effect on PT τT
RD = pT(X = 1) · τ S

RD(X = 1) + pT(X = 0) · τ S
RD(X = 0), (5.4)

% individuals with X = 1 in PT % individuals with X = 0 in PT

where τT
RD is the RD on the target population PT and τ S

RD(x) are local effects in the source popula-
tion PS. This procedure can be found under various names: standardization, re-weighting, recalibra-
tion) (Miettinen, 1972; Rothman and Greenland, 2000; Pearl and Bareinboim, 2014). We will call it
generalization, as it is related to the work initiated by Stuart et al. (2011). We show that procedure
from eq. 5.4 is accurate, only if the causal measures are collapsible.

Contribution 2: A measure can disentangle treatment effect from baseline risk [Section 4]
Table 5.1 shows that the choice of the measure gives different impressions of the heterogeneity of the
effect, i.e. how much the effects measures change on different subgroups. Such differences can be
due to different baseline risks. For example, it seems that a higher number needed to treat on the
subgroup with low prevalence (X = 1) is expected as, even without the treatment, individuals already
have a low risk of stroke. Is it possible to disentangle the baseline variation with the treatment effect
in itself? Surprisingly, in this example, one measure is constant (or homogeneous) over the strata
X: the risk ratio. We will show that this measure was the only one expected to behave like this.
More precisely, we will show that depending on the outcome nature and the direction of treatment
effect (harmful or beneficial), there exists one treatment effect measure capable of disentangling the
baseline level with the treatment effect itself: the RD for continuous outcome; either the RR or the
SR (depending on the direction of the treatment) for binary outcome. All other common measures
entangle baseline level and treatment effect. A by-product of this definition is a non-parametric way
to define covariates being treatment effect modulators or only prognostic covariates.

Contribution 3: Causal effect measures are not equal when facing population’s shift
[Section 5] Collapsibility is needed when generalizing local effects to another target population
using eq. 5.4. But which covariates X must be accounted for in eq. 5.4 for the procedure to be valid?
Current line of works usually advocate to adjust on all prognostic covariates being shifted between the
two populations. Using Contribution 2, we will show that some collapsible measures are likely to be
more easily generalizable than others, and in particular are likely to require less covariates to adjust
on (only the treatment effect modulators, and not all shifted prognostic covariates). Illustration from
Table 5.1 taken from a real clinical example is in perfect agreement with our findings. In this example,
the RR is directly generalizable from PR to PT, while the risk difference would need to be adjusted
on X. Note that Section 5 also provides the formula to generalize relative measures such as the risk
ratio, while the current literature mostly focuses on risk difference.

2.4 Related work: many different viewpoints on effect measures

The choice of measure, a long debate The question of which treatment-effect measure is most
appropriate (RR, SR, RD, OR, NNT, log-OR, etc) is age old (Sheps, 1958; Greenland, 1987; Laupacis
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et al., 1988; Cook and Sackett, 1995; Sackett et al., 1996; Davies et al., 1998; King and Zeng, 2002;
Schwartz et al., 2006; Cummings, 2009). Health authorities advise to report both absolute and relative
causal effect (Schulz et al., 2010, item 17b). And yet, the question is still a heated debate: in the
last 5 years, numerous publications have advocated different practices (Spiegelman and VanderWeele,
2017; Spiegelman et al., 2017; Lesko et al., 2018; Baker and Jackson, 2018; Feng et al., 2019; George
et al., 2020; Doi et al., 2020, 2022; Xiao et al., 2021, 2022; Huitfeldt et al., 2021; Lapointe-Shaw et al.,
2022, see Appendix 5.F for details). Most of these works focus on the interpretation of the metrics
and simple properties such as symmetry (Cummings, 2009), heterogeneity of effects (Rothman, 2011;
VanderWeele and Robins, 2007; Lesko et al., 2018), or collapsibility (Simpson, 1951; Whittemore, 1978;
Miettinen and Cook, 1981; Greenland, 1987; Greenland et al., 1999; Cummings, 2009; Greenland and
Pearl, 2011; Hernàn et al., 2011; Martinussen and Vansteelandt, 2013; Sjölander et al., 2016; Huitfeldt
et al., 2019; Daniel et al., 2020; Liu et al., 2022; Didelez and Stensrud, 2022) –some works discuss the
paradoxes induced by a lack of collapsibility without using this exact term, e.g. in oncology (Ding
et al., 2016; Liu et al., 2022). We shed new light on this debate with a framing on generalization and
non-parametric generative models of the outcome (Section 4).

Connecting to the generalization literature The problem of external validity is a growing
concern in clinical research (Rothwell, 2007; Rothman et al., 2013; Berkowitz et al., 2018; Deeks,
2002), related to various methodological questions (Cook et al., 2002; Pearl and Bareinboim, 2011a).
We focus on external validity concerns due to shifted baseline covariates between the trial’s population
and the target population, following the line of work initiated in Imai et al. (2008) (see their definition of
sample effect versus population effect), or Corollary 1 of Pearl and Bareinboim (2014)). Generalization
by standardization (eq. 5.4, i.e. re-weighting local effects) has been proposed before in epidemiology
(Rothman and Greenland, 2000), and in an even older line of work in the demography literature
(Yule, 1934). Note that eq. 5.4 is very close to procedure from eq. 5.3 which can be linked to post-
stratification (Imbens, 2011; Miratrix et al., 2013). Post-stratification is used to lower variance on
a randomized controlled trial and therefore has no explicit link with generalization, despite using a
similar statistical procedure. Today, almost all statistical papers dealing with generalization focus
on the estimation procedures that generalizes the risk difference τRD (Stuart et al., 2011; Tipton,
2013; O’Muircheartaigh and Hedges, 2013; Kern et al., 2016; Lesko et al., 2017; Nguyen et al., 2018;
Gatsonis and Sally, 2017; Buchanan et al., 2018; Dahabreh et al., 2020) (reviewed in Colnet et al.
(2020); Degtiar and Rose (2023)), seldom mentioning other measures. Other works focus on the
generalization of the distribution of the treated outcome E

[
Y (1)

]
(Pearl and Bareinboim, 2011a, 2014;

Cinelli and Pearl, 2020). A notable exception, Huitfeldt et al. (2018), details which choice of variables
enables the standardization procedure for binary outcomes. We extensively generalize the thought
process of Huitfeldt et al. (2018) revealing the interplay with choice of measure and role of covariates
in heterogeneous settings, as well as continuous outcomes.

Building up on causal research By writing the outcomes as generated by a non-parametric
process disentangling the baseline from the treatment effect (in the spirit of Robinson (1988); Nie
and Wager (2020); Gao and Hastie (2021)), we extend the usual assumptions for generalization. In
particular, Pearl and Bareinboim (2014) state that their assumptions for generalization are “the worst
case analysis where every variable may potentially be an effect-modifier”. Our work proposes more
optimistic situations, by introducing a notion of effect-modifier without parametric assumptions. This
enables the description of situations where fewer covariates are required for the generalization of
certain measures, depending on the nature of the outcome Cinelli and Pearl (2020) have proposed
similar ideas, assuming monotonicity of the effect (i.e. the effect being either harmful or beneficial
for everyone) and the absence of shifted treatment effect modifiers, in order to generalize E

[
Y (1)

]
.

More precisely they assumption that what they call probabilities of causation P
[
Y (1) = 0 | Y (0) = 1

]
are invariant across populations. We relax this assumption to allow more general situations. Doing
so, we also extend work from Huitfeldt et al. (2018, 2019), showing how those probabilities are linked
with the causal measures of interest. Interestingly, all our derivations retrieves Sheps (1958) intuition
and results when the outcome is binary (which was the only situation described by Sheps). Our work
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also proposes conclusions for a continuous outcome which was not treated by Sheps (1958); Cinelli
and Pearl (2020); Huitfeldt et al. (2021).

3 Causal metrics and their properties

This section uses notations introduced in Section 2, in particular the potential outcomes Y (0), Y (1)

(which can be either binary or continuous), the binary treatment A, and the baseline covariates X. By
default, all expectations are assumed to refer to a source population PS. Only when generalizing (see
Section 3.3 or Section 5), we also consider a target population PT. For example τT

RR denotes the RR
on the target population.

In this section, we ground formally concepts such as homogeneity and heterogeneity of treatment
effect, but also collapsibility, and its link to generalization. Those concepts are already described
in the literature, via numerous and slightly different definitions (see Section 5.B). We unify existing
definitions. For clarity, all definitions, assumptions, and lemmas that do not contain an explicit
reference in the title are original.

3.1 Treatment effect heterogeneity depends on the measure chosen

Homogeneity or heterogeneity is linked to how the effects on subgroups of the population change. If
the effect amplitude and/or direction is different in some subgroups (not due to sampling noise as we
only consider the true population’s values), the treatment effect is said to be heterogeneous. In the
literature, one can find several informal definitions of heterogeneity of a treatment effect but formal
definitions are scarce. From now on, we let X be the covariate space.

Definition 35 (Treatment effect homogeneity). A causal effect measure τ is said to be homogeneous,
if

∀x1, x2 ∈ X, τ(x1) = τ(x2) = τ.

Definition 36 (Treatment effect heterogeneity - VanderWeele and Robins (2007)). Assuming a causal
measure τ and a baseline covariate X, a treatment effect is said to be heterogeneous with respect to X
if,

∃x1, x2 ∈ X, τ(x1) ̸= τ(x2).

Heterogeneity and homogeneity are properties defined with respect to (i) baseline covariates and (ii)
a measure. Claiming hetereogeneity or homogeneity of a treatment effect should always be completed
by the information about the considered covariates and the measure under study. For instance in the
illustrative example from Table 5.1, the treatment effect on the Risk Difference scale is heterogeneous
with respect to the baseline diastolic blood pressure level X, while the treatment effect on the Risk
Ratio scale is homogeneous with respect to X. Below we link homogeneity of treatment effect with
the generalizability of a causal measure.

3.2 Not all measures are collapsible

Intuition Collapsibility is intuitively linked to heterogeneity. Indeed, to investigate for heterogene-
ity, one looks up the treatment effect on subgroups of the population. Collapsibility is the opposite
process, where local information is aggregated to obtain a global information (i.e. on a population).
One might expect the global effect on a population to be an average of the subgroups effects, with
weights corresponding to proportions of each subgroup in the target population of interest as in eq. 5.3.
Counter-intuitively, this procedure is valid only for certain causal effect measures. For example, if the
treatment effect is reported as an Odds Ratio, it is possible to find bewildering situations, such as
that of the synthetic example detailed on Table 5.2. On this example, the Odds Ratio is measured
on the overall population (Table 5.2 (a)) and on the two subpopulations if female (F = 1) or not
(F = 0) (Table 5.2 (b)). Here, the drug’s effect (on the OR scale) is found almost equal on both
males (0.166) and females (0.167); however the average effect on the overall population appears much
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more efficient (0.26). The value Odds Ratio at the population level is not even between that of Odds
Ratio of sub-populations. The situation mimics a randomized controlled trial conducted with exact
population proportions and with F being a baseline covariate, so the phenomenon observed is not an
effect of counfounding.

Table 5.2: Non-collapsibility of the odds ratio on a toy example: The tables below represent the exact proportion
of an hypothetical population, considering two treatment level A ∈ {0, 1} and a binary outcome. The proportion
are as if a randomized controlled trial was conducted on this population. This population can be stratified in two
strata F ∈ {0, 1}. The odds ratio can be measured on the overall population (a), or on each of the sub-population,
namely F = 0 or F = 1 (b). Surprisingly, on each sub-population the odds ratios are similar, but on the overall
population the odds ratio is almost two times bigger than on each sub-population. This example is largely inspired
from Greenland (1987), but several similar examples can be found elsewhere, for example in Hernan (2020) (see their
Fine point 4.3) or in Greenland et al. (1999) (see their Table 1). Another didactic example is provided in Daniel et al.
(2020) (see their Figure 1), with a geometrical argument.

(a) Overall population, τOR ≈ 0.26

Y=0 Y=1

A=1 1005 95
A=0 1074 26

(b) τOR|F=1 ≈ 0.167 and τOR|F=0 ≈ 0.166

F= 1 Y=0 Y=1 F=0 Y=0 Y=1
A=1 40 60 A=1 965 35
A=0 80 20 A=0 994 6

This apparent paradox is due to what is called non-collapsibility4 of the Odds Ratio. That the average
effect on a population could not be written as a weighted sum of effects on sub-populations is somehow
going against the “implicit assumptions that drive our causal intuitions” (Pearl (2000), page 180). On
the contrary, an effect measure is said to be collapsible when the population effect measure can be
expressed as a weighted average of the stratum-specific measures. Note that non-collapsibility and
confounding are two different concepts, as explained in several papers e.g. in Greenland et al. (1999)5.

Formalizing the problem In various formal definitions found in the literature (see Section 5.B),
collapsibility relates to the possibility of writing the marginal effect as a weighted sum of conditional
effects on each subgroups. Yet two definitions coexist, depending on whether weights are forced to
be equal to the proportion of individuals in each subgroup or not. We outline various definitions and
their links:

Definition 37 (Direct collapsibility - adapted from Pearl (2000)). Let τ be a measure of effect and
P (Y (0), Y (1), X) a joint distribution with X a set of baseline covariate. τ is said to be directly col-
lapsible, if

E [τ(X)] = τ.

Some authors present a concept called strict collapsibility (see Definition 53 in Appendix), which
corresponds to our definition of homogeneity (Definition 35) (Greenland et al., 1999; Liu et al., 2022;
Didelez and Stensrud, 2022). A homogeneous treatment effect along X has indeed its marginal effect
equal to all subgroups effects. Our direct collapsibility definition encompasses such phenomenons.

Lemma 7 (Direct collapsibility of the risk difference (RD) – (Greenland et al., 1999)). The Risk
Difference τRD is directly collapsible.

This result has been much discussed; it grounds eq. 5.3 in the illustrative example. In the literature,
more flexible definitions of collapsibility can be found, keeping the intuition of the population effect
being a weighted sum of effects on subpopulation, with certain constraints on the weights such as
positivity and normalization.

4This definition and phenomenon has been observed long ago by Simpson. See also the Hernàn et al. (2011) for a
discussion of Simpson’s original paper with modern statistical framework. Note that Pearl (2000) (page 176) mentions
that collapsibility has been discussed earlier, for example by Pearson in 1899.

5“ the two concepts are distinct: confounding may occur with or without noncollapsibility and noncollapsibility may
occur with or without confounding.”
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Definition 38 (Collapsibility - adapted from Huitfeldt et al. (2019)). Let τ be a measure of effect
and X a set of baseline covariates. The measure τ is said to be collapsible if there exist weights
g(X,P (X,Y (0))) such that for all distributions P (X,Y (0), Y (1)) we have

E
[
g(X,P (X,Y (0))) τ(X)

]
= τ, with g ≥ 0, and E

[
g(X,P (X,Y (0)))

]
= 1.

Note that here weights depends on the density of X and the distribution of controls P (X,Y (0)).
The direct collapsibility is therefore a specific case of the more general version of collapsibility from
Definition 38, where g(X,P (X,Y (0))) corresponds to 1. This definition enables more treatment effect
measures to be collapsible.

Lemma 8 (Collapsibility of the risk ratio and survival ratio - extending Huitfeldt et al. (2019)).
The risk ratio and survival ratio are collapsible measures. In particular, assume that almost surely
0 < E[Y (0)|X] < 1. Then, the conditional risk ratio and conditional survival ratio are defined and
satisfy

E

[
τRR(X)

E
[
Y (0) | X

]
E
[
Y (0)

] ]
= τRR and E

[
τSR(X)

1− E
[
Y (0) | X

]
1− E

[
Y (0)

] ]
= τSR.

Appendix 5.C.1 gives proofs along with other measures. Huitfeldt et al. (2019) or Ding et al. (2016)
(see their Equation 2.3) also recall these results but only for a binary outcome and categorical baseline
covariate6. Lemma 8 extends the derivations for any type of covariate X and outcome Y (continuous
or binary). Note Lemma 8 is consistent with the illustrative example in Table 5.1 where

τRR = E

[
τRR(X)

E
[
Y (0) | X

]
E
[
Y (0)

] ]
= E

[
0.6

E
[
Y (0) | X

]
E
[
Y (0)

] ]
= 0.6 · E

[
E
[
Y (0) | X

]
E
[
Y (0)

] ]
︸ ︷︷ ︸

=1

= 0.6.

Lemma 9 (Non-collapsibility of the OR, log-OR, and NNT). The odds ratio τOR, log odds ratio τlog-OR,
and Number Needed to Treat τNNT are non-collapsible measures.

The proof is in Appendix 5.C.1. Note that the proof for the Odds Ratio and the log Odds Ratio are
not new (in particular we recall the one from Daniel et al. (2020)). While the non-collapsibility of the
odds ratio has been reported multiple times (see references above and the example from Table 5.2),
we have not found references stating results about the NNT. While the NNT is not-collapsible, this
measure does not show the same paradoxical behavior as the OR (see Table 5.2). When considering
the OR, the marginal effect τ can indeed be smaller or bigger than the range of local effects τ(x).

Definition 39 (Logic-respecting measure – Liu et al. (2022)). A measure τ is said to be logic-respecting
if

τ ∈
[
min
x

(τ(x)),max
x

(τ(x))
]
.

Lemma 10 (All collapsible measures are logic-respecting, but not the opposite). Several properties
can be noted:

• (i) All collapsible measures are logic-respecting measures.

• (ii) The Number Needed to Treat is a logic-respecting measure.

• (iii) The OR and the log-OR are not logic-repecting measures.

Proof is in Appendix 5.C.2. The numerous mentions of paradoxes with the OR are probably more
driven the fact that it is not logic-respecting than by its non-collapsibility. This also probably explains
why some definitions of collapsibility proposed in the literature do not explicitly separate the notion
of collapsibility and logic-respecting measure as they do not detail how weights are defined (see for
example Definitions 55 or 56 in Appendix). All properties of this section are summarized in Table 5.3.

6Note that it is possible to find this result under slightly forms such as in Huitfeldt et al. (2018); Didelez and Stensrud

(2022), with a categorical X and using Bayes formula, τRR =
∑

x τRR(x)E
[
X = x | Y (0) = 1

]
.
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Measure Collapsible Logic-respecting

Risk Difference (RD) Yes Yes
Number Neeeded to Treat (NNT) No Yes

Risk Ratio (RR) Yes Yes
Survival Ratio (SR) Yes Yes
Odds Ratio (OR) No No

Table 5.3: Causal measures and their properties: highlighting the properties of collapsibility (Definition 38) and
logic respecting (Definition 39). An exhaustive table is available in Appendix (see Table 5.5).

3.3 Generalizability or portability of a causal measure

As highlighted above (Section 2), an RCT conducted in a population PS allows for the estimation of
a treatment effect τ S on this population. What would the result be if the individuals in the trial were
rather sampled from a population PT with different baseline covariates distribution? This question is
linked to external validity, and more precisely to a sub-problem of external validity being generaliz-
ability or transportability. We say that findings from a trial sampled from PS can be generalized to
PT when τT can be estimated without running a trial on PT, but only using data from the RCT and
baseline information on the target population PT (the covariates X, and sometimes also the control
outcome Y (0)), as summarized on Figure 5.1.

Figure 5.1: Generalization in
practice: We typically consider
a situation where the treatment
effect is estimated from a Ran-
domized Controlled Trial (RCT)
where individuals are sampled
from a population PS. When
willing to extend these findings
to PT, we assume to have ac-
cess to a representative sam-
ple of the patients of interest,
with information on their co-
variates PT(X), and also maybe
the outcome under no treatment
PT(X,Y

(0)).

There exists two identification strategies, generalizing (i) the conditional outcomes or (ii) the local
effect measure itself, leading to different assumptions required for generalizing. For both strategies we
consider the settings where information gathered on the source population covers at least the support
of the target population.

Assumption 30 (Overlap or positivity). The support of the target population is included in the source
population: supp(PT) ⊂ supp(PS).

3.3.1 Generalizing via a conditional-outcome model

The rational is to generalize conditional expectations of the potential outcomes ES

[
Y (a) | X

]
to the

target population. This procedure is valid only under the following assumption.

Assumption 31 (Transportability or S-ignorability or Exchangeability between populations). for all
x in the support of both populations (∀x ∈ supp(PT) ∩ supp(PS), ∀a ∈ {0, 1}),

ES

[
Y (a) | X = x

]
= ET

[
Y (a) | X = x

]
.
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This assumption7 boils down to: X contains all the baseline covariates that are both shifted between the
two populations PR and PT and prognostic of the outcome. Such assumption enables the identification
of τT using information from PS(X,A, Y ) and only the covariates information in the target population
PT(X).

Proposition 5 (Generalizing conditional outcomes). Consider two populations PS and PT satisfying
Assumptions 30 and 31. Then, the conditional outcomes are generalizable:

∀a ∈ {0, 1} ET

[
Y (a)

]
= ET

[
ES

[
Y (a) | X

]]
G-formula

= ES

[
pT(X)

pS(X)
ES

[
Y (a) | X

]]
where pT(X)

pS(X) corresponds to the density ratio between the source and target populations. Doing so, any

causal measure τT can be identified from PS(X,A, Y ) and PT(X) as any causal measure on the target
population can be computed from the generalized outcomes ET

[
Y (0)

]
and ET

[
Y (1)

]
.

Appendix 5.C.3 derives this result. The first formula of proposition 5 connects to a classic estimation
strategy, plug-in g-formula (see Colnet et al., 2020, for a review on the Risk Difference). Yet under
these assumptions, estimation can also be performed by re-weighting the observations (Stuart et al.,
2011).

3.3.2 Generalizing a collapsible measure via local effects

When the measure is collapsible, rather than using a conditional outcome model, one can rely on
the local effects τR(x) to get the target population’s effect τT, such as in Equation 5.4. Importantly
Assumption 31 can then be relaxed into a new, less restrictive, Assumption 32.

Assumption 32 (Transportability of the treatment effect). for all x in the support of both populations
(∀x ∈ supp(PT) ∩ supp(PS)),

τ S(x) = τT(x).

Here, the transportability assumption8 can be phrased as: X contains all the baseline covariates that
are both shifted between the two populations PR and PT and treatment effect modulators.

Proposition 6 (Generalizing local effects). Consider two population PS and PT and a causal measure
satisfying Assumptions 30 and 32. If τ is collapsible,

τT = ET

[
gT(Y

(0), X)τ S(X)
]

= ES

[
pT(X)

pS(X)
gT(Y

(0), X) τ S(X)

]
Re-weighting.

where pT(X)
pS(X) corresponds to the density ratio between the source and target populations and gT(Y

(0), X)
corresponds to the collapsibility weights of τ on the target population. Doing so, any collapsible causal
measure can be identified from PS(X,A, Y ) and PT(X,Y

(0)) (if not directly collapsible).

Appendix 5.C.3 derives this result. Here the first formula suggests the classical re-weighting estimation
strategy also called IPSW (see Colnet et al. (2020) for a review on the Risk Difference).

7This assumption is also commonly found expressed as Y (0), Y (1) ⊥⊥ I | X, where I is an indicator of the population
membership (Stuart et al., 2011; Pearl, 2015; Lesko et al., 2017). Such assumptions can also be expressed using selection
diagram (Pearl and Bareinboim, 2011a).

8This assumption is also commonly found expressed as Y (0)−Y (1) ⊥⊥ I | X when it comes to the generalization of the
risk difference (I being an indicator of the population membership). Note that the transportability assumptions conveys
the idea of some homogeneity assumption (close to the spirit of Definition 35). This is highlighted by Huitfeldt et al.
(2018) who refer to Assumptions 31 and 32 as “different homogeneity conditions to operationalize standardization”.
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3.3.3 One assumption needs less covariates than the other

The two above sections (3.3.1 and 3.3.2) mirror each other with two different strategies relying on two
different assumptions. However, it is very important to note that Assumption 32 is lighter than
Assumption 31 as highlighted in Nguyen et al. (2018); Huitfeldt and Stensrud (2018); Colnet et al.
(2022a). As a consequence, using local effects – Proposition 6 – as opposed to conditionnal-outcomes
–Proposition 5 – may allow generalizing a causal measure with less covariates. This is at the cost of
generalizing only collapsible measures (RD, RR, SR – Table 5.3), and having access to Y (0) in the
target population if the measure is not directly collapsible such as the RR and SR.

Final comment The two procedures are equivalent when it comes to the Risk Difference, thanks
to the direct generalization of this measure and linearity of expectation,

τT
RD = ET

[
gT(Y

(0), X)τ S
RD(X)

]
= ET [1 · τ S

RD(X)] = ET

[
ES

[
Y (1) | X = x

]]
− ET

[
ES

[
Y (0) | X = x

]]
.

We discuss how to transform identification into estimation in the simulations’ part (see Section 5.H.1)

4 Reverse the thinking: using working models

We now propose to reverse the thinking: rather than starting from a given metric, we propose to
reason from generic generative models (for continuous and binary outcomes). Such models allow us to
disentangle covariates that affect only baseline level from those that modulate treatment effects. Such
phenomenon will be used later on in Section 5 to determine which measures are easier to generalize.
Note that our generative models are very general, since no parametric assumptions are made. As the
models depend on the nature of the outcome considered, this section is organized accordingly.

4.1 Continuous outcomes

Considering a continuous outcome, using the binary nature of A it is possible to decompose the
response Y in two parts: baseline level and modification induced by the treatment. Such decomposition
is generic and does not rely on any parametric assumptions.

Lemma 11. Assuming that E
[
|Y (1)|

∣∣X] < ∞ and E
[
|Y (0)|

∣∣X] < ∞, there exists two functions
b,m : X → R such that

Y (a) = b(X) + am(X) + εa,

where b(X) := E[Y (0) | X], m(X) := E[Y (1) − Y (0) | X] and a noise εA satisfying E [εA | X] = 0
almost surely.

Proof is in appendix 5.C.4.1. This result is related to the Robinson decomposition (Robinson, 1988).
This model allows to interpret the difference between the distributions of treated and control groups
as the alteration m(X) of a generative model b(X) by the treatment. The function b corresponds to
the baseline, and m to the modifying function due to treatment. Figure 5.2 gives the intuition backing
Lemma 11. Note that a very weak assumption suffices: a bounded outcome Y –which is expected in
clinical applications.

From this non-parametric model, one can observe what each causal metric captures of these functions.

Lemma 12 (Expression of the causal measures). Under the assumptions of Lemma 11, we have

τRD = E [m(X)] , τRR = 1 +
E [m(X)]

E [b(X)]
, and τERR =

E [m(X)]

E [b(X)]
.

Proof is in appendix 5.C.4.2. Lemma 12 illustrates how the relative measures τRR and τERR depend on
both the effect m(X) and the baseline b(X). On the contrary, τRD is independent of the baseline.
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Figure 5.2: Intuition behind
Lemma 11: This illustration high-
lights that, for a given set of baseline
covariates X, one can assume that
there exist two functions accounting
for the expected outcome value for any
individual with baseline characteristics
X. Then, it is possible to denote m(X)
as the alteration or modification of the
baseline b(X) := E[Y (0) | X] response.

Comment: Linear generative model A decomposition such as in Lemma 5.C.4.1 is often used
in the literature. For example, many applied works or introductory books (Angrist and Pischke, 2008)
propose completely linear models such as

E[Y | X,A] = β0 + ⟨β,X⟩+Am, (5.5)

where m(X) := m is a constant and b(X) a linear model of the covariates. Assuming this model as
the true generative model, Lemma 12 leads to

τRD = m, τRR = 1 +
m

β0 + ⟨β,E [X]⟩
, and τERR =

m

β0 + ⟨β,E [X]⟩
.

As expected, one can recover that under such model, τRD is homogeneous according to Definition 35,
while τRR and τERR are not.

4.2 Binary outcomes

With binary outcomes, one cannot simply write the outcome model as a function of the baseline plus
the treatment alteration, due to the fact that the probability of an event (Y = 0 or Y = 1) is bounded
by zero and one. Figure 5.3 illustrates the situation. As a consequence, another non-parametric
generative model than Lemma 11 is needed to disentangle baseline risk with treatment effect.

Figure 5.3: Intuition for a binary out-
come: Symmetric illustration than the
one proposed in Figure 5.2, but highlight-
ing that for a binary outcome the quan-
tity to consider is rather the conditional
probabilities of the counterfactual events
P[Y (a) = 1 | X]. The two probabilities
are bounded by 0 and 1.

4.2.1 Intuition of the entanglement model

To illustrate the workings of a binary-outcome model that disentangles the baseline risk with the
effect of a treatment, we borrow the intuitive example of the Russian Roulette from Huitfeldt (2019),
further used by Cinelli and Pearl (2020). When playing the Russian Roulette, everyone has the same
probability of 1/6 to die each time they play. We know this because of the intrinsic mechanism of the
Russian Roulette. Now, assume that we have not access to this information. In biology, medicine, or
economy this is often the case, as the systems under study are too complex. Therefore, one has to
empirically estimate this effect. Consider a hypothetical randomized trial to estimate the effect of the
Russian Roulette: a random set of individuals is forced to play Russian Roulette, and the others just
wait. For logistic reasons, the experiment is done on a certain time frame. During this time frame,
individuals can die from other reasons, such as diseases or poor health conditions. For an individual
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with characteristics x, denoting b(x) his/her probability to die without the Russian Roulette, and
counting a death as Y = 1 and survival Y = 0, one has:

P
[
Y (a) = 1 | X = x

]
= b(x) + a (1− b (x))︸ ︷︷ ︸

Entanglement

1

6
. (5.6)

This equation 9 simply states the fact that each individual X = x has a certain probability to die b(x)
by default. When getting treatment, an individual can also die from Russian Roulette if affected in
the treated group a = 1, but only if not dead otherwise (see the multiplication by (1− b(x)), while in
the continuous outcome this was just the sum of the two effects). In this equation, one can explicitly
observe that the effect is entangled with the baseline, due to the binary nature of the outcome. As a
consequence, the risk difference no longer captures the modification as it was the case for a continuous
outcome (see Lemma 12), but rather:

τRD =
1

6
(1− E [b(x)]) , and in particular lim

E[b(x)]→1
τRD = 0.

The risk difference measured depends on the population’s baseline. In a population with a high
baseline, the measured effect vanishes along the risk difference scale. In other words, it seems that
when considering the RD, the effect of the treatment can only be observed on people that would not
have died otherwise. This could seem a bit odd, as the Russian Roulette example contains the idea of
an homogeneous treatment effect, that should not vary over different populations. Still, one measure,
the survival ratio, shows an interesting property,

τSR = 1−
E
[
(1− b (X)) 1

6

]
E [(1− b (X))]

=
5

6
.

The Survival Ratio thus captures the idea of homogeneity: no matter the baseline risk, the Russian
Roulette acts in the same way for everyone, as noticed by Huitfeldt (2019). Appendix 5.E explores
this example in details.

4.2.2 Formal analysis

The intuitive model presented in eq. 5.6 does not allow catching all phenomena. In particular, we want
to describe positive or deleterious effects of the treatment while Equation 5.6 only describes harmful
situations. In addition, we want a model able to encode situations where there is heterogeneity of
the treatment effect. E.g. stressed out people could have a higher effect of the Russian Roulette
because the prospect of playing would create cardiac arrests. Or on a more concrete example: the
seat belts could be protective for taller individuals but less protective (or even deleterious) for smaller
individuals because of the design.

Lemma 13 (Entanglement Model). Considering a binary outcome Y , assume that

∀x ∈ X, ∀a ∈ {0, 1}, 0 < pa(x) < 1, where pa(x) := P
[
Y (a) = 1 | X = x

]
.

Introducing

mg(x) := P
[
Y (1) = 0 | Y (0) = 1, X = x

]
and mb(x) := P

[
Y (1) = 1 | Y (0) = 0, X = x

]
,

allows to have

P
[
Y (a) = 1 | X = x

]
= b(x) + a ((1− b (x))mb (x)− b (x)mg (x)) , where b(x) := p0(x).

9This equation comes from P
[
Y (a) = 1 | X = x

]
= P

[
Y (0) = 1 | X = x

]
∪P

[
Y (1) = 1 | X = x

]
= b(X)+1/6−(1/6) ·

b(X).
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Proof is available in Appendix 5.C.4.3. Usually Y = 1 denotes death or deleterious events, therefore
the subscripts b (resp. g) stands for bad (resp. good) events. mb (resp. mg) corresponds to the
probability that a person who was previously not destined (resp. destined) to experience the outcome,
does (resp. does not) experience the outcome in response to treatment. They represent the outcome
switch depending on the position at baseline10. It is possible to propose an equivalent of Lemma 12.

Lemma 14 (Expression of the causal measures). Ensuring conditions of Lemma 13 leads to,

τRD = E [(1− b (X))mb (X)]− E [b (X)mg (X)] , τNNT =
1

E [(1− b (X))mb (X)]− E [b (X)mg (X)]

τRR = 1+
E [(1− b (X))mb (X)]

E [b(X)]
−E [b(X)mg (X)]

E [b(X)]
, τSR = 1−E [(1− b (X))mb (X)]

E [1− b(X)]
+
E [b (X)mg (X)]

E [1− b(X)]
,

τOR =
E [b(X)] + E [((1− b (X))mb (X)]− E [b (X)mg (X))]

E [1− b(X)]− E [(1− b (X))mb (X)] + E [b (X)mg (X)]

E [1− b(X)]

E [b(X)]
.

Proof is detailed in appendix 5.C.4.4. At first sight Lemma 14 appears to be very complex. Still, this
allows to recover some intuitions. For example, if the treatment is always beneficial (mb(x) = 0), and
assuming that mg(x) is lower bounded by a positive constant (i.e there is always a positive effect, even
if small), then

τNNT =
1

−E [b (X)mg (X)]
, such that, lim

E[b(X)]→0
|τNNT| =∞.

Recall that in the illustrative example of Table 5.1, the Number Needed to Treat is way higher on the
population with a low baseline. If the population is at low risk, the effect of a beneficial treatment
is indeed perceived as very small11 because individuals have already no reason to suffer from the
outcome. Lemma 14 can be simplified under some situations, in particular when only monotonous
effects are involved.

4.2.3 Notion of monotonous effect

We introduce the assumption of monotonous effects, where either ∀x,mb(x) = 0 or ∀x,mg(x) = 0
(Huitfeldt et al., 2018; Cinelli and Pearl, 2020). Such situations corresponds to situation where the
treatment is only beneficial or deleterious12, but cannot be both. If the treatment is always beneficial
(i.e. ∀x,mb(x) = 0) then the probability p1(x) is lower than the baseline. Respectively, if the treatment
is always deleterious (i.e. ∀x,mg(x) = 0) then the probability p1(x) is higher than the baseline. This
can be summarized in,

P
[
Y (a) = 1 | X = x

]
= b(x) + a (1− b (x))mb (x)︸ ︷︷ ︸

↗

− a b (x)mg (x)︸ ︷︷ ︸
↘

,

where arrows indicate whether each term of the equation is increasing or decreasing the probability of
occurrences. This equation highlights that the entanglement is not the same depending on the nature
of the treatment (deleterious or not). A beneficial effect (mb(x) = 0) is more visible on a high baseline
population (b(x) close to 1). On the opposite, a deleterious effect (mg(x) = 0) is visible only on the
population with low baseline (1− b(x) close to 1). In other words, an effect increasing the probability
of occurences acts only on individuals on which occurences has not already happened yet.

10Such parameters can be found to be close to the “counterfactual outcome state transition” (COST) in Huitfeldt
et al. (2018). For example mb would correspond to the quantity denoted 1 − H. Also note that the intrication model
also allows to apprehend what has been done by Cinelli and Pearl (2020), where the quantity they introduce being

PS01 := P
[
Y (1) = 1 | Y (0) = 0

]
corresponds to mb. While their work mostly rely on the formalism of selection diagram,

they define PS01 (and therefore mb) as the probability of fatal treatment among those who would survive had they not

been assigned to for treatment. And conversely, PS10 := P
[
Y (1) = 0 | Y (0) = 1

]
(corresponding to mg) stands for the

probability that the treatment is sufficient to save a person who would die if defined. As far as we understand, in both
of these works these probabilities are not taken conditionally to X.

11We recall that a high NNT corresponds to a small effect.
12In particular, the Russian Roulette corresponds to a situation where ∀x,mg(x) = 0 (Russian Roulette makes no

good).
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Lemma 15 (Risk Ratio and Survival Ratio under a monotonous effect). Ensuring conditions of
Lemma 13,

• Assuming that the treatment is beneficial (i.e. ∀x,mb(x) = 0), then

τRR = 1− E [b(X)mg(X)]

E [b(X)]
.

• Assuming that the treatment is harmful (i.e. ∀x,mg(x) = 0), then

τSR = 1− E [(1− b(X))mb(X)]

E [1− b(X)]
.

Lemma 15 is still disappointing as it does not allow to disentangle baseline risk and treatment effect
(mb(.) or mg(.)) such as for the continuous outcome situation. Still, looking at local effect x, for
example on the Risk Ratio scale, one has

τRR(x) = 1− b(x)mg(x)

b(x)
= 1−mg(x).

Therefore, if willing to compute subgroup effects on covariates X affecting only the baseline level b(.),
one would observe a constant effect. This explains the illustrative example from Table 5.1, where the
Risk Ratio is constant over strata with varying baseline (here diastolic blood pressure).
These results formalize what has been proposed several times in the literature, for example by Sheps
(1958), and later by Huitfeldt et al. (2018, 2021), or with what has been called the Generalised Relative
Risk Reduction (Baker and Jackson, 2018). In particular, Sheps finishes her paper with the following
quote

“ A beneficial or harmful effect may be estimated from the proportions of persons affected.
The absolute measure does not provide a measure of this sort. The choice of an appropriate
measure resolves itself largely into the choice of an appropriate base or denominator for a
relative comparisons. [. . . ] the appropriate denominator consists of the number of persons
who could have been affected by the factor in question”.

This recommendation is consistent with Lemma 15. In other words, direction of the effect dictates
on which labels the relative comparison should be made to obtain a treatment effect measure as less
as possible entangled by the baseline. If the effect is harmful, this will be the SR (like the Russian
Roulette). If the effect is beneficial, this is the RR. The comment of Sheps about absolute measure
holds for binary outcome, but we showed that RD has good properties when considering a continuous
outcome. Doing so, we justified and extended the scope of her conclusions. In other words, depending
on the direction of the effect (harmful or beneficial) it is possible to define an equivalent of the Risk
Difference for the continuous outcome, but in the world of binary outcome. Such definitions also
enable a meaningful interpretation of what constitutes a homogeneous treatment effect when dealing
with binary outcomes..

4.2.4 What about non-monotonous effect?

While the situation of monotonous effect can lead to simpler expression of RR or SR, the situation
remains complex when it comes to treatment being both beneficial and harmful (such as the seat belt
example, and depending on the individuals). In fact, in such a situation mb(X) and mg(X) are not
identifiable (Pearl, 2000; Huitfeldt et al., 2018). As a consequence, the interesting model to consider
would be

P
[
Y (a) = 1 | X = x

]
= b(x) + a τ(x), where τ(x) := (1− b(x))mb(x)− b(x)mg(x).

This expression is close to the generative model for a continuous outcomes (Lemma 11). Still, τ(x)
now contains covariates linked to both baseline level and the treatment effect modulators. In such a
situation, all measures now depend on the baseline level, and it is no longer possible to find a measure
that decomposes baseline from the effect.
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4.2.5 Why not a logistic model?

A common practice is to adopt a logistic regression model (or any model encapsulating a function
taking values in R), for example a logistic model such as:

ln

(
P(Y (a) = 1 | X)

P(Y (a) = 0 | X)

)
= β0 + ⟨β,X⟩+Am. (5.7)

where β0,β andm are the coefficients of a linear model. When the generative model from Equation 5.7
holds, some nice properties arise. Notably, one can show that this implies constant conditional odds
ratio τlog-OR(x) = m and τOR(x) = em. Beyond eq. 5.7 it is possible to encapsulate non-parametric
functions in the logit. Such decomposition is present in the literature (Gao and Hastie, 2021) (and see
Section 5.D, and in particular Lemma 17 for details). But interpretation of all other metrics than the
conditional odds ratio is clearly not obvious (see Lemma 18 in Section 5.D) In other words, it seems
that such logistic models are rather forcing all covariates and treatment to interact through the link
function, preventing any simple interpretation of the causal measure (except conditional OR). This is
even more problematic as the odds ratio is a non logic-respecting measure. Finally, the logistic model
is a very restrictive model, unable to describe accurately many real-life situation; for instance the
Russian Roulette – thought being simple – cannot take simple or intuitive expressions in the logistic
model approach:

ln

(
P(Y (a) = 1 | X = x)

P(Y (a) = 0 | X = x)

)
= ln

(
b(x)

1− b(x)

)
+A ln

( (
1
6 + b(x)

)
1−

(
1
6 + b(x))(1− b(x))

) · 1− b(x)
b(x)

)
,

is the equivalent to Equation 5.6. More details are provided in Appendix 5.D.3.

5 Are some measures easier to generalize than others?

Section 3 exposes two transportability assumptions depending on which conditional quantity from
the source population is generalized: the conditional outcome (Assumption 31) or the local effect
(Assumption 32). The first approach assuming having observed all covariates being prognostic and
shifted in the two populations, while the second approach only requires to adjust on all covariates
modulating treatment effect and shifted. By disentangling the baseline level and the treatment effect,
Section 4 paves the way toward establishing which transportability assumption is more likely to hold,
depending on the outcome nature and the causal measure considered. Recall that Assumption 32
means

∀x ∈ supp(PT) ∩ supp(PS), τR(x) = τT(x).

If the outcome is continuous, Lemma 12 ensures τRD(x) = m(x). Therefore, if considering a continuous
outcome, Assumption 32 is satisfied as soon as we adjust on the shifted covariates implied in m(.)
(regardless of the covariates implied in the baseline level b(.)).

To formalize which covariates are implied in local treatment effect, we introduce notations to distin-
guish covariates status, either intervening on the baseline level or modulating the effect.

Definition 40 (Two kind of covariates). Recall that b : X → R and m : X → R are defined in
Lemma 11 for a continuous outcome or in Lemma 13 (here, m referring for mb and mg). For all
J ⊂ {1, . . . , d}, we let XJ the subvector of X composed of components of X indexed by J . Accordingly,
we let XB (resp. XM ) the minimal set of variables involved in the function b (resp. the function m),
such that, for all x ∈ R,

E [b (X) |X = x] = E [b (X) |XB = xB] and E [m (X) |X = x] = E [m(X)|XM = xM ] .

Then, within the set of baseline covariate X, some covariates may be shifted between the two popu-
lations or not.
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Definition 41 (Shifted covariates set). We let Sh ⊂ {1, . . . , d} the set of indices corresponding to the
components of X that are shifted between the source and the target population, that is, for all integrable
function f : X → R, almost surely,

ES[f(X)|XSh] = ET[f(X)|XSh]

Generalizing conditional outcomes requires to have access to all shifted prognostic covariates.

Theorem 13. Under the assumptions of Lemma 11 or 13, for any causal measure, generalization of
the conditional outcomes is possible if one has access to all shifted covariates of XB∪M , provided such
a set satisfies the overlap assumption (Assumption 30).

To illustrate what are the different covariate sets, we introduce the data generative model of the
simulations (see Section 6), where we assume that six covariates are prognostic and that data are
generated as

Y = b (X1, X2, X3, X4, X5, X6) +Am (X1, X2, X5) + ε. (5.8)

Doing so, B = (1, 2, 3, 4, 5, 6), andM = (1, 2, 5). In addition, the two populations are constructed such
that X1, . . . X4 are shifted covariates, but not X5, X6. Figure 5.4 illustrates what shifted and non-
shifted means. Theorem 13 states that generalization of the conditional outcomes is possible when ob-
serving X1, . . . X4.

Figure 5.4: 2 ∈ Shift, and 6 ̸∈ Shift.

Having access to all shifted prognostic covariates in the two
data samples seems challenging (and maybe too optimistic).
This situation could explain all the numerous recent research
works about sensitivity analysis when necessary covariates are
not observed or partially observed when generalizing (Nguyen
et al., 2018; Nie et al., 2021; Colnet et al., 2022a). In such a
context, Assumption 32 is appealing as it potentially reduces
the needed covariates. In fact, not all measures can be easier
to generalize than others.

Theorem 14. Consider a continuous outcome Y . Under the
assumptions of Lemma 11, observing all shifted covariates of XM is sufficient for generalizing τRD,
provided such a set of covariates satisfies the overlap assumption (Assumption 30).

Theorem 14 reveals that Assumption 32 is expected to be more likely to hold for the Risk Difference
only. Back to eq. 5.8, one would require only X1 and X2 to generalize the Risk Difference. Willing
to generalize Risk Ratio or Excess Risk Ratio would still require X1, X2, X3, X4 for identification, no
matter the approach (generalizing conditional outcomes or local effects).

Theorem 15. Consider a binary outcome Y . Under Assumptions of Lemma 13, if the effect is
beneficial (resp. harmful), having access to all covariates XM∩Sh that are shifted and treatment effect
modifiers and to the distribution ET

[
Y (0) | XM∩Sh

]
in the target population is sufficient for generalizing

τRR (resp. τSR), provided such a set of covariates satisfies the overlap assumption (Assumption 30).

In the simulations (Section 6) we enrich the example of the Russian Roulette assuming that the effect
of the Russian Roulette itself is modulated by baseline covariates. We adapt the generative model of
eq. 5.6 into

P
[
Y (a) = 1 | X = x

]
= b(X1, X2, X3) + a (1− b (X1, X2, X3)) mb(X2, X3), (5.9)

where X1 = lifestyle, X2 = stress, and X3 = gender, a situation where individuals’ baseline
risk of death depends on their lifestyle, stress, and gender. We assume that the effect of the Russian
Roulette can be modulated by stress (imagine individuals having a heart attack as soon as the gun is
approaching their head) and gender (the executioner being more merciful when facing a women). We
further assume that gender is the only covariate with no shift between the two populations. Therefore
Theorem 15 tells us that the Survival Ratio can be generalized to another target population having
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at hand only stress, without adjusting on lifestyle and gender. Willing to generalize all other
measures (no matter the method) would require lifestyle and stress.

Finally, note that if some measures are easier to generalize (i.e. needs less baseline covariates to
adjust on), then a by-product of this result is that they should be less sensitive to a population’s shift.
Spiegelman and VanderWeele (2017) does mention that empirically the Risk Ratio seems to be more
constant accross populations. The illustrative example (Table 5.1) in introduction perfectly illustrates
this phenomenon too.

6 Illustration through simulations

We use synthetic simulations to illustrate Theorems 13, 14, and 15: that is different covariates sets are
required to retrieve the target population effect depending on (i) the causal measure of interest, (ii)
the nature of the outcome, and (iii) the method to generalize. Appendix 5.H.1 gives comments on how
to transform identification formula (see Propositions 5 and 6) into estimation. The code to reproduce
the simulations is available on github (see repository BenedicteColnet/ratio-versus-difference).

Figure 5.5: Results of the simulations for a continuous outcomes: where generative corresponds to eq. 5.8.
Column 1 corresponds to generalizing conditional outcome, column 2 corresponds to generalizing local effect with
the proper collapsibility weights. For these two approaches we use different covariates set, with shifted treatment
effect modulators(X1, X2), shifted prognostic covariates(X1, X2, X3, and X4), and all prognostic covariates
(X1, X2, X3, X4, X4 and X6). According to Theorems 13 and 14, only the Risk Difference can be generalized with
a restricted covariates set. Simulations are performed with 1000 repetitions, a source sample size of 500 and target
sample size of 1, 000. Estimation is performed with plug-in g-formula modeling all responses with an OLS approach.

6.1 Continuous outcome

We propose a situation where the continuous outcome is generated from six baseline prognostic covari-
ates X1, . . . X6 as detailed in eq. 5.8. More precisely, B = (1, 2, 3, 4, 5, 6), and M = (1, 2, 5), while only
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6. Illustration through simulations

covariates X1, X2, X3, X4 are shifted between PS and PT. Both b(.) and m(.) are linear functions of
the covariates. We adopt a plug-in g-formula estimation approach. Figure 5.5 presents results. As the
outcome Y is continuous, and according to Theorem 14, we expect that only the Risk Difference τRD

can be generalized using the shifted treatment effect modulators, namely X1 and X2. For this, both
procedures (generalizing the conditional outcomes or the local effects) are equivalent due to the linear-
ity of the expectation (the second row of Figure 5.5 is identical across procedures). We indeed observe
that only the RD can be recovered with the smaller covariates set composed of shifted treatment effect
modulators. All other causal measures require access to all shifted covariates of XB∪M . Note that
adding only shifted covariates seems to increase variance, while adding all prognostic covariates lead
to more precision, in accordance with what is proposed in Colnet et al. (2022b) for the risk difference.

6.2 Binary outcome

For the binary outcome, we extend the Russian Roulette situation, introducing effects’ heterogeneity.
See eq. 5.9 for the generative model chosen with three prognostic covariates: lifestyle, gender, and
stress. We assume that the source population PS contains the same proportion of men and women as
in the target population PT, but that the two other covariates (lifestyle and stress) are shifted. In
particular, we suppose that PS is composed of more people with a good lifestyle but are very stressed,
while in PT individuals have a poor lifestyle but a low stress. We therefore expect the effect of the
Russian Roulette to be higher in the source population than in the target population due to both
different baseline level and heterogeneity of treatment effect.

Figure 5.6: Simulation with binary outcome Y : for a monotonous and deleterious effect. Therefore conditions of
Lemma 15 are satisfied, allowing to generalize the Survival Ratio with fewer covariates, and in particular only shifted
treatment effect modulators, here stress. Adding all shifted prognostic covariates (stress and lifestyle),
or even more with all prognostic covariates (stress, lifestyle, and gender) enables generalization of all causal
measures by generalization of the conditional outcome or re-weighting of local effect if possible (only for collapsible
measures, namely RR, SR, and RD). On this simulation, estimation is done with IPSW estimator, source (resp.
target) sample being of size n = 5000 (resp. m = 20, 000), with 1 000 repetitions.

Doing so, Theorem 15 states that the Survival Ratio is identifiable having at hand only the covariate
stress when generalizing local effects, while all other causal measures require to have access to
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all shifted prognostic covariates (stress and lifestyle). Simulations indeed confirm the model
and results are exposed on Figure 5.6, where the true effect is recovered with a smaller subset of
covariates only for the SR. Adding all shifted prognostic covariates allows to recover all effect measures,
in particular generalizing conditional outcomes. Generalizing local effects work only for collapsible
measure, information on Y (0) and with the appropriate weights (see RR, SR, and RD).

7 Conclusion

The choice of a population-level measure of treatment effect has been much debated. We bring a
new argument: a well-chosen measure is easier to generalize to a population different from that of
the initial study or to sub-populations, crucial to make decisions based on this measure. Indeed,
as the probability of different outcomes often varies across individuals, the average treatment effect
typically depends on the population considered. A collapsible measure –such as the risk difference,
the risk ratio or the survival ratio but not the odds ratio– can be computed from local effects, on
strata of the population. Reweighting these strata then adapts the measure to a new population.
Stratification must be done along the individual’s characteristics that modulate the probability of
outcomes: treatment-effect modifying covariates. But less stratification is needed for a good choice
of population-level measure, one that is not affected by covariates that modulated only the baseline
risk, common to treated and non-treated individuals. We showed that if the outcome is continuous,
then the Risk Difference only depends on the expectation of the modification, while the Risk Ratio or
Excess Risk Ratio highly depends on the baseline (Lemma 12 and Theorem 14). But if the outcome
is binary, relative measures such as the Risk Ratio or the Survival Ratio can remove the baseline level
(Lemma 15 and Theorem 15). The Risk Ratio is the appropriate measure when the effect is beneficial
(i.e. reduces events), while the Survival Ratio has better properties when the effect is harmful (i.e.
increases events). If the treatment is beneficial and harmful at the same time, none of the measures
can remove the baseline level. Likewise, in the absence of the control outcome in the target population,
any measure of treatment effect can be generalized through the conditional outcome, which however
typically requires more covariates (Theorem 13).
So, which is the best measure to summarize a causal effect across a population but facilitate reasoning
at the individual level? It depends. For continuous outcomes, the Risk Difference is not modulated by
a varying baseline risk. For binary outcomes, prefer a Risk Ratio for beneficial effects and a Survival
Ratio for harmful ones.
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Appendix of Chapter 5

5.A Treatment effect measures

This section completes Section 2 (and more specially Section 2.2) by exposing the different treatment
(or causal) effect measures.

5.A.1 A formal definition of a treatment or causal effect measure

In this section we recall the definition of all measures used in this paper or that can be found in applied
medical work. As all of these measures correspond to a combination of the two potential outcomes
expectations, such that the concept of causal effect measures could be written in a general way. This
is not exposed in the main article, but a causal measure can be defined in a general way.

Definition 42 (Causal effect measures – Pearl (2000)). Assuming a certain joint distribution of
potential outcomes P (Y (0), Y (1)), which implies that a certain treatment A of interest is considered,
we denote τP any functional of the joint distribution of potential outcomes. More precisely,

P → R (5.10)

P (Y (0), Y (1)) 7→ τP (5.11)

This definition is also valid for any subpopulation, as for any baseline covariate X, τP (X) is defined
as a functional of P (Y (0), Y (1) | X). Note that this definition could admit many more causal measures
than the one presented in this work. Introducing a definition is meant for (i) generality of the defi-
nition and (ii) to highlight what kind of mathematical object is a causal measure. For instance, this
definition highlights the fact that a so-called treatment or causal effect naturally depends on the pop-
ulation considered. The notation τP highlights this dependency. For lighter notation, and when there
is no doubt on the population of interest, we will also denote this quantity without the superscript τ .

Why do we say that those measures are causal? Note that the same definition could have been
made on the distribution P (A, Y ), comparing expectation on two distributions: P (Y | A = 1) and
P (Y | A = 0). For example, within the statistical community, the odds ratio is often known as the
strength of the association between two events, A = 1 and A = 0 and therefore defined as:

OR :=
P (Y = 1 | A = 1)

P (Y = 0 | A = 1)
· P (Y = 0 | A = 0)

P (Y = 1 | A = 0)
.

In such a situation, the OR measure would be an associational measure and not a causal measure,
except if there is no confounding in the distribution considered (for e.g. in the case of a Randomized
Controlled Trial). To avoid discussion about confounding, in this paper we never consider distribution
such as Y | A,X or Y | A. We rather consider Y (a) | X. For any new reader discovering the potential
outcomes framework, we refer to the first chapters of Imbens and Rubin (2015) for a clear and complete
exposition of this notations inherited from Neyman. Note that Didelez and Stensrud (2022) make the
same distinction when discussing collapsibility questions.

5.A.2 Common treatment effect measures

As highlighted by Definition 42, many measures could be proposed. Here we detail common measures
found in applied works and propose an illustration for the case of binary outcomes (Figure 5.7). Most
of the time, the distinction is made on whether or not the measure is an absolute or a relative effect.

5.A.2.1 Absolute measures

Definition 43 (Risk Difference (RD)). The risk difference is a causal effect measure defined as the
difference of the expectations (also called risks),

τRD = E
[
Y (1)

]
− E

[
Y (0)

]
.
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(a) Risk Difference (RD) (b) Number Needed to Treat (NNT)

(c) Risk Ratio (RR) (d) Survival Ratio (SR)

(e) Odds Ratio (OR) (f) Log Odds Ratio (log-OR)

Figure 5.7: Plotsa of the ranges of the different metrics as a
function of the proportion of events in control group, namely
E[Y (0)] (x-axis), and of the proportion of events in treated group,
namely E[Y (1)] (y-axis). See Subfigure 5.8a. As both the colors and
the different scale illustrate, the ranges of the effect considerably differ
with the metric chosen. Note that for the NNT (Figure 5.7b) we only
represented the quarter of the plot when an event encodes death.

aSimilar plots can be found under the name ”L’Abbé plots” (L’abbé
et al., 1987; Jiménez et al., 1997; Deeks, 2002) in research works related
to meta-analysis. In this domain those plots help representing estimates
from different studies.

(a) Legend
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5.A. Treatment effect measures

RD is also named Absolute Risk Reduction (ARR), Absolute Effect (AE), Absolute Difference (AD),
or Excess Risk (ER).

Definition 44 (Number Needed to Treat (NNT)). The number needed to treat (NNT) is a causal
effect measure defined as the average number of individuals or observations who need to be treated to
prevent one additional outcome,

τNNT =
1

E[Y (1) = 1]− E[Y (0) = 1]

The Number Needed to Treat (NNT) has been proposed as a measure rather recently (Laupacis et al.,
1988). A harmful treatment is usually called the Number Needed to Harm (NNH) and made positive.

5.A.2.2 Relative measures

Definition 45 (Risk Ratio). The risk ratio is a causal effect measure defined as the ratio of the
expectations,

τRR =
E[Y (1)]

E[Y (0)]

The Risk Ratio (RR) is also named Relative Risk (RR), Relative Response (RR), or Incidence Pro-
portion Ratio (IPR)

Definition 46 (Survival Ratio). The survival ratio is a causal effect measure defined as the Risk Ratio
were labels are swapped,

τSR =
1− E[Y (1)]

1− E[Y (0)]

It is possible to introduce a measure that captures both the Risk Difference, but normalized by the
baseline.

Definition 47 (Excess relative risk (ERR)).

τERR =
E[Y (1)]− E[Y (0)]

E[Y (0)]

The Excess relative risk (ERR) has been proposed by Cole and MacMahon (1971). Note that,

τERR = τRR − 1.

Definition 48 (Relative Susceptibility (RS)).

τRS :=
E[Y (1)]− E[Y (0)]

1− E
[
Y (0)

] .

Note that,

τRS = 1− τSR.

Finally, another measure is often used based on odds. Odds are a way of representing probability in
particular for betting. For example a throw with a die will produce a one with odds 1:5. The odds is
the ratio of the probability that the event occurs to the probability it does not.

Definition 49 (Odds Ratio (OR)). The odds ratio is a causal effect measure defined as the ratio of
the odds of the treated and control groups,

τOR :=
P[Y (1) = 1]

1− P[Y (1) = 1]

(
P[Y (0) = 1]

1− P[Y (0) = 1]

)−1

.
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Odds Ratio (OR) is sometimes named Marginal Causal Odds Ratio (MCOR). This is by opposition
to a conditional Odds Ratio, being defined as,

τOR(X) :=
E[Y (1) = 1 | X = x]

1− E[Y (1) = 1 | X = x]

(
E[Y (0) = 1 | X = x]

1− E[Y (0) = 1 | X = x]

)−1

,

often used due to its homogeneity when considering a logistic generative model of the outcome (see
Section 5.C.1.3 for a detailed proof). The OR is known to approximate the RR at low baseline (see
for example the illustrative example of Table 5.1).

Proof. P[Y (1) = 1] ≤ P[Y (0) = 1] ≪ 1 =⇒ τOR = P[Y (1)=1]

1−P[Y (1)=1]
· 1−P[Y (0)=1]

P[Y (0)=1]
≈ P[Y (1)=1]

1
· 1

P[Y (0)=1]
= τRR.

These derivations can be found as late as in the 50’s in case-control studies about lung cancer (Cornfield
et al., 1951). Also note that,

τOR = τRR · τ−1
SR .

Proof.

τOR =
P[Y (1) = 1]

1− P[Y (1) = 1]

(
P[Y (0) = 1]

1− P[Y (0) = 1]

)−1

=
P[Y (1) = 1]

P[Y (1) = 0]

(
P[Y (0) = 1]

P[Y (0) = 0]

)−1

=
P[Y (1) = 1]

P[Y (1) = 0]

P[Y (0) = 0]

P[Y (0) = 1]

=
P[Y (1) = 1]

P[Y (0) = 1]

P[Y (0) = 0]

P[Y (1) = 0]

= τRR · τ−1
SR

One can observe on Figure 5.7 (see subplots Figures 5.7e and 5.7f) the range on which the OR
varies depends on the direction of the effect. Therefore, the OR is often presented encapsulated in a
logarithm.

Definition 50 (Log Odds Ratio (log-OR)).

τlog-OR := log

(
P[Y (1) = 1]

P[Y (1) = 0]

)
− log

(
P[Y (0) = 1]

P[Y (0) = 0]

)

5.B Definitions found in the literature

This section completes Section 3 (and in particular Sections 3.1 and 3.2) with formalization of homo-
geneity of effects, heterogeneity of effects, and collapsibility we have found in the literature. Doing
so, we highlight that definitions can be more or less formal, and therefore can lead to different appre-
hension of phenomenons, in particular collapsibility. The Definitions we propose in Section 3 aims to
account for the intuitions behind all previously proposed definitions, while uniformizing them.

5.B.1 Effect modification

This section supports definitions proposed in Section 3.1.

Note that effect modification or heterogeneity is mentioned in many places, but now always clearly
defined.
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5.B. Definitions found in the literature

We searched the National Library of Medicine Books, National Library of Medicine Cat-
alog, Current Index to Statistics database, ISI web of science, and websites of 25 major
regulatory agencies and organizations for papers and guidelines on study design, analysis
and interpretation of treatment effect heterogeneity. Because there is not standard termi-
nology for this topic, a structured search strategy was not sensitive nor specific and we
found many resources through “snowball” searching, that is, reviewing citations in, and
citations of, key methodological and policy papers. – (Lesko et al., 2018)

5.B.1.1 Definitions found in the literature

Definition 51 (Rothman (2011), page 51). Suppose we divide our cohort into two or more distinct
categories, or strata. In each stratum, we can construct an effect measure of our choosing. These
stratum-specific effect measures may or may not equal on another. Rarely would we have any reason
to suppose that they do equal one another. If indeed they are not equal, we say that the effect measure
is heterogeneous or modified across strata. If they are equal we say that the measure is homogeneous,
constant, or uniform across strata. A major point about effect-measure modification is that, if effects
are present, it will usually be the case that only one or none of the effect measures will be uniform
across strata.

Definition 52 (VanderWeele and Robins (2007)). We say that a variable Q is a treatment effect
modifier for the causal risk difference of A on Y if Q is not affected by A and if there exist two levels
of A, a0 and a1, such that E

[
Y (a1) | Q = q

]
− E

[
Y (a0) | Q = q

]
is not constant in q.

5.B.1.2 Effect heterogeneity depends on the chosen scale: an illustration

A treatment effect heterogeneity depends on the causal measure τ chosen (the scale). This idea is well-
known in epidemiology (Rothman, 2011; Lesko et al., 2018). To be convinced by such phenomenon,
the drawing in Figure 5.9 illustrates what could be two data generative models leading to two different
homogeneity and heterogeneity patterns.

Figure 5.9: Heterogeneity of a treatment effect depends on the scale: Illustrative schematics where the data
generative model on the left leads to a constant treatment effect on the absolute scale (RD) when conditioning on
X, while on the data generative model on the right leads to an homogeneous treatment effect on the relative scale
(RR). In both of the situations, homogeneity of treatment effect of one scale (RR or RD) leads to heterogeneity on
the other scale. Note that a similar schematic is presented in Rothman (2011) (see their Figure 11–1, p. 199)

5.B.2 Different definitions of collapsibility in the literature

This section supports definitions proposed in Section 3.2.

5.B.2.1 Unformal definitions

We have found many unformal definitions in the literature, such as:
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In a single study with a non-confounding stratification variable, if the stratum-specific
effects are homogenous, then they are expected to be the same as the crude effect, a
desirable property known as collapsibility of an effect measure. – (Xiao et al., 2022)

RR but, not OR, have a mathematical property called collapsibility; this means the size of
the risk ratio will not change if adjustment is made for a variable that is not a confounder.
– (Cummings, 2009)

and

Collapsibility means that in the absence of confounding, a weighted average of stratum-
specific ratios (e.g., using Mantel-Haenszel methods) will equal the ratio from a single 2
by 2 table of the pooled (collapsed) counts from the stratum-specific tables. This means
that a crude (unadjusted) ratio will not change if we adjust for a variable that is not a
confounder. – (Cummings, 2009)

5.B.2.2 Formal definitions

Definition 53 (Strict collapsibility Greenland et al. (1999)). We say a measure of association between
Y (0) and Y (1) is strictly collapsible accross X if it is constant accross the strata (subtables) and this
constant value equals the value obtained from the marginal table.

Similar definition as Definition 53 have been proposed in Liu et al. (2022); Didelez and Stensrud
(2022).

Definition 54 (Pearl (2000)). Let τ
(
P
(
Y (0), Y (1)

))
be any functional that measures the association

between Y (0) and Y (1) in the joint distribution P
(
Y (0), Y (1)

)
. We say that τ is collapsible on a variable

V if

E
[
τ
(
P
(
Y (0), Y (1) | V

))]
= τ

(
P
(
Y (0), Y (1)

))
Note that in his book, Judea Pearl rather present the definition of collapsibility with respect two any
two covariates, not necessarily potential outcomes. Indeed, collapsibility is a statistical concept at
first. As in this work we are explicitely concerned with causal metrics, this definition has been written
here with potential outcomes.

Definition 55 (Huitfeldt et al. (2019)). Let τ
(
P
(
Y (0), Y (1)

))
be any function of the parameters Y (0)

and Y (1) in the joint distribution P
(
Y (0), Y (1)

)
. We say that τ is collapsible on a variable V with

weights wv if, ∑
v wvτ

(
P
(
Y (0), Y (1)

)
| V = v

)∑
v wv

= τ
(
P
(
Y (0), Y (1)

))
Definition 56 (Didelez and Stensrud (2022)). Let τ = τ

(
P
(
Y (0), Y (1)

))
be a measure of association

between Y (0) and Y (1); that is, τ is a functional of the joint distribution P
(
Y (0), Y (1)

)
. Let τx =

τ(Y,A | X = x) be a measure of conditional association between Y and A given X = x; that is, τx is
a functional of the conditional distribution P (Y,A | X = x). The measure τ is called collapsible over
X, if τ is a weighted average of τx for x ∈ X. Strict collapsibility demands that τ = τx.

5.C Proofs

In this section we detail all the derivations needed to understand the results of this article.

5.C.1 Collapsibility

Note that not all proofs are novel work. Collapsibility results have been reported multiple times as
explained in the main paper. For clarity we still recall them. We indicate when the proofs are not
novel or when similar proofs exist elsewhere. When we indicate nothing, this means that we have not
found those results in other published work.
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5.C. Proofs

5.C.1.1 Proof of Lemma 7

N.B: The proof for the direct collapsibility of the RD is not a novel contribution.

Proof.

τRD = E
[
Y (1) − Y (0)

]
By definition

= E
[
E
[
Y (1) − Y (0) | X

]]
Law of total expectation

= E [τRD (X)] .

Remark To observe the phenomenon as weighting, one can also write this last quantity as an
integral.

E
[
E
[
Y (1) − Y (0) | X

]]
=

∫
X

E
[
Y (1) − Y (0) | X

]
f(x) dx Re-writing

=

∫
X

τRD (x) f(x) dx.

Here, one can observe that weights are the density of x in the population. Most of the time (Pearl
and Bareinboim, 2011a; Huitfeldt et al., 2018; Didelez and Stensrud, 2022) express such quantity on
categorical covariates X, therefore using a sum.

5.C.1.2 Proof of Lemma 8

N.B: The proof for the collapsibility of the RR and SR are extensions of Huitfeldt et al. (2019).

General comment In this subsection we detail the proof for collapsibility of the RR, and SR.
Before detailing the proof, we want to highlight why the RR (and SR) is not directly collapsible.

τRR =
E
[
Y (1)

]
E
[
Y (0)

]
=

E
[
E
[
Y (1) | X

]]
E
[
E
[
Y (0) | X

]]
̸= E

[
E
[
Y (1) | X

]
E
[
Y (0) | X

]] ,
in all generality. For example, assuming that E

[
Y (0) | X

]
and E

[
Y (1) | X

]
are independent, we have

E

[
E
[
Y (1) | X

]
E
[
Y (0) | X

]] = E[Y (1)]E

[
1

E
[
Y (0) | X

]] > E[Y (1)]

E[Y (0)]
= τRR,

by Jensen inequality, assuming additionally that E
[
Y (0) | X

]
> 0.

Risk Ratio (RR)
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Proof.

τRR =
E
[
Y (1)

]
E
[
Y (0)

] By definition of the RR

=
E
[
E
[
Y (1) | X

]]
E
[
Y (0)

] Law of total expectation used on E
[
Y (1)

]

=

E
[
E[Y (1)|X]
E[Y (0)|X]

E
[
Y (0) | X

]]
E
[
Y (0)

] E
[
Y (0) | X

]
̸= 0 almost surely

= E

[
E
[
Y (1) | X

]
E
[
Y (0) | X

] E [Y (0) | X
]

E
[
Y (0)

] ]
E
[
Y (0)

]
is a constant

= E

[
τRR(X)

E
[
Y (0) | X

]
E
[
Y (0)

] ]
.

E
[
Y (1) | X

]
E
[
Y (0) | X

] := τRR(X)

Survival Ratio (SR)

Proof.

τSR =
1− E

[
Y (1)

]
1− E

[
Y (0)

] By definition of the SR

=
1− E

[
E
[
Y (1) | X

]]
1− E

[
Y (0)

] Law of total expectation

=

E
[
1−E[Y (1)|X]
1−E[Y (0)|X]

(
1− E

[
Y (0) | X

])]
1− E

[
Y (0)

] 1− E
[
Y (0) | X

]
̸= 0 almost surely

= E

[
τSR(X)

1− E
[
Y (0) | X

]
1− E

[
Y (0)

] ]
1− E

[
Y (0)

]
is a constant

The Excess Risk Ratio (ERR) (resp. Risk Susceptibility) collapsibility are proven using the same
derivations than RR (resp. SR).

Excess Risk Ratio (ERR)

Proof.

τERR =
E
[
Y (1) − Y (0)

]
E
[
Y (0)

]
=

E
[
E
[
Y (1) − Y (0) | X

]]
E
[
Y (0)

]
= E

[
E
[
Y (1) − Y (0) | X

]
E
[
Y (0)

] ]

= E

[
E
[
Y (1) − Y (0) | X

]
E
[
Y (0)

] E
[
Y (0) | X

]
E
[
Y (0) | X

]]

= E

[
τERR(X)

E
[
Y (0) | X

]
E
[
Y (0)

] ]
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5.C. Proofs

Risk Susceptibility (RS)

Proof.

τRS =
E
[
Y (1) − Y (0)

]
1− E

[
Y (0)

]
=

E
[
E
[
Y (1) − Y (0) | X

]]
1− E

[
Y (0)

]
= E

[
E
[
Y (1) − Y (0) | X

]
1− E

[
Y (0)

] ]

= E

[
E
[
Y (1) − Y (0) | X

]
1− E

[
Y (0)

] 1− E
[
Y (0) | X

]
1− E

[
Y (0) | X

]]

= E

[
τRS(X)

1− E
[
Y (0) | X

]
1− E

[
Y (0)

] ]

5.C.1.3 Proof of Lemma 9: Non-collapsibility of the OR, log-OR, and NNT

Odds Ratio (OR). According to the first point of Lemma 10, all collapsible measure are logic-
respecting. However, according to the third point of Lemma 10, OR is not logic-respecting. Therefore
OR is not collapsible.

Log Odds Ratio (log-OR). The same reasoning as above holds for the log Odds Ratio.

Number Needed to Treat (NNT).

Proof. Recall that

τNNT =
1

E[Y (1)]− E[Y (0)]
and τNNT(X) =

1

E[Y (1)|X]− E[Y (0)|X]
. (5.12)

Assume that the NNT causal measure is collapsible, that is there exist weights g(X,P (X,Y (0))) such
that for all distributions P (X,Y (0), Y (1)) we have

E
[
g(X,P (X,Y (0))) τNNT(X)

]
= τNNT, with g ≥ 0, and E

[
g(X,P (X,Y (0)))

]
= 1. (5.13)

Note that

τNNT =
1

E
[

1
τNNT(X)

] , (5.14)

which, combined with the previous equation, leads to

E
[
g(X,P (X,Y (0))) τNNT(X)

]
=

1

E
[

1
τNNT(X)

] . (5.15)

Assuming that τNNT(X) ≥ 0, by Jensen inequality, we have

E
[
g(X,P (X,Y (0))) τNNT(X)

]
≤ E [τNNT(X)] (5.16)

E
[(
g(X,P (X,Y (0)))− 1

)
τNNT(X)

]
≤ 0. (5.17)

Fix ε > 0. Assume now that there exists a measurable set B ⊂ X with positive measure, such
that for all x ∈ B, g(X,P (X,Y (0))) > 1 + ε. By choosing the distribution of Y (1) such that
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E[Y (1)|X] is arbitrary close to E[Y (0)|X] on B, one has that τNNT(X) is arbitrary large, so that(
g(X,P (X,Y (0)))− 1

)
τNNT(X) is arbitrary large on B, which contradicts eq. 5.17. This proves that

g(X,P (X,Y (0))) ≤ 1 almost surely. Since E[g(X,P (X,Y (0)))] = 1, this implies that almost surely
g(X,P (X,Y (0))) = 1. Thus, one should have

E [τNNT(X)] =
1

E
[

1
τNNT(X)

] , (5.18)

which, according to Jensen inequality, holds only if τNNT(X) is constant. Thus the Number Needed to
Treat satisfies the collapsibility equation eq. 5.13 only in the specific case of homogeneous treatment
effect. This proves that the NNT is not collapsible.

5.C.2 Proof of Lemma 10 (about logic-respecting measures)

5.C.2.1 All collapsible measures are logic respecting

Proof. We recall from Definition 38 that a measure τ is said to be collapsible (directly or not), if there
exist positive weights g(Y (0), X) verifying E

[
g(Y (0), X)

]
= 1, such that

τ = E
[
g(Y (0), X)τ(X)

]
.

Then,

τ ≤ E
[
g(Y (0), X)max

x
(τ(X))

]
τ ≤ E

[
g(Y (0), X)

]
max
x

(τ(x))

τ ≤ max
x

(τ(x))

using the properties of the weights. Similarly, one can show that,

E
[
g(Y (0), X)min

x
(τ(x))

]
≤ τ.

This proves that τ is logic-respecting, according to Definition 39.

5.C.2.2 Number Needed to Treat is a logic-respecting measure

Proof. First, note that,

τNNT =
1

E
[
Y (1) − Y (0)

]
=

1

E
[
E
[
Y (1) − Y (0) | X

]] Law of total expectation

= E
[

1

τNNT(X)

]−1

. τNNT(X) := 1/E
[
Y (1) − Y (0) | X

]
By definition, minx (τNNT(x)) ≤ τNNT(X) almost surely, such that taking the inverse and the expecta-
tion leads to

E
[

1

τNNT(X)

]
≤ E

[
1

minx (τNNT(x))

]
=

1

minx (τNNT(x))
,

which implies

min
x

(τNNT(x)) ≤ τNNT.

214



5.C. Proofs

The exact same reasoning leads to
τNNT ≤ max

x
(τNNT(x)) .

Consequently,
min
x

(τNNT(x)) ≤ τNNT ≤ max
x

(τNNT(x)) ,

which concludes the proof.

5.C.2.3 OR and log-OR are not logic-respecting

Proving that the OR is not logic-respecting can be done with a counter-example as in Table 5.2. Previ-
ous works propose to understand non-collapsibility through the non-linearity of a function linking the
baseline (control) and response functions. This link function is named the characteristic collapsibility
function (CCF) and have been proposed by Neuhaus S and Jewell (1993) and is nicely recalled in
Daniel et al. (2020) (see their Appendix 1A). This proof relies on Jensen inequality. The proof we
recall here is largely inspired from these works, but written within the formalism of our paper.

Proof. Assume a generative model such as

logit
(
P(Y (a) = 1 | X,A = a)

)
= b(X) + am, (5.19)

where b(X) can be any function of the vector X to R, and where m is a non-null constant. Without
loss of generality, one can further assume that m > 0. Under such model, on has a property on the
conditional log-OR or OR, being that:

τlog-OR(X) = log

 P(Y (1) = 1 | X)

1− P(Y (1) = 1 | X)
·

(
P(Y (0) = 1 | X)

1− P(Y (0) = 1 | X)

)−1
 = b(X)+m−b(X) = m, (5.20)

or similarly that

τOR(X) = eb(X)+m · e−b(X) = em.

In other words, for any x the OR τOR(x) (resp. log-OR) is the same and equal to em (resp. m).

Now, we propose to go from this conditional causal measure to the marginal measure. When looking
for the marginal OR, one can first estimate P(Y (1) = 1) and P(Y (0) = 1), and then compute the OR.
To do so, we propose to rewrite P(Y (1) = 1 | X) as a function of P(Y (0) = 1 | X). From eq. 5.19 one
has,

logit
(
P(Y (0) = 1 | X)

)
= b(X),

so that

logit
(
P(Y (1) = 1 | X)

)
= logit

(
P(Y (0) = 1 | X)

)
+m, (5.21)

which is equivalent to

P(Y (1) = 1 | X) = expit
(
logit

(
P(Y (0) = 1 | X)

)
+m

)
. (5.22)

Letting, for all z ∈ [0, 1],

f(z) = expit (logit (z) +m) , (5.23)

we have

P(Y (1) = 1 | X) = f
(
P(Y (0) = 1 | X)

)
. (5.24)
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Chapter 5. Which causal measure is easier to generalize?

Figure 5.10: Implementation of the formulae from eq. 5.24 for different values of m. This illustrates the concavity
of the function linking P(Y (0) = 1 | X) to P(Y (1) = 1 | X) when assuming the generative model of eq. 5.19.

Note that the function f is concave for positive m (it is possible to derive it, but we propose an
illustration on Figure 5.10 to help to be convinced). Then, using Jensen inequality, we obtain,

P(Y (1) = 1) = E
[
P(Y (1) = 1 | X)

]
= E

[
f
(
P(Y (0) = 1 | X)

)]
< f(E

[
P(Y (0) = 1 | X)

]
= expit

(
logit

(
E
[
P(Y (0) = 1 | X)

])
+m

)
Jensen and m > 0

= expit
(
logit

(
P(Y (0) = 1)

)
+m

)
,

and because the logit is a monotonous function, then,

logit
(
P(Y (1) = 1)

)
< logit

(
P(Y (0) = 1)

)
+m,

so that

logit
(
P(Y (1) = 1)

)
− logit

(
P(Y (0) = 1)

)
= τlog-OR < m,

where m = τlog-OR(x) (see eq. 5.20). This allows to conclude that there exist a data generative process
for which the odds ratio at the population level can not be written as a positively weighted sum of
conditional odds ratio.
Note that the example provided in Table 5.2 is for a negative m, showing constant effect on the two
substrata and a higher effect on the marginal population.

5.C.3 Proofs related to generalizability

5.C.3.1 Proof of Proposition 5

Proof. Consider a ∈ {0, 1}, then

ET

[
Y (a)

]
= ET

[
ET

[
Y (a) | X = x

]]
Total expectation

= ET

[
ES

[
Y (a) | X = x

]]
G-formula identification – Assumptions 31

= ER

[
pT(X)

pS(X)
ES

[
Y (a) | X = x

]]
Identification by re-weighting – Assumptions 30
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5.C.3.2 Proof of Proposition 6

Proof. If τ is collapsible, then there exists weights gT(Y
(0), X) (defined on PT) such that

τT = ET

[
gT(Y

(0), X)τT(X)
]

Collapsibility

= ET

[
gT(Y

(0), X)τR(X)
]

G-formula identification – Assumption 32

= ER

[
pT(X)

pR(X)
gT(Y

(0), X)τR(X)

]
Identification by re-weighting – Assumption 30.

5.C.4 Proofs related to non-parametric generative models (Section 4)

As we have not found elsewhere the approach of writing non-parametric models and to relate them to
measures of effect, to the best of our knowledge, all proofs in this subsection are novel.

5.C.4.1 Proof of Lemma 11 (continuous outcomes)

Proof. By assumption, we know that to E
[∣∣Y (1)

∣∣ | X] <∞. Therefore, one can write

Y (0) = f(0, X) + ε0,

where f(0, X) = E
[
Y (0) | X

]
and E [ε0 | X] = 0 almost surely. In the exact same way, we have

Y (1) = f(1, X) + ε1,

where f(1, X) = E
[
Y (1) | X

]
and E [ε1 | X] = 0 almost surely. Note that the two previous equations

are equivalent to

Y (A) = f(0, X)︸ ︷︷ ︸
:=b(X)

+A (f(1, X)− f(0, X))︸ ︷︷ ︸
:=m(X)

+ Aε1 + (1−A)ε0︸ ︷︷ ︸
:=εA

.

Note that

E [εA | X] = E [Aε1 + (1−A)ε0 | X]

= E [AE [ε1 | A,X] | X] + E [(1−A)E [ε0 | A,X] | X]

= E [AE [ε1 | X] | X] + E [(1−A)E [ε0 | X] | X]

= E [A | X]E [ε1 | X] + E [(1−A) | X]E [ε0 | X]

= 0,

and

E [εA | X,A] = E [Aε1 + (1−A)ε0 | X,A]
= AE [ε1 | A,X] + (1−A)E [ε0 | A,X]

= 0.

Consequently, we have
Y (A) = b(X) +Am(X) + εA,

with E [εA | X,A] = 0 almost surely and

b(X) = E
[
Y (0) | X

]
,

m(X) = E
[
Y (1) | X

]
− E

[
Y (0) | X

]
= E

[
Y (1) − Y (0) | X

]
.
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5.C.4.2 Proof of Lemma 12

Proof. Assume that Y is a continuous outcome. Under the conditions of Lemma 11, we have

Y (a) = b(X) + am(X) + εa,

where b(X) := E[Y (0) | X], m(X) := E[Y (1)−Y (0) | X] and a noise εA satisfying E [εA | X] = 0 almost
surely. With these relations in mind, one can compute each of the causal measures.

Risk Difference
τRD = E[Y (1) − Y (0)] By definition

= E [b(X) +m(X) + ε1 − b(X)− ε0]
= E [m(X)] + E [ε1]− E [ε0]

= E [m(X)] E [εa] = 0

Risk Ratio

τRR =
E
[
Y (1)

]
E
[
Y (0)

] By definition

= 1 +
E [m(X)]

E [b(X)]
.

Excess Risk Ratio

τERR =
E [m(X)]

E [b(X)]
.

5.C.4.3 Proof of Lemma 13 (binary outcomes)

Proof. Consider a binary outcome Y . We further assume that,

∀x ∈ X, ∀a ∈ {0, 1}, 0 < pa(x) < 1, where pa(x) := P
[
Y (a) = 1 | X = x

]
,

which means that the outcome is non-deterministic. Using the law of total expectation, one has

p1(x) = P
[
Y (1) = 1 | X = x

]
= P

[
Y (1) = 1 | Y (0) = 0, X = x

]
P
[
Y (0) = 0 | X = x

]
+ P

[
Y (1) = 1 | Y (0) = 1, X = x

]
P
[
Y (0) = 1 | X = x

]
= P

[
Y (1) = 1 | Y (0) = 0, X = x

]
(1− p0(x)) + P

[
Y (1) = 1 | Y (0) = 1, X = x

]
p0(x).

Denoting mg(x) := P
[
Y (1) = 0 | Y (0) = 1, X = x

]
and mb(x) := P

[
Y (1) = 1 | Y (0) = 0, X = x

]
,

we finally obtain

p1(x) = mb(x)(1− p0(x)) + (1−mg(x))p0(x)

= p0(x) +mb(x)(1− p0(x))− p0(x)mg(x).

Therefore, for all a ∈ {0, 1},

pa(x) = p0(x) + a (mb(x)(1− p0(x))− p0(x)mg(x)) .
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5.C.4.4 Proof of Lemma 14

Proof. Consider a binary outcome Y . Under the assumptions of Lemma 13, there exist probabilities
b(x), mg(x), and mb(x) such that

P
[
Y (a) = 1 | X = x

]
= b(x) + a ((1− b (x))mb (x)− b (x)mg (x)) .

Using such a decomposition, one has

τRD = E [b(X) + ((1− b (X))mb (X)− b (x)mg (X))]− E [b(X)]

= E [(1− b (X))mb (X)]− E [b (X)mg (X)] ,

τNNT =
1

E [(1− b (X))mb (X)]− E [b (X)mg (X)]
,

τRR =
E [b(X) + ((1− b (X))mb (X)− b (X)mg (X))]

E [b(X)]

= 1 +
E [(1− b (X))mb (X)]

E [b(X)]
− E [b(X)mg (X)]

E [b(X)]
,

τSR =
1− E [b(X) + ((1− b (X))mb (X)− b (X)mg (X))]

1− E [b(X)]

=
E [1− b(X)− ((1− b (X))mb (X) + b (X)mg (X))]

E [1− b(X)]

= 1− E [(1− b (X))mb (X)]

E [1− b(X)]
+

E [b (X)mg (X)]

E [1− b(X)]
,

τOR =
P[Y (1) = 1]

P[Y (1) = 0]

(
P[Y (0) = 1]

P[Y (0) = 0]

)−1

=
E [b(X) + ((1− b (X))mb (X)− b (X)mg (X))]

1− E [b(X) + ((1− b (X))mb (X)− b (X)mg (X))]

(
E [b(X)]

1− E [b(X)]

)−1

=
E [b(X) + ((1− b (X))mb (X)− b (X)mg (X))]

E [1− b(X)− ((1− b (X))mb (X) + b (X)mg (X))]

E [1− b(X)]

E [b(X)]

=
E [b(X)] + E [((1− b (X))mb (X)]− E [b (X)mg (X))]

E [1− b(X)]− E [(1− b (X))mb (X)] + E [b (X)mg (X)]

E [1− b(X)]

E [b(X)]

=

(
1 +

E [(1− b (X))mb (X)]

E [b(X)]
− E [b(X)mg (X)]

E [b(X)]

)(
1− E [(1− b (X))mb (X)]

E [1− b(X)]
+

E [b (X)mg (X)]

E [1− b(X)]

)−1

.

5.C.5 Proofs of Section 5

5.C.5.1 Proof of Theorem 13

Proof. Continuous outcome. Consider a continuous outcome Y . Under assumptions of Lemma 11,

Y (a) = b(X) + am(X) + εa,

where b(X) := E[Y (0) | X], m(X) := E[Y (1) − Y (0) | X] and εA satisfies E [εA | X] = 0.

Let a ∈ {0, 1},

ET

[
Y (a)

]
= ET

[
Y (a)

]
= ET [b(X) + am(X) + εa] Lemma 11

= ET [b(X)] + aET [m(X)] .
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Generalizing conditional outcomes to the target population means that we can compute ET[Y
(a)] for

a ∈ {0, 1}, which is equivalent to computing

ET [b(X)] , and ET [m(X)] , (5.25)

that is generalizing b(X) and m(X). According to Definitions 40 and 41, we have

ET [b(X)] = ET [ET [b(X) | XSh]] (5.26)

= ET [ES [b(X) | XSh]] (5.27)

= ET [ES [b(X) | XB∩Sh]] , (5.28)

and similarly,

ET [m(X)] = ET [ET [m(X) | XSh]] (5.29)

= ET [ES [m(X) | XSh]] (5.30)

= ET [ES [m(X) | XM∩Sh]] . (5.31)

Having access to X(M∪B)∩Sh that is all shifted covariates that are treatment effect modifiers or related

to the baseline risk is then sufficient to generalize b and m and thus to generalize ET

[
Y (a)

]
for all

a ∈ {0, 1}.

Binary outcome. Consider a binary outcome Y ∈ {0, 1}, and let

mg(x) := P
[
Y (1) = 0 | Y (0) = 1, X = x

]
and mb(x) := P

[
Y (1) = 1 | Y (0) = 0, X = x

]
.

Under Assumptions of Lemma 13, we have, for all a ∈ {0, 1},

P
[
Y (a) = 1 | X = x

]
= b(x) + am(x),

with b(x) = p0(x) and

m(x) = (1− b (x))mb (x)− b (x)mg (x) .

For all a ∈ {0, 1}, we have, as above,

ET

[
Y (a)

]
= ET

[
P
[
Y (a) = 1 | X

]]
= ET [b(X) + am(X), ]

= ET [b(X)] + aET [m(X), ] .

Having access to X(M∪B)∩Sh that is all shifted covariates that are treatment effect modifiers or related

to the baseline risk is then sufficient to generalize b and m and thus to generalize ET

[
Y (a)

]
for all

a ∈ {0, 1}.

5.C.5.2 Proof of Theorem 14

Proof. In this proof Y is assumed continuous. We consider a set of baseline shifted covariates XM

defined in Definitions 40 and 41.

Risk Difference We start by proving that Assumption 32 is satisfied for τRD(XM∩Sh). We have

τT
RD(XM∩Sh) = ET

[
Y (1) − Y (0) | XM∩Sh

]
= ET [m(X) | XM∩Sh] Lemma 11

= ET [m(X) | XSh] Definition 40

= ES [m(X) | XSh] Definition 41

= ES [m(X) | XM∩Sh] Definition 40

= τ S
RD(XM∩Sh).
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Thus, Assumption 32 is verified for τRD with covariates XM∩Sh. Furthermore, by assumption in Theo-
rem 14, Assumption 30 is verified with covariates XM∩Sh. Thus, by Proposition 6, τRD is generalizable
with covariates XM∩Sh.

Below, we give insights explaining why the risk ratio does not satisfy a similar property. Indeed, in
the same manner as above, the risk ratio satisfies

τ S
RR(XM∩Sh) =

ES

[
Y (1) | XM∩Sh

]
ES

[
Y (0) | XM∩Sh

]
=

ES [b(X) +m(X) | XM∩Sh]

ES [b(X) | XM∩Sh]
Lemma 11

= 1 +
ET [m(X) | XM∩Sh]

ES [b(X) | XM∩Sh]
. Definitions 41

For Assumption 30 to hold, we need τ S
RR(XM∩Sh) = τT

RR(XM∩Sh), which, given the previous calculation,
is equivalent to

ES [b(X) | XM∩Sh] = ET [b(X) | XM∩Sh] ,

which has no reason to be valid in general, since in all generality, XM∩Sh ̸⊂ XB∩Sh. A similar reasoning
holds for the Excess Risk Ratio (ERR), as it is defined as a function of τRR.

5.C.5.3 Proof of Theorem 15

Proof. Recall that we consider a binary output Y ∈ {0, 1}. Recall that, by Lemma 13, we have, for
all a ∈ {0, 1},

P
[
Y (a) = 1 | X = x

]
= b(x) + a ((1− b (x))mb (x)− b (x)mg (x)) ,

with b(x) = p0(x). The proof of Lemma 13 can be adapted for any subset of covariates of X, so that

E
[
Y (a) | XM∩Sh

]
= b(XM∩Sh) + a ((1− b (XM∩Sh))mb (XM∩Sh)− b (XM∩Sh)mg (XM∩Sh)) ,

with

b(XM∩Sh) = P
[
Y (0) = 1 | XM∩Sh

]
mg (XM∩Sh) = P

[
Y (1) = 0 | Y (0) = 1, XM∩Sh

]
mb (XM∩Sh) = P

[
Y (1) = 1 | Y (0) = 0, XM∩Sh

]
.

First case. Assume that, for all x, mb(x) = 0. According to the calculation above, we have

τ S
RR(XM∩Sh) =

ES

[
Y (1)|XM∩Sh

]
ES

[
Y (0)|XM∩Sh

] (5.32)

=
b(XM∩Sh)− b(XM∩Sh)mg (XM∩Sh)

b(XM∩Sh)
Lemma 13 (5.33)

= 1−mg (XM∩Sh) (5.34)

= 1− PS

[
Y (1) = 0 | Y (0) = 1, XM∩Sh

]
(5.35)

= 1− PS

[
Y (1) = 0 | Y (0) = 1, XSh

]
Definition 40 (5.36)

= 1− PT

[
Y (1) = 0 | Y (0) = 1, XSh

]
Definition 41 (5.37)

= 1− PT

[
Y (1) = 0 | Y (0) = 1, XM∩Sh

]
Definition 40 (5.38)

= τT
RR(XM∩Sh). (5.39)
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Following the proof of Lemma 8, we have

τT
RR =

ET

[
Y (1)

]
ET

[
Y (0)

] By definition of the RR

=
ET

[
ET

[
Y (1) | XM∩Sh

]]
ET

[
Y (0)

] Law of total expectation used on ET

[
Y (1)

]

=

ET

[
ET[Y (1)|XM∩Sh]
ET[Y (0)|XM∩Sh]

ET

[
Y (0) | XM∩Sh

]]
ET

[
Y (0)

] ET

[
Y (0) | XM∩Sh

]
̸= 0 almost surely

= ET

[
τT
RR(XM∩Sh)

ET

[
Y (0) | XM∩Sh

]
ET

[
Y (0)

] ]

= ET

[
τ S
RR(XM∩Sh)

ET

[
Y (0) | XM∩Sh

]
ET

[
Y (0)

] ]
By eq. 5.39

= ES

[
τ S
RR(XM∩Sh)

ET

[
Y (0) | XM∩Sh

]
ET

[
Y (0)

] pT(XM∩Sh)

pS(XM∩Sh)

]
Since Assumption 30 holds

Thus, τRR is generalizable with covariates XM∩Sh when mb = 0, if one has access to ET

[
Y (0) | XM∩Sh

]
.

Second case. Assume that, for all x, mg(x) = 0. As above, we have

τ S
SR(XM∩Sh) =

1− ES

[
Y (1)|XM∩Sh

]
1− ES

[
Y (0)|XM∩Sh

]
=

1− b(XM∩Sh)− (1− b(XM∩Sh))mb (XM∩Sh)

1− b(XM∩Sh)
Lemma 13

= 1−mb (XM∩Sh)

= 1− PS

[
Y (1) = 1 | Y (0) = 0, XM∩Sh

]
= 1− PS

[
Y (1) = 1 | Y (0) = 0, XSh

]
Definition 40

= 1− PT

[
Y (1) = 1 | Y (0) = 0, XSh

]
Definition 41

= 1− PT

[
Y (1) = 1 | Y (0) = 0, XM∩Sh

]
Definition 40

= τT
RR(XM∩Sh).

As above, one can use the arguments in the proof of Lemma 8 to show that

τT
SR = ES

[
τ S
SR(XM∩Sh)

1− ET

[
Y (0) | XM∩Sh

]
1− ET

[
Y (0)

] pT(XM∩Sh)

pS(XM∩Sh)

]
,

which proves that τT
SR is generalizable with covariates XM∩Sh when mg = 0, if one has access to

ET

[
Y (0) | XM∩Sh

]
.

5.D Usual point of view for a binary outcome: logistic regression

5.D.1 A very general generative model

The general habit when considering binary outcome is to consider a logistic regression model (see
in the main document the example of a typical log-linear model in Equation 5.40. While such log-
linear model rely on parametric assumptions, one would wish to keep the logistic approach but with
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no modeling assumption in the spirit of what is done for a continuous outcome Y (see Lemma 11).
Positing very weak assumptions allows to write the response model with a “baseline” function and a
“modification” function, encapsulated in a link function, usually a logit. Doing so, it is possible to
model the outcome non-parametrically.

Lemma 16 (Logit generative model for a binary outcome). Considering a binary outcome Y , assume
that

∀x ∈ X, ∀a ∈ {0, 1}, 0 < pa(x) < 1, where pa(x) = P(Y (a) = 1 | X = x).

Then, there exist two functions b,m : X → R such that

ln

(
P(Y (a) = 1 | X)

P(Y (a) = 0 | X)

)
= b(X) + am(X).

Similarly than for the continuous outcomes, the assumption allowing the existence of such functions is
very weak, only asking for the counterfactual probabilities to be distinct from 0 and 1. The notations
have been chosen to reflect the previous idea of a baseline b(x) and the modification m(x) induced
by the treatment A. Still, we point out that in this model, p0(x) ̸= b(x), and that due to the link
function, b(x) and m(x) can not be disentangled.

Proof. Consider a ∈ {0, 1}, and assume that their exists a function pa : Rd →]0, 1[ such that,

P(Y (a) = 1 | X) = pa(X).

Because pa takes values in ]0, 1[ the odds can be considered, so that,

ln

(
P(Y (a) = 1 | X)

P(Y (a) = 0 | X)

)
= ln

(
pa(X)

1− pa(X)

)
.

Denoting,

b(X) := ln

(
p0(X)

1− p0(X)

)
,

and

m(X) := ln

(
p1(X)

1− p1(X)

)
− ln

(
p0(X)

1− p0(X)

)
= ln

(
p1(X)

1− p1(X)

1− p0(X)

p0(X)

)
,

one can write the log-odds as

ln

(
P(Y (a) = 1 | X)

P(Y (a) = 0 | X)

)
= b(X) +Am(X).

Note that another link function could have been chosen, which impacts how b(x) and m(x) are defined.

Comment on the usual practice In many papers it is possible to find this very common assump-
tion

ln

(
P(Y (a) = 1 | X)

P(Y (a) = 0 | X)

)
= β0 + ⟨β,X⟩+Am, (5.40)

which corresponds to a linear function b(X) and a constant function m(X) (Daniel et al., 2020).
In particular, it is easy to derive from eq. 5.40 that for any X ∈ X, one has τlog-OR(x) = m and
τOR(x) = em. And more generally,

Lemma 17 (Conditional log odds ratio). Ensuring conditions of Lemma 16 leads to,

E [τlog-OR(X)] := E

ln
P(Y (1) = 1 | X)

P(Y (1) = 0 | X)

(
P(Y (0) = 1 | X)

P(Y (0) = 0 | X)

)−1
 = E [m(X)] .

This result is apparently satisfying, where E [τlog-OR(X)] somehow only grasps the modification func-
tion. Still, note that due to non-collapsibility of the odds ratio, this does not imply that τlog-OR = τ
(i.e. τOR = eτ ) because E [τlog-OR(X)] ̸= τlog-OR (except if treatment effect is null or if the outcome does
not depend on X, that is b(X) and m(X) are both scalars). As an intermediary conclusion, the work-
ing model from Lemma 16 leads to complex expression of causal measures, except for E [τlog-OR(X)],
but with the default that this measure shows bad property of non-collapsibility.
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5.D.2 The equivalent of Lemma 12

Lemma 18. Ensuring conditions of Lemma 16 leads to,

τRD = E
[

eb(X)+m(X)

1 + eb(X)+m(X)

]
− E

[
eb(X)

1 + eb(X)

]
τERR = E

[
eb(X)+m(X)

1 + eb(X)+m(X)

](
E
[

eb(X)

1 + eb(X)

])−1

− 1

τNNT =

(
E
[

eb(X)+m(X)

1 + eb(X)+m(X)

]
− E

[
eb(X)

1 + eb(X)

])−1

τRR = E
[

eb(X)+m(X)

1 + eb(X)+m(X)

](
E
[

eb(X)

1 + eb(X)

])−1

τSR = E
[(

1 + eb(X)+m(X)
)−1

](
E
[(

1 + eb(X)
)−1

])−1

τOR =
E
[

eb(X)+m(X)

1+eb(X)+m(X)

]
E
[

1

1+eb(X)+m(X)

] E
[

1

1+eb(X)

]
E
[

eb(X)

1+eb(X)

]
For example the rather simple expression of RD for the continuous outcome now shows bewildering
and complex forms when having a binary outcome. For example, a working model such thatm(x) = m
is a constant don’t lead to any measures to be constant. All expressions from Lemma 18 now involve
both b(.) and m(x). All other metrics show complex relation between the two functions.

5.D.3 Link between the intrication model and the logistic model

Denoting b1(X) and m1(X) the functions for the intrication model, and b2(X) and m2(X) for the
logistic model, one has:

b2(X) = ln

(
b1(X)

1− b1(X)

)
and

m2(X) = ln

(
(m1(X) + b1(X))(1− b1(X)))

1− (m1(X) + b1(X))(1− b1(X)))

)
− ln

(
b1(X)

1− b1(X)

)
Taking the case of the Russian Roulette, one has

b1(X) := p0(X), m1(X) =
1

6

so that

b2(X) := ln

(
X

1−X

)
and

m2(X) := ln

( (
1
6 + p0(X)

)
1−

(
1
6 + p0(X))(1− p0(X))

))− ln

(
p0(X)

1− p0(X)

)
.

Despite a rather simple example, it is non-intuitive to encode it into the logistic model due to the link
function.

5.E Complements on the intrication model

Origin of the example

Here we provide more details on how the Russian Roulette is stated in Cinelli and Pearl (2020). Note
that the first reference we have found of this problem is in Huitfeldt (2019). This section is just meant
to recall how the problem was initially introduced by Huitfeldt (2019).

Suppose the city of Los Angeles decides to run a randomized control trial. Running the experiment,
the mayor of Los Angeles discovers that “Russian Roulette” is harmful: among those assigned to
play Russian Roulette, 17.5% of the people died, as compared to only 1% among those who were not
assigned to play the game (people can die due to other causes during the trial, for example, prior poor
health conditions). This example is a good toy example as the mechanism is well-known, with a chance
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of one over six to die when playing. Even if it seems counter-intuitive, we consider the treatment as
being forced to play to the russian roulette (we consider the player plays only one time). We denote
Π the population from Los Angeles. In that case, we can already note that the RR is 17.5 and the
ATE is 0.165 (outcome being Y equals to 1 if death before the end of the period). With this notation
E[Y (0)|pop = Π] = 0.01 and E[Y (1)|pop = Π] = 0.175

After hearing the news about the Los Angeles experiment, the mayor of New York City (a dictator,
and we propose to denote the population of New York City Π∗) wonders what the overall mortality
rate would be if the city forced everyone to play Russian Roulette. Currently, the practice of Rus-
sian Roulette is forbidden in New York, and its mortality rate is at 5% (4% higher than LA, being
E[Y (0)|pop = Π∗] = 0.05). The mayor thus asks the city’s statistician to decide whether and how one
could use the data from from Los Angeles to predict the mortality rate in New York, once the new
policy is implemented. But in fact, knowing the mechanism of the russian roulette we can already
compute the value of interest being E[Y (1)|pop = Π∗]. Results are presented in Table 5.4. Here we
used the fact that mortality is a consequence of two “independent” processes (the game of Russian
Roulette and prior health conditions of the individual), and while the first factor remains unaltered
across cities, the second intensifies by a known amount (5% vs 1%). Moreover, we can safely assume
that the two processes interact disjunctively, namely, that death occurs if and only if at least one of the
two processes takes effect. We can also - within the two cities - compute the associated RR, ATE and
survival ratio (SR). We can observe they are not the same, but only the survival ratio comparing how
many people dies with treatment on how many people would have died without treatement, transport
the mechanism of the Russian Roulette (note that 5

6 ∼ 0.83).

Population Los Angeles (Π) New York city (Π∗)

E
[
Y (0)

]
0.01 0.05

E
[
Y (1)

]
1
60.99 + 0.01 = 0.175 1

60.95 + 0.05 = 0.208

RR 17.5 4.16

ATE 0.165 0.158

SR 0.83 0.83

Table 5.4: Summary of the different values. Note that none of the transport equation is applied, everything is
computed within each population taking into account a distinct mechanism between the two reasons to die. SR
corresponds to the survival ratio.

A limit case, when b(x)≪ m(x)

We recall the intuitive model we have proposed in eq. 5.6.

P
[
Y (a) = 1 | X = x

]
= b(x) + a (1− b (x))︸ ︷︷ ︸

Intrication

1

6
.

Comparing the intrication model from eq. 5.6, one can observe that, compared to the working model
of the continuous outcome (Lemma 11) the baseline and the effect of the treatment are entangled.
Interestingly, if b(x)≪ m(x) (in particular, the baseline is close to 0) then it is possible to have:

If, p0(x)≪ 1, then, P
[
Y (a) | X = x

]
≈ b(x) + am(x),

such that we retrieved the intuition of the continuous outcome model, and remove the entanglement
as expected.
Application of Lemma 14 for the Russian Roulette example gives:

τRD =
1

6
(1− E [b(x)]) , τNNT =

6

1− E [b(x)]
, τRR =

5

6
+

1

E [b(x)]

1

6
, τSR =

5

6
,

and τOR =

(
1 +

E [(1− b(X))]

E [b(X)]

1

6

)
E [1− b(X)]

E [(1− b(X))]

6

7
.
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5.F Different points of view

This section gathers quotes from research papers or books. The aim is to illustrate how diverse opinions
are.

General remarks about the choice of measure

Physicians, consumers, and third-party payers may be more enthusiastic about long-term
preventive treatments when benefits are stated as relative, rather than absolute, reductions
in the risk of adverse events. Medical-journal editors have said that reporting only relative
reductions in risk is usually inadequate in scientific articles and have urged the news media
to consider the importance of discussing both absolute and relative risks. For example,
a story reporting that in patients with myocardial infarction, a new drug reduces the
mortality rate at two years from 10 percent to 7 percent may help patients weigh both the
3 percent absolute and the 30 percent relative reduction in risk against the costs of the
drug and its side effects. – (Moynihan et al., 2000)

In general, giving only the absolute or only the relative benefits does not tell the full
story; it is more informative if both researchers and the media make data available in both
absolute and relative terms. – (Moynihan et al., 2000)

The promotion of a measure often reflects personal preferences – those who are keen to
promote the use of research in practice emphasize issues of interpretability of risk ratios
and risk differences, those who are keen to ensure mathematical rules are always obeyed
emphasize the limitations and inadequacies of the same measures. – (Deeks, 2002)

Failing to report NNT may influence the interpretation of study results. For example
reporting RR alone may lead a reader to believe that a treatment effect is larger than it
really is. – (Nuovo et al., 2002)

As evidence-based practitioners, we must decide which measure of association deserves our
focus. Does it matter? The answer is yes. The same results, when presented in different
ways, may lead to different treatment decisions. – (Guyatt et al., 2015)

You must, however, distinguish between the RR and the RD. The reason is that the RR is
generally far larger than the RD, and presentations of results in the form of RR (or RRR)
can convey a misleading message. – (focusing on binary outcome) (Guyatt et al., 2015)

Standard measures of effect, including the risk ratio, the odds ratio, and the risk difference,
are associated with a number of well-described shortcomings, and no consensus exists about
the conditions under which investigators should choose one effect measure over another. –
(Huitfeldt et al., 2018)

Additive treatment effect heterogeneity is also most informative for guiding public health
policy that aims to maximize the benefit or minimize the harm of an exposure by targeting
subgroups. The relative scale (risk ratios or odds ratios) can tend to overstate treatment
benefits or harms. – (Lesko et al., 2018)

The way to express and measure risk may appear to be a pure technicality. In fact, it is a
crucial element of the risk-benefit balance that underlies the dominant medical discourse
on contraception. Its influence on the perception and communication of risk is decisive,
especially among people without a solid statistical education, like most patients and doctors
who prescribe the pill (mostly generalists and gynaecologists). The dispute over Non-rare
thrombophilia (NRT) screening sets an important difference between the absolute risk, the
number of events occurring per time unit and the relative risk, which is the ratio between
two absolute risks. Practically, whereas the relative risk may sound alarming, the absolute
risk looks more reassuring. – (Turrini and Bourgain, 2021)
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5.F. Different points of view

We believe if an efficacy measure is

• well defined,

• understandable by human,

• desired by patients and clinicians,

• proven to be logic-respecting13,

• readily implementable computationally,

them it is worthy of consideration. – (Liu et al., 2022)

The odds ratio as a complex measure to interpret

Odds ratios and parameters of multivariate models will often be useful in serving as or in
constructing the estimates, but should not be treated as the end product of a statistical
analysis of epidemiologic data or as summaries of effect in themselves. – (Greenland, 1987)

The concept of the odds ratio is now well-established in epidemiology, largely because it
serves as a link between results obtainable from follow-up studies and those obtainable from
case-control studies. [. . . ] This ubiquity, along with certain technical considerations, has
led some authors to treat the odds ratio as perhaps a “universal” measure of epidemiologic
effect, in that they would estimate odds ratios in follow-up studies as well as case-control
studies; others have expressed reservations about the utility of the odds ratio as something
other than an estimate of an incidence ratio. I believe that such controversy as exists
regarding the use of the odds ratio arises from its inherent disadvantages compared with the
other measures for biological inference, and its inherent advantages for statistical inference.
– (Greenland, 1987)

There is a problem with odds: unlike risks, they are difficult to understand. – (Davies
et al., 1998)

Another measure often used to summarise effects of treatment is the odds ratio. This is
defined as the odds of an event in the active treatment group divided by the odds of an
event in the control group. Though this measure has several statistical advantages and is
used extensively in epidemiology, we will not pursue it here as it is not helpful in clinical
decision making. – (Cook and Sackett, 1995)

In logit and other multiplicative intercept models (but not generally), OR also has the
attractive feature of being invariant with respect to the values at which control variables
are held constant. The disadvantage of OR is understanding what it means, and when
OR is not the quantity of interest then its ‘advantages’ are not suficient to recommend its
use. Some statisticians seem comfortable with OR as their ultimate quantity of interest,
but this is not common. Even more unusual is to find anyone who feels more comfortable
with OR than the other quantities defined above; we have found no author who claims to
be more comfortable communicating with the general public using an odds ratio. – (King
and Zeng, 2002)

The OR lacks any interpretation as an average. – (Cummings, 2009)

As is well established, the odds ratio is not a parameter of interest in public health research.
– (Spiegelman and VanderWeele, 2017)

Because of the exaggeration present, it is important to avoid representing ORs as RRs,
and similarly, it is important to recognize that a reported OR rarely provides a good
approximation of relative risks but rather simply provides a measure of correlation. –
(George et al., 2020)

13see Definition 39.
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We agree with Liu et al. (2020) that (causal) odds ratios and hazard ratios are problematic
as causal contrasts. The non-collapsibility of these parameters is a mathematical property
which makes their interpretation awkward, and this is amplified for hazard by their condi-
tioning on survival. Thus they are also unsuitable measures for transportability between
different populations (Martinussen & Vansteelandt, 2013). It is particularly concerning
that meta-analyses pool odds ratios or hazard ratios from different studies each possibly
using different variables for adjustment where the issue of non-collapsibility is typically
ignored. – (Didelez and Stensrud, 2022)

ORs are notoriously difficult to interpret. When people hear “odds” they think of “risks”
and this leads to the common misinterpretation of the OR as a RR by scientists and the
public, which is a serious concern. For example, an OR of 2 is not generally a doubling of
risk (if the risk in the control group is 20% and the OR is 2, then the risk in the treated
group is 33.3% not 40%). In contrast, the RD and RR offer clearer interpretations. –
(Xiao et al., 2022)

The admitted mathematical niceties of the OR are not reason enough to accept such a
confusing state of affairs. Of course, when the outcome is rare, the OR approximates the
RR and is, therefore, approximately collapsible.– (Xiao et al., 2022)

Because of the interpretability issues and lack of collapsibility, we urge researchers to avoid
ORs when either the RD or RR is available. – (Xiao et al., 2022)

Odds ratios provoke similar discomfort—only 19% of learners and 25% of speakers at an
annual meeting of the Canadian Society of Internal Medicine (CSIM) understood odds
ratios well enough to explain them to others. – (Lapointe-Shaw et al., 2022)

The OR is a better metric to use than RR

The results demonstrate the need to a) end the primary use of the RR in clinical trials
and meta-analyses as its direct interpretation is not meaningful; b) replace the RR by the
OR; and c) only use the post-intervention risk recalculated from the OR for any expected
level of baseline risk in absolute terms for purposes of interpretation such as the number
needed to treat. – (Doi et al., 2020)

We can no longer accept the commonly argued for view that the relative risk is easier to
understand. Once we realize that the RR depends more on prevalence than the exposure-
outcome association, its interpretation becomes much more difficult to comprehend than
the odds ratio. It is well known that, for common events, large values of the risk ratio are
impossible and this should have rung the alarm bells much earlier regarding whether the
RR is more a measure of prevalence than a measure of effect. However this was not the
main focus of the derivation outlined previously and the latter was aimed at demonstrating
why the OR is a true measure of effect against which the RR can be compared. – (Doi
et al., 2020)

Our response to this is that, although this is certainly a problem, there is an even bigger
problem – the RR is not a portable measure of effect. By ”portable” we mean a numerical
value that is not dependent on baseline risk and not transportability in causal inference.
— (Doi et al., 2022)

Relative versus absolute measures

In reviewing the different ways that benefit and harm can be expressed, we conclude
that the RD is superior to the RR because it incorporates both the baseline risk and the
magnitude of the risk reduction. – (Laupacis et al., 1988)
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For clinical decision making, however, it is more meaningful to use the measure “number
needed to treat.” This measure is calculated on the inverse of the absolute risk reduction.
It has the advantage that it conveys both statistical and clinical significance to the doctor.
Furthermore, it can be used to extrapolate published findings to a patient at an arbitrary
specified baseline risk when the relative risk reduction associated with treatment is constant
for all levels of risk. – (Cook and Sackett, 1995)

Medical journals need to be conscious that they will contribute to scaremongering news-
paper headlines if they do not request authors to quantify Adverse Drug Reactions (ADR)
into best estimates of absolute numbers. – (Mills, 1999)

As a relative measure of effect, the RR is most directly estimated by the multiplicative
model when it fits the data. The risk difference is an absolute measure of effect, most
directly estimated by the additive model when it fits the data. – (Spiegelman and Vander-
Weele, 2017)

About portability or generalizability of causal effects

The numbers needed to treat method still presents a problem when applying the results
of a published randomised trial in patients at one baseline risk to a particular patient at a
different risk. – (Cook and Sackett, 1995)

Some authors prefer odds ratios because they believe a constant (homogeneous) odds
ratio may be more plausible than a constant risk ratio when outcomes are common. –
(Cummings, 2009)

All of this assumes a constant RR across risk groups; fortunately, a more or less constant
RR is usually the case, and we suggest you make that assumption unless there is evidence
that suggests it is incorrect. – (Guyatt et al., 2015)

Although further and more formal quantitative work evaluating the relative degree of
heterogeneity for risk ratio versus risk differences may be important, the previously men-
tioned considerations do seem to provide some indication that, for whatever reason, risk
ratio modification is uncommon. – (Spiegelman and VanderWeele, 2017)

It is commonly believed that the risk ratio is a more homogeneous effect measure than the
risk difference, but recent methodological discussion has questioned the evidence for the
conventional wisdom. – (Huitfeldt et al., 2018)

In the real world of clinical medicine, doctors are usually given information about the effects
of a drug on the risk ratio scale (the probability of the outcome if treated, divided by the
probability of the outcome if untreated). With information on the risk ratio, a doctor may
make a prediction for what will happen to the patient if treated, by multiplying the risk
ratio and patient’s risk if untreated (which is predicted informally based on observable
markers for the patient’s condition). – (Huitfeldt, 2019)

In this article we will show that the RR is not a measure of the magnitude of the
intervention-outcome association alone because it as stronger relationship with prevalence
and therefore is not generalizable beyond the baseline risk of the population in which it is
computed. – (Doi et al., 2020)

It is possible that no effect measure is “portable” in a meta-analysis. In cases where porta-
bility of the effect measure is challenging to satisfy, we suggest presenting the conditional
effect based on the baseline risk using a bivariate generalized linear mixed model. The
bivariate generalized linear mixed model can be used to account for correlation between
the effect measure and baseline disease risk. Furthermore, in addition to the overall (or
marginal) effect, we recommend that investigators also report the effects conditioning on
the baseline risk. – (Xiao et al., 2022)
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Despite some concerns, the RR has been widely used because it is considered a measure
with “portability” across varying outcome prevalence, especially when the outcome is rare.
– (Doi et al., 2022)

5.G Comments and answers to related article

As highlighted by the length of the references or even by Section 5.F: the literature on the choice
of causal measures is prolific. In this Section, we propose comments or answers to previous articles
in order to show how our contributions either complete what was said or shed lights on a different
apprehension of the problem.

5.G.1 Comments of Cook and Sackett (1995)

Cook and Sackett (1995)’s widely cited paper promotes the usage of absolute measure versus relative
measure for clinical decision. In particular they advocate the NNT as it is easier to interpret than a
difference of probabilities (RD). For example, we quote such a section:

For example, an estimated relative risk reduction of 50% might be statistically significant
and clinically important for patients at moderate to high risk of a particular adverse event.
However, for patients with a low probability of an event the risk reduction might not be
sufficient to warrant the toxicity and cost of active treatment. This is the main criticism
of relative measures of treatment effect for the purposes of clinical decision making.

We agree on the fact that for a binary outcome an absolute measure better (such as the NNT)
incorporates the baseline level, and therefore may be more informative for a patient (see for example
Lemma 18). In this article authors use clinical data on which the risk ratio is constant across subgroups,
and the treatment effect is beneficial. Interestingly, this what we show with the intrication model,
that if one measure is more likely to be constant across different populations or subgroup: this is the
RR (or the SR depending on the direction of the effect). These qualitative observations are completely
coherent with Lemmas 14 and 15.

5.G.2 Comments of Cummings (2009)

Cummings (2009) propose a review of how the OR and the RR differ. In particular, they review
typical arguments for pro and cons, while providing examples. In this section, we want to comment
how the intrication model (Lemma 13) allows to formalize many of their arguments and examples.

Some authors prefer odds ratios because they believe a constant (homogeneous) odds ratio
may be more plausible than a constant risk ratio when outcomes are common. Risk range
from 0 to 1. Risk ratios greater than 1 have an upper limit constrained by the risk when
not exposed. For example the risk when not exposed is 0.5, the risk ratio when exposed
cannot exceed 2 : 5 · 2 = 1. In a population with an average risk ratio of 2 for outcome Y
among those exposed to X, assuming that the risk for Y if not exposed to X varies from .1
to .9, the average risk ratio must be less than 2 for those with risks greater than 0.5 when
not exposed. Because the average risk ratio for the entire population is 2, the average risk
ratio must be more than 2 for those with risks less than .5 when not exposed. Therefore, a
risk ratio of 2 cannot be constant (homogeneous) for all individuals in a population if risk
when not exposed is sometimes greater than .5. More generally, if the average risk ratio is
greater than 1 in a population, the individual risk ratios cannot be constant (homogeneous)
for all persons if any of them have risks when not exposed that exceed 1/average risk ratio.

The authors claim that if τRR > 1, then

• The RR has an upper limit linked to the risk of the unexposed (p0(x) = b(x)),
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• Or, the RR cannot be constant on every individuals if their risk is above a certain threshold
being equal to 1/average risk ratio.

The intrication model perfectly describes such a situation, and we propose to illustrate why. As
authors consider that τRR > 1, then we use Lemma 13 with ∀x, mg(x) = 0. More specifically, the
authors mention that for τRR > 1 (that we rather model as ∀x, mg(x) = 0), it is not possible to have
a constant RR on each subgroup. We recall that,

∀x, τRR(x) = 1 +
1− b(x)
b(x)

mb(x) (5.41)

If τRR(x) is assumed constant, one can plot the probabilitymb(x) as a function of b(x) and observe that
indeed this quantity is bounded and/or that mb(x) can not exist for all baseline b(x). We illustrate
this equation on Figure 5.11.

Figure 5.11: Illustration of the impos-
sibility of having a constant τRR(x) > 1
if allowing all ranges for baseline risks
p0(x): This plot illustrates eq. 5.41 for
several constant values of τRR(x) (from
1.2 to 4), showing how the baseline risk
p0(x) implies different values of mb(x).
If the baseline risk is too high, then there
is no plausible mb(x) (the upper limit
is highlighted with the dashed red line).
The dark vertical dashed line illustrate
the precise example of Cummings (2009)
with τRR(x) = 2.

We want to add that, as the treatment effect is assumed to increase the occurence of the event,
then a better measure to use (at least if willing to maximise the chance to have a constant value for
each individuals as claimed by the author) is the survival ratio (see Theorem 15). In particular, the
Figure 5.11 can be adapted when considering a constant SR (see Figure 5.12). One can observe that
all ranges of the baseline risks are allowed.

Figure 5.12: Illustration of the pos-
sibility to have a constant τSR(x) < 1
when allowing all ranges for baseline
risks p0(x): This plot illustrates how sev-
eral constant values of τSR(x) (from 0.2
to 0.9) is allowed for any baseline values
p(x). Note that this implies a constant
mb(x).

Then, authors add the following comment.

Odds range from 0 to infinity. Odds ratios greater than 1 have no upper limit, regardless
of the outcome odds for persons not exposed. If we multiply any unexposed outcome odds
by an exposure odds ratio greater than 1 and convert the resulting odds when exposed to a
risk, that risk will fall between 0 and 1. Thus, it is always hypothetically possible for an
odds ratio to be constant for all individuals in a population.
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We agree that it is always hypothetically possible for an odds ratio to be constant for all individuals
(this corresponds to Lemma 17, and m(x) = m in the logistic working models). But note that this
does not mean that the odds ratio at the individual level is then the same for the population level due
to non-collapsibility.

Possibility of Constancy for Risk Ratios Less Than 1. For both risk and odds, the
lower limit is 0. For any level of risk or odds under no exposure, multiplication by a risk
or odds ratio less than 1 will produce a risk or odds given exposure that is possible: 0 to 1
for risks and 0 to infinity for odds. Thus, a constant risk or odds ratio is possible for ratios
less than 1. If the risk ratio comparing exposed persons with those not exposed is greater
than 1, the ratio can be inverted to be less than 1 by comparing persons not exposed with
those exposed. Therefore, a constant risk ratio less than 1 is hypothetically possible. This
argument has been used to rebut the criticism of the risk ratio in the previous argument.

To us, this argument is a consequence of Lemma 15 accounting for the fact that a RR less than 1 is
comparable to mb(x) = 0.

5.G.3 Comment on Appendix 3 of Huitfeldt et al. (2018)

Many of our insight can also be found in Huitfeldt et al. (2018) (and in particular in their Appendix).
Differences come from the way the model is introduced, along with the dependency in XB and XM

we highlight in the intrication model (and with the fact that we also deal with continuous outcomes).
In this section, we transpose their example from Appendix 3. What we want to highlight is that our
notations and framework enable another view of the problem. First, we quote the authors.

For illustration, we will consider an example concerning the effect of treatment with antibi-
otics (A), on mortality (Y ). We will suppose that response to treatment is fully determined
by bacterial susceptibility to that antibiotic (X). In the following, we will suppose that
attribute X has the same prevalence in populations s and t (for example because the two
populations share the same bacterial gene pool) and that treatment with A has no effect in
the absence of X. Further, suppose that this attribute is independent of the baseline risk
of the outcome (for example, old people at high risk of death may have the same strains
of the bacteria as young people at low risk).

Within the intrication model, and denoting X = 0 the absence of the mutation, this means that:

• “attribute X has the same prevalence in populations s and t” which corresponds to Definition 41;

• “treatment with A has no effect in the absence of X” mb(X = 0) = mg(X = 0) = 0,

• “Further, suppose that this attribute is independent of the baseline risk of the outcome” Here,
we think that this assumption could be easily transposed in our intrication model, clearly de-
composing XB and XM .

5.G.4 Comment on the research work from Cinelli & Pearl

The way Cinelli and Pearl (2020) deals with the problem is to encode the assumption of the problem
with selection diagrams. In particular selection diagrams are an extension of DAGs with selection
nodes, those nodes are used by the analyst to indicate which local mechanisms are suspected to differ
between two environments (in our example, the mortality mechanism is suspected to differ between
Los Angeles and New York, but not the mechanism).

A first difference to our work is that authors rather whant to predict in a target population PT,
ET

[
Y (1)

]
from ET

[
Y (0)

]
and PS01 and PS10 detailed below. Another difference is that authors mostly

reason marginally, while in our work we link subpopulations with larger populations relying on col-
lapsibility.
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Cinelli and Pearl introduce the following quantities:

PS01 := P
[
Y (1) = 1 | Y (0) = 0

]
, and PS10 := P

[
Y (1) = 0 | Y (0) = 1

]
.

Those quantity corresponds to mb and mg defined in Lemma 13, considering those quantities are not
depending on X. Therefore, their equation,

PΠ∗
[
Y (1) = 1

]
= (1− PS10)PΠ∗

[
Y (0) = 1

]
+ PS01(1− PΠ∗

[
Y (0) = 1

]
),

is completely equivalent to the intrication model, noting that PΠ∗ [
Y (0) = 1

]
corresponds to ET [b(x)].

The intrication model rather highlight the dependencies to covariates (i.e. chracteristics), while their
equation rather models the fact that only the baseline risk is necessary to be known if

Y (1) ⊥⊥ I | Y (0),

where I is the indicator of population’s membership and if effect is monotonous (and they denote
Y (1) ≤ Y (0) or conversely depending on the direction assumed).
In our work, such assumption is equivalent with assuming monotonicity (either mb(x) = 0 or mg(x) =
0) and that all treatment effect modifiers are not shifted.
Authors then propose to soften their assumptions deriving bounds on the target quantity PΠ∗ [

Y (1) = 1
]
.

Our work rather keeps on targeting causal measure themselves, and assume that we have access to
the shifted covariates of XM . We think this could be stated as,

Y (1) ⊥⊥ I | Y (0), XM ,

along with the monotonicity assumption.

5.H Details about the simulations

5.H.1 Comments on estimation

In this paper, we have been focusing on identification rather than estimation. In this simulation,
we illustrate the two approaches that can be taken when transforming identification formula (see
Propositions 5 and 6) into estimation: Plug-in g-formula or Inverse Propensity Sampling Weighting
(IPSW). Existing consistency results of these approaches for the Risk Difference are reviewed in Colnet
et al. (2020). We assume that the data sampled from PS is a randomized trial R of size n and the
data sampled from PT is a cohort T of size m which contains covariates information X and possibly
Y (0).

5.H.1.1 Plug-in formula

When considering generalization of the conditional outcome, the plug-in g-formula consists in esti-
mating the two surface responses E

[
Y (a) | X

]
using the RCT data from PT. We denote µ̂a,n(X) the

estimates (n is added to indicate that estimation is performed on the trial). Any approach can be
proposed, for e.g. OLS or non-parametric learners. These models are then used on the target sample
to estimate the averaged expected responses,

ÊT

[
Y (a)

]
=

1

m

∑
i∈T

µ̂a,n(X), (5.42)

where m denotes the target sample size. Doing so this estimate depends on the two sample sizes,
n and m. Finally, ÊT

[
Y (0)

]
and ÊT

[
Y (1)

]
are then used to estimate any causal measures on the

target population: RD, RR, OR, and so on. Consistency of procedure eq. 5.42 has been proven for
any consistent estimator µ̂a of E

[
Y (a) | X

]
in Colnet et al. (2022a).

Generalizing local effects using a plug-in formula suggests to estimate the local treatment effect (or
CATE) τ̂n(x) using S. This can be done using the previously introduced µ̂a(X) too (this is called T-
learner), and then making a difference or a ratio of the two depending on the causal measure someone
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wants to generalize. Then, one has to estimate ĝm(X,P (X,Y
(0))) using T , for exemple using a linear

model (or any other model). Finally, one can obtain the target treatment effect with

τ̂ =
1

m

∑
i∈T

ĝm(Xi, P (Xi, Y
(0)
i ))τ̂n(Xi), (5.43)

where m denotes the target sample size. Note that eq. 5.43 relies on the estimation of τ(X) directly.
While the estimation of the conditional risk difference is well described in the literature (Wager and
Athey, 2018; Nie and Wager, 2020) (to name a few), estimation of conditional ratios is way less
described. We have found only one recent work dealing with such questions (Yadlowsky et al., 2021).
Consistency of such procedure for another metric than the Risk Difference is an open research question.

5.H.1.2 Inverse Propensity Sampling Weighting (IPSW)

IPSW uses the ratio of densities to re-weight individual observation in the trial. Denoting r(X) :=
pT(X)
pS(X) the density ratio, one has first to learn this ratio r̂n,m(X) using both data set S and T . One
can generalize conditional outcomes doing:

ÊT

[
Y (a)

]
=

1

n

∑
i∈S

r̂n,m(Xi)AiYi.

Those estimates (ÊT

[
Y (0)

]
and ÊT

[
Y (a1

]
) are then used to estimate any causal measures on the target

population.
Now, considering generalizing local effects using a re-weighing approach rather suggest to also estimate
ĝm(X,P (X,Y

(0))) using T (for example using a linear model). Then, for e.g when considering the
Risk Difference, this consists in doing

τ̂RD =
1

n

∑
i∈S

r̂(Xi) (AiYi − (1−Ai)Yi) ,

or when considering the Risk Ratio, a procedure could be

ln (τ̂RR) =
1

n

∑
i∈S

r̂(Xi) (ln (AiYi)− ln ((1−Ai)Yi)) ĝm(Xi, P (Xi, Y
(0)
i )).

We use these weighting approaches for the simulation with a binary outcomes. As the purpose is
not estimation, we propose a simulation with categorical covariates only, in particular to propose an
estimation of r̂n,m(X) as in Colnet et al. (2022b). ĝm(X,P (X,Y

(0))) is estimating by computing the
empirical mean of E

[
Y (0) | X

]
in each category.

5.H.2 Continuous outcomes

Data generative process We assume that the outcome is generated linearly from six covariates in
the two populations

Y (a) = 0.05X1+0.04X2+2X3+X4+2X5−2X6+a·(1.5X1 + 2X2 +X5)+ϵ with ϵ ∼ N (0, 2). (5.44)

The two data samples are directly sampled from two different baseline distributions.
Covariates X1, X2, X3 are generated from

N

 6
5
8

 ,
 1 0 0.5

0 1 0.2
0.5 0.2 1


in PS, and in

N

 15
7
10

 ,
 1 0 0.5

0 1 0.2
0.5 0.2 1
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5.H. Details about the simulations

for PT. X4 is such that X4 ∼ B(1, 0.8) in PS and X4 ∼ B(1, 0.3) in PT. Then, X5 and X6 are
non-shifted covariates, where X5 ∼ B(1, 0.8) and X6 ∼ N (4, 1) in both populations.
Within the trial sample of size n we generate the treatment according to a Bernoulli distribution with
probability equals to 0.5.

Estimation For this simulation we applied a plug-in g-formula approach, using Ordinary Least
Squares (OLS) to estimate µ̂a,n and ĝm(X,P (X,Y

(0))). τ̂n is estimated combining µ̂a,n as a difference
or ratio or else (T-learner).

5.H.3 Binary outcomes

Data generative process For this simulation the baseline covariates are categorical to ease the
estimation strategy. The data generative model is build on top of eq. 5.6, and adapted to give,

P
[
Y (a) = 1 | X = x

]
= b(X1, X2, X3) + a (1− b (X1, X2, X3)) mb(X2, X3),

where X1 = lifestyle, X2 = stress, and X3 = gender.
Each of the three covariates are sampled following a Bernoulli distribution. In PS, one has X1 ∼
B(1, 0.4), X2 ∼ B(1, 0.8), and X3 ∼ B(1, 0.5). In PT, one has X1 ∼ B(1, 0.6), X2 ∼ B(1, 0.2), and
X3 ∼ B(1, 0.5).
The outcome is defined such as,

b(X) = ifelse(X1 = 1, 0.2, 0.05) · ifelse(X2 = 1, 2, 1) · ifelse(X3 = 1, 0.5, 1),

where ifelse corresponds to the function with the same name in R. And,

mb(X) = ifelse(X2 = 1, 1/4, ifelse(X3 = 1, 1/10, 1/6)).

Within the trial sample of size n we generate the treatment according to a Bernoulli distribution with
probability equals to 0.5.

Estimation We estimate the density ratio as in Colnet et al. (2022b), namely

∀x ∈ X , p̂T,m(x) :=
1

m

∑
i∈T

1Xi=x and, p̂R,n(x) :=
1

n

∑
i∈R

1Xi=x.

As the covariates are categorical, we apply the same strategy: estimate the local effect in each com-
bination of categories.
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Name Outcome type Definition Collapsibility Logic respecting
Invariant

to encoding

Covariate set

for generalization

Risk Difference (RD) Continuous τRD := E
[
Y (1)

]
− E

[
Y (0)

]
Directly collapsible Logic-respecting Not applicable XM∩Sh

Risk Ratio (RR) Continuous τRR := E
[
Y (1)

]
/E
[
Y (0)

]
Collapsible Logic-respecting Not applicable X(M∪B)∩Sh

Excess Risk Ratio (ERR) Continuous τERR := τRD/E
[
Y (0)

]
= τRR − 1 Collapsible Logic-respecting Not applicable X(M∪B)∩Sh

Risk Difference (RD) Binary τRD := P
[
Y (1) = 1

]
− P

[
Y (0) = 1

]
Directly collapsible Logic-respecting Multiplied by −1 X(M∪B)∩Sh

Number Needed to Treat (NNT) Binary τRD := 1/
(
P
[
Y (1) = 1

]
− P

[
Y (0) = 1

])
Not collapsible Logic-respecting Multiplied by −1 X(M∪B)∩Sh

Risk Ratio (RR) Binary τRR := P
[
Y (1) = 1

]
/P
[
Y (0) = 1

]
Collapsible Logic-respecting = τSR If mb(x) = 0, XM∩Sh

Survival Ratio (SR) Binary τSR := P
[
Y (1) = 0

]
/P
[
Y (0) = 0

]
Collapsible Logic-respecting = τRR If mg(x) = 0, XM∩Sh

Excess Risk Ratio (ERR) Binary τERR := τRD/P
[
Y (0) = 1

]
= τRR − 1 Collapsible Logic-respecting = τSR − 1 If mb(x) = 0, XM∩Sh

Relative Susceptibility (RS) Binary τRS := τRD/P
[
Y (0) = 0

]
= 1− τSR Collapsible Logic-respecting = 1− τRR If mg(x) = 0, XM∩Sh

Odds Ratio (OR) Binary τOR :=
P[Y (1)=1]

P[Y (1)=0]

(
P[Y (0)=1]

P[Y (0)=0]

)−1

= τRR · τ−1
SR Non collapsible Not logic-respecting Reciprocal X(M∪B)∩Sh

Log Odds Ratio (log-OR) Binary τlog-OR := log

(
P[Y (1)=1]

P[Y (1)=0]

)
− log

(
P[Y (0)=1]

P[Y (0)=0]

)
Non collapsible Not logic-respecting Multiplied by −1 X(M∪B)∩Sh

Table 5.5: Typical causal measures reported in clinical practice: The upper part of the Table mentions the three typical measures found when the outcome is ordinal
or continuous, and the lower part mentions measures for binary outcomes. For each measure we provide the explicit formulae, and propoerties such as collapsibility (see
Definitions 37 and 38), invariance to encoding (also called symetry in the literature), and whether the covariate set for generalization by standardization is extended or not. All
these properties are defined in this article, and prooved for each of the measures.
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Chapter 6

Conclusion

The scientific context of this thesis This thesis is part of the current movement aiming to
strengthen how clinical evidence is built. The ongoing advances of the scientific community are using
modern tools – namely data availability and computational power. One of the recent emphasis in the
literature is how different data sources can complement each other. In the scope of that question, this
thesis tackles the very precise and practical question of the generalization of trial findings toward a
target population. In other words, we proposed methodological and theoretical results to procedures
targeting the following question: “What average treatment effect would have this trial given, if the
individuals were rather sampled in the target population of interest ?”.

Navigating new methods questions This work is tremendously shaped and guided by appli-
cation, in particular by the clinical questions driving our clinician collaborators who work on the
Traumabase registry. We were given a question from clinical research, and therefore started an ex-
tensive review of the existing methods combining two data samples. As the domain is quite recent,
we had to implement all the methods and test them through simulations. The practical application
of these methods led us to discover more questions than we had initially anticipated. We became
interested in obtaining theoretical guarantees and guidance pertaining to these novel procedures. The
specificity of clinical research is indeed to seek for guarantees as the conclusions impact individuals’s
health. This led us to develop a sensitivity analysis to address the challenge of partially observed co-
variates, as we faced such a situation. We drew inspiration from previous seminal sensitivity analyses,
while adapting them to the specific research question at hand. For instance: incorporating specific
sensitivity parameters for population shift and accounting for all missing data patterns due to the
presence of several data sets (see Chapter 3).

However, even in a scenario where all covariates are observed, we asked questions regarding the general
statistical behavior of an estimator which depends on two data samples sizes. How do the relative
sizes of the data sets impact the performances? Can we have finite sample guarantees? What is the
impact on these properties when a user adds too many covariates in the adjustment set? We provided
answers to all of these questions for the most intuitive estimator – re-weighting the trial individuals
with density ratio (see Chapter 4).

At the start of this research journey, one of our clinician collaborators piqued our interest with a
question about a common practice in statistical papers: the focus on absolute difference when con-
sidering a causal effect. The ratio or the odds ratio seem indeed to be preferred measures in the
medical field. This question motivated us to delve deeper into the significance of causal measures,
which led to extensive new readings. The specific prism that generalization offers led us to propose a
contribution about identification of transported causal effect. We found that so-called transportability
assumptions change depending on the considered causal measure (see Chapter 5). And a by-product
of this work is a new proposal to qualify homogeneity of an effect: not through the measure itself, but
through a non-parametric generative process of the outcome. Results from this framework align with
the empirical practices from different fields such as clinical or econometrical research.
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Chapter 6. Conclusion

What are the scientific perspectives? We forsee three perspectives to our work. (1) The most
direct extensions could come from softening certain assumptions used in some theorems. For example
the results of Chapter 3 could be extended with a non-linear effect modification in the covariates.
Similarly, one could extend the theoretical results from Chapter 4 to answer the following question:
How are the results from Chapter 4 evolving when considering a set of covariates containing continuous
covariates? Another promising area of research lies in the characterization of estimation procedures,
for measures beyond the difference. Chapter 5 indeed focuses on identification, with simulations
providing a preliminary foundation for estimation. However, there is a substantial amount of work
that needs to be done to rigorously define and theoretically characterize estimation strategies. (2)
Meta-analysis also emerges as a potential exploration avenue in light of the findings from our research.
Meta-analysis is all about combining results from different studies, but usually already aggregated
effects. In the light of the external validity questions and the generalization of trial findings, we would
find relevant to have a precise understanding of what a meta-analysis targets, and how generalization
approach can lead to another way of linking studies results. As meta-analysis is considered by most as
the best evidence one can reach (see Figure 1.6), such work could impact the community at large. (3)
Lastly, in the introduction we highlighted that as of today and in practice, generalizability of a study
is usually discussed by what undermines external validity. An example commonly cited by clinicians
is the comparison of Tables 1 from different studies, which may raise concerns whether differences in
recruited populations prevent any extrapolation or not. Somehow, generalization procedures allow
going one step further, by turning a population’s shift into an estimated transported expected effect.
Applying the generalization on more clinical questions is a crucial step in validating the relevance and
real-world applicability of the methods described in this thesis. As illustrated for the IPW methods
(see Figure 1.5) there can be a considerable time between a statistical innovation and its adoption. As
statisticians, yes we can propose theoretical foundations. But collaborations are key in this upcoming
phase.

What personal convictions have backed this approach? Any action is influenced by one’s
subjective approach and interests. In the following final thesis lines, I1 would like to explain how some
of my convictions have influenced this work. First, it is not an exaggeration to say that most (if not
all) research questions I tackled in this work comes from the application. People working in companies
would not be surprised, as they are used to be driven by the customers. But many argue that science
is supposed to be driven by something else. Something that lies above us, related to knowledge, and
maybe truth. While I do believe that without this appeal to understand the world, humanity would
be deprived of its essence, I also think that statistical research has to be confronted with real data
and those who actually use it. Why statistics especially? To quote Brad Efron: “[. . . ] statisticians
have quite an advantage in the dean’s office because we deal with lots of different fields, while most
other academics deal only with their own field.” (Holmes et al., 2003). This quote highlights that
statisticians’ work is supposedly meant for other fields. Statistics could surely be developed for itself,
but would therefore be a different science, as only real data can finally answer scientific and practical
questions. While I also think that I could have done way more applied collaborations, this explains
why I was constantly driven by applications during this thesis. Doing so is at the risk of tackling less
impressive questions, and to rather prefer simpler set-ups (at least for a statistician).

Second, as a person trained primarily as an engineer, one of my main surprise when I entered the
statistics field is that: when facing real data, then reality is usually very finite (i.e. small to very
small data), while statistical books are full of large sample results. How do finite samples impact the
asymptotic results, which are traditionally used to guide applications? This is why I decided to focus
on a different set of assumptions that is usually done (e.g. adjusting on categorical covariates) to be
able to derive finite sample bias and variance. Reality is certainly not as simple as categories, but
I hope that this characterization helps to provide a fair model. Another surprise was the constant
presence of assumptions about data generating processes, while little is known about the true nature
of those processes This explains how I tried to do the so-called parametric assumptions as little as

1As a very personal note, this last paragraph uses “I”.
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possible (e.g. Chapter 3 with consistency proofs for any learners or the semi-synthetic simulation’s
section; or Chapter 5 proposing non-parametric models).
Finally, as a student, I struggled with the ability to reproduce proofs and simulations. I had many
troubles findings how existing results were proven. All my research works – and especially proofs –
are written so that any student with a Master level should be able to follow the derivations. I hope
that the time invested in detailing the proofs will be valuable for others.
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Jiménez, F. J., E. Guallar, and J. M. Martin-Moreno (1997). A graphical display useful for meta-
analysis. European Journal of Public Health 7, 101–105.

Johnson, A. E., T. J. Pollard, L. Shen, L.-w. H. Lehman, M. Feng, M. Ghassemi, B. Moody,
P. Szolovits, L. Anthony Celi, and R. G. Mark (2016). Mimic-iii, a freely accessible critical care
database. Scientific data 3 (1), 1–9.

Jolani, S., T. Debray, H. Koffijberg, S. van Buuren, and K. Moons (2015). Imputation of systematically
missing predictors in an individual participant data meta-analysis: a generalized approach using
mice. Statistics in medicine 34 (11), 1841–1863.

Josey, K. P., S. A. Berkowitz, D. Ghosh, and S. Raghavan (2021, May). Transporting experimental
results with entropy balancing. Statistics in Medicine 40 (19), 4310–4326.

Josse, J., N. Prost, E. Scornet, and G. Varoquaux (2019). On the consistency of supervised learning
with missing values. arXiv preprint arXiv:1902.06931 .

Jung, Y., J. Tian, and E. Bareinboim (2020a). Estimating causal effects using weighting-based estima-
tors. In Proceedings of the AAAI Conference on Artificial Intelligence, Volume 34, pp. 10186–10193.

Jung, Y., J. Tian, and E. Bareinboim (2020b). Learning causal effects via weighted empirical risk
minimization. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Advances
in Neural Information Processing Systems, Volume 33, pp. 12697–12709. Curran Associates, Inc.

Jung, Y., J. Tian, and E. Bareinboim (2021, May). Estimating identifiable causal effects through
double machine learning. Proceedings of the AAAI Conference on Artificial Intelligence 35 (13),
12113–12122.

Kallus, N., X. Mao, and M. Udell (2018). Causal inference with noisy and missing covariates via
matrix factorization. In Advances in neural information processing systems, pp. 6921–6932.

Kallus, N., A. M. Puli, and U. Shalit (2018). Removing hidden confounding by experimental grounding.
In Advances in Neural Information Processing Systems, pp. 10888–10897.

Karvanen, J., S. Tikka, and A. Hyttinen (2020). Do-search: a tool for causal inference and study
design with multiple data sources. Epidemiology 32 (1), 111–119.

Keiding, N. and T. A. Louis (2016). Perils and potentials of self-selected entry to epidemiological
studies and surveys. Journal of the Royal Statistical Society: Series A (Statistics in Society) 179,
319–376.

Kennedy, E. H. (2016). Semiparametric theory and empirical processes in causal inference. In Statistical
Causal Inferences and Their Applications in Public Health Research, pp. 141–167. Springer.

Kennedy-Martin, T., S. Curtis, D. Faries, S. Robinson, and J. Johnston (2015). A literature review
on the representativeness of randomized controlled trial samples and implications for the external
validity of trial results. Trials 16, 1–14.

Kenward, M. (2013). The handling of missing data in clinical trials. Clinical Investigation 3 (3),
241–250.

Kern, H. L., E. A. Stuart, J. Hill, and D. P. Green (2016). Assessing methods for generalizing experi-
mental impact estimates to target populations. Journal of research on educational effectiveness 9 (1),
103–127.

249



Chapter 6. Conclusion

King, G. and L. Zeng (2002). Estimating risk and rate levels, ratios and differences in case-control
studies. Statistics in medicine 21 (10), 1409–1427.

Knaus, M. C., M. Lechner, and A. Strittmatter (2021). Machine learning estimation of heterogeneous
causal effects: Empirical monte carlo evidence. The Econometrics Journal 24 (1), 134–161.

Kreif, N. and K. DiazOrdaz (2019). Machine learning in policy evaluation: new tools for causal
inference. ArXiv abs/1903.00402.

Krieger, N. (1994). Epidemiology and the web of causation: has anyone seen the spider? Social
science & medicine 39 (7), 887–903.

Krueger, A. B. (1999a). Experimental estimates of education production functions. The quarterly
journal of economics 114 (2), 497–532.

Krueger, A. B. (1999b). Experimental Estimates of Education Production Functions. The Quarterly
Journal of Economics 114 (2), 497–532.

Künzel, S. R., J. S. Sekhon, P. J. Bickel, and B. Yu (2019). Metalearners for estimating heterogeneous
treatment effects using machine learning. Proceedings of the national academy of sciences 116 (10),
4156–4165.

Künzel, S. R., S. J. Walter, and J. S. Sekhon (2019). Causaltoolbox—estimator stability for hetero-
geneous treatment effects. Observational Studies 5 (2), 105–117.

Künzel, S., J. Sekhon, P. Bickel, and B. Yu (2017, 06). Meta-learners for estimating heterogeneous
treatment effects using machine learning. Proceedings of the National Academy of Sciences 116.

Laan, M. and S. Rose (2011, 01). Targeted Learning: Causal Inference for Observational and Experi-
mental Data.

L’abbé, K. A., A. S. Detsky, and K. O’rourke (1987). Meta-analysis in clinical research. Annals of
internal medicine 107 2, 224–33.

Lane-Claypon, J. E. et al. (1926). A further report on cancer of the breast with special reference to its
associated antecedent conditions. A Further Report on Cancer of the Breast with Special Reference
to its Associated Antecedent Conditions. (32).

Langmuir, A. D. (1976). William farr: founder of modern concepts of surveillance. International
journal of epidemiology 5 (1), 13–18.

Lapointe-Shaw, L., G. Babe, P. C. Austin, A. P. Costa, and A. Jones (2022, Nov.). Reporting risk:
from math to meaning. Canadian Journal of General Internal Medicine 17 (4), 59–66.

Laupacis, A., D. L. Sackett, and R. S. Roberts (1988). An assessment of clinically useful measures
of the consequences of treatment. New England Journal of Medicine 318 (26), 1728–1733. PMID:
3374545.

Lauritzen, S. L. and T. S. Richardson (2008). Discussion of mccullagh: Sampling bias and logistic
models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70 (4), 671.
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Résumé : La médecine moderne, aussi dite
médecine fondée sur les preuves, place les essais
contrôlés randomisés (ECRs) au premier plan de la
preuve clinique. En effet, la randomisation permet
une estimation de l’effet causal du traitement, au lieu
de la simple association ou corrélation. Cependant,
de plus en plus de limites sont trouvées aux ECRs,
du fait de leurs stricts critères d’éligibilité, des condi-
tions de réalisation, des périodes de temps trop res-
treintes qu’ils couvrent, ou encore de leur petite taille
d’échantillon. Toutes ces raisons entament ce que
l’on appelle la validité externe des résultats. L’utili-
sation de données observationnelles – ou dites de
vie réelle – constitue une potentielle solution. Les
autorités sanitaires comme le régulateur américain
(Food and Drug Administration) ou encore la Haute
Autorité de la Santé (HAS) soutiennent ces nou-
velles pratiques. Mais les données de vie réelle ne
sont pas non plus une panacée, car leur analyse re-
pose sur des hypothèses non vérifiables pour la plu-
part. Des travaux plus récents proposent de com-
biner les deux sources de données, afin de renfor-
cer les faiblesses de l’une par les forces de l’autre.
Ainsi, cette thèse propose d’abord une revue de
toutes les méthodes existantes sur le sujet, que ce
soit pour déconfondre une base de données ob-
servationnelles à partir de données expérimentales
ou bien pour généraliser à d’autres populations une
étude randomisée. Ce travail de thèse propose en-

suite d’approfondir ce dernier aspect, en utilisant la
représentativité des données de vie réelle pour re-
pondérer les résultats d’un ECR. Cette thèse étudie
les propriétés théoriques de ces méthodes, telles que
les propriétés d’estimation à taille finie ou asymp-
totique (biais et variance). Ces résultats permettent
d’obtenir des recommandations pratiques pour la re-
cherche clinique, notamment concernant la sélection
de covariables. Cette thèse propose également une
analyse de sensibilité lorsque les covariables sont
partiellement ou totalement observées. La plupart
des travaux existants définissent l’effet d’un traitement
comme une différence absolue. Pourtant, d’autres
métriques, comme le ratio, sont préférées dans la re-
cherche clinique. Par conséquent, cette thèse ouvre
également la voie à la généralisation de toutes les
mesures causales, et non pas seulement de l’une
d’entre elles. Ce faisant, nous relions la généralisation
à une préoccupation plutôt ancienne de la causalité,
à savoir la collapsibilité d’une mesure. Nous propo-
sons également une autre façon d’appréhender ce
que l’on appelle l’hétérogénéité d’un effet. Ceci nous
permet de montrer que les méthodes pour généraliser
un effet causal dépendent de la nature de l’outcome
(continu ou binaire) ainsi que de la nature de la me-
sure d’intérêt (ratio ou différence). Tous les travaux de
cette thèse sont développés en lien avec la recherche
clinique, notamment via le consortium français de la
Traumabase.
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Abstract : Modern evidence-based medicine places
Randomized Controlled Trials (RCTs) at the forefront
of clinical evidence. Randomization enables the esti-
mation of the average treatment effect (ATE) by eli-
minating the confounding effects of spurious or un-
wanted associated factors. More recently, concerns
have been raised on the limited scope of RCTs :
stringent eligibility criteria, unrealistic real-world com-
pliance, short timeframe, limited sample size, etc. All
these possible limitations threaten the external validity
of RCT studies to other situations or populations. The
usage of complementary non-randomized data, refer-
red to as observational or from the real world, brings
promises as additional sources of evidence. Today,
there is a growing incentive to rely on this new data,
which is also endorsed by health authorities such as
the Food and Drug Administration (FDA) in the U.S.
and the Haute Autorité de la Santé (HAS) in France.
Combining both data types – randomized and obser-
vational – is a new venue that could make the most
of both worlds. First, this thesis proposes a review of
all the existing methods combining several data types
to build clinical evidence. Then, the thesis is focused
on improving the external validity of RCTs. In other
words, how can we use representative sample of the

target population of interest to re-weight or to gene-
ralize the trial’s findings? Such methods are quite
recent and have been proposed in the early 2010’s.
This thesis investigates theoretical properties of these
methods, such as finite and large sample properties
(bias and variance) of the estimation, which helps to
provide practical guidelines about covariates selection
and the impact of both samples’ sizes. This thesis also
proposes a sensitivity analysis when covariates are
either partially or totally unobserved. Most – if not all –
current statistical works concern the generalization of
the effect on the scale of the absolute difference, while
our clinicians collaborators pointed to us the need to
encompass several causal measures (e.g. ratio, odds
ratio, number needed to treat). Therefore, this thesis
also opens the door to the generalization of all cau-
sal measures of interest. Doing so, we link generali-
zation with a rather old concern of causality, namely
collapsibility of a measure. We also propose a new
framing to apprehend heterogeneity of a treatment ef-
fect. Finally, it turns out that assumptions required for
generalization depend on the nature of the outcome
and the causal measure of interest. All our research
questions are motivated by clinical applications, and
in particular by the Traumabase consortium.
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