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Thanks to God, Who have been hearing my deepest prayers, and Who taught me that things happen when they are supposed to happen, not before nor after.

Thanks to my mother, for being such a good mom who always fought for my right to do whatever I wanted to do,

Résumé

L'orgue à tuyaux est un instrument monumental qui est devenu au fil des siècles l'instrument de musique le plus associé à la musique sacrée. Composé de plusieurs milliers de tuyaux, qui agissent simultanément comme des sources ponctuelles et des diffuseurs, ceux-ci sont répartis dans une ou plusieurs cavités résonantes: les buffets. Ces derniers sont généralement ouverts dans une seule direction: la façade de l'instrument. Ainsi, le son généré par les tuyaux est renforcé ou atténué à certaines fréquences, en fonction des dimensions des buffets, puis diffusé par les corps des tuyaux, et enfin rayonné à travers la façade de l'instrument. De plus, à partir de la fin du XVII e siècle, certains buffets sont équipés d'un dispositif d'expression: des jalousies qui peuvent être fermées et ouvertes afin de réduire ou d'amplifier le rayonnement de l'instrument. Ce dispositif, connu aujourd'hui sous le nom de "boîte expressive", permet une certaine variation dynamique du son rayonné, dont l'intensité, le contenu spectral et la directivité sont modulés par l'ouverture des jalousies. L'objectif de cette thèse est donc de modéliser et de quantifier les effets acoustiques d'un buffet d'orgue, en particulier la boîte expressive. Dans ce sens, les champs acoustiques à l'intérieur et à l'extérieur d'une boîte expressive sont étudiés. Le travail accompli comprend la conception d'un buffet d'orgue expérimental simplifié, qui a été mesuré dans des conditions anéchoïques, comme des mesures effectuées dans la boîte expressive d'un instrument réel. Dans ce contexte, la réponse modale du buffet d'orgue simplifié a été évaluée sous l'influence de: (i) une forêt de tuyaux à l'intérieur, (ii) une seule fente sur sa façade, (iii) une forêt de tuyaux combinée à une seule fente, (iv) une forêt de tuyaux combinée à une façade complètement ouverte. Les résultats ont montré que les résonances de la cavité sont : (i) atténuées et déplacées vers des fréquences plus basses lorsque des tuyaux sont ajoutés à l'intérieuré; (ii) déplacées vers des fréquences plus élevées lorsqu'une ouverture est introduite dans les parois limitrophes. En outre, le rayonnement sonore du buffet d'orgue simplifié a été évalué pour différents taux d'ouverture de sa façade, et le rayonnement à travers une fente unique a été étudié pour: (i) une onde plane incidente, (ii) des champs sonores plus complexes liés au couplage avec une cavité rectangulaire (remplie ou non d'une forêt de tuyaux). Il a été observé qu'une seule fente a un impact significatif sur l'atténuation globale de la façade et que la position de la source à l'intérieur de la cavité joue un rôle fondamental dans la directivité du rayonnement de la fente à l'extérieur de la cavité. De plus, la réponse modale d'une boîte expressive a été évaluée en fonction de différentes conditions d'ouverture statique des jalousies, où peu d'influence a été observée aux basses fréquences. L'impact des conditions d'ouverture statiques et dynamiques des volets sur les champs acoustiques à l'intérieur et à l'extérieur de la boîte expressive a été étudié pour plusieurs positions. Les résultats suggèrent que: (i) les dimensions des jalousies influencent le caractère de filtrage des fréquences de la boîte expressive; (ii) le crescendo et decrescendo a plus d'impact sur le son rayonné à l'extérieur de la boîte expressive qu'à l'intérieur; (iii) les paramètres acoustiques basés sur SPL ne semblent pas être les plus adéquats pour évaluer les sensations acoustiques subjectives causées par la boîte expressive. Finalement, l'acoustique d'une boîte expressive a été examinée en tenant compte des connaissances acquises avec le buffet d'orgue simplifié, ce qui nous a permis de tirer les conclusions suivantes: (i) l'atténuation de la façade dépend de la nature de l'onde sonore incidente; (ii) le son rayonné par un buffet expressif est différent du son rayonné par n'importe quel buffet de mêmes dimensions en raison du filtrage acoustique qui en résulte, inhérent aux jalousies. Enfin, une fréquence normalisée ν est proposée pour faciliter l'identification modale des boîtes expressives de différentes dimensions.

Mots clés: acoustique de la boîte expressive, rayonnement d'orgues, réponse modale de cavités rectangulaires, diffusion multiple par des cylindres, rayonnement sonore par une fente. 

Chapter 1

Introduction "The king of instruments", as called by Guillaume de Machaut, is what the pipe organ became over the centuries [START_REF] Barber | If It Ain't Baroque: More Music History As It Ought to Be Taught[END_REF]. Among all musical instruments, the organ is the one most closely associated with church music, and excel from the rest because of its atypical monumental dimensions. Besides its grandiosity, the organ also intrigues for its unique sonority. In the musical acoustics context, such singular sonority is explained as the result of complex acoustic interactions between the different components of a pipe organ [START_REF] Henrique | Acústica musical[END_REF]: the diverse buffets, the thousands of pipes, that can be made of metal or wood, with various lengths and shapes, and far more.

To start, the sound is generated inside the organ by the aeroacoustic oscillation of the pipes, which fundamental frequency depends on the length of each pipe. These pipes are, typically, distributed in one or more resonant cavities: the buffets. The buffets, which primary function is to protect the pipes against dust, are boxes generally open in one direction: the instrument's facade. Inside them, the sound is reinforced or attenuated at some specific frequencies according to the buffets dimensions and the acoustic propagation. Then, the pipes' bodies scatter the sound that is finally radiated through the instrument facade. In Figure 1.1, the acoustic subsystems of the choir organ are identified.

Towards the end of the 17 th century, with the aim of delivering a kind of additional expression to the organ, the idea was born of introducing mobile shutters on the instrument's facade, which until then had always been open [START_REF] Braasch | Acoustical measurements of expression devices in pipe organs[END_REF][START_REF] Luizard | Effet des jalousies du récit d'orgue comme moyen d'expressivité musicale[END_REF]. Nowadays called "swell box" ("boîte expresssive" in French), this expression device is controlled by the organist by means of an expression pedal or spoon, and allows dynamic crescendo-decrescendo effects when opening or closing the shutters. Subjectively, when opening the sound is heard as more intense, brighter and richer; while when closing we have the feeling of distance from the source [START_REF] Castellengo | Écoute musicale et acoustique. Avec 420 sons et leurs sonagrammes décryptés[END_REF].

Even if research about pipe organs are quite recurring in acoustics [START_REF] Abel | Synchronization of organ pipes: experimental observations and modeling[END_REF][START_REF] Angster | Acoustics of organ pipes and future trends in the research[END_REF][START_REF] Disley | Spectral correlates of timbral semantics relating to the pipe organ[END_REF][START_REF] Friot | Effet de la durée des notes sur le niveau sonore d'un orgue[END_REF][START_REF] Gautier | Vibro-acoustics of organ pipes-revisiting the miller experiment (l)[END_REF][START_REF] Jeon | Investigation of the acoustical characteristics of organ pipes in a performing space[END_REF][START_REF] Ravina | Restoration of ancient pipes organs aided by experimental vibration and acoustic modal analyses[END_REF][START_REF] Stepanek | Acoustic documentation of 12 pipe organs and analysis of their plena[END_REF]Syrov ỳ et al., 2001) the swell box specifically has received much less attention. [START_REF] Braasch | Acoustical measurements of expression devices in pipe organs[END_REF][START_REF] Braasch | Acoustical measurements of expression devices in pipe organs[END_REF] measured contemporary and historical instruments to study the effectiveness of three different expression devices, including the swell box, which was found to have a dynamic range of approximately 10-20 dB. Five years later, [START_REF] Angster | Research organ for pipe organ research at the fraunhofer ibp in stuttgart[END_REF] had built a "research organ", whose innovations include newly developed removable shutters. These resulted in a more symmetrical sound radiation and higher relative amplification (about 5 dB). A decade after Braasch, Luizard and d'Alessandro (2018) performed measurements in a romantic organ and found that the opening rate affects less the acoustic field inside the box than outside. Authors also found greater sound level differences when closing the shutters on the reeds, explained by the fact that these pipes have a richer spectrum and that the closed box restricts more the radiation at high frequencies. It becomes clear that the aforementioned works focused mainly on radiated sound.

Actually, in exception of [START_REF] Luizard | Effet des jalousies du récit d'orgue comme moyen d'expressivité musicale[END_REF] that treated the question superficially, both works excluded a deeper analysis of the acoustic field inside the swell box, and its implication in the coupling between inner-outer fields of this expression device. Such gap motivated the current research.

Therefore, the first claim of this thesis is to verify to what extent physical models can predict the acoustics of a simplified experimental model of a swell box. Secondly, the acoustic of a swell box of a real pipe organ will be studied under the light of the simplified experimental model. Understandably, both the acoustic fields inside and outside the swell box, as the interaction between these, will be analyzed in the experimental model and in the real instrument.

Objectives

The objectives of this thesis are divided in a main general one, the purpose of the present research, and the specific objectives, which help achieve the major claim.

Main objective

The main objective of this work is to study the acoustics of a real swell box through a simplified experimental model of it, and confront such experimental model with physical models that predict different acoustic phenomena to which the swell box is submitted.

Specific objectives

The specific objectives of this thesis are:

• conceive a simplified experimental model of a swell box / organ buffet, by taking into account only a few elements that characterize a swell box and the intended acoustic phenomena;

• validate the two-dimensional acoustic behavior of the simplified experimental model;

• evaluate the modal response of the simplified organ buffet under the influence of: (i) a pipes forest inside it, (ii) a single slit on its facade, (iii) both the pipes forest combined with a single slit; (iv) both the pipes forest combined with the opened facade;

• study the sound radiation through a single slit for: (i) an incident plane wave, (ii) more complex sound fields related to the coupling with a rectangular cavity;

• assess the sound radiation of the simplified organ buffet for different opening rates of its facade;

• evaluate the modal response of a swell box according to different static opening conditions of the shutters;

• assess the impact of both static and dynamic opening conditions of the shutters in the acoustic fields inside and outside the swell box for multiple positions;

• analyze the acoustics of a swell box under the previous knowledge acquired with the simplified organ buffet.

Document structure

This document is structured in six chapters. This chapter contextualizes the work, addressing the motivations that originated it, as well as the general and specific objectives of the study.

In Chapter 2 the state of art is presented including relevant concepts and formulations for a proper development of this work. The framework and limitations of this work are also discussed.

Subsequently, in Chapter 3, measurements under controlled conditions are carried out for a simplified experimental organ buffet. Results are compared with the numerical predictions of Chapter 2. The influence of different factors in the modal response of the simplified organ buffet is studied as the influence of different opening rates on the radiated sound.

In Chapter 4, measurements of the swell box of a real instrument are carried out.

Like in Chapter 3, the experimental results are confronted with the numerical predictions of Chapter 2.

In sequence, Chapter 5 resumes the findings of the simplified physical model and the swell box presented in Chapters 3 and 4 respectively. Confrontations of the results obtained are conducted taking into account the measurement conditions of both cases.

Finally, in Chapter 6, the final considerations of this thesis are presented, enlightening the implications and limitations of what was developed. In addition, some suggestions for future work are listed.

Chapter 2

State of art & acoustics problematic of a swell box

A rectangular cavity fulfilled with pipes, placed in a church Abstract The purpose of this chapter is to introduce essential concepts that help in the comprehension of the current work. In a first moment, the pipe organ itself is described in the point of view of the musical acoustics, considering only some key elements. In a second moment, the propagation of sound waves inside a rectangular cavity is discussed, where the modal theory is addressed. In sequence, the sound scattering by multiple cylinders is considered for both ordered and aleatory arrays, the last approach being retained. Further, the sound radiation through a slit is studied, and some room acoustics parameters of interest for a church are introduced. Finally, the frameworks of this study and its limitations are established.

Musical acoustics of a pipe organ

As mentioned at the beginning of Chapter 1, the pipe organ is the largest musical instrument, having the widest variability of the radiated sound. In a rough comparison, the organ is for the wind instruments what the piano is for the string instruments. The major difference between them, besides the sound generation itself (string vibration in the piano to aeroacoustics oscillations in the organ), is that in a piano a keynote corresponds to an ensemble of one to three strings, which is most often not the case in an organ.

Actually, for the sound generation, different kinds of flue and reed pipes are used, which acoustic mechanisms and sound quality are quite different as it will be further discussed. Moreover, the pipe organ comprehends various pipes families, called stops. Each stop has a singular timbre associated to it, and to each pipe of a stop corresponds a single musical note. The inverse is not true however: with the same keynote, it is possible to play several pipes from different stops (or even of the same stop), individually or combined.

The behavior of the pipe organ is influenced by the air supply, in particular by the construction of wind-chests and valves. The source of energy in the organ, contrary to the piano (or acoustic wind instruments in general), is nowadays an electrically driven blower. For the organist, it means two things: (i) the energy expended in playing and the desired volume are uncorrelated; (ii) the emotional feedback between playing technique and the produced sound are much smaller than with other musical instruments, acoustic or electrical [START_REF] Meyer | Pipe and reed organs[END_REF].

Besides that, the great pipe organ has a particularity that other musical instruments do not have: it has a fixed position, without the possibility to move it elsewhere. For that reason, room acoustical conditions play an important role for the organ sound. As the instrument always remains at the same surroundings, the sound characteristics have to be in adequacy to such conditions, for example, to the reverberation time, the clarity and other measurable room acoustic parameters.

Sound generation in a pipe organ

As for all wind instruments, the sound generation process in the pipe organ is a non-linear process, for both flue and reed pipes. Both types of pipes produce self-sustained oscillations, which implicates the presence of non-linearities. These are translated as a high acoustic pressure inside the pipe [START_REF] Chaigne | Acoustics of musical instruments[END_REF].

In a flue pipe, the sound is generated by the air jet that is blown out of the flue slit against the upper lip, where vortex will be formed. The interaction of the air jet with the upper lip acts as a non-linear generator that is coupled to the tube, the latter being considered as passive linear resonator [START_REF] Meyer | Pipe and reed organs[END_REF]. The main components of a flue pipe are presented in Figure 2.1b. These pipes can be made on wood, having a square section; or on metal, being cylindrical or conical (Figure 2.1a). [START_REF] Fabre | Physical modeling of flue instruments: A review of lumped models[END_REF] demonstrated that the turbulence is a dominant component of the flow and an essential sound source in the flue pipes. During the stationary regime, the energy losses caused by the vortex formation become a non-linear mechanism that limits the sound amplitude, and contribute to the energy transfer to higher frequencies of the spectrum [START_REF] Fabre | Vortex shedding in steady oscillation of a flue organ pipe[END_REF]. In a reed pipe, the sound is generated by a metallic tongue, which vibration will modulate the airflow through a cavity called shallot. The tuning wire, that presses the tongue against the shallot, will control the tuning. Moving the wire up or down varies the vibrating length of the tongue. The main components of a reed pipe are presented in Figure 2.2. In the same figure, some types of reed pipes are presented too, which denominations evidences their timbres [START_REF] Henrique | Acústica musical[END_REF]. A single reed is a thin flexible rod (plate) that is clamped at one end and free at the other end [START_REF] Fabre | Aeroacoustics of musical instruments[END_REF]. The interaction between the tongue vibration and the resonator is complex and was put in evidence by [START_REF] Miklós | Interaction of reed and resonator by sound generation in a reed organ pipe[END_REF]. Before their work, the common belief was that the reed vibration frequency was not influenced by the acoustic modes of the resonating pipe. Nevertheless, it has been shown that there is a strong mutual influence caused by the coupling of the reed to the resonator.

General configuration of a great pipe organ

The simplified structure of an organ is presented in Figure 2.3. To start, the blower provides compressed air to the instrument, maintained at constant pressure by the regulators. Then, the air is fed into the wind-chests 1 on which stand the pipes that produce the sound. These pipes, which compose the stops, are enclosed in different buffets 2 , as stated in Chapter 1, and each of them is controlled by its own keyboard or pedalboard. 1 Villegas Curulla and Fabre (2022) showed the influence of the wind-chest on the pipes sound generation.

2 Introduced during the Late Middle Ages (13 th and 15 th centuries) to protect the pipes against the dust, it is just after the temporary disappearance of the buffet, at the beginning of the 20 th century for purely aesthetic reasons corresponding to the tastes of the moment, that we discovered its interesting acoustic properties [START_REF] Hamel | Sciences et facture d'orgue. collection Schedae[END_REF].

Each of the stops is drawn by a stop control, also known as draw knob. A stop can be drawn individually, like a solo instrument, or combined, like a whole orchestra. Finally, when a key is pressed some kind of mechanism (electrical, pneumatic or mechanical) opens a valve that supplies air to the pipe (or pipes) belonging to the key of the stop that has been called, generating thus the sound [START_REF] Meyer | Pipe and reed organs[END_REF].

The normal pitch of the organ, i.e., its fundamental frequency, is the C2 keynote, that corresponds to an 8' long pipe. The longest pipe of a stop characterizes thus the length of the stop to which it belongs. Above the 8', there are 4', 2', and 1' stops, that produce sounds one, two or three octaves higher; and below there are 16' and 32' stops, that produce sounds one or two octaves lower. In addition, there is also the mutation stops, which do not produce the note played, but a harmonic of the note. Some examples are the Quinte ¡

10 2 1 3 , 5 1 1 3 , 2 2 1 3 , 1 1 1 3 © ,
and the Grosse Tierce

¡ 3 1 1 5 ©
. Most of such stops are supposed to be used in combination with the 8' stop to introduce overtones in the sound [START_REF] Meyer | Pipe and reed organs[END_REF]. 

The Darwinian adaptation of the pipe organ

Pipes, blower and keyboards: these three components are essential to constitute an organ, and allows so a clear and unambiguous definition of the instrument. The organ thus defined, was invented in 246 BC by Ctesibios, a Greek engineer from Alexandria [START_REF] Henrique | Acústica musical[END_REF][START_REF] Hamel | Sciences et facture d'orgue. collection Schedae[END_REF]. The first organs were called "organa hydraulica" or "hydraulos". They used water to regulate the air pressure and implemented the laws of hydrostatics.

Over the last 24 centuries since its first apparition, the organ has evolved in so many ways. Indeed, as put by [START_REF] Haynes | The End of Early Music: a period performer's history of music for the twentyfirst century[END_REF]:

"Instruments can be seen in terms of Darwinian adaptation. They are constantly changing in small ways to make it easier for musicians to perform the music currently in fashion."

For instance, as stated by [START_REF] Hamel | Sciences et facture d'orgue. collection Schedae[END_REF], the heavy and unwieldy hydraulic system was abandoned and replaced by skin bellows similar to the forging bellows in the 8 th century.

Two centuries later, the first treats on organ building appeared (until then, every pipe shared the same diameter). At Late Middle Ages (13 th -15 th centuries) the evolution was remarkable:

(i) introduction of the action: mechanism that connects the keys with the pipes; (ii) multiplication of keyboards; (iii) rediscovery of registration thanks to the use of register chests which allow "programming" stops; (iv) introduction of the buffet.

Hence, it was not by coincidence that the swell box appeared during the Baroque period, by the end of the 17 th century more precisely. With the Romantic style, it shares an important characteristic: they are both intensely expressive [START_REF] Haynes | The End of Early Music: a period performer's history of music for the twentyfirst century[END_REF]. However, unlike other musical instruments, the playing technique does not affect the sound intensity of the organ music: this is the reason why the swell box was invented.

Acoustic wave propagation inside a 3D cavity

The wave propagation inside an enclosed cavity is a classical problem in acoustics.

Starting with a Green function which describes the spatial distribution of the radiation from a point source, boundary conditions are then taken into account [START_REF] Morse | Theoretical acoustics[END_REF][START_REF] Kuttruff | Room acoustics[END_REF]. The analytical solution for an ideal three dimensional (3D) rectangular cavity with rigid walls is well established.

In spite of that, some assumptions behind the model formulation are hardly verified.

The infinite impedance of the walls is probably the most common. Fortunately, [START_REF] Morse | Sound waves in rooms[END_REF] also considered complex boundary conditions on their formulation. Less fortunately, that resulted in a non-linear transcendental equation, which solutions can be found either graphically (as the case of the famous Morse charts) or numerically. The Morse charts Morse (1939) are, however, limited to walls having uniform impedance distribution and the same impedance as the opposite wall.

Studies from the present century have been proposing alternatively numerical solutions for the transcendental equation. For instance, [START_REF] Bistafa | Numerical solutions of the acoustic eigenvalue equation in the rectangular room with arbitrary (uniform) wall impedances[END_REF] suggested two numerical procedures to solve it: Newton's method using an increment of impedances, and the homotopic continuation based on the numerical integration of differential equations.

The authors found that the latter procedure has a much faster convergence than the former, which fails to find all the possible roots. Later, [START_REF] Naka | Acoustic eigenvalues of rectangular rooms with arbitrary wall impedances using the interval newton/ generalized bisection method[END_REF] introduced the interval Newton/generalized bisection method as a faster and guaranteed technique for finding all possible solutions within any given interval. More recently, in order to avoid solving the transcendental equation numerically, [START_REF] Du | Acoustic analysis of a rectangular cavity with general impedance boundary conditions[END_REF] approached the problem by Fourier series, determining the expansion coefficients with the Rayleigh-Ritz method. Initially, it may seem a very appealing method. However, the understanding of their results is not straightforward.

In any case, closed analytical solutions for real cases which consider complex and non-uniform impedance do not exist. Solving such transcendental equation, through a numerical method, is beyond the scope of the current thesis. Thus, a simplified approach will be considered.

Modal response of an ideal cavity

The starting point for the wave theory of an enclosed cavity is the Helmholtz equation [START_REF] Kuttruff | Room acoustics[END_REF], here represented in the frequency domain. This study remains, of course, within the framework of linear acoustics, in homogeneous fluid weakly dissipative (the air), within a volume (V) bounded by a closed surface (S), which is assumed to be locally reacting with a specific admittance β [START_REF] Bruneau | Manuel d'acoustique fondamentale[END_REF]. Considering the acoustic pressure field denoted by p, and a source term q, the problem becomes:

6 9 8 9 7
p∆ k 2 qpp⃗ r, ωq ¡qp⃗ r, ωq, d⃗ r pVq, f fn ik 0 βp⃗ r, ωq & pp⃗ r, ωq U 0 , d⃗ r pSq, (2.1) where U 0 {ik 0 ρ 0 c 0 represents the vibration velocity induced at the walls, and k 0 ω{c 0 with ω the angular frequency, and c 0 the speed of sound in the medium. The complex wave number k is given by Equation 2.2 hereafter:

k k 0 1 ¡ i 2 k 0 ℓ vh & , ( 2.2) 
where ℓ vh ℓ v pγ ¡ 1qℓ h , with ℓ v and ℓ h being characteristic lengths, and γ C p {C v the specific-heat ratio. The characteristic length ℓ v is proportional to the viscosity coefficients µ and η, while ℓ h is proportional to the coefficient of thermal conductivity λ. For the air, at usual conditions of temperature (22°C), ℓ v 4 ¤ 10 ¡8 m, ℓ h 6 ¤ 10 ¡8 m, and γ 1.4 under adiabatic assumption [START_REF] Hilsenrath | Tables of thermal properties of gases: comprising tables of thermodynamic and transport properties of air, argon, carbon dioxide, carbon monoxide, hydrogen, nitrogen, oxygen, and steam[END_REF], which leads to k k 0 . Henceforth, k 0 will be denoted simply as k.

The function βp⃗ r, ωq of Equation 2.1 being continuous with respect to the variables ⃗ r

and ω, the problem has then a unique solution. Consequently, for a harmonic point source and receiver placed at positions ⃗ r 0 and ⃗ r respectively, the searched Green function must answer the following boundary conditions in the frequency domain:

6 9 8 9 7
p∆ k 2 qGp⃗ r, ⃗ r 0 q ¡δp⃗ r, ⃗ r 0 qe ¡iωt , in pVq, f fn ikξp⃗ r, ωq & Gp⃗ r, ⃗ r 0 q 0, over pSq, (2.3) where the specific admittance ξp⃗ r, ωq might represent the wall admittance in some simple cases, or the equivalent admittance to boundary layers effects, or any other admittance chosen for convenience of calculation.

It can be shown that the wave equation yields to non-trivial solutions fulfilling the boundary conditions only for particular discrete values of k, known as eigenvalues k n . Associated to each k n there is a unique solution Φ n , also called eigenfunction. Thus, in the specific case of the modal theory, the Green's function is expressed in the form of an expansion on the basis of the eigenfunctions of the eigenvalue problem as follows:

6 9 8 9 7 p∆ k 2 n qΦ n 0, in pVq, f fn ikζ & Φ n 0,
over pSq, (2.4) where "n" is a triple index. The simplest case is the one of a cavity with perfectly rigid walls, which allows expanding the Green's function in the basis of Neumann's eigenfunctions Φ n , solutions to the problems with ζ 0. The Green's function is then given by:

Gp⃗ r, ⃗ r 0 q ņ Φ n p⃗ r 0 qΦ n p⃗ rq k 2 n ¡ k 2 p1 ¡ iβq , (2.5)
where β is henceforth an attenuation parameter.

Modal response of a rectangular cavity with rigid walls

For a rectangular 3D cavity with rigid walls, the eigenfunctions Φ n , which are independent of frequency, are defined by Equation 2.6:

Φ n cos ¢ n x π L x x cos ¢ n y π L y y cos ¢ n z π L z z , ( 2.6) 
where L x , L y , L z are the internal dimensions of the cavity through directions x, y, z respectively, and the indices n x , n y , n z are natural numbers and at least one of them must be nonzero. In Figure 2.4 the mode shapes for a rectangular two dimensional (2D) cavity are shown

for n ¤ 3. The cavity will then resonate at its f n natural frequencies, also called modal frequencies, which are estimated through Equation 2.7:

f n c 0 2 d ¢ n x L x 2 ¢ n y L y 2 ¢ n z L z 2 , (2.7)
Considering eventually a point source positioned at ⃗ r 0 , the resulting sound pressure at a given position ⃗ r is therefore given by:

pp⃗ r, ωq iωρ 0 Q ω ņ Φ n p⃗ r 0 qΦ n p⃗ rq K n rk 2 ¡ k 2 n ¡ i2βk n s , (2.8)
where ρ 0 is specific mass of the medium, Q ω is the amplitude of the source volume velocity, and K n is a constant equal to: 1/2 for axial modes, 1/4 for tangential modes, and 1/8 for oblique modes [START_REF] Kuttruff | Sound in inclosures[END_REF].
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Mode shapes of a rectangular 2D cavity with rigid walls.

Number of modes and modal density

According to [START_REF] Bruneau | Manuel d'acoustique fondamentale[END_REF], if a source radiates in a certain frequency range, all cavity modes which resonance frequencies lie in that frequency range are excited. Consequently, it is important to know the number of resonance frequencies contained within this frequency range. The knowledge of the modal density is fundamental for predicting the conditions under which the acoustic pressure field is statistically uniform.

For a 3D cavity, the acoustic modes can be classified in three categories: (i) the axial modes corresponding to two null indexes; (ii) the tangential modes corresponding to one null index; (iii) the oblique modes where none of the indexes (n x , n y , n z ,) is null. The total number of axial modes N A , tangential modes N T , and oblique modes N O are thus estimated in function of the frequency f by: 6 9 9 9 9 9 9 8 9 9 9 9 9 9 7

N A L 2c 0 f, N T πS 2c 2 0 f 2 ¡ L 2c 0 f, N O 4πV 3c 3 0 f 3 ¡ πS 4c 2 0 f 2 L 8c 0 f, (2.9)
where L 4pL x L y L z q is the cavity perimeter, S 2pL x L y L x L z L y L z q, is the total surface of the cavity, and V L x L y L z is the cavity volume. The total number of modes is then given by the sum of the axial, tangential and oblique modes:

N pfq 4πV 3c 3 0 f 3 πS 4c 2 0 f 2 L 8c 0 f. (2.10)
The modal density assess the number of modes in a frequency range from f to f df , and is obtained from the derivative of the Equation 2.10 in relation to f :

npf q dN df 4πV c 3 0 f 2 πS 2c 2 0 f L 8c 0 . (2.11)
Finally, the analysis of Equations 2.10 and 2.11 allow us to conclude that: (i) the general tendency is that the modal density increases with the square of the frequency; (ii) there is a cut-off frequency, known as Schroeder frequency 3 , for which the number of modes is so high that the wave approach is no longer relevant; (iii) the larger the dimensions of the cavity, the greater the number of modes up to frequency f and the higher the modal density around f , so the lower the Schroeder frequency.

Multiple waves scattering for 2D cylinders

As it will be discussed in Chapter 3, an organ buffet can be approached by a 2D rectangular cavity fulfilled with a pipes forest. The sound propagation inside a rectangular cavity is a known problem that has been addressed in the previous section. Now, the issue of sound scattering caused by a pipes forest inside such cavity will be addressed.

Prior to the wave scattering of multiple cylinders, one should comprehend the scattering by a single cylinder. Due to the geometry of the problem, mathematical development is usually done under Bessel functions, solutions for the wave equation in cylindrical coordinates [START_REF] Lowan | Scattering and Radiation from Circular Cylinders and Spheres: Tables of Amplitudes and Phase Angles[END_REF][START_REF] Faran | Sound scattering by solid cylinders and spheres[END_REF][START_REF] Morse | Theoretical acoustics[END_REF]. With that in mind, approximations for multiple scattering may be considered.

A recurrent way to study multiple waves' scattering is by considering the effective acoustic field due to the perturbations originated from the scatterer's presence in the media.

That perturbation can be translated according to an effective wave number [START_REF] Foldy | The multiple scattering of waves. i. general theory of isotropic scattering by randomly distributed scatterers[END_REF], a complex quantity that can be decomposed as k ef f ω{c ef f iα ef f , where α ef f is the effective attenuation and c ef f is the effective phase velocity [START_REF] Rohfritsch | Numerical simulation of two-dimensional multiple scattering of sound by a large number of circular cylinders[END_REF].

The wave scattering of multiple cylinders can be next analyzed for both ordered cylinder arrays and random cylinder arrays. Hence, these cases are discussed in Sections 2.3.1 and 2.3.2 respectively.

Scattering by ordered cylinders array

When talking about sound propagation through a regular 2D cylinder structure, the concept of phononic crystals can seem very appealing. Firstly, introduced by Kushwaha et al.

(1993), a phononic crystal consists in a periodic composite, i.e., a repetitive structure made up of two materials with different elastic properties, capable of attenuate the sound in band-gaps, especially for frequencies which wavelength is smaller than scatterers diameter.

After further development of their own theory [START_REF] Kushwaha | Theory of acoustic band structure of periodic elastic composites[END_REF], Kushwaha

(1997) proposed a study case somehow similar to ours. This study has been motivated by the experimental measurement of sound attenuation on the sculpture realized by Eusebio Sempere, shown in Eventually, they found that this structure provided no band-gaps for frequencies below 6.4 kHz, i.e., when wavelengths are smaller than around half of the Brillouin zone sides 4 .

In other words, this kind of structure yields to a filtering characteristic for high frequencies.

From a modal behavior point of view, this analysis is limited to lower frequencies, there is no interest for such frequency range. Thereby, no more attention will be devoted to phononic crystals in the present work.

Scattering by aleatory cylinders array

The predecessor of independent scattering approximation (ISA), [START_REF] Foldy | The multiple scattering of waves. i. general theory of isotropic scattering by randomly distributed scatterers[END_REF] considered in detail, and for the first time, the problem of the multiple scattering of scalar waves by a random distribution of isotropic scatterers on the basis of a consistent wave treatment.

He treated the randomness by means of averages taken over a statistical ensemble of scatterer configurations. From his theory, an expression for the effective wave number of point scatterers was derived.

Later, [START_REF] Waterman | Multiple scattering of waves[END_REF] considered finite size scatterers (non-isotropic scattering) and obtained a second order correction to Foldy's formula in terms of the scatters density. [START_REF] Angel | Analysis of sound propagation in a fluid through a screen of scatterers[END_REF] expanded Watermann and Truell's approach to cylindrical scatterers. [START_REF] Lloyd | Wave propagation through an assembly of spheres: Iv. relations between different multiple scattering theories[END_REF] proposed an explicit expression for spherical scatterers different from that of Waterman and Truell: they used methods and language coming from nuclear physics. [START_REF] Linton | Multiple scattering by random configurations of circular cylinders: Second-order corrections for the effective wavenumber[END_REF] derived from Lloyd and Berry's development its counterpart for cylindrical scatters. Linton and Martin proposed a formula for the effective wave number based on the quasi-crystalline approximation. [START_REF] Norris | Multiple scattering by cylinders immersed in fluid: High order approximations for the effective wavenumbers[END_REF] extended Linton and Martin work to higher-order approximations.

More recently, it has been developed at Institut Jean Le Rond f'Alembert (IJLRA) a numerical method called MuScat (for multiple scattering), which simulates the scattering of sound on 2D due to a large number of cylindrical scatterers [START_REF] Rohfritsch | Numerical simulation of two-dimensional multiple scattering of sound by a large number of circular cylinders[END_REF]. This method considers the incidence of a plane wave and that the scatterers are in free field.

The efficiency of MuScat comes from the introduction of a cut-off radius surrounding each cylinder. It is assumed that beyond a certain distance, the individual scattering of each cylinder is negligible. [START_REF] Rohfritsch | Numerical simulation of two-dimensional multiple scattering of sound by a large number of circular cylinders[END_REF] restrict their algorithm to frequencies such that 0 ¤ ka ¤ 1, where a is the cylinder radius.

In the present work, the effective wave number will be considered under a simplistic approximation in the multiple-scattering theory, called independent scattering approximation [START_REF] Lagendijk | Resonant multiple scattering of light[END_REF]: (2.12) where n 0 is the number of scatterers per unit area given in function of the ϕ concentration of scatterers as n 0 ϕ{πa 2 , and T n is the nth-order scattering coefficient of a single cylinder.

k 2 ef f k 2 ISA k 2 ¡ 4in 0 ņ T n ,
Theory behind k ISA formulation assumes that scatterers are independents from each other (uncorrelated) and that its concentration is small [START_REF] Linton | Multiple scattering by random configurations of circular cylinders: Second-order corrections for the effective wavenumber[END_REF].

These scattering coefficients5 are determined by solving the continuity equations between the acoustic fields inside and outside a cylinder, when the incident field is a plane wave. In that conjecture, the incident field p 0 and the scattered field p s are written in polar coordinates (r, θ) as: 6 9 9 9 9 8 9 9 9 9 7 (2.13) where J n is the nth-order Bessel function of the first kind, H 1 n is the nth-order Hankel function of the first kind. The case considered in this study is the one of a rigid cylinder of radius a in the air. This case represents the one where no displacement is present within the cylinder, that is, the continuity conditions are Neumann conditions. Hence, Euler's equation, which relates the particle displacement to the pressure gradient, leads the boundary condition of Equation 2.14: f pp 0 p s q fr pr aq 0.

p 0 prq V ņ¡V i n J n pkrqe inθ , p s prq V ņ¡V i n T n H 1 n pkrqe inθ ,
(2.14)

Replacing thus the partial derivatives in relation to r of p 0 and p s at r a, finally give us the expression of the scattering coefficient T n :

T n ¡ J I n pkaq H 1 1 n pkaq ¡ nJ n pkaq ¡ pkaqJ n 1 pkaq nH 1 n pkaq ¡ pkaqH 1 n 1 pkaq .
(2.15)

Modal response of a rectangular cavity fulfilled with pipes

In view of the pressure filed caused by a source established in Equation 2.8, the idea here is considering the dispersion due to the pipes by replacing the wave number k for an effective wave number k ef f , and the speed of sound in the media c 0 for an effective phase velocity c ef f . Recalling that the effective wave number can be decomposed as k ef f ω c ef f iα ef f , the effective phase velocity and effective attenuation are expressed as follow in Equation 2.16: 6 9 9 9 9 9 8 9 9 9 9 9 7

c ef f ω R k 2 ef f ¨¡1{2 % ω k 2 ef f 4n 0 I £ ņ T n ' ¡1{2 , α ef f I k 2 ef f ¨1{2 % ¡4in 0 R £ ņ T n ' 1{2
, (2.16) where R and I designates respectively the real and imaginary components of k 2 ef f described by Equation 2.12.

The dependence of the effective quantities α ef f , c ef f , and k ef f , on the cylinder radius a and the concentration of scatterers ϕ were studied. In a first moment, the scatterers' radius was kept constant and the impact of the concentration of scatterers was evaluated. In a second moment, the cylinder radius was varied while the concentration of scatterers was fixed.

The resulting attenuation and phase velocity for different concentrations of scatterers are shown in Figure 2.6. Results are exhibited in relation to the additional quantity ka.

Firstly, we notice that the effective attenuation increases with frequency (at least for ka 0.9), whereas the effective phase velocity remains almost constant until ka 0.4, increasing with frequency thereafter. Then, we observe that as the concentration of scatterers increases, the effective attenuation increases too, while the effective phase velocity decreases. This behavior can be physically understood considering that more scatterers imply more obstacles to the sound wave, which will be damped and take more time to travel through the field. The dependence of the effective wave number on the concentration of scatterers, for a fixed value of scatterers radius, are shown in Figure 2.7. To start, we observe that for a low concentration of scatterers, the effective wave number is almost equal to the wave number in the media without scatterers. In sequence, as the concentration of scatterers increases, the number of scatterers per unit area increases too and so the effective wave number.

The effective attenuation and phase velocity behaviors for different cylinder radii, keeping the concentration of scatterers constant, are shown in Figure 2.8. This time, the effective attenuation decreases as the radius of the scatterers increase. The effective phase velocity, on the other hand, is not affected in the same way. Even though both quantities depend on the number of scatters per unit area, as seen in Equation 2.16, however, it is not to the same extent.

Indeed, the effective attenuation depends only on the imaginary part of the effective wave number. Knowing that °n T n will always be the same for the same ka, α ef f depends basically on a number of scatters per unit area, which decreases quadratically as the cylinder radius increases (n 0 ϕ{πa 2 The effective phase velocity, conversely, also depends on the wave number itself. As the number of scatterers per unit area increases, keeping the same value of ka, the wave number increases too. Consequently, the relation between k 2 and 4n 0 p °n T n q remains unaltered, justifying the conservation of effective phase velocity for different radii as identified in The resulting effective wave number for different cylinder radii, maintaining the concentration of scatterers constant, is illustrated in Figure 2.9. Similarly to c ef f , k ef f does not change significantly, with a standard deviation of σ = 0.001 rad/m for ka = 1. The cause is easily settled by comparing the magnitude order of c ef f and α ef f in Figure 2.8. As discussed before, the effective wave number depends on both of these quantities. Nevertheless, as the effective phase velocity is much greater than the effective attenuation, we can conclude that the effective wave number is more impacted for a small change in the first of them than for a major change in the last one. 

Sound radiation through a slit

The issue of sound radiation through an aperture is not a recent question. Indeed, since at least the 1930s this question was already posed by [START_REF] Ritchie | Transmission of sound through apertures[END_REF], who carried out experimental work with the ambition of substantiating a prediction made by Lamb concerning the fractional transmission of sound through an aperture in a very thin plate with approximately infinite dimensions. In the meantime, other experimental, and numerical modeling acoustic works have been carried out. In chronological order, some examples are given in the sequence.

In the 1960s, [START_REF] Mulholland | Transmission of sound through apertures of negligible thickness[END_REF] studied the transmission of sound through apertures of negligible thickness. Concerning the slits, which can be seen as the limiting case of a linear network of small circular apertures, they concluded that the results of the theoretical prediction and the experimental measurements were not in agreement. Ac-cording to them, such defeat was predictable because the theory was based on an equation that is only valid when the separation of apertures is greater than their radius.

Three decades later, [START_REF] Park | Acoustic scattering from a rectangular aperture in a thick hard screen[END_REF] used the spatial Fourier transform to represent the wave scattered through a rectangular aperture placed in a rigid screen. Authors considered a three-dimensional model in terms of propagating waves and evanescent waves, assuming that the aperture behaves like a duct, that is, the depth of the aperture is assumed to be much larger than their diameter.

In the 2000s, [START_REF] Sgard | On the modeling of the diffuse field sound transmission loss of finite thickness apertures[END_REF] pointed out that the algorithm proposed by [START_REF] Park | Acoustic scattering from a rectangular aperture in a thick hard screen[END_REF] was not very efficient in terms of computation. The authors then proposed a solution for the sound transmission loss of apertures of finite thickness in diffuse field, given in terms of the aperture impedance. Such solution is also based on describing the sound field inside the aperture with regard to propagating and evanescent waves, and for the case of a rectangular aperture, it implicates a quadruple integral.

According to the authors, such integral can be efficiently calculated using a change of variable which transforms the quadruple integral into a double integral that can be resolved with a Gauss integration scheme. However, the closed solution is not explicitly given. Later, [START_REF] Trompette | Sound transmission loss of rectangular and slit-shaped apertures: Experimental results and correlation with a modal model[END_REF] conducted experimental work on the transmission loss of rectangular apertures and slits in order to validate the model proposed by [START_REF] Sgard | On the modeling of the diffuse field sound transmission loss of finite thickness apertures[END_REF].

In the 2010s, [START_REF] Mellow | On the sound fields of infinitely long strips[END_REF] derived exact solutions for sound radiation according to fours kinds of infinitely-long strips: 1. rigid strip in a baffle of finite width;

2. resilient strip in the free field; 3. resilient strip in an infinite baffle; 4. Rigid strip in an infinite baffle. By "rigid" authors mean a surface in which the particle velocity is uniform, and "resilient" corresponds to the case where the surface pressure is uniform and the strip is assumed to have zero mass or stiffness. One configuration they did not consider in their work was that of a resilient strip in a finite baffle:

"If the baffle were rigid, the problem would be greatly complicated by the fact that boundary conditions across the strip and baffle would be a mixture of pressure and velocity, rendering the methods used in the rest of the paper inapplicable."

As will be detailed in Chapter 3, we first consider a 3D approximation for the acoustic field inside the organ buffet. Since the longest side of the slit is aligned with the 3 rd dimension, we will assume a uniform acoustic pressure along the slit, corresponding to the third type of strip. The solutions derived for [START_REF] Mellow | On the sound fields of infinitely long strips[END_REF] are described in Section 2.4.1. In the sequence, some works about the acoustics of a cavity containing an aperture are discussed in Section 2.4.2.

Sound radiation of a resilient strip in an infinite baffle

One of the multiple ways of modeling the sound radiation through a slit is thinking it as an infinitesimally thin membrane-like strip as proposed by [START_REF] Mellow | On the sound fields of infinitely long strips[END_REF].

The strip of width 2a, illustrated in Figure 2.10, is mounted in an infinite baffle in the xy-plan, with its line of symmetry on the y-axis. This strip is assumed: (i) to be infinitely-long; (ii) to be perfectly flexible; (iii) to have zero mass; (iv) to be free at its outer edges; (v) to be driven by a uniformly distributed harmonically varying pressure p 0 and thus radiates sound from both sides into a homogeneous loss-free acoustic medium.

0 x y z -a a p(r, θ) r θ Figure 2
.10 Geometry of the infinite strip of width 2a mounted in an infinite baffle as defined by [START_REF] Mellow | On the sound fields of infinitely long strips[END_REF].

The far-field pressure distribution of the resilient strip in an infinite baffle is then deduced from the Rayleigh integral (or monopole part of the Kirchhoff-Helmholtz boundary integral) using the far-field Green's function in cylindrical coordinates. After mathematical manipulations detailed by the authors, pressure distribution is finally described by Equation 2.17:

ppr, θq p0 a 2πr e ¡ipkr¡π{4q Dpθq.

(2.17)

The symbol indicates the complex amplitude of a harmonic time-varying quantity. D is the directivity factor that depends on θ, the azimuth angle relative to the direction normal to the slit, and it is given by Equation 2.18:

D pθq ¡i c πka N ņ0 A n Γ ¢ n 1 2 2 n J n pka sin θq pka sin θq n , (2.18)
where Γ is the gamma function, and A n are the power series coefficients (further detailed in Annex I), that are truncated to order N . The on-axis pressure is evaluated using the property

J n pxq{ x n | nÑ0 p2 n n!q ¡1 , resulting in: Dp0q ¡i c πka N ņ0 A n Γ n 1 2 Γpn 1q . (2.19)
The directivity radiation patterns of an infinite resilient slit mounted in an infinite baffle, obtained through a numerical implementation of the above formulation, is shown in Here, the 3 dB decay for the doubling of distance r is emphasized. We also notice that for very high frequencies (ka ¥ 8) the radiated pressure at a distance such r{a = 1 is larger than the uniformly distributed pressure p 0 on the strip. That indicates it is not possible to assume far-field condition for distances such r{a 1, but it is possible for distances such r{a ¡ 10.

Pressure

(dB) 1. the uncertainty associated with the absorption coefficient is of the same magnitude order as the absorption coefficient itself;

2. the reverberation time triples in such a small frequency range;

3. the reverberation times seem very high for such a small volume and type of surface.

Authors also measured the directivity patterns and power radiated through the aperture.

Aside from the microphones positions, widely spaced 30°apart for directivity measurements, the results themselves are likewise questionable. For instance, there are divergences between figures that should be very similar, and the discussions that follow are often incoherent.

Jin et al. ( 2016) measured a cavity (L x 0.815 m, L y 0.495 m, and L z 0.6 m) made of 15 mm thick acrylic glass plates, coupled with a rigid baffle placed at the wall x L x of dimensions 2.96 m ¢ 2.4 m. They took into account a full opening of the wall on x L x , and a partial opening with dimensions y L y and z L z {3. Authors determined transfer functions for positions (barely) inside the cavity, on the opening, and (barely) outside the cavity. Their results allowed to qualify some effects of the aperture size and wall impedance:

(i) the sound pressure decreases rapidly in approaching the aperture; (ii) the aperture size has a significant effect on the acoustic characteristics of the opened cavity (natural frequencies shift to higher frequencies as the size of the aperture is increased); (iii) the sound pressure at the resonant frequencies decreases with increasing sound absorption coefficients; (iv) the acoustic impedance has greater influence on the sound responses with increasing frequency;

(v) the positions of sound source and aperture position have an important influence on the sound pressure response inside the cavity.

Room acoustics objective parameters for a church

According to [START_REF] Vorländer | Auralization: fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality[END_REF], the psychological aspect of room acoustics is a very complex problem. On one hand, the sound field of a room is complex itself, and on the other hand, the subjective impressions of listeners are multidimensional and influenced by many factors, some of which are not even acoustics. In this context, room psychoacoustics can be understood as a bridge between these subjective impressions and objectively measurable data.

The role of room acoustics parameters is then to quantify the subjective descriptors of a sample of listeners, based on the energy contained in the room's impulse responses.

Furthermore, the use of a set of parameters, in contra points to the use of a single parameter, is important since the subjective experience of a set of distinct listeners does not have a single dimension or cannot be described by a single adjective [START_REF] Brandão | Acústica de salas: projeto e modelagem[END_REF].

Taking into consideration what has been exposed, the sound source of interest and the environment where it is usually found, four objective parameters were chosen: (i) T 15 and T 20 aim to describe the reverberation time, the most popular room acoustics parameter;

(ii) EDT, acronym of early reverberation time, which was found to be strongly associated with the perceived reverberation; (iii) C 80 , which is related to the intelligibility of the music in a room. Before presenting these parameters in the respective sections 2.5.1 2.5.2 and 2.5.3, definitions of impulse response, Schroeder's frequency, f S , and the just noticeable difference (JND) are introduced.

Impulse response: assuming a room is a linear time-invariant (LTI) system, it is reasonable to consider that the sound pressure response yptq measured (in the time domain) at a given receiver position is equal to the linear convolution of the signal xptq emitted by the sound source with the respective impulse response hptq [START_REF] Brandão | Acústica de salas: projeto e modelagem[END_REF]. Using the mathematical artifice that the Fourier transform of a linear convolution between two signals is equal to the multiplication of their Fourier transform [START_REF] Shin | Fundamentals of signal processing for sound and vibration engineers[END_REF], it is possible to describe the impulse response hptq for each source-receiver configuration as in Equation 2.20:

hptq if f t ¢ f f tpyptqq f f tpxptqq , (2.20)
where if f t is the inverse fast Fourier transform and f f t is the fast Fourier transform.

Schroeder frequency: homage to Manfred Schroeder, who proposed it, is the cut-off frequency of a room. Its purpose is to discern the low frequency region governed by the modes of a room from the high frequency region of high modal density [START_REF] Gade | Acoustics in Halls for Speech and Music[END_REF][START_REF] Garrett | Understanding Acoustics: An Experimentalist's View of Sound and Vibration[END_REF]. Above the Schroeder frequency, the room response becomes approximately uniform, the sound field properties become uniform, and the room response can be then described in statistical terms [START_REF] Vér | Noise and vibration control engineering: principles and applications[END_REF], in such a way that objective parameters become reliable. The Schroeder frequency is given by Equation 2.21:

f S 2000 T V , ( 2.21) 
where T is the reverberation time of the room in seconds, and V is the room volume in cubic meters.

Just noticeable difference: as suggested by the name itself, it is the smallest variation in the value of some quantity that a human being is capable of identifying [START_REF] Fastl | Psychoacoustics: facts and models[END_REF]. Table 2.1 shows the JND for the room acoustic objective parameters considered in this study. For closeness, it is safe to say that the JND for T 15 and T 20 are 5% relatively to their respective values at some octave frequency band. 

Reverberation time

In 1885, the reverberation time was studied for the first time by Wallace Clement Sabine, who evaluated how long it took for the sound energy to decay in several rooms of the Harvard University [START_REF] Garrett | Understanding Acoustics: An Experimentalist's View of Sound and Vibration[END_REF]. By the end, Sabine concluded that, in a room where the sound field is at energetic equilibrium, once the source excitation is ceased, the sound would become inaudible after the room sound pressure level (SPL) decays by 60 dB [START_REF] Everest | Master handbook of acoustics[END_REF]. From Sabine work, an empirical formula of the reverberation time was deduced:

T 60,S 0.161V Sα , (2.22) where S is the total surface of the room and α is the average absorption coefficient of the room.

Nowadays, the reverberation time is calculated from the energy decay of the room, represented by the square of the room impulse response, hptq 2 (Figure 2.14). The acquired experience showed that, depending on the background noise, in good conditions usually around 30 dB to 40 dB, the source should be able to excite the room up to 120 dB, in order to calculate the reverberation time as proposed by Sabine. Therefore, it has become a common practice to calculate the reverberation time considering twice, three or four times the time it takes for the sound energy of the room to decay from -5 dB to, respectively, -35 dB (T 30 ), -25 dB (T 20 ), and -20 dB (T 15 ). In this work, T 20 was considered in order to compare our results with those issued from a past study; T 15 was considered because it was not possible to define the reverberation time of all octave bands with T 20 . Both parameters are defined by equation Equation 2.23 hereafter:

T 20 60 t ¡25 ¡ t ¡5 ¡5 ¡ p¡25q 3pt ¡25 ¡ t ¡5 q, T 15 60 t ¡20 ¡ t ¡5 ¡5 ¡ p¡20q 4pt ¡20 ¡ t ¡5 q.
(2.23)

where t ¡5 , t ¡20 , and t ¡25 , correspond to the time when hptq 2 decays to -5 dB, -20 dB, and - 25 dB. In Figure 2.15 we observe that the classic T 60 cannot be experimentally determined for the considered impulse response without extrapolation. Conversely, the T 20 is straightforward derived. 

Early decay time

According to [START_REF] Gade | Acoustics in Halls for Speech and Music[END_REF], due to masking phenomena, the process of sound decay is perceptible only during pauses in speech or music playing. In practice, the final and weak part of the reverberation will be masked by the next syllable or musical note. Thus, although T 60 and its derivatives are the preferred parameters for characterizing reverberation time, the perceived reverberation itself, is best correlated with the sound decay rate in its initial portion.

Currently, the initial decay time Early decay time (EDT), given by Equation 2.24, has become the common parameter to characterize the sound decay rate in its initial portion. Furthermore, listening tests, based on binaural impulse responses recorded in different concert halls, confirmed that perceived reverberation is strongly correlated to EDT [START_REF] Kuttruff | Room acoustics[END_REF]. (2.24) where t ¡10 corresponds to the time when hptq 2 decays to -10 dB (Figure 2.15). A characteristic that differentiates EDT from T 60 and its derivatives is the remarkable dependence of EDT on the source-receiver configuration, which makes it varies more along the room [START_REF] Brandão | Acústica de salas: projeto e modelagem[END_REF]. Such behavior is intrinsically related to the fact that this parameter is more influenced by the first reflections, and these are more dependent on the source-receiver positions than the late reflections.

EDT 60 t ¡10 ¡ t 0 ¡0 ¡ p¡10q 6t ¡10 ,

Clarity

The clarity is related to the subjective ability to distinguish sounds in sequence.

When a room has a good degree of clarity, the played music will sound well defined, with clean and precise sound articulations. Thus, the clarity C 80 , defined by Equation 2.25, is related to the music intelligibility [START_REF] Brandão | Acústica de salas: projeto e modelagem[END_REF].

C 80 10 log £ ³ 80ms 0 h 2 ptqdt ³ V 80ms h 2 ptqdt . (2.25)
Such time interval of 80 ms represents the limit between the early sound, which provides clarity or intelligibility to the listener, in contrast with the later sound that is detrimental to it. Thus, if the first reflections have more energy (positive values of C 80 ) the direct sound tends to be experienced as amplified at the expense of the reverberant tail. If the first reflections have low energy (negative values of C 80 ), the reverberant tail will be more easily perceived, in which case the direct sound will be masked by it.

Frameworks and limitations of the study

Taking into account what has been exposed and discussed in previous sections 2.1 to 2.5, the present study is limited to the sound propagation inside an organ buffet and to the radiated sound outside the instrument. Thus, the sound generation mechanisms in the pipes are not studied, which are complex phenomena because of the non-linearities due to the vortex formation and to the air jet instabilities in the flues, and to the tongue vibration in the reeds. This work is therefore grounded on the basis of the linear acoustics.

The organ buffet and swell box will be approached by a rectangular 3D cavity, openable on its facade, and fulfilled with cylindrical pipes, where a 2D behavior is favored under controlled conditions. Other cavity geometries, as well as other pipe geometries, will not be considered for mathematical modeling purposes.

The vibration of walls of the organ buffet and swell box are neglected, meaning thus the walls are considered almost rigid. The pipes are also considered as rigid bodies, on which the sound cannot resonate inside. Finally, the sound scattering due to the diffraction on the pipe tops, as on the shutter edges (or even edges of any kind) will not be taken into account either.

Chapter 3

The simplified organ buffet

Measurements under controlled conditions

Abstract This chapter aims to confront experimental data from an idealized case with the physical models presented in the previous chapters. The experimental device, composed of a rectangular box with a detachable slit on its facade, a removable pipes forest and a linear source, is former introduced. After, the acoustical study of the simplified buffet organ is developed around three main axes: its inner field, its outer field, and the interaction between both fields. The impact of the pipes forest and the opening rate of the facade are evaluated.

The experimental device

According to the premises outlined on the frameworks and limitations of the current study, a simplified experimental model approximating the behavior of an organ buffet or a swell box is proposed. This experimental model1 has been installed in the anechoic chamber of the IJLRA and bonds the assumptions underlying the physical models presented in Chapter 2.

The experimental box was made with a 2 cm thick plywood, and its internal dimensions are: L x 134 cm, L y 58 cm, and L z 98 cm (Figure 3.1). The box dimensions were hence chosen firstly to avoid modal superposition by ensuring adequate proportions between dimensions, L x : L y : L z 2.3 : 1 : 1.7 [START_REF] Bolt | Note on normal frequency statistics for rectangular rooms[END_REF], and secondly to limit excessive weight for practical reasons. The four walls and the box ceiling were movable to facilitate operations inside the box. A window with a width of 25 cm and a height of 55 cm was cut in the frontal panel. This window was conceived to allow the insertion of a 4 cm width and 55 cm tall slit, cut in a 30 x 60 cm 2 plexiglass panel. The window vertical axis, and so the slit vertical axis, was shifted 4.5 cm right from the frontal panel vertical axis in order to avoid the slit falling on too many nodal line. During measurements, when it was necessary to close the box, a plexiglass panel of same dimensions (without any slit on it) was used to close the window.

Knowing that the inner field of a pipe organ is composed of an expressive amount of pipes, which more than acoustic sources also act as vertical scatterers, a forest composed of 170 PVC removable tubes of 4 cm diameter distributed in a staggered fashion way was conceived. Even though in real organs the pipes do not have all the same length, nor the same exact distance between each other, in search of standardization, it was chosen to keep these dimensions constant. Therefore, all pipes extend from the box floor until the box roof in a way to prevent additional scattering due to the head edges. Besides that, the pipes were stuffed with an acoustic mousse to avoid them resonating. During measurements, the number of pipes changed from zero (empty box case) until 170 (fulfilled box case).

The whole simplified organ buffet was therefore designed to promote a 2D behavior at best, both for propagation within the buffet and for the radiating slit. Of course, the radiating slit marks the border between the internal behavior in 2D and the external radiation in a free space in 3D. The experimental device is presented in Figure 3 Finally, to promote the desired 2D behavior, a linear source was conceived. The source is composed of an array of 18 AURA loudspeakers (model NSW2-326-8A) of approximately 5 cm of diameter, which were confined in an isolated acoustic plexiglass cabinet.

All the 18 loudspeakers are connected in phase and present a frequency response between 200 Hz and 15 kHz2 , their resonant frequency being around 200 Hz (Appendix A). Signals sent to the source ought to be amplified. The chosen amplifier was a CARVER model PM-175.

The pressure signals were measured with 1/2" omnidirectional microphones Bedrock-audio model BAMT1. Lastly, a sound card R.M.E. Babyface Pro connected to a personal computer with MatLab was used to generate and record the signals.

Measurements protocols and data processing

In this section, the experimental protocols adopted with the purpose of characterizing the acoustic fields inside and outside the box will be detailed. In addition, the methodology employed for processing the experimental data is detailed as well.

Inner field

To characterize the modal behavior of the acoustic field inside the (closed) box, the linear source was employed in order to limit the vertical modes in z-direction. The source was placed in the left back edge of the box and was oriented towards the frontal panel. Moreover, twelve equally-spaced pressure measurement points were considered to trace a more detailed modal profile. The measurement points were distributed along the right half of the frontal panel and their height from the box floor, z I 44 cm (0.45L z ), and distance from the frontal panel, y I 6 cm (0.10L y ), were kept constant. The first measurement point was placed at 2 cm right from the box middle in the x-direction, and the following points were spaced every δx 5 cm from each other along the same direction. Only one microphone, which has been moved from position R1 towards R12, was used. A schema is shown in Figure 3.2.

The inner acoustic field was excited with a 5 s long maximum-length sequence (MLS) signal, repeated four times for each measurement point. In order to obtain the transfer functions H of the box, first the recorded signals were windowed with a flat top window. Then, the impulse responses were calculated according to the Equation 2.20. Finally, H was calculated from the f f t of the impulse responses.

Real-scale and augmented-scale simulations were performed in CATT-Acoustic 3 to estimate the Schroeder frequency of the empty box, which was found to be f S 1010 Hz. For prediction and comparison purposes, c 0 was set as 344.8 m/s, that is, the speed of sound at 22.4 °C, average temperature inside the anechoic chamber during the measurements. These preliminary results led us to limit the analysis to frequencies below 500 Hz, to favor the modal identification. Measurement points R1 to R12 following the x-axis correspond to 0.51L x , 0.55L x , 0.59L x , 0.63L x , 0.66L x , 0.70L x , 0.74L x , 0.78L x , 0.81L x , 0.85L x , 0.89L x and 0.93L x .
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Outer field

As soon as the field inside the box reached the state that most resembled an organ buffet, i.e. fulfilled with the pipes forest, the attenuation between the acoustic fields inside and outside the box were compared according to facade changes. Two microphones are employed during this phase of the measurements. Inside the box, one microphone P in was placed in the rear-right edge, the one opposing the source, at half-height. Outside, another microphone Initially, two more positions outside the box were measured since they had been judged critical, namely L x {6 and 5L x {6. Taking into account the fulfilled box with a slit case, where a direct radiation path has been observed (refer to Figure 3.15), the first position was expected to present a higher attenuation than P out and the second position to present a smaller attenuation than P out . After interpreting the results from Figure 3.4, it was concluded that a single point was representative because the differences between the three positions were equal or lower than the JND.

P
That said, the attenuation at P out in relation to P in was determined under three conditions, i.e., three different facade configurations: three different opening rates. These conditions are evinced hereafter:

• Figure 3 Lastly, according to [START_REF] Vér | Noise and vibration control engineering: principles and applications[END_REF], the insertion loss (IL) is the most appropriated descriptor for assessing the acoustical performances of enclosures of all types. For noise sources positioned in free field conditions, the insertion loss can be described by the difference of the average sound pressure level measured without employing an enclosure, SPL 

Slit directivity

Firstly, it was looked forward characterizing the radiation directivity of the slit without having the effect of a cavity coupled to it, namely having a normal sound incidence behind the slit. To achieve alike condition, the source was placed 5 cm rear the slit to ensure a homogeneous pressure distribution along the slit, and the box was filled with some acoustic foam, inhibiting the influence of the box inner field. Secondly, the effect of an incident diffuse field behind the slit was investigated. We first considered the case of empty box with slit. The source was placed and oriented inside the box as shown in Figure 3.2. We then considered the case of the fulfilled box with slit. This time, the source was turned 45°anti-clockwise around its axis as in Figure 3.8.

Two microphones were used during measurements: the first one was attached to the slit center, the so-called reference microphone; the second one was 20 cm away from the slit center, mounted on a turning table Brüel and& Kjaer (B&K) (type 9640), being rotated each θ dir 5°. A picture of the measurement set-up is exhibited in Figure 3.6. The source was excited with a 5 s long MLS signal, repeated four times for each measurement position, the interval between repetitions being 1 s.

Figure 3.6 Slit directivity characterization: measurement set-up. In the slit center, the reference microphone is positioned, and 20 cm away from it, a second microphone is mounted on a turning table. The slit center is highlighted with white strips on its right and left borders. The picture shows the particular case where the source was placed just behind the slit, the box fulfilled with acoustic foam.

Results -Inner field

In this section we intend to study two questions: "What happens inside a swell box?"

and "How do different elements impact the inner acoustic field of a swell box?". The starting point is the empty closed box, from which additional elements are going to be considered. The first significant aspect we can fortunately relate from Figure 3.7 is that the designed 2D behavior is genuinely ascertained: the 3D model prediction is highly similar to the 2D model prediction. Such statement validates the 2D character of the experimental model.

Henceforth, numerical results issued from the implementation of Equation 2.8 will be based in the 2D condition.

Secondly, as expected, the twelve receivers positions from R1 to R12 effectively allow us to better track the modal profile of the empty closed box. The set of transfer functions aids to recognize different modal forms, i.e., tell if the n-th resonance corresponds to an axial, transverse or oblique mode, and further, if it corresponds to an x-mode or y-mode and the exactly n-th order.

With that in mind, it becomes evident that the first resonance observed is the first mode in x-directionf 1,0,0 138 Hz; the second resonance is the second mode in x-direction f 2,0,0 266 Hz. The noisy responses observed below 200 Hz and the smaller peaks found out in the first resonance of the box can be explained by lack of energy from the source below 200 Hz, resonance frequency of the source itself. The third resonance is the first mode in y-directionf 0,1,0 308 Hz; the fourth resonance is the first tangential mode in the xy-plan f 1,1,0 333 Hz.

Following, we fall in the first zone of the spectrum where happens modal superposition, and where, consequently, different modes contribute to the resulting resonances. The fifth resonance appears to be a superposition between the first tangential mode in the yz-plan with the second axial mode in the z-directionf 0,1,1 /f 0,0,2 360 Hz. The sixth resonance is most likely a superposition between the first oblique mode with a tangential mode in the Based on what is formerly exposed, one can easily realize that the modes in zdirection are, as expected, absents or at least fairly attenuated. Also, the axial modes are those which, on average, possess more energy, what is in agreement with the theory. Other noteworthy point is that x-modes present a great amplitude variability and the maxima and the minima match with predicted modal behaviors. Furthermore, y-modes present a weak amplitude variability, which was also expected since all points share the same y-coordinate.

xz-plan -f 1,1,1 /f
To sum up, it is reasonable to state that the proposed physical model is able to predict the modal response of the empty closed box. The minor differences seen can be explained, on the one hand, for the loudspeakers' limitation and, on the other hand, for the physical model assumptions themselves. In effect, as the resonance frequency of the loudspeakers is 200 Hz and their frequency range are among 200 Hz to 15 kHz, it means the source has trouble to operate below 200 Hz; hence the results are directly impacted by such lack of energy.

Regarding the assumptions of the physical model, it does not take into account some particularities of the experimental model like the plexiglass window, the microphone support and the vertical plywood bars on the edges. These experimental artifices will disturb the sound field idealized by the physical model. We observe, as summarized in 

The pipes forest impact

On the purpose to ensure that the sound scattering effect caused by the pipes was noticeable, it was chosen for a significantly high density of pipes. The number of scatterers per unit area for a lattice is given by n 0 1{8a 2 (a 2 cm is the pipes radius), and the related concentration of scatters is ϕ π{8 (39.3 %). Nonetheless, for technical reasons, these quantities are slightly lower considering the whole number of pipes and the box xy-plan area.

That is because the pipes row just behind the facade needed to be removed to allow inserting and moving the microphone during measurements, and the set of pipes neighbors to the source had to be removed as well for similar reason. Figure 3.8 shows a plan of the pipes forest with the source, which was turned 45°anti-clockwise around its axis.

Figure 3.9 presents the modal response of the box fulfilled with pipes obtained experimentally. Results are compared with the empty configuration. We can notice that the transfer functions of the fulfilled box are smoother than the ones of the empty box: peaks were attenuated by up to 6 dB, and the amplitude range has been reduced around 20 dB.

Moreover, the pics are shifted to lower frequencies as put in evidence on Table 3.2. In fact, the presence of the pipes forest reduces the effective phase velocity c ef f in the frequency range of interest; consequently the modal frequencies f n are reduced as well, since both quantities are directly related (Equation 2.7). The pipes forest will also introduce an effective attenuation coefficient α ef f expected to increase with frequency. Experimental results
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1 st 2 nd 3 rd 4 th 7 th 1 10 th 1 st 2 nd
3 rd 4 th 7 th 1 10 th It was numerically observed that keeping the concentration of scatters to 27.5 % leads to a better fitting with the experimental results. Notwithstanding, Figure 3.10 shows that, even if the predicted behavior by the physical model approaches the behavior observed experimentally, the effective attenuation predicted by Equation 2.16 is found to be underrated at the 1 st and 2 nd resonances, and overrated for higher resonances.

In fact, the assumptions considered by the ISA of diluted medium (ϕ 10 %) and free field are not respected experimentally. In one hand, the higher concentration of scatterers are chosen because it matches better with the condition found in a real organ buffet. In another hand, the free field condition implicates the speed of sound in the medium (without scatterers) is frequency independent (which is not verified experimentally for the empty box), and does not take into account the sound amplification due to the walls reflections. A deeper sight of the transfer functions depicted in Figure 3.12 reveals that, even if one single slit does not impact significantly the box modal response, there is still such inclination of the modal forms towards higher frequencies. That behavior is put in evidence from contrasting the empty closed box with the empty box with slit case and the closed fulfilled box with the fulfilled box with slit case.

If we reason that inserting a slit in the box frontal panel imply reducing the frontal panel impedance, which implies increasing the box modal frequencies f n , we can deduce that taking out the frontal panel (opening the shutters in a swell box) means increasing expressively the box modal frequencies. Thus, while the pipes forest drops the speed of the sound and augment the sound attenuation inside the box, i.e., decrease the modal frequencies and smooth the modal forms, the opening of the facade will carry the facade impedance to zero, i.e., increase the modal frequencies.

Putting in other words, regarding the box modal frequencies, the pipes forest and the facade opening will impact in opposite direction. Regarding the modal forms, we can only state the pipes forest will attenuate them. Nothing can be asserted about the impact of the facade opening on the modal forms.

Results -Outer field

In the Section 3. The slit opening presents a behavior close to the theory prediction [START_REF] Mellow | On the sound fields of infinitely long strips[END_REF]: an increase of 20 dB/decade up to 2.7 kHz, which corresponds to ka = 1 (a being the slit half-width), then a frequency-independent value above 3 or 4 kHz. For frequencies below 1 kHz, the drop (20 dB/decade) seems to be gradually compensated by the transmission through walls, which curve approaches the one obtained for the closed facade.

The opened facade also presents a transmission which increases at 20 dB/decade up to about 1 kHz, band from which the transmission becomes independent of the frequency.

Last, but not least, these results appear to be consistent with those obtained in organs measured by [START_REF] Braasch | Acoustical measurements of expression devices in pipe organs[END_REF], who found the dynamic range of three different swell boxes to be between 10 and 20 dB; and by [START_REF] Luizard | Effet des jalousies du récit d'orgue comme moyen d'expressivité musicale[END_REF], who found a SPL difference in the audience area of 7.6 dB between a closed and opened swell box.

The graphics from Figure 3.14 highlight the results previously observed in Figure 3.13.

In The first anti-resonance around 250 Hz can be the resonance frequency of the facade, while the second anti-resonance around 1.6 kHz can be its critical frequency. The precise calculation of these two characteristic frequencies turns out to be delicate since the mass density and the Young's modulus of the facade are unknown, and the support conditions are atypical (the edges are not simply-supported, but neither are they clamped). Furthermore, since neither the transmission loss of the isolated facade, nor its frequency response function have been determined experimentally, the above conjecture cannot be proven. The decreasing slope below 250 Hz seems to correspond to the spectrum region controlled by the facade stiffness, while the increasing slope between 250 Hz and 1.25 kHz seems to correspond to the region controlled by the mass law (which extends beyond 3 kHz for the closed facade).

Another equally acceptable interpretation is that below 500 Hz, or even 1 kHz, the observed behavior corresponds to the modal response of the box itself. A numerical vibroacoustic model of the simplified organ buffet, or the determination of the transmission loss of the isolated facade, or even of the frequency response function of the facade would help to clarify this question.

The comparison of the attenuation observed as a function of the facade changes, seen in Figure 3.13, indicates that the behavior verified in the closed facade case corresponds to the wall acoustic loss. In the facade with slit case, one can observe that the acoustic insulation efficiency of the facade decreases as soon as an opening is inserted. Once the facade is gone, it is possible to assume that the observed attenuation says more about the position of P 1 inside the box (at the intersection of two reflecting planes, which amplifies the sound) and the distance between P 1 and P 2 (which is around 2.64 m according to Figure 3.3), than with regard to the facade itself, since it is absent.

Concerning the insertion loss, seen in Figure 3.14, the differences between the curves are explained by the simple fact of inserting a slit in the facade. The first impact that such modification implies is a mass loss, and the second is the creation of an obstacle-free path for the transmission of sound waves incident on the facade. The first consequence of the slit insertion is that the facade insulation becomes less effective in general (reduction of the mass). Finally, the second implies that the wavelengths of dimensions smaller than the width of the slit pass straight through it, which explains the uniformity of the curve observed for the facade with slit after 4 kHz.

In light of the results presented in this section, we can conclude that a single slit (a single shutter) delivers a remarkable acoustic attenuation, which is even higher for a completely closed facade. Therefore, it has practical interest in organ pipes building.

Acoustic radiation through a single slit

The directivity patterns of the sound radiation through the slit are presented in Fig-

ure 3.
15, in which experimental results are compared with the prediction issued from Equation 2.18. Observing the graphics, we can note they are not symmetrical. That is rather true in the cases of the empty box and the fulfilled box, in which the source is placed close to an edge, so there is an angle and a distance between the source and the slit. Results suggest that between 90°and 170°exist some contribution from the direct sound of the source, while between 10°and 90°there is not such contribution. Following, the results for the case without box, we find a radiation directivity pattern similar to the infinite slit theory [START_REF] Mellow | On the sound fields of infinitely long strips[END_REF], confirming the observed behavior in transmission (Figure 3.3). 

Discussion

In this chapter, it was analyzed the influence of an organ buffet on the organ's radiation. This study was based on the comparison between measurements carried out in an anechoic chamber on a simplified organ buffet and on the theoretical analysis of the various elements which take part in the acoustic response of the buffet. On one hand, the behavior of the buffet as a resonant cavity was studied. On the other hand, the radiation outside it has been approached through the study of the radiation through a slit. The analysis of the results obtained allows us to suggest that:

1. The phase velocity of the sound inside a rectangular cavity is greater than the speed of sound in the medium (in free field conditions), and it is frequency independent.

2. The insertion of high density cylindrical scatterers inside a rectangular cavity modifies the modal response of the cavity: by damping and shifting the resonances below those observed in the empty cavity.

3. The independent scattering approximation gives a clue about the resulting sound field in a medium containing multiple scatterers. However, this approximation is limited to free field conditions in diluted medium (ϕ 10 %), failing in the finite field of a closed box with a large concentration of scatterers.

4. The insertion of a slit on some wall that bounds a rectangular cavity will shift the resonances to slightly higher frequencies. Some resonances can be reinforced while others can be attenuated, it depends on the slit position regarding the nodal lines of the modes that contribute the most to the resonance.

5. The segregation between the slit and the pipes forest insertion ease the understanding of the box modal response when both elements are jointly considered. The resulting modal response corresponds to the superposition of each contribution.

6. A single slit has a significant impact on the overall facade attenuation. The difference between a fully closed and a fully opened facade is even greater. That confirms the swell box impact in relation to any organ buffet else.

7. Considering a normal incidence of sound behind a slit, the infinite slit model provides a reasonable approximation of the radiation directivity through the slit. The differences observed experimentally can be explained by the finitude and flexibility of the panel where the slit is placed.

8. The position of the source inside the box plays a fundamental role in the radiation directivity of the slit, outside the box. 9. Once the slit is coupled with a cavity, the infinite slit model no longer gives a reasonable approximation of the radiation directivity. The more complex the incident field becomes (insertion of the pipe forest into the box), the less we observe the expected behavior according to the physical model quoted above.

Chapter 4

The swell box in situation Measurements of a real instrument Abstract With the deeper understanding acquired from the measurements under controlled conditions, this chapter intends to shed light on the acoustics of a real organ swell box.

Firstly, the church and great organ to which the concerned swell box belongs and the swell box itself are introduced. Secondly, the acoustical study of the swell box is developed around three main axes: its inner field, its outer field, and the interaction between both fields. The impact of the pipes forest and the opening rate of the facade are evaluated.

The church, its acoustics and the pipe organ

The chosen swell box for this research is the one that composes the great organ of the church Sainte Elisabeth de Hongrie (Figure 4. 

Sainte Elisabeth acoustics

The reverberation times of the nave were experimentally quantified by [START_REF] Katz | Apparent source width and the church organ[END_REF], taking into account 11 measurement positions placed at 3 m intervals along the central axis of the unoccupied church. These measurements were carried out using three sound sources: (i) balloon burst on ground level, in-line with the organ facade; (ii) a loudspeaker excited with a sweep sine signal, atop the positif ; (iii) the entire organ clustered using all keys (keyboards coupled), all pedal keys, and all stops. The reverberation times by octave bands are given in Table 4 'Alessandro (2004).

Sainte-Elisabeth organist states that the reverberation is present, but moderate, which gives excellent conditions for listening to the instrument. The church has thus a clear acoustics without being dry. The acoustic environment is very favorable (except for the outside traffic noise, quite present in the church), which also certainly contributes to the sound and musical quality of the instrument (d'Alessandro, 2010).

A Romantic pipe organ

The pipe organ in question is a magnificent instrument of Suret, that plays a fundamental role in the organistic landscape of the French capital. The current instrument possesses three 54-note manual keyboards (C 2 ¡F 6 ), one for each of the three buffets, and a 30-note pedalboard (C 2 ¡F 4 ). Therefore, the frequency range of the great organ goes from 32.7 Hz for the lowest pipes of 16', until 5588 Hz for the highest ones of 2'. The keyboards are disposed in the same level order as the respective buffets they call: the lower for the positif, the middle for the great buffet and the upper for the swell box, which crows the instrument on its majesty. The pipes seen on the swell box facade in Figure 4.3 are there purely for decorative purpose: they are silent.

The swell box

The swell box of this Suret's pipe organ has a trapezoidal shape as shown further in • Gambe 8': small stop of wood and metal that counts 54 pipes. Its timbre is rich and clear. The first octave is in wood pipes placed on two engraved pieces on the laterals.

The remaining pipes are in the windchest.

• Voix celeste 8': similar to the gamba 8', it is a small stop composed by 42 metal pipes.

Slightly detuned, it is only played associated with the gamba to obtain a vibrato effect of undulation by beating of the two sounds. All the pipes are in the windchest.

• Flûte allemande 8': the "principal" of the swell box. The 54 pipes are shared between the basses in wood posted on two engraved pieces, and the remaining pipes in metal lies on the windchest. The harmony is soft but present.

• Bourdon 8': stop of 54 stopped pipes in metal and wood. The basses are in wood for the first octave (Figure 4.5c), then in metal for the rest of the stop. The second octave is with mobile caps, the 30 high notes are chimney. The timbre of this bourdon is the softest among the 8' stops on the instrument.

• Flûte octaviante 4': large metal stop of 54 pipes. The octaviant flute is of double length from C 4 , with two small holes at mid-length for the octaviation.

• Gambe 4': stop of 54 metal pipes very small in size. Its timbre is very rich and clear, almost like a set of reeds.

• Cor anglais 16': a reed stop of 42 pipes. This stop is built with a fairly narrow first cone, then an inverted double cone. Its harmony is sweet. The stop starts at C 3 .

• Trompette 8: metal conical reed stop of 54 pipes. It's more likely a solo stop.

• Clarinette 8': cylindrical metal reed stops that sounds in 8', but which pipes length corresponds to 4'. The first two octaves, i.e. 24 pipes, are cylindrical, then the last 30 pipes are cylindrical with a small pavilion.

• Hautbois 8': metal reed stops of 42 narrow pipes starting at C 3 . This oboe is conical, with a single cone for the first two octaves, then a double cone (cone and pavilion).

• Voix humaine 8': cylindrical reed stops that sounds in 8', but the pipes' bodies are very short. The 54 pipes have a more or less open top (Figure 4.5d), which gives a nasal sound, with well audible spectral formants, as in the voice. 

Measurements protocols and data processing

Results -Sainte Elisabeth acoustics

The reverberation times of the nave, and other objective parameters that are out of interest for the present study, have already been defined in a previous work (Table 4.1).

Nevertheless, these reverberation times were calculated for receivers' positions located among the audience, which do not correspond to the height of positions P 3m and P 10m , suspended approximately 12 m above the church floor. That is the reason the parameters defined by Equations 2.23 to 2.25 have been calculated for positions P 3m and P 10m , considering the omnidirectional source, in the condition of opened shutters, which favor the sound radiation outside the swell box.

The room acoustic parameters were calculated from square of the impulse responses, that had been filtered in octave bands. After the filtering, the impulse responses had to be truncated in order to remove the background noise and avoid miscalculations of the inverse cumulative integral. An example is shown in Figure 4.8 for 1 kHz at position P 10m (for other octave bands and position P 3m , refers to Appendix B). Thus, results obtained for T 20 , T 15 , EDT, and C 80 are presented in Tables 4.2,4.3,4.4,and 4.5, indicates the given parameter cannot be calculated for the related octave band, because the noise background was too high. First of all, the reason why T 15 was considered in the present analysis becomes clear when comparing Tables 4.3 and 4.2: with T 15 , reverberation times can be calculated for more octave bands than it can be calculated with T 20 . However, T 20 was considered anyway, in order to be able to compare the current results with the previous ones, shown in Table 4.1. For position P 10m , far away from the swell box and closest to the church center, the reverberation times are in general closest to the results obtained in the nave, as put in evidence through Taking into account the JND of 5% referent to each octave band, the reverberation times can be considered subjectively equals at the octave bands from 250 Hz to 1000 Hz bands. On the other hand, at higher frequencies the difference between reverberation times3 increases significantly from the audience area to the vault. Thereby, T 20 results previously obtained for the audience area must be carefully considered, and the room objective parameters calculated at positions P 3m and P 10m will be preferred for future analyses. 

Results -Inner field

With the aim of making a parallel with the previous chapter, the initial analyses of this section will focus on the results obtained with a controlled sound source, namely the omnidirectional source that has been excited with a 6 s long logarithmic sweep. Further in this section, results obtained with the cluster tutti will be considered, too. Accordingly, the pressure signals measured by the microphones at positions P 1 and P 2 are studied.

Omnidirectional source

First of all, the direct relationship between the opening rate of the shutters and the sound attenuation inside the swell box can be confirmed with The overall attenuation observed is smaller than 3 dB in most resonances. Actually, as it will be further discussed, the impact of the shutters opening on the positions P 1 and P 2 inside the swell box remains negligible below 500 Hz.

In spite of that, it worth being remembered that the resonance frequency of the Dr.

Three source is 280 ¨56 Hz, which implies a lack of energy below that frequency. Such lack of energy can be easily noticed in Figure 4.11, where the greatest resonance peak happens only slightly below 500 Hz at position P 1 . The major concern here is undoubtedly that the modal density, i.e., the modal overlapping, is already high enough around 280 Hz.

From a practical point of view, the only way to guarantee a better excitation of any sound field at low frequencies is employing a source which resonance frequency is lower than the lowest frequency of interest. In realistic terms, it means using a source whose dimensions are larger, since its resonance frequency is inversely proportional to its dimensions. As for having a source that can be considered punctual in regard to a given cavity, the source dimensions must be much smaller than the cavity dimensions, one can quickly realize the paradox in which that bring us.

To improve the understanding of the experimental results, the swell box was approximated by a rectangular cavity, and its modal responses are predicted from the implementation of Equations 2.7 and 2.5. Experimental results from Figure 4.11 seem suggests that, at low frequencies, the sound wave probably sees the lateral wood pipes as 'invisible', the L x dimension corresponding to the wall-to-wall width. Unfortunately, little else can be concluded. In addition to the aforementioned limitations due to the source, the modal overlapping and the unknown modal attenuation, in part because of the pipes presence, makes an unbiased analysis unfeasible.

Cluster tutti

Meanwhile the omnidirectional source has the advantage of being a punctual source which position is exactly known, and which spectral content over time is controllable, it has the disadvantage of not being this powerful, i.e., loud enough. Such characteristic is limiting, especially for further study of the acoustic field outside the swell box, but not only. For the investigation of the dynamic opening of the shutters, having a robust source with a steady spectral content over time is fundamental. From the 500 Hz octave band, the observed attenuation is -4.4 dB on average, with a maximum in the 4000 Hz band of -6.4 dB. That maximum attenuation on the octave band centered at 4000 Hz might be explained by the 13.3 cm width of the shutters. For frequencies as such their wavelengths are smaller than the shutters width (13.3 cm λ 2.6kHz ), the sound wave may pass direct by the shutters.

A last point that deserves our attention are the differences between crescendo and decrescendo. One could await for similar attenuation when comparing both dynamic conditions, what does not arise. Two causes help us to explain this difference. First, the excitation duration of the cluster tutti is slightly smaller during the crescendo than it is for the decrescendo.

Second, the sound level increases as the shutters are closed during the decrescendo, meanwhile the sound level decreases as the shutters are open in the crescendo. As we remarked in Figure 4.13, the energy inside the swell box tends to increase with time until it reaches kind of a steady state. Thus, the decrescendo movement goes in the sense of energy growth while the crescendo movement goes to the counter sense of energy growth.

To complement the results presented in Figure 4.13 and Table 4.6, Figure 4.15 evidences the spectrograms of the cluster tutti for position P 25 . We can note that the signal with more and less energy are respectively the ones measured in the closed and opened condi- This spectrogram helps us to visualize that most of the acoustic energy of the swell box stop pipes is concentrated below 4 kHz. When the shutters are open, we verify that the overall sound field inside the swell box is attenuated, being the attenuation more pronounced from 3 kHz. Finally, we also observe that the component which arises around 6.4 kHz6 for the closed condition is not only likewise attenuated, but it is also shifted towards 6.1 kHz.

Such shift toward a lower frequency indicates the effective phase velocity of the sound c ef f is smaller at high frequencies.

Results -Outer field

With the intention of study the shutters opening effect on the radiated sound outside the swell box, just the excitation by the cluster tutti is considered in this section. Thus, We also note that for position P 3m , nearest to the swell box, the measured signals have been slightly clipped. As a matter of fact, the microphone gains were calibrated to be able to properly catch the logarithmic sweep of the omnidirectional source outside the swell box at the closed condition, and not clipping the cluster tutti inside the swell box. In other words, just the worst "clipping condition" and "signal to noise ratio (SNR) condition" were taken into account inside and outside the swell box respectively. Thankfully, it has been verified that such clipping did not deteriorate these signals. Additionally, maintaining the same gain levels during the whole measurement campaign would have been infeasible otherwise.

As for the inside field, the spectral content of the measured pressure signals for both static and dynamic opening conditions have been compared with those of the closed condition. Shaded in light blue: 3 dB ¤ Gain 5 dB. Shaded in middle blue: Gain ¥ 5 dB. Shaded in middle red: Gain ¤ -3 dB.

Whereas in Table 4.6 a significant sound attenuation inside the swell box was observed from 500 Hz (being maximal at the 4000 Hz octave band), in Table 4.7 the sound reinforcement outside swell box follows a very different pattern. To start, a significant sound reinforcement is observed since lower-frequency bands (125 Hz for the nearest position, and from 250 Hz for the position P 10m ), going until 1 kHz, where it attains a maximum for the fully opened shutters condition.

Between the 2 kHz and 4 kHz octave bands, the reinforcement is less than 3 dB.

Occasionally, instead of a reinforcement, some attenuation is discovered in those bands. At the 8 kHz band, a maximal reinforcement is observed during the crescendo and when the shutters are fully open.

In general, both crescendo and opened are the only conditions in which the average reinforcement over the octave bands are greater than 3 dB. While in the halfway condition, some reinforcement is seen until 1 kHz, the decrescendo condition shows mostly insignificant reinforcement over all frequencies bands, and a significant attenuation at the 4 kHz band.

The minor reinforcement and attenuation observed at the 2 kHz and 4 kHz octave bands can be explained, on one side, for the expressive attenuation that happens inside the swell box in those frequency bands. On the other side, the reverberation time probably plays an important role there. As seen on Tables 4.3 and4 For the closed and decrescendo shutters condition, the attenuation observed decreases with 5 dB/octave band until 1 kHz, where it achieves -28 dB for the closed condition, and -24 dB for the dynamic decrescendo. For the opened, halfway and crescendo conditions, the attenuation observed decreases with 4 dB/octave band until 1 kHz, where it achieves -20 dB for the opened condition and -22 dB for the other two conditions.

Results seem to suggest that at low to medium frequencies, the sound attenuation depends not only on the swell shutters opening, but also on the reverberation of the church, which increases with frequency up to 1 kHz. Above this frequency, the attenuation becomes independent of frequency. These results are in agreement with the results obtained for the simplified organ buffet at high frequencies (Figure 3.13). The differences at low to medium frequencies are presumably explained for the acoustic surroundings of both situations: anechoic for the simplified organ buffet and reverberating for the real instrument. We observe here that for the halfway condition, the insertion loss fluctuate around 1 dB, which indicates that having half-opened shutters is subjectively equivalent to having fully opened shutters. For the closed condition, we observe a maximum insertion loss of 5.5 dB. The curve has an "M" format with a minimum at 631 Hz third octave band, which wavelength is around half of the shutters length (λ 631Hz 54 cm). From the 1259 Hz third octave band, which wavelength is near twice of the shutters width (λ 1259Hz 27 cm), to 2512 Hz, which wavelength is near the shutters width, the insertion loss falls to zero.

The results from Figures 4.19 and 4.20 appear to indicate that SPL and IL, are not the most appropriated parameters to measure the subjective acoustic sensations caused by the swell box shutters opening and closing. Actually, the human hearing is described and physically modeled by the psychoacoustics.

The role of psychoacoustics models is therefore trying to extract characteristic data related to specific auditory dimensions [START_REF] Vorländer | Auralization: fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality[END_REF]. Knowing that, when opening the swell box the sound is felt as more intense, brighter and richer; while when closing it, we have the feeling of distance from the source [START_REF] Castellengo | Écoute musicale et acoustique. Avec 420 sons et leurs sonagrammes décryptés[END_REF], the loudness and sharpness could be possibly some clues to explore.

According to [START_REF] Fastl | Psychoacoustics: facts and models[END_REF] the sensation that best corresponds to the sound intensity of a stimulus is "loudness". The sensation-stimulus relationship of loudness can be measured by answering how loud or how soft a sound is in relation to a standard sound. The sensation of "sharpness", which may be related to what is called spectral density, is primarily determined by the balance between low and high frequency spectral components, increasing when many high frequency components are present [START_REF] Vorländer | Auralization: fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality[END_REF].

Finally, two more aspects may be taken into consideration in deeper analysis. The first is the nature of the sound itself. A cluster tutti does not correspond to a musical sound, in which the musical notes are played in a sequence, with specific rhythm and tempo. The second aspect is the way how human ear processes sound. It is known that our hearing system produces non-linearity responsible for the introduction of distortions, that can be classified in even and odd order distortions, not present in the played song [START_REF] Fastl | Psychoacoustics: facts and models[END_REF].

Discussion

In this chapter, the acoustics of a swell box of a real instrument was studied. The analysis was mostly based on the measurements carried out in the Suret's organ pipe of the Sainte Elisabeth church. Measurements considered three static and two dynamic opening rates of the swell shutters: closed, halfway, opened, crescendo, and decrescendo. The acoustic field inside the swell box was both excited by an omnidirectional source, and by the whole pipes stops contained in it, played simultaneously. The acoustic fields inside and outside the swell box were investigated, and the resulting analysis allows us to suggest that:

1. The reverberation time values of Sainte Elisabeth church differs from the audience area do the vault at high frequencies.

2. The reverberating field of Saint Elisabeth plays an important role on the clarity of the played organ music, especially around 1 kHz octave band.

3. The modal response of the swell box is barely affected by the shutters opening in the region of the spectrum of interest for modal analysis. More significant differences are observed in the high modal density region of the spectrum, i.e., in diffuse field conditions, where the wave approach is no longer reasonable.

4. At low frequencies, the lateral wood pipes seem to be "invisible" to the sound wave. Thus, the swell box width corresponds effectively to the 2.86 m wall-to-wall distance.

5. The shutters dimensions appears to be decisive on the frequency "filtering" character of the swell box. The "filtering" effects of the swell shutters, on the acoustic field inside the swell box, are indeed remarkable above 500 Hz octave band and maximum at the 4 kHz band. Indeed, from the 500 Hz octave band, the wavelength (λ 500Hz 68 cm) is smaller than the shutters length (99 cm), and at 4 kHz, the wavelength (λ 4kHz 8.5 cm) is smaller than the shutters width (13.3 cm).

6. The dynamic crescendo and decrescendo, which correspond to opening and closing the swell shutters, impact more the radiated sound outside the swell box than inside it.

7. The insertion loss of the swell box and of the simplified organ buffet, which was measured in anechoic conditions, probably diverge because of reverberating fields of the church responsible for an inhomogeneous sound attenuation over the spectrum.

8. Sound pressure level based on acoustic parameters seem not to be the most consistent parameters for evaluating the subjective acoustic sensations caused by the swell box.

Psychoacoustics models may be favored in a future analysis. 9. As the sound usually produced by a pipes organ has a musical character, studying the played music (instead of a cluster tutti) might be more pertinent in a psychoacoustics analysis.

Chapter 5

The swell box under the light of the simplified organ buffet Abstract The current chapter has for purpose liken the results obtained in previous Chapters 3 and 4. Despite the very different nature of the acoustic field inside an anechoic chamber and a church, new measurements were proposed in order to better approximate the simplified organ buffet with the swell box of the Suret's organ at Sainte Elisabeth Church. The new results are thus explicitly confronted with those from the abovementioned chapters.

It is not a novelty for acoustical engineers, used to carry out acoustic measurements outside their daily workplace that reproducing in situ measurements are seldom unfeasible.

Indeed, the access to the object of study (that can be a church, an amphitheater, a museum, a healthcare facility, a residential building, an open office and so on), is always limited and we often have a one life chance to do the desired acoustic measurements. The access to Sainte Elisabeth church is not an issue, however we faced other problems.

Taking into account different limiting conditions of various natures, the occasion to do supplementary acoustic measurements in the swell box of the Suret's instrument did not arise. On the other hand, carrying out supplementary acoustic measurements with the simplified organ buffet in the anechoic chamber of IJLRA was much more likely to be done. In this context, new measurements were done with the experimental model shown on Figure 5.1, this time adopting the same sound source, and relative positions of the source and receivers as undertaken for the swell box, and reducing the number of pipes in a more realistic way. This complementary measurement of the simplified organ buffet in anechoic chamber was sublimated through the photographs of Laurence Godard (Appendix C). Some selected pictures had been exposed on the Parisians trains stations of Massy-TGV and Versailles-Chantiers on the photo exhibition "Objets de culture, matériaux et diversité" (in English, "Objects of culture, materials and diversity"). The exhibition was created by the DIM Patrimoines matériels and SNCF Gares & Connexions, with the support of the Île-de-France Region and the CNRS.

Measurements protocols and data processing

First of all, the experimental model as presented in Figure 3.1 suffered some modifications. To begin, the rectilinear sound source composed of a vertical array of 18 AURA speakers was removed. Next, the PVC pipes are rearranged as shown in Figure 5.1, and they are reduced from 170 to 125, corresponding to a new concentration of scatterers of ϕ 0.202, and to a number of scatterers per unit area of n 0 156.2.

In the following, the omnidirectional source Dr. Three model 3D-032 (which resonance frequency is 280 ¨56 Hz, and frequency response goes until 20 kHz), and two om- Considering the internal dimensions of the experimental model, L x 134 cm, L y 58 cm, and L z 98 cm, the real coordinates of the source and positions P 1 and P 2 are thus:

• Source: x S 71.0 cm, y S 24.4 cm, and z S 48.5 cm;

• Receiver P 1 : x 1 48.2 cm, y 1 14.5 cm, and z 1 z S ;

• Receiver P 2 : x 2 89.8 cm, y 2 y S , and z 2 z S .

Outside the simplified organ buffet, a third microphone BAMT1 was placed 2.00 m away from the center of its facade. A schema of the measurement is proposed in Figure 5. 

Results -Inner field

In this section we intend to discuss the impact of the facade opening on the modal response of the simplified organ buffet, which was measured under conditions henceforth referred to as "swell box-like conditions". To highlight the differences between what was already presented in Chapter 3, a brief recapitulation is hereafter done.

The experimental model, as introduced in the aforementioned chapter, was designed to promote a 2D internal behavior at best. In Section 3.3.1, the awaited 2D behavior was proved comparing the modal response of the empty box determined experimentally, with predictions issued from a 2D physical model and from a 3D physical model. Then, the impact of a pipes forest containing 170 pipes, and of a vertical slit on the facade were individually assessed in Sections 3.3.2 and 3.3.3. Finally,in Section 3.3.4, the modal response of the empty closed box was compared with:

• the closed box fulfilled with 170 pipes;

• the empty box with a slit on the facade;

• the fulfilled box with a slit.

Because of constraints from the measurement set-up (Figure 3.2), notably the receivers that had been placed just behind the facade, the modal response of the the fulfilled box with fully opened facade was not measured. Furthermore, as far as the influence of the pipes forest is concerned, the mock-up was only measured either in the empty condition or fulfilled with 170 pipes. None intermediate condition was considered. Last, but not least, only the 2D behavior was addressed with the inner field excited by the rectilinear sound source.

Thereby, Figure 5.3 presents the modal response of the simplified organ buffet measured in "swell box-like conditions". We note that only the 2 nd , 7 th1 1 , and 10 th 1 resonances are observed in the new configuration of the experimental model. The absence of the 3 rd and 4 th resonances (and even the 1 st ) are most likely explained by the relative coordinates of the source position with respect to the internal dimensions L x , L y , and L z . In fact, the source is placed very close to the geometrical center of the box, which means the axial, tangential and oblique modes of first order are not excited because the source is very close to a pressure node.

We observe as well that the resonances are shifted to higher frequencies and attenuated by around 3 dB as the facade is open. Such behavior had already been observed, but in small scale, with the fulfilled box with a slit (Figure 3.12). Thus, it was awaited that when opening the whole facade, a greater frequency shift and attenuation of the resonances should be observed. 

Results -Outer field

As done in the previous section, we will start by pointing out the differences from what has already been presented in Chapter 3. In Section 3.4.1, the influence of the facade opening on the sound radiation of the simplified organ buffet was examined. For that, the sound field inside the box fulfilled with 170 PVC pipes has been excited with the rectilinear source, which was placed in one rear edge. Else, the sound pressure at its inner field has been measured by a single microphone, placed at the opposite rear edge as shown in Figure 3.3.

The sound attenuation between the microphone placed outside the box with the one placed inside it was measured for three opening conditions of the facade:

• the closed facade;

• the facade with a slit;

• the opened facade.

That said, Figure 5.4 shows the attenuation at P out , in relation to the average pressure measured at positions P 1 and P 2 , of the simplified organ buffet in "swell box-like conditions". We firstly observe that, below the octave band centered at 1 kHz, the curves for both opened or closed facade follows the same tendency, the transmission loss being greater for the closed facade. This behavior suggests that below the Schroeder frequency of the experimental model (f S 1010 Hz), the facade transmission seems to be highly influenced by the modal response of the experimental model. This 15 dB difference can be explained by the nature of the sound sources employed in each of the measurements, and the relative distance between receivers with the largest dimension of each source. The Dr. Three omnidirectional source, which is around 10.5 cm wide, can be assumed as spherical source. Considering the sound attenuation as we move away from the source as 1{r, where r is the distance from the source, we can estimate the attenuation between P out and P in around -23 dB. This value is pretty close to the -20 dB, and the 3 dB difference can be explained because of the microphones placed inside the experimental model are not exactly in free field conditions. Their closeness to reflecting surfaces amplify the sound pressure locally.

On the other hand, the rectilinear source, which is 93 cm long, behaves as a cylindrical source above 1 kHz, for a distance r from the source that is superior to its length (Figure A.6). Thus, considering the sound attenuation as we move away from the source as 1{ c r, we can estimate the attenuation between P out and P in around -3 dB. Again, this value is pretty close to the -5 dB, and the 2 dB difference can be explained because of the microphone placed inside the experimental model is not exactly in free field conditions, and its closeness to one of the edges amplifies the sound pressure locally.

For the closed facade condition, however, the transmission decay of -10 dB/decade is different from the tendency observed for the fulfilled box excited with the rectilinear source (Figure 3.13). There, the attenuation between P out in relation to P in was found to be independent of frequency and remained near -40 dB. Again, the nature of the sound sources employed in each of the measurements can give a clue about such behaviors.

When the facade is closed, we can assume that the sound radiation inside the experimental model is mainly governed by the source itself, while the sound radiation outside it also depends on the facade. Assuming then a dependency on the frequency, the attenuation at a distance r in from the omnidirectional source inside the experimental model can be written as λ{r in , and the attenuation at a distance r out from the facade outside the experimental model can be written as λ{ c r out .

To complement the preceding results, Figure 5.5 shows the insertion loss of the closed facade. Results are compared with the ones obtained for the fulfilled box excited with the rectilinear source (presented in Figure 3.14), here called "2D inside field". The newer results obtained with the omnidirectional source are named as "3D inside field".

This time we notice that, independently of exciting the inside field with a rectilinear or an omnidirectional source, the difference observed outside the experimental model between the closed and opened facade conditions is nearly the same. Indeed, the insertion loss curves follow the same tendency, the "2D inside field" IL being around 5 dB bigger than the "3D inside field" IL. This difference highlights the cylindrical character of the rectilinear source, whose attenuation with distance r is lower than the attenuation of the omnidirectional source for the same distance. 

The swell box versus the simplified organ buffet

To be able to compare properly the swell box from the Suret's pipe organ of Sainte

Elisabeth church with the simplified organ buffet, it is useful start by comparing their scales.

Indeed, as shown in Table 5.2, the volume and the total surfaces are respectively 10 and 5 times greater in the swell box than in the simplified organ buffet. The facade attenuation being not comparable between these devices, because of the very different nature of the sound field outside them (reverberating for the swell box and anechoic for the other), the comparison will be restrained to the sound field inside those devices.

Besides the volume and the total surfaces, a relevant quantity which tells a lot about the sound field inside a cavity is its Schroeder frequency. The Schroeder frequency of the simplified organ buffet was calculated with CATT-Acoustic for its empty state, that is, without any pipe inside it. Presuming that the absorption coefficient is approximately the same in both cavities on their empty states, the Schroeder frequency of the swell box has been estimated in a more simplified way hereafter detailed.

To start, the reverberation time of the simplified organ buffet has been determined from its Schroeder frequency f S and its volume V via the Equation 2.21:

T ¢ f S 2000 2 V.
(5.1)

Next, the average acoustic absorption inside the empty simplified organ buffet of total surface S has been calculated from Equation 2.22: direction). On the other hand, the peak that happens just below 150 Hz on the swell box it is, actually, a resonance of the cavity itself. That difference leads us to the following question: "Why when employing the same measurement set-up for both devices we do not obtain similar results for the same frequency range ?" The answer is found in Figure 5.6a: while for the experimental model there is just one mode that happens below 150 Hz, there are around 7 modes expected below the same frequency into the swell box. Moreover, assuming the swell box as an equivalent rectangular cavity of dimensions L x 286 cm, L y 119 cm, and L z 242 cm, there are 4 modes expected around 150 ¨10 Hz, which certainly contribute to the resonance seen there.

In fact, if neither cavity has the same dimensions, and there is a factor 2 between its Schroeder frequencies, they are not directly comparable on the frequency domain.

Bearing this observation in mind, a normalization of the frequency is proposed on Equation 5. The normalized frequency ν, as it is here proposed, allows distinguishing resonances which correspond to axial modes on x-direction to other resonances. For an empty cavity, the x-axial modes should be observed near to the entire numbers on the ν scale, i.e., the first

x-axial mode should happen near ν 1, the second x-axial mode should happen near ν 2, and so on. For a cavity fulfilled with pipes, we have observed that the resonances are shifted to lower frequencies, due to the decrease in phase velocity caused by the pipes presence. The

x-axial modes should be then observed just below to the entire numbers on the ν scale.

In the simplified organ buffet, the resonance observed near ν 1.8 corresponds, indeed, to the second x-axial mode. Further, the resonance around ν 2.8 is caused by a superposition of several modes, among which the only axial mode (that carries more energy than tangential and oblique modes) corresponds to the third x-axial mode. Finally, the resonance that happens close to ν 3.3 is a tangential mode on the xy-plan. Such results confirm the expected behavior of modal responses in function of the proposed normalized frequency ν.

In the swell box, therefore, the resonances observed near ν 2.5 and ν 3.5 do not seem to correspond to axial modes in the x-direction. Considering the approximation by a rectangular cavity of dimensions L x 286 cm, L y 119 cm, and L z 242 cm, both of these resonances should be a superposition of several modes, among which the only axial modes correspond to the second and third axial modes on the z-direction.

Coming back to Figure 5.7, we observe that while the greatest peak arises below f S /2 for the simplified organ buffet, it arises just near f S for the swell box. From a practical point of view, it means that the lower frequencies are less amplified than the middle and higher frequencies in the swell box. This is in agreement with what was observed in chapter 4: the modal response of the swell box is little affected by the shutters opening at frequencies below its Schroeder frequency.

Finally, it is worth emphasizing that the experimental model and the swell box have different geometries and proportions between their dimensions. While the first is a rectangular cavity with the proportion L x : L y : L z 2.3 : 1 : 1.7, the second is a trapezoidal cavity with the proportion L x : L y : L z 2.4 : 1 : 2.0, which means the experimental model does not correspond to a model in reduced scale of the swell box of Suret's pipe organ. This, along with the fact that the pipes forest have different characteristics in each cavity (different materials, diameters, lengths and concentration of pipes), clarify the differences observed in the modal responses that were compared in Figure 5.8.

Discussion

In this chapter, the simplified organ buffet was measured under the "swell box-like conditions". These conditions consisted in adopting the same sound source, and relative positions of sources and receivers as undertaken for the measurements inside the swell box of Suret's instrument. The number of pipes inside the experimental model was reduced too, from 170 to 125 in a more realistic configuration. The modal response of the cavity and the facade attenuation were assessed for the closed and opened facade conditions. The results obtained with the new configuration of the experimental model are confronted with the results previously obtained in Chapters 3 and 4. These newer results helped to:

1. Highlight that whatever the measurement set-up and source adopted, similar results may be found for the same cavity.

2. The facade attenuation depends not only on the facade itself but also on the nature of the incident sound wave. It was seen that the attenuation at a position outside the cavity in relation to some position inside it, varies if the sound source behaves as a point source or not.

3. Considering the same position outside a cavity, the insertion loss due to the insertion of a frontal facade should essentially follow the same tendency whatever the sound source employed on measurements.

4. The swell shutters result in such a characteristic acoustic filtering of the radiated sound that even when these are open, the sound radiated by a swell buffet will be different from the sound radiated by an ordinary buffet of same dimensions.

5. The proposed normalized frequency ν can help on the modal identification of swell boxes of various dimensions.

Chapter 6 Conclusions

The main objective of this work was to study the acoustics of a real swell box through a simplified experimental model, and confront such experimental model with physical models that predict different acoustic phenomena to which the swell box is submitted.

After presenting the state of art and the framework of this research on Chapter 2, a simplified organ buffet was studied in Chapter 3. On one hand, the behavior of the buffet as a resonant cavity was studied. On the other hand, the radiation outside it was approached through the study of the radiation through a slit. Results obtained from measurements carried out in an anechoic chamber showed that the cavity resonances are: (i) attenuated and shifted to lower frequencies when pipes are added inside it; (ii) shifted to higher frequencies when a slit is inserted on some wall that bounds the cavity. It was also observed that a single slit has significant impact on the overall facade attenuation, and that the position of the source inside the cavity plays a fundamental role in the radiation directivity of the slit, outside the cavity.

The different physical models that were considered in order to predict the modal response of a rectangular cavity, the scattering of multiple pipes and the radiation through a slit demonstrated that: (i) the phase velocity of the sound inside a rectangular cavity is greater than the speed of sound in the medium; (ii) if the ISA gives a clue about the resulting sound field in a medium containing multiple scatterers, this approximation is nowadays limited to free field conditions and to diluted mediums; (iii) considering a normal incidence of sound behind a slit, the infinite slit model provides a reasonable approximation of the radiation directivity through the slit. Once the slit is coupled with a cavity, and the more complex the incident field becomes, the less we observe the expected behavior according to the model quoted above.

In Chapter 4, we analyzed the acoustics of the swell box from Suret's instrument at Sainte Elisabeth church. The influence of the shutters opening on the swell box resonances and radiation were both investigated. Results issued from acoustic measurements revealed that: (i) the modal response of this swell box is barely affected by the shutters opening at low frequencies. More significant differences are observed at higher frequencies in diffuse field conditions, where the wave approach is no longer reasonable; (ii) the shutters dimensions appears to be decisive on the frequency "filtering" character of the swell box. (iii) the dynamic crescendo and decrescendo impact more the radiated sound outside the swell box than inside it; (iv) the insertion loss of the swell box and of the simplified organ buffet diverge because of the different nature of the sound field on which these devices have been measured: a reverberating church for the first, and an anechoic chamber for the later; (v) acoustic parameters based on SPL seem not to be the most adequate for evaluating the subjective acoustic sensations caused by the swell box.

In Chapter 5, we considered the simplified organ buffet that was measured under the "swell box like conditions". The modal response of the cavity and the facade attenuation were assessed for the closed and opened facade conditions. The results thus obtained put in evidence that: (i) whatever the measurement set-up and source adopted, similar results may be found for the same cavity; (ii) the facade attenuation depends not only on the facade itself but also on the nature of the incident sound wave; (iii) the IL of the facade, on the contrary, should essentially follow the same tendency whatever the sound source employed on measurements is; (iv) the sound radiated by a swell buffet will be different from the sound radiated by any buffet of same dimensions because of the resulting acoustic filtering inherent to the swell shutters; (v) the proposed normalized frequency ν can help on the modal identification of swell boxes of various dimensions.

Finally, due to the limitations faced in the development of this research, as well as of the results obtained, suggestions are made in the following about future works that would enrich the not extensive literature related to the acoustics of swell boxes.

Suggestions for future work

Based on the results and conclusions presented in Chapters 3, 4 and 5, we suggest as future works:

• Model the complex acoustic field inside an organ buffet or swell box through finite element method (FEM), coupled with boundary element method (BEM) to predict its radiation outside the instrument.

• Measure a larger sample or swell boxes and organ buffets, preferring the excitation by the lower pipes, which will excite the frequencies of interest to modal response.

• Compare the modal response of swell boxes and organ buffets of different dimensions using the normalized frequency ν.

• Evaluate the subjective effect of the swell box through psychoacoustics metrics in a musical context.

• Evaluate the subjective effect of the swell box in a musical context by listening evaluation tests.

In the sequence, the behavior of the source when distancing from it was evaluated.

The source was then fixed, and a microphone was horizontally moved away from the geometric center of the source at the following distances: 0.20 m, 0.40 m, 0.60 m, 0.80 m, 1.00 m, 1.48 m, 1.97 m, 3.00 m, 4.03 m. This time, the source was excited by a MLS signal of 10 s duration.

Finally, the vertical homogeneity of the source was verified by fixing the microphone at a distance of 0.20 m from the source and sliding the source on a plane (Figure A.2b). The source was slid at every δl 5 cm. A MLS signal of 5 s duration was used, repeated four times for each position, each repetition spaced 1 s apart. 

A.2 Results -Horizontal directivity

A.3 Results -Distancing behavior

In Figure A.6 are presented the results, filtered by octave bands, of measurements whose purpose was to find out how the source behaves when we move away from it. It is also shown the far-field decay trends for a spherical source, 1/{r, where r is the distance from the source; and for a cylindrical source, 1{ c r. Taking into account the factor r{h which represents the ratio between the distance from the source to the source length, the analysis of each frequency band gives us that:

• 125 Hz: for r{h 0.43, the behavior is difficult to define; for r{h ¡ 0,43, decay with 1{r;

• 250 Hz: for r{h 0. 

A.4 Results -Vertical homogeneity

The graphs in Figure A.7 show the results, filtered by octave band, of the measurement whose purpose was to examine the homogeneity along the source length. By analyzing the results, we can notice that:

• for f 500 Hz, the sound wave sees the source as punctual: λ ¡ h{2, (where λ is the wavelength, and h is the length of the source);

• at 1 kHz, there is a transition, because λ ≊ h{2 ;

• for f ¡ 2 kHz, the sound wave sees the source as rectilinear, λ ¡ h{2;

• about 8 kHz, we note the individual contribution of each speaker;

• at 16 kHz, the frequency response of the source is no longer linear. 

A.5 Discussion

In summary, the results presented in the current appendix show that, in anechoic conditions, the source composed by an array of 18 AURA speakers:

• does not behave as a cylindrical source for f ¡ 1,8 kHz (with respect to its radiation directivity);

• -27 dB at 4 kHz;

• -35 dB at 8 kHz. For acoustic measurements, there is nothing better than a space so quiet that you can even hear your heart beating. Little-known to the general public, an anechoic chamber is a vital room in an acoustics laboratory. It is designed to avoid sound wave reflections, in order to imitate a free field. Entering such a space is a unique experience: some find inner peace; others may be disturbed. Alas, we're no longer used to such tranquility! this "simplified organ buffet" is installed in an anechoic chamber, whose walls absorb the sound waves. It is called "simplified" because the aim is to isolate just a few of the major components that characterize an organ buffet. Here, a box whose walls are removable for easier handling; and a forest of pipes, also removable, enabling measurements to be taken with different pipe ratios.) Credits: @ Laurence Godart / DIM PAMIR / CNRS.

Versailles-Chantier version:

Un buffet d'orgue oui, mais « simplifié ». Simplifié car l'enjeu est de mettre en évidence seuls quelques composants majeurs caractérisant un buffet d'orgue. Ici, une boîte dont les parois sont amovibles pour faciliter toute manipulation ; et une forêt de tuyaux également amovible qui permet d'effectuer des mesures avec différents taux de tuyaux. Une source sonore et des microphones sont aussi ajoutés afin d'effectuer des mesures acoustiques à l'intérieur du buffet.

An organ buffet, yes, but "simplified". Simplified, because the aim is to highlight just a few of the major components that characterize an organ buffet. Here, a box whose walls are removable for easy handling; and a forest of pipes, also removable, enabling measurements to be taken with different pipe ratios. A sound source and microphones are also added for acoustic measurements inside the case. 

Annex I

Power series coefficients for a resilient strip in an infinite baffle

In this annex, the formulation proposed by [START_REF] Mellow | On the sound fields of infinitely long strips[END_REF] for the sound radiation through a resilient strip in an infinite baffle is revised. The purpose here is to present the mathematical development that conducts to the power series coefficients A n .

With that in mind, let us consider again the boundary conditions of the resilient strip in an infinite baffle.

The strip of width 2a, illustrated in Figure 2.10, is mounted in an infinite baffle in the xy-plan, with its line of symmetry on the y-axis. This strip is assumed: (i) to be infinitely-long;

(ii) to be perfectly flexible; (iii) to have zero mass; (iv) to be free at its outer edges; (v) to be driven by a uniformly distributed harmonically varying pressure p0 and thus radiates sound from both sides into a homogeneous loss-free acoustic medium. On the surface of the strip and baffle, the following boundary conditions apply: where the Green's function in rectangular coordinates is given by: g px, z | x 0 , z 0 q ¡ i where the real and imaginary parts are given by Equations I.12 and I.13 hereafter: 
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Figure 1 . 1

 11 Figure 1.1 Acoustic subsystems of a pipe organ. Source: gallica.bnf.fr / BnF; drawing of D. F. Bedos de Celles in L'art du facteur d'orgues -Quatrième partie, Paris: 1778.

( a )Figure 2 . 1

 a21 Figure 2.1 Types of organ flue pipes and its main components. Source: Henrique (2002).

Figure 2 . 2

 22 Figure 2.2 Types of organ reed pipes (on the left), and its main components (on the right). Source: Henrique (2002).

Figure 2 . 3

 23 Figure 2.3 Schematic diagram of a pipe organ. Source: Meyer (1997).

  Figure 2.5. "Órgano" consists of a periodic distribution of hollow stainlesssteel cylinders of 2.9 cm diameter, with a unit cell of edge 10 cm. The cylinders are fixed on a circular platform of 4 m diameter, which can rotate on a vertical axis. The volume fraction occupied by the scatterers is 0.066, i.e., for each 1 m 3 , 0.066 m 3 are occupied by the scatterers. The authors measured sound attenuation in outdoor conditions for wave vectors perpendicular to the cylinders vertical axis.

Figure 2 . 5 "

 25 Figure 2.5"Órgano" (1977), sculpture of Eusebio Sempere, exhibited at the Juan March Foundation, Madrid. Source: vanguardiaartisticasigloxx.wordpress.com.

Figure 2 . 6

 26 Figure 2.6 Effective attenuation and phase velocity for different scatterers concentration, with a = 2 cm, and c 0 = 343.3 m/s.

Figure 2

 2 Figure 2.8b.

Figure 2 . 8 Figure 2 . 9

 2829 Figure 2.8 Effective attenuation and phase velocity for different scatterers radius, with ϕ = 0.1, and c 0 = 343.3 m/s.

Figure 2 . 1 Figure 2 .

 212 Figure 2.11. Results have been normalized in relation to the maxima that occurs in front of the strip, at zero degree. Bellow ka 1, the strip behaves as a cylindrical source. At frequencies such ka ¡ 1, the attenuation observed at 90°is greater than 3 dB in relation to

Figure 2 .Figure 2 .

 22 Figure2.12 presents the sound pressure radiated through the strip for different distances r in relation to the strip half-width a. Results have been normalized in relation to the uniformly distributed pressure p 0 on the strip. We observe that for a distance r ten times bigger than a, it is already possible to assume far field for both ka 1 and ka 10. Indeed, from r{a ¥ 10, each time the ratio r{a increases by a factor of 10, the sound pressure level decays 10 dB; in other words, by doubling the distance r, a 3 dB decay is observed, typical of 1{ c kr behavior expected for a 2D wave.

Figure 2 .

 2 Figure 2.12 is complemented by Figure 2.13. While in the first figure, the pressure is given as a function of the angle θ, and results are shown for ka 1 and ka 10, in the second figure, the pressure is given as a function of r{a, and results are shown for θ 0°and θ 90°.

Figure 2 .

 2 Figure 2.13 Radiated sound pressure of an infinite resilient strip mounted in an infinite baffle. Results are shown for θ = 0°on the left, and for θ = 90°on the right.

Figure 2 .

 2 Figure 2.14 Measured impulse response from Sainte Elisabeth church filtered at 500 Hz octave band, and corresponding energy decay curve.

Figure 2 .

 2 Figure 2.15 Energy decay and reverberation times.

Figure 3 . 1

 31 Figure 3.1 Simplified organ buffet. Scheme showing the window (slit) position on the facade and the source and pipes disposition inside the box. Credits: Laurent Quartier.

Figure 3 . 2

 32 Figure 3.2 Box modal response measurement scheme. Above: xy-plan; the source is indicated by the letter S. Below: xz-plan.Measurement points R1 to R12 following the x-axis correspond to 0.51L x , 0.55L x , 0.59L x , 0.63L x , 0.66L x , 0.70L x , 0.74L x , 0.78L x , 0.81L x , 0.85L x , 0.89L x and 0.93L x .

Figure 3 . 3

 33 Figure 3.3 Facade attenuation measurement scheme. P in , P out and S stand, respectively, for the microphones inside and outside the box, and the source.

  .5a -closed facade, like a closed swell box; • Figure 3.5b -facade with slit, like a single open shutter; • Figure 3.5c -opened facade, like an open swell box or an organ buffet.

Figure 3 . 4

 34 Figure 3.4 Facade attenuation: evaluation of different measurement points outside the experimental model for the configuration 'facade with slit'. Results were filtered in octave bands.

Figure 3 . 5

 35 Figure 3.5 Facade configurations for attenuation measurement. Microphone P out is portrayed in the first plan (left side for left photography and right side for middle and right photographs). The slit center is highlighted with white strips on its right and left borders.

3. 3 . 1

 31 The empty closed box In Figure 3.7, the transfer functions obtained from the experimental results are compared with the results obtained from the implementation of the physical model presented in Equations 2.7 and 2.5. Upper graphic show the 2D prediction under the assumption of a point source radiating into the xy-plan. Middle graphic show the 3D prediction considering a linear source composed by a vertical array of 18 point sources. Lower graphic show results issued from the experimental model measurements. Transfer functions were normalized with respect to the global maxima of the twelve transfer functions in order to eliminate the source factor, which volumetric velocity is unknown.

Figure 3 . 8 Frequency

 38 Figure 3.8 Pipes forest plan and lattice structure. Main: pipes forest xy-plan; the source S is turned 45°anti-clockwise around its z-axis; unfilled circles indicate removed pipes neighbor to the source. Detail: a pipe lattice structure.

Figure 3 . 9

 39 Figure 3.9 Box modal response: empty versus fulfilled box.

Frequency

  

Figure 3 .

 3 Figure 3.10 Modal response of the fulfilled box: physical model versus experiments.

3. 3 . 3 Frequency

 33 Single slit impactThe slit added in the frontal panel was designed in a way it represents a single open shutter in a swell box. Keeping in mind the radiation model presented in Chapter 2, the slit half-width a 2 cm was sized in a way that for 0.01 ka 10, the frequency range falls into 27 Hz f 27 kHz. Such frequency range is of particular interest because it comprehends the region where human ear is sensible to sound.The modal response of the empty box with slit was determined by following the protocol detailed in Section 3.2.1. However, this time only three measurement points were investigated R1, R6 and R12, which correspond respectively to 0.51L x , 0.70L x , 0.93L x . The transfer functions obtained for each of the three measurement points are depicted in Figure3.11 and contrasted with the results issued for the empty closed box. Results are extended up to 1 kHz to enhance the differences between current condition with the closed box.An inattentive glance at Figure3.11 may lead the observer to think the differences between both configurations are minors. Indeed, most parts of the resonances amplitudes variate less than 3 db (even 1 dB) from one configuration to another, and the overall tendency of the three transfer functions stay the same with or without slit in the facade considered.Nevertheless, a deep assessment reveals some important variations at specific resonances.That is definitely the case of the 2 nd , 5 th , and 8 th resonances. Starting with the second resonance, its amplitude is reduced by 8 dB for position R1, 9 dB for position R6, and 5 dB for position R12, when the slit is added into the facade. Then, we see that the fifth resonance disappears at positions R1 and R6. The amplitude of the eighth resonances is attenuated by 5 dB for position R1, and by 4 dB for the positions R6 and R12. After 500 Hz, the twelfth resonance is attenuated around 5 dB for positions R1 and R12. Also, the 13 th , 15 th , 16 th , and 19 th resonances are respectively attenuated: 8 dB at position R1, around 5 dB at position R6, 7 dB at position R12, and 5 dB at position R1.Hence, regardless the slit tiny dimensions 4 , these results put in evidence the slit character: a zero impedance local. More precisely, it adds a vertical nodal line, which impacts directly pair modes in the x-direction, and all modes in the y-direction. Of course the position R1, the closest one to the slit will be the most affected by it.

Figure 3 .

 3 Figure 3.11 Box modal response: empty closed box versus empty box with slit -wider spectra.

3. 3 . 4 Figure 3 .Frequency

 343 Figure 3.12 compiles the results outlined from Subsections 3.3.1 -3.3.3 and includes the case of the fulfilled box with slit.

Figure 3 .

 3 Figure 3.12 Box modal response: multiple joint factors.

Figure 3 .

 3 Figures 3.13 and 3.14. The first of them show the attenuation at P out in relation to P in , and the later shows the insertion loss (IL) for the equivalent of a closed swell box (closed facade), and a single theoretical opened shutters (facade with slit). The opened facade was chosen as reference, because it corresponds to the classic organ buffet and it matches the IL concept.

Figure 3 .

 3 Figure 3.14 Insertion loss of the facade, reference: opened facade. Results were filtered in 1/3 octave band.

Figure 3 .Figure 3 .Figure 3 .

 333 Figure 3.16 shows the SPL measured at 20 cm from the slit center. Without surprise and as expected, the box acts as a resonator. It can also be noted how the presence of the forest attenuates the sound pressure after the first modes of the box, by shifting them also in frequency. These results reiterate the ones that had already been verified previously in

  1a) at Paris 3 rd . Built during the first half of the 17 th century, the history of this church is anything but uninteresting: it even served as flour warehouse during the French Revolution. After the revolution, Sainte Elisabeth became the district parish church, and in 1938 the archbishop of Paris authorized the knights of the Order of Malta to hold their meetings at Sainte Elisabeth. To this day, it is still their conventual church.

( a )

 a Church seen from its entrance. (b) Vault among the choir.

Figure 4 . 1 Figure 4 . 2

 4142 Figure 4.1 Church Sainte Elisabeth de Hongrie, with its architectural style predominant in Parisian churches. The vault's scene depicts the coronation of Sainte Elisabeth.

  After d'Alessandro (2010), this instrument (Figure4.3) is an authentic rare (maybe unique) example, in excellent playing condition, of an organ from the first half of the 19 th century in Paris, established on large proportions.

Figure 4 . 3

 43 Figure 4.3 Suret great organ of Sainte Elisabeth church. The lower and smaller buffet is the positif, the middle and larger buffet is the great buffet, and the upper buffet corresponds to the swell box. Credits: x.

Figure 4 .

 4 Figure 4.7. Its dimensions are average: 286 cm large, 119 cm deep and 242 cm high, with a windchest 196 cm large and 106 cm deep. The swell box facade, where the vertical shutters are mounted in, has the same width as the windchest, 196 cm. The 24 shutters mounted in the facade are approximately 13,3 cm wide, and are dived in four sets of 6: top left and right, and bottom left and right as well. The upper shutters are 98 cm long and the lowers are slightly longer with 99 cm. In total, the swell box counts 708 pipes, from which 36 are in wood. Apart from the cornet, the remaining 522 metal pipes lies on the oak windchest. The swell box windchest is a chromatic one 1 , with diatonic reduction, ravalement 2 in french, of 18 notes (9 on each side) in the bass. The windchest has two sides with two engraved pieces on each side, which carry the wooden basses. A central engraved piece carries the cornet. The pipes of the swell box, as the pipes of the great buffet and of the positif, are supplied with an automatic wind valve. Every stop is called by individual drawknobs placed on both sides of the keyboard (Figure 4.4a). The shutters themselves can be continuously opened or closed as a whole through a pedal placed over the pedalboard (Figure 4.4b).

( a )

 a Drawknobs of the positif pulled. (b) Swell pedal over the pedalboard.

Figure 4 . 4

 44 Figure 4.4 Control mechanisms of the great organ.

Figure 4 . 5

 45 Figure 4.5 Swell box stop pipes.

Figure 4 Figure 4 . 6

 446 Figure 4.6 Swell box measurement scheme: outside field. Profile view. P 3m , P 10m and S stand, respectively, for the microphones at 3.33 m and 10.35 m from the swell box facade, and the source.

Figure 4 . 7

 47 Figure 4.7 Swell box measurement scheme: inside field. Views from top (top drawing) and rear (bottom drawing). P 1 and P 2 stand for the microphones positions. The red dodecahedron represents the omnidirectional source Dr. Three. All measures are given in centimeters.

Figure 4 . 8

 48 Figure 4.8 Impulse response of position P 10m filtered at 1 kHz octave band.

Figure 4

 4 Figure 4.9.

Figure 4 .Figure 4 .

 44 Figure 4.10 Omnidirectional source: time signals measured inside the swell box at positions P 1 (upper graphics) and P 2 (lower graphics). In the right graphics, a zoom is given in a middle-low frequency range of the measured logarithmic sweep of 6 s long.

Figure 4 .FrequencyFigure 4 .

 44 Figure 4.11 Swell box modal response: shutters opening rates.

FrequencyFigure 4 .

 4 Figure 4.12 Modal response prediction for a perfect rectangular "empty" swell box.

Figure 4 .

 4 Figure 4.14 Cluster tutti: power spectral density of the signals measured inside the swell box at positions P 1 and P 2 for the closed swell box.

Table 4 . 6

 46 Shutters opening attenuation in relation to the closed condition. SPL differences are presented by octave bands for positions P 1 and P 2 inside the swell box. Shaded in light blue: -5 dB Gain ¤ -3 dB. Shaded in middle blue: Gain ¤ -5 dB.

Figure 4 .

 4 Figure 4.15 Spectrogram of cluster tutti measured inside the swell box, position P 2 .

Figure 4 .Figure 4 .

 44 Figure 4.16 shows the pressure signals measured outside the swell box under the excitation of all pipes played simultaneously for the three static opening rates and the two dynamic ones.

  .4, reverberation times are smaller at 2 kHz and 4 kHz octave bands. The maximum reinforcement at the 8 kHz band cannot be explained over the reverberation time. Neither can it be explained from results obtained for the inner field, since any relation can be established there. In spite of that, the spectrograms of Figures 4.17

Figure 4 .Figure 4 .Figure 4 .

 444 Figure 4.17 Spectrogram of cluster tutti measured outside the swell box, position P 3m .

Figure 4 .

 4 Figure 4.20 shows the insertion loss for the static shutters opening conditions, that is, closed and halfway, at the position P 10m . The open shutters condition was chosen as reference, because it corresponds to the classic organ buffet and it matches the IL concept.

Figure 4 .

 4 Figure 4.20 Insertion loss of the swell box shutters at position P 10m , reference: opened facade. Results were filtered in 1/3 octave bands.

  nidirectional microphones Bedrock-audio model BAMT1 were placed inside the experimental model. Both source and receivers were positioned so their relative coordinates are the same as for the source and receivers P 1 and P 2 into the swell box (Figure4.7). The relative coordinates are shown in Table5.1.

( a )

 a Top view. (b) Rear view.

Figure 5 . 1 Table 5 . 1

 5151 Figure 5.1 Measurement set-up inside the simplified organ buffet in swell box-like conditions. Microphones placed nearest the source, on the left, corresponds to P 2 , and microphones placed on the right, near the rear wall, corresponds to P 1 .

2 .Figure 5 . 2

 252 Figure 5.2 Measurement scheme of the simplified organ buffet in swell box-like conditions. P 1 and P 2 correspond to the microphone's positions inside the box, P out to the microphone outside the box, and S stand for the source.

FrequencyFigure 5 . 3

 53 Figure 5.3 Modal response of the simplified organ buffet in swell box-like conditions for closed and opened facade conditions.

Figure 5 . 4

 54 Figure 5.4 Facade attenuation of the simplified organ buffet in swell box-like conditions. Results were filtered in 1/3 octave bands.

Figure 5 . 5

 55 Figure 5.5 Insertion loss of the closed facade, reference: opened facade. Results were filtered in 1/3 octave band.

  Modal density up to 1 kHz.

Figure 5 . 6 FrequencyFigure 5 . 7

 5657 Figure 5.6 Number of modes and modal density estimated for the swell box, equivalent to a rectangular cavity of dimensions L x 286 cm, L y 119 cm, and L z 242 cm, and for the experimental model of L x 134 cm, L y 58 cm, and L z 98 cm. Both devices considered in empty conditions, i.e., without pipes inside it.

Figure 5 . 8

 58 Figure 5.8 Modal response: simplified organ buffet versus swell box -normalized frequency.

Figures A. 3 Figure A. 3 Figure A. 4 Figure A. 5

 3345 Figures A.3 to A.5 present the source directivity in different measurement conditions. First, the charts from Figure A.3 show that the acoustic foam does not change the directivity of the source (k is the wave number, and d = 3 cm is the half-width of the source). Then, in Figure A.4 we observe that the source behaves like a cylindrical source up to kd 1. Results also suggest that up to 5 kHz, we can no longer consider the far field at a distance of only 0.20 m from the source. Results in Figure A.5 indicate that up to 11 kHz (whose wavelength is smaller than the radius of each loudspeaker), the directivity of the source is strongly determined by the individual directivity of each loudspeaker.

Figure A. 6

 6 Figure A.6 Source behavior in relation to the distance from it. Results were filtered in octave bands; d = 3 cm corresponds to the half-width of the source.

Figure A. 7

 7 Figure A.7 Source vertical homogeneity Results were filtered in octave bands.
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 1234567 Figure B.1 Impulse response of position P 3m filtered in octave bands.

Figure B. 9

 9 Figure B.9 Truncated impulse responses filtered at 8 Hz octave band and decay curves.

Figure C. 2 "

 2 Figure C.2 "Ceci n'est pas un buffet d'orgue" (in English: "This is not an organ buffet"). Credits: @ Laurence Godart / DIM PAMIR / CNRS.

Figure C. 3

 3 Figure C.3The delicate work of inserting the hundred pipes inside the simplified organ buffet. To ensure the desired spacing between pipes, as well as their structural stability, a set of perforated plates has been fabricated. Made in 4 mm thicker plexiglass, the perforated plates were united in pairs (one on the bottom and one on the top) by means of four vertical steel rods. Each pair of perforated plates have been inserted through one of the sides of the simplified organ buffet. The tubes had to be inserted carefully one by one, in order to avoid breaking the perforated plates, or misplacing the microphones and/or the sound source, if the latter were already positioned. The Credits: @ Laurence Godart / DIM PAMIR / CNRS.

Figure C. 4 «

 4 Figure C.4 « Les yeux sont la fenêtre de l'âme » dit-on souvent ; que se cache-t-il alors dans l'âme d'un orgue ? Avec cette question à l'esprit, une source sonore et des microphones sont placés au milieu des tuyaux dans la même disposition que lors des mesures acoustiques réalisées dans un véritable orgue. Le champ sonore à l'intérieur du buffet est alors excité par la source, et la pression acoustique est mesurée par les microphones. (In English: it's often said that "the eyes are the windows to the soul", so what lies hidden in the soul of an organ? With that question in mind, a sound source and microphones are placed in between the pipes in the same set-up as for acoustic measurements carried out in a real organ. The sound field inside the buffet is then excited by the source, and the acoustic pressure is measured by the microphones.) Credits: @ Laurence Godart / DIM PAMIR / CNRS.

Figure C. 5

 5 Figure C.5 Ce « buffet d'orgue simplifié » est installé en chambre anéchoïque, dont les parois absorbent les ondes sonores. On l'appelle « simplifié », car l'objectif est d'isoler seuls quelques composants majeurs qui caractérisent un buffet d'orgue. Ici, une boîte dont les parois sont amovibles pour faciliter les manipulations ; et une forêt de tuyaux, également amovible, qui permet d'effectuer des mesures avec différents taux de tuyaux. (In English:this "simplified organ buffet" is installed in an anechoic chamber, whose walls absorb the sound waves. It is called "simplified" because the aim is to isolate just a few of the major components that characterize an organ buffet. Here, a box whose walls are removable for easier handling; and a forest of pipes, also removable, enabling measurements to be taken with different pipe ratios.) Credits: @ Laurence Godart / DIM PAMIR / CNRS.

Figure C. 6

 6 Figure C.6 L'étape qui suit les campagnes de mesures acoustiques est l'analyse des résultats obtenus. Les résultats du buffet d'orgue simplifi é sont alors comparés avec ceux d'un orgue véritable. Enfin, cette étude apporte des nouvelles connaissances autour de l'acoustique de cet instrument monumental. (In English: the phase that follows the acoustic measurements is the analysis of the obtained results. The results of the simplified organ buffet are then compared with those of a real organ. Finally, this study provides new insights into the acoustics of this monumental instrument.) Credits: @ Laurence Godart / DIM PAMIR / CNRS.

Figure C. 7

 7 Figure C.7 Explaining how the perturbation caused by the pipes are considered on the physical modeling of the buffet. Credits: @ Laurence Godart / DIM PAMIR / CNRS.

Figure C. 8

 8 Figure C.8 Panel of 26 m 2 exhibited at Massy-TGV on the access hall to platform V3.

Figure C. 9

 9 Figure C.9 Presentation of the panels exhibited at Versailles-Chantiers during the exhibition vernissage May 23, 2023. Credits: Alexis Berny.
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  ikρcũpx, zq| z0 , ¡a ¤ x ¤ a 0, ¡V ¤ x a, a x ¤ V , k is the wave number, ρ is the specific mass of the surrounding medium, and c is the speed of sound in that medium. It is important to note that the index of the first term of the expansion (m 0) is equal to -1/2, in order to satisfy the boundary condition of infinite velocity at the perimeter. The pressures p on the front, and p¡ on the rear surfaces of the strip are given by: ppx, zq z0 ¡ppx, the near-field is given by the monopole Rayleigh integral (or monopole part of the Kirchhoff-Helmholtz boundary integral), taking into account the double strength source:
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  n pk x aq pk x aq n . (I.8) ppx, zq ¡ kap 0 c x aq pk x aq n e ¡ipkxx kz|z|q k z dk x . (I.9) Then, taking into account the boundary condition of Equation I.3 leads to: V ņ0 A n I n pxq ¡Φpxq ¡1, (I.10) which is to be solved for the power series coefficients A n . Letting k x kt, the integral I n pxq can be split into two parts I n pxq I nR pxq iI nI pxq, (I.11)
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 2 (2011) employ the same expansions and contour of integration as for the "rigid strip in a finite baffle" (shown in their appendix) in order to solve the integrals of the above equations. Thereby, the solutions to these integrals can be demonψpm r 1q ¡ ψpr 1q ¡ ψpn r 1q ¡ n¡1 ŗ0 p¡1q m pn ¡ r ¡ 1q!Γ n 1 14 and I.15 are both expansions in p2x{aq 2m . Therefore, it is worthwhile to express the strip pressure distribution Φpxq as a function of p2x{aq 2m , in such a way that: .11, I.14, I.15, and I.16 in Equation I.10, and equating the coefficients of p2x{aq 2m yields the following pN 1q ¢ pN 1q matrix equation: M ¤ a b, n 0, 1, . . . , N,(I.18) where the matrix M and the vector b are given by: Mpm 1, n 1q n C m pkaq ¡ i n I m pkaq, a corresponds to the power series coefficients:A n apn 1q M ¡1 ¤ b, n 0, 1, . . . , N.(I.21)Finally, the two-dimensional rectangular monopole wave functions n C m and n I m are defined by Equations I.22 and I.23, respectively. In this study, the truncation limit was chosen as N 2ka (authors point out that for larger values of N , no discernible difference could be seen).n C m pkaq 2 ¡ ψpm r 1q ¡ ψpr 1q ¡ ψpn r 1q

  

  

Table 2 . 1

 21 Just noticeable differences of subjective listener aspects of room acoustics.

	Perceived reverberance	EDT (s)	500 to 1000	rel. 5 %
	Perceived clarity of sound	C 80 (dB)	500 to 1000	1 dB

Subjective listener aspect Acoustic quantity Average frequency (Hz)

JND Source: ISO 3382-1 (2009).

  1,0,2 380 Hz. Around 400 Hz there are two resonances that even being close are quite distinguishable: f 3,0,0 392 Hz and f 2,1,0 406 Hz. The ninth resonance clearly observed only in the position R1 happens at f 0,1,2 469 Hz. Finally, the last resonance we can identify below the cut-off frequency, i.e. 500 Hz, is f 3,1,0 497 Hz. Box modal response: physical model versus experiments. Measurement points R1 to R12 following the x-axis correspond to 0.51L x , 0.55L x , 0.59L x , 0.63L x , 0.66L x , 0.70L x , 0.74L x , 0.78L x , 0.81L x , 0.85L x , 0.89L x and 0.93L x .
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Table 3 .

 3 [START_REF]Acoustic subsystems of a pipe organ[END_REF], that the resonances are all predicted for lower frequencies than they really are observed in the experimental model, which indicates the phase velocity is greater than c 0 . However, the deviation between the observed frequencies and those predicted by the physical model is not constant over the spectrum, which suggests that the phase velocity inside the experimental model is independent of frequency.

	Resonances	Frequency (Hz) Physical Model Experimental	Deviation (%)	Positions where is visually verified
	1 st	129	138	+7.0	All
	2 nd	257	266	+3.5	All
	3 rd	298	308	+3.4	All
	4 th	324	333	+2.8	R2 -R12
	5 th	350	360	+2.8	R1 -R8
	6 th	373	380	+1.9	R10 -R12
	7 th	386	392	+1.6	R2 -R8, R11 -R12
	8 th	394	406	+3.0	R1 -R6, R9 -R12
	9th	459	469	+2.2	R1
	10 th	487	497	+2.0	All

Table 3 . 1

 31 Resonances observed in the empty box below 500 Hz.

Table 3

 3 

	Resonances	Frequency (Hz) Empty Forest	Deviation (%) Positions where is visually verified
	1 st	138	127	-8.0	All
	2 nd	266	231	-13.2	R10 -R12
	3 rd	308	243	-21.1	R1 -R9
	4 th	333	276	-17.1	R7 -R12
	7 th 1	392	343	-12.5	R1 -R7, R9 -R12
	10 th	497	436	-12.3	All

.

3 

shows the expected values for the effective parameters calculated from Equation

2

.16.

Table 3 . 2

 32 Resonances observed in the box fulfilled with pipes below 500 Hz. ¨0.2 3 ¤10 ¡4 to 7 ¤10 ¡2 Whole forest/L x L y 27.5 305.1 ¨0.2 2 ¤10 ¡4 to 5 ¤10 ¡2

	Structure type	ϕ (%)	c ef f (m/s)	α ef f interval
	Pipe lattice	39.3 291.9	

Table 3 . 3

 33 Effective attenuation coefficient and phase velocity for pipes forest considering frequency range 100 Hz f 500 Hz.

Table 4 .

 4 .1.

	Band center frequency (Hz) 125	250	500 1000 2000 4000
	T 20 (s)	2.70 3.10 3.68 3.68	3.03	2.14
	σpT 20 q (s)	0.18 0.12 0.10 0.07	0.04	0.03

1 Reverberation time of Sainte Elisabeth church: spatial average and standard deviation, filtered in octave bands. Source: Katz and d

Table 4 . 2

 42 Reverberation time T 20 of positions P 3m and P 10m , filtered in octave bands.

	Band center frequency (Hz) 125 250	500 1000 2000 4000 8000
	Position			T 20 by frequency band (s)
	P 3m	-	2.74 3.47 4.64	-	-	2.34
	P 10m	-	2.93 3.32 3.55	-	-	2.19
	Band center frequency (Hz) 125 250	500 1000 2000 4000 8000
	Position			T 15 by frequency band (s)
	P 3m	-	2.03 3.47 4.77	3.10	2.88	2.40
	P 10m	-	3.09 3.10 3.54	2.57	2.57	2.19

Table 4 . 3

 43 Reverberation time T 15 of positions P 3m and P 10m , filtered in octave bands. Reverberation time -audience versus vault. Shaded areas represent 5% of the T 20 relatively to the octave bands.Coming back to Table4.3, we remark that despite considering T 15 as reverberation time parameters, the background noise remains too high for both positions at the 125 Hz band. However, it is now possible to evaluate the reverberation time at the 2 and 4 kHz octave bands. The general tendency observed, even being more marked at P 3m , is the same at both positions: T 15 values increase from lower frequencies up to 1 kz, and decrease at higher frequencies, attaining smaller values than at low frequencies. The general values are larger at P 3m , which can be explained by the fact there are more scattering surfaces of the organ itself nearest this position.

		3.8	
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	Figure 4.9		

Table 4 . 4

 44 Early decay time of positions P 3m and P 10m , filtered in octave bands.Like T 15 , EDT could be calculated for all octave frequency bands, except at 125 Hz.Moreover, results of Table4.4 show a tendency likewise similar for both positions: values increase from lower frequencies up to 1 kz, and decrease at higher frequencies, attaining smaller values than at low frequencies. The difference, this time, is that the EDT values are smaller at the P 3m position than they are at P 10m . This indicates that the sound decays faster in its initial moments at the closest position than it decays at the farthest position.

	Band center frequency (Hz) 125 250 500 1000 2000 4000 8000
	Position	C 80 by frequency band (dB)	
	P 3m	-2.6 -1.3 -2.3	-5.2	-1.4	-0.9	-0.8
	P 10m	-3.1 -2.2 -2.9	-3.9	-2.0	-1.1	0

Table 4 . 5

 45 Clarity of positions P 3m and P 10m , filtered in octave bands. Results also indicate that the octave band centered at 1 kHz has less energy contained in the first 80 ms than the neighboring octave bands, which is in agreement with the behavior observed for the reverberation time and early decay time.

The only parameter that could be determined among all frequency bands is C 80 . For a church as Sainte Elisabeth, which nave volume is approximately 6300 m 34 , the reverberating tail was expected to carry more energy than the first reflections. In terms of C 80 , this means negative values seem more likely to be observed, what indeed happen. Overall results are subjectively equal at positions P 3m and P 10m , with exception of 1 kHz, where the difference between clarity values is greater than 1 dB.

Table 4 .

 4 7 points out the reinforcement of the sound field outside the swell box as the shutters are open. Results were filtered by octave bands.

	Band center frequency (Hz) 125 250 500 1000 2000 4000 8000	Average
	Shutters opening Position		Gain by frequency band (dB)		gain (dB)
	Crescendo	P 3m P 10m	4.5 2.8	3.7 3.9	3.3 3.7	4.8 4.5	2.6 2.4	-0.6 -0.4	5.0 6.8	3.3 3.4
	Decrescendo	P 3m P 10m	3.7 1.8	2.6 2.6	1.6 1.3	1.9 1.7	-0.5 -0.5	-3.2 -3.2	2.2 2.4	1.2 0.9
	Halfway	P 3m P 10m	3.7 2.1	3.9 3.0	3.3 3.6	4.1 4.3	1.4 1.9	-2.0 -1.8	2.2 3.7	2.7 2.4
	Opened	P 3m P 10m	4.5 2.8	4.0 4.7	4.0 4.0	5.2 5.0	2.8 2.4	-0.5 -0.6	7.0 6.1	3.9 3.5

Table 4 .7

 4 Shutters opening reinforcement in relation to the closed condition. SPL differences are presented by octave bands for positions P 3m and P 10m inside the swell box.

  3, where the dimensionless normalized frequency ν considers the width L x , that is often the largest dimension on a swell box, and the speed of sound in the medium c 0 , which depends on the temperature. The modal responses of both devices are exhibited in function of this normalized frequency on Figure5.8.

					ν 2L x c 0	f.					(5.3)
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  Truncated impulse responses filtered at 4 Hz octave band and decay curves.
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The Schroeder frequency f S is further defined by Equation2.21.

First introduced by Leon Brillouin in his work on the general properties of periodic structures, the Brillouin zones are the geometrical equivalent of Wigner-Seitz cells in real space. Physically, Brillouin zone boundaries represent Bragg planes which reflect (diffract) waves having particular wave vectors so that they cause constructive interference. For a square lattice matrix, the first Brillouin zones are squares too, and for hexagonal lattice matrix they are hexagons(Knowles et al.) 

The development here adopted is the same presented by[START_REF] Rohfritsch | Diffusion multiple en milieux désordonnés: influence des propriétés macroscopiques et microscopiques sur les ondes cohérentes[END_REF].

The first experimental results obtained with the simplified organ buffet were presented by Dal Moro et al. (2022) and Villegas Curulla et al. (2022).

All measurements carried out with the source consisting of an array of 18 in-phase AURA loudspeakers, had a sampling frequency of 48 kHz and a frequency range between 20 Hz and 20 kHz.

Catt-Acoustic was used exclusively to estimate the Schroeder frequency of the experimental model. Since Catt-Acoustic is a geometrical-acoustics based software, the modal density must be large enough so that the assumptions behind the geometrical-acoustics are respected. Consequently, the software is efficient only in middle-high frequencies, regions where there is no longer interest for modal analysis.

Slit section represents less than 2 % of the frontal panel area, and the smallest wavelength under analysis is much bigger than the slit widthλ 1kHz 34 cm " 4 cm 2a.

The pipes are arranged in 12 successive semitones, from right to left or from left to right, depending on the arrangement of the mechanics (MRBC-DMS).

Practiced particularly in the 18th century, the ravalement indicates the notes that are below the low C. It could be a note like A or all the notes from F to B. These notes made it possible to sound low notes by extending stops of 8' or 16' below their tessitura, which brought an impressive aspect to the sonority (MRBC-DMS).

Comparing the nave T 20 values of 3.03 s at 2 kHz, and 2.14 s at

kHz with the vault T 15 values.

The Schroeder frequency of Sainte Elisabeth church is smaller than 1 Hz.

Sound pressure signals measured at position P 1 give very similar spectrogram.

The origin of the component around 6.4 kHz is suspected to come from the organ wind system, as the highest note played by the smaller pipes of 2' correspond to 5588 Hz.

The 7 th 1 resonance previously observed in the box fulfilled with 170 pipes is a superposition of the 6 th , 7 th , and 8 th resonances observed in the empty box.

For the photos that have been exposed twice, subtitles for both Massy-TGV and Versailles-Chantiers are shown.
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Along these lines, Figure 4.13 shows the pressure signals measured inside the swell box under the excitation of all pipes played simultaneously for the three static opening rates and the two dynamic ones. Here, the sound level difference between the closed condition and the other ones are highlighted. In the first place, the measured pressure signals corroborate that the sound field inside the swell box is more intense when the shutters are closed. In addition, we also observe the expected behavior for the decrescendo: as the shutters are closed, the sound field inside the swell box becomes more intense. Nonetheless, we do not verify the expected behavior for the other three conditions. The measured pressure signals do not decrease as the shutters are opened (crescendo), and they do dot remain steady for the static opening rates (halfway and opened).

These disagreements can be understood with a deep analysis of the results obtained in the halfway and opened conditions. Such outcomes reveal that the sound field inside the swell box takes around 2. We observed that the Schroeder frequency of the swell box corresponds to approximately half of the Schroeder frequency of the experimental model. Remembering, of course, that acoustic absorption inside these cavities was estimated without taking into account the pipes, which if considered, would result into an increase of the acoustic absorption. In other words, the reverberation times and Schroeder frequencies of both cavities are most likely smaller than the values on Table 5.2. However, these values remain an approximation good enough to estimate the spectrum region dominated by the cavity modes, where the wave theory is valid.

Along those lines, the number of modes and the modal density of both the swell box and the experimental model have been estimated from Equations 2.10 and 2.11 and are compared in Figure 5.6. The number of modes of these cavities is exhibited until 500 Hz (Figure 5.6a) due to its dependency on frequency of f 3 . The modal density, which depends on f 2 , is analyzed up to 1 kHz (Figure 5.6b).

We can notice that up to 500 Hz, which corresponds approximately to f S {2 of the simplified organ buffet, a total of 20 modes are predicted for this cavity. The same quantity of modes in the swell box is observed around 230 Hz, which corresponds to f S {2, too. At 500 Hz, the number of modes is 7.4 times greater in the swell box than it is in the simplified organ buffet. The modal density, that is, the number of modes contained in a frequency range from f to f df , is 8.1 times greater in the swell box than in the simplified organ buffet at 500 Hz, and at 1 kHz these differences increases to 9.1 times.

That said, in horizontal directivity;

2. distancing behavior;

3. vertical homogeneity.

A.1 Measurement protocol

The horizontal directivity of the source was measured at 0.20 m and then at 4.00 m distance from the geometric center of the source (Figure A.2a). The chosen methodology was to fix the microphone and rotate the source around its vertical axis. The accuracy chosen for the measurements was δ dir 5°. To excite the source, a white noise of 20 s duration was employed, with a sampling frequency of 48 kHz. Later, the directivity of a single Aura speaker was examined, this time using a 5 s MLS signal, repeated four times for each position, with 2 s interval between repetitions. Apart from the signal change, the same directive measurement protocol was adopted, limiting to the 0.20 m distance. • behaves as a point source for f ¤ 500 Hz;

• acts like a rectilinear source for 1 kHz f 16 kHz;

• has its frequency response strongly influenced by the individual response of each speaker when f ¥ 16 kHz.

These conclusions give support to the experimental work further developed with the simplified organ buffet, that is presented in Chapter 3. Attention must be paid, however, that the measurements were carried out taking into account the source in anechoic conditions.

Unfortunately, these conditions do not correspond to the conditions of the source enclosed inside a box. Thus, results should be carefully interpreted.

Appendix B

Room impulse responses of Sainte Elisabeth church's vault

In The objective of manipulating these impulse responses was to calculate some room acoustic parameters that describe locally the subjective acoustic impressions at positions P 3m , and P 10m . The retained acoustic parameters (T 15 and T 20 that describes reverberation, EDT which evaluates the early reverberation, and C 80 that estimates the clarity), are all based on the energy contained in the impulse responses, noted as hptq 2 .

In order to save calculation time, the refereed impulse responses may be truncated.

Moreover, dealing with shorter impulse responses, where the background noise is taken out, allows a better definition of inverse cumulative integral of the normalized hptq 2 , from which the room acoustic parameters are indeed calculated. In this sense, the non-filtered impulse responses were firstly truncated to the same duration, and in the following, the filtered impulse responses were truncated according to the energy decay at each octave band.

B.1 General truncation of impulse responses

After an initial visual inspection, the obtained impulse responses are firstly truncated analysis of these graphs, we remark that the background noise is about:

• -15 dB at 125 Hz;

• -37 dB at 250 Hz;

• -50 dB at 500 Hz;

• -40 dB at 1 kHz;

• -25 dB at 2 kHz;

• at 125 Hz: neither T 20 nor T 15 , and not even EDT can be calculated;

• from 250 Hz to 1 kHz: both T 20 , T 15 , and EDT can be determined;

• at 2 kHz and 4 kHz: T 20 cannot be calculated, T 15 can be calculated only if we consider the decay curve from 5 dB (or 7 dB) above the background noise, and EDT can be calculated without issues;

• at 8 kHz: both T 20 , T 15 , and EDT can be determined.

Time (s)

Magnitude (dB) 

Appendix C

The simplified organ buffet Eternalized in the CNRS Image 1 A former intervention on scientific vulgarization happened October 15, 2022 on the "Fête de la Science" (in English, "Science party"), with the presentation of the poster "Qu'est-ce que qui se passe à l'intérieur d'un orgue" (in English, "What happens inside an organ?"), and a ludic activity: https://www.pamir.fr/fete-de-la-science/ Annexes