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RÉSUMÉ DE LA THÈSE – SUMMARY IN

FRENCH

Le nombre de séquences de protéines disponibles dans les bases de données de bio-
informatique augmente rapidement. Par exemple, la base de connaissances de référence
UniProtKB a connu une croissance substantielle au cours de cette thèse : entre octobre
2020 et mai 2023, le nombre de séquences disponibles dans UniProtKB est passé de 196
millions à plus de 249 millions de séquences. Cependant, les annotations fonctionnelles ob-
tenues par des données expérimentales sont difficiles, coûteuses et chronophages à obtenir.
En conséquence, seule une quantité limitée a été annotée de cette façon. Par exemple, les
séquences manuellement vérifiées dans UniProtKB, réunis dans UniprotKB/Swiss-Prot,
ne représentent que 0,25% de toutes les entrées. Combler cet écart entre les séquences
seules et les séquences possédant des annotations fonctionnelles est un défi majeur. Ainsi,
l’annotation fonctionnelle automatique des séquences protéiques est un domaine en pleine
expansion. Cela principalement grâce aux méthodes basées sur l’alignement de séquences
et, plus récemment, aux approches d’apprentissage automatique et d’apprentissage pro-
fond. Ces avancées méthodologiques puisent souvent leur inspiration dans le traitement
automatique du langage naturel (TAL), en effet, même si les séquences biologiques pos-
sèdent des particularités, les défis méthodologiques étaient souvent en partie communs.
Récemment, des progrès importants ont été observés dans le domaine du TAL, grâce à
l’émergence d’un nouveau type de modèles et de techniques d’entraînement très perfor-
mantes. Deux développements notables dans ce domaine sont l’architecture d’apprentis-
sage profond Transformer et l’approche d’entraînement en deux phases. Cette architecture
Transformer permet de mieux modéliser les dépendances longue distance, un aspect cru-
cial lorsqu’il s’agit de modéliser les protéines. De plus, la méthodologie d’entraînement
en deux phases a gagné en importance. Elle comprend une première phase non supervi-
sée, plus précisément autosupervisée, qui utilise des séquences non annotées, suivie d’une
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Résumé de la thèse – Summary in french

phase d’ajustement avec des données annotées cette fois-ci, adaptée à une tâche spécifique.
Ces avancées ont commencé à être utilisées dans le traitement des séquences protéiques,
mais, principalement pour la prédiction de structure secondaire, de contacts, de stabilité
ou pour la prédiction de fonctions spécifiques telle que la fluorescence. Cependant, au
début de l’adoption de l’architecture Transformer, il n’y avait pas de publications de re-
cherche se penchant spécifiquement sur la prédiction de fonctions génériques. Le premier
objectif de cette thèse a été d’étudier l’impact de l’architecture Transformer, ses méca-
nismes d’attention et sa capacité à modéliser les dépendances longue distance, ainsi que
l’entrainement en deux phases, dans le domaine de la prédiction automatique de fonction
(AFP). Afin d’accomplir cela, il a été nécessaire d’établir un environnement contrôlé en
utilisant des enzymes. Les enzymes ont été choisies comme cible, car elles représentent
une part importante de toutes les protéines et sont bien caractérisées grâce à la hiérarchie
définit par la nomenclature Enzyme Commission (EC). Elles jouent un rôle crucial dans
l’accélération des réactions chimiques des être vivants. L’environnement contrôlé consis-
tait donc dans la prédiction des classes d’enzymes monofonctionnelles. En complément,
une nouvelle méthode d’interprétabilité dérivée de cette architecture a été développée et
comparée à des méthodes classiques. L’objectif principal de la deuxième partie de la thèse
était d’étudier trois approches pour intégrer l’information de la Gene Ontology dans les
modèles de prédiction. De plus, la deuxième partie de la thèse s’est étendue à la pré-
diction multilabels. La nature multilabels peut être divisée en deux aspects. Le premier
aspect concerne la multifonctionnalité, car les protéines peuvent avoir plusieurs fonctions
distinctes. Le deuxième aspect concerne la prédiction de fonctions à différents niveaux de
spécificité, que l’on peut nommer multi-niveaux. Par la suite, une description détaillée
des deux principales contributions réalisées au cours de la thèse sera faite.

Le premier objectif de la thèse a été la prédiction de la fonction des enzymes avec une
architecture Transformer. Les enzymes constituent une proportion importante de l’en-
semble les protéines identifiées. Par exemple, en juin 2023, elles représentaient 48% des
protéines dans la base de données UniProtKB/Swiss-Prot. De plus, les enzymes jouent
un rôle crucial dans l’évaluation de l’efficacité des modèles de prédiction automatique de
fonction. Cette tâche est un terrain d’essai pour le développement de méthodes prédictives
pour deux raisons. Premièrement, les fonctions des enzymes sont bien définies puisqu’elles
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sont décrites et organisées par l’Enzyme Commission (EC), qui fournit des labels précis
pour entraîner les modèles d’apprentissage automatique. Deuxièmement, la quantité de
séquences enzymatiques annotées disponibles est suffisante pour permettre l’entraînement
et l’évaluation. Dans cette tâche, différents modèles ont été développés pour prédire les
fonctions enzymatiques. Certains modèles reposent sur l’alignement de séquences, où les
séquences protéiques sont alignées pour identifier les similarités et les variations. En trou-
vant la séquence la plus proche avec une annotation fonctionnelle connue, l’annotation
peut être transférée à la nouvelle séquence. Cependant, ces méthodes reposent uniquement
sur la similarité des séquences, attribuant un poids égal aux différents résidus mutés à
travers diverses familles de protéines. En conséquence, elles échouent à identifier les rési-
dus cruciaux qui jouent des rôles spécifiques dans les fonctions protéiques. Ces méthodes
rencontrent donc des difficultés pour identifier de manière précise les protéines qui ont des
fonctions conservées depuis leur dernier ancêtre commun, mais présentent des variations
significatives de leurs séquences. D’autres approches utilisent des techniques d’apprentis-
sage automatique classiques avec des caractéristiques pré-extraites telles que les propor-
tions de chaque acide aminé, la masse moléculaire, le point isoélectrique et les propriétés
physico-chimiques. Cependant, en raison de cette extraction préalable des caractéristiques
et le modèle n’ayant jamais accès aux séquences brutes, ces modèles peuvent manquer des
signaux importants qui pourraient contribuer à des prédictions plus précises. Les avan-
cées récentes en apprentissage profond ont été appliquées à la prédiction des enzymes,
avec des modèles utilisant directement les séquence brutes. Cependant, les architectures
d’apprentissage profond utilisées telles que les réseaux de neurones convolutifs (CNN) et
les réseaux Long Short-Term Memory (LSTM) présentent des limites et ont été dépassées
par les modèles Transformer dans les tâches de traitement automatique du langage natu-
rel (TAL). Les Transformers ont donné des résultats encourageants dans diverses tâches
biologiques, notamment la prédiction de contacts et la prédiction de la structure secon-
daire. La thèse contribue au domaine en appliquant le modèle Transformer à la prédiction
de classes enzymatiques, ce qui a donné d’excellents résultats. En plus de l’annotation
fonctionnelle, nous avons également exploré l’application du mécanisme d’attention du
Transformer en tant que méthode d’interprétabilité. Cela permet une compréhension plus
complète de la connexion entre l’entrée, qui est la séquence protéique et la sortie, qui est
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la prédiction fonctionnelle produite par le modèle. À partir du mécanisme d’attention, des
scores d’importances pour les résidus peuvent être obtenus. Une comparaison approfondie
entre les méthodes d’interprétabilité classiques et l’approche d’interprétabilité basée sur
l’attention du Transformer a été réalisée, démontrant de meilleurs résultats pour cette
dernière.

La deuxième partie de cette thèse a été consacrée à la prédiction de toutes les fonc-
tions de toutes les protéines en utilisant le vocabulaire de la Gene Ontology (GO), tout en
essayant d’exploiter sa structure. Contrairement à la hiérarchie EC, qui se conforme à une
relation strictement hiérarchique, le GO permet des relations plus complexes, car certains
termes peuvent avoir plusieurs parents dans le graphe. De plus, notre recherche visait à
relever les défis posés par les scénarios multilabels, qui englobent (1) des prédictions à
plusieurs niveaux, comprenant à la fois des termes GO génériques et spécifiques, ainsi que
(2) des cas de multifonctionnalité, reconnaissant que certaines protéines peuvent possé-
der plusieurs fonctions distinctes. Plusieurs approches existent dans la littérature pour
intégrer les ontologies. Dans ce cadre, trois façons d’utiliser les informations de la Gene
Ontology ont été testées. La première méthode, largement utilisée, consiste à propager
les labels d’une fonction spécifique pour annoter toutes ses fonctions parentes, qui sont
intrinsèquement plus génériques. Cependant, à notre connaissance, les avantages de cette
technique de propagation n’ont pas été examinés en détail et quantifiés dans les études pré-
cédentes. Les effets d’une telle propagation ont ici été étudiés. La deuxième méthode prend
en compte le fait que nous sommes dans l’hypothèse du monde ouvert pour intégrer l’in-
formation de la Gene Ontology dans certaines annotations. Cette hypothèse suppose que
nous ne possédons pas toutes les annotations pour chaque protéine et l’absence d’annota-
tions n’est pas forcément une annotation négative, contrairement à l’hypothèse du monde
clos. L’approche dominante dans la plupart des études utilisent l’hypothèse du monde
clos, qui conduit souvent à des annotations faussement négatives lorsque les protéines
ne possèdent pas d’annotations spécifiques. Sous cette hypothèse, lorsque les protéines
sont partiellement annotées, toutes les fonctions précises sont étiquetées comme fausses,
malgré une forte probabilité qu’au moins l’une d’entre elles soit correcte. Pour remédier
à ce problème, nous avons exploré l’utilisation de la Gene Ontology pour marquer tous
les descendants des annotations les plus précises avec un nouveau label "incertain". La
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troisième approche d’intégration des connaissances ontologiques utilise des plongements
associés à chaque terme de la GO. À ce sujet, nous avons comparé diverses techniques de
plongement dans un cadre unifié de prédiction des fonctions des protéines en utilisant des
métriques classiques du domaine. Ces techniques utilisent des plongements hyperboliques,
car incorporer un graphe orienté acyclique, telle que la Gene Ontology, dans un espace
euclidien tout en préservant la métrique des graphes soulève certains défis. Cependant,
l’espace hyperbolique offre une solution plus adaptée en raison de la croissance exponen-
tielle des distances correspondant à la croissance exponentielle des nœuds à différentes
profondeurs dans le DAG. Plus précisément, trois modèles hyperboliques ont été testés.
Le premier modèle testé utilise la distance hyperbolique, faisant apparaître un conflit
entre la nature symétrique de la distance et la relation dirigée entre les termes GO. Pour
résoudre ce problème, des cônes hyperboliques ont été proposés dans un deuxième modèle,
où les termes GO sont représentés par un sommet et un angle d’ouverture dépendant de
la distance par rapport au centre. Mais, la conversion des angles en probabilités présente
des défis, qui sont évités grâce à une autre méthode, consistant à utiliser des hyperplans
hyperboliques, qui peuvent facilement générer des probabilités. Une configuration stan-
dardisée a été utilisée pour comparer ces modèles, en adoptant des métriques classiques
pour la prédiction des fonctions des protéines, telles que le maximum F1-score (Fmax)
et la distance minimum sémantique (Smin), ainsi que leurs variantes pondérées. Alors
que certains articles évaluent des modèles pour les prédictions de liens, notre travail s’est
concentré sur la prédiction des fonctions des protéines.

Les résultats de la thèse sont les suivants. Dans la première partie, un modèle état de
l’art appelé EnzBert a été présenté, il utilise les séquences pour prédire l’annotation fonc-
tionnelle des enzymes à partir de l’architecture du Transformer et bénéficie du mécanisme
d’attention pour capturer les caractéristiques importantes des séquences enzymatiques.
Notre travail présente également une méthode d’interprétabilité simple, mais efficace ba-
sée sur des cartes d’attention, qui offre des perspectives sur la relation entre les séquences
enzymatiques et l’annotation fonctionnelle. Ces résultats permettent une meilleure com-
préhension de la manière dont les classes enzymatiques sont déterminées à partir de leurs
séquences. La méthode d’interprétabilité peut aider à découvrir les caractéristiques et les
motifs importants dans les séquences d’enzymes, ce qui pourrait éventuellement contribuer
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à de futures recherches sur l’optimisation des enzymes.
Dans la deuxième partie, le champ d’application a été élargi au-delà des enzymes pour

inclure toutes les protéines en utilisant le vocabulaire de la Gene Ontology. En ce qui
concerne l’intégration de l’information des relations de la Gene Ontology (GO) dans les
annotations, l’étude a révélé que l’utilisation courante de la "True Path Rule" améliorait
les performances. Cependant, lors de l’utilisation de GO pour atténuer la propagation
des faux négatifs dans le cadre de l’hypothèse du monde clos, aucune augmentation si-
gnificative de performance n’a été observée. De plus, l’utilisation de GO pour contraindre
les plongements des termes de la GO n’a pas affecté les performances, mais a conduit à
une meilleure cohérence des prédictions. Enfin, l’étude a comparé les modèles hyperbo-
liques aux modèles euclidiens et a confirmé que les modèles hyperboliques étaient plus
performants dans de petites dimensions, mais pas dans de plus grandes dimensions. Il
est important de noter que ces résultats sont préliminaires et que des recherches supplé-
mentaires sont nécessaires pour mieux comprendre les forces et les faiblesses des modèles
hyperboliques.
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INTRODUCTION

The number of protein sequences available in bioinformatics databases is growing at
a rapid pace. For instance, the reference protein knowledge base UniProtKB has expe-
rienced substantial growth during this thesis: Between October 2020 and May 2023, the
number of available sequences in UniProtKB increased from 196 million to over 250 million
sequences. However, functional annotation supported by experimental data is a difficult,
expensive, and time-consuming task. As a result, only a limited amount has been manu-
ally annotated. For example, reviewed sequences in UniProtKB named UniprotKB/Swiss-
prot represent only 0.25% of the total entries. One of the major questions of interest is
to bridge the gap between these sequences and the functions of the corresponding pro-
teins. Hence, automatic functional annotation of protein sequences has been a growing
field over the past years mainly driven by sequence alignment-based methods and, more
recently, machine learning and deep learning approaches. Interestingly, these methodolog-
ical advancements have frequently drawn inspiration from Natural Language Processing
(NLP), despite the distinct characteristics of biological sequences and natural language
sequences. Nevertheless, there are also many shared aspects between the two domains.
Recently, substantial progress has been witnessed in the field of NLP, thanks to the
emergence of highly efficient models and training techniques. These advancements have
exhibited remarkable performance on various NLP benchmarks. Two noteworthy develop-
ments in this field are the Transformer architecture and the two-stage training approach.
The Transformer architecture, which incorporates attention mechanisms, has proven to
be particularly influential. This architecture enables the modeling of long-range depen-
dencies, a crucial aspect when dealing with proteins. Furthermore, the two-stage training
methodology has gained prominence. It involves an initial unsupervised stage that utilizes
raw text data, followed by a fine-tuning stage tailored to a specific task. These advance-
ment has started to emerge in the treatment of protein sequences. However, they were
at first mostly used for secondary structure prediction, contact prediction, stability, or
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specific functions like fluorescence. The prediction of generic functions was not initially
a focus. The primary objective of this thesis was to investigate the potential transforma-
tive impact of the Transformer architecture, with its attention mechanisms and ability to
model long-range dependencies, on the field of Automatic Function Prediction (AFP). Ad-
ditionally, a novel interpretability method derived from this architecture was developed
and compared against classical methods. The initial part of the thesis is dedicated to
testing the applicability of the Transformer architecture in a controlled environment. To
achieve this, enzymes were chosen as the target since they represent a significant portion
of all proteins and are well-characterized thanks to Enzyme Comission (EC) numbers.
Enzymes play a crucial role in accelerating chemical reactions. The primary focus in the
initial part of the thesis is on predicting monofunctional enzyme classes. Additionally,
the thesis assess the interpretability method derived from the Transformer architecture
and compares it to other conventional interpretability methods. The primary objective of
the second part of the research was to investigate three approaches for integrating Gene
Ontology into the prediction models. Furthermore, the research expanded to encompass a
multi-label prediction task for two specific reasons. Firstly, proteins can possess multiple
functions, necessitating the consideration of their multi-functionality. Secondly, the predic-
tion of functions across different specificity levels was pursued, emphasizing a multi-level
approach. The following will provide a detailed description of the two main contributions
made during the thesis.

The first objective of the thesis has been the prediction of enzyme function with a
specific deep-learning architecture named the Transformer. Enzymes constitute a signif-
icant proportion of all identified proteins. For instance, as of June 2023, they accounted
for 48% of all proteins in UniProtKB/SwissProt. Moreover, enzymes play a crucial role in
assessing the effectiveness of automatic function prediction models. This task is a testbed
for the development of predictive methods for two reasons. First, the enzyme’s functions
are well-defined according to experimental evidence. These functions are standardized by
Enzyme Commission (EC) which provides well-defined targets to train machine learning
models. Secondly, the amount of annotated enzymatic sequences available is sufficient
to enable training and independent large-scale evaluations. In this task, various models
have been developed for predicting enzymatic functions. Some models rely on sequence
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alignment, where protein sequences are aligned to identify similarities and variations. By
finding the closest sequence with a known functional annotation, the annotation can be
transferred to the new sequence. However, these methods solely rely on sequence similarity,
assigning equal weight to different mutated residues across diverse protein families. As a
result, they fail to identify the crucial residues that play specific roles in protein functions.
Consequently, these methods face challenges in accurately identifying remote equivalogs,
which refer to proteins that have conserved functions since their last common ancestor but
exhibit important sequence variations. Other approaches employ classical machine learn-
ing techniques with pre-computed features such as amino acid proportions, molecular
weight, isoelectric point, and physicochemical properties. However, due to the extraction
of features from raw sequences, these models may miss important signals that could con-
tribute to more accurate predictions. Recent advance in deep learning have been applied
to enzyme prediction, with models directly using raw sequence information. However,
the deep learning architectures used such as Convolutional Neural Networks (CNNs) and
Long Short-Term Memory (LSTM) networks have limitations and have been surpassed
by Transformer models in Natural Language Processing (NLP) tasks. Transformers have
started to demonstrate encouraging results in various biological tasks including contact
prediction and secondary structure prediction. One of the contribution of the thesis to the
field lies in the application of the Transformer model to enzyme class prediction, which
has resulted in excellent outcomes. In addition to functional annotation, we also explore
the application of the Transformer’s attention mechanism as a method of interpretability.
This enables a more comprehensive comprehension of the connection between the input,
which is the protein sequence, and the output, which is the functional prediction produced
by the model. From attention, importance scores for individual residues can be derived.
A comprehensive comparison between classical interpretability methods and the Trans-
former’s attention-based interpretability approach was conducted, demonstrating better
results for the latter.

The second part of this thesis was dedicated to the prediction of all functions of all
proteins using the vocabulary of Gene Ontology (GO) and leveraging its inherent struc-
ture. In contrast to the EC hierarchy, which adheres to a strict hierarchical relationship,
the GO permits more intricate relationships, as child terms can have multiple parents.
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Furthermore, our research aimed to tackle the challenges posed by multi-label scenarios,
which encompass (1) predictions across multiple levels, including both generic and spe-
cific GO terms, as well as (2) multi-function cases, acknowledging that certain proteins
can possess multiple distinct functions. There are several approaches available for inte-
grating ontology knowledge into the framework. Three ways of using the Gene Ontology
information have been tested. The first and widely used method involves propagating the
labels from a specific function to annotate all its parent functions, which are intrinsically
more generic. However, to our knowledge, the advantages of this propagation technique
have not been thoroughly examined and quantified in previous studies. Therefore, an in-
vestigation of the effects of such propagation was conducted. The second way use the
Closed World Assumption (CWA) to take into account gene ontology. The prevailing ap-
proach in most of the literature is to use the CWA, which often leads to False Negative
annotations when proteins lack specific annotations. Under this assumption, when pro-
teins are incompletely annotated, all precise functions are labeled as false, even though
it is very likely that at least one of them is correct. To address this issue, we explored
the usage of the Gene Ontology to mark all descendants of the most precise annotations
with a new label "uncertain". The third approach to integrating ontology knowledge is
using embeddings. On this topic, we compared various techniques for incorporating GO
embeddings within a unified framework for protein function prediction using classical do-
main metrics. These techniques use hyperbolic embedding because embedding tree-like
structures, such as the Gene Ontology, in Euclidean space while preserving metric prop-
erties poses challenges. However, hyperbolic space offers a more manageable solution due
to the exponential growth of distances aligning with the exponential growth of nodes at
different depths in the tree. More precisely three hyperbolic models were tested. The first
tested model uses hyperbolic distance, but it has been observed that the symmetric na-
ture of distance conflicts with the directed relationship between GO terms. To address
this, hyperbolic cones were proposed in a second model, where GO terms are represented
by an apex and an aperture angle dependent on the distance to the center. Converting
angles to probabilities presents challenges, and alternative methods include using hyper-
bolic hyperplanes, which can easily output probabilities. A standardized setup was used
to compare these models, adopting classical metrics for AFP, such as Fmax and Smin,
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and their weighted variants. While some papers evaluate models for link predictions, our
study focused on protein function prediction.

The thesis is structured as follows. The first chapter provides background information,
introducing proteins and the necessary machine learning concepts. The second chapter
focuses on enzyme class prediction and explores interpretability aspects specifically related
to enzymes. Finally, the last chapter delves into the examination of three distinct methods
for integrating Gene Ontology into the prediction model.
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Chapter 1

BACKGROUND

As said before, the work done here is in conjunction with two themes: protein and deep
learning. This first chapter will present sufficient biological and deep learning knowledge
to understand the different contributions. Proteins play a critical role in maintaining the
proper functioning of cells, tissues, and organs. The first section takes us from the building
blocks of proteins to their functions, passing through their diverse conformations.

The second section is about protein modelization and automatic function prediction
(AFP). First, the classical bio-informatic tool used to predict protein function for new
sequences is presented. Next the basis of neural networks and deep learning is introduced.
How the common method uses embedding to encode sequence information and which
supervised and unsupervised loss are used. Finally, the Transformer neural network ar-
chitecture is described in detail, which would be of great importance for this thesis.

Protein
sequence

Protein
3D structure

Protein
function

DNA
sequence
AUGGAA

...
UUCAUA

MELSWHVVFI

Figure 1.1 – From DNA sequence to protein functions
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1.1 Protein: from sequence to function

In this section, the role of amino acids as the fundamental building blocks of proteins
will be elucidated. Providing a comprehensive understanding of their crucial role as the
basic components of proteins. First, we will describe amino acids and their physicochemical
properties. Then their assembly into chains, two, three, and fourth-dimensional structure,
to finally arrive at their functions. The process of protein assembly and folding, which
involves complex three-dimensional structures, is described, shedding light on how proteins
achieve their functional shapes. Furthermore, elaborates on the diverse functions that
proteins express in various biological processes.

1.1.1 Amino acids

Only a subset of amino acids are the basic component of proteins. The next section
will present the different types of amino acids and their different properties. Amino acids
are organic compounds that have two functional groups (see fig 1.2). The first functional
group is a carboxyl group (C(=O)OH). The second is an amine functional group, it is a
nitrogen atom with a pair of valence electrons that are not shared with another atom. The
first carbon atom attached to the carbonyl group is named the C-α. The proteinogenic
amino acids are α-amino acids because the amino group is also linked to C-α, then we can
also call this "the central carbon" atom of the amino acids. Attached to this carbon there
is a side chain R that differs among all amino acids. Amino acids have two optical isomers
(enantiomers), two molecules that are mirror images of each other. But as observed in
figure 1.2, the side chain is toward us and the hydrogen is behind. This is a lévogyre amino
acid (L-Amino acids) like all Proteinogenic ones. Finally, proteinogenic amino acids are
L-α-amino acids that are used as building blocks for protein. In the following, we will use
the term amino acids only to refer to proteinogenic amino acids.

The International Union of Pure and Applied Chemistry (IUPAC) defined twenty dif-
ferent common amino acids plus two special ones present only in a few species (Pyrroly-
sine and Selenocysteine)[ZG07]. They are represented in Table 1.1, with their name, a
one-letter code, and a three-letter code. Four other are also used to take into account un-
certainty when we describe the sequence of amino acids. There are some amino acids that
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Figure 1.2 – Structure of an L-α-amino acids, modified from [23a]. R represents the side
chain of the amino acid.

are difficult to distinguish, asparagine and aspartate (Asx, B), Glutamine and glutamate
(Glx, Z), and leucine and isoleucine (Xle, J). Moreover, when no clues are available to
identify the amino acid we have a code for unknown (Xaa, X).

The difference in the side chain (R) that defines amino acids causes different physico-
chemical properties between them. For instance, we will present some of the most common
properties. Some amino acids have charged side chains that allow them to interact with
other charged molecules. These charged amino acids can form important electrostatic
contacts called salt bridges which are for instance important for protein structure. Other
amino acids have polar, uncharged side chains that allow them to form hydrogen bonds
with other amino acids and water, they are hydrophilic. Meanwhile, other amino acids
have hydrophobic side chains that repel water. These amino acids are one of the driv-
ing forces of protein folding. Another group of amino acids, Aromatic amino acids has
an aromatic functional group. It has an alternating cyclic structure with double-bound
characteristics. They can participate in various types of interactions with other amino
acids, such as pi-stacking, hydrogen bonding, and van der Waals interactions. Contrary
to aliphatic amino acids that have an aliphatic non-aromatic side chain. These amino
acids are generally hydrophobic and are often found in the interior of proteins where they
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Name Three letter code One letter code Formula

alanine ala A H2N

O

OH

arginine arg R H2N

N

NH2NH2

O

OH

asparagine asn N H2N

NH2

O

O

OH

aspartic acid asp D H2N

OH

O

O

OH

cysteine cys C H2N

SH

O

OH

glutamine gln Q H2N

ONH2

O

OH

glutamic acid glu E H2N

OOH

O

OH

glycine gly G H2N

O

OH

histidine his H H2N

N

NH

O

OH

isoleucine ile I H2N

O

OH

leucine leu L H2N

O

OH

lysine lys K H2N

NH2

O

OH

methionine met M H2N

S

O

OH

phenylalanine phe F H2N

O

OH

proline pro P O

OH
NH

serine ser S H2N

OH

O

OH

threonine thr T H2N

OH

O

OH

tryptophan trp W H2N

NH

O

OH

tyrosine tyr Y H2N

OH

O

OH

valine val V H2N

O

OH

selenocysteine Sec U
pyrrolysine Pyl O
asparagine or aspartate Asx B
glutamine or glutamate Glx Z
leucine or isoleucine Xle J
unknown Xaa X

Table 1.1 – Table of the 20 (classic)+2 (special)+3 (uncertain)+1 (unknown)=26 different
amino acids letters and names defined by the IUPAC
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can interact with other hydrophobic amino acids. All of these properties and the amino
acids associated can be represented with the help of a Venn Diagram (Figure 1.3).

There are also some amino acids that have interesting properties. Glycine is very flex-
ible because it has no side chain. Cysteines can form covalent bonds with other cysteines
(disulfide bonds), which are important for protein structure and stability. Proline is very
rigid because its side chain joins back onto the main part of the amino acid. They are the
only ones to possess a secondary amine instead of a primary one. The details of all the
amino acids formula can be observed in figure 1.1.

Figure 1.3 – Venn diagram of the physicochemical property of the 20 common amino
acids. The cysteine is separated into two states, one with a disulfide bond (S-S) and one
without (S-H). From the Taylor classification [Tay86]

Although amino acids serve as the fundamental units of proteins, they don’t carry
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out their biological function by themselves. The subsequent phase involves linking these
amino acids together to form lengthy polymer chains.

1.1.2 Primary structure - a chain

The polymer chain is formed by combining amino acids with a condensation reaction.
It consists of cutting OH from the carboxyl group of the first amino acid and cutting
one hydrogen from the nitrogen of the other amino acids. Then linking the carbon of the
carboxyl group to the nitrogen, as shown in Figure 1.4. The different amino acids at the
different defined positions of a chain are called residues. In addition, the term "peptide"
is ussually used for chains with fewer than 20 amino acids, and "polypeptide" for chains
longer than that.

Figure 1.4 – Peptide chain formations. Two separated generic amino acids on the left
and the resulting chain on the right with a peptide bond. This reaction forms water as a
by-product. Figure from [22a].

The chain without side chains forms the backbone of the protein. More precisely the
chain Nitrogen, α-Carbon, Carbon (=OH) as represented in Figure 1.5. On this backbone,
dihedral angles can be defined. They are the angle between two peptide planes. ω (omega)
is the angle in the chain Cα-C’-N-Cα, ϕ (phi) is the angle in the chain C’-N-Cα-C’, and ψ
(psi) is the angle in the chain N-Cα-C’-N. These angles are very useful to describe the 3D
structure and to discover patterns. These patterns will allow us to define some secondary
structures (more in the upcoming section 1.1.3)

Traditionally, the protein sequence is written from its N-terminus to its C-terminus to
avoid having both possibilities. The N-terminus is the free NH2 at the end of the protein.
The C-terminus is the carbon of the carboxyl group at the end of the protein.
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Figure 1.5 – Dihedral angles and peptide plane in a generic protein. From [Gol+16].

The order in which amino acids are strung together is defined in the DNA (Deoxyri-
bonucleic Acid). The central dogma of molecular biology defines the information flow from
DNA to proteins. The DNA information is initially transcribed into an mRNA before be-
ing translated by ribosomes into a polypeptide sequence. The translation is defined by
the genetic code that associates each triple DNA base (codon) to one amino acid.

Thanks to advances in sequencing, many protein sequences are easily available. For
example, the UniProt database [The19] contains about 246 million sequences in March
2023.

1.1.3 Secondary structure

The secondary structure is a local spatial conformation of the backbone. Multiple
approaches exist to characterize secondary structure. One approach consists in observing
the regular pattern of backbone dihedral angles in a particular region of the Ramachandran
plot. This plot, depicted in Figure 1.6, is created by graphing the two important dihedral
angles (ψ and ϕ) in the residue chain. On the left of this plot, two major patterns can
be identified, α-helix (α in the figure), and β-sheet (β in the figure). α-helix is a type of
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right-hand helix. It is formed when the N-H group of one residue forms hydrogen bonds
with the C=0 group of the fourth residue following it. β-sheet are arranged in multiple
strands, typically of length 3 to 10. These strands are linked by hydrogen bonds like for
α-helix. The difference is that this bounding is between different strands. An example
of these two secondary structures can be found in Figure 1.7. But to assign consistent
secondary structures a more rigorous scheme was needed.

Figure 1.6 – The Ramachandran plot, as depicted in reference [22b], illustrates the ob-
served angles of backbones, revealing two distinct clusters of points that correspond to the
most frequently occurring secondary structures, namely the alpha-helix and beta-sheet

Multiple classification schemes were created, the two most important are DSSP and
SST. The Dictionary of Protein Secondary Structure (DSSP) [KS83] is based on hydrogen
bonding patterns. Whereas SST (Secondary STructure assignment)[KLA12] is based on
the Shannon information criterion of Minimum Message Length (MML) inference. The
task of finding a secondary structure class is viewed as a compression task. The method
considers secondary structure assignments as potential explanations for the available co-
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Figure 1.7 – α-helix and beta sheet from [23c]

ordinate data. Its goal is to find the most probable combination of a hypothesis and the
data. The method compares all assignments against a default null hypothesis, and any
assignment that fails to surpass it is deemed unsatisfactory. From this method, twelve
secondary structure classes was defined.

Some tools exist with good performances to predict secondary structure (85% in the
current tools from [Jia+17]). These local conformations are not enough to fully charac-
terize the protein, thus we need to have a global 3D structure.

1.1.4 Tertiary structure

The tertiary structure is the global shape of the chains. It is defined by all the 3-
dimensional coordinates of all atoms that compose the chain. A very important database
for structure is the protein databank (PDB)[Ber+00]. As of April 2023, about two hundred
and three thousand structures are experimentally defined in this database. An example
of protein structure from this database is shown in Figure 1.8.

The tertiary structure for some proteins can involve the folding of multiple domains.
Domains are regions of a protein that have distinct functions and can operate autonomously
from the rest of the protein. Domains have an independently stable structure and function.
Moreover analyzing the 3D structure, some regular patterns that connect some particular
secondary structure can be found. These patterns are called structural motifs. Structural
motifs are conserved 3-D structures found in different proteins, such as the helix-turn-helix
motif. Motifs are typically shorter than domains and do not possess standalone structure.

Multiple databases try to unify groups of proteins that are similar in terms of struc-
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ture. These groups are called protein families but the exact definition of a family is
context-dependent. For the Pfam database [Fin+08], the protein family is a group of
evolutionarily related proteins. Also exists a broader category, the superfamily, that de-
fined distantly related proteins whose relatedness is not detectable by sequence similarity,
but only from shared structural features. A database such as Structural Classification of
Proteins extended (SCOPe)[Cha+22] is based on structure.

Figure 1.8 – PDB structure of Human Aldose Reductase in complex with NADP+ and
the inhibitor IDD594 at 0.66 Angstrom (PDB Id: 1US0)

Anfinsen’s dogma states that the three-dimensional structure of a protein is determined
solely by its amino acid sequence, with the native conformation being thermodynamically
stable within its physiological environment. While this principle can be utilized as a
theoretical framework, it is important to note that it is not without limitations. For
example, some proteins need others (chaperone protein) to fold. Some have a closed and
open conformation, and some are dynamic ([Lég+22]).

It can be seen that the number of experimentally determined proteins structure is
multiple orders of magnitude lower 105 (in the PDB) compared to available protein se-
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quences 109 (in BFD). To bridge this gap in knowledge, automatic structural prediction
tools such as AlphaFold2 have been developed. AlphaFold2[Jum+21] is a state-of-the-art
model for protein structure prediction, trained on the PDB database.

Some proteins can be functional as one chain but others need to assemble in multiple
chains to do their function

1.1.5 Quaternary structure

Oligomers can be assemblies of multiple polypeptide chains that can be connected
through various types of bonds, such as covalent bonds, hydrogen bonds, and ionic bonds.
If the polypeptide chains are not covalently bonded, they are referred to as multimers.
A homo-oligomer is composed of identical polypeptide chains, while a hetero-oligomer
consists of different ones.

An example of an oligomer is collagen, which is the most abundant protein in mam-
mals. Collagen is a fibrous protein that plays a vital role in connective tissues found in
animals, including skin, bones, tendons, cartilage, and blood vessels. It is renowned for its
tensile strength, providing structural support to tissues and organs. Collagen oligomers
consist of three identical protein chains (refer to Figure 1.9).

Figure 1.9 – Tropocollagen molecule: three left-handed procollagens (red, green, blue) join
to form a right-handed triple helical tropocollagen. Figure from [23b]

But polypeptide chains can also be assembled with other bio-molecules to form one
unit that can perform a function and can be called a complex. The different bio-molecules
can for instance be RNA, DNA or other protein chain. For example, the ribosome complex
is a large molecular machine composed of multiple protein subunits and RNA molecules.
It plays a crucial role in translating messenger RNA (mRNA) into protein. The ribosome
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is composed of two subunits, a large subunit and a small subunit, each of which consists
of multiple proteins and RNA molecules (rRNA). These subunits come together to form
a functional ribosome complex.

The most crucial aspect of protein analysis is understanding its function. Protein
function plays a vital role in various fields, including medicine, disease comprehension,
studying biological systems, and investigating protein interactions with other molecules.
While protein structure can provide hints about its function, determining function solely
based on the structure is often complex. Certain structural features, such as binding
pockets facilitating molecule interactions or shape-dependent receptors, offer insights into
protein function, but the relationship is not always straightforward.

1.1.6 Functions

A biological function pertains to the precise role or purpose fulfilled by a protein within
a living organism. These functions intricately rely on the unique structure and properties
of proteins. For instance, proteins can form functional pockets that facilitate the binding of
molecules, thereby accelerating reactions. Additionally, the shape and structure of proteins
greatly influence the functionality of receptors, emphasizing their interdependence.

One possible way to classify biological function is in 8 broad categories ([Urr+16]):
enzymatic functions, defense proteins, storage proteins, transport proteins, hormonal pro-
teins, receptor proteins, contractile and mobile proteins, and structural proteins. Enzy-
matic functions involve accelerating chemical reactions, such as kinases that facilitate
phosphorylation. Defense proteins play a crucial role in the immune system, protecting
against intruders, such as antibodies that recognize and neutralize pathogens. Storage
proteins serve as reservoirs for amino acids, with casein being an example. Transport
proteins facilitate the movement of bio-molecules within the body, such as hemoglobin
which transports oxygen in the blood. Hormonal proteins help coordinate the activities
of an organism, for example, insulin helps regulate glucose metabolism. Receptor proteins
are responsible for cellular responses to chemical stimuli, such as those found in neurons.
Contractile proteins enable movement, as seen in muscular tissue. Finally, structural pro-
teins provide the framework for large tissues, with collagen being a prominent example.
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The lack of specificity in these general categories fails to capture the wide range of protein
functions, which is why ontologies for protein functions were developed.

Figure 1.10 – Ancestor chart for GO:0098726 (Symmetric division of skeletal) from
QuickGO website

Function ontology
The main functional vocabulary to annotate proteins function is Gene Ontology (GO).
GO concepts are designed to describe an aspect of the function that a gene evolves to per-
form (a selected effect function). But for example, some molecular functions are not linked
to biological processes and then are only candidate functions. Gene ontology encompasses
three main categories to describe the functions of gene products. The Gene Ontology
Consortium (GOC) uses the gene product term to refer most of the time to protein and
less often functional RNA like in the ribosome or other bio-molecules. The first category
of the GO, Molecular Function (MF), includes two subcategories: biochemical activity
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and components in a larger system process. This entails describing the specific activities
or roles that a gene product performs within a biochemical context or its contribution to
a larger biological process within the system. The second category, Cellular Component
(CC), encompasses the localization of gene products when they perform their functions.
It is divided into two subcategories: relative to cellular compartment/structure (e.g. cyto-
plasm, mitochondrion) and relative to common/stable molecular complexes they are part
of (e.g. the ribosome). This category provides information on where the gene product is
located within the cell or its association with stable molecular complexes. The third and
most complex category is Biological Process (BP), which is further divided into three
subcategories. One category describes the gene product’s involvement in biological pro-
cesses, including its role as a constituent of a specific biological program. A second is on
its regulatory function in controlling a biological program, and the last is on its upstream
and essential contribution to initiating a biological program.

Overall, gene ontology provides a comprehensive framework for describing the func-
tions of gene products, encompassing their biochemical activities, cellular localization,
and involvement in biological processes. It is an evolving system that aids in the system-
atic organization and interpretation of gene function data in a standardized manner. An
example can be seen in Figure 1.10.

Previously, other experts developed a hierarchy only for enzyme functions, the Enzyme
commission number. Enzyme Commission (EC) numbers provide well-defined targets to
train machine learning models ([KL94]). This nomenclature is composed of 4 levels. The
first level provides the main class of the enzyme, which is encoded by a number between
1 and 7. The second and third digits correspond respectively to the subclass and sub-
subclass of the enzyme, and the last one represents specific metabolites and co-factors
involved, which basically provides the actual reaction catalyzed or a restricted set of very
similar reactions. Therefore, an enzyme characterized to the fourth level is considered to
be completely characterized. The hierarchy can be seen in Figure 1.11. Some mapping
between the Gene Ontology term and Enzyme Commission number terms is possible. But
in general, it is not a one-to-one relationship. Some GO terms correspond to multiple EC
and vice versa.
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Figure 1.11 – Enzyme Commission number hiearachy

Proteins, which are essential molecules in living organisms, can be
described using a sequence of amino acid letters. The arrangement
of amino acids in a protein’s sequence determines its quasi-unique
3D structure, which can give valuable insight into its function. The
function of proteins is often described using the Gene Ontology, and
more specifically for enzymes by the Enzyme Commission number.
These ontologies and hierarchical structures play a crucial role in
unifying and organizing the functional vocabulary associated with
protein.

The essential

We have seen that protein can be described at multiple levels with different specificities.
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Database Data type Number of proteins
Big Fantastic Database (BFD) [SS18] sequence 2.5 × 109

UniProt [The19] sequence 2.5 × 108

UniProt/SwissProt [The19] sequence+function annotations 5.7 × 105

PDB[Ber+00] sequence+structure 2.0 × 105

Table 1.2 – Summary of different order for each type of data. Comparison of the number
of proteins available for each dataset

The different quantities of data available for some of the levels are presented in table 1.2. It
can be observed a big gap between sequence-only databases and sequences with function
annotations. In order to close this gap we need a model that links sequence to function.
The next section will describe how the different levels and their specificity can be taken
into account to model proteins. And how to link protein sequences to protein functions.

1.2 Automatic Function Prediction (AFP)

In this section, we will begin by discussing classical bioinformatics methods commonly
used for predicting protein function. However, due to the limitations of these methods,
which often rely on sequence similarity we will present some machine learning methods.
But as they rely on pre-extracted engineered features that can be limiting, we will delve
into deep learning models, and present more specifically the Transformer architecture.

1.2.1 Classical bio-informatics methods

This section will briefly present classical bio-informatics methods used for protein
function prediction. The sequence which represents the amino acid composition and the
specific order in which they are arranged within a protein chain holds valuable information
about its functional characteristics. The central hypothesis of most of the classical tools is
based on homology transfer. It suggests that if two proteins exhibit a significant sequence
similarity, they likely originate from a shared ancestor and might possess similar functions.
Classical tools such as the Basic Local Alignment Search Tool (BLAST), can be used
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to identify similar sequences with functional annotations. While BLAST may be less
sensitive than an exact solution, it is significantly faster. BLAST operates in three main
steps. Firstly, the query sequence is divided into k-mers, which are then stored, along
with similar ones, in a dictionary. Secondly, all sequences in a database (such as UniProt)
are searched using the k-mer dictionary to identify matches. When a match is found,
BLAST attempts to extend the k-mer from both sides until the extension decreases the
matching score. The matching score is typically computed using the Blosum62 matrix.
Finally, the third step involves computing the e-value, which represents the expected value
of finding a match by chance alone. One approach that has been employed in conjunction
with BLAST is the utilization of a K-Nearest Neighbor (KNN) algorithm, resulting in
Blast-KNN. This combined approach has been utilized in predicting the enzyme class of
novel protein sequences, as demonstrated in [Dal+18], where it was incorporated into an
ensemble model along with other methods.

Another very popular model the profile Hidden Markov Model (pHMM) is a widely
used method to infer functions from homologous sequences. It is based on the first-order
Markov assumption, which means that the probability of the next state only depends on
the current state. A pHMM consists of a finite set of states, each with a set of probabilities
associated with it. There are three types of states: match states for conserved residues,
insert states for extra residues, and delete states for missing residues. To build a pHMM,
one needs to specify the state transition probabilities and the emission probabilities. State
transition probabilities give the probability of moving from one position in the sequence
to another based on the current position, while emission probabilities describe the chance
that a particular amino acid is at this position. A pHMM can be constructed from a mul-
tiple sequence alignment (MSA) by estimating the transition and emission probabilities
from the alignment data. This model can capture the features of a protein family that
share the same function. Then, the model can be used to calculate the probability that a
new sequence belongs to each functional family. However, it should be noted that these
methods may struggle to capture distant sequences that have retained their structures
and functions throughout evolution. To overcome these limitations, some methods have
leveraged machine learning techniques.
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1.2.2 Machine learning methods

This section presents how machine learning is applied to automatic function prediction,
with a focus on enzyme function prediction as our initial domain of application.

Different methods for protein sequence analysis rely on classical machine learning ap-
proaches that utilize manual feature vectors as input. For instance, SPMap, as introduced
in the study by [Dal+18], creates clusters of subsequences and assigns probabilities to the
likelihood of a query subsequence matching with the subsequence clusters. This allows
for the construction of a C-dimensional vector, where C represents the number of clusters
created during training and an SVM is subsequently applied to classify the sequence into
the appropriate EC class. Similarly, another method called Pepstats-SVM, also discussed
in [Dal+18], extracts a feature vector comprising 37 characteristics of the protein, such as
molecular weight, isoelectric point, and physicochemical properties. This feature vector is
then used as input for an SVM-based classification approach. These methods demonstrate
the utilization of manual feature vectors in combination with machine learning algorithms
for protein sequence analysis.

One advantage of manual feature extraction methods is that they can simplify the
modeling process by focusing on relevant information. Additionally, these methods can
help mitigate the risk of overfitting when working with a limited amount of manually
extracted properties. However, these methods may be limited by the input information
fed into the SVM or other classifier models, as the manually extracted features may not
be exhaustive. To address this limitation, an alternative approach is to use raw sequence
information directly and infer intermediate representations through representation learn-
ing using deep learning techniques. This allows for the extraction of more comprehensive
and nuanced features, potentially leading to improved performance in protein sequence
analysis tasks.

In particular, Strodthoff et al. [Str+20] developed one of the state-of-the-art prediction
tools based on sequences only. They used a deep learning model to automatically infer the
relevant internal vectorized representations of the sequences (the “sequence embedding”),
from which the EC prediction is derived.

In terms of architecture, they chose to base their language model on a ASGD Weight-
Dropped Long Short-Term Memory (AWD-LSTM) neural network architecture [MKS17].
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Yet, although architectures based on LSTM enable to better handle sequences by partially
solving the vanishing gradient problem, they still seem to struggle to properly account for
long-distance interactions which are known to be relevant in protein structures. In Natural
Language Processing (NLP) applications, LSTM architectures are being superseded by
a non-recurrent architecture: the Transformers. Transformers primarily use the attention
mechanism [Vas+17] and seem to better account for long-range interactions as witnessed
for instance by the success of BERT [Dev+19] or T5 [Raf+20] on NLP benchmarks.

In this work, we propose to evaluate the interest of Transformers for protein func-
tional annotation based on sequences. The potential of Transformers applied to protein
sequences has already been identified by several seminal studies: in their early paper
calling for the development and proper assessment of better protein modeling methods,
Rao et al. [Rao+19] introduced five tasks. On this benchmark (TAPE), they compared
classical methods using alignment-based features (Netsurfp2.0, RaptorX and DeepSF for
secondary structure, contact prediction and remote homology respectively) and multiple
deep learning architectures, namely CNN (convolutional neural networks), LSTM and
Transformers. While Transformers outperformed the other methods on several tasks (flu-
orescence and stability), they were still lacking on others: homology prediction (LSTM
performing better) and structure prediction (methods based on alignment-based features
performing better). More recently, [Eln+21a] have conducted a high-performance com-
putational study of Transformers on large protein sequence databases to obtain on par,
or state-of-the-art results on secondary structure prediction, protein localization, and
membrane-bound vs water-soluble tasks. Besides, [Riv+21] also reported better perfor-
mance of Transformers compared to LSTM on contact prediction. But, to the best of our
knowledge, no previous work tested Transformers on a functional annotation task that
can be evaluated as accurately as enzyme functional annotation.

1.2.3 Transformer architecture and two phases training

The fundamental concepts of neural networks including their architecture and training
principles will be covered first. Specifically, we will explore the importance of loss functions
for both self-supervised and supervised training, along with different training objectives
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and different architectures. Lastly, we will delve into a comprehensive exploration of the
Transformer neural network, highlighting its potential applications in protein function
prediction.

Deep learning involves the use of neural networks. If you are already familiar with
neural networks, you may skip the next two sections where we will discuss the basic
principles of neural networks.

1.2.3.1 The problem of protein function prediction from sequences

The objective of this thesis is to tackle the classification problem of predicting the
functional class of a protein based on its input sequence. The functional class can be
determined through either an EC number if limited to enzymes, or Gene Ontology terms,
encompassing all proteins. The primary task is to develop a predictive model capable of
accurately assigning the correct functional class to a given protein sequence.

Two datasets will be used, the first one, denoted as Du, contains only raw sequences
and has the form {S0, ,̇SN1}, where N1 ∈ N is the number of sequences in the first phase.
An input sequence Si is defined as Si = {r0, ,̇rL}, where L is the length of the sequence.
The second one, denoted as Ds, contains sequences and their functional annotations and
has the form {(S0, y0), ,̇(SN2, yN2)}, where yi is the functional annotation for the sequence
i.

1.2.3.2 Basic of deep learning neural network

In order to facilitate a clear understanding of deep learning neural networks, it is
essential to establish a set of notations that will be used throughout this discussion. The
following notations will be employed:

a : Scalar
a : Vector
A : Matrix
A : Tensor
; : means parametrized by

The artificial neuron serves as the fundamental building block of neural networks.
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It can be conceptualized as a parametrized function that takes an input vector x ∈ RN ,
where N ∈ N represents the input dimension, and produces a scalar output. This function
relies on a weight vector w ∈ RN , a bias term b ∈ R, and a non-linear activation function
ϕ. The output can be expressed as:

f(x; w, b) = ϕ

(
N∑

i=1
wixi + b

)
(1.1)

The weights and bias are the learnable parameters of the neural network, often denoted
as θ. When we extend to M neurons, we can rewrite the previous equation using matrix
multiplication by introducing a weight matrix. The output dimension of our function
becomes M ∈ N, the input is represented as x ∈ RN×1, and the weight vector is replaced
by a weight matrix W ∈ RN×M , where each row corresponds to a weight vector w. The
bias term is now b ∈ RM , and the function’s signature becomes f : RN → RM :

F (x; W,b) = ϕ(W⊺x + b) (1.2)

Each function F is commonly referred to as a layer. By composing these layers, we can
construct a multi-layer neural network that performs more complex computations. The
inclusion of non-linear activation functions is crucial, as without them, stacking linear
transformations would result in a network comprised solely of linear units. Therefore, we
incorporate activation functions that are non-linear and differentiable (We will see why
later on). Examples of such activation functions include ReLU (Rectified Linear Unit),
GELU (Gaussian Error Linear Unit), Sigmoïd, and others:

ϕ(x) ∈ {ReLU, GELU, Sigmoïd, others}

ReLU(x) = max(0, x) (1.3)

GeLU(x) = x · C(x) ≈ 0.5 · x ·

1 + Tanh
√ 2

π
· (x+ 0.044715 · x3)

 (1.4)

Sigmoïd(x) = 1
1 + exp(−x) (1.5)

Here, C(x) represents the Cumulative Distribution Function for the Gaussian distri-
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bution.

The combination of a linear transformation followed by a non-linear activation function
defines a feed-forward layer. When multiple fully connected layers are stacked together, we
obtain a Multi-Layer Perceptron (MLP). These MLPs can approximate any continuous
function [Cyb]. The term "fully connected" originates from the fact that each neuron in a
layer is connected to all the inputs from the previous layer. This connectivity pattern is
known as the architecture of the neural network.

1.2.3.3 Probabilistic framework for classification

In order to train our neural network, we adopt a probabilistic framework where the
network will output probabilities. To achieve this, we utilize specific activation functions
that enable probability-based outputs. For a Bernoulli conditional distribution, we employ
the sigmoid function (equation 1.6), while for the categorical distribution (multinoulli),
we use the softmax function (equation 1.7). The softmax function is an extension of the
sigmoid function designed to handle multi-class problems.

The sigmoid function, denoted as σ(x) (equation 1.6), transforms the input x into
a probability value between 0 and 1. It accomplishes this by applying the mathematical
operation of exponentiation and division. Specifically, the sigmoid function maps the input
x to a value between 0 and 1 using the formula:

σ(x) = 1
1 + exp(−x) (1.6)

This function is well-suited for binary classification tasks where the goal is to assign
an input to one of two classes. On the other hand, the softmax function, denoted as
softmax(x) (equation 1.7), is employed when dealing with multi-class problems. It takes
a vector of inputs x and transforms it into a probability distribution over multiple classes.
The softmax function calculates the exponential of each element in the input vector and
normalizes the resulting values by dividing them with the sum of all exponentials. This
ensures that the output probabilities sum up to 1. The softmax function is particularly
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useful when we need to assign an input to one of multiple mutually exclusive classes.

softmax(x) = exp(x)∑C
i=1 exp(xi)

(1.7)

In the context of neural networks, optimizing the parameters is crucial to make the
network perform well on its intended task. This process involves finding the values of the
parameters that minimize the difference between the network’s predictions and the desired
outputs. To achieve this, we need to define an optimization problem, which essentially
means formulating the task of finding the best parameters as a mathematical problem.

The principle of maximum likelihood is a widely used approach in neural network op-
timization. It aims to find the parameter values that maximize the likelihood of observing
the given training data, given the model. In other words, we want to find the parameters
that make the neural network’s predictions align as closely as possible with the actual
outputs in the training data. By maximizing the likelihood, we increase the probability
of obtaining the observed data under the current model.

On the other hand, Bayesian approaches, which take a probabilistic viewpoint, might
prefer the maximum a posteriori (MAP) estimation. MAP estimation combines the like-
lihood of the observed data with a prior probability distribution over the parameters.
The prior represents our beliefs about the parameter values before observing the data. By
incorporating the prior, we can incorporate existing knowledge or assumptions into the
parameter estimation process.

Interestingly, when a uniform prior distribution is assumed for the MAP estimation,
the maximum likelihood estimation and the MAP estimation become equivalent. In other
words, if we have no specific prior knowledge and assume that all parameter values are
equally likely, the MAP estimation reduces to the maximum likelihood estimation. This
equivalence simplifies the problem and allows us to focus solely on maximizing the likeli-
hood, without considering the additional step of incorporating a prior distribution.
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For the Bayesian, the random variable is the parameters of the
model and the dataset is fixed. In this case P (X; θ) = P (X|θ)

Bayesian

With the function annotations Y = {y0, y1, ..., yn} and the input sequences S =
{S0, S1, ..., Sn} sample independently and from the same distribution (i.i.d). The max-
imum likelihood function gives us the equation 1.8. To avoid multiplying the probability,
which can cause numerical overflow, the log is taken. This doesn’t change the optimization
problem. This allows us to have a sum instead of a product.

θ∗ = argmax
θ

P (X|S; θ) = argmax
θ

|X|∑
i=1

log(P (xi|si; θ)) (1.8)

θ∗ = argmin
θ

−
|X|∑
i=1

log(P (xi|yi; θ)) (1.9)

This optimization problem is equivalent to minimizing the negative log-likelihood
(NLL) (equation 1.9) or the KL divergence between the empirical distribution defined
by the training set and the distribution defined by the model. And it also corresponds to
the minimization of the cross-entropy. More detail on these equivalence in [Cou16].

Our aim is to minimize the loss function across all examples in the training dataset.
One approach to achieve this is by leveraging the gradient, specifically the gradient of
the loss with respect to the parameters. The gradient is a vector of partial derivatives of
the cost function with respect to each parameter. Back-propagation ([RHW86]), which
involves applying the chain rule of partial derivatives in a neural network, is used to
compute the gradient. The term "back-propagation" refers to the fact that the error is
propagated backward from the end of the network through the different layers. This is in
contrast to forward propagation, where predictions are computed from inputs.

Finding an exact expression for the gradient to minimize the cross-entropy is complex,
as neural network functions are generally non-convex and have multiple local minima.
Instead, iterative optimization algorithms that use optimizers are employed to modify the

30



1.2. Automatic Function Prediction (AFP)

parameters of the neural network. One commonly used optimizer is stochastic gradient
descent (SGD - [RM51]). SGD involves taking a step in the opposite direction of the
gradient, allowing us to update the parameters in a way that reduces the loss. The size of
the step, known as the learning rate, determines the magnitude of the parameter updates.
The parameters are updated by subtracting the gradient multiplied by the learning rate,
resulting in a decrease in the cost function. The term "stochastic" stems from the fact
that the gradient is estimated from just a sample of the dataset, known as a minibatch,
rather than the entire dataset. This process is repeated multiple times, and when all
examples in the training set have been processed, we say that one epoch of training has
been completed.

Other optimization algorithms, such as Adam [KB17], also exist. Adam incorporates
momentum into the weight updates, allowing for faster convergence during training.

Regarding the input layer, a popular approach for handling categorical variables like
sequences is to use embeddings, which convert each token in the sequence into a contin-
uous real vector. The upcoming section will provide more detailed information on this
technique.

1.2.3.4 Embedding

The protein sequence consists of an ordered list of residues. In our neural network,
the term "token" is adopted as the fundamental unit of description. In Natural Language
Processing (NLP), a token can represent a letter, a part of a word, a whole word, or
even multiple words. In the context of proteins, the most common approach is to consider
each residue as a token. However, alternative choices for tokenization are discussed in
section 3.7.2. Additionally, for specific tasks, special tokens such as [CLS] or [MASK] can
be defined, with their roles and functions explained in section 1.2.3.6. The vocabulary of
the model (denoted as V ) is defined by the complete list of tokens.

As mentioned previously, the popular approach involves using real-valued vectors to
represent tokens. These vectors, referred to as embeddings, have a fixed size denoted as
E, which is a hyperparameter of the model. The embedding matrix, consisting of all the
vectors corresponding to the tokens in the vocabulary, plays a crucial role. This matrix
has dimensions of |V | rows and E columns (see the transpose version on the left of Figure
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1.12). Like other parameters in the network, the embedding matrix is initialized with
random values. The embedding is then trained to refine the representations during the
training process. The embedding matrix is an essential component as it captures the
semantic relationships and representations of the tokens in a continuous vector space.

Figure 1.12 – Multiplication of a transpose embedding matrix with a one-hot encoded
residue to obtain the embedding of this specific residue

The figure shown in Figure 1.12 illustrates the process of obtaining the embedding of
a specific residue by multiplying a one-hot encoded residue vector with the transposed
embedding matrix.

In the forward pass of our model, each residue is represented as a one-hot vector. This
vector contains zeros in all positions except for a single one at the index corresponding to
the residue. By multiplying this one-hot vector with the transposed embedding matrix,
we can obtain the embedding representation of the residue. Alternatively, this operation
can be viewed as selecting the corresponding row from the embedding matrix, which is
often the implementation approach.

In the context of a Transformer, the embeddings of the tokens undergo refinement
across the layers of the neural network and serve as the fundamental units for the network’s
reasoning. Therefore, the selection of the token scale plays a crucial role. It involves
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balancing various factors, including the vocabulary size, the information embedded within
the initial token embeddings, and the diversity of tasks that the network needs to perform.
Currently, each token corresponds to a single residue, as no other strategy has been found
to be more effective. However, further detailed information and discussions on this topic
can be found in part 3.7.

At the end of the Transformer, we obtain L output embeddings, where L is the length of
the input sequence. The exact computation needed to refine the representation is detailed
in the following.

1.2.3.5 Transformer architecture

The architecture of a neural network is determined by the interconnections between
its neurons and the flow of information from the input to the output. This architectural
design dictates the type and format of data that can be processed by the neural network.
The connection structure of a neural network also incorporates some inductive biases,
which may not always be explicitly defined or well understood. These biases imply that
certain types of patterns are more readily extractable by the network, while others may
be more intricate or challenging to extract. For instance, in the case of a convolutional
neural network (CNN) layer, where information flows locally within each layer, extract-
ing local dependencies becomes relatively straightforward. However, capturing long-range
dependencies can become more difficult or even impossible. As the number of layers in
a CNN grows, the receptive field expands, allowing the network to capture relationships
between elements that are increasingly distant from each other.

Different architectures may excel at modeling different types of relationships. Hence,
choosing the appropriate architecture is crucial in ensuring the optimal performance of the
neural network. Proteins exhibit properties at multiple scales, ranging from their sequence
to their tertiary and even quaternary structure (seen in 1.1), with long-distance contacts
playing a crucial role. While architectures like Reccurent Neural Networks (RNNs such
as Long Short-Term Memory (LSTM) or Gated Reccurent Unit (GRU)) and CNNs are
commonly used ([Str+20],[Bil+19]), they have limitations in effectively capturing long-
range contacts (See Figure 1.13). In contrast, Transformer-based architectures have shown
to be very effective in this regard, by for example retrieving long-range contact(>24 AA)
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in an unsupervised way in their inner representation ([Rao+20]). Therefore, selecting
the appropriate architecture, such as the Transformer, is crucial for accurately modeling
long-range contacts in proteins.

Figure 1.13 – Long range contact in proteins

The Transformer architecture is designed in a way that treats distant residues in a pro-
tein sequence as equally relevant to close ones, enabling seamless communication between
them. The original Transformer architecture is composed of two parts, an encoder part,
and a decoder part. First, we present the Transformer-Encoder. The global architecture
of the Transformer-encoder is composed of two main blocks. The first is the attention
block and the second is the feed-forward block. A global view can be seen in Figure 1.14.
An important part of the Transformer is the attention mechanism. This mechanism is
the specific part within the Transformer architecture where the exchange of information
between the embeddings of different tokens (residues in our case) takes place.

1.2.3.5.1 The attention mechanism
In this section, we present the Transformer self-attention mechanism. Let L denote the
sequence size, E represent the embedding size, and x ∈ RE×1 be the input. The first step
involves creating the key (K), query (Q), and value (V ) matrices. These matrices are
obtained through three separate linear projections, which take the current embedding x
as input and are computed as follows:
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Figure 1.14 – High-level Transformer encoder architecture

Q = Wq⊺x (1.10)

K = Wk⊺
x (1.11)

V = Wv⊺x (1.12)

The linear projections are parameterized by W q ∈ RE×E, W k ∈ RE×E, and W v ∈
RE×E, which represent the weights trained during the training process.

Next, we compute the attention map (equation 1.13), which is an L×L matrix (refer
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to Figure 1.15). Each row of the attention map represents a distribution over all tokens,
obtained through the softmax operation.

Attention_map = Softmax(QK
⊺

√
E

) (1.13)

(1.14)

This attention mechanism captures the importance of different tokens for each token
in the sequence. The attention map, computed as the softmax of the scaled dot product
between the query (Q) and key (K) matrices, assigns weights to each token, indicating its
relevance to other tokens in the sequence. Multiplying the attention map by the value (V )
matrix allows us to combine the information from tokens that hold significant importance
as represented by the row distribution. This process results in the attention represen-
tation, which summarizes the aggregated knowledge from relevant tokens, providing a
comprehensive context for each token in the sequence.

Attention = Attention_map× V (1.15)

The entire attention mechanism is illustrated in Figure 1.16. It consists of the key,
query, and value projections, followed by the computation of the attention map, and the
multiplication of the attention map with the values, which collectively form an atten-
tion head. Typically, multiple attention heads are used in parallel within each layer. In
such cases, the projected dimension is equal to the embedding dimension E divided by
the number of heads. The outputs of all the attention heads are then concatenated and
projected back to the original dimension E (as shown in Equation 1.17), using another
set of weights denoted as WO. These weights are responsible for combining information
from different attention heads. We define the output of the attention mechanism as the
intermediate embedding (IE).

At the current layer N , the attention mechanism takes as input the current embedding
EN and produces as output the intermediate embedding IEN+1.
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Figure 1.15 – Given a sequence of four residues, the Lysine (K) residue at position 3 gives
the highest attention to the Leucine (L) residue at position 4 (left). This attention row
can be found on line 3 of the attention map on the right.

(1.16)

IE = MultiHead(Q,K, V ) = Concat (head1, . . . , headh)WO (1.17)

headi = Attention
(
Wq⊺

i x,Wk⊺
i x,Wv⊺

i x
)

(1.18)

1.2.3.5.2 The Feed-forward block
After the self-attention layer, the intermediate representation (IE) is transformed inde-
pendently for each token. The embedding is projected to a higher dimension (generally of
dimension 4 × E), then a non-linearity is applied and it is projected back to the original
dimension E (See equation 1.19 and Figure 1.17).

With an embedding size of E ∈ N and an intermediate size of 4E. x ∈ RE×1, W1 ∈
RE×4E, b ∈ R4E, W2 ∈ R4E×E, b ∈ RE and a ReLU(1.3) activation function, but this
can be GeLU (1.4) or others.

Transformer_feed_forward(x) = W2⊺(ReLU(W1⊺x + b1)) + b2 (1.19)
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Figure 1.16 – Detailed view of the self-attention mechanism with one head. The blue
trapeze represents linear projection. Residue positions are framed.
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Figure 1.17 – The feed-forward layer present in transformer network. The blue trapeze
represents linear projection. The non-linearity after FF1 is not represented here.

1.2.3.5.3 Global architecture
In addition to the attention layer and the feed-forward layer, there is a normalization
layer and skip connection in the Transformer architecture (See Figure 1.18). The layer
normalization[BKH16] has been proven to accelerate the training. The skip connection
allows us to train deeper networks in avoiding the vanishing gradient problem. To the best
of our knowledge, this was first used in this context (Deeper network) in ResNet[He+15].

1.2.3.5.4 One missing information: Position encoding
As can be seen from all the different layers in the network, the transformer network is
position invariant. Thus, the information can be added in different ways. The first method
is absolute position encoding. It consists in adding a vector to the token encoding at the
start of the network. The classical way to create this vector is to take different sinusoidal
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Figure 1.18 – Overview of one complete Transformer encoder layer. The red dotted line
represents how the information can flow for the first embedding. Everywhere in the self-
attention and only between itself in the feed-forward layer.
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functions([Dev+19]), one for each dimension in the embedding with decreasing frequencies
along the dimension. Another way is to use a learned positional embedding.

Sometimes the relative position is the most important information. For example, in
protein, if we encode two proteins with the same domain inside, but not at the same
place, we want the attention to be the same inside the domain, and this is not guaranteed
with absolute position encoding. One way to solve this is relative position encoding.
Multiple mechanisms exist to do relative position encoding. The simplest version is the
one proposed by [Raf+20]. It consists in adding learned scalars at each position in the
attention maps, addressed by i-j, with i the row number and j the column number. If the
distance between res i and res j is greater than a threshold (often 128), only one scalar
is learned for all distances greater than this threshold. More information can be found in
[KHL21].

Transformer is a type of neural network architecture that is best
suited to capture long-range relationships than other traditional
neural network architectures like RNNs and CNNs. The central
part of the Transformer architecture is the attention mechanism
that allows the model to focus on relevant parts of the input data.
It calculates the importance or weight of different residues/tokens
in the input based on their relevance to the current context. By
using attention, the model can selectively attend to and incorporate
information from different parts of the input, improving its ability
to capture meaningful relationships.

Key Takeaways

In the following, we will explore the specific information that these embeddings should
encapsulate and the essential features they need to encode.

1.2.3.6 Training objectives

Pre-training involves training a deep neural network (Transformer in our case) on a
large dataset of protein sequences before fine-tuning it on specific protein-related tasks,
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Figure 1.19 – Two phase training for deep neural network (Transformer in this Figure).

such as protein folding, protein-protein interaction prediction, and protein function pre-
diction (Illustrated in Figure 1.19). One of the key advantages of pre-training in protein
language models is the ability to learn meaningful representations of proteins by capturing
their structural, functional, and evolutionary characteristics. Moreover, some protein func-
tions have very few representatives. And pre-training mitigates overfitting. Pre-training
only uses protein sequences that are abundant without the need for a label.

1.2.3.6.1 Pre-training

Multiple pre-training tasks exist, but one that significantly revolutionized token em-
bedding is word2vec[Mik+13]. This model introduced highly efficient algorithms for train-
ing embeddings using massive text corpora. Two approaches, namely CBOW and Skip-
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gram, were proposed to model word embeddings in natural language processing. These
approaches are part of the known as word2vec, which aims to capture word representa-
tions in a distributed vector space. In CBOW, the model predicts a target word based
on its surrounding context words. The context words are used to provide contextual in-
formation for predicting the target word. On the other hand, Skip-gram operates in the
opposite direction by predicting the context words given a target word. It tries to opti-
mize the model to correctly identify the context words that are most likely to appear in
proximity to the target word. Both CBOW and Skip-gram have proven to be effective
methods for learning high-quality word embeddings, with applications in various NLP
tasks[Mik+13]. Another model with a similar objective to word2vec is GloVe ([PSM14]),
which takes a different approach by considering global context matrices instead of rely-
ing solely on the local context within a specific document. GloVe computes these global
context matrices and then aims to factorize them to obtain word embeddings. However,
these embeddings are static and do not take into account the context or position of the
token. As a result, these models struggle to differentiate between homonyms, such as the
word "bank" in the contexts of "river bank" and "going to the bank.". In contrast to nat-
ural language processing (NLP), where the vocabulary is often extensive (consisting for
example of 30,000 tokens in [Dev+19]) and composed of word chunks, the protein domain
presents a different scenario. In protein analysis, the token represents a residue, resulting
in a considerably smaller vocabulary (approximately 20 tokens). Additionally, the position
of a residue within a protein carries significant importance, making it challenging to have
useful embeddings if all embeddings for a given amino acid are identical, regardless of
their position. To address these challenges, there is a need for context-dependent embed-
dings in the protein domain. This requirement extends to both local and global contexts.
Local context refers to patterns specific to a residue’s immediate surroundings, such as
secondary structure. On the other hand, global context involves long-range contacts that
play a vital role in defining the three-dimensional structure of the protein. To obtain
this contextualized embedding two major approach exists. The first one is autoregressive
modeling, where the neural network tries to predict the next word based on all the pre-
vious ones, as in Generative Pre-Training (GPT)[Rad+]. However, this method is limited
because it can only model context from left to right. Some models try to do bidirectional
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prediction, such as Bidirectional Recurrent Neural Networks[SP97], ELMO[Pet+18] and
ULMFIT[HR18]. But they still cannot consider the context from both directions simulta-
neously. The final embedding is the concatenation of the two contexts. Unlike the previous
methods that concatenate the left and right contexts, autoencoding modeling can cap-
ture the context from both directions simultaneously by using masked language modeling
(MLM) as the main training task. This approach was popularized by the Bidirectional
Encoder Representations from Transformers (BERT) [Dev+19]. The bi-directional con-
text has been shown to be important for protein modeling in [Eln+21a](Section 4.4 last
paragraph). The following paragraph will explain in detail how masked language modeling
(MLM) works.

1.2.3.6.2 Masked Language Modeling (MLM)

Masked language modeling (MLM) is a task that involves creating a modified version
of an input sequence by randomly masking or corrupting a predetermined percentage of its
tokens. The goal of MLM is to train a neural network to predict the masked or corrupted
tokens, effectively denoising the input sequence to retrieve the original sequence.

By doing so, the model will improve its final embedding to have relevant biological
information easily accessible.

The masked language modeling technique, as described in [Dev+19], involves randomly
selecting 15% of the tokens from the input sequence. Among these selected tokens, 80%
are replaced with a special mask token, 10% are substituted with random values, and the
remaining 10% are left unchanged. The model then utilizes the embeddings of the masked
tokens to predict their original values, thus denoising the sequence and restoring it to its
original state. The denoising process is visualized in Figure 1.20. It should be noted that
these specific proportions have been widely adopted in many models that use the masked
language modeling technique, but there may exist other variations that could be more
effective for different tasks or datasets.

The T5 study, conducted by [Raf+20], investigated the effect of various corruption
rates on performance in natural language processing (NLP) tasks. In addition to the
standard 15% corruption rate, they experimented with rates of 10%, 25%, and 50%. In-
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terestingly, they observed no significant performance difference between the lower rates
(10%, 15%, and 25%), suggesting that these rates produce comparable results. However,
when the corruption rate was increased to 50%, they noted a significant drop in per-
formance. Furthermore, the researchers found that replacing spans of tokens instead of
individual tokens gave a slight advantage, especially for spans that were less than 10
tokens in length.

Masked language modeling (MLM) is a self-supervised task that requires only se-
quences as input. However, generating meaningful representations of protein residues
through MLM typically demands significant computing power. It is hypothesized that
the representations generated by MLM are derived from the model’s ability to capture
patterns and features within protein sequences that may be indicative of their structural
characteristics. These patterns may include identifying specific amino acid motifs or se-
quence patterns that correspond to secondary structure elements like alpha-helices or
beta-sheets. Additionally, the model may be able to capture evolutionary information by
identifying regions in protein sequences that are conserved across evolution, which may
correspond to critical structural elements for protein function. However, further research
is needed to confirm these hypotheses and to fully understand the effectiveness of MLM
in capturing structural and evolutionary information in protein-related tasks. Following
pre-training, the next step is fine-tuning, which involves adapting the pre-trained model
for a specific task.

1.2.3.6.3 Fine-tuning
One common method for fine-tuning a pre-trained protein language model for classification
tasks involves adding a special [CLS] token to the beginning of the protein sequence and
using its embedding as a representation of the entire sequence. However, other approaches
also exist, such as taking the mean embedding of all the residues in the sequence or using
other aggregation methods to generate a condensed representation of the sequence. Finally,
this embedding is fed into a feedforward classification layer, which makes predictions about
the class of the protein. The weights of the classification layer are initialized randomly,
and then the model is fine-tuned on a labeled dataset through backpropagation, adjusting
the weights to minimize the classification loss. This fine-tuning process can be repeated
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Figure 1.20 – An example of pre-training for one protein. The first step is to mask/corrupt
some tokens. The second step is to run the corrupted sequence through the network. And
lastly, use the embedding to predict the original token.

for multiple classification tasks, each with its own classification layer. The pre-trained
weights of the model can be frozen or fine-tuned for each task. The goal of fine-tuning is to
adapt the pre-trained model to specific protein classification tasks, leveraging the model’s
ability to capture complex patterns and features in protein sequences. An illustration of
the fine-tuning process is provided in Figure 1.21.

The challenge of developing effective Automatic Function Prediction (AFP) tools for
protein-related tasks has been addressed using a myriad of techniques. By leveraging pre-
training, models can extract general patterns and features from vast, unlabeled datasets,
while fine-tuning enables adaptation of these pre-trained models to specific classification
tasks.
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Figure 1.21 – An example of fine-tuning on a classification task at the protein level. First,
a special token named [CLS] is prepended to the sequence. Then the sequence is run
through the model. And finally, the embedding of the [CLS] is used to predict the class
of the protein.

The success of pre-training and fine-tuning is contingent upon several factors, such
as the availability of a substantial quantity of unlabeled sequence data, the selection of
appropriate pre-training and fine-tuning methodologies, and the configuration of model
architecture and hyperparameters. With natural language processing as inspiration this
has given rise to advanced pre-trained protein language models [Eln+21a], which have
demonstrated promising outcomes in a range of protein-related tasks, including secondary
structure and contact prediction.

Whilst these models have not been directly applied to AFP tasks at the beginning of
this thesis. The subsequent chapter will investigate the potential of these strategies for
addressing the challenges inherent to AFP, shedding light on their efficacy and areas for
further exploration.
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Chapter 2

PREDICTING ENZYMATIC FUNCTION OF

PROTEIN SEQUENCES WITH ATTENTION

2.1 Introduction

The first objective of this thesis is to examine the application of attention-based mod-
els, such as the Transformer, in the Automatic Function Prediction (AFP) domain, with
a specific emphasis on predicting enzyme function. Enzyme function prediction serves
as a controlled environment for studying the effectiveness of attention mechanisms in
AFP tasks. The functional prediction of enzymes, which account for around half of all
known proteins [The21], is an important application of functional annotation of protein
sequences. This task is a testbed for the development of predictive methods for several
reasons. First, the enzyme’s functions are well-defined according to experimental evidence.
These functions are then standardized by Enzyme Commission (EC) numbers which pro-
vide well-defined targets to train machine learning models [KL94]. Secondly, the amount of
annotated enzymatic sequences available is sufficient to enable training and independent
large-scale evaluations.

In addition to functional annotation, we also chose to evaluate the benefits of the
Transformers’ attention mechanism as an interpretability method. That is a way to better
understand the link between the input (a protein sequence in our case) and the output
(a functional prediction) found by the model. In a word, for a given residue, attention
provides an importance score showing which other residues are most related to it to
perform a given prediction task. As such, attention naturally highlights key relations
within the sequence [CGW21]. Previous work [Vig+20] has related protein attention of
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Transformers (TAPE - [Rao+19], ProTrans - [Eln+21a]) and the presence of binding sites.
Yet, while these studies show the potential of attention-based methods, whether they can
be used and be better than classical interpretability methods in the context of biological
sequences is still an open question. Tackling this issue requires developing a common setup
to allow for an exhaustive comparison between methods: this thesis presents such a setup
in the context of enzymes’ functional annotation.

To summarize, this section is about : (i) We show that using Transformer neural net-
works enables us to achieve state-of-the-art results for predicting the enzymatic function of
a protein from its sequence only; (ii) We present a simple attention-based interpretability
method that outperforms classical generic ones in terms of coherence with prior biological
knowledge.

2.2 Methods

2.2.1 Enzyme class prediction task

2.2.1.1 Task description and datasets

Dataset Not an enzyme Oxidoreductases Transferases Hydrolases Lyases Isomerases Ligases Translocase Total
EC40 training 0 14 574 34 031 25 329 8792 5399 11 861 0 99 986
EC40 validation 0 365 873 746 182 115 225 0 2506
EC40 testing 0 376 887 677 147 156 263 0 2506
ECPred40 training 22 797 21 380 62 124 33 362 16 926 10 926 24 045 0 191 560
ECPred40 validation 5502 3014 8097 3947 2008 1366 2536 0 26 470
ECPred40 testing 499 17 201 162 19 20 6 0 924
SwissProt_2021_04 302 753 26 278 80 485 40 913 23 253 14 453 26 374 8455 522 964

Table 2.1 – Number proteins sequences in each Enzyme Commission (EC) first level
class in each dataset. The dataset named EC40 is from [Str+20] and the dataset
named ECPred40 is derived from [Dal+18]. SwissProt_2021_04 is directly from Unipro-
tKB/Swissprot without filtering.

The task of interest in this thesis consists in predicting Enzyme Commission (EC)
numbers at a specific level. This nomenclature is composed of 4 levels. The first level
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provides the main class of the enzyme, which is encoded by a number between 1 and
7. The second and third digits correspond respectively to the subclass and sub-subclass
of the enzyme, and the last one represents specific metabolites and co-factors involved,
which basically provides the actual reaction catalyzed or a restricted set of very similar
reactions. Therefore, an enzyme characterized to the fourth level is considered to be
completely characterized.

Two datasets, EC40 and ECPred40, were studied in this thesis, in order to have
the most direct comparison with state-of-the-art models. The first dataset, EC40 from
[Str+20], goes up to EC level two. It ensures that i) sequences from the testing set share
less than 40% sequence identity with any sequence used for training the models and ii)
sequences in the testing set share less than 40% sequence identity between themselves.

We developed ourselves the second dataset, ECPred40, which goes up to EC level four.
It is inspired by Dalkiran et al. [Dal+18] who trained their model on Swiss-Prot release
2017_3 and tested it on enzymes annotated after this release. Yet, the authors did not
consider the degree of homology in sequences between training and testing datasets. There-
fore, we took inspiration from [Str+20] to rebuild the testing set according to their strict
procedure. More specifically, we first retrieved the newly created annotations between the
release Swiss-Prot (release: 2017_3) and the release Swiss-Prot (release: 2021_04). Then,
we clustered these novel annotations and the training set with MMseqs2 ([SS17]) at 40%
identity threshold: if two sequences shared 40% or more identity, they were assigned to
the same cluster. To build the testing set, all clusters with at least one sequence from the
training set were discarded and a representative of each remaining cluster was included in
the testing set, ensuring less than 40% sequence identities between the sequences from the
testing set and the other sequences used (training/validation). Concerning the training
and validation sets, [Dal+18] applied the same process, keeping only one representative
sequence per cluster. By contrast, we choose to keep all the sequences for training, as did
[Str+20].

We also labeled as "non-enzymes" all sequences having neither GO annotation with
catalytic activities, nor any EC number annotation. This is required to perform the predic-
tion of whether a protein is an enzyme or not, referred to hereafter as "level 0" prediction.
For a fair comparison, we only kept EC class that ECPred was capable of predicting
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(628 EC classes at level 4). We also filtered on size because ECPred cannot predict on
sequences less than 40 residues long. Only non-fragment sequences were kept. Finally, we
set a max size of 1024 residues because of memory constraints. We named this custom
dataset ECPred40.

As a final remark, one can notice in table 2.1 that the translocase class is absent. This
is due to the fact that models we compare our Transformer to only consider Swiss-Prot
releases before 2018, which is when translocase class was first introduced.

2.2.1.2 Evaluation procedure and metrics for prediction performance

For the comparison with UDSMProt [Str+20], we used their EC40 dataset and com-
puted the accuracy at level 2 as they did. We also computed the macro-f1 score for our
model to have a basis for comparison that is not biased toward more common classes.
Macro means that the average is computed on each enzyme class of the different metrics,
which allows sampling biases to be mitigated if some enzyme classes are more represented
than others. For the comparison with ECPred [Dal+18], we also needed to evaluate the
enzyme / non-enzyme discrimination. We have done two evaluations based on the new
EC40Pred testing set. The first one focused on the enzyme vs non-enzyme classification
task. For the second, we only considered the enzymes in the testing set and evaluated the
predictions at levels 1 to 4. Macro measures (precision, recall, f1) were used.

2.2.2 The model

2.2.2.1 EnzBert

Our model, named EnzBert, is based on a Transformer architecture. To avoid some un-
necessary computation, we started from an already pre-trained Transformer, the ProtBert-
BFD model variant from [Eln+21a].

Then, we fine-tuned this model for the EC class prediction task, to obtain EnzBert.
In order to do this, we classically appended a special [CLS] token to all input token
sequences. The embedding of the [CLS] token is meant to represent the whole sequence,
from which we can derive the functional annotation (as in [Dev+19]). We did not freeze
the first layers when performing the fine-tuning part, by contrast with [Eln+21a]. We
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Parameter EnzBertEC40-ECPred40-SwissProt

Dropout on [CLS] 0.2
Batch Size 2

Accumulation step 16
Learning rate 1.0 × 10−5

Optimizer Adam(β1=0.9, β2=0.999)
Lr scheduler Lr(epoch)=0.8*Lr(epoch-1)

Number epochs 5-15-15

Table 2.2 – Hyper-parameters used for the fine-tuning of the three different versions of
EnzBert. When different a "-" is used.

used a normalization layer to speed up the training process, followed by a linear layer to
project the [CLS] final embedding to the desired number of classes. For fine-tuning, we
did not consider the EC hierarchy : all classes were treated as being independent, allowing
us to use a cross-entropy loss function.

The code used for this thesis is written in PyTorch and is available at https://
gitlab.inria.fr/nbuton/tfpc, the hyper-parameters are shown in table 2.2 .

Two models were trained: EnzBertEC40 and EnzBertECPred40 fine-tuned respectively on
EC40 and ECPred40. We also trained EnzBertSwissProt on all SwissProt (release dump
2021_04) in order to compare interpretability methods.

Due to the presence of the over-represented "non-enzyme" class (more example of "non-
enzymes" than examples of other level 4 EC) and EC classes with very few examples, we
chose to balance the dataset during training with a weighted random sampler (Weighte-
dRandomSampler class from PyTorch) to train EnzBertSwissProt. The chosen weights were
the inverse of the occurrence for each class.

2.2.3 Interpretability

In order to compare our custom attention-based interpretability method, we first re-
implemented classical methods on the same common setup for proper comparison.
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2.2.3.1 Descriptions of classical interpretability methods

As shown in figure 2.1, we considered methods that are model-specific (e.g. requires the
model to be differentiable) or model-agnostic, such as LIME ([RSG16]). We also included
class-specific (e.g. TGradCam see [CGW21] ) and class-agnostic methods (e.g. Attention
last layer, named Raw attention in [AZ20]). Note that, while being class-specific in theory,
generic Gradient-based methods tend to behave like class agnostic methods ([CGW21]),
meaning that the feature importance does not change much between classes. Providing
an exhaustive review of gradient-based interpretability methods is beyond the scope, as
many variants exist (e.g. Gradient time input - [Shr+17], Integrated Gradient - [STY17],
. . . ).

Finally, some methods rely on the attention maps which are specific to Transformers
(e.g. Attention Last Layer and Rollout, see [AZ20])

Model specific

Model agnostic

LIME

Class agnostic*
Class specific*

Gradient based 
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Attribution propagation 

Based on 
attention

TGradCam

Integrated 
Gradients

Gradients

Gradient 
time input

Attention 
last layer

Rollout

Attention 
Agregation

At least in practice*

DLIME

SHAP

Attribution propagation 

RAP AGF DeepLIFT

TGLRP CLRPSGLRP

DeepSHAP

Figure 2.1 – Summary of the main types of interpretability methods
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2.2.3.2 Attention aggregation interpretability methods

All attention maps in the Transformer can be stored in a tensor of shape (L×H,N,N),
with L the number of layers in the Transformer, H the number of head per layer and N
the length of the sequences. The first dimension is the dimension of all heads for all layers,
the second dimension is the attention received by a given residue from the others and the
last dimension is the attention given by a residue to all the others.

In order to obtain a vector of size N containing the "aggregated attention" for each
residue, we could collapse the T tensor along the second dimension (to obtain a matrix
of shape (L×H,N)) and then again along the first dimension of this matrix, to obtain a
vector of size N (as illustrated in figure 2.2), as well as other orders of aggregation, e.g.
starting the aggregation on the first dimension of the tensor. In terms of aggregation, we
explored two possibilities: the average and the maximum. Overall, combining along the
various dimensions and choosing an aggregation method provides 13 different possibilities,
after removing duplicates (16 before). We will name these variants AttnAgg followed by
the first and second dimensions collapsed, each annotated by the function used for pooling
(A: Average and M: Max), e.g. AttnAgg1A1A as shown in figure 2.2.

2.2.3.3 Catalytic residues as gold label

One key question is whether the residue importance for the classification task can be
related to known features of the amino acids in the sequence. To explore this aspect, we
used the Mechanism and Catalytic Site Atlas (M-CSA) ([Rib+18]) database. It documents
numerous known enzyme catalytic residues and reaction mechanisms. All information in
this database has been manually curated and is supported by research papers. It describes
992 enzymes, with an average length of 439 amino acids and on average 4.9 catalytic
residue’s annotation per enzyme.

These catalytic residues will be used as a proxy to evaluate the different interpretability
methods and will be referred to as "gold labels" in the following sections.
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Figure 2.2 – Aggregation methods AttnAgg1A1A and AttnAgg2A1A. AttnAgg2A1A av-
erages all attention maps and then average over the columns to obtain a row vector.

2.2.3.4 Evaluation and metrics for interpretability

There is no clear consensus about which metric to use to evaluate interpretability with
gold labels [DeY+20]. In this thesis, we use mainly two types of curves, from which we
derived comparison metrics. First, we took inspiration from [CGW21]. For a given inter-
pretability method, for each enzyme, we selected the residues with the top-k importance
scores given by the interpretability method. We then crossed this features’ importance
list with the gold labels: each important residue with a gold label is considered a true
positive. This allowed us to compute an f1 score for a given sequence. We then averaged
the f1 scores over all sequences and repeated this process from k=1 to 50 top-k scores.
Second, from the same importance list, we also derived a precision-recall curve. Such a
curve is often used in the context of unbalanced classes, which is the case here as catalytic
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residues only represent 1.16% of all residues.
We then derived two metrics to quantitatively compare models. First, we considered

the Precision-Recall Gain Area Under the Curve (PRG-AUC - [FK15]). Second, we com-
puted a maximum F-Gain score as follows. First, for each sequence, we deleted the score
on the CLS token and rescaled the tokens’ importance score (either min-max scaling,
normalization, division by L1 or L2 norms, or no scaling). Then, we created a set with
all the (rescaled) scores of all the tokens from the testing set sequences. All tokens whose
score is higher than a given threshold are considered "important". An F1 score is then
computed, crossing important tokens and known catalytic annotations. The maximum F1
score consists in keeping the highest F1 score achieved by varying the threshold. Finally,
the F-Gain, precision gain and recall gain scores are derived from these F1, precision and
recall scores accounting for the performances of an always-positive classifier [FK15].

We also designed a ’baseline’ method to check whether the distribution of scores was
enough to provide high interpretability metrics. To do so, we shuffled the importance score
of the tokens and applied the same metrics (PRG-AUC and maximum F-Gain score) to
compare to our (non-shuffled) results.

Computation time for each interpretability method was measured on a CPU as some
interpretability methods (e.g. TGLRP) need more RAM than available in the GPUs at
our disposal. All the models and the interpretability annotation are available on gitlab
https://gitlab.inria.fr/nbuton/tfpc.

2.3 Results

2.3.1 Enzyme class prediction

Table 2.3 summarizes the class prediction quality of EnzBertEC40 on EC40 test set,
as well as UDSMProt [Str+20], the best-known enzyme predictor at level 2 using only
sequences. On this dataset with less than 40% identity between training and testing
sequences, the results show : i) an increase in accuracy from 87% for the previous state-
of-the-art model, UDSMProt, to 97% for EnzBertEC40 concerning the prediction of the 6
possible classes at level 1 and ii) an increase from 84% to 95% accuracy for the prediction
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of the 51 possible classes at level 2. Macro-f1, which allows all classes to be considered
equally and avoids skewing the evaluation towards the most common classes, reaches here
respectively 96% and 89% at levels 1 and 2 for EnzBertEC40.

When it comes to finer levels of predictions, the LSTM-based network from UDSMProt
cannot be used as it is trained to predict up to level 2 classes only. The current state-
of-the-art for level 4 predictions is ECPred [Dal+18]. Table 2.4 shows the prediction
performances of EnzBertECPred40 and ECPred at the different EC levels, from level 0
(enzyme vs non-enzyme discrimination task) to level 4 (628 classes), on ECPred40 test
set. EnzBertECPred40 significantly improves predictions over ECPred at each level, except
at level 1 where ECPred favours recall and our model favours precision. At level 4, the
finer and more challenging level of prediction, our model improves both macro-precision
and macro-recall with respect to ECPred, resulting in an increase of the macro-f1 score
from 40.7% to 55.2%.

Model Level Macro-f1 Macro-precision Macro-recall Accuracy Number of classes
UDSMProt 1 - - - 0.87 6
EnzBertEC40 1 0.96 0.96 0.96 0.97 6
UDSMProt 2 - - - 0.84 51
EnzBertEC40 2 0.89 0.93 0.87 0.95 51

Table 2.3 – Comparison with UDSMProt of the prediction quality at the two levels of
EC40 test set.

In our approach, we focused on state-of-the-art models UDSMProt and ECPred. Other
tools exist like EzyPred [SC07], EFICAz [KS12] and DEEPre [Li+18], but the experimen-
tation by [Dal+18] suggests that ECPred outperforms them. Moreover, [Str+20] presented
experiments showing that UDSMprot outperforms DEEPred at level 2 and is on par with
ECPred at level 1 (we do not have information on level 2 comparison). These results
suggest that Transformers outperforms state-of-the-art tools for the prediction of the
enzymatic class of proteins from their sequence. In the next section, we focus on the
interpretability offered by their attention mechanism.

58



2.3. Results

Model Level Macro-f1 Macro-precision Macro-recall Accuracy Number of classes
ECPred 0 0.769 0.784 0.781 0.769 2
EnzBertECPred40 0 0.837 0.874 0.831 0.845 2
ECPred 1 0.728 0.691 0.841 0.824 6
EnzBertECPred40 1 0.604 0.784 0.582 0.813 6
ECPred 2 0.492 0.468 0.579 0.759 51
EnzBertECPred40 2 0.629 0.676 0.672 0.781 51
ECPred 3 0.496 0.491 0.549 0.727 132
EnzBertECPred40 3 0.609 0.625 0.652 0.749 132
ECPred 4 0.407 0.431 0.412 0.636 628
EnzBertECPred40 4 0.552 0.576 0.562 0.687 628

Table 2.4 – Comparison with ECPred of the prediction quality at the five levels of
ECPred40 test set.

2.3.2 Interpretability

The Transformers’ attention provides a built-in interpretation mechanism, but its com-
plexity in the case of multiple attention heads makes it difficult to use directly. We have
thus proposed and tested different attention aggregation methods. Among 13 different
possibilities for attention aggregation described in section 2.2.3.2, the best performing
was ’AttnAgg2A1A’ (which is mathematically equivalent to ’AttnAgg1A1A’), described
in figure 2.2. It consists in i) taking the average over all attention maps and then ii)
averaging over the vertical dimension of this average attention map. Exploring other ag-
gregation orders shows that averaging over the attention a given residue is paying to all
others leads to poor performance (all PRG-AUC < 90 %). By contrast, all methods focus-
ing on the attention received by a given residue perform well (PRG-AUC > 90 %), with
the exception of AttnAgg1M1M (PRG-AUC 66.25 %). Note that this method chains two
max pooling operations instead of averaging, which might result in a loss of information.
As shown in figure 2.3, top, the best attention aggregation method outperforms all other
interpretability methods, for all levels of recall. In the low recall regime, ’AttnAgg2A1A’
shows at least twice the precision of all other methods.
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Figure 2.3 top, shows the f1 score with respect to the k most important residues iden-
tified by each interpretability method (see section 2.2.3). AttnAgg2A1A, outperforms all
other interpretability methods for all numbers of residues between 1 and 50. As an illus-
tration, the highest point in figure 2.3, bottom, for Attention aggregation corresponds to
2 residues: this means that testing whether the two most important residues are catalytic
sites results in an f1 score of 35%. The same procedure with the two most important
residues identified by LIME, for instance, results in an f1 score of 19%. Finally, in table
2.5, we reported the Precision-recall Gain Area Under the Curve (PRG-AUC), the max
F-Gain metrics for each method. AttnAgg2A1A outperforms the other methods on both
prediction metrics.

Considering the execution time, three groups appear and AttnAgg2A1A belongs to
the fastest one. The first group contains methods nearly as quick as classical prediction,
all being under 5 seconds to run: Gradient, Gradient time input, attention last layer and
attention aggregation. A second group consists of methods around ten times slower, with
TGLRP, GradCam, and integrated gradient. Finally, LIME method is about 5000 times
slower than prediction times, which corresponds to the number of sequences needed to
estimate the local estimator of LIME. For instance, evaluating the importance of residues
in 1000 proteins of length 439, the average length in the M-CSA database, would take
about 197 days with LIME and less than an hour with our approach on CPU.

2.3.2.1 Visualization of important residues

Figure 2.4 illustrates cases of best and worst agreement between the known annotation
for a given residue to be a catalytic site and the corresponding importance score for the
same residue computed with our best interpretability method, namely AttnAgg1A1A.

For the best case, seven proteins exhibit a PRG-AUC of one, which means that all their
catalytic residues have the highest importance scores. Among those, we chose to present
the nh(3)-dependent nad(+) synthetase enzyme in figure 2.4 since it has the highest num-
ber of catalytic sites (two) and the highest annotation quality of 5/5 in uniprot. The two
highest importance scores correspond to the two catalytic residues: GLU162 and ASP50.
The two next highest importance scores correspond to two residues ASP158, HIS159 which
are near the first catalytic site. We then searched in Swiss-Prot (the manually reviewed
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Method type PRG-AUC(x100) max F-Gain(%) Time(s)
Random 42.54 ± 4.37 69.85 ± 1.04 –
Grad 75.01 81.27 4.64
Grad X input 63.62 78.66 7.74
Integrated grad 76.41 81.70 2.48 × 102

Attn last layer 87.80 85.62 2.87
Attn agg 98.02 96.05 3.72
Rollout 66.08 76.77 2.95
TGLRP 90.92 88.56 4.05 × 101

TGradCam 81.00 76.77 4.35 × 101

LIME 93.46 91.44 1.73 × 104

Table 2.5 – Evaluation of best interpretability method of each category with respect to
the M-CSA dataset. Precision-recall Gain Area Under the Curve (PRG-AUC) and the
max F-Gain metrics is reported, and we also report the mean execution time for each
method (for one protein, in second on Intel(R) Core(TM) i7-10610U CPU @ 1.80GHz).

part of UniProtKB) for potential annotations in the other residues within the top 10 im-
portance scores. We found that four were associated with binding sites: GLY48, GLY47,
SER46 and THR157. Overall, catalytic site and binding site annotations were significantly
enriched in the top 10 highest importance score (6/10 compared to 21/271 for the whole
enzyme, p-value of 0.00003).

The worst agreement between importance and presence of catalytic sites was found
for the Aldehyde dehydrogenase (FAD-independent) enzyme. The sole catalytic residue,
GLUE869, is not highlighted by our interpretability method, that is, it does not belong to
the top 5% residues in terms of importance scores (position 887 over 907 residues). In this
case, residue importance scores seem to focus more on the binding sites of the protein.
Indeed, 2 binding sites documented in Swissprot are found in the top 10 residues in terms
of importance score: CYS103 and CYS45. In this case as well, we observe a significant
enrichment of binding and catalytic sites within the top 10 highest importance scores
(2/10 compared to 10/907 for the whole enzyme, p-value of 0.00516).
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2.4 Discussion

Our experimentation shows that the use of attention has the potential to significantly
outperform state-of-the-art approaches for the prediction of the enzymatic class based on
sequences. This provides another example, outside the field of natural language process-
ing, of the interest of Transformers over LSTM-based neural networks. This study also
demonstrates the difficulty of estimating the performances of models. Indeed, although we
took special care to evaluate the approaches on published and functional benchmarks —
the EC40 benchmark from [Str+20] and the new benchmark ECPred40 up to level 4 in-
spired by the time-based evaluation by [Dal+18] — a significant difference in the expected
performances can be observed at level 1 and 2 with respect to the dataset used, despite
the fact that they are based on the same identity threshold of 40% (see tables 2.3 and 2.4).
As an additional experiment (data not shown), we trained an EnzBert model to predict
the level 2 classes (without the non-enzyme class) on ECPred40 with exactly the same
procedure as for EC40. The gap in classification performance was still important. This
highlights how critical the choice of the dataset is and that further studies will probably
be needed to better estimate the actual predictive power of enzyme classification methods
in practice.

Our experimentation also shows that the attention of Transformers provides a built-
in interpretable mechanism pointing to important residues of enzymes, thanks to our
simple AttnAgg2A1A aggregation of multi-head attentions. It is surprising that this simple
linear aggregation retrieves enzymatic sites better than state-of-the-art attention-based
interpretability methods. For instance, the best of these later methods, which has also
been efficient in text interpretability [CGW21], is TGLRP. Based on attention maps and
gradient computations, TGLRP can take into account non-linearities and might focus
on more subtle signals. The characterization of its results and their comparison to the
important non-catalytic sites found by our method remains an open issue. More generally,
the study focused here on the safest, but limited, proxy for estimating the value of the
different interpretability methods and it would be interesting to study other important
residue features, as suggested by the analysis of figure 2.4.
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2.5 Conclusion and perspective

We provide a state-of-the-art model EnzBert that only uses sequences to predict en-
zymes’ functional annotation. This model benefits from the attention mechanism through
the use of the Transformer architecture. We also propose a simple yet successful inter-
pretability method that only relies on attention maps. The resulting insights on enzymes’
sequences can help further research to better understand how enzyme classes are derived
from the protein sequence and even help for further steps, for example regarding enzyme’s
optimization.

Finally, in our model, enzymatic classes are considered independent from one another.
This means that we do not yet exploit to the fullest the underlying hierarchy structure of
EC numbers. Integrating meaningful prior knowledge into deep neural network architec-
tures remains challenging but we believe that the field of automatic functional annotation
might particularly benefit from such approaches.
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Figure 2.3 – Top: Precision / Recall curve for different interpretability methods. The
attention aggregation group is represented by the AttnAgg1A1A method. Bottom: f1
score for top-k residue with the highest residue importance scores.



(a) Nh(3)-dependent nad(+) synthetase

(b) Aldehyde dehydrogenase (FAD-independent)

Figure 2.4 – 3D and 1D positions of most important residues highlighted by our inter-
pretability method AttnAgg2A1A on Nh(3)-dependent nad(+) synthetase, one of the best
example of catalytic site retrieval, and Aldehyde dehydrogenase (FAD-independent), the
worst example of catalytic site retrieval. The 5% most important residues for our inter-
pretability method are highlighted in red and catalytic sites identified in M-CSA database
are represented by blue spheres.





Chapter 3

USING PRIOR INFORMATION FOR

HIERARCHICAL MULTI-LABEL

PREDICTION

3.1 Introduction

The second part of this thesis was dedicated to the prediction of all functions using the
vocabulary of Gene Ontology (GO) and leveraging the Gene Ontology structure to im-
prove prediction quality in AFP. In contrast to the EC hierarchy, which adheres to a strict
hierarchical relationship, the GO is an ontology that permits more intricate relationships,
as child terms can have multiple parents. Furthermore, our research aimed to tackle the
challenges posed by multi-label scenarios, which encompass predictions across (i) multiple
levels, including both generic and specific GO terms, as well as (ii) multi-function cases,
acknowledging that certain proteins can possess multiple distinct functions.

The primary objective of this research was to integrate Gene Ontology information
into the predictions’ framework as a priori information. There exist multiple ways to
integrate Gene Ontology information, one example is into neural network architecture
itself ([Bou+21],[KKH18],[Ma+18],[Fio+18]). But these poses a challenge in determining
the optimal order for making predictions, namely, whether to prioritize more specific
predictions or more generic ones first. In this work, two other categories of methods were
tested for this purpose. The first involved integrating Gene Ontology information in the
conversion of annotations to label vectors (labeling process), while the second focused on
integrating it into the structure of the prediction space in our neural networks. Figure
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3.1 provides a comprehensive overview of the developed framework, which enables these
comparisons. We will describe specific terms in the sections later on.

Before delving into the integration process and using the associated annotations, the
first two sections present and analyze Gene Ontology and its annotation properties. Ad-
ditionally, these sections introduce commonly used performance metrics for automatic
function predictions. The subsequent two sections discuss the two categories for integrat-
ing this information.

3.2 Gene Ontology (GO) analysis

In this section, we conducted thorough analyzes to explore the GO and its annotations.
Our objective was to gain a comprehensive understanding of the data and handle it
accurately. By delving into the ontology and annotations, we aimed to extract meaningful
insights and navigate the hierarchical structure. We also examined the distribution of
annotations across sub-ontologies.

3.2.1 Gene Ontology terms

The Gene Ontology (GO) consists of a controlled vocabulary comprising GO terms and
relations between them. The GO terms are categorized into three namespaces: Molecular
Function (MF), Biological Process (BP), and Cellular Component (CC). These names-
paces have already been presented in section 1.1.6. Two file formats are available to
download the gene ontology. The Open Biological and Biomedical Ontologies (OBO),
that is human readable and machine-readable. And the OWL (Web Ontology Language)
format is not directly human-readable but allows easier specification of more complex
ontology. Additionally, the Gene Ontology Consortium (GOC), proposes three different
versions of the GO with varying complexity (go-basic/go/go-plus). The first one is
called go-basic, which exclusively includes relations between GO terms within the same
namespace. It retains relations that go toward the root of the ontology, specifically is_a,
part_of, regulates, negatively_regulates, and positively_regulates. The go ver-
sion encompasses two additional relations, namely has_part, which can be directed to-
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Figure 3.1 – Global pipeline step showcasing re-implementation and method unification,
encompassing diverse components. Starting with data preprocessing, which leverages Gene
Ontology information and annotations, followed by space and model selection. The train-
ing process entails the careful selection of loss functions and optimizers. Finally, perfor-
mance evaluation and model coherence assessment are conducted using metrics, ensuring
a comprehensive evaluation of the resulting model.
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wards or away from the root, and occurs_in. On the other hand, the go-plus version
incorporates additional cross-database relations and represents a fully axiomatized ver-
sion 1. For the purpose of this work, the "go" version is utilized. The relationships are
defined by the OBO Relations Ontology (RO), which consists of a collection of OWL re-
lations designed to be employed across various biological ontologies. The following section
presents the eight primary relation types available between GO terms.

The most significant relation type is is_a, representing a subtype relationship. For
instance, lyase activity is_a catalytic activity. The next relationship, part_of, denotes
a part-whole relationship where A is necessarily part_of B. For example, mitochondria
part_of cytoplasm. The regulates relation is utilized when one process directly influ-
ences the manifestation of another process or quality. For instance, signaling receptor
regulator activity regulates signaling receptor activity. The positively_regulates and
negatively_regulates relations are employed when there is a consistent effect. The
occurs_in relation is used for biological processes or molecular functions that occur
within a cellular component. Lastly, has_part represents a part-whole relationship from
the perspective of the parent term.

From the GO OBO file (version of April 2023) the number of relations between each
specific namespace is extracted and shown in table 3.1. As seen, the is_a relation is only
between GO terms of the same namespace and it is the most common. Regulates can
only be between MF and BP.

In the latest version of Gene Ontology, there are certain obsolete GO terms included
for historical reasons, which are marked with a specific tag. Out of the total terms in the
latest version, approximately 4,404 terms are classified as obsolete. This leaves us with
a current count of 43.093 active GO terms. However, it is important to note that the
distribution of these terms across the different namespaces is not uniform. A breakdown
of the total GO terms in each namespace can be found in Table 3.2. Specifically, the Gene
Ontology (GO) terms in the Biological Process (BP) namespace make up 27.789 terms,
while the Molecular Function (MF) and Cellular Component (CC) namespaces consist of
11.261 and 4.043 terms respectively.

1. An axiomatized version means that the relationships, constraints, and logical rules governing the
ontology are explicitly defined and specified using description logic in the case of the GO.
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Relation name From namespace To namespace Number of relations
is_a Biological process Biological process 53 271
is_a Molecular Function Molecular Function 13 495
is_a Cellular component Cellular component 4719
part_of Biological process Biological process 5247
part_of Cellular component Cellular component 2190
part_of Molecular Function Biological process 1070
part_of Molecular Function Molecular Function 11
regulates Biological process Biological process 3198
regulates Biological process Molecular Function 298
regulates Molecular Function Molecular Function 30
regulates Molecular Function Biological process 2
negatively_regulates Biological process Biological process 2766
negatively_regulates Biological process Molecular Function 267
negatively_regulates Molecular Function Molecular Function 42
positively_regulates Biological process Biological process 2752
positively_regulates Biological process Molecular Function 275
positively_regulates Molecular Function Molecular Function 27
has_part Biological process Biological process 225
has_part Molecular Function Molecular Function 202
has_part Cellular component Cellular component 178
has_part Biological process Molecular Function 173
occurs_in Biological process Cellular component 150
occurs_in Molecular Function Cellular component 42
happens_during Biological process Biological process 8

Table 3.1 – The different relations types and between which namespace they operate with
their respective number of edges from obo format go in the gene ontology website from
April 2023
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It is worth mentioning that the distribution of intermediate and leaf GO terms differs
significantly among the three sub-ontologies. As illustrated in Table 3.2, the number of
GO terms in the BP and MF namespaces exhibit a considerable difference; however, this
gap narrows significantly when only the number of leaf terms is considered. Figure 3.2
shows a histogram of the graph distance between the different GO terms and the root of
their namespace. The leaf annotation can be at varying distances from the root, some are
at a distance 2 of the root and others at a distance 11. Moreover, in the biological process,
the proportion of intermediate GO term compared to leaf GO term is a lot bigger than in
the other ontology. It can be observed that the CC namespace tends to have leaves terms
closer to the root than the two others. Having gained knowledge of gene ontology terms,
the next step is to explore its application in protein annotation.

Namespace Number of GO terms Number of leafs Number of intermediate terms
Biological Process 27 789 14 687 13 102
Molecular Function 11 261 9216 2045
Cellular Component 4043 3169 874

Table 3.2 – Number of GO terms, leaves, and intermediate terms for each sub-ontology:
MF, BP, and CC

3.2.2 Gene Ontology annotations

3.2.2.1 Introduction

Gene Ontology (GO) annotations are created by trained individuals called curators
who possess expertise in GO terms and follow established guidelines to extract precise
and reliable information from scientific literature [PG17]. These curators employ their
knowledge of GO and employ best practices to ensure the accuracy and quality of the an-
notations. The GOA (Gene Ontology Annotations) database, as described in [Hun+15], is
the most comprehensive repository for such annotations. It includes annotations for pro-
teins, non-coding RNA, and complexes, with associated UniProtKB IDs. The database
incorporates both manual and automatic assertions. In the latest version (version 215)
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Figure 3.2 – Graph distance of all GO terms to the root term of their respective namespace

of Uniprot-GOA 2, manual annotations from 60 different annotator groups can be found.
Notable examples include the Mouse Genome Informatics (MGI), which provides infor-
matics resources for laboratory mouse and related human biology data, and the Human
Protein Atlas, a Swedish-based program launched in 2003 with the objective of mapping
all human proteins in cells, tissues, and organs using various omics technologies such
as antibody-based imaging, mass spectrometry-based proteomics, transcriptomics, and
systems biology. Additionally, multiple automatic annotations are derived from diverse
tools, such as phylogenetic-based propagation of functional annotations with PANTHER
[Tho+03], logical inference, and sequence similarity. This raises the question of whether
some of these automatic annotations are of sufficient quality to be included in the train-
ing dataset for our models. The database can be accessed in two file formats: GAF (Gene
Association File) and GPAD (Gene Product Association Data). The GAF format begins
with the GAF version, followed by a header that defines the 17 columns 3. Subsequently,
the file consists of tab-separated entries for each annotation. Each annotation represents
a specific gene product linked to a particular GO term. On the other hand, the GPAD
format closely resembles GAF, with the exception of the available columns. Some in-

2. https://www.ebi.ac.uk/GOA/uniprot_release
3. Detailed in http://geneontology.org/docs/go-annotation-file-gaf-format-2.2/
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formation that is present in the GPAD format is obtained from another Gene Product
Information (GPI) file. The GPAD format consists of 12 columns.

3.2.2.2 Annotation description

An annotation represents a connection between a gene product (specifically proteins
in our context) and a Gene Ontology (GO) term. Experimental annotations typically oc-
cur at the most specific level, without annotating all ancestral terms. However, certain
annotations may exist at a more general level, even if the most specific term is already
known, if they differ in other characteristics. For example, the Gene Association File
(GAF) contains 17 columns of annotation, including the Evidence Code, the DB ref
code, and the relation type (Qualifier). Similar to relationships between GO terms,
various relation types can exist between gene products and GO terms. Table 3.4 displays
the counts of edges for various relation types. The four most common relations between
a Gene Product and a GO term are enable, involved_in, located_in and part_of 4.
These counts come from the EBI UniProt GAF annotations, available at ftp.ebi.ac.
uk/pub/databases/GO/goa/UNIPROT/goa_uniprot_all.gaf.gz. All subsequent analy-
ses use annotations from version 215 (generated on March 15, 2023 by EBI). While there
is a higher number of Gene Ontology (GO) terms associated with the Biological Process
(BP) namespace, the majority of annotations are actually found within the Molecular
Function (MF) namespace, as indicated in Table 3.3. Additionally, Table 3.3 reveals that
the majority of annotations are at the intermediate level rather than at the leaf level.
This suggests that the proteins being annotated are not fully characterized at the most
specific level. It is important to note that this cannot be solely attributed to the presence
of more intermediate terms. In this dataset of annotations, the annotations are made at
the most specific level whenever possible.

Relation type Number of annotations

enables 487 872 818

4. It is important to note that these relation types also exist in the context of GO terms connected
with other GO terms, but in this context, we are specifically referring to the Gene Product connecting
to a GO term
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involved_in 291 789 613
located_in 235 166 271
part_of 16 612 961
is_active_in 953 611
acts_upstream_of_or_within 150 083
contributes_to 33 884
colocalizes_with 8582
acts_upstream_of 5908
NOT involved_in 4578
NOT enables 4207
NOT located_in 1691
acts_upstream_of_or_within_positive_effect 507
acts_upstream_of_positive_effect 437
NOT is_active_in 347
NOT acts_upstream_of_or_within 327
acts_upstream_of_negative_effect 214
NOT part_of 141
acts_upstream_of_or_within_negative_effect 122
NOT colocalizes_with 51
NOT contributes_to 27
NOT acts_upstream_of_or_within_negative_effect 4
NOT acts_upstream_of_or_within_positive_effect 3
NOT acts_upstream_of 1

Table 3.4: All the different relation qualifier order by number of annotation
available in the EBI UniProt GAF file

3.2.2.3 GO evidence code and ECO

Another important column in the GAF file is the evidence code. An evidence code is a
classification or label used to indicate the type of supporting evidence for a gene function
annotation, such as experimental, phylogenetic, computational, author statement, cura-
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Namespace Nb intermediate annotations Nb leaf annotations Nb total
Biological Process (BP) 253 328 798 38 622 999 291 951 797
Molecular Function (MF) 328 923 540 158 987 396 487 910 936
Cellular Component (CC) 243 338 345 9 405 310 252 743 655

Table 3.3 – Number of intermediate annotations, leaf annotations, and the total number
of annotations for each namespace

tor statement, or electronically derived evidence. The GOC defines 26 evidence code, but
only 24 appears in the annotations. The number of annotations for each evidence code is
represented in Table 3.5. The most common evidence code by a large margin is Inferred
from Electronic Annotation (IEA). But this controlled vocabulary is not very fine-
grained. It exists another controlled vocabulary with an ontology for the evidence code,
the ECO vocabulary. It is more fine-grained with 2106 terms in April 2023. This is only
available in the GPAD+GPI file format and not in the GAF file format. Some mapping
exists between these two vocabularies but necessitates other information like the DB_ref
columns. The count for the top 20 ECO codes is shown in Table 3.6. The term evidence
is the most common since all the terms are annotated under this root term. Then the
"evidence used in the automatic assertion" reflects the "IEA" from the GO evidence code.
But then the next evidence code can give us some information on which type of electronic
inference gives the most annotations. For example, nearly half a billion come from "se-
quence similarity evidence" and about 33 million from "evidence-based on logical inference
from automatic annotation used in the automatic assertion". The ECO codes in the top 20
list primarily correspond to automatic assertions, but to identify experimental assertions,
one can use the recommended CAFA (Critical Assessment of Functional Annotation) 5

GO evidence codes (old evidence code) and convert them to their corresponding ECO
codes (new ontology) using a mapping. According to CAFA guidelines, the recommended
experimental codes for training purposes are: "EXP", "IDA", "IPI", "IMP", "IGI", "IEP",
"TAS", "IC", "HTP", "HDA", "HMP", "HGI", and "HEP". These codes can be further
mapped to the ECO (Evidence and Conclusion Ontology) to provide minimal recommen-

5. Which organizes the most important challenge to evaluate AFP tools
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dations, which include: ECO:0000269 (EXP), ECO:0000305 (IC), ECO:0006056 (HTP),
and ECO:0000304 (TAS). By considering these mapped ECO codes and their child ECO
codes, new evidence codes can be discovered that were not recommended by CAFA. This
reveals the problem of coherence, which may not have been apparent with the original
evidence codes but becomes visible with the ECO ontology. For example, the ND GO
evidence code corresponds to ECO:0000307.

In Table 3.7, the counts are presented for the top 10 ECO codes specifically related
to manual annotations, as recommended by CAFA (Critical Assessment of Functional
Annotation) GO evidence codes. The ECO code that is most frequently associated with
annotations is "direct assay evidence used in the manual assertion". Additionally, the ECO
code "physical interaction evidence used in the manual assertion", which is a subtype of
the direct assay, and "experimental phenotypic evidence used in the manual assertion"
also rank high in terms of annotation counts.

As previously mentioned, CAFA recommends using experimental evidence codes for
training, which cover annotations for approximately 239,553 different gene products. How-
ever, if manual evidence codes are included, this number increases to approximately
1,288,698 different gene products annotated. Manual evidence codes typically involve
transferring annotations with the assistance of automated tools and validation by an
expert biologist who utilizes their background knowledge to verify the annotations.

Evidence code Number of annotations

Inferred from Electronic Annotation (IEA) 1 026 752 240
Inferred from Biological aspect of Ancestor (IBA) 3 488 350
Inferred from Sequence Orthology (ISO) 507 279
Inferred from Direct Assay (IDA) 392 955
Inferred from Physical Interaction (IPI) 368 318
Inferred from Sequence or structural Similarity (ISS) 306 002
Inferred from Mutant Phenotype (IMP) 237 290
No biological Data available (ND) 219 580
Traceable Author Statement (TAS) 133 125
High Throughput Direct Assay (HDA) 52 151
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Inferred from Genetic Interaction (IGI) 43 493
Non-traceable Author Statement (NAS) 29 858
Inferred from Expression Pattern (IEP) 27 258
Inferred from Sequence Alignment (ISA) 11 488
Reviewed Computational Analysis (RCA) 11 295
Inferred from Sequence Model (ISM) 8448
Inferred by Curator (IC) 7275
Experiment (EXP) 5104
High Throughput Mutant Phenotype (HMP) 2510
High Throughput Expression Pattern (HEP) 1117
Inferred from Key Residues (IKR) 662
Inferred from Genomic Context (IGC) 525
High Throughput Genetic Interaction (HGI) 64
High Throughput Experiment (HTP) 1

Table 3.5: Number of annotations for each evidence code in the EBI Uniprot
GAF file only for protein

The GAF (Gene Association File) and GPAD (Gene Product Association Data) files
do not directly provide the protein sequences. Therefore, a mapping process is required to
associate the annotations with the corresponding protein sequences. One might consider
using the "DB Object ID" field to retrieve the sequence from UniProtKB. However, this
ID does not provide information about the specific isoform. To address this, the "Gene
Product Form ID" column is utilized. This column contains the UniProt ID followed by a
hyphen and the specified isoform (e.g., P12345-2). Within the file, there are 4,373 protein
sequences associated with a UniProt ID that has multiple known isoforms, out of a total
of 228,804 proteins.

With a clearer understanding of Gene Ontology and its annotations, as well as their
sources, it is now possible to delve into the evaluation of models that automatically assign
protein function annotations.
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ECO code Name # of annotations
ECO:0000000 evidence 1 065 496 679
ECO:0000501 evidence used in automatic assertion 1 059 547 960
ECO:0007672 computational evidence 564 412 826
ECO:0007669 computational evidence used in automatic assertion 563 587 316
ECO:0000361 inferential evidence 500 676 129
ECO:0007832 inferential evidence used in automatic assertion 500 437 416
ECO:0000041 similarity evidence 497 756 919
ECO:0000044 sequence similarity evidence 494 154 660
ECO:0000249 sequence similarity evidence used in automatic assertion 493 329 150
ECO:0000251 similarity evidence used in automatic assertion 493 329 150
ECO:0000202 match to sequence model evidence 483 898 485
ECO:0000256 match to sequence model evidence used in automatic assertion 483 890 022
ECO:0000205 curator inference 466 742 704
ECO:0007322 curator inference used in automatic assertion 466 503 991
ECO:0000362 computational inference 33 933 425
ECO:0000363 computational inference used in automatic assertion 33 933 425
ECO:0000366 evidence based on logical inference from automatic annotation

used in automatic assertion
33 795 111

ECO:0000201 sequence orthology evidence 9 939 027
ECO:0000265 sequence orthology evidence used in automatic assertion 9 439 128
ECO:0000352 evidence used in manual assertion 5 948 719

Table 3.6 – Top 20 of ECO code with their number of annotations. Some annotations can
have multiple ECO codes because they are propagated to the root.

3.3 Performance metric for evaluating Automatic Func-
tion Prediction tools

AFP (Automatic Function Prediction) tools typically provide a confidence score, often
in the form of a probability, for each association between proteins and Gene Ontology
(GO) terms. The metrics presented in this section come from the recommendation of
the CAFA challenge ([Zho+19]), which evaluates the performance of different models for
the AFP task. The Fmax metric is commonly used to evaluate these tools ([Zho+19]). It
involves identifying the optimal threshold that yields the highest scores for the harmonic
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ECO code Name # of annotations
ECO:0000314 direct assay evidence used in manual assertion 809 152
ECO:0000353 physical interaction evidence used in manual assertion 368 721
ECO:0007634 experimental phenotypic evidence used in manual as-

sertion
284 643

ECO:0000315 mutant phenotype evidence used in manual assertion 240 471
ECO:0000307 no evidence data found used in manual assertion 210 964
ECO:0007005 high throughput direct assay evidence used in manual

assertion
52 151

ECO:0000316 genetic interaction evidence used in manual assertion 43 650
ECO:0000270 expression pattern evidence used in manual assertion 27 444
ECO:0007746 biological system reconstruction evidence used in

manual assertion
20 544

ECO:0005547 biological system reconstruction evidence based on in-
ference from background scientific knowledge used in
manual assertion

16 027

Table 3.7 – Top 10 of ECO code with their number of annotations only annotation
recommended for training: ECO:0000269(EXP), ECO:0000305(IC), ECO:0006056(HTP),
ECO:0000304(TAS)

mean of recall and precision (See equation 3.3). The recall (rc) represents the proportion
of true predictions retrieved from all positive instances, while precision (pr) indicates the
proportion of true positive predictions from all positive predictions.

pr(τ) = 1
N

N∑
i=1

∑
f 1 (f ∈ Pi(τ) ∧ f ∈ Ti)∑

f 1 (f ∈ Pi(τ)) (3.1)

rc(τ) = 1
N

N∑
i=1

∑
f 1 (f ∈ Pi(τ) ∧ f ∈ Ti)∑

f 1 (f ∈ Ti)
(3.2)

Fmax = max
τ

{
2 · pr(τ) · rc(τ)
pr(τ) + rc(τ)

}
(3.3)

Let N represent the number of proteins. The symbol 1 denotes the indicator function,
which takes a value of one when a condition is true and zero when it is false. The set
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Pi(τ) represents the GO terms predicted for protein i with a probability greater than τ .
Similarly, Ti represents the set of true GO terms for protein i. The symbol f iterates over
all possible GO terms. The variable τ ranges from 0 to 1 and represents the threshold for
the model’s output probability.

However, the Fmax metric may not be the most suitable for evaluating classes organized
as an ontology. This is because some Gene Ontology (GO) terms are highly generic,
making them easier to predict accurately, while others are more specific and pose greater
challenges for accurate predictions. To address this issue, one approach is to calculate
the information accretion (IA), also known as information content (IC), for each Gene
Ontology (GO) term ([CR13]). IA represents the negative logarithm of the probability of
observing a specific GO term given the presence of its parent GO terms (See equation
3.6). This measure helps quantify the amount of information contained within each GO
term, considering its relationship with higher-level terms in the ontology.

ParentGO = {p|∃(GO, isa, p) ∈ Edges} (3.4)

Pr(GO|ParentGO) = Occ(GO)
minp∈P arentGO

(Occ(p)) (3.5)

IC(GO) = −log(Pr(GO|ParentGO)) (3.6)

By quantifying the information content, it becomes possible to establish a meaningful
metric known as the minimum semantic distance (Smin). This metric aims to evaluate and
rank classification models based on their semantic distance. Unlike existing metrics, Smin

introduces two information-theoretic concepts: remaining uncertainty and misinformation.
The concept of remaining uncertainty measures the information about a protein’s true
annotation that is not provided by the predicted annotation (See equation 3.7). On the
other hand, misinformation quantifies the total information content of incorrect paths
in the predicted graph (See equation 3.8). To calculate these values, we incorporate the
information accretion associated with specific nodes in the graph. To determine the Smin

metric, we identify the threshold that minimizes the square root of the squared remaining
uncertainty (ru) and misinformation (mi), as shown in Equation 3.9. By considering both
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the remaining uncertainty after prediction and the potential for misinformation in the
predictions, this metric provides a comprehensive evaluation of classification models.

ru(τ) = 1
N

N∑
i=1

∑
f

ic(f) · 1 (f /∈ Pi(τ) ∧ f ∈ Ti) (3.7)

mi(τ) = 1
N

N∑
i=1

∑
f

ic(f) · 1 (f ∈ Pi(τ) ∧ f /∈ Ti) (3.8)

Smin = min
τ

{√
ru(τ)2 +mi(τ)2

}
(3.9)

It is also possible to integrate information accretion into classical Fmax metric by
weighting the GO class in the Fmax metric (See 3.12).

wpr(τ) = 1
m(τ)

m(τ)∑
i=1

∑
f ic(f) · 1 (f ∈ Pi(τ) ∧ Ti(τ))∑

f ic(f) · 1 (f ∈ Pi(τ)) (3.10)

wrc(τ) = 1
ne

ne∑
i=1

∑
f ic(f) · 1 (f ∈ Pi(τ) ∧ Ti(τ))∑

f ic(f) · 1 (f ∈ Ti(τ)) (3.11)

WFmax = max
τ

{
2 · wpr(τ) · wrc(τ)
wpr(τ) + wrc(τ)

}
(3.12)

Most often the different metrics are computed per namespace (Molecular Function,
Biological Process and Cellular Component). To have a unique performance number it is
also possible to do the arithmetic mean of the different weighted-Fmax (WFmax) of all the
different namespaces. This is the chosen metric for the CAFA5 challenge.

3.4 Integrating Gene Ontology information in the la-
belling

We focus here on the prediction of classes within an ontology structure and the po-
tential benefits of using ontology to enhance the labeling process that uses annotations.
There are several approaches available for integrating ontology knowledge into the anno-

82



3.4. Integrating Gene Ontology information in the labelling

tations. The initial and widely used method involves propagating the labels from a specific
function to annotate all its more generic parent functions, known as the True Path Rule
(TPR), an example is shown in Figure 3.3. However, to our knowledge, the advantages
of this propagation technique have not been thoroughly examined and quantified in pre-
vious studies. Therefore, this thesis aims to investigate the effects of such propagation in
two distinct scenarios. The first scenario examines the situation where the training set
consistently provides the most specific GO term. Subsequently, a more realistic scenario
is considered, where some annotations are complete while others are not.
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Figure 3.3 – An example of the "biosynthetic process" annotation for a protein and a po-
tential propagation with the True Path Rule in the labeling process, which also annotated
"organic substance metabolic process", "metabolic process" and "biological process".

An alternative approach for integrating ontology knowledge involves considering the
Open World Assumption (OWA). When a protein lacks a specific GO annotation, it can
be interpreted in two ways: either the protein truly does not possess that function, or there
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has been no experimental evidence supporting its association with that function. Bearing
this in mind, if a protein is annotated to an intermediate term rather than a leaf term,
it is expected that the majority of its descendants are false but should contain at least
one correct annotation (except in cases where the GO term describing the function does
not exist yet). Consequently, it becomes possible to label all these subgraphs as uncertain
and abstain from providing a signal during training for such examples. This approach
contrasts with the traditional Closed World Assumption (CWA), where a true GO term
is more likely to be falsely labeled as false (False Negative).

3.4.1 Experiment description

A first experiment will investigate this, two models will be compared: one trained to
predict both leaf and intermediate classes, leveraging the available ontology information,
and another model trained to predict only leaf classes without accessing the ontology.
The evaluation will be performed solely on the leaf classes to assess any differences in
performance between the two approaches. The training set will consist of only the protein
where all annotations are complete to the leaf GO term.

The second question pertains to scenarios where incomplete annotations are present.
In such cases, the investigation focuses on the potential improvement offered by a model
trained with true classes propagated to the root, utilizing the True Path Rules. This
will be compared to a model that only has access to the true class of the most specific
annotation available for each instance.

The final question stems from the observation that when annotations are not provided
at the leaf level, there is a high probability that at least some leaf annotations are correct.
To address this, we explore the approach of avoiding the most probable false negatives and
excluding a significant number of true negatives by providing no information on them.
The objective is to assess whether this approach yields improved results compared to
other methods.

All three experiments are described in Figure 3.4 and they share a common setup
and similar strategies in determining the required number of replications to detect an
effect. The following two sub-subsections will outline the common setup for the three
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Figure 3.4 – Illustration of the three experiments conducted to incorporate Gene Ontology
(GO) information into the labeling process: (a) Comparison of two models: the first one
can predict annotations at all levels and the second can only predict leaf-level annotations.
This experiment employs a dataset consistently containing the most precise GO annota-
tion for each protein. (b) contrast between the two models: the first model predicts all
GO terms, while the second model predicts only the GO terms associated with a protein’s
most precise annotation. The first model considers the most precise annotation and all its
ancestors as True, with the remaining annotations marked as False. The second model is
trained using the most precise annotations as True and others as False. (c) Comparison
between two models capable of predicting all GO terms. In the first model, there is no
signal for the most precise annotations when they are unavailable. Conversely, the second
model assigns all negative annotations if a protein is not annotated at the most precise
level.

experiments. Firstly, the model and dataset will be described, followed by an analysis of
the sample size necessary to detect a significant effect.

3.4.2 Common setup

First, a common setup is described to test the impact of these different approaches.
In the following, our input will be the mean embedding of the residues of the proteins.
This embedding is computed with the pre-trained model Prot-T5([Eln+21a]). Prot-T5
is a language model with an encoder and decoder architecture, trained on two different
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model sizes. We specifically opted for the T5-XL variant, which has 3 billion parameters,
instead of the T5-XXL with 11 billion parameters. Notably, the T5-XXL model did not
exhibit superior performance according to [Eln+21b].

The training of Prot-T5 involved two datasets: BFD and UniRef50. The model em-
ployed BERT’s denoising objective to corrupt and reconstruct individual tokens. Notably,
the encoder outperformed the decoder in various benchmarks, as reported in [Eln+21b].
Consequently, we discarded the decoder during inference to reduce the model size. Addi-
tionally, the model was trained using half-precision mode, as it did not exhibit diminished
performance ([Eln+21b]).

Unlike our experiment on enzymes, we froze the weights of this part of the model and
did not fine-tune it. This decision allowed us to utilize the larger and improved Prot-T5
model instead of the previous ProtBert model. To prevent potential out-of-memory errors,
we truncated the input sequence size to 2048 residues.

After obtaining the mean embedding from Prot-T5, we performed further compu-
tations using a two-layer Multi-Layer Perceptron (MLP) with a GeLU (1.4) activation
function. First, we begin by projecting the Prot-T5 mean embedding into a new embed-
ding of size 1024. This projection serves two purposes: it enables the model to selectively
emphasize pertinent features for function prediction. Subsequently, we apply another pro-
jection to map the output to the total number of available GO classes (47497). The
classical Binary Cross Entropy (BCE) loss has been used with an Adam optimizer with a
starting learning rate of 4.0e-3. An exponential learning rate scheduler was also used with
a gamma of 0.9 and an end learning rate of 1e-5. The gamma is the multiplication factor
used to multiply the current learning rate at each step. These values were obtained by
testing different learning rates (between 1.0e-3 and 1.0e-5) with the HyperOptSearch class
of the Ray Tune library that uses the Tree-structured Parzen Estimators algorithm. Ray
Tune is a Python library that enables experiment execution and hyperparameter tuning
of machine learning frameworks using advanced algorithms like PBT, HyperBand/ASHA,
and integration with multiple hyperparameter optimization tools. And a batch size of 32
was used which was the maximum possible with the available GPU RAM.

The separation between the training and testing set was done like for EnzBert with
mmseqs2 ([SS17]) at a 40% identity threshold. In order to verify if the following observed

86



3.4. Integrating Gene Ontology information in the labelling

effect was not due to chance in the selected test sequences, multiple replications for each
parameter tested were done. To know in advance how much replication will be needed the
first step will be to do a power analysis(See Section 3.4.3).

To construct the dataset, the annotations from version 215 of UniProt-GOA was used
and all relations type between protein and GO terms are taken.

Datasets
Two distinct datasets were created for our analysis. The first dataset called the Leaf
Only Dataset, consisted of proteins with comprehensive Gene Ontology (GO) term an-
notations that extended to the leaf level of the GO graph. In this dataset, all proteins
had annotations for all the relevant GO terms, providing a complete and exhaustive set
of annotations. The second dataset, known as the AllDataset, included annotations for
all the proteins, regardless of whether the GO term annotations were at the leaf level or
not. This dataset encompassed a broader range of annotations, including those that were
not limited to the leaf nodes of the GO graph.

The Fmax metric was used because all evaluation was done on the leaf thus it is less
of a concern to not weight by information content. No separation was done between the
different namespaces here.

3.4.3 Sample size estimation - Power analysis

In this research study, we will conduct multiple experiments, with each experiment con-
sisting of two variants. Each variant will be tested N times with shuffling of the train/test
each time. Subsequently, we will compare the mean performance differences between the
two variants. To carry out this analysis, we will employ a paired mean comparison using
either a student test (parametric) or a Wilcoxon test(non-parametric), depending on the
nature of the data distribution.

However, to ensure the validity of our experiments, it is crucial to determine the
appropriate number of repetitions for each variant in order to detect a specific effect size.
To address this requirement, we will conduct a power analysis, which will guide us in
determining the optimal sample size necessary for our research.

In order to conduct a power analysis, conventional values will be utilized. These values

87



Partie , Chapter 3 – Using prior information for hierarchical multi-label prediction

include a significance level (α) set at 0.05, which represents the probability of the study
rejecting the null hypothesis assuming it is true. Additionally, a statistical power (1-
β) of 0.8 will be employed, which signifies the probability of correctly rejecting the null
hypothesis, also known as a "true positive.". More information on power analysis in [CG12].

This will only be used as a first guess because for simplicity a parametric t-test will be
supposed for this sample size estimation. More precisely a paired t-test, where the standard
deviation from previous experiments is estimated to be 0.008. Moreover, a minimum
difference in the two means of 0.01 will be set, this seems reasonable for the variation of
Fmax measure that is wanted (The impact of this value will be tested).

To find this sample size (N) two curves will be plotted. Because a paired test is
supposed we will find n1 that is equal to N

2 . The first curve represents the t-value necessary
to have an area of 0.975 (1− α

2 ) between −∞ and the t-value for all tested n1. The second
curve represents the t-value necessary for an area of 0.2 (β) between −∞ and this t-value,
from which the minimum difference between Fmax multiplied by

√
n1 is appended. The

resulting plot is shown in Figure 3.5, where a value of n1 of 8.835 is found, which gives
us a value of 17.67 for N. A representation of the two t-distribution is in Figure 3.6.

To assess the effects of the estimated standard deviation from the previous experiment
and the minimum difference in Fmax between the two setups, a range of values was tested.
The values explored ranged from 0.5 to 1.5 times the original estimated standard deviation
and from a difference of 0.01 to 0.05. The estimated number of pair of samples for each
combination is presented in Table 3.8, providing insights into the impact of these variables
on the experimental design. Due to time constraints, a value of n1 (number of paired
samples) equal to 8 was selected for the experiment. This decision resulted in a total of 16
experiments and training runs for each experiment. This cover all values in our Table 3.8
except the 3 most extreme values in the top-right corner of the table with high standard
deviation and very little effect.

3.4.4 True path rule propagation

In this subsection, the effect of the true path rule (TPR) will be explored. The true path
rule consists in propagating a GO annotation to all his parent’s more generic GO terms.
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Figure 3.5 – The t-values, plotted against the number of samples, were computed for the
central distribution under the null hypothesis (H0) to achieve an alpha value of 0.05. Ad-
ditionally, the t-value for the offset t-distribution was determined, considering a difference
of 0.01 with a desired power of 0.8.

For example, if a protein A has the annotation NAD+ kinase activity (GO:0003951),
with the TPR the protein A has also the annotations kinase activity(GO:0016301) and
all other ancestors.

Most of the models in the literature use the True Path Rule. Which consists of propa-
gated annotations to all these ancestors to the root. But as seen before multiple relations
exist between GO terms. In the literature, some only consider relations is_a([KKH18]),
some is_a and part_of([KH19]), and others all relations except has_part 6 [EMS22]. In
the following, the simpler case will be considered with only the transitivity of the is_a
relation.

6. Because it is in the reverse order and even if inverse could be interpreted as part of some and not
necessarily part of.
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Figure 3.6 – The two t-distribution for the optimal value of n1 equal 8.835. The blue area
corresponds to 2.5% of the total area because it is a two-tailed test and the orange area
that represent 80% of the total area.

3.4.4.1 True Path Rule with complete available annotations

The number of replications was quite low then a non-parametric version of the paired
t-test, the Wilcoxon test, was performed. This choice provides less power to the statis-
tical test but is more conservative to avoid detecting an effect that doesn’t exist. The
comparison was between a model that can predict all the annotations and use the TPR
to propagate annotation and a model that only predicts leaf GO term (then without the
TPR). The resulting p-value was 0.0078, which is less than the significance level of 0.05.
Thus, we can reject the null hypothesis (H0) that the true mean difference is zero, indicat-
ing a significant difference in Fmax between the two setups. The mean difference observed
between the Fmax values was 0.011 in favor of the model that uses the TPR. The complete
boxplot, without linking the paired samples, is shown on the left of Figure 3.7.

This result was not straightforward as it could have gone either way. On one hand, the
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Estimated std
0.005 0.007 0.010 0.013

0.010 3.780 6.540 10.710 16.330
0.015 2.880 4.150 5.980 8.440

Eff
ec

t
of

0.020 2.520 3.300 4.340 5.720
0.030 2.200 2.630 3.150 3.780
0.050 1.960 2.200 2.450 2.730

Table 3.8 – Number of replicas necessary to find an effect as small as the one specified in
the "effect of" with different estimated standard deviations.

result could have been better due to the inclusion of ancestral information, which helps
establish connections between different leaf GO classes. On the other hand, the result could
have been worse because predicting more classes (including intermediate ones) might have
come at the expense of sacrificing accuracy in predicting the important leaf classes.

3.4.4.2 True Path Rule with partial annotations

The previous setup does not accurately reflect the reality of Gene Ontology annota-
tions. In practice, only around 10% of manually annotated proteins have all their functions
specified up to the most detailed GO leaf. Therefore, the next setup includes both com-
plete and incomplete annotations to investigate whether the propagation approach is still
beneficial in this scenario and to assess its overall impact.

In this setup, the use of TPR was also statistically better (Wilcoxon test, p-value=0.0078<0.05).
Like the other experiment, the difference in the mean is significant with an observed mean
difference of 0.013. This difference is the same order of magnitude as the previous exper-
iment.

The small difference observed in the results can be surprising, as we would expect the
model without annotation propagation to introduce false negative labels by not propagat-
ing certain annotations. However, this may be explained by the assumption that there is
a strong correlation between the patterns of the leaf class and its parent class. Although
we do not have direct evidence of this correlation, it is assumed to exist based on the
hierarchical nature of the Gene Ontology. The model may be able to learn and capture
the patterns of the parent class from the available data, even without explicit annotation
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propagation. The observed mean difference boxplot can be observed on the right of Figure
3.7.

Figure 3.7 – Comparison of the implications of utilizing the True Path Rule for annotation
propagation versus training solely on leaf GO terms without considering intermediate GO
terms. The figure illustrates the difference in Fmax measure between the two variants.

In conclusion, both experiments provide further confirmation of the usefulness of the
True Path Rules.

3.4.5 Ontology to avoid some false negative from the CWA

The available annotations typically provide information at the most specific level of
the Gene Ontology (GO) hierarchy. However, there are cases where experimental evidence
cannot conclusively determine the precise GO term, resulting in annotations made at
intermediate GO terms. In such situations, it is often the case that the protein’s function
corresponds to one of the descendants of the intermediate GO term, except for missing
GO terms for specific functions.

During training under the Closed World Assumption (CWA), all the descendants of
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the intermediate GO terms are labeled as not present. However, at least one of these
descendants is likely positive, resulting in a False Negative in the "Target label". On
the other hand, the advantage of CWA is that in cases where there are more than two
descendants, the descendants generally have a higher probability of being negative than
positive.

To address the issue of False Negatives, one approach is to consider all the descendants
of the most specific GO terms as uncertain and assign them an uncertain label. During
training, these uncertain classes can be handled by excluding them from the Binary Cross
Entropy loss calculation. This means that no explicit information is provided for these
classes, neither indicating correctness with a probability of one nor incorrectness with a
probability of zero. By doing so, False Negatives can be avoided while still accounting for
the uncertainty associated with these classes.

As depicted in Figure 3.8, the disparity in Fmax between the two settings seems
minimal, in fact, the difference was found to be not significative (Paired Wilcoxon test,
p-value=0.148>0.05). This could be attributed to a lower effect size than initially an-
ticipated, or to the fact that the Fmax metric on incomplete test data may not be well
adapted, despite some work([Jia+14]) saying that under realistic assumption incomplete
knowledge on the evaluation has not a big effect.

3.5 Integrate Gene Ontology information in the struc-
ture of the space

In this section, we will explore how graph node embedding can be used as a com-
plementary approach to label propagation for incorporating Gene Ontology information.
This method involves assigning an embedding to each node, where each node represents
a functional class (GO term) within the Gene Ontology. The embedding of each GO term
enables the organization of the space. Additionally, the inclusion constraint derived from
the Gene Ontology can be utilized to impose constraints on the GO term embeddings.

Various techniques for incorporating GO embedding were examined here and com-
pared within a unified framework, focusing on protein function prediction and employing
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Figure 3.8 – Comparison of the difference in Fmax between the Open World Assumption
(OWA) approach and the Closed World Assumption (CWA) approach during training.

classical domain metrics. These techniques will be presented in the following. It is worth
noting that the Gene Ontology can be represented as a Directed Acyclic Graph (DAG).
However, even simpler structures such as trees can present challenges when embedding
them in euclidean space while preserving their metric properties. Research by De Sa et
al. [De +18] has shown that arbitrary tree structures cannot be embedded with arbitrar-
ily low distortion in Euclidean space. Interestingly, this task becomes considerably more
manageable in hyperbolic space with just two dimensions, as the exponential growth of
distances aligns with the exponential growth of nodes at varying depths in the tree. This
highlights the suitability of hyperbolic space for accurately representing tree-like struc-
tures. Thus, the first basic model that we can think of is by encoding GO term by points
on the manifold and using the hyperbolic distance to bring closer linked GO terms [NK].
But some other work ([GBH18b]) point out that the distance is symmetric, whereas the
relation between GO terms is directed. To address this problem they proposed the intro-
duction of hyperbolic cones, wherein a GO term is represented by an apex and an angle
of aperture that only depend on the distance to the center. To capture the relationship,
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the distance between the apex was not considered, but rather, the inclusion of the apex
of the child GO term inside the cones of the parent GO term. Nevertheless, cones present
inherent challenges, such as the non-trivial conversion of angles into probabilities associ-
ated with different functions. We tested one possible conversion method (detailed below),
but other studies opted to directly employ hyperbolic hyperplanes for defining relations.
One advantage is that hyperbolic hyperplanes can easily be used to output probability as
presented in [Xio+]. Finally, a common setup was used to compare these different models.
From the previous literature ([GBH18b],[NK],[Xio+]) multiple ways to sample negative
and positive relations in the GO graph are possible. To have a common testbed we choose
one specific sample strategy from the different possibilities (see section 3.5.1). In contrast
to the metrics utilized in previous studies that introduced different hyperbolic models, the
classical metrics for Automatic Function Prediction (AFP) [Zho+19], such as Fmax and
Smin, and their weighted variants were adopted. It is important to note that some papers
([Xio+],[GBH18b]) evaluate their models for link predictions, where the goal is to identify
missing relations when not all relations are available. However, this particular evaluation
goes beyond the scope of this PhD. Several examples of embedding can be found in Figure
3.9.

Remarks on the chronological order of experiments:
To clarify my motivation for delving into imperfect methods, it is essential to outline the
chronological progression of my experiments. Initially, in the initial phase of my research
on this topic, I was unaware of a recent paper that introduced a method for incorporat-
ing relation constraints into hyperplanes. While exploring hyperbolic entailment cones,
I made several attempts to convert angles into probabilities but encountered significant
challenges. Concurrently, I discovered Hyperbolic Logistic Regression (HLR), an extension
of logistic regression tailored for hyperbolic space. I aimed to integrate relation constraints
into this model but faced numerical instabilities when running the model. Fortunately,
I subsequently stumbled upon a recent paper ([Xio+]) presenting a simpler approach to
achieving my desired objective. The paper proposed a clever idea, demonstrating the def-
inition of hyperplanes as the intersection between an external ball and the Poincaré ball.
This innovative insight greatly facilitated the formulation of loss constraints, surpassing
the complexity of my earlier attempts. Armed with this newfound understanding, I pro-
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ceeded to re-implement the various methods within a unified framework. This allowed me
to establish connections between the different techniques while comprehensively evaluat-
ing their respective strengths and weaknesses.

3.5.1 Positive and negative relations and sampling

In order to train different types of neural network models, a graph loss specific to each
model is required. However, all models necessitate positive and negative annotations. The
positive annotations are extracted from the is_a and part_of edges in the Gene Ontology
(GO) graph. Some approaches ([GBH18a]) also involve computing the transitive closure 7

of the graph using the selected relations, which introduces correct edges but also redundant
ones. In this work, the transitive closure was not computed and the set of possible relations
was named Ep (see equation 3.18).

Sampling negative annotations can be more complicated. Negative relations are not
directed, unlike positive relations. All possible relations that are not positive can be con-
sidered negative, meaning that any pair (i, j) or (j, i) that does not exist in the GO
graph, is considered negative. However, this approach is not correct for the classic graph
due to the transitivity property. Even if we consider only relations that are not in the
transitive closure, there will still be multiple redundant negative relations. To address this
redundancy, we adopt the technique proposed by [1]. The technique can be described as
follows: we iterate through all GO terms in the graph, for each GO term, we retrieve all
his children, compute the list of descendants for each child, and then consider all pairs
of children. If two children have no descendants in common, they are annotated as a
negative pair. This set of negative annotations will be named Nsibling for sibling negative
and formally computed as in equation 3.16. This procedure enables us to mine negative
annotations without requiring additional expert knowledge, except for the ontology that
we already possess.

However, if we aim to model one protein as one point in this space, it can introduce
certain problems. Proteins can have multiple functions, so even if the ontology indicates
that two GO terms are separate, a protein may possess both functions. Therefore, an

7. The transitive closure adds all relations between GO that can be deduced by the transitivity prop-
erty of for example is_a and part_of
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(a) (b)

(c)

(d)

Figure 3.9 – Illustration of the different embedding types in the Poincaré Ball and Eu-
clidean space with toy classes. (a) Hyperbolic Model - Distance-Based Embedding: classes
(can be GO terms) are represented by points within the space. (b) Hyperbolic Model -
Cone-Based Embedding: classes are represented by cones in the space. (c) Hyperbolic
Model - Hyperplane-Based Embedding: classes are represented by hyperplanes in the
space. (d) Euclidean Model - Point-Based Embedding: classes are represented by points
within a euclidean space. 97
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additional step is necessary to eliminate from the set of negative annotations the functions
that occur in the same proteins. To accomplish this, we compute the GO terms that co-
occur in the dataset, and when such co-occurrence is detected, the corresponding negative
relations are excluded from the negative annotations. The negative set of coorcurence was
named Ncooccur (see equation 3.17) and the resulting negative set from the two constraints
was named En (see equation 3.19).

G = (V,E) (3.13)

TC = (Vc, Ec) (3.14)

S = {(i, j),∀i, j ∈ {0...|V |}|∃p ∈ V, (p, i) ∈ E, (p, j) ∈ E} (3.15)

NSibling = {(i, j),∀i, j ∈ S|∄p ∈ V, (i, p) ∈ Ec, (j, p) ∈ Ec} (3.16)

Ncooccur = {(i, j)∀i, j ∈ {0...|V |}|∄x ∈ P, (x, yi) ∈ Dp, (x, yj) ∈ Dp} (3.17)

Ep = E (3.18)

En = Nsibling ∩Ncooccur (3.19)

With xi a protein and yi a GO term, TC is the transitive closure of the graph G, S
the set of siblings. D is the dataset which is a set of all couples (x, g) where x is a protein
and g is a GO term, and S is the complement of set S.Dp is the dataset with the addition
of the propagated annotations by using the TPR with the relations is_a and part_of.
In this definition, both directions were taken (i, j) and (j, i) because some methods like
cones need negative in both directions because the loss is not symmetric.

As shown in Table 3.10, the number of negative annotations significantly varies de-
pending on the strategy employed. This discrepancy impacts the way we sample the
relations.

The subsequent question arises: How do we efficiently sample the relations? The effi-
ciency depends on the number of negative annotations. In the case of a very large graph,
with approximately 47,514 nodes and 2,257,580,196 possible relations, of which around
99% is negative, we need to consider whether rejection sampling is more efficient. Further-
more, the choice of relations to the sample plays a role. Are true negatives with siblings
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more efficient? Should we sample in both directions for unifying the framework? For in-
stance, while the sphere exclusion loss is symmetric, the cones exclusion loss is not (As
we will see in subsection 3.5.4).

Strategy Number of relations
Direct edges 75 552
Edges from transitive closure 575 775

Table 3.9 – Number of positive relations depending on the strategy. Only direct edges
present in the GO graph, which are non-redundant or edges from the transitive closure
that are redundant.

Strategy Number of relations
All edges that are not present in the transitive closure 1 128 166 809
Only GO terms that do not co-occur in annotations 1 112 046 151
Only siblings that are not related 926 420
No co-occur and siblings not related 870 954

Table 3.10 – Number of negative relations depending on the strategy. Relations are here
considered as not directed.

3.5.2 Common architecture

In this section, the different hyperbolic models and the baseline euclidean model will
be presented. The objective is to have all models as equivalent as possible, with the same
number of parameters. First, a manifold is an n-dimensional topological space that can
be linearly approximated to an n-dimensional real space at any point. Riemannian man-
ifolds are a couple comprising a differentiable manifold and a metric tensor, here named
(Dn, gD

x ). Hyperbolic space is a Riemannian manifold with constant negative curvature.
More specifically all the following neural network model will operate on the Poincare Ball,
that have a constant negative curvature of -1. In the Poincaré ball model, hyperbolic space
is represented as a unit ball in Euclidean space. The interior of the ball represents the en-
tire hyperbolic space, while the boundary of the ball represents infinity. Straight lines are
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Figure 3.10 – Comprehensive depiction of the universal architecture shared among di-
verse models, highlighting essential specificities when required. The classification layer
comprises the output computation and the logits function. It can be noted that to com-
pute the output and the logits both information from protein embedding and the GO
embedding is needed
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represented as geodesics, which are curves that minimize the distance between two points.
Geodesics in the Poincaré ball model are arcs of circles or straight lines that intersect the
boundary of the ball at right angles. The equation for the distance between two points is
presented in equation 3.22, where ∥.∥ is the euclidean norm (Also called L2-norm), and
cosh−1 is the inverse hyperbolic cosine also named arccosh, and gD

x is the Poincare ball
metric.

Dn = {x ∈ R : ||x|| < 1} (3.20)

dD(x, y) = cosh−1
(

1 + 2 ∥x− y∥2

(1 − ∥x∥2) (1 − ∥y∥2)

)
(3.21)

gD
x = λ2

xg
E, where λx := 2

1 − ∥x∥2 , and gE = In (3.22)

Another important concept is the concept of tangent space. At any point on a hy-
perbolic manifold (a surface or space with hyperbolic geometry), the tangent space is a
flat, Euclidean space that "tangentially touches" the manifold at that point. It is a linear
approximation of the hyperbolic space near that point, capturing the local behavior of
the hyperbolic geometry. Some computations are common to all the hyperbolic models
and have also a close counterpart for the baseline which is in a euclidean space.

Now we will describe the computation done in all the model variants. Firstly, the input
to the neural network is the mean embedding along the sequence dimension obtained
from Prot-T5 ([Eln+21a]), a protein embedding model. To incorporate this input into a
hyperbolic neural network, it is projected onto the Poincare ball by using the exponential
map (this operator allows to project vectors from the euclidean tangent space to the
manifold). [Xio+] choose to normalize only if the vector norm is more than one to be on
the Poincare ball, but we choose the exponential map to have always the same computation
and not have "truncate" the norm only in some cases. This projection results in obtaining
one embedding per protein.
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M ⊗ x = tanh
(

∥Mx∥
∥x∥

tanh−1(∥x∥)
)

Mx

∥Mx∥
(3.23)

x⊕ y = (1 + 2⟨x, y⟩ + ∥y∥2)x+ (1 − ∥x∥2)y
1 + 2⟨x, y⟩ + ∥x∥2∥y∥2 (3.24)

For better lisibility, like in the other equations ∥.∥ is the euclidean norm (∥.∥2).

Next, the representation is transformed from the Prot-T5 embedding size (which is
1024) to the GO embedding dimension using a linear layer followed by a non-linearity
(GELU here) for the euclidean model or a möbius linear layer ([GBH18b]) for hyperbolic
models without non-linearity here because as stated by [SMH21] the Mobius linear is
by construction non-linear. The möbius linear is the equivalent of the linear layer but
for the Poincaré ball model, with the use of the gyrovector matrix multiplication (see
equation 3.23) and the gyrovector addition (see equation 3.24) as defined by [GBH18b].
This maps the input embeddings to the desired GO embedding dimension, facilitating
further computations.

To regularize the neural network during training, DropConnect ([Wan+]) is utilized
instead of traditional dropout. DropConnect is a regularization technique that extends
the concept of Dropout. While Dropout randomly sets a subset of activations to zero
within each layer, DropConnect randomly sets a subset of weights to zero. This means
that each unit in a layer receives input from a random subset of units in the previous layer.
By applying regularization to the entire connectivity structure of a fully connected neural
network layer, DropConnect facilitates the learning of robust representations by relying on
different subsets of connections. This regularization technique helps mitigate overfitting
and enhances the generalization performance of the network. We derived DropConnect
formulation for the classical euclidean model and adapted it for the möbius linear in
equations 3.26.
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DropConnectEuclidean(x,M,W, b) = (M ×W ) × x+ b (3.25)

DropConnectPoincaré(x,M,W, b) = (M ×W ) ⊗ x⊕ b (3.26)

where M is a binary matrix encoding the connection information andMij ∼ Bernoulli(p),
W is the weight matrix, B is the bias vector and x is the input.

In parallel, for hyperbolic models GO terms are represented by hyperbolic vectors of
size GO embedding dim. These vectors will be used for the incorporation of semantic re-
lationships between the GO terms into the neural network. Finally, the embeddings of the
GO terms and protein embeddings are utilized to compute probabilities for the different
GO classes. The specific computation for probability estimation varies depending on the
type of method employed in the neural network. For the euclidean model, a simple linear
layer is used to project the number of GO classes. By following this common computation
process, the neural networks in this study leverage Prot-T5 embeddings to make predic-
tions and estimate probabilities for various GO classes. A global overview of the common
architecture can be viewed in Figure 3.10

3.5.3 Output probability

In this section, the different ways to obtain probabilities from each model will be pre-
sented. First, let’s define the output of all the neural networks as Proba(p, l) = σ(O(p, l)),
with p the protein embedding, l a GO term embedding and O ∈ {Od, Oc, Oh}, the three
different output O will be presented bellow.

First, the simplest hyperbolic model computes h as the distance between the protein
embedding and the GO term embedding as described in equation 3.27.

Od(p, l) = dD(p, l) (3.27)

In hyperbolic entailment cones, the cones are defined by one point, and then the
opening angle of the cones is only defined by its distance to the origin o, as shown in
equation 3.28. This allows satisfying the four following properties: Axis symmetry, rotation
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Figure 3.11 – Example of a convex cone in the Poincare ball representing a GO term, and
a projection of a protein. Protein has a high probability to be of the class of the drew GO
cone because the protein angle is less than the opening angle of the GO cone.
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invariance, continuous cone aperture function and transitivity of nested angular cones,
more detail can be found in [GBH18a].

ψ(l) = arcsin(K(1 − ∥l∥2)/∥l∥) (3.28)

With K a hyperparameter that will define on which part of the ball the cones are defined,
because the domain of this function is Dn \Bn(o, ϵ), with epsilon:

ϵ = 2K
1 +

√
1 + 4K2

(3.29)

For the hyperbolic entailment cones([GBH18a]), the original hyperbolic entailment
cones model doesn’t have a way to compute this probability and was only used for the
discovery of new GO relations. Then we proposed the following equation:

ELU(x) =

x, ifx > 0

exp(x) − 1, ifx ≤ 0
(3.30)

Ξ(l, p) == π − angle(olp) (3.31)

Oc(p, l) = ELU(wm) + 1) ∗ (ψ(l) − Ξ(l, p)) + b (3.32)

Where l is the label embedding of a GO term, p is the protein embedding, o represents
the origin and Ξ(l, p) represents the angle between the half line of the cone and the half
line that passes through the apex of the cone and the protein embedding. The half line of
the cone is derived from the line that passes through the origin of the Poincare ball and
the apex of the cones, this is shown in Figure 3.11. And ψ(l) represents the opening angle
of the cone. This equation uses the fact that if the cones are larger, then they should
represent a generic concept and then contribute to a bigger probability to have this GO
term.

For the hyperplanes’ classifier, the output Oh represents the signed distance between
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the hyperplane and a given point. Various parametrizations of hyperplanes have been pro-
posed in previous works ([GBH18b],[SMH21]). One common approach involves selecting
a point on the hyperplane and a vector normal to the tangent space at that point. How-
ever, this method leads to multiple ways of defining the same hyperplane. To address this
issue and ensure uniqueness, Xiong et al. ([Xio+]) suggested setting the point as a unique
point on the hyperplane, specifically the center of the hyperplane, which corresponds to
the point nearest to the origin of the Poincaré ball. By adopting this definition, protein
embeddings can be classified using the following equations:

Oh(p, l) = dh(p, l) (3.33)

dh(p, l) = sin−1
{

2|⟨(−l) ⊕ p, c⟩|
(1 + ∥(−l) ⊕ ∥p∥2)∥c∥

}
(3.34)

3.5.4 Loss functions

The optimization problem in this study can be described as follows. The loss func-
tion used in neural network optimization consists of two parts: one part for assessing
performance and another part for ensuring coherence in the embedding space. In this
work, coherence is defined as the extent to which the model prediction aligns with the
constraints derived from the Gene Ontology graph. The first loss function utilized is Bi-
naryCrossEntropy. This loss function is commonly employed in binary classification tasks
and measures the dissimilarity between predicted and true class labels. It does not explic-
itly consider the relationships between different Gene Ontology (GO) terms. The second
loss function that we will name the constraints loss, is employed in the optimization pro-
cess and depends on the specific hyperbolic model chosen. The choice of a hyperbolic
model affects how the coherence of the embedding space is enforced and can vary between
different approaches. A positive(Lpr) and negative(Lnr) relation loss is defined. Then the
final objective is to minimize these relations loss and the BCELoss at the same time, with
a λ parameter to control the relative importance of these two objectives, this can be seen
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in equation 3.35.

min
θ,C

∑
(xn,ln)∈Dp

BCELoss(xn, ln) + λ

 ∑
(li,lj)∈EP

Lpr(li, lj) +
∑

(li,lj)∈EN

Lnr(li, lj)
 (3.35)

To optimize the neural network and minimize the loss function, the Riemannian Adam
optimizer is used. The Riemannian Adam optimizer is implemented by the Geoopt li-
brary([KKK20]), which provides functionality for optimization on Riemannian manifolds.
This optimizer is tailored to work effectively with hyperbolic models and enables efficient
gradient-based updates of the model parameters. By utilizing this optimization framework
with the combined loss function and the Riemannian Adam optimizer, the neural network
is trained to simultaneously optimize the performance metrics and ensure coherence in
the embedding space. Now the details on the loss of the positive(Lpr) and negative(Lnr)
relation for each model will be described.

The positive and negative loss for Hyperbolic distance is the following:

Lpr(li, lj) = d(li, lj) (3.36)

Lnr(li, lj) = −d(li, lj) (3.37)

The positive and negative loss for Hyperbolic cones is the following:

E(li, lj) := max(0,Ξ(li, lj) − ψ(li)) (3.38)

Lpr(li, lj) = E(li, lj)Lnr(li, lj) = max (0, γ − E (li, lj)) (3.39)

With li the apex of the cone i and ψ(li) is the aperture.

The hyperplane can be viewed as the intersection between the boundary of an n-ball
in Rn and the boundary of the Poincare ball. The following function allows us to compute
what would be the center and radius of this n-ball from the center of the hyperplane.
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origin(li) = 1 + ∥li∥2

2∥li∥
(3.40)

radius(li) = 1 − ∥li∥2

2∥li∥
(3.41)

With these functions, the loss of the positive and negative relation can be defined as
follows:

Lnr(li, lj) = max {0, radius(lj) + radius(li) − ∥origin(li) − origin(lj)∥} (3.42)

Lpr(li, lj) == max {0, ∥origin(li) − origin(lj)∥ + radius(li) − radius(lj)} (3.43)

In order to maintain consistency with the original nomenclature, the hyperbolic hyper-
plane models incorporating the constraint loss were designated as HMI+HLR. Conversely,
the identical model lacking the relation constraints was referred to as HLR (Hyperbolic
Logistic Regression). Furthermore, to denote the baseline model operating in Euclidean
space, a straightforward designation of "Euclidean model" was adopted.

3.5.5 Metric choice

Two groups of metrics were employed in this study. The first group was used to assess
the performance of predictions, while the second group was used to evaluate the coherence
of the predictions. For the performance metrics, all the metrics presented in the "Common
Metrics" section were computed. However, for the initial analysis and to simplify the
interpretation of the results, we drew inspiration from CAFA5 and calculated the average
of the maximum weighted F1 score for each namespace. These metrics were weighted
by information accretion (IA). Weighting the metrics by IA provides a measure of the
importance of each namespace in the evaluation.

Regarding the coherence metrics, three metrics were utilized. The term coherence was
used to reference if the model output was correctly ordered as the Gene Ontology implies.
Two metrics were employed for assessing positive relations, with (see equation 3.46) and
without (see equation 3.44) a threshold. The threshold-free metric provides the assurance
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that the prediction will maintain coherence for positive relations, regardless of the specific
threshold value. Additionally, only a thresholded metric was applied for negative relations
(see equation 3.47). This decision was made because converting negative relations to order
on probability was not straightforward. Thus, the metric for negative relations was only
calculated using a specific threshold. By employing these two groups of metrics, we were
able to comprehensively evaluate both the performance and coherence of the predictions.

PosEdgeRecover = 1
|P| |Ep|

∑
p∈P

∑
(li,lj)∈Ep

1 (O(p, lj) > O(p, li)) (3.44)

With h(x) the output of our neural network, Ep the positive edges, En the negative edges,
and P the set of all proteins.

f(p, l) =

⊤, if O(p, l) ≥ τ

⊥, else
(3.45)

IPMpos = 1 × 106

|P∥Ep|
∑
p∈P

∑
(li,lj)∈Ep

1 (f(p, li) ∧ ¬f(p, lj)) (3.46)

IPMneg = 1 × 106

|P∥En|
∑
p∈P

∑
(li,lj)∈En

1 (f(p, li) ∧ f(p, lj)) (3.47)

With τ a threshold define as hyperparameters for the metric. ⊤ which is True, ⊥ which
is false, and ¬ which is not.

All the code is available at https://gitlab.com/rootNico/tgoa and uses the Py-
torch library([Pas+]) for classical deep learning and the Geoopt library([KKK20]) for deep
learning in the context of hyperbolic models.

3.5.6 Performance and coherence of the different models

In this experiment, we evaluated the performance of three distinct models, namely
Euclidean_LR, HLR (Hyperbolic hyperplane), and HLR+HMI (Hyperbolic hyperplane
with constraint loss), across three different embedding dimensions: 32, 256, and 512. A
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lambda of 1.0e-3 in the loss function which controls the constraints’ loss importance
was chosen from some small previous experiments. The best hyperparameters found in
previous experiments for the euclidean models were kept. And Figure 3.12 illustrates that
for example for the lowest dimension of 32, the two hyperbolic models outperform other
models in terms of the WFmax metric. However, integrating constraints on the space does
not seem to provide any advantage in performance. Moreover, as the embedding dimension
increases to 256 and 512, the Euclidean model becomes the best-performing one.
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Figure 3.12 – Mean WFmax metric across different embedding dimensions

When assessing the coherence of predictions, the HLR+HMI model stands out as the
top performer across all dimensions. As depicted in Figure 3.13, the HLR+HMI model
correctly orders the probabilities, with the probability of the more general Gene Ontology
(GO) terms (parent GO terms) being greater than the probability of specific GO terms
(child GO terms) for a majority of instances (99.25% to 99.28%). On the other hand,
the HLR and Euclidean models achieve lower PosEdgeRecover in this regard, with values
between 96.57% and 96.70%, and between 78.48% and 91.41%, respectively.

Regarding incorrect predictions with a threshold of 0.01, Figures 3.15 and 3.14 demon-
strate a maximum of about 3 errors per million evaluated positive relations and less than 6
per million evaluated negative relations for the HLR+HMI model. In comparison, the Eu-
clidean model exhibits significantly more errors, reaching up to 152 for positive relations
and 18 for negative relations.
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Figure 3.13 – PosEdgeRecover with respect to the dimension of embedding for each
namespace

Additionally, when analyzing Figure 3.16, which presents the evolution of the PosEdgeRe-
cover metric on the validation set during the training of the three models with a dimension
of 512, it becomes apparent that the PosEdgeRecover performance deteriorates through-
out the training process for the Euclidean models. On the contrary, the two hyperbolic
models exhibit an initial improvement during training, followed by reaching a stable per-
formance level. This pattern of performance evolution holds true across different dimen-
sions and is indicative of the distinct behavior of the Euclidean models compared to the
hyperbolic models.

Overall, these findings highlight the advantages of the HLR+HMI model in terms of
coherence and robustness regarding lower-dimensional embeddings, making it a promising
approach for further investigations.

A comprehensive analysis of the performance metric for each namespace individually
is presented in Figure 3.17 and Figure 3.18. These detailed visualizations enable us to
observe that the performance gap in the cellular component namespace is particularly
prominent at the lowest dimension compared to other namespaces. However, it is im-
portant to note that further replication of the experiment is necessary to validate these
findings conclusively.
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Figure 3.14 – IPMneg with respect to the dimension of embedding for each namespace

3.5.7 Discussion

The current work presented in this study is still ongoing, with several areas left to
explore. One potential avenue for further investigation is the use of multiple embeddings
per protein. This approach could offer the advantage of having a single function per
embedding, creating a functional space that corresponds specifically to the Gene Ontology
(GO). However, generating a varying number of embeddings for different proteins would
significantly increase the complexity of training the model.

Another aspect worth considering is the limitation of having only one hidden layer
in the current model. This design choice may restrict the expressivity of the model and
could potentially be addressed by incorporating additional hidden layers.

To ensure the reliability and generalizability of the findings, it is crucial to repli-
cate the experiment and conduct statistically significant tests. Further, experiments with
larger sample sizes would strengthen the validity of the results and provide more robust
conclusions.

There is room for improvement by refining the search for optimal hyperparameters.
For instance, the learning rate was chosen to prevent divergence but may be too small, re-
sulting in slow training. Due to time resources, the model may not have been trained until
convergence, particularly for the largest model dimension of 512. This could explain why
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Figure 3.15 – IPMpos with respect to the dimension of embedding for each namespace

the hyperbolic models have worse performance than the euclidean one in this dimension.
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Figure 3.16 – PosEdgeRecover Metric Evolution during Training for Euclidean_LR, HMI,
and HMIHLR Models

100 200 300 400 500
dimensions

0.41

0.42

0.43

0.44

0.45

0.46

W
Fm

ax
 C

C

model_type
HLR
HMI+HLR
Euclidea_LR

100 200 300 400 500
dimensions

0.395

0.400

0.405

0.410

0.415

0.420

0.425

W
Fm

ax
 M

F

model_type
HLR
HMI+HLR
Euclidea_LR

100 200 300 400 500
dimensions

0.240

0.245

0.250

0.255

0.260

0.265

0.270

0.275

W
Fm

ax
 B

P

model_type
HLR
HMI+HLR
Euclidea_LR

Figure 3.17 – WFmax metric across different embedding dimensions for each namespace
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CONCLUSION AND PERSPECTIVE

3.6 Conclusion

In the first part of this thesis, a state-of-the-art 8 model called EnzBert was presented,
which uses sequences to predict the functional annotation of enzymes. This confirms the
interest of the Transformer of Automatic Function Prediction (AFP). EnzBert uses the
Transformer architecture and benefits from the attention mechanism to capture important
features such as catalytic residues in the enzyme sequences. This achievement is made
possible by the introduction of a simple yet effective interpretability method based on
attention maps, which provides insights into the relationship between enzyme sequences
and functional annotation. The findings of the research have implications for further
understanding how enzyme classes are derived from protein sequences. The interpretability
method can assist in uncovering important features and patterns in enzyme sequences,
which can contribute to future research in enzyme optimization and related areas.

In the second part of this thesis, the scope was expanded beyond enzymes to include
all proteins and the gene ontology vocabulary was used for this broader protein category.
In terms of integrating Gene Ontology (GO) into annotations, the study found that the
common usage of the True Path Rule did improve performance. However, when using
GO to mitigate false negative propagation within the context of the Closed World As-
sumption (CWA), there was no significant increase in performance observed. Additionally,
using GO to constrain the representation of the protein embedding space did not affect
performance, but it did lead to improved coherence of predictions. Furthermore, the study
compared hyperbolic models to Euclidean models and discovered that hyperbolic models
outperformed Euclidean models in small dimensions, but not in larger dimensions. It is
important to note that these findings are preliminary, and further research is required to
gain a better understanding of the strengths and weaknesses of hyperbolic models.

8. At submission time
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3.7 Perspective

Expanding on the findings and implications discussed in this thesis, the perspective
section aims to broaden the scope of the investigation and explore new research avenues,
beginning with research related to the integration of Gene Ontology (GO) information.

3.7.1 On integrating the Gene Ontology information

This research idea focuses on investigating various aspects related to Gene Ontology
(GO), including the impact of different negative relation definitions, extending constraints
to other logical constraints arising from relations like regulate and has_part, and as-
sessing the logical correctness of downloaded GO annotations.

One avenue of exploration involves studying the impact of different negative rela-
tion definitions in GO annotations. Negative relations play a crucial role in capturing the
absence or negation of specific relationships between entities. By analyzing different defini-
tions and their effects on the quality and performance of GO annotations, researchers can
gain insights into the significance of negative relations and their influence on downstream
applications such as gene function prediction.

Extending constraints relations to other logical constraints that arise from relations
like regulate and has_part is another aspect worth investigating. The existing con-
straints in GO annotations provide valuable information for ensuring consistency and
coherence. By considering additional logical constraints stemming from other relations,
such as the regulation of biological processes or the composition of biological entities, the
expressiveness and comprehensiveness of the ontology could be enhanced. This extension
could improve the accuracy and utility of GO annotations, enabling more sophisticated
analyses and interpretations.

Assessing the logical correctness of downloaded GO annotations with respect to the
rules in the Gene Ontology OWL file is another important research direction. GO an-
notations are typically obtained from databases and are subject to potential errors or
inconsistencies. By systematically evaluating the logical correctness of downloaded an-
notations and comparing them to the established rules and axioms in the GO ontology,
researchers can identify discrepancies, highlight potential issues, and contribute to the
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refinement and improvement of the annotation curation process.
By pursuing research in these areas, a deeper understanding of negative relations, ex-

tended constraints, and the logical correctness of GO annotations can be achieved. This
research can contribute to the advancement of knowledge in the field of biological ontolo-
gies, improve the quality of GO annotations, and facilitate more reliable and accurate
analysis of gene functions and biological processes.

One avenue of exploration involves testing the integration of other data sources in ad-
dition to manually reviewed annotations during training. This could include incorporating
annotations based on phylogeny(ECO:0000318) or logical inference (ECO:0000364), po-
tentially with different weights assigned to each type of data. By evaluating the impact
of integrating diverse data sources, researchers can assess the benefits and challenges
associated with incorporating different types of information into the training pipeline.
This investigation can provide insights into the potential improvements in gene function
prediction and the challenges in reconciling and effectively leveraging heterogeneous data.

Another research direction is to test and compare the different embeddings generated
by various pre-trained networks such as Prot-T5, ESM1, and ESM2. Each network offers
distinct strategies for representing biological sequences, and comparing their performance
can provide insights into their strengths and weaknesses for different downstream tasks in
gene function prediction. Such a comparative analysis can inform researchers about the
most suitable embedding choice based on the specific requirements of their application.
Additionally, exploring ensemble approaches that combine multiple embeddings could be
beneficial for harnessing the complementary information provided by different pre-trained
networks.

Instead of relying on simple mean pooling of the pre-trained network embeddings,
researchers can explore advanced pooling strategies to capture more informative rep-
resentations from sequence data. This can involve training a one-layer Transformer or a
simplified transformer to intelligently pool the embeddings from individual residues into a
single representation. By considering more sophisticated pooling techniques, higher-order
dependencies could potentially be captured and richer features could be extracted from
the sequence data. This exploration can lead to improved performance in gene function
prediction tasks by better preserving the nuanced characteristics of the sequences.
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Investigating the impact of fine-tuning the entire architecture, rather than just updat-
ing the embeddings, is another important research direction. Fine-tuning involves train-
ing not only the last layer but also updating the weights of the lower layers during the
fine-tuning process. By examining the effects of comprehensive fine-tuning, researchers
can assess whether it leads to better generalization and improved performance in gene
function prediction tasks. This exploration can provide insights into the extent to which
the lower layers of the network contribute to capturing meaningful representations and
understanding the hierarchical structure of biological data.

Finally, there is potential merit in exploring the utilization of the N-k layer, rather than
the last layer, in the network architecture. [Val+23] suggest the N-3 layer may yield more
meaningful representations for biological sequences, researchers can investigate whether
leveraging this layer leads to enhanced performance in gene function prediction or related
tasks. This exploration can contribute to understanding the optimal layer for capturing
informative features in biological sequences and guide the design of more effective neural
network architectures.

3.7.2 Research idea for Transformer

Several research directions can be explored in the context of protein language modeling
(pLM). This section aims to summarize, unify, and expand upon some fascinating research
avenues predominantly investigated in natural language processing (NLP).

Tokenization
Despite its effectiveness, the current Transformer architecture suffers from various limita-
tions. Primarily, the Transformer always employs the same computation units based on
the initial tokenization. Consequently, most pLM solely relies on residues as the unit of
computation. However, it may seem peculiar not to have embeddings for an entire domain,
as this could potentially entail excessive and redundant computations for not sharing in-
formation across multiple tokens that could be consolidated into a single token for certain
calculations. Numerous solutions can be considered to address this issue, such as dynamic
tokenization, which could change the tokenization across different layers of the Trans-
former and subsequently remap it to the residues when predicting at the residue level. A
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similar possible approach that has been explored is the Perceiver-IO ([Jae+22]), which
utilizes fictive tokens independent of the real tokens, effectively tackling this challenge.

Pre-training Techniques
To enhance pre-training techniques, incorporating biological knowledge can be advanta-
geous when selecting which residues to mask. By leveraging available information, such
as identifying long-range contacts between residues, the masking process can be guided to
focus on more biologically relevant positions. This approach has the potential to improve
training time by prioritizing the masking of residues that are likely to have significant
interactions. For instance, selectively masking a residue when it is in long-range contact
with another residue can facilitate the model’s understanding of important molecular
interactions during pre-training.

Architectural Enhancements
One potential research direction is exploring the possibility of reducing the number of
parameters in the Transformer model by externalizing a portion of the memory. By stor-
ing relevant information externally and querying it only when necessary, to optimize the
model’s performance while enhancing interpretability. This concept aligns with the Trans-
former MSA([Rao+21]) paradigm, where the query step can be externalized using tools
like mmseq2. Additionally, some NLP applications have used memory-based Transform-
ers, where a separate Transformer creates the memory, and the Transformer embedding is
used for querying, resulting in a more flexible querying process. However, the effectiveness
of this method compared to mmseq2 in discovering relevant sequences remains uncertain.
Despite this uncertainty, investigating the sequences retrieved by such a network and
comparing them to those retrieved by mmseq2 could be a compelling avenue of research,
shedding light on potential differences and insights gained from each approach.

The attention mechanism is commonly used to integrate information from different
residue embeddings. However, alternative methods like MLP-mixer([Tol+21]), KMDPA
(from [Rah+21]), Mask attention network (SAN, DMAN, FFN) of [Fan+21] offer addi-
tional ways to combine information. Further research is required to gain a deeper under-
standing of the inductive biases inherent in these various token-mixing approaches.

An important consideration is striking a balance between generality and computa-
tional cost. Ideally, we aim to develop a module that is applicable to diverse tasks, yet
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mindful of the finite computational resources available. The architectural inductive bias
plays a crucial role in achieving efficiency. A good bias is one that the network would have
naturally learned if provided with unlimited computational resources. Exploring specific
subclasses of functions that are well-suited for particular tasks can potentially lead to im-
proved efficiency. This research direction also intersects with areas such as meta-learning
and neural architecture search, which could provide valuable insights and connections.
By investigating the inductive biases of different token mixing methods, we can better
understand their effectiveness and potential for enhancing the overall performance and
efficiency of deep learning models. Furthermore, an alternative approach to address the
computational time and incorporate observed biases into the architecture is through con-
nection pruning. By selectively removing certain connections, the model’s computational
requirements can be reduced. However, it is important to note that our current hardware
resources, such as GPUs or TPUs, may not be well-suited for efficiently performing sparse
matrix multiplications required in sparse models. Therefore, finding a balance between
model sparsity and hardware limitations becomes a crucial challenge in designing efficient
architectures. Exploring techniques that strike a suitable trade-off, considering the com-
putational constraints of our hardware, can be a valuable avenue for further investigation.

Parameters sharing
Some progress has been made in exploring the concept of sharing computational units,
drawing parallels to how programmers utilize functions multiple times. For example, Dy-
namic inference with a neural interpreter has demonstrated the ability to identify reusable
functions, leading to parameter sharing. This idea has been also applied in models like
ALBERT ([Lan+20]), particularly within the Transformer context. Surprisingly, using
the same set of parameters across all layers in ALBERT has not shown a catastrophic
effect that might have been anticipated, even on the domain of the protein (ProtAlbert
[Eln+21b]).

There also exists a paper on an Adaptive Computation Time ([Gra17]) algorithm. The
ACT algorithm is a deterministic and differentiable method that allows recurrent neural
networks to dynamically determine the number of computational steps needed between
input and output, resulting in improved performance across various tasks, including lan-
guage modeling, by adapting computation to the complexity of the data. In the same
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idea, the Universal Transformer incorporates a dynamic per-position halting mechanism
([Deh+19]), which stops updating the embeddings of tokens that have already reached
their desired state, effectively reducing unnecessary computations and optimizing effi-
ciency.

These findings raise important questions regarding the adequacy of parameter count
when scaling computation. It prompts us to consider how many parameters are truly
necessary when we increase computational resources. Conversely, another intriguing di-
rection involves increasing the number of parameters without a corresponding increase in
computational requirements. Approaches like Swich-Transformer ([FZS21]) employ expert
models to expand the parameter space, presenting an alternative perspective on model
capacity. These lines of inquiry open up exciting possibilities for further research and in-
vestigation into the optimal balance between parameter count, computation, and model
performance. It is essential to explore these trade-offs to gain a deeper understanding of
the dynamics between model size, computational efficiency, and the associated gains in
performance.
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APPENDIX

GO Annotation File (GAF) fields:

Column Content Required? Cardinality Example
1 DB required 1 UniProtKB
2 DB Object ID required 1 P12345
3 DB Object Symbol required 1 PHO3
4 Qualifier required 1 or 2 NOT|involved_in
5 GO ID required 1 GO:0003993
6 DB:Reference (|DB:Reference) required 1 or greater PMID:2676709
7 Evidence Code required 1 IMP
8 With (or) From optional 0 or greater GO:0000346
9 Aspect required 1 F
10 DB Object Name optional 0 or 1 Toll-like receptor 4
11 DB Object Synonym (|Synonym) optional 0 or greater hToll
12 DB Object Type required 1 protein
13 Taxon(|taxon) required 1 or 2 taxon:9606
14 Date required 1 20090118
15 Assigned By required 1 SGD
16 Annotation Extension optional 0 or greater part_of(CL:0000576)
17 Gene Product Form ID optional 0 or 1 UniProtKB:P12345-2

Gene Product Association Data (GPAD) fields:
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Column Content Required? Cardinality Example

1 DB required 1 SGD

2 DB Object ID required 1 P12345

3 Qualifier required 1 or greater enables

4 GO ID required 1 GO:0019104

5 DB:Reference(s)
(|DB:Reference)

required 1 or greater PMID:20727966

6 Evidence Code required 1 ECO:0000021

7 With (or) From optional 0 or greater Ensembl:ENSRNOP00000010579

8 Interacting taxon ID optional 0 or 1 4896

9 Date required 1 20130529

10 Assigned by required 1 PomBase

11 Annotation Exten-
sion

optional 0 or greater occurs_in(GO:0005739)

12 Annotation Proper-
ties

optional 0 or greater annotation_identifier = 2113431320
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Titre : Modèle Transformer pour l’interprétabilité et les prédictions multi-niveaux des fonctions
des protéines à partir de leurs séquences

Mot clés : Annotation fonctionnelle automatique, Apprentissage profond, Transformer, En-

zymes, Gene Ontology

Résumé : L’annotation automatique des sé-
quences protéiques est en plein essor pour
gérer l’augmentation des séquences non
annotées expérimentalement. Premièrement
nous avons étudié l’application du Transformer
à la prédiction des fonctions enzymatiques.
Le modèle EnzBert améliore le macro-f1 de
41% à 54% comparé au précédent état de
l’art. De plus une comparaison des méthodes
d’interprétabilité montre qu’une approche ba-
sée sur l’attention obtient un score F-Gain de
96,05%, surpassant les méthodes classiques
(91,44%). Deuxièmement l’intégration de la
Gene Ontology dans les modèles de prédic-

tion de fonctions a été explorée. Deux ap-
proches ont été testées : l’intégration dans
le processus de labellisation et l’utilisation de
plongements hyperboliques. Les résultats ob-
tenus confirment à la fois l’efficacité de la pro-
pagation des labels selon la hiérarchie GO
et la supériorité des plongements hyperbo-
liques (mean WFmax : 0.36) par rapport au
modèle euclidien (0.34) en petite dimension
(32). Ils maintiennent une plus grande cohé-
rence avec la Gene Ontology (relations cor-
rectements ordonnées : 99.25%-99.28% vs.
78.48%-91.41% pour modèle euclidien).

Title: Transformers models for interpretable and multilevel prediction of protein functions from
sequences

Keywords: Automatic functional annotation, Deep learning, Transformer, Enzymes Gene On-

tology

Abstract: Automatic annotation of protein se-
quences is on the rise to manage the increas-
ing number of experimentally unannotated se-
quences. First, we investigated the application
of the Transformer for enzymatic function pre-
diction. The EnzBert model improves macro-
F1 from 41% to 54% compared to the previ-
ous state-of-the-art. Furthermore, a compari-
son of interpretability methods shows that an
attention-based approach achieves an F-Gain
score of 96.05%, surpassing classical meth-
ods (91.44%). Second, the integration of Gene

Ontology into function prediction models was
explored. Two approaches were tested: inte-
gration in the labeling process and the use
of hyperbolic embeddings. The results con-
firm both the effectiveness of the True Path
Rule and the superiority of hyperbolic em-
beddings (mean WFmax: 0.36) compared to
the Euclidean model (0.34) in low dimensions
(32). They maintain greater consistency with
the Gene Ontology (correctly ordered rela-
tions: 99.25%-99.28% vs. 78.48%-91.41% for
the Euclidean model).
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