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Abstract

This thesis explores the algorithmic perspectives of the branching random walk
and the continuous random energy model (CREM). Namely, we are interested
in constructing polynomial-time algorithms that can sample the model’s Gibbs
measure with high probability, and to indentify the hardness regime, which consists
of any inverse temperature — such that such polynomial-time algorithms do not
exist.

In Chapter 1, we provide a historical overview of the models and motivate the
algorithmic problems under investigation. We also provide an overview on the
mean-field spin glasses that motivates the line of our research.

In Chapter 2, we address the sampling problem of the Gibbs measure in the
context of branching random walk. We identify a critical inverse temperature —c,
identical to the static critical point, that the a hardness transition occurs. In the
subcritical regime — < —c, we establish a recursive sampling algorithm is able to
sample the Gibbs measure e�ciently. In the supercritical regime — > —c, we show
that we cannot find polynomial-time algorithm that belongs to a certain class of
algorithms.

In Chapter 3, we turn our attention to the same sampling problem for the con-
tinuous random energy model (CREM). For the case where the covariance function
of this model is concave, we show that for any inverse temperature — < Œ, the
recursive sampling algorithm considered in Chapter 2 is able to sample the Gibbs
measure e�ciently. For the non-concave case, we identify a critical point —G that
similar hardness transition as the one in Chapter 2 occurs. We also provide a lower
bound of the CREM free energy that might be of independent interest.

In Chapter 4, we study the negative moment of the CREM partition function.
While this is not connected directly to the main theme of the thesis, it spins o�
during the course of research.

In Chapter 5, we provide an outlook of some further directions that might be
interesting to investigate.

Keywords: branching random walk ; continuous random energy model ; Gaussian
process ; Gibbs measure ; Kullback–Leibler divergence ; negative moments; spin
glass.

MSC2020 subject classifications: 60G15, 60J80, 60K35, 68Q17, 82D30.
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Résumé

Cette thèse explore les perspectives algorithmiques de la marche aléatoire bran-
chante et du modèle continu d’énergie aléatoire (CREM). Nous nous intéressons
notamment à la construction d’algorithmes en temps polynomial capables d’échan-
tillonner la mesure de Gibbs du modèle avec une grande probabilité, et à identifier
le régime de dureté, qui consiste en toute température inverse — telle que de tels
algorithmes en temps polynomial n’existent pas.

Dans le Chapitre 1, nous fournissons un aperçu historique des modèles et moti-
vons les problèmes algorithmiques étudiés. Nous donnons également un aperçu des
verres de spin à champ moyen qui motive la ligne de notre recherche.

Dans le Chapitre 2, nous abordons le problème de l’échantillonnage de la mesure
de Gibbs dans le contexte de la marche aléatoire branchante. Nous identifions une
température inverse critique —c, identique au point critique statique, où une tran-
sition de dureté se produit. Dans le régime sous-critique — < —c, nous établissons
qu’un algorithme d’échantillonnage récursif est capable d’échantillonner e�cace-
ment la mesure de Gibbs. Dans le régime supercritique — > —c, nous montrons que
nous ne pouvons pas trouver d’algorithme en temps polynomial qui appartienne à
une certaine classe d’algorithmes.

Dans le Chapitre 3, nous portons notre attention sur le même problème d’échan-
tillonnage pour le modèle continu d’énergie aléatoire (CREM). Dans le cas où la
fonction de covariance de ce modèle est concave, nous montrons que pour toute
température inverse — < Œ, l’algorithme d’échantillonnage récursif considéré au
Chapitre 2 est capable d’échantillonner e�cacement la mesure de Gibbs. Pour le
cas non concave, nous identifions un point critique —G où une transition de dureté
similaire à celle du Chapitre 2 se produit. Nous fournissons également une borne
inférieure de l’énergie libre du CREM qui pourrait être d’un intérêt indépendant.

Dans le Chapitre 4, nous étudions le moment négatif de la fonction de partition
du CREM. Bien que cela ne soit pas directement lié au thème principal de la thèse,
cela découle du cours de la recherche.

Dans le Chapitre 5, nous donnons un aperçu de certaines orientations futures
qui pourraient être intéressantes à étudier.

Mots-clef : divergence de Kullback–Leibler ; marche aléatoire branchante ; me-
sure de Gibbs ; modèle continu à énergie aléatoire ; moments negatifs ; processus
gaussien ; verre de spin.

Classifications par metières MSC 2020 : 60G15, 60J80, 60K35, 68Q17, 82D30.
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1. Introduction

The goal of the introduction is to provide an overview of the models that we con-
sider through the thesis, and to motivate the algorithmic problems that we study.
Section 1.1 provides some relevant background on branching random walk. Sec-
tion 1.2 focues on the Derrida’s generalized random energy model and the contin-
uous random energy. While the thesis does not concern directly about mean-field
spin glasses, historically, the motivation to introduce the models mentioned in Sec-
tion 1.2 were to have a deeper understanding of mean-field spin glasses. Therefore,
we provide a historical review on this topic in Section 1.3. Finally, Section 1.5
summarizes the three articles that compose the thesis:

• E�cient approximation of branching random walk Gibbs measures in collab-
oration with Pascal Maillard, published in the Electronic Journal of Proba-
bility, 1–18, (2022).

• E�cient sampling of the CREM Gibbs measure, submitted with the name
Sampling from the Gibbs measure of the continuous random energy model
and the hardness threshold .

• Negative moments for the continuous random energy model in the subcritical
regime, in preparation.

1.1 Branching random walks

In this section, we survey some results of the branching random walks that concern
the thesis. We refer to Shi [168] for a modern treatment of the mathematical theory
of branching random walks.

1.1.1 Bienaymé–Galton–Watson tree

The Bienaymé–Galton–Watson (BGW) tree (mostly known as the Galton–Watson
tree) is one of the earliest and simplistic model for the study of population dy-
namics, and the model can be described informally as follows. Starting from one
individual, the individual reproduces into a random number of children accord-
ing to a given probability distribution L, called the o�spring distribution. Next,
individuals at generation n+1 independently give birth to random numbers of chil-
dren with identical o�spring distribution L, and for each individual at generation
n + 1, the number of children is also independent of the previous generations. See
Figure 1.1 for an example of the BGW trees.

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: An example of a BGW tree with o�spring distribution L that is a
Poisson distribution with parameter 0.99. The branching random walks used as
underlying models in this thesis do not possess such sparse genealogical trees.
Indeed, the genealogical trees we consider are deterministic and have a fixed number
of o�spring d Ø 2 (see Section 1.5.4).

It is well-known that the expectation of the o�spring distribution dictates
whether the size of tree is finite or not. This fact is well-established and the
proof can be found in many place, such as in the lecture notes [168] by Shi.

Fact 1.1.1 (Theorem 2.1, Shi [168]). Let t be a BGW tree with o�spring distri-
bution L. Denote by |t| the size of the BGW tree. Then, the following dichotomy
holds.

(i) If E [L] Æ 1, then P (|t| < Œ) = 1.

(ii) If E [L] > 1, then P (|t| = Œ) > 0.

In the following, a BGW tree with E [L] < 1, E [L] = 1 and E [L] > 1 is refer to
as a subcritical, critical and supercritical BGW tree, respectively.

The BGW trees were studied by Bienaymé [80] in 1845 and then independently
by Galton and Watson [101] in 1875 in order to understand the growth and extinc-
tion of patronymics. While Galton and Watson adopted the correct method based
on considering the generating function the o�spring distribution, they wrongly con-
cluded that the population always goes extinct almost surely. On the other hand,
Bienaymé correctly stated that the extinction probability equals 1 if and only if the
mean with respect to o�spring distribution is at most 1, although a mathematical
justification by himself was never found. Later in 1847, Cournot, a friend of Bi-
enaymé, presented a problem in [81] where he acknowledged that the problem was
equivalent to Bienaymé work. In modern language, Cournot considered the gener-
ating function of a BGW tree with at most m children. Unfortunately, Bienaymé
contributions were forgotten until 1972, Heyde and Senata rediscovered his work
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in the 1845 report of the Philomatic Society of Paris [80]. A more detailed version
of the story above can be found in Kendall [120, 121] and Bacaër [24].

During the first half of the 20th century, the BGW trees and their generaliza-
tions regained attention and were extensively studied mathematically in tandem
with the rapid development of genetics and nuclear physics. These models are
referred to as the branching processes in the literature, and we refer the readers
to the book by Harris [111] which presented the theoretical results as well as the
applications of branching processes up until the early 1960s.

1.1.2 Branching random walks

Among all the generalizations of the BGW trees, we are interested in one particular
example which is the branching random walks (BRW). Roughly speaking, a branch-
ing random walk can be constructed by placing i.i.d. random variables, called the
increments, on a given BGW tree, where the random variables are also independent
of the underlying BGW tree. The underlying BGW tree of a branching random
walk is often refer to as the genealogical tree.

Formally, the branching random walk is defined as follows. Let L =
PL

i=1 ”Yi be
a point process, where (Yi)Œ

i=1 is a sequence of i.i.d. random variables independent
of L. Let (Lu)uœT be a collection of i.i.d. copies of L indexed by the Ulam–Harris
tree T , where Lu =

PLu
i=1 ”Yui provides the information of the amount of children of

u and the increment of each child of u. A branching random walk (Xu)uœt indexed
by the BGW tree t is a collection of random variables such that

(
X? = 0
Xu =

P
?<wÆv Yu, u ”= ?.

(1.1.1)

We provide two examples in Figure 1.2. One key quantity to study the branching
random walk is the log-Laplace transform of L:

Ï(—) := logE

2

4
LX

|u|=1
e—Yi

3

5 , — œ R. (1.1.2)

Let D(Ï) = {— œ R : Ï(—) < Œ}. The critical inverse temperature is defined as

—c := sup{— œ D(Ï)¶ | —ÏÕ(—) < Ï(—)} œ (0, Œ], (1.1.3)

where D(Ï)¶ is the interior of D(Ï).

1.1.3 Results on the supercritical branching random walks

In the following, we consider the supercritical branching random walk, i.e.,

E [L] > 1.

See Figure 1.1.3 for an example.
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time

space

Figure 1.2: Two branching random walks realize on the BGW tree shown in Fig-
ure 1.1. The figure above represents the branching random walk with standard
Gaussian increments, where the depths are represented as displacement in time and
increments are represented as displacements in space. The figure below represents
the branching random walk with increments obeying the Bernoulli distribution
with parameter p = 0.5, where each edge remains if the value of the associat-
ing Bernouilli distribution equals 1 and is deleted if the value of the associating
Bernouilli distribution equals 0.
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We are in particular interesting in the following quantities: the maximum, the
partition function and the Gibbs measure. For — œ R, the partition function of a
branching random walk is defined as

Z—,N :=
X

|u|=N

e—Xu . (1.1.4)

For — œ R and N œ N, the Gibbs measure µ—,N of a branching random walk is a
(random) measure defined on tN such that for any u œ ˆtN ,

µ—,N (u) :=
Z—,N≠|u|

Z—,N
e—Xu . (1.1.5)

Asymptotics of the maximum

The asymptotics of the maximum of supercritical branching random walks has been
well-studied. Hammersley [110], Kingman [122] and Biggins [44] provided the first
order asymptotics of the maximum of the branching random walk. Their discovery
can be summarized as follows.

1
N

E


max
|u|=N

Xu

�
æ ÏÕ(—c), N æ Œ. (1.1.6)

In [3], Addario-Berry and Reed expanded the expectation of the maximum up to
O(1) precision. Combining with the result of Hammersley–Kingman–Biggins, we
now know that

E


max
|u|=N

Xu

�
= ÏÕ(—c)N ≠ 3

2—c
log N + O(1). (1.1.7)

In the same paper, Addario-Berry and Reed also established tightness of the max-
imum around its expectation. Around the same time, Hu and Shi established in
[114] a second order almost sure convergence theorem of the maximum. Among
other things, they showed that conditioned on survival,

lim
NæŒ

1
log N

max
|u|=N

Xu = 3
2—c

log N, in probability. (1.1.8)

Finally, Aïdékon showed in [6] that the maximum converges in distribution to a ran-
domly shifted Gumbel distribution. More precisely, define the so-called derivative
martingale.

D—,N :=
X

|u|=N

(Xu ≠ ÏÕ(—)N)e—Xu≠Ï(—)N (1.1.9)

It was proven in [45] that conditioned on survival, DN converges almost surely to
some limit DŒ which is a strictly positive on the survival set {|t| = Œ}. Aïdékon
showed in [6] that there exists a constant Cú œ (0, Œ) such that for any x œ R,

lim
NæŒ

P
✓

max
|u|=N

Xu Æ ÏÕ(—c)N ≠ 3
2—c

log N + x

◆
= E

⇥
e≠CúexDŒ

⇤
. (1.1.10)
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Asymptotics of the partition function

Instead of considering its definition as in (1.1.4) directly, the partition function
of a branching random walk is usually studied in its normalized form, called the
additive martingale. The additive martingale was introduced by Mandelbrot [135]
(see [138] for the English translation) in the context of multiplicative cascades and
by Kingman [122]. For any — œ R, the additive martingale is defined as follows.

W—,N :=
X

|u|=N

e—Xu≠Ï(—)N , N Ø 1.

This quantity provides the information of the typical behavior of a particle sampled
by the Gibbs measure µ—,N . Since W—,N is a positive martingale, it converges almost
surely to a limit W—,Œ, i.e.,

W—,N æ W—,Œ, almost surely N æ Œ.

In [47], Biggins characterized the phase transition of W—,Œ in terms of —. If
E [L log L] < Œ, conditioned on survival, we have almost surely the following.

(
W—,Œ > 0, — œ [0, —c),
W—,Œ = 0, — Ø —c.

(1.1.11)

The phase transition in (1.1.11) had already been proven by Kahane and Peyrière
[118] in the context of multiplicative cascade, and Lyons simplified Biggins’ proof
in [129].

Beyond the subcritical regime, it is natural to ask what the correct normaliza-
tion is such that the limit is non-trivial. In the critical case — = —c, Aïdékon and
Shi [7] showed that conditioned on survival,

Ô
NZ—c,N æ 1

‡

r
2
fi

D—c,Œ, in probability N æ Œ, (1.1.12)

where ‡ is a positive number defined by ‡2 := E
hP

|u|=1 X2
ue—Xu

i
, and they showed

that the mass of Z—c,N is mainly contributed by the particles of order
Ô

N . In the
supercritical regime — > —c, Madaule showed in Theorem 2.3 of his paper [130]
(see also Theorem 1 of the note [27] by Barral, Rhodes and Vargas) that

N3—/2Z—,N æ T—D—,Œ in law, N æ Œ (1.1.13)

where T— is a stable subordinator of index 1/— (See Page 7 of [41] for the definition
of a stable subordinator) independent of D—,Œ. Moreover, the mass of Z—,N is
mainly contributed by the particles of order [3

2 log N ≠ C, 3
2 log N + C] where C is

some large constant.
To understand the discontinuous transition of the size of the partition function,

Alberts and Ortgiese [10] considered the near critical regime where —N = — ± N≠”,
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for ” > 0, and they showed under strong assumptions that conditioned on survival,

W—N ,N =

8
>><

>>:

N2”≠3/2+o(1), —N = —c + N≠” with 0 < ” < 1/2,

N≠1/2+o(1), —N = —c ± N≠” with ” Ø 1/2,

exp
⇣

‡2
2 N1≠2”(1 + o(1))

⌘
, —N = —c ≠ N≠” with 0 < ” < 1/2.

(1.1.14)

On the other hand, Madaule [131] studied the near critical behavior of the additive
martingale W—,N as — ø —c , and he showed that conditioned on survival

W—,Œ
1 ≠ —

æ 2D—c,Œ in probability, N æ Œ. (1.1.15)

Subsequently, with Madaule’s result in mind, Pain [151] improved Alberts and
Ortgiese’s result to —N = —c ± 1/–N for any –N æ Œ, and the result can be found
in Theorem 1.1 in Pain’s paper.

Structures of the limiting Gibbs measure

The following questions concerning the Gibbs measure are particularly interested
in the literature.

1. What is the limit of the Gibbs measure in the weak topology of measure?

2. What does the sampled trajectory by the Gibbs measure look like?

3. If we sample two particles from two Gibbs measures independently, where do
the two lineages splits?

To present these results, we first introduce some notation. Let

T =
Œ[

n=0
Nn, ˆT = NN and T̄ = T fi ˆT . (1.1.16)

For any u œ T which is a finite sequence of integers, define the set (see Figure 1.4)

T̄ u = {v œ T̄ : v · u = u}. (1.1.17)

Denote by D([0, 1]) be the set of real càdlàg functions defined on [0, 1] and
Cb(D([0, 1])) the set of real, continuous and bounded function defined on D([0, 1]).
Define the rescaled trajectory of u’s lineage by

Xu :=
✓

1
‡

Ô
N

Xu[tN ], t œ [0, 1]
◆

. (1.1.18)

For — œ R and F œ Cb(D([0, 1])), define

µ—,N (F ) := 1
Z—,N

X

|u|=N

e—XuF (Xu) (1.1.19)

which encodes the information of the sampled trajectory by the Gibbs measure.
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Definition 1.1.2. For any Borel set A ™ [0, 1], the overlap distribution is defined
by

Ê—,N (A) := µ¢2
—,N

✓
|u · w|

N
œ A

◆
.

For any u œ T , the Boltzmann–Gibbs measure is the unique measure where its
value on the set T̄ u is given by

µ—,Œ(T̄ u) :=
W u

—,Œ
W—,Œ

e—Xu≠Ï(—)|u|,

where W u
—,Œ is the almost sure limit of

W u
—,N =

X

|w|=N

e—(Xuw≠Xu)≠Ï(—)N . (1.1.20)

In the subcritical regime — < —c, Chauvin and Rouault mentioned that one of the
consequences of (1.1.11) is that almost surely, the Gibbs measure µ—,N converges
weakly the Boltzmann–Gibbs measure. Combining with Theorem 6 in the paper
[128] of Liu and Rouault which said that for — < —c, the Boltzmann–Gibbs measure
is non-atomic on ˆT , Chauvin and Rouaoult showed that the overlap distribution
Ê—,N converges almost surely to the Dirac measure ”0. In Appendix C of his paper
[151], Pain showed that for all F œ Cb(D([0, 1])), conditioned on survival,

1
Z—,N

X

|u|=N

e—XuF

 
tNÏÕ(—) ≠ Xu[tn]

‡—

Ô
N

, t œ [0, 1]
!

æ E [F (B)] in probability, N æ Œ,

(1.1.21)

where B is the Brownian motion.
For the critical case — = —c, Theorem 1.2 of Madaule’s paper [131] showed that

for all F œ Cb(D([0, 1])), conditioned on survival,

µ—c,N (F ) æ E [F (M)] in probability, N æ Œ, (1.1.22)

where M is the Brownian meander of length 1. He also showed that (1.1.22) implies
that conditioned on survival, the overlap distribution Ê—c,N converges weakly to the
Dirac measure ”0 in probability. Pain [151] showed the same result for the near
critical regime: he showed that for any —N æ —c, conditioned on survival, the
overlap distribution converges to ”0 in probability.

For the supercritical regime — > —c, Chen, Madaule and Mallein [79] showed
that for all uniformly continuous F œ Cb(D([0, 1])),

µ—,N (F ) æ
ŒX

n=1
pnF (en). (1.1.23)

where (en)nØ1 is a sequence of i.i.d. normalized Brownian excursion and (pn)nØ1
is the atom of the Poisson–Dirichlet distribution with parameter (—c/—, 0). The
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convergence in (1.1.23) is expected to be true for all F œ Cb(D([0, 1])). On the
other hand, for — = Œ, Chen showed in [78] that for all F œ Cb(D([0, 1])), we have

Eú[µŒ,N (F )] æ E [F (e)] , N æ Œ, (1.1.24)

where e denotes the normalized Brownian excursion.
Since (1.1.23) was only proven for uniformly continuous F œ Cb(D([0, 1])), the

convergence in law of the overlap distribution Ê—,N cannot be derived from (1.1.23).
Nevertheless, Mallein [133] showed that conditioned on survival, the overlap distri-
bution converges in law to

(1 ≠ fi—)”0 + fi—”1, (1.1.25)

where fi— is the random variable defined by

fi— =
ŒX

n=1
p2

k, (1.1.26)

with (pn)nØ1 being the Poisson–Dirichlet distribution with parameter (—c/—, 0)
defined in Definition 5.1.3. Previously, Jagannath proved in [116] the same result
for binary branching random walk with standard Gaussian increments with an
alternative approach. Mallein’s result confirms the conjecture of Derrida and Spohn
in [91], where they conjectured that the overlap distribution of branching random
walks exhibits the 1-RSB.

Overlap distribution between two di�erent temperatures

There is also an interest to study the overlap distribution between two di�erent
temperatures for the hierarchical models, which originated from the study of chaos
problem in spin glass models. A thorough survey on this topic was made by Rizzo
in [162]. Some relevant results are also reviewed in Section 1.3.3 of this thesis.

For the discrete GFF, Pain and Zindy showed in [152] that mean of the overlap
distribution of the discrete GFF is strictly smaller than the one for the random
energy model. In a very recent article, Bonnefont showed in [51] the same result
for the branching Brownian motion. It is not yet clear whether this result can be
generalized to the branching random walks.

1.1.4 Other related models

In this section, we briefly mention a few models that are related to the branching
random walk. It is important to notice that the list is far from being comprehen-
sive, as similar models have been reinvented and rediscovered by several times in
history for various motivations. We refer to Biggins [43] for a list of these di�erent
traditions that are linked to branching random walks.

Branching Brownian motion

Branching Brownian motions (BBM) are the continuum counterpart of branching
random walks which can be described informally as follows. At t = 0, a single
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particle starts at the origin and moves as a one-dimensional Brownian motion until
an exponential clock with parameter 1 rings. Then the particle branches into
two children that move independently as one-dimensional Brownian motions and
branch according to two independent exponential clocks with parameters 1. The
definition then goes by induction. Let N(t) be the number of particles at time t,
and let X1(t), . . . , XN(t)(t) be the positions of the particles at time t. Consider the
following FKPP equation with the Heaviside initial condition.

8
<

:
ˆtu(t, x) = 1

2ˆxxu(t, x) + u(t, x)2 ≠ u(t, x), (t, x) œ R+ ◊ R,

u(0, x) = 1{x Ø 0}, x œ R.
(1.1.27)

The FKPP equation was studied by Fisher [100] and Kolmogorov, Petrovskii and
Piskunov [124], and McKean [140] observed that the distribution function of the
maximum of the BBM solves the FKPP equation (1.1.27), i.e.,

u(t, x) = P
✓

max
1ÆiÆN(t)

Xi(t) Æ x

◆
. (1.1.28)

By leveraging on McKean’s observation, Bramson [57, 56] proved that there exists
a constant C > 0 such that the maximum of the BBM satisfies the following
asymptotic expansion

max
1ÆiÆN(t)

Xi(t) =
Ô

2t ≠ 3
2
Ô

2
log t + C + o(1), t æ Œ. (1.1.29)

In Section 1.1 of his lecture note [168], Shi briefly explained the traveling wave
solution of (1.1.27) and its probabilistic interpretation. Berestycki’s lecture note
[40] gives a more detailed treatment between the BBM and the FKPP equation.

Multiplicative cascade

The introduction of multiplicative cascades by Mandelbrot [135, 136, 137] was
motivated by the study of intermittent turbulence. These cascades serve as an
equivalent formulation to branching random walks, which we illustrate with a one-
dimensional example. A multiplicative cascade on the interval [0, 1] is a sequence of
measures (µN )N Ø 0 defined recursively: we start with µ0 as the Lebesgue measure.
For all N Ø 1, for every dyadic interval I of length 2≠N , the restriction of µN to I is
defined by YIµN ≠ 1, where the random variables (YI), indexed by dyadic interval
I, are i.i.d. copies of a positive random variable Y with mean 1. This is equivalent
to the exponential of a branching random walk, where each individual gives birth
to 2 o�spring with independent increments distributed as log Y . The multiplicative
cascades have been the subject of a separate literature. For more information on
this topic, we refer the reader to the survey [25] by Barral and Mandelbrot.

Two-dimensional discrete Gaussian free field

Let DN be a subset of N≠1Z2. Denote by (zn)nØ0 the simple random walk in
N≠1Z2 starting at x œ N≠1Z2 with law denoted by Px and Ex the corresponding
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expectation. Let · := {n Ø 0 : Xn œ DN } be the first exit time of the random walk
from DN . The Green’s function is a function GN defined on DN ◊ DN by

GN (x, y) :=

8
>><

>>:

Ex

"
·≠1X

k=0
1{zk = y}

#
, x, y œ DN

0, otherwise.

(1.1.30)

The two-dimensional discrete Gaussian free field (GFF) on DN is a centered Gaus-
sian process (�x)xœDN with covariance function given by the Green’s function
GN defined in (1.1.30). The two-dimensional GFF belongs to the family of log-
correlated Gaussian field because for N su�ciently large and for x, y œ DN away
from the boundary, one has GN (x, y) ¥ 2

fi log N
|x≠y| . The two-dimensional GFF

is known to satisfy a domain Markov property, which means that on a subset
DÕ

N µ DN , the conditional law of the field (�x)xœDÕ
N

given (�x)xœDN \DÕ
N

is still a
GFF with boundary condition on the ˆDÕ

N (in fact, this property is true in any
dimension). The domain Markov property allows us to compare the GFF with the
branching random walk via the following construction: let DN be a cube. Decom-
pose DN into 4 smaller cubes separated by a cross-shaped domain. Then one can
reconstruct the original GFF by the date on the smaller cubes approximately. This
construction has led to a huge success of understanding the two-dimensional GFF,
and we refer the readers to the thesis [150] of Pain that provided a comprehensive
survey of the recent advances in this line of research.

1.2 Derrida’s random energy model and its generaliza-
tions

In the 1980s, Derrida and his collaborators introduced a series of models that
simplify mean-field spin glasses but still capture some essential properties of the
mean-field models. These models are sometime referred to as Derrida’s random
energy model and its generalization or spin glasses in the Derrida class. The goal
of this section is to collect the known mathematical results of these models, and
we also provide the relevant historical backgrounds of these models. We focus on
the random energy model (REM), the generalized random energy model (GREM),
and the continuous random energy model (CREM).

1.2.1 Random energy model

The Random Energy Model (REM) is a simple spin glass model, first introduced by
Derrida in 1980 in a series of two papers [86, 90]. The REM can be interpreted as
a formal limit of the so-called pure p-spin model, with the SK model corresponding
to p = 2. Mathematically, the REM, denoted as (Xi)2N

i=1, consists of 2N i.i.d.
random variables with Gaussian distribution N (0, N). Despite its simplicity, the
phase transition that the REM embodies qualitatively some interesting properties
of spin glasses. This can be observed from the free energy and overlap of the REM.
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Firstly, the REM free energy f— exhibits a phase transition at —c =
Ô

2 log 2.

f— := lim
NæŒ

1
N

E [log Z—,N ] =

8
>>><

>>>:

log 2 + —2

2 , — œ [0,
Ô

2 log 2],

Ô
2 log 2—, — Ø

Ô
2 log 2,

(1.2.1)

where

Z—,N :=
2NX

i=1
exp(—Xi) (1.2.2)

is called the partition function of the REM. Note that for — Ø —c, the quantity
f—/— remains constant. This phenomenon is referred to in the physics literature as
the freezing phase transition in the low temperature regime, which is a signature
of spin glass models.

Secondly, the REM overlap experiences the so-called 1-RSB phase transition at
—c =

Ô
2 log 2, which we will describe below. The Gibbs measure of the REM is

defined as

µ—,N (i) = e—Xi

Z—,N
, ’i = 1, . . . , 2N . (1.2.3)

The overlap of the REM is defined as qN (i, j) := 1i=j . The CDF the limiting
overlap distribution of the REM is a function –REM

— : [0, 1] æ [0, 1] defined as

–REM
— (t) = lim

NæŒ
E

2

4
2NX

i=1

2NX

j=1
µ—,N (i)µ—,N (j)1qN (i,j)Æt

3

5 .

The function –REM
— exhibits the following phase transition: for all — < —c, we have

–REM
— © 1. For all — Ø —c, we have

–REM
— (t) =

8
<

:

—c

—
, t œ [0, 1),

1, t = 1.
(1.2.4)

Intuitively, it means that the mass of the overlap distribution goes from concen-
trating at 0 to concentrating two points at 0 and 1. This means that the REM is
a 1-RSB type model in the physicists’ terminology.

1.2.2 Generalized random energy model

While the REM demonstrates several interesting properties, it does not replicate
the ultrametric structure predicted by Parisi’s ansatz in [158, 157]. Consequently,
Derrida proposed the generalized random energy model (GREM) in [85] and studied
subsequently the model with Gardner in [87, 88].

Formally, the GREM is defined as follows. Let (–i)n
i=1 be a sequence of non-

negative numbers such that
Qn

i=1 –i = 2, and let Tn,N be a finite tree of depth
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n rooted at ? such that each vertex with depth k œ J0, n ≠ 1K has –N
k+1 vertices.

Suppose that A : [0, 1] æ [0, 1] is a step function defined as

A(t) = a1 + · · · + ak, ’t œ [log2(–1 · · · –k≠1), log2(–1 · · · –k)],

where (ai)k
i=1 is sequence of non-negative numbers such that a1+· · ·+ak = 1. Then

the GREM with n hierarchy is a centered Gaussian process with the covariance
function

E [XuXw] = N · A

✓
|u · w|

N

◆
, ’u, w œ Tn,N . (1.2.5)

See Figure 1.5 for a schematic illustration of the model.
Many fundamental properties of the GREM are known. For example, Capoc-

accia, Cassandro and Picco computed rigorously in [59] an explicit formula of the
GREM free energy in the 1980s. In the early 2000s, Bovier and Kurkova [53] made
a fundamental contribution of understanding this model. We only mention part of
their discoveries that are relevant to the thesis.

1. They characterized the fluctuation of the GREM free energy.

2. They characterized the limit of the GREM Gibbs measure as a Ruelle prob-
ability cascade, confirming Ruelle’s observation in [165].

3. They provided a second way to characterize the Gibbs measure at the limit.
Namely, they showed that the limit of the GREM Gibbs measure is character-
ized by the limiting overlap distribution and the so-called Ghirlanda–Guerra
identities.

The Ruelle probability cascade is a hierarchical Poisson process introduced by
Ruelle in [165] and then been further studied by Bolthausen and Sznitman in [49].
The definition of this object can be found in Definition 5.1.3.

One of the key properties of models in the Derrida class is that the Gibbs
measure of these models is identical, up to a certain degree, to the limit of the
SK Gibbs measure. This property was already predicted by several physicists. To
name a few, Derrida and Toulouse argued in [89] that the Gibbs weights of the
REM distribute identically in the thermodynamic limit as the Gibbs weights of the
pure states in the SK model, and they showed the pure states of the SK model
are organized in an ultrametric structure, and this result was previous argued by
Mézard et al. in [142] using the replica method. Combining these evidences with
Ruelle’s observation, one should conjecture that one should be able to describe the
limiting SK model as a Ruelle probability cascade. While nowadays this has been
proven rigorously, the conjecture was only been settled recently by the seminal
paper [155] of Panchenko in 2013. We refer to the book [156] of Panchenko for a
complete version of this story.

1.2.3 Continuous random energy model

In companion of [53], Bovier and Kurkova introduced and studied in [54] and [55]
the continuous random energy model (CREM). Formally, the CREM is defined as
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follows. Let A : [0, 1] æ [0, 1] be a non-decreasing function with A(0) = 0 and
A(1) = 1. The CREM is a centered Gaussian process indexed by a binary tree
with the covariance function

E [XuXw] = NA

✓
|u · w|

N

◆
, u, w œ TN .

Compared to the GREM, the number of hierarchies of the CREM grows is propor-
tional to N which grows to infinity, while the number of hierarchies of the GREM
stays finite as N æ Œ. See Figure 1.6 for an illustration of the covariance function.

We summarize the discoveries that Bovier and Kurkova have made in [54, 55].

1. They provided an explicit formula of the CREM free energy: let â be the
right derivative of the concave hull Â of A (see Figure 1.6). They showed
that the CREM free energy F— admits the following expression.

F— := lim
NæŒ

1
N

E [log Z—,N ] =
Z 1

0
f(—

p
â(s)) ds , (3.1.4)

where Z—,N is the partition function defined as

Z—,N :=
X

|u|=N

e—Xu ,

and the function f is the REM free energy defined in (1.2.1). However, they
did not have results on the fluctuation of the CREM free energy.

2. They showed that the limit of the CREM Gibbs measure is characterized by
the limiting overlap distribution and the so-called Ghirlanda–Guerra identi-
ties.

3. While we do not need the following result, we want to mention that in [55],
Bovier and Kurkova further expressed the structure of the limiting CREM
Gibbs measure via the genealogy of the so-called Neveu’s continuous state
branching process (CSBP) with an appropriate time change. It was proven
by Bertoin and Le Gall [42] that the genealogy of Neveu’s CSBP is the
Bolthausen–Sznitman coalescent in [49].

1.2.4 Maximum asymptotics of time-inhomogeneous branching
random walks

The GREM and the CREM belong to a larger class of models, called the time-
inhomogeneous branching random walks where the law of increments is no longer
homogeneous over the depth on the genealogical tree. Recently, Mallein studied
in [134] the asymptotic of the maximum for the time-inhomogeneous branching
random walk. He proved that the first term of order N and the coe�cient is given by
an optimization problem, whereas the second term is of order N1/3, in contrast with
the homogeneous case. Maillard and Zeitouni [132] also drew similar conclusions
for the branching Brownian motion with inhomogeneous variance, which is the
continuum counterpart of the time-inhomogeneous branching random walk.
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1.3 Mean-field spin glasses

While the mathematical tools to approach Derrida’s models are di�erent the ones
for the mean-field models, the introduction of Derrida’s models originates in the
study of mean-field spin glass models. Therefore, we provide the historical context
of the development of mean-field spin glass models.

1.3.1 Edwards–Anderson model

The term “spin glass” was probably first coined by Anderson in 1970 [14] where
he attempted to explain theoretically the magnetism of Cu-Mn alloys1. Later in
1975, Edwards and Anderson formulated the Edwards–Anderson model in their
influential paper [96]. A formulation of their model can be described as follows:
given a finite graph G = (V, E)2, let J = (Je)eœE be a collection of i.i.d. random
variables indexed by the edges. The Hamiltonian of the Edwards–Anderson model
is a random function H(‡) : {≠1, +1}V æ R defined as

H(‡) =
X

{i,j}œE

Jij‡i‡j .

Despite its seemingly simple formulation, the EA model continues to pose chal-
lenges both in mathematics and physics. The open problems and possible ways
to attack these challenges can be found in [148] and the references therein. Very
recently, Chatterjee [62] showed that the EA model has certain glassy behaviors at
zero temperature, but the whole picture regarding the conjectured glassy phase of
the EA model still widely open.

1.3.2 Sherrington–Kirkpatrick model

In contrast to the EA model, the mean-field spin glass models – which are models
with complete underlying graph G – has witnessed several breakthroughs in the last
decades. The most famous mean-field model might be the Sherrington–Kirkpatrick
(SK) model [167] introduced in 1975. In the following, we will mainly focus on the
SK model. The books by Talagrand [179, 180] and Panchenko [156] are excellent
sources of the SK model.

Fixing N an positive integer, the Hamiltonian of the SK model H(‡) :
{≠1, +1}N æ R is defined as

HN (‡) = 1Ô
N

NX

{i,j=1}

Jij‡i‡j ,

1However, we have to point out that there are earlier prototypes before Anderson. For example,
Marshall proposed the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction to explain some
exotic properties of the Cu-Mn and other alloys observed by experimental physicists. See Marshall
[139] and the references therein.

2Actually, Edwards and Anderson considered the (inhomogeneous) Erd�s-Rényi graph instead
of a deterministic one.
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where {Jij}N
i=1,j=1 is a collection of i.i.d. standard Gaussian random variables.

Therefore, the Hamiltonian (HN (‡))‡œ{≠1,+1}N forms a centered Gaussian process
with covariance function

E
⇥
HN (‡1)HN (‡2)

⇤
= N›(R1,2), ‡1, ‡2 œ {≠1, +1}N

where ›(x) = x2 and R1,2 = 1
N

PN
i=1 ‡1

i ‡2
i . The quantity R1,2 is the called the

overlap of two configurations ‡1 and ‡2. The free energy of the SK model is
defined to be

F— = lim
NæŒ

1
N

E [log Z—,N ] ,

where Z—,N is the partition function of the SK model which equals

Z—,N =
X

‡œ{≠1,+1}N

exp(—HN (‡)).

Finally, the Gibbs measure of the SK model is defined as

G—,N (‡) = 1
Z—,N

exp(—HN (‡)), ‡ œ {≠1, +1}N .

The free energy F— is a central theme of the study of mean-field spin glass.
First of all, the free energy is naturally connect to the asymptotic of the maximum
E [max‡ HN (‡)] by taking — æ Œ. Secondly, it is known that the free energy
encodes the geometry of the Gibbs measure. To illustrate this, we introduce the
notion of overlap distribution which is the law of R1,2 = 1

N

PN
i=1 ‡1

i ‡2
i of two spin

configurations ‡1, ‡2 œ {≠1, +1}N sampled independently from the Gibbs measure
G—,N . It is known that the when — is small, the overlap concentrates on one
single value, while it can takes several values when — is large enough. If the limit
of the overlap distribution is supported on k values, we say the model exhibits
k + 1 replica symmetry breaking (k + 1-RSB), and if the support of the limiting
overlap distribution contains an interval, we say that the model exhibits full replica
symmetry breaking (full-RSB).

Assertions from physicists. In the same paper [167] where the SK model was
introduced, Sherrington and Kirkpatrick proposed a formula of the free energy F—

based on the replica method, while they also observed that their replica symmetric
solution implied the entropy became negative for — large, which is un-physical.
Later, in two consecutive papers [158, 157] in 1979 and 1980, Parisi proposed a
replica symmetric breaking solution also via the replica approach, which turned
out to be the correct one. In Section V of scientific background provided in [182],
the Nobel Prize Committee 2021 gave an overview of Parisi’s studies of spin glass
and its applications and implications in other disordered complex systems.

Mathematical results for the SK model. For clarity, we summarize Parisi’s
prediction for the SK model mathematically in the following conjecture, which was
formulated in [21].
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Conjecture 1.3.1. Parisi predicted for the SK model that

1. The free energy F— is given by the variational principle

F— = inf{P—(–) : – is a CDF on [0, 1]}, a.s., (1.3.1)

where P– is known as the Parisi functional. The measure corresponds to the
minimizer (1.3.1) is called the Parisi measure.

2. The Gibbs measure is asymptotically ultrametric [142].

3. For — su�ciently large, the SK model exhibits full-RSB.

The first two points of Conjecture 1.3.1 were proven. The first point in Con-
jecture 1.3.1 was verified for the SK model by Talagrand [181] in 2006 following
the work of Guerra [109]. The second point in Conjecture 1.3.1 was established
for the SK model by Panchenko [155] in 2012. Later Panchenko extended in [154]
the Parisi formula for a larger class of spin glass models for which the ultrametric
property holds. While the third point of Conjecture 1.3.1 is not yet being estab-
lished, a very recently paper by Au�nger, Chen and Zeng [22] showed that the
SK model is of Œ-RSB at zero temperature (— = Œ), which is a first step toward
proving Point 3 in Conjecture 1.3.1.

1.3.3 Chaos in mean-field spin glasses

As mentioned in Section 1.3.1, while the study of mean-field spin glasses have
received huge progresses, EA models remains challenging to physicists and mathe-
maticians up to today. In the late 1980s, Fisher and Huse [99] and Bray and Moore
[58] proposed a framework to study the glassy nature of EA models through es-
tablishing the occurrence of chaos. Chaos phenomena in the context of disordered
systems mean that the energy landscape is sensitive to small perturbations, and
they are studies mainly from the two perspectives: a) the temperature chaos, where
the energy landscape is sensitive to a small perturbation of the temperature. b)
the disorder chaos, where the landscape energy is sensitive to a small perturbation
of the disorder.

Chaos in EA models. Chatterjee showed in [61, 64] that the edge overlap
of the EA model does not exhibit the disorder chaos in the sense that the bond
overlap does not drop to 0 under a small disorder perturbation. His result was later
generalized by Arguin and Hanson in [16] for non-Gaussian settings. However, in
a very recent article, Chatterjee [62], among other other things, proved that the
bond edge drops sharply to a value strictly less than 1. Moreover, he showed that,
under certain conditions, the site overlap drops to 0 with high probability under
small disorder perturbation.

Disorder chaos in mean-field models. Back to mean-field models. At positive
temperature, Chatterjee [61] proved that the SK model exhibits disorder chaos.
Subsequently, Chen [68] show that the SK model also exhibits disorder chaos even
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with the presence of external field, and he extended these results in [69] and another
joint work [71] with Panchenko to some other mixed p-spin models. In [70], Chen,
Handschy and Lerman established disorder chaos for even p-spin models, based on
the framework developed by Chen in [69]. Very recently, Eldan [97] proposed a
simple approach to establish disorder chaos for mixed p-spin models.

For the spherical case, Chen, Hsieh, Hwang and Sheu [77] showed that the
spherical mixed even p-spin models exhibit disorder chaos. In [75], Chen and Sen
studied the ground state energy of mixed even p-spin models. In particular, they
proved without external fields, the ground state energy of mixed even p-spin models
exhibit disorder chaos in the sense that the overlap between ground states of two
independent perturbed mixed even p-spin models converges to 0 in probability.

Temperature chaos in mean-field models. The first mathematically rigorous
results of temperature chaos for mean-field models were established by Chen [67]
and Chen and Panchenko [71]. Subsequently, Panchenko [153] extended these
results and proved the occurrence of temperature chaos for generic mixed even
p-spin models.

For the spherical case, temperature chaos was proven to be absent for pure
spherical glasses at su�ciently low temperature by Subag [177]. In [72], Chen
and Panchenko presented some examples of spherical mixed p-spin models where
disorder chaos occurs. Finally, in [17], Arous, Subag and Zeitouni strengthened
Chen and Panchenko’s result and established temperature chaos for mixed spherical
p-spin models at low temperature.

1.3.4 Thouless–Anderson–Palmer approach

In a quick succession of Sherrington and Kirkpatrick’s work [167], Thouless, An-
derson and Palmer [183] proposed another method to calculate the free energy and
to avoid the negative entropy problem arise from [167], which is known as the TAP
approach nowadays.

To present their result, let us introduce the following relevant notions. Given
m œ [≠1, 1]N , the so-called TAP correction is defined as

]TAP—(m) = ≠ 1
N

NX

i=1

✓
1 + mi

2 log 1 + mi

2 + 1 ≠ mi

2 log 1 ≠ mi

2

◆
+ —2

2

 
1 ≠ ÎmÎ2

2
N

!2

.

(1.3.2)

Thouless, Anderson and Palmer suggested that the SK free energy satisfies asymp-
totically the following

FN (—) ¥ max
mœ[≠1,1]N

⇢
—

N
HN (m) + ]TAP—(µm)

�
. (1.3.3)

Therefore, the SK free energy can be calculated by finding the critical points of
the expression at the right-handed side of (1.3.3). By di�erentiation, one can show
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that any critical point m = (m1, . . . , mN ) œ [≠1, 1]N satisfies

mi = tanh
 

(—ÒHN (m))i ≠ 2—2mi

 
1 ≠ ÎmÎ2

2
N

!!
, i œ J1, NK. (1.3.4)

The high-dimensional system of equations in (1.3.4) is known to be the TAP equa-
tions, and there are currently two approaches to solve (1.3.4). The first approach
is to take

m = (È‡1Í, . . . , È‡N Í), where È‡iÍ =
X

|‡|=N

GN (‡)‡i, i œ J1, NK.

This approaches was done by Talagrand (Theorem 1.7.7 in [179]) and Chatterjee
[63] which holds for su�ciently high temperature, or for — su�ciently small. The
second approach was done by Bolthausen [50] where he introduced an iteration
scheme that solves (1.3.4) asymptotically in the high whole temperature regime.
The high temperature regime3 can be characterized by the following replica sym-
metric condition, i.e., the high temperature regime consists of any — > 0 such
that

lim
NæŒ

E

2

4
X

|‡1|=N,|‡2|=N

G—,N (‡1)G—,N (‡2)(R1,2 ≠ q)2

3

5 = 0,

where q is the unique constant satisfying

q = E
⇥
tanh2(—z

Ô
q)
⇤

, z ≥ N (0, 1).

Bolthausen’s scheme is now known as an example of the approximate message
passing (AMP) type algorithms, which first appeared in the context of Bayesian
inference (see Kabashima [117]) and in the context of compressed sensing (see
Donoho, Maleki and Montanari [94]). The AMP type algorithms have been widely
applied to solve optimization problem for high-dimensional random functions in-
spired from the spin glasses literature, and we provide a survey of this direction in
Section 1.4.

Recently, Au�nger and Jagannath [23] showed that, for generic mixed p-spin
glasses including the SK model, under a technical assumption that is conjectured
to be true for a wide range of spin glass models, the TAP equation holds asymp-
totically in distribution.

Subag recently developed in [177] a generalized TAP approach to understand
the structure of the Gibbs measure of the so-called pure spherical spin glass. This
approach establishes a description of the free energy similar to that of (1.3.3).
Subag and his collaborators have since extended this approach to several mean-
field spin glasses, including the SK model, in a series of subsequent works [172,
73, 74, 176, 173, 174]. As explained in the introduction of [73], by choosing an

3In fact, Almeida and Thouless [12] conjectured that the high temperature regime can also
be characterized by the so-called AT-line condition. While it has been shown that the replica
symmetric condition, the converse direction has not been proven yet. See the introduction of the
paper [76] by Chen and Tang for further discussions.
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alternative TAP correction TAP—(m), for any q œ [0, 1) belongs to the support of
the Parisi measure which appeard in 1.3.1, one has for large N that

FN (—) ¥ max
mœRN :ÎmÎ2

2=Nq

⇢
—

N
HN (m) + TAP—(µm)

�
. (1.3.5)

The maximizers of the expression in the right-handed side of (1.3.5) carry non-
trivial information of the structure of the Gibbs measure, which we explain as
follows. Let

Eı := lim
NæŒ

1
N

max
‡œ{≠1,+1}N

HN (‡) = lim
—æŒ

F—

—
. (1.3.6)

Au�nger and Chen showed in [19] that for any E œ (0, Eı), if we choose — such
that E = F Õ

—, then the cardinality of the corresponding approximate level set can
be expressed via the free energy as follows.

lim
NæŒ

1
N

log #
⇢

‡ œ {≠1, +1}N :
����

1
N

HN (‡) ≠ E

���� < Á

�
= F— ≠ —F Õ

— + O(Á).

(1.3.7)

Moreover, the Gibbs measure concentrates on the same set in the following sense.

lim
NæŒ

X

‡œ{≠1,+1}N

G—,N (‡)
⇢

‡ œ {≠1, +1}N :
����

1
N

HN (‡) ≠ E

���� < Á

�
= 1, almost surely.

(1.3.8)

Then, if we choose m to be a maximizer of the expression in the right-handed side
of (1.3.5), then for small Á > 0, the narrow band defined as

B(m, Á) :=
n

‡ œ {≠1, +1}N :
���‡ · m ≠ ÎmÎ2

2

��� = |m · (‡ ≠ m)| < ÁN
o

(1.3.9)

contains a large number of points in the approximate level set. Moreover, with
high probability, the property for narrow bands can be applied simultaneously to
all maximizers m.

Energy landscape and the TAP representation

Recall that Eı is defined in (1.3.6) as the maximum of the Hamiltonian, or the
ground state energy ignoring the minus sign. Physicists predicted that (see [143])
that there are exponentially many spin configurations ‡ that reaches the ground
state energy approximately, i.e., 1

N HN (‡) ¥ Eı. Moreover, these maximizers are
nearly orthogonal to each other. These predictions were proven rigorously for the
mixed even p-spin models (with SK corresponding to p = 2) by Chen, Handschy and
Lerman in [70]. Their results improved previous results by Chatterjee in [61] and
result by Ding, Eldan and Zhai in [93], where the former established a logarithmic
size of the number of the orthogonal peaks and the latter proved a polynomial size.
On the other hand, for the spherical spin glasses, similar results on the highest
critical points are known for the pure spin glasses [18, 82, 83, 175, 178], and some
mixed spin glasses that are close to being pure [18, 17].
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The TAP variational principle provided an intriguing description of the energy
landscape at — = Œ. Namely, let TAPŒ be a functional such that a large amount
of maximizers that solves the following variational principle

Eı ¥ max
mœRN :ÎmÎ2

2=Nq

⇢
1
N

HN (m) + TAPŒ(µm)
�

(1.3.10)

can be arranged in a certain tree structure that is rooted at the origin and has
the spin configurations as leaves. Moreover, the functional TAPŒ is constant for
µ‡ on the configuration space, so the leaves are the maximizers of the variational
principle (1.3.10). This picture was proven to be corrected for the spherical spin
glasses by Subag in [172], and very recently for the p-spin models (including the
SK model) by Chen, Panchenko and Subag in [74]. When full-RSB occurs, i.e.,
the support of the Parisi measure is equal to the interval [0, qEA] as — æ Œ,
the normalized radii ÎmÎ/

Ô
N of the inner vertices of the tree, which are points

m œ (≠1, 1)N , are asymptotically dense in [0, 1] and the tree is asymptotically
continuous in an appropriate sense, and this has deep connection with the recent
progress of the optimization problem in mean-field spin glasses. We direct the
readers to Section 1.4.2 for further discussion.

Computing the free energy within the TAP framework

In this section, we primarily focus on the relationship between the TAP approach
and the structure of the limiting Gibbs measure. However, it is important to note
that the original paper by Thouless, Anderson, and Palmer [183] sparked other
research directions as well. In particular, there have been e�orts to compute the
free energy for mean-field models using Thouless et al.’s original idea, without
resorting to Parisi’s ansatz. To our knowledge, there are currently only two mean-
field spin glass models where this aim has been fully reached. The first one is the
spherical SK model achieved by Belius and Kistler in [32], and the second one is
the vector spin version of the spherical SK model, where the result was achieved
very recently by Belius, Fröber and Ko in [31]. Also in a recent article [30], Belius
provided an upper bound for the free energy of the SK model and its generalizations
solely by the TAP approach, and he expected that the bound should be tight to
leading order at high temperature and should be non-trivial in the presence of an
external field.

1.4 Algorithmic perspectives of spin glasses

Disordered systems have been studied from the algorithmic points of view since
the early days of the field. Their complicated energy landscape serve as an ideal
playground for researchers to study the properties that prohibit computational
problems to be solved by polynomial-time algorithms. In the context of mean-
field spin glasses, a classical algorithm might be the Glauber dynamics, or the
Langevin dynamics for the continuum models. One of the original motivations to
introduce these dynamics was to observe the glassy phase transition by studying
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its fast-to-slow convergence to equilibrium, without passing to Parisi’s ansatz. The
transition from fast convergence to slow convergence is however itself an intriguing
computational problem, and has witnessed several progress recently. In recent
years, the AMP algorithm, inspired by Bolthausen’s solution to the TAP equation,
has been a proven to be the optimal algorithm to find the maximum for several
mean-field models. Finally, we present the optimization problem for the CREM,
which inspired the work in Chapter 2 and Chapter 3.

1.4.1 Glauber dynamics on mean-field spin glasses

One of the original motivations for introducing Glauber dynamics (or the Langevin
dynamics) to spin glasses was to observe the glass phase transition. This approach
focused on studying the dynamics’ phase transition in terms of its convergence
speed to equilibrium, thus bypassing the need for Parisi’s ansatz. Early work on
this topic can be found in Sherrington and Kirkpatrick’s study [123], or in a more
pedagogical presentation in [143]. According to physics literature (see [169, 143]),
fast convergence to the Gibbs measure is expected throughout the high-temperature
regime where — < 1. Over time, this line of research attracted further attention
as a toy model for sampling from complicated probability distributions — here,
the Gibbs measure of the underlying model — and as a way to explore how the
hardness transition occurs. In this section, we survey early attempts to understand
these phenomena where researchers opt for the so-called soft spin glasses, and also
present recent advances made on the original mean-field models.

Langevin dynamics on soft spin models. The relaxational dynamics was
proposed by the two physicists Sompolinsky and Zippelius [170] in 1982 where
they introduced the soft SK model. Roughly speaking, in the soft SK model,
the spins are continuous variables applied to a double well symmetric potential
achieving global minimum at ±1; moreover, each spin evolves in time according to
a Langevin equation. This Langevin dynamics is called the relaxational dynamics.

In the late 1990s, Ben Arous and Guionnet studied mathematically the
Langevin dynamics of the soft SK model in a series of papers [34, 35, 36] where
they proved convergence and large deviation results as well as propagation of chaos.
Later along with Dembo, they studied in [33] a mathematically more tractable
model, the soft spherical SK (soft SSK) model, where the soft spins now belong to
the N -dimensional sphere SN with radius

Ô
N . Among other things, they showed

that the SSK model exhibits a dynamical phase transition at the static inverse tem-
perature —c, and a aging phenomenon occurs at the supercritical regime. Namely,
when the relaxational dynamics starts from a i.i.d. initial condition, the limiting
empirical covariance K(s, t) — a quantity that measures the correlations of soft
spins at two di�erent times s and t at the thermal dynamical limit (the number
of spins N æ Œ) — has the following phase transition: a) if — < —c, the limiting
empirical covariance decays exponentially to 0 for all s and t. b) if — = —c, then
limiting empirical covariance decays polynomially to 0 when t ≠ s æ Œ. c) if
— > —c and t ∫ s ∫ 1, then K(s, t)(t/s)3/4 œ (0, Œ) is bounded away from 0 and
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Œ. In particular, K(s, t) converges to 0 if and only if t/s æ Œ. Result (c) is called
the aging phenomenon: the correlation between the spin configuration at time s

and the spin configuration at time t does not converge to 0 when both s and t ≠ s

converge to 0 but t ≠ s is not large enough compared to s.

Recent advances in Glauber dynamics. Recently, it was shown by Bauer-
schmidt and Bodineau in [28] and by Eldan, Koehler and Zeitouni in [98] that fast
mixing occurs when — < 1/4. Moreover, Eldan et al. showed in [98] that the Gibbs
measure satisfies a Poincaré inequality for the Dirichlet form of Glauber dynam-
ics, so the Glauber dynamics mixes in O(N2) spin flips in total variation distance.
Subsequently, this estimate was improved to O(N log N) by Anari et al. in [13].

For the spherical spin glasses, Gheissari and Jagannath demonstrated in [108]
that the Langevin dynamics (a continuum version of the Glauber dynamics) has
a polynomial spectral gap for small values of —. On the other hand, Ben Arous
and Jagannath proved in [37] that for su�ciently large —, the mixing time of the
Glauber dynamics (as well as the Langevin dynamics) becomes exponentially large
for both Ising and spherical spin glasses.

A non MCMC algorithm outperforming the Glauber dynamics. The
Glauber dynamics and the Langevin dynamics belong the family of MCMC al-
gorithms. In [9], Alaoui, Montanari and Sellke proposed an non MCMC type
algorithm based on the stochastic localization for the SK model. They showed
that for — < 1/2, there exists an algorithm with complexity O(N2) with output
law being close to the Gibbs measure in normalized Wasserstein distance. More-
over, for — > 1, they established a hardness result for the stable algorithms, which
means that the output law of these algorithms are stable under small random per-
turbation of the defining matrix of the SK model. The hardness result for — > 1
was proven by utilizing the disorder chaos, which means for them that Wasserstein
distance between the Gibbs measure and the perturbed Gibbs measure is bounded
from below by a positive constant for arbitrary small random perturbation.

1.4.2 Optimization problem for mean-field spin glasses

Since the late 1980s, optimization problems in disordered systems have been studied
by researchers as paradigmatic examples to investigate why some computational
problems cannot be solved using polynomial-time algorithms. Over time, this area
of research has grown into a vast field that continues to expand. We do not intend
to provide a comprehensive overview of this field here, and direct interested readers
to the survey by Gamarnik, Moore, and Zdeborova [104] for more details.

In recent years, the so-called overlap gap property (OGP) has been identified
as a significant barrier in the development of polynomial-time algorithms for op-
timization problems in disordered systems. The OGP property stems from the
clustering properties observed by the physicists in [1, 141] in the context of ran-
dom constraint satisfaction problems. We refer readers to [104] and the references
therein. Moving forward, we will limit our focus to mean-field spin glasses.
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In the context of mean-field spin glasses, the OGP can be informally described
as the existence of an interval [‹1, ‹2] µ [0, 1] such that, with high probability
and for su�ciently large N , any two near-ground state spin configurations ‡1 and
‡2 exhibit an overlap R1,2 that does not fall within the interval [‹1, ‹2]. For a
more rigorous definition of the OGP, we direct readers to Theorem 1 in [104]. By
this definition, one can see that if a spin glass model exhibits the replica symmetric
property or the full-RSB property, then the model does not exhibit the OGP; while
if the model is k-RSB, with k œ N, then the model exhibits the OGP.

For the Ising and spherical p-spin models, where p Ø 4 is an even number, the
OGP is known to hold. This was demonstrated in the Ising case by Theorem 2
of Chen, Gamarnik, Panchenko and Rahman’s paper [20], while the spherical case
can be deduced from Theorem 6 in the paper [20] by Au�nger and Chen.

It is conjectured that the OGP should be true for all p Ø 3. In contrast,
the OGP is conjectured to be absent for the SK model, which corresponds to the
full-RSB conjecture for the SK model at — = Œ. Under the assumption that
the conjecture holds, Montanari has shown in [145] that an approximate message
passing (AMP) algorithm can find a near-ground state in quadratic time. For the
spherical model with p = 2, the OGP does not hold as the optimization problem
trivially corresponds to optimizing a quadratic form over the sphere SN .

Recently, it is known that there exists an energy level EALG such that for any
E < EALG, with high probability, the there exists an algorithm that can find a spin
configuration ‡ such that H(‡)/N ¥ E in polynomial-time. This has been shown
for full-RSB spherical spin glasses by Subag [171], for the SK model by Montanari
[145], for Ising and spherical mixed p-sping models by El Alaoui, Montanari and
Sellke, and for Ising and spherical mixed p-sping models with external field by
Sellke [166]. The later three results rely on the AMP algorithm, and while Subag’s
result stems from ultrametric approximation of the Gibbs measure provide by the
generalized TAP variational principal.

For models where the OGP is absent, EALG = Eı, indicating that the AMP
algorithm successfully solves the optimization problem. However, in some models,
EALG < Eı can occur. Very recently, for mixed even p-spin models where EALG <

Eı, Huang and Sellke [115] introduced an ultrametric version of the OGP, termed
the branching-OGP, which blocks a wide class of algorithms from finding an energy
level greater than EALG in polynomial time. This class of algorithms includes the
gradient descent algorithm, the AMP algorithm, and the Glauber dynamics.

1.4.3 Optimization problem for the CREM

As proven in [54] by Bovier and Kurkova, the maximum of the CREM satisfies

xGSE := lim
NæŒ

1
N

E


max
|u|=N

Xu

�
=
p

2 log 2
Z 1

0

p
â(s) ds . (1.4.1)

With this result in mind, one can ask the following optimization problem in the
context of the CREM.
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Problem 1.4.1. For what kind of A such that for all Á > 0, there exists
a polynomial-time algorithm that can find a vertex |u| = N such that Xu Ø
(xGSE ≠ Á)N with high probability?

To respond to Problem 1.4.1, they showed the following phase transition: there
exists a threshold

xú =
p

2 log 2
Z 1

0

p
a(s) ds

such that for any x < xú, there exists a linear time algorithm that finds Xv Ø xN

with high probability; for any x > xú, there exists z > 0 such that with high
probability, it takes at least ezN queries to find Xu Ø xN . Since xGSE Ø xú with
equality holding if and only if A is concave, the near maximum can be found if and
only if A is concave. Another remark is that their result correspond to the special
case of the setting considered in Chapter 3 where — æ Œ, and linear algorithm
they proposed is similar to Algorithm 1.1.

1.5 Summary of contributions

For clarity, I adopt in this section the first-person single subject “I” instead of
the conventional first-person subject “we” in mathematical writing to refer to the
contributions I made, and I use the first-person plural subject “we” to refer the
results achieved in collaboration with Maillard.

In this section, I summarize the contributions of the thesis. The main research
theme throughout my PhD has been the development of an e�cient sampling
algorithm for the CREM Gibbs measure and the investigation of whether a hardness
threshold occurs. This led to the work in Chapter 2 and Chapter 3. An incidental
result of generalizing the findings from Chapter 2 to the context of Chapter 3 was
the estimation of the negative moments of the CREM partition function. Although
this estimation was not needed in the final version of Chapter 3, Maillard suggested
me to write it into a separate paper, presented in Chapter 4, as the estimate might
be of value on its own.

1.5.1 Sampling the Gibbs measure

The goal of Chapter 2 and Chapter 3 is to answer the following Gibbs sampling
problem raised by Addario-Berry and Maillard [2].

Problem 1.5.1 (Problem 1 in Section 5 of [2]). Show that there exists a threshold
—G such that the following transition occurs.

• For — < —G, there exists an algorithm of polynomial-time such that its output
law approximates the Gibbs measure.

• For — > —G, there is no polynomial-time algorithm that can approximate the
Gibbs measure.
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There are a few notions in Problem 1.5.1 that need to be specified. Firstly, the
underlying model is the branching random walk in Chapter 2, where the detailed
definition can be founded in Section 1.5.4 or Section 2.1.1. In Chapter 3, the un-
derlying model is the continuous random energy model, and the detailed definition
can be bounded in Section 1.5.7 or Section 3.1.1.

Secondly, the class of algorithms that we consider is defined as follows.

Definition 1.5.2. Let N œ N. Let F̃k be a filtration defined by

F̃k = ‡ (v(1), . . . , v(k); X(v(1)), . . . , X(v(k)); U1, . . . , Uk+1)

where (Uk)kØ1 is a sequence of i.i.d. uniform random variables on [0, 1], independent
of the underlying model. A random sequence v = (v(k))kØ0 taking values in TN

is called a (randomized) algorithm if v(0) = ? and v(k + 1) is F̃k-measurable for
every k Ø 0. We further suppose that there exists a stopping time · with respect
to the filtration F̃ and such that v(·) œ ˆTN . We call · the running time and v(·)
the output of the algorithm. The law of the output is the (random) distribution of
v(·), conditioned on the underlying model.

Definition 1.5.2 appears in Section 2.1.1, where the underlying model is the
branching random walk, and in Definition 3.1.2, where the underlying model is the
continuous random energy model. It also appeared in similar forms in [2, 159].
Definition 1.5.2 includes a large class of algorithms. For example, The Metropolis
algorithm that is defined below.

Example 1.5.3. The Metropolis algorithm is a Markov chain (vn)nœN on the
vertices with transition probability

p(v, w) = e—(Xw≠Xv)
P

v≥wÕ e—(Xw≠Xv) , v ≥ w,

where v ≥ w means that the graph distance between v and w equals 1. One can
show that Example 1.5.3 satisfies Definition 1.5.2.

Next, the notion of time complexity is defined as follows.

Definition (Definition 3.1.4). Let (·N ) be a sequence of running time corresponds
to a sequence of algorithms indexed by N . Let h : N æ N be a function. We say
that the sequence of running times is of order O(h(N)) if almost surely, there exists
N0 œ N such that ·N Æ h(N). We say the running time is of polynomial order if
there exists a polynomial P (N) such that almost surely, there exists N0 œ N.

Finally, two di�erent notions of approximation are provided, which are adopted
in Chapter 2 and in Chapter 3, respectively. Given two probability measures P

and Q defined on a discrete space �, the entropy of Q and the Kullback–Leibler
divergence from Q to P are respectively defined by

H(Q) =
X

Êœ�
Q(Ê) · log

✓
1

Q(Ê)

◆
(2.1.5)

d(P ||Q) =
X

Êœ�
P (Ê) · log

✓
P (Ê)
Q(Ê)

◆
. (2.1.6)
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It should be noted that, due to Jensen’s inequality, both the entropy and the
Kullback-Leibler divergence are non-negative. In the subsequent discussions, P

and/or Q are often selected as a Gibbs measure µ—,N for some N . Under these
circumstances, � is set to ˆTn, with n being the largest number that allows both
P and Q to be defined on ˆTn.

The first notion of approximation is defined as follows.

Definition (Definition 2.1.5). Let (PN )NœN and (QN )NœN are two sequences of
random probability measures defined on a discrete space �. We say that the
sequence (PN )NœN approximates the sequence (QN )NœN if

d(PN ||QN )
H(QN ) æ 0 in probability as N æ Œ. (1.5.1)

The second notion of approximation is given as follows.

Definition (Definition 3.1.6). Let (PN )NœN and (QN )NœN are two sequences of
random probability measures defined on a discrete space �. We say that the
sequence (PN )NœN approximates the sequence (QN )NœN if

1
N

d(PN ||QN ) æ 0 in probability as N æ Œ.

Before closing this section, there are two remarks I want to make

• The following

1
N

d(PN ||QN ) æ 0 as N æ Œ. (2.1.8)

is known as measure equivalence or equivalence in the sense of specific relative
entropy in the physics literature. See [184] and the reference therein. Mathe-
matically, Equation (2.1.8) implies the following: if (AN )NØ1 is a sequence of
sets such that QN (AN ) convergences to 0 exponentially fast as N æ Œ, then
we also have PN (AN ) æ 0. Indeed, this is an easy consequence of Birgé’s
inequality (see e.g. Theorem 4.20 in [52]).

• Definition 3.1.6 is equivalent to saying that there exists ÁN æ 0 such that

lim
NæŒ

1
N

P
✓

1
N

d(PN ||QN ) < ÁN

◆
= 0.

In the context of branching random walks, the following lemma on the branch-
ing random walk Gibbs measure is folklore, where a proof is provided in
Section 2.6 for completeness.

Lemma (Lemma 2.1.4). Let —c be the critical inverse temperature defined in
(1.5.2). Then the following phase transition occurs.

1. If — œ [0, —c), then H(µ—,N )/N converges in probability to a positive
constant as N æ Œ.
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2. If — > —c and if —c œ D(Ï)¶, then H(µ—,N ) = O(1) in probabil-
ity, as N æ Œ. In other words, the sequence of random variables
(H(µ—,N ))NØ1 is tight.

Therefore, in the context of branching random walks, for — < —c, a sequence
of (random) probability measure (PN )NœN approximates the BRW Gibbs
measure µ—,N in Definition 2.1.5 is equivalent to saying that (PN )NœN ap-
proximates the BRW Gibbs measure µ—,N in Definition 3.1.6.

1.5.2 Recursive sampling algorithm

To address Problem 1.5.1, the following algorithm was proposed. Fix — > 0, N œ N,
and M = MN œ J1, NK. Given a configuration of the underlying model, consider
the following algorithm, which is the same as Algorithm 2.1 and Algorithm 3.1:

Algorithm 1.1: Recursive sampling on renormalized tree
set v = ? while |v| < N do

sample w with |w| = M · (N ≠ |v|) according to the Gibbs measure
µv

—,M·(N≠|v|) replace v with vw

output v

The running time of Algorithm 1.1 is deterministic and bounded by ÁN/MË2M .
The output law of Algorithm 1.1 is a random probability measure µ—,M,N on ˆTN

that is recursively defined as follows:

µ—,M,0(?) = 1
µ—,M,N·(k+1)M (vw) = µ—,M,kM (v) · µv

—,M·(N≠kM)(w)
(3.1.9)

for all |v| = kM , |w| = M · (N ≠ kM) and k œ J0,
⌅

N
M

⇧
K. It is not hard to see that

µ—,M,N (u) = e—Xu

Z—,M,N (u) , (3.1.10)

where

Z—,M,N (u) =
ÂN/MÊY

k=1
Zu[kM ]

—,M·(N≠kM).

1.5.3 Summary of Chapter 2

In Chapter 2, Maillard and I answered Problem 1.5.1 partially in the setting of
branching random walks, where the branching random walks have d Ø 2 o�spring
in each generation. In summary, we showed that the following phase transition
occurs at the critical inverse temperature —c:

1. Let — < —c. For any Á > 0, we constructed an O(N1+Á) algorithm that
approximates the Gibbs measure in the sense of Definition 2.1.5. This de-
scription di�ers from the version provided in Chapter 2: there, the result was
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showing the existence of a polynomial-time algorithm that approximates the
Gibbs measure in the sense of Definition 2.1.5. However, I demonstrate in
Corollary 1.5.4 that by choosing a di�erent sequence MN , the running time
of the algorithm can indeed be reduced to O(N1+Á).

2. For — > —c, under mild regularity condition, we showed that the following
hardness result: for any ” > 0, there exists z > 0 such that for any algorithm
with output law approximating the Gibbs measure in the sense of Defini-
tion 2.1.5, the probability that the running time of the algorithm is greater
than ez

Ô
N is at least 1 ≠ ”, as N æ Œ.

A detailed description of the contribution in Chapter 2 is provided in Section 1.5.5.

1.5.4 Branching random walk

To describe the results in details, I recall the content in Section 2.1.1 that provides
the definition of the branching random walk that we considered in Chapter 2 and
known facts of this model.

Underlying tree. Let T be a rooted d-ary tree, where d Ø 2. The depth of a
vertex v œ T is denoted by |v|. The root is denoted by ?, and any vertex v with
depth n Ø 1 is indexed by a string v1 · · · vn œ {0, . . . , d≠1}n. For any v, w œ T, the
notation v Æ w means that v is a prefix of w and v < w means that v is a prefix of
w strictly shorter than w. In the following, for any v œ TN , any vertex w is said to
be an ancestor of v if w Æ v. For any v œ T and m œ J0, |v|K, define v[m] to be the
ancestor of v of depth m. For all v, w œ T, let v · w be the most recent common
ancestor of v and w. Let Tn be the subtree of T containing vertices of depth less
or equal to n, and ˆTn be the leaves of Tn.

Branching random walk. Let Y = (Y0, . . . , Yd≠1) be a d-dimensional random
vector. Let (Yv)vœT be i.i.d. copies of Y where Yv = (Yv0, . . . , Yv(d≠1)) – this
uniquely defines Yu for every u œ T\{?}. Define the process X = (Xv)vœT by

8
<

:
X? = 0,

Xv =
P

?<wÆv Yw, |v| Ø 1.

The process X is called the branching random walk with increments Y. See Fig-
ure 1.7 for an illustration of the definition.

It is well-known that X has the branching property: let F = (Fn)nØ0 be its
natural filtration. For any v œ T with |v| = n, define

Xv = (Xv
w)|w|Ø0 = (Xvw ≠ Xv)|w|Ø0.

Then (Xv)|v|=n are iid copies of X and independent of Fn.
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Gibbs measures. Define the following function

Ï(—) = log
 
E
"

d≠1X

i=0
e—Yi

#!
œ (≠Œ, Œ], — œ R,

and set D(Ï) = {— œ R : Ï(—) < Œ}. It is well known that Ï is convex and that it
is smooth on D(Ï)¶, the interior of D(Ï). In Chapter 2, we assumed the following.

Assumption (Assumption 2.1.1). 0 œ D(Ï)¶.

In the context of branching random walk, instead of considering directly the
partition function, one usually opt to the additive martingale, which is defined as
follows. For n œ N, the additive martingales are defined as follows.

W—,n =
X

|v|=n

e—Xv≠Ï(—)n, n Ø 0,

W u
—,n =

X

|w|=n

e—Xu
w≠Ï(—)n, u œ T and n Ø 0.

Note that for every m Æ n,

W—,n =
X

|u|=m

e—Xu≠Ï(—)m · W u
—,n≠m. (2.1.1)

For — œ R and n œ N, the Gibbs measure of parameter — on Tn is defined as

µ—,n(u) = e—Xu≠Ï(—)m ·
W u

—,n≠m

W—,n
, |u| = m Æ n. (2.1.2)

Note that µ—,n is usually defined on ˆTn only, but it will be helpful to define it on
the whole tree Tn. By (2.1.1), for every m Æ n, the restriction of µ—,n to ˆTm is a
probability measure. Similarly, we can define

µv
—,n(u) = e—Xv

u≠Ï(—)m ·
W vu

—,n≠m

W v
—,n

, v œ T and |u| = m Æ n. (2.1.3)

The free energy of the branching random walk has been calculated by Derrida
and Spohn [91] (and can also be deduced from Biggins [46])

lim
næŒ

1
—n

log
X

|v|=n

e—Xv =
(

1
— Ï(—) if — œ (0, —c)
1
—c

Ï(—c) if — Ø —c,

where the limit is meant to be in probability and where the critical inverse tem-
perature —c is defined by

—c = sup{— œ D(Ï)¶ | —ÏÕ(—) < Ï(—)} œ (0, Œ]. (1.5.2)

We will mostly be interested in the phase — < —c. In this phase, the following fact
is known for the additive martingale, and the proof can be founded in [47, 118,
129].

Fact (Fact 2.1.2). If — < —c, then the martingale (W—,n)nØ0 is uniformly integrable.
In fact, there exists a (strictly) positive random variable W—,Œ with E[W—,Œ] = 1
and such that W—,n æ W—,Œ almost surely and in L1 as n æ Œ.
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1.5.5 Contributions in Chapter 2

In the following, I give a more detailed description of the results in Chapter 2.

Subcritical regime — < —c: e�ciency of recursive sampling

Firstly, Maillard and I showed that for all p Ø 1, the Lp norm of the KL divergence
d(µ—,M,N ||µ—,N ) from µ—,M,N to the Gibbs measure µ—,N is bounded from above
by the constant depending only on p times N/M . Moreover, we showed that the
KL divergence concentrates to its expectation.

Theorem (Theorem 2.1.7). Let N œ N, M œ J1, NK, and — œ [0, —c). Then for all
p Ø 1, there exists a constant C1(p) > 0 such that

Îd(µ—,M,N ||µ—,N )Îp Æ C1(p) ·
�

N

M

⌫
. (2.1.9)

Moreover, for all p Ø 1, there exists a constant C1(p) > 0 such that

Îd(µ—,M,N ||µ—,N ) ≠ E [d(µ—,M,N ||µ—,N )]Îp Æ C1(p). (2.1.10)

I summarize the proof of (2.1.9) and (2.1.10) separately.

Sketch of proof for (2.1.9). The first step we took was to decompose the KL diver-
gence as follows.

Theorem (Theorem 2.2.2). For any two M and N integers such that M Æ N , we
have

d(µ—,M,N ||µ—,N ) =
Â N

M Ê≠1X

K=0

X

|u|=KM

µ—,M,KM (u) · d(µu
—,M ||µu

—,N≠KM ). (2.2.1)

Next, we wanted to bound the KL divergences between two Gibbs measures
appearing in the decomposition of (2.2.1). To do so, we further decomposed the
KL divergence between two Gibbs measures.

Proposition (Proposition 2.2.3). For any two M and N integers such that M Æ
N , we have

d(µ—,M ||µ—,N ) = log W—,N ≠ log W—,M ≠
X

|u|=M

µ—,M (u) · log W u
—,N≠M .

Then, we showed that whenever — œ [0, —c), (log W—,n)nØ0 is bounded in Lp for
all p > 1.

Lemma (Lemma 2.3.1). Let — œ [0, —c). Then (log W—,n)nØ0 is a supermartingale
such that

sup
nØ0

Îlog W—,nÎp < Œ, p Ø 1.

Combining Proposition 2.2.3 and Lemma 2.3.1, we derived the following.
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Proposition (Proposition 2.3.2). For any p > 1, for any two integers M and N

such that M Æ N , there exists a constant C(p) > 0 such that

Îd(µ—,M ||µ—,N )Îp Æ C(p).

By Theorem 2.2.2, Minkowski’s inequality, Jensen’s inequality, the law of iter-
ated expectation, the branching property and Proposition 2.3.2,

Îd(µ—,M,N ||µ—,N )Îp Æ
Â N

M Ê≠1X

K=0

������

X

|u|=KM

µ—,M,KM (u) · d(µu
—,M ||µu

—,N≠KM )

������
p

Æ
Â N

M Ê≠1X

K=0

0

@E

2

4
X

|u|=KM

µ—,M,KM (u) ·
��d(µu

—,M ||µu
—,N≠KM )

��p
3

5

1

A
1/p

Æ
Â N

M Ê≠1X

K=0
Îd(µ—,M ||µ—,N≠KM )Îp

Æ C(p) ·
�

N

M

⌫
,

and proof is completed. ⌅

Next, I give the ideas to prove (2.1.10).

Sketch of proof for (2.1.10). First, we showed the following

Lemma (Lemma 2.4.1). Let — œ [0, —c). For all M œ N, there exists r œ (0, 1)
independent of M such that,

E

2

4
X

|u|=M

µ—,M (u)2

3

5 Æ r (2.4.4)

Moreover, for all K œ N,

E

2

4
X

|u|=KM

µ—,M,KM (u)2

3

5 Æ rK . (2.4.5)

By Theorem 2.2.2 and Minkowski’s inequality, we have

Îd(µ—,M,N ||µ—,N ) ≠ E [d(µ—,M,N ||µ—,N )]Îp

Æ
Â N

M Ê≠1X

K=0

������

X

|u|=KM

µ—,M,KM (u) ·
�
d(µu

—,M ||µu
—,N≠KM ) ≠ E

⇥
d(µu

—,M ||µu
—,N≠KM )

⇤�
������

p

.

(2.4.9)

Then by Lemma 2.4.1, (2.4.9), Proposition 2.3.2 and an argument involving con-
centration inequalities (see Section 2.4.2 for details), there exists a constant C > 0
independent of K, M, N such that

Îd(µ—,M,N ||µ—,N ) ≠ E [d(µ—,M,N ||µ—,N )]Îp Æ C

Â N
M Ê≠1X

K=0
rK Æ C

ŒX

K=0
rK ,

and the proof is completed. ⌅
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By Theorem 2.1.7, Maillard and I derived Corollary 2.1.8, which states that
with an appropriate choice of MN , the algorithm approximates the Gibbs measure
µ—,N with a running time of O(N1+Á). It is important to note that the version of
Corollary 2.1.8 presented below di�ers from the published version in Chapter 2:
while the published version asserts the existence of a polynomial-time algorithm,
I demonstrate here that by choosing a di�erent sequence MN , the running time of
the algorithm can indeed be reduced to O(N1+Á).

Corollary 1.5.4 (Modified version of Corollary 2.1.8). Suppose that — œ [0, —c).
Let p > 1. Given Á > 0, let MN = ÂÁ logd NÊ · N and µ̃—,N = µ—,MN ,N be the
output law of Algorithm 3.1. Then,

1
N

Îd(µ̃—,N ||µ—,N )Îp æ 0. (2.1.11)

In particular, µ̃—,N approximates the Gibbs measure µ—,N in the sense of Defini-
tion 2.1.5. Moreover, the running time is deterministic and of order O(N1+Á).

Proof. Let MN = ÂÁ logd NÊ · N and set µ̃—,N = µ—,M,N . Equation (2.1.11) then
follows from (2.1.9) in Theorem 2.1.7. Applying first part of Lemma 2.1.4, µ̃—,N

approximates the Gibbs measure µ—,N in the sense of Definition 2.1.5. Finally, by
our choice of MN , Remark 2.1.3 implies that µ̃—,N can be computed by a O(N1+Á)-
time algorithm. ⌅

Supercritical regime — > —c: hardness for generic algorithms

In the supercritical regime — > —c, we provide a hardness result, assuming a mild
regularity condition.

Theorem (Theorem 2.1.9). Assume —c œ D(Ï)¶ (in particular, —c < Œ). Let
— > —c. Let v = (v(k))kØ0 be an algorithm which outputs a vertex of law µ̃N such
that µ̃N approximates the Gibbs measure µ—,N in the sense of Definition 2.1.5. Let
· be the running time of the algorithm. Then for every ” > 0, there exists z > 0,
such that for large enough N ,

P
⇣

· Ø ez
Ô

N
⌘

Ø 1 ≠ ”.

Sketch of proof for Theorem 2.1.9. Assume that — > —c. Let ” > 0. For z > 0,
call a vertex w œ ˆTÂN/2Ê z-exceptional if it has a descendant u œ ˆTN such that
Xu ≠ Xw ≠ mN/2 > z

Ô
N . For any v œ TN , define the following set of vertices:

Vv =
(

w œ TN : |v · w| Ø ÂN/2Ê, if |v| Ø ÂN/2Ê
v, otherwise.

Let (v(k))kØ0 be an algorithm that approximates the Gibbs measure in the sense
of Definition 2.1.5. Define the stopping time

· Õ = inf{k Ø 0 : Vv(k) is z-exceptional}.

The key observations are listed as follows.
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1. Let · be the running time of the algorithm. By Lemma 2.5.1 and the fact
that the algorithm approximates the Gibbs measure, one can show that for
a given ” > 0, there exists z > 0 such that

P
�
· Ø · Õ� Ø 1 ≠ ”

for N su�ciently large.

2. One can show that · Õ stochastically dominates a geometric random variable
with with parameter e≠c

Ô
N , for some c = cz.

3. Combining Point 1 and Point 2, one can conclude that with probability at
least 1 ≠ ”, · is bounded from below by ezÕÔN , for some zÕ > 0 independent
of N .

This completes the proof. ⌅

1.5.6 Summary of Chapter 3

Subsequently to Chapter 2, I tried to generalize the results to general CREM
without assuming homogeneity. In Chapter 3, I answered Problem 1.5.1 completely
with assertion. In summary, I showed the following things.

1. When the covariance function A of the CREM is concave, for all — > 0, the
recursive sampling algorithm approximates the Gibbs measure in the sense
of Definition 3.1.6 with running time of order O(N1+Á).

2. When A is non-concave, we identify a threshold —G < Œ such that the
following hardness transition occurs:

(a) For every — Æ —G, the recursive sampling algorithm approximates the
Gibbs measure in the sense of Definition 3.1.6 with running time of order
O(N1+Á).

(b) For every — > —G, we prove a hardness result for a generic class of
algorithms. Namely, there exists “ > 0 such that for any algorithm
in this class that approximates the Gibbs measure in the sense of Def-
inition 3.1.6, the running time of this algorithm is at least e“N with
probability approaching 1.

A detailed descriptions of the result in Chapter 3 is provided in Section 1.5.8.

1.5.7 Continuous random energy model

Let N = {1, 2, · · · } be the set of positive integer. For each pair of integers n and
m such that n Æ m, let Jn, mK be the set of integers between n and m.
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Binary tree. Fixing N œ N, let TN = {?} fi
SN

n=1{0, 1}n be the binary tree
rooted at ?. The depth of a vertex v œ TN is denoted by |v|. For any v, w œ TN ,
v Æ w means that v is a prefix of w and v < w means that v is a prefix of w

strictly shorter than w. In the following, for any v œ TN , a vertex w is said to be
an ancestor of v if w Æ v. For any v œ TN and n œ J0, |v|K, define v[n] to be the
ancestor of v of depth n. For all v, w œ TN , let v · w be the most recent common
ancestor of v and w. Let ˆTN be the set of leaves of TN , and for any v œ TN , let
Tv

n be the subtree of TN rooted at v with depth n.

The model. Let A be an non-decreasing function defined on an interval [0, 1]
such that A(0) = 0 and A(1) = 1. In Chapter 3, it is assumed that there exists a
bounded Riemann integrable function a such that A for all t œ [0, 1],

A(t) =
Z t

0
a(s) ds .

Let Â be the concave hull of A and let â be the right derivative of Â. Note that
the Â is also equals to the Riemann integral of â, i.e., for all t œ [0, 1],

Â(t) =
Z t

0
â(s) ds .

The CREM is now defined as follows.

Definition (Definition 3.1.1). Given N œ N, the CREM is a centered Gaussian
process X = (Xu)uœTN indexed by the binary tree TN of depth N with covariance
function

E [XvXw] = N · A

✓
|v · w|

N

◆
, ’v, w œ TN , (3.1.1)

where |v · w| is the depth of the most recent common ancestor of v and w.

In Chapter 3, I considered a sequence of CREM (XN )NœN defined on the same
underlying probability space. For simplicity, I dropped N as long as it causes no
ambiguity.

Branching property. The CREM can be viewed as an inhomogeneous binary
branching random walk with Gaussian increments. In particular, it has the follow-
ing branching property: let (Fk)N

k=0 be the natural filtration of the CREM. For
any u œ TN with |u| = n œ J0, NK, call the process

Xu = (Xu
w)uwœTu

N≠n

the CREM indexed by the subtree Tu
N≠n, where Xu

w = Xuw ≠ Xu. For any n œ
J0, NK, let X(n) = (X(n)

u )uœTN≠n be a centered Gaussian process with covariance
function

E
h
X(n)

w1 X(n)
w2

i
= N · A

✓
n + |w1 · w2|

N

◆
, ’w1, w2 œ TN≠n.

Then, the branching property states that collection of processes {Xu : |u| = n} are
independent and have the identical distribution of X(n), and they are independent
of Fn.
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Partition function and Gibbs measure. Given a subtree Tv
M rooted at v and

of depth M œ J0, N ≠ |v|K, the Gibbs measure with inverse temperature — > 0 is
defined by

µv
—,M (u) = 1

Zv
—,M

e—Xv
u , ’vu œ Tv

M , (3.1.2)

where

Zv
—,M =

X

vuœTv
M

e—Xv
u , (3.1.3)

is the partition function on the subtree Tv
M . In particular, the following conventions

are adopted.

µ—,M = µ?
—,M and Z—,M = Z?

—,M

for any M œ J0, NK. For completeness, define Z(n)
—,M =

P
|u|=M e—X

(n)
u .

Free energy and its lower bound. For v œ TN , the logarithm of the partition
function log Zv

—,M is referred to as the free energy on the subtree Tv
M . The free

energy F— of the CREM is defined as follows, and F— admits an explicit expression.

F— := lim
NæŒ

1
N

E [log Z—,N ] =
Z 1

0
f(—

p
â(s)) ds , (3.1.4)

where the function f is defined as

f(—) =

8
>>><

>>>:

log 2 + —2

2 , — <
Ô

2 log 2

Ô
2 log 2—, — Ø

Ô
2 log 2.

(3.1.5)

For completeness, the proof of (3.1.4) is included in Fact 3.A.2. When clear, F— is
abbreviated as the free energy. I also introduced a related quantity F̃— defined as

F̃— :=
Z 1

0
f(—

p
a(s)) ds . (3.1.6)

In Proposition 3.A.1, I showed that F— Ø F̃—, and I characterized the condition
where the equality holds.

1.5.8 Contributions in Chapter 3

Now, I describe in details the contribution in Chapter 3.

Subcritical and critical regime — Æ —G: optimality of recursive sampling

The first theorem states that the KL divergence from the output law of Algo-
rithm 3.1 to the Gibbs measure concentrates in the following sense.
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Theorem (Theorem 3.1.9). Let — > 0, N œ N and M œ J1, NK. Then for all
p Ø 1, there exists a constant Cp > 0 depending only on p such that

1
N

Îd(µ—,M,N ||µ—,N ) ≠ E [d(µ—,M,N ||µ—,N )]Îp Æ —CpÔ
M

.

Sketch of proof for Theorem 3.1.9. The structure of the proof is similar to the
proof of (2.1.10) but with several modifications. Firstly, a more natural way to
decompose the KL divergence then Proposition 2.2.3 is the following.

Proposition (Proposition 3.2.1). For all — > 0 and for any two integers M, N œ N
such that M Æ N , we have

d(µ—,M,N ||µ—,N ) = log Z—,N ≠
ÂN/MÊX

k=0

X

|u|=kM

µ—,M,kM (u) · log Zu
—,M·(N≠kM).

By the branching property, one can show that

Proposition (Proposition 3.2.2). For all — > 0 and for any two integers M, N œ N
such that M Æ N , the expectation of the KL divergence from µ—,M,N to µ—,N admits
the following decomposition.

E [d(µ—,M,N ||µ—,N )] = E [log Z—,N ] ≠
ÂN/MÊX

k=1
E
h
log Z(kM)

—,M·(N≠kM)

i
.

By a similar argument appeared in the proof of (2.1.10), one can derive that
1
N

Îd(µ—,M,N ||µ—,N ) ≠ E [d(µ—,M,N ||µ—,N )]Îp

Æ 1
N

ÂN/MÊX

k=0

���
���log Z(kM)

—,M·(N≠kM) ≠ E
h
log Z(kM)

—,M·(N≠kM)

i���
p���. (1.5.3)

Since the CREM is a Gaussian process, one can then apply the concentration
inequality of free energies (Theorem 1.2 in [156]) to conclude the proof. ⌅

Next, I proved that with a suitable choice of MN , the expectation of the KL
divergence renormalized by N converges to the di�erence between F— and F̃—.

Theorem (Theorem 3.1.10). Let — > 0, N œ N, and MN be a sequence such
that MN œ J1, NK and MN æ Œ. Let µ̃—,N = µ—,MN ,N be the output law of
Algorithm 3.1. Then,

lim
NæŒ

1
N

E [d(µ̃—,N ||µ—,N )] = F— ≠ F̃— Ø 0,

with equality holding if and only if — Æ —G.

Sketch of proof for Theorem 3.1.10. It su�ces to show that

Proposition (Proposition 3.3.1). Let MN be a sequence such that MN œ J1, NK
and MN æ Œ. Then,

lim
NæŒ

1
N

ÂN/MN ÊX

k=1
E
h
log Z(kMN )

—,MN ·(N≠kMN )

i
= F̃—.
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The proof of Proposition 3.3.1 is essentially by sandwiching the covariance
function CREM with the covariance functions of two GREM. ⌅

As a corollary of Theorem 3.1.10, in the subcritical regime, with a good choice
of MN , the mean of the KL divergence divided by N converges to 0 when N æ Œ.
Moreover, for Á > 0, with a good choice of MN , the running time is of O(N1+Á).

Corollary (Corollary 3.1.11). Fix — œ [0, —G]. Given Á > 0, let MN = ÂÁ log2 NÊ·
N and µ̃—,N = µ—,MN ,N be the output law of Algorithm 3.1. Then,

lim
NæŒ

1
N

E [d(µ̃—,N ||µ—,N )] = 0. (3.1.11)

Moreover, the running time is deterministic and of order O(N1+Á).

Remark 1.5.5. Note that for A concave, Corollary 3.1.11 yields that Algorithm 3.1
approximates the Gibbs measure for all — œ (0, Œ) as —G = Œ for A concave.

Corollary 3.1.11 implies in particular that the algorithm approximates the
Gibbs measure with probability approaching 1. Indeed, by choosing, e.g., ÁN =
( 1

N E [d(µ̃—,N ||µ—,N )])1/2, Corollary 3.1.11 and Markov’s inequality then yield

P
✓

1
N

d(µ̃—,N ||µ—,N ) Æ ÁN

◆
Ø 1 ≠ Á1/2

N æ 1, as N æ Œ. (3.1.12)

I present the proof of Corollary 3.1.11 below as it is short.

Proof of Corollary 3.1.11. Note that the choice of MN satisfies the assumption of
Theorem 3.1.10, so the first statement follows directly from Theorem 3.1.10. Next,
as mentioned in Remark 3.1.8, the running time of Algorithm 3.1 is deterministic
and is bounded by ÁN/MN Ë2MN . With our choice of MN , we conclude that

ÁN/MN Ë2MN Æ N · 2Á log2 N Æ N1+Á,

and the proof is completed. ⌅

Supercritical regime — > —G: hardness for generic algorithms

Assuming that A is non-concave, —G < Œ. For — > —G, I proved the following
hardness result for the class of algorithms satisfying Definition 3.1.2.

Theorem (Theorem 3.1.13). Suppose that A is non-concave. Let — > —G. For
any algorithm satisfying Definition 3.1.2 that approximates the Gibbs measure with
probability approaching 1, there exists “ > 0 such that

lim
NæŒ

P
�
· Ø e“N

�
= 1,

where · is the running time of the algorithm.

Before diving in the proof of Theorem 3.1.13, a few definitions are required.
The first is a chain of subtrees defined as follows.
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Definition (Definition 3.5.1). For v œ T, let Cv be a chain of subtrees containing
v and all its ancestors defined by

Cv =
ÂN |v|/KÊ[

k=0
Tv[ÂNk/KÊ]

ÂN(k+1)/KÊ≠ÂNk/KÊ.

Next, the following stopping time is considered.

Definition (Definition 3.5.3). Let (v(n))nœN be an algorithm. Define the stopping
time · Õ as the first time n when the algorithm finds a vertex in Cv(n) with a (z, K, X)-
steep ancestor, given by:

· Õ = inf
�

n œ N : ÷w œ Cv(n) such that w has a (z, K, X)-steep ancestor
 

.

Back to Sketch of proof for Theorem 3.1.13. The proof is based on the following
two propositions. The first proposition asserts that the running time of an algo-
rithm that approximates the Gibbs measure dominates the stopping time · Õ with
probability approaching 1.

Proposition (Proposition 3.5.4). Suppose A to be non-concave. Let — > —G. If ·

is the running time of an algorithm that approximates the Gibbs measure, then

lim
NæŒ

P
�
· Ø · Õ� = 1.

The proof of Proposition 3.5.4 is provided in Section 3.5.1. Note that Addario-
Berry and Maillard proved in [2] a hardness result of finding a vertex v œ ˆTN

such that Xv lies in a level set above a critical level, denoted by xúN . In their
case, · Ø · Õ holds deterministically because they showed in Lemma 3.1 in their
paper that any for any vertex v œ ˆTN such that Xv lies in a level set above xN ,
where x > xú, v must have a (z, K, X)-ancestor. Nevertheless, Proposition 3.5.4 is
su�cient to prove Theorem 3.1.13.

The second proposition to prove Theorem 3.1.13 is the following. The proposi-
tion asserts that the · Õ is exponentially large with probability approaching 1.

Proposition (Proposition 3.5.5). There exists “ > 0 such that

lim
NæŒ

P
�
· Õ > e“N

�
= 1.

Proposition 3.5.5 is proven following the same argument as in [2], and the proof
is included in Section 3.5.3 for completeness.

Conditioned on Proposition 3.5.4 and Proposition 3.5.5, the proof of Theo-
rem 3.1.13 is fairly short, which is provided here.

Proof of Theorem 3.1.13. Fix — > —G. Let (v(n))nœN be an algorithm that approx-
imates the Gibbs measure with probability approaching 1. Suppose that · is its
running time and µ̃N is its output law, which is the law of v(·) conditioned on the
CREM.

Now, combining Proposition 3.5.4 with Proposition 3.5.5, we conclude that
there exists “ > 0 such that

lim
NæŒ

P
�
· Ø e“N

�
Ø lim

NæŒ
P
�
{· Ø · Õ} fl {· Õ Ø e“N }

�
= 1,

and the proof is completed. ⌅
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1.5.9 Negative moments of the CREM partition function

In Chapter 4, I studied the partition function of the CREM in the high temperature
regime — < —c. I showed that for all — < —c and for all s > 0, the negative s moment
of the CREM partition function is comparable with the expectation of the CREM
partition function to the power of ≠s, up to constants that are independent of N .

In the same paper, Bovier and Kurkova also showed that the maximum of the
CREM satisfies the following.

lim
NæŒ

1
N

E


max
|u|=N

Xu

�
=
p

2 log 2
Z 1

0

q
ÂÕ(s) ds . (4.1.3)

Combining (4.1.2) and (4.1.3) indicates that there exists

—c :=
Ô

2 log 2q
ÂÕ(0)

(1.5.4)

such that the following phase transition occurs. a) For all — < —c, the main
contribution to the partition function comes from an exponential amount of the
particles. b) For all — > —c, the maximum starts to contribute significantly to the
partition function. The quantity —c is sometimes referred to as the static critical
inverse temperature of the CREM. In the following, the subcritical regime — < —c

is referred to as the high temperature regime.

1.5.10 Contributions in Chapter 4

Now I present the theorem that I obtained regarding the negative moments of the
partition function Z—,N in the high temperature regime.

Theorem (Theorem 4.1.2). Suppose Assumption 4.1.1 is true. Let — < —c. For
all s > 0, there exist N0 œ N and a constant C = C(A, —, s), independent of N ,
such that for all N Ø N0,

E
⇥
(Z—,N )≠s

⇤
Æ CE [Z—,N ]≠s .

Remark 1.5.6. For all — > 0, N œ N and s > 0, there is the following trivial lower
bound provided by the Jensen inequality and the convexity of x ‘æ x≠s,

E
⇥
(Z—,N )≠s

⇤
Ø E [Z—,N ]≠s . (4.1.5)

Thus, combining (4.1.5) with Theorem 4.1.2, one sees that for all — < —c in the high
temperature regime and for all s > 0, E [(Z—,N )≠s] is comparable with E [Z—,N ]≠s.

Summarizing the proof of Theorem 4.1.2. To prove Theorem 4.1.2, I
adapted the proof of Lemma A.3 in the paper [38] by Benjamini and Schramm
so that it works not only for homogeneous models, but also for general CREM. In
particular, I showed that for all s > 0, there exist two positive sequences Ák and ÷k

that both decay double exponentially to 0 as k æ Œ such that for N su�ciently
large,

P (Z—,N Æ ÁkE [Z—,N ]) Æ ÷k, (4.1.7)
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and that for all k œ J1, C Õ log NK, where C Õ > 0, there exist C = C(A, —, s) > 0 and
c = c(A, —, s) > 0 such that

Á≠s
k ÷k Æ Ce≠ceck

. (4.1.8)

The proof of (4.1.7) and (4.1.8) is by established an initial left tail estimate (Sec-
tion 4.2), and then use the branching property to bootstrap the estimate (Sec-
tion 4.3).
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time

space

Figure 1.3: An example of a supercritical branching random walk with depth equal
to 10. The law of increments follows a standard Gaussian distribution. Each vertex
gives birth to 0, 2, 3 and 4 with probability 0.15, 0.65, 0.1 and 0.1, respectively, so
EXL = 2.

?

u

T̄ u

Figure 1.4: Schematic illustration of the set T̄ u.
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?

. . . . . . . . . . . .

N (0, a1N)

N (0, a2N)

–N
1 vertices

2N vertices

. . .

. . .

Depth 0

Depth 1

Depth 2
u

–N
2 vertices

Figure 1.5: Schematic illustration of the covariance structure of the GREM with 2
hierarchies. Here, the parameters satisfy –1–2 = 2 and a1 + a2 = 1. There are –N

1
vertices with depth 1, and each vertex with depth 1 has –N

2 children. Each edge
represents an independent Gaussian random variables with zero mean and variance
a1N for the edges between depth 0 and depth 1, and variance a2N for the edges
between depth 1 and depth 2. For each |u| = N , the value of Xu is equal to the
sum of Gaussian variables along the path from the root ? to u, represented in red
in the illustration.

?

0

u ^ w = 01

u w

1

Â

A

1

1

Figure 1.6: The covariance function of a CREM is determined by the underlying
binary tree (left) and a function A (right). The concave hull Â of the function
A is also shown on the right, which determines the CREM free energy and the
asymptotics of the maximum of the CREM.
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?

Y2

Y20

Y201 X201 = Y2 + Y20 + Y201

Figure 1.7: Schematic illustration of a branching random walk indexed by the
ternary tree (d = 3). Here, the value of X201 is calculated by summing the incre-
ments along the path from the root to the node indexed by 201. In other words,
X201 = Y2 + Y20 + Y201.



2. E�cient sampling of
branching random walk Gibbs
measures

The material in this chapter largely draws upon the joint paper [112] co-authored
with Maillard. The title has been slightly adjusted and a few typos have been cor-
rected. Please refer to Appendix A for a comprehensive list of these corrections.

Disordered systems such as spin glasses have been used extensively as models
for high-dimensional random landscapes and studied from the perspective of op-
timization algorithms. In a recent paper by L. Addario-Berry and the Maillard,
the continuous random energy model (CREM) was proposed as a simple toy model
to study the e�ciency of such algorithms. The following question was raised in
that paper: what is the threshold —G, at which sampling (approximately) from the
Gibbs measure at inverse temperature — becomes algorithmically hard?

This chapter is a first step towards answering this question. We consider the
branching random walk, a time-homogeneous version of the continuous random
energy model. We show that a simple greedy search on a renormalized tree yields a
polynomial-time algorithm which approximately samples from the Gibbs measure,
for every — < —c, the (static) critical point. More precisely, we show that for every
Á > 0, there exists such an algorithm such that the specific relative entropy between
the law sampled by the algorithm and the Gibbs measure of inverse temperature
— is less than Á with high probability.

In the supercritical regime — > —c, we provide the following hardness result.
Under a mild regularity condition, for every ” > 0, there exists z > 0 such that the
running time of any given algorithm approximating the Gibbs measure stochasti-
cally dominates a geometric random variable with parameter e≠z

Ô
N on an event

with probability at least 1 ≠ ”.

2.1 Introduction

We consider the following family of branching random walks. An initial particle is
located at the origin. It gives birth to d child particles, d Ø 2, scattering on the
real line, and each of the child particles produces d child particles again, and so on.
The displacement of each particle is independent of the past of the process and of

45
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the displacements of its siblings. The genealogy of the particles can be represented
by a d-ary tree TN , identifying particles with the vertices of the tree. We denote
by Xv the location of a particle v œ TN .

Addario-Berry and Maillard [2] considered algorithms that, for a given x > 0,
find a leaf v of TN such that Xv Ø xN in the framework of the continuous random
energy model (CREM). This is a binary time-inhomogeneous branching random
walk with Gaussian displacements. More precisely, the CREM is a Gaussian process
whose covariance function is given by

E [XvXw] = A

✓
|v · w|

N

◆
, ’v, w œ Tn

where A : [0, 1] æ [0, 1] is an increasing function with A(0) = 0 and A(1) = 1 and
|v · w| is the depth of the most recent common ancestor of v and w. The authors
proved the existence of a threshold xú such that the following holds: a) for every
x < xú, there exists a polynomial-time algorithm that can accomplish the task
with high probability, b) for every x > xú, every such algorithm has a running time
which is at least exponential in N with high probability. The authors also raised
the question of the complexity of sampling a typical vertex of value roughly xN ,
which can be interpreted as sampling a vertex according to a Gibbs measure with
a certain parameter — depending on x.

The present work attacks this problem in the simpler setting of the (homoge-
neous) branching random walk, corresponding to the case A(x) = x of the CREM
in the special case of Gaussian displacements. The Gibbs measure is a probability
measure on the leaves v of TN with weight proportional to e—Xv , where — > 0
is a given parameter called the inverse temperature. We show that there exists a
threshold —c > 0 such that the following holds: a) in the subcritical regime — < —c,
there exists a polynomial-time algorithm such that with high probability, the spe-
cific relative entropy between the law sampled by the algorithm and the Gibbs
measure of inverse temperature — is arbitrarily small, b) in the supercritical regime
— > —c, under a mild regularity condition, we show that with high probability,
the running time of any given algorithm approximating the Gibbs measure in this
sense is at least stretched exponential in N .

2.1.1 Notation and main results

Let T be a rooted d-ary tree, where d Ø 2. The depth of a vertex v œ T is denoted
by |v|. We denote the root by ?, and any vertex v with depth n Ø 1 is indexed
by a string v1 · · · vn œ {0, . . . , d ≠ 1}n. For any v, w œ T, we write v Æ w if v is a
prefix of w and write v < w if v is a prefix of w strictly shorter than w. We denote
Tn to be the subtree of T containing vertices of depth less or equal to n and ˆTn

to be the leaves of Tn.
Let Y = (Y0, . . . , Yd≠1) be a d-dimensional random vector. Let (Yv)vœT be

i.i.d. copies of Y where Yv = (Yv0, . . . , Yv(d≠1)) — this uniquely defines Yu for
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every u œ T\{?}. Define the process X = (Xv)vœT by
8
<

:
X? = 0,

Xv =
P

?<wÆv Yw, |v| Ø 1.

The process X is called the branching random walk with increments Y.
It is well-known that X has the branching property: let F = (Fn)nØ0 be its

natural filtration. For any v œ T with |v| = n, define

Xv = (Xv
w)|w|Ø0 = (Xvw ≠ Xv)|w|Ø0.

Then (Xv)|v|=n are i.i.d. copies of X and independent of Fn.

Gibbs measures. Define the following function

Ï(—) = log
 
E
"

d≠1X

i=0
e—Yi

#!
œ (≠Œ, Œ], — œ R,

and set D(Ï) = {— œ R : Ï(—) < Œ}. It is well known that Ï is convex and that it
is smooth on D(Ï)¶, the interior of D(Ï). Throughout the article, we assume the
following.

Assumption 2.1.1. 0 œ D(Ï)¶.

For n œ N, define the following (normalized) partition functions

W—,n =
X

|v|=n

e—Xv≠Ï(—)n, n Ø 0,

W u
—,n =

X

|w|=n

e—Xu
w≠Ï(—)n, u œ T and n Ø 0.

Note that for every m Æ n,

W—,n =
X

|u|=m

e—Xu≠Ï(—)m · W u
—,n≠m. (2.1.1)

For — œ R and n œ N, we now define the Gibbs measure of parameter — on Tn to
be

µ—,n(u) = e—Xu≠Ï(—)m ·
W u

—,n≠m

W—,n
, |u| = m Æ n. (2.1.2)

Note that µ—,n is usually defined on ˆTn only, but it will be helpful to define it on
the whole tree Tn. By (2.1.1), for every m Æ n, the restriction of µ—,n to ˆTm is a
probability measure. Similarly, we can define

µv
—,n(u) = e—Xv

u≠Ï(—)m ·
W vu

—,n≠m

W v
—,n

, v œ T and |u| = m Æ n. (2.1.3)
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The free energy of the branching random walk has been calculated by Derrida
and Spohn [91] (and can also be deduced from Biggins [46])

lim
næŒ

1
—n

log
X

|v|=n

e—Xv =
(

1
— Ï(—) if — œ (0, —c)
1
—c

Ï(—c) if — Ø —c,

where the limit is meant to be in probability and where the critical inverse tem-
perature —c is defined by

—c = sup{— œ D(Ï)¶ | —ÏÕ(—) < Ï(—)} œ (0, Œ].

We will mostly be interested in the phase — < —c. In this phase, we recall the
following result.

Fact 2.1.2 ([118, 47, 129]). If — < —c, then the martingale (W—,n)nØ0 is uniformly
integrable. In fact, there exists a (strictly) positive random variable W—,Œ with
E[W—,Œ] = 1 and such that W—,n æ W—,Œ almost surely and in L1 as n æ Œ.

Algorithms. We define an algorithmic model similar to the ones in [159, 2].
Let N œ N. A random sequence v = (v(k))kØ0 taking values in TN is called a
(randomized) algorithm if v(0) = ? and v(k + 1) is F̃k-measurable for every k Ø 0.
Here,

F̃k = ‡
�
v(1), . . . , v(k); Xv(1), . . . , Xv(k); U1, . . . , Uk+1

�

where (Uk)kØ1 is a sequence of i.i.d. uniform random variables on [0, 1], independent
of the branching random walk X. Roughly speaking, the filtration F̃ = (F̃k)kØ0
contains all information about everything we have queried so far, as well as the
additional randomness needed to choose the next vertex. We further suppose that
there exists a stopping time · with respect to the filtration F̃ and such that
v(·) œ ˆTN . We call · the running time and v(·) the output of the algorithm.
The law of the output is the (random) distribution of v(·), conditioned on the
branching random walk.

Often, we will consider a family of algorithms indexed by N , which we also call
an algorithm by abuse of notation. We say that the algorithm is a polynomial-time
algorithm if there exists a (deterministic) polynomial P (N) such that · Æ P (N)
almost surely.

Fix M œ N. Given a configuration of the branching random walk of depth N ,
consider the following algorithm (See Figure 2.1.1):

Algorithm 2.1: Recursive sampling on M -renormalized tree
set v = ? while |v| < N do

choose w with |w| = M · (N ≠ |v|) according to the Gibbs measure
µv

—,M·(N≠|v|) replace v with vw

output v
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Figure 2.1: Schematic illustration of Algorithm 2.1 with N = 5 and M = 2 on
a given configuration of the binary branching random walk. The squares are the
vertices that the algorithm chooses at each step, and the thick line is the path from
the root to the sampled vertex. The bar charts represent the Gibbs measures from
which the algorithm samples at each step, and the check mark indicates which
vertex is chosen. Note that the histograms are not drawn to scale.

Remark 2.1.3. It is easy to see that Algorithm 2.1 can be formally written as a
randomized algorithm according to the above algorithmic model. Furthermore, its
running time is deterministic and bounded by ÁN/MËdM . The law of its output is
a random probability measure µ—,M,N on ˆTN that can be recursively defined as
follows:

µ—,M,0(?) = 1
µ—,M,N·(K+1)M (vw) = µ—,M,KM (v) · µv

—,M·(N≠KM)(w)
(2.1.4)

for all |v| = KM , |w| = M · (N ≠ KM) and 0 Æ K Æ
⌅

N
M

⇧
.

Approximation and threshold. Given two probability measures P and Q de-
fined on a discrete space �, the entropy of Q and the Kullback–Leibler divergence
from Q to P are respectively defined by

H(Q) =
X

Êœ�
Q(Ê) · log

✓
1

Q(Ê)

◆
(2.1.5)

d(P ||Q) =
X

Êœ�
P (Ê) · log

✓
P (Ê)
Q(Ê)

◆
. (2.1.6)

Note that by Jensen’s inequality, the entropy and the Kullback–Leibler diver-
gence are non-negative. In what follows, we will often take P and/or Q to be a
Gibbs measure µ—,N for some N . In that case, we set � = ˆTn, where n is the
largest number such that both P and Q are defined on ˆTn.

The following lemma is folklore. For completeness, we provide a proof in Sec-
tion 2.6.

Lemma 2.1.4.
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1. If — œ [0, —c), then H(µ—,N )/N converges in probability to a positive constant
as N æ Œ.

2. If — > —c and if —c œ D(Ï)¶, then H(µ—,N ) = O(1) in probability, as N æ Œ.
In other words, the sequence of random variables (H(µ—,N ))NØ1 is tight.

We are interested in the algorithmically e�cient approximation of the Gibbs
measure µ—,N . The notion of approximation we will use is the following.

Definition 2.1.5. Let — Ø 0. We say that a sequence of random probability
measures (µ̃—,N )NØ1 approximates the Gibbs measure µ—,N if

d(µ̃—,N ||µ—,N )
H(µ—,N ) æ 0 in probability as N æ Œ. (2.1.7)

Remark 2.1.6. More generally, assume that we are given two sequences of proba-
bility measures (PN )NØ1 and (QN )NØ1 satisfying H(QN )/N æ C œ (0, Œ) and

1
N

d(PN ||QN ) æ 0 as N æ Œ. (2.1.8)

This has been called measure equivalence or equivalence in the sense of specific
relative entropy in the physics literature [184]. Mathematically, Equation (2.1.8)
implies the following: if (AN )NØ1 is a sequence of sets such that QN (AN ) conver-
gences to 0 exponentially fast as N æ Œ, then we also have PN (AN ) æ 0. Indeed,
this is an easy consequence of Birgé’s inequality (see e.g. Theorem 4.20 in [52]).

Main results. We now state the main theorem of this paper.

Theorem 2.1.7 (Approximation bounds). Let N œ N, M œ J1, NK, and — œ
[0, —c). Then for all p Ø 1, there exists a constant C1(p) > 0 such that

Îd(µ—,M,N ||µ—,N )Îp Æ C1(p) ·
�

N

M

⌫
. (2.1.9)

Moreover, for all p Ø 1, there exists a constant C1(p) > 0 such that

Îd(µ—,M,N ||µ—,N ) ≠ E [d(µ—,M,N ||µ—,N )]Îp Æ C1(p). (2.1.10)

By Theorem 2.1.7, we can derive the following corollary which states the exis-
tence of an algorithm that approximates the Gibbs measure µ—,N e�ciently.

Corollary 2.1.8 (Complexity upper bound). If — œ [0, —c), then there exists a
polynomial-time algorithm such that for every p > 1, denoting by µ̃—,N the law of
its output,

1
N

Îd(µ̃—,N ||µ—,N )Îp æ 0 (2.1.11)

as N æ Œ. In particular, µ̃—,N approximates the Gibbs measure µ—,N in the sense
of Definition 2.1.5.
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Proof. Let M = M(N) be a sequence that goes to infinity as N æ Œ, and set
µ̃—,N = µ—,M,N . Equation (2.1.11) then follows from (2.1.9) in Theorem 2.1.7.
Assuming moreover that M = O(log N), Remark 2.1.3 implies that µ̃—,N can be
computed by a polynomial-time algorithm. The second statement follows from the
first part of Lemma 2.1.4. ⌅

Finally, we also provide a hardness result, assuming a mild regularity condition.

Theorem 2.1.9 (Complexity lower bound). Assume —c œ D(Ï)¶ (in particular,
—c < Œ). Let — > —c. Let v = (v(k))kØ0 be an algorithm which outputs a vertex
of law µ̃N such that µ̃N approximates the Gibbs measure µ—,N in the sense of
Definition 2.1.5. Let · be the running time of the algorithm. Then for every ” > 0,
there exists z > 0, such that for large enough N ,

P
⇣

· Ø ez
Ô

N
⌘

Ø 1 ≠ ”.

2.1.2 Related work

An early study on searching algorithms on the branching random walk can be
found in Karp and Pearl [119]. They considered the binary branching random
walk with Bernoulli increments Ber(p), and they showed that for p > 1/2 and
p = 1/2, they gave an algorithm that can find an exact maximal vertex in linear and
quadratic expected time, respectively. While for p < 1/2, it is possible to find an
approximate maximal vertex in linear time with high probability using a depth-first
search on a renormalized tree. Aldous [11] gave a di�erent algorithm and, among
other things, extended the result of Karp and Pearl [119] to general increment
distributions. A hardness result was obtained by Pemantle [159]. Among other
things, he showed for the binary branching random walk with Bernoulli increments
with mean p < 1/2 that any search algorithm which finds a vertex within a (1 ≠ Á)
factor of the maximum with high probability needs at least N ◊ exp

�
�(Á≠1/2)

�

with high probability.1
As mentioned above, Addario-Berry and Maillard [2] considered this optimiza-

tion problem for the continuous random energy model (CREM), which is a binary
time-inhomogeneous branching random walk with Gaussian displacements, proving
the existence of an threshold xú such that the following holds: a) for every x < xú,
there exists a polynomial-time algorithm that finds a vertex with Xv Ø xN with
high probability, b) for every x > xú, every such algorithm has a running time
which is at least exponential in N with high probability.

The CREM, introduced by Bovier and Kurkova [54] based on previous work
by Derrida and Spohn [91], is a toy model of a disordered system in statistical
physics, i.e. a model where the Hamiltonian — the function that assigns energies
to the states of the system — is itself random. These systems have recently seen a
lot of interest in the mathematical literature with regards to e�cient algorithms for

1To be precise, this explicit bound relied on a conjecture on branching random walk killed at
a linear space-time barrier (Conjecture 1 in [159]), which was subsequently proven to be true [39,
106].
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finding low-energy states. A key quantity of importance in these models is the so-
called overlap between two states, a measure of their correlation. In the case of the
CREM, it is equal to the depth of the most recent common ancestor of two vertices,
divided by N . Then, for a given — > 0, the overlap distribution is the limiting law
(as N æ Œ) of the overlap of two vertices sampled independently according to the
Gibbs measure with inverse temperature —. A picture that has emerged is that the
existence of a gap in the support of the overlap distribution, the so-called “overlap
gap property”, is an obstruction to the existence of e�cient algorithms finding
approximate minimizers of the Hamiltonian. This has been rigorously proven for
a certain class of algorithms by Gamarnik and Jagannath [103] in the case of the
Ising p-spin model, with p Ø 4. On the other hand, Montanari [145] showed that for
p = 2, the Sherrington–Kirkpatrick model, there exists a quadratic time algorithm
that can find near optimal state with high probability, assuming a widely believed
conjecture that this model does not exhibit an overlap gap. A similar result for
spherical spin glass models (for which the overlap distribution is explicitly known)
has been obtained by Subag [171].

The question of e�cient sampling of the Gibbs measure of a disordered system
seems to have been considered mostly under the angle of Glauber or Langevin
dynamics. See e.g. [37, 108] for the spherical spin glass model. We restrict ourselves
here to the case of the Sherrington–Kirkpatrick model. For this model, it has been
recently obtained that fast mixing occurs for — < 1/4 [28, 98]. However, very
recently, El Alaoui, Montanari and Sellke [9] have provided another algorithm
which yields fast mixing for — < 1/2, and they conjecture that this in fact holds
for all — < 1. They also provide a hardness result for — > 1 for a certain class
of algorithms. Their algorithm for the — < 1/2 phase belongs to the class of
approximate message passing algorithms, which is also the case for Montanari’s
algorithm for the optimization problem [145]. This illustrates the fact that Glauber
or Langevin dynamics may in general not be optimal sampling algorithms, and that
algorithms which exploit the underlying tree structure of the model may be e�cient
in a wider range of the parameters. For a discussion of this question in the context
of statistical inference problems, see e.g. [15]. Altogether, this motivates the study
of tree-based models as a toy problem, such as the one from the present article.

Outline. The paper is organized as follows. In Section 2.2, we prove that
the Kullback–Leibler divergence can be decomposed into a weighted sum of the
Kullback–Leibler divergences on subtrees. In Section 2.3, we give Lp bounds of
the logarithm of Biggins’ martingales and Lp bounds of the Kullback–Leibler di-
vergences between two Gibbs measures. Theorem 2.1.7 is proven in Section 2.4
and Theorem 2.1.9 in Section 2.5. Section 2.6 provides the proof of Lemma 2.1.4.
Finally, we state in Section 2.7 some open questions that might interest the readers.

2.2 Decomposition of the Kullback–Leibler divergence

The main goal of this section is to prove Theorem 2.2.2. Before proving the the-
orem, we need the following lemma, which states that the weight of u1u2 with
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respect to the Gibbs measure µ—,m can be decomposed into the product of the
weights of u1 and u2 with respect to another two Gibbs measures.

Lemma 2.2.1. For any |u1| = m1 and |u2| = m2, we have the decomposition

µ—,m(u1u2) = µ—,m(u1) · µu1
—,m≠m1

(u2)

for all m Ø m1 + m2.

Proof. By computation, we have

µ—,m(u1u2) =
e—Xu1u2 ≠Ï(—)m · W u1u2

—,m≠m1≠m2

W—,m

=
e—Xu1 ≠Ï(—)m1 · W u1

—,m≠m1

W—,m
·

e—X
u1
u2 ≠Ï(—)(m≠m1) · W u1u2

—,m≠m1≠m2

W u1
—,m≠m1

= µ—,m(u1) · µu1
—,m≠m1

(u2),

where the last equality is by (2.1.2) and (2.1.3). ⌅

Now we can decompose the Kullback–Leibler divergence as follows.

Theorem 2.2.2. For any two M and N integers such that M Æ N , we have

d(µ—,M,N ||µ—,N ) =
Â N

M Ê≠1X

K=0

X

|u|=KM

µ—,M,KM (u) · d(µu
—,M ||µu

—,N≠KM ). (2.2.1)

Proof. Denote N Õ = Â N
M Ê · M for simplicity. By (2.1.4) and Lemma 2.2.1, for all

|u1| = N Õ and |u2| = N ≠ N Õ, we have

log
✓

µ—,M,N (u1u2)
µ—,N (u1u2)

◆
= log

 
µ—,M,N Õ(u1) · µu1

—,N≠N Õ(u2)
µ—,N (u1) · µu1

—,N≠N Õ(u2)

!
= log

✓
µ—,M,N Õ(u1)
µ—,M,N (u1)

◆
.

(2.2.2)

Thus, the Kullback–Leibler divergence can be rewritten as

d(µ—,M,N ||µ—,N )

=
X

|u|=N

µ—,M,N (u) · log
✓

µ—,M,N (u)
µ—,N (u)

◆

=
X

|u1|=N Õ

X

|u2|=N≠N Õ

µ—,M,N (u1u2) · log
✓

µ—,M,N (u1u2)
µ—,N (u1u2)

◆

=
X

|u1|=N Õ

X

|u2|=N≠N Õ

µ—,M,N Õ(u1) · µu1
—,N≠N Õ(u2) · log

✓
µ—,M,N Õ(u1)

µ—,N (u1)

◆
(by (2.1.4) and (2.2.2))

=
X

|u1|=N Õ

µ—,M,N Õ(u1) · log
✓

µ—,M,N Õ(u1)
µ—,N (u1)

◆

= d(µ—,M,N Õ ||µ—,N ). (2.2.3)
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Next, by (2.1.4) and Lemma 2.2.1, for all |u1| = KM , |u2| = M and 0 Æ K Æ
Â N

M Ê ≠ 1, we have

log
✓

µ—,M,(K+1)M (u1u2)
µ—,N (u1u2)

◆
= log

 
µ—,M,KM (u1) · µu1

—,M (u2)
µ—,N (u1) · µu1

—,N≠KM (u2)

!

= log
✓

µ—,M,KM (u1)
µ—,N (u1)

◆
+ log

 
µu1

—,M (u2)
µu1

—,N≠KM (u2)

!
.

(2.2.4)

Thus,

d(µ—,M,(K+1)M ||µ—,N )

=
X

|u|=(K+1)M
µ—,M,(K+1)M (u) · log

✓
µ—,M,(K+1)M (u)

µ—,N (u)

◆

=
X

|u1|=KM

X

|u2|=M

µ—,M,KM (u1)

· µu1
—,M (u2) ·

"
log

✓
µ—,M,KM (u1)

µ—,N (u1)

◆
+ log

 
µu1

—,M (u2)
µu1

—,N≠KM (u2)

!#
(by (2.1.4) and (2.2.4))

= d(µ—,M,KM ||µ—,N ) +
X

|u1|=KM

µ—,M,KM (u1) · d(µu1
—,M ||µu1

—,N≠KM ). (2.2.5)

Finally, by (2.2.3), (2.2.5) and the fact that d(µ—,M,0||µ—,N ) = 0, we derive
(2.2.1). ⌅

Next, we show that the Kullback–Leibler divergence between two Gibbs mea-
sures can be written in terms of the logarithms of the partition functions.

Proposition 2.2.3. For any two M and N integers such that M Æ N , we have

d(µ—,M ||µ—,N ) = log W—,N ≠ log W—,M ≠
X

|u|=M

µ—,M (u) · log W u
—,N≠M . (2.2.6)

Proof. For any |u| = M , we have

µ—,M (u)
µ—,N (u) =

e—Xu≠Ï(—)M · 1
W—,M

e—Xu≠Ï(—)M · W u
—,N≠M

W—,N

=
W—,N

W—,M · W u
—,N≠M

.

Thus,

d(µ—,M ||µ—,N ) =
X

|u|=M

µ—,M (u) · log
✓

µ—,M (u)
µ—,N (u)

◆

=
X

|u|=M

µ—,M (u) ·
�
log W—,N ≠ log W—,M ≠ log W u

—,N≠M

�

= log W—,N ≠ log W—,M ≠
X

|u|=M

µ—,M (u) · log W u
—,N≠M .

This completes the proof. ⌅



CHAPTER 2. SAMPLING THE BRW GIBBS MEASURE 55

2.3 Some Lp bounds

We first show that whenever — œ [0, —c), (log W—,n)nØ0 is bounded in Lp for all
p > 1.

Lemma 2.3.1. Let — œ [0, —c). Then (log W—,n)nØ0 is a supermartingale such that

sup
nØ0

Îlog W—,nÎp < Œ, p Ø 1.

Proof. The supermartingale property of (log W—,n)nØ0 follows from the fact that
(W—,n)nØ0 is a martingale and x ‘æ log x is a concave function.

Now let p Ø 1. Since — < —c, by Fact 2.1.2, we derive that

sup
nØ0

ÎW—,nÎ1 < Œ

Furthermore, using Assumption 2.1.1 and Liu [127, Theorem 2.4], we have for some
s > 0,

sup
nØ0

���W ≠s
—,n

���
1

< Œ.

Then by the fact that

|log x|p Æ C
�
|x| + |x|≠s�

for some constant C > 0, we have

sup
nØ0

Îlog W—,nÎp
p Æ C · sup

nØ0

⇣
ÎW—,nÎ1 +

���W ≠s
—,n

���
1

⌘
< Œ.

This proves the lemma. ⌅

Lemma 2.3.1 implies the following proposition about the boundedness of the
Kullback–Leibler divergence between two Gibbs measures.

Proposition 2.3.2. For any p > 1, for any two integers M and N such that
M Æ N , there exists a constant C(p) > 0 such that

Îd(µ—,M ||µ—,N )Îp Æ C(p).

Proof. By Minkowski’s inequality and Proposition 2.2.3, we have

Îd(µ—,M ||µ—,N )Îp Æ Îlog W—,N Îp + Îlog W—,M Îp +

������

X

|u|=M

µ—,M (u) · log W u
—,N≠M

������
p

.

Since the first and the second term above are bounded by Lemma 2.3.1, it su�ces
to prove that the third term above is bounded. By the branching property and
Jensen’s inequality, we have

E

2

4

������

X

|u|=M

µ—,M (u) · log W u
—,M

������

p ������
FM

3

5 Æ E [|log W—,N≠M |p] . (2.3.1)
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Therefore, by (2.3.1),
������

X

|u|=M

µ—,M (u) · log W u
—,N≠M

������
p

Æ Îlog W—,N≠M Îp. (2.3.2)

Finally, we conclude by (2.3.2) and Lemma 2.3.1 that

Îd(µ—,M ||µ—,N )Îp Æ 3 · sup
nØ0

Îlog W—,nÎp < Œ,

and the proof is completed. ⌅

2.4 Proof of Theorem 2.1.7

In this section, we prove (2.1.9) and (2.1.10) of Theorem 2.1.7. The proof of (2.1.9)
relies essentially on the decomposition theorem of the Kullback–Leibler divergence
(Theorem 2.2.2) and Proposition 2.3.2. The proof of (2.1.10) needs more precise
moment estimates.

2.4.1 Proof of (2.1.9)

Let p Ø 1. By Theorem 2.2.2 and Minkowski’s inequality, we have

Îd(µ—,M,N ||µ—,N )Îp =

������

Â N
M Ê≠1X

K=0

X

|u|=KM

µ—,M,KM (u) · d(µu
—,M ||µu

—,N≠KM )

������
p

Æ
Â N

M Ê≠1X

K=0

������

X

|u|=KM

µ—,M,KM (u) · d(µu
—,M ||µu

—,N≠KM )

������
p

. (2.4.1)

Let K Æ ÂN/MÊ ≠ 1. Applying Jensen’s inequality to µ—,M,KM , we have

E

2

4

������

X

|u|=KM

µ—,M,KM (u) · d(µu
—,M ||µu

—,N≠KM )

������

p3

5

Æ E

2

4
X

|u|=KM

µ—,M,KM (u) ·
��d(µu

—,M ||µu
—,N≠KM )

��p
3

5 . (2.4.2)

Then by the law of iterated expectation and the branching property, (2.4.2) is equal
to

E

2

4
X

|u|=KM

µ—,M,KM (u) · E
⇥��d(µu

—,M ||µu
—,N≠KM )

��p ��FKM
⇤
3

5

= E

2

4
X

|u|=KM

µ—,M,KM (u)

3

5 · E [|d(µ—,M ||µ—,N≠KM )|p] = E [|d(µ—,M ||µ—,N≠KM )|p] .

(2.4.3)

Combining (2.4.1), (2.4.3) and Proposition 2.3.2, we conclude that

Îd(µ—,M,N ||µ—,N )Îp Æ
�

N

M

⌫
· C(p).
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2.4.2 Proof of (2.1.10)

In this section, we prove (2.1.10) which gives a tighter control on the Kullback–
Leibler divergence between µ—,M,N and the Gibbs measure µ—,N . We start with the
following simple lemma.

Lemma 2.4.1. Let — œ [0, —c). For all M œ N, there exists r œ (0, 1) independent
of M such that,

E

2

4
X

|u|=M

µ—,M (u)2

3

5 Æ r (2.4.4)

Moreover, for all K œ N,

E

2

4
X

|u|=KM

µ—,M,KM (u)2

3

5 Æ rK . (2.4.5)

Proof of Lemma 2.4.1. For x œ (0, 1), x2 < x. Thus, by the fact that µ—,M (u) œ
(0, 1) for all |u| = M , we derive that

X

|u|=M

µ—,M (u)2 <
X

|u|=M

µ—,M (u) = 1,

for every M œ N. This shows that (2.4.4) holds for every fixed M œ N and with
r < 1 possibly depending on M . Uniformity in M follows as soon as we show that

lim sup
MæŒ

E

2

4
X

|u|=M

µ—,M (u)2

3

5 < 1.

To this end, recall that W—,M æ W—,Œ almost surely as M æ Œ and that
E[W—,Œ] = 1. Hence, there exist a < 1 and M0 œ N such that

’M Ø M0 : P(W—,M < 1/2) Æ a. (2.4.6)

Now fix p œ (1, 2] such that Ï(p—) < pÏ(—), which exists because — < —c. Then
decompose:

E

2

4
X

|u|=M

µ—,M (u)2

3

5 Æ E

2

4
X

|u|=M

µ—,M (u)p

3

5

Æ E

2

4

0

@
X

|u|=M

µ—,M (u)p

1

A1W—,M <1/2

3

5 + E

2

4

0

@
X

|u|=M

µ—,M (u)p

1

A1W—,M Ø1/2

3

5

Æ P(W—,M < 1/2) + 2pe(Ï(p—)≠pÏ(—))M ,

using the definition of µ—,M (u) for the last inequality. This shows that

lim sup
MæŒ

E

2

4
X

|u|=M

µ—,M (u)2

3

5 Æ a,
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which concludes the proof of (2.4.4).
We now show (2.4.5) by induction. The case K = 1 follows directly from (2.1.4)

and (2.4.4). For K > 1, by (2.1.4) and branching property, we obtain that

E

2

4
X

|u|=KM

µ—,M,KM (u)2

������
F(K≠1)M

3

5

= E

2

4
X

|u1|=(K≠1)M

X

|u2|=M

µ—,M,(K≠1)M (u1)2 · µu1
—,M (u2)2

������
F(K≠1)M

3

5

=
X

|u1|=(K≠1)M
µ—,M,(K≠1)M (u1)2 · E

2

4
X

|u2|=M

µ—,M (u2)2

3

5 . (2.4.7)

Taking expectations, we derive that

E

2

4
X

|u|=KM

µ—,M,KM (u)2

3

5 = E

2

4
X

|u|=(K≠1)M
µ—,M,(K≠1)M (u)2

3

5 · E

2

4
X

|u|=M

µ—,M (u)2

3

5 .

(2.4.8)

The equation (2.4.5) then follows from the induction hypothesis. ⌅

We now proceed with the proof of (2.1.10). Without loss of generality, using the
fact that Î·Îp Æ Î·Î2 for every p œ [1, 2], we assume that p Ø 2. By Theorem 2.2.2
and Minkowski’s inequality, we have

Îd(µ—,M,N ||µ—,N ) ≠ E [d(µ—,M,N ||µ—,N )]Îp

Æ
Â N

M Ê≠1X

K=0

������

X

|u|=KM

µ—,M,KM (u) ·
�
d(µu

—,M ||µu
—,N≠KM ) ≠ E

⇥
d(µu

—,M ||µu
—,N≠KM )

⇤�
������

p

.

(2.4.9)

We now introduce some notation. For all 0 Æ K Æ Â N
M Ê ≠ 1, denote

du
K = d(µu

—,M ||µu
—,N≠KM ) and dK = d(µ—,M ||µ—,N≠KM )

and

Zu = µ—,M,KM (u) · (du
K ≠ E [du

K ]) .

We claim that for all p Ø 1, the sequence

aK =

������

X

|u|=KM

Zu

������
p

(2.4.10)

is summable, with a bound independent of M . This will imply that the right-hand
side of (2.4.9) is bounded by the same quantity, which completes proof. To prove
this, first observe that (Zu)|u|=KM is a sequence of i.i.d. random variables having
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zero mean and finite p-th moments, for any p Ø 1, with respect to E [ · | FKM ], by
Proposition 2.3.2 and the branching property. Denote by C1, C2, . . . some constants
possibly depending on p (and — and the law of Y). By Rosenthal’s inequality [164,
Theorem 3], we have

E

2

4

������

X

|u|=KM

Zu

������

p ������
FKM

3

5 Æ C1 ·

8
><

>:

0

@
X

|u|=KM

E [|Zu|p | FKM ]

1

A +

0

@
X

|u|=KM

E
h
|Zu|2

���FKM

i
1

A
p/2

9
>=

>;

(2.4.11)
By the branching property and Proposition 2.3.2, the first term of (2.4.11) can

be bounded by
X

|u|=KM

E [|Zu|p | FKM ] =
X

|u|=KM

µ—,M,KM (u)p · E [|dK ≠ E [dK ]|p]

Æ
X

|u|=KM

µ—,M,KM (u)p · C2

Æ
X

|u|=KM

µ—,M,KM (u)2 · C2, (2.4.12)

using that p Ø 2 in the last line. Taking expectations and applying Lemma 2.4.1,
we get

E

2

4
X

|u|=KM

E [|Zu|p | FKM ]

3

5 Æ E

2

4
X

|u|=KM

µ—,M,KM (u)2

3

5 · C2 Æ rK · C2, (2.4.13)

with r < 1 as in Lemma 2.4.1.
We now estimate the second term of (2.4.11). By the branching property and

Lemma 2.3.1,
0

@
X

|u|=KM

E
h
|Zu|2

���FKM

i
1

A
p/2

=

0

@
X

|u|=KM

µ—,M,KM (u)2 · E
h
|dK ≠ E [dK ]|2

i
1

A
p/2

Æ

0

@
X

|u|=KM

µ—,M,KM (u)2

1

A
p/2

· C3

Æ

0

@
X

|u|=KM

µ—,M,KM (u)2

1

A · C3. (2.4.14)

The inequality (2.4.14) is because
X

|u|=KM

µ—,M,KM (u)2 œ [0, 1]

and xp/2 Æ x, for all x œ [0, 1] and p Ø 2. Taking expectations and applying
Lemma 2.4.1, we get
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2
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|Zu|2

���FKM

i
1

A
p/2
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75 Æ E

2

4
X

|u|=KM

µ—,M,KM (u)2

3

5 · C3 Æ rK · C3.

(2.4.15)
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Combining (2.4.11), (2.4.13) and (2.4.15), we conclude that
������

X

|u|=KM

Zu

������
p

Æ C1(C2 + C3) · rK .

This implies that (2.4.10) is summable and finishes the proof.

2.5 Proof of hardness result (Theorem 2.1.9)

In this section, we prove Theorem 2.1.9. To do this, we recall two results of
asymptotic behaviors of the maximal particle of a branching random walk.

Under the assumption of the theorem, it is known in Corollary (3.4) of [46] that

max|u|=N Xu

N
æ m := ÏÕ(—c), a.s. as N æ Œ. (2.5.1)

Furthermore, we have the following tail estimate, which easily follows from a union
bound together with Cherno�’s bound (see e.g. the proof of Theorem 2 in [185]):
there exists a constant c > 0 such that

’x Ø 0 : P
✓

max
|u|=N

Xu Ø mN + x

◆
Æ e≠cx. (2.5.2)

The key to Theorem 2.1.9 is the following observation:

Lemma 2.5.1. Let — > —c and assume —c œ D(Ï)¶. Let u be a particle sampled
according to the Gibbs measure µ—,N and let w be its ancestor at generation ÂN/2Ê.
Then there exists a positive random variable Z with continuous distribution function
such that

Xu ≠ Xw ≠ mN/2Ô
N

æ Z, in law as N æ Œ.

Proof. This is a consequence of a result by Chen, Madaule and Mallein [79]. These
authors show the following fact: if u is sampled according to the Gibbs measure
µ—,N , and Xu(t) denotes the position of its ancestor at generation ÂtNÊ, and if we
define

ZN
t := mtN ≠ Xu(t)Ô

N
, t œ [0, 1],

then (ZN
t )tœ[0,1] converges in law (w.r.t. Skorokhod’s topology) to a multiple of

a Brownian excursion as N æ Œ. Note that the assumptions in their article are
implied by our hypothesis that —c œ D(Ï)¶ and the fact that in our branching
random walk, the number of o�spring of a particle is deterministic. Now, we also
have that Xu ≠ mN = O(log N) in probability (see e.g. [6]), so that

Xu ≠ mNÔ
N

law≠≠æ 0, as N æ Œ.

Together, both results imply the lemma. ⌅
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Proof of Theorem 2.1.9. Assume that we are given an algorithm (v(k))kØ1 that
samples a vertex according to a random probability measure µ̃—,N approximating
the Gibbs measure µ—,N . By Lemma 2.1.4, it follows that d(µ̃—,N ||µ—,N ) æ 0
in probability as N æ Œ. Hence, by Pinsker’s inequality (see e.g. Theo-
rem 4.19 in [52]), the total variation distance between µ̃—,N and µ—,N goes to 0
as well in probability, as N æ Œ. It follows that Lemma 2.5.1 holds as well for u

sampled according to µ̃—,N .
Let ” > 0. For z > 0, call a vertex w œ ˆTÂN/2Ê z-exceptional if it has a

descendant u œ ˆTN such that Xu ≠ Xw ≠ mN/2 > z
Ô

N . By the preceding
paragraph, there exists z > 0 such that for large enough N , the algorithm finds a
vertex u whose ancestor w at generation ÂN/2Ê is z-exceptional with probability at
least 1≠”. Hence, it is enough to show that any algorithm which solves the simpler
problem of finding a z-exceptional vertex at generation ÂN/2Ê has a running time
at least ezÕÔN with probability 1 ≠ ”, for some zÕ > 0. We will now show that the
statement of the theorem holds even for this simpler problem. For this, we use an
argument similar to the one in Section 3 of [2]. We first present the argument in
an informal way.

Denote by Ew the event that a given vertex w œ ˆTÂN/2Ê is z-exceptional. Note
that this event only depends on the displacements of the descendants of w. Hence,
the events (Ew)wœˆTÂN/2Ê are independent by the branching property. Furthermore,
by (2.5.2), for each w œ ˆTÂN/2Ê, we have P(Ew) Æ e≠cz

Ô
N/2 for some c > 0.

Finally, in order to determine whether a vertex w is z-exceptional, the algorithm
has to explore at least one vertex in the subtree of the vertex w. Hence, the running
time of the algorithm is bounded from below by the number of vertices w that have
to be probed in order to find a z-exceptional vertex. But this quantity follows the
geometric distribution with success probability P(Ew) Æ ecz

Ô
N/2. Altogether, for

any zÕ < cz/
Ô

2 and for N su�ciently large, this shows that the running time · of
any algorithm solving the simpler problem is at least ezÕÔN with probability 1 ≠ ”.
The statement readily follows.

We now make this argument formal. Recall that, by definition, an algorithm is
a stochastic process (v(n))nØ0 previsible with respect to the filtration F̃ , defined
by

F̃k = ‡
�
v(1), . . . , v(k); Xv(1), . . . , Xv(k); U1, . . . , Uk+1

�

where (Uk)kØ1 is a sequence of i.i.d. uniform random variables on [0, 1], independent
of the branching random walk X. We now define a larger filtration G . For this,
define for any v œ TN the following set of vertices:

Vv =
(

w œ TN : |v · w| Ø ÂN/2Ê, if |v| Ø ÂN/2Ê
v, otherwise.

Note that v œ Vv for every v œ TN . We then set

Gk = ‡
⇣

v(1), . . . , v(k); (Xw)wœVv(1) , . . . , (Xw)wœVv(k) ; U1, . . . , Uk+1
⌘

.

Note that F̃k µ Gk for all k Ø 0 — heuristically, Gk adds to F̃k the information
about the values in the branching random walk of all vertices contained in Vv(i),
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i = 1, . . . , k. Note that trivially, the stochastic process v(n)nØ0 is still previsible
with respect to this larger filtration G .

Now say that Vv is z-exceptional if |v| Ø ÂN/2Ê and the ancestor of v at gener-
ation ÂN/2Ê is z-exceptional in the sense defined above — note that this definition
does not depend on the choice of v. Define

· Õ = inf{k Ø 0 : Vv(k) is z-exceptional},

and note that · Õ is a stopping time with respect to the filtration G . Now, by the
equality of events

{· Õ = k} = {Vv(k) is z-exceptional} fl {· Õ > k ≠ 1},

and since {· Õ > k ≠ 1} œ Gk≠1 and v(k) is Gk≠1-measurable, we have

P(· Õ = k | Gk≠1) =
X

vœTN

P(Vv is z-exceptional | Gk≠1)1(v(k)=v, · Õ>k≠1).

Now, for any v œ TN , if |v| < ÂN/2Ê, or if v œ
Sk≠1

i=0 Vv(i), the above probability
is zero, because none of Vv(i), i = 0, . . . , k ≠ 1 are z-exceptional on the event
{· Õ > k≠1}. On the other hand, if v ”œ

Sk≠1
i=0 Vv(i), then, by the branching property,

the above conditional probability is equal to the unconditioned probability that Vv

is z-exceptional, which is bounded by e≠cz
Ô

N/2 by (2.5.2). Hence, we get in total
that

P(· Õ = k| · Õ > k ≠ 1) Æ e≠cz
Ô

N/2,

and · Õ is dominated from below by a geometric random variable with success prob-
ability e≠cz

Ô
N/2. The proof now continues as above. ⌅

2.6 Proof of Lemma 2.1.4

We first consider the case — œ [0, —c). Define

D—,N = d
d—

W—,N =
X

|u|=n

(Xu ≠ ÏÕ(—)N)e—Xu≠Ï(—)N .

We express the entropy by

H(µ—,N ) = 1
W—,N

X

|u|=N

(Ï(—)N ≠ —Xu)e—Xu≠Ï(—)N + log W—,N

= (Ï(—) ≠ —ÏÕ(—))N ≠ —
D—,N

W—,N
+ log W—,N .

By the assumption on —, we have Ï(—)≠—ÏÕ(—) > 0. Furthermore, W—,N converges
almost surely to a positive random variable as N æ Œ by Fact 2.1.2 and D—,N

converges almost surely as well as N æ Œ, see [48]. The first statement follows.
Now let — > —c and assume —c œ D(Ï)¶. Define

fW—,N =
X

|u|=N

e—(Xu≠ÏÕ(—c)N≠ 3
2—c

log N).
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We now write

H(µ—,N ) = 1
fW—,N

X

|u|=N

✓
≠—

✓
Xu ≠ ÏÕ(—c)N ≠ 3

2—c
log N

◆◆
e—(Xu≠ÏÕ(—c)N≠ 3

2—c
log N)+log fW—,N .

Fix —Õ œ (—c, —). Then there exists C > 0, such that xe≠—x Æ Ce≠—Õx for every
x œ R. We have

H(µ—,N ) Æ C
fW—Õ,N

fW—,N

+ log fW—,N .

Now, fW—,N and fW—Õ,N converge almost surely as N æ Œ to positive random
variables, see [130]. The second statement follows.

2.7 Open questions and further directions

In this section, we state a few questions and further directions related to the CREM
and the branching random walks for future study.

1. It was conjectured in [2] that for the CREM, there exists a threshold —G Ø 0
such that its Gibbs measure with parameter — can be e�ciently approximated
if — < —G and cannot if — > —G. A conjectured explicit expression2 of —G

appears in Item 1, Section 5 of [2]. Our results confirm the conjecture in the
case where the CREM has correlation function A(x) = x, with the notion
of approximation from Definition 2.1.5. Moreover, our results imply that
—G = —c =

Ô
2 log 2, the (static) critical inverse temperature. One can check

that —c equals the expression of —G from [2]. Ongoing work of the authors
is trying to generalize the result to the CREM with a general correlation
function.

2. Back to the branching random walk, one might be interested in the near
critical regime to understand how the transition happens near —c. To do this,
one can take a sequence —(N) = —c ≠ N≠” for some ” > 0. It might be
interesting to study the time complexity of any algorithm approximating the
Gibbs measure µ—(N),N in the sense of Definition 2.1.5. One should expect a
phase transition at ” = 1/2, in line with a phase transition for the asymptotics
of the partition function obtained by Alberts and Ortgiese [10]. See also the
introduction of Pain [151]. This should be related to Pemantle’s [159] study
of optimization algorithms discussed in Section 2.1.2.

2There is a typo in the expression of —G in the case of the CREM in Item 1, Section 5 of
[2]. The definition of tG should be replaced by the following one: tG = sup{t œ [0, 1] : A(s) =
Â(s) for all s Æ t}.



3. E�cient sampling of the
CREM Gibbs measure

The continuous random energy model (CREM) is a toy model of disordered system
introduced by Bovier and Kurkova in 2004 based on previous work by Derrida and
Spohn in the 80s. In a recent paper by Addario-Berry and Maillard, they raised
the following question: what is the threshold —G, at which sampling approximately
the Gibbs measure at inverse temperature —G becomes algorithmically hard? Here,
sampling approximately means that the Kullback–Leibler divergence from the out-
put law of the algorithm to the Gibbs measure is of order o(N) with probability
approaching 1, as N æ Œ, and algorithmically hard means that the running time,
the numbers of vertices queries by the algorithms, is beyond of polynomial order.

The present work shows that when the covariance function A of the CREM
is concave, for all — > 0, a recursive sampling algorithm on a renormalized tree
approximates the Gibbs measure with running time of order O(N1+Á). For A non-
concave, the present work exhibits a threshold —G < Œ such that the following
hardness transition occurs: a) For every — Æ —G, the recursive sampling algorithm
approximates the Gibbs measure with running time of order O(N1+Á). b) For every
— > —G, a hardness result is established for a large class of algorithms. Namely,
for any algorithm from this class that samples the Gibbs measure approximately,
there exists z > 0 such that the running time of this algorithm is at least ezN with
probability approaching 1. In other words, it is impossible to sample approximately
in polynomial-time the Gibbs measure in this regime.

Additionally, we provide a lower bound of the free energy of the CREM that
could hold its own value.

3.1 Introduction

The continuous random energy model (CREM) is a toy model of a disordered
system in statistical physics, i.e. a model where the Hamiltonian — the function
that assigns energies to the states of the system — is itself random. The CREM
was introduced by Bovier and Kurkova [54] based on previous work by Derrida and
Spohn [91]. Mathematically, the model is defined as follows. For a given integer
N œ N, the CREM is a centered Gaussian process X = (Xu)uœTN indexed by the

64
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binary tree TN of depth N with covariance function

E [XvXw] = N · A

✓
|v · w|

N

◆
, ’v, w œ TN .

Here, |v · w| is the depth of the most recent common ancestor of v and w, and the
function A is assumed to be a non-decreasing function defined on an interval [0, 1]
such that A(0) = 0 and A(1) = 1. An essential quantity of this model is the Gibbs
measure, which is a probability measure defined on the set of leaves ˆTN where
the weight of v œ ˆTN is proportional to e—Xv .

The present work consider the sampling problem of the Gibbs measure. We say
that a (randomized) algorithm approximates the Gibbs measure if the Kullback–
Leibler divergence from the output law of this algorithm to the Gibbs measure
is of order o(N) with probability approaching 1. The present work considers a
recursive sampling algorithm that is similar to the one appearing in [2] and [112].
We shows that when the covariance function A of the CREM is concave, for all
— > 0, the recursive sampling algorithm approximates the Gibbs measure with
running time of order O(N1+Á). Moreover, when A is non-concave, we identify a
threshold —G < Œ such that the following hardness transition occurs: a) For every
— Æ —G, the recursive sampling algorithm approximates the Gibbs measure with
running time of order O(N1+Á). b) For every — > —G, we prove a hardness result
for a generic class of algorithms. Namely, there exists “ > 0 such that for any
algorithm in this class that approximates the Gibbs measure, the running time of
this algorithm is at least e“N with probability approaching 1.

3.1.1 Definitions and notation

Throughout this paper, we denote by N = {1, 2, · · · } the set of positive integer.
For each pair of integers n and m such that n Æ m, we denote by Jn, mK the set of
integers between n and m.

Binary tree. Fixing N œ N, we denote by TN = {?} fi
SN

n=1{0, 1}n the binary
tree rooted at ?. The depth of a vertex v œ TN is denoted by |v|. For any
v, w œ TN , we write v Æ w if v is a prefix of w and write v < w if v is a prefix of
w strictly shorter than w. In the following, for any v œ TN , we refer to any vertex
w with w Æ v as an ancestor of v. For any v œ TN and n œ J0, |v|K, define v[n] to
be the ancestor of v of depth n. For all v, w œ TN , we denote by v · w the most
recent common ancestor of v and w. We denote by ˆTN the set of leaves of TN ,
and for any v œ TN , let Tv

n be the subtree of TN rooted at v with depth n.

The model. Let A be a non-decreasing function defined on an interval [0, 1] such
that A(0) = 0 and A(1) = 1. For the sake of this paper, we assume that there
exists a bounded Riemann integrable function a such that A for all t œ [0, 1],

A(t) =
Z t

0
a(s) ds .
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We denote by Â the concave hull of A and by â the right derivative of Â. Note
that the Â is also equals to the Riemann integral of â, i.e., for all t œ [0, 1],

Â(t) =
Z t

0
â(s) ds .

We now introduce the CREM.

Definition 3.1.1. Given N œ N, the CREM is a centered Gaussian process X =
(Xu)uœTN indexed by the binary tree TN of depth N with covariance function

E [XvXw] = N · A

✓
|v · w|

N

◆
, ’v, w œ TN , (3.1.1)

where |v · w| is the depth of the most recent common ancestor of v and w.

Throughout this paper, we consider a sequence of CREM (XN )NœN defined on
the same underlying probability space. For simplicity, we drop N as long as it
causes no ambiguity.

Branching property. The CREM can be viewed as an inhomogeneous binary
branching random walk with Gaussian increments. In particular, it has the follow-
ing branching property: let (Fk)N

k=0 be the natural filtration of the CREM. For
any u œ TN with |u| = n œ J0, NK, call the process

Xu = (Xu
w)uwœTu

N≠n

the CREM indexed by the subtree Tu
N≠n, where Xu

w = Xuw ≠ Xu. For any n œ
J0, NK, let X(n) = (X(n)

u )uœTN≠n be a centered Gaussian process with covariance
function

E
h
X(n)

w1 X(n)
w2

i
= N · A

✓
n + |w1 · w2|

N

◆
, ’w1, w2 œ TN≠n.

Then, the branching property states that collection of processes {Xu : |u| = n} are
independent and have the identical distribution of X(n), and they are independent
of Fn.

Partition function and Gibbs measure. Given a subtree Tv
M rooted at v and

of depth M œ J0, N ≠ |v|K, the Gibbs measure with inverse temperature — > 0 is
defined by

µv
—,M (u) = 1

Zv
—,M

e—Xv
u , ’vu œ Tv

M , (3.1.2)

where

Zv
—,M =

X

vuœTv
M

e—Xv
u , (3.1.3)

is the partition function on the subtree Tv
M . In particular, we adopt the conventions

µ—,M = µ?
—,M and Z—,M = Z?

—,M

for any M œ J0, NK. For completeness, we also define Z(n)
—,M =

P
|u|=M e—X

(n)
u .
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Free energy and its lower bound. For v œ TN , we refer to the logarithm of
the partition function log Zv

—,M as the free energy on the subtree Tv
M . The free

energy F— of the CREM is defined as follows, and F— admits an explicit expression.

F— := lim
NæŒ

1
N

E [log Z—,N ] =
Z 1

0
f(—

p
â(s)) ds , (3.1.4)

where the function f is defined as

f(—) =

8
>>><

>>>:

log 2 + —2

2 , — <
Ô

2 log 2

Ô
2 log 2—, — Ø

Ô
2 log 2.

(3.1.5)

For completeness, we include the proof of (3.1.4) in Fact 3.A.2. When clear, we
also simply refer to F— as the free energy. We introduce a related quantity F̃—

defined as

F̃— :=
Z 1

0
f(—

p
a(s)) ds . (3.1.6)

In Proposition 3.A.1, we show that F— Ø F̃— and characterize the condition where
the equality holds.

Algorithms. We follow the same definition of randomized algorithms as in [2,
112], which also appeared in similar forms in [159].

Definition 3.1.2 (Algorithm). Let N œ N. Let F̃k be a filtration defined by

F̃k = ‡ (v(1), . . . , v(k); X(v(1)), . . . , X(v(k)); U1, . . . , Uk+1)

where (Uk)kØ1 is a sequence of i.i.d. uniform random variables on [0, 1], independent
of the continuous random energy model X. A random sequence v = (v(k))kØ0
taking values in TN is called a (randomized) algorithm if v(0) = ? and v(k + 1) is
F̃k-measurable for every k Ø 0. We further suppose that there exists a stopping
time · with respect to the filtration F̃ and such that v(·) œ ˆTN . We call · the
running time and v(·) the output of the algorithm. The law of the output is the
(random) distribution of v(·), conditioned on X.

Remark 3.1.3. Roughly speaking, the filtration F̃ = (F̃k)kØ0 contains all the infor-
mation about everything the algorithm has queried so far, as well as the additional
randomness needed to choose the next vertex.

Throughout the paper, the notion of time complexity is given by the following
definition.

Definition 3.1.4 (Time complexity). Let (·N ) be a sequence of running time
corresponds to a sequence of algorithms indexed by N . Let h : N æ N be a
function. We say that the sequence of running times is of order O(h(N)) if almost
surely, there exists N0 œ N such that ·N Æ h(N). We say the running time is of
polynomial order if there exists a polynomial P (N) such that almost surely, there
exists N0 œ N.
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Remark 3.1.5. In the rest of the paper, when we say that the running time of an
algorithm is of order O(h(N)), we implicitly assume that there is an underlying
sequence of algorithms indexed by N , which we also refer to as an algorithm by
abuse of notation.

Kullback–Leibler divergence. Given two probability measures P and Q de-
fined on a discrete space �, the Kullback–Leibler divergence (also known as the
relative entropy) from Q to P is defined by

d(P ||Q) =
X

Êœ�
P (Ê) · log

✓
P (Ê)
Q(Ê)

◆
. (3.1.7)

From now on, we abbreviate the Kullback–Leibler divergence as the KL divergence.
The notion of approximation in the present work is the following.

Definition 3.1.6. Let (PN )NœN and (QN )NœN are two sequences of random prob-
ability measures defined on a discrete space �. We say that the sequence (PN )NœN
approximates the sequence (QN )NœN with probability approaching 1 if

lim
NæŒ

P
✓

1
N

d(PN ||QN ) < ÁN

◆
= 0.

Remark 3.1.7. Note that Definition 3.1.6 is equivalent to saying that

1
N

d(PN ||QN ) Pæ 0, as N æ Œ.

3.1.2 Main results

Recall that a is the derivative of A. By the Lebesgue criterion of Riemann integra-
bility, the function a is continuous almost everywhere on [0, 1]. If A is non-concave,
define the threshold

—G =
Ô

2 log 2
ess suptœ{A”=Â}

p
a(t)

, (3.1.8)

For completeness, we define —G = Œ when A is concave. We now state the main
results.

Subcritical and critical regime — Æ —G: optimality of recursive sampling

Fix — > 0, N œ N, and M = MN œ J1, NK. Given a configuration of the continuous
random energy model with depth N , consider the following algorithm:

Algorithm 3.1: Recursive sampling on renormalized tree
set v = ? while |v| < N do

sample w with |w| = M · (N ≠ |v|) according to the Gibbs measure
µv

—,M·(N≠|v|) replace v with vw

output v



CHAPTER 3. SAMPLING THE CREM GIBBS MEASURE 69

Remark 3.1.8. This is the same algorithm as the one in [112] except that now
the law of the Gibbs measure µv

—,M·(N≠|v|) depends on the depth of v. Again,
its running time is deterministic and bounded by ÁN/MË2M . The output law of
Algorithm 3.1 is a random probability measure µ—,M,N on ˆTN that is recursively
defined as follows:

µ—,M,0(?) = 1
µ—,M,N·(k+1)M (vw) = µ—,M,kM (v) · µv

—,M·(N≠kM)(w)
(3.1.9)

for all |v| = kM , |w| = M · (N ≠ kM) and k œ J0,
⌅

N
M

⇧
K. It is not hard to see that

µ—,M,N (u) = e—Xu

Z—,M,N (u) , (3.1.10)

where

Z—,M,N (u) =
ÂN/MÊY

k=1
Zu[kM ]

—,M·(N≠kM).

The first theorem states that the KL divergence from the output law of Algo-
rithm 3.1 to the Gibbs measure concentrates in the following sense.

Theorem 3.1.9 (Concentration bounds). Let — > 0, N œ N and M œ J1, NK.
Then for all p Ø 1, there exists a constant Cp > 0 depending only on p such that

1
N

Îd(µ—,M,N ||µ—,N ) ≠ E [d(µ—,M,N ||µ—,N )]Îp Æ —CpÔ
M

.

Next, we show that with a suitable choice of MN , the expectation of the KL
divergence renormalized by N converges to the di�erence between F— and F̃—.

Theorem 3.1.10 (Convergence of the KL divergence). Let — > 0, N œ N, and
MN be a sequence such that MN œ J1, NK and MN æ Œ. Let µ̃—,N = µ—,MN ,N be
the output law of Algorithm 3.1. Then,

lim
NæŒ

1
N

E [d(µ̃—,N ||µ—,N )] = F— ≠ F̃— Ø 0,

with equality holding if and only if — Æ —G.

As a corollary of Theorem 3.1.10, in the subcritical regime, with a good choice
of MN , the mean of the KL divergence divided by N converges to 0 when N æ Œ.
Moreover, for Á > 0, with a good choice of MN , the running time is of O(N1+Á).

Corollary 3.1.11 (E�cient sampling). Fix — œ [0, —G]. Given Á > 0, let MN =
ÂÁ log2 NÊ · N and µ̃—,N = µ—,MN ,N be the output law of Algorithm 3.1. Then,

lim
NæŒ

1
N

E [d(µ̃—,N ||µ—,N )] = 0. (3.1.11)

Moreover, the running time is deterministic and of order O(N1+Á).
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Remark 3.1.12. Note that for A concave, Corollary 3.1.11 yields that Algorithm 3.1
approximates the Gibbs measure for all — œ (0, Œ) as —G = Œ for A concave.

Corollary 3.1.11 implies in particular that the algorithm approximates the
Gibbs measure with probability approaching 1. Indeed, if we choose, e.g., ÁN =
( 1

N E [d(µ̃—,N ||µ—,N )])1/2, Corollary 3.1.11 and Markov’s inequality then yield

P
✓

1
N

d(µ̃—,N ||µ—,N ) Æ ÁN

◆
Ø 1 ≠ Á1/2

N æ 1, as N æ Œ. (3.1.12)

We provide the proof of Corollary 3.1.11 below as it is short.

Proof of Corollary 3.1.11. Note that the choice of MN satisfies the assumption of
Theorem 3.1.10, so the first statement follows directly from Theorem 3.1.10. Next,
as mentioned in Remark 3.1.8, the running time of Algorithm 3.1 is deterministic
and is bounded by ÁN/MN Ë2MN . With our choice of MN , we conclude that

ÁN/MN Ë2MN Æ N · 2Á log2 N Æ N1+Á,

and the proof is completed. ⌅

Supercritical regime — > —G: hardness for generic algorithms

Now we assume that A is non-concave, so —G < Œ. For — > —G, we provide the
following hardness result for the class of algorithms satisfying Definition 3.1.2.

Theorem 3.1.13 (Hardness). Suppose that A is non-concave. Let — > —G. For
any algorithm satisfying Definition 3.1.2 that approximates the Gibbs measure with
probability approaching 1, there exists “ > 0 such that

lim
NæŒ

P
�
· Ø e“N

�
= 1,

where · is the running time of the algorithm.

3.1.3 Discussion and related work

A natural way to sample from the Gibbs measure is via the Markov chain Monte
Carlo (MCMC) method. In [147], Nascimento and Fontes studied a Metropolis
dynamics on the GREM, where the state space of this dynamics is the set of leaves.
They showed that for all — > 0, the spectral gap of the Metropolis dynamics decays
exponentially to 0 as N æ Œ almost surely, which hinted that the MCMC method
might not be the best way to approximate the Gibbs measure e�ciently.

The current work is largely inspired by the previous work of Addario-Berry and
Maillard [2] on finding the near maximum (ground state) of the CREM. Bovier
and Kurkova showed in [54] that the maximum of the CREM satisfies

xGSE := lim
NæŒ

1
N

E


max
|u|=N

Xu

�
=
p

2 log 2
Z 1

0

p
â(s) ds . (3.1.13)

With this result in mind, the problem that Addario-Berry and Maillard addressed
can be phrased as the following optimization problem.
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Problem 3.1.14. For what kind of A such that for all Á > 0, there exists a
polynomial-time algorithm that can find a vertex |u| = N such that Xu Ø (xGSE ≠
Á)N with high probability?

To respond to Problem 3.1.14, they showed the following phase transition: there
exists a threshold

xú =
p

2 log 2
Z 1

0

p
a(s) ds

such that for any x < xú, there exists a linear time algorithm that finds Xv Ø xN

with high probability; for any x > xú, there exists z > 0 such that with high
probability, it takes at least ezN queries to find Xu Ø xN . Since xGSE Ø xú with
equality holding if and only if A is concave, the near maximum can be found if and
only if A is concave. Another remark is that their result correspond to the special
case of our result where — æ Œ, and linear algorithm they proposed is similar to
Algorithm 3.1.

Problem 3.1.14 also appeared in the context of mean-field spin glass. It is known
that a generalized Thouless–Anderson–Palmer approach proposed by Subag in [172]
gives a tree structure from the origin to the spin space when — = Œ. This picture
allows Subag to show in [171] that for the full-RSB spherical spin glasses, a greedy
type algorithm that exploits this tree structure gives an e�cient way to find a near
maximum of these models. On the other hand, it was conjectured by the physicists
that when — æ Œ, the SK model also exhibits the full-RSB property (see [143]).
By assuming this conjecture, Montanari solved Problem 3.1.14 for the SK model
in [145] via the so-called approximate message passing (AMP) type algorithm,
where one example of the AMP algorithms was Bolthausen’s iteration scheme [50]
which solves the so-called TAP equation. Later, Alaoui, Montanari and Sellke [8]
extended Montanari’s previous result to other mean-field spin glasses that do not
exhibit the overlap gap property.

The problem of sampling from the Gibbs measure was also considered the con-
text of mean-field spin glasses. This problem was usually attacked by introduc-
ing the Glauber dynamics, which also belongs to the MCMC method. For the
Sherrington–Kirkpatrick model, physicists (see [169, 143]) expected fast conver-
gence to the Gibbs measure in the whole high temperature regime — < 1. Re-
cently, it was shown by Bauerschmidt and Bodineau in [28] and by Eldan, Koehler
and Zeitouni in [98] that fast mixing occurs when — < 1/4. Moreover, Eldan et
al. showed in [98] that the Gibbs measure satisfies a Poincaré inequality for the
Dirichlet form of Glauber dynamics, so the Glauber dynamics mixes in O(N2)
spin flips in total variation distance. Subsequently, this estimate was improved to
O(N log N) by Anari et al. in [13].

For spherical spin glasses, Gheissari and Jagannath in [108] that Langevin dy-
namics (continuum version of Glauber dynamics) have a polynomial spectral gap
for — small. On the other hand, Ben Arous and Jagannath proved in [37] that
for — su�ciently large, the mixing times of Glauber and Langevin dynamics are
exponentially large in Ising and spherical spin glasses, respectively.



CHAPTER 3. SAMPLING THE CREM GIBBS MEASURE 72

In [9], Alaoui, Montanari and Sellke proposed a non MCMC type algorithm
based on the stochastic localization for the SK model. They showed that for
— < 1/2, there exists an algorithm with complexity O(N2) with output law being
close to the Gibbs measure in normalized Wasserstein distance. Moreover, for
— > 1, they established a hardness result for the stable algorithms, which means
that the output law of these algorithms are stable under small random perturbation
of the defining matrix of the SK model. The hardness result for — > 1 was proven
by utilizing the disorder chaos, which means for them that Wasserstein distance
between the Gibbs measure and the perturbed Gibbs measure is bounded from
below by a positive constant for arbitrary small random perturbation.

Overlap gap property and algorithmic hardness. The overlap gap property,
emerging from studying of mean-field spin glasses, seems to be an obstruction of
many optimization algorithms for random structures. See Gamarnik [102] for a
survey. In the context of the CREM, for a given — > 0, the overlap distribution is
the limiting law (as N æ Œ) of the overlap |u·w|

N of two vertices u and w sampled
independently according to the Gibbs measure with inverse temperature —. The
CDF of the limiting overlap distribution –— : [0, 1] æ [0, 1] is defined as

–—(t) := lim
NæŒ

E

2

4
X

|u|=N

X

|w|=N

µ—,N (u)µ—,N (w)1|u·w|/NÆt

3

5 ,

The overlap gap property in the context of the CREM means that –—(t) is equal
to a constant strictly less than 1 in an interval [t1, t2] ™ [0, 1]. On the other hand,
it is known in [54] that –—(t) satisfies the following

–—(t) =

8
>>>><

>>>>:

Ô
2 log 2

—
p

â(t)
, t Æ t0(—),

1, t > t0(—).

When A is concave, the CREM does not exhibits the overlap gap property for any
— > 0, which does not contradict the picture mentioned in the previous paragraph.
On the other hand, when A is non-concave, the CREM has the overlap gap property
if and only if — > —Õ

G =
Ô

2 log 2/
p

â(tG). Comparing with the hardness threshold
—G defined in (3.1.8), we see —G < —Õ

G, which means that some extra ingredients
are needed to explain the algorithmic hardness we observe in the present work.

Further direction. Corollary 3.1.11 implies that if A is concave, for any
— œ [0, Œ), then the sequence of algorithm constructed from Algorithm 3.1 can
approximate the Gibbs measure in the sense of Definition 3.1.6. One might ask
whether a higher precision is achievable. Namely, let – œ [0, 1). Given — > 0, does
there exist a sequence of algorithms with corresponding output laws µ̃—,N such that

lim
NæŒ

1
N–

d(µ̃—,N ||µ—,N ) = 0,
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with probability approaching 1? Note that for a general class of branching random
walks, with – = 0 and — > —c, it is shown in [112] that with positive probability,
this task has a running time of stretched exponential. The result in [112] is derived
from the fluctuation of the sampled path of supercritical Gibbs measure done by
[79].

Outline. The paper is organized as follows. In Section 3.2, we prove that the
KL divergence d(µ—,M,N ||µ—,N ) can be decomposed into weight sums of free ener-
gies on subtrees, and we also compute its expectation. This information readily
allows us to prove Theorem 3.1.9 which is provided in Section 3.2.1. Building on
the decomposition of the KL divergence provided in Section 3.2.1, we study in
Section 3.3 the renormalized limit of E [d(µ—,M,N ||µ—,N )]. This leads to the proof
of Theorem 3.1.10 which is provided at the end of the introduction of Section 3.3.
In Section 3.4, we show that for A non-concave and — > —G, the Gibbs measure
tends to sample a rare event. Based on this observation, Theorem 3.1.13 is proven
in Section 3.5, where the details are provided at the end of the introduction of
Section 3.5. In Appendix 3.A, we provide a lower bound of the free energy F— that
may be of independent interest. Finally, in Appendix 3.B, we provide the details
of the proof of Lemma 3.3.2.

3.2 Decomposition of the KL divergence d(µ—,M,N ||µ—,N)
In this section, we provide in the following proposition a simple decomposition of
the KL divergence d(µ—,M,N ||µ—,N ) in terms of a sum of free energies on subtrees.

Proposition 3.2.1. For all — > 0 and for any two integers M, N œ N such that
M Æ N , we have

d(µ—,M,N ||µ—,N ) = log Z—,N ≠
ÂN/MÊX

k=0

X

|u|=kM

µ—,M,kM (u) · log Zu
—,M·(N≠kM).
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Proof. By (3.1.7) the definition of the KL divergence,

d(µ—,M,N ||µ—,N )

=
X

|u|=N

µ—,M,N (u) · (log Z—,N ≠ log Z—,M,N (u)) (By (3.1.2) and (3.1.10))

=
X

|u|=N

µ—,M,N (u) ·
⇣

log Z—,N ≠
ÂN/MÊX

k=0
log Zu[kM ]

—,M·(N≠kM)

⌘

= log Z—,N ≠
X

|u|=N

ÂN/MÊX

k=0
µ—,M,N (u) · log Zu[kM ]

—,M·(N≠kM)

= log Z—,N ≠
ÂN/MÊX

k=0

X

|u|=N

µ—,M,N (u) · log Zu[kM ]
—,M·(N≠kM)

= log Z—,N ≠
ÂN/MÊX

k=0

X

|w|=kM

X

|wÕ|=N≠kM

µ—,M,N (wwÕ) · log Zw
—,M·(N≠kM)

= log Z—,N ≠
ÂN/MÊX

k=0

X

|w|=kM

µ—,M,kM (w) · log Zw
—,M·(N≠kM), (By (3.1.9))

the proof is completed. ⌅

The next proposition asserts that the expectation of the KL divergence
d(µ—,M,N ||µ—,N ) can be written as the di�erence between the free energy of the
CREM and the sum of free energies on the subtrees.

Proposition 3.2.2. For all — > 0 and for any two integers M, N œ N such that
M Æ N , the expectation of the KL divergence from µ—,M,N to µ—,N admits the
following decomposition.

E [d(µ—,M,N ||µ—,N )] = E [log Z—,N ] ≠
ÂN/MÊX

k=1
E
h
log Z(kM)

—,M·(N≠kM)

i
.

Proof. Combining Proposition 3.2.1, the branching property and the law of iterated
expectation, we have

E [d(µ—,M,N ||µ—,N )]

= E [log Z—,N ] ≠ E

2

4
ÂN/MÊX

k=0

X

|u|=kM

µ—,M,kM (u) · log Zu
—,M·(N≠kM)

3

5

= E [log Z—,N ] ≠ E

2

4
ÂN/MÊX

k=0

X

|u|=kM

µ—,M,kM (u) · E
h
log Zu

—,M·(N≠kM)

���FkM

i
3

5

= E [log Z—,N ] ≠
ÂN/MÊX

k=0
E

2

4
X

|u|=kM

µ—,M,kM (u)

3

5E
h
log Z(kM)

—,M·(N≠kM)

i

= E [log Z—,N ] ≠
ÂN/MÊX

k=0
E
h
log Z(kM)

—,M·(N≠kM)

i
, (3.2.1)
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where (3.2.1) follows from the fact that µ—,M,kM is a probability measure. ⌅

3.2.1 Proof of Theorem 3.1.9

The following argument is similar to the proof of (1.9) in [112], where the di�erence
is that we use the concentration inequalities of free energies to control certain terms.

Let p Ø 1. By Proposition 3.2.1 and Minkowski’s inequality, we have

1
N

Îd(µ—,M,N ||µ—,N ) ≠ E [d(µ—,M,N ||µ—,N )]Îp

Æ 1
N

ÂN/MÊX

k=0

������

X

|u|=kM

µ—,M,kM (u) ·
⇣

log Zu
—,M·(N≠kM) ≠ E

h
log Zu

—,M·(N≠kM)

i⌘
������

p

.

(3.2.2)

Applying Jensen’s inequality to µ—,M,kM and the fact that x ‘æ |x|p is convex for
all p Ø 1, we obtain

E

2

4

������

X

|u|=kM

µ—,M,kM (u) ·
⇣

log Zu
—,M·(N≠kM) ≠ E

h
log Zu

—,M·(N≠kM)

i⌘
������

p3

5

Æ E

2

4
X

|u|=kM

µ—,M,kM (u) ·
���log Zu

—,M·(N≠kM) ≠ E
h
log Zu

—,M·(N≠kM)

i���
p

3

5 . (3.2.3)

Then by the law of iterated expectation and the branching property, the expecta-
tion (3.2.3) above equals

E

2

4
X

|u|=kM

µ—,M,kM (u) · E
h���log Zu

—,M·(N≠kM) ≠ E
h
log Zu

—,M·(N≠kM)

i���
p ���FkM

i
3

5

= E
h���log Z(kM)

—,M·(N≠kM) ≠ E
h
log Z(kM)

—,M·(N≠kM)

i���
pi

. (3.2.4)

Now, the concentration inequality of free energies (see, Theorem 1.2 in [156]) im-
plies that for all p Ø 1,

E
h���log Z(kM)

—,M·(N≠kM) ≠ E
h
log Z(kM)

—,M·(N≠kM)

i���
pi

Æ
Z Œ

0
2 exp

0

@≠ x2/p

4—2N
⇣

A
⇣

kM+M·(N≠kM)
N

⌘
≠ A

�
kM
N

� ⌘

1

Adx

= —pNp/2
✓

A

✓
kM + M · (N ≠ kM)

N

◆
≠ A

✓
kM

N

◆◆p/2
· 2p/2+1p

Z Œ

0
exp

✓
≠y2

2

◆
yp≠1 dy

| {z }
=:C1(p)

= —pNp/2
✓

A

✓
kM + M · (N ≠ kM)

N

◆
≠ A

✓
kM

N

◆◆p/2
· C1(p). (3.2.5)
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Combining (3.2.2), (3.2.4) and (3.2.5) and letting C2(p) = C1(p)1/p, we derive that

1
N

Îd(µ—,M,N ||µ—,N ) ≠ E [d(µ—,M,N ||µ—,N )]Îp

Æ —C2(p)Ô
N

ÂN/MÊX

k=0

s
⇣

A

✓
kM + M · (N ≠ kM)

N

◆
≠ A

✓
kM

N

◆⌘

Æ —C2(p)Ô
N

vuuuuut

ÂN/MÊX

k=0

✓
A

✓
kM + M · (N ≠ kM)

N

◆
≠ A

✓
kM

N

◆◆

| {z }
=1

vuut
ÂN/MÊX

k=0
1 (3.2.6)

= —C2(p)Ô
N

s⇠
N

M

⇡

Æ —C2(p)
Ô

2Ô
M

, (3.2.7)

where (3.2.6) is derived from the Cauchy–Schwarz inequality, and (3.2.7) follows
from bounding

p
ÂN/MÊ/N by

p
2/M . By choosing Cp = C2(p)

Ô
2, the proof of

Theorem 3.1.9 is completed.

3.3 Asymptotics of the KL divergence d(µ—,M,N ||µ—,N)
The goal of this section is to prove Theorem 3.1.10. In view of (3.1.4) and Propo-
sition 3.2.2, it remains to show the following proposition.

Proposition 3.3.1. Let MN be a sequence such that MN œ J1, NK and MN æ Œ.
Then,

lim
NæŒ

1
N

ÂN/MN ÊX

k=1
E
h
log Z(kMN )

—,MN ·(N≠kMN )

i
= F̃—.

The proof of Proposition 3.3.1 is postponed to Section 3.3.1. Conditioned on
Proposition 3.3.1, we are now ready to prove Theorem 3.1.10.

Proof of Proposition 3.1.10. Fix — < —G. Let MN be a sequence such that MN œ
J1, NK, and MN æ Œ. By Fact 3.A.2 and Proposition 3.3.1,

lim
NæŒ

1
N

E [d(µ—,MN ,N ||µ—,N )] = lim
NæŒ

1
N

E [log Z—,N ] ≠ lim
NæŒ

1
N

ÂN/MN ÊX

k=1
E
h
log Z(kMN )

—,MN ·(N≠kMN )

i

= F— ≠ F̃—.

Now, by Proposition 3.A.1, F— ≠ F̃— = 0 for all — Æ —G and F— ≠ F̃— > 0 for all
— > —G. This completes the proof. ⌅
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3.3.1 Proof of Proposition 3.3.1

The proof of Proposition 3.3.1 is based on the following lemma.

Lemma 3.3.2. Let MN be a sequence such that MN œ J1, NK and MN æ Œ. For
all k œ J0, ÂN/MN ÊK, define

a≠
k := ess inf

tœ[ kMN
N ,

(k+1)MN
N ]

a(t) and a+
k := ess sup

tœ[ kMN
N ,

(k+1)MN
N ]

a(t). (3.3.1)

Then for all Á > 0, there exists N0 œ N such that for all N Ø N0,

f(—
Ô

a
≠
k ) ≠ Á—

Ô
a

≠
k Æ 1

MN
E
h
log Z(kM)

—,M

i
Æ f(—

Ô
a

+
k ) + Á—

Ô
a

+
k ,

for all k œ J0, ÂN/MN ÊK.

The proof of Lemma 3.3.2 is based on comparing the free energy of the CREM
with the free energy of the so-called branching random walk, which is a CREM
with A equal to the identity function. While the proof of Lemma 3.3.2 is rather
standard, the proof requires some standard properties of the free energy of the
branching random walk, so we postpone the proof of Lemma 3.3.2 to Appendix 3.B.

We now proceed to the proof of Proposition 3.3.1.

Proof of Proposition 3.3.1. Fix Á > 0. Fix MN being a sequence such that MN œ
J1, NK and MN æ Œ. We denote KN = ÂN/MN Ê for simplicity. First of all, note
that

1
N

KNX

k=1
E
h
log Z(kMN )

—,MN

i
= 1

N

KN ≠1X

k=1
E
h
log Z(kMN )

—,MN

i
+ 1

N
E
h
log Z(KN MN )

—,N≠KN MN

i
.

(3.3.2)

We claim that the second term of (3.3.2) converges to 0. For any |u| = N ≠
ÂN/MN ÊMN ,

E
h
log Z(ÂN/MN ÊMN )

—,N≠ÂN/MN ÊMN

i
Ø E

h
—X(ÂN/MN ÊMN )

u

i
= 0.

Now, we turn to the upper bound. By Jensen’s inequality,

1
N

E
h
log ZÂN/MN ÊMN

—,N≠ÂN/MN ÊMN

i
Æ 1

N
logE

h
Z(ÂN/MN ÊMN )

—,N≠ÂN/MN ÊMN

i

= log 2
✓

1 ≠
�

N

MN

⌫
MN

N

◆
+
✓

A(1) ≠ A

✓�
N

MN

⌫
MN

N

◆◆
æ 0,

as N æ Œ, which proves that the second term of (3.3.2) converges to 0.
It remains to show that the first term of (3.3.2) converges to F̃—. By

Lemma 3.3.2,

MN

N

KN ≠1X

k=1
f(—

Ô
a

≠
k ) ≠ Á—

Ô
a

≠
k Æ 1

N

KN ≠1X

k=1
E
h
log Z(kM)

—,M

i
Æ MN

N

KN ≠1X

k=1
f(—

Ô
a

+
k ) + Á—

Ô
a

+
k .

(3.3.3)
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Because the function a(·) is Riemann integrable and f(—
Ô

·) is continuous, their
composition f(—

p
a(·)) is also Riemann integrable. Similarly,

p
a(·) is also Rie-

mann integrable. Thus, by taking N æ Œ, (3.3.3) yields

lim
NæŒ

�����
1
N

KN ≠1X

k=1
E
h
log Z(kM)

—,M

i
≠
Z 1

0
f(—

p
a(s)) ds

����� Æ Á—

Z 1

0

p
a(s) ds . (3.3.4)

Since Á > 0 is arbitrary chosen, (3.3.4) implies that

lim
NæŒ

1
N

KN ≠1X

k=1
E
h
log Z(kM)

—,M

i
=
Z 1

0
f(—

p
a(s)) ds = F̃—,

as desired. ⌅

3.4 A property of the Gibbs measure in the supercrit-
ical regime

From now on, we assume that A is non-concave, so —G < Œ. Also, we suppose
that — > —G. The goal of this section is to show that the Gibbs measure tends to
sample a vertex that has an ancestor that jumps exceptionally high. The meaning
of having an ancestor that jumps exceptionally high is quantified in the following
definition.

Definition 3.4.1. Given z > 0, K œ N and a CREM X, a vertex v œ TN with |v| =
n œ J1, NK is said to have a (z, K, X)-steep ancestor if there exists k œ J1, ÂnK/NÊK
such that

Xv[ÂNk/KÊ] ≠ Xv[ÂN(k≠1)/KÊ] > N
p

2 log 2(1 + z)ak,

where ak = (A(k/K) ≠ A((k ≠ 1)/K))/K.

The goal of this section can now be phrased as the following proposition.

Proposition 3.4.2. Let — > —G. There exist z > 0, K œ N such that, for all ” > 0
su�ciently small,

lim
NæŒ

P

0

@
X

|u|=N

µ—,N (u)1{u has a (z, K, X)-steep ancestor} > 1 ≠ e≠”N

1

A = 1.

The proof of Proposition 3.4.2 is based on the following lemma which states
the free energy converges to F— in probability.

Lemma 3.4.3. For all — > 0, for all Á > 0, we have

lim
NæŒ

P
✓����

1
N

log Z—,N ≠ F—

���� > Á

◆
= 0.
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Proof. For all — > 0, for all Á > 0, the concentration inequality of free energies
(see, Theorem 1.2 in [156]) states that

P
✓����

1
N

log Z—,N ≠ 1
N

E [log Z—,N ]
���� > Á

◆
Æ 2 exp

✓
≠ Á2

4—2 N

◆
.

Then, the proof is completed by incorporating Fact 3.A.2. ⌅

We now prove Proposition 3.4.2.

Proof of Proposition 3.4.2. For all u œ ˆTN , let Au be the set where u does not
have a (z, K, X)-steep ancestor defined as

Au :=
n

’k œ J1, KK : Xu[ÂNk/KÊ] ≠ Xu[ÂN(k≠1)/KÊ] Æ N
p

2 log 2(1 + z)ak

o
.

(3.4.1)

To prove Proposition 3.4.2, it su�ces to show that there exist K œ N and z > 0
such that for all ” > 0 su�ciently small,

lim sup
NæŒ

P

0

@
X

|u|=N

e—Xu

Z—,N
1Au Ø e≠”N

1

A = 0,

Because the function a(·) is Riemann integrable and f(—
Ô

·) is continuous, their
composition f(—

p
a(·)) is also Riemann integrable. On the other hand, since — >

—G, Proposition 3.A.1 implies thats F— ≠ F̃— > 0. Therefore, we can choose z > 0
su�ciently small and K œ N su�ciently large such that

F— ≠ (1 + z) 1
K

KX

k=1
max

sœ[(k≠1)/K,k/K]
f(—

p
a(s)) Ø C > 0, (3.4.2)

for some C > 0. In the rest of the proof, we fix our choice of z and K. We also fix
” > 0 and c > 0 su�ciently small such that C ≠ ” ≠ c > 0.

Now,

P

0

@
X

|u|=N

e—Xu

Z—,N
1Au Ø e≠”N

1

A

Æ P (Z—,N < exp(F—(1 ≠ c)N))

+ P

0

@
(

X

|u|=N

e—Xu

Z—,N
1Au Ø e≠”N

)
fl
(

Z—,N Ø exp(F—(1 ≠ c)N)
)1

A

Æ P (Z—,N < exp(F—(1 ≠ c)N)) + P

0

@
X

|u|=N

e—Xu1Au Ø e≠”N eF—(1≠c)N

1

A . (3.4.3)

By Lemma 3.4.3, the first term in (3.4.3) tends to 0 as N æ Œ. Thus, it remains
to prove the second probability in (3.4.3) converges to 0 as N æ Œ. Let Yk ≥
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N(0, NKak,N ) and ak,N := (A(ÂkN/KÊ/N) ≠ A(Â(k ≠ 1)N/KÊ/N))/K for all k œ
J1, KK. By completing the square, we have

E

2

4
X

|u|=N

e—Xu1Au

3

5

Æ 2N
KY

k=1
e—2NKak,N /2P

⇣
Yk Æ N(

p
2 log 2(1 + z)ak ≠ —Kak,N )

⌘

=
KY

k=1
2N/Ke—2NKak,N /2P

⇣
Yk Æ N(

p
2 log 2(1 + z)ak ≠ —Kak,N )

⌘
. (3.4.4)

Case 1. If
p

2 log 2(1 + z)ak < —Kak,N , the Cherno� bound yields

2N/Ke—2NKak,N /2P
⇣

Yk Æ N(
p

2 log 2(1 + z)ak ≠ —Kak,N

⌘

Æ 2N/Ke—2NKak,N /2 exp
 

≠
N2(

p
2 log 2(1 + z)ak ≠ —Kak,N )2

2NKak,N

!

= 2N/Ke—2NKak,N /2 exp(≠N log 2(1 + z)ak/Kak,N ) exp
⇣

—N
p

2 log 2(1 + z)ak

⌘
exp

�
≠N—2Kak,N /2

�

= exp(≠N(log 2)zak/Kak,N )
| {z }

Æ1

exp(N log 2(1 ≠ ak/ak,N )/K) exp
⇣

N—
p

2 log 2(1 + z)ak

⌘

Æ exp(N log 2(1 ≠ ak/ak,N )/K) exp
⇣

N—
p

2 log 2(1 + z)ak

⌘
.

Case 2. If
p

2 log 2(1 + z)ak Ø —Kak,N , we simply bound the probability in
(3.4.4) by 1 and obtain

2N/Ke—2NKak,N /2P
⇣

Yk Æ N(
p

2 log 2(1 + z)ak ≠ —Kak)
⌘

Æ 2N/Ke—2NKak,N /2

Then, by (3.4.4) and the two cases above, we have

lim sup
NæŒ

1
N

logE

2

4
X

|u|=N

e—Xu1Au

3

5

Æ
X

Ô
2 log 2(1+z)ak<—Kak

—
p

2 log 2(1 + z)ak +
X

Ô
2 log 2(1+z)akØ—Kak

log 2
K

+ —2Kak

2

Æ (1 + z) 1
K

KX

k=1
f(—/(1 + z)ÔakK)

Æ (1 + z) 1
K

KX

k=1
max

sœ[(k≠1)/K,k/K]
f(—

p
a(s)), (3.4.5)
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where (3.4.5) follows from monotonicity of the function f . By the Markov inequal-
ity, (3.4.2), the second term in (3.4.3) satisfies the following

lim sup
NæŒ

1
N

logP

0

@
X

|u|=N

e—Xu1Au Ø e≠”N eF—(1≠c)N

1

A Æ ≠C + c + ” < 0. (3.4.6)

where C, c and ” are chosen as in the first paragraph of the proof. Combining
(3.4.6) and Proposition 3.A.1, we conclude that

lim sup
NæŒ

P

0

@
X

|u|=N

e—Xu1Au Ø e≠”N eF—(1≠c)N

1

A = 0,

and the proof is completed. ⌅

3.5 Hardness in the supercritical regime

Assume that A is non-concave and — > —G. The goal of this section is to prove
Theorem 3.1.13. Before we dive in the section, we introduce a few definitions. The
first is a chain of subtrees defined as follows.

Definition 3.5.1. For v œ T, let Cv be a chain of subtrees containing v and all its
ancestors defined by

Cv =
ÂN |v|/KÊ[

k=0
Tv[ÂNk/KÊ]

ÂN(k+1)/KÊ≠ÂNk/KÊ.

Remark 3.5.2. See Figure 3.1 for an illustration of Definition 3.5.1. Also, note that
in particular, v œ Cv for every v œ TN .

?

v

Figure 3.1: A schematic illustration of the set Cv appearing in Definition 3.5.1.
The largest isosceles triangle represents the binary tree TN . The chain of isosceles
triangles colored in gray represent the set Cv, where the k-th subtree has depth
ÂN(k + 1)/KÊ ≠ ÂNk/KÊ. The red dots represent v[ÂNk/KÊ], the ancestors of v

at depth ÂNk/KÊ.

Next, we introduce the following stopping time.
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Definition 3.5.3. Let (v(n))nœN be an algorithm. Define the stopping time · Õ as
the first time n when the algorithm finds a vertex in Cv(n) with a (z, K, X)-steep
ancestor, given by:

· Õ = inf
�

n œ N : ÷w œ Cv(n) such that w has a (z, K, X)-steep ancestor
 

.

Now, we come back to the proof of Theorem 3.1.13. The proof is based on the
following two propositions. The first proposition asserts that the running time of
an algorithm that approximates the Gibbs measure dominates the stopping time
· Õ with probability approaching 1.

Proposition 3.5.4. Suppose A to be non-concave. Let — > —G. If · is the running
time of an algorithm that approximates the Gibbs measure, then

lim
NæŒ

P
�
· Ø · Õ� = 1.

The proof of Proposition 3.5.4 is provided in Section 3.5.1. Note that Addario-
Berry and Maillard proved in [2] a hardness result of finding a vertex v œ ˆTN

such that Xv lies in a level set above a critical level, denoted by xúN . In their
case, · Ø · Õ holds deterministically because they showed in Lemma 3.1 in their
paper that any for any vertex v œ ˆTN such that Xv lies in a level set above xN ,
where x > xú, v must have a (z, K, X)-ancestor. Nevertheless, Proposition 3.5.4 is
su�cient for our purpose.

The second proposition to prove Theorem 3.1.13 is the following. The proposi-
tion asserts that the · Õ is exponentially large with probability approaching 1.

Proposition 3.5.5. There exists “ > 0 such that

lim
NæŒ

P
�
· Õ > e“N

�
= 1.

Proposition 3.5.5 is proven following the same argument as in [2], and the proof
is included in Section 3.5.3 for completeness.

Conditioned on Proposition 3.5.4 and Proposition 3.5.5, the proof of Theo-
rem 3.1.13 is fairly short, so we provide it here.

Proof of Theorem 3.1.13. Fix — > —G. Let (v(n))nœN be an algorithm that approx-
imates the Gibbs measure with probability approaching 1. Suppose that · is its
running time and µ̃N is its output law, which is the law of v(·) conditioned on the
CREM.

Now, combining Proposition 3.5.4 with Proposition 3.5.5, we conclude that
there exists “ > 0 such that

lim
NæŒ

P
�
· Ø e“N

�
Ø lim

NæŒ
P
�
{· Ø · Õ} fl {· Õ Ø e“N }

�
= 1,

and the proof is completed. ⌅
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3.5.1 Proof of Proposition 3.5.4

The proof of Proposition 3.5.4 follows from the following lemma which states if
an algorithm approximates the Gibbs measure, with probability approaching 1, its
output law also tends to sample a vertex with a (z, K, X)-steep ancestor.

Lemma 3.5.6. Let — > —G. Suppose that µ̃N is the output law of an algorithm
that approximates the Gibbs measure. Then, there exist z > 0, K œ N such that
there exists ÁN æ 0 such that, with probability approaching 1,

lim
NæŒ

P

0

@
X

|u|=N

µ̃N (u)1{u has a (z, K, X)-steep ancestor} > 1 ≠ ÁN

1

A = 1,

We now proceed to the proof of Proposition 3.5.4.

Proof of Proposition 3.5.4. Fix — > —G. Let (v(n))nœN be an algorithm that ap-
proximates the Gibbs measure with probability approaching 1. Suppose that · is
its running time and µ̃N is its output law, which is the law of v(·) conditioned on
the CREM. Recall that · Õ defined in Definition 3.5.3 is the first time where the
algorithm finds a vertex with a (z, K, X)-steep ancestor. Therefore, the output
v(·) has a (z, K, X)-steep ancestor implies that · Ø · Õ. Defining GN the event

GN :=

8
<

:
X

|u|=N

µ̃N (u)1{u has a (z, K, X)-steep ancestor} > 1 ≠ ÁN

9
=

; ,

we have

P
�
· Ø · Õ� Ø P (v(·) has a (z, K, X)-steep ancestor)

= E

2

4
X

|u|=N

µ̃N (u)1{u has a (z, K, X)-steep ancestor}

3

5 (Definition of µ̃N )

Ø E

2

41GN

X

|u|=N

µ̃N (u)1{u has a (z, K, X)-steep ancestor}

3

5

Ø P (GN ) (1 ≠ ÁN ) æ 1, N æ Œ, (By Lemma 3.5.6)

and the proof is completed. ⌅

3.5.2 Proof of Lemma 3.5.6

This section is devoted to the proof of Proposition 3.5.6. The proof relies on
Proposition 3.4.2 and the following lemma which states that if the KL divergence
between two sequences of random probability measures are close to each other with
probability approaching 1, and if the measures of certain events in the second se-
quence decay exponentially to 0 with probability approaching 1, then the measures
of the corresponding events in the first sequence also converge to 0 with probability
approaching 1.
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Lemma 3.5.7. Suppose (PN )NœN and (QN )NœN be two sequences of random prob-
ability measures defined on a discrete space S such that the sequence (PN )NœN
approximates the sequence (QN )NœN with probability approaching 1. If (AN )NœN
is a sequence of events on S such that with probability approaching 1, QN (AN )
converges to 0 exponentially fast as N æ Œ, i.e., there exists c > 0 such that

lim
NæŒ

P
�
QN (AN ) Æ e≠cN

�
= 1,

then PN (AN ) converges to 0 with probability approaching 1 as N æ Œ, i.e., there
exists ÁN æ 0 such that

lim
NæŒ

P (PN (AN ) Æ ÁN ) = 1.

Lemma 3.5.7 follows from the so-called Birgé’s inequality which, roughly speak-
ing, says that if for two probability measures P and Q defined on the same prob-
ability space such that P is dominated by Q, for any event A, the di�erence of
between P (A) and Q(A) is gauged by the KL divergence from P to Q.

Fact 3.5.8 (Birgé’s inequality, Theorem 4.20 in [52]). Let P and Q be two proba-
bility measures defined on probability space (S, S) such that P is dominated by Q,
i.e., for all event A œ S, Q(A) = 0 implies P (A) = 0. Then,

sup
AœA

h(P (A), Q(A)) Æ d(P ||Q),

where h(p, q) = p log(p/q) + (1 ≠ p) log((1 ≠ p)/(1 ≠ q)) is the relative entropy be-
tween two Bernoulli distribution with parameters p and q, respectively.

Remark 3.5.9. Note that the positions of P and Q are swapped comparing with
the statement of Theorem 4.20 in [52].

Next, we state a simple but handy fact of the function x ‘æ x log x where the
proof is omitted.

Fact 3.5.10. The range of the function g defined by g(0) = 0 and g(x) = x log x

on (0, 1] equals [≠e≠1, 0].

We are now ready to prove Lemma 3.5.7.

Proof of Lemma 3.5.7. Let (PN )NœN and (QN )NœN be two sequences of random
probability measures defined on a discrete space S. Suppose that the sequence
(PN )NœN approximates the sequence (QN )NœN with probability approaching 1,
and there exists a sequence of event (AN )NœN such that there exists c > 0 such
that for all N œ N,

P
�
QN (AN ) Æ e≠cN

�
= 1 ≠ oN (1). (3.5.1)

For all N œ N, on the event {QN (AN ) Æ e≠cN }, Fact 3.5.10 yields

h(PN (AN ), QN (AN )) = PN (AN )(log PN (AN ) ≠ log QN (AN ))
+ (1 ≠ PN (AN ))(log(1 ≠ PN (AN )) ≠ log(1 ≠ QN (AN ))| {z }

Æ0

)

Ø PN (AN )cN ≠ 2e≠1. (3.5.2)



CHAPTER 3. SAMPLING THE CREM GIBBS MEASURE 85

Therefore, combining (3.5.2) and Birgé’s inequality, we have

PN (AN ) Æ 1
cN

h(PN (AN ), QN (AN )) + 1
cN

2e≠1 Æ 1
cN

d(PN ||QN ) + 1
cN

2e≠1.

(3.5.3)

On the other hand, since PN approximates QN with probability approaching 1,
there exists ÁN æ 0 such that

P
✓

1
N

d(PN ||QN ) Æ ÁN

◆
= 1 ≠ oN (1).

Thus, by (3.5.3), with probability approaching 1,

PN (AN ) Æ ÁN

c
+ 1

cN
2e≠1 æ 0, N æ Œ

as desired. ⌅

We now prove Proposition 3.5.6.

Proof of Proposition 3.5.6. Fix — > —G. Let µ̃N be the output law of an algorithm
that approximates the Gibbs measure. We apply Lemma 3.5.7 with PN := µ—,N ,
QN := µ̃N and AN defined in (3.4.1) where its complement equals

Ac
N := {u œ ˆTN : u has a (z, K, X)-steep ancestor} .

Since Proposition 3.4.2 implies that there exists ” > 0 such that

lim
NæŒ

P
⇣

PN (Ac
N ) Ø 1 ≠ e≠”N

⌘
= 1,

we then conclude from Lemma 3.5.7 that there exists ÁN æ 0 such that

lim
NæŒ

P

0

@
X

|u|=N

µ̃N (u)1{u has a (z, K, X)-steep ancestor} > 1 ≠ ÁN

1

A

= lim
NæŒ

P (QN (Ac
N ) Ø 1 ≠ ÁN ) = 1,

and proof is completed. ⌅

3.5.3 Proof of Proposition 3.5.5

This section is devoted to the proof of Proposition 3.5.5. As the proof is modified
from the proof for the second part of Theorem 1.1 in [2], we start by recalling some
relevant notation and lemmas from that article.

Notation. For v œ TN , recall the definition of Cv in Definition 3.5.1. We then
define the filtration

Gk = ‡
⇣

v(1), . . . , v(k); (Xw)wœCv(1) , . . . , (Xw)wœCv(k) ; U1, . . . , Uk+1
⌘

.

Note that F̃k µ Gk for all k Ø 0 — heuristically, Gk adds to F̃k the information
about the values in the branching random walk of all vertices contained in Cv(i),
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i = 1, . . . , k. Note that trivially, the stochastic process v(n)nØ0 is still measurable
with respect to this larger filtration G . For n Ø 1, let Rn =

Sn
i=1 Cv(i) be the union

of Cv(i), i = 1, . . . , k. Also, let v̂(n) be the most recent ancestor of v(n) in Rn≠1 if
n > 1, and let v̂(n) be the root of Tn if n = 1. Finally, XÕ := (X Õ

v)vœTn is a i.i.d.
copy of X = (Xv)vœTn and is independent of Gn≠1.

Now, we recall the statements of two lemmas in [2] which will be useful in the
proof of Proposition 3.5.5. The first lemma is a direct implication of the branching
property.

Lemma 3.5.11 (Lemma 3.2 in [2]). Fix any randomized search algorithm v =
(v(n))nØ1. Then conditioned on Gn≠1, the family of random variables (Xv ≠
Xv̂(n))vœRn\Rn≠1 has the same law as (X Õ

v ≠ X Õ
v̂(n))vœRn\Rn≠1.

The next lemma states, roughly speaking, that (z, K, X)-steep vertices are rare.

Lemma 3.5.12 (Lemma 3.3 in [2]). For all K œ N and z > 0, for any “ œ
(0, (z log 2)/K), for all N su�ciently large, for any w œ TN ,

P (÷ v œ Cw : v is (z, K, X)-steep) Æ e≠“N

We now proceed to the proof of Proposition 3.5.5.

Proof of Proposition 3.5.5. The goal is to show that · Õ stochastically dominates a
geometric random variable with an exponentially small parameter, which follows
from an argument slightly adapted from the proof for the second part of Theorem
1.1 in [2]. The argument goes as follows.

By Lemma 3.5.11,

P (÷v œ Rn \ Rn≠1 : v is (z, K, X)-steep | Gn≠1)
= P

�
÷v œ Rn \ Rn≠1 : v is (z, K, XÕ)-steep

��Gn≠1
�

Æ P
�
÷v œ Cv(n) : v is (z, K, XÕ)-steep

��Gn≠1
�

Æ sup
wœTN

P
�
÷v œ Cw : v is (z, K, XÕ)-steep

�
. (3.5.4)

The first inequality uses the fact that Rn \ Rn≠1 µ Cv(n) and the second inequality
uses the independence of XÕ and Gn≠1. Since XÕ and X have the same law, by
Lemma 3.5.12, with “ = “(K, z) as in that lemma, (3.5.4) yields that

P (÷v œ Rn \ Rn≠1 : v is (z, K, X)-steep | Gn≠1) Æ e≠“N .

We thus obtain

P
�
· Õ = n

�
= E [1·>n≠1 · P (· = n | Gn≠1)]
= E [1·>n≠1 · P (÷v œ Rn \ Rn≠1 : v is (z, K, X)-steep | Gn≠1)]
Æ P (· > n ≠ 1) · e≠“N ,

from which we conclude that · Õ stochastically dominates a geometric random vari-
able with success probability e≠“N . In particular, this implies that for any positive



CHAPTER 3. SAMPLING THE CREM GIBBS MEASURE 87

constant “Õ œ (0, “),

P
⇣

· Õ Ø e“ÕN
⌘

Ø
ŒX

n=Áe“ÕN Ë

e≠“N (1 ≠ e≠“N )n ≥ exp
⇣

≠e≠(“≠“Õ)N
⌘

æ 1,

as N æ Œ. ⌅

3.A A lower bound of the free energy F—

Recall that the free energy of the CREM is defined in (3.1.4) as

F— := lim
NæŒ

1
N

E [log Z—,N ] .

Recall also that we defined in (3.1.6) the quantity

F̃— =
Z 1

0
f(—

p
a(s)) ds ,

where

f(—) =

8
>>><

>>>:

log 2 + —2

2 , — <
Ô

2 log 2

Ô
2 log 2—, — Ø

Ô
2 log 2.

The main goal of this section is to prove the following proposition, which asserts
that F— Ø F̃—, and that equality holds if and only if — Æ —G.

Proposition 3.A.1. Suppose that A is non-concave. For all — œ [0, Œ), define

G— := F— ≠ F̃—.

Then,

(i) For all — œ [0, —G], G— = 0.

(ii) For all — > —G, GÕ
— > 0. In particular, this implies that G— > 0 for all

— > —G.

Before starting the proof, we recall that the free energy of the CREM has the
following formula which can be found in Bovier and Kurkova [54] based on previous
results by Capocaccia et al. [59].

Fact 3.A.2. Given — > 0, let t0(—) = sup{t œ [0, 1] : â(t) > 2 log 2/—2}. Then, the
free energy of the CREM is given as follows

F— = —
p

2 log 2
Z t0(—)

0

p
â(t) dt + —2

2 (1 ≠ Â(t0(—))) + log 2(1 ≠ t0(—)) (3.A.1)

=
Z 1

0
f(—

p
â(s)) ds , (3.A.2)

where f(—) is defined as (3.1.5).
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Proof. The proof of (3.A.1) can be found in Theorem 3.3 of Bovier and Kurkova
[54]. While the authors of that paper assumed that the function A has to be
continuously di�erentiable, their result can be extended to the case where A is
merely Riemann integrable. This extension is possible because their argument
is based on the following two ingredients. The first ingredient is the free energy
formula for the GREM, given by Capocaccia et al. [59]. As a remark, the definition
of the GREM is identical to the definition of the CREM except that the function
A is a step function. The second ingredient is a Gaussian comparison argument
that only requires the Riemann integrability of a.

Now, by (3.A.1) and the fact that â is non-increasing,

—
p

2 log 2
Z t0(—)

0

p
â(t) dt + —2

2 (1 ≠ Â(t0(—))) + log 2(1 ≠ t0(—))

= —
p

2 log 2
Z t0(—)

0

p
â(t) dt +

Z 1

t0(—)

✓
—2

2 â(t) + log 2
◆

dt

=
Z t0(—)

0
f(—

p
â(t)) dt +

Z 1

t0(—)
f(—

p
â(t)) dt =

Z 1

0
f(—

p
â(t)) dt ,

which proves (3.A.2). ⌅

To prove Proposition 3.A.1, we require the following three lemmas. The first
lemma provides some useful properties of the function A and its concave hull Â.

Lemma 3.A.3. The following are true.

(i) On the set {A = Â}, a = â almost everywhere.

(ii) Suppose that A is non-concave. Let I be a connected component of {t œ [0, 1] :
A(t) < Â(t)}. Then, â is equal to a positive constant on the interior of I,
denoted by âI . Moreover,

Z

I
a(s) ds =

Z

I
â(s) ds = âI |I|,

where |I| denotes the Lebesgue measure of I.

(iii) With the same assumptions as in (ii), we have
Z

I

p
a(s) ds <

Z

I

p
â(s) ds =

p
âI |I|.

Proof. We prove this lemma by addressing each point separately.
Proof of (i). The set {A = Â} is Lebesgue measurable because {A = Â} =
(Â ≠ A)≠1({0}) and the function Â ≠ A is continuous. If {A = Â} is of measure
zero, the statement trivially holds

Suppose now that {A = Â} has positive measure. Note that {A = Â} contains
all the global maximum points of Â ≠ A as Â Ø A. Thus, by Fermat’s theorem
of stationary points, for all t œ {A = Â} fl {Â ≠ A is di�erentiable}, we have
â(t) = a(t). It remains to show that t œ {A = Â} fl {Â ≠ A is not di�erentiable}
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is of measure zero. By the fundamental theorem of calculus and the fact that
â ≠ a is continuous almost everywhere on [0, 1], the function Â ≠ A is di�erentiable
almost everywhere on [0, 1]. Therefore, {A = Â} fl {Â ≠ A is not di�erentiable} is
of measure zero.
Proof of (ii). Let I be a connected component of {A ”= Â} with endpoints t1 and t2.
By the continuity of A and Â, A(t1) = Â(t1) and A(t2) = Â(t2). By the minimality
of Â, for all t œ int(I), Â(t) is equals to the linear interpolation between A(t1) and
A(t2). In particular, this implies that the â is constant on int(I). Moreover, â has
to be positive. Otherwise, by the fundamental theorem of calculus, A(t) = Â(t) for
any t œ int(I) which contradicts the assumption that I is a connected component
of {A ”= Â}.

To prove the second statement of (ii), note that
Z

I
a(s) ds = A(t2) ≠ A(t1) = Â(t2) ≠ Â(t2) =

Z

I
â(s) ds = âI |I|.

Proof of (iii). By (ii), âI is positive. Then, by the Cauchy–Schwarz inequality,

Z

I

p
a(s) ds =

Z

I

p
a(s)Ô
âI

p
âI ds <

sZ

I

a(s)
âI

ds

sZ

I
âIds =

sZ

I

a(s)
âI

ds
p

âI |I|.

(3.A.3)

Note that the inequality above is strict as the equality holds if and only if there
exists c œ R such that a = câI . If that was the case, then by (ii), c = 1, and
therefore A = Â on I which is a contradiction.

Now, by (ii) and (3.A.3),

Z

I

p
a(s) ds <

sR
I a(s) ds

âI |I|
| {z }

=1

p
âI |I| =

Z

I

p
â(s) ds ,

and the proof is completed. ⌅

The second lemma collects two useful implications from the definition of —G.
The first one characterizes the — such that —

p
a(t) Æ

Ô
2 log 2 for almost every

t œ {A ”= Â}, and the second one shows that when — Æ —G, —
p

â(t) Æ
Ô

2 log 2 for
all t œ {A ”= Â}.

Lemma 3.A.4. Suppose that A is non-concave. Then the following statements
hold.

(i) — Æ —G if and only if the set

{A ”= Â} fl {s œ [0, 1] : —
p

a(s) >
p

2 log 2}

is of measure zero.

(ii) If — Æ —G, then for every connected component I of {A ”= Â}, we have
—

Ô
âI Æ

Ô
2 log 2.
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Proof. We start with the proof of (i). By the definition of —G, — Æ —G is true if
and only if almost every s œ {A ”= Â},

—
p

a(s) Æ
p

2 log 2.

This immediately implies that the set — Æ —G if and only if {A ”= Â} fl {s œ [0, 1] :
—
p

a(s) >
Ô

2 log 2} is of measure zero.
We proceed to the proof of (ii), and our strategy is to prove it by contradiction.

Suppose that there exists a connected component I of {A ”= Â} such that

—
p

âI >
p

2 log 2. (3.A.4)

Then,
Z

I
âI ds >

Z

I

2 log 2
—2 ds (By (3.A.4) and the fact that |I| > 0)

Ø
Z

I
a(s) ds (By (i) and the assumption that — Æ —G)

=
Z

I
âI ds , (By (ii) of Lemma 3.A.3)

which yields a contradiction. ⌅

The third lemma compares the di�erence between two integrals, one using a

and the other using â.

Lemma 3.A.5. Recall that the derivative of f equals

f Õ(x) =

8
>><

>>:

x, x <
Ô

2 log 2

Ô
2 log 2, x Ø

Ô
2 log 2.

(3.A.5)

(i) Suppose that I is a connected component of {A ”= Â}. Then for all — Ø 0,
Z

I

⇣
f Õ(—

p
â(s))

p
â(s) ≠ f Õ(—

p
a(s))

p
a(s)

⌘
ds Ø 0.

(ii) Moreover, if — > —G, there exists a connected component I of {A ”= Â} such
that

Z

I

⇣
f Õ(—

p
â(s))

p
â(s) ≠ f Õ(—

p
a(s))

p
a(s)

⌘
ds > 0.

Proof. We prove this lemma by addressing each point separately.
Proof of (i). Let I be a connected component of {A ”= Â}. By (ii) of Lemma 3.A.3,
â is equal to a positive constant âI on int(I). We now distinguish the two cases of
âI .
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Case 1: —
Ô

âI <
Ô

2 log 2. We have
Z

I

⇣
f Õ(—

p
â(s))

p
â(s) ≠ f Õ(—

p
a(s))

p
a(s)

⌘
ds

=
Z

I

⇣
—âI ≠ f Õ(—

p
a(s))

p
a(s)

⌘
ds (By (3.A.5))

=
Z

I

⇣
—a(s) ≠ f Õ(—

p
a(s))

p
a(s)

⌘
ds (By (ii) of Lemma 3.A.3)

Ø
Z

I
(—a(s) ≠ —a(s))| {z }

=0

ds (Because f Õ(x) Æ x for all x Ø 0)

= 0.

Case 2: —
Ô

âI Ø
Ô

2 log 2. We have
Z

I

⇣p
2 log 2

p
â(s) ≠ f Õ(—

p
a(s))

p
a(s)

⌘
ds

>

Z

I

⇣p
2 log 2

p
a(s) ≠ f Õ(—

p
a(s))

p
a(s)

⌘
ds (By (iii) of Lemma 3.A.3)

Ø
Z

I

⇣p
2 log 2

p
a(s) ≠

p
2 log 2

p
a(s)

⌘

| {z }
=0

ds (Because f Õ(x) Æ
p

2 log 2 for all x Ø 0)

= 0.

Proof of (ii). Suppose that — > —G. We distinguish again the two cases of âI .
Case 1: —

Ô
âI <

Ô
2 log 2. By Lemma 3.A.4, there exists a connected component

I of {A ”= Â} such that
���I fl {—

p
a(s) >

p
2 log 2}

��� > 0. (3.A.6)

Then we have
Z

I

⇣
f Õ(—

p
â(s))

p
â(s) ≠ f Õ(—

p
a(s))

p
a(s)

⌘
ds

=
Z

I

⇣
—âI ≠ f Õ(—

p
a(s))

p
a(s)

⌘
ds (By (3.A.5))

=
Z

I

⇣
—a(s) ≠ f Õ(—

p
a(s))

p
a(s)

⌘
ds (By (ii) of Lemma 3.A.3)

=
Z

Ifl{—
Ô

a(s)Æ
Ô

2 log 2}
(—a(s) ≠ —a(s))| {z }

=0

ds

+
Z

Ifl{—
Ô

a(s)>
Ô

2 log 2}
(—a(s) ≠

p
2 log 2

p
a(s))| {z }

>0

ds > 0. (By (3.A.6))

Case 2: —
Ô

âI Ø
Ô

2 log 2. In this case, as shown in Case 2 in the proof of (i), for
any connected component I of {A ”= Â},

Z

I

⇣
f Õ(—

p
â(s))

p
â(s) ≠ f Õ(—

p
a(s))

p
a(s)

⌘
ds > 0.

This completes the proof. ⌅
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We are now ready to prove Proposition 3.A.1.

Proof of Proposition 3.A.1. In the following, let {Ii}Œ
i=1 be the collection of the

connected components of {A ”= Â}.
We start with the proof of (i). Assume that — Æ —G. We have

G— =
Z 1

0

⇣
f(—

p
â(s)) ≠ f(—

p
a(s))

⌘
ds

=
ŒX

i=1

Z

Ii

⇣
f(—

p
âIi) ≠ f(—

p
a(s))

⌘
ds (By Lemma 3.A.3)

=
ŒX

i=1

Z

Ii

✓
—2

2 âIi ≠ —2

2 a(s)
◆

ds (By (i) and (ii) of Lemma 3.A.4)

= 0, (By (ii) of Lemma 3.A.3)

and the proof of (i) is completed.
We now proceed to the proof of (ii). Assume that — > —G. Di�erentiating G—

yields

GÕ
— =

Z 1

0

⇣
f Õ(—

p
â(s))

p
â(s) ≠ f Õ(—

p
a(s))

p
a(s)

⌘
ds . (3.A.7)

Again by Lemma 3.A.3, GÕ
— satisfies the following

Z 1

0

⇣
f Õ(—

p
â(s))

p
â(s) ≠ f Õ(—

p
a(s))

p
a(s)

⌘
ds

=
ŒX

i=1

Z

Ii

⇣
f Õ(—

p
âIi)

p
âIi ≠ f Õ(—

p
a(s))

p
a(s)

⌘
ds > 0, (3.A.8)

where (3.A.8) is true because of Lemma 3.A.5 and the assumption that — > —G.
This proves (ii). ⌅

3.B Proof of Lemma 3.3.2

This section is devoted to the proof of Lemma 3.3.2, and the strategy is to compare
the free energy of the CREM with the free energy of the branching random walk,
which is defined as follows.

The branching random walk. Let (X̃u)uœTM be a centered Gaussian process
indexed by TM with the covariance function

E
⇥
X̃uX̃w

⇤
= |u · w|

for all u, w œ TM . This Gaussian process is called the branching random walk with
standard Gaussian increments, which will be abbreviated as the branching random
walk. Define

fM (—) = 1
M

E
⇥
log Z̃—,M

⇤
, where Z̃—,M =

X

|u|=M

e—X̃u .
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It is known that (see, [65]) the function (3.1.5) is the pointwise limit of fM (—), i.e.,
for all — œ [0, Œ),

f = lim
MæŒ

fM (—).

The proof of Lemma 3.3.2 relies on a quantitative estimate of the convergence
above, which is stated in detail in Lemma 3.B.3. Before we proceed to Lemma 3.B.3,
we state the following lemma that is handy to prove Lemma 3.B.3.

Lemma 3.B.1. Define gM : [0, Œ) æ R as gM (0) := 0 and gM (—) := fM (—)/— ≠
2 log 2/—. Define g(—) := f(—)/— ≠ 2 log 2/— which equals

g(—) :=

8
><

>:

—

2 , — œ [0,
Ô

2 log 2]
p

2 log 2 ≠ log 2
—

, — >
Ô

2 log 2

Then, the following statements are true.

(i) For all — œ [0, Œ), limMæŒ gM (—) = g(—).

(ii) For all — œ [0, Œ) and M œ N, gM (—) Æ g(—).

(iii) For all M œ N, the function gM is non-decreasing. Moreover, gM (Œ) :=
lim—æŒ gM (—) exists and limMæŒ gM (Œ) =

Ô
2 log 2 = g(Œ), where

g(Œ) := lim—æŒ g(—).

(iv) The sequence of functions gM converges uniformly to g.

Remark 3.B.2. As we will see below, the proof of (ii) in Lemma 3.B.1 is a standard
argument in the context of statistical physics. The argument to prove (iv) is a slight
modification of the proof of Dini’s second theorem1 which states that if a sequence
of monotone (continuous or discontinuous) functions converges on a closed interval
to a continuous function, the sequence converges uniformly. The second statement
of (iii) allows us to generalize Dini’s second theorem to our setting.

Proof of Lemma 3.B.1. We prove this lemma by addressing each point separately.
Proof of (i). This follows directly from the definition of gM and g, and the pointwise
convergence of fM to f .
Proof of (ii). It su�ces to show that for all — œ [0, Œ) and M œ N, fM (—) Æ f(—).
To this purpose, we claim that for all — œ [0, Œ) the sequence MfM is super-
additive. If this is true, then Fekete’s lemma implies that fM (—) Æ f(—).

1This simple but handy result appears in some French textbooks under the name “deuxième
théorème de Dini”. One can find the proof in Solution 127 in Part II, Chapter 3 of [160].
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Now, fixing M1, M2 œ N, we have

E
⇥
log Z̃—,M1+M2

⇤
= E

2

4log
X

|u|=M1+M2

e—X̃u

3

5

= E

2

4log
X

|u1|=M1

X

|u2|=M2

e—(X̃u1 +X̃
u1
u2 )

3

5

= E

2

4log
X

|u1|=M1

e—X̃u1 Z̃u1
—,M2

3

5

= E
⇥
log Z̃—,M1

⇤
+ E

2

4log
X

|u1|=M1

e—Xu1

Z̃—,M1

Z̃u1
—,M2

3

5 .

By Jensen’s inequality and the branching property, we have

E

2

4log
X

|u1|=M1

e—Xu1

Z̃—,M1

Z̃u1
—,M2

3

5 Ø E

2

4
X

|u1|=M1

e—Xu1

Z̃—,M1

log Z̃u1
—,M2

3

5 = E
⇥
log Z̃—,M2

⇤
.

Therefore, we conclude that

(M1 + M2)gM1+M2 = E
⇥
log Z̃—,M1+M2

⇤

Ø E
⇥
log Z̃—,M1

⇤
+ E

⇥
log Z̃—,M2

⇤
= M1gM1 + M2gM2 .

Proof of (iii). Fix M œ N. For all — > 0, by Jensen’s inequality and the fact that
x ‘æ log x is concave,

log
X

|u|=M

1
2M

e—X̃u Ø
X

|u|=M

1
2M

log e—X̃u =
X

|u|=M

1
2M

—X̃u.

Thus, by the fact that (X̃u)|u|=M is centered,

gM (—) Ø 1
—M

E

2

4log
X

|u|=M

1
2M

e—X̃u

3

5 Ø E

2

4
X

|u|=M

1
2M

—X̃u

3

5 = 0 = g(0).

For all 0 < — < —Õ, the function x ‘æ x—Õ/— is convex. Therefore, by Jensen’s
inequality,

0

@
X

|u|=M

1
2M

e—X̃u

1

A
—Õ/—

Æ
X

|u|=M

1
2M

e—ÕX̃u .

It then yields immediately that

gM (—) = 1
—M

E

2

4log

0

@
X

|u|=M

1
2M

e—X̃u

1

A

3

5 Æ 1
—ÕM

E

2

4log

0

@
X

|u|=M

1
2M

e—ÕX̃u

1

A

3

5 = gM (—Õ),
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which proves that gM is non-decreasing. Now, by (ii) and the fact that g Æ
Ô

2 log 2,
monotone convergence theorem implies that lim—æŒ gM (—) exists and is bounded
from above by

Ô
2 log 2. Finally, note that

1
M

E


max
|u|=M

Xu

�
≠ log 2

—
Æ gM (—) Æ 1

M
E


max
|u|=M

Xu

�
.

Taking — æ Œ, we obtain the equality

gM (Œ) = 1
M

E


max
|u|=M

Xu

�
.

It is well-known that

lim
MæŒ

1
M

E


max
|u|=M

Xu

�
=
p

2 log 2,

which is an implication of Theorem 3.1 in [54] by letting the covariance function
to be the identity function. Therefore, taking M æ Œ, we conclude that

lim
MæŒ

gM (Œ) =
p

2 log 2 = lim
—æŒ

g(—) = g(Œ).

Proof of (iv). Fix Á > 0. By its definition, the function g is continuous and non-
decreasing on [0, Œ). Moreover, by (iii), g(Œ) := lim—æŒ g(—) and gM (Œ) :=
lim—æŒ gM (—) exist and limMæŒ gM (Œ) = g(Œ). By the intermediate value
theorem, there exists a subdivision 0 = —0 < —1 < · · · < —k≠1 < —k = Œ such
that g(—i+1) ≠ g(—i) < Á, for all i = 0, . . . , k ≠ 1. Thus, for all — œ [0, Œ) and
i = 0, . . . , k ≠ 1, we have

gM (—) ≠ g(—) Æ gM (—i+1) ≠ g(—i) (Because gM and g are non-decreasing)
Æ gM (—i+1) ≠ g(—i+1) + Á (By the choice of subdivision) (3.B.1)

and

gM (—) ≠ g(—) Ø gM (—i) ≠ g(—i+1) (Because gM and g are non-decreasing)
Ø gM (—i) ≠ g(—i) ≠ Á. (By the choice of subdivision) (3.B.2)

By (i) and (iii), there exists MÁ œ N such that for all M Ø MÁ and i = 0, . . . , k ≠ 1,

|gM (—i) ≠ g(—i)| < Á. (3.B.3)

Combining (3.B.1), (3.B.2) and (3.B.3), we conclude that for all M Ø MÁ,

|gM (—) ≠ g(—)| < 2Á,

which proves that gM converges to g uniformly as, desired. ⌅

Lemma 3.B.1 implies the following quantitative convergence of fM .

Lemma 3.B.3. For all Á > 0, there exists M œ N independent of — œ [0, Œ) such
that

|fM (—) ≠ f(—)| Æ —Á. (3.B.4)



CHAPTER 3. SAMPLING THE CREM GIBBS MEASURE 96

Proof. By (iv) of Lemma 3.B.1, gM converges uniformly to g on [0, Œ). Combining
this with the fact

|fM (—) ≠ f(—)| = —|gM (—) ≠ g(—)|.

the proof is completed. ⌅

We now proceed to the proof of Lemma 3.3.2.

Proof of Lemma 3.3.2. Fix MN a sequence such that MN œ J1, NK and MN æ Œ.
For all N œ N, by Kahane’s inequality (see, Theorem 3.11 in [125]), for all

k œ J0, ÂN/MN ÊK,

E
h
log Z̃—

Ô
a≠

k ,MN

i
Æ E

h
log Z(kMN )

—,MN

i
Æ E

h
log Z̃—

Ô
a+

k ,MN

i
, (3.B.5)

where

a≠
k := ess inf

tœ[ kMN
N ,

(k+1)MN
N ]

a(t) and a+
k := ess sup

tœ[ kMN
N ,

(k+1)MN
N ]

a(t).

Now, fix Á > 0. By Lemma 3.B.3, there exists N0 œ N such that for all N Ø N0,

1
MN

E
h
log Z̃—

Ô
a≠

k ,M

i
Ø f(—

Ô
a

≠
k ) ≠ Á—

Ô
a

≠
k and 1

MN
E
h
log Z̃—

Ô
a+

k ,M

i
Æ f(—

Ô
a

+
k ) + Á—

Ô
a

+
k .

(3.B.6)

Combining (3.B.5) and (3.B.6), for all N Ø N0, we conclude that

E
h
log Z(kMN )

—,MN

i
Ø E

h
log Z̃—

Ô
a≠

k ,MN

i
Ø f(—

Ô
a

≠
k ) ≠ Á—

Ô
a

≠
k

and

E
h
log Z(kMN )

—,MN

i
Æ E

h
log Z̃—

Ô
a+

k ,MN

i
Æ f(—

Ô
a

+
k ) + Á—

Ô
a

+
k .

These complete the proof. ⌅

Acknowledgments. I want to thank Pascal Maillard for his guidance throughout
the whole project. I am also grateful to Alexandre Legrand and Michel Pain for
stimulating discussions.



4. Negative moments of the
CREM partition function in the
high temperature regime

The continuous random energy model (CREM) was introduced by Bovier and
Kurkova in 2004 as a toy model of disordered systems. Among other things, their
work indicates that there exists a critical point —c such that the partition function
exhibits a phase transition. The present work focuses on the high temperature
regime where — < —c. We show that for all — < —c and for all s > 0, the negative s

moment of the CREM partition function is comparable with the expectation of the
CREM partition function to the power of ≠s, up to constants that are independent
of N .

4.1 Introduction

In this paper, we consider the continuous random energy model (CREM) intro-
duced by Bovier and Kurkova in [54] based on previous work by Derrida and Spohn
[91]. Formally, the model is defined as follows. Let N œ N. Denote by TN the
binary tree with depth N . Given u œ TN , we denote by |u| the depth of u. For all
u, v œ TN , let u · v be the most recent common ancestor of u and v. The CREM
is a centered Gaussian process (Xu)uœTN indexed by the binary tree TN of depth
N with covariance function

E [XvXw] = N · A

✓
|v · w|

N

◆
, ’v, w œ TN .

For the purpose of this paper, we require that the function A satisfies the following
assumption.

Assumption 4.1.1. We suppose that the function A is a non-decreasing function
defined on the interval [0, 1] such that A(0) = 0 and A(1) = 1. Let Â be the
concave hull of A, and we denote by ÂÕ the right derivative of Â. Throughout this
paper, we assume the following regularity conditions.

(i) The function A is di�erentiable in a neighborhood of 0, i.e., there is an x0 œ
(0, 1] such that A is di�erentiable on the interval (0, x0). Furthermore, we
assume that A has a finite right derivative at 0.

97



CHAPTER 4. NEGATIVE MOMENTS OF THE CREM PARTITION FUNCTION98

(ii) There exists – œ (0, 1) such that the derivative of A is locally Hölder continu-
ous with exponent – in a neighborhood of 0, i.e., there exists x1 œ (0, 1] such
that

sup
x,yœ[0,x1]

x ”=y

|AÕ(x) ≠ AÕ(y)|
|x ≠ y|– < Œ.

(iii) The right derivative of Â at x = 0 is finite, i.e., ÂÕ(0) < Œ.

To study the CREM, one of the key quantity is the partition function. The
partition function of the CREM is defined as

Z—,N :=
X

|u|=N

e—Xu . (4.1.1)

The free energy of the CREM is defined as

F— := lim
NæŒ

1
N

E [log Z—,N ] .

The free energy F— admits an explicit expression. Namely, for all — Ø 0,

F— =
Z 1

0
f

✓
—
q

ÂÕ(s)
◆

ds , where f(x) :=

8
>>><

>>>:

x2

2 , x <
Ô

2 log 2,

Ô
2 log 2, x Ø

Ô
2 log 2.

(4.1.2)

Formula (4.1.2) was proven by Bovier and Kurkova in [54], based on a Gaussian
comparison argument and previous work of Capocaccia, Cassandro and Picco [59]
in the 1980s. While Bovier and Kurkova required the function A to be contin-
uously di�erentiable, their result can be extended to the class of A that can be
approximated pointwise by step functions from above and below.

In the same paper, Bovier and Kurkova also showed that the maximum of the
CREM satisfies the following.

lim
NæŒ

1
N

E


max
|u|=N

Xu

�
=
p

2 log 2
Z 1

0

q
ÂÕ(s) ds . (4.1.3)

Combining (4.1.2) and (4.1.3) indicates that there exists

—c :=
Ô

2 log 2q
ÂÕ(0)

(4.1.4)

such that the following phase transition occurs. a) For all — < —c, the main
contribution to the partition function comes from an exponential amount of the
particles. b) For all — > —c, the maximum starts to contribute significantly to the
partition function. The quantity —c is sometimes referred to as the static critical
inverse temperature of the CREM. In the following, we refer to the subcritical
regime — < —c as the high temperature regime.

Our goal is to study the negative moments of the partition function Z—,N in
the high temperature regime, and we obtain the following result.
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Theorem 4.1.2. Suppose Assumption 4.1.1 is true. Let — < —c. For all s > 0,
there exist N0 œ N and a constant C = C(A, —, s), independent of N , such that for
all N Ø N0,

E
⇥
(Z—,N )≠s

⇤
Æ CE [Z—,N ]≠s .

Remark 4.1.3. For all — > 0, N œ N and s > 0, we have the trivial lower bound
provided by the Jensen inequality and the convexity of x ‘æ x≠s,

E
⇥
(Z—,N )≠s

⇤
Ø E [Z—,N ]≠s . (4.1.5)

Thus, combining (4.1.5) with Theorem 4.1.2, we see that for all — < —c in the high
temperature regime and for all s > 0, E [(Z—,N )≠s] is comparable with E [Z—,N ]≠s.

4.1.1 Historical background

The continuous random energy model (CREM) can be viewed as a time-
inhomogeneous branching random walk. For the (homogeneous) branching random
walk, the typical approach is not to study the partition function directly but to
consider the additive martingale W—,N = Z—,N /E [Z—,N ], which converges point-
wise to W—,Œ. A standard method to establish that W—,Œ has negative moments
involves the following observation. Suppose that Y Õ, Y ÕÕ, W Õ and W ÕÕ are indepen-
dent random variables such that Y Õ and Y ÕÕ share the law of the increment of the
branching random walk, and each of W Õ and W ÕÕ follows the same distribution as
W—,Œ. Then, the limit of the additive martingale W—,Œ satisfies the following fixed
point equation in distribution:

W—,Œ
(d)= Y ÕW Õ + Y ÕW ÕÕ. (4.1.6)

Formula (4.1.6) is a special case of the so-called smoothing transform, which has
been studied extensively in the literature. In the context of multiplicative cascades,
which is an equivalent model of the branching random walk, Molchan showed in
[144] that if E [(Y Õ)≠s] < Œ for some s > 0, then E [(W—,Œ)≠s] < Œ. Subsequently,
Molchan’s result was extended by Liu in [127, 126]. More recently, Hu studied in
[113] the small deviation of the maximum of the branching random walk based on
Liu’s result. On the other hand, Nikula provided small deviations for lognormal
multiplicative cascades in [149], thereby refining Molchan’s result.

In the context of Gaussian multiplicative chaos (GMC), Garban, Holden,
Sepúlveda and Sun showed in [107] that given a subcritical GMC measure with
mild conditions on the base measure, the total mass of this GMC measure has neg-
ative moments of all orders. Their works expanded on the findings of Robert and
Vargas [163], Duplantier and She�eld [95] and Remy [161], with the base measure
taken as the Lebesgue measure restricted to some open set, where these authors
were interested in quantifying the left tail behavior of the total mass of the GMC
near 0. A final remark is that Robert and Vargas referred the proof of Theorem 3.6
in their paper [163], which concerned the negative moment of the total mass of the
GMC, to Barral and Mandelbrot [26], where they studied a log-Poisson cascade.
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4.1.2 Proof strategy

For the CREM in general, W—,N is not a martingale, so there is no obvious way to
show that W—,Œ exists. To prove Theorem 4.1.2, we adapt the proof of Lemma A.3
in the paper [38] by Benjamini and Schramm. While their argument also involved
the smoothing transform, it can be adjusted for general CREM. In particular, we
show that for all s > 0, there exist two positive sequences Ák and ÷k that both
decay double exponentially to 0 as k æ Œ such that for N su�ciently large,

P (Z—,N Æ ÁkE [Z—,N ]) Æ ÷k, (4.1.7)

and that for all k œ J1, C Õ log NK, where C Õ > 0, there exist C = C(A, —, s) > 0 and
c = c(A, —, s) > 0 such that

Á≠s
k ÷k Æ Ce≠ceck

. (4.1.8)

The proof of (4.1.7) and (4.1.8) is by established an initial left tail estimate, and
then use the branching property to bootstrap the estimate. Before ending this
section, we want to mention that Ding showed in [92] that maximum the two-
dimensional discrete Gaussian free field has double exponential left tail, and the
proof for the lower bound also involved a bootstrap argument, where the bootstrap
was done by initial estimate in small boxes plus the Fortuin–Kasteleyn–Ginibre
(FKG) inequality.

Outline. The rest of the paper is organized as follows. We provide in Section 4.2
an initial estimate of the left tail of the partition function. Next, in Section 4.3, we
improve the estimate obtained in the previous section using a bootstrap argument.
Finally, Theorem 4.1.2 is proven in Section 4.4.

4.2 Initial estimate for the left tail of the partition
function

The main goal of this section is to estimate the left tail of Z—,N . Before stating the
proposition, we first introduce the necessary notation.

Notation. Fix k œ J0, NK. Define (X(k)
u )|u|=N≠k to be the centered Gaussian

process with covariance function

E
h
X(k)

u X(k)
w

i
= N

✓
A

✓
|v · w| + k

N

◆
≠ A

✓
k

N

◆◆
.

We also introduce the corresponding partition function.

Z(k)
—,N≠k =

X

|u|=N≠k

e—X
(k)
u .

We are ready to state the main proposition of this section, which gives an initial
bound, independent of N and k, for the left tail of the partition function Z(k)

—,N≠k

in the high temperature regime.
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Proposition 4.2.1. Let — < —c. Let K = Â 2
log(19/10) log NÊ. Then, there exist

N0 = N0(A, —) œ N and a constant ÷0 = ÷0(A, —) < 1 such that for all N Ø N0
and k œ J0, KK,

P
✓

Z(k)
—,N≠k Æ 1

2 · E
h
Z(k)

—,N≠k

i◆
Æ ÷0.

The proof of Proposition 4.2.1 requires the following four lemmas.

4.2.1 Useful properties of A and Â

The first lemma gives a trivial bound of the di�erence between A(y) and A(z) by
the concave hull.

Lemma 4.2.2. For all y, z œ [0, 1] with y > z, we have

A(y) ≠ A(z) Æ ÂÕ(0)y.

Proof. Since A(0) = 0 and A is non-decreasing, A is non-negative on [0, 1]. On the
other hand, by the definition of the concave hull, A(y) Æ ÂÕ(0)y for all y œ [0, 1].
Combining these two facts together, we conclude that for all y œ [0, 1],

A(y) ≠ A(z) Æ A(y) Æ ÂÕ(0)y,

and this completes the proof. ⌅

The second lemma estimates the di�erence between A(y) and A(z) when y and
z are close to 0.

Lemma 4.2.3. There exists x0 œ (0, 1] such that for all y, z œ [0, x0], there exists
a constant C = C(A, x0) > 0 such that,

|A (y) ≠ A (z)| Æ ÂÕ(0)|y ≠ z| + Cy–|y ≠ z| + C|y ≠ z|1+–. (4.2.1)

Proof. Fix y, z œ [0, x1], where x1 is given in (i) of Assumption 4.1.1. Then by
applying the 1st order Taylor expansion of A at y with Lagrange remainder, we
have

A(z) = A(y) + AÕ(y)(z ≠ y) + (z ≠ y)(AÕ(›) ≠ AÕ(y)),

where › is between z and y. Then, the triangle inequality and the fact that A is
non-decreasing yield

|A(z) ≠ A(y)| Æ AÕ(y)|z ≠ y| + |z ≠ y|
��AÕ(›) ≠ AÕ(y)

��. (4.2.2)

By the local Hölder continuity of A in a neighborhood around 0 provided by As-
sumption 4.1.1, there exists C = C(A, x1) > 0 such that

AÕ(y) Æ AÕ(0) + Cy–. (4.2.3)
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Similarly, by the local Hölder continuity of A in a neighborhood around 0 provided
by Assumption 4.1.1, we have

��AÕ(›) ≠ AÕ(y)
�� Æ C|z ≠ y|–, (4.2.4)

where C is the same constant as in (4.2.3). Combining (4.2.2), (4.2.3) and (4.2.4),
we conclude that

|A(z) ≠ A(y)| Æ ÂÕ(0)|z ≠ y| + Cy–|z ≠ y| + C|z ≠ y|1+–,

and this completes the proof. ⌅

4.2.2 Moment estimates of the truncated partition function

Our strategy of proving Proposition 4.2.1 is to adopt a truncated moment esti-
mate. To perform the estimate, we introduce the relevant notation regarding the
underlying binary tree of the CREM.

Definition 4.2.4. For any v œ TN with prefix w, let v\w be the su�x of v such
that v = w(v\w).

The truncated moment estimate requires introducing a good truncation which
is defined as follows. For all |u| = N , k œ J0, NK, a > 0 and b > 0, define the
truncating set

Gu,k :=
⇢

’n œ J1, N ≠ kK : X(k)
u (n) Æ — · N ·

✓
A

✓
n + k

N

◆
≠ A

✓
k

N

◆◆
+ a · n + b

�
.

Define the truncated partition function

Z(k),Æ
—,N≠k :=

X

|u|=N≠k

e—X
(k)
u 1Gu,k . (4.2.5)

We explain roughly why truncated partition function defined in (4.2.5) is good.
Firstly, In Lemma 4.2.5, we show that with a > 0 and with b > 0 su�ciently large,
the first moment of truncated partition function is approximately the same as the
first moment of the untruncated one. Secondly, in Lemma 4.2.6, we show that with
b > 0 and with a > 0 su�ciently small, the second moment of truncated partition
function is comparable with the square of the first moment of the untruncated one.
Once we have these two estimates, by passing to a Paley–Zygmund type argument,
we are able to estimate left tail of the untruncated partition function.

We now proceed with the first moment estimate.

Lemma 4.2.5 (First moment estimate). For all a > 0 and b Ø
ÂÕ(0)

a log
⇣

10 max
n

e≠a2/(2ÂÕ(0))

1≠a2/(2ÂÕ(0)) , 1
o⌘

, there exist N0 = N0(A, —, a, b) œ N such

that for all N Ø N0 and k œ J0, KK where K :=
j

2
log(19/10) log N

k
,

E
h
Z(k),Æ

—,N≠k

i
Ø 7

10E
h
Z(k)

—,N≠k

i
.
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Proof. By exponential tilting, we have

E
h
Z(k),Æ

—,N≠k

i
= E

2

4
X

|u|=N≠k

e—X
(k)
u 1Gu,k

3

5

= 2N≠kE
h
e—X

(k)
N≠k1GN≠k

i

= 2N≠k —2N

2

✓
1 ≠ A

✓
k

N

◆◆
· P

⇣
’n œ J1, N ≠ kK : X(k)

N≠k(n) Æ a · n + b
⌘

= E
h
Z(k)

—,N≠k

i
· P

⇣
’n œ J1, N ≠ kK : X(k)

N≠k(n) Æ a · n + b
⌘

. (4.2.6)

We want to give a lower bound of the probability in (4.2.6). The union bound and
the Cherno� bound yield

P
⇣

÷n œ J1, N ≠ kK : X(k)
N≠k(n) > a · n + b

⌘
Æ

N≠kX

n=1
P
⇣

X(k)
N≠k(n) > a · n + b

⌘

Æ
N≠kX

n=1
exp

 
≠ (a · n + b)2

2N · (A(n+k
N ) ≠ A( k

N ))

!
.

(4.2.7)

Letting K1 :=
j

2
log(19/10)(log N)2

k
, we separate (4.2.7) into two terms

(4.2.7) =
K1X

n=1
exp

 
≠ (a · n + b)2

2N · (A(n+k
N ) ≠ A( k

N ))

!
+

N≠kX

n=K1+1
exp

 
≠ (a · n + b)2

2N · (A(n+k
N ) ≠ A( k

N ))

!
.

(4.2.8)

We start with bounding the first term of (4.2.8). Define h(N) := C
K1+–

1
N +

C K1k–

N + C k1+–

N– . By Lemma 4.2.3, for all n œ J1, K1K, we have

N ·
✓

A

✓
n + k

N

◆
≠ A

✓
k

N

◆◆

Æ ÂÕ(0)n + C
n(n + k)–

N
+ C

n1+–

N–

Æ ÂÕ(0)n + C
n(n– + k–)

N
+ C

n1+–

N–
(By subadditivity of x ‘æ x–)

Æ ÂÕ(0)n + C
K1+–

1
N

+ C
K1k–

N
+ C

k1+–

N–

= ÂÕ(0)n + h(N). (4.2.9)
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By (4.2.9), the first term of (4.2.8) is bounded from above by
K1X

n=1
exp

 
≠ (a · n + b)2

2N · (A(n+k
N ) ≠ A( k

N ))

!

Æ
K1X

n=1
exp

✓
≠ (a · n + b)2

2(ÂÕ(0)n + h(N))

◆

=
K1X

n=1
exp

 
≠ a2

2(ÂÕ(0) + 1
nh(N))

!
exp

 
≠ ab

ÂÕ(0) + 1
nh(N)

!
exp

✓
≠ b2

2N(ÂÕ(0) + h(N))

◆

| {z }
Æ1

(4.2.10)

Since for all n Ø 1,

ÂÕ(0) + 1
n

h(N) Ø ÂÕ(0) + h(N),

(4.2.10) is bounded from above by

(4.2.10) Æ
K1X

n=1
exp

✓
≠ a2

2(ÂÕ(0) + h(N))

◆
exp

✓
≠ ab

ÂÕ(0) + h(N)

◆

Æ
ŒX

n=1
exp

✓
≠ a2

2(ÂÕ(0) + h(N))

◆
exp

✓
≠ ab

ÂÕ(0) + h(N)

◆

Æ
exp

⇣
≠ a2

2(ÂÕ(0)+h(N))

⌘

1 ≠ exp
⇣

≠ a2

2(ÂÕ(0)+h(N))

⌘ exp
✓

≠ ab

ÂÕ(0) + h(N)

◆
. (4.2.11)

Since h(N) æ 0 as N æ Œ, by the choice of parameters a and b, we have

lim
NæŒ

exp
⇣

≠ a2

2(ÂÕ(0)+h(N))

⌘

1 ≠ exp
⇣

≠ a2

2(ÂÕ(0)+h(N))

⌘ exp
✓

≠ ab

ÂÕ(0) + h(N)

◆
= e≠a2/(2ÂÕ(0))

1 ≠ e≠a2/(2ÂÕ(0))
e≠ab/ÂÕ(0) Æ 1

10 .

(4.2.12)

Combining (4.2.11) and (4.2.12), there exists N1 = N1(A, —) œ N such that for all
N œ N1, the first term of (4.2.8) is bounded from above by

K1X

n=1
exp

 
≠ (a · n + b)2

2N · (A(n+k
N ) ≠ A( k

N ))

!
Æ 2

10 . (4.2.13)

It remains to bound the second term of (4.2.8). By Lemma 4.2.2,
N≠kX

n=K1+1
exp

 
≠ (a · n + b)2

2N · (A(n+k
N ) ≠ A( k

N ))

!

Æ
N≠kX

n=K1+1
exp

✓
≠ a2

2(1 + k/n)ÂÕ(0)
n

◆

Æ exp
✓

≠ a2

2(1 + K1/(K1 + 1))ÂÕ(0)
(K1 + 1)

◆
1

1 ≠ exp
⇣

≠ a2

2(1+K1/(K1+1))ÂÕ(0)

⌘ .

(4.2.14)
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By our choice of K1, (4.2.14) converges to 0 as N æ Œ. In particular, there exists
N2 = N2(A, —) such that for all N Ø N2,

N≠kX

n=K1+1
exp

 
≠ (a · n + b)2

2N · (A(n+k
N ) ≠ A( k

N ))

!
Æ 1

10 . (4.2.15)

Let N3 := max{N1, N2}. Combining (4.2.8), (4.2.13) and (4.2.15), for all N Ø N3
and for all r œ J0, KK,

P
⇣

÷n œ J1, N ≠ kK : X(k)
N≠k(n) > a · n + b

⌘
Æ 3

10 . (4.2.16)

Combining (4.2.6) and (4.2.16), we conclude that for all N Ø N3 and for all k œ
J0, KK,

E
h
Z(k),Æ

—,N≠k

i
Ø 7

10E
h
Z(k)

—,N≠k

i
,

and this completes the proof. ⌅

It remains to provide a second moment estimate of the truncated partition
function.

Lemma 4.2.6 (Second moment estimate). Let — < —c. For all a œ (0, log 2
— ≠

1
2—ÂÕ(0)), where and b > 0, there exist N0 = N0(A, —) œ N and C = C(A, —) > 0
such that for all N Ø N0 and k œ J0, KK, where K :=

j
2

log(19/10) log N
k
, we have

E
h
(Z(k),Æ

—,N≠k)2
i

Æ CE
h
Z(k)

—,N≠k

i2
.

Proof. Fix — < —c and a œ (0, log 2
— ≠ 1

2—ÂÕ(0)). Define

c = c(A, —) := log 2 ≠ 1
2—2ÂÕ(0) ≠ a > 0. (4.2.17)

By the many-to-two lemma, we have

E
h
(Z(k),Æ

—,N≠k)2
i

= E
h
Z(k),Æ

2—,N≠k

i
+

N≠k≠1X

¸=0

X

|u·w|=¸,
|u|=|w|=N≠k

E
h
e—(X(k)

u +X
(k)
w )1Gu,kflGw,k

i
.

(4.2.18)

We start with bounding the first term of (4.2.18). By exponential tilting, the
first term of (4.2.18) is bounded from above by

E
h
Z(k),Æ

2—,N≠k

i
= 2N≠k exp

✓
2—2N

✓
1 ≠ A

✓
k

N

◆◆◆

· P
✓

X(k)
u Æ ≠— · N ·

✓
1 ≠ A

✓
k

N

◆◆
+ a(N ≠ k) + b

◆

Æ 2N≠k exp
✓

3
2—2N

✓
1 ≠ A

✓
k

N

◆◆◆
exp(a(N ≠ k) + b)

= E
h
Z(k)

—,N≠k

i2
2≠(N≠k) exp

✓
1
2—2N

✓
1 ≠ A

✓
k

N

◆◆◆
exp(a(N ≠ k) + b)

(4.2.19)
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By Lemma 4.2.2, there exists N1 = N1(A, —) œ N such that for all N Ø N1 and
k œ J0, KK, (4.2.19) is bounded from above by

(4.2.19) Æ E
h
Z(k)

—,N≠k

i2
2≠(N≠k) exp

✓
1
2—2ÂÕ(0)N

◆
exp(a(N ≠ k) + b)

= exp
✓

—b + 1
2ÂÕ(0)k

◆
E
h
Z(k)

—,N≠k

i2
exp

✓✓
≠ log 2 + 1

2—2ÂÕ(0) + a

◆
(N ≠ k)

◆

Æ exp
✓

—b + 1
2ÂÕ(0)K

◆
E
h
Z(k)

—,N≠k

i2
exp(≠c(N ≠ k)), (4.2.20)

where the constant c is defined in (4.2.17).
It remains to bound the second term of (4.2.18). For all |u| = |w| = N ≠k with

|u · w| = ¸ œ J0, N ≠ k ≠ 1K, we have

Gu,k fl Gw,k ™
⇢

X(k)
u·w Æ — · N ·

✓
A

✓
¸ + k

N

◆
≠ A

✓
k

N

◆◆
+ a · ¸ + b

�
. (4.2.21)

Combining (4.2.21) and the branching property, we have

E
h
e—(X(k)

u +X
(k)
w )1Gu,kflGw,k

i

Æ E

e2—X

(k)
u·w1

⇢
X(k)

u·w Æ — · N ·
✓

A

✓
¸ + k

N

◆
≠ A

✓
k

N

◆◆
+ a · ¸ + b

��

· E
h
e—(X(k)

u +X
(k)
w ≠2X

(k)
u·w)

i

= E

e2—X

(k)
u·w1

⇢
X(k)

u·w Æ — · N ·
✓

A

✓
¸ + k

N

◆
≠ A

✓
k

N

◆◆
+ a · ¸ + b

��
E

e

—X
(k+¸)
u\(u·w)

�2
,

(4.2.22)

where u\(u · w) is defined in Definition 4.2.4, meaning the su�x of u such that
u = (u · w)(u\(u · w)). The second term of (4.2.22) is equal to

E

e

—X
(¸+k)
u\(u·w)

�2
= exp

✓
—2 · N ·

✓
1 ≠ A

✓
¸ + k

N

◆◆◆
. (4.2.23)

By exponential tilting, the first term of (4.2.22) is equal to

E
h
e2—X

(k)
u·w

i
P
✓

X(k)
u·w Æ ≠— · N ·

✓
A

✓
¸ + k

N

◆
≠ A

✓
k

N

◆◆
+ a · ¸ + b

◆

= exp
✓

2—2 · N ·
✓

A

✓
¸ + k

N

◆
≠ A

✓
k

N

◆◆◆

· P
✓

X(k)
u·w Æ ≠— · N ·

✓
A

✓
¸ + k

N

◆
≠ A

✓
k

N

◆◆
+ a · ¸ + b

◆
(4.2.24)

Case 1: ≠— · N ·
�
A
�

¸+k
N

�
≠ A

�
k
N

��
+ a · ¸ + b Ø 0. In this case, by bounding the

probability in (4.2.24) by 1, we obtain

(4.2.24) Æ exp
✓

2—2 · N ·
✓

A

✓
¸ + k

N

◆
≠ A

✓
k

N

◆◆◆
. (4.2.25)
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Combining (4.2.22), (4.2.23) and (4.2.25), we see that

E
h
e—(X(k)

u +X
(k)
w )1Gu,kflGw,k

i

Æ exp
✓

—2 · N ·
✓

1 ≠ A

✓
k

N

◆◆◆
· exp

✓
—2 · N ·

✓
A

✓
¸ + k

N

◆
≠ A

✓
k

N

◆◆◆

Æ exp
✓

—2 · N ·
✓

1 ≠ A

✓
k

N

◆◆◆
· exp(— · (a · ¸ + b)). (4.2.26)

Since there are 22(N≠k)≠¸≠1 pairs of vertices u and w such that |u| = |w| = N ≠ k

with |u · w| = ¸ œ J0, N ≠ k ≠ 1K, we conclude that
X

|u·w|=¸,
|u|=|w|=N≠k

E
h
e—(X(k)

u +X
(k)
w )1Gu,kflGw,k

i

Æ 22(N≠k)≠¸≠1 exp
✓

—2 · N ·
✓

1 ≠ A

✓
k

N

◆◆◆
· exp(— · (a · ¸ + b))

Æ E
h
Z(k)

—,N≠k

i2
· 2≠¸≠1 · exp(— · (a · ¸ + b))

= 1
2 exp(—b)E

h
Z(k)

—,N≠k

i2
· exp((≠ log 2 + —a)¸)

Æ 1
2 exp(—b)E

h
Z(k)

—,N≠k

i2
· exp(≠c¸), (4.2.27)

where the constant c is defined in (4.2.17).
Case 2: ≠— · N ·

�
A
�

¸+k
N

�
≠ A

�
k
N

��
+ a · ¸ + b < 0. In this case, the Cherno�

bound yields

(4.2.24)

Æ exp
✓

2—2 · N ·
✓

A

✓
¸ + k

N

◆
≠ A

✓
k

N

◆◆◆

· exp
 

≠
�
— · N · (A

�
¸+k
N

�
≠ A

�
k
N

�
) ≠ (a · ¸ + b)

�2

2N ·
�
A
�

¸+k
N

�
≠ A

�
k
N

��
!

= exp
✓

2—2 · N ·
✓

A

✓
¸ + k

N

◆
≠ A

✓
k

N

◆◆◆
· exp

✓
≠1

2—2 · N ·
✓

A

✓
¸ + k

N

◆
≠ A

✓
k

N

◆◆◆

· exp(— · (a · ¸ + b)) · exp
 

≠ (a · ¸ + b)2

2N · (A
�

¸+k
N

�
≠ A

�
r
N

�
)

!

| {z }
Æ1

Æ exp
✓

3
2—2 · N ·

✓
A

✓
¸ + k

N

◆
≠ A

✓
k

N

◆◆◆
· exp(— · (a · ¸ + b)). (4.2.28)

Combining (4.2.22) and (4.2.28), we conclude that

E
h
e—(X(k)

u +X
(k)
w )1Gu,kflGw,k

i

Æ exp
✓

—2 · N ·
✓

1 ≠ A

✓
k

N

◆◆◆
· exp

✓
1
2—2 · N ·

✓
A

✓
¸ + k

N

◆
≠ A

✓
k

N

◆◆◆
· exp(— · (a · ¸ + b)).

(4.2.29)

We distinguish the two cases of ¸.
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(i) If ¸ œ J0, K1K, by Lemma 4.2.3, there exists N2 = N2(A, —) œ N such that for
all N Ø N2 and k œ J0, KK, (4.2.29) is bounded from above by

(4.2.29) Æ exp
✓

—2 · N ·
✓

1 ≠ A

✓
k

N

◆◆◆
exp

✓
1
2—2 ·

⇣
ÂÕ (0) ¸ + h(N)

⌘◆
· exp(— · (a · ¸ + b)).

Since there are 22(N≠k)≠¸≠1 pairs of vertices u and w such that |u| = |w| =
N ≠ k with |u · w| = ¸ œ J0, N ≠ k ≠ 1K, we conclude that

X

|u·w|=¸,
|u|=|w|=N≠k

E
h
e—(X(k)

u +X
(k)
w )1Gu,kflGw,k

i

Æ 22(N≠k)≠¸≠1 exp
✓

—2 · N ·
✓

1 ≠ A

✓
k

N

◆◆◆
· exp

✓
1
2—2 ·

⇣
ÂÕ (0) ¸ + h(N)

⌘◆
· exp(— · (a · ¸ + b))

= 1
2 exp

✓
—b + 1

2—2h(N)
◆
E
h
Z(k)

—,N≠k

i2
exp

✓✓
≠ log 2 + 1

2—2ÂÕ(0) + —a

◆
¸

◆

Æ 1
2 exp

✓
—b + 1

2—2h(N)
◆
E
h
Z(k)

—,N≠k

i2
exp(≠c¸), (4.2.30)

where the constant c is defined in (4.2.17).

(ii) If ¸ œ JK1 + 1, N ≠ k ≠ 1K, by Lemma 4.2.2, there exists N3 = N3(A, —) œ N
such that for all N Ø N3 and k œ J0, KK„ (4.2.29) is bounded from above by

(4.2.29) Æ exp
✓

—2 · N ·
✓

1 ≠ A

✓
k

N

◆◆◆
exp

✓
1
2—2 ·

⇣
ÂÕ (0) (¸ + k)

⌘◆
· exp(— · (a · ¸ + b)).

Since there are 22(N≠k)≠¸≠1 pairs of vertices u and w such that |u| = |w| =
N ≠ k with |u · w| = ¸ œ J0, N ≠ k ≠ 1K, we conclude that

X

|u·w|=¸,
|u|=|w|=N≠k

E
h
e—(X(k)

u +X
(k)
w )1Gu,kflGw,k

i

Æ 22(N≠k)≠¸≠1 exp
✓

—2 · N ·
✓

1 ≠ A

✓
k

N

◆◆◆
exp

✓
1
2—2 ·

⇣
ÂÕ (0) (¸ + k)

⌘◆
· exp(— · (a · ¸ + b))

= 1
2 exp

✓
—b + 1

2—2ÂÕ(0)k
◆
E
h
Z(k)

—,N≠k

i2
exp

✓✓
≠ log 2 + 1

2—2ÂÕ(0) + —a

◆
¸

◆

Æ 1
2 exp

✓
—b + 1

2—2ÂÕ(0)K
◆
E
h
Z(k)

—,N≠k

i2
exp(≠c¸), (4.2.31)

where the constant c is defined in (4.2.17).

Combining (4.2.18), (4.2.20), (4.2.27) in Case 1, (4.2.30) in (i) of Case 2 and
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(4.2.31) in (ii) of Case 2, we have that for all N Ø max{N1, N2, N3} and k œ J0, KK,

E
h
(Z(k),Æ

—,N≠k)2
i

= E
h
Z(k),Æ

2—,N≠k

i
+

N≠k≠1X

¸=0

X

|u·w|=¸,
|u|=|w|=N≠k

E
h
e—(X(k)

u +X
(k)
w )1Gu,kflGw,k

i

Æ exp
✓

—b + 1
2ÂÕ(0)K

◆
E
h
Z(k)

—,N≠k

i2
exp(≠c(N ≠ k))

+
K1X

¸=0

1
2 exp

✓
—b + 1

2—2h(N)
◆
E
h
Z(k)

—,N≠k

i2
exp(≠c¸)

+
N≠k≠1X

¸=K1+1

1
2 exp

✓
—b + 1

2—2ÂÕ(0)K
◆
E
h
Z(k)

—,N≠k

i2
exp(≠c¸)

Æ E
h
Z(k)

—,N≠k

i2
"

1
2 exp

✓
—b + 1

2—2h(N)
◆ ŒX

¸=0
exp(≠c¸)

+ 1
2 exp

✓
—b + 1

2—2ÂÕ(0)K
◆ ŒX

¸=K1+1
exp(≠c¸)

#

=Æ E
h
Z(k)

—,N≠k

i2
"

1
2 exp

✓
—b + 1

2—2h(N)
◆

1
1 ≠ e≠c

+ 1
2 exp

✓
—b + 1

2—2ÂÕ(0)K
◆

e≠c(K1+1)

1 ≠ e≠c

#

= E
h
Z(k)

—,N≠k

i2 1
2

e—b

1 ≠ e≠c

h
e

1
2 —2h(N) + e

1
2 —2ÂÕ(0)K≠c(K1+1)

i

| {z }
æ2, NæŒ

Thus, there exist N0 = N0(A, —) œ N with N0 Ø max{N1, N2, N3} and C =
C(A, —) := 3

2
e—b

1≠e≠c such that for all N Ø N0 and k œ J0, KK,

E
h
(Z(k),Æ

—,N≠k)2
i

Æ CE
h
Z(k)

—,N≠k

i2
,

and this completes the proof. ⌅

4.2.3 Proof of Proposition 4.2.1

We are now ready to prove Proposition 4.2.1.

Proof of Proposition 4.2.1. Fix — < —c. By Lemma 4.2.5 and Lemma 4.2.6, if we
choose

a = 1
2—

(log 2 ≠ 1
2—2ÂÕ(0)) and b = ÂÕ(0)

a
log

 
10 max

(
e≠a2/(2ÂÕ(0))

1 ≠ a2/(2ÂÕ(0))
, 1
)!

,

(4.2.32)

then there exist N1 = N1(A, —) œ N, N2 = N2(A, —) œ N and C = C(A, —) > 0
such that for all N Ø N1 and k œ J0, KK,

E
h
Z(k),Æ

—,N≠k

i
Ø 7

10E
h
Z(k)

—,N≠k

i
, (4.2.33)
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and for all N Ø N2 and k œ J0, KK,

E
h
(Z(k),Æ

—,N≠k)2
i

Æ CE
h
Z(k)

—,N≠k

i2
. (4.2.34)

Now, since Z(k),Æ
—,N≠k Æ Z(k)

—,N≠k, we have

P
✓

Z(k)
—,N≠k >

1
2E

h
Z(k)

—,N≠k

i◆
Ø P

✓
Z(k),Æ

—,N≠k >
1
2E

h
Z(k)

—,N≠k

i◆
. (4.2.35)

On the other hand, by the Cauchy–Schwarz inequality, we have

E
h
Z(k),Æ

—,N≠k

i

= E

Z(k),Æ

—,N≠k1
⇢

Z(k),Æ
—,N≠k >

1
2E

h
Z(k)

—,N≠k

i��
+ E


Z(k),Æ

—,N≠k1
⇢

Z(k),Æ
—,N≠k Æ 1

2E
h
Z(k)

—,N≠k

i��

| {z }
Æ 1

2E
h
Z

(k)
—,N≠k

i

Æ E
h
(Z(k),Æ

—,N≠k)2
i1/2

P
✓

Z(k),Æ
—,N≠k >

1
2E

h
Z(k)

—,N≠k

i◆1/2
+ 1

2E
h
Z(k)

—,N≠k

i
. (4.2.36)

Let N0 = N0(A, —) := max{N1, N2}. Combining (4.2.33), (4.2.34) and (4.2.36), we
derive that for all N Ø N0 and k œ J0, KK,

P
✓

Z(k),Æ
—,N≠k Ø 1

2E
h
Z(k)

—,N≠k

i◆1/2
Ø

E
h
Z(k),Æ

—,N≠k

i
≠ 1

2E
h
Z(k)

—,N≠k

i

E
h
(Z(k),Æ

—,N≠k)2
i1/2 Ø 2

10
Ô

C
. (4.2.37)

Combining (4.2.35) and (4.2.37), we conclude that for all N Ø N0 and r œ J0, KK,

P
✓

Z(k)
—,N≠k Æ 1

2E
h
Z(k)

—,N≠k

i◆
= 1 ≠ P

✓
Z(k)

—,N≠k >
1
2E

h
Z(k)

—,N≠k

i◆

Æ 1 ≠ P
✓

Z(k),Æ
—,N≠k >

1
2 · E

h
Z(k)

—,N≠k

i◆

Æ 1 ≠ 4
100C

.

By taking ÷0 = ÷0(A, —) = 1 ≠ 4
100C , the proof is completed. ⌅

4.3 Left tail estimates via a bootstrap argument

The main goal of this section is to provide a finer estimate of the left tail of Z—,N

than the one provided by Proposition 4.2.1. Namely, we want to an exponentially
decaying sequence that satisfies (4.1.8), and this is manifested in the following
proposition.

Proposition 4.3.1. Let K = Â 2
log(19/10) log NÊ. There exist N0 = N0(A, —) œ N

and two sequences (÷k)K
k=0 and (Ák)K

k=0 such that

(i) for all N Ø N0 and k œ J0, KK,

P (Z—,N Æ ÁkE [Z—,N ]) Æ ÷k.
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(ii) for all s > 0, there exists a constant C = C(A, —, s) > 0, independent of K,
such that

KX

r=0
(Ár+1)≠s÷r Æ C.

The proof of Proposition 4.3.1 requires the following two lemmas. For all k œ
J0, N ≠ 1K, define

M (k)
—,1 = e—X

(k)
1

E
h
Z(k)

—,1

i .

The first lemma states the bootstrap inequality.

Lemma 4.3.2. For all c > 0, ” > 0, N œ N, and k œ J0, N ≠ 1K, we have

P
⇣

Z(k)
—,N≠k Æ c” · E

h
Z(k)

—,N≠k

i⌘
Æ
h
P
⇣

Z(k+1)
—,N≠k≠1 Æ c · E

h
Z(k+1)

—,N≠k≠1

i⌘
+ P

⇣
M (k)

—,1 Æ ”
⌘i2

.

Proof. Fix N œ N. For every c > 0, ” > 0 and k œ J0, N ≠ 1K, we have

P
⇣

Z(k)
—,N≠k Æ c” · E

h
Z(k)

—,N≠k

i⌘

= P

0

@
X

|u|=1
M (k)

—,u · Z(k),u
—,N≠k≠1 Æ c” · E

h
Z(k+1)

—,N≠k≠1

i
1

A

Æ P
⇣

’|u| = 1 : M (k)
—,u · Z(k),u

—,N≠k≠1 Æ c” · E
h
Z(k+1)

—,N≠k≠1

i⌘

= P
⇣

M (k)
—,1 · Z(k+1)

—,N≠k≠1 Æ c” · E
h
Z(k+1)

—,N≠k≠1

i⌘2
(independence)

Æ
h
P
⇣

Z(k+1)
—,N≠k≠1 Æ c · E

h
Z(k+1)

—,N≠k≠1

i⌘
+ P

⇣
M (k)

—,1 Æ ”
⌘i2

.

This completes the proof. ⌅

The next lemma provides a uniform estimate for the left tail of M (k)
—,1 when k is

small compared to N .

Lemma 4.3.3. Let N œ N and K = Â 2
log(19/10) log NÊ. For all — > 0, k œ J0, KK

and s > 0, there exist N0 = N(A, —, s) œ N and a constant C = C(A, —, s) > 0,
independent of N , such that for all N Ø N0,

E
h
(M (k)

—,1)≠s
i

Æ C.

In particular, by Markov’s inequality, this implies that for all ” > 0 and for all
N Ø N0,

P
⇣

M (k)
—,1 Æ ”

⌘
Æ C—,s · ”s.

Proof. Let k œ J0, KK. By Lemma 4.2.3, there exist N1 = N1(A, —) œ N and C1 > 0
such that for all N Ø N1,

N

✓
A

✓
k + 1

N

◆
≠ A

✓
k

N

◆◆
Æ ÂÕ(0) + C1

(k + 1)–

N–
+ C1

1
N–

| {z }
æ0, NæŒ

.
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In particular, there exists N2 = N2(A, —) œ N such that for all N Ø N2,

N

✓
A

✓
k + 1

N

◆
≠ A

✓
k

N

◆◆
Æ ÂÕ(0) + 1.

Let N0 := max{N1, N2} and C = C(A, —, s) := exp
⇣

—2s2

2 (ÂÕ(0) + 1)
⌘

·

2s exp
⇣

—2s
2 (ÂÕ(0) + 1)

⌘
. For all N Ø N0, we conclude that

E
h
(M (k)

—,1)≠s
i

= E
h
e≠—sX

(k)
1
i

· E
h
Z(k)

—,1

is

= exp
✓

—2s2

2 N

✓
A

✓
k + 1

N

◆
≠ A

✓
k

N

◆◆◆
· 2s exp

✓
—2s

2 N

✓
A

✓
k + 1

N

◆
≠ A

✓
k

N

◆◆◆

Æ exp
✓

—2s2

2 (ÂÕ(0) + 1)
◆

· 2s exp
✓

—2s

2 (ÂÕ(0) + 1)
◆

= C,

and this completes the proof. ⌅

We now turn to the proof of Proposition 4.3.1.

Proof of Proposition 4.3.1. Let ÷0 = ÷(A, —) < 1 be the same as in Proposi-
tion 4.2.1, and for all k œ J1, KK, define ÷k = ÷19/10

k≠1 . Let Á0 = 1
2 . For all k œ J1, KK

and s > 0, define with C = C(A, —, 19
17s) being the same constant appeared in

Lemma 4.3.3

Ák = 1
2

 
1

Ck

k≠1Y

n=0
(÷19/20

n ≠ ÷n)
! 17

19
1
s

.

Firstly, we prove by induction that for all k œ J0, KK,

P (Z—,N Æ ÁkE [Z—,N ]) Æ ÷k. (4.3.1)

The case where k = 0 follows from Proposition 4.2.1. Suppose that (4.3.1) is true
for k = ¸ ≠ 1 œ J0, K ≠ 1K. Then, by induction hypothesis, Lemma 4.3.2 and
Lemma 4.3.3,

P
✓

Z(¸)
—,N≠¸ Æ Á¸≠1 ·

⇣ 1
C

(÷19/20
¸≠1 ≠ ÷¸≠1)

⌘
E
h
Z(¸)

—,N≠¸

i◆

Æ
 
P
⇣

Z(¸+1)
—,N≠¸≠1 Æ Á¸≠1E

h
Z(¸+1)

—,N≠¸≠1

i⌘
+ P

 
M (¸)

—,1 Æ
✓

1
C

(÷19/20
¸≠1 ≠ ÷¸≠1)

◆ 17
19

1
s

!!2

Æ(÷¸≠1 + ÷19/20
¸≠1 ≠ ÷¸≠1)2 = (÷¸≠1)19/10 = ÷¸. (4.3.2)

By induction, (4.3.1) holds for all k œ J0, KK.
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It remains to show that for all s > 0,
PK

k=0(Ák+1)≠s÷k is uniformly bounded in
K. Since (÷k) is a decreasing sequence, for all k Ø 1,

Ák = 1
2

 
1

Ck

k≠1Y

n=0
(÷

19
20
n ≠ ÷n)

! 17
19

1
s

= 1
2

 
1

Ck

k≠1Y

n=0
÷

19
20
n (1 ≠ ÷

1
20
n )

! 17
19

1
s

Ø 1
2

 
1

Ck
(1 ≠ ÷

1
20
0 )k

k≠1Y

n=0
÷

19
20
n

! 17
19

1
s

= 1
2

 
1

Ck
(1 ≠ ÷

1
20
0 )k

k≠1Y

n=0
÷

19
20 ( 19

10 )n

0

! 17
19

1
s

(Definition of ÷k)

= 1
2

✓
1

Ck
(1 ≠ ÷

1
20
0 )k÷

19
18 (( 19

10 )k≠1)
0

◆ 17
19

1
s

. (4.3.3)

Applying (4.3.3),

KX

k=0
(Ák+1)≠s÷k

Æ
K≠1X

k=1
2s

✓
1

Ck
(1 ≠ ÷

1
20
0 )k÷

19
18 (( 19

10 )k≠1)
0

◆≠ 17
19

· ÷k

=
K≠1X

n=1
2s

✓
1

Ck
(1 ≠ ÷

1
20
0 )k÷

19
18 (( 19

10 )k≠1)
0

◆≠ 17
19

· ÷
( 19

10 )k

0 (Definition of ÷k)

Æ2s÷
19
18 s
0

K≠1X

k=1
÷

1
18 ( 19

10 )k

0 ·

0

@ C

(1 ≠ ÷
1

20
0 )

1

A
k

=2s÷
17
18
0

K≠1X

k=1
exp

0

@(log ÷0) 1
18

✓
19
10

◆k

+ log

0

@ C

(1 ≠ ÷
1

20
0 )

1

Ak

1

A

Æ2s÷
17
18
0

ŒX

k=1
exp

0

@(log ÷0)| {z }
<0

1
18

✓
19
10

◆k

+ log

0

@ C

(1 ≠ ÷
1

20
0 )

1

Ak

1

A (4.3.4)

Since (4.3.4) is a finite sum depending only on s and ÷0 = ÷0(A, —), we conclude
that

PK
k=0(Ák+1)≠s÷k is bounded from above by a constant C1 = C1(A, —, s) > 0

as desired. ⌅

4.4 Proof of Theorem 4.1.2

The goal of this section is to prove Theorem 4.1.2. Before proceeding with the
proof, we introduce the relevant notation for this section.
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Notation. For given functions f : N æ N and g : N æ N, we write f(N) =
�(g(N)) if there exist positive constants C1 > 0, C2 > 0, and N0 œ N such that
C1|g(n)| Æ |f(n)| Æ C2|g(n)| for all N Ø N0. Also, for simplicity, we define
W—,N := Z—,N /E [Z—,N ].

We now begin the proof of Theorem 4.1.2.

Proof of Theorem 4.1.2. Suppose that — < —c. Let N œ N. Fix K =
Â 2

log(19/10) log NÊ and s < 18/19. It su�ce to prove that there exists a constant
C = C(A, —, s) > 0 such that

E
⇥
(W—,N )≠s

⇤
Æ C.

We have

E
⇥
(W—,N )≠s

⇤

Æ Á≠s
0 P (W—,N > Á0) +

K≠1X

k=1
(Ák+1)≠s · P (Ák+1 Æ W—,N Æ Ák) + E

⇥
(W—,N )≠s1W—,N ÆÁK

⇤

Æ 2s +
K≠1X

n=1
(Ák+1)≠s · P (W—,N Æ Ák) + E

⇥
(W—,N )≠s1W—,N ÆÁK

⇤
. (4.4.1)

By Proposition 4.3.1, there exist N0 = N(A, —, s) œ N and C1 = C1(A, —, s) > 0
such that for all N Ø N0 the first term of (4.4.1) is bounded by C1. Thus, it
remains to bound the second term of (4.4.1).

For all |u| = N ,

Z—,N Ø e—Xu . (4.4.2)

Fix a vertex u with |u| = N . By (4.4.2) and exponential tilting, the second term
of (4.4.1) is bounded from above by

E
⇥
(W—,N )≠s1W—,N ÆÁK

⇤
Æ E [Z—,N ]s · E

h
(e—Xu)≠s1e—Xu ÆÁK E[Z—,N ]

i

= E [Z—,N ]s · E
h
e≠—sXu1XuÆ 1

— (log ÁK+logE[Z—,N ])
i

= E [Z—,N ]s · E

e≠—sXu1

XuÆ 1
— (log ÁK+N log 2+N —2

2 )

�

= E [Z—,N ]s · exp
✓

≠—2s

2 N

◆

·
Z 1

—N (log ÁK+N log 2+N —2
2 )≠—s

≠Œ
e≠x2/2 dx

= E [Z—,N ]s · exp
✓

≠—2s

2 N

◆

·
Z Œ

≠ 1
—N (log ÁK+N log 2+N —2

2 )+—s
e≠x2/2 dx (4.4.3)
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Recall the definition of (Ák)K
k=0 in the proof of Proposition 4.3.1, we have

ÁK = 1
2

 
1

CK

K≠1Y

n=0
(÷

19
20
n ≠ ÷n)

! 17
19

1
s

Æ 1
2

 
1

CK

K≠1Y

n=0
÷

19
20
n

! 17
19

1
s

= 1
2

 
1

CK

K≠1Y

n=0
÷

19
18 ( 19

10 )n

0

! 17
19

1
s

= 1
2

✓
1

CK
÷

19
18 (( 19

10 )K≠1)
0

◆ 17
19

1
s

= 1
2 ·

✓
N

≠ 2 log C
log(19/10) · ÷

19
18 (N2≠1)
0

◆ 17
19

1
s

. (Definition of K)

(4.4.4)

Thus,

≠ 1
—N

(log ÁK + N log 2 + N
—2

2 ) + —s

Ø ≠ 1
—N

(≠ log 2 ≠ 17
19

1
s

2 log C—,1
log(19/10) log N + 17

19
1
s

log ÷0
19
18| {z }

<0

(N2 ≠ 1) + N log 2 + N
—2

2 ) + —s

= �(N). (4.4.5)

Thus, by (4.4.5) and the tail bound of the standard Gaussian distribution, (4.4.3)
is bounded from above by

(4.4.3) Æ 2s
Z Œ

�(N)
e≠x2/2 dx Æ 1

�(N)e≠�(N2)

which converges to 0 as N æ Œ. In particular, this implies that there exists a
constant C2 = C2(A, —, s) > 0, independent of N , such that the second term of
(4.4.1) is bounded from above by C2. Therefore, we conclude that for all N Ø N0,

E
⇥
(W—,N )≠s

⇤
Æ C1 + C2.

By taking C := C1 + C2, the proof is completed. ⌅



5. Outlook

In this chapter, we provide some further directions that might be interesting to
investigate.

5.1 A renormalized BRW free energy via the Ruelle
cascade

In this section, we consider a renormalized BRW free energy via the Poisson–
Dirichlet cascade. This quantity arises naturally from computing the initial condi-
tion of the Hamilton–Jacobi equation for the enriched CREM free energy, inspired
by the program initiated by Mourrat [146] in the context of the Sherrington–
Kirkpatrick model. The goal is of this section is to state the research problem
of finding an explicit formula of this quantity. As a final remark, the section is
extract from a on-going project with Alexander Alban and Justin Ko.

We start by introducing the relevant notation.

Ulam–Harris tree. For any integer r Ø 0, we denote by Tr = N0 fiN1 fi · · · fiNr

the Ulam–Harris tree rooted at ? of depth r, and we set the convention that
N0 = {?}. For every – œ Nr, we denote by |–| the depth of –. For every vertex
– = n1 · · · nk œ Tr with k œ J1, rK, we define –[0] = ? and –[m] = n1 · · · nm for
m œ J1, kK. For any –1, –2 œ Tr, we denote by –1 · –2 the most recent common
ancestor of –1 and –2.

We now introduce the following double-indexed Gaussian process.

Definition 5.1.1. Let µ be a discrete probability measure on the half line [0, Œ)
defined as

µ =
rX

k=0
(’k+1 ≠ ’k)”qk

which is encoded by the two sequences

0 = ’0 < ’1 Æ ’2 Æ · · · Æ ’r≠1 Æ ’r < ’r+1 = 1

and
0 = q≠1 Æ q0 Æ · · · Æ qr≠1 Æ qr < qr+1 = Œ.

For – œ Nr and ‡ œ {≠1, +1}N , we define Y (‡, –) := Yµ(‡, –) to be a centered
Gaussian process with covariance function

E[Yµ(‡1, –1)Yµ(‡2, –2)] = q|–1·–2| ·
��‡1 · ‡2��.

116



CHAPTER 5. OUTLOOK 117

Remark 5.1.2. The Gaussian process Y (‡, –) can be constructed explicitly as fol-
lows

Y (‡, –) =
NX

i=1

rX

¸=0
(q¸ ≠ q¸≠1)1/2z–[¸],‡[i].

where z–[¸],‡[i] are i.i.d. standard Gaussian random variables.
The goal of this section is to compute the free energy of this double-indexed

model. However, as – ranges over an countably infinite set Nr, we need to introduce
a finite measure on Nr such that the summation makes sense. The measure we
consider here is called the Ruelle probability cascades introduced by Ruelle in
[165]. See also Figure 5.1 for an illustration of the definition.

Definition 5.1.3 (Ruelle cascade). Fix an integer r Ø 0. Let sequences

0 = ’0 < ’1 Æ ’2 Æ · · · Æ ’r≠1 Æ ’r < ’r+1 = 1.

For each |–| = k with k œ J0, r ≠ 1K, we associated – with an independent Poisson
point process with intensity measure ’k+1x≠1≠’k+1 dx, and the points of the Poisson
point process are arranged in decreasing order as

u–1 > u–2 > · · · .

The Ruelle probability cascade is a probability measure defined on Nr with weight

v– =
Qr

k=1 u–[k]P
–ÕœNr

Qr
k=1 u–Õ[k]

, – œ Nr.

When r = 0, then we simply define v– = 1.

Remark 5.1.4. The case where r = 1 is called the Poisson–Dirichlet cascade in the
literature.

We now state the research problem

Problem 5.1.5. For 0 Æ q1 Æ · · · Æ qr < Œ, compute the free energy

F (q1, · · · , qr) := lim
NæŒ

E

2

4log
X

|‡|=N

X

|–|=r

eY (‡,–)v–

3

5 .

5.1.1 Case r = 1 of Problem 5.1.5

Currently, we are able to compute the the free energy for r = 1. In this case, we
can apply Lemma 2.2 from Panchenko’s book [156] to simplify the computation

Lemma 5.1.6 (Lemma 2.2 in [156]). Let (vn)nœN be a Ruelle cascade with r = 1
with parameter ’ œ (0, 1). Suppose that (Zn)nœN is a sequence of i.i.d. random
variables with the same distribution as the random variable Z. If E

⇥
Z’

⇤
< Œ,

then

E
"

log
X

nœN
vnZn

#
= 1

’
logE

h
Z’

i
.
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?

u1

. . . . . .

u2

. . . . . .

. . . un?

. . . . . .

. . . PPP(’1x≠’1≠1 dx)

PPP(’2x≠’2≠1 dx)
v–

Figure 5.1: Schematic illustration of a Ruelle cascade with r = 2. The vertices
at depth 1 are associated with weights u1 > u2 > · · · , sampled from a Poisson
point process with an intensity measure given by ’1x≠’1≠1 dx. The children of
each vertex n? œ N at depth 1 are associated with weights un?1 > un?2 > · · · ,
sampled from a Poisson process with an intensity measure given by ’2x≠’2≠1 dx.
All the Poisson point processes are independent. A Ruelle cascade with r = 2 is
a probability measure defined on N2, such that the weight v– for each – œ N2 is
the product of the Poissonian weights u–[1] and u– along the path from ? to –,
normalized by the sum of these products over N2. See Definition 5.1.3 for a precise
description of the Ruelle cascade.

By Lemma 2.2, Problem 5.1.5 is reduced to computing the ’-moments of the
BRW partition function, with ’ œ (0, 1).

Proposition 5.1.7. For q > 0, define

Zq :=
X

|‡|=N

e
Ô

qX‡ , (5.1.1)

where (X(‡))‡œT is the branching random walk with N(0, 1) increments constructed
by X(‡) =

PN
i=1 z‡[i] and the set

�
z‡[i]

�
‡[i]œTN \? is a collection of i.i.d. N(0, 1)

random variables. Then, we have

F (q) = lim
NæŒ

1
’N

logE
h
(Zq)’

i
=

8
>>>>>>>>>><

>>>>>>>>>>:

q

2 + log 2, q < 2 log 2,

p
2 log 2q, 2 log 2 Æ q Æ 2 log 2

’2 ,

1
2’q + log 2

’
, q >

2 log 2
’2 .

Proof. We distinguish the two cases where q < 2 log 2 and q Ø 2 log 2.
Case 1: q < 2 log 2. The upper bound follows simply from the Jensen inequality:

1
’N

logE
h
(Zq)’

i
Æ 1

N
logE [Zq] = q

2 + log 2.
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It remains to show the lower bound. By the Jensen inequality, we have

1
’N

logE
h
(Zq)’

i
Ø 1

’
logE

h
(Zq)’/N

i
. (5.1.2)

Combining (5.1.2) and Fatou’s lemma, we derive the lower bound

1
’N

logE
h
(Zq)’

i
Ø lim inf

NæŒ

1
’

logE
h
(Zq)’/N

i
Ø 1

’
logE


lim inf
NæŒ

(Zq)’/N

�
.

Thus, if we can show that for all q < 2 log 2,

lim inf
NæŒ

(Zq)’/N = e’( q
2 +log 2) almost surely,

the proof of Case 1 is completed. By the fact that Zq Ø ZÆ
q and the Paley–Zygmund

inequality,

P
✓

(Zq)’/N Ø 1
2 exp

⇣
’
⇣q

2 + log 2
⌘⌘◆

Ø P
 

ZÆ
q Ø

✓
1
2

◆N/’

exp
⇣

N
⇣q

2 + log 2
⌘⌘!

Ø

⇣
E
⇥
ZÆ

q

⇤
≠
�1

2
�N/’ exp

�
N
� q

2 + log 2
��⌘2

E
h
(ZÆ

q )2
i (5.1.3)

Recall the additive martingale of the branching random walk is defined as

Wq,N := Zq

exp
�
N
� q

2 + log 2
�� .

Moreover, for q < 2 log 2, (Wq,N ) is a positive martingale. Then, (5.1.3) implies
that there exists a uniform constant c1 > 0 such that

P
✓

Wq,N Ø 1
2

◆
Ø c1

for all N œ N. Then by the zero–one law of the limit Wq,Œ, we conclude that

P (Wq,Œ > 0) = 1. (5.1.4)

Therefore, by (5.1.4), for almost all configuration Ê, there exists N0(Ê) and c2(Ê) >

0 such that

Wq,N (Ê) Ø c2(Ê)

for all N Ø N0(Ê). Thus, we have

lim inf
NæŒ

(Wq,N (Ê))’/N Ø lim inf
NæŒ

c2(Ê)1/N Ø 1.

Therefore, we conclude that

lim inf
NæŒ

(Zq)’/N Ø exp
⇣

’
⇣q

2 + log 2
⌘⌘

almost surely,
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and this completes the proof of Case 1.
Case 2: q Ø 2 log 2. We start with the upper bound. For all Á > 0, choose B > 0
such that

e(≠Ô
q+

Ô
2 log 2)B < Á.

Define the truncated partition function

Z>
q :=

X

|‡|=N

e
Ô

qX(‡)1{X(‡) >
p

2 log 2N ≠ B},

ZÆ
q :=

X

|‡|=N

e
Ô

qX(‡)1{X(‡) Æ
p

2 log 2N ≠ B}.

By the subadditivity of x ‘æ x’ , we have

E
h
(Zq)’

i
= E

h
(Z>

q + ZÆ
q )’

i

Æ E
h
(Z>

q )’
i

+ E
h
(ZÆ

q )’
i

(Subadditivity)

Æ E
h
(Z>

q )’
i

+ E
⇥
(ZÆ

q )
⇤’

. (Jensen’s inequality) (5.1.5)

We first bound the second term of (5.1.5). By exponential tilting and the Cherno�
bound, we have

E
⇥
ZÆ

q

⇤
= E

2

4
X

|‡|=N

e
Ô

qX‡ 1X‡Æ
Ô

2 log 2N≠B

3

5

= 2NE
h
e—X‡ 1X‡Æ

Ô
2 log 2N≠B

i

= 2N eqN/2P
⇣

X‡ <
p

2 log 2N ≠ Ô
qN ≠ B

⌘

Æ 2N eqN/2 exp
✓

≠
(ÔqN ≠

Ô
2 log 2N + B)2

2N

◆
(5.1.6)

= 2N eqN/2 exp
✓

≠qN

2

◆
exp

⇣Ô
q(
p

2 log 2N ≠ B)
⌘

exp
✓

≠(
Ô

2 log 2N ≠ B)2

2N

◆

= 2N e
Ô

2 log 2qN≠Ô
qB exp

✓
≠(

Ô
2 log 2N ≠ B)2

2N

◆

= 2N e
Ô

2 log 2qN≠Ô
qB exp

✓
≠2 log 2N

2

◆
exp

⇣p
2 log 2B

⌘
exp

✓
≠ B2

2N

◆

| {z }
Æ1

= exp
⇣p

2 log 2qN
⌘

exp
⇣

(≠Ô
q +

p
2 log 2)B

⌘

| {z }
<Á

Æ Á exp
⇣p

2 log 2qN
⌘

, (5.1.7)

where (5.1.6) follows from the assumption that that q Ø 2 log 2.
It remains to compute the first term of (5.1.5). Again, by the subadditivity of
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x ‘æ x’ , the many-to-one formula and exponential tilting, we have

E
h
(Z>

q )’
i

Æ E

2

4
X

|‡|=N

e’
Ô

qX(‡)1{X(‡) >
p

2 log 2N ≠ B}

3

5

= 2NE
h
e’

Ô
qX(‡)1{X(‡) >

p
2 log 2N ≠ B}

i

= 2N e’2qN/2P
⇣

X(‡) >
p

2 log 2N ≠ ’
Ô

qN ≠ B
⌘

. (5.1.8)

We distinguish the following two cases.

• If q Æ 2 log 2/’2, then by (5.1.8) and the Cherno� bound,

E
h
(Z>

q )’
i

Æ 2N e’2qN/2 exp
✓

≠
((

Ô
2 log 2 ≠ ’

Ô
q)N ≠ B)2

2N

◆

Æ 2N e’2qN/2 exp
✓

≠
(
Ô

2 log 2 ≠ ’
Ô

q)2N

2

◆

· exp
⇣

(
p

2 log 2 ≠ ’
Ô

q)B
⌘

| {z }
Æ1

exp
✓

≠ B2

2N

◆

| {z }
Æ1

= exp
⇣

’
p

2 log 2qN
⌘

. (5.1.9)

Combining (5.1.5), (5.1.7), (5.1.8) and (5.1.9), we conclude that

1
’N

logE
h
(Zq)’

i
Æ 1

’N
log

⇣
(1 + Á’)e’

Ô
2 log 2qN

⌘

=
p

2 log 2q + 1
’N

log
⇣

1 + Á’
⌘

æ
p

2 log 2q, N æ Œ.

• If q > 2 log 2/’2, then we simply bound the probability in (5.1.8) by 1 and
obtain

E
h
(Z>

q )’
i

Æ 2N e’2qN/2. (5.1.10)

Combining (5.1.5), (5.1.7) and (5.1.10), we obtain

1
’N

logE
h
(Zq)’

i
Æ 1

’N
log

⇣
Á’e’

Ô
2 log 2qN + 2N e’2qN/2

⌘

= 1
’N

log
⇣

e’2qN/2+log 2N (1 + Á’e’
Ô

2 log 2qN≠’2qN/2≠log 2N
⌘

æ 1
2’q + log 2

’
,

where the last line above follows from the assumption that q > 2 log 2/’2,
and thus

e’
Ô

2 log 2qN≠’2qN/2≠log 2N = e≠ N
2 (’

Ô
q≠

Ô
2 log 2)2

æ 0, N æ Œ.

(5.1.11)
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It remains to show the lower bound. Let MN = max|‡|=N X‡. By bounding the
partition function by one single particle, we have

E
h
(Zq)’

i
Ø E

h
e’q1/2MN

i
. (5.1.12)

Then, Varadhan’s Lemma (see Theorem 4.3.1 in Dembo and Zeitouni’s book [84])
states that

lim
NæŒ

1
’N

logE
h
e’q1/2MN

i
= sup

cœR
{q1/2c ≠ h(c)/’}, (5.1.13)

where h(c) is the rate function of MN defined as

h(c) := lim
NæŒ

1
N

logP (MN > cN) .

Applying Theorem 3.2 in Gantert and Höfelsauer [105] gives the formula of the
rate function

h(c) = 1
2(c2 ≠ 2 log 2)+.

See also the work [66] by Chauvin and Rouault on similar results for the branching
Brownian motion.

We distinguish the two cases.

• If q < 2 log 2/’2, then the maximum of (5.1.13) is achieved at
Ô

2 log 2 with
value

Ô
2 log 2q.

• If q Ø 2 log 2/’2, then the maximum of (5.1.13) is achieved at ’
Ô

q with the
value log 2/’ + 1

2’q.

Since the lower bound matches the upper bound for the both cases, the proof is
now completed. ⌅

5.1.2 Case r > 1 of Problem 5.1.5

We also compute the limiting free energy F (q1, q2) for r = 2, while the proof is
omitted. See Figure 5.1.2 for the phase diagram.

Proposition 5.1.8. In the case r = 2, the limiting free energy F (q1, q2) has the
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following description:

F (q1, q2) =

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

q2
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2 log 2
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1
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Figure 5.2: Phase diagram of F (q1, q2). In the figure, F1 = q2
2 + log 2, F2 =

p
2 log 2 q2, F3 = 1

2’1q2 + log 2
’1

, F4 =
p

2 log 2 q1 + q2 ≠ q1
2 ’1 and F5 = 1

2’0q1 +
log 2
’0

+ q2 ≠ q1
2 ’1.

5.2 Fluctuation of the CREM free energy

The limiting free energy of the continuous random energy model has an explicit
formula given by Bovier and Kurkova [54], while the authors were not able to show
fluctuation results as in their previous work [53] on the GREM. As a first step
toward characterizing the fluctuation, we propose the following problem.
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Problem 5.2.1. For all — > 0 and p Ø 1, study the asymptotics of
Îlog Z—,N ≠ E [log Z—,N ]Îp.

The work in Chapter 4 implies that for all — < —c, for all p Ø 1, there exists a
constant C = C(A, —, p) > 0 such that

Îlog Z—,N ≠ E [log Z—,N ]Îp Æ C.

This implies that in the high temperature regime — < —c, the fluctuation of the
unnormalized free energy log Z—,N is of O(1).

To tackle Problem 5.2.1 for — beyond the high temperature regime, we argue
to it is su�cient to study the fluctuation of log Z—,N when — >

p
2 log 2/â(1). Let

N0 = Ât0NÊ. We have the following decomposition of the Lp norm

Îlog Z—,N ≠ E [log Z—,N ]Îp

Æ
��log—,N0 ≠E [log Z—,N0 ]

��
p

+

������
log

X

|u|=N0

µ—,N0(u)Zu
—,N≠N0 ≠ E

2

4log
X

|u|=N0

µ—,N0(u)Zu
—,N≠N0

3

5

������
p

. (5.2.1)

We argue that the second term of (5.2.1) can be reduced to the high temperature
regime. First, for all x > 0 and s > 0, there exists a constant C = C(p, s) > 0 such
that

|log x|p Æ C(|x| + |x|≠s).

Therefore,

E

2

4

������
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By the branching property and the Jensen inequality, the first term of (5.2.2) is
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bounded from above by
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If we are able to show that

exp
⇣
E
h
log Z(N0)

—,N≠N0

i⌘
= E

h
Z(N0)

—,N≠N0

i
(1 + o(1)) = 2N exp

✓
—2N

2

◆
(1 + o(1)),

we should be able to show that (5.2.3) converges to 1 as N æ Œ, which implies in
particular that (5.2.3) is uniformly bounded in N .

On the other hand, by the branching property and the Jensen inequality, the
second term of (5.2.2) is bounded from above by

E
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64
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The Gaussian process (X(N0)
u )|u|=N≠N0 has zero mean and convariance function

E
h
X(N0)

u X(N0)
w

i
= N

✓
A
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|u · w| + N0

N

◆
≠ A

✓
N0
N

◆◆
.

By adapting the result in Chapter 4, we should be able to show that there exists a
constant C2 = C2(A, —, s) > 0 such that

E
h
(Z(N0)

—,N≠N0
)≠s

i

E
h
Z(N0)

—,N≠N0

i≠s Æ C2.

Controlling the first term in (5.2.1) continues to pose a challenge. Although the
asymptotics of the maximum of the CREM can be deduced from Mallein’s work
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[134] (also refer to Maillard and Zeitouni’s corresponding continuum result [132] for
the branching Brownian motion with inhomogeneous variance), it remains uncer-
tain whether the o(N) asymptotics of log Z—,N aligns with that of the maximum.
Through the use of a Gaussian comparison argument, this issue could potentially
be reduced to studying the asymptotics of log Z—,N when A is concave. As an initial
step, the following problem should be investigated:

Problem 5.2.2. Let A be a concave function. For all — > 0, study the asymptotics
of VAR [Z—,N ].

The techniques employed to solve Problem 5.2.2 should also be applicable for
deriving similar estimates for the p-norm.

To conclude this section, we mention that in the spin glass literature, there is
a method that was developed by Chatterjee [61] to estimate the variance of the
unnormalized free energy log Z—,N . The idea is to apply Gaussian integration by
parts to represent the variance of log Z—,N as an integral involving the “overlap”
of two spins. These spins are drawn from the original Gibbs measure and the
perturbed Gibbs measure. More precisely, it can be shown that

VAR [log Z—,N ] = —2N

Z 1

0
E

2

4
X

|u1|=N

X

|u2|=N

e—Xu1

Z—,N

e—Xt
u2

Zt
—,N

A

✓
|u1 · u2|

N

◆3

5 dt

Then, if one can demonstrate that the underlying model exhibits what is known
as disorder chaos, it can be shown that VAR [log Z—,N ] = o(N). Very recently, the
concept of disorder chaos was extended to the context of first-passage/last-passage
percolation by Ahlberg, Deijfen and Sfragara [5, 4].



A. Errata

The material in Chapter 2 mostly follows the published published paper [112].
During the course of writing the thesis, I have discovered a few typos, and I list
them below.

• The original title of the published version was E�cient approximation of
branching random walk Gibbs measures. Although not technically an error, I
have adjusted it to E�cient sampling of the CREM Gibbs measure for better
alignment with the title of Chapter 3 and to emphasize our aim of e�ciently
sampling the model’s Gibbs measure.

• Line 3, Paragraph 2 of the abstract of the published version: “linear-time”
should be replaced by “polynomial-time”. That sentence referred to Corol-
lary 2.1.8, where I showed that by choosing a sequence MN = O(log N), the
algorithm can be of polynomial-time. But in fact, as presented in the proof
of Corollary 1.5.4, for all Á > 0, I am able to modify the choice of the se-
quence MN such that the algorithm is of O(N1+Á) time. I decide to keep the
statement and the proof Corollary 2.1.8 as it was, so that the readers can
also see both the modified version in Corollary 1.5.4 and the original version
in Corollary 2.1.8.

• The same correction from “linear-time” to “polynomial-time” applies to Line
6 of the introductory text of Section 1.

• Line 3, Section 2.1.1: the index set should be {0, . . . , d ≠ 1}n instead of
{1, . . . , d}.

• Remark 1.3 in the published version incorrectly states that the running time
of the algorithm should be bounded by ÂN/MÊ2M , when it should actually
be ÂN/MÊdM . This error stems from the fact that the branching random
walk we studied has d o�spring in each generation, not two.

• Reference 8 in the published version inaccurately cites a paper [29], authored
by Bauerschmidt and Bodineau. The correct reference should be [28], a paper
also authored by Bauerschmidt and Bodineau.
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