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Résumé

Extended French summary

Les dossiers patients informatisés (DPIs) contiennent des informations importantes sur les patients.
L’extraction automatique de ces informations est cruciale car elle permet d’améliorer la prise de décision
pour les soins médicaux et la recherche clinique. Cependant, la plupart de ces informations résident
dans des données textuelles non structurées. La tâche d’extraction d’informations inclut l’extraction
des entités cliniques telles ques les maladies, les symptôtmes, les traitements, etc, via la reconnaissance
d’entités nommées (REN) ainsi que l’extraction des relations temporelles entre les entités dans le but
de construire une chronologie patient.

Cette thèse présente un travail pluridisciplinaire qui se situe au carrefour des domaines du Traitement
Automatique des Langues (TAL) et de l’informatique médicale. Notre travail s’est appuyé sur des
méthodes d’apprentissage pour la reconnaissance de séquence et a été guidé par le cadre applicatif de
l’oncologie. Dans cette thèse, nous nous concentrons sur la REN et l’extraction de relations temporelles
pour le domaine clinique, avec des questions annexes sur la confidentialité des données, l’apprentissage
automatique avec peu de ressources et l’impact environnemental des approches de TAL. Un des objectifs
principaux de notre travail est de proposer des méthodes et des ressources pour la recherche clinique
en français.

De bons résultats ont été obtenus en utilisant des modèles neuronaux pour plusieurs tâches de TAL,
notamment l’extraction d’informations. Néanmoins, ces modèles nécéssitent de quantités importantes
de données annotées. Le processus d’annotation est long, coûteux et nécessite une expertise dans le
domaine, ce qui limite la disponibilité des corpus annotés, en particulier pour les langues autres que
l’anglais. De plus, le texte clinique est complexe, peu formel, comportent une variété de terminolo-
gie médicale, des informations temporelles implicites, ambigues et spécifiques au domaine, ainsi que
plusieurs entités imbriquées. Cela rend le processus d’annotation et d’extraction plus difficile. Le
traitement des textes cliniques présente des défis supplémentaires dû à leur caractère confidentiel. Par
conséquent, le partage de données est difficile et strictement encadré par des réglementations telles que
RGPD. Les performances ne sont donc pas encore suffisantes pour la pratique.

Dans ce contexte, nous étudions l’apprentissage par mimétisme pour la REN dans les rapports cliniques
écrits en français, en utilisant des corpus publics et privés. Le principe de l’apprentissage par mimétisme
consiste à annoter des données publiques non étiquetées à l’aide d’un modèle enseignant privé qui a
été entraîné sur les données sensibles originales. Les données publiques nouvellement étiquetées sont
ensuite utilisées pour entraîner des modèles élèves. Ces modèles peuvent être partagés sans révéler les
données privées d’origine ou exposer le modèle privé construit avec ces données. Notre architecture
de modèles préservant la confidentialité des données permet aux institutions hospitalières de générer
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des modèles partageables, en particulier lorsqu’aucun corpus annoté n’est disponible publiquement.
Nous montrons que notre stragéie offre un bon compromis entre la performance et la préservation de
la confidentialité.

Notre seconde contribution concerne l’extraction des relations temporelles, reliant des évènements à un
ancrage temporel représenté par des expressions temporelles. Cette tâche est difficile, très spécifique
au domaine d’application et nécessite des corpus bien annotés. La tâche se révèle encore plus complexe
pour le domaine clinique, car le texte clinique va et vient dans le temps, décrivant plusieurs évènements
survenus à des moments différents. Dans certains cas, le moment associé à un évènement n’est même pas
explicitement mentionné. De plus, la performance des systèmes d’extraction de relations temporelles
dépend largement de la performance d’extraction des évènements. Or, la définition des évènements est
très spécifique au domaine et aucune généralization n’est possible. Pour cela, nous nous intéressons à
une simplification de l’extraction des relations temporelles en proposant une nouvelle représentation
des relations temporelles, qui est indépendente des évènements et donc du domaine d’application. Le
but de cette représentation est d’identifier des portions de textes homogènes du point de vue temporel
et de classifier la relation temporelle de chaque portion de texte avec la date de création du document.
L’annotation et l’extraction des relations temporelles sont ainsi plus faciles et plus reproductibles à
travers différents types d’événements, vu qu’il n’est pas nécessaire de définir et d’extraire les événements
au préalable. Nous évaluons notre représentation par le positionnement temporel des événements de
toxicité des chimiothérapies décrits dans des rapports cliniques d’oncologie rédigés en français. Nos
résultats suggèrent que ces événements pourraient être placés avec succès dans la chronologie du patient
par la suite.

En plus de ces contributions, nous proposons une étude préliminaire des principaux outils existants
pour calculer l’empreinte carbone des modèles de TAL, en particulier les modèles à base d’apprentissage
profond. Notre objectif est de fournir une analyse comparative de l’utilisation de ces outils en com-
parant les mesures qu’ils produisent. Nous utilisons un des outils étudiés pour calculer l’empreinte
carbone de tous les modèles proposés au cours de la thèse, en considérant qu’il s’agit d’un premier pas
vers la sensibilisation et la production de modèles plus efficaces avec de faibles émissions de carbone.

Dans l’ensemble, nous pensons que notre travail apporte des contributions à la recherche clinique
en français grâce aux méthodes et aux ressources que nous mettons à la disposition des cliniciens.
En particulier, nous proposons de nouvelles architectures et représentations qui facilitent l’extraction
d’informations cliniques pour une application pratique plus efficace.
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5.1 Temporal information representation. The DCT is surrounded,
temporal expressions are represented in purple, events are repre-
sented in gray and encased by their DocTimeRel relations, and
TLINKs are represented by arrows. Figure 5.1a illustrates the
traditional representation of DocTimeRel between the DCT and
the events and TLINKs between the events and the temporal ex-
pressions. Figure 5.1b depicts our representation of the temporal
positioning of text portions according to the DCT, regardless of
events. Translation of the mock narrative into English: "Dis-
charge summary of 07/30/2013. PAST MEDICAL HISTORY:
Adenocarcinoma of the colon was diagnosed in June 2012. Hy-
pertension treatment was initiated in 2012. Phlebitis. Patient
had large bowel resection on 02/2013. HISTORY OF PRESENT
ILLNESS: This is a 60 y.o. male admitted on 07/30/2013 for a
routine colonoscopy planned in the course of follow-up for known
colon adenocarcinoma. RESULTS: ... The patient is scheduled
for a new round of chemotherapy." . . . . . . . . . . . . . . . . 112

5.2 An example of annotating a clinical document containing two
clinical reports. Translation of the text portion into English:
"Paris, April 4th, 2014. Mr. Dupont is a 70 y.o male with
hormone-resistant metastatic prostate cancer and a medical his-
tory of diabetes, hypertension, phlebitis. Clinical history: ...
Physical examination: Patient in good state of health, OMS: 0.
Practical course of action: ... Follow-up in one month... Record
presented on 03/25/2014 to staff... Prior workup in February
2014: ... Staff decisions: ...Colonoscopy scheduled next week." . 114

5.3 An illustration of annotation modifications. Translation of the
text portion into English: "Discharge summary of 03/23/2015.
Reason for admission: chemotherapy cycle C4. Clinical history:
squamous cell carcinoma Hypertension treatment was initiated
in 2014. Toxicity since last cycle: Anorexia: Grade 1 Asthenia:
Grade 1 ... Lab workup: date of sampling: 03/22/2015 Weight:
... Regimen: Protocol: ..." . . . . . . . . . . . . . . . . . . . . . 116

12



5.4 An example of predicted temporal positioning of text portions.
Translation of text into English: "Discharge summary. Admis-
sion date: 07/10/2008 Discharge date: 07/17/2008. Reason for
admission: 56 y.o female presented with asthenia, weight loss
and lack of appetite following the recent discovery of sigmoid
adenocarcinoma. Past medical history: appendectomy Hyperten-
sion treatment was initiated in 2008. Physical examination on
admission: Weight: 65 kg, Size 160 OMS 3 Abdomen was soft.
Hospital course: Further medical exams: Tests on admission: ...
Discharge instructions/Follow-up: - analgesics - patient should
continue her usual care." . . . . . . . . . . . . . . . . . . . . . . 120

B.1 A first example of hospital report annotations . . . . . . . . . . 139
B.2 A second example of annotating an operative report . . . . . . 140
B.3 A third example of annotating a clinical document containing

two clinical reports . . . . . . . . . . . . . . . . . . . . . . . . . 140

13



14



List of Tables

2.1 Descriptive statistics for the French NER corpora used in this
thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Evaluation of the tools according to the publication (P), tech-
nical (T), configuration (C), and functional (F) criteria. . . . . 79

3.2 Results of NER experiments. The upper part of the table
presents the results obtained with an implementation of the
method by Wajsbürt (2021) while the bottom part presents
the results obtained with an implementation of the method by
Ma and Hovy (2016). The CO2 equivalent measures are re-
ported according to the six selected tools in this study, Car-
bontracker (CT), Green Algorithms (GA), Experiment Impact
Tracker (EIT), ML CO2 Impact (MLCI), Energy Usage (EU),
and Cumulator (Cu). . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3 Energy consumption in kWh for each method and experimen-
tal condition. The upper part of the table presents the results
obtained with an implementation of the method by Wajsbürt
(2021) while the bottom part presents the results obtained with
an implementation of the method by Ma and Hovy (2016). The
measures are reported according to the six selected tools in this
study, Carbontracker (CT), Green Algorithms (GA), Experi-
ment Impact Tracker (EIT), ML CO2 Impact (MLCI), Energy
Usage (EU) and Cumulator (Cu). . . . . . . . . . . . . . . . . . 82

4.1 Descriptive statistics for the private MERLOT corpus used in
our study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Overall results on test corpus. . . . . . . . . . . . . . . . . . . . 97
4.3 Comparison of models trained on only silver annotations ver-

sus models trained on a combination of both gold and silver
annotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Results per type entity for the CAS Privacy-Preserving Mimic
Model on test corpus. . . . . . . . . . . . . . . . . . . . . . . . 98

4.5 Comparison of our models versus models trained using French
biomedical language models. (*) denotes that these measures
are calculated by a previous version of the Carbontracker tool . 103

5.1 The number of text portions for each category in the temporal
extraction training and test corpora. . . . . . . . . . . . . . . . 116

15



5.2 Overall results on the temporal extraction test corpus. . . . . . 119
5.3 Results per category for the temporal positioning model on the

temporal extraction test corpus. . . . . . . . . . . . . . . . . . . 119
5.4 Performance of extraction of toxicity events, event-independent

temporal positioning of narrative portions, and temporal posi-
tioning toxicity events on the toxicity corpus. . . . . . . . . . . 120

A.1 Alignment between entity types across French clinical corpora;
alignments are not always one-to-one. . . . . . . . . . . . . . . 133

16



Glossary

AI Artifical Intelligence. 68–70, 74, 84

APHP Assistance Publique des Hopitaux de Paris (Public Paris hospitals).
113

BERT Bidirectional Encoder Representations from Transformers, a language
model based on the transformer architecture. 35, 43, 45, 50, 62, 63, 90,
92

Bi-LSTM Bidirectional Long Short Term Memory network, a recurrent neu-
ral network which is composed of two LSTMs, allowing to have both
forward and backward input information. 43, 60–62, 90, 103

BoW Bag of Words, a model that converts text into fixed-length vectors with-
out any information about word order. 33

BPE Byte Pair Encoding, a compression algorithm method that iteratively
merges the most common subwords. 35

CBOW Continuous Bag-Of-Words, a neural network that predicts a center
word based on its given context words. 34

CNN Convolutional Neural Network, a feed-forward neural network that en-
ables greater extraction of features from input (text or image). 43, 44,
51, 52, 61, 90, 103

CoNLL Conference on Computational Natural Language Learning. 37, 40,
43, 92

CPU Central Processing Unit. 68, 77, 78, 80

CRF Conditional Random Fields, a discriminative model that models the
dependency between variables by considering the neighboring contextual
information. 40–43, 46, 50–52, 59, 60, 63, 90, 91, 103

DCT Document Creation Time. 28, 48, 53, 55–58, 61, 64, 110, 111, 113, 114,
123–125, 128, 135–137

Deep Learning Deep Learning, a class of machine learning methods that
seeks to develop multi-layered neural networks. 24–28, 33, 35, 43, 50,
64, 68–71, 73, 78, 86, 127, 131

17



DocTimeRel Document Time Relation, a temporal relation between an
event and the document creation time. 53, 55–62, 64, 111, 113, 124,
135, 137

DPI Dossier Patient Informatisé (Electronic Health Record). 5, 199

DRAM Dynamic Random Access Memory, a temporary memory for your
computer that stores data for quick, short-term access. 78

DT Decision Tree, a supervised Machine Learning approach whose purpose is
to predict the value of a target variable based on multiple input variables.
40, 41, 60

EHR Electronic Health Record, a digitized version of a patient’s health in-
formation over time. 23, 39, 62, 63, 65, 66, 86, 110, 124, 130, 200

ELMo Embeddings from Language Models, contextualized word embeddings.
35, 45

GDPR General Data Protection Regulation, a European Union regulation
on Information privacy in the European Union (EU) and the European
Economic Area (EEA). 46, 86

GLOVE Global Vector for Word Representation, an unsupervised learning
algorithm that generates distributed word embeddings by encoding how
often two words appear within a given window. 34

GPT Generative Pre-trained Transformer, a type of Large Language Models
relying on deep learning to produce human-like texts from a given text
input. 35, 44, 67, 69, 89

GPU Graphical Processing Unit. 68, 77, 78, 80, 83, 94, 117

HEGP Hôpital européen Georges-Pompidou (Georges Pompidou European
Hospital). 25, 105, 106, 115

HMM Hidden Markov Model, a probabilistic generative model that describes
the probabilistic relationship between a set of observations and a set of
hidden states. 40–42

ICD10 10th revision of the International Statistical Classification of Diseases
and Related Health Problems, which is a medical classification list by
the World Health Organization (WHO). 38, 39, 88

IDF Inverse-Document-Frequency, a measurement of the proportion of docu-
ments in the corpus that include a given word. 33

18



IE Information Extraction, an NLP task for automatically extracting struc-
tured information from unstructured documents. 23–29, 32, 36, 62, 86,
127, 130

LISN Laboratoire Interdisciplinaire des Sciences du Numérique (LISN lab).
25, 84

LLM Large Language Model, a large-scale generative deep learning model
aimed to interpret and produce natural language. 63, 67, 130, 131

LSTM Long Short Term Memory network, a recurrent neural network that
can capture long-term dependencies. 43, 50, 52, 60, 61

ME Maximum Entropy, a discriminative model that maximizes the entropy of
the data to generalize as much as possible for the training data. 40–42,
59

MEMM Maximum Entropy Markov Model, a discriminative model combin-
ing features of Hidden Markov and Maximum Entropy models. 42

ML Machine Learning, a subfield of Artificial Intelligence, seeking to develop
systems that could learn and make predictions. 23–26, 48, 50, 59, 60,
62, 63, 69, 70, 78, 86, 106

MLM Masked Language Model, a trained model that predicts a missing token
in a sequence using the context given by the words around it. 65

MLP MultiLayer Perceptron, a feed-forward neural network with multiple
connected layers. 52, 61

MRC Machine Reading Comprehension, a branch of NLP in which machines
are trained to understand and respond to queries about unstructured
text. 44

NB Naive Bayes, a supervised learning algorithm based on Bayes’ Theorem.
59

NE Named Entity. 36, 40, 41

NER Named Entity recognition, an NLP task for identifying and classifying
key information from text. 23–28, 32–34, 36–48, 50, 52, 60, 66, 67, 70,
71, 74, 78, 80, 83, 84, 86, 87, 89–92, 94, 96, 97, 101–103, 106, 127–131,
200

NLP Natural Language Processing, a field that combines linguistics and com-
puter science which allows computers to understand human language.
23–25, 27–29, 32, 33, 35, 37, 39, 42, 43, 48, 64–71, 73–76, 78, 80, 83–86,
115, 127, 129–131, 200

19



OHE One-Hot-Encoding, an encoding technique that converts categorical
variables to a numerical format. 33

PLM Pre-trained Language Model, a trained model on large corpora and that
could be fine-tuned for a specific task. 43, 44, 47

POS Part Of Speech. 34, 39, 59

PUE Power Usage Effectiveness, a ratio that describes how efficiently a com-
puter data center uses energy. 77

RE Relation Extraction, a subtask of Information Extraction aiming to iden-
tify relations between entities in text. 23, 24, 32, 130

REN Reconnaissance d’entités nommées (Named Entity Recognition). 5, 199

RGPD Règlement Général sur la Protection des Données (General Data Pro-
tection Regulation, GDPR). 5

RNN Recurrent Neural Network, a bi-directional neural network that can
handle sequential input by sending information over time steps. 50, 61,
63

SG Skip-Gram, a neural network that predicts the likelihood of a word being
a context word for a given word. 34

SVM Support Vector Machines, a supervised Machine Learning approach
whose goal is to find the optimum hyperplane for classifying samples
in a dataset. 40–42, 46, 50–52, 59–61

TAL Traitement Automatique des Langues (Natural Language Processing).
5, 6, 199

TF Term-Frequency, a measurement of how often a given word occurs within
a document compared to the total number of words in the document. 33

THYME-TimeML THYME-TimeML, a specialization of TimeML for the
clinical domain. 53, 55, 57, 111, 113, 125

TIE Temporal Information Extraction, an NLP task for extracting temporal
information that could be used to order events. 24, 32, 48, 49, 51, 54,
56–58, 62, 125, 127, 128

TimeML Time Markup Language, a specification language for events, time
expressions, and temporal relations in text. 50, 51, 53, 54, 56

20



TLINK Temporal link, a temporal relation between event and/or temporal
expressions. 53–59, 64, 111, 124

TRE Temporal Relation Extraction, an NLP task aiming to identify temporal
relations between mentions. 7, 24–26, 28, 31–33, 48, 49, 53, 54, 56, 58–
64, 71, 110, 112, 117, 124, 125, 127, 128, 130, 200

UMLF Unified Medical Lexicon for French, a medical lexicon built using
several French resources and terminologies. 88

UMLS The Unified Medical Language System, a compendium of many con-
trolled vocabularies in the biomedical sciences. 46, 52, 59, 88, 96

Word2Vec Word2Vec, an algorithm that generates distributed word embed-
dings from large corpora. 34

WordPiece WordPiece, a subword-based tokenization algorithm. 35

21



22



Chapter 1

Introduction

1.1 Context . . . . . . . . . . . . . . . . . . . . . . 23

1.2 Research questions . . . . . . . . . . . . . . . . 25

1.3 Contributions . . . . . . . . . . . . . . . . . . . 26

1.4 Dissertation Outline . . . . . . . . . . . . . . . 28

1.5 Published Work . . . . . . . . . . . . . . . . . 29

1.1 Context

Although free text is the most convenient and easiest way to communicate,
it is hard to process automatically due to its unstructured nature. Therefore,
Natural Language Processing and Machine Learning methods have been used
to understand and gain access to the useful information contained in the text.
Information Extraction (IE) is the process of identifying the key elements of
information that are relevant to a specific domain, including extracting entities
via the Named Entity Recognition task and relations between entity mentions
via the Relation Extraction task. However, addressing information extraction
in specialized domains increases the task difficulties since domain expertise and
greater effort are required to adapt information extraction systems using in-
domain data. In the clinical domain, up to 80% crucial information contained
in Electronic Health Records are in the form of unstructured text (Escudié
et al., 2017). For many years, clinicians have been collecting and analyzing clin-
ical narratives to identify important patient information, resulting in a waste of
valuable expert time. IE allows the automatic identification and extraction of
relevant information, which minimizes human labor and speeds up healthcare
decision-making. Nevertheless, sharing resources and information extraction
methods is difficult owing to clinical data privacy. As a result, creating and
sharing resources in the clinical domain while preserving the privacy of sensi-
tive data is needed, especially for non-English languages with lower resources
like French. This thesis covers multidisciplinary research at the crossroads of
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the fields of natural language processing and medical informatics. This work is
based on machine learning methods for sequence recognition and is motivated
by oncology applications.

Named Entity Recognition (NER) consists of identifying the target enti-
ties and classifying them into pre-defined categories. According to Ehrmann
(2008), "Given an application model and a corpus, a named entity is any lin-
guistic expression that refers to a unique entity of the model autonomously
in the corpus." A named entity could be a word or a group of words with a
beginning, an ending, and a type. The NER task is crucial for extracting gen-
eral and domain-specific concepts. For instance, building clinical IE systems
requires developing an accurate NER system for extracting medical concepts
such as diseases, anatomical locations, drugs, symptoms, etc. Named entities
can be nested, meaning they can be embedded in other entities, making their
identification more challenging. Several efforts have addressed the NER task.
However, until recent years, most of these research efforts have been only inter-
ested in extracting simple entities and neglected embedded overlapping entities.
Extracting nested entities is, therefore, still under active research. The NER
task is also a crucial step for other NLP tasks, such as Relation Extraction
(RE). Indeed, the performance of extracting relations between entities relies
on how effectively the entities are extracted.

Temporal ordering between entity mentions is also crucial in understand-
ing language. Extracting temporal relations between mentions is essential, in
particular, to building clinical patient timelines, which offer a better under-
standing of the patient’s prior medical history, disease progression, treatment
effects, etc. This also allows better decision-making about future treatment
plans. Temporal information extraction implies, in the first place, the ex-
traction of clinical event mentions and temporal expressions and then the ex-
traction of temporal relations. Although the extraction of mentions might be
solved using NER systems, the definition of event mentions largely depends
on the text type, the application task, and the domain, making generalization
across domains difficult. Temporal Relation Extraction also depends on the
quality of extraction of clinical events and temporal expressions, which raises
more difficulties in designing end-to-end systems.

Access to data is essential to create efficient information extraction systems.
However, using highly sensitive data, such as personal patient health informa-
tion, is problematic. For this, several studies have been conducted to address
the de-identification of clinical narratives. However, with the rapid expansion
of machine learning, particularly deep learning methods, and their outstand-
ing performance in many NLP tasks, several privacy risks have arisen. Indeed,
while training and deploying models on sensitive data, there is a risk of acciden-
tal memorization, which might result in the leakage of personal data (Bender
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et al., 2021). As a result, simply de-identifying the clinical narratives is no
longer sufficient to ensure the privacy of sensitive data. Moreover, sensitive
data privacy limits the ability to share data and the models trained on this
data, limiting collaborations and research. So, there is a need to propose ways
to be able to create shareable models.

Neural-based methods have been proven to yield the best results for many
NLP tasks, including NER and Temporal Relation Extraction (TRE), out-
performing rule-based and traditional machine learning methods. However,
such methods require a sufficient amount of annotated data. The annota-
tion process is known to be time-consuming and costly as it requires domain
expertise. Furthermore, clinical training data is often limited, in particular
for non-English languages, which makes the clinical French NER task more
challenging, as it is considered a low-resource problem. Designing annotation
schemes to annotate clinical temporal relations also remains difficult, as shown
by moderate inter-annotator agreement (Tourille et al., 2017b). This is due
to the domain-dependent nature of the task, which requires extensive domain
knowledge. Furthermore, clinical narrative text is often ungrammatical and
goes back and forth through time, making it difficult to link events to tempo-
ral expressions. The time related to the clinical event is not always explicitly
specified, and redundant information could be a major problem when deter-
mining the chronology of events.

Aside from annotation requirements and privacy concerns, using machine
and deep learning models has a significant environmental impact. Recently,
research efforts have been made to measure the carbon footprint of these mod-
els, encouraging the research community to evaluate their model carbon emis-
sions and attempt to construct efficient green models with lower carbon emis-
sions (Strubell et al., 2019; Bender et al., 2021; Wu et al., 2022).

Having funding from the ITMO Cancer Aviesan allowed us to conduct our
research in the LISN lab as part of a multidisciplinary project with the Hôpital
Européen Georges Pompidou (HEGP) and Sorbonne University, combining
expertise in Natural Language Processing and the biomedical domain. By
working on real oncology data, we developed effective NLP approaches, with
the goal of assisting clinicians in extracting relevant information for tumor
board meetings.

1.2 Research questions

Information extraction from narrative text is important for several domains,
especially the clinical domain. Unstructured reports do contain crucial in-
formation that is essential for understanding the clinical patient history and

25



proposing better treatment strategies. However, the majority of available re-
sources and information extraction methods are in English. This leads us to
these broad research questions: How can we provide relevant resources
and information extraction tools for languages with lower resources?
and how accurate can these systems be in a specialized domain, par-
ticularly the clinical domain?

Over the years, several NER systems have been proposed, ranging from rule-
based to traditional machine learning and deep learning-based models. Clinical
NER is more challenging, as the clinical text is complex, containing a vari-
ety of medical terminologies, ambiguous entities, and multiple nested entities.
Neural-based models have emerged as the most effective method for building
high-performance NER systems, particularly when dealing with nested entities.
However, due to the personal and sensitive nature of the clinical narratives,
sharing these NER models trained on clinical data is restricted, limiting re-
search and collaborations between institutions. As a result, how can we
develop shareable efficient NER models that, aside from handling
nested entities, could preserve patient information privacy? More-
over, can we create these shareable models when few resources are
available, as in the French clinical NER task?

To get an accurate temporal relation extraction system, high performance
in extracting the mentions, i.e., events and temporal expressions, is required.
However, the definition of events is extremely dependent on the target task
and the application domain. Can we thus address the temporal rela-
tion extraction task independently from the domain in order to im-
prove cross-domain generalization? Furthermore, as indicated by moder-
ate inter-annotator agreement in several shared tasks, the annotation of tem-
poral relations remains a difficult task. So, how can we simplify the repre-
sentation of temporal relations to reduce the annotation efforts and
simplify the task while still allowing for useful clinical text practical
applications?

Finally, with the growing need for annotated data in widely used deep learn-
ing methods, can we create resources, particularly in French, that may
be used for future clinical research and be useful to clinicians? Also,
is it possible to raise awareness about the significant environmental
impact of the intensive use of these deep learning methods?

1.3 Contributions

This section highlights the main contributions of our work to answering the
previous research questions. We propose novel architectures, approaches, and

26



resources for information extraction in clinical narrative text:

1. A novel Privacy-Preserving Mimic Models architecture that enables the
creation of shareable privacy-preserving models for clinical French Named
Entity Recognition in a low resource setting by leveraging both public
and private corpora and using neural-based NER models. (cf. Chap-
ter 4)

2. A novel event-independent representation of temporal relations in com-
plex narrative text that facilitates annotating and extracting temporal
relations, independently from the target task and the domain applica-
tion, with an application on French clinical text. (cf. Chapter 5)

3. Resources for further clinical NLP research by providing annotations
of two publicly available French clinical corpora generated in our NER
experiments, making our shareable privacy-preserving NER model avail-
able to hospital institutions and sharing annotation guidelines to enable
easier modeling of the temporal relation extraction task. Discussions are
currently underway to integrate our NER model into the medkit tool1,
which is a Python library built by the HeKA team2 to facilitate the de-
velopment of applications for learning health systems. (cf. Chapter 4
and Chapter 5)

It is worth highlighting that all of our approaches were applied to the French
language because few resources are available for this language, notably in the
clinical domain, emphasizing the importance of efficient contributions to clin-
ical research in French.

Additionally, although we take advantage of the rise of neural networks to
address the information extraction task, we are conscious of their significant
environmental impact. As a first step to raise awareness, we conduct a review
of the existing tools for calculating the carbon footprint of NLP models, essen-
tially deep learning models. We evaluate the tools by measuring the carbon
emissions of NER experiments, and we choose one of these tools to calculate
the carbon footprint of all our thesis experiments. (cf. Chapter 3)

Overall, our contributions tackle clinical information extraction in French,
with the goal of assisting clinicians by simplifying and accelerating the col-
lection of relevant patient information while preserving patient privacy. For
instance, the identification and extraction of information from unstructured
clinical narratives might benefit the decision-making process in tumor board
meetings. Furthermore, our contributions allow further clinical research, in

1https://github.com/TeamHeka/medkit
2https://team.inria.fr/heka/fr/
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particular, for French. Although we focused on clinical text in our methods, it
is worth noting that our proposed representations and architectures could be
adapted to other types of text, particularly those with similar privacy concerns.

1.4 Dissertation Outline

The remainder of this dissertation is structured as follows:

Chapter 2 - first describes the input text representations, progressing
from hand-crafted to neural learned representations, and then introduces the
background of textual information extraction, with a focus on Named Entity
Recognition and Temporal Relation Extraction tasks, as well as the data pri-
vacy and Natural Language Processing environmental impact, both of which
are relevant to most NLP tasks.

Chapter 3 - provides a preliminary study of the main existing tools
for calculating the carbon footprint of NLP models, in particular, the com-
putationally expensive deep learning models. This study offers a comparative
analysis based on estimated environmental impact measurements and usabil-
ity. The evaluation of selected tools was made by measuring the impact of
NER experiments in two computational set-ups.

Chapter 4 - addresses the task of generating shareable Named Entity
Recognition models in clinical narratives written in French. It puts forward a
novel Privacy-Preserving Mimic Models architecture that leverages both public
and private corpora and enables the sharing of neural models without disclosing
patient data privacy. This architecture is evaluated through a neural-based
NER model, which covers flat and nested clinical entities, providing a good
compromise between performance and privacy preservation.

Chapter 5 - addresses the task of temporal relation extraction by
proposing a novel event- and task-independent representation of temporal re-
lations. This representation allows the identification of homogeneous text por-
tions from a temporal standpoint and the classification of their temporal posi-
tioning according to the Document Creation Time without needing the prior
definition of events and temporal expressions. The main goal of the proposed
temporal representation is to simplify the temporal relation annotation efforts,
which remain challenging, enhance the performance of extraction models for
better practical use, and make the task more reproducible through different
event types. Our event-independent representation of temporal relations is
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evaluated on clinical tumor narratives, with a use case on temporal position-
ing of chemotherapy toxicity events.

Chapter 6 - concludes this dissertation by summarizing our main con-
tributions and giving insight into research directions and perspectives for in-
formation extraction, particularly in the clinical domain.

1.5 Published Work

The material presented in Chapter 3 is based on a SustaiNLP EMNLP
workshop paper (Bannour et al., 2021). The material presented in Chapter 4 is
based on two publications, one at the Journal of Biomedical Informatics (JBI)
(Bannour et al., 2022b) and one at the ATALA Day dedicated to Robustness of
NLP systems (Bannour et al., 2022a). The material presented in Chapter 5 is
based on two publications, one at the 2023 TALN conference (Bannour et al.,
2023b) and one at the BioNLP workshop associated with the ACL conference
(Bannour et al., 2023a).
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2.1 Introduction

Information Extraction (IE) emerged as a method for mining the grow-
ing amount of publicly available information contained in unstructured and
semi-structured data. Information Extraction begins with a collection of texts
and converts them into structured information that can be easily used and
evaluated (Cowie and Lehnert, 1996). It could be divided into five major
tasks: Segmentation, Named Entity Recognition, Relation Extraction, Nor-
malization, and Coreference resolution (Simoes et al., 2009). In this thesis,
we are interested in building clinical French named entity recognition models
in a low-resource setting while preserving the privacy of patient health in-
formation. Such models could be shared and used by clinicians and hospital
institutions to propose better patient treatment strategies. To assist with the
systematic analysis of large patient records, we are also interested in propos-
ing temporal information extraction approaches to temporally ordering clini-
cal events. Therefore, in this chapter, we dive deeper into the related work of
Named Entity Recognition (NER), temporal information extraction, in partic-
ular Temporal Relation Extraction (TRE), data privacy concerns, as well the
environmental impact of NLP methods.

The chapter is structured as follows. In Section 2.2, we start by review-
ing the input text representations, going from hand-crafted to neural learned
representations. In Section 2.3, we describe the publicly available corpora for
the Named Entity Recognition task. Then, we delve into the several proposed
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NER methods ranging from rule-based to feature-based and neural methods,
as well as the proposed methods for French clinical NER, some low-resource
NER strategies, and the evaluation metrics used for this task. Next, in Section
2.4, we start by defining the mentions involved in temporal relation extraction:
time expressions, events, and temporal relations. We also review resources for
temporal relation extraction, including annotation schemes, proposed shared
tasks, and corpora in Section 2.4.4, and we go over the several proposed ap-
proaches for TRE, including rule-based, traditional learning-based, and neural
methods. In Section 2.5, we explore the privacy risks raised by NLP methods,
in particular, the deep learning approaches while dealing with sensitive data,
and we enumerate some privacy-preserving strategies. Finally, we study the
NLP environmental impact, particularly for modern NLP methods in Section
2.6, before concluding the chapter in Section 2.7.

2.2 Input text representations

Text represents a rich source of information, but because it is unstructured,
it is difficult to extract and leverage this information. Indeed, computers can-
not process the raw text data derived from natural language. Therefore, con-
verting text into suitable numerical representations is a critical step in every
Natural Language Processing work. However, it is important to create simple
and easy-to-use representations while maintaining text semantics and mean-
ings. The text is segmented into textual units, and a numerical vector repre-
sents each of these units. A sentence can be divided into words with vectorial
representations for each word or into characters or n-grams for a finer-grained
representation. In this section, we review the main earlier and modern text
representations.

2.2.1 Earlier representations
Earlier approaches for word representation were either based on map-

pings of words into a list of terms, such as gazetteers, lexicons, and dictio-
naries or on statistical approaches based on word frequencies, such as One-
Hot-Encoding (OHE), Bag of Words (BoW), Term-Frequency (TF), Inverse-
Document-Frequency (IDF). The One-Hot-Encoding, for instance, consists in
creating a vocabulary-size vector by inserting one in the index corresponding
to the word in the sentence. Manning and Schutze (1999) go through fur-
ther word representations and their use in earlier statistical NLP methods.
Such earlier approaches for textual representations are simple to use but yield
sparse high-dimensional vector representations that need a lot of memory and
include several features that may not always be essential. Therefore, they are
limited to small-scale corpora. Techniques such as feature selection and fea-
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ture transformation were employed to overcome these issues, as explained in
Patil et al. (2023). Feature selection tempts to keep only the main terms or
features and dismiss the remaining ones, whereas feature transformation aims
to map the vector representations to a smaller space with fewer dimensions. As
a result, each textual unit is represented by a set of features. Some examples
of extracted features used in the NER task include punctuation, morphologi-
cal properties, or Part Of Speech (POS) tags that represent the grammatical
categories of words. However, such methods do not include word meanings in
representations, which are required to understand semantic concepts such as
polysemy.

2.2.2 Modern representations
To better integrate the semantics of words into representations, two main

categories of distributed word representations or word embeddings were pro-
posed. The first category is static representations that are low-dimensional
dense and fixed-length vectors, built assuming that words with similar con-
texts have the same meaning (Harris, 1954). Contextualized embeddings are
the second type of embeddings, which incorporate context information into vec-
tor representations based on the premise that a word can have several meanings
depending on context. These two types of embeddings will be discussed further
in the following sections. Such feature embeddings are learned automatically,
removing the need for the laborious feature engineering process.

Static embeddings. Prediction-based or count-based models were used
to generate static embeddings. Mikolov et al. (2013b,a) introduced prediction-
based models by proposing two models for learning embeddings, namely the
continuous bag-of-words (CBOW) and skip-gram (SG) models. Both models
are based on feed-forward neural networks. The CBOW model predicts a cen-
ter word based on its given context words, while the SG model predicts the
likelihood of a word being a context word for a particular target word. These
two architectures are implemented into the Word2Vec toolkit1. An improve-
ment of SG models was proposed in the fastText toolkit2 (Bojanowski et al.,
2017; Joulin et al., 2017) by using character-level representations to tackle
the out-of-vocabulary problem. The main contribution for count-based models
is the Global Vector for Word Representation (GLOVE)3 model proposed by
Pennington et al. (2014). This model learns word embeddings by encoding
how frequently two words appear within a given window. For instance, if two
words co-occur several times, they are semantically close.

1https://code.google.com/archive/p/word2vec/
2https://research.facebook.com/downloads/fasttext/
3https://nlp.stanford.edu/projects/glove/
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Contextualized embeddings. In 2018, context-dependent models were
presented to provide contextualized embeddings that go beyond traditional
static embeddings. They are based on the assumption that a good model
should be able to understand the various meanings of words given the context.
Peters et al. (2018) proposed the Embeddings from Language Models (ELMo)
model, which uses deep learning techniques to create contextualized represen-
tations. A word may have distinct embeddings depending on its context and
position in a sentence. This model was followed by the Bidirectional Encoder
Representations from Transformers (BERT) model proposed by Devlin et al.
(2019) and based on transformers (Vaswani et al., 2017), an attention mecha-
nism that learns contextual relation between words. BERT model uses a Word-
Piece tokenization algorithm (Wu et al., 2016). This algorithm starts by initial-
izing the vocabulary with individual characters in the training corpus. During
training, merging rules are learned, producing iteratively subwords known as
wordpieces. Given this subword vocabulary, each out-of-vocabulary token will
be segmented into a sequence of frequent subwords. This tokenization is similar
to the Byte Pair Encoding (BPE) (Gage, 1994; Sennrich et al., 2016) compres-
sion algorithm, in which the most frequent subwords are recursively merged.
Unlike BPE, the WordPiece tokenization selects the pairs that increase the like-
lihood of the training data once added to the vocabulary rather than the most
common pairs. The main goal of these two tokenization algorithms is to split
rare words into smaller meaningful subwords rather than splitting frequently
used words, which addresses concerns with word-based and character-based
representations, such as high vocabulary size, out-of-vocabulary tokens, and
the presence of less significant individual tokens. BPE has been used in GPT
models (Radford and Narasimhan, 2018). Several transformer-based models
have since been proposed such XLNET (Yang et al., 2019), ALBERT (Lan
et al., 2019), RoBERTa (Zhuang et al., 2021), BART (Lewis et al., 2020) and
many other models (Qiu et al., 2020; Han et al., 2021). El Boukkouri et al.
(2020) proposed the CharacterBERT model, a variant of BERT that does not
rely on wordpieces but instead consults the characters of each token to build
word-level representations by using ELMo’s Character-CNN module instead of
the BERT’s wordpiece embedding layer. French versions were also proposed
such as CamemBERT (Martin et al., 2020), FlauBERT (Le et al., 2020) and
recently CamemBERT-bio (Touchent et al., 2023), DrBERT (Labrak et al.,
2023) and ALiBERT (Berhe et al., 2023) which are designed for the biomedi-
cal domain.

All the previously described neural embeddings are feature-based. They
could be used as pre-trained embeddings, but we could also use these previous
models as a model backbone of various NLP tasks and learn the input em-
bedding from scratch during training. This type of embedding may be called
fine-tuning-based embedding. Readers can find more details regarding feature
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representations in Patil et al. (2023).

2.3 Overview of Named Entity Recognition

Named Entity Recognition (NER) is one of the five significant tasks of
Information Extraction. It refers to identifying named entities in text and
classifying them into pre-defined categories. The term "Named Entity" (NE)
was initially used in the Message Understanding Conference (MUC) in the
1990s (Grishman and Sundheim, 1996), where the purpose was primarily to
identify persons, organizations, localization, and numerical expressions such
as time. In addition to these generic named entities, several domain-specific
entities have been introduced. A named entity could be a word or phrase with
a beginning, an ending, and a type.

Named entities can be nested, meaning they can include mentions of other
entities. Recognizing such entities is known as a "nested NER". Nested entities
might be of the same or of a distinct entity type, making the extraction task
more challenging. On the other hand, the NER task with no nested entities is
referred to as a "flat NER" task or simply a "NER" task. Figure 2.1 illustrates
two GENIA dataset (Kim et al., 2003) samples, the first representing the tra-
ditional flat NER task and the second showing a nested NER task. In the
example of Figure 2.1b, the five nested entities are "Small GTP-binding pro-
tein Rho", "GTP", "Rho", "AP-1 transcription" and "AP-1". The traditional
flat NER does not consider the recognition of these nested entities.

(a) Flat NER

(b) Nested NER

Figure 2.1: Two GENIA samples showing the difference between flat and nested
NER.

In this section, we describe available corpora for NER, the several proposed
methods of NER ranging from rule-based to feature-based and neural methods.
We also review the main proposed approaches for French clinical NER, some
low-resource NER strategies, and the evaluation metrics.
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2.3.1 Corpora for Named Entity Recognition
Several annotated corpora have been proposed for the NER task. These cor-

pora differ in language, domain, entity types, and whether or not they contain
nested entities. Most annotated available corpora have been proposed in major
NLP evaluation campaigns. The MUC-6 (Grishman and Sundheim, 1995) and
the MUC-7 (Chinchor and Robinson, 1997) English corpora were provided
in the shared tasks at the 6th and 7th Message Understanding Conference
(MUC). The CoNLL-2002 (Tjong Kim Sang, 2002) and CoNLL-2003 (Tjong
Kim Sang and De Meulder, 2003) corpora were introduced in the Conference of
Natural Language Learning (CoNLL) (Tjong Kim Sang and Buchholz, 2000)
shared tasks and covered four languages (Spanish, Dutch, English, and Ger-
man). OntoNotes is a NER corpus that has been developed in the OntoNotes
project4 and covered three languages: English, Chinese, and Arabic. The
QUAERO Broadcast News Extended Named Entity Corpus5 has been intro-
duced with French named entities. These datasets described above are for the
general domain and do not contain nested entities. However, the ACE6 cor-
pus is a major benchmark general domain corpus in which around 35% of the
sentences include nested entities for the English language (Wang et al., 2022b).

Other NER datasets have been proposed for specific domains. For biomed-
ical and clinical domains, various datasets have been proposed, such as GE-
NIA (Kim et al., 2003), i2b2-2010 (Sun et al., 2013), BC5CDR (Li et al., 2015),
and NCBI-disease (Doğan et al., 2014) corpora. About 17% of the GENIA
corpus entities are embedded within other entities (Wang et al., 2022b). Most
annotated available corpora in the clinical domain are devoted to English. Few
publicly available corpora have been proposed for French, like the QUAERO
French Medical (Névéol et al., 2014), CAS (Grabar et al., 2018) and, DEFT-
2020 (Cardon et al., 2020) corpora. We describe the publicly available French
corpora used in the thesis experiments below. Table 2.1 presents descriptive
statistics about these datasets, which are publicly available for research pur-
poses through a data use agreement.

QUAERO Broadcast News Extended Named Entity. This cor-
pus (Galibert et al., 2010) comprises manually fully annotated radio broadcast
news and broadcast conversation data. This corpus is freely available for non-
commercial use and does not contain nested entities.

4https://catalog.ldc.upenn.edu/LDC2013T19
5http://catalog.elra.info/en-us/repository/browse/

ELRA-S0349/
6https://catalog.ldc.upenn.edu/LDC2006T06
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QUAERO
French
News

QUAERO French Med CAS DEFT CépiDc

EMEA MEDLINE

Language French French French French French French
Domain News Biomedical Biomedical Clinical Clinical Clinical
Documents 167 38 2,498 717 167 23,750
Tokens 1,347,368 40,257 31,926 231,662 57,188 237,777
Entities 79,632 7,159 9,074 - 12,867 -
Unique entities 19,876 1,880 5,895 - 8,831 -
Nested entities - 1,009 2,280 - 5,352 -
% Nested entities - 14,27% 25,31% - 41,60% -
Max Depth 1 4 4 - 4 -

Table 2.1: Descriptive statistics for the French NER corpora used in this
thesis.

QUAERO French Medical. This corpus is made of manually annotated
biomedical EMEA documents and MEDLINE titles, written in French, and was
used in the CLEF eHealth Lab in 2015 and 2016 (Névéol et al., 2014; Névéol
et al., 2016) for the clinical Named Entity Recognition task and is freely avail-
able for non-commercial use. 10 types of clinical entities that are annotated,
namely anatomy, Chemicals & Drugs, Devices, Disorders, Geographic Areas,
Living Beings, Objects, Phenomena, Physiology, and Procedures. Named enti-
ties can nest up to 3 levels, reaching a maximum depth of four.

CAS. This corpus is available for research purposes through a data use
agreement. It consists of clinical cases described in French scientific literature.
It is annotated with two types of demographic entities (age, gender) and two
types of clinical entities (origin of the visit, outcome). The CAS corpus contains
717 clinical documents with a total of 231,662 tokens.

DEFT. This corpus represents a subset of 167 clinical cases from the CAS
corpus, introduced in the 2020 DEFT challenge7. This corpus is available
for research purposes through a data use agreement. It is annotated with 13
different types of clinical entities, namely anatomy, substance, dose, admin-
istration method, treatment, pathology, sign or symptom, medical procedures,
value, date, frequency, moment and, duration. Named entities can nest up to
3 levels, reaching a maximum depth of four.

CépiDC. This corpus is available under a data use agreement8. It was used
in the CLEF eHealth ICD10 coding challenge (Névéol et al., 2018b) and con-
tains free-text descriptions of causes of death extracted from death certificates

7https://deft.limsi.fr/2020/index-en.html
8http://www.cepidc.inserm.fr/
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submitted electronically over the period 2006-2015. The certificates are anno-
tated at the document level with codes from the International Classification of
Diseases (ICD10). The CépiDC corpus contains 23,750 death certificates with
a total of 237,777 tokens.

2.3.2 Rule-based and terminology-based approaches
Early methods for Named Entity Recognition were rule-based and termi-

nology-based methods. These methods are based on human handcrafted sets
of rules and domain-specific lexicons. Several rule-based NER systems were
proposed, such as NetOwl (Krupka and Hausman, 1998), Facile (Black et al.,
1998), LaSIE-II (Humphreys et al., 1998) and LTG (Mikheev et al., 1999). Rau
(1991) proposed one of the first systems to extract company names from finan-
cial text using rules, heuristics, and patterns. Farmakiotou et al. (2000) pro-
posed a rule-based Greek NER system using gazetteers and grammars, which
was evaluated on a financial news corpus. Gattani et al. (2013) created a
Wikipedia-based method for Named Entity Recognition in social media, in
which pertinent words were linked to Wikipedia pages. Wikipedia is used as
a lexicon containing a large number of entities. Rocha et al. (2016) build a
named entity recognition system using regular expressions to identify common
candidate entities and a new collection of regular expressions on the Part-Of-
Speech (POS) tags to filter specific candidates. To extract nested entities,
early work on nested NER used rule-based post-processing. For instance, Shen
et al. (2003) proposed four main patterns relating to different cascaded or
nested entities. Like much early work on nested entities, their technique is
combined with a learning-based strategy. These approaches will be explored
in the following sections.

Clinical domain. Many rule-based and terminology-based NLP systems
have been developed for clinical concepts extraction such as MedLee (Fried-
man et al., 1994), MedEx (Xu et al., 2010), MetaMap (Aronson and Lang,
2010), cTakes (Savova et al., 2010) and MedXN (Sohn et al., 2014). Hanisch
et al. (2005) introduced a synonym dictionary-based NER system for extracting
protein and gene entities. Deléger et al. (2010) introduced a rule-based sys-
tem for extracting medication information. Quimbaya et al. (2016) proposed
a combined dictionary-based approach for NER in Electronic Health Records
(EHRs). This approach combined a direct match technique with fuzzy match-
ing and stemmed matching. Eftimov et al. (2017) introduced a rule-based NER
method to extract dietary concepts in clinical texts. Rule-based techniques
cannot be generalized because they rely heavily on the quality of manually
defined language and domain-specific rules. Moreover, developing such rules
is time-consuming and expensive. Exhaustive lexicons are required for termi-
nology-based approaches. As a result of domain-specific rules and incomplete

39



dictionaries, rule-based and terminology-based techniques have high accuracy
but low recall.

2.3.3 Feature-engineering-based supervised methods
Feature-engineering-based supervised methods aim to generate an inferred

function that maps incoming input to a pre-defined category by learning from a
labeled corpus. Named entity recognition may be represented as a classification
task for each token, independently from each other. Traditional supervised
methods formalize the NER task as a sequence labeling task using sequence
tag schemes, where the goal is to assign a label to each element in a sequence
and then combine the elements to identify named entities. Each element or
token will be given a tag with an entity type and an indication of the token’s
position in a named entity.

Tagging Schemes. Several tagging schemes for encoding the named enti-
ties were proposed. The first proposed tag schemes were IO, IOB, BIO, and
IOE. Each token in the IO scheme is classified as an (I)nside tag or (O)utside
tag. The (O)utside tag denotes the absence of any type of entity at a given
position. To represent named entities with multiple tokens, additional tags are
given in the IOB, BIO and IOE tag schemes to indicate whether the token
is at the (B)eginning or (E)nd of an entity. In the IOB tagging method, the
(B)eginning tag is solely used to differentiate successive items of the same type,
which is not allowed with the IO tagging scheme. However, in the BIO scheme,
the (B)eginning tag is added to all entities. The BIO tagging scheme gained
popularity when it was adopted by the Conference of Natural Language Learn-
ing (CoNLL). The IOBES labeling scheme is an extension of the IOB scheme,
where the (E)nd tag is used to identify the last token of the entity, and the
(S)ingle tag is used for single-token entities. This encoding scheme is known by
several names, such as BMEWO scheme and BIOUL scheme, using the (L)ast
tag instead of the (E)nd tag for ending tokens and the (U)nit tag instead of
the (S)ingle tag for single-token entities. This tagging format obtained the
best performance of the CoNLL dataset (Ratinov and Roth, 2009). Figure 2.2
illustrates an example of all these tagging schemes, derived from the French
DEFT 2020 challenge9, with an example of nested entities represented on two
levels with the BIOUL tagging scheme.

Methods. The common earlier used supervised techniques for the NER task
are Hidden Markov Model (HMM) (Baum and Petrie, 1966), Maximum En-
tropy (ME) model (Berger et al., 1996), Decision Tree (DT) (Wu et al., 2008),
Support Vector Machines (SVM) (Cortes and Vapnik, 1995), and Conditional

9https://deft.lisn.upsaclay.fr/2020/
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Figure 2.2: Example with different tagging schemes. Translation of text into
English: "She had severe periumbilical pain yesterday.".

Random Fields (CRF) (Lafferty et al., 2001). Bikel et al. (1999) introduced
the first HMM model for NER task evaluated on English and Spanish texts.
The HMM model learns the probability of the current token’s label given the
previous token’s label and the probability of generating a token given its label.
Bikel et al. (1999) use the Viterbi algorithm (Viterbi, 1967), a dynamic pro-
gramming algorithm, to find the most probable sequence of labels or hidden
states based on a sequence of observations. Morwal et al. (2012) proposed a
similar language-independent NER system trained and tested on Indian lan-
guages. Dahan et al. (2015) presented an Arabic NER system using a HMM
model, outperforming rule-based techniques. However, HMM implies that all
tokens are independent of each other, which limits the contextual information
available to the NER model. Chieu and Ng (2003) proposed two ME based
NER systems that did not only use the local context inside a phrase but also
exploited word occurrences throughout the same document and incorporated
additional features from external name lists. Cowie (1995) proposed the Au-
toLearn system, which used the ID3 algorithm (Quinlan, 1986) to build a DT
that could identify the start and the end of certain named entities. Bennett
and Aone (1997) introduced proposed the RoboTag NER system, which uses
an improved version of the ID3 algorithm, namely the decision-tree induction
algorithm C4.5 (Salzberg, 1994), and outperforms AutoLearn on the MUC-6
data due to the use of gazetteers and other lexical resources. Sekine et al.
(1998) addresses the problem of wrongly identifying person names included
in organization NEs by searching the most probable sequence of output tags
that provide a valid combined solution using a human rule set. To allow the
decision tree to categorize the NEs directly, Paliouras et al. (2000) proposed a
pre-processing step that consists in extracting noun phrases using a separate
parser. This is done under the premise that NEs are noun phrases. Li et al.
(2005) developed an SVM-based system and evaluated it on the CoNLL-2003
dataset and CMU seminars. This system comprises two SVM classifiers for
each entity type, one for recognizing the beginnings of the named entity and
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another for the ends. They experimented with various window sizes and fea-
tures, and they used a variant of the SVM, the SVM with uneven margins (Li
and Shawe-Taylor, 2003), which outperforms the original SVM in terms of
generalization performance. SVMs can learn various combinations of features
but do not take neighboring words into account when predicting an entity
label. McCallum and Li (2003) introduced a feature induction for CRFs in
NER and evaluated their method on the CoNLL-2003 dataset for English and
German. Torisawa et al. (2007) proposed a CRF-based NER model using fea-
tures from Wikipedia as external knowledge. Krishnan and Manning (2006)
build a two-stage NER model using two CRFs. To capture non-local depen-
dencies, the second CRF uses features obtained from the output of the first
CRF. CRFs may capture both local and global contexts and represent deep
domain knowledge using features. They are, however, unidirectional and can
only represent connections between labels in the forward direction. To reduce
the need for manually created expert rules and for annotated data, some works
adopt a hybrid NER model combining rules and statistical learning methods.
For instance, Shaalan and Oudah (2014) presented a hybrid NER approach to
enhance the performance of the Arabic NER task. To solve the nested entities
problem, Lu and Roth (2015) developed a directed hypergraph-based approach
that allows the representation of many possible combinations of overlapping
mentions of different types. Muis and Lu (2017) proposed an improvement to
this approach by modeling mention edges along with the features.

Clinical domain. Takeuchi and Collier (2003) introduced an SVM-based
biomedical NER approach using a collection of MEDLINE abstracts. Wang
and Patrick (2009) presented a cascading clinical NER system that reclassifies
the extracted entities using a CRF model, an SVM model, and a Maximum En-
tropy model with a voting strategy. Wang et al. (2014) demonstrated that the
CRF approach outperforms HMM and MEMM models for recognizing symp-
toms in Chinese clinical text. Xu et al. (2014) proposed a joint model based on
CRF for segmentation and NER on Chinese discharge summaries. Chieu and
Ng (2003) conducted an evaluation of active learning methods for named entity
recognition in clinical text using the NER corpus from the 2010 i2b2/VA NLP
challenge. Cheng et al. (2019) proposed a hybrid model incorporating expert
rules with a BiLSTM-CRF approach to extract Chinese clinical named entities.
To address the nested biomedical NER task, Zhang et al. (2004) introduced
a layered HMM-based approach on the GENIA corpus. For this, two HMMs
are trained, one to identify short nested entities and the other to extend short
entities. Alex et al. (2007) structured the nested NER problem as cascaded
flat NER tasks. Each NER task consists in a CRF model that is trained by
using the previous CRF’s output as a feature for the current one. The main
drawback of this technique is that it does not handle overlapping entities of
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the same type. Finkel and Manning (2009) used a tree-based parsing model
for the nested NER task. In fact, entities were represented as subtrees, and a
CRF approach was used to detect the nested entities.

Overall, fully-supervised methods need a large amount of annotated data,
and their performance heavily depends on the annotation quality. Moreover,
more features usually result in better performance. However, annotating large
corpora is time-consuming and highly expensive.

2.3.4 Neural-based approaches
Collobert and Weston (2008) introduced the first neural-based model for the

NER task with manually constructed feature vectors. Deep learning feature
representations, i.e., word embeddings, were used in the later proposed NER
models (Collobert et al., 2011). Collobert et al. (2011) proposed a one-layer
Convolutional Neural Network (CNN) (Waibel et al., 1989) based on word em-
beddings, followed by a CRF output layer. Huang et al. (2015) proposed a
similar architecture using Long-Short-Term-Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) and Bidirectional LSTM (Bi-LSTM) models to take into
account the context and demonstrated that adding a CRF layer on top of
the Bi-LSTM enhanced performance on the English CoNLL dataset. Lample
et al. (2016) presented a similar NER model but using character-based word
features rather than hand-crafted features. Chiu and Nichols (2016) proposed
a Bi-LSTM-CNN hybrid model that captures both character-based and word-
based features. Ma and Hovy (2016) introduced a hybrid NER architecture
based on Bi-LSTM, CNN, and CRF and obtained better performance on the
English CoNLL dataset. This architecture is an end-to-end system that does
not require feature engineering or data pre-processing. Panchendrarajan and
Amaresan (2018) introduced a NER architecture that combines a Bi-LSTM
model and a bidirectional CRF (Bi-CRF) layer, which describes the depen-
dency between labels in both directions. It is demonstrated that the backward
CRF can extract complex entities. Later, contextual representations produced
by Pre-trained Language Models (PLMs) considerably increased NER sys-
tem performance (Peters et al., 2018; Devlin et al., 2019). In fact, several
transformer-based PLMs such as BERT (Devlin et al., 2019), RoBERTA (Liu
et al., 2019b), ALBERT (Lan et al., 2019) and T5 (Raffel et al., 2020) achieved
high performance in many NLP tasks. Therefore, pretraining models on a vast
amount of text and fine-tuning it on task-specific corpora is now the common
approach in modern NLP tasks, including the NER task. Multiple works use
these models to enhance the performance of NER models (Liu et al., 2019a;
Luo et al., 2020). However, all these approaches address only flat NER. Katiyar
and Cardie (2018) proposed a hypergraph representation for nested entities and
used an LSTM-based sequence labeling model to learn the structure. Ju et al.
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(2018) proposed a stacked neural layered model built with flat NER layers.
Inspired by the state-of-the-art model proposed in (Lample et al., 2016), each
layer is based on a Bi-LSTM-CRF model. Other than the error propagation
from layer to layer, a limitation of this model is that an inner entity cannot
be identified when an outer entity is extracted first. Aside from token-based
NER formulation, span-based NER approaches have recently gained popular-
ity, where the goal is to identify and classify all possible continuous sequences
of tokens independently and then deal with the overlap conflict as a post-
processing step. Wang et al. (2020) introduced a span-based neural layered
model, namely Pyramid, which consists of a stack of linked layers and recog-
nizes entities in a bottom-up manner. Li et al. (2020b) cast the nested NER
task as a Machine Reading Comprehension (MRC) task by prompting a pre-
trained language model with queries containing the entity categories and asking
the model to identify the spans corresponding to these categories. Straková
et al. (2019) formulated the nested NER task as a sequence-to-sequence gen-
eration problem with an input sequence of tokens and a target sequence of
labels. Multiple combinations of context-based embeddings were also studied.
Yu et al. (2020) used a biaffine model (Dozat and Manning, 2017) to score all
candidate spans in a sentence and predict both flat and nested entities using
contextual embeddings. Some works treated the NER task in a generative way.
Indeed, Yan et al. (2021) proposed a sequence-to-sequence unified generative
model with pointer network (Vinyals et al., 2015) and based on BART (Lewis
et al., 2020). Shen et al. (2021) addresses the nested NER task by a two-
stage approach, which is commonly used in the computer vision field. Wang
et al. (2023) proposed a NER method based on GPT (Brown et al., 2020) to
explore the use of large generative language models for both flat and nested
NER tasks. Shen et al. (2023) explored a novel generative method for both
flat and nested NER tasks that cast the NER task as a boundary denoising
diffusion process and generate named entities from noisy spans using diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020).

Clinical domain. Yao et al. (2015) proposed one of the first neural models
for the biomedical NER task based on CNN and with a multi-layered struc-
ture. Zhao et al. (2017) formulated the NER task as a classification task and
presented a multi-label CNN model to extract disease and chemical entities.
Habibi et al. (2017) developed the model LSTM-CRF for several biomedical
NER tasks and performed better than the other tested NER systems. Wu
et al. (2018) proposed a method that combines medical knowledge embeddings
with word embeddings in the LSTM-CRFs model to deal with the medical ter-
minologies that are not often used in general domain corpora. Xu et al. (2018)
introduced an attention-based neural clinical NER model to incorporate the
document-level global information with the local context information using
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representations from pre-trained bidirectional language models with attention.
Zhang et al. (2019) obtained significant performance improvement when using
BERT embedding as input features to a Bi-LSTM-CRF model for extracting
clinical concepts from Chinese clinical breast cancer notes. Wei et al. (2019)
introduced an attention-based BiLSTM-CRF model to enhance the ability to
extract significant context information in the biomedical NER task. Yang et al.
(2020) explored transformer-based models such as BERT in the clinical concept
extraction task on different shared tasks corpora and highlighted the benefits of
contextual embeddings. To improve the performance on biomedical and clini-
cal NER tasks, several domain-specific language models were also introduced,
such as BioBERT (Lee et al., 2020), clinicalBERT (Huang et al., 2019), BioAL-
BERT (Naseem et al., 2021) and PubMedBERT (Gu et al., 2021). For the
nested NER task, the stacked neural model proposed by Ju et al. (2018) out-
performs state-of-the-art feature-based models on the GENIA dataset. Wang
et al. (2020) showed that their method obtained state-of-the-art results on dif-
ferent nested NER corpora, including the GENIA corpus. Sohrab and Miwa
(2018) proposed a neural model that enumerates all possible spans as potential
entity mentions and classifies each span into a specific category or a non-entity.
Each span is represented with its word embeddings. Zheng et al. (2019) intro-
duced a boundary-aware NER model that combines a sequence labeling model
to identify boundaries with a span classification model to predict nested enti-
ties based on the detected boundaries. Straková et al. (2019) proved that by
using contextual embeddings such as ELMo, BERT, and Flair, their sequence-
to-sequence model performs better on many datasets, including the GENIA
dataset, and for both flat and nested NER tasks. Yu et al. (2020) evaluated
their biaffine model on the biomedical GENIA dataset, and a significant gain
was obtained compared to earlier systems.

The main strength of neural approaches is their ability to learn complex
input representations, which reduces the effort of hand-crafting features. How-
ever, to achieve high performance, such neural models require sufficient human-
annotated data, which can be costly and time-consuming. Moreover, the biases
involved with training large language models raise many ethical and legal is-
sues, such as patient and data privacy (Bender et al., 2021). We will review
the clinical data privacy concerns in Section 2.5.

2.3.5 Proposed approaches for French clinical NER
Several studies have addressed the NER task in French using different do-

main corpora such as news corpora (Galibert et al., 2012; Dupont, 2017; Dekhili
and Sadat, 2020; Labusch and Neudecker, 2020) and Twitter texts (Sileo et al.,
2017; Peres et al., 2017). In the clinical domain, most studies focus on texts
written in English or Chinese. Few studies were proposed on French cor-
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pora (Névéol et al., 2014, 2018a). As part of the CLEF eHealth 2015 work-
shop (Névéol et al., 2015), Soualmia et al. (2015); Jiang et al. (2015) pro-
posed a combination of CRF-based models with hand-crafted features and
lexicons for geographical entities and d’Hondt et al. (2015) presented a three
classifiers NER system to deal with nested entities using CRFs and SVM
models. Van Mulligen et al. (2016) proposed a dictionary-based NER ap-
proach using French Unified Medical Language System (UMLS) terms with
translated English UMLS terms, and Ho-Dac et al. (2016) used a CRF-based
model with diverse linguistic features for the CLEF eHealth 2016 clinical NER
task (Névéol et al., 2016). The CLEF eHealth 2015 and 2016 shared NER tasks
were based on the annotated QUAERO French Medical corpus (Névéol et al.,
2014). Lerner et al. (2020) proposed a hybrid system that combines expert
rules with a Bidirectional Gated Recurrent Unit with a CRF (BiGRU-CRF)
architecture to extract five types of entities on a proposed French corpus of 147
clinical documents. Jouffroy et al. (2021) created a hybrid approach that uses
a BiLSTM-CRF model, contextual word embeddings trained on clinical text,
and a combination of knowledge base and expert rules. Their model is evalu-
ated using a private French clinical data warehouse. As part of the DEFT 2020
challenge (Cardon et al., 2020), Minard et al. (2020); Copara et al. (2020) pro-
posed CRF-based French clinical NER approaches, Lemaitre et al. (2020) used
a rule-based system and Wajsbürt et al. (2020) proposed two NER models: a
layered BiLSTM-CRF model and a greedy NER model, using CamemBERT
embeddings. Their models take into account the extraction of nested entities.
Le Clercq de Lannoy et al. (2022) introduced a hybrid approach that com-
bined specialized knowledge with language model (CamemBERT) adaptation
on several biomedical corpora.

The fact that few research works have been conducted on French corpora
may be related to the extra challenges encountered when dealing with French
clinical data. In fact, as mentioned in Section 2.3.1, few publicly available
French annotated datasets are available. On the one hand, the annotation
process is time-consuming and extremely expensive due to the need for rich
domain knowledge, representing a big challenge for low-resource languages. On
the other hand, due to the sensitive nature of clinical data, sharing such data
is restricted. Indeed, sharing data is difficult in practice and is governed by
laws and regulations such as General Data Protection Regulation (GDPR)10.
As a result, limited collaborations could be done across hospital institutions.

2.3.6 A word about low-resource NER strategies
To address the lack of annotated corpora and address the low-resource NER

task, prior works used either semi-supervised learning, which aims to learn from

10https://gdpr-info.eu/
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both labeled and unlabeled data (Liao and Veeramachaneni, 2009; Liu et al.,
2011; Gao et al., 2021), or data augmentation methods that expand the train-
ing set by applying transformations without changing their labels (Dai and
Adel, 2020; Phan and Nguyen, 2022) or active learning methods which assume
the presence of a human annotator, who may be queried to get ground-truth
labels for the most relevant unlabeled instances to be added to the training set.
As a result, only data that can increase performance are annotated (Tomanek
and Hahn, 2009; Shen et al., 2017; Liu et al., 2022; Naguib et al., 2023; Le et al.,
2023). Other methods seek distant supervision, which uses external knowledge
rather than propagating the knowledge to either label more data (Cao et al.,
2019; Lison et al., 2020; Liang et al., 2020; Wang et al., 2021) or incorpo-
rate meta information such as context and prompts to facilitate training (Lee
et al., 2022a). With the rise of pre-trained language models, few-shot and
zero-shot learning methods were proposed to learn better using only a few la-
beled instances (Košprdić et al., 2023; Zhang et al., 2023; Agrawal et al., 2022;
Yohannes and Amagasa, 2022).

2.3.7 Evaluation metrics
Precision, Recall, and F-measure are commonly used evaluation metrics for

information extraction systems. These measures are calculated based on the
number of true positives (TP), false positives (FP), and false negatives (FN)
as defined in the following equations:

Precision =
TP

TP + FP
(2.1)

Recall =
TP

TP + FN
(2.2)

F −measure =
2× (Recall × Precision)

Recall + Precision
(2.3)

In an exact-match or strict evaluation setting, an extracted entity is
considered a true positive if both entity type and boundaries are correctly
extracted, a false positive if it was wrongly labeled, and a false negative if it
was not annotated.

However, we can also evaluate our NER models in a partial-match or
relaxed-match evaluation setting, allowing entities to match if their bound-
aries overlap. Indeed, an extracted entity could be counted as a true positive
if it shares half of the tokens with the gold entity. This evaluation method
may be sufficient for some tasks since it is regarded as a more intuitive metric
that could consider the annotation mistakes. In our experiments, we use the
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BRATEval tool11 to calculate our evaluation metrics.

2.3.8 Summary
The first approaches to Named Entity Recognition were based on hand-

crafted techniques such as expert rules or dictionary-based matching. How-
ever, statistical approaches have gained popularity recently, ranging from tra-
ditional machine learning to modern neural approaches. Traditional supervised
machine learning approaches depend heavily on the quality of hand-crafted
input feature representations. Neural approaches discard the feature engi-
neering process but still require a lot of annotation effort. Indeed, to obtain
high-performing NER models, large amounts of annotated corpora are needed.
Some recent strategies, including semi-supervised approaches, have evolved to
leverage partially and few labeled datasets. Nevertheless, there are several
challenges to overcome in the clinical domain. Indeed, clinical text is com-
plicated, containing a variety of medical terminologies, ambiguity, and nested
entities. Although most NER models are devoted to flat entities, many meth-
ods seek to deal with nested entities. Due to the personal and sensitive nature
of clinical text, particularly in French, annotated clinical corpora are often
limited. As a result, only a few studies addressed the task of French clinical
NER. In our thesis, we are interested in proposing shareable French clinical
NER models while preserving patient privacy. We are also interested in tem-
porality between mentions with the objective of creating patient timelines. In
the following section, we will go through the main methods that have been
proposed for Temporal Relation Extraction.

2.4 Overview of Temporal Relation Extrac-

tion

Temporal Information Extraction (TIE) can be defined as extracting mean-
ingful information that could enable ordering in unstructured text. Temporal
Information Extraction may be divided into two subtasks: (1) identification
of events and time expressions and (2) extraction of temporal relations. The
first subtask consists in detecting both event and time expressions. Events
and time expressions can be considered entities, and this first subtask might
be tackled as a NER task. The second subtask of TIE is to extract tempo-
ral relations that could be between events and/or time expressions, as well
as relations between events and the Document Creation Time (DCT). Tem-
poral Relation Extraction (TRE) is important for many NLP tasks, such as
Question-answering systems, Machine Translation, and document summariza-

11https://bitbucket.org/nicta_biomed/brateval/src/master/
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tion. TRE is also a fundamental task for the biomedical and clinical domains
since clinicians need to identify and order relevant clinical events to create
patient timelines to understand, for instance, the disease progression.

In this section, we briefly introduce the notion of events and time expres-
sions, as well as some methods of their extraction for both general and clinical
domains, with a particular focus on the temporal relation extraction subtask.
We review some annotated corpora for TRE and the proposed approaches for
this task, ranging from rule-based methods to traditional machine learning and
modern neural-based methods. We also go over some research efforts that at-
tempt to structure clinical narrative text by developing section segmentation
methods.

Figure 2.3 illustrates an example of the Temporal Information Extraction
task, including two events (EVENT), a time expression (TIMEX3), and two
types of temporal relations, namely relations between events and the docu-
ment creation time and relations between an event and a temporal expression.
More information regarding temporal information is provided in the following
sections.

Figure 2.3: A temporal information example that includes events, time expres-
sions, and temporal relations. Translation of text into English: "Document
Creation Time: 10/20/2020. Chemotherapy round n°2 for a colon adenocarci-
noma which was diagnosed in October 2018."

2.4.1 Time expressions
Time or temporal expressions are used to give information about when,

how long, or how often something occurs (Derczynski, 2017). There are four
types of time expressions: dates, times, durations, and sets. Several temporal
annotation schemes have been proposed to standardize temporal information,
including time expressions. The earliest modelization of time expressions was a
simple temporal value attribute TIMEX (Sundheim, 1993) that could take the
value date or time. Then, in the TILDES TIMEX2 annotation scheme (Ferro
et al., 2001), an expanding set of attributes has been added, such as a value
tag for the normalized value of the temporal (VAL), a modifier tag (MOD),
a set tag (SET) that is marked as yes if the time expression is representing a
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set, etc. The Time Markup Language (TimeML) (Pustejovsky et al., 2003a)
and ISO-TimeML (Pustejovsky et al., 2010) defined a final version of TIMEX
annotation (TIMEX3). The TIMEX3 tag is based on the previous TIMEX
tags and includes, among other tags, the type of time expression (TYPE) and
BEGINPOINT and ENDPOINT tags when the time expression is a duration,
among other tags. Another annotation scheme, namely the SCATE scheme,
has also been developed by Bethard and Parker (2016) to take into account
the fine-grained aspect of time expressions.

Time expressions have been widely studied as part of the TempEval chal-
lenges (Verhagen et al., 2007, 2010; UzZaman et al., 2013), which focused on
English news articles documents. Indeed, various rule-based approaches have
been developed for time expression recognition, such as TempEx (Mani and
Wilson, 2000), SUTime (Chang and Manning, 2012) and, HeidelTime (Ströt-
gen and Gertz, 2013). These systems achieve good performance in the Tem-
pEval challenges. Strötgen and Gertz (2015) described a method to extend
the HeidelTime system to all languages and created a new baseline of 200
languages, including French (Moriceau and Tannier, 2014). Machine learning
systems have also been introduced for the task of time expressions recognition
and normalization, based on CRF (UzZaman and Allen, 2010), SVM (Bethard,
2013), and other ‘machine learning algorithms (Ding et al., 2019; Ning et al.,
2018). Lee et al. (2014) proposed a hybrid system using Combinatory Catego-
rial Grammar (Steedman and Baldridge, 2011), combining hand-crafted and
trained rules and outperformed the state-of-the-art (SOTA) temporal tagging
systems. Later on, deep learning methods were developed, using RNNs (La-
parra et al., 2018), BERT embeddings (Chen et al., 2019) and LSTMs (Lange
et al., 2020). Cao et al. (2022) presented the XLTime framework for multi-
lingual time expression extraction, which is cast as a sequence labeling task,
similar to NER. Note that deep learning-based techniques for time expression
recognition are less frequent and produce results that are comparable to or
worse than rule-based SOTAs (Cao et al., 2022).

Clinical domain. In the clinical domain, modifications have been made
to take into account domain particularities. Indeed, Styler IV et al. (2014)
proposed the Time Markup Language guidelines in 2014 for annotating tem-
poral information from clinical texts. In particular, a new tag is added to the
TIMEX3 tags, namely PREPOSTEXP, which refers to clinically relevant and
temporally complex terms such as preoperative, postoperative, and intraopera-
tive (Olex and Mcinnes, 2021).

Time expression extraction has received interest in the clinical domain
through the i2b2-2012 challenge (Sun et al., 2013) and the Clinical TempEval
shared tasks (Bethard et al., 2015, 2016, 2017). Jindal and Roth (2013) used
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the HeidelTime system and developed several rules to extract complex clinical
time expressions. Sohn et al. (2013) presented the rule-based system May-
oTime that adapts the HeidelTime Framework to the clinical domain. Most of
the other proposed methods in the clinical challenges are hybrid. Indeed, Lin
et al. (2013) introduced the MedTime system, which used the initial tagging
from HeidelTime, a specific FREQUENCY tagger, and a CRF-based model
that identifies the domain-specific time expressions. Velupillai et al. (2015)
created a time expression recognizer based on ClearTK (Bethard, 2013) and
SVM classifiers. Tapi-Nzali et al. (2015) studied time expression extraction
across three domains (news, historical, and medical) in French narratives, us-
ing the Heideltime outputs as features of a CRF-based system. Lin et al. (2017)
proposed a CNN-based time expression recognition system that outperformed
previous methods on the THYME corpus. Tourille et al. (2017a) proposed
a hybrid LSTM-CRF model to extract the TIMEX3 entities. To sum up,
extracting time expressions in clinical narratives remains a challenging task.
Indeed, there is a variety of time expressions that could be ambiguous, rela-
tive, or even implicit, referring, for instance, to other medical events (Olex and
Mcinnes, 2021).

2.4.2 Events
Aside from temporal information extraction, there are other event-related

tasks, such as event extraction, Slot filling and Topic Detection and Track-
ing (Tourille, 2018). For instance, Event extraction aims to extract event
triggers and classify event types for a given event mention, which is usually a
sentence in which the event is described, as formulated in the ACE 2005 pro-
gram (Doddington et al., 2004). In our work, we are interested in the definition
of events according to temporal information extraction, where the purpose is,
however, to locate an event in time rather than extract its arguments.

According to TimeML (Pustejovsky et al., 2003a) and ISO-TimeML (Puste-
jovsky et al., 2010), "an event is a cover term for situations that happen or
occur, including predicates describing states or circumstances in which some-
thing obtains or holds true". An event may also be defined as something that
occurs, and that can be associated with a timestamp. Events are generally con-
veyed using tensed or untensed verbs, nominalizations, adjectives, predicative
clauses, or prepositional phrases. However, the definition of events is highly
domain and application-dependent. In the context of temporal information
extraction, the event extraction task is defined as in the TempEval campaigns,
with the purpose of identifying the extent of the events in a text as described
by the TimeML EVENT tag and their associated CLASS.

There were few rule-based methods to tackle the temporal event extraction
task (Zavarella and Tanev, 2013), but most strategies were learning-based,
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including methods based on SVM (Chambers et al., 2007; Bethard and Martin,
2006; Bethard, 2013) and on CRF (Llorens et al., 2010; Kumar Kolya et al.,
2010; MacAvaney et al., 2017) models. Few deep learning-based techniques
have been also presented, such as LSTMs (Meng et al., 2017). Han et al. (2019)
proposed a neural structural SVM model to extract simultaneously events and
their temporal relations.

Clinical domain. In the clinical domain, the definition of an event differs
from the general domain. An event is defined as a clinically relevant situa-
tion (Galescu and Blaylock, 2012). According to Styler IV et al. (2014), any
entities that come under these Unified Medical Language System (UMLS) (Bo-
denreider, 2004) categories can be defined as events: Disorder, Chemical/Drug,
Procedure and Sign/Symptom.

Most approaches in the clinical domain cast the event extraction task as
a sequence labeling temporal NER task. For the i2b2-2012 and the Clini-
cal TempEval challenges, several event extraction approaches were proposed,
in particular learning-based approaches. Roberts et al. (2013) identified the
clinical events using a CRF model and detected event attributes using SVM
classifiers. Lee et al. (2016) presented an HMM-SVM model to identify the
spans of event mentions and time expressions along with their types. Barros
et al. (2016) used CRFs classifiers to extract event mentions and by considering
an event as a single word mention. MacAvaney et al. (2017); Chikka (2016)
also applied CRFs and SVMs approaches to extract clinical events and their
attributes. Neural methods have also been suggested for the event extraction
task. Li and Huang (2016) used a CNN network to learn hidden feature rep-
resentations and a MultiLayer Perceptron (MLP) to identify event spans and
attribute values. Tourille et al. (2017a) introduced an LSTM-based approach
for identifying time expressions and events. As already mentioned earlier,
there is no universally agreed definition for events since definitions may vary
depending on the application task and domain. However, extracting relevant
clinical events in clinical narratives is crucial to understanding the patient’s
longitudinal medical history.

2.4.3 Temporal relations
Temporal relations consist of relations between pairs of text mentions, such

as between time expressions (TIMEX-TIMEX) or events (EVENT-EVENT)
or between time expressions and events (TIMEX-EVENT). Temporal relations
were first illustrated using Allen’s representation (Allen, 1983), consisting of
seven relations between points in time, such as BEFORE, MEET, OVER-
LAP, DURING, and others. Based on these representations, several annota-
tion schemes have been introduced, with a simplification or domain adaptation
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of relations. For instance, the TimeML scheme represents the temporal rela-
tions in a TLINK tag but does not address OVERLAP relations. Gumiel
et al. (2021) presented an overview of these different temporal relation repre-
sentations, with a comparison of the proposed representations for the clinical
domain.

Clinical domain. Based on Allen’s representations and the TimeML an-
notation scheme, THYME-TimeML was developed as an adaptation to the
clinical domain under the THYME project12. This scheme created a new cat-
egory of temporal relation, namely the DocTimeRel relations, which consist of
relations between the events and the Document Creation Time (DCT) and are
considered as an event attribute. Indeed, the DCT is useful for examining the
patient’s clinical history and future plans, as described by doctors in clinical
notes. Styler IV et al. (2014) also introduced in the THYME-ML scheme the
concept of narrative containers (Pustejovsky and Stubbs, 2011), which can be
thought of as a cluster of EVENTs that could be represented or anchored by a
time expression, an abstract concept or durative EVENTs, which may involve
multiple events. Instead of annotating each TLINK between each event, each
event will be linked to its narrative container, and links will be established
between those containers. As a result, the contained events will be linked by
inference. Styler IV et al. (2014) claims that using the narrative container con-
cept improves annotation quality by increasing the inter-annotator agreement,
having the necessary annotations, and removing the confusing ones. They also
state that using containers better illustrates the story-telling structure of both
general and clinical domains, as doctors tend to cluster discussions around a
certain date. Using the THYME-TimeML annotation scheme, each event is as-
signed to one of four containers: BEFORE, OVERLAP, BEFORE/OVERLAP,
or AFTER the DCT. Once these DocTimeRel relations are assigned, TLINKs
must be annotated with one of the following five temporal relations: BEFORE,
OVERLAP, BEGINS-ON, ENDS-ON, and CONTAINS.

Temporal relation extraction models evolved from rule-based models to ma-
chine learning-based and deep learning-based models. We review these models
in detail in Sections 2.4.5, 2.4.6, and 2.4.7 for both general and clinical do-
mains. Note that for the TLINK extraction using learning-based models, a
relevant step when developing approaches is first to select a strategy for gener-
ating candidate pairs. Available annotations often include only positive relation
samples. Therefore, negative samples should be generated for TRE models. A
widely adopted strategy was to restrict intra-sentence relations by considering
all pairs within the same sentence. However, additional effort has been made
to address cross-sentence relations, such as by restricting candidate pairs based

12http://thyme.healthnlp.org
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on token windows, for instance. More details about these strategies may be
found in Gumiel et al. (2021). Before delving into the TRE methods, we go
over the main resources for the TRE task, including details about the proposed
annotation schemes, the shared tasks, and their respective corpora.

2.4.4 Resources for temporal relation extraction
In this section, we review the main temporal annotation schemes for both

general and clinical domains. We also present some known shared tasks and
their associated corpora that have been proposed to the community to tackle
the Temporal Information Extraction task, including the TRE subtask.

Annotation schemes. Two main annotation schemes were used to anno-
tate corpora in the literature. In this thesis, we are more interested in the
TRE task. Therefore, we will briefly review the guidelines for annotating the
events and time expressions, and we will focus more on annotation details of
temporal relations.

ISO-TimeML - The ISO-TimeML (Pustejovsky et al., 2010) specifica-
tion is a standardization of TimeML (Pustejovsky et al., 2003a). Here, we
review this specification for annotating events, time expressions, and temporal
relations. Time expressions are mentions of dates, times, durations, and sets
and are represented by TIMEX3 tags, as discussed in Section 2.4.1. Several
other attributes could be included in the TIMEX3 tag, such as modifier tag
(MOD), the function of the TIMEX3 tag within the document (functionIn-
Document) that could take these values: creation_time, modification_time,
publication_time, release_time, reception_time, expiration_time or None,
and other attributes. As described in Section 2.4.2, events are defined as "a
cover term for situations that happen or occur". Both EVENT and MAKEIN-
STANCE tags are used to represent events. Indeed, the MAKEINSTANCE tag
enables modeling difficult examples that require two event instances (Tourille,
2018). The main attributes that represent events are CLASS, TENSE, AS-
PECT, POS, POLARITY, etc.

Temporal relations can occur between two events, between two time expres-
sions, or between an event and a time expression. The TLINK tag represents
these relations using the following obligatory attributes:

• eventInstanceID or timeId: the ID of the first involved entity in the
temporal link.

• relatedToEventInstance or relatedToTime: the ID of the second
involved entity in the temporal link, which is associated with the event
instance with ID=eventInstanceID or time expression with ID=timeID.
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• RELTYPE: the type of relation holding between the enti-
ties with the following possible values: BEFORE, AFTER,
INCLUDES, IS_INCLUDED, DURING, DURING_INV, SIMUL-
TANEOUS, IAFTER, IBEFORE, IDENTITY, BEGINS, ENDS,
BEGUN_BY, ENDED_BY.

Apart from TLINKs, there are two other links, SLINK and ALINK. The
SLINK is used to annotate subordination links between two events, and the
ALINK is used to represent the relation between an aspectual event and its
argument event. The ISO-TimeML annotation scheme also includes a SIGNAL
tag, which is a textual element that makes explicit the relation between two
entities. Signals can be temporal prepositions (e.g., on, at, to), temporal
conjunctions (e.g., before, to when), prepositions signaling modality (e.g., to)
or special characters (e.g., -, / in time expressions denoting ranges).

THYME-TimeML - The THYME-TimeML (Styler IV et al., 2014) is
a temporal annotation scheme developed to annotate the temporal informa-
tion in clinical documents and is based on the ISO-TimeML standard. This
annotation scheme has been mainly established to annotate the THYME cor-
pus. As already discussed in Section 2.4.2, the definition of events is extended
to include clinically relevant events such as diagnosis, diseases, or procedures.
Several modifications have been made to the ISO-TimeML annotation scheme.
For instance, event modality is no longer represented by the SLINK tag any-
more but with three event attributes: contextual modality, contextual aspect,
and permanence. To represent the various hypothetical statements in clinical
notes, the contextual modality attribute, for example, may take the value HY-
POTHETICAL, among other possible values. The American Joint Committee
on Cancer Staging Codes (AJCC) tumor type codes are also annotated as
events since they provide useful information for clinicians. The major change
in representing the time expressions within the TIMEX3 tag is the addition of
the new tag PREPOSTEXP, as mentioned in Section 2.4.1. Styler IV et al.
(2014) also point out that SETs are common in the medical domain, partic-
ularly regarding medications and treatments. They also note that addressing
time expressions in the clinical domain is more difficult since many time ex-
pressions are anchored to events rather than dates.

For temporal relations, the THYME-TimeML annotation scheme reduces
the number of annotated relations to decrease the annotators’ conflicts. Indeed,
as discussed in Section 2.4.3, the use of the narrative container concept will re-
sult in just necessary relations being annotated, which overcomes both under-
and over-annotation issues. Within this context, another category of tempo-
ral relations has been annotated, the DocTimeRel relations, which model the
relation between each event and the Document Creation Time (DCT). Note
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that even though the document was created after the medical examination,
the DCT is considered the same as the time the clinician saw the patient. The
DocTimeRel relation is annotated as an event attribute and takes the following
potential values:

• BEFORE: when the event occurred and ended before the DCT.

• OVERLAP: when the event occurs during the DCT.

• BEFORE-OVERLAP: when the event started before and continues
to be true at the DCT.

• AFTER: when the event is planned in the future.

As mentioned in Section 2.4.3, TLINKs between events and/or time expres-
sions have five different types: BEFORE, OVERLAP, BEGINS-ON, ENDS-
ON, and CONTAINS. Styler IV et al. (2014) recommend only annotating these
links if they provide more information than the information in the DocTimeRel
attribute.

Shared tasks and corpora. Many shared tasks have been proposed to
solve the temporal information extraction task, particularly the temporal re-
lation extraction task. Here, we cover these shared tasks and describe the
several corpora that were introduced in the literature for both general and
clinical domains.

TimeBank and AQUAINT TimeML corpora - The TimeBank cor-
pus (Pustejovsky et al., 2003b) contains 183 English news articles and was an-
notated using the ISO-TimeML (Pustejovsky et al., 2010) specification. The
AQUAINT TimeML corpus is quite similar to TimeBank in content, and it has
also been annotated using the ISO-TimeML scheme. There are 73 news reports
in this corpus. Other annotated corpora have been created in other languages
based on the same specifications, such as the French TimeBank corpus (Bit-
tar et al., 2011) and the Portuguese TimeBankPT corpus (Costa and Branco,
2012). Cassidy et al. (2014) introduced the TimeBank-Dense corpus, which
contains a subset of 36 documents of the TimeBank corpus and addresses the
sparsity problem in the TimeBank corpora.

TempEval shared tasks corpora - The corpora proposed in the three
editions of TempEval shared tasks ((Verhagen et al., 2007, 2010; UzZaman
et al., 2013)) are based on the TimeBank corpus. The corpora were annotated
using a simplified version of ISO-TimeML that includes a set of six tempo-
ral relations: before, after, overlap, before-or-overlap, overlap-or-after, and
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vague. The first shared task TempEval-1, focused on extracting three types of
temporal relations: those between EVENTs-TIMEX3s in the same sentence,
those between EVENTs and document creation time, and those between two
EVENTS in adjacent sentences. Note that Document Creation Time is rep-
resented by a TIMEX3 tag. Three tasks were added to the second and third
editions of TempEval to extract time expressions, events, and temporal rela-
tions between EVENTs which are in a syntactic dependency relation. While
the TempEval-1 proposed the corpus for English, the TempEval-2 provided this
corpus for six languages, and the TempEval-3 challenge presented the corpus
for English and Spanish languages.

I2b2 Corpus - The Informatics for Integrating Biology & the Bedside
(i2b2) corpus (Sun et al., 2013) is an annotated English corpus of 310 discharge
summaries that was used during the i2b2-2012 challenge on clinical temporal
information extraction. This corpus was annotated based on ISO-TimeML and
an earlier version of THYME-TimeML with an extended set of relations. How-
ever, since a low inter-annotator agreement was noticed for multiple relation
types, this set was restricted to three temporal relations: before, after, and
overlap. The i2b2-2012 challenge comprises three tasks: events and time ex-
pression extraction, TLINK extraction using gold entities, and an end-to-end
extraction task that combines the first two tasks.

THYME corpus - The Temporal Histories of Your Medical Event
(THYME) corpus (Styler IV et al., 2014) contains clinical notes and pathology
reports from cancer patients at the Mayo Clinic. This corpus was annotated
using the THYME-TimeML annotation scheme and was used in the Clinical
TempEval shared tasks (Bethard et al., 2015, 2016, 2017). Several subtasks
have been proposed for these challenges: time expression extraction, event
extraction, CONTAINS relation extraction between events and/or time ex-
pressions, and DocTimeRel relations between events and document creation
time. Only the CONTAINS TLINK was used in these challenges because of
the limited annotations for the other relation types. The methods in the first
two editions of Clinical TempEval were developed and tested on colon cancer
notes. However, in the third edition, systems were trained on colon cancer
reports and tested on brain cancer reports to conduct domain adaptation. In-
deed, two phases are proposed: unsupervised domain adaptation, which aims
to train on colon cancer annotations and test on brain cancer annotations, and
supervised domain adaptation, in which few annotations for brain cancer pa-
tients are available and could be integrated with the colon cancer annotations
in training.
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MERLOT - The Medical Entity and Relation LIMSI annOtated Text
(MERLOT) corpus (Campillos et al., 2018) is a restricted clinical corpus built
with 500 de-identified clinical notes written in French related to the Hepato-
gastro-enterology and Nutrition specialties. The temporal annotation scheme
in the MERLOT corpus is based on the ISO-TimeML standard. Temporal
expressions are represented as TIMEX3 entities with a type attribute taking
the following values: date, time, duration or frequency. Two types of temporal
relations are annotated: those between events and/or time expressions and
those between events and document creation time. There are six types of
relations between events and/or time expressions: before, begins on, during,
ends on, overlap or simultaneous. The relations between events and document
creation time are represented by an event attribute with a value of before,
before-overlap, overlap or after.

Gumiel et al. (2021) review other clinical corpora that were proposed for the
temporal information extraction task in the clinical domain, mostly in English.

2.4.5 Rule-based methods
Few rule-based methods were proposed for temporal relation extraction. For

instance, to address the three tasks of the first edition of TempEval, Hagège
and Tannier (2007) presented a rule-based system based on a customized XIP
parser (Aït-Mokhtar et al., 2002). Most of the other proposed approaches for
TempEval shared tasks were hybrid, using both heuristic rules and statistical
methods. We review these approaches in the following sections.

Clinical domain. Prior works on clinical temporal relation extraction are
based on manually created rules. Gaizauskas et al. (2006) presented an algo-
rithm for extracting a specific set of TLINKs between EVENTs and TIMEXs
in the same sentence and DocTimeRel relations between EVENTs and DCT
in clinical narratives. Their algorithm is based on the tense and aspect of re-
lation entities. Wang et al. (2016) developed a method for extracting relations
between EVENTs and TIMEXs using domain-specific rules on the i2b2-2012
corpus. Najafabadipour et al. (2020) identified temporal relations from Span-
ish clinical texts by building dependency trees using the Universal Dependency
Pipe (UDPipe) tool (Straka et al., 2016). Based on the provided dependency
trees, rules are created to identify the time expression related to each event.

Rules-based models require human expertise to create domain-specific
rules, and such models are difficult to adapt to other domains and ensure
generalization.
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2.4.6 Feature-engineering-based supervised methods
A variety of data-driven approaches has been used for the TRE task, start-

ing with traditional machine learning-based methods. Mani et al. (2006) de-
veloped a ME classifier for extracting temporal relations using extracted fea-
tures from raw text. Chambers et al. (2007) addressed the identification of
the same temporal relations by introducing a two-stage NB approach, adding
event-specific features. Bethard and Martin (2007) proposed an SVM-based
system to extract DocTimeRel relations in the challenge TempEval-1 using a
set of lexical, syntactic, and semantic features. Puşcaşu (2007) proposed the
best system for the three temporal relation extraction tasks of TempEval-1
by combining knowledge-based and statistical methods. In TempEval-2, par-
ticipants focused on extracting temporal relations from English and Spanish
texts. Llorens et al. (2010) introduced the TIPSem algorithm, which is based
on CRFs using general and semantic features, achieving good results for all
tasks and both languages Cheng et al. (2007) used an HMM_SVM sequence
labeling model with features generated by dependency parsing. Bethard (2013)
achieved the best performance on the TLINK identification and classification
task in the TempEval-3 challenge by developing an SVM-based system and by
using additional verb-clause relations from Bethard et al. (2007). Laokulrat
et al. (2013) proposed a hybrid system, UTTime, which identifies temporal
links based on a rule-based approach and then filters out some links by a
classifier. Chambers et al. (2014) created the CAVEO system, which is a
pipeline with ordered sieves. Each sieve is either a rule-based model or a ma-
chine learning-based model. This system was considered the best-performing
feature-based system for the TimeBank-Dense corpus.

Clinical domain. There was a wide use of feature-engineering-based meth-
ods in the TLINKs classification task in the i2b2-2012 challenge. Cherry et al.
(2013) divided the task into four sub-tasks: anchoring EVENTs to section
time, intra-sentence EVENTs-TIMEX3s relations, inter-sentence OVERLAP
relations between EVENTs, and extracting causal relations induced TLINKs,
using both SVM and ME classifiers. Grouin et al. (2013), Xu et al. (2013) also
divided the TLINKs into more specific subtasks. Roberts et al. (2013) pre-
sented an SVM-ranker to identify EVENTs-TIMEX3s relations and a multi-
class SVM classifier for the TLINK category, using a large selection of features,
including POS tags from the GENIA tagger and UMLS features. Tang et al.
(2013) proposed a hybrid system that achieved the best performance for the
TRE task in the i2b2-2012 challenge, using event positional information, POS
tags, n-grams, dependency-related, time-related, and event-related features.
Miller et al. (2013) conducted a preliminary study on the THYME corpus and
explored the extraction of within-sentence CONTAINS relations using an SVM
classifier with Tree Kernels.
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In the 2015 Clinical TempEval challenge, Velupillai et al. (2015) presented
a CRF classification approach to tackle DocTimeRel relation extraction us-
ing token-level features and used certain rules to extract Container relations.
Lin et al. (2016) addressed the TRE task on three levels: a coarse level by
extracting DocTimeRel relations using a multiclass SVM, a medium-grained
one by extracting the CONTAINS relations, and a fine-grained level to extract
Allen-style event-event and time-event relations using a combination of SVM
classifiers and rules. Tourille et al. (2016) addressed the 2016 Clinical TempE-
val DocTimeRel extraction with a model based on the Random Forest (RF)
algorithm and the container relation extraction with a Linear SVM model.
For both models, they compared the use of lexical, contextual, and structural
features to the use of word embeddings, which are computed on the MIMIC II
clinical corpus (Saeed et al., 2011). They concluded that using features pro-
vides a more balanced system than word embeddings. Tourille et al. (2017b)
adapted and evaluated their feature-based approach (Tourille et al., 2016) for
DocTimeRel and intra-sentence narrative container relation extraction on the
French MERLOT corpus and achieved comparable results when compared to
the English THYME corpus, by replacing language sensitive resources in the
preprocessing step. The UTHealth SVM-based system proposed by Lee et al.
(2016) was the top system for the TRE tasks in the 2016 Clinical TempEval
challenge, and it used a variety of lexical, morphological, syntactic, discourse,
and word representation features. P R et al. (2017) used a stacked ensemble
of gradient-boosted decision trees, random forest, and extra trees classifiers to
extract the narrative container relations. By using the ClearTK CRF-based
NER classifier (Bethard, 2013) for the DocTimeRel task, they achieved good
results. MacAvaney et al. (2017) proposed a hybrid system combining CRFs,
rules, and decision trees with a large set of features. This system outperformed
other participating systems for the CONTAINS relation extraction task and
unsupervised domain adaptation.

To sum up, several traditional machine learning methods have been pro-
posed for the temporal relation extraction task. However, the performance of
these methods relies heavily on human-engineered features that allow a better
understanding of contextual information. Moreover, most of these approaches
are restricted to extracting within-sentence relations.

2.4.7 Neural-based methods
Neural-based methods attracted interest in temporal relation extraction.

Indeed, Cheng and Miyao (2017) presented a dependency path-based Bi-LSTM
model to extract event-event, event-time, and DocTimeRel relations and
showed good results on the TimeBank-Dense corpus without the use of any ex-
plicit features or external resources. Meng et al. (2017) proposed LSTM-based
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models to extract intra-sentence, cross-sentence, TIMEX-TIMEX, and Doc-
TimeRel relations, using shortest dependency paths as input. Their method
outperformed state-of-the-art systems. Han et al. (2019) proposed a neural
structural SVM model to extract events and their temporal relations jointly.
Cheng et al. (2020) an event-centric model that allows learning dynamic event
representations across event-event, event-time, and DocTimeRel relations us-
ing multi-task transfer learning and RNNs models. Good performance has
been reached for TRE on English TimeBank-Dense and Japanese BCCWJ-
TimeBank (Asahara et al., 2014) corpora. Wang et al. (2022a) proposed a
DCT-centered Temporal Relation Extraction model to identify the temporal
relations among events, TIMEXs, and DCT jointly using multi-task learn-
ing. Input representations are obtained using pre-trained models, and a DCT-
indicator sentence is added at the beginning of the document to provide a
representation for the DCT as well. Recently, Yuan et al. (2023) evaluated
the ChatGPT’s ability on zero-shot TRE task, and they claim that ChatGPT
performs better for small classes than SOTA methods, but the performance is
still very low on the TRE task, in particular for long-distance dependencies.

Clinical domain. Li and Huang (2016) used a CNN network to learn hid-
den feature representations, domain-specific features from the cTAKES toolkit
and a MultiLayer Perceptron (MLP) to extract DocTimeRel relations in the
2016 Clinical TempEval challenge. Tourille et al. (2017a) introduced a neu-
ral Bi-LSTM architecture for the CONTAINS relation task, in which input
vectors are constructed by concatenating a word2vec embedding, a Bi-LSTM
character-based embedding, one embedding per Gold Standard attribute and
one embedding for the type of DocTimeRel relations. To address domain
adaptation, their strategy to block further training of the pre-trained word
embeddings during training gave the best results in the 2017 Clinical TempE-
val challenge. For the supervised domain adaptation phase, combining brain
cancer samples with colon cancer samples during training outperformed the
results of other proposed systems. Leeuwenberg and Moens (2017a) presented
another top-ranking system that is based on a document-level structured per-
ceptron proposed by Leeuwenberg and Moens (2017b) for extracting both Doc-
TimeRel and narrative container relations. For domain adaptation, they tried
assigning a higher weight to the brain cancer training samples and representing
unknown words in the input vocabulary. Dligach et al. (2017) evaluated the
use of CNNs and LSTMs in extracting event-event and event-time CONTAINS
relations on the THYME corpus. Galvan et al. (2018) outperformed the best
2016 Clinical TempEval system for the TRE task using a tree-based LSTM
model relying on dependency information. Zhao et al. (2019) suggest carving
each instance into three segments depending on the entity pair position and us-
ing associative attention networks to emphasize the related information of each
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segment and reconstruct the semantic structure between the segments. Their
method obtained state-of-the-art performance on the THYME corpus. Lin
et al. (2019) introduced a window-based BERT-fine-tuned model for within-
and cross-sentence CONTAINS relations. They evaluated their models for in-
and cross-domain tasks on the THYME corpus. The best-performing model
was the fine-tuned BioBERT using non-XML tags and adding generated "sil-
ver instances" using the self-training technique proposed by Lin et al. (2018).
Lin et al. (2020) adapted the one-pass encoding mechanism initially proposed
by Wang et al. (2019) by incorporating global embeddings for long-distance
relations and jointly extracting the CONTAINS and DocTimeRel relations.
Alfattni et al. (2021) studied an attention mechanism built into a Bi-LSTM
model on a large set of temporal relations in clinical discharge summaries,
including intra-sentence, cross-sentence, and DocTimeRel temporal relations.
Dligach et al. (2022) explored the use of sequence-to-sequence generative mod-
els for the 2016 Clinical TempEval TRE task by designing a variety of in-
put/output representations. Prompting one entity at a time was the most
successful representation, and using a T5 model produced competitive results
with the state-of-the-art. Recently, Miller et al. (2023) proposed a multi-task
end-to-end system for temporal information extraction using a multi-headed
attention mechanism over a pre-trained transformer encoder. High perfor-
mance has been obtained for in-domain and cross-domain settings, compared
to the best systems in the 2016 and 2017 Clinical TempEval challenges.

With the emergence of deep learning methods, more works have been pro-
posed to tackle inter and intra-sentence relations. Such methods outperformed
machine learning methods, particularly attention-based models. However,
more annotated corpora are required to evaluate and compare developed ap-
proaches.

2.4.8 A word about clinical section segmentation
Unstructured narrative text in EHRs contains crucial information about

each patient. Clinical section segmentation seeks to automatically structure
clinical text as a pre-processing step for multiple clinical information extraction
tasks. Indeed, this is useful to help clinicians identify the probable location
where certain information should be. For instance, if a doctor is interested in
finding the drug codes, they are likely in the Medication section (Rosenthal
et al., 2019). However, there is no obligation for doctors to follow a certain
format and indicate sections, and even if they do, this structure is not uniform
across EHRs from various hospital institutions. Therefore, the clinical section
segmentation task is challenging. Section segmentation includes detecting the
boundaries of sections and assigning a pre-defined label to a section. Prior
works focused more on section classification, which consists in mapping sec-
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tions into standard section types, either using heuristic rules or using machine
learning models (Denny et al., 2008, 2009; Li et al., 2010; Haug et al., 2014).
Other works focused on both section identification and classification (Dai et al.,
2015; Apostolova et al., 2009; Ganesan and Subotin, 2014; Tepper et al., 2012).
Deléger and Névéol (2014) introduced an automatic system to separate the
core medical content from other document sections, such as headers and foot-
ers, using a CRF-based model and applied it to French clinical text. Tepper
et al. (2012); Ganesan and Subotin (2014) evaluated domain adaptation by
considering several corpora and came to the conclusion that there is a signif-
icant drop in performance across domains. To tackle this problem, Rosenthal
et al. (2019) used sections from medical literature similar to those in EHRs
to train two models: an RNN and a BERT based models. These models will
then be used to predict sections in EHRs via transfer learning. Their results
demonstrated that the use of medical literature data improved the performance
on EHRs data. Kuling et al. (2022) built a contextualized embedding BERT
model using breast radiology reports and discovered that using the contextual
embedding in conjunction with auxiliary data helps to better understand the
global report context in the section segmentation task. To facilitate domain
adaptation, Zhou et al. (2023b) cast the section classification task as a SOAP
(“Subjective”, “Object”, “Assessment” and “Plan”) classification task and used
continued pre-training to improve the transferability of BERT-based models,
showing that continued pre-training only improves transferability when target
domain samples are included. Zhou et al. (2023a) evaluated the ability of large
language models (LLMs) to perform SOAP classification and showed that an
ensemble method combining BERT and LLMs produced the best results and
that LLMs performed better on the rare category while BERT performed bet-
ter on the most prevalent categories.

2.4.9 Summary
While good results can be obtained for extracting entities, including tempo-

ral expressions and events, temporal relation annotation and extraction remain
challenging. Indeed, temporal relations have poor inter-annotator agreement
scores, which are much lower than other clinical tasks, such as event and tem-
poral expressions annotation tasks (Verhagen et al., 2007). Although attempts
have been made to increase inter-annotator agreement scores by reducing the
set of temporal relations, such efforts are insufficient to annotate temporal rela-
tions in clinical texts. For the clinical domain, the annotation process involves
specific domain expertise, which is costly and time-consuming. Therefore, most
of the proposed works on TRE are related to datasets provided by shared tasks.
The several shared tasks proposed for both general and clinical domains helped
the research community in developing and comparing their extraction methods.
However, this limits the evaluation of methods for other texts or languages. For
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instance, only a few works were proposed for French due to the lack of publicly
available annotated resources (Tourille et al., 2017b). Temporal relations can
be DocTimeRel relations between an event and the DCT or TLINKs, which are
relations between event or/and temporal expressions. DocTimeRel relations
can be used to generate a coarse-level temporal ordering, although this order-
ing is considered too generic for some tasks. Adding TLINKs, however, results
in a more precise and fine-grained temporal representation at the expense of
increasing task difficulty. DocTimeRel relation extraction depends on how well
task-specific events are defined but remains less complicated than TLINK ex-
traction (Olex and Mcinnes, 2021), which performance is still relatively low.
As reviewed in this section, TRE approaches have evolved throughout time,
from rule-based methods to traditional learning-based methods using different
features and to neural-based methods. Attention-based techniques appear to
produce superior results, particularly for TLINK extraction, where the adopted
strategy for pair selection is to use token windows to cover inter-sentence re-
lations. Nevertheless, generalization across domains is still difficult, and the
performance of most proposed systems remains far from adequate for practi-
cal applications (Najafabadipour et al., 2020). Indeed, representing temporal
relations between events largely depends on event definition, as well as the
quality of event extraction, which makes the practical application more chal-
lenging. Even though the construction of a complete medical patient timeline
is important, a coarse-level timeline would still be useful in the clinical domain
to extract past, current, and future events, in particular for decision support
systems that struggle with processing temporal relations. A task simplification
might result in more efficient practical results. As a result, in Chapter 5, we
propose a novel event-independent representation of temporal relations, mak-
ing the task easier and more reproducible through different event types. In the
next section, we go through the major challenges of data privacy and the main
methods that have been proposed to preserve patient privacy, particularly with
the wide use of modern deep learning methods in addressing NLP tasks.

2.5 Data privacy

Deep learning approaches have been the key to the technological progress
of NLP methods in recent years, yielding outstanding results for many NLP
tasks. However, training or deploying models on sensitive data may raise pri-
vacy concerns. Among these is the issue of accidentally memorizing sensitive
data from training data, as stated in Bender et al. (2021). For instance, memo-
rization in the biomedical domain might result in public leakage and disclosure
of sensitive private patient health information. Therefore, preserving privacy
is crucial for developing NLP models, particularly when dealing with clinical
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personal and private data. In this section, we will review the main data privacy
threats when developing NLP applications. Then, we will go over the main
privacy preservation methods that have been proposed for NLP tasks, with a
focus on proposed approaches for the clinical domain.

2.5.1 A categorization of privacy attacks for NLP
Sousa and Kern (2022) yield a precise classification of privacy-preserving

NLP techniques in the literature by first considering the following types of
threats: threats emerging from datasets, threats related to model development,
and threats associated with computation scenarios.

Data threats. The most common text data privacy attacks target personal
and private information contained in the text, such as author identity, demo-
graphic information, or even patient health information for clinical text. To
preserve sensitive information, methods such as anonymisation (Meystre et al.,
2010; Larbi et al., 2022) or de-identification (Grouin, 2013; Grouin and Névéol,
2014) have been proposed. Indeed, while diffusing corpora for research pur-
poses, documents such as Electronic Health Records (EHRs) and legal reports
are required to remove or obfuscate any identifying information. However,
such methods may omit some indirect information that may lead to the iden-
tification of persons. Moreover, there have been attempts of re-identification
attacks (El Emam et al., 2011; Carrell et al., 2019).

Threats targeting NLP models. Model privacy concerns might arise
from attacks that could leak private data used for training, presenting a risk of
revealing personal information, e.g., patient health information (Carlini et al.,
2021; Pan et al., 2020). In this same context, another type of attack could
target linking pieces of information that the model could unintentionally mem-
orize, such as unique or rare training instances, which could lead to identifying
individuals. Identifying a patient with a rare disease is an example of this
scenario. Another known attack is the membership inference attack (Hu et al.,
2022), which seeks to recover information about whether or not a certain per-
son was in the training data samples. Unlike prior works on data leakage in
Masked Language Models (MLMs) (Lehman et al., 2021; Vakili and Dalianis,
2021), Mireshghallah et al. (2022) demonstrated that MLMs are susceptible
to memorization using a principled ratio-based membership inference attack.
However, even though membership inference attacks are usually suggested to
quantify memorization, Vakili and Dalianis (2023) demonstrated that such at-
tacks fail to distinguish between a model trained using real or pseudonymized
data. Xie et al. (2023) recently presented a novel privacy attack targeting
prompt-tuning methods. Their experiments revealed that memorization also
exists in these methods.

65



Threats targeting the computation scenario. Privacy could be put
at risk while working with centralized cloud servers or distributed processing
architectures. Indeed, several potential attacks could be made on servers and
client devices (Sousa and Kern, 2022), leading to the leak of locally stored
private data.

In the next section, we will cover the main privacy-preservation methods
according to this classification of threats.

2.5.2 Privacy-preservation approaches
To address the several privacy issues that could be encountered while de-

veloping NLP models, multiple research works have been proposed according
to the different types of attacks we mentioned in the previous section. In this
section, we will focus on the main data privacy preservation methods that have
been proposed in the literature, with a focus on the clinical domain and the
NER task.

The process of data anonymization consists in removing all pieces of per-
sonal information that could lead to the identification of a person, according
to the National Commission on Informatics and Liberty (CNIL)13. Several
anonymization methods were first introduced to avoid data attacks (Sousa
and Kern, 2022; Raj and D’Souza, 2021) However, true anonymization is hard
to achieve (Kushida et al., 2012) and may result in losing valuable information
for research purposes (Langarizadeh et al., 2018). In particular, for the NER
task, we can lose information that is required for the comprehension of EHRs.
Therefore, multiple strategies, such as de-identification, have been developed
to reach a compromise between data privacy preservation and data value. De-
identification methods have been widely used in the clinical domain (Meystre
et al., 2010; Norgeot et al., 2020; Grouin and Névéol, 2014), and they consist
in deleting or replacing personal health identifiers (PHI) in clinical documents,
making it difficult to rebuild a link between a person and their information.
De-identification approaches seem to preserve data privacy without reducing
data quality and without harming the performance of the NER task (Berg
et al., 2020). However, re-identification attacks are always possible, which is
problematic in the clinical field (Grouin et al., 2015; El Emam et al., 2011), and
sharing de-identified data remains challenging. Other strategies (Basu et al.,
2021; Klymenko et al., 2022; Feyisetan et al., 2019) have also been adopted to
preserve textual data, such as differential privacy (DP) (Dwork, 2008), repre-
senting a mathematical guarantee for privacy using a noise-adding mechanism.

Recently, with the success of statistical and deep learning models, many
attacks have targeted shared statistical NLP models to recover sensitive train-

13https://www.cnil.fr/fr/lanonymisation-de-donnees-personnelles
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ing data through model parameters or predictions (Boulemtafes et al., 2020).
Carlini et al. (2021) revealed that diverse data extraction attacks could be per-
formed on large language models such as GPT-2 to recover training sensitive
data. Membership inference attacks can also lead to privacy leakage (Shokri
et al., 2017; Mireshghallah et al., 2022). To prevent data sharing, a widely used
strategy is transfer learning (Ruder, 2019), which involves applying neural net-
works to tasks that differ from those targeted by earlier training. However, the
vocabularies of models may contain specific private information. Alawad et al.
(2020) introduced a cancer information extraction system, and in order to ad-
dress privacy concerns and securely share their model, they limited the word
embedding vocabulary to filter outpatient health information. Another po-
tential solution has been adopted in coping with data privacy issues, namely
federated learning (McMahan et al., 2017; Brauneck et al., 2023; Sheller et al.,
2020). Federated learning allows distributed training of models through a cen-
tral server while keeping private training data on local devices. Ge et al. (2020)
proposed a NER method based on federated learning. Thus, several studies
have demonstrated that it is still possible to reconstruct training data from
model updates sent to servers (Truong et al., 2021; Lyu et al., 2022). Baza
et al. (2020) use the mimic learning paradigm to overcome privacy problems
in smart health applications. Mimic learning entails using a trained model on
sensitive data to annotate large amounts of unlabeled data and using these
annotations to train a new model. The main idea is to perform a knowledge
transfer and be able to share the newly trained model without sharing the
sensitive data. Another category of methods, particularly for cloud environ-
ments, is encryption methods that aim to encrypt data to perform training on
encrypted datasets (Lee et al., 2022b; Pulido-Gaytan et al., 2021). However,
such methods may lead to memory costs that are hard to manage (Sousa and
Kern, 2022).

2.5.3 Summary
To sum up, we examined the main types of attacks that could target sen-

sitive data, and we focus on proposed methods to avoid such attacks, particu-
larly in the clinical domain, while maintaining good performance in handling
NLP tasks. To truly prevent sensitive data attacks, it is best to avoid shar-
ing the data even if it is de-identified. The same goes for statistical models
that are trained on sensitive personal data in order to avoid leakage through
model parameters and learning weights. As a result, sharing research find-
ings in the clinical community remains problematic, and privacy-preservation
sharing strategies should be provided. We believe that another major concern
when constructing privacy-preserving neural models is the lack of metrics or
methods for detecting whether or not the trained model leaks personal in-
formation or how efficiently the model preserves data privacy. Membership
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inference attacks have been proposed as a privacy-preservation evaluation ap-
proach (Shokri et al., 2017; Mireshghallah et al., 2022). However, Vakili and
Dalianis (2023) shows that such methods fail to detect the privacy benefits of
models using pseudonymized data. To deal with all these privacy issues, there
is a growing interest in creating synthetic corpora, particularly for the biomed-
ical domain (Hiebel et al., 2023; Venugopal et al., 2022). Aside from privacy
concerns, a further major problem with statistical models is their energy con-
sumption and carbon emissions, which considerably impact the environment.
In the following section, we review the carbon emissions of NLP methods.

2.6 NLP environmental impact

Recent advances in computational resources, such as Graphical Processing
Units (GPUs), have enabled the intensive use of deep learning models, partic-
ularly given their impressive performance across NLP tasks. However, due to
their high demand for computer resources, energy, and materials, such mod-
els have a significant environmental impact regarding Greenhouse Gas (GHG)
emissions, CO2 equivalent emissions, or carbon footprint. Other indicators
include abiotic resource depletion, blue water shortage, human toxicity, etc.
In this section, we first describe the main sources of CO2 equivalent emissions
that should be considered to evaluate the environmental impact of NLP com-
putational experiments. Then, we review studies that evaluated the carbon
footprint of machine learning and NLP methods, the main tools available for
computing the carbon emissions, as well as the recent efforts that encourage
the conduct of green AI research.

2.6.1 Sources of carbon footprint
The environmental impact in terms of carbon footprint needs to account

for the entire lifecycle of Information and Communication Technology (ICT)
equipment from production through use and, finally, end of life. Life Cycle
Analysis usually allocates part of the GHG emitted during equipment pro-
duction to the use. This phase is challenging to examine for ICT equipment
since statistics on GHG emissions during manufacture are not always easily
available. It should be noted that production can account for a significant por-
tion of total GHG emissions. A French study on a data center (with Central
Processing Unit (CPU) servers only) in Grenoble discovered that around 40%
of the total emissions released during one hour of CPU use were due to the
production phase (including emissions due to the equipment alone) (Berthoud
et al., 2020). Similarly, according to another recent study, most of the environ-
mental impacts of mobile and data center computing equipment are attributed
to hardware manufacturing and infrastructure, while the impact of operating
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energy consumption is decreasing (Gupta et al., 2021). Due to the lack of data,
assessing the end-of-life phase of ICT is also extremely difficult. To conclude,
at least four sources of CO2 equivalent emissions should be included when
assessing the environmental impact of computational experiments: 1/ produc-
tion of hardware equipment: router, PC, server; 2/ idle use of the hardware;
3/ dynamic use of the hardware; and 4/ end of life of the equipment.

2.6.2 Empirical studies
Recent efforts have been undertaken to evaluate the environmental impact

of NLP methods, particularly those using deep learning models. Strubell et al.
(2019) were among the first to study this, examining the carbon impact of
training various state-of-the-art NLP models and concluding that we need to
lower the carbon footprint of training and using models. Schwartz et al. (2020)
introduce a new study topic, namely Green AI, which refers to AI research that
considers the environmental cost and impact. Bender et al. (2021) underlined
the environmental consequences of constantly growing the scale of AI mod-
els in general. Researchers have been more concerned with enhancing state-
of-the-art task performance by intensively executing multiple experiments to
create models without evaluating the environmental risks of their trials. A
first step towards creating Green AI models is to measure the impact of our
developed methods. Cao et al. (2020a) carried out experiments on the energy
measurements of NLP models. Further research has been done to compute the
energy use and the carbon footprint of deep-learning NLP architectures and
large language models, such as T5 (Patterson et al., 2021), GPT-3 (Patter-
son et al., 2021), and Bloom (Luccioni et al., 2022). Other studies discussed
the impacts of privacy-preserving machine learning methods such as Federated
Learning (Qiu et al., 2023) and differential privacy (Naidu et al., 2021). For
the evaluated NLP task, Naidu et al. (2021) showed that increasing the degree
of privacy can entail a significant computing cost, which will inevitably raise
the carbon footprint of the model’s training. Therefore, more efforts are re-
quired to strike a compromise between privacy and reduced carbon emissions.
Luccioni and Hernandez-Garcia (2023) recently presented a survey of carbon
emissions of 95 ML models over time and across different tasks in NLP and
computer vision.

2.6.3 Tools for measuring carbon footprint
To assess the carbon footprint of AI and NLP models, several tools have

been proposed. Some tools run in parallel to model training and compute the
energy use and the CO2 equivalent measures, such as Carbontracker (Anthony
et al., 2020), Experiment Impact Tracker (Henderson et al., 2020), Energy Us-
age (Lottick et al., 2019) and Cumulator (Tristan Trebaol and Ghadikolaei,
2020), while others are online tools and provide emission estimations based
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on user-supplied information, such as Green Algorithms (Lannelongue et al.,
2021) and ML CO2 Impact (Lacoste et al., 2019). In Chapter 3, we review
the availability and the use of these six tools to measure the carbon footprint
of NLP methods. Following our study, Bouza Heguerte et al. (2023) present
a study that gives additional details, including measurements process, infras-
tructure, default values, and sources of information used by some of these tools
with the addition of the newest version of ML CO2, namely CodeCarbon14 and
Eco2AI (Budennyy et al., 2023) tool. As it will be covered in Chapter 3, the
carbon emissions estimations produced by the studied tools vary significantly,
making it difficult to determine which tool is best for carbon emissions mea-
sures. Moreover, all the tools evaluate the carbon footprint by only considering
one source of emissions: dynamic use of the hardware equipment.

2.6.4 Towards the development of efficient models
Lately, efforts have been made to encourage sustainable AI by building

models efficiently. This includes efficiency in data use, designing and training,
experiments and infrastructure, and hardware (Wu et al., 2022). Develop-
ing efficient models results in a considerable reduction in carbon footprint.
This research is gaining attention in the research community through work-
shops such as SustaiNLP15 and EMC216. Xu et al. (2021) highlighted the
progress achieved so far in developing Green deep learning methods by ex-
amining the most efficient Green approaches. Luccioni and Hernandez-Garcia
(2023) showed that good performance could be achieved with low carbon emis-
sions using the recent advances in training machine learning methods efficiently.

2.6.5 Summary
To summarize, we went through the main sources of CO2 emissions that

should be considered to evaluate the carbon footprint of deep learning meth-
ods. We then review surveys and research works that have been working on
the evaluation of carbon footprint, in particular for the NLP domain. These
studies helped raise awareness about the huge carbon footprint of deep learning
algorithms, which are becoming increasingly popular due to their high perfor-
mance on several NLP tasks. To measure the carbon footprint, several tools
have been proposed, giving measures during the training process, as well as
measures post-training based on user-provided information. In the next chap-
ter, we review six tools and evaluate their measurements on the NER task.
Although recent studies aim to provide standards for reducing carbon foot-
prints when creating and training deep learning systems, more awareness is
required for the community, which is currently focusing on enhancing the per-

14https://codecarbon.io/
15https://sites.google.com/view/sustainlp2023
16https://www.emc2-ai.org/
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formance of models while neglecting environmental impacts. As a first step in
developing efficient models, it is important to create carbon tracking method-
ologies that are easy to adopt and understand. Moreover, energy and carbon
measurements should be reported while studying the performance of novel pro-
posed models. More efforts should also be made to examine and compute the
carbon footprint of models during their whole life cycle, not only the training
phase.

2.7 Conclusion

Throughout this chapter, we have introduced the main concepts and tasks
that interest us in this thesis, namely named entity recognition, privacy preser-
vation, and temporal relation extraction. In the remainder of this manuscript,
we will tackle these tasks by proposing methods for French clinical NER, where
the goal is constructing privacy-preserving shareable models and a novel event-
independent temporal information representation that could be applied to sev-
eral domains. Besides the privacy concerns in deep learning models, such
models can also have a high environmental impact regarding CO2 equivalent
emissions. As a result, in the next Chapter 3, we examine available carbon
footprint measuring tools and evaluate their application on NLP methods, in
particular, the NER task. A tool will be selected for measuring the carbon
footprint of all our thesis experiments.
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Chapter 3

Towards a better understanding of
NLP environmental impact: A review
of existing carbon footprint measure-
ment tools

3.1 Introduction . . . . . . . . . . . . . . . . . . . 73
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3.3 Measuring the impact of NER methods . . . 78
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3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . 84

The material of this chapter is based on the publication in the SustaiNLP
EMNLP workshop (Bannour et al., 2021).

3.1 Introduction

Modern NLP makes intensive use of deep learning approaches because of the
great performance they provide for a variety of tasks. However, as discussed in
Section 2.6, such methods can have a significant environmental impact in terms
of carbon footprint due to the consumption of computational facilities used to
run them. This impact has been increasing over the years and is affecting
populations that can be different from those generating the impact (Schwartz
et al., 2020). To tackle the environmental impact of these methods, the first
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key step is to have the appropriate tools to measure and compare the carbon
footprints. Some tools have been developed to assess the carbon emissions of
statistical models, in particular, the training phase. However, there is yet no
standard measurement tool for calculating carbon footprint. Therefore, in our
work, we aim to conduct a systematic review of tools available for measuring
the impact of NLP tools and to offer a comparative analysis from the perspec-
tive of calculated impact measures and usability. We seek to understand the
methods implemented by the tools and the criteria used to assess the impact.
For that, we identify the list of available measurement tools, characterize them
with respect to the scope of impact information provided and usability, and
apply the selected tools to assess the impact of named entity recognition exper-
iments and compare the obtained carbon measurements in two computational
set-ups (local server vs. computing facility).

In this chapter, we describe our study on existing carbon footprint measure-
ment tools and their use to assess the impact of NER experiments. In Section
3.2, we explain our tool selection approach, our defined evaluation criteria,
and the list of final selected tools. Then, we report, discuss, and compare the
application of these tools to evaluate NER experiments, which are performed
on different computational set-ups, in Section 3.3. Finally, in Section 3.4, we
summarize our study and briefly go over some of the recent studies.

3.2 Selection of tools

In this section, we will present the selection procedure, the defined evalua-
tion criteria as well as the final list of selected tools for our study. We essentially
aim to evaluate these tools by understanding their methods of implementation
and their criteria to assess impact.

3.2.1 Selection process
We started with a preliminary set of tools that were identified by a Working

group on the environmental impact of AI in the French group EcoInfo1 (Exper-
iment Impact Tracker, Pyjoules, and Carbontracker). We then extended this
list by using snowballing to collect publications that cited these tools (accord-
ing to Google Scholar). We also assessed "related papers" for papers published
on ArXiv when available. This process was repeated for each newly identified
tool. Note that the selected tools should be freely available, usable in our
programming environment (Mac/Linux terminal), documented in a scientific
publication, suitable for NLP experiments, and providing a CO2 equivalent

1https://ecoinfo.cnrs.fr/
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measure. As a result, tools like pyJoules2 were excluded since they do not pro-
vide a CO2 equivalent measure. The same goes for under-development tools
that do not include code or platform (Zhang et al., 2020; Shaikh et al., 2021).
Figure 3.1 shows detailed results of our literature search for identifying carbon
footprint measurement tools. Google Scholar yielded 94 publications, with an
additional 20 from ArXiv core related works. 85 articles were examined after
de-duplication. We found that many (N=43) offered opinions or discussions
of carbon impact measurement in machine learning, NLP, and other fields.
Another 27 (shown by the orange flow) reported studies that measured the
environmental impact of experiments using one of the selected tools. Strubell
et al. (2019) presented research examining the impact of NLP experiments us-
ing approaches (Nvidia and Intel RAPL system management interface) that
are currently implemented in several of the selected tools.

Figure 3.1: Sankey3 diagram showing the publications reviewed in our litera-
ture search for selecting carbon impact measurement tools.

3.2.2 Evaluation criteria
In order to evaluate and compare the selected tools, we defined several cri-

teria to characterize the availability and documentation of tools as well as the
technical aspects. This comprises the type of hardware covered, the type of
measure provided, the details used to determine data center electricity, and
the carbon intensity for electricity production based on location. We split our

2https://pypi.org/project/pyJoules/
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evaluation criteria into 4 categories: (a) publication, (b) technical, (c) con-
figuration, and (d) functional criteria. Publication criteria concern scientific
publications and citation details. Technical criteria are information regarding
the tool’s availability, installation, documentation, and output formats. Con-
figuration criteria refer to the ability to do manual configurations of measure-
ment computation and which configuration aspects are considered. Functional
criteria cover the type of emission sources and hardware taken into account.
These criteria are presented in detail below.

Publication criteria

P1 - Year of the last publication;

P2 - Citations in Google Scholar (as of 11 May 2021);

P3 - Citations for measuring NLP experiments (as of 11 May 2021).

Technical criteria

T1 - Date of the last version (as of 11 May 2021);

T2 - Availability of the source code;

T3 - Online availability for use;

T4 - Easiness of installation; We evaluated it as "Poor" if we did not man-
age to install it, "Fair" if we managed to install it but needed system
administration access, "Good" if we managed to install it as an ordinary
user.

T5 - Quality of the documentation (companion publication or code docu-
mentation); We evaluated it as "Poor" if we did not find documentation
on the tool, "Fair" if documentation is available but lacks practical usage
details, "Good" if the available documentation addresses usage questions
such as parameter settings and country localization.

T6 - Type of license

T7 - Output formats

3http://www.sankeymatic.com/build/
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Configuration criteria

C1 - Local values for carbon intensity: Are local values automatically taken
into account, or is a global energy mix used?

C2 - Possible (manual) configuration of carbon intensity; Yes if it is possible
to configure the carbon intensity without changing the code; No other-
wise; We also note whether instructions are provided to the users as to
where adequate values can be found.

C3 - Possible (manual) configuration of PUE; Yes if it is possible to configure
the PUE without changing the code; No otherwise; We also note whether
instructions are provided to the users as to where adequate values can
be found.

C4 - Platforms taken into account; which type of equipment is covered by
the measurements: PC, server, cloud?

C5 - Other configuration features

Functional criteria

F1 - CO2 equivalent emission sources taken into account; We consider the
following sources, described in section 2: production, idle use, dynamic
use and end of life.

F2 - Hardware taken into account: does the calculation model account for
emissions from data transmission between equipment types as well as
from the hardware executing the experiments?

All the tools are supposed to take both CPU and GPU consumption into
account, so we did not include this criterion in our analysis.

3.2.3 List of selected tools
The following six tools were finally selected for our study:

• Green Algorithms4 (Lannelongue et al., 2021): an online tool that cal-
culates the energy usage and carbon footprint of computer use based on
information provided by the user in a web interface: runtime, number of
cores, memory requested, type of platform used (PC, local server, cloud
computing), type of cores, location.

4http://www.green-algorithms.org/
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• ML CO2 Impact5 (Lacoste et al., 2019): an online tool that determines
the energy consumption and carbon footprint of computer use based
on the user-provided information including hardware, runtime, cloud
provider and location of the computing facilities operated. A new ver-
sion of the tool is being developed with the Code Carbon6 initiative.
However, by the publication of our work, it was not yet described in a
scientific publication, so we have decided to assess ML CO2, which the
NLP research community has used.

• Energy Usage7 (Lottick et al., 2019): a python package developed to
calculate and report the energy usage of machine learning methods.

• Experiment impact tracker8 (Henderson et al., 2020): a python package
introduced to assist researchers in measuring and reporting the impact
of their machine learning experiments.

• Carbontracker9 (Anthony et al., 2020): a python package proposed for
tracking and predicting the energy consumption and carbon footprint of
training deep learning models.

• Cumulator10 (Tristan Trebaol and Ghadikolaei, 2020): a python package
that estimates the energy consumption of computation based on runtime,
GPU load, and carbon intensity, with a fixed value for consumption of a
typical GPU. It also estimates the energy consumption of communication
based on the file sizes and the 1-byte model from The Shift Project (The
Shift Project, 2018). The three preceding Python programs obtain infor-
mation about a machine learning program’s energy usage from its GPU,
CPU, and DRAM.

Table 3.1 shows the evaluation of these tools according to the previously defined
criteria.

3.3 Measuring the impact of NER methods

To evaluate the use of the studied tools, we present experiments on the
NER task using two computational set-ups: the use of a server within the lab-
oratory and the use of an external shared computer facility. Two NER methods

5https://mlco2.github.io/impact/#compute
6https://codecarbon.io/
7https://github.com/responsibleproblemsolving/energy-usage
8https://github.com/Breakend/experiment-impact-tracker
9https://github.com/lfwa/carbontracker

10https://github.com/epfl-iglobalhealth/cumulator
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were used, one that addresses flat entity recognition (Ma and Hovy, 2016) and
one that addresses both flat and nested entity recognition (Wajsbürt, 2021).
These methods were evaluated on the QUAERO Broadcast News Extended
Named Entity dataset and the QUAERO French Med dataset described in
Section 2.3.1. In this section, we start by describing the experimental settings
of our experiments. Then, we present, discuss, and compare the measurement
given by our six reviewed tools when evaluated on the NER task.

3.3.1 Experimental settings
The configuration is as follows: 1 core is used; GTX 1080 Ti Nvidia GeForce

GPUs are used on the lab server, while Tesla V100 Nvidia GPUs are used on the
external shared computing facility; memory is 11GB on the server and 32GB
on the facility; 20 CPUs are used on the facility; and the experiments were
carried out in France. We documented France as the location for experiments
in the impact measurement tools as directed by the tools’ documentation.
We hypothesize that this type of set-up can be available to NLP researchers
and that it is relevant to document the implications of choosing one or the
other for a set of experiments. To reproduce the NER model proposed by
Wajsbürt (2021), we encode the words using the pre-trained Language Model
CamemBERTBASE provided by the HuggingFace library (Wolf et al., 2020)11.

3.3.2 Results and discussion
Table 3.2 presents the results of the experiments, with the CO2 equivalent

measures for training each model. To understand potential differences in CO2

measures, we also report the corresponding energy consumption in Table 3.3.

NER performance. In Table 3.2, we report the performance of systems
in terms of precision, recall, and F-measure for the NER task. As expected,
the performance is higher with the nested entity recognition tool than the
flat entity recognition tool, and the performance of both systems is above the
median and average of participants in the 2016 CLEF eHealth task where the
QUAERO French Med was used as a benchmark. However, while the results
of the nested entity recognition tool are directly comparable to the shared task
results, those of the flat entity extraction tool are not since 14-25% of nested
entities are not taken into account. We can also note that the state-of-the-art
on the Quaero French Med dataset remains the low-carbon cost dictionary-
based method submitted to the CLEF eHealth shared task by the Erasmus
team (Van Mulligen et al., 2016).

11https://huggingface.co/camembert-base
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CO2 equivalent (g.) Runtime NER metrics
(mins.)

CT EIT EU Cu MLCI GA P R F

N
E
R

(W
a
js

b
ü
rt

,
20

21
) French

News
Server 237.96 78 0.496 302 290 350.15 163:39 87.49 74.85 80.68
Facility 161.16 48 0.979 222 250 260.26 118:04 88.05 74.71 80.83

EMEA
Server 9.70 30 0,00131 19 20 16.67 9:31 73.78 59.74 66.02
Facility 8.07 1 0,002 13.7 10 14.31 6:51 77.58 58.71 66.84

MEDLINE
Server 13.44 30 0,00128 26.1 20 20.68 11:55 66.62 62.11 64.28
Facility 10.50 1 0,00259 19.4 20 20.03 9:11 79.73 78.35 78.98

N
E
R

(M
a

an
d

H
ov

y
,
20

16
) French

News
Server 87.62 12 5.1 100.04 125 104.40 58:30 78.49 69.77 73.87
Facility 46.43 6 2.87 79.05 99 102.08 46:44 80.75 70.67 75.38

EMEA
Server 2.23 0.004 0.117 4.31 0 3.83 02:14 61.77 50.27 55.43
Facility 2.28 0 0.151 3.23 0 4.99 02:27 57.46 51.98 54.58

MEDLINE
Server 2.99 0 0.137 5.20 0 5.57 03:11 43.97 41.08 42.47
Facility 2.74 0 0 0.176 0 5.67 02:58 52.39 36.68 43.15

Table 3.2: Results of NER experiments. The upper part of the table
presents the results obtained with an implementation of the method by
Wajsbürt (2021) while the bottom part presents the results obtained
with an implementation of the method by Ma and Hovy (2016). The
CO2 equivalent measures are reported according to the six selected tools
in this study, Carbontracker (CT), Green Algorithms (GA), Experiment
Impact Tracker (EIT), ML CO2 Impact (MLCI), Energy Usage (EU),
and Cumulator (Cu).

Differences in carbon footprint measurements. There are major
differences in measures obtained by our six tools, as shown in Table 3.2. This
could be due to the different values used for the average carbon intensity. For
instance, in our trials, Carbontracker uses the average carbon intensity for EU-
28 in 2017 (294.21 gCO2eq/kWh) rather than the French value (around 30 to
40 gCO2eq/kWh according to electricityMap), which overestimates the CO2

equivalent cost. Green Algorithms uses the 2020 values from electricityMap,
giving 39 gCO2eq/kWh. Experiment impact tracker uses the 2018 electrici-
tyMap value, which gives a 47.60 gCO2eq/kWh for France. Energy Usage is
based on worldwide energy mix data from the U.S. Energy Information Ad-
ministration data for 2016 and assumed carbon equivalencies by energy type.
Thus, the value for France seems to be 424 gCO2eq/kWh. ML CO2 impact
uses a default value regardless of the location, which is 432 gCO2/kWh. We
looked into the data sources offered by the tools to find a more exact estimate
for France, but the results for Carbon intensity varied significantly. Indeed, it
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Energy consumption (kWh)
CT EIT EU Cu MLCI GA

N
E

R
(W

aj
sb

ür
t,

20
21

) French News
Server 0.809 1.399 0,00117 n/a 0.68 1.38
Facility 0.548 0.865 0,00231 n/a 0.59 1.03
EMEA
Server 0.033 0.053 0,0000034 n/a 0.04 0.07
Facility 0.027 0.017 0,0000047 n/a 0.03 0.06
MEDLINE
Server 0.046 0.045 0,0000030 n/a 0.05 0.08
Facility 0.036 0.021 0,0000061 n/a 0.05 0.08

N
E

R
(M

a
an

d
H

ov
y,

20
16

) French News
Server 0.298 0.209 0.012 n/a 0.29 0.41
Facility 0.158 0.102 0.0068 n/a 0.23 0.40
EMEA
Server 0.0072 0.007 0.00028 n/a 0.01 0.02
Facility 0.0078 0.004 0.00036 n/a 0.01 0.02
MEDLINE
Server 0.010 0.007 0.00032 n/a 0.015 0.02
Facility 0.0094 0.005 0.0004 n/a 0.015 0.02

Table 3.3: Energy consumption in kWh for each method and experimen-
tal condition. The upper part of the table presents the results obtained
with an implementation of the method by Wajsbürt (2021) while the
bottom part presents the results obtained with an implementation of the
method by Ma and Hovy (2016). The measures are reported accord-
ing to the six selected tools in this study, Carbontracker (CT), Green
Algorithms (GA), Experiment Impact Tracker (EIT), ML CO2 Impact
(MLCI), Energy Usage (EU) and Cumulator (Cu).

is 53 gCO2/kWh on Carbon footprint12, leading to the 2018 emissions; with
the most recent data available, from 2020, the carbon intensity for France is
38,95. At the time of our experiments, the value on electricityMap was 31
gCO2/kWh. The European Commission link again gives varying values de-
pending on the kind of electricity considered and based on 2013 values. To
summarize, the carbon intensity values are different, even when considering
the same country.

As illustrated in Table 3.2, the CO2 equivalent values obtained by Green
algorithms and ML CO2 Impact are higher than those returned by other tools.

12https://www.carbonfootprint.com
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This could be explained by the fact that these two tools do not perform di-
rect measurements of the energy consumption but estimate it based on user
provided information and due to hardware options offered by these online al-
gorithms that do not exactly correspond to our equipment. In fact, we used
Tesla V100-PCIE-32GB GPUs on the computing facility. However, ML CO2
Impact only provides V100-PCIE-16GB or V100-SXM2-32GB, and Tesla V100
is the only GPU option available for Green Algorithms. Consequently, we pre-
sented the results for the V100-SXM2-32GB, which may result in a lack of
precision in the results. Green algorithms yield higher results than ML CO2
Impact as well, which could be explained by the differences in measuring the
carbon intensity values as illustrated in Table 3.3. Similar CO2 equivalent
measures are obtained with Carbontracker and Experiment Impact Tracker,
which use the same calculation methods. The differences in measures by com-
paring the computer facility and local server could be explained by a difference
in equipment, such as the type of GPUs. Energy usage returned lower results
compared to other tools, and this seems to be because it does not consider
GPU consumption.

Which tool is more efficient for measuring the carbon footprint
of NLP experiments? Although these tools seem to be a good start to
measuring the carbon footprint, the carbon footprint is still underestimated.
Indeed, it is only evaluated based on energy consumption during the dynamic
use phase of equipment, which counts only for a quarter of the emission sources.
Emissions resulting from the production and end-of-life phases should be taken
into account. The online tools (Green Algorithms and ML CO2 impact) are
very convenient to use as no installation is necessary. Since they are used sep-
arately from running the experiments, an estimate of the experiment’s impact
can be obtained after conducting the experiment. However, some of the re-
quired information, such as "memory requirement" (GA) or "carbon intensity"
(MLCI), is difficult to figure out. In our experience, even with direct power-
cap access, using the Python packages tracking real-time energy consumption
(Carbon Tracker, Experiment Impact Tracker, and Energy consumption) re-
quired specific permission to read RAPL results. Therefore, admin help was
necessary to use the tools. Note also that the short training times for the NER
experiments, due to the use of modest sized datasets, yield impact measures
of 0, as illustrated in Table 3.2, which suggests that the reviewed tools are
not sensitive enough to measure small impacts. As shown in Table 3.1 , the
availability of tools is quite recent and moderately used in the NLP field. As a
result, further research is required to better understand the differences between
the tools and to account for all sources of carbon emissions.
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3.4 Conclusion

In this chapter, we discussed our conducted review of six tools measuring
the carbon footprint of NLP methods by explaining our selection process and
our defined evaluation criteria. We evaluated these tools according to these
criteria, then evaluated and compared their use to assess the impact of NER
experiments. Based on our findings, we note that the differences in measures
and the used parameters of the carbon footprint measuring tools could not
lead to a recommendation of tool for NLP methods. However, we chose to
use the Carbontracker tool for measuring the CO2 equivalent for all our thesis
experiments. This tool is easy to use and incorporate with our equipment.
Note that several versions of this tool were used due to various settings, which
we will cover in the next chapters.

As mentioned in Section 2.6.3, following our work, Bouza Heguerte et al.
(2023) presented a more detailed study of available carbon emissions measure-
ment tools and evaluated two more tools, namely CodeCarbon and Eco2AI.
Several studies have also promoted the creation of green AI models (Hersh-
covich et al., 2022; Verdecchia et al., 2023; Ligozat et al., 2020), and more
research papers are measuring the impact of their proposed methods (Lakim
et al., 2022; Luccioni et al., 2022). In France, the labos1point513 collective pro-
poses support to research labs interested in evaluating their carbon footprint.
Recently, Morand (2023) conducted a review of the environmental impacts of
Natural Language Processing methods during his master’s degree in the LISN
lab.

13https://labos1point5.org/
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The material of this chapter is based on these two publications: one at the
Journal of Biomedical Informatics (JBI) (Bannour et al., 2022b) and one at
the ATALA Day about Robustness of NLP systems (Bannour et al., 2022a).
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4.1 Introduction

Electronic health records (EHRs) are typically regarded as having enor-
mous potential to enhance clinical research. However, the majority of data
contained in EHRs is in free-text form (Fu et al., 2020). Free text is the
easiest and most natural way for clinicians to communicate. Moreover, up
to 80% of important clinical information is only available in the form of un-
structured text (Escudié et al., 2017; Jouffroy et al., 2021). To gain easier
access to this information, several Natural Language Processing (NLP) tech-
niques - information extraction methods in particular - have been proposed
over the past years (Wang et al., 2018; Névéol et al., 2018a). Named Entity
Recognition (NER) is the process of identifying named entities in text and
classifying them into predefined categories. Having an accurate NER model
for the extraction of medical concepts, such as Disease, Anatomy, Drug, Sign
Or Symptom, etc., is essential for building clinical Information Extraction (IE)
systems. As reviewed in Chapter 2, the NER models progressed from tradi-
tional rule-based and terminology-based models to machine learning-based and
complex deep learning-based models. Supervised neural models have become
the go-to approach for solving this NLP task, achieving higher performance
than rule-based and terminology-based systems (Li et al., 2020a). However, to
obtain high-performing supervised NER systems, large amounts of manually
annotated corpora are required. The annotation process is known to be time-
consuming and highly expensive. Moreover, despite the technological progress
in NLP models, there are still several challenges to address in the clinical do-
main. The clinical narrative text is complex, incorporating many medical ter-
minologies, abbreviations, ambiguity, poor grammar, and nested entities (Bose
et al., 2021). Annotated clinical training data is often limited, in particular
for non-English languages. Furthermore, the personal and sensitive nature of
clinical text restricts the possibility of sharing data across institutions. Indeed,
sharing data is difficult in practice and is managed by law and regulation, such
as General Data Protection Regulation (GDPR)1. As a result, researchers can
only build and test their models on the datasets owned by their institutions,
and limited collaborations could be done with other institutions. Transferring
NLP algorithms from one institution to another can also lead to reduced perfor-
mances, as shown in Wagholikar et al. (2012). Therefore, a research challenge
arises about how we can construct shareable models that maintain the right
balance between performance and data privacy, particularly in a low-resource
setting. In our work, we address the task of shareable named entity recogni-
tion in clinical narratives written in French. Few studies have been proposed
for the French clinical NER task, which is regarded as a low-resource problem

1https://gdpr-info.eu/
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because of the lack of publicly available annotated clinical corpora due to pri-
vacy concerns, as stated in Section 2.3 of Chapter 2. To this end, we propose
a Privacy-Preserving Mimic Models architecture that enables the generation
of shareable models using the mimic learning approach. Indeed, following the
work of Baza et al. (2020), we investigate the possibility of using the mimic
learning approach to leverage both public and private data sets. The idea of
mimic learning is to annotate unlabeled public data through a private teacher
model trained on the original sensitive data. The newly labeled public dataset
is then used to train the student models. These generated student models could
be shared without sharing the data itself or exposing the private model that
was directly built on this data. These shareable models aim to improve knowl-
edge transfer among clinicians and other medical institutions without revealing
the personal health information of patients.

The remainder of this chapter is structured as follows. In Section 4.2,
we describe the corpora we are using in our experiments. We present our
Privacy-Preserving Mimic Models architecture and our used NER model, which
tackles both flat and nested entities, in Section 4.3. We then describe our
experiments in Section 4.4, presenting our generated shareable mimic models,
the experimental settings, and the baseline models. We discuss the obtained
results in Section 4.5. Finally, we report a real-world use of our contribution in
Section 4.6 before concluding the chapter in Section 4.7 with our final remarks.
For further research, we make available the silver annotations for two publicly
available clinical corpora produced in our experiments, the source code of a
NER system that addresses both flat and nested entities, as well as our best
Privacy-Preserving Mimic model.

4.2 Corpora description

To conduct our experiments and evaluate our proposed models, we use
these three publicly available clinical French corpora: CAS (Grabar et al.,
2018), DEFT (Cardon et al., 2020), and CépiDC. These datasets are described
in detail in Section 2.3.1, including their descriptive statistics in Table 2.1.
The CAS and CépiDC corpora will both be used as unlabeled corpora with
an equivalent number of tokens. The DEFT corpus will be used as an anno-
tated corpus and split into a training set of 85 documents, a validation set of
20 documents, and a test set of 62 documents.

We also use a private clinical French corpus, namely MERLOT (Campil-
los et al., 2018). This is a restricted corpus built with de-identified patient
records related to the Hepato-gastro-enterology and Nutrition specialties ob-
tained through a use agreement with a French hospital. This corpus is not pub-
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MERLOT

Language French
Domain clinical
Documents 500
Tokens 148,476
Entities 39,616
Unique entities 13,830
Nested entities 3,772
% Nested entities 9.60%
Max Depth 4

Table 4.1: Descriptive statistics for the private MERLOT corpus used in
our study.

licly available. However, the annotation scheme and guidelines are available to
the community. The annotation scheme covers 21 entities, 11 attributes, and
37 relations. For our use, we split this corpus into 320 documents for training,
80 documents for validation, and 100 documents for testing. Table 4.1 presents
descriptive statistics for the MERLOT corpus, including details about nested
entities.

We also use two medical dictionaries that were available in-house:

• UMLS-derived dictionary – a dictionary containing French terms
from the 2012AA and 2020AA versions of the Unified Medical Lan-
guage System (UMLS) (Lindberg et al., 1993), terms from the Unified
Medical Lexicon for French (UMLF) (Zweigenbaum et al., 2003), some
terms from the International SNOMED and ICD10 terminologies, trans-
lated terms from the English version of UMLS 2012AA and validated on
French corpus as well as additional synonyms (Van Mulligen et al., 2016).

• Jeux de Mots – a dictionary drawn from the knowledge base JeuxDe-
Mots, in particular its specialized clinical terms component (Lafourcade
and Nathalie, 2020; Lemaître et al., 2020).

Scheme annotation alignment. To compare the performance of our
models, we perform an alignment step between the entity types of our used an-
notated corpora: MERLOT and DEFT. Table A.1 (Appendix A) describes the
details of this alignment step. Note that six entities from MERLOT (i.e., Hos-
pital, Localization, Concept_Idea, Genes_Proteins, Devices, BiologicalProces-
sOrFunction) have no equivalent.

There is a major ambiguity issue between diseases and signs or symptoms
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since diseases can be considered symptoms in some cases (Hassan et al., 2015).
Therefore, we merged these two types of entities by including the Sign Or
Symptom category into the Disorder category.

4.3 Privacy-Preserving Mimic Models

In this section, we go over our proposed Privacy-Preserving Mimic Models
architecture, which is based on Mimic learning and describe the NER model
that we are using to address the task of clinical NER and which tackles both
flat and nested entities.

4.3.1 Privacy-Preserving Mimic Models architecture
The main goal of our approach is to enable data providers to generate share-

able models that end users could use without sharing sensitive data. Data
providers could be hospital institutions with medical data warehouses having
large medical patient reports. End users could be other hospital institutions,
clinicians, or physicians who aim to use these models to propose better treat-
ment strategies. Figure 4.1 depicts an overview of our proposed architecture.

Figure 4.1: Architecture of the Privacy-Preserving Mimic Models.

Teacher model. As described in Figure 4.1, the sensitive clinical nar-
rative reports are used to train an accurate teacher model. Several studies
have revealed that it is possible to approximately rebuild a portion of train-
ing data by just observing the predictions (Abadi et al., 2016; Chang and Li,
2018; Boulemtafes et al., 2020). Carlini et al. (2021) revealed that diverse
data extraction attacks could be performed on large language models such as
GPT-2 (Radford et al., 2019) to recover training sensitive data. As a result,
this private teacher model will only be used to produce silver annotations for
public data, which will be used to train the shareable student models. Indeed,
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the teacher model will be kept private, and similarly to sensitive data, it could
not be shared for public use.

Student model To generate a student model, we use the teacher model to
annotate the unlabeled publicly available corpus. This way, we could create
a new annotated corpus. The latter is used to train the student model. Al-
though we follow the same training process as the teacher model, this student
model training might be viewed as a knowledge transfer process between the
teacher and the student model in a privacy-preserving manner. We assess the
performance of the student model on the original sensitive data.

As illustrated in Figure 4.1, the preprocessing steps are totally independent
of the private sensitive data, and the model weights are reinitialized before
training these student models on the silver-labeled public data. Thus, potential
attackers could only use the silver labels generated by the private model on
non-sensitive public data, which we argue is insufficient to retrieve personal
health information from the sensitive data.

4.3.2 The NER model
The named entity recognition model, illustrated in Figure 4.2, addresses

both flat and nested entity recognition and comprises three elements: the text
encoder, the word tagger, and the bounds matcher.

The text encoder computes features for each word in the sequence. We
first concatenate the embeddings produced by a CamemBERT (Martin et al.,
2020) model, a character level features using a char CNN encoder and static
French FastText embeddings (Bojanowski et al., 2017). We compute the BERT
embedding of a word by averaging the embeddings of each of its subwords since
BERT uses a sub-word tokenization scheme. These embeddings are then fed
to a multilayer Bi-LSTM with sigmoid residual connections.

The word tagger component consists of a set of Conditional Random Field
layers (Lafferty et al., 2001) that predicts entities by labeling each word of the
input sequence with the BIOUL tagging scheme. Since multiple entity types
in a corpus may overlap, we run multiple CRFs in parallel, one for each entity
type, with five possible tags each. Each word in the sequence is classified
as a (B)egin word, (I)nner word, (O)uter word, (U)nary word (a word that
is both a begin word and an end word), or (L)ast word for each label. The
scores obtained for each word are then run through a CRF, and the most likely
BIOUL tag sequence for each label is then extracted by running the Viterbi
algorithm (Viterbi, 1967). These tags are then decoded to produce candidate
triplets (Begin, End, Label).

Finally, the bound matcher is used for nested entities of the same type.
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Because the previous labeling scheme may generate false positives, these are
filtered by checking that the begin and end words of a candidate do indeed
bound an entity of the given label. This component projects each word into
nlabel begin and nlabel end embeddings. Each candidate (B, E, L) is then scored
by computing the dot product between the Lth begin embedding of its begin
word B, and the Lth end embedding of its end word E. During prediction, if
the tagger predicted a begin or end bound but is not associated with any other
bound by the matcher, we match it with the begin or end bound that gives the
highest score, even if this score is negative. This ensures that each terminal
predicted by the tagger is part of at least one entity. This bound matcher is a
biaffine decoder similar to the one of Yu et al. (2020).

This NER model is trained jointly by minimizing the sum of the losses of
each component. The loss of the tagger is computed by summing the loss of
each CRF (one per label), while the loss of the matcher is computed by adding
the binary cross-entropy loss for each (begin, end, label) valid triplet. A triplet
is valid when begin ≤ end, and the length is below the maximum entity size. In
our experiments, we set the maximum entity size to 40 words. Further details
about this NER model are presented in Wajsbürt (2021).

4.4 Experiments

In this section, we describe our teacher model trained on the clinical private
corpus, the three generated Privacy-Preserving Mimic student models using the
three publicly available corpora, and the experimental settings we use to assess
the effectiveness of our approach. We also discuss the defined baseline models
against which our models are compared.

4.4.1 Generated Privacy-Preserving Mimic models
As illustrated in Figure 4.3a, based on a teacher model trained on the MER-

LOT corpus, we build three Privacy-Preserving Mimic student Models trained
on the three corpora: DEFT, CAS and CépiDc. The training corpus is the
only difference between these three Privacy-Preserving Mimic student Models.
To train these models, we incrementally augment the small portions of gold
standard annotations in our disposal with silver annotations generated by the
teacher model. The gold standard annotations are created by manually correct-
ing the silver annotations of 20 documents (7,433 tokens) for the DEFT/CAS
corpora and the silver annotations of 206 documents (2,456 tokens) for the
CépiDc corpus using the MERLOT annotation scheme guideline. The agree-
ment between the gold and the silver annotations in terms of exact F-measure
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Figure 4.2: Architecture of the NER model.

is equal to 0.758 for the DEFT/CAS corpora and 0.487 for the CépiDc corpus2.
Figure 4.4 shows a text sample with silver annotations automatically produced
by the teacher model.

4.4.2 Experimental settings
For our experiments, the NER model weights (including CamemBERT)

were optimized with Adam without weight decay for 20 epochs. Note that this
neural NER model3 achieves 0.931 of exact F-measure, using large BERT (De-
vlin et al., 2019) embeddings, on the coNLL English dataset (Tjong Kim Sang
and De Meulder, 2003), containing only flat entities and 0.784 of exact F-
measure, using large BioBERT (Lee et al., 2020) embeddings, on GENIA (Kim
et al., 2003), a widely used biomedical English dataset containing both flat and

2The gold and silver annotations used to create the DEFT/CAS student models
are available at https://zenodo.org/record/6451361.

3The source code for the NER system is available at https://github.com/
percevalw/nlstruct
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(a) Generated Privacy-Preserving Mimic Models (b) Public Model

Figure 4.3: Figure 4.3a describes the generation process of our three Privacy-
Preserving mimic student models, which are trained using three corpora:
DEFT, CAS and CépiDC. Figure 4.3b illustrates a public baseline model
trained on the original publicly available annotations of the DEFT corpus.

Figure 4.4: Excerpt of the CAS corpus with silver annotations. Trans-
lation of text into English: "Mr K. M is a 38 yo male who was admitted to the
ER for anuria. His antecedents are notable for bilateral renal colic. Upon eval-
uation, he was noted to have tenderness in the lower back area bilaterally. CT
scan of the urinary tract showed a retroperitoneal growth encasing arteries and
ureters consistent with retroperitoneal fibrosis (Figure 2)." The annotations
are correctly produced for the three first sentences, including nested entities.
However, in the last sentence, the word "rétropéritonéale" ("retroperitoneal")
is an anatomy entity type that was not annotated in the first occurrence and
was incorrectly annotated as a Localization entity type in the second. We can
also note that the annotation of "Figure 2" as a measure entity is incorrect.
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nested entities. Most of our developed models in this work are trained using
an early stopping with a patience of 3 epochs, except two models trained on
small portions of documents (less than 8,000 tokens) where an early stopping
with a patience of 10 epochs is used. We repeat each experiment 5 times. All
models were trained using a GPU NVIDIA GeForce GTX 1080 Ti.

4.4.3 Baseline models
The performance of our Privacy-Preserving Mimic Models was compared

to three defined baseline models: a Private Model, a Public Model, and a
Dictionary-based method evaluated on two medical dictionaries. The following
section details the defined baseline models and their implementation.

1. Private Model: This model is the teacher model illustrated in Figure
4.3a. The teacher model is trained on the original sensitive corpus.

2. Public Model: This model, as shown in Figure 4.3b, is trained on
publicly available clinical corpora, assuming that the annotation scheme
is relatively similar to the original sensitive corpus.

3. Dictionary-based Models: These models consist of a simple matching
between the original sensitive corpus and the dictionary terms. To build
these models, we use the QuickUMLS algorithm (Soldaini and Goharian,
2016).

These models are evaluated on the test set of the original sensitive corpus
MERLOT.

4.5 Results & discussion

In this section, we report and discuss the results of our experiments by
analyzing the privacy-preservation strategy and the NER performance. Our
models are evaluated using the evaluation metrics provided in Section 2.3.7.
We make a brief comparison of our models to the related work. As mentioned
in the previous chapter, we also report the carbon footprint of our experiments.

4.5.1 Privacy-preservation analysis
According to the European Working Party on the protection of individu-

als concerning the processing of personal data4, privacy-preserving techniques
should be evaluated based on three criteria: (i) is it possible to identify an

4https://ec.europa.eu/justice/article-29/documentation/
opinion-recommendation/files/2014/wp216_en.pdf
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individual directly (ii) correlate multiple pieces of information that could lead
to the identification of an individual and (iii) is it possible to infer information
related to an individual. We provide below an evaluation of each of these risks
related to the data and models we are releasing.

Risks related to (i) have been evidenced in solidly de-identified corpus (Car-
rell et al., 2019). However, we are not sharing the sensitive data itself or the
private model built on this data. Therefore, we believe that retrieving personal
information from sensitive data is not directly possible. Indeed, we share only
the silver labels produced on public non-sensitive data by the private teacher
model, which we argue is insufficient to retrieve personal information directly.

Risks related to (ii) involve identifying a person by linking numerous pieces
of information about the same individual in the same corpus or in two dis-
tinct corpora. A worse-case scenario situation would be that the transfer of
annotations from the private corpus to the public corpus consists in marking
in the public corpus only entities that are present in the private corpus. In this
worse-case scenario, the “silver annotations” would consist of excerpts of the
private corpus. We have established that no direct identifiers can be leaked
that way because the private corpus was unidentified, and the public corpus
does not contain identifying information. Furthermore, the risk of recovering
phenotypes (e.g., a combination of disorders or symptoms experienced by one
patient) is also void because the set of annotations in the public corpus is
globally aggregated. The analysis of the public annotations produced by the
private model reveals that we are not dealing with the worst-case situation
because many entities not present in the private corpus are, in fact, annotated.

An example of a potential attack concerning the third criterion mentioned
above (iii) is the membership inference attack, which seeks to recover infor-
mation about whether a specific person was in the training data samples or
not. The membership inference attack model is a binary classifier whose inputs
are a target data sample, a target model, and some auxiliary knowledge (Zou
et al., 2020). We can consider three possible scenarios: an attack could be
made on (1) the teacher model to infer the membership status of the private
dataset, (2) the student model to infer the membership status of the student
dataset and (3) the student model to infer the membership status of the pri-
vate dataset. Given that we do not share the private teacher model, revealing
information about the private corpus is not possible. As a result, the first
scenario is ruled out. In the second scenario, we believe that having access to
the student model may result in the disclosure of student dataset information.
However, the student dataset consists of publicly available clinical narratives
with produced silver annotations, which we make available for future research.
Therefore, there is no risk of disclosure of sensitive data in this case. Concern-
ing the third scenario, we think that access to the student model would not leak
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information about the private corpus. Indeed, only the student dataset stated
in the preceding scenario would be released, and we argue that no potential
attack could reveal information about sensitive private data using the silver
annotations generated by the teacher model on publicly available non-sensitive
data. Zou et al. (2020) explored comparable attacks in the context of transfer
learning and reached similar conclusions.

However, we acknowledge that the evolution of technology and the defini-
tion of privacy risks may evolve over time; the annotations and student model
that we release may contribute to future exploration of privacy attacks.

4.5.2 Performance of NER models
We report and discuss the overall performance of our NER models on the

test set of the private MERLOT corpus, as well as the results per entity type
for our best Privacy-Preserving student model5. We investigate the impact of
training data size and corpus genre, and we report additional NER experiments
using two newly released biomedical language models for French.

Overall results. Table 4.2 summarizes the overall results based on an exact
match of our baseline models and our three Privacy-Preserving Mimic Models
trained on a combination of gold and silver standard annotations. The best
results are obtained with the private teacher model with an F1 score of 0.857.
The dictionary-based models have the worst results, with an F-measure of
0.089 for the model using the JDM dictionary and an F-measure of 0.2 for the
model using the UMLS dictionary. The best performance obtained with the
CAS privacy-preserving model is inferior to that of the teacher private model
(0.706 vs. 0.857 of F-measure) but well above the performance of the other
baseline models (0.465 of F1 score for the public NER model trained on DEFT
corpus using the original gold standard annotations according to the DEFT
annotation scheme). The CépiDc privacy-preserving model has the higher CO2

equivalent measure (169 g), and the public DEFT model has the lowest carbon
footprint with 22 g of CO2 equivalent measure.

5Our best CAS Privacy-Preserving Mimic model is available at https://
huggingface.co/NesrineBannour/CAS-privacy-preserving-model
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P R F CO2 eq.
(g.)

Private Model (MERLOT, teacher model) 0.852 0.862 0.857 123

Public Model (DEFT ) 0.592 0.383 0.465 22
Dictionary-based Model (JDM ) 0.153 0.062 0.089 -
Dictionary-based Model (UMLS) 0.246 0.168 0.200 -

Privacy-Preserving Mimic Model (DEFT,
student model)

0.604 0.743 0.666 30

Privacy-Preserving Mimic Model (CAS, stu-
dent model)

0.628 0.806 0.706 169

Privacy-Preserving Mimic Model (CépiDc,
student model)

0.580 0.710 0.638 394

Table 4.2: Overall results on test corpus.

Although the best results are obtained with the private teacher model as
reported in Table 4.2, the use of this private model to create silver standard
annotations on the public corpus DEFT/CAS seems to be a successful strat-
egy to increase the performance of clinical NER with a model trained on the
public corpus. In fact, a gain of 20 pts is obtained when comparing the DEFT
public model trained using the DEFT original annotation scheme (0.465 of F-
measure) and the DEFT privacy-preserving model (0.666 of F-measure). Good
performance is also noticed for the CépiDc privacy-preserving model with an
F-measure of 0.638. This solution offers a good trade-off between performance
and privacy preservation. As mentioned earlier, the lowest results are obtained
with the dictionary-based models. Note that no pre-processing has been per-
formed on the dictionaries utilized in the study, and not all entity types are
present in these dictionaries. In fact, only these five entity types are present:
ANAT, CHEM, DISO, LIVB, and PROC. Moreover, there is a lot of ambiguity
in short names and abbreviations. For instance, the word "être" can denote the
infinitive form of the verb to be or the generic noun for living being. It is listed
in our dictionaries as a LIVB entity, whereas the verb form is more frequent in
the corpus than the noun. Due to these issues, the precision of these models
remains low. Dictionary-based methods suffer as well from a low recall rate
due to large variations in medical terminology and due to possible differences
in the definition of entity types boundaries with the annotation guideline of
our corpus.

Table 4.3 compares the performance of student models trained on gold an-
notations augmented by silver annotations produced by the teacher model to
that of student models trained solely on silver standard annotations for CAS
and CépiDc corpora. The performance of models trained on only silver stan-
dard annotations is very close to the performance of models trained on the
combination of a small set of gold standard annotations and silver annotations
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(an F1 score of 0.707 vs. 0.706 for CAS and an F1 score of 0.634 vs. 0.638 for
CépiDc). These findings further demonstrate the good quality of the produced
silver annotations for both CAS and CépiDc corpora. Indeed, we can observe
similar results to our augmentation strategy without the need for any manual
or corrected annotations for the two public corpora.

P R F CO2 eq.
(g.)

Privacy-Preserving Mimic Model (CAS, stu-
dent model)

0.628 0.806 0.706 169

Privacy-Preserving Mimic Model (CAS, only
Silver annotations)

0.631 0.804 0.707 200

Privacy-Preserving Mimic Model (CépiDc,
student model)

0.580 0.710 0.638 394

Privacy-Preserving Mimic Model (CépiDc,
only Silver annotations)

0.575 0.707 0.634 412

Table 4.3: Comparison of models trained on only silver annotations ver-
sus models trained on a combination of both gold and silver annotations.

Results per entity type of our best model. Table 4.4 presents the
results per entity type of the CAS privacy-preserving mimic model that delivers
the best results based on exact and partial matches.

Exact match Partial match
Precision Recall F-score Precision Recall F-score

ANAT 0.823 0.858 0.840 0.903 0.930 0.924
DISO 0.728 0.763 0.745 0.867 0.900 0.882
CHEM 0.866 0.903 0.884 0.902 0.940 0.921
MEAS 0.660 0.850 0.737 0.722 0.924 0.804
LIVB 0.336 0.875 0.486 0.377 0.952 0.540
TEMP 0.859 0.886 0.872 0.940 0.958 0.949
PROC 0.680 0.784 0.728 0.768 0.882 0.821
MODE 0.747 0.705 0.725 0.747 0.705 0.725
DOSE 0.791 0.741 0.762 0.958 0.858 0.905
Localization 0.589 0.665 0.624 0.683 0.772 0.724
BiologicalProcessOrFunction 0.625 0.535 0.570 0.672 0.571 0.610
Devices 0.654 0.716 0.679 0.864 0.902 0.885
Concept_Idea 0.668 0.775 0.717 0.699 0.812 0.751
Genes_Proteins 0 0 0 0 0 0
Hospital 0.319 0.602 0.415 0.381 0.722 0.497

Overall 0.628 0.806 0.706 0.704 0.893 0.787

Table 4.4: Results per type entity for the CAS Privacy-Preserving Mimic
Model on test corpus.

The largely covered entity types in the MERLOT distribution (see Fig-
ure 4.6) obtain the best results based on exact match. For instance, an exact
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F-measure of 0.84 is obtained for the anatomy entities (ANAT) representing
12.43% of MERLOT annotations. Similar results are observed for disorders
(DISO), measurement (MEAS), temporal expressions (TEMP), and medical
procedures (PROC). Since these entity types are well represented in the MER-
LOT distribution, the teacher model can produce accurate silver CAS an-
notations, and therefore good performance is achieved by the CAS student
model for these relevant entities. For poorly represented entities such as Genes
and proteins (Genes_Proteins) (0.014% of MERLOT annotations), Living be-
ings and persons (LIVB) (0.16% of MERLOT annotations), healthcare insti-
tutions (Hospital) (2.25% of MERLOT annotations) and Biological process
or Function (2.53% of MERLOT annotations), low F-measures are observed
(less than 0.6 of exact F-measure for LIVB, Hospital and Biological process
or Function and 0 for Genes_Proteins). However, high F-measures are also
reported for some poorly represented entities in MERLOT, such as chemical
drugs (CHEM) (3.84% and an exact F-measure of 0.884), drug forms and ad-
ministration routes (MODE) (0.7% and an exact F-measure of 0.725), dosage
and strength (DOSE) (2.59% and an exact F-measure of 0.762) and concepts
and ideas (Concept_Idea) (8.28% and an F-measure of 0.717). This may be
due to the well-defined nature of these entities. As for the Localization and
the diagnosis or treatment devices (Devices), which account respectively for
2.35% and 2.97% of MERLOT distribution, an exact F-measure of 0.624 and
0.602 are respectively observed. Localization entities are often embedded in
anatomy entities. As a result, it is difficult to distinguish the boundaries of the
two entities. For example, in the MERLOT annotation guideline, "membres
inférieurs" ("lower limbs") is annotated as an anatomy entity type, whereas
the CAS privacy-preserving model also predicts "inférieurs" ("lower") as Lo-
calization. We can also have Localization entities such as "au niveau antérieur"
("at the anterior level") in MERLOT while the CAS predicted entity is rather
"antérieur" ("anterior"). That is why we can notice a difference of 10% be-
tween the exact match F-measure and the partial match F-measure for the
Localization entity type. Issues with boundary definition are common for the
device’s entity type, particularly for extended device names. For instance,
"Coloscope CFQ 145I (194315) BIO 194315 Et Vidéo PCF 160 AL (194315)"
is predicted by our CAS model as two devices entities "Coloscope CFQ 145I"
and "Vidéo PCF 160 AL (194315)". This explains the observed difference of
20.6% between exact match F-measure and partial match F-measure for this
entity type.

Influence of training data size. Figures 4.5a and 4.5b present the
impact of increasing the training corpus size on the performance of the
DEFT/CAS and CépiDc privacy-preserving models. Each experiment is re-
alized using an equivalent number of tokens for both DEFT/CAS and CépiDc
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corpora. Better performance in terms of F-measure is noticed while augment-
ing the training corpus size with Silver annotated documents.

(a) DEFT/CAS

(b) CépiDc

Figure 4.5: Performance as the training data size increases.
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As shown in 4.5a and 4.5b, exact F-measures of 0.226 and 0.557 are obtained
respectively for the CépiDc and DEFT/CAS corpora, when using solely gold
standard annotations (206 documents of CépiDc corresponding to 2,456 tokens
and 20 documents of DEFT corresponding to 7,433 tokens) in the training
corpora. However, by incrementally adding produced silver annotations, we
reach maximum performance with respective F-measures of 0.706 and 0.638
for the DEFT/CAS and CépiDc corpora, respectively. This performance is
achieved using an equivalent number of tokens for both corpora: a total of
717 documents corresponding to 231,662 tokens for DEFT/CAS and a total of
23,750 documents corresponding to 237,777 tokens for CépiDc. Building such
a number of manually annotated documents is difficult and time-consuming.
Therefore, we believe that generating silver standard annotations is a good
way to increase performance and generate accurate privacy-preserving models.

Influence of the annotation scheme. Figure 4.6 illustrates the fre-
quency distribution of gold annotations of entity types for MERLOT and
DEFT corpora as well as the frequency distribution of the generated silver
annotations of entity types for CAS and CépiDc corpora.

Figure 4.6: Frequency distribution of annotations of entity types.

The best results for NER are obtained with the privacy-preserving model
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that shows the closest distribution to the private data, namely, CAS silver
standard annotations compared to MERLOT. We can also notice that for the
DEFT corpus, the best results are also obtained when the annotation scheme
used in training data is the same as that of the target private data (MER-
LOT). Despite the equivalence drawn between the DEFT public annotation
scheme and the MERLOT annotation scheme, the lower performance of NER
for the public model implies that the definition of equivalent entities differs
significantly. An analysis of the annotated data shows that the entities in the
DEFT scheme tend to have larger spans than in the MERLOT scheme, and
in some cases, the two schemes diverge on entity types to be assigned to spe-
cific text snippets. For example, the phrase "tension artérielle de la patiente
demeure acceptable (91–106/53–59 mm Hg)" (patient blood pressure remained
adequate (91–106/53–59 mm Hg) was annotated as a sign and symptom entity
in DEFT while it would be annotated partly as a Biological Process Or Func-
tion ("tension artérielle" / blood pressure), person ("patiente" / patient) and
measure ("acceptable" / adequate as qualitative measure and "91–106/53–59
mm Hg" as quantitative measure). This type of divergence in schemes impacts
both precision and recall when comparing the two options. The good perfor-
mance of the Public Model on the DEFT test data supports this hypothesis
(Precision: 0.778, Recall: 0.798, F-measure: 0.788).

Influence of corpus genre. Death certificates are short documents (on
average, 10 tokens/document vs. 323 tokens/documents for CAS and 297 for
MERLOT) with a specific structure, where each line contains information on
the cause of death, starting with the most immediate cause and going back
to the general health status of the patient. We also computed a measure of
similarity between the language distributions in the study corpora (Seddah
et al., 2012) and found that CAS was closer to MERLOT (noisiness score
of 0.27) than CepiDc (noisiness score of 1.02). The entities found in death
certificates are mainly disorders and anatomy: Figure 4.6 shows that these
two entity types account for 2/3 of all entities in the corpus. This is due to the
nature of the documents, which relate to the medical problems experienced
by the patient leading to their death. The focus is, therefore, on problem
description rather than treatment, diagnosis or procedures, which are also
found in clinical notes - and case reports contained in CAS.

NER results using recent biomedical language models. With the
recent release of two biomedical language models for French, CamemBERT-
bio (Touchent et al., 2023) and DrBERT (Labrak et al., 2023), we have done
additional experiments by generating teacher and student models using these
language models and using the MERLOT and the CAS corpora. We use
the DrBERT-4GB and the camembert-bio-base models. Table 4.5 compares
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the results of these experiments with our private teacher model and our best
CAS privacy-preserving mimic model based on the CamemBERT model. The
best results are obtained using the CamemBERT-bio embeddings, with an F-
measure of 0.869 for the teacher private model and an F-measure of 0.723 for
the CAS privacy-preserving mimic model. Lower results are obtained using the
DrBERT model, with an F-measure of 0.848 for the teacher model and an F-
measure of 0.707 for the CAS privacy-preserving student model. Despite being
trained from scratch using domain-specific biomedical corpora, the DrBERT
model performs worse than the CamemBERT-bio model, developed via con-
tinual pretraining from a French model. Moreover, we can notice that slight
improvements could be obtained using domain-specialized language models,
particularly the CamemBERT-bio embeddings. Such observations make us
wonder if building and using these specialized models is worthwhile, especially
given their considerable computing and environmental impacts and privacy
leakage risks.

Precision Recall F-Measure CO2 eq.
(g.)

Private Model, CamemBERT (MERLOT,
teacher model)

0.852 0.862 0.857 123 (*)

Private Model, CamemBERT-bio (MER-
LOT, teacher model)

0.863 0.876 0.869 30

Private Model, DrBERT (MERLOT,
teacher model)

0.845 0.852 0.848 46

Privacy-Preserving Mimic Model,
CamemBERT (CAS, student model)

0.628 0.806 0.706 169 (*)

Privacy-Preserving Mimic Model,
CamemBERT-bio (CAS, student
model)

0.650 0.814 0.723 38

Privacy-Preserving Mimic Model,
DrBERT (CAS, student model)

0.671 0.748 0.707 41

Table 4.5: Comparison of our models versus models trained using French
biomedical language models. (*) denotes that these measures are calcu-
lated by a previous version of the Carbontracker tool

4.5.3 Comparison to related work
Ge et al. (2020) introduced a privacy-preserving medical NER method based

on federated learning. A private module, composed of Bi-LSTM and CRF
layers, is used to capture the characteristics of the locally stored medical data,
and a shared module, composed of word-level CNN and embeddings layers,
is used to capture the shared knowledge among different medical platforms.
Baza et al. (2020) used the mimic learning approach to address the privacy
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issues. This approach implies using a model trained on the original sensitive
training data in order to annotate a large set of unlabeled data and using
these annotations to train a new model. This way, a knowledge transfer from
the original model to the newly trained one is initiated without sharing the
sensitive data.

Compared to these related works (Ge et al., 2020; Baza et al., 2020), our
strategy seems to better preserve the privacy of personal patient information
since neither the original sensitive data nor the private model weights are
shared. Despite that Federated Learning (McMahan et al., 2017) used in Ge
et al. (2020) have been originally proposed to better preserve privacy by only
exchanging model parameters between local nodes through a centralized server,
personal information could still be extracted from local training parameters
(Truong et al., 2021; Melis et al., 2019; Hitaj et al., 2017).

A direct comparison with Baza et al. (2020) is difficult due to differences
in the used datasets. In fact, we encounter extra challenges while dealing
with narrative clinical text due to the complexity and the variety of medical
terminologies presented in the clinical text. However, our results are in agree-
ment with the results presented in Baza et al. (2020) since student models are
proved to be able to mimic the teacher model performance without access to
the original private data.

4.5.4 Carbon footprint
As stated in Chapter 3, we use the Carbontracker tool to measure the car-

bon footprint of training our models. Note that the used version at the time of
our experiments computes its estimates by using the average carbon intensity
in the European Union in 2017 instead of the France value, even if it success-
fully detects France as the location of the experiments. Carbon footprint is
reported in Table 4.2 in terms of CO2 equivalent measure in grams. The high-
est CO2 emissions are observed when training the CépiDc privacy-preserving
mimic student model (394 g). Our best CAS privacy-preserving model has
lower CO2 emissions: 169 g. However, to obtain this model, we first train the
private model to produce the silver annotations. Therefore, a total of 292 g of
CO2 emissions is estimated. Although CAS and CépiDc corpora are equivalent
in the number of tokens, the CO2 emissions value is higher for the CépiDc cor-
pus (a total of 517 g). This could be due to the high number of documents used
for training the CépiDc corpus (23,750 documents). As mentioned in Strubell
et al. (2019), deep learning models can have a significant environmental impact
due to the high energy consumption of the computing equipment necessary to
execute them. The estimated CO2 emissions from training both the teacher
model and the CAS student model is roughly equivalent to 2.52 km traveled by
car. The estimated CO2 emissions from training both the teacher model and
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the CépiDc student model is equivalent to 4.37 km traveled by car.

The carbon footprint of the newly generated models, based on
CamemBERT-bio and DrBERT, is reported in Table 4.5. The DrBERT-based
models have the highest CO2 emissions: 46g for the teacher model and 41g
for the privacy-preserving model. The CamemBERT-bio-based models have
lower CO2 emissions: 30g for the private model and 38g for the student model.
These measures are obtained with a newer version of Carbontracker, which ex-
plains the major differences in CO2 emissions compared to our models, based
on CamemBERT. Indeed, in this version, the average carbon intensity of the
detected country6 is used.

For France, the used value is now 85 gCO2eq/kWh instead of the old average
carbon intensity in the European Union in 2017, i.e., 294.21 gCO2eq/kWh.
Moreover, the value for estimating the CO2 equivalent emission for km traveled
by car is also modified. To sum up, we believe that the reported carbon
footprint of our initial models is overestimated, and similar measures to those
of the newly generated models could be obtained using these new parameters
of Carbontracker. It is worth noting that the online tool Green Algorithms7,
which is based on information provided by the user, has created a feature that
allows users to store their experiment settings and roll back to older versions
of the tool when needed, allowing for better impact measurement traceability.

4.6 Practical use

For a more practical assessment of our best student model, our shareable
CAS privacy-preserving mimic model was used on semi-structured radiology
documents by computer scientists working in the medical informatics team at
the Georges Pompidou European Hospital (Hôpital Européen Georges Pom-
pidou, HEGP). These clinical documents describe the tumor progression of
patients who were followed at the hospital. The analysis of radiology reports
is guided by the Response Evaluation Criteria In Solid Tumours (RECIST 1.1)
to define and monitor target lesions, non-target lesions, and the appearance
of new tumor lesions. Indeed, the radiologist classifies response to treatment
into four categories: Stable Disease (SD), Progressive Disease (PD), Partial
Response (PR), or Complete Response (CR). An overall conclusion is also pro-
vided for the response to treatment of all the patient’s tumor lesions, as shown
in Figure 4.7. Such medical information is not stored in databases and can only
be obtained in the plain text of the imaging reports. Some information from
these reports was extracted using an in-house tool based on regular expressions,

6https://ourworldindata.org/grapher/carbon-intensity-electricity
7http://www.green-algorithms.org/
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namely Py-Rex. However, certain information, such as anatomical locations,
required the use of a more modular tool. Our privacy-preserving mimic model
was therefore used to automatically extract the lesions, the anatomical entities
as well as the location of target lesions (i.e., the Anatomy, Disorder, and Lo-
calization entities as defined in the MERLOT annotation scheme (Campillos
et al., 2018)). Figure 4.7 illustrates an example of a radiology report with
the three extracted types of entities. There has been no formal evaluation at
scale, but an empirical evaluation indicates that our approach performs well
in extracting both flat and nested entities. Indeed, 1864 entities describing
the anatomical lesion sites are extracted from 859 radiology reports of HEGP
patients from 2010 to 2020. This suggests that our method might be helpful
to clinicians in future research. As a result, we make available our Privacy-
Preserving NER model8 and is now being discussed for integration into the
medkit tool9, a Python library built by the HeKA team10 to facilitate the
development of applications for learning health systems.

4.7 Conclusion

Throughout this chapter, we tackled the task of shareable Named Entity
Recognition in clinical narratives in French, which may be defined as a low-
resource problem from the machine learning perspective since no annotated
clinical corpus is publicly available. Indeed, we studied the use of the mimic
learning approach to leverage both public and private corpora by proposing
a Privacy-Preserving Mimic Models architecture. This architecture enables
a knowledge transfer to a student model through a teacher model trained on
private sensitive data. In fact, the teacher model is used to annotate unla-
beled public data. The newly labeled public corpus is then used to train the
student model. As a result, the generated student models could be shared
without revealing the private data itself or exposing the private model that
was directly built on this data. Experiments on different medical corpora have
shown that our strategy offers a good compromise between performance and
data privacy preservation. We also provide a use case of our best shareable
privacy-preserving mimic model carried out by the medical informatics team
at the Georges Pompidou European Hospital as an example of a real-world
use of our models. We make available the generated silver annotations for
the two publicly available corpora (i.e., DEFT and CAS), the source code of
the NER system that tackles both flat and nested entities, as well as our best

8https://huggingface.co/NesrineBannour/
CAS-privacy-preserving-model

9https://github.com/TeamHeka/medkit
10https://team.inria.fr/heka/fr/
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Figure 4.7: An example of the extracted types of entities from a radiology
report, using our shared privacy-preserving CAS mimic model.
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Privacy-Preserving Mimic Model. Note that the data privacy preservation was
assessed empirically by analyzing the various attacks that could be performed,
but as mentioned in Section 2.5 (Chapter 2), it would be better to have met-
rics or methods that could identify whether or not the trained models leak
personal information or how well the models respect data privacy. The Silver
annotations and the student models we offer could also be useful to future
investigations of privacy attacks.
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The material of this chapter is based on two publications: one at the TALN
conference (Bannour et al., 2023b) and one at the BioNLP workshop associated
with the ACL conference (Bannour et al., 2023a).

5.1 Introduction

Constructing patient timelines entails extracting the key elements from un-
structured clinical free-text notes in Electronic Health Records (EHRs), such
as major clinical events, temporal expressions, and temporal relations. Tem-
poral relations enable the ordering of temporal information about a patient’s
past treatments, disease evolution, treatment responses, and toxicity rates.
The performance of temporal relation extraction relies heavily on the quality
of extraction of events and temporal expressions, which increases the chal-
lenges in developing end-to-end systems for timeline construction, particularly
when working with real-world data. Moreover, the definition of events strongly
depends on the text type, the application task, and the domain, making cross-
domain generalization challenging. As reviewed in Section 2.4 of Chapter 2,
most proposed research efforts for temporal relation extraction on the clin-
ical text were through shared tasks and their related datasets. This is due
to the costly and time-consuming annotation process, which requires domain
expertise and remains difficult even for humans, as evidenced by moderate
inter-annotator agreement (Verhagen et al., 2007; Tourille et al., 2017b). In
our work, we propose a novel event- and task-independent representation of
temporal relations that allows the identification of homogeneous text portions
from a temporal standpoint and classify their temporal positioning according
to the Document Creation Time (DCT). This results in a much faster and
easier task for human annotators through a simpler annotation scheme, as
well as more reproducible through different event types. We argue that the
loss of expressiveness of this scheme does not preclude useful applications on
clinical reports. Such problem modeling does not require the prior definition
of events and temporal expressions. The temporal relation extraction is cast
as a sequence token classification problem. To evaluate our temporal posi-
tioning models, we have defined and extracted a posteriori the clinical events
that interest us, i.e., the chemotherapy toxicity events, and infer the temporal
positioning of these events using our models. Each event will have the same
temporal positioning as the text portion that includes it.

In this chapter, we describe our created corpora of clinical text written in
French in Section 5.3, including our annotation process and guidelines and
the main challenges we experienced. Then, we present the traditional tem-
poral relation representation and our novel event-independent representation
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of temporal relations in Section 5.2. Section 5.4 describes our temporal posi-
tioning models, chemotherapy toxicity event extraction model, the developed
rule-based baseline model, and the used evaluation metrics. We discuss the
performance of our models in Section 5.5, including their performance in iden-
tifying and classifying the temporal relations between chemotherapy toxicity
events and the DCT. Before concluding the chapter Section 5.7, we study the
overall challenges encountered when attempting to construct patient timelines
in Section 5.6.

5.2 Overview of the temporal relation repre-

sentation

As discussed in Section 2.4 and as illustrated in Figure 5.1a, temporal rela-
tions in the text are often represented by DocTimeRel and TLINKs relations.
DocTimeRel relations refer to the temporal relation of each event with the
Document Creation Time (DCT). According to the THYME-TimeML scheme,
each event will be assigned to one of the following categories: Before (orange),
Before_Overlap (green), Overlap (yellow), and After (blue). However, since
events vary depending on the task for which they are defined, the DocTimeRel
extraction task differs from domain to domain, and no generalization is possi-
ble. Moreover, the definition of clinical events presents further challenges due
to the complexity and variety of medical terminology used in clinical narratives.
Extracting TLINKs relations starts with extracting possible pairs of events and
temporal expressions. The most common strategy is to select the pairs in the
same sentence and extract the intra-sentence temporal relations. Neverthe-
less, the characteristics of clinical text, such as the use of punctuation marks
and the omission of sentence start and finish marks, make identifying sen-
tence boundaries challenging. Moreover, as mentioned in Section 2.4.3, other
strategies must be adopted to resolve long-distance dependencies if the event
and the temporal expression are in different sentences. Overall, the traditional
representation of temporal relations is task-dependent and requires accurate
results in extracting events and temporal expressions, making the annotation
and extraction tasks difficult.

Therefore, we introduce a novel event-independent representation of tem-
poral relations. As shown in Figure 5.1b, homogeneous text portions from a
temporal standpoint are identified and assigned to a category of the THYME-
TimeML annotation scheme that reflects the relation with the DCT. The Tem-
poralReference label is assigned to the narrative portion that marks the be-
ginning of the clinical reports, and that could include the DCT. Events will
subsequently have the same temporal category as the text portion that in-
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cludes them. Thus, we do not have to deal with sentence boundaries or long
dependency issues. Moreover, although this representation is coarser than the
traditional representation of temporal information, it is totally independent of
the type of mentions to be defined and extracted and, therefore, of the ap-
plication domain. Figure 5.4 illustrates an example of our event-independent
temporal positioning representation.

(a) Traditional representation of tem-
poral information

(b) Event-independent temporal posi-
tioning

Figure 5.1: Temporal information representation. The DCT is surrounded,
temporal expressions are represented in purple, events are represented in gray
and encased by their DocTimeRel relations, and TLINKs are represented by
arrows. Figure 5.1a illustrates the traditional representation of DocTimeRel
between the DCT and the events and TLINKs between the events and the tem-
poral expressions. Figure 5.1b depicts our representation of the temporal posi-
tioning of text portions according to the DCT, regardless of events. Translation
of the mock narrative into English: "Discharge summary of 07/30/2013. PAST
MEDICAL HISTORY: Adenocarcinoma of the colon was diagnosed in June
2012. Hypertension treatment was initiated in 2012. Phlebitis. Patient had
large bowel resection on 02/2013. HISTORY OF PRESENT ILLNESS: This
is a 60 y.o. male admitted on 07/30/2013 for a routine colonoscopy planned in
the course of follow-up for known colon adenocarcinoma. RESULTS: ... The
patient is scheduled for a new round of chemotherapy."

5.3 Corpora description

There are no publicly temporally annotated resources that are available for
French, as mentioned in Section 2.4.4. Therefore, to address the TRE task in
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French and develop and evaluate our event-independent representation of tem-
poral relations and our temporal positioning models, we create and annotate
two French clinical corpora, namely the temporal extraction corpus and
the toxicity corpus1. In this section, we detail the annotation process and
guidelines, including the encountered challenges, before moving on to the de-
scription of the constructed corpora. For the creation and annotation of these
corpora, we followed the methodology and annotation steps indicated by Fort
(2012).

5.3.1 Annotation process
To annotate the temporal relations in clinical documents, we define an an-

notation scheme based on the Document Creation Time (DCT) using the pos-
sible temporal categories that DocTimeRel relations can take in the THYME-
TimeML annotation scheme (Before, Before_Overlap, Overlap, After), as de-
scribed in Section 2.4.4 and two more categories, namely TemporalReference
and End_Scope. The TemporalReference category is used to identify the be-
ginning of a clinical report associated with a new Document Creation Time
(DCT), which is useful when multiple clinical reports are concatenated in the
same document. The default temporal category for TemporalReference is Over-
lap. The End_Scope category marks the end of a text portion if the following
portion is a heading or signature. This only allows us to exclude these portions
in the preprocessing step.

The DCT might be the current medical visit date or the period of time spent
in the hospital, which is usually indicated in the document heading. The DCT
does not need to be annotated. For each identified homogeneous text portion
from a temporal standpoint, we assign a temporal category. For instance,
the Before category could be assigned to narrative portions describing past
medical events. For simplicity, we only annotate the first word of each temporal
narrative portion, and we consider that the start of a temporal portion denotes
the end of the previous one.

Figure 5.2 illustrates an example of annotating a clinical document contain-
ing two clinical reports. As stated earlier, the TemporalReference category, also
denoted as TempRef, indicates the beginning of the clinical report. According
to our annotation scheme, the narrative portion going from Paris to 2014 will
then be assigned to the TemporalReference category. The text portion from
Monsieur to comme is annotated as Before_Overlap for the patient’s age and
since it is stated that the purpose of the medical visit is a disease follow-up. The
second TemporalReference category assigned to the portion from Dossier to
staff marks the start of a new clinical report, and annotations will be adapted

1The scientific and ethical committee of AP-HP approved access to this clinical
data (CSE21-15_TALONCO).
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to the new DCT (’25/03/2014’ in this example).

Figure 5.2: An example of annotating a clinical document containing two
clinical reports. Translation of the text portion into English: "Paris, April
4th, 2014. Mr. Dupont is a 70 y.o male with hormone-resistant metastatic
prostate cancer and a medical history of diabetes, hypertension, phlebitis. Clin-
ical history: ... Physical examination: Patient in good state of health, OMS:
0. Practical course of action: ... Follow-up in one month... Record presented
on 03/25/2014 to staff... Prior workup in February 2014: ... Staff decisions:
...Colonoscopy scheduled next week."

Annotation challenges and inter-annotator agreement. Estab-
lishing a solid annotation guideline is essential to get high-quality annotations.
Therefore, despite the simplicity of our annotation scheme, several discussions
were held with the annotators using draft annotation guidelines before reaching
the final version.

A notable example of discussion was annotating narrative portions about
medical and case history. Indeed, when describing the medical history, we can
have temporal expressions that could indicate the exact time of past surgeries
or diagnosis, but we can also have medical events such as ’phlébite’ (phlebitis)
or ’HTA’ (hypertension, high blood pressure) without any related temporal
expressions, as illustrated in Figure 5.2. Phlebitis can be understood as a
past medical event and easily marked with a Before label. However, HTA is a
chronic condition and could be understood as an ongoing event or a past event.
Such decisions need medical expertise, particularly for complex medical events.
To handle these issues, an agreement has been established by annotating med-
ical history events as Before unless there is a clear temporal indication that
the event is still ongoing (depuis 2014, since 2014) in Figure 5.3) and which
needs to be annotated as Before_Overlap. Another agreement has been made
when annotating sentences that the doctor writes at the end of a narrative
clinical report, such as J’ai l’intention de réaliser une coloscopie la semaine
prochaine (I intend to perform a colonoscopy next week), in Figure 5.2. In this

114



sentence, a strict choice of language might be to annotate the first part from
J’ai l’intention de réaliser (I to perform a) as Overlap and the second part as
After. Such annotation, however, is both unhelpful and not practical since the
annotation boundaries are unclear, and we are more interested in annotating
the main medical events. As a result, the whole sentence will be annotated
as After. Three annotators with NLP backgrounds applied to health data
annotated a sample of 9 clinical documents. The inter-annotator agreements
between annotator pairs in terms of macro F-measure are 0.62, 0.73, and 0.69,
which is higher than the agreement previously observed for temporal relations
in clinical corpora in French and English (Tourille et al., 2017b).

Some changes were made to the annotation guidelines when annotating our
second created corpus, namely the toxicity corpus, built with documents con-
taining toxicity treatment information. Figure 5.3 illustrates an example of
an annotation modification. According to our first version of the annotation
guideline, the prior chemotherapy response (Tolérance intercure), which is re-
ported in each chemotherapy administration report, is annotated as Overlap
(cf. Figure 5.3a), with the assumption that it is useful in understanding the
current report. However, after discussing with a domain expert, we concluded
that it is more convenient to assign a Before_Overlap label to such informa-
tion since it started in the past but is still true, and it is crucial to have the
chemotherapy toxicity information for the actual chemotherapy administra-
tion (cf. Figure 5.3b). Note that biology tests (Biologie in Figure 5.3) are
annotated as Overlap, even if they were done before the hospitalization be-
cause these tests are only meaningful and interpreted for hospitalization. The
detailed final version of our annotation guidelines is provided in Appendix B,
with more illustrated examples. Despite the few difficulties we encountered in
defining the annotation scheme, our annotation process is easier than the stan-
dard method of annotating temporal relations and yields better inter-annotator
agreement.

It is worth noting that although our representation of temporal relations is
intended to be event-independent, we are aware that we may have considered
medical events while developing annotation guidelines.

5.3.2 Corpora
According to our annotation guidelines, we created and annotated the fol-

lowing corpora:

Temporal extraction corpus - This corpus is restricted and is built
with randomly selected de-identified hospital, operative, and consultation re-
ports of colon cancer patients from a French clinical data warehouse of the
Georges Pompidou European Hospital (Jannot et al., 2017). We annotated
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(a) Prior annotation. (b) Final annotation.

Figure 5.3: An illustration of annotation modifications. Translation of the text
portion into English: "Discharge summary of 03/23/2015. Reason for admis-
sion: chemotherapy cycle C4. Clinical history: squamous cell carcinoma Hy-
pertension treatment was initiated in 2014. Toxicity since last cycle: Anorexia:
Grade 1 Asthenia: Grade 1 ... Lab workup: date of sampling: 03/22/2015
Weight: ... Regimen: Protocol: ..."

222 documents to train and validate our models and 57 documents for evalu-
ation. It is worth noting that our corpora always contain an equal amount of
clinical documents from every category.

Table 5.1 presents descriptive statistics for each temporal category in the
two temporal extraction training and test corpora.

# text portions (test) # text portions (train)
TempRef 57 (12.2%) 253 (10.3%)
Before 106 (22.7%) 562 (22.9%)
Before_Overlap 92 (19.70%) 476 (19.4%)
Overlap 165 (35.3%) 861 (35.1%)
After 47 (10.1%) 302 (12.3%)
Total 467 2454

Table 5.1: The number of text portions for each category in the temporal
extraction training and test corpora.

Toxicity corpus - This corpus is restricted and is built with randomly
selected de-identified hospital clinical reports containing toxicity information
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of chemotherapy administrated to colon and lung cancer patients from the
same French clinical data warehouse as the temporal extraction corpus (Jannot
et al., 2017). An expert manually validated the toxicity events annotations on
43 clinical documents. This corpus includes 16 documents regarding colon
cancer and 27 about lung cancer and is used to validate the efficacy of our
temporal positioning approach.

5.4 Experiments

In this section, we describe our temporal relations and the chemotherapy
extraction models. To evaluate our event-independent temporal positioning
model, we also describe the developed rule-based baseline model and the used
evaluation metrics.

5.4.1 Temporal relation extraction
Using our temporal representation, we cast the temporal relation extrac-

tion task as a supervised sequence labeling task. The main goal is to identify
homogeneous text portions from a temporal standpoint and to classify each
text portion into a pre-defined temporal category from these five categories:
TemporalReference, Before, Before_Overlap, Overlap, and After. We train a
token classification model using the French model CamemBERT (Martin et al.,
2020) from the HuggingFace transformers library (Wolf et al., 2020). We clas-
sify each token as belonging to a narrative portion using the BIO (Beginning,
Inside, Outside) tagging scheme. Hence, the model can identify tokens that in-
dicate a temporal shift in the clinical text. The model weights were optimized
with Adam (Kingma and Ba, 2014) without weight decay for 20 epochs. The
batch size was set to 32. All the models were trained using a GPU NVIDIA
Quadro P5000.

5.4.2 Chemotherapy toxicity event extraction
For the first pre-annotation and extraction of chemotherapy toxicity events,

we use a dictionary-based model consisting of a simple matching between the
clinical corpus and a chemotherapy toxicity dictionary (Rogier et al., 2021).
This dictionary is created using French toxicity terms from two reference termi-
nologies: the 5th version of Common Terminology Criteria for Adverse Events
(CTCAE) and the World Health Organisation Terminology (WHOART). To
extract the chemotherapy toxicity events, we use the QuickUMLS (Soldaini
and Goharian, 2016) algorithm. The obtained pre-annotations, as previously
stated, are manually verified and corrected by a domain expert. Note that we
are only interested in toxicity events related to chemotherapy.
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5.4.3 Baseline model
We compared our temporal positioning model with a defined rule-based

baseline model. We map entire sections to a temporal positioning based on
terms that are often used to denote medical sections, in particular in hospital
and surgery clinical reports such as ’Antécédents’ (Case history), ’Indication’
(Indication), ’Gestes réalisés’ (Operative actions), ’Plan de traitement’ (Treat-
ment plan), etc. For instance, if we have the keyword ’Antécédents’ (Case
history), the assigned label for the text portion Before until another keyword
is encountered. These keywords are typically useful for the temporal annota-
tion process, even though they do not cover all types of clinical reports. This
baseline model is evaluated on the temporal extraction test corpus.

5.4.4 Evaluation metrics
In our work, we are interested in identifying temporal shifts between large

text portions. In this case, segmentation into sentences and tokens is no longer
needed. We evaluate the performance of our models at the character level by
measuring the macro Precision, Recall, and F-measure. Furthermore, using
the empirical bootstrap method (Dekking et al., 2005, p.275), we compute the
95% confidence intervals of our classification results. For this, we sample our
test corpus with replacement 1000 times. Evaluation metrics are calculated for
each sample. We use the BRATEval tool2 to assess the entity-level performance
of toxicity event extraction. To measure the carbon footprint of training and
testing our temporal positioning models, we use, as usual, the Carbontracker
tool. Note that we are using the newer version of Carbontracker, which uses
the World-wide average carbon intensity of electricity production in 2019 if it
fails to detect the location, and its measures are based on CO2 performance of
new passenger cars in Europe3.

5.5 Results & Discussion

In this section, we present the results of our temporal positioning models
using the temporal extraction corpus and the toxicity corpus. We then discuss
the overall performance of our temporal positioning models and their carbon
footprint, the performance of toxicity events extraction, and the temporal
positioning of chemotherapy toxicity events.

2https://bitbucket.org/nicta_biomed/brateval/src/master/
3https://www.eea.europa.eu/ims/co2-performance-of-new-passenger
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5.5.1 Results
Table 5.2 summarizes the overall results of the baseline model and our

temporal positioning model on the temporal extraction test corpus. Our model
provides the best results, with an F-measure of 0.86, which is also greater than
the inter-annotator agreements. The baseline model gives lower results, with an
F-measure of 0.35. The CO2 emissions from training and testing our temporal
positioning model are estimated to be 199 g.

Precision Recall F-Measure CO2

eq
(g.)

Baseline model 0.39 [0.33-0.46] 0.55 [0.48-0.61] 0.35 [0.29-0.41] -
Temporal position-
ing model

0.87 [0.84-0.90] 0.86 [0.83-0.90] 0.86 [0.84-0.89] 199

Table 5.2: Overall results on the temporal extraction test corpus.

Table 5.3 presents the detailed performance of our temporal positioning
model over all categories on the temporal extraction test corpus.

Precision Recall F-Measure
TemporalReference 0.94 0.88 0.91
Before 0.82 0.90 0.86
Before_Overlap 0.79 0.76 0.77
Overlap 0.93 0.87 0.90
After 0.85 0.90 0.88
Overall 0.87 0.86 0.86

Table 5.3: Results per category for the temporal positioning model on
the temporal extraction test corpus.

Figure 5.4 shows a clinical text sample with predicted results of temporal
positioning of homogeneous text portions.

Table 5.4 illustrates the toxicity events extraction performance, the results
of event-independent temporal positioning of text portions, and the temporal
positioning of toxicity events on the toxicity corpus. An F-measure of 0.55
is obtained for extracting toxicity events using the QuickUMLS algorithm
with chemotherapy toxicity events. Our model achieves 0.8 of F-measure on
extracting and temporal positioning the text narrative portions of the toxicity
corpus. Table 5.4 also provides further performance details based on the type
of cancer described in the toxicity corpus documents. Our model yields better
results on colon narrative portions than lung narrative portions (an F-measure
of 0.81 vs. an F-measure of 0.79). For temporal positioning of the toxicity
events, inferior results are obtained with an F-measure of 0.62.
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Figure 5.4: An example of predicted temporal positioning of text portions.
Translation of text into English: "Discharge summary. Admission date:
07/10/2008 Discharge date: 07/17/2008. Reason for admission: 56 y.o fe-
male presented with asthenia, weight loss and lack of appetite following the
recent discovery of sigmoid adenocarcinoma. Past medical history: appendec-
tomy Hypertension treatment was initiated in 2008. Physical examination on
admission: Weight: 65 kg, Size 160 OMS 3 Abdomen was soft. Hospital course:
Further medical exams: Tests on admission: ... Discharge instructions/Follow-
up: - analgesics - patient should continue her usual care."

Precision Recall F-Measure
Extraction of toxicity events 0.43 0.77 0.55
Temporal positioning of narrative
portions

0.84 [0.82-0.86] 0.77 [0.74-0.81] 0.80 [0.76-0.83]

Colon narrative portions 0.88 [0.84-0.91] 0.77 [0.71-0.83] 0.81 [0.76-0.86]
Lung narrative portions 0.82 [0.79-0.85] 0.78 [0.75-0.82] 0.79 [0.75-0.82]

Temporal positioning of toxicity
events

0.62 [0.55-0.89] 0.62 [0.55-0.88] 0.62 [0.54-0.88]

Table 5.4: Performance of extraction of toxicity events, event-
independent temporal positioning of narrative portions, and temporal
positioning toxicity events on the toxicity corpus.
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5.5.2 Performance of temporal positioning models
As reported in Table 5.2, our temporal positioning model outperforms the

baseline model on the temporal extraction test corpus, with an exact macro
F-measure of 0.86 vs. 0.35. Table 5.3 presents the results per category of
our model. The most prevalent categories are the best predicted. Thus, an
F-measure of 0.9 is obtained for the Overlap category, representing 35.1% of
the training corpus, and 0.86 for the Before category, representing around
23% of the training corpus. However, high F-measures are also reported for
less represented categories such as TemporalReference (10.3% of and an F-
measure of 0.91), After (12.3% and an F-measure of 0.88). This may be due
to the well-specified boundaries of these categories. The text portions with the
Before_Overlap category are often sentences included in text portions with an
assigned Before category including a temporal indication that shows consis-
tency in time, such as "depuis le" (since the) (cf. Figure 5.4). This temporal
shift is not always predicted, and despite the coverage of the Before_Overlap
category (19.4% in the training corpus), the performance is lower (.77 of F-
measure). Except for the second ’Follow-up’ text span in Figure 5.4, most
homogeneous text portions are adequately retrieved and classified. In particu-
lar, the temporal shift between the Before and the Before_Overlap categories
is well predicted. The text portion "patient de 56 ans dans le contexte de" has
been correctly assigned to the Before_Overlap category. The two text portions
beginning with "Suivi et évolution dans le service:" and "Suivi:" respectively,
are on follow-up care. The first one depicts the follow-up during the hospital
stay and is well classified into the Overlap category. However, the second text
portion starting with ’Suivi:’ is wrongly assigned to the Overlap category when,
in fact, it should be assigned to the After category since we are discussing fu-
ture follow-up after discharge, including future treatments and medications.
Other mistakes may occur when predicting temporal categories. For instance,
text portions starting with ’Soins post-opératoires’ (Post-operative care) and
’Soins de support’ (Support care) are about patient care. The first span, usu-
ally described in operative reports, discusses post-operative care and should
be assigned to the After category. In contrast, the second statement, usually
in discharge summaries, examines whether or not there is supportive care and
should be classified as Overlap.

As previously stated, an F-measure of 0.35 is observed for the baseline
model. Note that we do not use the End_Scope category to avoid the heading
and signature sections in this baseline model since there is no defined term to
identify such sections. Therefore, the precision of this model remains low. The
TemporalReference category has poor precision because it specifies the start
of a clinical report and is usually in the heading section. Moreover, we use
the terms "Paris" and "Compte-rendu" (report). The first keyword usually
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indicates the start of consultation reports, as healthcare professionals begin by
writing the location and date of the report. However, such terms may occur in
various parts of the clinical text. The second keyword denotes the start of hos-
pital and operative reports, which begin with a title such as "Compte rendu
opératoire" (Operative report) or "Compte rendu d’hospitalisation" (Hospi-
talization report). Similar observations are obtained for the After category,
which tends to be at the end of the clinical report and just before the sig-
nature part. The keywords used in the rule-based model do not cover the
consultation reports, which contain narrative text describing the patient visit
summary without any pre-defined structured sections. As a result, the baseline
model also suffers from a low recall rate.

We also test the performance of our model on the toxicity corpus as shown
in Table 5.4. An overall F-measure of 0.8 is obtained, which is slightly lower
than the performance on the temporal extraction corpus (an F-measure of
0.86). This might be due to differences in the cancer types described in the
texts in each corpus. Indeed, our temporal positioning model was trained on
the temporal extraction corpus, which only includes clinical reports of colon
cancer patients, but the toxicity corpus contains clinical reports of both colon
and lung cancer patients. As a result, the performance of temporal positioning
clinical reports of colon cancer patients in the toxicity corpus is better than
that of lung cancer patients in the same corpus as reported in Table 5.4 (an
F-measure of 0.81 vs. an F-measure of 0.79). This good performance shows
that our model can adapt to other corpora, including other types of cancer.

5.5.3 Carbon footprint
The carbon footprint of our event-independent temporal positioning model

is reported in Table 5.2 in terms of CO2 equivalent measure in grams. A
total of 199 g of CO2 emissions is estimated from training and testing our
model, which is roughly equivalent to 1.85 km traveled by car. Note that
Carbontracker fails to fetch the IP address and, therefore, to determine the
geographic location dynamically. As a result, it uses the World-wide average
carbon intensity of electricity production in 2019 (475 gCO2/kWh) instead
of the used value for France (around 58 gCO2/kWh in 2021), which yields
to overestimated CO2 equivalent measures. Moreover, as already discussed
in Chapter 3, Carbontracker does not take into consideration the execution
environment or the technique of energy production or other factors such as
life cycle impact of hardware. Thus, the obtained carbon footprint measures
remain very approximation.
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5.5.4 Performance of toxicity events extraction
As reported in Table 5.4, an F-measure of 0.55 is obtained for the toxicity

event extraction using the quickUMLS algorithm. The toxicity events extrac-
tion model extracts all toxicity events in clinical text. However, we are solely
interested in toxicity events related to chemotherapy treatments. As a result,
the precision of this model remains low. For instance, if "HTA" (hypertension,
high blood pressure) is included in the comorbidity medical section, we do not
consider it as a toxicity event. However, if such an event is mentioned while
describing the toxicities of previous chemotherapy cures, it will be retained as
a toxicity event.

It is also worth noting that we extract even the negated toxicity events. In
fact, "anémie de grade 0" (anemia of grade 0 ) and "pas d’anémie" (no ane-
mia) are synonyms for the absence of such toxicity event. However, checking
for toxicity types is part of patient assessment protocols, and extracting such
negated events allows for a more thorough clinical evaluation and is vital for
enhancing the quality of the care process.

5.5.5 Temporal positioning of chemotherapy toxicity

events
This experiment aims to determine how effectively our temporal posi-

tioning model can recognize and characterize the temporal relation between
toxicity events and the DCT. To address this question independently of
how well event recognition can be achieved, we have used the gold standard
toxicity event annotations, which are, therefore, ’perfectly’ recognized. In
our first trials, we evaluated a small selection of 5 documents belonging
to both temporal and toxicity corpora (Bannour et al., 2023b). A good
performance with an F-measure of 0.7 is observed, and an average of 10
toxicity events per document were temporally positioned. Following these
findings and as reported in Table 5.4, an F-measure of 0.62 is obtained on
the toxicity test corpus. Looking at the outcomes by category, the majority
of toxicity events are temporarily well-positioned into the three categories
Before, Before_Overlap, and Overlap. Nevertheless, in our toxicity corpus,
just one toxicity event matches the After category. This event, mentioned in
a hypothesis statement, is incorrectly positioned as a Overlap category. As
a result, the performance in terms of macro F-measure is a bit low (vs. a
micro F-measure of 0.82). The good performance of temporal positioning of
chemotherapy toxicity events validates the efficacy of our event-independent
temporal representation of temporal information.
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5.6 Challenges in building patient timelines

Unstructured text in Electronic Health Records contains significant tem-
poral information. There has been a major interest in constructing patient
timelines by the temporal analysis of clinical narratives in order to understand
better the clinical history, encompassing disease progress and the quality of
healthcare provided, such as the long-term effects of medications. This entails
not just analyzing individual clinical notes but also integrating collected infor-
mation from multiple sources. Indeed, patient information can be dispersed
among many clinical notes and structured data, which may not be completely
up to date with the most recent patient information, generating further chal-
lenges. In our work, we studied single document temporal analysis, which is
still difficult. Even in English, the integration of temporal information has
seldom been attempted (Raghavan et al., 2014).

Creating patient timelines requires extracting temporal relations between
mentions. While extracting DocTimeRel relations between events and DCT
offers a coarse-grained temporal ordering, the additional extraction of TLINKs
provides more fine-grained timelines. In this section, we study the difficulties
encountered while building patient timelines.

The unstructured and complex nature of the clinical text is the first hur-
dle. Indeed, clinical text is often ungrammatical and includes a wide range of
temporal expressions, such as task-specific, non-standard, and abbreviated ex-
pressions. Moreover, the clinical text shifts back and forth in time, describing,
in some cases, clinical events occurring at different times in the same sentence
and including redundant information due to copy-pasted text portions from
previous clinical documents. Clinical text also includes a variety of narrative
portions that do not have to be pre-defined structured sections with a temporal
anchor point.

As discussed in the previous sections, major challenges arise when tackling
the temporal relation extraction task, such as the difficulties in defining clini-
cal events, which is task-dependent and makes it difficult to generalize across
domains, and the difficulties of extracting TLINKs inter- and intra-sentences.
In Section 5.2, we introduced our novel event-independent representation of
temporal relations, which makes the TRE task faster and easier since it does
not rely on the task-dependent and challenging definition of events. Using
the traditional temporal representation, extracting temporal relations requires
the prior accurate extraction of events and temporal expressions. However,
our temporal representation could provide a coarse level of temporal ordering
without requiring prior extraction of mentions.

To get a fine-grained patient timeline, a potential idea is to leverage the
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structured information stored in clinical databases. For instance, while anno-
tating some of our clinical documents, we discovered incoherence between the
mentioned DCT at the beginning of the document and the time expressions in
the narrative portions. As humans and for annotation purposes, we assumed
that some of these time expressions were incorrectly represented and attempted
to create the most consistent storyline for annotation. However, in some clin-
ical texts, copy-paste portions are written instead of the actual real DCT. To
gain a better understanding of temporal ordering, we looked for chemotherapy
hospitalization dates in structured admission data. This strategy could help
address the incoherence that might occur in narrative text. However, mistakes
and incorrectly indicated information are still possible. As a result, merging
extracted unstructured and structured information is also a hard task.

Furthermore, in order to generate a patient timeline, it is necessary to in-
corporate extracted information from several clinical documents concerning
the same patient, which increases the risk of having inconsistent information
and brings more challenges, such as how to represent the cross-document tem-
poral information. In summary, constructing patient timelines for practical
applications remains very difficult and challenging.

5.7 Conclusion

In this chapter, we introduced a novel event-independent representation of
temporal relations, which is task- and domain-independent. Using this rep-
resentation, the temporal relation classification is cast as a sequence token
classification task. The main goal of our work is to identify homogeneous nar-
rative portions from a temporal standpoint and classify them into temporal
categories reflecting their relations with the DCT. Our representation makes
the temporal relation extraction task easier and faster for human annotators.
Indeed, based on the THYME-TimeML annotation scheme, we propose a sim-
pler annotation scheme that provides better inter-annotator agreement than
the previously reported for the TRE task. Using this scheme, we annotated two
corpora of clinical reports written in French. Our temporal positioning model
yields good results when recognizing and categorizing text portions. Moreover,
experiments on the temporal positioning of chemotherapy toxicity events for
patients with colon and lung cancers have also shown that good results could
be achieved using our representation of temporal relations. Developing end-
to-end systems for temporal information extraction usually yields low results,
particularly when evaluated with real data. Indeed, the performance of events
and temporal expressions extraction has a high impact on the quality of tem-
poral relation extraction. The TRE task is addressed separately from mentions
extraction using our representation, making it more reproducible through dif-
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ferent event types. This problem modeling might be the initial step toward
constructing a patient timeline to order all its medical events.

In our work, we manually annotated small portions of corpora. Such lim-
ited size is justified by the time-consuming task of temporal annotations and
the requirement of expertise for toxicity event annotations. Although our tem-
poral representation seems to perform well with other clinical reports contain-
ing information about a different type of cancer from that on which it was
trained (e.g., lung cancer vs. colon cancer), such results must be validated
on clinical reports containing information about additional cancer types. Ad-
ditional experiments are also needed to validate the generalizability of our
event-independent representation, such as evaluating it on other hospitals or
data warehouse clinical reports with various structures and other extraction
tasks with different event definitions. Furthermore, since our representation
allows the extraction of only coarse-level temporal information, additional ap-
proaches should be proposed for extracting fine-grained temporal relations,
such as using structured information in clinical data warehouses.
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Chapter 6

Conclusions and perspectives

6.1 Summary of contributions . . . . . . . . . . . 127

6.2 Perspectives . . . . . . . . . . . . . . . . . . . . 129

This chapter summarizes our several contributions to information extrac-
tion that were mainly applied to clinical narratives in Section 6.1 and discusses
further research directions and perspectives in Section 6.2.

6.1 Summary of contributions

In this dissertation, we have proposed novel representations and architec-
tures to address clinical information extraction from unstructured clinical nar-
ratives. In Chapter 2, we reviewed relevant background on Named Entity
Recognition and Temporal Information Extraction and, in particular, Tempo-
ral Relation Extraction. We also covered the main privacy concerns and attacks
on personal sensitive text and possible privacy-preservation methods. More-
over, we introduced several aspects of NLP environmental impact, including
the main sources of carbon emissions, the main tools for measuring the carbon
footprint of statistical models, as well as some research efforts encouraging the
conduct of efficient and green NLP experiments.

Following that, in Chapter 3, we examined existing tools for measuring the
carbon footprint of statistical models, essentially deep learning models, in order
to gain a better understanding of the environmental impact of these models,
which are widely used in modern NLP. These tools were selected and evalu-
ated based on specific defined criteria, such as availability, documentation, and
technical aspects. We then assessed their use for evaluating the impact of NER
experiments, using two different NER models and two computational set-ups.
According to our findings, several tools underestimate carbon footprint, and
there are a lot of differences in measurements due to different setups, making it
difficult to assess and propose an effective tool for NLP approaches. However,
we selected one of the discussed tools to report the carbon footprint of all our
thesis experiments because it is simple to use and integrate with our equip-
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ment. We believe that calculating the carbon emissions of developed models
is the first step toward raising awareness and moving toward the development
of more efficient models with fewer carbon emissions.

In Chapter 4, we focused on creating shareable NER models that could
preserve privacy. We investigated using mimic learning to generate shareable
student models. The main goal of mimic learning is to first train a private
teacher model on the sensitive data, then use this model to create silver anno-
tations on publicly available corpora, and finally train a student model using
these produced silver annotations. The generated student models could be
shared without exposing the private model or the sensitive data it was trained
on. Our privacy-preserving mimic models architecture allowed us to leverage
both public and private corpora in a low-resource setting. Indeed, there are
only a few publicly available annotated clinical corpora in French. Using clin-
ical narratives in French, we generated several shareable models and achieved
a good compromise between performance and privacy preservation. It should
be noted that the used NER model addresses flat and nested entities. For a
more practical evaluation, our best privacy-preserving model was shared with
a French hospital institution and performed well in extracting lesions, anatom-
ical entities, and the location of target lesions from semi-structured radiology
documents.

In Chapter 5, we addressed the temporal relation extraction task from a
different perspective. Temporal relation extraction involves identifying and ex-
tracting relations between events and/or temporal expressions. The definition
of events is highly task- and domain-dependent, making cross-domain gener-
alization challenging. Furthermore, since the performance of TRE systems
is closely tied to the performance of mentions extraction, developing end-to-
end temporal information extraction systems that could be used in practical
applications is difficult. To this end, we propose a novel event-independent rep-
resentation of temporal relations, providing a coarse level of temporal ordering
without requiring prior mentions extraction. Using our novel representation,
homogeneous text portions from a temporal standpoint are identified and tem-
porarily positioned according to the Document Creation Time. This results
in a much faster and easier task for human annotators through a simpler an-
notation scheme, as well as more reproducible through different event types.
The TRE task was cast as a sequence token classification problem. Although
we may lose expressiveness in our proposed annotation scheme, we argue that
this does not preclude useful applications on clinical reports. To evaluate our
temporal positioning models, we created and annotated two French clinical
corpora and demonstrated that good results could be obtained for temporal
positioning text portions, as well as chemotherapy toxicity events. Finally, we
enumerated the difficulties we have encountered when working with clinical
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text and the remaining challenges that arise for constructing patient timelines.

Throughout this thesis, we also provide useful resources for further research.
For instance, the silver annotations we provide in Chapter 4 would benefit
clinical research as well as research on privacy attacks. We also presented
and published the source code of the used NER tool, addressing both flat and
nested entities (Wajsbürt et al., 2020). Moreover, we made available our best
privacy-preserving model for practical use, and integration into the medkit1

Python library is under consideration. Finally, we made available our anno-
tation guidelines to annotate corpora with temporal relations using our novel
representation.

6.2 Perspectives

Following the promising results of our thesis work, several research areas
arise. Working with real-world data made us realize how complex the clinical
text is. In fact, the clinical text is often ungrammatical, with spelling errors
and redundant information owing to copy-pasted text segments. As a result,
digitizing clinical notes may generate errors that are difficult for automated
systems to handle. To guarantee high-performance extraction systems, more
effective tools are required to manage the maximum amount of errors in pre-
processing steps. In addition, clinical narratives shift back and forth in time,
describing, in some cases, clinical events occurring at different times in the
same sentence. It also contains a lot of domain-specific vocabulary, including
task-specific, non-standard, and abbreviated temporal expressions, requiring
medical knowledge to understand. Hence, there is a need for more collabo-
rations between hospital institutions and the NLP community. Dealing with
clinical narratives written in French added further difficulties. In contrast to
English, few resources and processing tools are available for the French lan-
guage, particularly in the biomedical domain, which limits the clinical NLP
research, in particular, due to sensitive data sharing restrictions.

Although efficient NER models could be obtained that efficiently address
nested entities, there are still some challenges. To achieve good performance,
these NER models require sufficient annotated data. However, the annotation
process is time-consuming and involves several phases, beginning with drafting
annotation guidelines and then working on annotating documents. These dif-
ficulties are heightened when working with specialized domains. For instance,
getting domain experts to annotate clinical documents is challenging owing
to their professional commitments, yet it is necessary to obtain high-quality
annotations. Moreover, as previously stated, disclosing sensitive data is re-

1https://team.inria.fr/heka/fr/
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stricted. In Chapter 4, we presented a privacy-preservation architecture that
could enable sharing models. But, this requires a minimum amount of publicly
available data. Therefore, possible perspectives could be to propose methods
that reduce the annotation efforts, such as active learning, which aims to anno-
tate only relevant instances for training (Naguib et al., 2023; Le et al., 2023).
To deal with all these privacy issues, there is also a growing interest in creating
synthetic corpora, particularly for the biomedical domain (Hiebel et al., 2023;
Venugopal et al., 2022). Another avenue of improvement is to develop metrics
that can detect whether or not trained models leak personal information or
how well models protect data privacy.

Developing end-to-end systems for timeline construction, in particular clin-
ical timelines, is far from being a solved task. It requires extracting tempo-
ral relations between mentions. However, as discussed in Chapter 5, major
challenges are encountered when addressing the temporal relation extraction
task. Indeed, TRE entails accurately defining and extracting event and tem-
poral mentions, which is highly dependent on the task and the application
domain. Additional difficulties occur when attempting to address inter- and
intra-sentence temporal relations. Since extracting fine-grained temporal rela-
tions is not a trivial task, getting a coarse-level timeline may be more beneficial
for practical applications. Hence, we tried simplifying the TRE task in Chapter
5 by proposing a novel event-independent representation of temporal relations.
Further experiments are required to evaluate our representation’s generaliz-
ability, particularly on other domains and other extraction tasks with different
event definitions. Most research efforts focus on within-document timeline
extraction. Nevertheless, to offer a temporal analysis of a specific EHR and
incorporate information from many clinical notes, cross-document temporal
information must be included. More efforts are needed to create annotated
corpora with cross-document temporal information. Furthermore, information
obtained via structured data should be incorporated with information retrieved
from unstructured clinical narratives, whether to resolve ambiguities or to in-
troduce new knowledge that could benefit clinical timelines.

Recently, large language models have emerged, promising good results on
various downstream NLP tasks. ChatGPT2 is now one of the most popular
LLMs due to its excellent capacity for interpreting and producing human-like
answers. Some studies evaluated the performance of ChatGPT on Information
Extraction tasks (Gao et al., 2023; Han et al., 2023). These studies conclude
that ChatGPT performs well with simple tasks but struggles with more compli-
cated tasks such as NER, Event extraction, and RE, as evidenced by a major
performance gap compared to SOTA approaches. Similar studies have also
been conducted for the biomedical domain and have reached the same conclu-

2https://openai.com/blog/chatgpt
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sion concerning this model (Hu et al., 2023; Chen et al., 2023). This may be
due to their lack of domain-specific knowledge. However, a possible research
direction could be to use LLMs to solve target tasks without using a pipeline
with several sub-tasks. For example, LLMs may be able to handle the relation
extraction problem without first solving the NER task. Nevertheless, Chat-
GPT may run into privacy issues owing to the fact that this model involves
transferring patient data to external hosting platforms (Liu et al., 2023).

Aside from biases and ethical concerns, another major drawback of adopting
LLMs and deep learning-based models, in general, is their high computational
cost. As reviewed in Chapter 3, it is important to quantify the carbon footprint
of trained models in order to design more efficient models with low carbon
emissions. However, further studies are required to better understand the
environmental impact of NLP models by presenting efficient measurement tools
and standards to conduct Green NLP research.

Finally, while we focused on clinical texts in our thesis work, we think all of
our proposed representations and methods could be adapted for other domains.
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Appendix A

Privacy-Preserving Mimic Models for
Named Entity Recognition

To be able to compare our privacy-preservation mimic models with our
baseline models, described in 4.4.3, we perform an alignment step between
entity types. Table A.1 represents this alignment step across the two used
French clinical corpora MERLOT and DEFT.

Common category DEFT entity type MERLOT entity type

ANAT anatomie Anatomy

CHEM substance Chemicals_Drugs

DISO pathologie Disorder
signe ou symptôme SignOrSymptom

LIVB Living Beings LivingBeings
Persons

genre

PROC traitement MedicalProcedure
examen

TEMP date Temporal
durée
fréquence
moment
age

DOSE dose Dosage
- Strength

MODE mode AdministrationRoute
- DrugForm

MEAS valeur Measurement

Table A.1: Alignment between entity types across French clinical cor-
pora; alignments are not always one-to-one.
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Appendix B

Temporal Annotation scheme for our
clinical corpus

B.0.1 Definitions of temporal categories
To annotate the temporal information in a clinical report, we define a tem-

poral annotation scheme based on the Document Creation Time (DCT) and the
possible categories of the Document Creation Time Relation (DocTimeRel).
The DCT might be the current medical visit date, usually stated in the docu-
ment heading. It might also be the length of time spent in the hospital. The
DCT does not need to be annotated.

B.0.1.1 Document creation Time Relation

Document creation Time Relation is the relation between events and Docu-
ment Creation Time. We consider these four possible categories for this time
relation: Before, Before_Overlap, Overlap, and After. We annotate only the
first word of each temporal portion. We consider that the start of a temporal
portion denotes the end of the previous one.

B.0.1.2 Before

The Before category is used to annotate narrative portions referring to what
occurred before the Document Creation Time.

Examples

• Antécédents, antécédents médicaux, antécédents chirurgicaux, Antécé-
dents familiaux, Histoire de la maladie, Rappel clinique, Rappel sur la
pathologie → All terms referring to the medical history section.

• Except: Maladie traitée depuis le → Before_Overlap since we have a
temporal indication that the procedure/disease is still ongoing for the
patient (cf. Figure B.1).
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B.0.1.3 Before_Overlap

The Before_Overlap category is used to annotate narrative portions that
started before the document creation time and are still ongoing at that time.

Examples

• Comorbidités, Mode de vie, Autonomie, traitement habituel, traitement
à l’entrée, Allergies, Traitements concomitants, Facteurs de risque, In-
dication, Indication opératoire, décision d’une intervention, Tolérance
intercure

• Patient de 70 ans

• HTA traitée depuis, dans le cadre d’un suivi d’un cancer → The patient
is still suffering from the disease.

• METASTASES HEPATIQUES D’UN ADENOCARCINOME → The
disease’s name as a title in operative reports, which is generally capi-
talized (cf. Figure B.2).

B.0.1.4 Overlap

The Overlap category is used to annotate narrative portions that happen at
the same time as the document creation time.

Examples

• Examen pratique, Au total, Conclusion, Gestes opératoires, Gestes réal-
isés, Motif d’hospitalisation, Biologie, Biologie de sortie, INTERVEN-
TION, constantes à l’arrivée, Date d’hospitalisation, Date d’entrée, Date
de l’intervention, Motif

• Examens complémentaires, Examens paracliniques → Sometimes, some
complementary exams are conducted before the document creation time
but because they are done for the purpose of the hospital stay, we an-
notate them as Overlap (cf. Figure B.1).

• Je vois ce jour, Je revois en consultation

B.0.1.5 After

The After category is used to annotate narrative portions referring to what
occurs after the document creation time.
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Examples

• Traitement de sortie, Prochains rendez-vous, Rendez-vous à venir, Pre-
scription de médicaments, Date de la prochaine cure, Ordonnance de
sortie, Prochains examens

• Je reverrai ce patient, je prévois une coloscopie

• La pièce est envoyée pour un examen histologique

B.0.2 Other categories

B.0.2.1 TemporalReference

Because several medical reports might be written in the same document, the
TemporalReference category specifies the beginning of a new clinical report.
Because several medical reports might be written in the same document, the
TemporalReference category specifies the beginning of a new clinical report.
Each clinical report will then have its own Document Creation Time, and the
annotations will be based on this DCT. The TemporalReference category’s
default Document Time Relation is assumed to be Overlap and does not need
to be annotated.

Examples

• Compte-rendu opératoire, Compte-rendu d’hospitalisation, Paris, le 14
octobre 2018

B.0.2.2 End_Scope

We do not consider heading and signature information in our annotation.
Therefore, we use the category End_Scope to mark the ending of a narrative
portion if the next narrative portion is a heading or a signature. This way,
we avoid annotating the contact information for the health care unit, which
may be repeated in several clinical reports. Despite the fact that the clinical
documents are de-identified, we avoid annotating specific patient information.
In cases other than headings or signatures, the end of a temporal portion is
implicitly considered the start of a new temporal portion.
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B.0.3 Examples of annotations made in accordance

with the above scheme and guidelines
Annotations of the first example (cf. Figure B.1)

• From Compte to d’hospitalisation as TemporalReference

• From Hospitalisé to 30/07/2013 as Overlap

• From Motif to d’HOSPITALISATION : as Overlap, note that we don’t
annotate the temporal portion after the End_Scope containing contact
information of doctors

• From HISTOIRE to ANTECEDENTS as Before

• From HTA to 2012, as Before_Overlap since we have a temporal indi-
cation that the disease is still ongoing for the patient

• From phlébite to 07/2012 as Before since it’s part of the medical patient
history

• From ALLERGIES to Autonome as Before_Overlap

• From Examens to et as Overlap despite the fact that the medical exams
are conducted before the date of hospital admission

• From sera to 10/09/2013 as After. The signature of the document after
the End_Scope category is not annotated

Annotations of the second example (cf. Figure B.2)

• From COMPTE to OPERATOIRE as Temporal Reference

• ADENOCARCINOME as Before_Overlap

• COLECTOMIE as Overlap

• From Rappel to clinique: as Before

• From Indication to opératoire. as Before_Overlap

• From Gestes to réalisés: as Overlap

• From La to histologique. as After

Annotations of the third example (cf. Figure B.3)

• From Paris to 2014, as TemporalReference
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Figure B.1: A first example of hospital report annotations

• From Je to jour as Overlap

• From Monsieur to comme as Before_Overlap for the patient’s age and
since it is stated that the purpose of the medical visit is a disease follow-
up

• From antécédent to Rappel: as Before

• From Examen to pratique: as Overlap

• From A to mois as After

• From Dossier to staff as TemporalReference, it’s a new clinical report

• From Dernières to 2014: as Before, based on the document creation
time of the second clinical report.

• From Décisions to staff: as Overlap

• From Le to consultation. as After
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Figure B.2: A second example of annotating an operative report

Figure B.3: A third example of annotating a clinical document containing two
clinical reports
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Titre: Extraction d’Informations à partir des Dossiers Patients Informatisés : Etudes en tempo-
ralité, confidentialité et impact environnemental
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Langues cliniques, Confidentialité, Réseaux de neurones, Empreinte carbone

Résumé: L’extraction automatique des infor-
mations contenues dans les Dossiers Patients In-
formatisés (DPIs) est cruciale pour améliorer
la recherche clinique. Or, la plupart des in-
formations sont sous forme de texte non struc-
turé. La complexité et le caractère confiden-
tiel du texte clinique présente des défis supplé-
mentaires. Par conséquent, le partage de don-
nées est difficile dans la pratique et est stricte-
ment encadré par des réglementations. Les
modèles neuronaux offrent de bons résultats
pour l’extraction d’informations. Mais ils né-
cessitent de grandes quantités de données an-
notées, qui sont souvent limitées, en particulier
pour les langues autres que l’anglais. Ainsi,
la performance n’est pas encore adaptée à des
applications pratiques. Outre les enjeux de
confidentialité, les modèles d’apprentissage pro-
fond ont un important impact environnemen-
tal. Dans cette thèse, nous proposons des méth-
odes et des ressources pour la Reconnaissance
d’entités nommées (REN) et l’extraction de re-
lations temporelles dans des textes cliniques en
français.

Plus précisément, nous proposons une ar-
chitecture de modèles préservant la confiden-
tialité des données par mimétisme permettant
un transfert de connaissances d’un modèle en-
seignant entraîné sur un corpus privé à un mod-
èle élève. Ce modèle élève pourrait être partagé
sans révéler les données sensibles ou le modèle

privé construit avec ces données. Notre stratégie
offre un bon compromis entre la performance et
la préservation de la confidentialité.

Ensuite, nous introduisons une nouvelle
représentation des relations temporelles, in-
dépendante des événements et de la tâche
d’extraction, qui permet d’identifier des por-
tions de textes homogènes du point de vue tem-
porel et de caractériser la relation entre chaque
portion du texte et la date de création du doc-
ument. Cela rend l’annotation et l’extraction
des relations temporelles plus facile et repro-
ductible à travers différents types d’événements,
vu qu’aucune définition et extraction préalable
des événements n’est requise.

Enfin, nous effectuons une analyse compara-
tive des outils existants de mesure d’empreinte
carbone des modèles de TAL. Nous adoptons un
des outils étudiés pour calculer l’empreinte car-
bone de nos modèles, en considérant que c’est
une première étape vers une prise de conscience
et un contrôle de leur impact environnemental.

En résumé, nous générons des modèles de
REN partageables préservant la confidentialité
que les cliniciens peuvent utiliser efficacement.
Nous démontrons également que l’extraction de
relations temporelles peut être abordée indépen-
damment du domaine d’application et que de
bons résultats peuvent être obtenus en utilisant
des données d’oncologie du monde réel.
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Abstract: Automatically extracting rich infor-
mation contained in Electronic Health Records
(EHRs) is crucial to improve clinical research.
However, most of this information is in the form
of unstructured text. The complexity and the
sensitive nature of clinical text involve further
challenges. As a result, sharing data is diffi-
cult in practice and is governed by regulations.
Neural-based models showed impressive results
for Information Extraction, but they need sig-
nificant amounts of manually annotated data,
which is often limited, particularly for non-
English languages. Thus, the performance is
still not ideal for practical use. In addition to
privacy issues, using deep learning models has a
significant environmental impact. In this thesis,
we develop methods and resources for clinical
Named Entity Recognition (NER) and Tempo-
ral Relation Extraction (TRE) in French clinical
narratives.

Specifically, we propose a privacy-preserving
mimic models architecture by exploring the
mimic learning approach to enable knowledge
transfer through a teacher model trained on a
private corpus to a student model. This stu-
dent model could be publicly shared without
disclosing the original sensitive data or the pri-

vate teacher model on which it was trained. Our
strategy offers a good compromise between per-
formance and data privacy preservation.

Then, we introduce a novel event- and task-
independent representation of temporal rela-
tions. Our representation enables identifying
homogeneous text portions from a temporal
standpoint and classifying the relation between
each text portion and the document creation
time. This makes the annotation and extraction
of temporal relations easier and reproducible
through different event types, as no prior def-
inition and extraction of events is required.

Finally, we conduct a comparative analysis
of existing tools for measuring the carbon emis-
sions of NLP models. We adopt one of the stud-
ied tools to calculate the carbon footprint of all
our created models during the thesis, as we con-
sider it a first step toward increasing awareness
and control of their environmental impact.

To summarize, we generate shareable
privacy-preserving NER models that clinicians
can efficiently use. We also demonstrate that
the TRE task may be tackled independently of
the application domain and that good results
can be obtained using real-world oncology clin-
ical notes.


