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Résumé

Extended French summary

Les dossiers patients informatisés (DPIs) contiennent des informations importantes sur les patients. L'extraction automatique de ces informations est cruciale car elle permet d'améliorer la prise de décision pour les soins médicaux et la recherche clinique. Cependant, la plupart de ces informations résident dans des données textuelles non structurées. La tâche d'extraction d'informations inclut l'extraction des entités cliniques telles ques les maladies, les symptôtmes, les traitements, etc, via la reconnaissance d'entités nommées (REN) ainsi que l'extraction des relations temporelles entre les entités dans le but de construire une chronologie patient.

Cette thèse présente un travail pluridisciplinaire qui se situe au carrefour des domaines du Traitement Automatique des Langues (TAL) et de l'informatique médicale. Notre travail s'est appuyé sur des méthodes d'apprentissage pour la reconnaissance de séquence et a été guidé par le cadre applicatif de l'oncologie. Dans cette thèse, nous nous concentrons sur la REN et l'extraction de relations temporelles pour le domaine clinique, avec des questions annexes sur la confidentialité des données, l'apprentissage automatique avec peu de ressources et l'impact environnemental des approches de TAL. Un des objectifs principaux de notre travail est de proposer des méthodes et des ressources pour la recherche clinique en français.

De bons résultats ont été obtenus en utilisant des modèles neuronaux pour plusieurs tâches de TAL, notamment l'extraction d'informations. Néanmoins, ces modèles nécéssitent de quantités importantes de données annotées. Le processus d'annotation est long, coûteux et nécessite une expertise dans le domaine, ce qui limite la disponibilité des corpus annotés, en particulier pour les langues autres que l'anglais. De plus, le texte clinique est complexe, peu formel, comportent une variété de terminologie médicale, des informations temporelles implicites, ambigues et spécifiques au domaine, ainsi que plusieurs entités imbriquées. Cela rend le processus d'annotation et d'extraction plus difficile. Le traitement des textes cliniques présente des défis supplémentaires dû à leur caractère confidentiel. Par conséquent, le partage de données est difficile et strictement encadré par des réglementations telles que RGPD. Les performances ne sont donc pas encore suffisantes pour la pratique.

Dans ce contexte, nous étudions l'apprentissage par mimétisme pour la REN dans les rapports cliniques écrits en français, en utilisant des corpus publics et privés. Le principe de l'apprentissage par mimétisme consiste à annoter des données publiques non étiquetées à l'aide d'un modèle enseignant privé qui a été entraîné sur les données sensibles originales. Les données publiques nouvellement étiquetées sont ensuite utilisées pour entraîner des modèles élèves. Ces modèles peuvent être partagés sans révéler les données privées d'origine ou exposer le modèle privé construit avec ces données. Notre architecture de modèles préservant la confidentialité des données permet aux institutions hospitalières de générer des modèles partageables, en particulier lorsqu'aucun corpus annoté n'est disponible publiquement. Nous montrons que notre stragéie offre un bon compromis entre la performance et la préservation de la confidentialité.

Notre seconde contribution concerne l'extraction des relations temporelles, reliant des évènements à un ancrage temporel représenté par des expressions temporelles. Cette tâche est difficile, très spécifique au domaine d'application et nécessite des corpus bien annotés. La tâche se révèle encore plus complexe pour le domaine clinique, car le texte clinique va et vient dans le temps, décrivant plusieurs évènements survenus à des moments différents. Dans certains cas, le moment associé à un évènement n'est même pas explicitement mentionné. De plus, la performance des systèmes d'extraction de relations temporelles dépend largement de la performance d'extraction des évènements. Or, la définition des évènements est très spécifique au domaine et aucune généralization n'est possible. Pour cela, nous nous intéressons à une simplification de l'extraction des relations temporelles en proposant une nouvelle représentation des relations temporelles, qui est indépendente des évènements et donc du domaine d'application. Le but de cette représentation est d'identifier des portions de textes homogènes du point de vue temporel et de classifier la relation temporelle de chaque portion de texte avec la date de création du document. L'annotation et l'extraction des relations temporelles sont ainsi plus faciles et plus reproductibles à travers différents types d'événements, vu qu'il n'est pas nécessaire de définir et d'extraire les événements au préalable. Nous évaluons notre représentation par le positionnement temporel des événements de toxicité des chimiothérapies décrits dans des rapports cliniques d'oncologie rédigés en français. Nos résultats suggèrent que ces événements pourraient être placés avec succès dans la chronologie du patient par la suite. Translation of text into English: "Mr K. M is a 38 yo male who was admitted to the ER for anuria. His antecedents are notable for bilateral renal colic. Upon evaluation, he was noted to have tenderness in the lower back area bilaterally. CT scan of the urinary tract showed a retroperitoneal growth encasing arteries and ureters consistent with retroperitoneal fibrosis (Figure 2)."
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Context

Although free text is the most convenient and easiest way to communicate, it is hard to process automatically due to its unstructured nature. Therefore, Natural Language Processing and Machine Learning methods have been used to understand and gain access to the useful information contained in the text. Information Extraction (IE) is the process of identifying the key elements of information that are relevant to a specific domain, including extracting entities via the Named Entity Recognition task and relations between entity mentions via the Relation Extraction task. However, addressing information extraction in specialized domains increases the task difficulties since domain expertise and greater effort are required to adapt information extraction systems using indomain data. In the clinical domain, up to 80% crucial information contained in Electronic Health Records are in the form of unstructured text [START_REF] Escudié | A novel data-driven workflow combining literature and electronic health records to estimate comorbidities burden for a specific disease: a case study on autoimmune comorbidities in patients with celiac disease[END_REF]. For many years, clinicians have been collecting and analyzing clinical narratives to identify important patient information, resulting in a waste of valuable expert time. IE allows the automatic identification and extraction of relevant information, which minimizes human labor and speeds up healthcare decision-making. Nevertheless, sharing resources and information extraction methods is difficult owing to clinical data privacy. As a result, creating and sharing resources in the clinical domain while preserving the privacy of sensitive data is needed, especially for non-English languages with lower resources like French. This thesis covers multidisciplinary research at the crossroads of the fields of natural language processing and medical informatics. This work is based on machine learning methods for sequence recognition and is motivated by oncology applications.

Named Entity Recognition (NER) consists of identifying the target entities and classifying them into pre-defined categories. According to [START_REF] Ehrmann | Les Entitées Nommées, de la linguistique au TAL : Statut théorique et méthodes de désambiguïsation[END_REF], "Given an application model and a corpus, a named entity is any linguistic expression that refers to a unique entity of the model autonomously in the corpus." A named entity could be a word or a group of words with a beginning, an ending, and a type. The NER task is crucial for extracting general and domain-specific concepts. For instance, building clinical IE systems requires developing an accurate NER system for extracting medical concepts such as diseases, anatomical locations, drugs, symptoms, etc. Named entities can be nested, meaning they can be embedded in other entities, making their identification more challenging. Several efforts have addressed the NER task. However, until recent years, most of these research efforts have been only interested in extracting simple entities and neglected embedded overlapping entities. Extracting nested entities is, therefore, still under active research. The NER task is also a crucial step for other NLP tasks, such as Relation Extraction (RE). Indeed, the performance of extracting relations between entities relies on how effectively the entities are extracted.

Temporal ordering between entity mentions is also crucial in understanding language. Extracting temporal relations between mentions is essential, in particular, to building clinical patient timelines, which offer a better understanding of the patient's prior medical history, disease progression, treatment effects, etc. This also allows better decision-making about future treatment plans. Temporal information extraction implies, in the first place, the extraction of clinical event mentions and temporal expressions and then the extraction of temporal relations. Although the extraction of mentions might be solved using NER systems, the definition of event mentions largely depends on the text type, the application task, and the domain, making generalization across domains difficult. Temporal Relation Extraction also depends on the quality of extraction of clinical events and temporal expressions, which raises more difficulties in designing end-to-end systems.

Access to data is essential to create efficient information extraction systems. However, using highly sensitive data, such as personal patient health information, is problematic. For this, several studies have been conducted to address the de-identification of clinical narratives. However, with the rapid expansion of machine learning, particularly deep learning methods, and their outstanding performance in many NLP tasks, several privacy risks have arisen. Indeed, while training and deploying models on sensitive data, there is a risk of accidental memorization, which might result in the leakage of personal data [START_REF] Bender | On the dangers of stochastic parrots: Can language models be too big?[END_REF]. As a result, simply de-identifying the clinical narratives is no longer sufficient to ensure the privacy of sensitive data. Moreover, sensitive data privacy limits the ability to share data and the models trained on this data, limiting collaborations and research. So, there is a need to propose ways to be able to create shareable models.

Neural-based methods have been proven to yield the best results for many NLP tasks, including NER and Temporal Relation Extraction (TRE), outperforming rule-based and traditional machine learning methods. However, such methods require a sufficient amount of annotated data. The annotation process is known to be time-consuming and costly as it requires domain expertise. Furthermore, clinical training data is often limited, in particular for non-English languages, which makes the clinical French NER task more challenging, as it is considered a low-resource problem. Designing annotation schemes to annotate clinical temporal relations also remains difficult, as shown by moderate inter-annotator agreement (Tourille et al., 2017b). This is due to the domain-dependent nature of the task, which requires extensive domain knowledge. Furthermore, clinical narrative text is often ungrammatical and goes back and forth through time, making it difficult to link events to temporal expressions. The time related to the clinical event is not always explicitly specified, and redundant information could be a major problem when determining the chronology of events.

Aside from annotation requirements and privacy concerns, using machine and deep learning models has a significant environmental impact. Recently, research efforts have been made to measure the carbon footprint of these models, encouraging the research community to evaluate their model carbon emissions and attempt to construct efficient green models with lower carbon emissions [START_REF] Strubell | Energy and policy considerations for deep learning in NLP[END_REF][START_REF] Bender | On the dangers of stochastic parrots: Can language models be too big?[END_REF][START_REF] Wu | Sustainable ai: Environmental implications, challenges and opportunities[END_REF].

Having funding from the ITMO Cancer Aviesan allowed us to conduct our research in the LISN lab as part of a multidisciplinary project with the Hôpital Européen Georges Pompidou (HEGP) and Sorbonne University, combining expertise in Natural Language Processing and the biomedical domain. By working on real oncology data, we developed effective NLP approaches, with the goal of assisting clinicians in extracting relevant information for tumor board meetings.

Research questions

Information extraction from narrative text is important for several domains, especially the clinical domain. Unstructured reports do contain crucial information that is essential for understanding the clinical patient history and proposing better treatment strategies. However, the majority of available resources and information extraction methods are in English. This leads us to these broad research questions: How can we provide relevant resources and information extraction tools for languages with lower resources? and how accurate can these systems be in a specialized domain, particularly the clinical domain?

Over the years, several NER systems have been proposed, ranging from rulebased to traditional machine learning and deep learning-based models. Clinical NER is more challenging, as the clinical text is complex, containing a variety of medical terminologies, ambiguous entities, and multiple nested entities. Neural-based models have emerged as the most effective method for building high-performance NER systems, particularly when dealing with nested entities. However, due to the personal and sensitive nature of the clinical narratives, sharing these NER models trained on clinical data is restricted, limiting research and collaborations between institutions. As a result, how can we develop shareable efficient NER models that, aside from handling nested entities, could preserve patient information privacy? Moreover, can we create these shareable models when few resources are available, as in the French clinical NER task?

To get an accurate temporal relation extraction system, high performance in extracting the mentions, i.e., events and temporal expressions, is required. However, the definition of events is extremely dependent on the target task and the application domain. Can we thus address the temporal relation extraction task independently from the domain in order to improve cross-domain generalization? Furthermore, as indicated by moderate inter-annotator agreement in several shared tasks, the annotation of temporal relations remains a difficult task. So, how can we simplify the representation of temporal relations to reduce the annotation efforts and simplify the task while still allowing for useful clinical text practical applications?

Finally, with the growing need for annotated data in widely used deep learning methods, can we create resources, particularly in French, that may be used for future clinical research and be useful to clinicians? Also, is it possible to raise awareness about the significant environmental impact of the intensive use of these deep learning methods? It is worth highlighting that all of our approaches were applied to the French language because few resources are available for this language, notably in the clinical domain, emphasizing the importance of efficient contributions to clinical research in French.

Contributions

Additionally, although we take advantage of the rise of neural networks to address the information extraction task, we are conscious of their significant environmental impact. As a first step to raise awareness, we conduct a review of the existing tools for calculating the carbon footprint of NLP models, essentially deep learning models. We evaluate the tools by measuring the carbon emissions of NER experiments, and we choose one of these tools to calculate the carbon footprint of all our thesis experiments. (cf. Chapter 3) Overall, our contributions tackle clinical information extraction in French, with the goal of assisting clinicians by simplifying and accelerating the collection of relevant patient information while preserving patient privacy. For instance, the identification and extraction of information from unstructured clinical narratives might benefit the decision-making process in tumor board meetings. Furthermore, our contributions allow further clinical research, in particular, for French. Although we focused on clinical text in our methods, it is worth noting that our proposed representations and architectures could be adapted to other types of text, particularly those with similar privacy concerns.

Dissertation Outline

The remainder of this dissertation is structured as follows:

Chapter 2 -first describes the input text representations, progressing from hand-crafted to neural learned representations, and then introduces the background of textual information extraction, with a focus on Named Entity Recognition and Temporal Relation Extraction tasks, as well as the data privacy and Natural Language Processing environmental impact, both of which are relevant to most NLP tasks.

Chapter 3 -provides a preliminary study of the main existing tools for calculating the carbon footprint of NLP models, in particular, the computationally expensive deep learning models. This study offers a comparative analysis based on estimated environmental impact measurements and usability. The evaluation of selected tools was made by measuring the impact of NER experiments in two computational set-ups.

Chapter 4 -addresses the task of generating shareable Named Entity Recognition models in clinical narratives written in French. It puts forward a novel Privacy-Preserving Mimic Models architecture that leverages both public and private corpora and enables the sharing of neural models without disclosing patient data privacy. This architecture is evaluated through a neural-based NER model, which covers flat and nested clinical entities, providing a good compromise between performance and privacy preservation.

Chapter 5 -addresses the task of temporal relation extraction by proposing a novel event-and task-independent representation of temporal relations. This representation allows the identification of homogeneous text portions from a temporal standpoint and the classification of their temporal positioning according to the Document Creation Time without needing the prior definition of events and temporal expressions. The main goal of the proposed temporal representation is to simplify the temporal relation annotation efforts, which remain challenging, enhance the performance of extraction models for better practical use, and make the task more reproducible through different event types. Our event-independent representation of temporal relations is evaluated on clinical tumor narratives, with a use case on temporal positioning of chemotherapy toxicity events.

Chapter 6 -concludes this dissertation by summarizing our main contributions and giving insight into research directions and perspectives for information extraction, particularly in the clinical domain.

Published Work

The material presented in Chapter 3 is based on a SustaiNLP EMNLP workshop paper [START_REF] Bannour | Evaluating the carbon footprint of NLP methods: a survey and analysis of existing tools[END_REF]. The material presented in Chapter 4 is based on two publications, one at the Journal of Biomedical Informatics (JBI) (Bannour et al., 2022b) and one at the ATALA Day dedicated to Robustness of NLP systems (Bannour et al., 2022a). The material presented in Chapter 5 is based on two publications, one at the 2023 TALN conference (Bannour et al., 2023b) and one at the BioNLP workshop associated with the ACL conference (Bannour et al., 2023a).
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Introduction

Information Extraction (IE) emerged as a method for mining the growing amount of publicly available information contained in unstructured and semi-structured data. Information Extraction begins with a collection of texts and converts them into structured information that can be easily used and evaluated [START_REF] Cowie | Information extraction[END_REF]. It could be divided into five major tasks: Segmentation, Named Entity Recognition, Relation Extraction, Normalization, and Coreference resolution [START_REF] Simoes | Information extraction tasks: a survey[END_REF]. In this thesis, we are interested in building clinical French named entity recognition models in a low-resource setting while preserving the privacy of patient health information. Such models could be shared and used by clinicians and hospital institutions to propose better patient treatment strategies. To assist with the systematic analysis of large patient records, we are also interested in proposing temporal information extraction approaches to temporally ordering clinical events. Therefore, in this chapter, we dive deeper into the related work of Named Entity Recognition (NER), temporal information extraction, in particular Temporal Relation Extraction (TRE), data privacy concerns, as well the environmental impact of NLP methods.

The chapter is structured as follows. In Section 2.2, we start by reviewing the input text representations, going from hand-crafted to neural learned representations. In Section 2.3, we describe the publicly available corpora for the Named Entity Recognition task. Then, we delve into the several proposed NER methods ranging from rule-based to feature-based and neural methods, as well as the proposed methods for French clinical NER, some low-resource NER strategies, and the evaluation metrics used for this task. Next, in Section 2.4, we start by defining the mentions involved in temporal relation extraction: time expressions, events, and temporal relations. We also review resources for temporal relation extraction, including annotation schemes, proposed shared tasks, and corpora in Section 2.4.4, and we go over the several proposed approaches for TRE, including rule-based, traditional learning-based, and neural methods. In Section 2.5, we explore the privacy risks raised by NLP methods, in particular, the deep learning approaches while dealing with sensitive data, and we enumerate some privacy-preserving strategies. Finally, we study the NLP environmental impact, particularly for modern NLP methods in Section 2.6, before concluding the chapter in Section 2.7.

Input text representations

Text represents a rich source of information, but because it is unstructured, it is difficult to extract and leverage this information. Indeed, computers cannot process the raw text data derived from natural language. Therefore, converting text into suitable numerical representations is a critical step in every Natural Language Processing work. However, it is important to create simple and easy-to-use representations while maintaining text semantics and meanings. The text is segmented into textual units, and a numerical vector represents each of these units. A sentence can be divided into words with vectorial representations for each word or into characters or n-grams for a finer-grained representation. In this section, we review the main earlier and modern text representations.

Earlier representations

Earlier approaches for word representation were either based on mappings of words into a list of terms, such as gazetteers, lexicons, and dictionaries or on statistical approaches based on word frequencies, such as One-Hot-Encoding (OHE), Bag of Words (BoW), Term-Frequency (TF), Inverse-Document-Frequency (IDF). The One-Hot-Encoding, for instance, consists in creating a vocabulary-size vector by inserting one in the index corresponding to the word in the sentence. [START_REF] Manning | Foundations of statistical natural language processing[END_REF] go through further word representations and their use in earlier statistical NLP methods. Such earlier approaches for textual representations are simple to use but yield sparse high-dimensional vector representations that need a lot of memory and include several features that may not always be essential. Therefore, they are limited to small-scale corpora. Techniques such as feature selection and fea-ture transformation were employed to overcome these issues, as explained in [START_REF] Patil | A survey of text representation and embedding techniques in nlp[END_REF]. Feature selection tempts to keep only the main terms or features and dismiss the remaining ones, whereas feature transformation aims to map the vector representations to a smaller space with fewer dimensions. As a result, each textual unit is represented by a set of features. Some examples of extracted features used in the NER task include punctuation, morphological properties, or Part Of Speech (POS) tags that represent the grammatical categories of words. However, such methods do not include word meanings in representations, which are required to understand semantic concepts such as polysemy.

Modern representations

To better integrate the semantics of words into representations, two main categories of distributed word representations or word embeddings were proposed. The first category is static representations that are low-dimensional dense and fixed-length vectors, built assuming that words with similar contexts have the same meaning [START_REF] Zellig | Distributional structure[END_REF]. Contextualized embeddings are the second type of embeddings, which incorporate context information into vector representations based on the premise that a word can have several meanings depending on context. These two types of embeddings will be discussed further in the following sections. Such feature embeddings are learned automatically, removing the need for the laborious feature engineering process.

Static embeddings. Prediction-based or count-based models were used to generate static embeddings. Mikolov et al. (2013b,a) introduced predictionbased models by proposing two models for learning embeddings, namely the continuous bag-of-words (CBOW) and skip-gram (SG) models. Both models are based on feed-forward neural networks. The CBOW model predicts a center word based on its given context words, while the SG model predicts the likelihood of a word being a context word for a particular target word. These two architectures are implemented into the Word2Vec toolkit1 . An improvement of SG models was proposed in the fastText toolkit2 [START_REF] Bojanowski | Enriching word vectors with subword information[END_REF][START_REF] Joulin | Bag of tricks for efficient text classification[END_REF] by using character-level representations to tackle the out-of-vocabulary problem. The main contribution for count-based models is the Global Vector for Word Representation (GLOVE)3 model proposed by [START_REF] Pennington | GloVe: Global vectors for word representation[END_REF]. This model learns word embeddings by encoding how frequently two words appear within a given window. For instance, if two words co-occur several times, they are semantically close.

Contextualized embeddings. In 2018, context-dependent models were presented to provide contextualized embeddings that go beyond traditional static embeddings. They are based on the assumption that a good model should be able to understand the various meanings of words given the context. [START_REF] Peters | Deep contextualized word representations[END_REF] proposed the Embeddings from Language Models (ELMo) model, which uses deep learning techniques to create contextualized representations. A word may have distinct embeddings depending on its context and position in a sentence. This model was followed by the Bidirectional Encoder Representations from Transformers (BERT) model proposed by [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] and based on transformers [START_REF] Vaswani | Attention is all you need[END_REF], an attention mechanism that learns contextual relation between words. BERT model uses a Word-Piece tokenization algorithm [START_REF] Wu | Google's neural machine translation system: Bridging the gap between human and machine translation[END_REF]. This algorithm starts by initializing the vocabulary with individual characters in the training corpus. During training, merging rules are learned, producing iteratively subwords known as wordpieces. Given this subword vocabulary, each out-of-vocabulary token will be segmented into a sequence of frequent subwords. This tokenization is similar to the Byte Pair Encoding (BPE) [START_REF] Gage | A new algorithm for data compression[END_REF][START_REF] Sennrich | Neural machine translation of rare words with subword units[END_REF] compression algorithm, in which the most frequent subwords are recursively merged. Unlike BPE, the WordPiece tokenization selects the pairs that increase the likelihood of the training data once added to the vocabulary rather than the most common pairs. The main goal of these two tokenization algorithms is to split rare words into smaller meaningful subwords rather than splitting frequently used words, which addresses concerns with word-based and character-based representations, such as high vocabulary size, out-of-vocabulary tokens, and the presence of less significant individual tokens. BPE has been used in GPT models [START_REF] Radford | Improving language understanding by generative pre-training[END_REF]. Several transformer-based models have since been proposed such XLNET [START_REF] Yang | Xlnet: Generalized autoregressive pretraining for language understanding[END_REF], ALBERT [START_REF] Lan | Albert: A lite bert for self-supervised learning of language representations[END_REF], RoBERTa [START_REF] Zhuang | A robustly optimized BERT pre-training approach with post-training[END_REF], BART [START_REF] Lewis | BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[END_REF] and many other models [START_REF] Qiu | Pre-trained models for natural language processing: A survey[END_REF][START_REF] Han | Pre-trained models: Past, present and future[END_REF]. El [START_REF] Boukkouri | Characterbert: Reconciling elmo and bert for word-level open-vocabulary representations from characters[END_REF] proposed the CharacterBERT model, a variant of BERT that does not rely on wordpieces but instead consults the characters of each token to build word-level representations by using ELMo's Character-CNN module instead of the BERT's wordpiece embedding layer. French versions were also proposed such as CamemBERT [START_REF] Jaggi | A tool to quantify and report the carbon footprint of machine learning computations and communication in academia and healthcare[END_REF], FlauBERT [START_REF] Le | FlauBERT: Unsupervised language model pre-training for French[END_REF] and recently CamemBERT-bio [START_REF] Touchent | Camembert-bio: Un modèle de langue français savoureux et meilleur pour la santé[END_REF], DrBERT [START_REF] Labrak | DrBERT: A robust pretrained model in French for biomedical and clinical domains[END_REF] and ALiBERT [START_REF] Berhe | AliBERT: A pre-trained language model for French biomedical text[END_REF] which are designed for the biomedical domain.

All the previously described neural embeddings are feature-based. They could be used as pre-trained embeddings, but we could also use these previous models as a model backbone of various NLP tasks and learn the input embedding from scratch during training. This type of embedding may be called fine-tuning-based embedding. Readers can find more details regarding feature representations in [START_REF] Patil | A survey of text representation and embedding techniques in nlp[END_REF].

Overview of Named Entity Recognition

Named Entity Recognition (NER) is one of the five significant tasks of Information Extraction. It refers to identifying named entities in text and classifying them into pre-defined categories. The term "Named Entity" (NE) was initially used in the Message Understanding Conference (MUC) in the 1990s [START_REF] Grishman | Message Understanding Conference-6: A brief history[END_REF], where the purpose was primarily to identify persons, organizations, localization, and numerical expressions such as time. In addition to these generic named entities, several domain-specific entities have been introduced. A named entity could be a word or phrase with a beginning, an ending, and a type.

Named entities can be nested, meaning they can include mentions of other entities. Recognizing such entities is known as a "nested NER". Nested entities might be of the same or of a distinct entity type, making the extraction task more challenging. On the other hand, the NER task with no nested entities is referred to as a "flat NER" task or simply a "NER" task. Figure 2.1 illustrates two GENIA dataset [START_REF] Kim | Genia corpus-a semantically annotated corpus for bio-textmining[END_REF] samples, the first representing the traditional flat NER task and the second showing a nested NER task. In the example of Figure 2.1b, the five nested entities are "Small GTP-binding protein Rho", "GTP", "Rho", "AP-1 transcription" and "AP-1". The traditional flat NER does not consider the recognition of these nested entities. In this section, we describe available corpora for NER, the several proposed methods of NER ranging from rule-based to feature-based and neural methods. We also review the main proposed approaches for French clinical NER, some low-resource NER strategies, and the evaluation metrics.

Corpora for Named Entity Recognition

Several annotated corpora have been proposed for the NER task. These corpora differ in language, domain, entity types, and whether or not they contain nested entities. Most annotated available corpora have been proposed in major NLP evaluation campaigns. The MUC-6 [START_REF] Grishman | Design of the MUC-6 evaluation[END_REF] and the MUC-7 [START_REF] Chinchor | Muc-7 named entity task definition[END_REF] English corpora were provided in the shared tasks at the 6th and 7th Message Understanding Conference (MUC). The CoNLL-2002[START_REF] Tjong | Introduction to the CoNLL-2002 shared task: Language-independent named entity recognition[END_REF] and CoNLL-2003 (Tjong Kim Sang and[START_REF] Tjong | Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition[END_REF] corpora were introduced in the Conference of Natural Language Learning (CoNLL) [START_REF] Tjong | Introduction to the CoNLL-2000 shared task chunking[END_REF] shared tasks and covered four languages (Spanish, Dutch, English, and German). OntoNotes is a NER corpus that has been developed in the OntoNotes project 4 and covered three languages: English, Chinese, and Arabic. The QUAERO Broadcast News Extended Named Entity Corpus5 has been introduced with French named entities. These datasets described above are for the general domain and do not contain nested entities. However, the ACE6 corpus is a major benchmark general domain corpus in which around 35% of the sentences include nested entities for the English language (Wang et al., 2022b).

Other NER datasets have been proposed for specific domains. For biomedical and clinical domains, various datasets have been proposed, such as GE-NIA [START_REF] Kim | Genia corpus-a semantically annotated corpus for bio-textmining[END_REF]), i2b2-2010[START_REF] Sun | Evaluating temporal relations in clinical text: 2012 i2b2 challenge[END_REF], BC5CDR [START_REF] Yao | Biomedical named entity recognition based on deep neutral network[END_REF], and NCBI-disease [START_REF] Islamaj Doğan | Ncbi disease corpus: a resource for disease name recognition and concept normalization[END_REF] corpora. About 17% of the GENIA corpus entities are embedded within other entities (Wang et al., 2022b). Most annotated available corpora in the clinical domain are devoted to English. Few publicly available corpora have been proposed for French, like the QUAERO French Medical (Névéol et al., 2014), CAS [START_REF] Grabar | CAS: French corpus with clinical cases[END_REF] and, DEFT-2020 [START_REF] Cardon | Présentation de la campagne d'évaluation deft 2020 : similarité textuelle en domaine ouvert et extraction d'information précise dans des cas cliniques[END_REF] corpora. We describe the publicly available French corpora used in the thesis experiments below. Table 2.1 presents descriptive statistics about these datasets, which are publicly available for research purposes through a data use agreement.

QUAERO Broadcast News Extended Named Entity. This corpus [START_REF] Galibert | Named and specific entity detection in varied data: The quaero named entity baseline evaluation[END_REF] comprises manually fully annotated radio broadcast news and broadcast conversation data. This corpus is freely available for noncommercial use and does not contain nested entities. 

Rule-based and terminology-based approaches

Early methods for Named Entity Recognition were rule-based and terminology-based methods. These methods are based on human handcrafted sets of rules and domain-specific lexicons. Several rule-based NER systems were proposed, such as NetOwl [START_REF] Krupka | IsoQuest inc.: Description of the NetOwl T M extractor system as used for MUC-7[END_REF]Hausman, 1998), Facile (Black et al., 1998), LaSIE-II [START_REF] Humphreys | University of Sheffield: Description of the LaSIE-II system as used for MUC-7[END_REF] and LTG [START_REF] Mikheev | Named entity recognition without gazetteers[END_REF]. [START_REF] Rau | Extracting company names from text[END_REF] proposed one of the first systems to extract company names from financial text using rules, heuristics, and patterns. [START_REF] Farmakiotou | Rule-based named entity recognition for greek financial texts[END_REF] proposed a rule-based Greek NER system using gazetteers and grammars, which was evaluated on a financial news corpus. [START_REF] Gattani | Entity extraction, linking, classification, and tagging for social media: a wikipedia-based approach[END_REF] created a Wikipedia-based method for Named Entity Recognition in social media, in which pertinent words were linked to Wikipedia pages. Wikipedia is used as a lexicon containing a large number of entities. [START_REF] Rocha | Pampo: using pattern matching and pos-tagging for effective named entities recognition in portuguese[END_REF] build a named entity recognition system using regular expressions to identify common candidate entities and a new collection of regular expressions on the Part-Of-Speech (POS) tags to filter specific candidates. To extract nested entities, early work on nested NER used rule-based post-processing. For instance, [START_REF] Shen | Effective adaptation of hidden Markov model-based named entity recognizer for biomedical domain[END_REF] proposed four main patterns relating to different cascaded or nested entities. Like much early work on nested entities, their technique is combined with a learning-based strategy. These approaches will be explored in the following sections.

Clinical domain. Many rule-based and terminology-based NLP systems have been developed for clinical concepts extraction such as MedLee [START_REF] Friedman | A general natural-language text processor for clinical radiology[END_REF], MedEx [START_REF] Xu | Medex: a medication information extraction system for clinical narratives[END_REF], MetaMap [START_REF] Aronson | An overview of metamap: historical perspective and recent advances[END_REF], cTakes [START_REF] Savova | Discovering peripheral arterial disease cases from radiology notes using natural language processing[END_REF] and MedXN [START_REF] Sohn | MedXN: an open source medication extraction and normalization tool for clinical text[END_REF]. [START_REF] Hanisch | Prominer: rule-based protein and gene entity recognition[END_REF] introduced a synonym dictionary-based NER system for extracting protein and gene entities. [START_REF] Deléger | Extracting medication information from french clinical texts[END_REF] introduced a rule-based system for extracting medication information. [START_REF] Pomares Quimbaya | Named entity recognition over electronic health records through a combined dictionary-based approach[END_REF] proposed a combined dictionary-based approach for NER in Electronic Health Records (EHRs). This approach combined a direct match technique with fuzzy matching and stemmed matching. [START_REF] Eftimov | A rule-based namedentity recognition method for knowledge extraction of evidence-based dietary recommendations[END_REF] introduced a rule-based NER method to extract dietary concepts in clinical texts. Rule-based techniques cannot be generalized because they rely heavily on the quality of manually defined language and domain-specific rules. Moreover, developing such rules is time-consuming and expensive. Exhaustive lexicons are required for terminology-based approaches. As a result of domain-specific rules and incomplete dictionaries, rule-based and terminology-based techniques have high accuracy but low recall.

Feature-engineering-based supervised methods

Feature-engineering-based supervised methods aim to generate an inferred function that maps incoming input to a pre-defined category by learning from a labeled corpus. Named entity recognition may be represented as a classification task for each token, independently from each other. Traditional supervised methods formalize the NER task as a sequence labeling task using sequence tag schemes, where the goal is to assign a label to each element in a sequence and then combine the elements to identify named entities. Each element or token will be given a tag with an entity type and an indication of the token's position in a named entity.

Tagging Schemes. Several tagging schemes for encoding the named entities were proposed. The first proposed tag schemes were IO, IOB, BIO, and IOE. Each token in the IO scheme is classified as an (I)nside tag or (O)utside tag. The (O)utside tag denotes the absence of any type of entity at a given position. To represent named entities with multiple tokens, additional tags are given in the IOB, BIO and IOE tag schemes to indicate whether the token is at the (B)eginning or (E)nd of an entity. In the IOB tagging method, the (B)eginning tag is solely used to differentiate successive items of the same type, which is not allowed with the IO tagging scheme. However, in the BIO scheme, the (B)eginning tag is added to all entities. The BIO tagging scheme gained popularity when it was adopted by the Conference of Natural Language Learning (CoNLL). The IOBES labeling scheme is an extension of the IOB scheme, where the (E)nd tag is used to identify the last token of the entity, and the (S)ingle tag is used for single-token entities. This encoding scheme is known by several names, such as BMEWO scheme and BIOUL scheme, using the (L)ast tag instead of the (E)nd tag for ending tokens and the (U)nit tag instead of the (S)ingle tag for single-token entities. This tagging format obtained the best performance of the CoNLL dataset [START_REF] Ratinov | Design challenges and misconceptions in named entity recognition[END_REF]. Figure 2.2 illustrates an example of all these tagging schemes, derived from the French DEFT 2020 challenge9 , with an example of nested entities represented on two levels with the BIOUL tagging scheme.

Methods. The common earlier used supervised techniques for the NER task are Hidden Markov Model (HMM) [START_REF] Leonard | Statistical inference for probabilistic functions of finite state markov chains[END_REF], Maximum Entropy (ME) model [START_REF] Berger | A maximum entropy approach to natural language processing[END_REF], Decision Tree (DT) [START_REF] Wu | Top 10 algorithms in data mining[END_REF], Support Vector Machines (SVM) [START_REF] Cortes | Support-vector networks[END_REF], and Conditional Random Fields (CRF) [START_REF] Lafferty | Conditional random fields: Probabilistic models for segmenting and labeling sequence data[END_REF]. [START_REF] Daniel | An algorithm that learns what's in a name[END_REF] introduced the first HMM model for NER task evaluated on English and Spanish texts. The HMM model learns the probability of the current token's label given the previous token's label and the probability of generating a token given its label. [START_REF] Daniel | An algorithm that learns what's in a name[END_REF] use the Viterbi algorithm [START_REF] Viterbi | Error bounds for convolutional codes and an asymptotically optimum decoding algorithm[END_REF], a dynamic programming algorithm, to find the most probable sequence of labels or hidden states based on a sequence of observations. [START_REF] Morwal | Named entity recognition using hidden markov model (hmm)[END_REF] proposed a similar language-independent NER system trained and tested on Indian languages. [START_REF] Dahan | First order hidden markov model for automatic arabic name entity recognition[END_REF] presented an Arabic NER system using a HMM model, outperforming rule-based techniques. However, HMM implies that all tokens are independent of each other, which limits the contextual information available to the NER model. [START_REF] Leong | Named entity recognition with a maximum entropy approach[END_REF] proposed two ME based NER systems that did not only use the local context inside a phrase but also exploited word occurrences throughout the same document and incorporated additional features from external name lists. [START_REF] Cowie | CRL/NMSUDescription of the CRL/NMSU systems used for MUC-6[END_REF] proposed the Au-toLearn system, which used the ID3 algorithm [START_REF] Quinlan | Induction of decision trees[END_REF] to build a DT that could identify the start and the end of certain named entities. [START_REF] Bennett | Learning to tag multilingual texts through observation[END_REF] introduced proposed the RoboTag NER system, which uses an improved version of the ID3 algorithm, namely the decision-tree induction algorithm C4. 5 (Salzberg, 1994), and outperforms AutoLearn on the MUC-6 data due to the use of gazetteers and other lexical resources. [START_REF] Sekine | A decision tree method for finding and classifying names in Japanese texts[END_REF] addresses the problem of wrongly identifying person names included in organization NEs by searching the most probable sequence of output tags that provide a valid combined solution using a human rule set. To allow the decision tree to categorize the NEs directly, [START_REF] Paliouras | Learning decision trees for named-entity recognition and classification[END_REF] proposed a pre-processing step that consists in extracting noun phrases using a separate parser. This is done under the premise that NEs are noun phrases. [START_REF] Li | Svm based learning system for information extraction[END_REF] developed an SVM-based system and evaluated it on the CoNLL-2003 dataset and CMU seminars. This system comprises two SVM classifiers for each entity type, one for recognizing the beginnings of the named entity and another for the ends. They experimented with various window sizes and features, and they used a variant of the SVM, the SVM with uneven margins [START_REF] Li | The SVM with uneven margins and Chinese document categorization[END_REF], which outperforms the original SVM in terms of generalization performance. SVMs can learn various combinations of features but do not take neighboring words into account when predicting an entity label. [START_REF] Mccallum | Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons[END_REF] introduced a feature induction for CRFs in NER and evaluated their method on the CoNLL-2003 dataset for English and German. [START_REF] Torisawa | Exploiting wikipedia as external knowledge for named entity recognition[END_REF] proposed a CRF-based NER model using features from Wikipedia as external knowledge. [START_REF] Krishnan | An effective two-stage model for exploiting non-local dependencies in named entity recognition[END_REF] build a two-stage NER model using two CRFs. To capture non-local dependencies, the second CRF uses features obtained from the output of the first CRF. CRFs may capture both local and global contexts and represent deep domain knowledge using features. They are, however, unidirectional and can only represent connections between labels in the forward direction. To reduce the need for manually created expert rules and for annotated data, some works adopt a hybrid NER model combining rules and statistical learning methods. For instance, [START_REF] Shaalan | A hybrid approach to arabic named entity recognition[END_REF] presented a hybrid NER approach to enhance the performance of the Arabic NER task. To solve the nested entities problem, [START_REF] Lu | Joint mention extraction and classification with mention hypergraphs[END_REF] developed a directed hypergraph-based approach that allows the representation of many possible combinations of overlapping mentions of different types. [START_REF] Obaja | Labeling gaps between words: Recognizing overlapping mentions with mention separators[END_REF] proposed an improvement to this approach by modeling mention edges along with the features.

Clinical domain. [START_REF] Takeuchi | Bio-medical entity extraction using support vector machines[END_REF] introduced an SVM-based biomedical NER approach using a collection of MEDLINE abstracts. [START_REF] Wang | Cascading classifiers for named entity recognition in clinical notes[END_REF] presented a cascading clinical NER system that reclassifies the extracted entities using a CRF model, an SVM model, and a Maximum Entropy model with a voting strategy. [START_REF] Wang | Supervised methods for symptom name recognition in free-text clinical records of traditional chinese medicine: an empirical study[END_REF] demonstrated that the CRF approach outperforms HMM and MEMM models for recognizing symptoms in Chinese clinical text. [START_REF] Xu | Joint segmentation and named entity recognition using dual decomposition in chinese discharge summaries[END_REF] proposed a joint model based on CRF for segmentation and NER on Chinese discharge summaries. [START_REF] Leong | Named entity recognition with a maximum entropy approach[END_REF] conducted an evaluation of active learning methods for named entity recognition in clinical text using the NER corpus from the 2010 i2b2/VA NLP challenge. [START_REF] Cheng | A hybrid method to extract clinical information from chinese electronic medical records[END_REF] proposed a hybrid model incorporating expert rules with a BiLSTM-CRF approach to extract Chinese clinical named entities. To address the nested biomedical NER task, [START_REF] Zhang | Enhancing hmm-based biomedical named entity recognition by studying special phenomena[END_REF] introduced a layered HMM-based approach on the GENIA corpus. For this, two HMMs are trained, one to identify short nested entities and the other to extend short entities. [START_REF] Alex | Recognising nested named entities in biomedical text[END_REF] structured the nested NER problem as cascaded flat NER tasks. Each NER task consists in a CRF model that is trained by using the previous CRF's output as a feature for the current one. The main drawback of this technique is that it does not handle overlapping entities of the same type. Finkel and [START_REF] Finkel | Nested named entity recognition[END_REF] used a tree-based parsing model for the nested NER task. In fact, entities were represented as subtrees, and a CRF approach was used to detect the nested entities.

Overall, fully-supervised methods need a large amount of annotated data, and their performance heavily depends on the annotation quality. Moreover, more features usually result in better performance. However, annotating large corpora is time-consuming and highly expensive. [START_REF] Collobert | A unified architecture for natural language processing: Deep neural networks with multitask learning[END_REF] introduced the first neural-based model for the NER task with manually constructed feature vectors. Deep learning feature representations, i.e., word embeddings, were used in the later proposed NER models [START_REF] Collobert | Natural language processing (almost) from scratch[END_REF]. [START_REF] Collobert | Natural language processing (almost) from scratch[END_REF] proposed a one-layer Convolutional Neural Network (CNN) [START_REF] Waibel | Phoneme recognition using time-delay neural networks[END_REF] based on word embeddings, followed by a CRF output layer. [START_REF] Huang | Bidirectional lstm-crf models for sequence tagging[END_REF] proposed a similar architecture using Long-Short-Term-Memory (LSTM) [START_REF] Hochreiter | Long short-term memory[END_REF] and Bidirectional LSTM (Bi-LSTM) models to take into account the context and demonstrated that adding a CRF layer on top of the Bi-LSTM enhanced performance on the English CoNLL dataset. [START_REF] Lample | Neural architectures for named entity recognition[END_REF] presented a similar NER model but using character-based word features rather than hand-crafted features. Chiu and Nichols (2016) proposed a Bi-LSTM-CNN hybrid model that captures both character-based and wordbased features. [START_REF] Ma | End-to-end sequence labeling via bidirectional LSTM-CNNs-CRF[END_REF] introduced a hybrid NER architecture based on Bi-LSTM, CNN, and CRF and obtained better performance on the English CoNLL dataset. This architecture is an end-to-end system that does not require feature engineering or data pre-processing. Panchendrarajan and Amaresan (2018) introduced a NER architecture that combines a Bi-LSTM model and a bidirectional CRF (Bi-CRF) layer, which describes the dependency between labels in both directions. It is demonstrated that the backward CRF can extract complex entities. Later, contextual representations produced by Pre-trained Language Models (PLMs) considerably increased NER system performance [START_REF] Peters | Deep contextualized word representations[END_REF][START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF]. In fact, several transformer-based PLMs such as BERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF], RoBERTA (Liu et al., 2019b), ALBERT [START_REF] Lan | Albert: A lite bert for self-supervised learning of language representations[END_REF] and T5 [START_REF] Raffel | Exploring the limits of transfer learning with a unified text-to-text transformer[END_REF] achieved high performance in many NLP tasks. Therefore, pretraining models on a vast amount of text and fine-tuning it on task-specific corpora is now the common approach in modern NLP tasks, including the NER task. Multiple works use these models to enhance the performance of NER models (Liu et al., 2019a;[START_REF] Luo | Hierarchical contextualized representation for named entity recognition[END_REF]. However, all these approaches address only flat NER. [START_REF] Katiyar | Nested named entity recognition revisited[END_REF] proposed a hypergraph representation for nested entities and used an LSTM-based sequence labeling model to learn the structure. [START_REF] Ju | A neural layered model for nested named entity recognition[END_REF] proposed a stacked neural layered model built with flat NER layers. Inspired by the state-of-the-art model proposed in [START_REF] Lample | Neural architectures for named entity recognition[END_REF], each layer is based on a Bi-LSTM-CRF model. Other than the error propagation from layer to layer, a limitation of this model is that an inner entity cannot be identified when an outer entity is extracted first. Aside from token-based NER formulation, span-based NER approaches have recently gained popularity, where the goal is to identify and classify all possible continuous sequences of tokens independently and then deal with the overlap conflict as a postprocessing step. [START_REF] Wang | Pyramid: A layered model for nested named entity recognition[END_REF] introduced a span-based neural layered model, namely Pyramid, which consists of a stack of linked layers and recognizes entities in a bottom-up manner. Li et al. (2020b) cast the nested NER task as a Machine Reading Comprehension (MRC) task by prompting a pretrained language model with queries containing the entity categories and asking the model to identify the spans corresponding to these categories. [START_REF] Straková | Neural architectures for nested NER through linearization[END_REF] formulated the nested NER task as a sequence-to-sequence generation problem with an input sequence of tokens and a target sequence of labels. Multiple combinations of context-based embeddings were also studied. Yu et al. ( 2020) used a biaffine model [START_REF] Dozat | Deep biaffine attention for neural dependency parsing[END_REF] to score all candidate spans in a sentence and predict both flat and nested entities using contextual embeddings. Some works treated the NER task in a generative way. Indeed, [START_REF] Yan | A unified generative framework for various ner subtasks[END_REF] proposed a sequence-to-sequence unified generative model with pointer network [START_REF] Vinyals | Pointer networks. Advances in neural information processing systems[END_REF] and based on BART [START_REF] Lewis | BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[END_REF]. [START_REF] Shen | Locate and label: A two-stage identifier for nested named entity recognition[END_REF] addresses the nested NER task by a twostage approach, which is commonly used in the computer vision field. [START_REF] Wang | Gpt-ner: Named entity recognition via large language models[END_REF] proposed a NER method based on GPT [START_REF] Brown | Language models are few-shot learners[END_REF] to explore the use of large generative language models for both flat and nested NER tasks. [START_REF] Shen | Diffusionner: Boundary diffusion for named entity recognition[END_REF] explored a novel generative method for both flat and nested NER tasks that cast the NER task as a boundary denoising diffusion process and generate named entities from noisy spans using diffusion models [START_REF] Sohl-Dickstein | Deep unsupervised learning using nonequilibrium thermodynamics[END_REF][START_REF] Ho | Denoising diffusion probabilistic models[END_REF].

Neural-based approaches

Clinical domain. [START_REF] Yao | Biomedical named entity recognition based on deep neutral network[END_REF] proposed one of the first neural models for the biomedical NER task based on CNN and with a multi-layered structure. [START_REF] Zhao | Disease named entity recognition from biomedical literature using a novel convolutional neural network[END_REF] formulated the NER task as a classification task and presented a multi-label CNN model to extract disease and chemical entities. [START_REF] Habibi | Deep learning with word embeddings improves biomedical named entity recognition[END_REF] developed the model LSTM-CRF for several biomedical NER tasks and performed better than the other tested NER systems. [START_REF] Wu | Combine factual medical knowledge and distributed word representation to improve clinical named entity recognition[END_REF] proposed a method that combines medical knowledge embeddings with word embeddings in the LSTM-CRFs model to deal with the medical terminologies that are not often used in general domain corpora. [START_REF] Xu | Improving clinical named entity recognition with global neural attention[END_REF] introduced an attention-based neural clinical NER model to incorporate the document-level global information with the local context information using representations from pre-trained bidirectional language models with attention. [START_REF] Zhang | Extracting comprehensive clinical information for breast cancer using deep learning methods[END_REF] obtained significant performance improvement when using BERT embedding as input features to a Bi-LSTM-CRF model for extracting clinical concepts from Chinese clinical breast cancer notes. [START_REF] Wei | Named entity recognition from biomedical texts using a fusion attention-based bilstm-crf[END_REF] introduced an attention-based BiLSTM-CRF model to enhance the ability to extract significant context information in the biomedical NER task. [START_REF] Zou | Privacy analysis of deep learning in the wild: Membership inference attacks against transfer learning[END_REF] explored transformer-based models such as BERT in the clinical concept extraction task on different shared tasks corpora and highlighted the benefits of contextual embeddings. To improve the performance on biomedical and clinical NER tasks, several domain-specific language models were also introduced, such as BioBERT [START_REF] Lee | Biobert: a pre-trained biomedical language representation model for biomedical text mining[END_REF], clinicalBERT [START_REF] Huang | Clinicalbert: Modeling clinical notes and predicting hospital readmission[END_REF], BioAL-BERT [START_REF] Naseem | Bioalbert: A simple and effective pre-trained language model for biomedical named entity recognition[END_REF] and PubMedBERT [START_REF] Gu | Domain-specific language model pretraining for biomedical natural language processing[END_REF]. For the nested NER task, the stacked neural model proposed by [START_REF] Ju | A neural layered model for nested named entity recognition[END_REF] outperforms state-of-the-art feature-based models on the GENIA dataset. [START_REF] Wang | Pyramid: A layered model for nested named entity recognition[END_REF] showed that their method obtained state-of-the-art results on different nested NER corpora, including the GENIA corpus. Sohrab and Miwa ( 2018) proposed a neural model that enumerates all possible spans as potential entity mentions and classifies each span into a specific category or a non-entity. Each span is represented with its word embeddings. [START_REF] Zheng | A boundary-aware neural model for nested named entity recognition[END_REF] introduced a boundary-aware NER model that combines a sequence labeling model to identify boundaries with a span classification model to predict nested entities based on the detected boundaries. [START_REF] Straková | Neural architectures for nested NER through linearization[END_REF] proved that by using contextual embeddings such as ELMo, BERT, and Flair, their sequenceto-sequence model performs better on many datasets, including the GENIA dataset, and for both flat and nested NER tasks. [START_REF] Yu | Named entity recognition as dependency parsing[END_REF] evaluated their biaffine model on the biomedical GENIA dataset, and a significant gain was obtained compared to earlier systems.

The main strength of neural approaches is their ability to learn complex input representations, which reduces the effort of hand-crafting features. However, to achieve high performance, such neural models require sufficient humanannotated data, which can be costly and time-consuming. Moreover, the biases involved with training large language models raise many ethical and legal issues, such as patient and data privacy [START_REF] Bender | On the dangers of stochastic parrots: Can language models be too big?[END_REF]. We will review the clinical data privacy concerns in Section 2.5.

Proposed approaches for French clinical NER

Several studies have addressed the NER task in French using different domain corpora such as news corpora [START_REF] Galibert | Extended named entities annotation on OCRed documents: From corpus constitution to evaluation campaign[END_REF][START_REF] Dupont | Exploration de traits pour la reconnaissance d'entités nommées du français par apprentissage automatique (feature exploration for French named entity recognition with machine learning)[END_REF][START_REF] Dekhili | Hybrid statistical and attentive deep neural approach for named entity recognition in historical newspapers[END_REF][START_REF] Labusch | Named entity disambiguation and linking historic newspaper ocr with bert[END_REF] and Twitter texts [START_REF] Sileo | Synapse at cap 2017 ner challenge: Fasttext crf[END_REF][START_REF] Peres | Bidirectional lstm with a context input window for named entity recognition in tweets[END_REF]. In the clinical domain, most studies focus on texts written in English or Chinese. Few studies were proposed on French cor-pora (Névéol et al., 2014(Névéol et al., , 2018a)). As part of the CLEF eHealth 2015 workshop [START_REF] Névéol | CLEF eHealth evaluation lab 2015 task 1b: clinical named entity recognition[END_REF], [START_REF] Fatima Soualmia | Sibm at clef e-health evaluation lab[END_REF]; [START_REF] Jiang | Wi-enre in clef ehealth evaluation lab 2015: Clinical named entity recognition based on crf[END_REF] proposed a combination of CRF-based models with hand-crafted features and lexicons for geographical entities and d 'Hondt et al. (2015) presented a three classifiers NER system to deal with nested entities using CRFs and SVM models. [START_REF] Van Mulligen | Erasmus mc at clef ehealth 2016: Concept recognition and coding in french texts[END_REF] proposed a dictionary-based NER approach using French Unified Medical Language System (UMLS) terms with translated English UMLS terms, and Ho-Dac et al. ( 2016) used a CRF-based model with diverse linguistic features for the CLEF eHealth 2016 clinical NER task [START_REF] Névéol | Clinical information extraction at the CLEF eHealth evaluation lab[END_REF]. The CLEF eHealth 2015 and 2016 shared NER tasks were based on the annotated QUAERO French Medical corpus (Névéol et al., 2014). [START_REF] Lerner | Terminologies augmented recurrent neural network model for clinical named entity recognition[END_REF] proposed a hybrid system that combines expert rules with a Bidirectional Gated Recurrent Unit with a CRF (BiGRU-CRF) architecture to extract five types of entities on a proposed French corpus of 147 clinical documents. [START_REF] Jouffroy | Hybrid deep learning for medication-related information extraction from clinical texts in french: Medext algorithm development study[END_REF] created a hybrid approach that uses a BiLSTM-CRF model, contextual word embeddings trained on clinical text, and a combination of knowledge base and expert rules. Their model is evaluated using a private French clinical data warehouse. As part of the DEFT 2020 challenge [START_REF] Cardon | Présentation de la campagne d'évaluation deft 2020 : similarité textuelle en domaine ouvert et extraction d'information précise dans des cas cliniques[END_REF] 2022) introduced a hybrid approach that combined specialized knowledge with language model (CamemBERT) adaptation on several biomedical corpora.

The fact that few research works have been conducted on French corpora may be related to the extra challenges encountered when dealing with French clinical data. In fact, as mentioned in Section 2.3.1, few publicly available French annotated datasets are available. On the one hand, the annotation process is time-consuming and extremely expensive due to the need for rich domain knowledge, representing a big challenge for low-resource languages. On the other hand, due to the sensitive nature of clinical data, sharing such data is restricted. Indeed, sharing data is difficult in practice and is governed by laws and regulations such as General Data Protection Regulation (GDPR)10 . As a result, limited collaborations could be done across hospital institutions.

A word about low-resource NER strategies

To address the lack of annotated corpora and address the low-resource NER task, prior works used either semi-supervised learning, which aims to learn from both labeled and unlabeled data [START_REF] Liao | A simple semi-supervised algorithm for named entity recognition[END_REF][START_REF] Liu | Recognizing named entities in tweets[END_REF][START_REF] Gao | A pre-training and self-training approach for biomedical named entity recognition[END_REF], or data augmentation methods that expand the training set by applying transformations without changing their labels [START_REF] Dai | An analysis of simple data augmentation for named entity recognition[END_REF][START_REF] Phan | Simple semantic-based data augmentation for named entity recognition in biomedical texts[END_REF] or active learning methods which assume the presence of a human annotator, who may be queried to get ground-truth labels for the most relevant unlabeled instances to be added to the training set. As a result, only data that can increase performance are annotated [START_REF] Tomanek | Semi-supervised active learning for sequence labeling[END_REF][START_REF] Shen | Deep active learning for named entity recognition[END_REF][START_REF] Liu | Ltp: a new active learning strategy for crf-based named entity recognition[END_REF][START_REF] Naguib | Stratégies d'apprentissage actif pour la reconnaissance d'entités nommées en français. In 18e Conférence en Recherche d'Information et Applications\\16[END_REF][START_REF] Le | Active learning with feature matching for clinical named entity recognition[END_REF]. Other methods seek distant supervision, which uses external knowledge rather than propagating the knowledge to either label more data [START_REF] Cao | Lowresource name tagging learned with weakly labeled data[END_REF][START_REF] Lison | Named entity recognition without labelled data: A weak supervision approach[END_REF][START_REF] Liang | Bond: Bert-assisted open-domain named entity recognition with distant supervision[END_REF][START_REF] Wang | ChemNER: Fine-grained chemistry named entity recognition with ontology-guided distant supervision[END_REF] or incorporate meta information such as context and prompts to facilitate training (Lee et al., 2022a). With the rise of pre-trained language models, few-shot and zero-shot learning methods were proposed to learn better using only a few labeled instances [START_REF] Košprdić | A transformer-based method for zero and few-shot biomedical named entity recognition[END_REF][START_REF] Zhang | Promptner: A prompting method for few-shot named entity recognition via k nearest neighbor search[END_REF][START_REF] Agrawal | Large language models are few-shot clinical information extractors[END_REF][START_REF] Mehari | Named-entity recognition for a low-resource language using pre-trained language model[END_REF].

Evaluation metrics

Precision, Recall, and F-measure are commonly used evaluation metrics for information extraction systems. These measures are calculated based on the number of true positives (TP), false positives (FP), and false negatives (FN) as defined in the following equations:

P recision =

T P T P + F P (2.1)

Recall = T P T P + F N (2.2) F -measure = 2 × (Recall × P recision) Recall + P recision (2.3)
In an exact-match or strict evaluation setting, an extracted entity is considered a true positive if both entity type and boundaries are correctly extracted, a false positive if it was wrongly labeled, and a false negative if it was not annotated.

However, we can also evaluate our NER models in a partial-match or relaxed-match evaluation setting, allowing entities to match if their boundaries overlap. Indeed, an extracted entity could be counted as a true positive if it shares half of the tokens with the gold entity. This evaluation method may be sufficient for some tasks since it is regarded as a more intuitive metric that could consider the annotation mistakes. In our experiments, we use the BRATEval tool11 to calculate our evaluation metrics.

Summary

The first approaches to Named Entity Recognition were based on handcrafted techniques such as expert rules or dictionary-based matching. However, statistical approaches have gained popularity recently, ranging from traditional machine learning to modern neural approaches. Traditional supervised machine learning approaches depend heavily on the quality of hand-crafted input feature representations. Neural approaches discard the feature engineering process but still require a lot of annotation effort. Indeed, to obtain high-performing NER models, large amounts of annotated corpora are needed. Some recent strategies, including semi-supervised approaches, have evolved to leverage partially and few labeled datasets. Nevertheless, there are several challenges to overcome in the clinical domain. Indeed, clinical text is complicated, containing a variety of medical terminologies, ambiguity, and nested entities. Although most NER models are devoted to flat entities, many methods seek to deal with nested entities. Due to the personal and sensitive nature of clinical text, particularly in French, annotated clinical corpora are often limited. As a result, only a few studies addressed the task of French clinical NER. In our thesis, we are interested in proposing shareable French clinical NER models while preserving patient privacy. We are also interested in temporality between mentions with the objective of creating patient timelines. In the following section, we will go through the main methods that have been proposed for Temporal Relation Extraction.

Overview of Temporal Relation Extraction

Temporal Information Extraction (TIE) can be defined as extracting meaningful information that could enable ordering in unstructured text. Temporal Information Extraction may be divided into two subtasks: (1) identification of events and time expressions and ( 2) extraction of temporal relations. The first subtask consists in detecting both event and time expressions. Events and time expressions can be considered entities, and this first subtask might be tackled as a NER task. The second subtask of TIE is to extract temporal relations that could be between events and/or time expressions, as well as relations between events and the Document Creation Time (DCT). Temporal Relation Extraction (TRE) is important for many NLP tasks, such as Question-answering systems, Machine Translation, and document summariza-tion. TRE is also a fundamental task for the biomedical and clinical domains since clinicians need to identify and order relevant clinical events to create patient timelines to understand, for instance, the disease progression.

In this section, we briefly introduce the notion of events and time expressions, as well as some methods of their extraction for both general and clinical domains, with a particular focus on the temporal relation extraction subtask. We review some annotated corpora for TRE and the proposed approaches for this task, ranging from rule-based methods to traditional machine learning and modern neural-based methods. We also go over some research efforts that attempt to structure clinical narrative text by developing section segmentation methods. 

Time expressions

Time or temporal expressions are used to give information about when, how long, or how often something occurs (Derczynski, 2017). There are four types of time expressions: dates, times, durations, and sets. Several temporal annotation schemes have been proposed to standardize temporal information, including time expressions. The earliest modelization of time expressions was a simple temporal value attribute TIMEX [START_REF] Sundheim | TIPSTER/MUC-5 information extraction system evaluation[END_REF] that could take the value date or time. Then, in the TILDES TIMEX2 annotation scheme [START_REF] Ferro | Tides temporal annotation guidelines version 1.0. 2[END_REF], an expanding set of attributes has been added, such as a value tag for the normalized value of the temporal (VAL), a modifier tag (MOD), a set tag (SET) that is marked as yes if the time expression is representing a set, etc. The Time Markup Language (TimeML) (Pustejovsky et al., 2003a) and ISO-TimeML [START_REF] Pustejovsky | ISO-TimeML: An international standard for semantic annotation[END_REF] defined a final version of TIMEX annotation (TIMEX3). The TIMEX3 tag is based on the previous TIMEX tags and includes, among other tags, the type of time expression (TYPE) and BEGINPOINT and ENDPOINT tags when the time expression is a duration, among other tags. Another annotation scheme, namely the SCATE scheme, has also been developed by [START_REF] Bethard | A semantically compositional annotation scheme for time normalization[END_REF] to take into account the fine-grained aspect of time expressions. Time expressions have been widely studied as part of the TempEval challenges [START_REF] Verhagen | SemEval-2007 task 15: TempEval temporal relation identification[END_REF][START_REF] Verhagen | SemEval-2010 task 13: TempEval-2[END_REF][START_REF] Uzzaman | SemEval-2013 task 1: TempEval-3: Evaluating time expressions, events, and temporal relations[END_REF], which focused on English news articles documents. Indeed, various rule-based approaches have been developed for time expression recognition, such as TempEx [START_REF] Mani | Robust temporal processing of news[END_REF], SUTime (Chang and[START_REF] Chang | SUTime: A library for recognizing and normalizing time expressions[END_REF], HeidelTime (Strötgen and[START_REF] Strötgen | Multilingual and cross-domain temporal tagging[END_REF]. These systems achieve good performance in the Tem-pEval challenges. [START_REF] Strötgen | A baseline temporal tagger for all languages[END_REF] described a method to extend the HeidelTime system to all languages and created a new baseline of 200 languages, including French [START_REF] Moriceau | French resources for extraction and normalization of temporal expressions with HeidelTime[END_REF]. Machine learning systems have also been introduced for the task of time expressions recognition and normalization, based on CRF (UzZaman and Allen, 2010), SVM [START_REF] Bethard | ClearTK-TimeML: A minimalist approach to TempEval[END_REF], and other 'machine learning algorithms [START_REF] Ding | A pattern-based approach to recognizing time expressions[END_REF][START_REF] Ning | CogComp-Time: A tool for understanding time in natural language[END_REF]. [START_REF] Lee | Contextdependent semantic parsing for time expressions[END_REF] proposed a hybrid system using Combinatory Categorial Grammar [START_REF] Steedman | Combinatory categorial grammar. Non-Transformational Syntax: Formal and Explicit Models of Grammar[END_REF], combining hand-crafted and trained rules and outperformed the state-of-the-art (SOTA) temporal tagging systems. Later on, deep learning methods were developed, using RNNs [START_REF] Laparra | From characters to time intervals: New paradigms for evaluation and neural parsing of time normalizations[END_REF], BERT embeddings [START_REF] Lin | A BERT-based universal model for both within-and crosssentence clinical temporal relation extraction[END_REF] and LSTMs [START_REF] Lange | Adversarial alignment of multilingual models for extracting temporal expressions from text[END_REF]. [START_REF] Cao | XLTime: A cross-lingual knowledge transfer framework for temporal expression extraction[END_REF] presented the XLTime framework for multilingual time expression extraction, which is cast as a sequence labeling task, similar to NER. Note that deep learning-based techniques for time expression recognition are less frequent and produce results that are comparable to or worse than rule-based SOTAs [START_REF] Cao | XLTime: A cross-lingual knowledge transfer framework for temporal expression extraction[END_REF].

Clinical domain. In the clinical domain, modifications have been made

to take into account domain particularities. Indeed, Styler IV et al. (2014) proposed the Time Markup Language guidelines in 2014 for annotating temporal information from clinical texts. In particular, a new tag is added to the TIMEX3 tags, namely PREPOSTEXP, which refers to clinically relevant and temporally complex terms such as preoperative, postoperative, and intraoperative [START_REF] Olex | Review of temporal reasoning in the clinical domain for timeline extraction: Where we are and where we need to be[END_REF].

Time expression extraction has received interest in the clinical domain through the i2b2-2012 challenge [START_REF] Sun | Evaluating temporal relations in clinical text: 2012 i2b2 challenge[END_REF] and the Clinical TempEval shared tasks [START_REF] Bethard | SemEval-2015 task 6: Clinical TempEval[END_REF](Bethard et al., , 2016[START_REF] Bethard | SemEval-2017 task 12: Clinical TempEval[END_REF]. Jindal and Roth (2013) used the HeidelTime system and developed several rules to extract complex clinical time expressions. [START_REF] Sohn | Comprehensive temporal information detection from clinical text: medical events, time, and tlink identification[END_REF] presented the rule-based system May-oTime that adapts the HeidelTime Framework to the clinical domain. Most of the other proposed methods in the clinical challenges are hybrid. Indeed, Lin et al. ( 2013) introduced the MedTime system, which used the initial tagging from HeidelTime, a specific FREQUENCY tagger, and a CRF-based model that identifies the domain-specific time expressions. [START_REF] Velupillai | BluLab: Temporal information extraction for the 2015 clinical TempEval challenge[END_REF] created a time expression recognizer based on ClearTK [START_REF] Bethard | ClearTK-TimeML: A minimalist approach to TempEval[END_REF] and SVM classifiers. [START_REF] Donald Tapi-Nzali | Automatic extraction of time expressions accross domains in french narratives[END_REF] studied time expression extraction across three domains (news, historical, and medical) in French narratives, using the Heideltime outputs as features of a CRF-based system. Lin et al. ( 2017) proposed a CNN-based time expression recognition system that outperformed previous methods on the THYME corpus. Tourille et al. (2017a) proposed a hybrid LSTM-CRF model to extract the TIMEX3 entities. To sum up, extracting time expressions in clinical narratives remains a challenging task. Indeed, there is a variety of time expressions that could be ambiguous, relative, or even implicit, referring, for instance, to other medical events [START_REF] Olex | Review of temporal reasoning in the clinical domain for timeline extraction: Where we are and where we need to be[END_REF].

Events

Aside from temporal information extraction, there are other event-related tasks, such as event extraction, Slot filling and Topic Detection and Tracking [START_REF] Tourille | Extracting clinical event timelines: temporal information extraction and coreference resolution in electronic health records[END_REF]. For instance, Event extraction aims to extract event triggers and classify event types for a given event mention, which is usually a sentence in which the event is described, as formulated in the ACE 2005 program [START_REF] Doddington | The automatic content extraction (ACE) program -tasks, data, and evaluation[END_REF]. In our work, we are interested in the definition of events according to temporal information extraction, where the purpose is, however, to locate an event in time rather than extract its arguments.

According to TimeML (Pustejovsky et al., 2003a) and ISO-TimeML (Pustejovsky et al., 2010), "an event is a cover term for situations that happen or occur, including predicates describing states or circumstances in which something obtains or holds true". An event may also be defined as something that occurs, and that can be associated with a timestamp. Events are generally conveyed using tensed or untensed verbs, nominalizations, adjectives, predicative clauses, or prepositional phrases. However, the definition of events is highly domain and application-dependent. In the context of temporal information extraction, the event extraction task is defined as in the TempEval campaigns, with the purpose of identifying the extent of the events in a text as described by the TimeML EVENT tag and their associated CLASS.

There were few rule-based methods to tackle the temporal event extraction task [START_REF] Zavarella | FSS-TimEx for TempEval-3: Extracting temporal information from text[END_REF], but most strategies were learning-based, including methods based on SVM [START_REF] Chambers | Classifying temporal relations between events[END_REF][START_REF] Bethard | Identification of event mentions and their semantic class[END_REF][START_REF] Bethard | ClearTK-TimeML: A minimalist approach to TempEval[END_REF] and on CRF [START_REF] Llorens | TIPSem (English and Spanish): Evaluating CRFs and semantic roles in TempEval-2[END_REF][START_REF] Kumar Kolya | JU_CSE_-TEMP: A first step towards evaluating events, time expressions and temporal relations[END_REF][START_REF] Macavaney | GUIR at SemEval-2017 task 12: A framework for cross-domain clinical temporal information extraction[END_REF] models. Few deep learning-based techniques have been also presented, such as LSTMs [START_REF] Meng | Temporal information extraction for question answering using syntactic dependencies in an LSTM-based architecture[END_REF]. [START_REF] Han | Joint event and temporal relation extraction with shared representations and structured prediction[END_REF] proposed a neural structural SVM model to extract simultaneously events and their temporal relations.

Clinical domain. In the clinical domain, the definition of an event differs from the general domain. An event is defined as a clinically relevant situation [START_REF] Galescu | A corpus of clinical narratives annotated with temporal information[END_REF]. According to [START_REF] William | Temporal annotation in the clinical domain[END_REF], any entities that come under these Unified Medical Language System (UMLS) [START_REF] Bodenreider | The unified medical language system (umls): integrating biomedical terminology[END_REF] categories can be defined as events: Disorder, Chemical/Drug, Procedure and Sign/Symptom.

Most approaches in the clinical domain cast the event extraction task as a sequence labeling temporal NER task. For the i2b2-2012 and the Clinical TempEval challenges, several event extraction approaches were proposed, in particular learning-based approaches. [START_REF] Roberts | A flexible framework for recognizing events, temporal expressions, and temporal relations in clinical text[END_REF] identified the clinical events using a CRF model and detected event attributes using SVM classifiers. [START_REF] Lee | UTHealth at SemEval-2016 task 12: an end-to-end system for temporal information extraction from clinical notes[END_REF] presented an HMM-SVM model to identify the spans of event mentions and time expressions along with their types. [START_REF] Barros | ULISBOA at SemEval-2016 task 12: Extraction of temporal expressions, clinical events and relations using IBEnt[END_REF] used CRFs classifiers to extract event mentions and by considering an event as a single word mention. [START_REF] Macavaney | GUIR at SemEval-2017 task 12: A framework for cross-domain clinical temporal information extraction[END_REF]; Chikka (2016) also applied CRFs and SVMs approaches to extract clinical events and their attributes. Neural methods have also been suggested for the event extraction task. [START_REF] Li | UTA DLNLP at SemEval-2016 task 12: Deep learning based natural language processing system for clinical information identification from clinical notes and pathology reports[END_REF] used a CNN network to learn hidden feature representations and a MultiLayer Perceptron (MLP) to identify event spans and attribute values. Tourille et al. (2017a) introduced an LSTM-based approach for identifying time expressions and events. As already mentioned earlier, there is no universally agreed definition for events since definitions may vary depending on the application task and domain. However, extracting relevant clinical events in clinical narratives is crucial to understanding the patient's longitudinal medical history.

Temporal relations

Temporal relations consist of relations between pairs of text mentions, such as between time expressions (TIMEX-TIMEX) or events (EVENT-EVENT) or between time expressions and events (TIMEX-EVENT). Temporal relations were first illustrated using Allen's representation [START_REF] James F Allen | Maintaining knowledge about temporal intervals[END_REF], consisting of seven relations between points in time, such as BEFORE, MEET, OVER-LAP, DURING, and others. Based on these representations, several annotation schemes have been introduced, with a simplification or domain adaptation of relations. For instance, the TimeML scheme represents the temporal relations in a TLINK tag but does not address OVERLAP relations. Gumiel et al. ( 2021) presented an overview of these different temporal relation representations, with a comparison of the proposed representations for the clinical domain.

Clinical domain. Based on Allen's representations and the TimeML annotation scheme, THYME-TimeML was developed as an adaptation to the clinical domain under the THYME project12 . This scheme created a new category of temporal relation, namely the DocTimeRel relations, which consist of relations between the events and the Document Creation Time (DCT) and are considered as an event attribute. Indeed, the DCT is useful for examining the patient's clinical history and future plans, as described by doctors in clinical notes. [START_REF] William | Temporal annotation in the clinical domain[END_REF] also introduced in the THYME-ML scheme the concept of narrative containers [START_REF] Pustejovsky | Increasing informativeness in temporal annotation[END_REF], which can be thought of as a cluster of EVENTs that could be represented or anchored by a time expression, an abstract concept or durative EVENTs, which may involve multiple events. Instead of annotating each TLINK between each event, each event will be linked to its narrative container, and links will be established between those containers. As a result, the contained events will be linked by inference. [START_REF] William | Temporal annotation in the clinical domain[END_REF] claims that using the narrative container concept improves annotation quality by increasing the inter-annotator agreement, having the necessary annotations, and removing the confusing ones. They also state that using containers better illustrates the story-telling structure of both general and clinical domains, as doctors tend to cluster discussions around a certain date. Using the THYME-TimeML annotation scheme, each event is assigned to one of four containers: BEFORE, OVERLAP, BEFORE/OVERLAP, or AFTER the DCT. Once these DocTimeRel relations are assigned, TLINKs must be annotated with one of the following five temporal relations: BEFORE, OVERLAP, BEGINS-ON, ENDS-ON, and CONTAINS.

Temporal relation extraction models evolved from rule-based models to machine learning-based and deep learning-based models. We review these models in detail in Sections 2.4.5, 2.4.6, and 2.4.7 for both general and clinical domains. Note that for the TLINK extraction using learning-based models, a relevant step when developing approaches is first to select a strategy for generating candidate pairs. Available annotations often include only positive relation samples. Therefore, negative samples should be generated for TRE models. A widely adopted strategy was to restrict intra-sentence relations by considering all pairs within the same sentence. However, additional effort has been made to address cross-sentence relations, such as by restricting candidate pairs based on token windows, for instance. More details about these strategies may be found in [START_REF] Bonescki | Temporal relation extraction in clinical texts: a systematic review[END_REF]. Before delving into the TRE methods, we go over the main resources for the TRE task, including details about the proposed annotation schemes, the shared tasks, and their respective corpora.

Resources for temporal relation extraction

In this section, we review the main temporal annotation schemes for both general and clinical domains. We also present some known shared tasks and their associated corpora that have been proposed to the community to tackle the Temporal Information Extraction task, including the TRE subtask.

Annotation schemes. Two main annotation schemes were used to annotate corpora in the literature. In this thesis, we are more interested in the TRE task. Therefore, we will briefly review the guidelines for annotating the events and time expressions, and we will focus more on annotation details of temporal relations.

ISO-TimeML -The ISO-TimeML [START_REF] Pustejovsky | ISO-TimeML: An international standard for semantic annotation[END_REF] specification is a standardization of TimeML (Pustejovsky et al., 2003a). Here, we review this specification for annotating events, time expressions, and temporal relations. Time expressions are mentions of dates, times, durations, and sets and are represented by TIMEX3 tags, as discussed in Section 2.4.1. Several other attributes could be included in the TIMEX3 tag, such as modifier tag (MOD), the function of the TIMEX3 tag within the document (functionIn-Document) that could take these values: creation_time, modification_time, publication_time, release_time, reception_time, expiration_time or None, and other attributes. As described in Section 2.4.2, events are defined as "a cover term for situations that happen or occur". Both EVENT and MAKEIN-STANCE tags are used to represent events. Indeed, the MAKEINSTANCE tag enables modeling difficult examples that require two event instances [START_REF] Tourille | Extracting clinical event timelines: temporal information extraction and coreference resolution in electronic health records[END_REF]. The main attributes that represent events are CLASS, TENSE, AS-PECT, POS, POLARITY, etc.

Temporal relations can occur between two events, between two time expressions, or between an event and a time expression. The TLINK tag represents these relations using the following obligatory attributes:

• eventInstanceID or timeId: the ID of the first involved entity in the temporal link.

• relatedToEventInstance or relatedToTime: the ID of the second involved entity in the temporal link, which is associated with the event instance with ID=eventInstanceID or time expression with ID=timeID.

• RELTYPE: the type of relation holding between the entities with the following possible values: BEFORE, AFTER, INCLUDES, IS_INCLUDED, DURING, DURING_INV, SIMUL-TANEOUS, IAFTER, IBEFORE, IDENTITY, BEGINS, ENDS, BEGUN_BY, ENDED_BY.

Apart from TLINKs, there are two other links, SLINK and ALINK. The SLINK is used to annotate subordination links between two events, and the ALINK is used to represent the relation between an aspectual event and its argument event. The ISO-TimeML annotation scheme also includes a SIGNAL tag, which is a textual element that makes explicit the relation between two entities. Signals can be temporal prepositions (e.g., on, at, to), temporal conjunctions (e.g., before, to when), prepositions signaling modality (e.g., to) or special characters (e.g., -, / in time expressions denoting ranges).

THYME-TimeML -The THYME-TimeML [START_REF] William | Temporal annotation in the clinical domain[END_REF]) is a temporal annotation scheme developed to annotate the temporal information in clinical documents and is based on the ISO-TimeML standard. This annotation scheme has been mainly established to annotate the THYME corpus. As already discussed in Section 2.4.2, the definition of events is extended to include clinically relevant events such as diagnosis, diseases, or procedures. Several modifications have been made to the ISO-TimeML annotation scheme. For instance, event modality is no longer represented by the SLINK tag anymore but with three event attributes: contextual modality, contextual aspect, and permanence. To represent the various hypothetical statements in clinical notes, the contextual modality attribute, for example, may take the value HY-POTHETICAL, among other possible values. The American Joint Committee on Cancer Staging Codes (AJCC) tumor type codes are also annotated as events since they provide useful information for clinicians. The major change in representing the time expressions within the TIMEX3 tag is the addition of the new tag PREPOSTEXP, as mentioned in Section 2. 4.1. Styler IV et al. (2014) also point out that SETs are common in the medical domain, particularly regarding medications and treatments. They also note that addressing time expressions in the clinical domain is more difficult since many time expressions are anchored to events rather than dates.

For temporal relations, the THYME-TimeML annotation scheme reduces the number of annotated relations to decrease the annotators' conflicts. Indeed, as discussed in Section 2.4.3, the use of the narrative container concept will result in just necessary relations being annotated, which overcomes both underand over-annotation issues. Within this context, another category of temporal relations has been annotated, the DocTimeRel relations, which model the relation between each event and the Document Creation Time (DCT). Note that even though the document was created after the medical examination, the DCT is considered the same as the time the clinician saw the patient. The DocTimeRel relation is annotated as an event attribute and takes the following potential values:

• BEFORE: when the event occurred and ended before the DCT.

• OVERLAP: when the event occurs during the DCT.

• BEFORE-OVERLAP: when the event started before and continues to be true at the DCT.

• AFTER: when the event is planned in the future.

As mentioned in Section 2.4.3, TLINKs between events and/or time expressions have five different types: BEFORE, OVERLAP, BEGINS-ON, ENDS-ON, and CONTAINS. Styler IV et al. ( 2014) recommend only annotating these links if they provide more information than the information in the DocTimeRel attribute.

Shared tasks and corpora. Many shared tasks have been proposed to solve the temporal information extraction task, particularly the temporal relation extraction task. Here, we cover these shared tasks and describe the several corpora that were introduced in the literature for both general and clinical domains.

TimeBank and AQUAINT TimeML corpora -The TimeBank corpus (Pustejovsky et al., 2003b) contains 183 English news articles and was annotated using the ISO-TimeML [START_REF] Pustejovsky | ISO-TimeML: An international standard for semantic annotation[END_REF] specification. The AQUAINT TimeML corpus is quite similar to TimeBank in content, and it has also been annotated using the ISO-TimeML scheme. There are 73 news reports in this corpus. Other annotated corpora have been created in other languages based on the same specifications, such as the French TimeBank corpus [START_REF] Bittar | French timebank: an iso-timeml annotated reference corpus[END_REF] and the Portuguese TimeBankPT corpus [START_REF] Costa | TimeBankPT: A TimeML annotated corpus of Portuguese[END_REF]. [START_REF] Cassidy | An annotation framework for dense event ordering[END_REF] introduced the TimeBank-Dense corpus, which contains a subset of 36 documents of the TimeBank corpus and addresses the sparsity problem in the TimeBank corpora.

TempEval shared tasks corpora -The corpora proposed in the three editions of TempEval shared tasks ( [START_REF] Verhagen | SemEval-2007 task 15: TempEval temporal relation identification[END_REF][START_REF] Verhagen | SemEval-2010 task 13: TempEval-2[END_REF][START_REF] Uzzaman | SemEval-2013 task 1: TempEval-3: Evaluating time expressions, events, and temporal relations[END_REF]) are based on the TimeBank corpus. The corpora were annotated using a simplified version of ISO-TimeML that includes a set of six temporal relations: before, after, overlap, before-or-overlap, overlap-or-after, and vague. The first shared task TempEval-1, focused on extracting three types of temporal relations: those between EVENTs-TIMEX3s in the same sentence, those between EVENTs and document creation time, and those between two EVENTS in adjacent sentences. Note that Document Creation Time is represented by a TIMEX3 tag. Three tasks were added to the second and third editions of TempEval to extract time expressions, events, and temporal relations between EVENTs which are in a syntactic dependency relation. While the TempEval-1 proposed the corpus for English, the TempEval-2 provided this corpus for six languages, and the TempEval-3 challenge presented the corpus for English and Spanish languages.

I2b2 Corpus -The Informatics for Integrating Biology & the Bedside (i2b2) corpus [START_REF] Sun | Evaluating temporal relations in clinical text: 2012 i2b2 challenge[END_REF] is an annotated English corpus of 310 discharge summaries that was used during the i2b2-2012 challenge on clinical temporal information extraction. This corpus was annotated based on ISO-TimeML and an earlier version of THYME-TimeML with an extended set of relations. However, since a low inter-annotator agreement was noticed for multiple relation types, this set was restricted to three temporal relations: before, after, and overlap. The i2b2-2012 challenge comprises three tasks: events and time expression extraction, TLINK extraction using gold entities, and an end-to-end extraction task that combines the first two tasks.

THYME corpus -The Temporal Histories of Your Medical Event (THYME) corpus [START_REF] William | Temporal annotation in the clinical domain[END_REF] contains clinical notes and pathology reports from cancer patients at the Mayo Clinic. This corpus was annotated using the THYME-TimeML annotation scheme and was used in the Clinical TempEval shared tasks [START_REF] Bethard | SemEval-2015 task 6: Clinical TempEval[END_REF](Bethard et al., , 2016[START_REF] Bethard | SemEval-2017 task 12: Clinical TempEval[END_REF]. Several subtasks have been proposed for these challenges: time expression extraction, event extraction, CONTAINS relation extraction between events and/or time expressions, and DocTimeRel relations between events and document creation time. Only the CONTAINS TLINK was used in these challenges because of the limited annotations for the other relation types. The methods in the first two editions of Clinical TempEval were developed and tested on colon cancer notes. However, in the third edition, systems were trained on colon cancer reports and tested on brain cancer reports to conduct domain adaptation. Indeed, two phases are proposed: unsupervised domain adaptation, which aims to train on colon cancer annotations and test on brain cancer annotations, and supervised domain adaptation, in which few annotations for brain cancer patients are available and could be integrated with the colon cancer annotations in training.

MERLOT -The Medical Entity and Relation LIMSI annOtated Text (MERLOT) corpus [START_REF] Campillos | A french clinical corpus with comprehensive semantic annotations: development of the medical entity and relation limsi annotated text corpus (merlot)[END_REF]) is a restricted clinical corpus built with 500 de-identified clinical notes written in French related to the Hepatogastro-enterology and Nutrition specialties. The temporal annotation scheme in the MERLOT corpus is based on the ISO-TimeML standard. Temporal expressions are represented as TIMEX3 entities with a type attribute taking the following values: date, time, duration or frequency. Two types of temporal relations are annotated: those between events and/or time expressions and those between events and document creation time. There are six types of relations between events and/or time expressions: before, begins on, during, ends on, overlap or simultaneous. The relations between events and document creation time are represented by an event attribute with a value of before, before-overlap, overlap or after. 2021) review other clinical corpora that were proposed for the temporal information extraction task in the clinical domain, mostly in English.
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Rule-based methods

Few rule-based methods were proposed for temporal relation extraction. For instance, to address the three tasks of the first edition of TempEval, [START_REF] Hagège | XRCE-T: XIP temporal module for TempEval campaign[END_REF] presented a rule-based system based on a customized XIP parser [START_REF] Aït-Mokhtar | Robustness beyond shallowness: incremental deep parsing[END_REF]. Most of the other proposed approaches for TempEval shared tasks were hybrid, using both heuristic rules and statistical methods. We review these approaches in the following sections.

Clinical domain. Prior works on clinical temporal relation extraction are

based on manually created rules. [START_REF] Gaizauskas | Taskoriented extraction of temporal information: The case of clinical narratives[END_REF] presented an algorithm for extracting a specific set of TLINKs between EVENTs and TIMEXs in the same sentence and DocTimeRel relations between EVENTs and DCT in clinical narratives. Their algorithm is based on the tense and aspect of relation entities. [START_REF] Wang | A new algorithmic approach for the extraction of temporal associations from clinical narratives with an application to medical product safety surveillance reports[END_REF] developed a method for extracting relations between EVENTs and TIMEXs using domain-specific rules on the i2b2-2012 corpus. [START_REF] Najafabadipour | Reconstructing the patient's natural history from electronic health records[END_REF] identified temporal relations from Spanish clinical texts by building dependency trees using the Universal Dependency Pipe (UDPipe) tool [START_REF] Straka | UDPipe: Trainable pipeline for processing CoNLL-U files performing tokenization, morphological analysis, POS tagging and parsing[END_REF]. Based on the provided dependency trees, rules are created to identify the time expression related to each event.

Rules-based models require human expertise to create domain-specific rules, and such models are difficult to adapt to other domains and ensure generalization.

Feature-engineering-based supervised methods

A variety of data-driven approaches has been used for the TRE task, starting with traditional machine learning-based methods. [START_REF] Mani | Machine learning of temporal relations[END_REF] developed a ME classifier for extracting temporal relations using extracted features from raw text. [START_REF] Chambers | Classifying temporal relations between events[END_REF] addressed the identification of the same temporal relations by introducing a two-stage NB approach, adding event-specific features. Bethard and Martin (2007) proposed an SVM-based system to extract DocTimeRel relations in the challenge TempEval-1 using a set of lexical, syntactic, and semantic features. [START_REF] Puşcaşu | WVALI: Temporal relation identification by syntacticosemantic analysis[END_REF] proposed the best system for the three temporal relation extraction tasks of TempEval-1 by combining knowledge-based and statistical methods. In TempEval-2, participants focused on extracting temporal relations from English and Spanish texts. [START_REF] Llorens | TIPSem (English and Spanish): Evaluating CRFs and semantic roles in TempEval-2[END_REF] introduced the TIPSem algorithm, which is based on CRFs using general and semantic features, achieving good results for all tasks and both languages [START_REF] Cheng | NAIST.Japan: Temporal relation identification using dependency parsed tree[END_REF] used an HMM_SVM sequence labeling model with features generated by dependency parsing. [START_REF] Bethard | ClearTK-TimeML: A minimalist approach to TempEval[END_REF] achieved the best performance on the TLINK identification and classification task in the TempEval-3 challenge by developing an SVM-based system and by using additional verb-clause relations from Bethard et al. (2007). [START_REF] Laokulrat | UTTime: Temporal relation classification using deep syntactic features[END_REF] proposed a hybrid system, UTTime, which identifies temporal links based on a rule-based approach and then filters out some links by a classifier. Chambers et al. ( 2014) created the CAVEO system, which is a pipeline with ordered sieves. Each sieve is either a rule-based model or a machine learning-based model. This system was considered the best-performing feature-based system for the TimeBank-Dense corpus.

Clinical domain.

There was a wide use of feature-engineering-based methods in the TLINKs classification task in the i2b2-2012 challenge. [START_REF] Cherry | A la recherche du temps perdu: extracting temporal relations from medical text in the 2012 i2b2 nlp challenge[END_REF] divided the task into four sub-tasks: anchoring EVENTs to section time, intra-sentence EVENTs-TIMEX3s relations, inter-sentence OVERLAP relations between EVENTs, and extracting causal relations induced TLINKs, using both SVM and ME classifiers. [START_REF] Grouin | Eventual situations for timeline extraction from clinical reports[END_REF], [START_REF] Xu | An end-to-end system to identify temporal relation in discharge summaries: 2012 i2b2 challenge[END_REF] also divided the TLINKs into more specific subtasks. [START_REF] Roberts | A flexible framework for recognizing events, temporal expressions, and temporal relations in clinical text[END_REF] presented an SVM-ranker to identify EVENTs-TIMEX3s relations and a multiclass SVM classifier for the TLINK category, using a large selection of features, including POS tags from the GENIA tagger and UMLS features. [START_REF] Tang | A hybrid system for temporal information extraction from clinical text[END_REF] proposed a hybrid system that achieved the best performance for the TRE task in the i2b2-2012 challenge, using event positional information, POS tags, n-grams, dependency-related, time-related, and event-related features. [START_REF] Miller | Discovering temporal narrative containers in clinical text[END_REF] conducted a preliminary study on the THYME corpus and explored the extraction of within-sentence CONTAINS relations using an SVM classifier with Tree Kernels.

In the 2015 Clinical TempEval challenge, [START_REF] Velupillai | BluLab: Temporal information extraction for the 2015 clinical TempEval challenge[END_REF] presented a CRF classification approach to tackle DocTimeRel relation extraction using token-level features and used certain rules to extract Container relations. [START_REF] Lin | Multilayered temporal modeling for the clinical domain[END_REF] addressed the TRE task on three levels: a coarse level by extracting DocTimeRel relations using a multiclass SVM, a medium-grained one by extracting the CONTAINS relations, and a fine-grained level to extract Allen-style event-event and time-event relations using a combination of SVM classifiers and rules. [START_REF] Tourille | LIMSI-COT at SemEval-2016 task 12: Temporal relation identification using a pipeline of classifiers[END_REF] addressed the 2016 Clinical TempEval DocTimeRel extraction with a model based on the Random Forest (RF) algorithm and the container relation extraction with a Linear SVM model. For both models, they compared the use of lexical, contextual, and structural features to the use of word embeddings, which are computed on the MIMIC II clinical corpus [START_REF] Saeed | Multiparameter intelligent monitoring in intensive care ii (mimic-ii): a public-access intensive care unit database[END_REF]. They concluded that using features provides a more balanced system than word embeddings. Tourille et al. (2017b) adapted and evaluated their feature-based approach [START_REF] Tourille | LIMSI-COT at SemEval-2016 task 12: Temporal relation identification using a pipeline of classifiers[END_REF] for DocTimeRel and intra-sentence narrative container relation extraction on the French MERLOT corpus and achieved comparable results when compared to the English THYME corpus, by replacing language sensitive resources in the preprocessing step. The UTHealth SVM-based system proposed by [START_REF] Lee | UTHealth at SemEval-2016 task 12: an end-to-end system for temporal information extraction from clinical notes[END_REF] was the top system for the TRE tasks in the 2016 Clinical TempEval challenge, and it used a variety of lexical, morphological, syntactic, discourse, and word representation features. P R et al. ( 2017) used a stacked ensemble of gradient-boosted decision trees, random forest, and extra trees classifiers to extract the narrative container relations. By using the ClearTK CRF-based NER classifier [START_REF] Bethard | ClearTK-TimeML: A minimalist approach to TempEval[END_REF] for the DocTimeRel task, they achieved good results. MacAvaney et al. ( 2017) proposed a hybrid system combining CRFs, rules, and decision trees with a large set of features. This system outperformed other participating systems for the CONTAINS relation extraction task and unsupervised domain adaptation.

To sum up, several traditional machine learning methods have been proposed for the temporal relation extraction task. However, the performance of these methods relies heavily on human-engineered features that allow a better understanding of contextual information. Moreover, most of these approaches are restricted to extracting within-sentence relations.

Neural-based methods

Neural-based methods attracted interest in temporal relation extraction. Indeed, [START_REF] Cheng | Classifying temporal relations by bidirectional LSTM over dependency paths[END_REF] presented a dependency path-based Bi-LSTM model to extract event-event, event-time, and DocTimeRel relations and showed good results on the TimeBank-Dense corpus without the use of any explicit features or external resources. [START_REF] Meng | Temporal information extraction for question answering using syntactic dependencies in an LSTM-based architecture[END_REF] proposed LSTM-based models to extract intra-sentence, cross-sentence, TIMEX-TIMEX, and Doc-TimeRel relations, using shortest dependency paths as input. Their method outperformed state-of-the-art systems. [START_REF] Han | Joint event and temporal relation extraction with shared representations and structured prediction[END_REF] proposed a neural structural SVM model to extract events and their temporal relations jointly. [START_REF] Cheng | Dynamically updating event representations for temporal relation classification with multi-category learning[END_REF] an event-centric model that allows learning dynamic event representations across event-event, event-time, and DocTimeRel relations using multi-task transfer learning and RNNs models. Good performance has been reached for TRE on English TimeBank-Dense and Japanese BCCWJ-TimeBank [START_REF] Asahara | BCCWJ-TimeBank: Temporal and event information annotation on Japanese text[END_REF] corpora. Wang et al. (2022a) proposed a DCT-centered Temporal Relation Extraction model to identify the temporal relations among events, TIMEXs, and DCT jointly using multi-task learning. Input representations are obtained using pre-trained models, and a DCTindicator sentence is added at the beginning of the document to provide a representation for the DCT as well. Recently, [START_REF] Yuan | Zero-shot temporal relation extraction with ChatGPT[END_REF] evaluated the ChatGPT's ability on zero-shot TRE task, and they claim that ChatGPT performs better for small classes than SOTA methods, but the performance is still very low on the TRE task, in particular for long-distance dependencies.

Clinical domain. [START_REF] Li | UTA DLNLP at SemEval-2016 task 12: Deep learning based natural language processing system for clinical information identification from clinical notes and pathology reports[END_REF] 2022) explored the use of sequence-to-sequence generative models for the 2016 Clinical TempEval TRE task by designing a variety of input/output representations. Prompting one entity at a time was the most successful representation, and using a T5 model produced competitive results with the state-of-the-art. Recently, [START_REF] Miller | End-to-end clinical temporal information extraction with multi-head attention[END_REF] proposed a multi-task end-to-end system for temporal information extraction using a multi-headed attention mechanism over a pre-trained transformer encoder. High performance has been obtained for in-domain and cross-domain settings, compared to the best systems in the 2016 and 2017 Clinical TempEval challenges.

With the emergence of deep learning methods, more works have been proposed to tackle inter and intra-sentence relations. Such methods outperformed machine learning methods, particularly attention-based models. However, more annotated corpora are required to evaluate and compare developed approaches.

A word about clinical section segmentation

Unstructured narrative text in EHRs contains crucial information about each patient. Clinical section segmentation seeks to automatically structure clinical text as a pre-processing step for multiple clinical information extraction tasks. Indeed, this is useful to help clinicians identify the probable location where certain information should be. For instance, if a doctor is interested in finding the drug codes, they are likely in the Medication section [START_REF] Rosenthal | Leveraging medical literature for section prediction in electronic health records[END_REF]. However, there is no obligation for doctors to follow a certain format and indicate sections, and even if they do, this structure is not uniform across EHRs from various hospital institutions. Therefore, the clinical section segmentation task is challenging. Section segmentation includes detecting the boundaries of sections and assigning a pre-defined label to a section. Prior works focused more on section classification, which consists in mapping sec-tions into standard section types, either using heuristic rules or using machine learning models [START_REF] Denny | Development and evaluation of a clinical note section header terminology[END_REF][START_REF] Denny | Evaluation of a method to identify and categorize section headers in clinical documents[END_REF][START_REF] Li | Section classification in clinical notes using supervised hidden markov model[END_REF][START_REF] Peter | Developing a section labeler for clinical documents[END_REF]. Other works focused on both section identification and classification [START_REF] Dai | Recognition and evaluation of clinical section headings in clinical documents using token-based formulation with conditional random fields[END_REF][START_REF] Apostolova | Automatic segmentation of clinical texts[END_REF][START_REF] Ganesan | A general supervised approach to segmentation of clinical texts[END_REF][START_REF] Tepper | Statistical section segmentation in free-text clinical records[END_REF]. [START_REF] Deléger | Automatic identification of document sections for designing a French clinical corpus (identification automatique de zones dans des documents pour la constitution d'un corpus médical en français)[END_REF] introduced an automatic system to separate the core medical content from other document sections, such as headers and footers, using a CRF-based model and applied it to French clinical text. [START_REF] Tepper | Statistical section segmentation in free-text clinical records[END_REF]; [START_REF] Ganesan | A general supervised approach to segmentation of clinical texts[END_REF] evaluated domain adaptation by considering several corpora and came to the conclusion that there is a significant drop in performance across domains. To tackle this problem, [START_REF] Rosenthal | Leveraging medical literature for section prediction in electronic health records[END_REF] used sections from medical literature similar to those in EHRs to train two models: an RNN and a BERT based models. These models will then be used to predict sections in EHRs via transfer learning. Their results demonstrated that the use of medical literature data improved the performance on EHRs data. [START_REF] Kuling | Bi-rads bert and using section segmentation to understand radiology reports[END_REF] built a contextualized embedding BERT model using breast radiology reports and discovered that using the contextual embedding in conjunction with auxiliary data helps to better understand the global report context in the section segmentation task. To facilitate domain adaptation, Zhou et al. (2023b) cast the section classification task as a SOAP ("Subjective", "Object", "Assessment" and "Plan") classification task and used continued pre-training to improve the transferability of BERT-based models, showing that continued pre-training only improves transferability when target domain samples are included. Zhou et al. (2023a) evaluated the ability of large language models (LLMs) to perform SOAP classification and showed that an ensemble method combining BERT and LLMs produced the best results and that LLMs performed better on the rare category while BERT performed better on the most prevalent categories.

Summary

While good results can be obtained for extracting entities, including temporal expressions and events, temporal relation annotation and extraction remain challenging. Indeed, temporal relations have poor inter-annotator agreement scores, which are much lower than other clinical tasks, such as event and temporal expressions annotation tasks [START_REF] Verhagen | SemEval-2007 task 15: TempEval temporal relation identification[END_REF]. Although attempts have been made to increase inter-annotator agreement scores by reducing the set of temporal relations, such efforts are insufficient to annotate temporal relations in clinical texts. For the clinical domain, the annotation process involves specific domain expertise, which is costly and time-consuming. Therefore, most of the proposed works on TRE are related to datasets provided by shared tasks. The several shared tasks proposed for both general and clinical domains helped the research community in developing and comparing their extraction methods. However, this limits the evaluation of methods for other texts or languages. For instance, only a few works were proposed for French due to the lack of publicly available annotated resources (Tourille et al., 2017b). Temporal relations can be DocTimeRel relations between an event and the DCT or TLINKs, which are relations between event or/and temporal expressions. DocTimeRel relations can be used to generate a coarse-level temporal ordering, although this ordering is considered too generic for some tasks. Adding TLINKs, however, results in a more precise and fine-grained temporal representation at the expense of increasing task difficulty. DocTimeRel relation extraction depends on how well task-specific events are defined but remains less complicated than TLINK extraction [START_REF] Olex | Review of temporal reasoning in the clinical domain for timeline extraction: Where we are and where we need to be[END_REF], which performance is still relatively low. As reviewed in this section, TRE approaches have evolved throughout time, from rule-based methods to traditional learning-based methods using different features and to neural-based methods. Attention-based techniques appear to produce superior results, particularly for TLINK extraction, where the adopted strategy for pair selection is to use token windows to cover inter-sentence relations. Nevertheless, generalization across domains is still difficult, and the performance of most proposed systems remains far from adequate for practical applications [START_REF] Najafabadipour | Reconstructing the patient's natural history from electronic health records[END_REF]. Indeed, representing temporal relations between events largely depends on event definition, as well as the quality of event extraction, which makes the practical application more challenging. Even though the construction of a complete medical patient timeline is important, a coarse-level timeline would still be useful in the clinical domain to extract past, current, and future events, in particular for decision support systems that struggle with processing temporal relations. A task simplification might result in more efficient practical results. As a result, in Chapter 5, we propose a novel event-independent representation of temporal relations, making the task easier and more reproducible through different event types. In the next section, we go through the major challenges of data privacy and the main methods that have been proposed to preserve patient privacy, particularly with the wide use of modern deep learning methods in addressing NLP tasks.

Data privacy

Deep learning approaches have been the key to the technological progress of NLP methods in recent years, yielding outstanding results for many NLP tasks. However, training or deploying models on sensitive data may raise privacy concerns. Among these is the issue of accidentally memorizing sensitive data from training data, as stated in [START_REF] Bender | On the dangers of stochastic parrots: Can language models be too big?[END_REF]. For instance, memorization in the biomedical domain might result in public leakage and disclosure of sensitive private patient health information. Therefore, preserving privacy is crucial for developing NLP models, particularly when dealing with clinical personal and private data. In this section, we will review the main data privacy threats when developing NLP applications. Then, we will go over the main privacy preservation methods that have been proposed for NLP tasks, with a focus on proposed approaches for the clinical domain. Data threats. The most common text data privacy attacks target personal and private information contained in the text, such as author identity, demographic information, or even patient health information for clinical text. To preserve sensitive information, methods such as anonymisation [START_REF] Stephane M Meystre | Automatic de-identification of textual documents in the electronic health record: a review of recent research[END_REF][START_REF] Ben | Which anonymization technique is best for which nlp task?-it depends. a systematic study on clinical text processing[END_REF] or de-identification [START_REF] Grouin | Anonymisation de documents cliniques: performances et limites des méthodes symboliques et par apprentissage statistique[END_REF][START_REF] Grouin | De-identification of clinical notes in french: towards a protocol for reference corpus development[END_REF] have been proposed. Indeed, while diffusing corpora for research purposes, documents such as Electronic Health Records (EHRs) and legal reports are required to remove or obfuscate any identifying information. However, such methods may omit some indirect information that may lead to the identification of persons. Moreover, there have been attempts of re-identification attacks [START_REF] Emam | A systematic review of re-identification attacks on health data[END_REF][START_REF] David S Carrell | The machine giveth and the machine taketh away: a parrot attack on clinical text deidentified with hid-ing in plain sight[END_REF].

Threats targeting NLP models. Model privacy concerns might arise from attacks that could leak private data used for training, presenting a risk of revealing personal information, e.g., patient health information [START_REF] Carlini | Extracting training data from large language models[END_REF][START_REF] Pan | Privacy risks of generalpurpose language models[END_REF]. In this same context, another type of attack could target linking pieces of information that the model could unintentionally memorize, such as unique or rare training instances, which could lead to identifying individuals. Identifying a patient with a rare disease is an example of this scenario. Another known attack is the membership inference attack [START_REF] Hu | Membership inference attacks on machine learning: A survey[END_REF], which seeks to recover information about whether or not a certain person was in the training data samples. Unlike prior works on data leakage in Masked Language Models (MLMs) (Lehman et al., 2021;[START_REF] Vakili | Are clinical bert models privacy preserving? the difficulty of extracting patient-condition associations[END_REF], [START_REF] Mireshghallah | Quantifying privacy risks of masked language models using membership inference attacks[END_REF] demonstrated that MLMs are susceptible to memorization using a principled ratio-based membership inference attack. However, even though membership inference attacks are usually suggested to quantify memorization, [START_REF] Vakili | Using membership inference attacks to evaluate privacy-preserving language modeling fails for pseudonymizing data[END_REF] demonstrated that such attacks fail to distinguish between a model trained using real or pseudonymized data. [START_REF] Xie | Does prompt-tuning language model ensure privacy?[END_REF] recently presented a novel privacy attack targeting prompt-tuning methods. Their experiments revealed that memorization also exists in these methods.

Threats targeting the computation scenario. Privacy could be put at risk while working with centralized cloud servers or distributed processing architectures. Indeed, several potential attacks could be made on servers and client devices [START_REF] Sousa | How to keep text private? a systematic review of deep learning methods for privacy-preserving natural language processing[END_REF], leading to the leak of locally stored private data.

In the next section, we will cover the main privacy-preservation methods according to this classification of threats.

Privacy-preservation approaches

To address the several privacy issues that could be encountered while developing NLP models, multiple research works have been proposed according to the different types of attacks we mentioned in the previous section. In this section, we will focus on the main data privacy preservation methods that have been proposed in the literature, with a focus on the clinical domain and the NER task.

The process of data anonymization consists in removing all pieces of personal information that could lead to the identification of a person, according to the National Commission on Informatics and Liberty (CNIL) 13 . Several anonymization methods were first introduced to avoid data attacks [START_REF] Sousa | How to keep text private? a systematic review of deep learning methods for privacy-preserving natural language processing[END_REF][START_REF] Raj | Anonymization of sensitive data in unstructured documents using nlp[END_REF] However, true anonymization is hard to achieve [START_REF] Clete A Kushida | Strategies for de-identification and anonymization of electronic health record data for use in multicenter research studies[END_REF] and may result in losing valuable information for research purposes [START_REF] Langarizadeh | Effectiveness of anonymization methods in preserving patients' privacy: A systematic literature review[END_REF]. In particular, for the NER task, we can lose information that is required for the comprehension of EHRs. Therefore, multiple strategies, such as de-identification, have been developed to reach a compromise between data privacy preservation and data value. Deidentification methods have been widely used in the clinical domain [START_REF] Stephane M Meystre | Automatic de-identification of textual documents in the electronic health record: a review of recent research[END_REF][START_REF] Norgeot | Protected health information filter (philter): accurately and securely de-identifying free-text clinical notes[END_REF][START_REF] Grouin | De-identification of clinical notes in french: towards a protocol for reference corpus development[END_REF], and they consist in deleting or replacing personal health identifiers (PHI) in clinical documents, making it difficult to rebuild a link between a person and their information. De-identification approaches seem to preserve data privacy without reducing data quality and without harming the performance of the NER task [START_REF] Berg | The impact of deidentification on downstream named entity recognition in clinical text[END_REF]. However, re-identification attacks are always possible, which is problematic in the clinical field [START_REF] Grouin | Is it possible to recover personal health information from an automatically de-identified corpus of French EHRs[END_REF][START_REF] Emam | A systematic review of re-identification attacks on health data[END_REF], and sharing de-identified data remains challenging. Other strategies [START_REF] Basu | Benchmarking differential privacy and federated learning for bert models[END_REF][START_REF] Klymenko | Differential privacy in natural language processing the story so far[END_REF][START_REF] Oluwaseyi Feyisetan | Leveraging hierarchical representations for preserving privacy and utility in text[END_REF] have also been adopted to preserve textual data, such as differential privacy (DP) [START_REF] Dwork | Differential privacy: A survey of results[END_REF], representing a mathematical guarantee for privacy using a noise-adding mechanism.

Recently, with the success of statistical and deep learning models, many attacks have targeted shared statistical NLP models to recover sensitive train-ing data through model parameters or predictions [START_REF] Boulemtafes | A review of privacy-preserving techniques for deep learning[END_REF]. [START_REF] Carlini | Extracting training data from large language models[END_REF] revealed that diverse data extraction attacks could be performed on large language models such as GPT-2 to recover training sensitive data. Membership inference attacks can also lead to privacy leakage [START_REF] Shokri | Membership inference attacks against machine learning models[END_REF][START_REF] Mireshghallah | Quantifying privacy risks of masked language models using membership inference attacks[END_REF]. To prevent data sharing, a widely used strategy is transfer learning [START_REF] Ruder | Neural transfer learning for natural language processing[END_REF], which involves applying neural networks to tasks that differ from those targeted by earlier training. However, the vocabularies of models may contain specific private information. [START_REF] Alawad | Privacy-preserving deep learning nlp models for cancer registries[END_REF] introduced a cancer information extraction system, and in order to address privacy concerns and securely share their model, they limited the word embedding vocabulary to filter outpatient health information. Another potential solution has been adopted in coping with data privacy issues, namely federated learning [START_REF] Mcmahan | Communication-efficient learning of deep networks from decentralized data[END_REF][START_REF] Brauneck | Federated machine learning, privacy-enhancing technologies, and data protection laws in medical research: Scoping review[END_REF][START_REF] Sheller | Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data[END_REF]. Federated learning allows distributed training of models through a central server while keeping private training data on local devices. [START_REF] Ge | Fedner: Privacy-preserving medical named entity recognition with federated learning[END_REF] proposed a NER method based on federated learning. Thus, several studies have demonstrated that it is still possible to reconstruct training data from model updates sent to servers [START_REF] Truong | Privacy preservation in federated learning: An insightful survey from the gdpr perspective[END_REF][START_REF] Lyu | Privacy and robustness in federated learning: Attacks and defenses[END_REF]. [START_REF] Baza | On sharing models instead of data using mimic learning for smart health applications[END_REF] use the mimic learning paradigm to overcome privacy problems in smart health applications. Mimic learning entails using a trained model on sensitive data to annotate large amounts of unlabeled data and using these annotations to train a new model. The main idea is to perform a knowledge transfer and be able to share the newly trained model without sharing the sensitive data. Another category of methods, particularly for cloud environments, is encryption methods that aim to encrypt data to perform training on encrypted datasets (Lee et al., 2022b;[START_REF] Pulido-Gaytan | Privacy-preserving neural networks with homomorphic encryption: C hallenges and opportunities[END_REF]. However, such methods may lead to memory costs that are hard to manage [START_REF] Sousa | How to keep text private? a systematic review of deep learning methods for privacy-preserving natural language processing[END_REF].

Summary

To sum up, we examined the main types of attacks that could target sensitive data, and we focus on proposed methods to avoid such attacks, particularly in the clinical domain, while maintaining good performance in handling NLP tasks. To truly prevent sensitive data attacks, it is best to avoid sharing the data even if it is de-identified. The same goes for statistical models that are trained on sensitive personal data in order to avoid leakage through model parameters and learning weights. As a result, sharing research findings in the clinical community remains problematic, and privacy-preservation sharing strategies should be provided. We believe that another major concern when constructing privacy-preserving neural models is the lack of metrics or methods for detecting whether or not the trained model leaks personal information or how efficiently the model preserves data privacy. Membership inference attacks have been proposed as a privacy-preservation evaluation approach [START_REF] Shokri | Membership inference attacks against machine learning models[END_REF][START_REF] Mireshghallah | Quantifying privacy risks of masked language models using membership inference attacks[END_REF]. However, [START_REF] Vakili | Using membership inference attacks to evaluate privacy-preserving language modeling fails for pseudonymizing data[END_REF] shows that such methods fail to detect the privacy benefits of models using pseudonymized data. To deal with all these privacy issues, there is a growing interest in creating synthetic corpora, particularly for the biomedical domain [START_REF] Hiebel | Can synthetic text help clinical named entity recognition? a study of electronic health records in French[END_REF][START_REF] Venugopal | Privacy preserving generative adversarial networks to model electronic health records[END_REF]. Aside from privacy concerns, a further major problem with statistical models is their energy consumption and carbon emissions, which considerably impact the environment. In the following section, we review the carbon emissions of NLP methods.

NLP environmental impact

Recent advances in computational resources, such as Graphical Processing Units (GPUs), have enabled the intensive use of deep learning models, particularly given their impressive performance across NLP tasks. However, due to their high demand for computer resources, energy, and materials, such models have a significant environmental impact regarding Greenhouse Gas (GHG) emissions, CO 2 equivalent emissions, or carbon footprint. Other indicators include abiotic resource depletion, blue water shortage, human toxicity, etc. In this section, we first describe the main sources of CO 2 equivalent emissions that should be considered to evaluate the environmental impact of NLP computational experiments. Then, we review studies that evaluated the carbon footprint of machine learning and NLP methods, the main tools available for computing the carbon emissions, as well as the recent efforts that encourage the conduct of green AI research.

Sources of carbon footprint

The environmental impact in terms of carbon footprint needs to account for the entire lifecycle of Information and Communication Technology (ICT) equipment from production through use and, finally, end of life. Life Cycle Analysis usually allocates part of the GHG emitted during equipment production to the use. This phase is challenging to examine for ICT equipment since statistics on GHG emissions during manufacture are not always easily available. It should be noted that production can account for a significant portion of total GHG emissions. A French study on a data center (with Central Processing Unit (CPU) servers only) in Grenoble discovered that around 40% of the total emissions released during one hour of CPU use were due to the production phase (including emissions due to the equipment alone) [START_REF] Berthoud | Estimation de l'empreinte carbone d'une heure.coeur de calcul[END_REF]. Similarly, according to another recent study, most of the environmental impacts of mobile and data center computing equipment are attributed to hardware manufacturing and infrastructure, while the impact of operating energy consumption is decreasing [START_REF] Gupta | Chasing carbon: The elusive environmental footprint of computing[END_REF]. Due to the lack of data, assessing the end-of-life phase of ICT is also extremely difficult. To conclude, at least four sources of CO 2 equivalent emissions should be included when assessing the environmental impact of computational experiments: 1/ production of hardware equipment: router, PC, server; 2/ idle use of the hardware; 3/ dynamic use of the hardware; and 4/ end of life of the equipment.

Empirical studies

Recent efforts have been undertaken to evaluate the environmental impact of NLP methods, particularly those using deep learning models. [START_REF] Strubell | Energy and policy considerations for deep learning in NLP[END_REF] were among the first to study this, examining the carbon impact of training various state-of-the-art NLP models and concluding that we need to lower the carbon footprint of training and using models. [START_REF] Schwartz | Green ai[END_REF] introduce a new study topic, namely Green AI, which refers to AI research that considers the environmental cost and impact. [START_REF] Bender | On the dangers of stochastic parrots: Can language models be too big?[END_REF] underlined the environmental consequences of constantly growing the scale of AI models in general. Researchers have been more concerned with enhancing stateof-the-art task performance by intensively executing multiple experiments to create models without evaluating the environmental risks of their trials. A first step towards creating Green AI models is to measure the impact of our developed methods. Cao et al. (2020a) carried out experiments on the energy measurements of NLP models. Further research has been done to compute the energy use and the carbon footprint of deep-learning NLP architectures and large language models, such as T5 [START_REF] Patterson | Carbon emissions and large neural network training[END_REF], GPT-3 (Patterson et al., 2021), andBloom (Luccioni et al., 2022). Other studies discussed the impacts of privacy-preserving machine learning methods such as Federated Learning [START_REF] Qiu | A first look into the carbon footprint of federated learning[END_REF] and differential privacy [START_REF] Naidu | Towards quantifying the carbon emissions of differentially private machine learning[END_REF]. For the evaluated NLP task, [START_REF] Naidu | Towards quantifying the carbon emissions of differentially private machine learning[END_REF] showed that increasing the degree of privacy can entail a significant computing cost, which will inevitably raise the carbon footprint of the model's training. Therefore, more efforts are required to strike a compromise between privacy and reduced carbon emissions. Luccioni and Hernandez-Garcia ( 2023) recently presented a survey of carbon emissions of 95 ML models over time and across different tasks in NLP and computer vision.

Tools for measuring carbon footprint

To assess the carbon footprint of AI and NLP models, several tools have been proposed. Some tools run in parallel to model training and compute the energy use and the CO 2 equivalent measures, such as Carbontracker (Anthony et al., 2020), Experiment Impact Tracker [START_REF] Henderson | Towards the systematic reporting of the energy and carbon footprints of machine learning[END_REF], Energy Usage [START_REF] Lottick | Energy usage reports: Environmental awareness as part of algorithmic accountability[END_REF] and Cumulator [START_REF] Jaggi | A tool to quantify and report the carbon footprint of machine learning computations and communication in academia and healthcare[END_REF], while others are online tools and provide emission estimations based on user-supplied information, such as Green Algorithms [START_REF] Lannelongue | Green algorithms: Quantifying the carbon footprint of computation[END_REF] and ML CO2 Impact [START_REF] Lacoste | Quantifying the carbon emissions of machine learning[END_REF]. In Chapter 3, we review the availability and the use of these six tools to measure the carbon footprint of NLP methods. Following our study, Bouza Heguerte et al. ( 2023) present a study that gives additional details, including measurements process, infrastructure, default values, and sources of information used by some of these tools with the addition of the newest version of ML CO2, namely CodeCarbon14 and Eco2AI [START_REF] Semen | Eco2ai: carbon emissions tracking of machine learning models as the first step towards sustainable ai[END_REF] tool. As it will be covered in Chapter 3, the carbon emissions estimations produced by the studied tools vary significantly, making it difficult to determine which tool is best for carbon emissions measures. Moreover, all the tools evaluate the carbon footprint by only considering one source of emissions: dynamic use of the hardware equipment.

Towards the development of efficient models

Lately, efforts have been made to encourage sustainable AI by building models efficiently. This includes efficiency in data use, designing and training, experiments and infrastructure, and hardware [START_REF] Wu | Sustainable ai: Environmental implications, challenges and opportunities[END_REF]. Developing efficient models results in a considerable reduction in carbon footprint. This research is gaining attention in the research community through workshops such as SustaiNLP15 and EMC216 . [START_REF] Han | Pre-trained models: Past, present and future[END_REF] highlighted the progress achieved so far in developing Green deep learning methods by examining the most efficient Green approaches. Luccioni and Hernandez-Garcia (2023) showed that good performance could be achieved with low carbon emissions using the recent advances in training machine learning methods efficiently.

Summary

To summarize, we went through the main sources of CO 2 emissions that should be considered to evaluate the carbon footprint of deep learning methods. We then review surveys and research works that have been working on the evaluation of carbon footprint, in particular for the NLP domain. These studies helped raise awareness about the huge carbon footprint of deep learning algorithms, which are becoming increasingly popular due to their high performance on several NLP tasks. To measure the carbon footprint, several tools have been proposed, giving measures during the training process, as well as measures post-training based on user-provided information. In the next chapter, we review six tools and evaluate their measurements on the NER task. Although recent studies aim to provide standards for reducing carbon footprints when creating and training deep learning systems, more awareness is required for the community, which is currently focusing on enhancing the per-formance of models while neglecting environmental impacts. As a first step in developing efficient models, it is important to create carbon tracking methodologies that are easy to adopt and understand. Moreover, energy and carbon measurements should be reported while studying the performance of novel proposed models. More efforts should also be made to examine and compute the carbon footprint of models during their whole life cycle, not only the training phase.

Conclusion

Throughout this chapter, we have introduced the main concepts and tasks that interest us in this thesis, namely named entity recognition, privacy preservation, and temporal relation extraction. In the remainder of this manuscript, we will tackle these tasks by proposing methods for French clinical NER, where the goal is constructing privacy-preserving shareable models and a novel eventindependent temporal information representation that could be applied to several domains. Besides the privacy concerns in deep learning models, such models can also have a high environmental impact regarding CO 2 equivalent emissions. As a result, in the next Chapter 3, we examine available carbon footprint measuring tools and evaluate their application on NLP methods, in particular, the NER task. A tool will be selected for measuring the carbon footprint of all our thesis experiments.

Chapter 3

Towards a better understanding of NLP environmental impact: A review of existing carbon footprint measurement tools The material of this chapter is based on the publication in the SustaiNLP EMNLP workshop [START_REF] Bannour | Evaluating the carbon footprint of NLP methods: a survey and analysis of existing tools[END_REF].

Introduction

Modern NLP makes intensive use of deep learning approaches because of the great performance they provide for a variety of tasks. However, as discussed in Section 2.6, such methods can have a significant environmental impact in terms of carbon footprint due to the consumption of computational facilities used to run them. This impact has been increasing over the years and is affecting populations that can be different from those generating the impact [START_REF] Schwartz | Green ai[END_REF]. To tackle the environmental impact of these methods, the first key step is to have the appropriate tools to measure and compare the carbon footprints. Some tools have been developed to assess the carbon emissions of statistical models, in particular, the training phase. However, there is yet no standard measurement tool for calculating carbon footprint. Therefore, in our work, we aim to conduct a systematic review of tools available for measuring the impact of NLP tools and to offer a comparative analysis from the perspective of calculated impact measures and usability. We seek to understand the methods implemented by the tools and the criteria used to assess the impact. For that, we identify the list of available measurement tools, characterize them with respect to the scope of impact information provided and usability, and apply the selected tools to assess the impact of named entity recognition experiments and compare the obtained carbon measurements in two computational set-ups (local server vs. computing facility).

In this chapter, we describe our study on existing carbon footprint measurement tools and their use to assess the impact of NER experiments. In Section 3.2, we explain our tool selection approach, our defined evaluation criteria, and the list of final selected tools. Then, we report, discuss, and compare the application of these tools to evaluate NER experiments, which are performed on different computational set-ups, in Section 3.3. Finally, in Section 3.4, we summarize our study and briefly go over some of the recent studies.

Selection of tools

In this section, we will present the selection procedure, the defined evaluation criteria as well as the final list of selected tools for our study. We essentially aim to evaluate these tools by understanding their methods of implementation and their criteria to assess impact.

Selection process

We started with a preliminary set of tools that were identified by a Working group on the environmental impact of AI in the French group EcoInfo 1 (Experiment Impact Tracker, Pyjoules, and Carbontracker). We then extended this list by using snowballing to collect publications that cited these tools (according to Google Scholar). We also assessed "related papers" for papers published on ArXiv when available. This process was repeated for each newly identified tool. Note that the selected tools should be freely available, usable in our programming environment (Mac/Linux terminal), documented in a scientific publication, suitable for NLP experiments, and providing a CO 2 equivalent measure. As a result, tools like pyJoules2 were excluded since they do not provide a CO 2 equivalent measure. The same goes for under-development tools that do not include code or platform [START_REF] Zhang | Inferbench: Understanding deep learning inference serving with an automatic benchmarking system[END_REF][START_REF] Shaikh | Energyvis: interactively tracking and exploring energy consumption for ml models[END_REF]. Figure 3.1 shows detailed results of our literature search for identifying carbon footprint measurement tools. Google Scholar yielded 94 publications, with an additional 20 from ArXiv core related works. 85 articles were examined after de-duplication. We found that many (N=43) offered opinions or discussions of carbon impact measurement in machine learning, NLP, and other fields. Another 27 (shown by the orange flow) reported studies that measured the environmental impact of experiments using one of the selected tools. [START_REF] Strubell | Energy and policy considerations for deep learning in NLP[END_REF] presented research examining the impact of NLP experiments using approaches (Nvidia and Intel RAPL system management interface) that are currently implemented in several of the selected tools. 

Evaluation criteria

In order to evaluate and compare the selected tools, we defined several criteria to characterize the availability and documentation of tools as well as the technical aspects. This comprises the type of hardware covered, the type of measure provided, the details used to determine data center electricity, and the carbon intensity for electricity production based on location. We split our evaluation criteria into 4 categories: (a) publication, (b) technical, (c) configuration, and (d) functional criteria. Publication criteria concern scientific publications and citation details. Technical criteria are information regarding the tool's availability, installation, documentation, and output formats. Configuration criteria refer to the ability to do manual configurations of measurement computation and which configuration aspects are considered. Functional criteria cover the type of emission sources and hardware taken into account. These criteria are presented in detail below. T4 -Easiness of installation; We evaluated it as "Poor" if we did not manage to install it, "Fair" if we managed to install it but needed system administration access, "Good" if we managed to install it as an ordinary user.

Publication criteria

T5 -Quality of the documentation (companion publication or code documentation); We evaluated it as "Poor" if we did not find documentation on the tool, "Fair" if documentation is available but lacks practical usage details, "Good" if the available documentation addresses usage questions such as parameter settings and country localization.

T6 -Type of license T7 -Output formats

• ML CO2 Impact5 [START_REF] Lacoste | Quantifying the carbon emissions of machine learning[END_REF]: an online tool that determines the energy consumption and carbon footprint of computer use based on the user-provided information including hardware, runtime, cloud provider and location of the computing facilities operated. A new version of the tool is being developed with the Code Carbon6 initiative. However, by the publication of our work, it was not yet described in a scientific publication, so we have decided to assess ML CO2, which the NLP research community has used.

• Energy Usage7 [START_REF] Lottick | Energy usage reports: Environmental awareness as part of algorithmic accountability[END_REF]: a python package developed to calculate and report the energy usage of machine learning methods.

• Experiment impact tracker8 [START_REF] Henderson | Towards the systematic reporting of the energy and carbon footprints of machine learning[END_REF]: a python package introduced to assist researchers in measuring and reporting the impact of their machine learning experiments.

• Carbontracker9 (Anthony et al., 2020): a python package proposed for tracking and predicting the energy consumption and carbon footprint of training deep learning models.

• Cumulator10 (Tristan Trebaol and Ghadikolaei, 2020): a python package that estimates the energy consumption of computation based on runtime, GPU load, and carbon intensity, with a fixed value for consumption of a typical GPU. It also estimates the energy consumption of communication based on the file sizes and the 1-byte model from The Shift Project (The Shift Project, 2018). The three preceding Python programs obtain information about a machine learning program's energy usage from its GPU, CPU, and DRAM.

Table 3.1 shows the evaluation of these tools according to the previously defined criteria.

Measuring the impact of NER methods

To evaluate the use of the studied tools, we present experiments on the NER task using two computational set-ups: the use of a server within the laboratory and the use of an external shared computer facility. Two NER methods Generates a statement to report the results Table 3.1: Evaluation of the tools according to the publication (P), technical (T), configuration (C), and functional (F) criteria.

Generates a statement and graphs to report results

Generates

were used, one that addresses flat entity recognition [START_REF] Ma | End-to-end sequence labeling via bidirectional LSTM-CNNs-CRF[END_REF] and one that addresses both flat and nested entity recognition [START_REF] Wajsbürt | Extraction and normalization of simple and structured entities in medical documents[END_REF]. These methods were evaluated on the QUAERO Broadcast News Extended Named Entity dataset and the QUAERO French Med dataset described in Section 2.3.1. In this section, we start by describing the experimental settings of our experiments. Then, we present, discuss, and compare the measurement given by our six reviewed tools when evaluated on the NER task.

Experimental settings

The configuration is as follows: 1 core is used; GTX 1080 Ti Nvidia GeForce GPUs are used on the lab server, while Tesla V100 Nvidia GPUs are used on the external shared computing facility; memory is 11GB on the server and 32GB on the facility; 20 CPUs are used on the facility; and the experiments were carried out in France. We documented France as the location for experiments in the impact measurement tools as directed by the tools' documentation. We hypothesize that this type of set-up can be available to NLP researchers and that it is relevant to document the implications of choosing one or the other for a set of experiments. To reproduce the NER model proposed by [START_REF] Wajsbürt | Extraction and normalization of simple and structured entities in medical documents[END_REF], we encode the words using the pre-trained Language Model CamemBERT BASE provided by the HuggingFace library [START_REF] Wolf | Transformers: State-of-the-art natural language processing[END_REF] 11 .

Results and discussion

Table 3.2 presents the results of the experiments, with the CO 2 equivalent measures for training each model. To understand potential differences in CO 2 measures, we also report the corresponding energy consumption in Table 3.3.

NER performance. In Table 3.2, we report the performance of systems in terms of precision, recall, and F-measure for the NER task. As expected, the performance is higher with the nested entity recognition tool than the flat entity recognition tool, and the performance of both systems is above the median and average of participants in the 2016 CLEF eHealth task where the QUAERO French Med was used as a benchmark. However, while the results of the nested entity recognition tool are directly comparable to the shared task results, those of the flat entity extraction tool are not since 14-25% of nested entities are not taken into account. We can also note that the state-of-the-art on the Quaero French Med dataset remains the low-carbon cost dictionarybased method submitted to the CLEF eHealth shared task by the Erasmus team [START_REF] Van Mulligen | Erasmus mc at clef ehealth 2016: Concept recognition and coding in french texts[END_REF] 2021) while the bottom part presents the results obtained with an implementation of the method by [START_REF] Ma | End-to-end sequence labeling via bidirectional LSTM-CNNs-CRF[END_REF]. The CO 2 equivalent measures are reported according to the six selected tools in this study, Carbontracker (CT), Green Algorithms (GA), Experiment Impact Tracker (EIT), ML CO2 Impact (MLCI), Energy Usage (EU), and Cumulator (Cu).

Differences in carbon footprint measurements.

There are major differences in measures obtained by our six tools, as shown in Table 3.2. This could be due to the different values used for the average carbon intensity. For instance, in our trials, Carbontracker uses the average carbon intensity for EU-28 in 2017 (294.21 gCO 2 eq/kWh) rather than the French value (around 30 to 40 gCO 2 eq/kWh according to electricityMap), which overestimates the CO 2 equivalent cost. Green Algorithms uses the 2020 values from electricityMap, giving 39 gCO 2 eq/kWh. Experiment impact tracker uses the 2018 electrici-tyMap value, which gives a 47.60 gCO 2 eq/kWh for France. Energy Usage is based on worldwide energy mix data from the U.S. Energy Information Administration data for 2016 and assumed carbon equivalencies by energy type. Thus, the value for France seems to be 424 gCO 2 eq/kWh. ML CO2 impact uses a default value regardless of the location, which is 432 gCO 2 /kWh. We looked into the data sources offered by the tools to find a more exact estimate for France, but the results for Carbon intensity varied significantly. Indeed, it As illustrated in Table 3.2, the CO 2 equivalent values obtained by Green algorithms and ML CO2 Impact are higher than those returned by other tools.

This could be explained by the fact that these two tools do not perform direct measurements of the energy consumption but estimate it based on user provided information and due to hardware options offered by these online algorithms that do not exactly correspond to our equipment. In fact, we used Tesla V100-PCIE-32GB GPUs on the computing facility. However, ML CO2 Impact only provides V100-PCIE-16GB or V100-SXM2-32GB, and Tesla V100 is the only GPU option available for Green Algorithms. Consequently, we presented the results for the V100-SXM2-32GB, which may result in a lack of precision in the results. Green algorithms yield higher results than ML CO2 Impact as well, which could be explained by the differences in measuring the carbon intensity values as illustrated in Table 3.3. Similar CO 2 equivalent measures are obtained with Carbontracker and Experiment Impact Tracker, which use the same calculation methods. The differences in measures by comparing the computer facility and local server could be explained by a difference in equipment, such as the type of GPUs. Energy usage returned lower results compared to other tools, and this seems to be because it does not consider GPU consumption.

Which tool is more efficient for measuring the carbon footprint of NLP experiments? Although these tools seem to be a good start to measuring the carbon footprint, the carbon footprint is still underestimated. Indeed, it is only evaluated based on energy consumption during the dynamic use phase of equipment, which counts only for a quarter of the emission sources. Emissions resulting from the production and end-of-life phases should be taken into account. The online tools (Green Algorithms and ML CO2 impact) are very convenient to use as no installation is necessary. Since they are used separately from running the experiments, an estimate of the experiment's impact can be obtained after conducting the experiment. However, some of the required information, such as "memory requirement" (GA) or "carbon intensity" (MLCI), is difficult to figure out. In our experience, even with direct powercap access, using the Python packages tracking real-time energy consumption (Carbon Tracker, Experiment Impact Tracker, and Energy consumption) required specific permission to read RAPL results. Therefore, admin help was necessary to use the tools. Note also that the short training times for the NER experiments, due to the use of modest sized datasets, yield impact measures of 0, as illustrated in Table 3.2, which suggests that the reviewed tools are not sensitive enough to measure small impacts. As shown in Table 3.1 , the availability of tools is quite recent and moderately used in the NLP field. As a result, further research is required to better understand the differences between the tools and to account for all sources of carbon emissions.

Conclusion

In this chapter, we discussed our conducted review of six tools measuring the carbon footprint of NLP methods by explaining our selection process and our defined evaluation criteria. We evaluated these tools according to these criteria, then evaluated and compared their use to assess the impact of NER experiments. Based on our findings, we note that the differences in measures and the used parameters of the carbon footprint measuring tools could not lead to a recommendation of tool for NLP methods. However, we chose to use the Carbontracker tool for measuring the CO 2 equivalent for all our thesis experiments. This tool is easy to use and incorporate with our equipment. Note that several versions of this tool were used due to various settings, which we will cover in the next chapters.

Introduction

Electronic health records (EHRs) are typically regarded as having enormous potential to enhance clinical research. However, the majority of data contained in EHRs is in free-text form [START_REF] Fu | Clinical concept extraction: A methodology review[END_REF]. Free text is the easiest and most natural way for clinicians to communicate. Moreover, up to 80% of important clinical information is only available in the form of unstructured text [START_REF] Escudié | A novel data-driven workflow combining literature and electronic health records to estimate comorbidities burden for a specific disease: a case study on autoimmune comorbidities in patients with celiac disease[END_REF][START_REF] Jouffroy | Hybrid deep learning for medication-related information extraction from clinical texts in french: Medext algorithm development study[END_REF]. To gain easier access to this information, several Natural Language Processing (NLP) techniques -information extraction methods in particular -have been proposed over the past years [START_REF] Wang | Clinical information extraction applications: A literature review[END_REF]Névéol et al., 2018a). Named Entity Recognition (NER) is the process of identifying named entities in text and classifying them into predefined categories. Having an accurate NER model for the extraction of medical concepts, such as Disease, Anatomy, Drug, Sign Or Symptom, etc., is essential for building clinical Information Extraction (IE) systems. As reviewed in Chapter 2, the NER models progressed from traditional rule-based and terminology-based models to machine learning-based and complex deep learning-based models. Supervised neural models have become the go-to approach for solving this NLP task, achieving higher performance than rule-based and terminology-based systems (Li et al., 2020a). However, to obtain high-performing supervised NER systems, large amounts of manually annotated corpora are required. The annotation process is known to be timeconsuming and highly expensive. Moreover, despite the technological progress in NLP models, there are still several challenges to address in the clinical domain. The clinical narrative text is complex, incorporating many medical terminologies, abbreviations, ambiguity, poor grammar, and nested entities [START_REF] Bose | A survey on recent named entity recognition and relationship extraction techniques on clinical texts[END_REF]. Annotated clinical training data is often limited, in particular for non-English languages. Furthermore, the personal and sensitive nature of clinical text restricts the possibility of sharing data across institutions. Indeed, sharing data is difficult in practice and is managed by law and regulation, such as General Data Protection Regulation (GDPR)1 . As a result, researchers can only build and test their models on the datasets owned by their institutions, and limited collaborations could be done with other institutions. Transferring NLP algorithms from one institution to another can also lead to reduced performances, as shown in [START_REF] Kavishwar | Feasibility of pooling annotated corpora for clinical concept extraction[END_REF]. Therefore, a research challenge arises about how we can construct shareable models that maintain the right balance between performance and data privacy, particularly in a low-resource setting. In our work, we address the task of shareable named entity recognition in clinical narratives written in French. Few studies have been proposed for the French clinical NER task, which is regarded as a low-resource problem because of the lack of publicly available annotated clinical corpora due to privacy concerns, as stated in Section 2.3 of Chapter 2. To this end, we propose a Privacy-Preserving Mimic Models architecture that enables the generation of shareable models using the mimic learning approach. Indeed, following the work of [START_REF] Baza | On sharing models instead of data using mimic learning for smart health applications[END_REF], we investigate the possibility of using the mimic learning approach to leverage both public and private data sets. The idea of mimic learning is to annotate unlabeled public data through a private teacher model trained on the original sensitive data. The newly labeled public dataset is then used to train the student models. These generated student models could be shared without sharing the data itself or exposing the private model that was directly built on this data. These shareable models aim to improve knowledge transfer among clinicians and other medical institutions without revealing the personal health information of patients.

The remainder of this chapter is structured as follows. In Section 4.2, we describe the corpora we are using in our experiments. We present our Privacy-Preserving Mimic Models architecture and our used NER model, which tackles both flat and nested entities, in Section 4.3. We then describe our experiments in Section 4.4, presenting our generated shareable mimic models, the experimental settings, and the baseline models. We discuss the obtained results in Section 4.5. Finally, we report a real-world use of our contribution in Section 4.6 before concluding the chapter in Section 4.7 with our final remarks. For further research, we make available the silver annotations for two publicly available clinical corpora produced in our experiments, the source code of a NER system that addresses both flat and nested entities, as well as our best Privacy-Preserving Mimic model.

Corpora description

To conduct our experiments and evaluate our proposed models, we use these three publicly available clinical French corpora: CAS [START_REF] Grabar | CAS: French corpus with clinical cases[END_REF], DEFT [START_REF] Cardon | Présentation de la campagne d'évaluation deft 2020 : similarité textuelle en domaine ouvert et extraction d'information précise dans des cas cliniques[END_REF], and CépiDC. These datasets are described in detail in Section 2.3.1, including their descriptive statistics in Table 2.1. The CAS and CépiDC corpora will both be used as unlabeled corpora with an equivalent number of tokens. The DEFT corpus will be used as an annotated corpus and split into a training set of 85 documents, a validation set of 20 documents, and a test set of 62 documents.

We also use a private clinical French corpus, namely MERLOT [START_REF] Campillos | A french clinical corpus with comprehensive semantic annotations: development of the medical entity and relation limsi annotated text corpus (merlot)[END_REF]. This is a restricted corpus built with de-identified patient records related to the Hepato-gastro-enterology and Nutrition specialties obtained through a use agreement with a French hospital. This corpus is not pub- We also use two medical dictionaries that were available in-house:

• UMLS-derived dictionary -a dictionary containing French terms from the 2012AA and 2020AA versions of the Unified Medical Language System (UMLS) [START_REF] Da Lindberg | The unified medical language system[END_REF], terms from the Unified Medical Lexicon for French (UMLF) [START_REF] Zweigenbaum | UMLF: a Unified Medical Lexicon for French[END_REF], some terms from the International SNOMED and ICD10 terminologies, translated terms from the English version of UMLS 2012AA and validated on French corpus as well as additional synonyms [START_REF] Van Mulligen | Erasmus mc at clef ehealth 2016: Concept recognition and coding in french texts[END_REF].

• Jeux de Mots -a dictionary drawn from the knowledge base JeuxDe-Mots, in particular its specialized clinical terms component [START_REF] Lafourcade | Game design evaluation of GWAPs for collecting word associations[END_REF]Lemaître et al., 2020).

Scheme annotation alignment.

To compare the performance of our models, we perform an alignment step between the entity types of our used annotated corpora: MERLOT and DEFT. Table A.1 (Appendix A) describes the details of this alignment step. Note that six entities from MERLOT (i.e., Hospital, Localization, Concept_Idea, Genes_Proteins, Devices, BiologicalProces-sOrFunction) have no equivalent.

There is a major ambiguity issue between diseases and signs or symptoms since diseases can be considered symptoms in some cases [START_REF] Hassan | Extracting disease-symptom relationships by learning syntactic patterns from dependency graphs[END_REF]. Therefore, we merged these two types of entities by including the Sign Or Symptom category into the Disorder category.

Privacy-Preserving Mimic Models

In this section, we go over our proposed Privacy-Preserving Mimic Models architecture, which is based on Mimic learning and describe the NER model that we are using to address the task of clinical NER and which tackles both flat and nested entities.

Privacy-Preserving Mimic Models architecture

The main goal of our approach is to enable data providers to generate shareable models that end users could use without sharing sensitive data. Data providers could be hospital institutions with medical data warehouses having large medical patient reports. End users could be other hospital institutions, clinicians, or physicians who aim to use these models to propose better treatment strategies. Teacher model. As described in Figure 4.1, the sensitive clinical narrative reports are used to train an accurate teacher model. Several studies have revealed that it is possible to approximately rebuild a portion of training data by just observing the predictions [START_REF] Abadi | Deep learning with differential privacy[END_REF][START_REF] Chang | Privacy in neural network learning: Threats and countermeasures[END_REF][START_REF] Boulemtafes | A review of privacy-preserving techniques for deep learning[END_REF]. [START_REF] Carlini | Extracting training data from large language models[END_REF] revealed that diverse data extraction attacks could be performed on large language models such as GPT-2 [START_REF] Radford | Language models are unsupervised multitask learners[END_REF] to recover training sensitive data. As a result, this private teacher model will only be used to produce silver annotations for public data, which will be used to train the shareable student models. Indeed, the teacher model will be kept private, and similarly to sensitive data, it could not be shared for public use.

Student model

To generate a student model, we use the teacher model to annotate the unlabeled publicly available corpus. This way, we could create a new annotated corpus. The latter is used to train the student model. Although we follow the same training process as the teacher model, this student model training might be viewed as a knowledge transfer process between the teacher and the student model in a privacy-preserving manner. We assess the performance of the student model on the original sensitive data.

As illustrated in Figure 4.1, the preprocessing steps are totally independent of the private sensitive data, and the model weights are reinitialized before training these student models on the silver-labeled public data. Thus, potential attackers could only use the silver labels generated by the private model on non-sensitive public data, which we argue is insufficient to retrieve personal health information from the sensitive data.

The NER model

The named entity recognition model, illustrated in Figure 4.2, addresses both flat and nested entity recognition and comprises three elements: the text encoder, the word tagger, and the bounds matcher.

The text encoder computes features for each word in the sequence. We first concatenate the embeddings produced by a CamemBERT [START_REF] Jaggi | A tool to quantify and report the carbon footprint of machine learning computations and communication in academia and healthcare[END_REF] model, a character level features using a char CNN encoder and static French FastText embeddings [START_REF] Bojanowski | Enriching word vectors with subword information[END_REF]. We compute the BERT embedding of a word by averaging the embeddings of each of its subwords since BERT uses a sub-word tokenization scheme. These embeddings are then fed to a multilayer Bi-LSTM with sigmoid residual connections.

The word tagger component consists of a set of Conditional Random Field layers [START_REF] Lafferty | Conditional random fields: Probabilistic models for segmenting and labeling sequence data[END_REF] that predicts entities by labeling each word of the input sequence with the BIOUL tagging scheme. Since multiple entity types in a corpus may overlap, we run multiple CRFs in parallel, one for each entity type, with five possible tags each. Each word in the sequence is classified as a (B)egin word, (I)nner word, (O)uter word, (U)nary word (a word that is both a begin word and an end word), or (L)ast word for each label. The scores obtained for each word are then run through a CRF, and the most likely BIOUL tag sequence for each label is then extracted by running the Viterbi algorithm [START_REF] Viterbi | Error bounds for convolutional codes and an asymptotically optimum decoding algorithm[END_REF]. These tags are then decoded to produce candidate triplets (Begin, End, Label).

Finally, the bound matcher is used for nested entities of the same type.

Because the previous labeling scheme may generate false positives, these are filtered by checking that the begin and end words of a candidate do indeed bound an entity of the given label. This component projects each word into n label begin and n label end embeddings. Each candidate (B, E, L) is then scored by computing the dot product between the L th begin embedding of its begin word B, and the L th end embedding of its end word E. During prediction, if the tagger predicted a begin or end bound but is not associated with any other bound by the matcher, we match it with the begin or end bound that gives the highest score, even if this score is negative. This ensures that each terminal predicted by the tagger is part of at least one entity. This bound matcher is a biaffine decoder similar to the one of [START_REF] Yu | Named entity recognition as dependency parsing[END_REF]. This NER model is trained jointly by minimizing the sum of the losses of each component. The loss of the tagger is computed by summing the loss of each CRF (one per label), while the loss of the matcher is computed by adding the binary cross-entropy loss for each (begin, end, label) valid triplet. A triplet is valid when begin ≤ end, and the length is below the maximum entity size. In our experiments, we set the maximum entity size to 40 words. Further details about this NER model are presented in Wajsbürt (2021).

Experiments

In this section, we describe our teacher model trained on the clinical private corpus, the three generated Privacy-Preserving Mimic student models using the three publicly available corpora, and the experimental settings we use to assess the effectiveness of our approach. We also discuss the defined baseline models against which our models are compared.

Generated Privacy-Preserving Mimic models

As illustrated in Figure 4.3a, based on a teacher model trained on the MER-LOT corpus, we build three Privacy-Preserving Mimic student Models trained on the three corpora: DEFT, CAS and CépiDc. The training corpus is the only difference between these three Privacy-Preserving Mimic student Models. To train these models, we incrementally augment the small portions of gold standard annotations in our disposal with silver annotations generated by the teacher model. The gold standard annotations are created by manually correcting the silver annotations of 20 documents (7,433 tokens) for the DEFT/CAS corpora and the silver annotations of 206 documents (2,456 tokens) for the CépiDc corpus using the MERLOT annotation scheme guideline. The agreement between the gold and the silver annotations in terms of exact F-measure 

Experimental settings

For our experiments, the NER model weights (including CamemBERT) were optimized with Adam without weight decay for 20 epochs. Note that this neural NER model3 achieves 0.931 of exact F-measure, using large BERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] embeddings, on the coNLL English dataset [START_REF] Tjong | Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition[END_REF], containing only flat entities and 0.784 of exact Fmeasure, using large BioBERT [START_REF] Lee | Biobert: a pre-trained biomedical language representation model for biomedical text mining[END_REF] embeddings, on GENIA [START_REF] Kim | Genia corpus-a semantically annotated corpus for bio-textmining[END_REF], a widely used biomedical English dataset containing both flat and M is a 38 yo male who was admitted to the ER for anuria. His antecedents are notable for bilateral renal colic. Upon evaluation, he was noted to have tenderness in the lower back area bilaterally. CT scan of the urinary tract showed a retroperitoneal growth encasing arteries and ureters consistent with retroperitoneal fibrosis (Figure 2)." The annotations are correctly produced for the three first sentences, including nested entities. However, in the last sentence, the word "rétropéritonéale" ("retroperitoneal") is an anatomy entity type that was not annotated in the first occurrence and was incorrectly annotated as a Localization entity type in the second. We can also note that the annotation of "Figure 2" as a measure entity is incorrect. nested entities. Most of our developed models in this work are trained using an early stopping with a patience of 3 epochs, except two models trained on small portions of documents (less than 8,000 tokens) where an early stopping with a patience of 10 epochs is used. We repeat each experiment 5 times. All models were trained using a GPU NVIDIA GeForce GTX 1080 Ti.

Baseline models

The performance of our Privacy-Preserving Mimic Models was compared to three defined baseline models: a Private Model, a Public Model, and a Dictionary-based method evaluated on two medical dictionaries. The following section details the defined baseline models and their implementation.

1. Private Model: This model is the teacher model illustrated in Figure 4.3a. The teacher model is trained on the original sensitive corpus.

2.

Public Model: This model, as shown in Figure 4.3b, is trained on publicly available clinical corpora, assuming that the annotation scheme is relatively similar to the original sensitive corpus.

3. Dictionary-based Models: These models consist of a simple matching between the original sensitive corpus and the dictionary terms. To build these models, we use the QuickUMLS algorithm [START_REF] Soldaini | Quickumls: a fast, unsupervised approach for medical concept extraction[END_REF].

These models are evaluated on the test set of the original sensitive corpus MERLOT.

Results & discussion

In this section, we report and discuss the results of our experiments by analyzing the privacy-preservation strategy and the NER performance. Our models are evaluated using the evaluation metrics provided in Section 2.3.7. We make a brief comparison of our models to the related work. As mentioned in the previous chapter, we also report the carbon footprint of our experiments.

Privacy-preservation analysis

According to the European Working Party on the protection of individuals concerning the processing of personal data 4 , privacy-preserving techniques should be evaluated based on three criteria: (i) is it possible to identify an individual directly (ii) correlate multiple pieces of information that could lead to the identification of an individual and (iii) is it possible to infer information related to an individual. We provide below an evaluation of each of these risks related to the data and models we are releasing.

Risks related to (i) have been evidenced in solidly de-identified corpus [START_REF] David S Carrell | The machine giveth and the machine taketh away: a parrot attack on clinical text deidentified with hid-ing in plain sight[END_REF]. However, we are not sharing the sensitive data itself or the private model built on this data. Therefore, we believe that retrieving personal information from sensitive data is not directly possible. Indeed, we share only the silver labels produced on public non-sensitive data by the private teacher model, which we argue is insufficient to retrieve personal information directly.

Risks related to (ii) involve identifying a person by linking numerous pieces of information about the same individual in the same corpus or in two distinct corpora. A worse-case scenario situation would be that the transfer of annotations from the private corpus to the public corpus consists in marking in the public corpus only entities that are present in the private corpus. In this worse-case scenario, the "silver annotations" would consist of excerpts of the private corpus. We have established that no direct identifiers can be leaked that way because the private corpus was unidentified, and the public corpus does not contain identifying information. Furthermore, the risk of recovering phenotypes (e.g., a combination of disorders or symptoms experienced by one patient) is also void because the set of annotations in the public corpus is globally aggregated. The analysis of the public annotations produced by the private model reveals that we are not dealing with the worst-case situation because many entities not present in the private corpus are, in fact, annotated.

An example of a potential attack concerning the third criterion mentioned above (iii) is the membership inference attack, which seeks to recover information about whether a specific person was in the training data samples or not. The membership inference attack model is a binary classifier whose inputs are a target data sample, a target model, and some auxiliary knowledge [START_REF] Zou | Privacy analysis of deep learning in the wild: Membership inference attacks against transfer learning[END_REF]. We can consider three possible scenarios: an attack could be made on (1) the teacher model to infer the membership status of the private dataset, (2) the student model to infer the membership status of the student dataset and (3) the student model to infer the membership status of the private dataset. Given that we do not share the private teacher model, revealing information about the private corpus is not possible. As a result, the first scenario is ruled out. In the second scenario, we believe that having access to the student model may result in the disclosure of student dataset information. However, the student dataset consists of publicly available clinical narratives with produced silver annotations, which we make available for future research. Therefore, there is no risk of disclosure of sensitive data in this case. Concerning the third scenario, we think that access to the student model would not leak information about the private corpus. Indeed, only the student dataset stated in the preceding scenario would be released, and we argue that no potential attack could reveal information about sensitive private data using the silver annotations generated by the teacher model on publicly available non-sensitive data. [START_REF] Zou | Privacy analysis of deep learning in the wild: Membership inference attacks against transfer learning[END_REF] explored comparable attacks in the context of transfer learning and reached similar conclusions.

However, we acknowledge that the evolution of technology and the definition of privacy risks may evolve over time; the annotations and student model that we release may contribute to future exploration of privacy attacks.

Performance of NER models

We report and discuss the overall performance of our NER models on the test set of the private MERLOT corpus, as well as the results per entity type for our best Privacy-Preserving student model5 . We investigate the impact of training data size and corpus genre, and we report additional NER experiments using two newly released biomedical language models for French.

Overall results. Table 4.2 summarizes the overall results based on an exact match of our baseline models and our three Privacy-Preserving Mimic Models trained on a combination of gold and silver standard annotations. The best results are obtained with the private teacher model with an F1 score of 0.857. The dictionary-based models have the worst results, with an F-measure of 0.089 for the model using the JDM dictionary and an F-measure of 0.2 for the model using the UMLS dictionary. The best performance obtained with the CAS privacy-preserving model is inferior to that of the teacher private model (0.706 vs. 0.857 of F-measure) but well above the performance of the other baseline models (0.465 of F1 score for the public NER model trained on DEFT corpus using the original gold standard annotations according to the DEFT annotation scheme). The CépiDc privacy-preserving model has the higher CO 2 equivalent measure (169 g), and the public DEFT model has the lowest carbon footprint with 22 g of CO 2 equivalent measure. Although the best results are obtained with the private teacher model as reported in Table 4.2, the use of this private model to create silver standard annotations on the public corpus DEFT/CAS seems to be a successful strategy to increase the performance of clinical NER with a model trained on the public corpus. In fact, a gain of 20 pts is obtained when comparing the DEFT public model trained using the DEFT original annotation scheme (0.465 of Fmeasure) and the DEFT privacy-preserving model (0.666 of F-measure). Good performance is also noticed for the CépiDc privacy-preserving model with an F-measure of 0.638. This solution offers a good trade-off between performance and privacy preservation. As mentioned earlier, the lowest results are obtained with the dictionary-based models. Note that no pre-processing has been performed on the dictionaries utilized in the study, and not all entity types are present in these dictionaries. In fact, only these five entity types are present: ANAT, CHEM, DISO, LIVB, and PROC. Moreover, there is a lot of ambiguity in short names and abbreviations. For instance, the word "être" can denote the infinitive form of the verb to be or the generic noun for living being. It is listed in our dictionaries as a LIVB entity, whereas the verb form is more frequent in the corpus than the noun. Due to these issues, the precision of these models remains low. Dictionary-based methods suffer as well from a low recall rate due to large variations in medical terminology and due to possible differences in the definition of entity types boundaries with the annotation guideline of our corpus. Table 4.3 compares the performance of student models trained on gold annotations augmented by silver annotations produced by the teacher model to that of student models trained solely on silver standard annotations for CAS and CépiDc corpora. The performance of models trained on only silver standard annotations is very close to the performance of models trained on the combination of a small set of gold standard annotations and silver annotations (an F1 score of 0.707 vs. 0.706 for CAS and an F1 score of 0.634 vs. 0.638 for CépiDc). These findings further demonstrate the good quality of the produced silver annotations for both CAS and CépiDc corpora. Indeed, we can observe similar results to our augmentation strategy without the need for any manual or corrected annotations for the two public corpora. Results per entity type of our best model. F-measure of 0.84 is obtained for the anatomy entities (ANAT) representing 12.43% of MERLOT annotations. Similar results are observed for disorders (DISO), measurement (MEAS), temporal expressions (TEMP), and medical procedures (PROC). Since these entity types are well represented in the MER-LOT distribution, the teacher model can produce accurate silver CAS annotations, and therefore good performance is achieved by the CAS student model for these relevant entities. For poorly represented entities such as Genes and proteins (Genes_Proteins) (0.014% of MERLOT annotations), Living beings and persons (LIVB) (0.16% of MERLOT annotations), healthcare institutions (Hospital) (2.25% of MERLOT annotations) and Biological process or Function (2.53% of MERLOT annotations), low F-measures are observed (less than 0.6 of exact F-measure for LIVB, Hospital and Biological process or Function and 0 for Genes_Proteins). However, high F-measures are also reported for some poorly represented entities in MERLOT, such as chemical drugs (CHEM) (3.84% and an exact F-measure of 0.884), drug forms and administration routes (MODE) (0.7% and an exact F-measure of 0.725), dosage and strength (DOSE) (2.59% and an exact F-measure of 0.762) and concepts and ideas (Concept_Idea) (8.28% and an F-measure of 0.717). This may be due to the well-defined nature of these entities. As for the Localization and the diagnosis or treatment devices (Devices), which account respectively for 2.35% and 2.97% of MERLOT distribution, an exact F-measure of 0.624 and 0.602 are respectively observed. Localization entities are often embedded in anatomy entities. As a result, it is difficult to distinguish the boundaries of the two entities. For example, in the MERLOT annotation guideline, "membres inférieurs" ("lower limbs") is annotated as an anatomy entity type, whereas the CAS privacy-preserving model also predicts "inférieurs" ("lower") as Localization. We can also have Localization entities such as "au niveau antérieur" ("at the anterior level") in MERLOT while the CAS predicted entity is rather "antérieur" ("anterior"). That is why we can notice a difference of 10% between the exact match F-measure and the partial match F-measure for the Localization entity type. Issues with boundary definition are common for the device's entity type, particularly for extended device names. For instance, "Coloscope CFQ 145I (194315) BIO 194315 Et Vidéo PCF 160 AL (194315)" is predicted by our CAS model as two devices entities "Coloscope CFQ 145I" and "Vidéo PCF 160 AL (194315)". This explains the observed difference of 20.6% between exact match F-measure and partial match F-measure for this entity type.

Influence of training data size. As shown in 4.5a and 4.5b, exact F-measures of 0.226 and 0.557 are obtained respectively for the CépiDc and DEFT/CAS corpora, when using solely gold standard annotations (206 documents of CépiDc corresponding to 2,456 tokens and 20 documents of DEFT corresponding to 7,433 tokens) in the training corpora. However, by incrementally adding produced silver annotations, we reach maximum performance with respective F-measures of 0.706 and 0.638 for the DEFT/CAS and CépiDc corpora, respectively. This performance is achieved using an equivalent number of tokens for both corpora: a total of 717 documents corresponding to 231,662 tokens for DEFT/CAS and a total of 23,750 documents corresponding to 237,777 tokens for CépiDc. Building such a number of manually annotated documents is difficult and time-consuming. Therefore, we believe that generating silver standard annotations is a good way to increase performance and generate accurate privacy-preserving models.

Influence of the annotation scheme. The best results for NER are obtained with the privacy-preserving model that shows the closest distribution to the private data, namely, CAS silver standard annotations compared to MERLOT. We can also notice that for the DEFT corpus, the best results are also obtained when the annotation scheme used in training data is the same as that of the target private data (MER-LOT). Despite the equivalence drawn between the DEFT public annotation scheme and the MERLOT annotation scheme, the lower performance of NER for the public model implies that the definition of equivalent entities differs significantly. An analysis of the annotated data shows that the entities in the DEFT scheme tend to have larger spans than in the MERLOT scheme, and in some cases, the two schemes diverge on entity types to be assigned to specific text snippets. For example, the phrase "tension artérielle de la patiente demeure acceptable (91-106/53-59 mm Hg)" (patient blood pressure remained adequate (91-106/53-59 mm Hg) was annotated as a sign and symptom entity in DEFT while it would be annotated partly as a Biological Process Or Function ("tension artérielle" / blood pressure), person ("patiente" / patient) and measure ("acceptable" / adequate as qualitative measure and "91-106/53-59 mm Hg" as quantitative measure). This type of divergence in schemes impacts both precision and recall when comparing the two options. The good performance of the Public Model on the DEFT test data supports this hypothesis (Precision: 0.778, Recall: 0.798, F-measure: 0.788).

Influence of corpus genre. Death certificates are short documents (on average, 10 tokens/document vs. 323 tokens/documents for CAS and 297 for MERLOT) with a specific structure, where each line contains information on the cause of death, starting with the most immediate cause and going back to the general health status of the patient. We also computed a measure of similarity between the language distributions in the study corpora [START_REF] Seddah | The French Social Media Bank: a treebank of noisy user generated content[END_REF] and found that CAS was closer to MERLOT (noisiness score of 0.27) than CepiDc (noisiness score of 1.02). The entities found in death certificates are mainly disorders and anatomy: Figure 4.6 shows that these two entity types account for 2/3 of all entities in the corpus. This is due to the nature of the documents, which relate to the medical problems experienced by the patient leading to their death. The focus is, therefore, on problem description rather than treatment, diagnosis or procedures, which are also found in clinical notes -and case reports contained in CAS.

NER results using recent biomedical language models. With the recent release of two biomedical language models for French, CamemBERTbio [START_REF] Touchent | Camembert-bio: Un modèle de langue français savoureux et meilleur pour la santé[END_REF] and DrBERT [START_REF] Labrak | DrBERT: A robust pretrained model in French for biomedical and clinical domains[END_REF], we have done additional experiments by generating teacher and student models using these language models and using the MERLOT and the CAS corpora. We use the DrBERT-4GB and the camembert-bio-base models. Table 4.5 compares the results of these experiments with our private teacher model and our best CAS privacy-preserving mimic model based on the CamemBERT model. The best results are obtained using the CamemBERT-bio embeddings, with an Fmeasure of 0.869 for the teacher private model and an F-measure of 0.723 for the CAS privacy-preserving mimic model. Lower results are obtained using the DrBERT model, with an F-measure of 0.848 for the teacher model and an Fmeasure of 0.707 for the CAS privacy-preserving student model. Despite being trained from scratch using domain-specific biomedical corpora, the DrBERT model performs worse than the CamemBERT-bio model, developed via continual pretraining from a French model. Moreover, we can notice that slight improvements could be obtained using domain-specialized language models, particularly the CamemBERT-bio embeddings. Such observations make us wonder if building and using these specialized models is worthwhile, especially given their considerable computing and environmental impacts and privacy leakage risks. 2020) introduced a privacy-preserving medical NER method based on federated learning. A private module, composed of Bi-LSTM and CRF layers, is used to capture the characteristics of the locally stored medical data, and a shared module, composed of word-level CNN and embeddings layers, is used to capture the shared knowledge among different medical platforms. [START_REF] Baza | On sharing models instead of data using mimic learning for smart health applications[END_REF] used the mimic learning approach to address the privacy issues. This approach implies using a model trained on the original sensitive training data in order to annotate a large set of unlabeled data and using these annotations to train a new model. This way, a knowledge transfer from the original model to the newly trained one is initiated without sharing the sensitive data.

Compared to these related works [START_REF] Ge | Fedner: Privacy-preserving medical named entity recognition with federated learning[END_REF][START_REF] Baza | On sharing models instead of data using mimic learning for smart health applications[END_REF], our strategy seems to better preserve the privacy of personal patient information since neither the original sensitive data nor the private model weights are shared. Despite that Federated Learning [START_REF] Mcmahan | Communication-efficient learning of deep networks from decentralized data[END_REF] used in Ge et al. ( 2020) have been originally proposed to better preserve privacy by only exchanging model parameters between local nodes through a centralized server, personal information could still be extracted from local training parameters [START_REF] Truong | Privacy preservation in federated learning: An insightful survey from the gdpr perspective[END_REF][START_REF] Melis | Exploiting unintended feature leakage in collaborative learning[END_REF][START_REF] Hitaj | Deep models under the gan: Information leakage from collaborative deep learning[END_REF].

A direct comparison with [START_REF] Baza | On sharing models instead of data using mimic learning for smart health applications[END_REF] is difficult due to differences in the used datasets. In fact, we encounter extra challenges while dealing with narrative clinical text due to the complexity and the variety of medical terminologies presented in the clinical text. However, our results are in agreement with the results presented in [START_REF] Baza | On sharing models instead of data using mimic learning for smart health applications[END_REF] since student models are proved to be able to mimic the teacher model performance without access to the original private data.

Carbon footprint

As stated in Chapter 3, we use the Carbontracker tool to measure the carbon footprint of training our models. Note that the used version at the time of our experiments computes its estimates by using the average carbon intensity in the European Union in 2017 instead of the France value, even if it successfully detects France as the location of the experiments. Carbon footprint is reported in Table 4.2 in terms of CO 2 equivalent measure in grams. The highest CO 2 emissions are observed when training the CépiDc privacy-preserving mimic student model (394 g). Our best CAS privacy-preserving model has lower CO 2 emissions: 169 g. However, to obtain this model, we first train the private model to produce the silver annotations. Therefore, a total of 292 g of CO 2 emissions is estimated. Although CAS and CépiDc corpora are equivalent in the number of tokens, the CO 2 emissions value is higher for the CépiDc corpus (a total of 517 g). This could be due to the high number of documents used for training the CépiDc corpus (23,750 documents). As mentioned in [START_REF] Strubell | Energy and policy considerations for deep learning in NLP[END_REF], deep learning models can have a significant environmental impact due to the high energy consumption of the computing equipment necessary to execute them. The estimated CO 2 emissions from training both the teacher model and the CAS student model is roughly equivalent to 2.52 km traveled by car. The estimated CO 2 emissions from training both the teacher model and the CépiDc student model is equivalent to 4.37 km traveled by car.

The carbon footprint of the newly generated models, based on CamemBERT-bio and DrBERT, is reported in Table 4.5. The DrBERT-based models have the highest CO 2 emissions: 46g for the teacher model and 41g for the privacy-preserving model. The CamemBERT-bio-based models have lower CO 2 emissions: 30g for the private model and 38g for the student model. These measures are obtained with a newer version of Carbontracker, which explains the major differences in CO 2 emissions compared to our models, based on CamemBERT. Indeed, in this version, the average carbon intensity of the detected country6 is used.

For France, the used value is now 85 gCO 2 eq/kWh instead of the old average carbon intensity in the European Union in 2017, i.e., 294.21 gCO 2 eq/kWh. Moreover, the value for estimating the CO2 equivalent emission for km traveled by car is also modified. To sum up, we believe that the reported carbon footprint of our initial models is overestimated, and similar measures to those of the newly generated models could be obtained using these new parameters of Carbontracker. It is worth noting that the online tool Green Algorithms7 , which is based on information provided by the user, has created a feature that allows users to store their experiment settings and roll back to older versions of the tool when needed, allowing for better impact measurement traceability.

Practical use

For a more practical assessment of our best student model, our shareable CAS privacy-preserving mimic model was used on semi-structured radiology documents by computer scientists working in the medical informatics team at the Georges Pompidou European Hospital (Hôpital Européen Georges Pompidou, HEGP). These clinical documents describe the tumor progression of patients who were followed at the hospital. The analysis of radiology reports is guided by the Response Evaluation Criteria In Solid Tumours (RECIST 1.1) to define and monitor target lesions, non-target lesions, and the appearance of new tumor lesions. Indeed, the radiologist classifies response to treatment into four categories: Stable Disease (SD), Progressive Disease (PD), Partial Response (PR), or Complete Response (CR). An overall conclusion is also provided for the response to treatment of all the patient's tumor lesions, as shown in Figure 4.7. Such medical information is not stored in databases and can only be obtained in the plain text of the imaging reports. Some information from these reports was extracted using an in-house tool based on regular expressions, namely Py-Rex. However, certain information, such as anatomical locations, required the use of a more modular tool. Our privacy-preserving mimic model was therefore used to automatically extract the lesions, the anatomical entities as well as the location of target lesions (i.e., the Anatomy, Disorder, and Localization entities as defined in the MERLOT annotation scheme [START_REF] Campillos | A french clinical corpus with comprehensive semantic annotations: development of the medical entity and relation limsi annotated text corpus (merlot)[END_REF]). Figure 4.7 illustrates an example of a radiology report with the three extracted types of entities. There has been no formal evaluation at scale, but an empirical evaluation indicates that our approach performs well in extracting both flat and nested entities. Indeed, 1864 entities describing the anatomical lesion sites are extracted from 859 radiology reports of HEGP patients from 2010 to 2020. This suggests that our method might be helpful to clinicians in future research. As a result, we make available our Privacy-Preserving NER model8 and is now being discussed for integration into the medkit tool9 , a Python library built by the HeKA team10 to facilitate the development of applications for learning health systems.

Conclusion

Throughout this chapter, we tackled the task of shareable Named Entity Recognition in clinical narratives in French, which may be defined as a lowresource problem from the machine learning perspective since no annotated clinical corpus is publicly available. Indeed, we studied the use of the mimic learning approach to leverage both public and private corpora by proposing a Privacy-Preserving Mimic Models architecture. This architecture enables a knowledge transfer to a student model through a teacher model trained on private sensitive data. In fact, the teacher model is used to annotate unlabeled public data. The newly labeled public corpus is then used to train the student model. As a result, the generated student models could be shared without revealing the private data itself or exposing the private model that was directly built on this data. Experiments on different medical corpora have shown that our strategy offers a good compromise between performance and data privacy preservation. We also provide a use case of our best shareable privacy-preserving mimic model carried out by the medical informatics team at the Georges Pompidou European Hospital as an example of a real-world use of our models. We make available the generated silver annotations for the two publicly available corpora (i.e., DEFT and CAS), the source code of the NER system that tackles both flat and nested entities, as well as our best Privacy-Preserving Mimic Model. Note that the data privacy preservation was assessed empirically by analyzing the various attacks that could be performed, but as mentioned in Section 2.5 (Chapter 2), it would be better to have metrics or methods that could identify whether or not the trained models leak personal information or how well the models respect data privacy. The Silver annotations and the student models we offer could also be useful to future investigations of privacy attacks.

The material of this chapter is based on two publications: one at the TALN conference (Bannour et al., 2023b) and one at the BioNLP workshop associated with the ACL conference (Bannour et al., 2023a).

Introduction

Constructing patient timelines entails extracting the key elements from unstructured clinical free-text notes in Electronic Health Records (EHRs), such as major clinical events, temporal expressions, and temporal relations. Temporal relations enable the ordering of temporal information about a patient's past treatments, disease evolution, treatment responses, and toxicity rates. The performance of temporal relation extraction relies heavily on the quality of extraction of events and temporal expressions, which increases the challenges in developing end-to-end systems for timeline construction, particularly when working with real-world data. Moreover, the definition of events strongly depends on the text type, the application task, and the domain, making crossdomain generalization challenging. As reviewed in Section 2.4 of Chapter 2, most proposed research efforts for temporal relation extraction on the clinical text were through shared tasks and their related datasets. This is due to the costly and time-consuming annotation process, which requires domain expertise and remains difficult even for humans, as evidenced by moderate inter-annotator agreement [START_REF] Verhagen | SemEval-2007 task 15: TempEval temporal relation identification[END_REF]Tourille et al., 2017b). In our work, we propose a novel event-and task-independent representation of temporal relations that allows the identification of homogeneous text portions from a temporal standpoint and classify their temporal positioning according to the Document Creation Time (DCT). This results in a much faster and easier task for human annotators through a simpler annotation scheme, as well as more reproducible through different event types. We argue that the loss of expressiveness of this scheme does not preclude useful applications on clinical reports. Such problem modeling does not require the prior definition of events and temporal expressions. The temporal relation extraction is cast as a sequence token classification problem. To evaluate our temporal positioning models, we have defined and extracted a posteriori the clinical events that interest us, i.e., the chemotherapy toxicity events, and infer the temporal positioning of these events using our models. Each event will have the same temporal positioning as the text portion that includes it.

In this chapter, we describe our created corpora of clinical text written in French in Section 5.3, including our annotation process and guidelines and the main challenges we experienced. Then, we present the traditional temporal relation representation and our novel event-independent representation of temporal relations in Section 5.2. Section 5.4 describes our temporal positioning models, chemotherapy toxicity event extraction model, the developed rule-based baseline model, and the used evaluation metrics. We discuss the performance of our models in Section 5.5, including their performance in identifying and classifying the temporal relations between chemotherapy toxicity events and the DCT. Before concluding the chapter Section 5.7, we study the overall challenges encountered when attempting to construct patient timelines in Section 5.6.

Overview of the temporal relation representation

As discussed in Section 2.4 and as illustrated in Figure 5.1a, temporal relations in the text are often represented by DocTimeRel and TLINKs relations. DocTimeRel relations refer to the temporal relation of each event with the Document Creation Time (DCT). According to the THYME-TimeML scheme, each event will be assigned to one of the following categories: Before (orange), Before_Overlap (green), Overlap (yellow), and After (blue). However, since events vary depending on the task for which they are defined, the DocTimeRel extraction task differs from domain to domain, and no generalization is possible. Moreover, the definition of clinical events presents further challenges due to the complexity and variety of medical terminology used in clinical narratives. Extracting TLINKs relations starts with extracting possible pairs of events and temporal expressions. The most common strategy is to select the pairs in the same sentence and extract the intra-sentence temporal relations. Nevertheless, the characteristics of clinical text, such as the use of punctuation marks and the omission of sentence start and finish marks, make identifying sentence boundaries challenging. Moreover, as mentioned in Section 2.4.3, other strategies must be adopted to resolve long-distance dependencies if the event and the temporal expression are in different sentences. Overall, the traditional representation of temporal relations is task-dependent and requires accurate results in extracting events and temporal expressions, making the annotation and extraction tasks difficult.

Therefore, we introduce a novel event-independent representation of temporal relations. As shown in Figure 5.1b, homogeneous text portions from a temporal standpoint are identified and assigned to a category of the THYME-TimeML annotation scheme that reflects the relation with the DCT. The Tem-poralReference label is assigned to the narrative portion that marks the beginning of the clinical reports, and that could include the DCT. Events will subsequently have the same temporal category as the text portion that in-cludes them. Thus, we do not have to deal with sentence boundaries or long dependency issues. Moreover, although this representation is coarser than the traditional representation of temporal information, it is totally independent of the type of mentions to be defined and extracted and, therefore, of the application domain. 

Corpora description

There are no publicly temporally annotated resources that are available for French, as mentioned in Section 2.4.4. Therefore, to address the TRE task in French and develop and evaluate our event-independent representation of temporal relations and our temporal positioning models, we create and annotate two French clinical corpora, namely the temporal extraction corpus and the toxicity corpus1 . In this section, we detail the annotation process and guidelines, including the encountered challenges, before moving on to the description of the constructed corpora. For the creation and annotation of these corpora, we followed the methodology and annotation steps indicated by Fort (2012).

Annotation process

To annotate the temporal relations in clinical documents, we define an annotation scheme based on the Document Creation Time (DCT) using the possible temporal categories that DocTimeRel relations can take in the THYME-TimeML annotation scheme (Before, Before_Overlap, Overlap, After ), as described in Section 2.4.4 and two more categories, namely TemporalReference and End_Scope. The TemporalReference category is used to identify the beginning of a clinical report associated with a new Document Creation Time (DCT), which is useful when multiple clinical reports are concatenated in the same document. The default temporal category for TemporalReference is Overlap. The End_Scope category marks the end of a text portion if the following portion is a heading or signature. This only allows us to exclude these portions in the preprocessing step.

The DCT might be the current medical visit date or the period of time spent in the hospital, which is usually indicated in the document heading. The DCT does not need to be annotated. For each identified homogeneous text portion from a temporal standpoint, we assign a temporal category. For instance, the Before category could be assigned to narrative portions describing past medical events. For simplicity, we only annotate the first word of each temporal narrative portion, and we consider that the start of a temporal portion denotes the end of the previous one. Annotation challenges and inter-annotator agreement. Establishing a solid annotation guideline is essential to get high-quality annotations. Therefore, despite the simplicity of our annotation scheme, several discussions were held with the annotators using draft annotation guidelines before reaching the final version.

A notable example of discussion was annotating narrative portions about medical and case history. Indeed, when describing the medical history, we can have temporal expressions that could indicate the exact time of past surgeries or diagnosis, but we can also have medical events such as 'phlébite' (phlebitis) or 'HTA' (hypertension, high blood pressure) without any related temporal expressions, as illustrated in Figure 5.2. Phlebitis can be understood as a past medical event and easily marked with a Before label. However, HTA is a chronic condition and could be understood as an ongoing event or a past event. Such decisions need medical expertise, particularly for complex medical events. To handle these issues, an agreement has been established by annotating medical history events as Before unless there is a clear temporal indication that the event is still ongoing (depuis 2014, since 2014) in Figure 5.3) and which needs to be annotated as Before_Overlap. Another agreement has been made when annotating sentences that the doctor writes at the end of a narrative clinical report, such as J'ai l'intention de réaliser une coloscopie la semaine prochaine (I intend to perform a colonoscopy next week ), in Figure 5.2. In this sentence, a strict choice of language might be to annotate the first part from J'ai l'intention de réaliser (I to perform a) as Overlap and the second part as After. Such annotation, however, is both unhelpful and not practical since the annotation boundaries are unclear, and we are more interested in annotating the main medical events. As a result, the whole sentence will be annotated as After. Three annotators with NLP backgrounds applied to health data annotated a sample of 9 clinical documents. The inter-annotator agreements between annotator pairs in terms of macro F-measure are 0.62, 0.73, and 0.69, which is higher than the agreement previously observed for temporal relations in clinical corpora in French and English (Tourille et al., 2017b). Some changes were made to the annotation guidelines when annotating our second created corpus, namely the toxicity corpus, built with documents containing toxicity treatment information. Figure 5.3 illustrates an example of an annotation modification. According to our first version of the annotation guideline, the prior chemotherapy response (Tolérance intercure), which is reported in each chemotherapy administration report, is annotated as Overlap (cf. Figure 5.3a), with the assumption that it is useful in understanding the current report. However, after discussing with a domain expert, we concluded that it is more convenient to assign a Before_Overlap label to such information since it started in the past but is still true, and it is crucial to have the chemotherapy toxicity information for the actual chemotherapy administration (cf. Figure 5.3b). Note that biology tests (Biologie in Figure 5.3) are annotated as Overlap, even if they were done before the hospitalization because these tests are only meaningful and interpreted for hospitalization. The detailed final version of our annotation guidelines is provided in Appendix B, with more illustrated examples. Despite the few difficulties we encountered in defining the annotation scheme, our annotation process is easier than the standard method of annotating temporal relations and yields better inter-annotator agreement.

It is worth noting that although our representation of temporal relations is intended to be event-independent, we are aware that we may have considered medical events while developing annotation guidelines.

Corpora

According to our annotation guidelines, we created and annotated the following corpora:

Temporal extraction corpus -This corpus is restricted and is built with randomly selected de-identified hospital, operative, and consultation reports of colon cancer patients from a French clinical data warehouse of the Georges Pompidou European Hospital [START_REF] Jannot | The georges pompidou university hospital clinical data warehouse: A 8-years follow-up experience[END_REF]. We annotated 222 documents to train and validate our models and 57 documents for evaluation. It is worth noting that our corpora always contain an equal amount of clinical documents from every category. Toxicity corpus -This corpus is restricted and is built with randomly selected de-identified hospital clinical reports containing toxicity information of chemotherapy administrated to colon and lung cancer patients from the same French clinical data warehouse as the temporal extraction corpus [START_REF] Jannot | The georges pompidou university hospital clinical data warehouse: A 8-years follow-up experience[END_REF]. An expert manually validated the toxicity events annotations on 43 clinical documents. This corpus includes 16 documents regarding colon cancer and 27 about lung cancer and is used to validate the efficacy of our temporal positioning approach.

Experiments

In this section, we describe our temporal relations and the chemotherapy extraction models. To evaluate our event-independent temporal positioning model, we also describe the developed rule-based baseline model and the used evaluation metrics.

Temporal relation extraction

Using our temporal representation, we cast the temporal relation extraction task as a supervised sequence labeling task. The main goal is to identify homogeneous text portions from a temporal standpoint and to classify each text portion into a pre-defined temporal category from these five categories: TemporalReference, Before, Before_Overlap, Overlap, and After. We train a token classification model using the French model CamemBERT [START_REF] Jaggi | A tool to quantify and report the carbon footprint of machine learning computations and communication in academia and healthcare[END_REF] from the HuggingFace transformers library [START_REF] Wolf | Transformers: State-of-the-art natural language processing[END_REF]. We classify each token as belonging to a narrative portion using the BIO (Beginning, Inside, Outside) tagging scheme. Hence, the model can identify tokens that indicate a temporal shift in the clinical text. The model weights were optimized with Adam (Kingma and Ba, 2014) without weight decay for 20 epochs. The batch size was set to 32. All the models were trained using a GPU NVIDIA Quadro P5000.

Chemotherapy toxicity event extraction

For the first pre-annotation and extraction of chemotherapy toxicity events, we use a dictionary-based model consisting of a simple matching between the clinical corpus and a chemotherapy toxicity dictionary [START_REF] Rogier | Using an ontological representation of chemotherapy toxicities for guiding information extraction and integration from EHRs[END_REF]. This dictionary is created using French toxicity terms from two reference terminologies: the 5th version of Common Terminology Criteria for Adverse Events (CTCAE) and the World Health Organisation Terminology (WHOART). To extract the chemotherapy toxicity events, we use the QuickUMLS [START_REF] Soldaini | Quickumls: a fast, unsupervised approach for medical concept extraction[END_REF] algorithm. The obtained pre-annotations, as previously stated, are manually verified and corrected by a domain expert. Note that we are only interested in toxicity events related to chemotherapy.

Baseline model

We compared our temporal positioning model with a defined rule-based baseline model. We map entire sections to a temporal positioning based on terms that are often used to denote medical sections, in particular in hospital and surgery clinical reports such as 'Antécédents' (Case history), 'Indication' (Indication), 'Gestes réalisés' (Operative actions), 'Plan de traitement' (Treatment plan), etc. For instance, if we have the keyword 'Antécédents' (Case history), the assigned label for the text portion Before until another keyword is encountered. These keywords are typically useful for the temporal annotation process, even though they do not cover all types of clinical reports. This baseline model is evaluated on the temporal extraction test corpus.

Evaluation metrics

In our work, we are interested in identifying temporal shifts between large text portions. In this case, segmentation into sentences and tokens is no longer needed. We evaluate the performance of our models at the character level by measuring the macro Precision, Recall, and F-measure. Furthermore, using the empirical bootstrap method (Dekking et al., 2005, p.275), we compute the 95% confidence intervals of our classification results. For this, we sample our test corpus with replacement 1000 times. Evaluation metrics are calculated for each sample. We use the BRATEval tool2 to assess the entity-level performance of toxicity event extraction. To measure the carbon footprint of training and testing our temporal positioning models, we use, as usual, the Carbontracker tool. Note that we are using the newer version of Carbontracker, which uses the World-wide average carbon intensity of electricity production in 2019 if it fails to detect the location, and its measures are based on CO 2 performance of new passenger cars in Europe3 .

Results & Discussion

In this section, we present the results of our temporal positioning models using the temporal extraction corpus and the toxicity corpus. We then discuss the overall performance of our temporal positioning models and their carbon footprint, the performance of toxicity events extraction, and the temporal positioning of chemotherapy toxicity events.

Results

Table 5.2 summarizes the overall results of the baseline model and our temporal positioning model on the temporal extraction test corpus. Our model provides the best results, with an F-measure of 0.86, which is also greater than the inter-annotator agreements. The baseline model gives lower results, with an F-measure of 0.35. The CO 2 emissions from training and testing our temporal positioning model are estimated to be 199 g. Table 5.4 illustrates the toxicity events extraction performance, the results of event-independent temporal positioning of text portions, and the temporal positioning of toxicity events on the toxicity corpus. An F-measure of 0.55 is obtained for extracting toxicity events using the QuickUMLS algorithm with chemotherapy toxicity events. Our model achieves 0.8 of F-measure on extracting and temporal positioning the text narrative portions of the toxicity corpus. Table 5.4 also provides further performance details based on the type of cancer described in the toxicity corpus documents. Our model yields better results on colon narrative portions than lung narrative portions (an F-measure of 0.81 vs. an F-measure of 0.79). For temporal positioning of the toxicity events, inferior results are obtained with an F-measure of 0.62. extraction of toxicity events, eventindependent temporal positioning of narrative portions, and temporal positioning toxicity events on the toxicity corpus.

Performance of temporal positioning models

As reported in Table 5.2, our temporal positioning model outperforms the baseline model on the temporal extraction test corpus, with an exact macro F-measure of 0.86 vs. 0.35. Table 5.3 presents the results per category of our model. The most prevalent categories are the best predicted. Thus, an F-measure of 0.9 is obtained for the Overlap category, representing 35.1% of the training corpus, and 0.86 for the Before category, representing around 23% of the training corpus. However, high F-measures are also reported for less represented categories such as TemporalReference (10.3% of and an Fmeasure of 0.91), After (12.3% and an F-measure of 0.88). This may be due to the well-specified boundaries of these categories. The text portions with the Before_Overlap category are often sentences included in text portions with an assigned Before category including a temporal indication that shows consistency in time, such as "depuis le" (since the) (cf. Figure 5.4). This temporal shift is not always predicted, and despite the coverage of the Before_Overlap category (19.4% in the training corpus), the performance is lower (.77 of Fmeasure). Except for the second 'Follow-up' text span in Figure 5.4, most homogeneous text portions are adequately retrieved and classified. In particular, the temporal shift between the Before and the Before_Overlap categories is well predicted. The text portion "patient de 56 ans dans le contexte de" has been correctly assigned to the Before_Overlap category. The two text portions beginning with "Suivi et évolution dans le service:" and "Suivi:" respectively, are on follow-up care. The first one depicts the follow-up during the hospital stay and is well classified into the Overlap category. However, the second text portion starting with 'Suivi:' is wrongly assigned to the Overlap category when, in fact, it should be assigned to the After category since we are discussing future follow-up after discharge, including future treatments and medications. Other mistakes may occur when predicting temporal categories. For instance, text portions starting with 'Soins post-opératoires' (Post-operative care) and 'Soins de support' (Support care) are about patient care. The first span, usually described in operative reports, discusses post-operative care and should be assigned to the After category. In contrast, the second statement, usually in discharge summaries, examines whether or not there is supportive care and should be classified as Overlap.

As previously stated, an F-measure of 0.35 is observed for the baseline model. Note that we do not use the End_Scope category to avoid the heading and signature sections in this baseline model since there is no defined term to identify such sections. Therefore, the precision of this model remains low. The TemporalReference category has poor precision because it specifies the start of a clinical report and is usually in the heading section. Moreover, we use the terms "Paris" and "Compte-rendu" (report). The first keyword usually indicates the start of consultation reports, as healthcare professionals begin by writing the location and date of the report. However, such terms may occur in various parts of the clinical text. The second keyword denotes the start of hospital and operative reports, which begin with a title such as "Compte rendu opératoire" (Operative report) or "Compte rendu d'hospitalisation" (Hospitalization report). Similar observations are obtained for the After category, which tends to be at the end of the clinical report and just before the signature part. The keywords used in the rule-based model do not cover the consultation reports, which contain narrative text describing the patient visit summary without any pre-defined structured sections. As a result, the baseline model also suffers from a low recall rate.

We also test the performance of our model on the toxicity corpus as shown in Table 5.4. An overall F-measure of 0.8 is obtained, which is slightly lower than the performance on the temporal extraction corpus (an F-measure of 0.86). This might be due to differences in the cancer types described in the texts in each corpus. Indeed, our temporal positioning model was trained on the temporal extraction corpus, which only includes clinical reports of colon cancer patients, but the toxicity corpus contains clinical reports of both colon and lung cancer patients. As a result, the performance of temporal positioning clinical reports of colon cancer patients in the toxicity corpus is better than that of lung cancer patients in the same corpus as reported in Table 5.4 (an F-measure of 0.81 vs. an F-measure of 0.79). This good performance shows that our model can adapt to other corpora, including other types of cancer.

Carbon footprint

The carbon footprint of our event-independent temporal positioning model is reported in Table 5.2 in terms of CO 2 equivalent measure in grams. A total of 199 g of CO 2 emissions is estimated from training and testing our model, which is roughly equivalent to 1.85 km traveled by car. Note that Carbontracker fails to fetch the IP address and, therefore, to determine the geographic location dynamically. As a result, it uses the World-wide average carbon intensity of electricity production in 2019 (475 gCO 2 /kWh) instead of the used value for France (around 58 gCO 2 /kWh in 2021), which yields to overestimated CO 2 equivalent measures. Moreover, as already discussed in Chapter 3, Carbontracker does not take into consideration the execution environment or the technique of energy production or other factors such as life cycle impact of hardware. Thus, the obtained carbon footprint measures remain very approximation.

Performance of toxicity events extraction

As reported in Table 5.4, an F-measure of 0.55 is obtained for the toxicity event extraction using the quickUMLS algorithm. The toxicity events extraction model extracts all toxicity events in clinical text. However, we are solely interested in toxicity events related to chemotherapy treatments. As a result, the precision of this model remains low. For instance, if "HTA" (hypertension, high blood pressure) is included in the comorbidity medical section, we do not consider it as a toxicity event. However, if such an event is mentioned while describing the toxicities of previous chemotherapy cures, it will be retained as a toxicity event.

It is also worth noting that we extract even the negated toxicity events. In fact, "anémie de grade 0" (anemia of grade 0 ) and "pas d'anémie" (no anemia) are synonyms for the absence of such toxicity event. However, checking for toxicity types is part of patient assessment protocols, and extracting such negated events allows for a more thorough clinical evaluation and is vital for enhancing the quality of the care process.

Temporal positioning of chemotherapy toxicity events

This experiment aims to determine how effectively our temporal positioning model can recognize and characterize the temporal relation between toxicity events and the DCT. To address this question independently of how well event recognition can be achieved, we have used the gold standard toxicity event annotations, which are, therefore, 'perfectly' recognized. In our first trials, we evaluated a small selection of 5 documents belonging to both temporal and toxicity corpora (Bannour et al., 2023b). A good performance with an F-measure of 0.7 is observed, and an average of 10 toxicity events per document were temporally positioned. Following these findings and as reported in Table 5.4, an F-measure of 0.62 is obtained on the toxicity test corpus. Looking at the outcomes by category, the majority of toxicity events are temporarily well-positioned into the three categories Before, Before_Overlap, and Overlap. Nevertheless, in our toxicity corpus, just one toxicity event matches the After category. This event, mentioned in a hypothesis statement, is incorrectly positioned as a Overlap category. As a result, the performance in terms of macro F-measure is a bit low (vs. a micro F-measure of 0.82). The good performance of temporal positioning of chemotherapy toxicity events validates the efficacy of our event-independent temporal representation of temporal information.

Challenges in building patient timelines

Unstructured text in Electronic Health Records contains significant temporal information. There has been a major interest in constructing patient timelines by the temporal analysis of clinical narratives in order to understand better the clinical history, encompassing disease progress and the quality of healthcare provided, such as the long-term effects of medications. This entails not just analyzing individual clinical notes but also integrating collected information from multiple sources. Indeed, patient information can be dispersed among many clinical notes and structured data, which may not be completely up to date with the most recent patient information, generating further challenges. In our work, we studied single document temporal analysis, which is still difficult. Even in English, the integration of temporal information has seldom been attempted [START_REF] Preethi Raghavan | Cross-narrative temporal ordering of medical events[END_REF].

Creating patient timelines requires extracting temporal relations between mentions. While extracting DocTimeRel relations between events and DCT offers a coarse-grained temporal ordering, the additional extraction of TLINKs provides more fine-grained timelines. In this section, we study the difficulties encountered while building patient timelines.

The unstructured and complex nature of the clinical text is the first hurdle. Indeed, clinical text is often ungrammatical and includes a wide range of temporal expressions, such as task-specific, non-standard, and abbreviated expressions. Moreover, the clinical text shifts back and forth in time, describing, in some cases, clinical events occurring at different times in the same sentence and including redundant information due to copy-pasted text portions from previous clinical documents. Clinical text also includes a variety of narrative portions that do not have to be pre-defined structured sections with a temporal anchor point.

As discussed in the previous sections, major challenges arise when tackling the temporal relation extraction task, such as the difficulties in defining clinical events, which is task-dependent and makes it difficult to generalize across domains, and the difficulties of extracting TLINKs inter-and intra-sentences. In Section 5.2, we introduced our novel event-independent representation of temporal relations, which makes the TRE task faster and easier since it does not rely on the task-dependent and challenging definition of events. Using the traditional temporal representation, extracting temporal relations requires the prior accurate extraction of events and temporal expressions. However, our temporal representation could provide a coarse level of temporal ordering without requiring prior extraction of mentions.

To get a fine-grained patient timeline, a potential idea is to leverage the structured information stored in clinical databases. For instance, while annotating some of our clinical documents, we discovered incoherence between the mentioned DCT at the beginning of the document and the time expressions in the narrative portions. As humans and for annotation purposes, we assumed that some of these time expressions were incorrectly represented and attempted to create the most consistent storyline for annotation. However, in some clinical texts, copy-paste portions are written instead of the actual real DCT. To gain a better understanding of temporal ordering, we looked for chemotherapy hospitalization dates in structured admission data. This strategy could help address the incoherence that might occur in narrative text. However, mistakes and incorrectly indicated information are still possible. As a result, merging extracted unstructured and structured information is also a hard task. Furthermore, in order to generate a patient timeline, it is necessary to incorporate extracted information from several clinical documents concerning the same patient, which increases the risk of having inconsistent information and brings more challenges, such as how to represent the cross-document temporal information. In summary, constructing patient timelines for practical applications remains very difficult and challenging.

Conclusion

In this chapter, we introduced a novel event-independent representation of temporal relations, which is task-and domain-independent. Using this representation, the temporal relation classification is cast as a sequence token classification task. The main goal of our work is to identify homogeneous narrative portions from a temporal standpoint and classify them into temporal categories reflecting their relations with the DCT. Our representation makes the temporal relation extraction task easier and faster for human annotators. Indeed, based on the THYME-TimeML annotation scheme, we propose a simpler annotation scheme that provides better inter-annotator agreement than the previously reported for the TRE task. Using this scheme, we annotated two corpora of clinical reports written in French. Our temporal positioning model yields good results when recognizing and categorizing text portions. Moreover, experiments on the temporal positioning of chemotherapy toxicity events for patients with colon and lung cancers have also shown that good results could be achieved using our representation of temporal relations. Developing endto-end systems for temporal information extraction usually yields low results, particularly when evaluated with real data. Indeed, the performance of events and temporal expressions extraction has a high impact on the quality of temporal relation extraction. The TRE task is addressed separately from mentions extraction using our representation, making it more reproducible through dif-ferent event types. This problem modeling might be the initial step toward constructing a patient timeline to order all its medical events.

In our work, we manually annotated small portions of corpora. Such limited size is justified by the time-consuming task of temporal annotations and the requirement of expertise for toxicity event annotations. Although our temporal representation seems to perform well with other clinical reports containing information about a different type of cancer from that on which it was trained (e.g., lung cancer vs. colon cancer), such results must be validated on clinical reports containing information about additional cancer types. Additional experiments are also needed to validate the generalizability of our event-independent representation, such as evaluating it on other hospitals or data warehouse clinical reports with various structures and other extraction tasks with different event definitions. Furthermore, since our representation allows the extraction of only coarse-level temporal information, additional approaches should be proposed for extracting fine-grained temporal relations, such as using structured information in clinical data warehouses.

Chapter 6

Conclusions and perspectives This chapter summarizes our several contributions to information extraction that were mainly applied to clinical narratives in Section 6.1 and discusses further research directions and perspectives in Section 6.2.

Summary of contributions

In this dissertation, we have proposed novel representations and architectures to address clinical information extraction from unstructured clinical narratives. In Chapter 2, we reviewed relevant background on Named Entity Recognition and Temporal Information Extraction and, in particular, Temporal Relation Extraction. We also covered the main privacy concerns and attacks on personal sensitive text and possible privacy-preservation methods. Moreover, we introduced several aspects of NLP environmental impact, including the main sources of carbon emissions, the main tools for measuring the carbon footprint of statistical models, as well as some research efforts encouraging the conduct of efficient and green NLP experiments.

Following that, in Chapter 3, we examined existing tools for measuring the carbon footprint of statistical models, essentially deep learning models, in order to gain a better understanding of the environmental impact of these models, which are widely used in modern NLP. These tools were selected and evaluated based on specific defined criteria, such as availability, documentation, and technical aspects. We then assessed their use for evaluating the impact of NER experiments, using two different NER models and two computational set-ups. According to our findings, several tools underestimate carbon footprint, and there are a lot of differences in measurements due to different setups, making it difficult to assess and propose an effective tool for NLP approaches. However, we selected one of the discussed tools to report the carbon footprint of all our thesis experiments because it is simple to use and integrate with our equip-ment. We believe that calculating the carbon emissions of developed models is the first step toward raising awareness and moving toward the development of more efficient models with fewer carbon emissions.

In Chapter 4, we focused on creating shareable NER models that could preserve privacy. We investigated using mimic learning to generate shareable student models. The main goal of mimic learning is to first train a private teacher model on the sensitive data, then use this model to create silver annotations on publicly available corpora, and finally train a student model using these produced silver annotations. The generated student models could be shared without exposing the private model or the sensitive data it was trained on. Our privacy-preserving mimic models architecture allowed us to leverage both public and private corpora in a low-resource setting. Indeed, there are only a few publicly available annotated clinical corpora in French. Using clinical narratives in French, we generated several shareable models and achieved a good compromise between performance and privacy preservation. It should be noted that the used NER model addresses flat and nested entities. For a more practical evaluation, our best privacy-preserving model was shared with a French hospital institution and performed well in extracting lesions, anatomical entities, and the location of target lesions from semi-structured radiology documents.

In Chapter 5, we addressed the temporal relation extraction task from a different perspective. Temporal relation extraction involves identifying and extracting relations between events and/or temporal expressions. The definition of events is highly task-and domain-dependent, making cross-domain generalization challenging. Furthermore, since the performance of TRE systems is closely tied to the performance of mentions extraction, developing end-toend temporal information extraction systems that could be used in practical applications is difficult. To this end, we propose a novel event-independent representation of temporal relations, providing a coarse level of temporal ordering without requiring prior mentions extraction. Using our novel representation, homogeneous text portions from a temporal standpoint are identified and temporarily positioned according to the Document Creation Time. This results in a much faster and easier task for human annotators through a simpler annotation scheme, as well as more reproducible through different event types. The TRE task was cast as a sequence token classification problem. Although we may lose expressiveness in our proposed annotation scheme, we argue that this does not preclude useful applications on clinical reports. To evaluate our temporal positioning models, we created and annotated two French clinical corpora and demonstrated that good results could be obtained for temporal positioning text portions, as well as chemotherapy toxicity events. Finally, we enumerated the difficulties we have encountered when working with clinical text and the remaining challenges that arise for constructing patient timelines.

Throughout this thesis, we also provide useful resources for further research. For instance, the silver annotations we provide in Chapter 4 would benefit clinical research as well as research on privacy attacks. We also presented and published the source code of the used NER tool, addressing both flat and nested entities [START_REF] Wajsbürt | Participation de l'équipe du LIMICS à DEFT 2020 (participation of team LIMICS in the DEFT 2020 challenge )[END_REF]. Moreover, we made available our best privacy-preserving model for practical use, and integration into the medkit1 Python library is under consideration. Finally, we made available our annotation guidelines to annotate corpora with temporal relations using our novel representation.

Perspectives

Following the promising results of our thesis work, several research areas arise. Working with real-world data made us realize how complex the clinical text is. In fact, the clinical text is often ungrammatical, with spelling errors and redundant information owing to copy-pasted text segments. As a result, digitizing clinical notes may generate errors that are difficult for automated systems to handle. To guarantee high-performance extraction systems, more effective tools are required to manage the maximum amount of errors in preprocessing steps. In addition, clinical narratives shift back and forth in time, describing, in some cases, clinical events occurring at different times in the same sentence. It also contains a lot of domain-specific vocabulary, including task-specific, non-standard, and abbreviated temporal expressions, requiring medical knowledge to understand. Hence, there is a need for more collaborations between hospital institutions and the NLP community. Dealing with clinical narratives written in French added further difficulties. In contrast to English, few resources and processing tools are available for the French language, particularly in the biomedical domain, which limits the clinical NLP research, in particular, due to sensitive data sharing restrictions.

Although efficient NER models could be obtained that efficiently address nested entities, there are still some challenges. To achieve good performance, these NER models require sufficient annotated data. However, the annotation process is time-consuming and involves several phases, beginning with drafting annotation guidelines and then working on annotating documents. These difficulties are heightened when working with specialized domains. For instance, getting domain experts to annotate clinical documents is challenging owing to their professional commitments, yet it is necessary to obtain high-quality annotations. Moreover, as previously stated, disclosing sensitive data is re-stricted. In Chapter 4, we presented a privacy-preservation architecture that could enable sharing models. But, this requires a minimum amount of publicly available data. Therefore, possible perspectives could be to propose methods that reduce the annotation efforts, such as active learning, which aims to annotate only relevant instances for training [START_REF] Naguib | Stratégies d'apprentissage actif pour la reconnaissance d'entités nommées en français. In 18e Conférence en Recherche d'Information et Applications\\16[END_REF][START_REF] Le | Active learning with feature matching for clinical named entity recognition[END_REF].

To deal with all these privacy issues, there is also a growing interest in creating synthetic corpora, particularly for the biomedical domain [START_REF] Hiebel | Can synthetic text help clinical named entity recognition? a study of electronic health records in French[END_REF][START_REF] Venugopal | Privacy preserving generative adversarial networks to model electronic health records[END_REF]. Another avenue of improvement is to develop metrics that can detect whether or not trained models leak personal information or how well models protect data privacy.

Developing end-to-end systems for timeline construction, in particular clinical timelines, is far from being a solved task. It requires extracting temporal relations between mentions. However, as discussed in Chapter 5, major challenges are encountered when addressing the temporal relation extraction task. Indeed, TRE entails accurately defining and extracting event and temporal mentions, which is highly dependent on the task and the application domain. Additional difficulties occur when attempting to address inter-and intra-sentence temporal relations. Since extracting fine-grained temporal relations is not a trivial task, getting a coarse-level timeline may be more beneficial for practical applications. Hence, we tried simplifying the TRE task in Chapter 5 by proposing a novel event-independent representation of temporal relations. Further experiments are required to evaluate our representation's generalizability, particularly on other domains and other extraction tasks with different event definitions. Most research efforts focus on within-document timeline extraction. Nevertheless, to offer a temporal analysis of a specific EHR and incorporate information from many clinical notes, cross-document temporal information must be included. More efforts are needed to create annotated corpora with cross-document temporal information. Furthermore, information obtained via structured data should be incorporated with information retrieved from unstructured clinical narratives, whether to resolve ambiguities or to introduce new knowledge that could benefit clinical timelines.

Recently, large language models have emerged, promising good results on various downstream NLP tasks. ChatGPT2 is now one of the most popular LLMs due to its excellent capacity for interpreting and producing human-like answers. Some studies evaluated the performance of ChatGPT on Information Extraction tasks [START_REF] Gao | Exploring the feasibility of chatgpt for event extraction[END_REF][START_REF] Han | Is information extraction solved by chatgpt? an analysis of performance, evaluation criteria, robustness and errors[END_REF]. These studies conclude that ChatGPT performs well with simple tasks but struggles with more complicated tasks such as NER, Event extraction, and RE, as evidenced by a major performance gap compared to SOTA approaches. Similar studies have also been conducted for the biomedical domain and have reached the same conclu-sion concerning this model [START_REF] Hu | Zero-shot clinical entity recognition using chatgpt[END_REF][START_REF] Chen | Large language models in biomedical natural language processing: benchmarks, baselines, and recommendations[END_REF]. This may be due to their lack of domain-specific knowledge. However, a possible research direction could be to use LLMs to solve target tasks without using a pipeline with several sub-tasks. For example, LLMs may be able to handle the relation extraction problem without first solving the NER task. Nevertheless, Chat-GPT may run into privacy issues owing to the fact that this model involves transferring patient data to external hosting platforms [START_REF] Liu | Summary of chatgpt-related research and perspective towards the future of large language models[END_REF].

Aside from biases and ethical concerns, another major drawback of adopting LLMs and deep learning-based models, in general, is their high computational cost. As reviewed in Chapter 3, it is important to quantify the carbon footprint of trained models in order to design more efficient models with low carbon emissions. However, further studies are required to better understand the environmental impact of NLP models by presenting efficient measurement tools and standards to conduct Green NLP research.

Finally, while we focused on clinical texts in our thesis work, we think all of our proposed representations and methods could be adapted for other domains. 

End_Scope

We do not consider heading and signature information in our annotation. Therefore, we use the category End_Scope to mark the ending of a narrative portion if the next narrative portion is a heading or a signature. This way, we avoid annotating the contact information for the health care unit, which may be repeated in several clinical reports. Despite the fact that the clinical documents are de-identified, we avoid annotating specific patient information.

In cases other than headings or signatures, the end of a temporal portion is implicitly considered the start of a new temporal portion. Finally, we conduct a comparative analysis of existing tools for measuring the carbon emissions of NLP models. We adopt one of the studied tools to calculate the carbon footprint of all our created models during the thesis, as we consider it a first step toward increasing awareness and control of their environmental impact.

To summarize, we generate shareable privacy-preserving NER models that clinicians can efficiently use. We also demonstrate that the TRE task may be tackled independently of the application domain and that good results can be obtained using real-world oncology clinical notes.
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 2 Figure 2.1: Two GENIA samples showing the difference between flat and nested NER.
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 22 Figure 2.2: Example with different tagging schemes. Translation of text into English: "She had severe periumbilical pain yesterday.".

  , Minard et al. (2020); Copara et al. (2020) proposed CRF-based French clinical NER approaches, Lemaitre et al. (2020) used a rule-based system and Wajsbürt et al. (2020) proposed two NER models: a layered BiLSTM-CRF model and a greedy NER model, using CamemBERT embeddings. Their models take into account the extraction of nested entities. Le Clercq de Lannoy et al. (
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 2 Figure 2.3 illustrates an example of the Temporal Information Extraction task, including two events (EVENT), a time expression (TIMEX3), and two types of temporal relations, namely relations between events and the document creation time and relations between an event and a temporal expression. More information regarding temporal information is provided in the following sections.

Figure 2 .

 2 Figure 2.3: A temporal information example that includes events, time expressions, and temporal relations. Translation of text into English: "Document Creation Time: 10/20/2020. Chemotherapy round n°2 for a colon adenocarcinoma which was diagnosed in October 2018."

  used a CNN network to learn hidden feature representations, domain-specific features from the cTAKES toolkit and a MultiLayer Perceptron (MLP) to extract DocTimeRel relations in the 2016 Clinical TempEval challenge. Tourille et al. (2017a) introduced a neural Bi-LSTM architecture for the CONTAINS relation task, in which input vectors are constructed by concatenating a word2vec embedding, a Bi-LSTM character-based embedding, one embedding per Gold Standard attribute and one embedding for the type of DocTimeRel relations. To address domain adaptation, their strategy to block further training of the pre-trained word embeddings during training gave the best results in the 2017 Clinical TempEval challenge. For the supervised domain adaptation phase, combining brain cancer samples with colon cancer samples during training outperformed the results of other proposed systems. Leeuwenberg and Moens (2017a) presented another top-ranking system that is based on a document-level structured perceptron proposed by Leeuwenberg and Moens (2017b) for extracting both Doc-TimeRel and narrative container relations. For domain adaptation, they tried assigning a higher weight to the brain cancer training samples and representing unknown words in the input vocabulary. Dligach et al. (2017) evaluated the use of CNNs and LSTMs in extracting event-event and event-time CONTAINS relations on the THYME corpus.[START_REF] Galvan | Investigating the challenges of temporal relation extraction from clinical text[END_REF] outperformed the best 2016 Clinical TempEval system for the TRE task using a tree-based LSTM model relying on dependency information.[START_REF] Zhao | Associative attention networks for temporal relation extraction from electronic health records[END_REF] suggest carving each instance into three segments depending on the entity pair position and using associative attention networks to emphasize the related information of each segment and reconstruct the semantic structure between the segments. Their method obtained state-of-the-art performance on the THYME corpus.[START_REF] Lin | A BERT-based universal model for both within-and crosssentence clinical temporal relation extraction[END_REF] introduced a window-based BERT-fine-tuned model for withinand cross-sentence CONTAINS relations. They evaluated their models for inand cross-domain tasks on the THYME corpus. The best-performing model was the fine-tuned BioBERT using non-XML tags and adding generated "silver instances" using the self-training technique proposed by[START_REF] Lin | Self-training improves recurrent neural networks performance for temporal relation extraction[END_REF].[START_REF] Lin | A BERT-based one-pass multi-task model for clinical temporal relation extraction[END_REF] adapted the one-pass encoding mechanism initially proposed by[START_REF] Wang | Extracting multiple-relations in one-pass with pre-trained transformers[END_REF] by incorporating global embeddings for long-distance relations and jointly extracting the CONTAINS and DocTimeRel relations.[START_REF] Alfattni | Attention-based bidirectional long short-term memory networks for extracting temporal relation-ships from clinical discharge summaries[END_REF] studied an attention mechanism built into a Bi-LSTM model on a large set of temporal relations in clinical discharge summaries, including intra-sentence, cross-sentence, and DocTimeRel temporal relations.Dligach et al. (
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 5 .1 A categorization of privacy attacks for NLP[START_REF] Sousa | How to keep text private? a systematic review of deep learning methods for privacy-preserving natural language processing[END_REF] yield a precise classification of privacy-preserving NLP techniques in the literature by first considering the following types of threats: threats emerging from datasets, threats related to model development, and threats associated with computation scenarios.

Figure 3 . 1 :

 31 Figure 3.1: Sankey 3 diagram showing the publications reviewed in our literature search for selecting carbon impact measurement tools.

  P1 -Year of the last publication; P2 -Citations in Google Scholar (as of 11 May 2021); P3 -Citations for measuring NLP experiments (as of 11 May 2021). Technical criteria T1 -Date of the last version (as of 11 May 2021); T2 -Availability of the source code; T3 -Online availability for use;
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 4 1 depicts an overview of our proposed architecture.
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 41 Figure 4.1: Architecture of the Privacy-Preserving Mimic Models.
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 42 Figure 4.2: Architecture of the NER model.
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 4 4 shows a text sample with silver annotations automatically produced by the teacher model.

  (a) Generated Privacy-Preserving Mimic Models (b) Public Model
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 4 Figure 4.3: Figure 4.3a describes the generation process of our three Privacy-Preserving mimic student models, which are trained using three corpora: DEFT, CAS and CépiDC.Figure 4.3b illustrates a public baseline model trained on the original publicly available annotations of the DEFT corpus.
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 4 Figure 4.3: Figure 4.3a describes the generation process of our three Privacy-Preserving mimic student models, which are trained using three corpora: DEFT, CAS and CépiDC.Figure 4.3b illustrates a public baseline model trained on the original publicly available annotations of the DEFT corpus.
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 44 Figure 4.4: Excerpt of the CAS corpus with silver annotations. Translation of text into English: "Mr K. M is a 38 yo male who was admitted to the ER for anuria. His antecedents are notable for bilateral renal colic. Upon evaluation, he was noted to have tenderness in the lower back area bilaterally. CT scan of the urinary tract showed a retroperitoneal growth encasing arteries and ureters consistent with retroperitoneal fibrosis (Figure2)." The annotations are correctly produced for the three first sentences, including nested entities. However, in the last sentence, the word "rétropéritonéale" ("retroperitoneal") is an anatomy entity type that was not annotated in the first occurrence and was incorrectly annotated as a Localization entity type in the second. We can also note that the annotation of "Figure2" as a measure entity is incorrect.
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 4 5a and 4.5b present the impact of increasing the training corpus size on the performance of the DEFT/CAS and CépiDc privacy-preserving models. Each experiment is realized using an equivalent number of tokens for both DEFT/CAS and CépiDc corpora. Better performance in terms of F-measure is noticed while augmenting the training corpus size with Silver annotated documents. (a) DEFT/CAS (b) CépiDc
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 45 Figure 4.5: Performance as the training data size increases.

  Figure 4.6 illustrates the frequency distribution of gold annotations of entity types for MERLOT and DEFT corpora as well as the frequency distribution of the generated silver annotations of entity types for CAS and CépiDc corpora.
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 46 Figure 4.6: Frequency distribution of annotations of entity types.
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 47 Figure 4.7: An example of the extracted types of entities from a radiology report, using our shared privacy-preserving CAS mimic model.
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 551 Figure 5.1: Temporal information representation. The DCT is surrounded, temporal expressions are represented in purple, events are represented in gray and encased by their DocTimeRel relations, and TLINKs are represented by arrows. Figure5.1a illustrates the traditional representation of DocTimeRel between the DCT and the events and TLINKs between the events and the temporal expressions. Figure5.1b depicts our representation of the temporal positioning of text portions according to the DCT, regardless of events. Translation of the mock narrative into English: "Discharge summary of 07/30/2013. PAST MEDICAL HISTORY: Adenocarcinoma of the colon was diagnosed in June 2012. Hypertension treatment was initiated in 2012. Phlebitis. Patient had large bowel resection on 02/2013. HISTORY OF PRESENT ILLNESS: This is a 60 y.o. male admitted on 07/30/2013 for a routine colonoscopy planned in the course of follow-up for known colon adenocarcinoma. RESULTS: ... The patient is scheduled for a new round of chemotherapy."
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 5 Figure 5.2 illustrates an example of annotating a clinical document containing two clinical reports.As stated earlier, the TemporalReference category, also denoted as TempRef, indicates the beginning of the clinical report. According to our annotation scheme, the narrative portion going from Paris to 2014 will then be assigned to the TemporalReference category. The text portion from Monsieur to comme is annotated as Before_Overlap for the patient's age and since it is stated that the purpose of the medical visit is a disease follow-up. The second TemporalReference category assigned to the portion from Dossier to staff marks the start of a new clinical report, and annotations will be adapted
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 52 Figure 5.2: An example of annotating a clinical document containing two clinical reports. Translation of the text portion into English: "Paris, April 4th, 2014. Mr. Dupont is a 70 y.o male with hormone-resistant metastatic prostate cancer and a medical history of diabetes, hypertension, phlebitis. Clinical history: ... Physical examination: Patient in good state of health, OMS: 0. Practical course of action: ... Follow-up in one month... Record presented on 03/25/2014 to staff... Prior workup in February 2014: ... Staff decisions: ...Colonoscopy scheduled next week."

  (a) Prior annotation. (b) Final annotation.
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 5 Figure 5.3: An illustration of annotation modifications. Translation of the text portion into English: "Discharge summary of 03/23/2015. Reason for admission: chemotherapy cycle C4. Clinical history: squamous cell carcinoma Hypertension treatment was initiated in 2014. Toxicity since last cycle: Anorexia: Grade 1 Asthenia: Grade 1 ... Lab workup: date of sampling: 03/22/2015 Weight: ... Regimen: Protocol: ..."
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 5 Figure 5.4 shows a clinical text sample with predicted results of temporal positioning of homogeneous text portions.
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 54 Figure 5.4: An example of predicted temporal positioning of text portions. Translation of text into English: "Discharge summary. Admission date: 07/10/2008 Discharge date: 07/17/2008. Reason for admission: 56 y.o female presented with asthenia, weight loss and lack of appetite following the recent discovery of sigmoid adenocarcinoma. Past medical history: appendectomy Hypertension treatment was initiated in 2008. Physical examination on admission: Weight: 65 kg, Size 160 OMS 3 Abdomen was soft. Hospital course: Further medical exams: Tests on admission: ... Discharge instructions/Followup: -analgesics -patient should continue her usual care."
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131 Examples•

 131 Traitement de sortie, Prochains rendez-vous, Rendez-vous à venir, Prescription de médicaments, Date de la prochaine cure, Ordonnance de sortie, Prochains examens • Je reverrai ce patient, je prévois une coloscopie • La pièce est envoyée pour un examen histologique B.0.2 Other categories B.0.2.1 TemporalReference Because several medical reports might be written in the same document, the TemporalReference category specifies the beginning of a new clinical report. Because several medical reports might be written in the same document, the TemporalReference category specifies the beginning of a new clinical report. Each clinical report will then have its own Document Creation Time, and the annotations will be based on this DCT. The TemporalReference category's default Document Time Relation is assumed to be Overlap and does not need to be annotated. Examples • Compte-rendu opératoire, Compte-rendu d'hospitalisation, Paris, le 14 octobre 2018 B.0.2.
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 03 Figure B.1: A first example of hospital report annotations
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Table 3 .

 3 .

					CO 2 equivalent (g.)			Runtime	NER metrics
									(mins.)			
			CT	EIT	EU	Cu	MLCI	GA		P	R	F
	NER (Wajsbürt, 2021)	French News Server Facility EMEA Server Facility MEDLINE Server	237.96 161.16 9.70 8.07 13.44	78 48 30 1 30	0.496 0.979 0,00131 0,002 0,00128	302 222 19 13.7 26.1	290 250 20 10 20	350.15 260.26 16.67 14.31 20.68	163:39 118:04 9:31 6:51 11:55	87.49 88.05 73.78 77.58 66.62	74.85 74.71 59.74 58.71 62.11	80.68 80.83 66.02 66.84 64.28
		Facility	10.50	1	0,00259	19.4	20	20.03	9:11	79.73	78.35	78.98
	NER (Ma and Hovy, 2016)	French News Server Facility EMEA Server Facility MEDLINE Server Facility	87.62 46.43 2.23 2.28 2.99 2.74	12 6 0.004 0 0 0	5.1 2.87 0.117 0.151 0.137 0	100.04 79.05 4.31 3.23 5.20 0.176	125 99 0 0 0 0	104.40 102.08 3.83 4.99 5.57 5.67	58:30 46:44 02:14 02:27 03:11 02:58	78.49 80.75 61.77 57.46 43.97 52.39	69.77 70.67 50.27 51.98 41.08 36.68	73.87 75.38 55.43 54.58 42.47 43.15

2: Results of NER experiments. The upper part of the table presents the results obtained with an implementation of the method by Wajsbürt (
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 3 53 gCO 2 /kWh on Carbon footprint 12 , leading to the 2018 emissions; with the most recent data available, from 2020, the carbon intensity for France is 38,95. At the time of our experiments, the value on electricityMap was 31 gCO 2 /kWh. The European Commission link again gives varying values depending on the kind of electricity considered and based on 2013 values. To summarize, the carbon intensity values are different, even when considering the same country.

.3: Energy consumption in kWh for each method and experimental condition. The upper part of the table presents the results obtained with an implementation of the method by

[START_REF] Wajsbürt | Extraction and normalization of simple and structured entities in medical documents[END_REF] 

while the bottom part presents the results obtained with an implementation of the method by

[START_REF] Ma | End-to-end sequence labeling via bidirectional LSTM-CNNs-CRF[END_REF]

. The measures are reported according to the six selected tools in this study, Carbontracker (CT), Green Algorithms (GA), Experiment Impact Tracker (EIT), ML CO2 Impact (MLCI), Energy Usage (EU) and Cumulator (Cu).

is

Table 4 .

 4 1: Descriptive statistics for the private MERLOT corpus used in our study. licly available. However, the annotation scheme and guidelines are available to the community. The annotation scheme covers 21 entities, 11 attributes, and 37 relations. For our use, we split this corpus into 320 documents for training, 80 documents for validation, and 100 documents for testing. Table4.1 presents descriptive statistics for the MERLOT corpus, including details about nested entities.

		MERLOT
	Language	French
	Domain	clinical
	Documents	500
	Tokens	148,476
	Entities	39,616
	Unique entities	13,830
	Nested entities	3,772
	% Nested entities 9.60%
	Max Depth	4

Table 4 . 2
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	P	R	F	CO 2 eq.
				(g.)

: Overall results on test corpus.

Table 4 .

 4 3: Comparison of models trained on only silver annotations versus models trained on a combination of both gold and silver annotations.

	P	R	F	CO 2 eq.
				(g.)

Table 4 .

 4 4 presents the results per entity type of the CAS privacy-preserving mimic model that delivers the best results based on exact and partial matches.

			Exact match			Partial match
		Precision Recall F-score Precision Recall F-score
	ANAT	0.823	0.858	0.840	0.903	0.930	0.924
	DISO	0.728	0.763	0.745	0.867	0.900	0.882
	CHEM	0.866	0.903	0.884	0.902	0.940	0.921
	MEAS	0.660	0.850	0.737	0.722	0.924	0.804
	LIVB	0.336	0.875	0.486	0.377	0.952	0.540
	TEMP	0.859	0.886	0.872	0.940	0.958	0.949
	PROC	0.680	0.784	0.728	0.768	0.882	0.821
	MODE	0.747	0.705	0.725	0.747	0.705	0.725
	DOSE	0.791	0.741	0.762	0.958	0.858	0.905
	Localization	0.589	0.665	0.624	0.683	0.772	0.724
	BiologicalProcessOrFunction 0.625	0.535	0.570	0.672	0.571	0.610
	Devices	0.654	0.716	0.679	0.864	0.902	0.885
	Concept_Idea	0.668	0.775	0.717	0.699	0.812	0.751
	Genes_Proteins	0	0	0	0	0	0
	Hospital	0.319	0.602	0.415	0.381	0.722	0.497
	Overall	0.628	0.806	0.706	0.704	0.893	0.787
	Table 4.4: Results per type entity for the CAS Privacy-Preserving Mimic
	Model on test corpus.						

Table 4 .

 4 5: Comparison of our models versus models trained using French biomedical language models. (*) denotes that these measures are calculated by a previous version of the Carbontracker tool 4.5.3 Comparison to related work

	Precision Recall F-Measure CO 2 eq.
	(g.)

Table 5 .

 5 1 presents descriptive statistics for each temporal category in the two temporal extraction training and test corpora.

		# text portions (test) # text portions (train)
	TempRef	57 (12.2%)	253 (10.3%)
	Before	106 (22.7%)	562 (22.9%)
	Before_Overlap	92 (19.70%)	476 (19.4%)
	Overlap	165 (35.3%)	861 (35.1%)
	After	47 (10.1%)	302 (12.3%)
	Total	467	2454

Table 5 .

 5 1: The number of text portions for each category in the temporal extraction training and test corpora.

Table 5 .

 5 2: Overall results on the temporal extraction test corpus.

		Precision	Recall	F-Measure	CO 2
					eq
					(g.)
	Baseline model	0.39 [0.33-0.46]	0.55 [0.48-0.61]	0.35 [0.29-0.41]	-
	Temporal position-	0.87 [0.84-0.90] 0.86 [0.83-0.90] 0.86 [0.84-0.89]	199
	ing model				

Table 5 .

 5 3 presents the detailed performance of our temporal positioning model over all categories on the temporal extraction test corpus.

		Precision Recall F-Measure
	TemporalReference	0.94	0.88	0.91
	Before	0.82	0.90	0.86
	Before_Overlap	0.79	0.76	0.77
	Overlap	0.93	0.87	0.90
	After	0.85	0.90	0.88
	Overall	0.87	0.86	0.86

Table 5 .

 5 3: Results per category for the temporal positioning model on the temporal extraction test corpus.

Table 5 . 4 :
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En plus de ces contributions, nous proposons une étude préliminaire des principaux outils existants pour calculer l'empreinte carbone des modèles de TAL, en particulier les modèles à base d'apprentissage profond. Notre objectif est de fournir une analyse comparative de l'utilisation de ces outils en comparant les mesures qu'ils produisent. Nous utilisons un des outils étudiés pour calculer l'empreinte carbone de tous les modèles proposés au cours de la thèse, en considérant qu'il s'agit d'un premier pas vers la sensibilisation et la production de modèles plus efficaces avec de faibles émissions de carbone. Dans l'ensemble, nous pensons que notre travail apporte des contributions à la recherche clinique en français grâce aux méthodes et aux ressources que nous mettons à la disposition des cliniciens. En particulier, nous proposons de nouvelles architectures et représentations qui facilitent l'extraction d'informations cliniques pour une application pratique plus efficace.
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http://www.green-algorithms.org/

https://mlco2.github.io/impact/#compute
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https://www.carbonfootprint.com

As mentioned inSection 2.6.3, following our work, Bouza Heguerte et al. (2023) presented a more detailed study of available carbon emissions measurement tools and evaluated two more tools, namely CodeCarbon and Eco2AI. Several studies have also promoted the creation of green AI models[START_REF] Hershcovich | Towards climate awareness in NLP research[END_REF][START_REF] Verdecchia | A systematic review of green ai[END_REF][START_REF] Ligozat | Ten simple rules to make your research more sustainable[END_REF], and more research papers are measuring the impact of their proposed methods[START_REF] Lakim | A holistic assessment of the carbon footprint of noor, a very large Arabic language model[END_REF][START_REF] Sasha Luccioni | Estimating the carbon footprint of bloom, a 176b parameter language model[END_REF]. In France, the labos1point5 13 collective proposes support to research labs interested in evaluating their carbon footprint. Recently,[START_REF] Morand | Evaluation of the environmental impacts of natural language processing methods[END_REF] conducted a review of the environmental impacts of Natural Language Processing methods during his master's degree in the LISN lab.13 https://labos1point5.org/

https://gdpr-info.eu/

The gold and silver annotations used to create the DEFT/CAS student models are available at https://zenodo.org/record/6451361.

The source code for the NER system is available at https://github.com/ percevalw/nlstruct

https://ec.europa.eu/justice/article-29/documentation/ opinion-recommendation/files/2014/wp216_en.pdf

Our best CAS Privacy-Preserving Mimic model is available at https:// huggingface.co/NesrineBannour/CAS-privacy-preserving-model

The largely covered entity types in the MERLOT distribution (see) obtain the best results based on exact match. For instance, an exact

https://ourworldindata.org/grapher/carbon-intensity-electricity

http://www.green-algorithms.org/

https://huggingface.co/NesrineBannour/ CAS-privacy-preserving-model

https://github.com/TeamHeka/medkit

https://team.inria.fr/heka/fr/

The scientific and ethical committee of AP-HP approved access to this clinical data (CSE21-15_TALONCO).

https://bitbucket.org/nicta_biomed/brateval/src/master/

https://www.eea.europa.eu/ims/co2-performance-of-new-passenger

https://team.inria.fr/heka/fr/

https://openai.com/blog/chatgpt
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Functional criteria

F1 -CO 2 equivalent emission sources taken into account; We consider the following sources, described in section 2: production, idle use, dynamic use and end of life.

F2 -Hardware taken into account: does the calculation model account for emissions from data transmission between equipment types as well as from the hardware executing the experiments?

All the tools are supposed to take both CPU and GPU consumption into account, so we did not include this criterion in our analysis.

List of selected tools

The following six tools were finally selected for our study:

• Green Algorithms 4 [START_REF] Lannelongue | Green algorithms: Quantifying the carbon footprint of computation[END_REF]: an online tool that calculates the energy usage and carbon footprint of computer use based on information provided by the user in a web interface: runtime, number of cores, memory requested, type of platform used (PC, local server, cloud computing), type of cores, location.

Appendix A

Privacy-Preserving Mimic Models for Named Entity Recognition

To be able to compare our privacy-preservation mimic models with our baseline models, described in 4.4.3, we perform an alignment step between entity types. To annotate the temporal information in a clinical report, we define a temporal annotation scheme based on the Document Creation Time (DCT) and the possible categories of the Document Creation Time Relation (DocTimeRel). The DCT might be the current medical visit date, usually stated in the document heading. It might also be the length of time spent in the hospital. The DCT does not need to be annotated.

B.0.1.1 Document creation Time Relation

Document creation Time Relation is the relation between events and Document Creation Time. We consider these four possible categories for this time relation: Before, Before_Overlap, Overlap, and After. We annotate only the first word of each temporal portion. We consider that the start of a temporal portion denotes the end of the previous one.

B.0.1.2 Before

The Before category is used to annotate narrative portions referring to what occurred before the Document Creation Time.

Examples

• Antécédents, antécédents médicaux, antécédents chirurgicaux, Antécédents familiaux, Histoire de la maladie, Rappel clinique, Rappel sur la pathologie → All terms referring to the medical history section.

• Except: Maladie traitée depuis le → Before_Overlap since we have a temporal indication that the procedure/disease is still ongoing for the patient (cf. 

B.0.1.3 Before_Overlap

The Before_Overlap category is used to annotate narrative portions that started before the document creation time and are still ongoing at that time.