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Abstract 

 
New tools for understanding cancer evolution and drug resistance 
 
Colorectal cancer (CRC) is one of the most common cancers and one of the leading 

causes of cancer related deaths worldwide. CRC is a heterogeneous disease where there 

can be differences found between multiple tumors in the body referred to as inter-tumor 

heterogeneity, or there can be genetic differences found within one tumor are referred to 

as intra-tumor heterogeneity. Moreover,	one of the largest issues in treatment of CRC is 

the development of drug resistant cells caused by therapeutic pressure. The underlying 

cause of the tumor drug resistance is largely due to the intra-tumor heterogeneity of	

CRC. It is therefore of great importance to increase our knowledge of the underlying 

resistance mechanisms as well as the impact of intra-tumor heterogeneity on these 

processes. After a presentation of CRC, the current manuscript describes new tools that 

can be used for understanding intra-tumor heterogeneity and underlying	mechanisms 

that	are	responsible	for	drug resistance. Using Multi-Cellular Tumor Spheroids (MCTSs) 

as tumor models, which mimics the in vivo architecture of tumors, we explored the 
impact of inter-tumor heterogeneity on chemotherapeutic treatment (5-FU) and start 

to characterize resistance mechanisms. Using	different	tumor	models	we	observed	cell-

to-cell	crosstalk	during	chemotherapeutic treatment where	sub	population	of	cells	with	

certain	characteristics	had	an	increased	drug	tolerance.	To get a deeper understanding 

of the cause of increased drug resistance	 and	 continue	 our	 investigation	 of	 drug	

resistance	 mechanisms	 we have studied potential key mediators involved. These 

observed results suggest that intra-tumor heterogeneity have huge impact in the 

overall tumor development and progression. 

 

 
 
 
 
Key words: 

Colorectal Cancer (CRC), Consensus Molecular Subtype (CMS), Intra-tumor heterogeneity, 
Drug resistance, 5-FU, Cell crosstalk, Cell secretome, Spheroids, Microfluidics 
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Résumé 

 
Nouveaux outils pour comprendre l’évolution du cancer et la résistance aux 

médicaments 

Le cancer colorectal (CCR) est l’un des cancers les plus fréquent et la principale cause 

de décès due au cancer dans le monde. Le CRC est une maladie hétérogène, où	il	peut	

y	trouver	des	différences	multiples	au	sein	de	chaque	tumeur	s’étant	propagée	dans	le	

corps,	que	l’on	surnomme	hétérogénéité	inter-tumeur.	De	plus,	l’une	des	problématiques	

les	plus	communes	à	la	médication	du	CCR est	la	résistance	des	cellules	au	traitement	de 

chimiothérapie	 causé	 par	 la	 pression	 thérapeutique.	 La	 causalité	 sous-jacente	 à	 la	

résistance	 aux	 traitements	 thérapeutique	 est	 largement	 dû	 à	 l’hétérogénéité	 intra-

tumeur	 du	 CCR.	 Ce	 qui	 est	 par	 conséquent	 une	 opportunité	 inéluctable	 de	 pouvoir	

améliorer	nos	connaissances	des	mécanismes	sous-jacents	de	résistance,	aussi	bien	que	

notre	compréhension	de	l’impact	de	l’hétérogénéité	intra-tumeur	sur	ces	processus	de	

résistance.	Après une présentation du CRC, le présent manuscrit introduit les outils 

pouvant être utilisés pour comprendre l’hétérogénéité intra-tumorale et les 

mécanismes de résistance aux traitements médicales. En utilisant des sphéroïdes 

multicellulaires (MCTSs) comme modèles tumoraux, permettant de mimer 

l’architecture des tumeurs in	 vivo, nous avons exploré l’impact de l’hétérogénéité 

tumorale sur la réponse à un traitement chimio-thérapeutique (5-FU) et caractérisé les 

mécanismes de résistance. Par	conséquence,	en	utilisant	différents	modèles	de	cellule	

nous	 avons	 observé	 une	 communication	 transcellulaire	 durant	 un	 traitement	

thérapeutique	 ou	 une	 sous	 population	 cellulaire	 avec	 certaines	 caractéristiques	 ont	

développé	une	résistance	au	traitement.	Ainsi	nous	avons	continué	nos	investigations	au	

travers	 des	 mécanismes	 de	 résistance.	 Enfin, nous avons étudié les médiateurs 

impliqués dans ces processus, afin d’avoir une meilleure compréhension des causes 

d’augmentation de cette résistance. Ces résultats suggèrent que l’hétérogénéité 

tumorale a un impact significatif sur le développement et la progression tumorale. 

 

Mots-clés:  

Cancer colorectal (CCR), Consensus Molecular Subtype (CMS), Hétérogénéité intratumorale, 
Résistance thérapeutique, 5-FU, Sécrétome des cellules, Sphéroïdes, Microfluidiques 
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Outline 
	
Chapter 1 introduces the background behind this work, it presents cancer, specifically 

CRC, as a global health concern. Various factors affecting disease progression and 

resistance development are discussed. Different biomarkers that can be used in cancer 

prognosis and treatment are also introduced. Lastly, different tumor models are 

introduced, including in vivo models and in vitro models. A larger focus is placed on in 

vitro models as they are used throughout this thesis.  

 

Chapter 2 begins by introducing a classification system for CRC, known as the 

Consensus Molecular Subtype (CMS) system. This classification system has been 

developed from whole tumor transcriptomic analysis where, based on gene expression 

patterns, CRC was divided into four subgroups (CMS1 to CMS4). Furthermore, it is well 

established that CRC is a heterogeneous disease, and this heterogeneity has a large 

impact on resistance mechanisms. Therefor we present a study where we use the CMS 

classification system to mimic the heterogeneity of CRC.  Here we co-culture CMS cell 

lines as Multi-Cellular Tumor Spheroid models (MCTS). During drug treatment an 

increased cell survival was observed in CMS4 cells when cultivated with CMS1 cells as 

compared to monocellular cultures. This was investigated further by treating cells with 

Conditioned Media (CM) and culturing cells in transwells, whereby similar effects were 

observed where CMS1 cells stimulated the outgrowth and migration of CMS4 cells. We 

thus investigated if this crosstalk between the cells could be due to cell secreted 

molecules. Potential key mediators in the cell secretome were analyzed to get insights 

in the key components and potential pathways involved in these processes. 

 

Chapter 3 explore further development of drug resistance in CRC. Here we studied the 

impact of the presence of both Drug Sensitive Cancer Cells (DSCC) and Drug Resistant 

Cancer Cell (DRCC) on drug efficacy using a tumor model. In this aim, DRCCs were 

developed from the	original	HCT116 CRC cell line, and co-cultured with DSCCs of the 

same genetic background, using MCTSs. Cell-to-cell crosstalk was observed between 
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the DSCCs and DRCCs where the DRCCs stimulated the outgrowth of the DSCCs. Similar 

effects were observed when treating the DRCCs with Conditioned Medium (CM) from 

the DSCCs. As cell crosstalk was also observed in this context, further investigation 

was done on the cell secretome to identifying the key molecular components and 

deeper analysis was performed to understanding how these compounds influence 

tumor growth. 

 

Chapter 4 presents novel approaches for culturing cells as 3D spheroids using 

microfluidic platforms. Spheroids were cultured using microfluidics in form of an 

automated platform where homogeneous spheroids were produced at high throughput. 

This work, done in collaboration with the company Okumera, shows co-culture of 

DSCCs and DRCCs using microfluidic platforms. Here we show that spheroids can be 

automatically generated at a high throughput and the cells maintain a high cell viability 

over time.   
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Long résumé 
 
Le cancer colorectal (CCR) est l’un des cancers les plus courants et l’une des principales 

causes de décès liés au cancer dans le monde. Le CCR est une maladie hétérogène où 

il peut y avoir des différences trouvées entre les tumeurs multiples dans le corps appelé 

hétérogénéité inter-tumeur, ou il peut y avoir des différences génétiques trouvées dans 

une tumeur sont appelées hétérogénéité intratumorale. De plus, le développement de 

cellules pharmacorésistantes causées par la pression thérapeutique est l’un des 

principaux problèmes de traitement du CCR. La thèse commence par présenter le 

contexte derrière ce travail. Le chapitre 1 traite du cancer, plus précisément du cancer 

de la CCR, en tant que problème de santé mondial et de divers facteurs qui influent sur 

la progression de la maladie et le développement de la résistance. Différents 

biomarqueurs qui peuvent être utilisés dans le pronostic du cancer et le traitement 

sont également introduits. Enfin, différents modèles de tumeurs sont introduits, y 

compris des modèles in vivo et in vitro. Nous nous sommes plus appuyés sur les 

modèles in vitro car ils sont utilisés tout au long de cette thèse. 

Le but de cette thèse était d’étudier les mécanismes clés qui influencent le 

développement et la progression de la tumeur du CCR en utilisant de nouveaux outils 

et méthodes. Un accent particulier a été mis sur l’hétérogénéité intratumorale, où son 

impact sur la progression tumorale et la résistance aux médicaments a été étudié. Le 

premier objectif était alors d’étudier l’impact de l’hétérogénéité intratumorale sur le 

CCR en se concentrant sur la classification SMC (Sous-type Moléculaire Consensuel). 

Dans cette première partie de recherche, décrite au chapitre 2, nous avons cherché à 

imiter l’hétérogénéité tumorale du CCR en co-cultivant différentes lignées cellulaires 

SMC. On a signalé que les tumeurs du CCR comprennent quatre sous-types moléculaires 

(SMC) de consensus qui ont été identifiés à partir de profils de transcription tumorale 

entiers. Le système s’est avéré utile pour comprendre la biologie des tumeurs du CCR 

et permet de prédire le pronostic. La classification SMC sert de cadre pour mieux 

comprendre l’hétérogénéité intratumorale du CCR. Pour développer davantage cela, 
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les tumeurs CCR ont été classées en sous-types moléculaires basées sur l’analyse 

transcriptomique de plus de 4000 échantillons CCR. D’après le modèle d’expression 

génétique, quatre sous-groupes moléculaires consensuels distincts (SMC1 à SMC4) 

présentent des signatures biologiques différentes. 

Dans la plupart des cancers, y compris dans le CCR, il a été démontré que 

l’hétérogénéité intratumorale favorise la résistance aux médicaments et la progression. 

En outre, notre groupe de recherche a déjà montré que plus de 55% des tumeurs sont 

composées de SMC mixte qui a été associée à des résultats tumoraux plus mauvais. Ces 

résultats soulèvent la question de savoir si la communication intratumorale entre les 

sous-types de SMC contribue à la progression tumorale et à la résistance thérapeutique 

dans le CCR. Ainsi, dans le chapitre 2, pour imiter l’hétérogénéité intratumorale de 

CCR en co-culture des cellules de différents SMC. Nous avons cherché à créer de 

nouvelles méthodes pour étudier la progression des tumeurs et les mécanismes de 

résistance en générant des STMC (Sphéroïdes Tumoraux Multi-Cellulaires) composés 

de SMC multiples. Ce modèle peut à l’avenir servir de système utile pour étudier les 

interactions cellule à cellule et l’effet de ces interactions sur la résistance aux 

médicaments.  

Il a été observé que les systèmes de co-culture SMC avaient une tolérance accrue aux 

médicaments par rapport aux cellules cultivées comme témoins de monoculture. Cela 

a démontré que l’interaction entre le SMC1 et le SMC4 a un impact important sur la 

résistance aux médicaments des cellules. Pour approfondir l’étude de ces mécanismes, 

le CM des cellules SMC1 a été appliqué au SMC4, ce qui a montré que le sécrétome 

cellulaire des cellules SMC1 augmentait la tolérance du SMC4 à la chimiothérapie 5-

FU. D’autres expériences ont démontré que le sécrétome SMC1 augmentait la tendance 

migratoire des cellules SMC4 pendant le traitement chimiothérapeutique. Cela a mené 

à l’étude du sécrétome cellulaire SMC1 où les métabolites clés ont été analysés pour 

détecter des voies spécifiques qui étaient impliquées dans ces mécanismes. Dans cette 

étude, nous montrons que le sécrétome cellulaire a un impact sur la prolifération 

cellulaire et la progression sphéroïde. 
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Comme évoqué précédemment, le développement de la résistance aux médicaments 

est l’un des principaux problèmes du CCR. Par conséquent, le deuxième objectif était 

d’étudier les facteurs clés qui influent sur la façon dont les cellules développent la 

résistance en analysant les mécanismes et les voies clés qui sont au cœur du 

développement de la résistance. À partir de là, nous nous sommes concentrés sur l’effet 

de l’hétérogénéité intratumorale sur la résistance et la progression des tumeurs, en 

étudiant l’effet de la co-culture des cellules cancéreuses sensibles aux médicaments 

(CCSM) et des cellules cancéreuses résistantes aux médicaments (CCRM). Plus 

précisément, nous avons décidé de privilégier l'étude des effets de la co-culture des 

CCSM et des CCRM et de leurs interactions sous chimiothérapie. Par conséquent, 

comprendre la base moléculaire de la chimiorésistance aidera à identifier de nouvelles 

cibles thérapeutiques qui mèneront finalement à un traitement amélioré pour les 

patients. Au chapitre 3, nous explorerons le développement de la résistance aux 

médicaments traitant le CCR. La mise au point de cellules pharmacorésistantes 

provoquée par la pression thérapeutique est l’un des plus grands problèmes dans le 

traitement du CCR. Après une exposition à long terme, la plupart des plans de 

traitement entraîneront une résistance aux médicaments. Il a été suggéré que la cause 

de cette résistance est à la fois intrinsèque et extrinsèque. Certains des facteurs 

biologiques comprennent l’évolution clonale des tumeurs, le développement des CSC 

(Cellules Souches Cancéreuses), l’expression altérée des pompes à efflux 

médicamenteuses, la modulation des canaux ioniques ou le métabolisme altéré des 

médicaments. Au cours des dernières décennies, plusieurs mécanismes de résistance 

moléculaire ont été démêlés, mais il y a encore de nombreuses questions qui sont 

inconnues concernant les mécanismes de résistance et les changements potentiels qui 

entraînent des cellules pharmacorésistantes sont sous-explorées. Dans nos 

observations précédentes, nous avons imité l’hétérogénéité intratumorale du CCR en 

cultivant conjointement différentes cellules du SMC sous forme de STMC. Nous avons 

observé que les systèmes de co-culture affectaient la progression de la tumeur via les 

molécules sécrétées par les cellules. On sait que les tumeurs sont souvent composées 

de cellules résistantes aux médicaments et de cellules sensibles. De plus, il a déjà été 
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démontré que les cellules cancéreuses résistantes aux médicaments (CCRM) peuvent 

modifier le comportement des cellules cancéreuses sensibles aux médicaments (CCSM) 

grâce à des molécules sécrétées par les cellules, ce qui entraîne une résistance accrue 

aux médicaments. Une voie de résistance médicamenteuse moins étudiée implique que 

les CCSM modifient le comportement des CCRM menant à la progression tumorale, 

observée dans le mélanome. Ces résultats soulèvent maintenant la question de savoir 

si des effets similaires pourraient être détectés dans d’autres cancers. Nous nous 

penchons ici sur les mécanismes de résistance, nous présentons notre étude de la 

diaphonie CCSM-CCRM dans le CCR et de ses mécanismes sous-jacents de résistance à 

la chimiothérapie. En cultivant conjointement les CCSM et les CCRM en tant que STMC 

(sphéroïdes tumoraux multi-cellulaires), nous pourrions observer une augmentation 

de la survie cellulaire des CCRM sous traitement médicamenteux. Pour étudier plus en 

détail ces mécanismes et déterminer s’ils sont dus à des molécules sécrétées par des 

cellules, on a appliqué le milieu conditionné (MC) des cellules souches cancéreuses du 

CCR. Dans le cadre du traitement médicamenteux 5-FU, une survie cellulaire accrue a 

été observée lorsque les CRDC ont été traités en MC à partir de CCSM. Ces résultats 

observés suggèrent que les CSC (cellules souches cancéreuses) peuvent avoir un impact 

important sur le développement et la progression globale de la tumeur. Les stratégies 

élaborées pourraient constituer des outils novateurs et pertinents qui pourraient nous 

aider à comprendre comment les cellules développent une résistance aux médicaments 

anticancéreux. En développant de nouvelles stratégies pour les co-cultures de cellules 

SMC (sous-type moléculaire consensuel), nous avons identifié des mécanismes 

potentiels impliqués dans la diaphonie entre ces cellules. Nous avons commencé par 

étudier les interactions potentielles entre diverses molécules trouvées dans le 

sécrétome cellulaire de HCT116 CM_5-FU et CM_DMSO en analysant les métabolites 

cellulaires (détails dans le chapitre 2). Par la suite, nous avons poursuivi notre enquête 

sur le milieu conditionné HCT116 en détectant et caractérisant leurs vésicules 

extracellulaires (VE). Dans de futures études, nous espérons en apprendre davantage 

sur ces mécanismes et leur effet sur la progression de la tumeur afin de mieux 

comprendre comment se développe la pharmacorésistance. Par conséquent, nous 

souhaitons séparer les métabolites solubles des VE pour étudier la contribution des 
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différents composants dans le sécrétome cellulaire. Une fois que cela a été déterminé, 

le séquençage de nouvelle génération (SNG) peut être effectué sur les substrats et des 

voies potentiellement spécifiques peuvent être démêlées.  

Nous avons commencé par une étude de validation de principe dans le cadre pour 

laquelle les CCSM et les CCRM étaient des co-cultures en tant que STMC utilisant des 

plaques en “U” non adhérentes. Dans les systèmes de co-culture, la discussion croisée 

était observée entre les cellules lors d’un traitement médicamenteux 5-FU. Nous avons 

découvert que le sécrétome des cellules souches cancéreuses augmentait la 

prolifération du CCR. Pour consolider le travail, nous avons visé à utiliser les 

plateformes microfluidiques pour créer des centaines de sphéroïdes uniformes dans 

un délai relativement court. Le chapitre 4 présente de nouvelles approches pour la 

culture des cellules sous forme de sphéroïdes 3D utilisant des plateformes 

microfluidiques. Les sphéroïdes ont été cultivés en utilisant la microfluidique sous 

forme d’une plateforme automatisée où des sphéroïdes homogènes ont été produits à 

haut débit. Dans le groupe de Charles Baroud, Sart et al. ont décrit une approche 

microfluidique pour la culture sphéroïde sur puce. Cette méthode est basée sur la 

microfluidique des gouttelettes où les cellules sont encapsulées dans des gouttelettes 

qui peuvent être piégées sur la puce dans des pièges à gouttelettes fixés. En utilisant 

cette méthode, des centaines de sphéroïdes pourraient être produits dans un délai 

relativement court. La méthode a utilisé des pièges qui ont permis aux sphéroïdes 

d’être confinés sur la micropuce, par conséquent, des images précises pourraient être 

effectuées en temps réel. Cela a permis de surveiller la distribution cellulaire dans les 

sphéroïdes au fil du temps. Afin de prolonger ces travaux, Tomasi et al a modifié 

certaines des caractéristiques de conception de la puce qui a permis d’emprisonner 

facilement des gouttelettes secondaires. Les gouttelettes secondaires peuvent être 

utilisées pour ajouter de nouveaux milieux de culture cellulaire aux sphéroïdes, ce qui 

permet une culture cellulaire plus longue sur la puce. Il est également utile pour le 

dépistage des drogues, car les drogues mélangées avec du colorant fluorescent peuvent 

être ajoutées aux gouttelettes, permettant ainsi d’analyser différentes drogues et 
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concentrations de drogues sur la même puce. À l’aide de cette méthode, Tomasi et al. 

pourraient effectuer un dépistage de médicaments à haut débit où les sphéroïdes 

individuels pourraient être surveillés en temps réel. Ces résultats combinés ont conduit 

à la création d’une entreprise appelée Okumera qui se spécialise dans la création de 

plateformes microfluidiques pour la culture des sphéroïdes. Dans cette étude, nous 

visons à utiliser leur plateforme pour la co-culture des cellules HCT116 et HCT116-R 

en tant que STMC.  Nous montrons donc que les sphéroïdes peuvent être générés 

automatiquement à un débit élevé et les cellules maintiennent une viabilité cellulaire 

élevée au fil du temps.  En conclusion, la Microfluidique offre de nombreux avantages 

pour la culture sphéroïde. Elle permet la génération de sphéroïdes homogènes de 

manière automatique, le contrôle précis des liquides réduisant ainsi le volume de 

l’échantillon, la visualisation en temps réel à l’aide de la microscopie et ressemble 

étroitement au tumeur micro-environnementale. Tous ces facteurs combinés rendent 

les systèmes de microfluidiques attrayants dans les deux cas à des fins de recherche 

ainsi que dans des contextes cliniques. À l’avenir, ces plates-formes pourraient être 

mises en œuvre dans les essais de médicaments en tant que méthodes plus fiables par 

rapport aux systèmes 2D normalisés. En outre, l’utilisation de cette plateforme de 

dépistage des drogues peut être effectuée de manière rapide et automatique. Par 

conséquent, nous prévoyons d’effectuer d’autres tests de dépistage de drogues sur les 

sphéroïdes tumoraux multi-cellulaires sur puce afin de déterminer si nous pouvons 

observer la diaphonie cellulaire comme nous l’avons déjà observé dans les puits. À 

l’avenir, la plate-forme pourrait être intégrée avec d’autres puces microfluidiques pour 

la dissociation sphéroïde et finalement des analyses de cellules à un seul niveau 

cellulaire. Il serait également possible de collecter le milieu cellulaire et d’analyser son 

contenu sur des plates-formes microfluidiques ou non-microfluidiques séparées. Ces 

types de plates-formes peuvent servir d’outil utile pour analyser la progression 

tumorale et les interactions cellule à cellule en temps réel.  
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Chapter 1 

General introduction 
 

i. Cancer 
 

As one of the leading causes of death worldwide, cancer is one of the largest health 

concerns of modern times accounting for nearly 10 million deaths in 2020 (1). There are 

more than 200 different forms of cancer, each one has its unique biological features that 

requires specific therapeutic approaches (2). Normally cell growth and survival are tightly 

regulated processes. However during the conversion of a cell from a non-malignant state 

to a malignant state, the cell has undergone genetic changes referred to as “driver 

mutations” (3). Driver mutations are characterized by the acquisition of genetic mutations 

in specific areas within the genome. They have the ability to convert normal genes into 

oncogenes which works by altering gene function or amplification of gene expression 

leading to changes in way the cells proliferate and grow (4). However most mutations that 

occur in cancer are actually ”passenger mutations” that provide no growth advantages (5). 

 

Even though many of these mutations are well characterized, taken individually they are 

often not enough for the cell to turn malignant (6). In 2000, Hanahan and Weinberg 

proposed six hallmarks for understanding the diversity of neoplastic diseases (7). These 

were comprised of six biological characteristics that include sustaining proliferative 

signalling, evading growth suppressors, activating invasion and metastasis, enabling 

replicative immortality, inducing angiogenesis and resisting cell death (Figure 1.1). Taken 

together, these traits encompass the biological capabilities that cells acquire during the 

development of cancers which allows them to form malignant tumors (7)(8). In 2022, 

Hanahan confirmed that two additional hallmarks have been validated, as research in the 

two past decades have largely confirmed the importance of reprogramming of cellular 

metabolism and avoiding immune destruction (9).  
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ii. Colorectal cancer 
 

Colorectal cancer (CRC) is one of the most frequent cancer, with the third highest mortality 

rate of all cancers world-wide (Figure 1.2) (10) (11). Despite many advances in screening 

and treatment, it remains a major public health issue (12). Even though industrialized 

countries have made large progress in screening, early removal of tumors and personalized 

treatments, a large proportion of patients still experience tumor relapse and/or develop 

drug resistance (10). Environmental and heredity factors play important roles in the 

development of CRC. A substantial risk factor for CRC development is familial history 

accounting for approximately 5 to 6 % of all CRC cases. In these cases germline mutations 

have been detected that lead to an inherited predisposition to CRC (13).  

Figure 1.1. The original hallmarks of cancer 
The original hallmarks of cancer consists of six biological characterisations include sustaining 

proliferative signalling, evading growth suppressors, activating invasion and metastasis, enabling 

replicative immortality, inducing angiogenesis and resisting cell death. Taken from Hanahan and 

Weinberg (8). 
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CRC is not a single disease, but rather a heterogeneous group of malignancies originating 

from cells within the gastrointestinal tract (14). There are five stages of CRC: Stage 0 

and stages I through IV. In stage 0 the cancer cells can only be found in the inner mucosa 

lining of the bowel. The cells are not located in the epithelium or in the mucosal connective 

tissue layer. In stage I the cancer has continued to grow into the connective tissue layer 

the submucosa or into the thick outer muscle layer of the colon or rectum, the muscularis 

propria. In stage II colon cancer, the cancer has spread to nearby tissue or organs which 

are next to the bowel, but it has not yet spread to the lymph nodes or other distant parts 

of the body. In stage III, CRC cells have spread to one or more nearby lymph nodes, but 

they have not grown beyond the lymph nodes and colon wall to other parts of the body. 

Stage IV colon cancers have spread from the colon to distant organs and tissues. Colon 

cancer most often spreads to the liver, but it can also spread to other places such as the 

lungs, brain, peritoneum or to distant lymph nodes.  

 

 

Figure 1.2. Estimated world incidence and mortality rate 
The estimated age-standardized incidence rate (blue) and mortality (red) rates for all cancer in 

2020. GLOBOCAN estimation project, 2020. Reprinted from WHO (1).  
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iii. Understanding tumor progression 
 
There are several key factors that influence the way the cancer progresses. The tumor 

heterogeneity and its surrounding microenvironment are key factors that play large parts 

in how the cancer evolves.  

Tumor microenvironment  
 

The Tumor Micro-Environment (TME) is the environment surrounding the tumor which 

consists of a diverse mixture of cancer associated fibroblasts, endothelial cells, immune 

cells and other non-tumor cells all in constant interplay with the tumor (Figure 1.3) (15). 

This complex cellular environment has multiple functions, it is responsible for regulating 

tumor cells proliferation, maintain tumor stemness and controlling immune surveillance. 

The TME is a dynamic environment that evolves in response to changing environmental 

conditions and oncogenic signals from the growing tumour (16). For example, various 

immune cells are present within the TME which interact with the tumor cells via direct 

contact or through cell secreted molecules such as chemokine and cytokine signalling, 

which effects the behaviour of the tumor and in turn its response to therapy (17). Other 

cells such as endothelial cells and pericytes are actively contributing to the formation of 

new blood vessels that act by supporting the tumor with nutrients which is required for 

the cancer cells to survive and proliferate (18). The tumor progression is largely influenced 

by the interaction between the cancer cells and their surrounding microenvironment. 

Increasing evidence shows that the TME has critical roles in determining blood vessel 

growth (19), tumor metastasis (15) and function of the infiltrating immune cells (20). 

Recent studies also demonstrates that the TME is a primary driver of tumor progression 

which can be used as a potential drug target (15) (21) (22). This highlights the importance 

of analyzing the influences of the TME on dynamic process such as metastasis and cancer 

progression.  
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Tumor heterogeneity and its impact on cancer progression 
 
It is well established tumors can be composed of a large set of different cell types referred 

to as tumor heterogeneity (23). Based on morphology, tumor heterogeneity has been 

observed as early as the 1800s when distinct differences in the tumors regions was 

observed. There can be differences found between multiple tumors in the body referred 

to as inter-tumor heterogeneity, or there can be genetic differences found within one tumor 

are referred to as intra-tumor heterogeneity (Figure 1.4). Intra-tumor heterogeneity can 

lead to a subset of cells having varying cell proliferation rate, treatment response as well 

as drug resistance (23). Intra-tumor heterogeneity may originate from different 

mechanisms including genetic variation, epigenetic alteration, plastic gene expression, and 

signal transduction. 

 

 

 

Figure 1.3. Components of the Tumor Micro-Environment 
The Tumor Micro-Environment (TME) consists of a great variety of different cell types, some of the 
more common cells are blood vessels, endothelial cells, fibroblasts, dendritic cells and different 

immune cells. 
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Analyzing tumour heterogeneity can be crucial issue, where advances in Next-Generation 

Sequencing (NGS) has detected great heterogeneity between tumors (24). However there 

are limitations with using such methods because it is unlikely to accurately capture tumor 

heterogeneity due to biases such as the place the sample is taken and where the cell is in 

the cell cycle (25). Depending on the place the sample is taken certain cell types may be 

overrepresented thereby giving a skewed representation of the tumor composition. 

Furthermore, where the cells are in the cell cycle may also affect the transcriptome profile 

considering that it only represents a single snapshot in time. However, it is worth noting 

that dysregulation of the cell cycle is one of the cancer hallmarks and may in addition be 

used as a biomarker of disease. Because it has been shown that cell-cycle gene expression 

serves as a tumor signature considerable effort has been made to identify specific genes 

across the cell cycle (25). The tumor heterogeneity can at times have a clinical value but 

in other instances drug targeting a driver mutation might only be successful if the mutation 

is present in the majority of subclones (26).  

Figure 1.4. Inter-tumor heterogeneity and intra-tumor heterogeneity 
The figure illustrates the differences between inter-tumor heterogeneity and intra-tumor 

heterogeneity. Intertumor heterogeneity refers to differences between and within patients and 

intratumor heterogeneity refers to genetic differences found in one tumor. The image is taken 

with permission from Burrel et al. (24). 
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Consensus molecular subtypes of colorectal cancer   
 

To gain more understandings of the inter-tumor heterogeneity of CRC and its underlying 

molecular mechanisms, a large focus has been placed on classifying CRC into different 

subgroups. The previous classification system for CRC was based on molecular analysis, 

which relied on combinations of molecular features such as Kirsten Rat Sarcoma 

Viral Oncogene Homologue (KRAS), v-raf murine sarcoma viral oncogene homolog B1 

(BRAF), and Tumor Protein p53 (TP53) mutations, Micro-Satellite Instability (MSI), CpG 

island methylator phenotype, somatic copy number alterations, and activation of various 

molecular pathways such as WNT/β-catenin (WNT) and MYC Proto-Oncogene BHLH 

Transcription Factor (MYC). To further develop this, CRC tumors have been classified into 

molecular subtypes based on transcriptomic analysis from more than 4,000 CRC samples 

(27). Based on the gene expression pattern four distinct consensus molecular subgroups 

(CMS1 to CMS4) have been identified that all display different biological signatures (28) . 

The CMS1 subtype is characterized by high MSI and immune infiltration. CMS2 represents 

high expression of Mis-Match Repair (MMR) genes, BRAF mutated, upregulation of immune 

cells and proliferation pathways. CMS3 is identified by high frequency of KRAS mutations, 

Micro-Satellite Stable (MSS) and downregulation of pathways involved in Epithelial-

Mesenchymal Transition (EMT) transition and immune system. CMS4 has increased 

presence of mesenchymal and stromal cells (Table 1.1). The CMS classification has 

prognostic value independent of the stage of the cancer, with CMS4 having a poor clinical 

outcome, even when treated with chemotherapy (29). (27) 
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CMS1 CMS2 CMS3 CMS4 

Incidence 14% 37% 13% 23% 

Alternative 

name 

Microsatellite 

instability -

Immune  

Canonical  Metabolic Mesenchymal 

Transcriptomic 

pathways 

Immune 

infiltration and 

activation 

WNT and MYC 

activation 

Metabolic 

dysregulation 

Angiogenesis, 

stromal 

infiltration 

Genomic 

associations 

MSI, high 

mutation count, 

low copy number 

Chromosomal 

instability, 

low/moderate 

mutation count 

and copy 

number 

Chromosomal 

instability, 

moderate 

mutation count, 

low/moderate 

copy number 

Chromosomal 

instability, low 

mutation count, 

high copy 

number 

Associated 

mutations 

BRAF mutations 
 

KRAS mutations 
 

Therapy 

response  

No responds to 

5-FU. 

Responds to 

Immune therapy  

Responds to 

FOLFOX and 

Cetuximab  

Responds to 

FOLFOX   
 

No response to 

FOLFOX and 

Cetuximab. 

Responds to 

FOLFIRI  
 

 

Approximately 55% of the tumors cannot be assigned to one consensus subtype, as they 

have mixed gene expression signatures (30). Furthermore, the current CMS classification 

rely on data obtained from bulk sequencing, which by nature lacks the resolution to 

investigate CRC tumors at the cellular level which is needed for detecting molecular 

signatures in small yet critical cell populations. Therefore, recent research has been 

focused on expanding the classification system to create a new system based on single cell 

data (31). There is yet a lot to learn about the CRC classification system where the ultimate 

goal of classifying CRC into molecular subtype is to enhance prognosis and diagnosis at 

Table 1.1. Consensus molecular subtypes of colorectal cancer as described by 
Guinney et al. (27). 
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specific stages (32). Furthermore, during tumor progression subtype switching is a 

reoccurring event where it has been observed that anti-EGFR therapy can triggered an 

evolutionary shift where certain cell types swich from CMS2 to CMS4 characteristics. This 

was further linked to the development of secondary treatment resistance in metastatic CRC 

(33). 

 

iv. Patient treatment strategies  
 

 
The choice of the treatment for CRC is largely determined by the stage of the cancer. When 

surgery can be performed, over all 60% of cases are disease-free within five years (34). 

However, a large portion of patients still needs further treatment with either radiotherapy 

or systemic therapy (such as chemotherapy or targeted therapies) (34). For stage III 

patients, adjuvant chemotherapy has been the standard option for the last two decades. 

Of these, 5-fluorouracil (5-FU) has been used as the main treatment option (35). More 

recently, focus has instead been placed on targeted therapies. For example, monoclonal 

antibody therapies such as Dostarlimab, an immune checkpoint inhibitor, have 

demonstrated remarkable potential in the treatment of CRC. In a recent study it was shown 

that 100% of stage II or III rectal adenocarcinoma treated patients that had been treated 

with Dostarlimab were cured from the disease (36). Dostarlimab works by binding to 

Programmed Death receptor-1 (PD-1) thereby blocking it from binding to its ligands, this 

in turn triggers the immune system to attack the cancer.  

 

Another treatment option is to treat the cancer in a three-dimensional way focusing on 

attacking the cancer in a full-scale manner rather than using individually targeted drugs 

that target single features (37). This multiscale approach can be directed to focus on the 

cancer hallmarks as targets for a more full-scale treatment where multiple hallmarks can 

be targeted simultaneously or in a subsequential manner (Figure 1.5). For example, 

monoclonal antibodies such as Anti-Epidermal Growth Factor Receptor (EGFR) and Anti-

Vascular Endothelial Growth Factor (VEGF) that works by reducing the amount of new 

blood vessels from forming thereby reducing cell proliferation signalling (Figure 1.5) (38).   
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v. Drug resistance mechanisms 
 
Despite significant advancements in the treatment of patients, resistance to therapies still 

remains a major issue (26). Multiple theories have been proposed for how cells develop 

resistance. An early theory of how drug resistance is developed is called the Goldie-

Coldman theory which was made to precisely model cancer progression (39). This 

Figure 1.5.  The new hallmarks of cancer and their therapeutic 
targeting 
Examples of cancer drugs that interfere with each of the cancer hallmarks (as described by 

Hanahan et al. in 2022) are indicated. The eight hallmarks currently comprise the acquired 

capabilities for sustaining proliferative signaling, evading growth suppressors, resisting cell death, 

enabling replicative immortality, inducing/accessing vasculature, activating invasion and 

metastasis, reprogramming cellular metabolism, and avoiding immune destruction. Two new 

“emerging hallmarks” phenotypic plasticity and disrupted differentiation are also illustrated in the 

figure. The drugs have been shown to target different cancer hallmarks. The examples are drugs 

that have been developed or are in clinical trials. Taken from Hanahan and Weinberg (8).  
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hypothesis states that cancer cells acquire spontaneous mutations that cause drug 

resistance. The likelihood that the tumor contains drug-resistant cells is dependent on both 

tumour size and mutation rate. At a given mutation rate the tumor size becomes the most 

important factor in predicting the prevalence of drug-resistant clones. This theory has 

given rise to several others, including that resistance mechanisms follows Darwinian 

evolution where drug resistance can arise from a clonal evolution of the tumor cells where 

a subset of cells survives the drug treatment (40). These cells can either be present at the 

start of the tumor development, so called inherent resistance, or there can be new 

mutations that occur during the treatment, so called acquired resistance. There are several 

inherent and acquired resistant mechanisms which are present in cells that works to 

reduce the effectiveness of drug treatments. The cells that remain viable after the 

treatment may subsequently expand leading to a more severe disease and thereby worse 

clinical outcome (41). Another theory for how drug resistance is developed is the stem cell 

theory. The theory states that a small subset of cells can undergo genetic changes similar 

to stem cells. Cancer Stem Cells (CSCs) have the ability to self-renew and to differentiate 

into the heterogeneous cells (42). Extensive preclinical evidence has indicates that tumor 

cells with CSCs features tend to be more resistant to chemotherapy and targeted agents 

(43). They are believed to be one of the main initiators of cancer relapse after primary 

treatment (44).   

 

There are many different cellular mechanisms which can cause tumor cells to become drug 

resistant (41). For example, increased expression of drug efflux pumps, decreased drug 

uptake, inhibition of cell death, alteration of cell surface receptors, drug inactivation, 

alteration of  the drug target or enhanced and alternative metabolism (45). During 

chemotherapy treatment a selection pressure is applied to the cells. Many drugs target the 

DNA or RNA synthesis resulting in a greater genomic instability and thus increasing the 

potential of developing drug resistance (41). Other drug strategies have instead been 

developed to target receptors responsible for drug efflux. One example is the ABC 

transporter superfamily which is primarily responsible for drug efflux via transmembrane 

transporters. ABCC1, also known as multidrug resistance-associated protein 1, has been 

linked to the release of a wide range of anticancer agents. Its overexpression has been 
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linked to resistance in a multiple cancers (46). Other drugs have instead focused on 

activating the immune response, where certain immune cells are activated to help fight the 

cancer (47). In recent paper studying the immunotherapy doxorubicin, a cancer drug 

commonly used for the treatment of malignant tumors, showed that doxorubicin-induced 

drug resistance through up-regulation of polyamine biosynthesis and D-glutamine 

metabolism (48).  

	

5-Fluorouracil and its mode of action   
 

5-FU is a chemotherapeutic agent that has been used to treat a variety of cancers since the 

1950s including colorectal and breast cancer (Figure 1.6.a) (49). 5-FU is a one of the main 

drugs used for both adjuvant and metastatic CRC treatment (50). Despite the fact that new 

chemotherapeutic have shown improvement in metastatic CRC, 5-FU are still used in most 

treatment regimens. 

 

5-FU is a heterocyclic aromatic compound that show structural resemblance with naturally 

occurring nucleotides, it is an analogue of uracil with a fluorine atom at the C-5 position 

instead of hydrogen (Figure 1.6.a). 5-FU enters the cell by facilitated transport using the 

same mechanism as that of uracil by either non-facilitated diffusion or via the adenine-

nucleotide carrier (51). Three different mode of action have been proposed, RNA uptake, 

DNA uptake or the inhibition of thymidine synthase leading to inhibition of DNA synthesis 

(50). The exact mechanism has not yet been determined but it is known that the main 

pathway is inhibiting DNA uptake where most of the 5-FU is being metabolized. There are 

three ways that cytotoxic nucleotides can be formed by: (i) converting 5-FU to 5-fluoro-

uridine-monophosphate (5FUMP) through orotate phosphoribosyl transferase; (ii) 

sequential conversion of 5-FU to 5FUMP by uridine phosphorylase and uridine kinase; and 

(iii) sequential conversion of 5-FU to 5-fluorodeoxyouridine-monophosphate (5FdUMP) by 

thimidine phosphorylase and thymidine kinase (52) (Figure 1.6.b). 
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vi. Different types of cancer biomarkers 
 
Biomarkers are measurable and quantifiable biological material, process, or structure 

through the body that can affect disease outcome. Examples of common biomarkers for 

oncology are enzymes, protein markers, nucleic acids, genetic markers, EVs or cancer cells 

themselves (53). Throughout the tumor evolution the expression and/or function of these 

biological markers can be altered, analysing these changes can thus lead to new insights 

Figure 1.6. 5-fluorouracil and its metabolic pathways 
a) Chemical structure of 5-FU. b) Metabolic pathway of 5-FU. The figure illustrates three different 

mechanisms for 5-FU metabolism inside a cell. Most of the 5-FU is converted to DHFU through 

dihyddropyrimidine dehydrogenase. The image is modified from Kim et al. (52).  

 

a)

b)

Chemical structure of 5-FU
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into cancer progression and potentially to better treatment management. Ideally a 

biomarker should have the following characteristics: (1) good consistency; (2) high 

reproducibility on same biological samples and (3) good classification performance where 

it is easy to distinguishing disease cases from controls across multiple studies (54). 

 

Genetic biomarkers 

Genetic biomarkers are changes in the genome that can lead to an altered gene expression. 

In CRC, a large fraction of tumors carries mutations such as KRAS, p53, SMAD4 and BRAF, 

which can be used to detect the presence of cancer and disease outcome (55). Genetic 

biomarkers can be studied by using microarrays or next	 generation	 sequencing. 

Microarrays such as cDNA microarrays, RNA immunoprecipitation chips, protein 

microarrays, protein modification microarray, have been widely used due to its simplicity 

and cost-effective way of detecting and comparing the levels for hundreds of genes in a 

single experiment (41). In a typical microarray experiment, cDNA which has been reverse 

transcribed from a biological sample, can hybridize to a pre-designed complementary DNA 

placed on an array. When the cDNA is bound to a site on the array it indicates the presence 

of the gene (53). However, there are several technical limitations. The main problem is 

that it only profiles predefined transcripts or genes which leads to missing data and may 

therefore affect the ability to make large conclusions (56).  

 

With the advancement in Next-Generation Sequencing (NGS) technologies, it is now 

possible to study the genome or transcriptome by direct sequencing of the transcripts. 

NGS has made it possible for cancer research to accelerate at a much faster speed than 

previously (57). It has also made it possible to reach a molecular precision where single 

nucleotide changes can be precisely detected. Projects such as The Cancer Genome Atlas 

have aimed to create large cellular atlases by genomic characterization of various cancer 

types. Using such methods  large genomic differences could be found within tumors and 

potentially new biomarkers can be detected (58). 
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Cancer cell secreted molecules as biomarkers 

Cancer cell secreted molecules, also known as the “cancer cell secretome” refers to all the 
molecules secreted by a cancer cell and can be used as potential biomarker for detecting 

cancer and its progression (59). Direct cell signalling can target a variety of processes such 

as the creation of gap junctions, tunnelling nanotubes and receptor molecules. Indirect cell 

signalling mechanisms occurs throughout long distances withing the body, mainly through 

the blood stream. Some of the key components of the cell secretome are proteins, 

cytokines, enzymes, mRNA in soluble form or within Extracellular Vesicles (EV). These 

signalling mechanisms are important for a large variety of cell communications for example 

endocrine signalling or communication between immune cells (60). 

 

Protein biomarkers 

Proteins are complex molecules which are responsible for most cell activities. A wide verity 

of proteins is being produced by cells which can be used to determine disease outcome 

(61). The study of the entire set of proteins expressed in a cell or tissue is known as 

proteomics. With the advances of Liquid Chromatograph (LC) technology, in particular 

Liquid Chromatograph Mass Spectrometry (LC/MS), large-scale protein analysis that works 

by fractionating complex samples prior to protein identification has now become widely 

used (62). Proteomics-based technologies have made it possible to find potential 

biomarkers and protein expression patterns that can be used to classify tumors, predict 

their prognosis, and determine which patients could respond to a certain treatment (53). 

High-throughput proteomics is still an underdeveloped field compared to other omics fields  

and its contribution to oncology research has probably not yet been fully reached (63). 

 

MicroRNA as a biomarker 

MicroRNAs (miRNAs) are short single-stranded non-coding RNAs with a length of 21-25 

nucleotides. Their expression levels have been linked to tumor development and 

progression (64). miRNAs can alter the stability or translational efficiency of targeted 

messenger RNAs by binding complementary with the 3′ untranslated region of target 

genes. It is predicted that one miRNA can target hundreds of different genes. Furthermore, 

MiRNAs are found in blood in a remarkably stable form, and several studies have confirmed 
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their role as potential minimally invasive circulating biomarkers for the diagnosis and 

monitoring of various human cancers (65). In CRC it was shown that the levels of miR-

1914-3p and miR-1915-3p in plasma from drug resistant patients were lower than in the 

responders. In vitro, these two miRNAs were shown to facilitate cell resistance to 5-FU 

and oxaliplatin by down regulating the transcription factor NFIX (66).  

  

Extracellular vesicles  

Extracellular vesicles (EVs) are small lipid bilayer membrane-enclosed vesicles in a size 

range of 30 nm–10 µm. EVs are secreted by most, if not all, cell types (67) and released 

via membrane budding or fusion of multivesicular bodies with the cell membrane leading 

to subsequent release of intraluminal vesicles (Figure 1.7) (68). EVs are understood to be 

a general term that refers to cell secreted vesicles, however there are multiple subtypes of 

EVs including exosomes, microvesicles, ectosomes, oncosomes, and apoptotic bodies (68) 

(69). It is thought that EVs play complex roles in cell-to-cell communication. They can act	

by transferring membrane receptors between cells, deliver proteins to target cells, and 

modify the receiving cells by transfer of genetic information. These functional vehicles can 

carry a complex composition of proteins, lipids, sugars, and a wide variety of genetic 

materials, such as DNA, mRNA and non-coding RNAs (70). Due to their substantial roles 

in cell-to-cell communication they hold considerable diagnostic and therapeutic value in 

several diseases. For example, EVs which have been released into the bloodstream can be 

detected and used as diagnostic and prognostic biomarkers (71). In a recent study 

Hinestrosa et al. analyzed EVs taken from blood samples of patients with pancreatic, 

ovarian, or bladder cancer (72). The study showed that the EV composition from the 

patient samples were significantly altered compared to the control samples. This method 

holds promising potential to be used as a screening tool for clinicians to detect cancers at 

early stages.  
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Figure 1.7. Extracellular Vesicles  
Image showing how extracellular vesicles are formed and their subtypes termed exosomes, 

microvesicles and apoptotic bodies. It shows the and potential cargo of the EVs, which can 

contain proteins, RNA, DNA or a combination of them. Image taken with permission from Dang 

et al. (69). 
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vii. Experimental tumor models 
Experimental tumor models are used to study biomarkers as well as cancer progression, 

tumor heterogeneity, metastasis and response to treatment, among other things (73). Some 

of the current strategies for modelling cancer include in vivo models to study disease 
progression in living organisms and in vitro models that mimics the tumor environment as 

closely as possible in cell culture environments (Table 1.2) (Figure 1.8).  

Figure 1.8. Experimental models used to study cancer 
The figure displays different in vivo and in vitro models. In this example two in vivo models 

are displayed, a Human Tumor Xenograft model and a Patient Xenograft Model. 2D in vitro 

models such as well plates, and 3D models such as 3D printing or Microfluidics are illustrated.   
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In vivo models 
 

In vivo models are designed to study cancer in living organisms such as drosophila (74), 

zebrafish (75), monkey (76), dog, mice (77) and rat (78). The most frequently used animal 

models are rodents such as mice and rat animal models which have been extensively 

developed to study human cancers as they can precisely mimic the complexity of tumors 

in a controlled environment. However there are also drawbacks in using animal models as 

it rases ethical concerns, are expensive, time-consuming, and still have a relatively high 

degree of error due to the innate differences between animal and human physiology (Table 

1.2) (79).  

 

Human tumor xenograft model 

One of the most widely used models is the human tumor xenograft model which consists 

of cells from cancer cells that have been transplanted into immunodeficient mice. Human 

xenograft models are the gold standard technique for testing the efficacy of novel oncology 

drugs before they are processed to clinical trials. For example, xenodraft models which are 

used to study CRC have revealed mechanisms of underly intrinsic resistance to 

vemurafenib (80). The findings of this study led to the start of a clinical trial in which CRC 

patients were given a combination therapy targeting both BRAF, V600E and EGFR, 

demonstrating the advantage of xenograft models in developing novel combinatorial drug 

treatment strategies (80). 

 

More recently developed are the Patient derived xenografts (PDX) models, which are tumor 

models where patient derived tumor cells have been implanted into mice (81). This model 

can accurately simulate tumor development and progression in an environment where it 

is possible to monitor the disease. Additionally, PDX models have been shown to maintain 

key characteristics of the parental tumor, including histology, gene expression, and copy 

number variations (82).     
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MODEL ADVANTAGES DISADVANTAGES 

IN VITRO 2D 

CULTURE 

 

Simple 

 

Static conditions 

 Reproducible  Fail to produce dynamic 

microenvironment 

 Low-cost Not clinically predictive 

 Easy downstream processing  No concentration gradient 

 

IN 

VITRO SPHEROIDS 

 

More accurate representation of 

in vivo conditions 

Static environment  

 Provides 3D environment for 

direct cell-to-cell interactions 

Added expense 

 High throughput Challenges in endpoint measurements 

 Reproduce complex tissue 

structures 

More complex culture systems than 2D 

cultures 

XENOGRAFT 

MODELS 

Whole body pharmacokinetics Does not represent the human 

microenvironment 

 Genetically modifiable Ethical concerns 

 Clinical relevance  Expensive 

 Allows study of complex 

interactions 

Time consuming 

 

In vitro models 
 

The use of tissue engineered in vitro models has become a good alternative to in vivo 
models due to its low cost, simplicity to use and the fact that it does not rise any ethical 

concerns (Table 1.2). In vitro cancer research has traditionally been performed by 

culturing cells in well-plate settings in a two-dimensional (2D) environment. However, in 

vivo conditions are dynamic three-dimensional (3D) microstructures (79). As a result, 

recent research has been shifting more towards 3D cell culture. 

Table 1.2. Advantages and disadvantages of In vitro and In vivo models.  
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Spheroid 3D models 

In recent years there has been a significant increase in scientific papers regarding 3D cell 

cultures such as spheroids, Multicellular tumour cell spheroids (MCTSs) and organoids. 

Spheroids are in vitro models of cells cultured in 3D. MCTSs are created by combining 

multiple cell lines in 3D. Organoids are 3D tissue cultures derived from stem cells. 

Culturing cells in 3D environments have demonstrated many advantages over conventional 

2D cell culture systems. 3D models more accurately represent the complex in vivo 

microenvironment and mimic cellular behaviour which is closer to natural conditions. 

Large tumors typically consist of a necrotic core, and a proliferating zone on the outer rim 

(Figure 1.9.a) (83). This layered structure reflects the differences in cell proliferation rate 

as well as it mimics the oxygen and nutrient gradients that can be found in in vivo tumours 

(Figure 1.9.b) (84). 

 

An ideal in vitro cancer model will indeed consist of a 3D cancer tissue with an 

environment that closely mimics the TME where various cell types, vascularization, and 

immune components, as well as biochemical properties such as oxygen and nutrient 

gradients are included (83). These 3D models can be generated by using nonadherent u-

shaped wells, 3D scaffolds, bioprinting or tumor on a chip models (Figure 1.9.c). U-bottom 

well plates have become the mainstream technology for spheroid formation as it is possible 

to use standardized cell culture protocol thereby making the transition to this technology 

the most straightforward of these techniques. In a recent study a 3D model based on CRC 

was created by combining intestinal fibroblasts, monocytes, and epithelial colon cancer 

cells (85). The cells in this model were able to successfully simulate tumor features and 

underwent spatial organization where extracellular matrix was formed. This model 

provided an insightful prototype to the study the effect of nanotherapeutic drug delivery 

in CRC.  

 

3D scaffolds 

Encapsulating cells in 3D polymer scaffolds is another method for 3D cell culture (Figure 

1.9.c). 3D matrixes can be composed of many different polymers that all have a variety of 

biophysical and biochemical properties. They can be fabricated in a wide ranging of 



    
 

 
 
 

39 

 

methods, from simple freeze-drying to bioreactors. Methods like 3D printing, 

stereolithography, polymer phase separation, lyophilizing and gas foaming can use soluble 

templates to form well-designed pores or channels (86). Scaffolds used in tissue 

engineering should be porous to allow for rapid nutrient and oxygen transfer while also 

providing a 3D microenvironment for the encapsulated cells. 3D matrix environments can 

be made up of mammalian polymers (such as collagen, hyaluronic acid, gelatine and 

matrigel), or synthetic polymers (such as polylactide and poly(ethylene glycol)) (87). 

Biomaterials such as collagen or matrigel have found widespread application in developing 

a 3D matrix as it closely mimics in vivo environments where cells can form cell–matrix 

interactions however there are large batch to batch variations that may affect the 

reproducibility. Synthetic polymers such as polylactide and poly(ethylene glycol) have 

been widely used as they provide great flexibility in the design of the biochemical and 

biophysical properties. However, some of these polymers have limited biocompatibility 

and lack the ability to support critical cell–matrix interactions. 

 

Bioprinting 

Bioprinting is a manufacturing technique that uses 3D printing methods to print tissues 

and organs in 3D (88). In bioprinting, the biomaterials typically contain bioactive 

molecules and/or cells referred to as the bioink. A computer program controls the 

deposition of the bioink and it leads to the creation of 3D structures. The bioink is 

processed layer by layer according to preprogramed patterns that can be specifically 

designed for the purpose. There are multiple different approaches for bioprinting, 

including inkjet printing (89), extrusion-based printing (90), laser-assisted printing (91), 

and stereolithography (92). The versatility of biomaterials and printing techniques 

enabling on-demand fabrication of customized tissue scaffolds and medical device 

geometries (93). Bioprinting provides a well-constructed microenvironment where 

individual cell types can be specifically placed making it possible to reproduce the complex 

cancer microenvironment. When compared to traditional cell culture methods, bioprinting 

enable significantly improved control of cell distribution within 3D space. 
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Microfluidics tumor on chip models 

In the last decade organ on chip models have been developed as efficient tools for studying 

human physiology and pathology at the tissue, cellular and molecular level. Microfluidic 

devises have the same physical length scale as that of the TME which allows cells to be 

cultured in conditions similar to in vivo structures (94). Furthermore, it is possible to have 

high control of physical properties such as precise liquid control, interstitial pressure, 

soluble factor gradients, and oxygen (83). Cellular and molecular events can be monitored 

with high resolution using microscopy. When using precious samples, such as clinical 

samples, microfluidic systems make it possible to use a low sample due to its precise 

liquids handling capacities (94). The ability to integrate microfluidic 3D spheroid cultures 

with other elements simply by changing the design of the microfluidic chip makes it 

possible to combine the spheroid culture with vascular tissue structures to study cancer 

cell migration (95). Common microfabrication techniques such as photolithography, replica 

Figure 1.9. Spheroid formation and techniques to make spheroids 
a) A MCTS model is ideally composed of three primary layers: a necrotic core, a quiescent inner 

layer, and a proliferative outer layer. MCTSs should have a gradient in oxygen, carbon dioxide, 

and nutrients similar to in vivo tumors. b) Spheroid compactness effected by c) Different methods 

for spheroid production including using scaffolds, hanging drops, microfluidics. Image taken with 

permission from Han et al. (94). 
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moulding, and microcontact printing are well-suited to create micron sized structures that 

can be cast into PDMS or other polymers (96). 
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viii. Thesis objective 
 
The goal of this thesis was to investigate the key mechanisms that influence CRC tumor 

development and progression using new tools and methods. A specific focus has been placed on 

intratumor heterogeneity, where its impact on tumor progression and drug resistance has been 

studied. The first aim was to investigate the impact of intra-tumor heterogeneity on CRC by 

focusing on the CMS classification. In this first part of the work, we have aimed to mimicking the 

tumor heterogeneity of CRC by co-culturing different CMS cell lines.  

 

Furthermore, development of drug resistance is one of the major issues in CRC. The emergence 

of drug resistance is an evolutionary process since it is associated with a variety of intrinsic and 

extrinsic biological factors. There are still many key mechanisms that influence drug resistance 

that are under question where the exact mechanisms are often unknown. Therefore, we aim to 

investigate the key factors effecting how cells develop resistance by analyzing key mechanisms 

and pathways which are central in resistance development. To build on this we aimed to focus on 

the effect of the intra-tumor heterogeneity on tumor resistance and progression, by investigating 

the effect of co-culturing Drug Sensitive Cancer Cells (DSCCs) and Drug Resistant Cancer Cells 

(DRCCs). More specifically we were interested in investigating the effects of co-culturing DSCCs 

and DRCCs and their interactions under chemotherapy treatment. Understanding the molecular 

basis of chemoresistance will help in identifying new therapeutic targets which eventually will 

lead to improved treatment for patients.  
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Chapter 2 
Intratumor heterogeneity and cell secretome promote 

chemotherapy resistance and progression of colorectal cancer 

 

i. Introduction 
 

CRC tumors have been reported to comprise four consensus molecular subtypes (CMS) 

that have been identified based on whole tumour transcriptional profiles (27). The system 

has proven useful in understanding CRC tumor biology and is shown to predict prognosis 

(97). The CMS classification serves as a framework to better understand the inter-tumor 

heterogeneity of CRC. In most cancers, including in CRC, it has been shown that intra-

tumor heterogeneity promotes drug resistance and progression (28). Furthermore, our 

group has previously shown that over 55% of tumors are composed of mixed CMS which 

has been associated with worse tumors outcome (30). These findings therefor raise 

questions of whether intra-tumoral communication between CMS subtypes contributes to 

tumor progression and therapy resistance in CRC. Here, to mimic the intra-tumor 

heterogeneity of CRC, we have aimed to create new methods to study tumor progression 

and resistance mechanisms by generating MCTSs consisting of multiple CMS. This model 

can serve as a useful system to study cell-to-cell interactions and the effect of these 

interactions on drug resistance. 

 

Furthermore, the greater complexity in CRC compared to healthy tissue results in CRC 

having a different molecular signature and an increased activation of signalling pathways. 

There is a complex cell communication network in tumors that are involved in cell-to-cell 

communications where our current understandings of these processes have largely been 

made by modelling interactions between cells in the TME. It is well recognized that cell 

signalling mechanism can play a significant role in the resistance mechanisms. Because of 

this, recent research has focused on the cancer cell secretome, to gain new insights in cell-

to-cell communication.  
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Furthermore, the cell secretome can drastically change during chemotherapy treatment 

where a series of cell signalling mechanisms are initiated, some which might have an 

impact on the drug resistance. Therefore, the secretome is now being considered as a 

potential drug target for precision medicine where each component is being dissected to 

fully understand its many functions. However, the specific mode of action of these 

mechanisms are generally unknown. Cell signalling mechanisms between tumor cells are 

largely underexplored and therefor the characterization of these networks can unlock new 

discoveries that could potentially lead to new therapeutic targets. In this chapter we aim 

to study cell signalling mechanisms of co-cultured CMS cells and their secretome using 

tumor models.  
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Abstract 

The major underlying cause for the high mortality rate in colorectal cancer (CRC) relies on its 

drug resistance, to which intratumor heterogeneity (ITH) contributes substantially. CRC 

tumors have been reported to comprise heterogeneous populations of cancer cells that can be 

grouped into 4 consensus molecular subtypes (CMS). However, the impact of inter-cellular 

interaction between these cellular states on the emergence of drug resistance and CRC 

progression remains elusive. Here, we explored the interaction between cell lines belonging to 

the CMS1 (HCT116 and LoVo) and the CMS4 (SW620 and MDST8) subtypes in a 3D 

coculture model, mimicking the ITH of CRC. The spatial distribution of each cell population 

showed that CMS1 cells had a preference to grow in the center of the spheroids, while CMS4 

cells localized at the periphery of the spheroids, in line with observations in tumors from CRC 

patients. Cocultures of CMS1 and CMS4 cells did not alter cell growth, but significantly 

sustained the survival of both CMS1 and CMS4 cells in response to the front-line 

chemotherapeutic agent 5-fluorouracil (5-FU). Mechanistically, the secretome of CMS1 cells 

exhibited a remarkable protective effect for CMS4 cells against 5-FU treatment, while 

promoting cellular invasion. Secreted metabolites may be responsible for these effects, as 

demonstrated by the existence of 5-FU induced metabolomic shifts, as well as by the 

experimental transfer of the metabolome between CMS1 and CMS4 cells. Overall, our results 

suggest that the interplay between CMS1 and CMS4 cells stimulates CRC progression and 

reduces the efficacy of chemotherapy. 

 
Key words: 

Colorectal cancer, intratumor heterogeneity, consensus molecular subtype, drug resistance, cell 

communication, cell secretome, metabolites 
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Introduction 
Colorectal cancer (CRC) is the second most common cancer 1, with metastatic CRC having an 

extremely low 5-year survival rate of around 15% 2. Chemotherapeutic drugs such as 

fluoropyrimidines, especially 5-fluorouracil (5-FU), have been routinely used for the treatment 

of CRC, alone or in combination with surgery, radiotherapy or targeted treatments 3. However, 

chemotherapy resistance represents one of the main obstacles for the effective treatment of 

CRC 4. It is therefore important to unravel the molecular mechanisms of drug resistance.  

The tumor microenvironment (TME) of CRC is composed of a variety of cell types, 

including different neoplastic, immune and stromal cells, as well as blood vessels and elements 

of the extracellular matrix (ECM), which are in constant interplay 5. The TME is of cardinal 

importance for tumor progression, metastasis and resistance to therapies 6–8. In addition to 

interactions between malignant cells and the TME, intratumor heterogeneity (ITH) has also 

been suggested to contribute to drug resistance of CRC 9–11. ITH refers to the coexistence of 

genetically, epigenetically or phenotypically distinct cancer cells within a tumor. Clonal 

evolution drives the genetic diversification of cancer cells, generating cancer sub-clones 12,13. 

While phenotypic differences between cancer cell types stem from this genomic variation, they 

can also originate from interactions with the TME, as well as one another 12,13. Heterogeneous 

cancer cells display an inherent functional variability in proliferative potential that may be 

depend on by intercellular communication 10,14,15. 

Based on transcriptomics data, a recent subtype concordance analysis by the Colorectal 

Cancer Subtyping Consortium has yielded 4 transcriptionally driven molecular subgroups of 

tumors, – termed Consensus Molecular Subtypes (CMS) 16. CMS1 tumors are defined by 

microsatellite instable/immune features, while CMS2, CMS3 and CMS4 display canonical, 

metabolic, and mesenchymal phenotypes, respectively. The CMS classification represents a 

significant advance in understanding CRC inter-tumor heterogeneity, and may serve as a 
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prognostic and predictive factor for the efficacy of therapy against CRC and thus are considered 

as a path to precision medicine 17. More recently, research following the derivation of CMS 

subtypes has shown that a tumor can be classified as a mixed CMS, likely reflecting ITH 18–22. 

For example, studies on the spatial distribution of CMS in tumors revealed that CMS4 cells are 

enriched at the tumor ‘invasive front’, while other CMS classes are more frequently found at 

the core 18,21. Intriguingly, our team has observed that more than half of CRC tumors actually 

correspond to CMS mixtures, highlighting the transcriptional heterogeneity of CRC 22. Such 

ITH was associated with dismal prognosis, and this was particularly well documented for 

tumors composed by CMS1 and CMS4 cells. These findings now raise the question of whether 

the intratumoral communication between different CMS subtypes underlies tumor progression 

and therapy resistance in CRC. Nevertheless, to the best of our knowledge, such studies have 

not yet been reported. 

The secretome is an emerging mechanism of cellular interplay in tumors, as it contains 

protumorigenic factors released by different cell types 23. Compared to their non-malignant 

counterparts, cancer cells have an aberrant secretome that can influence every stage of the 

tumorigenic cascade.24 Importantly, cancer treatments can alter the composition of the cancer 

cell secretome. Such therapy-induced changes in the secretome can promote the formation of 

an immunosuppressive TME and tumor relapse 23,25. Studies have also shown that the therapy-

induced secretome of cancer cells can modulate drug responses in adjacent cells, potentially by 

stimulating the outgrowth, dissemination and metastasis of other cancer cell populations 14,26,27. 

In particular, cells from the core of the tumor can cooperate with those at the invasive front and 

promote their malignancy by extracellular signals 28. Thus, research on secretome-dependent 

mechanisms of cancer cell interplay is essential to expand our current understanding of CRC, 

from initiation to overcoming therapy resistance. 
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In this study, we investigated the interaction of human CMS1 and CMS4 cells, and analyzed 

chemotherapy outcome. We mimicked the ITH of CRC by coculturing CMS 1 and CMS4 cells 

in a 3D spheroid model. A specific cell distribution pattern was observed in the cocultured 

spheroids, with CMS1 cells (HCT116 or LoVo) growing at the center, while CMS4 cells 

(SW620 or MDST8) localizing at the periphery. Although the coculture of CMS1 and CMS4 

did not alter the cell growth of either population, CMS1 cells showed a significant drug 

resistance-promoting effect on their CMS4 counterparts in response to 5-FU, while sustaining 

their own survival. 5-FU caused CMS1 cells to release factors that stimulated the outgrowth of 

CMS4 cells. Moreover, such secretome of CMS1 cells supported the invasive capacity of 

MDST8. Overall, the therapeutic action of 5-FU induced secretome changes of CMS1 cells 

that promoted 5-FU resistance of tumor spheroids. Of note, we found that secreted metabolites 

can be responsible for these effects. Altogether, our results provide mechanistic insights into 

the intercellular communication between CMS1 cells in the tumor spheroid core and edge-

located CMS4 cells that may contribute to tumor progression and chemotherapy resistance. 

  

Results 

3D tumor spheroid formation of CMS cell lines 

HCT116 and LoVo have been classified as CMS1 cells 29, while SW620 and MDST8 have been 

classified as CMS4 cells.30 In order to assess the link between CMS subtypes and chemotherapy 

sensitivity, the half maximal inhibitory concentrations (IC50) of 5-FU acting on these cell lines 

were determined using viability assays. HCT116 cells exhibited the highest sensitivity to 5-FU 

with IC50=3.83±0.76 µM for 3 days, whereas SW620 cells were the most resistant with a 32.6-

fold higher IC50=124.68±27.09 µM (Supplementary Table S1), in line with the previous 

observations that CMS4 cells are relatively resistant against chemotherapy 30,31.  
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Tumor spheroids composed by different CMS cell lines were generated using microwell-

based cultures with ultralow attachment surfaces. HCT116 cells formed compact spheroids 

after two days with a diameter of ~100 μm and grew into ~450 μm structures on day 4, 

representing a physiologically relevant size (Supplementary Figure S1a) 34. The cells 

maintained viability for 4 days in culture and exhibited increased 5-FU resistance with 

IC50=15.00±3.84 μM (Supplementary Figure S1b) as compared to 2D monolayer cultures, as 

previously described 35. This increased drug resistance is believed to be largely due to restriction 

of 5-FU diffusion into 3D structures, as well as due to the molecular concentration gradients in 

oxygen, pH, nutrients and cellular metabolites 35,36. Although LoVo and MDST8 cells also 

showed the potential to form spheroids, these structures were rather loose resulting in non-

spherical shape (Supplementary Figure S2). Indeed, the morphology of LoVo spheroids is 

suggestive of loosely aggregating structures that fail to organize into organoids. MDST8 cells 

tended to form aggregates of multiple small sub-spheroids that failed to generate compact, fully 

integrated spheroids. SW620 cells did not adopt a spheroidal conformation at all 

(Supplementary Figure S2). Therein, when grown in suspension, distinct CMS cell lines differ 

in their propensity to generate spheroids.  

 
Spatial distribution of CMS cells in cocultured 3D spheroids  

To model the intercellular interactions of CMS populations in vivo, 3D cocultured tumor 

spheroid models that reflect the ITH of CRC were established. 10% of CMS4 cells, which were 

either SW620 and MDST8 cells labelled with the CMTRA cell tracker (red), were cocultured 

with 90% of CMS1 cells such as HCT116 labeled with the CMFDA cell tracker (green) or 

LoVo expressing green fluorescent protein (GFP). We observed that the CMS1/CMS4 

cocultures formed spheroidal structures and that CMS1 cells (HCT116 or LoVo) grew at the 

center of such spheroids, while CMS4 cells (SW620 or MDST8) preferentially localized in the 

periphery (Figure 2.1.a). Similar spheroid morphologies were observed when coculturing 
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CMS1 and CMS4 cells at a 1:1 ratio. Collectively, these data suggest that CMS1 cells present 

a core-like location while CMS4 cells organize at the edges of mixed spheroids. 

 

Figure 2.1. CMS1 and CMS4 cells in cocultured 3D spheroids 

(a) Representative live cell confocal fluorescence microscopy images showing spheroid 

morphology and cell distribution on day 4 post-seeding. HCT116 cells were stained with cell 

tracker CMFDA (green), SW620 and MDST8 cells were stained with CMRA (red) fluorescent 

probes, LoVo cells express GFP. Scale bars=100 μm. (b) Cell growth in cocultured 3D 

spheroids. Cell growth was measured in cocultured tumor spheroids using image analysis on 

the fluorescent cell trackers after 4 days post-seeding and normalized by the monoculture as a 

control. The bars represent the average of viability and the error bars represent the standard 
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deviation (n=3). Statistical significance was calculated using a one-way ANOVA followed by 

Student's t-test.A p-value of less than 0.05 and 0.01 were considered significant (*) and highly 

significant (**), respectively. 

 
Cell growth and drug resistance in cocultured 3D spheroids  

Next, we explored the effects of CMS interactions on cell growth in cocultured tumor spheroids 

composed of 10% CMS4 and 90% CMS1 cells. Interestingly, coculture did not appear to exert 

a strong effect on the cell growth in either population (Figure 2.1.b). To further assess the effect 

of coculture on drug resistance, spheroids were treated with 5-FU after their initial formation 

on day 1 post-seeding. The subsequent growth of each cell population was monitored by 

fluorescence microscopic imaging. When added to cultures comprising HCT116 cells alone, 

10-50 μM of 5-FU decreased the volume of spheroids, accompanied by decreased compactness 

and shape (Figure 2.2.a). In contrast, HCT116 cells cocultured with SW620 cells were 

protected against 5-FU, resulting in an 18.3% and 32.2% increase in HCT116 survival rate with 

10 and 50 μM of 5-FU, respectively (Figure 2.2.b). Moreover, the number of admixed SW620 

cells was largely increased, by up to 91% (10 μM of 5-FU), in the coculture compared to that 

in the monoculture (Figure 2.2b). This suggests that CMS1 cells confer 5-FU resistance to 

CMS4 cells in coculture conditions and that mixed CMS1/CMS4 spheroid possess a collective 

survival advantage in adverse conditions. Indeed, MDST8 cells were also conferred 5-FU 

resistance by HCT116 cells. In these mixed spheroids, MDST8 cells showed an 130% increase 

in survival rate (50 μM of 5-FU) when compared to those in monocultures (Figure 2.2.b), 

without being in comprehensive contact with HCT116, but rather forming several small 

spheroids on their own (Supplementary Figure S3). The overall survival of HCT116 cells was 

again supported by MDST8 cells (Figure 2.2.b). In addition, coculture with HCT116 cells 

stimulated outgrowth of CMS4 cells against 5-FU treatments, showing a maximum increase of 
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36% (5 μM of 5-FU) and 22% (2.5 μM of 5-FU) in cell number for SW620 and MDST8, 

respectively, when compared to the vehicle-treated control. 

Finally, LoVo cells stably expressing GFP were cocultured with either SW620 or MDST8 

cells. The resulting spheroids were then exposed to different 5-FU concentrations using the 

same experimental setup as above (Supplementary Figure S4 and S5). As observed for HCT116 

cells, coculture significantly sustained the survival of LoVo and enhanced the resistance of 

CMS4 cells to 5-FU (Figure 2.2.b). Once again, this effect appeared independent of close 

contact of one cell population to another (Supplementary Figures S4 and S5). Collectively, 

these results suggest that CMS1/CMS4 coculture increases 5-FU resistance. 
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Figure 2.2. Monocultured and cocultured spheroids of CMS1 and CMS4 cells 

(a) Representative live cell confocal fluorescence microscopy images showing the spheroid 

morphology of HCT116 and SW620 after 3 days of 5-FU treatment. Cells were stained with 

either cell tracker CMFDA (green) or CMRA (red) fluorescent probes. Scale bars=100 μm. (b) 

5-FU response of CMS1 and CMS4 cells in the spheroids. Tumor spheroids were exposed to 

different concentrations of 5-FU for 3 days. Cell viability was measured using image analysis 

on the fluorescent cell trackers, and normalized by the vehicle control. The bars represent the 

average of viability and the error bars represent the standard deviation (n=3). Statistical 

significance was calculated using a one-way ANOVA followed by Student's t-test.A p-value 

of less than 0.05 and 0.01 were considered significant (*) and highly significant (**), 

respectively. 
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The effect of the CMS1 secretome on CMS4 drug resistance 

We next investigated the potential mechanisms involved in the interplay between CMS1 and 

CMS4 cells. Recently, Bastola and colleagues reported that the secretome from the 

glioblastoma core promoted malignancy of cells at the tumor edge 28. Based on this finding, we 

examined whether the secretome of 5-FU treated CMS1 cells would influence the drug 

response of CMS4 cells to 5-FU. Conditioned media (CM) were derived from HCT116 cells 

cultured in the absence (DMSO, CM_vehicle) or presence of 2.5 µM of 5-FU (CM_5-FU) for 

3 days. Recipient SW620 cells were then cultured in HCT116 CM and their own culture 

medium at a 1:1 ratio and exposed to increasing concentrations of 5-FU for 3 days (Figure 

2.3.a). Both CM_vehicle and CM_5-FU dramatically reduced the toxic effect of 500 µM 5-FU 

on SW620, yielding a 3-fold increase in viable cells (Figure 2.3.b). Enhanced resistance to 5-

FU used at 30 to 100 µM was also observed with MDST8 received HCT116 CM. In contrast, 

the drug response of neither HCT116 nor LoVo was altered by HCT116-derived CM. These 

data suggest that the HCT116 secretome can promote 5-FU resistance of CMS4 cells 

specifically.  

In an attempt to determine whether the secretome of other CMS1 cells could also induce 5-

FU resistance, or whether this phenomenon exclusively applies to HCT116, CM were collected 

from LoVo cells under the same conditions and added to CMS4 cells. LoVo-derived CM 

significantly sustained the viability of SW620 and MDST8 cells against 5-FU at concentrations 

from 10 to 500 μM (Figure 2.3.c). LoVo CM_vehicle induced minimal or no increase in 

viability in these cell lines, suggesting that the observed effect is largely the result of specific 

secretome changes induced by 5-FU. Unlike SW620 and MDST8 cells, HCT116 and LoVo 

cells were as insensitive to LoVo CM as they were to HCT116 CM (Figure 2.3.b).  
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Figure 2.3. Drug resistance effect of conditioned media (CM) of CMS1 cells  

(a) Schematic of recipient cells treated with CM of doner cells. Recipient cells were treated 

with either CM_vehicle or CM_5-FU of (b) HCT116 or (c) LoVo doner cells, and were 

exposed to different concentrations of 5-FU for 3 days. Cells treated with media only was taken 

as a control. Cell viability was measured using MTS assays. The squares, circles and triangles 

represent the average viability normalized by the vehicle control and the error bars represent 

the standard deviation (n=3). Statistical significance was calculated using a one-way ANOVA 

followed by Student's t-test. A p-value of less than 0.05 and 0.01 were considered significant 

(*) and highly significant (**), respectively, when compared to the control. 

 
 
The effect of the CMS1 secretome on CMS4 migration and invasion 

We next examined the capacity of MDST8 to migrate through the matrix of the basement 

membrane after exposure to the CMS1 secretome. This was determined using transwell inserts 

coated with a Matrigel layer onto which MDST8 were cultured. These transwell inserts were 

then placed on top of HCT116 or LoVo cells. Exposure to soluble signals emanating from 

HCT116 or LoVo cells modestly increased MDST8 migration through the transwell membrane 

by 1.15 and 1.23 fold, respectively (Figure 2.4.a, Figure S6). DMSO-treated HCT116 and 

LoVo cells significantly increased MDST8 invasion rate by 1.64 and 1.45 fold, causing 6.82% 

and 16.54% MDST8 cells to cross the Matrigel barrier, respectively (Figure 2.4). The invasion 

capacity of MDST8 was further promoted by addition of 5-FU to the system by 16.53% (in 

response to HCT116 cells) and 26.53% (in response to Lovo cells) (Figure 2.4). Therefore, we 

may surmise that, in response to 5-FU, CMS1 cells secrete factors that promote the invasion 
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capacity of CMS4 cells. 

 

Figure 2.4 MDST8 cell invasion through transwell membrane 

(a) Representative widefield fluorescence microscopy images showing MDST8 migration and 

invasion through transwell membrane with and without Matrigel coating after 2 day exposure 

to HCT116 or LoVo in the bottom wells. MDST8 exposed to only media without cells was 

taken as a control. Cells were treated with either DMSO vehicle or 2.5 uM of 5-FU. Cell nuclei 

were stained with Hoechst (blue). Scale bars=100 μm. (b) Invasion rate of MDST8 presented 

as the percentage of cell invasion through Matrigel coated transwell membrane relative to the 

cell migration through the non-Matrigel coated transwell membrane. The bars represent the 

average and the error bars represent the standard deviation (n=3). Statistical significance was 

calculated using a one-way ANOVA followed by Student's t-test. A p-value of less than 0.05 

and 0.01 considered significant (*) and highly significant (**), respectively, when compared 

to the control. 
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The effect of metabolites on CMS4 drug resistance 

During tumor progression and metastasis, tumor cells undergo rapid metabolic adaptations and 

coordinate with their surroundings to maintain biosynthetic and bioenergetic demands while 

escaping immunosurveillance or therapeutic interventions, which are now recognized as 

hallmarks of cancer 37. Thus, we investigated whether metabolites in the CMS1 secretome are 

responsible for the observed effects. CM were collected from HCT116 or LoVo cultured in the 

absence (DMSO, CM_vehicle) or presence of 2.5 µM of 5-FU (CM_5-FU) for 3 days. 

Metabolites of these CM were dialyzed into fresh media (Metabolite_vehicle, Metabolite_5-

FU) using dialysis membranes with a cut-off of 3.5 kDa and applied to CMS4 cell lines as 

previously. Similar to CM_5-FU, Metabolite_5-FU greatly sustained the viability of both 

SW620 and MDST8 cells against 5-FU at concentrations from 5 to 300 µM (Figure 2.5a.). The 

same effect was observed with LoVo metabolites (Figure 2.5.b). These results suggest that 

dialyzable metabolites (rather than extracellular vesicles or proteaceous factors) are the key 

communicators in the CMS1 secretome that can promote 5-FU resistance of CMS4 cells.  
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Figure 2.5. Drug resistance effect of metabolites of CMS1 cells 

CMS4 cells were treated with either metabolite_vehicle or metabolite_5-FU of (a) HCT116 or 

(b) LoVo CMS1 cells, and were exposed to different concentrations of 5-FU for 3 days. Cells 

treated with media only was taken as a control. Cell viability was measured using MTS assays. 

The squares, circles and triangles represent the average viability normalized by the control and 

the error bars represent the standard deviation (n=3). Statistical significance was calculated 

using a one-way ANOVA followed by Student's t-test. A p-value of less than 0.05 and 0.01 

were considered significant (*) and highly significant (**), respectively, when compared to the 

control. 
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Table 1. Fold change of metabolite levels in DMSO vehicle treated conditioned media 

(CM_Vehicle) of HCT116 compared to control media without cells (Control). 

Metabolite log2 (fold change, down-
regulated) Metabolite log2 (fold change, up-

regulated) 

Hypoxanthine -6.49 
S-Adenosyl-L-
Homocysteine 7.03 

Niacin/ Nicotinate -5.64 Glycerol 3-phosphate 5.94 
Linoleic acid -4.79 Alpha-Ketoglutarate 3.95 
Cytidine -4.69 Orotic acid 3.80 
Glutamine -4.45 Pyruvate 3.25 
Adenine -2.95 Lactate 2.91 
Serine -2.28 N-acetylaspartate 2.85 
Taurine -1.90 Serotonin 1.59 
Oleic acid -1.74 Pyridoxal 1.26 
Hexanoylcarnitine -1.51 Acetyllysine 0.94 
Palmitoleic acid -1.44 Decanoic acid 0.70 
Tryptophan -1.39 Nicotinamide 0.65 
Creatine -1.39 Malate 0.61 
Cystine -1.14 Asparagine 0.57 
Leucine -1.01 Fumarate 0.45 
Lysine -0.99 Urate 0.40 
Methionine -0.94 Glutamate 0.40 
Acetylglutamine -0.92 Glycine 0.34 
Ornithine -0.88 L-Kynurenine 0.24 
Valine -0.84 Fructose 0.20 
Threonine -0.80 Creatinine 0.19 
Glucose -0.69   
Tyrosine -0.66   
L-Alanine -0.50   
L-Sarcosine -0.50   
Histidine -0.50   
Phenylalanine -0.49   
Cysteine sulfinic 
acid -0.47   
IsoLeucine -0.46   
Carnitine -0.45   
Aspartate -0.36   
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Metabolite analyses of CMS1 conditioned media 

To evaluate the metabolic adaptation of CMS1 cells in response to 5-FU, as well as to 

identify the relevant mediators and pathways involved in the reactive secretome, the CM of 

CMS1 cells were analyzed by liquid chromatography–tandem mass spectrometry (LC-

MS/MS). A total of 91 metabolites involved in a broad range of metabolic pathways were 

quantified, including amino acids, organic acids, nucleotides, and cofactors (Table S2). The 

relative steady-state levels of 52 metabolites were significantly altered in the CM_vehicle of 

HCT116 compared to the control media without cells (Supplementary Figure S7 and Table 1). 

Pathway analysis indicated that the levels of 13 metabolites involved in aminoacyl-tRNA 

biosynthesis (amino acids) were consumed by HCT116 cells (Supplementary Table S3), 

representing the highest pathway significance. Of note, phenylalanine, tyrosine and tryptophan 

biosynthesis as well as linoleic acid metabolism showed the highest pathway impact of 1.0 

among down-regulated metabolites. On the other hand, up-regulated metabolites in the 

HCT116 secretome were mainly involved in alanine, aspartate and glutamate metabolism, 

including N-acetylaspartate, asparagine, glutamine, fumarate, pyruvate and alpha-

ketoglutarate, representing the highest pathway significance. Moreover, D-glutamine and D-

glutamate metabolism and vitamin B6 metabolism showed the highest pathway impact of 0.50 

and 0.49, respectively. Metabolites were significantly altered in the CM_vehicle of LoVo 

compared to the control media without cells (Supplementary Figure S8 and Table 2.2.). Similar 

to HCT116, significantly down-regulated metabolites were involved in the aminoacyl-tRNA 

biosynthesis, representing the highest pathway significance. Once again, phenylalanine, 

tyrosine and tryptophan biosynthesis together with linoleic acid metabolism showed the highest 

pathway impact (Table 2, Supplementary Table S5). Unlike HCT116 cells, upregulated 

metabolites were mainly involved in citrate cycle (TCA cycle), representing the highest 

pathway significance (Supplementary Table S6). Riboflavin metabolism, D-glutamine and D-
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glutamate metabolism, and vitamin B6 metabolism showed the highest pathway impact of 0.50, 

0.50 and 0.49, respectively. Overall, the metabolite profile of LoVo CM_vehicle largely 

overlaps with that of HCT116 CM_vehicle (Supplementary Table S7). 

We next examined the influence of 5-FU on the metabolite composition of CMS1 

secretome. A total of 37 soluble metabolites exhibited differential patterns in the secretome 

induced by 5-FU compared to vehicle for both HCT116 and LoVo (Supplementary Figure S9 

and S10, Table S7 and S8). Among these metabolites, we observed a significant overlap of 22 

(19 upregulated and 3 downregulated) compounds between HCT116 and LoVo (Table 2.3). 

Pathway analysis on these up-regulated metabolites revealed that 5-FU treatments impacted 

several metabolic pathways, including aminoacyl-tRNA biosynthesis, which showed the 

highest pathway significance. Phenylalanine, tyrosine and tryptophan biosynthesis and linoleic 

acid metabolism had the highest pathway impact of 1.0 (Supplementary Table S9). These data 

suggest that such differentially regulated factors in the CMS1 secretome, induced by 5-FU, 

could stimulate drug resistance, outgrowth, and invasion capacity of CMS4 cells. 
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Table 2.2. Fold change of metabolite levels in DMSO vehicle treated conditioned media 

(CM_Vehicle) of LoVo compared to control media without cells (Control). 

Metabolite log2 (fold change, down-
regulated) Metabolite log2 (fold change, up-

regulated) 
Docosahexaenoic 
acid -6.75 Acetylcysteine 9.11 
Niacin/ Nicotinate -6.73 Orotic acid 6.29 

Hypoxanthine -6.48 
Alpha-
Ketoglutarate 4.10 

Cytidine -5.38 N-Acetylaspartate 3.54 

Glutamine -4.78 
Glycerol 3-
phosphate 3.45 

Linoleic acid -2.89 Lactate 2.97 
Serine -2.53 Pyruvate 2.86 
Taurine -2.09 Cysteine 2.23 
Tryptophan -2.05 Butyric acid 2.06 
Palmitoleic acid -1.91 Serotonin 1.99 
Creatine -1.71 Pyridoxal 1.93 
Oleic acid -1.43 Acetyl-lysine 1.67 
L-Alanine -1.32 Cis-aconitate 1.35 
L-Sarcosine -1.32 Nicotinamide 1.02 
Methionine -1.29 Butyryl-carnitine 0.92 
Threonine -0.98 Malate 0.72 
Lysine -0.85 Fumarate 0.53 
Tyrosine -0.85 L-Kynurenine 0.40 
Glucose -0.83 Citrulline 0.33 
Cysteinesulfinic acid -0.76 Riboflavin 0.29 
Carnitine -0.75 Acetylcarnitine 0.28 
IsoLeucine -0.73 Creatinine 0.24 
Aspartate -0.72 Glycine 0.22 
Leucine -0.68 Pantothenate 0.22 
Phenylalanine -0.67 Glutamate 0.22 
Histidine -0.65   
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Table 2.3. Overlap of fold change of metabolite levels in 5-FU treated conditioned media 

(CM_5-FU) of HCT116 and LoVo compared to DMSO vehicle treated conditioned media 

(CM_Vehicle). 

Metabolite 
log2 (fold change, down-
regulated) Metabolite 

log2 (fold change, up-
regulated) 

HCT116 LoVo HCT116 LoVo 

Lactate -1.01 -0.93 Glutamine 4.02 4.03 

Acetyllysine -0.53 -0.79 
Niacin/ 
Nicotinate 2.96 1.85 

Fructose -0.20 -0.24 Linoleic acid 2.81 1.78 
   Hypoxanthine 2.24 1.65 
   Palmitoleic acid 1.74 1.65 
   Serine 1.66 1.51 
   Oleic acid 1.55 1.49 
   Tryptophan 1.18 1.26 
   Lysine 0.88 1.26 
   Creatine 0.84 1.09 
   Pyruvate 0.79 1.05 
   Methionine 0.71 0.93 
   Threonine 0.56 0.78 
   Tyrosine 0.50 0.77 
   L-Alanine 0.44 0.76 
   L-Sarcosine 0.44 0.70 
   Cytidine 0.42 0.55 
   Phenylalanine 0.37 0.50 
   IsoLeucine 0.33 0.40 
 
 
 

 
Discussion 

ITH facilitates therapeutic resistance in CRC. In this study, we demonstrate an impact of the 

interplay between CMS1 and CMS4 cell lines on CRC drug resistance and progression. 

Investigation of the intercellular communication between these two cancer cell populations 

uncovers that the secretome, specifically the metabolites, from CMS1 cells promotes CMS4 

chemotherapy resistance, outgrowth and invasion. Our findings provide new evidence that the 
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inter-clonal communication occurs between CRC cancer cells and such interplay can confer 

tumor aggressiveness. This work also highlights distinct secretive factors involved in the 

heterogenous clonal cooperation, which could represent potential targets for preventing tumor 

progression. 

Two mechanisms could underlie the observed increase in the drug resistance of CMS cells: 

cell interplay and/or direct consequences of 5-FU exposure. The latter may involve the 5-FU -

driven selection and proliferation of drug resistant subclones or a ‘shielding’ effect caused by 

the preferential 5-FU targeting of CMS1 cells over CMS4 cells 38,39. Such an effect is more likely 

for the highly 5-FU-sensitive HCT116 cells rather than LoVo cells. Given the high seeding cell 

density of HCT116 cells in cocultures, their 5-FU-induced demise could consequently result in 

an increase in available space and nutrients, prompting the growth of CMS4 cells. However, 

we did not observe any enhanced drug resistance in monocultures of CMS4 cells without 

HCT116. Therefore, cell interplay is more likely the cause of the observed increase in 

resistance.  

Cell communication may involve direct physical interactions and/or secreted signaling 

among different cell types. CRC cells have been reported to secrete certain factors into the 

extracellular space, allowing their communication with the microenvironment 40. Here, we 

proved that secreted signals can also be shuttled from one cancer cell type to another, thus 

affecting therapy resistance, outgrowth, and invasion. This finding indicates that direct cell-to-

cell contact may not be obligatory for such effects 41–43,28. Secreted signals may also account for 

previously reported mechanisms, including the paracrine modulation of cellular resistance to 

chemotherapy-induced cell death 23. Chemoresistance can also be conferred between tumor 

cells through the secretome by upregulating the expression of drug efflux pumps and 

antiapoptotic proteins 23. Indeed, we found that the composition of the secretome was 

significantly altered after administration of 5-FU. Components of such therapy-induced 
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secretome have been reported to allow cancer cells to interact with various non-malignant cell 

types surrounding them, like immune cells 44, and to promote epithelial-to-mesenchymal 

transition in pre-malignant and malignant cells 45.  

The secretome is a complex network of secreted signals, the major components of which 

include extracellular vesicles (EVs) and soluble factors, such as cytokines, growth factors, 

enzymes, and metabolites 23. By interacting with surrounding cells, cancer cell-derived EVs can 

promote CRC progression, drug resistance, escape of immune-surveillance, angiogenesis, 

invasion and metastasis 46–48. Soluble mediators secreted from cancer cells, such as cytokines, 

growth factors and enzymes, have also been reported to strongly correlate with tumor 

recurrence and compromised therapeutic efficacy in various cancers 23. In the context of raising 

knowledge on cancer-cell-intrinsic metabolic remodeling, recent studies have begun to explore 

metabolic communications between tumor cells and TMEs and their effect on therapeutic 

interventions 49–52. The release of metabolites, such as saccharides, amino acids, lipids and 

nucleosides, can induce specific pathways in neighboring non-malignant cells, thereby 

modulating TMEs. For example, the secreted metabolites of fibrosarcoma cells have been 

reported to induce vascular tube formation of endothelial cells, resulting in pro-metastatic 

angiogenesis 53. However, such metabolic communications between heterogenous populations 

of cancer cells have remained underexplored. Therefore, as a preliminary study of the cell 

communication between CMS subtypes of CRC, we examined a limited set of soluble 

metabolites, selected from a broad range of major pathways. In the future, this investigation 

should be extended to in-depth examination of the metabolomics that may help to uncover new 

strategies for alleviating therapy resistance in CRC. 
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Materials and Methods  

Cell culture 

Human CRC cell lines were obtained from ATCC or ECACC. All cell lines were maintained 

in culture flasks (Corning, France) in a humid 5% CO2 incubator at 37°C. HCT116 

(ATCC®CCL-247), LoVo (ATCC®CCL-229), MDST8 (ECACC99011801) and SW620 

(ATCC®CCL-227) cells were respectively maintained in McCoy’s 5A, F-12K, DMEM, and 

Leibovitz’s L-15(Gibco, France). All culture media were supplemented with 10% (v/v) 

inactivated FBS (Gibco, France) and 1% (v/v) penicillin-streptomycin (Gibco, France), and 

were changed every 3 days. 

 
IC50 determination 

IC50 values of 5-FU (Sigma, US) were determined for all cell lines. Cells were seeded into 96-

well plates and incubated overnight to allow attachment, followed by 5-FU treatments in 

various concentrations of 0, 0.5, 1.0, 1.5, 2.5, 5,0, 10, 20, 30, 50, 75, 100, and 150 µM for 3 

days. Cell viability was assayed using 3-(4,5-dimethylthiazol-2-yl)-5-

(3carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay (Promega, USA), 

before being washed once with culture media to remove any drug residue. After a 4 h 

incubation, the absorbance at 570 nm (600 nm as a reference) was measured using a plate 

reader (Tecan, France). IC50 values were calculated by using Prism 9. 

 
3D spheroids generation and 5-FU treatments 

1 500 cells were seeded into ultralow attachment U-shaped 96-well plates (Corning, France). 

Cell seeding was followed by an overnight incubation to allow tumor spheroid formation. 

Spheroids were treated with 0, 1, 2.5, 5, 10, and 50 µM of 5-FU for 3 days. Cell viability was 

assayed using CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS; Promega, 
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France), before being washed once with culture media to remove any drug residue. After a 4 h 

incubation, the absorbance at 490 nm was measured using a plate reader (Tecan, France). 

 
Live-cell confocal fluorescence imaging and image analyses 

A Zeiss LSM710 confocal laser scanning microscope was used for live-cell imaging. Cells 

were stained with 0.5 µM of either cell tracker CMFDA (green) or CMRA (red) fluorescent 

probes (Life Technologies, USA), following the manufacturer’s instructions. LoVo cells were 

transduced with LentiBrite Lentiviral Biosensor (Sigma, USA) to express GFP. The excitation 

filters used were 450-490 nm for cells labeled with CMFDA or expressing GFP and 515-560 

nm for CMRA. Images were captured using LSM Zen Black software (Zeiss, Germany) and 

processed by Fiji software. Area and mean pixel intensity measurements of images were taken 

on each fluorescence channel with B&W threshold on a dark background. These parameters 

were used to calculate integrated density indicating cell area. 

 
Cell migration and invasion assay 

BioCoat GFR Matrigel invasion inserts (Corning, France) were rehydrated following the 

manufacturer’s instructions. 1x 104 cells in culture medium containing 0.1% BSA were seeded 

into 24-well plates. The rehydrated GFR Matrigel invasion inserts were next transferred to the 

wells and 1x 104 cells were seeded to the inside of these inserts. BioCoat control inserts without 

GFR Matrigel coating (Corning, France) were taken as controls. Cells were incubated in a 

humid 5% CO2 incubator at 37°C for 24 h to allow migration. After incubation, the non-

invading cells were removed from the upper surface of the insert membrane following the 

manufacturer’s instructions and then the nuclei of invading cells were stained with Hoechst 

(Life Technologies, USA). The cells were imaged by using a Zeiss Axio Observer Z1 widefield 

microscope (Zeiss, Germany) and processed by Fiji software. Cell counting was performed on 
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obtained images and the number of cells was calculated as a mean average of 9 images per 

condition. The percent of invading cells were defined as equation 1.  

 
%	Invasion = !"#$%&	()	*%++,	-./01-.2	34&("24	567	803&-2%+	-.,%&3	#%#$&0.%	

!"#$%&	()	*%++,	#-2&03-.2	34&("4	*(.3&(+	-.,%&3	#%#$&0.%	
	× 100     equation 1 

 

Conditioned media (CM) collection 

HCT116 or LoVo cells were seeded into T-75 cm2 flasks and incubated overnight to allow 

attachment. Media was then replaced with 2.5 µM of 5-FU or DMSO vehicle as a control. After 

a 3-day incubation, the conditioned media (CM) were collected and centrifuged at 200 rcf for 

5 min to remove any cells. The supernatant was then filtered using a syringe and 0.22 µm filters 

(Sartorius, France), flash-frozen and stored at -80°C. 

 
Conditioned media (CM) treatment 

1 500, 10 000, 2 000, and 2 000 cells of HCT116, LoVo, MDST8, and SW620, respectively, 

were seeded into 96-well plates and left to incubate overnight. The cell treatment was carried 

out by diluting 5-FU solutions in a 1:1 mixture of cell line specific culture media and HCT116 

or LoVo CM. Final 5-FU concentrations were 5, 10, 50, 150, 300 and 500 µM. Cell viability 

was assayed using MTS (Promega, USA). 

 
Metabolite dialysis and treatment  

CM of HCT116 or LoVo cells were collected as previously and centrifuged at 200 rcf for 5 

min to remove any cells. Metabolites of the CM were dialyzed into fresh media using 3.5K 

MWCO cellulose dialysis tubing (ThermoFisher Scientific, France) at 4° C. 2 000 cells of 

MDST8 and SW620, respectively, were seeded into 96-well plates and left to incubate 

overnight. The cell treatment was carried out by diluting 5-FU solutions in a 1:1 mixture of cell 

line specific culture media and HCT116 or LoVo metabolite solution. Final 5-FU 
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concentrations were 5, 10, 50, 150, 300 and 500 µM. Cell viability was assayed using MTS 

(Promega, USA). 

 

Targeted metabolites analyses by liquid chromatography–tandem mass spectrometry 

(LC-MS/MS) 

CM metabolites were extracted as previously described.54 Extraction solution was composed of 

50% methanol, 30% ACN, and 20% water. CM samples were diluted 30-fold by adding 

extraction solution. Samples were vortexed for 5 min at 4°C and then centrifuged at 16 000 rcf 

for 15 min at 4°C. The supernatants were collected and stored at −80°C until analyses. LC/MS 

analyses were conducted on a QExactive Plus Orbitrap mass spectrometer equipped with an 

Ion Max source and a HESI II probe and coupled to a Dionex UltiMate 3000 UPLC system 

(ThermoFisher Scientific, USA). External mass calibration was performed using the standard 

calibration mixture every 7 days as recommended by the manufacturer. 5 μL of each sample 

was injected onto Zic‐pHilic (150 mm × 2.1 mm i.d. 5 μm) with the guard column (20 mm × 

2.1 mm i.d. 5 μm) (Millipore) for the liquid chromatography separation. Buffer A was 20 mM 

ammonium carbonate, 0.1% ammonium hydroxide (pH 9.2); buffer B was acetonitrile. The 

chromatographic gradient was run at a flow rate of 0.200 μL/min as follows: 0-20 min; linear 

gradient from 80% to 20% B; 20-20.5 min; linear gradient from 20% to 80% B; 20.5-28 min: 

hold at 80% B.54 The mass spectrometer was operated in full scan, polarity switching mode with 

the spray voltage set to 2.5 kV, the heated capillary held at 320°C. The sheath gas flow was set 

to 20 units, the auxiliary gas flow was set to 5 units, and the sweep gas flow was set to 0 unit. 

The metabolites were detected across a mass range of 75-1 000 m/z at a resolution of 35 000 

(at 200 m/z) with the AGC target at 106, and the maximum injection time at 250 ms. Lock 

masses were used to ensure mass accuracy below 5 ppm. Data were acquired with Thermo 

Xcalibur software (ThermoFisher Scientific, USA). The peak areas of metabolites were 
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determined using Thermo TraceFinder software (ThermoFisher Scientific, USA), identified by 

the exact mass of each singly charged ion and by known retention time on the HPLC column. 

Metabolomic data analyses were performed using Metaboanalyst 5.0 software.55 

 

Statistical analysis  

Statistical significance was determined by a one-way ANOVA followed by two-tailed equal 

variance Student's t-test. P-values less than 0.05 and 0.01 were considered significant (*) and 

highly significant (**), respectively. 
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Appendix 

Table S1 IC50 of colorectal cancer cell lines to 5-FU  

Colorectal cancer (CRC) cell lines were treated with different concentrations of 5-FU and cell 

viability was measured using MTS assays. The average and the standard deviation were 

calculated using cells from 3 different passages (n=3). Statistical significance was calculated 

using a two-tailed Student’s t-test. A p-value of less than 0.05 and 0.01 considered significant 

(*) and highly significant (**), respectively. 

Cell line IC50 (µM) of 72h 

HCT116 3.83 ± 0.76 
LoVo 18.85 ± 3.65 
MDST8 8.53 ± 1.60 
SW620 124.68 ± 27.09 
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Table S3. Pathway analysis on down-regulated metabolites in DMSO vehicle treated 

conditioned media (CM_Vehicle) of HCT116 compared to control media without cells 

(Control). 

The Total is the total number of compounds in the pathway; the Hits is the actually matched 

number from the user uploaded data; the Raw p is the original p value calculated from the 

enrichment analysis; the Holm p is the p value adjusted by Holm-Bonferroni method; the FDR 

p is the p value adjusted using False Discovery Rate; the Impact is the pathway impact value 

calculated from pathway topology analysis. 
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Table S4. Pathway analysis on up-regulated metabolites in DMSO vehicle treated 

conditioned media (CM_Vehicle) of HCT116 compared to control media without cells 

(Control). 

The Total is the total number of compounds in the pathway; the Hits is the actually matched 

number from the user uploaded data; the Raw p is the original p value calculated from the 

enrichment analysis; the Holm p is the p value adjusted by Holm-Bonferroni method; the FDR 

p is the p value adjusted using False Discovery Rate; the Impact is the pathway impact value 

calculated from pathway topology analysis. 
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Table S5. Pathway analysis on down-regulated metabolites in DMSO vehicle treated 

conditioned media (CM_Vehicle) of LoVo compared to control media without cells 

(Control). 

The Total is the total number of compounds in the pathway; the Hits is the actually matched 

number from the user uploaded data; the Raw p is the original p value calculated from the 

enrichment analysis; the Holm p is the p value adjusted by Holm-Bonferroni method; the FDR 

p is the p value adjusted using False Discovery Rate; the Impact is the pathway impact value 

calculated from pathway topology analysis. 
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Table S6. Pathway analysis on up-regulated metabolites in DMSO vehicle treated 

conditioned media (CM_Vehicle) of LoVo compared to control media without cells 

(Control). 

The Total is the total number of compounds in the pathway; the Hits is the actually matched 

number from the user uploaded data; the Raw p is the original p value calculated from the 

enrichment analysis; the Holm p is the p value adjusted by Holm-Bonferroni method; the FDR 

p is the p value adjusted using False Discovery Rate; the Impact is the pathway impact value 

calculated from pathway topology analysis. 
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Table S7. Overlap of fold change of metabolite levels in DMSO vehicle treated 

conditioned media (CM_Vehicle) of HCT116 and LoVo compared to control media 

without cells (Control). 

Metabolite 
log2 (fold change,   
down-regulated) Metabolite 

log2 (fold change, 
up-regulated) 

HCT116 LoVo HCT116 LoVo 

Hypoxanthine -6.49 -6.48 Glycerol 3-phosphate 5.94 3.45 
Niacin / nicotinate -5.64 -6.73 Alpha-Ketoglutarate 3.95 4.10 
Linoleic acid -4.79 -2.89 Orotic acid 3.80 6.29 
Cytidine -4.69 -5.38 Pyruvate 3.25 2.86 
Glutamine -4.45 -4.78 Lactate 2.91 2.97 
Serine -2.28 -2.53 N-acetylaspartate 2.85 3.54 
Taurine -1.90 -2.09 Serotonin 1.59 1.99 
Oleic acid -1.74 -1.43 pyridoxal 1.26 1.93 
Palmitoleic acid -1.44 -1.91 acetyllysine 0.94 1.67 
Tryptophan -1.39 -2.05 Malate 0.61 0.72 
Creatine -1.39 -1.71 Fumarate 0.45 0.53 
Leucine -1.01 -0.68 glutamate 0.40 0.22 
Lysine -0.99 -0.85 Glycine 0.34 0.22 
Methionine -0.94 -1.29 L-Kynurenine 0.24 0.40 
Threonine -0.80 -0.98 Creatinine 0.19 0.24 
Glucose -0.69 -0.83    
Tyrosine -0.66 -0.85    
L-Alanine -0.50 -1.32    
L-Sarcosine -0.50 -1.32    
Histidine -0.50 -0.65    
Phenylalanine -0.49 -0.67    
Cysteine sulfinic acid -0.47 -0.76    
IsoLeucine -0.46 -0.73    
carnitine -0.45 -0.75    
Aspartate -0.36 -0.72    
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Table S8. Fold change of metabolite levels in 5-FU treated conditioned media (CM_5-FU) 

of HCT116 compared to DMSO vehicle treated conditioned media (CM_Vehicle). 

Metabolite log2 (fold change, down-
regulated) Metabolite log2 (fold change, up-

regulated) 
Orotic acid -1.84 Glutamine 4.02 
Glycerol 3-
phosphate -1.02 

Niacin/ 
Nicotinate 2.96 

Lactate -1.01 Hypoxanthine 2.24 

Acetyllysine -0.53 
Octanoyl-
carnitine 2.21 

Asparagine -0.51 Palmitoleic acid 1.74 
Alpha-Ketoglutarate -0.46 Serine 1.66 
N-acetylaspartate -0.25 Oleic acid 1.55 
Fructose -0.20 Taurine 1.55 
Glutamate -0.18 Tryptophan 1.18 
Creatinine -0.17 Lysine 0.88 
  Creatine 0.84 
  Ornithine 0.83 
  Pyruvate 0.79 
  Methionine 0.71 
  Leucine 0.69 
  Valine 0.64 
  Cystine 0.57 
  Threonine 0.56 
  Tyrosine 0.50 
  L-Alanine 0.44 
  L-Sarcosine 0.44 
  Cytidine 0.42 
  Glucose 0.39 
  Histidine 0.38 
  Phenylalanine 0.37 
  IsoLeucine 0.33 
  Carnitine 0.24 
 
 

 

 

 



    
 

 
 
 

88 

 

Table S9. Fold change of metabolite levels in 5-FU treated conditioned media (CM_5-FU) 

of LoVo compared to DMSO vehicle treated conditioned media (CM_Vehicle). 

Metabolite log2 (fold change, down-
regulated) Metabolite log2 (fold change, up-

regulated) 
Cysteine -1.46 Docosahexaenoic acid 4.59 
Butyric acid -1.08 Glutamine 4.03 
Acetyllysine -0.93 Niacin/ Nicotinate 1.85 
Lactate -0.79 Oxoadipate 1.78 
Serine -0.77 Threonine 1.65 
Folate -0.67 Pyruvate 1.65 
Cis-aconitate -0.57 Hypoxanthine 1.51 
Acetylcysteine -0.45 Cytidine 1.49 

L-Kynurenine -0.35 
Dodecanoic acid/Lauric 
acid 1.35 

Citrulline -0.34 L-Alanine 1.26 
Carnosine -0.25 L-Sarcosine 1.26 
Fructose -0.24 Creatine 1.09 
Hexanoic acid -0.24 Phenylalanine 1.05 
Betaine -0.22 Methionine 0.93 
  Linoleic acid 0.78 
  Lysine 0.77 
  Oleic acid 0.76 
  Serotonin 0.70 
  Myristic acid 0.60 
  Tryptophan 0.55 
  Palmitoleic acid 0.50 
  IsoLeucine 0.40 
  Aspartate 0.32 
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Table S10. Pathway analysis on the overlap of metabolites in 5-FU treated conditioned 

media (CM_5-FU) of HCT116 and LoVo compared to DMSO vehicle treated conditioned 

media (CM_Vehicle). 

The Total is the total number of compounds in the pathway; the Hits is the actually matched 

number from the user uploaded data; the Raw p is the original p value calculated from the 

enrichment analysis; the Holm p is the p value adjusted by Holm-Bonferroni method; the FDR 

p is the p value adjusted using False Discovery Rate; the Impact is the pathway impact value 

calculated from pathway topology analysis (maximum importance of each pathway is 1.0). 
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Figure S1 3D tumor spheroid formation of HCT116 and drug responses to 5-FU 

(a) Representative live cell confocal fluorescence microscopy images showing HCT116 

spheroid formation from day 2 to day 4 post seeding. Cell viability was assessed by live/dead 

staining using Calcein (green) and PI (red). Scale bars=100 μm. (b). Dose responses of 

HCT116 cells to 5-FU. Cells were treated with different concentrations of 5-FU and cell 

viability was measured using MTS assays. The squares, circles and triangles represent 

measured viability normalized by the vehicle control, while the solid lines represent dose 

response curves. The symbols represent the average and the error bars represent the standard 

deviation (n=3).  
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Figure S2 3D tumor spheroid formation of CMS cell lines 

Representative bright field microscopy images showing LoVo, SW620 and MDST8 spheroid 

formation on day 1 and day 4 post seeding. Scale bars=100 μm. 

 

 

 

Figure S3 Monocultured and cocultured spheroids of HCT116 and MDST8 

Representative live cell confocal fluorescence microscopy images showing spheroid 

morphology after 3 days of 5-FU treatment. Cells stained with either cell tracker CMFDA 

(green) or CMRA (red) fluorescent probes. Scale bars=100 μm.  
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Figure S4 Monocultured and cocultured spheroids of LoVo and SW620 

Representative live cell confocal fluorescence microscopy images showing spheroid 

morphology after 3 days of 5-FU treatment. LoVo cells expressed a GFP reporter (green) and 

SW620 cells were stained with cell tracker CMRA (red) fluorescent probes. Scale bars=100 

μm. 

 

 

 

Figure S5 Cocultured spheroids of LoVo and MDST8 

Representative live cell confocal fluorescence microscopy images showing spheroid formation 

morphology after 3 days of 5-FU treatment. LoVo cells expressed a GFP reporter (green) and 
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MDST8 cells were stained with cell tracker CMRA (red) fluorescent probes. Scale bars=100 

μm. 

 
 

 

Figure S6 MDST8 cell migration through transwell membrane 

Fold change of MDST8 migration through non-Matrigel coated transwell membrane when 

exposed to HCT116 or LoVo in the bottom wells. MDST8 exposed to only media without cells 

was taken as a control. Cells were treated with DMSO vehicle. The bars represent the average 

and the error bars represent the standard deviation (n=3). Statistical significance was calculated 

using a one-way ANOVA followed by Student's t-test.A p-value of less than 0.05 and 0.01 

were considered significant (*) and highly significant (**), respectively. 
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Figure S7 Metabolite analyses of HCT116 conditioned media 

(a) Metabolomics profile of vehicle treated conditioned media (CM_Vehicle, orange) of 

HCT116 compared to control media without cells (Control, green), presented as a heatmap 

visualization and hierarchical clustering analysis. Rows are metabolites and columns are 

samples (n=3). The color key indicates the metabolite expression value (blue, lowest; red, 

highest). (b) Principal component analysis (PCA) plotting showing clusters of samples based 

on their similarity. Statistical significance was calculated using a one-way ANOVA followed 

by Student's t-test (p<0.05).  
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Figure S8 Metabolite analyses of DMSO vehicle treated conditioned media of LoVo 

(a) Metabolomics profile of DMSO vehicle treated conditioned media (CM_Vehicle, orange) 

of LoVo compared to control media without cells (Control, green), presented as a heatmap 

visualization and hierarchical clustering analysis. Rows are metabolites and columns are 

samples (n=3). The color key indicates the metabolite expression value (blue, lowest; red, 

highest). (b) Principal component analysis (PCA) plotting showing clusters of samples based 

on their similarity. Statistical significance was calculated using a one-way ANOVA followed 

by Student's t-test (p<0.05). 
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Figure S9 Metabolite analyses of 5-FU treated conditioned media of HCT116 

(a) Metabolomics profile of 5-FU treated conditioned media (CM_5-FU, blue) of HCT116 

compared to DMSO vehicle treated conditioned media (CM_Vehicle, orange), presented as a 

heatmap visualization and hierarchical clustering analysis. Rows are metabolites and columns 

are samples (n=3). The color key indicates the metabolite expression value (blue, lowest; red, 

highest). (b) Principal component analysis (PCA) plotting showing clusters of samples based 

on their similarity. Statistical significance was calculated using a one-way ANOVA followed 

by Student's t-test (p<0.05). 
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Figure S10 Metabolite analyses of 5-FU treated conditioned media of LoVo 

(a) Metabolomics profile of 5-FU treated conditioned media (CM_5-FU, blue) of LoVo 

compared to DMSO vehicle treated conditioned media (CM_Vehicle, orange), presented as a 

heatmap visualization and hierarchical clustering analysis. Rows are metabolites and columns 

are samples from 3 independent experiments (n=3). The color key indicates the metabolite 

expression value (blue, lowest; red, highest). (b) Principal component analysis (PCA) plotting 

showing clusters of samples based on their similarity. Statistical significance was calculated 

using a one-way ANOVA followed by Student's t-test (p<0.05). 
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ii. Discussion 
 

Tumor spheroid models of CMS cells  

The CMS classification currently represent the best description of CRC heterogeneity at the 

gene-expression level. In previous studies, the CRC cell lines HCT116 and LoVo have been 

categorized as CMS1 cells, while SW620 and MDST8 have been classified as CMS4 cells 

(98). We have attempted to mimic the intratumor heterogeneity of CRC by co-culturing 

cell lines belonging to different CMS. The CRC cell lines have been co-cultured as MCTSs 

which closely resemble the 3D architecture of in vivo tumors (Figure 2.2). Depending on 

the compactness of the spheroid the MCTSs can be classified into three types: compact 

spheroids, tight aggregates, and loose cell aggregates (99). Here we saw that the MCTSs 

started to form after one day of cell culture in the u-shaped wells. MCTS models of LoVo 

and MDST8 formed loose cell aggregates while HCT116 formed compact spheroid 

structures (Figure 2.1). The compactness of the spheroid can be dependent on the initial 

aggregation of cells which is initiated by weak integrin-ECM linkages, and then they come 

into close proximity as a result of interactions between N- and E-cadherin (94). The 

compactness of the spheroid might have an effect of the drug response, as loose spheroids 

have more surface per square area compared to compact spheroids and therefor the 

compact spheroids will therefore have less drug penetration and thereby a different drug 

response.      

 

Following that, we observed similarities between monocultured spheroids compared to co-

cultured MCTS models were the cell growth, size and shape where similar in the two 

conditions. Next, we were interested the effects of 5-FU treatment on the spheroid models. 

In previous studies Karlsson et al. cultured HCT116 spheroids and monitored the drug 

dose response towards standard colon cancer drugs such as 5-FU, oxaliplatin and 

irinotecan, melphalan, topoisomerase inhibitors, acriflavine, and VLX50 (100). The 

spheroids were incubated with drug concentrations for 72 hours whereby it was revealed 

that spheroids cultured for three days were more resistant to four standard drugs 

compared to monolayered cells. Furthermore, spheroids at day six were almost completely 

resistant to these drugs. The fact that the cells cultured in 3D systems were more resistant 
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to these drugs could be linked to genetic and/or phenotypic changes caused by spheroid 

formation. In this study we observe similar effects where the spheroid shows more drug 

tolerance compared to 2D cell culture (Figure S1). The increased drug tolerance observed 

in the spheroids could be linked to the compactness of the cell structure. In spheroids the 

administered drugs have less surface area thereby effecting the drug penetration, as seen 

in the loose spheroids compared to the compact spheroids.     

 

Next, we sought to analyze the effect the 5-FU treatment on the CMS cells within the MCTS 

models using confocal imaging. By using confocal imaging precise determination of the cell 

distribution withing the spheroids can be monitored. From this analysis, an increased cell 

survival during drug treatment was observed in the CMS4 cells when they were co-cultured 

together with the CMS1 (Figure 2.3). We can thus conclude that an increased drug 

resistance had been mediated from the CMS1 to the CMS4 cells. 

 

Drug resistance effect of conditioned media  

To further investigate this, we have cultured the cells indirectly to see if these effects are 

mediated by direct cell-to-cell contact or through cell secreted molecules. This has been 

done by applying CM from CMS1 to CMS4 cells whereby an increased cell survival was 

observed in the CMS4 cells when treated with 5-FU. This data agree with the previous 

results from the MCTS models were outgrowth of CMS4 cells was observed in the co-

culture (CMS1-CMS4) during 5-FU treatment. The results from the CM experiments show 

that the CMS1 cell secretome have a huge impact in the overall tumor survival. 

Furthermore, the results lead us to believe that these mechanisms are in fact mediated 

through cell secreted molecules. 

 

Drug induced cell migration 

Next, we aimed to investigate the migratory capacity of cells during drug treatment. 

Through a multi-step procedure known as the metastatic cascade, tumor cells can migrate 

from the primary affected organ to a distant site. This process begins in the primary tumor 

with the release of soluble substances into the bloodstream (101). Certain signals released 



    
 

 
 
 

100 

 

by cells are thought to prepare the tissues at the new metastatic sites to support new 

tumor lesions. By culturing cell in transwells we aim to mimic this process. Using 

transwells makes it possible to study cell migration in co-culture systems during drug 

treatment.  By culturing the cells in chambers which are separated by a membrane the cell 

can secret cell signalling molecules in response to each other or the drug treatment. After 

the drug treatment the relative number of cells that migrate from the upper chamber 

(primary site) to the lower chamber (secondary site) can be determined. It was observed 

that the CMS4 cells had an increased migratory tendency when exposed to the CMS1 

secretome. This effect was most prominent during 5-FU exposure, indicating that the 

chemotherapy induces cell secreted molecules from the CMS1 cells which influence the 

migration of CMS4 cells (Figure 2.4).  

 

Metabolic analysis 

To get deeper understandings of these mechanisms, the potential key mediators that can 

be involved in these processes have been analyzed. The metabolites from CMS1 cell 

secretome was analyzed by chromatography–tandem mass spectrometry (LC-MS/MS). The 

analysis focused on detecting cell secreted metabolites whereby 91 metabolites were 

detected, including amino acids, organic acids, nucleotides and cofactors (Table S2). All of 

which are involved in a wide range of metabolic pathways. When compared to the control 

media without cells, 52 metabolites were significantly altered in the HCT116 CM_DMSO 

(Supplementary Figure S7) (Table 1.1).  

 

To determine if the metabolites were involved in any potential pathways, pathway analysis 

has been performed. The results obtained from the analysis showed that the levels of 13 

metabolites involved in aminoacyl-tRNA biosynthesis (amino acids) were consumed by 

HCT116 cells. Notably, among the down-regulated metabolites, phenylalanine, tyrosine, 

and tryptophan production as well as linoleic acid metabolism displayed the highest 

pathway effect of 1.0 (Table 2, Supplementary Table S5). The highest pathway relevance 

was found in up-regulated metabolites in the HCT116 secretome, which primarily involved 

alanine, aspartate, and glutamate metabolism. These include n-acetylaspartate, asparagine, 
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glutamine, fumarate, pyruvate and alpha-ketoglutarate, representing the highest pathway 

significance.  

 

Overall, there was a significant overlap between the metabolite profiles of HCT116 

CM_DMSO and LoVo CM_DMSO. When the LoVo CM was compared to the control media 

without cells, 52 metabolite levels in the CM_DMSO of LoVo cells were substantially altered 

(Supplementary Figure S8) (Table 2.2). As observed in the HCT116 CM, the aminoacyl-

tRNA biosynthesis represents the highest pathway significance. Once more, the largest 

pathway impact was demonstrated by the production of phenylalanine, tyrosine, and 

tryptophan as well as the metabolism of linoleic acid. In contrast to HCT116 cells, elevated 

metabolites were primarily connected to the tricarboxylic acid cycle (TCA cycle), which 

was the most significant pathway (Supplementary Table S6). The highest pathway impact 

values were for the metabolism of riboflavin, D-glutamine and D-glutamate, and vitamin 

B6 with values of 0.50, 0.50, and 0.49, respectively.  

 

To continue our investigation, we wanted to see if there were any direct effects of the 

metabolites on the cells. This was done by collecting CM_DMSO and CM_5-FU from CMS1 

cells and extracting the metabolites via dialysis. By culturing the cells together with the 

metabolites, it was observed that the HCT116 CM_5-FU metabolites significantly increased 

the viability of the CMS4 cells when treated with 5-FU at doses ranging from 5 to 300 µM 

(Figure 2.5). Similar results were seen when cells were treated with the LoVo metabolites 

(Figure 2.5). These findings confirm that metabolites are important messengers in the 

CMS1 secretome increasing the CMS4 cells resistance capacity to 5-FU.  

 

 

i. Chapter conclusion and perspective 
 
 

It is well established that intra-tumor heterogeneity plays a significant role in drug 

resistance mechanisms in various cancers, where the cell heterogeneity contributes to the 

tumors drug resistance. Here we have mimicked the intra-tumor heterogeneity of CRC 

through the co-culture of different CMS cells. It was observed that CMS co-culture systems 
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had an increased drug tolerance compared to cells cultured as monoculture control. This 

demonstrated that the interplay between CMS1 and CMS4 have a large impact on the drug 

resistance of the cells. To further investigate these mechanisms CM from CMS1 cells 

applied to CMS4 whereby it was shown that the cell secretome of CMS1 cells increased 

CMS4 tolerance to 5-FU chemotherapy. Further experiments demonstrated that the CMS1 

secretome increased the migratory tendency of CMS4 cells during chemotherapy drug 

treatment. This led to the investigation of the CMS1 cell secretome where key metabolites 

were analysed to detect specific pathways that were involved in these mechanisms. In this 

study, we show that the cell secretome have an impact on cell proliferation and spheroid 

progression. 

 

Here, we studied how intra-tumor heterogeneity affected CRC; however, to further 

understand the impact of the entire Tumor Micro-Environment (TME) future research 

should examine the overall effect of the TME on tumor progression and drug resistance. 

This can be done by co-culturing CMS cell with immune cells or endothelial cells to then 

gain a better understanding of the overall TMEs effect. Future research could also focus 

on performing deeper analysis of the CMS1 cell secretome, to more precisely determine 

key pathways and metabolites which are responsible for the increased drug resistance 

observed in the CMS4 cells.    
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Chapter 3 
The role of cell-cell cross talk in drug resistance 

 

i. Introduction 
 

The development of drug resistant cells brought on by therapeutic pressure is one of the 

largest issues in the treatment of CRC. After long term exposure, most treatment plans will 

result in drug resistance development (102). The cause of this resistance has been 

suggested to be due to both intrinsic and extrinsic biological causes. Some of the biological 

factors include the clonal evolution of tumors (103), the development of CSC (42), altered 

expression of drug efflux pumps (104), modulation of ion channels (105) or altered drug 

metabolism (106). Over the past decades, several molecular resistance mechanisms have 

been unravelled, but there are still many questions that are unknown regarding resistance 

mechanisms and the potential changes that result in drug resistant cells are underexplored.  

 

In our previous observations we have mimicked the intra-tumor heterogeneity of CRC by 

co-culturing different CMS cells as MCTS. We observed that co-culture systems affected the 

tumor progression via cell secreted molecules. It is known that tumors are often composed 

of both drug resistant and sensitive cells  (24). Furthermore, it has also previously been 

shown that Drug Resistant Cancer Cells (DRCC) can alter the behaviour of Drug Sensitive 

Cancer Cells (DSCC) through cell secreted molecules eventually leading to an increased 

drug resistance. A less studied drug resistance path involves DSCCs altering the behaviour 

of DRCCs leading to tumor progression, observed in melanoma (107). These findings now 

raise the question if similar effects could be detected in in other cancers. Here, we aim to 

look closer at resistance mechanisms, we present our investigation of DSCC-DRCCs 

crosstalk in CRC and its underlying chemotherapy resistance mechanisms.   

 

Recently, another method of resistance development has been suggested where the 

resistance appears through cellular communications withing the tumor. This can happen 

through cell signalling mechanisms such as proteins, RNA, DNA or Extracellular Vesicles 

(EV). Crosstalk between cells occurs through cell secreted molecules that can travel far 
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distances within the body. Tumor cells interact with each other through multiple different 

cell-signalling mechanisms. Several studies have shown that EVs are the key mediators 

involved in cell-to-cell crosstalk that lead to tumor progression (108) (90), metastasis 

(109) and an changing the TME structure (110) (111) (61). But their role in 

communication between DSSSs and DRCCs has not yet been explored. Therefore, we were 

interested in analyzing the effects of EVs in DSCCs and DRCCs.  

 

The role of EVs in cell communication  

Given the variety of cellular processes that take place, it can be challenging to determine 

through which processes certain cell-to-cell interactions occur. It has been demonstrated 

that tumors cells secret a greater number of EVs compared to normal cells (112). 

Furthermore, the tumors may contribute the heterogeneity of EVs that are secreted, and 

the proportion of tumor-derived vesicles will increase as the disease progresses. Therefore, 

to investigate the cell-to-cell crosstalk involved in cancer progression EVs can be a good 

path to begin this investigation (113).  

 

EVs are available in a wide variety of sizes and shapes (see Chapter 1 Introduction). 

Additionally, while EV composition and characteristics are similar to those of other 

biological material, fluorescent markers may not be an effective way to label EVs (114). 

Therefore, it can be difficult to distinguish the EVs from other biological material. To detect 

if EVs are present in the sample it is therefore necessary to perform multiple 

characterization techniques to ensure their presence as well as detecting the total number 

of EVs. Therefore, we sought out to determine if EVs could be detected in the samples 

using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) 

and flow cytometry. These methods work in complementary to each other to determine 

the chape, size and number of EVs. 

ii. Motive 
 

Drug resistance development is a leading cause of treatment failure. There are many 

different mechanisms that can cause drug resistance, including clonal variations where 

certain cell types have different sensitivity to chemotherapy drugs. The initial drug 
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treatment might only be efficient on a portion of the tumor cells and the more resistant 

cells could clonally expand and survive the treatment. There is currently a lack of 

knowledge regarding what governs these processes, as well as how subpopulations of cells 

interact with each other. Therefore, in this part, we are interested in investigating how 

cells develop drug resistance. Furthermore, we have previously observed cell-to-cell 

crosstalk in cells with varying CMS classification (see Chapter 2). We observed that tumor 

models of co-culture cells had increased drug resistance compared to the monocultured 

cells. To continue our investigation on the impact of intra-tumor heterogeneity on CRC we 

aim to study the effects of cell co-culture systems consisting of DSCCs and DRCCs. To	start	

this	investigation,	we	want	to identify CRC cell	lines	which	are DSCCs. Thereafter	we	aim	to	

develop DRCCs from the original DSCC	population. After creating the DRCCs we want to 

investigate key mechanism and pathways that converts the cells from a drug	sensitive state 

to a drug	 resistant state. We further aim to co-culture the DSCCs and the DRCCs to 

investigate potential cell-to-cell interactions under drug treatment. Lastly, we aim to 

investigate what mechanisms are involved in cell-to-cell crosstalk between DSCCs and 

DRCCs. 

 

iii. Methods 
 

Cell culture  

HCT116 (ATCC®CCL-247) cells were purchased from ATCC (American Type Culture 

Collection, USA). HCT116 cells were cultured in McCoy's 5A Medium (Gibco, France) 

according to ATCC guidelines. The medium was supplemented with 10% Fetal Bovine 

Serum (FBS) (Gibco, France) and 5% Penicillin-Streptomycin (Gibco, France). Cells were 

maintained in T-75 cm2 culture flasks (Corning, France) and the cell culture medium was 

replaced every three days. Once the confluency had reached 90 percent, the cells were 

passed into new culture flasks. All cells were maintained in a humidified incubator at 37 

°C and 5% CO2.  

To prepare a cell solution the reagents PBS, cell culture media, and trypsin-EDTA 

(0.05%) were placed in the water bath for 15 minutes in a 37°C water bath. The medium 

was removed from the cell culture flasks and the cells were washed with PBS. 3 mL trypsin 
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was added to a T-75 culture flask and placed in the incubator for 3 minutes. Once the cells 

had detached from the culture flask 7 mL of medium was added before transferring the 

solution to a falcon tube. Cells were centrifuged for 5 minutes at 300 rcf. The supernatant 

was removed, and pelted cells were resuspended in 1 mL media. The cells were stained 

with trypan blue and the total number of cells were counted using the Countess machine 

(ThermoFisher Scientific, USA). The desired number of cells were added to new T-75 

culture flasks.  

 

IC50 determination 

Cells were seeded into 96-well plates and incubated overnight, after 24 hours cells were 

treated with 5-FU (Sigma Aldrich, USA) at increasing concentrations ranging from 0, 5,0, 

10, 50, 150, 300 and 500 µM. After three days the cell viability was determined using MTS 

assay (CellTiter 96® AQueous One Solution Reagent Promega). The MTS assay was performed 

by washing the cells with culture media, to remove any drug residue. Thereafter 100 μL 

of cell medium together with 20 μL MTS working solution was added to each well. After 

incubating the cells for 4 hours, the absorbance was measured at 490 nm using a plate 

reader (Tecan, France). Dose response curves and IC50 values were calculated by using 

Graph Pad Prism software (USA). Statistical significance was determined by student’s T-

test.  

 

RNA extraction 

The samples were prepared by seeding 0.4 million HCT116 and HCT116-R cells in 24 well 

plates (see protocol for cell culture). The cells were cultured for 72 hours in standard 

culture conditions. Thereafter, the RNA extraction was prepared by following 

manufacturer’s RNeasy kit from Qiagen protocol, briefly, cells were lysed by adding 700 

μL Buffer RLT (1 % v/v) and 10 μL β-mercaptoethanol (Sigma Aldrich, France). Cell 

scrapers were used to scrape the bottom of the well plate to make sure all cells were lysed. 

Thereafter, 700 μL of 70% ethanol was added to the lysate. 700 μL of the sample was 

transferred to RNeasy Mini spin columns and placed in 2 mL collection tubes. The samples 

were centrifuged for 15 seconds at 8000 g and the flow-through was discarded. 350 μL 
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Buffer RW1 was added to RNeasy columns and centrifuged for 15 seconds at 10,000 rpm 

and the flow-through was discarded. 10 μL DNase I stock solution was added to 70 μL 

Buffer RDD. 80 μL DNase I incubation mix was added directly to the RNeasy column 

membrane and incubated at room temperature for 15 minutes. 350 μL BufferRW1 was 

added to the RNeasy column and centrifuged for 15 seconds 8000 g, flow-through was 

discarded. 500 μL Buffer RPE was added to the RNeasy spin column and centrifuged for 

15 seconds 8000 g, flow-through was discarded. 500 μL Buffer RPE was added to the 

RNeasy spin column and centrifuge for 2 minutes at 8000g. The RNeasy spin column was 

placed in new 2 mL collection tubes. Whereafter the tubes were centrifuged at full speed 

for 1 minute to dry the spin column membrane. The RNeasy spin column was placed in 

new 1.5 mL collection tubes. 30 μL RNase-free water was added directly to the spin column 

membrane and centrifuged for 1 minute at 8000 g to elute the RNA.  

 

Library preparation 

The library preparation was performed by following the manufacturer’s recommendations, 

(QuantSeq 3' mRNA-Seq Library Prep Kit FWD for Illumina from LEXOGEN). Briefly, the 

RNA samples were thawed on ice and centrifuged to make sure all RNA was suspended. 

The 3' ligation reagent mixture was prepared on ice by adding: 1 μL QIAseq miRNA 3' 

Adapter, 1 μL QIAseq miRNA RI, 1 μL QIAseq miRNA 3' Ligase, 2 μL QIAseq miRNA 3' 

Buffer, 10 μL Ligation Activator, and 2 μL Nuclease-free Water. Template RNA was added 

to each tube which already contained the 3' ligation Master Mix. Tubes were centrifuged 

and mixed by pipetting up and down approximately 20 times. Samples were incubated for 

one hour at 28°C thereafter 20 minutes at 65°C, followed by a 4°C incubation for 5 minutes. 

The 5' Ligation reaction was prepared on ice by mixing: 20 µL 3' ligation reaction, 15 μL 

Nuclease-free water, 1 μL QIAseq miRNA 5' Adapter, 1 μL QIAseq miRNA 5' Ligase, 2 μL 

QIAseq miRNA 5' Buffer and 1 μL QIAseq miRNA RI. Samples were incubated as follows: 

1 hour at 28°C, followed by 20 minutes at 65°C, lastly, at 4°C for 5 minutes. Thereafter, 2 

µL QIAseq miRNA RT initiator was added to each tube. The thermal cycler was 

programmed to 75°C 2 minutes, 70°C 2 minutes, 65°C 2 minutes, 60°C 2 minutes, 55°C 5 

minutes, 37°C 5 minutes 25°C and kept at 4°C. The reverse 5' ligation reaction was 
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prepared by mixing: 42 µL 5' ligation reaction together with QIAseq miRNA RT Initiator, 2 

µL QIAseq miRNA RT Primer, 2 µL Nuclease-free Water, 12 µL QIAseq miRNA RT Buffer, 

1 µL QIAseq miRNA RI and 1 µL QIAseq miRNA RT Enzyme. Samples were incubated as 

follows: 1 hour at 50°C thereafter 15 minutes at 70°C followed by a 4°C incubation for 5 

minutes. Thereafter the library amplification was prepared using QIAseq miRNA 96 Index. 

The library amplification reaction was prepared on ice by adding: 15 µL QIAseq miRNA 

Library Buffer, 8 µL HotStarTaq DNA Polymerase, 1.5 µL QIAseq miRNA 96 Indexes IL 

Auto (from plate), 14.5 µL Nuclease-free Water. The thermal cycler was programmed to 

15 minutes at 95°C, 15 seconds 60°C, 30 seconds 72°C, 15 seconds, 2 minutes 72°C and 

kept at 4°C. 40 µL of the library amplification reactions was centrifuged. 37.5 µL of QMN 

Beads was added to the plates containing the cDNA reactions and vortexed for three 

seconds. Samples were then incubated for five minutes at room temperature and the plates 

were placed on a magnet stand until the beads had migrated. Supernatant was kept and 

transferred to new plates. Plates containing the beads were discarded. 65 µL of QMN Beads 

was added to the supernatant and vortexed for three seconds followed by a five-minute 

incubation at room temperature. Plates were placed on a magnet stand until the beads 

have fully migrated. Supernatant was discarded and beads kept whereafter 200 µL of 80% 

ethanol was added. The washing step was repeated by adding 200 µL of 80% ethanol 

(Sigma Aldrich, USA). Samples with beads still placed on the magnetic stand were air-dried 

at room temperature for ten minutes. The DNA was eluted by adding 17 µL of nuclease 

free water to the plates and the plates were removed from the magnetic stand. Samples 

were carefully pipetted up and down until all beads were thoroughly resuspended, lastly 

the sample was incubated at room temperature for two minutes. 

 

Transcriptomic analysis 

The Quality of raw data was evaluated using FastQC. Poor quality sequences and adapters 

were trimmed or removed with fastp, to retain only good quality paired reads. Illumina 

DRAGEN bio-IT Platform (v3.8.4) was used for mapping on hg38 reference genome and 

quantification with Gencode v37 annotation gtf file. Library orientation, library 

composition and coverage along transcripts were checked with Picard tools. Following 
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analysis were conducted with R software. Data were normalized with DESeq2 (v1.30) 

bioconductor package, prior to differential analysis with DESeq2 workflow. Multiple 

hypothesis adjusted p-values were calculated with the Benjamini-Hochberg procedure to 

control FDR. Finally, enrichment analysis was conducted with clusterProfiler R package 

(v3.18.0) with Gene Set Enrichment Analysis, on Hallmark pathways, Gene Ontology 

database, KEGG pathways from MSigDB collections. 

 

MCTS formation and confocal imaging 

The cells were stained using the cell tracker by removing the cell medium and washing 

with PBS (2 mL). 1 μL of CMFDA green cell tracker dye (1 µM) fluorescent probes (Life 

Technologies, USA) were added to the HCT116 cells, while the orange cell tracker dye 

CMRA (1 µM) fluorescent probes (Life Technologies, USA) was added to the HCT116-R 

cells and incubated for 30 minutes. The cell culture medium was removed from the stained 

cells and washed with PBS (2 mL). Cell solutions were mixed at 90 % CHT116 and 10 % 

CHT116-R cells. Controls were made where monoculture of each cell line was cultured 

under the same culture conditions. 1500 cells per well was added in the ultra-low 

attachment u shaped wells (Corning, France). After 24 hours, when the cells had 

sedimented, the cell treatment was carried out by adding 5-FU drug concentration raining 

from 1 µM to 50 µM for 72 hours.   

 

At the end point the relative number of each cell line was determined by analyzing the 

number of cells stained with green cell tracker compared to the number of cells stained 

with orange cell tracker. To determine this, whole MCTSs were imaged using confocal laser 

scanning microscope (Zeiss LSM710). The images were transferred to Fiji (ImageJ) where 

Fluorescence intensity was analyzed by merging the z-stacks to obtain one image per 

condition. The z-stack image was used to detect the relative amount of each cell line. The 

mean fluorescent intensity of each spheroid was obtained and normalized to the DMSO 

control.  

 

Conditioned Medium 
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CM was prepared by seeding 0.5 and 1 HCT116 million cells in T-75 flasks for treatment 

with DMSO and 5-FU, respectively (see cell culture protocol for how to prepare the cell 

solution). After 24 hours the cells were treated with the corresponding treatment, DMSO 

and 2.5 µM 5-FU. After 72 hours of treatment, the medium was collected and centrifuged 

for five minutes at 350 rcf, whereby the pellet was discarded. Lastly, the medium was 

filtered through a 0.2-micron syringe filter (Sartorius, France) and aliquots were made and 

flash frozen using liquid nitrogen, samples were stored at -80°C (Figure 3.1).  

 

Conditioned Medium (CM) treatment 

Cell solutions of HCT116 and HCT116-R were prepared and 1500, each respective cell line 

was seeded into 96-well plates and incubated in a humidified incubator at 37 °C and 5% 

CO2 (see cell culture protocol for how to prepare the cell solutions). After 24 hours of cell 

culture, the cell culture medium was removed by aspiration and 100 µL of each drug 

concentration was added to the wells together with 100 µL of each corresponding medium, 

including cell culture media, CM_DMSO and CM_5-FU, respectively. Cells were incubated 

for 72 hours for the treatment to occur. The alamarBlue™ (ThermoFisher Scientific, 

France) assay was performed as followed to assess cell viability. The medium was 

removed, and cells were washed with cell culture medium. 80 μL of cell culture medium 

was added to each well together with 20 μL alamarBlue™ solution. The plate was 

incubated for 4 hours, and the absorbance was read at 570 nm (600 nm as a reference) 

using a plate reader (Tecan, France). Data analysis was performed using Prism 9 (USA). 

Statistical significance was calculated using a two-tailed Student’s t-test. A p-value of less 

than 0.05 and 0.01 was considered significant (*) and highly significant (**), respectively. 

 

Isolation of Extracellular Vesicles (EVs) by ultracentrifugation 

The CM was centrifuge for five minutes at 350 x g. The pellet was discarded, and the 

supernatant was kept and filtered using 40 μm syringe filters. Several centrifugation steps 

followed, 20 minutes at 2,000 × g at 4°C. The supernatant was kept and transferred to 

polyallomer tubes. 32 minutes at 10,000 × g at 4°C, supernatant was transferred to 

ultracentrifugation tubes. 70 minutes at 100,000 × g at 4°C, the supernatant was removed, 
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and the pellet was resuspended in 700 μL PBS. 10 mL PBS was added and centrifuged one 

hour at 100,000 × g at 4°C. Supernatant was removed and 50 µL of PBS was added to 

resuspend the pelleted EVs.   

 

Nanoparticle Tracking Analysis (NTA) method  

EV sizes and concentrations were determined according to the manufacturer’s instructions 

(Particle Metrix). The instrument (ZetaView QUATT, Particle Metrix, Germany) was 

equipped with a 488 nm laser. The calibration beads and biological samples were diluted 

in PBS to a final volume of 1 mL, to obtain an optimal particle concentration range for the 

measurement. Calibration was done for light scattering and fluorescent measurements. 

Capture settings were set at: sensitivity 65, shutter 100, minimum trace length 10. Scatter 

was recorded and measured at sensitivity 80, shutter 100, and minimum trace length 15. 

Triplicates were measured for each sample. A washing step was done between each 

measurement using distillated water. Capture was done at medium video setting, 

corresponding to 30 frames per position. ZetaView software 8.5.10 was used to analyze 

the recorded videos. For each sample, 11 different locations were recorded during which 

temperature was kept at 25°C.  Immediately prior to the measurement EV aggregates were 

broken up by pushing the sample through a 29G needle gently.  

 

Imaging Extracellular Vesicles (EVs) using TEM 

The EV solution was resuspended in 50 µL of 2% PFA (Sigma Aldrich, USA) by pipetting. 

The extracellular vesicles were fixed on electron-microscope grids by depositing 5 µL of 

the resuspended pellets on Formvar-carbon coated EM grids (Biovalley, France). Three 

replicates were prepared for each EV sample. The membranes were covered and incubated 

for 20 minutes in room temperature. 100 µL drops of PBS (Biovalley, France) were placed 

on sheets of Parafilm. The grids with the membrane side down were transferred to drops 

of PBS using clean forceps to wash. The grids were moved to 50 µL droplets containing 

1% glutaraldehyde (Biovalley, France) and incubated at room temperature for five 

minutes. The membranes were transferred to 100 µL drops of distilled water and 

incubated for two minutes. This step was repeated seven times for a total of eight water 
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washes. The grids were transferred to 50 µL drops of methyl cellulose-UA (Biovalley, 

France) and incubated on ice for 10 minutes. The grids were transferred with stainless 

steel loops and excess fluid was blotted off by gently pushing the loop sideways on 

whatman filter paper (Sigma Aldrich, USA), so that a thin film was left behind over the EV 

side of the grids. The gris were left to air dry for 10 minutes while still on the stainless-

steel loop. The prepared specimen was observed under the Transmission Electron 

Microscope (Tecnai 12) at 80 kV equipped with a CCD camera (Gatan MSC794).   

 

Detecting Extracellular Vesicles (EVs) using flow cytometry  

The magnetic beads were vortexed for 30 seconds and 20 µL of bead solution was 

transferred to an eppendorf tube. The beads were washed by adding 200 µL of PBS to the 

tube and placing it next to a magnet for one minute and discarding the supernatant. The 

tube was removed from the magnet and the EV-sample was titrated with an Isolation 

Buffer to a final volume of 100 µL to the magnetic beads. 50 μL of the pre-enriched EV 

solution, EV_DMSO and EV_5-FU, was added to 50 μL of Isolation Buffer. The sample was 

incubated overnight at 4°C on a sample mixer. After the overnight incubation the tubes 

were centrifuge for 5 seconds to collect the sample at the bottom of each tube. 300 µL of 

Isolation Buffer was added to the bead-bound EVs to wash them, the sample was mixed 

gently by pipetting. The tube was placed on the magnet for 1 minute and the supernatant 

was discarded. The tube was removed from the magnet and 400 µL of Isolation Buffer was 

added, the sample was mixed gently by pipetting. The tube was placed on the magnet for 

one minute and the supernatant discarded. The bead-bound EVs were resuspend in 300 

µL Isolation Buffer. 300 μL of the resuspended EVs was added to 1 μL of the CD81 

antibodies. The sample was incubated for 45 minutes at room temperature protected from 

light on a sample shaker (~1000 rpm). 300 μL of Isolation Buffer was added to wash the 

bead-bound EVs the sample was mixed by pipetting. The tube was placed on the magnet 

for one minute and the supernatant was discarded. The washing step was repeated once, 

and the sample was resuspended in 300 μL of Isolation Buffer for detection using flow 

cytometry (BD FACSAria).  
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Cells treated with EVs  

HCT116 cells were seeded at 1500 cells per well (see cell culture protocol) cells were 

cultured for 24 hours (Figure 3.1). The medium was removed from the cells by aspiration 

and 100 µL of each drug dilution was added to the empty wells. The cell treatment was 

carried out by diluting 5-FU solutions in a 1:1 mixture of cell culture media containing 3 

μL of fresh media, EV_DMSO and EV_5-FU respectively. Cells were incubated for 72 hours 

at normal cell culture conditions. To determine the cell viability at the end point, the MTS 

assay was performed as described previously (see section IC50 determination).  

 

Figure 3.1. Illustration of the experimental protocol 
Illustration of the experimental protocol for a) generation of CM by treating the HCT116 cells 

with 2.5 µM 5-FU or DMSO as a control for 72 hours. After the treatment the cell culture medium 

was collected and centrifuged whereafter the supernatant was collected. Lastly the CM were 

filtered. b) Treatment of cells with EVs extracted from CM. To extract the EVs the CM is 

subjected to a series of ultracentrifugation steps. After the EVs have been extracted they can 

be used to treat the cells at different drug dilutions. 
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iv. Results 
To start our investigation of chemotherapy resistance mechanisms, Drug Sensitive Cancer 

Cells (DSCCs) and Drug Resistant Cancer Cells (DRCCs) lines have been identified. The drug 

sensitivity of different CRC cell lines was identified by comparing half-maximal Inhibitory 

Concentrations (IC50), meaning the concentration that kills 50% of the cells when treated 

with the drug (Figure 3.2). Cells were treated with increasing 5-fluorouracil (5-FU) and 

the cell lines that had an IC50 below 5 μM were classified as DSCCs and those with an 

IC50 above 5 μM above were classified as DRCCs. The IC50 values of HCT116: 3.7 μM ; 

LoVo: 19.5 μM ; Colo320: 5.1 μM ; MDST8: 7.5 μM ; NCI-H716: 150 μM and SW620: 117.2 

Figure 3.2. Dose response curves from different CRC lines 
Dose response curves of CRC cell lines treated with different concentrations of 5-FU. Y-axis 

shows cell viability measured using alamar blue assay and x-axis shows 5-FU concentration in 

μM. The symbols represent the average, and the error bars represent the standard deviation 

(n=3). HCT116 IC50 = 3.7 μM, LoVo IC50 = 19.5 μM, Colo320 IC50 = 5.1 μM, MDST8 IC50 = 7.5 

μM, NCI-H716 IC50 = 150 μM and SW620 IC50 = 117.2 μM.  

 



    
 

 
 
 

116 

 

μM. Only one cell line, HCT116, was classified as DSCCs towards 5-FU with a IC50 of 3.7 

μM. 

 

 

Development of HCT116-Resistant cells 

To study the relationship between DSCCs and DRCCs the drug sensitive cell line HCT116 

was treated with long term exposure of 5-FU during several months to develop a DRCCs 

cell line from the parental HCT116 cell line. After several rounds of chemotherapy 

exposure, drug resistance was analysed by making new dose-response curves and 

determining the IC50 value. The HCT116 cell line that had been exposed to long term 5-

FU treatment (HCT116-R) showed an increase in the IC50 value when treated with 5-FU 

compared to that of the untreated HCT116 (Figure 3.3). IC50 value of HCT116 and 

HCT116-R were 3.9 and 6.2 μM, respectively.  

 

 

 

 

Figure 3.3. IC50 determination of HCT116 and HCT116-R cells 
Dose-response curves of a) HCT116 cells b) HCT116-R cells treated with different 5-FU 

concentrations. X-axis showing increasing 5-FU concentrations at 0, 2.5, 5, 10, 50 and 150 μM. 

Y-axis showing cell viability measured using MTS assay and normalized to the control. IC50 

values of HCT116 and HCT116-R were 0.74 and 4.9 μM, respectively. Error bars represent the 

standard error of mean. Dose-response curves and IC50 values were calculated by using 

Graph Pad Prism. 
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Transcriptomic analysis of HCT116 and HCT116-R cells 

Transcriptomic analysis was performed to detect possible genetic changes that could occur 

after the emergence of resistance. The transcriptome refers to the complete set of mRNAs 

found in a cell. RNA sequencing was performed on HCT116 and HCT116-R samples to 

identify the differentially expressed genes. Each sample was composed of a large starting 

material of approximately 104 cells, thereby minimizing potential errors that can occurs in 

samples with a low genetic material. To compare the total transcriptome of the two groups 

principal component analysis (PCA) was plotted. The main purpose of Principal Component 

Analysis plots is to visualize the major source of variation in the data and to identify 

potential outliers. Here we observe that that the triplicate of HCT116 cell samples clusters 

together in the upper right corner. The HCT116-R samples have a larger difference in the 

gene expression between the samples (Figure 3.4). The third HCT116-R sample had a 

lower genetic starting material which may be the cause of its divergence from the other 

two samples.  
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The heatmap displays genes that have been differentially expressed between HCT116 and 

HCT116-R cells. Over expressed genes (red) and under expressed genes (blue) are shown. 

The HCT116 and HCT116-R samples have two significantly different gene expression 

profiles where the triplicate samples show similar gene expression (Figure 3.5). Significant 

difference can be observed between the two groups where HCT116-R has an upregulation 

of multiple genes. In total, 12 716 genes were sequenced where most genes, 12 591, 

showed no changes in their expression level. When comparing the expression level of 

HCT116-R compared to HCT116 cells 83 genes were upregulated and 42 were 

downregulated. The heatmap shows the genes with the largest difference in their 

expression level with the log2 fold-change threshold set at 2. All samples were made in 

triplicates. 

Figure 3.4. Principal Component Analysis (PCA) of the 
transcriptomic data from HCT116 and HCT116-R cells 
Clustering of the transcriptomic data from the two cell lines HCT116 and HCT116-R by principal 

component analysis (PCA). The PCA compares the total transcriptome of the cells. The symbols 

represent the average of the two samples, HCT116 (light blue) HCT116-R (dark blue). The 

number of replicates were three (n=3).  
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To better visualize how much the genes were regulated a vulcano plot was made were 

genes that have been up or downregulated in the HCT116 cells compared to the HCT116-

R cells can be observed (Figure 3.6). In this plot we can observe the genes that has the 

highest significance in its up or down regulation. RPS4Y1, DDX3Y and AL928654.3 has been 

Figure 3.5. Gene expression profiles of HCT116 cells and HCT116-R 
cells  
Heatmap of the gene expression profiles in HCT116 and HCT116-R cells showing differentially 

expressed genes in HCT116-R compared to HCT116. The genes in the heatmap are ranked by 

its expression values with the log2 fold-change threshold set at 2. Red displaying upregulated 

genes, blue showing down regulated. The darker colour represents the gene with the highest 

expression.  Rows are genes and columns are samples (n=3). The name of each gene is 

displayed to the right.  
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downregulated in the HCT116-R cells (Figure 3.6). RPS4Y1 is a ribosomal protein, loss of 

function of RPS4Y1 have been associated with increased risk of cancer and could possibly 

be used as a cancer biomarker in the future (115). DDX3Y have been associated with poor 

outcome in CRC (116). AL928654.3 is a Long non-coding RNAs (LncRNAs), a large RNAs 

without protein coding ability. LncRNA plays a key role in gene regulation, competing 

endogenous RNAs (ceRNAs) in many kinds of cancers, by blocking miRNAs and reducing 

inhibition of their target messenger RNAs (mRNAs). Studies suggested that other LncRNAs 

inhibited the progression of colon cancer through the miR-93-5p/17-5p/NHLRC3 axis, 

which in turn could be a potential therapeutic targets for colon cancer (117).  

 

Genes that have been upregulated are RSP10-NUD3, AC069547.1 and RAB43 (Figure 3.6). 

It has been shown that several RAB members have been reported to promote 

tumorigenesis in many types of cancers. In a recent study it was shown that overexpression 

of RAB43 promoted proliferation and metastasis in gliomas (118). Furthermore patients 

with tumors positive for RAB43 had worse overall survival than patients with RAB43-

negative tumors (119). There is little found in the literature regarding the genes RSP10-

NUD3 and AC069547.1.  
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To identify the specific genes and pathways that have been differently expressed, pathway 

analysis was performed whereby a “oncogenes” filter was applied to select for genes 

related to oncology. Significant difference was observed in the PTEN, PIGF, p53, 

KRAS.LUNGBREAST, CSR and CAMP pathways (Figure 3.7) (Table 3.1). The phosphatase 

and tensin homologue (PTEN) is a tumor suppressor on chromosome 10  that signal cells 

to stop dividing (via AKT Serine/Threonine Kinase 1) and trigger cell death via apoptosis 

(120). Through the dephosphorylation of protein substrates, PTEN controls cell migration, 

cell adherence to surrounding tissues, and the formation of new blood vessels (121). 

Evidence also suggests that PTEN helps control insulin secretion which lead to increases 

tumor metabolism and growth (122).  

Figure 3.6. Volcano plot of differentially expressed genes  
The vulcano plot shows up and down regulated genes in HCT116 cells compared to HCT116-R 

cells. Blue dots show downregulated genes and yellow dots show upregulated genes. Genes that 

have been upregulated are RSP10-NUD3, AC069547.1 and RAB43. Genes that have been 

downregulated are RPS4Y1, AL928654.3 and DD3Y. Number of replicates were 3 (n=3).   
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The tumor suppressor protein p53 is a part of the p53 pathway composed of a network of 

genes involved in DNA repair and stopping cells with mutated or damaged DNA from 

dividing.  However, mutations in p53 are found in most cancers, and so contribute to the 

complex network of molecular events leading to tumor formation (123). The tumor 

suppressor protein p53 have prognostic relevance for many human tumor types where 

mutated p53 is often connected to drug resistance (123). The CSR genes pathway are 

involved in important processes in wound healing and angiogenesis, processes that are 

involved in contributing to cancer invasion and metastasis. Expression of the CSR signature 

predicted poor overall survival in several common epithelial tumors such as breast, lung, 

and gastric cancers.   

 

 

Figure 3.7. Upregulated pathways in HCT116-R cells 
Upregulated pathways that are related to chemotherapy drug resistance. Significant difference 

was observed in the pathways PTEN, PIGF, p53, KRAS, CSR and CAMP pathways. Statistical 

significance was calculated using students t-test. 
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Table 3.1. Pathways that have been identified to be up or down regulated in HCT116 
compared HCT116-R cells and their effects. 

PATHWAY  EFFECT P-VALUE REF 

PTEN  PTEN regulates cell migration, cell 

adhesion to surrounding tissues, and 

formation of new blood vessel via 

dephosphorylation of protein 

substrates 
 

0.00021 (122) 

P53 P53 is a direct transcriptional target 

gene of CTCF which in turn promotes 

colorectal cancer cell proliferation 

and chemotherapy resistance to 5-

FU via the P53-Hedgehog axis 

0.00024 (124) 

CAMP Oncogenic signature gene sets 
0.00033 (125) 

KRAS.LUNG.B

REAST_ 

Genes up-regulated in epithelial lung 

and breast cancer cell lines over-

expressing an oncogenic form of 

KRAS 

0.00090 
(126) 

PIGF  Plasental Growth Factor involved in 

wound healing immune regulation 

and angiogenesis 

0.00033 
(127) 
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Co-culture of HCT116 and HCT116-R cells as MCTSs  

After inducing drug resistance in HCT116 cells and creating a drug resistant cell line 

(HCT116-R) we were interested in observing the effects of co-culturing the cells. By 

culturing cells as MCTSs more physiologically relevant models are provided that closely 

mimicking in vivo conditions. Therefore, to investigate the potential cooperative effect 

between DSCCs (HCT116) and DRCCs (HCT116-R) the cells have been co-cultured as 

MCTSs (Figure 3.8). After two days of culture the cells form compact spheroids. The co-

culture spheroids had a uniform spherical shape with a diameter around 200 μm at day 

four. The cell distribution within the spheroids showed a homogeneous distribution of the 

DSCCs and DRCCs cells throughout the MCTSs (Figure 3.8), this cell distribution is likely 

due to similar cell surface markers. To distinguish each respective cell line, the cells were 

pre-stained with green cell tracker and orange, respectively. The relative number of each 

cell line could later be detected using confocal imaging.  

Figure 3.8. HCT116 and HCT116-R cultured as Multi-Cellular Tumor 
Spheroids (MCTSs) 
HCT116 and HCT116-R cells cultured as monoculture and as co-cultured spheroids. The cells 

were stained with green cell tracker and orange cell trackers, respectively. The images were taken 

at day four of cell culture. They display z-stacks of merged images of whole spheroids obtained 

from confocal imaging. Spheroids were treated with 0, 1, 2.5, 5, 10, and 50 µM of 5-FU for 3 days. 

The scale bar in white represents 200 μm. 
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The figure 3.9 illustrates three separate experiments where DSCCs (HCT116) and DRCCs 

(HCT116-R) were cultured as MCTSs. As a control the cells were cultured as monoculture 

spheroids. a-c) HCT116 cells cultured as monoculture (grey bar) and co-cultured MCTSs	

(green bars). d-f) HCT116-R cells cultured as monoculture (grey bar) and co-cultured 

MCTSs	(red bars). In	the MCTS	model, consisting of co-cultured DSCCs (HCT116) and DRCCs 

(HCT116-R), an increased cell survival was observed of both cell lines when the cells were 

co-culture compared to the monocultured cells at different drug concentrations (Figure 

3.9). Both the DRCCs (red bars) and DSCCs (green bars) have an increase drug resistance 

in the co-culture systems compared to cells cultured as monocultured (the grey bars). This 

suggests that the cells have the capacity to mediate 5-FU resistance to each other in co-

culture conditions. This could be due to crosstalk between the cells in response to 5-FU 

drug treatment, leading to increased cell proliferation.  
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Figure 3.9. Cell viability of monocultured cells compared to Multi-
Cellular Tumor Spheroids (MCTSs) 
Three separate experiments of HCT116 and HCT116-R co-cultured as MCTSs after 72 drug 

treatment. a-c) HCT116 cells cultured as monoculture (grey bar) and co-cultured MCTSs (green 

bars). d-f) HCT116-R cells cultured as monoculture (grey bar) and co-cultured MCTSs (red bars). 

Cells were stained with tracker CMFDA green and CMFDA orange cell trackers, respectively. The 

X-axis shows the amount of 5-FU ranging from 1 to 50 μM. Y-axis shows the cell viability 

normalized to the DMSO control. The error bars represent the standard deviation calculated using 

cells from four different samples. Statistical significance was calculated using a two-tailed 

Student’s t-test. A p-value of less than 0.05 and 0.01 was considered significant (*) and highly 

significant (**), respectively. 
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To analyze if the observed effects of increased drug resistance previously observed in the 

MCTS models were due to indirect effects CM from HCT116 cells were generated. The CM 

was made by treating HCT116 with 2.5uM 5-FU (CM_5-FU) or DMSO (CM_DMSO). The 

CM_DMSO was made as a control to compare if the effects were drug induced. Both the 

DSCCs and DRCCs were treated with the CM_5-FU and CM_DMSO. The DSCCs showed no 

effect on cell viability when treated with its own CM (Figure 3.10.a). However, when the 

DRCCs were treated with the CM_5-FU an increased cell viability was observed (Figure 

3.10.b-d). The increased cell viability was only present in cells treated with CM_5-FU 

indicating that the CM from DSCCs is changed in response to the 5-FU treatment. It is likely 

that the DSCCs secrets molecules that help in the viability of DRCCs when treated with 5-

FU (Figure 3.10).  
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Figure 3.10. HCT116 and HCT116-R treated with Conditioned 
Medium (CM) 
a) Schematic of cells treated with CM of HCT116 cells. Recipient cells were treated with either 

CM_vehicle or CM_5-FU. b) HCT116 cells treated with their own CM c-e) HCT116-R cells treated 

with HCT116 CM. The bar graph illustrates cells treated with; control (grey), CM_DMSO (blue) 

and CM_5-FU (red). X-axis shows the amount of chemotherapy 5-FU at increasing concentration 

ranging from 5 to 500 μM. Y-axis shows the cell viability normalized to the control. Cell viability 

was measured using MTS assays and the error bars represent the standard error of mean. 

Statistical significance was calculated using a one-way ANOVA followed by two-tailed equal 

variance Student's t-test. A p-value of less than 0.05 and 0.01 were considered significant (*) and 

highly significant (**), respectively, when compared to the control. 

 



    
 

 
 
 

129 

 

Characterisation of EVs 

When cells were not cultured in direct contact with each other, increased drug resistance 

was observed; thus, these observed mechanisms were thought to be mediated by cell 

secreted molecules. It is known that tumor cells interact with each other through multiple 

different cell-signalling mechanisms. Several studies have shown that EVs are the key 

mediators involved in cell-to-cell crosstalk that led to tumor progression. To determine if 

EVs were precent in the sample NTA, flow cytometry and TEM was therefore performed. 

 

NTA can be used to characterize nanoparticles in suspension in the size range of 10 – 2000 

nm. EVs are between 30 nm–10 µm which makes it possible to detect using NTA. NTA is 

a method for measuring the EV concentration and size distribution where both light 

scattering and Brownian motion are used to detect particles in the nm-range. Using NTA 

both the size of individual particles and their total concentration can be determined with 

a dark field microscope, the laser shines through the sample which scatters when it 

encounters a particle. Individual EVs can be identified by measuring the way that the light 

scatters through the sample, after which their Brownian motion is tracked. Using the 

Stokes-Einstein equation the velocity of the particle can thereafter be used to calculate the 

particle size. (128). The NTA analysis was performed on EV_DMSO and EV_5-FU samples 

whereby the mean particle concentration was 1,40 x 1011 and 8 x 1010 particles/mL for 

each sample respectively. The vesicles were in the size range of around 150 nm for the 

samples were EVs had been extracted, more specifically EV_DMSO were 156.10 ± 0.14 nm 

and EV_5-FU were 152.80 ± 5.09 nm. In both samples a distinct peak that can be detected 

(Figure 3.11).   
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For further characterization, the EVs were classified into different size and shape categories 

using TEM. For biological samples, TEM can transmit electrons through samples as thin as 

100–200 nm to produce images with a potential subnanometer resolution. To visualize the 

EVs, the samples were prepared using a standardized procedures whereby the sample 

containing the EVs was prepared on TEM grids and observed in an electron microscope. 

Particles from the sample were adhered to carbon-coated formvar grids. To fix the EVs 

they were treated with paraformaldehyde to preserve their structures as the imaging is 

carried out in a vacuum. After fixation, the grid was placed on a droplet of contrast agent, 

uranyl acetate. The sample was thereafter exposed to an electron beam, and images were 

created based on the detected transmitted electrons. The contrast agent scatters electrons 

more efficiently thus staining the background and making it appear darker than the EVs. 

Consequently, the EVs should appear as bright particles on top of a dark background. 

Representative images were taken at multiple positions on each grid. EVs in the size range 

of around 100 nm were observed (Figure 3.12). Notably, EVs observed by TEM often 

appear as cup shaped because of dehydration during sample preparation which can be 

seen in the sample named “Standard” in Figure 3.12. This sample was prepared from 

HCT116 EVs that had been purchased dehydrated to be used as a control. Which is why 

Figure 3.11. Nanoparticle Tracking Analysis of Extracellular 
Vesicles (EVs) 
Nanoparticle Tracking Analysis (NTA) analysis was performed on EV_DMSO and EV_5-FU 

samples. On the x-axis the size distribution is displayed. On the y-axis the absolute number of 

particles are shown. For both sample the peaks are at approximately 100 nm.    
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the shape might be different because the EVs had been dehydrated. In the EV sample from 

HCT116 cells, we instead observe a double membrane structure (Figure 3.12).  

 

 

Thereafter flow cytometry was performed to determine presence of EVs. EVs cannot be 

detected alone using regular flow cytometers because the sensitivity is too low, therefore 

polystyrene beads with a larger diameter of 4.5 μm were used (68). The beads were coated 

with antiCD63, a common EV marker, so that the EVs can attach to the beads. Beads alone 

were used as a control. To obtain a fluorescent peak that can be distinguished from the 

beads, the EVs were stained with red fluorescently labelled CD81 antibodies, another 

common EV surface marker. Ideally a large fluorescent shift between the two peeks should 

be observed, then the beads are fully saturated with EVs. Then it can be certain there is a 

large amount of EVs in the sample. In this experiment we observe a slight shift to the right 

in the EVs sample, indicating that a low number of EVs are present in the sample (Figure 

3.13.b). 

 

Figure 3.12. Transmission Electron Microscopy (TEM) images of 
Extracellular Vesicles (EVs) 
Extracellular Vesicless (EVs) were imaged using Transmission Electron Microscopy (TEM). 
Control sample represents PBS alone, Standard represents EVs from HCT116 cells and 5-FU 

represents EVs from HCT116 CM_5-FU. Scale bar shows 100 nm. 
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Effects of EVs on cells 

EVs were extracted from the HCT116 CM_DMSO and CM_5-FU by using a standardized 

ultracentrifugation protocol. Then, we performed the same drug gradient experiments as 

previously, however in this experiment EVs were also directly added to the cells. The cells 

were treated with medium, EV_DMSO and EV_5-FU whereafter the cell viability was 

determined. The DSCCs treated with their own EVs did not show any significant effect 

Figure 3.13. Flow cytometry of bead-bound Extracellular Vesicles 
(EVs) 
Flow cytometry performed on bead-bound EVs. a) EVs carrying the antigen (CD63) will be captured 

on the beads whereafter the red fluorescently labelled AntiCD81 can be attached to the EVs. b) The 

peaks show the PBS control (grey) and EV_5-FU (red) samples.  
 

EV_5-FU

Control
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b)
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from the treatment (Figure 3.14.a-b). However, at 5 μM 5-FU there was a significant effect 

of the EV treatment. This could be due to errors in the manipulation when the experiment 

was performed. The DRCCs treated with the DSCCs EVs showed significant difference in 

the EV treatment at 0, 5 and 300 μM (Figure 3.14.c). This however did not seem to be 

reproducible as seen in the second experiment (Figure 3.14.d) where little effect was 

observed due to the EV treatment.    

Figure 3.14. Cells treated with Extracellular Vesicles (EVs) 
Cells treated with EVs extracted from CM. a-b) HCT116 cells treated with their own EVs. c-d) 

HCT116-R cells treated with the HCT116 EVs. EVs extracted from CM_DMSO (blue boxes) and 

CM_5-FU (green boxes), medium was used as a control (grey boxes). X-axis showing increasing 

5-FU concentrations and Y-axis showing cell viability measured using MTS assay. The bars 

represent the average and the error bars represent the standard deviation (n=3). Statistical 

significance was calculated using a one-way ANOVA followed by two-tailed equal variance 

Student's t-test. A p-value of less than 0.05 and 0.01 were considered significant (*) and highly 

significant (**), respectively, when compared to the control. 
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v. Discussion 
 

We started by identifying CRC cell lines that we classified as Drug Sensitive Cancer Cells 

(DSCCs) and Drug Resistant Cancer Cells (DRCCs) towards 5-FU (Figure 3.2). HCT116 was 

the only cell line that was identified as DSCCs. Consequently, to analyze the potential effects 

of co-culturing DSCCs and DRCCs a drug resistant HCT116 cell line (HCT116-R) was created 

from the parental HCT116 cells.   

 

Development of drug resistant cells 

In this study, we generated a 5-FU-resistant cell lines from HCT116 cells. The HCT116-R 

cell line showed approximately 1.5 times higher IC50 value compared to the parental 

HCT116 cell line (Figure 3.3). To further confirm these results as well as identify potential 

pathways which are involved in resistance mechanisms HCT116 and HCT116-R 

transcriptome have been sequenced. A significant difference was observed in the gene 

expression profiles	and regulated pathways between the two cell lines (Figure 3.5) (Figure	

3.7). Some of the genes that have been downregulated in the DRCCs are RPS4Y1, DDX3Y 

and AL928654.3. Some of the genes that have been upregulated are RSP10-NUD3, 

AC069547.1 and RAB43 (Figure 3.6). Some of these genes have previously been shown to 

be involved in drug resistance mechanisms as well as in cancer development (see results 

for a more detailed description). The specific pathways and mechanisms involved needs 

to be further analysed to gain deeper insights in specific processes that are at play. The 

epigenetic changes that account for the differences between DSCCs and DRCCs are only 

beginning to be uncovered. By identifying specific genes and pathways that differ in the 

DRCCs we aim to identify changes that can be useful in gaining new insights in how cells 

develop resistance, which in the future could be useful in developing new treatment 

strategies (41). This provides a tool to investigate the molecular pathways and detailed 

mechanisms that may be associated with drug resistance in CRC.  

 

In the pathway analysis we observe a significant change in the PTEN, PIGF, p53, 

KRAS.LUNGBREAST, CSR and CAMP pathways (Figure 3.7) (Table 1.3). Some of these 

pathways have been shown to be contributing factors in drug resistance mechanisms and 
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tumor progression. However, an important point to consider is how long the resistant state 

lasts. Recently it has been suggested that drug resistance might be a transient state where 

cancer cells undergo phenotypic switching, in which the cells change from a more drug 

sensitive state to a drug resistant state (129). This is due to certain genes being activated 

or disactivated during drug treatment. The fraction of cancer cells that can transit 

reversibly between the different stages and the proportion that remains unchanged should 

be identified to develop more effective treatment strategies. It has been further 

hypothesized that cancer stem cells (CSCs) can play a key role in cell plasticity as CSCs as 

they have many of the key properties for phenotypic switching (130). The molecular 

mechanisms underlying these dynamic changes is of fundamental importance to gain more 

information in the quest to understand how cells develop resistance.  

 

Cooperative effect of drug resistant cells  

To investigate the potential cooperative effect between the DSCCs and DRCCs the	cells	

where	 cultured	 as MCTSs. As a control, each respective cell line where cultured as 

monocultured spheroids under the same culture conditions. When comparing the 

monocultured spheroids to the MCTSs models, it was shown that the MCTS model had an 

increased cell survival during drug treatment. In particular, the DRCCs showed highest 

impact of the co-culture in all experiments (Figure 3.9). To further investigate this effect, 

CM from the DSCCs (CM_DMSO and CM_5-FU) was applied to the DRCCs. Cell viability was 

monitored by using a viability assay whereby it was shown that DRCCs treated with DSCCs 

CM stimulated the outgrowth of the DRCCs (Figure 3.9). The CM of the DSCCs did not show 

an effect on themselves, but the cell survival of the cells was sustained by the CM. These 

combined effects indicate that the DSCCs influences the DRCCs proliferation. As the cell 

communication is observed in the CM it is believed that these effects are due to cell 

secreted molecules of DSCCs that induce the survival of the DRCCs.  

 

Characterisation of EVs and their effect on cell proliferation 

We observe both direct cell-to-cell interactions, as seen in the MCTS models, and indirect 

cell communication via CM. It was therefore believed that the crosstalk could be mediated 
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through cell secreted molecules. Within the TME, EV mediated crosstalk plays a key role 

in heterogeneous cell populations where in a previous study it has been shown that tumor 

EVs have complex interactions with nearby stromal cells like fibroblasts and endothelial 

cells (108). Glioblastoma-derived EVs containing mRNA, miRNA, and angiogenic proteins 

have been taken up by recipient cells which promoted tumor growth and endothelial cell 

proliferation. Based on this we were interested in investigating the roles of EVs in the drug 

resistance we had observed, were DSCCs increased drug resistance in DRCC. 

 

EVs can contain a great amount of genetic information that could be transferred to other 

cells, thereby promoting tumors progression in cancer patients (131). To obtain a complete 

picture of EVs and their role in cell communication, we decided to characterize the EVs in 

terms of size distribution, load, and quantification of the number. NTA, flow cytometry, 

and TEM are some of the go-to methods for confirming the presence of EVs in samples 

(128). First, to analyze if EVs could be detected in the cell secretome, we used standardized 

ultracentrifugation protocols to up concentrate the EVs in the sample. EVs detected from 

the NTA analysis had a size range of 150 nm and were detected in a mean particle 

concentration of 1,40 x 1011 and 8 x 1010 particles/mL for the EV_DMSO and EV_5-FU 

samples respectively (Figure 3.11). Using TEM it is possible to detect the shape of EVs and 

their size. We observed EVs in a size range of around 100 nm with a double membrane 

spherical shape in the EV_5-FU sample (Figure 3.12). Flow cytometry is used to detect the 

presence of EVs in the sample, we could observe a slight florescent shift in the EV sample 

compared to the control (Figure 3.13.b). These results combined strongly suggests there 

are EVs in the cell secretome of cells treated with chemotherapy 5-FU.  

 

 It has been shown that EVs secreted from mutated HCT116 cells were involved in the 

crosstalk between immune cells. EVs containing miR-1246 were release form the 

malignant cells leading to an altered TME composition, and an increasing abundance of 

tumor supporting macrophages (132). In future studies we aim to get a more 

comprehensive picture of the EVs and their roles in promoting drug resistance. By 

analyzing their cargo it is possible to find specific pathways that can have key roles in 

promoting drug resistance.     
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We analysed if the EVs had any potential direct effect on the cells by applying the EVs to 

cells at different 5-FU concentrations. DSCCs treated with their own EVs showed no 

significant effect from the treatment except for cells treated at 5 μM 5-FU (Figure 3.14.a-

b). However, when DRCCs were treated with the EVs an increased cell viability was 

observed at 0, 5 and 300 μM 5-FU (Figure 3.14.c). This experiment was not reproducible 

as the follow up experiment did not show any effects of the EV treatment (Figure 3.14.d). 

Therefore, to get further insights in these mechanisms analyzing the EV cargo could 

provide deeper understandings in what molecular processes are occurring. EVs carries a 

complex molecular composition where there is great variation between each vesicle. This 

could explain why an increased cell viability was observed in some samples while in others 

no effects were observed.  

 

vi. Chapter conclusion and perspective 
 

One of the major challenges in the treatment of CRC is the development of drug resistant 

cells. However, there is currently a lack of the understandings of the mechanisms behind 

drug resistance development as well as understanding the role of DRCCs within the tumor. 

Therefore, assays that closely study these mechanisms are crucial to unravel the 

mechanisms by which tumor cells grow and metastasize. In this chapter we investigate 

the evolution of chemotherapy resistance in cancer by analyzing cell behaviour such as 

proliferation, death, and migration in response to drug treatment. Here we have begun to 

study the mechanism of resistance development as well as studying the cooperative effect 

between DSCCs and DRCCs. This has been studied by co-culturing DSCCs and DRCCs as 

MCTSs whereby we could observe an increased cell survival of the DRCCs under drug 

treatment. In the future we are interested in further analyzing if similar effects could be 

found in other CRC cell lines.   

 

To further study these mechanisms and determine if they are due to cell secreted molecules 

CM from DSCCs were applied to DRCCs. Under 5-FU drug treatment, an increased cell 

survival was observed when the DRCCs was treated with CM from DSCCs. These observed 
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results suggest that the DSCCs can have a large impact in the overall tumor development 

and progression. The developed strategies could constitute innovative and pertinent tools 

that could give pertinent elements for our understanding on how cells develop resistance 

towards cancer drugs.  

 

By developing new strategies for the co-cultures of CMS cells, we have identified potential 

mechanisms involved in the crosstalk between these cells. We started by studying the 

potential interactions between various molecules found in the cell secretome of HCT116 

CM_5-FU and CM_DMSO by analysing the cell metabolites (see Chapter 2). Thereafter we 

continued our investigation of the HCT116 CM by detecting and characterizing their EVs. 

In future studies, we hope to learn more about these mechanisms and their effect on the 

tumor progression to gain a better understanding of how drug resistance is developed. 

Therefore, we are interested in separating the soluble metabolites from the EVs to 

investigate the contribution of the different components within the cell	secretome. Once 

this has been identified Next Generation Sequencing (NGS) can be performed on the 

substrates and potentially specific pathways can be untangled.    

 

Here we have performed transcriptomic sequencing of HCT116 and HCT116-R cells. We 

have compared the transcriptome profile of the two cell lines to identify potential key 

genes or pathways which may be involved in resistance mechanisms. However, when 

performing transcriptome sequencing, there might be genomic differences that are 

dependent on where the cells are in the cell cycle. Considering that the transcriptomic 

profiles only represent a single snapshot in time. Therefore, to get deeper knowledge of 

these mechanisms, it is of interest to repeat these experiments with other cell lines (or 

primary tumor tissue) to see if similar mechanisms could be detected.  
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Chapter 4 
Spheroids on chip approaches for studying resistance 

mechanisms and cell to cell interplay 
 

i. Introduction 
 

Microfluidics are miniaturized systems that which are used to manipulate fluids at nano-

liter to micro-liter scale. Microfluidic research date back to the early 1980s (133) (134) 

and is currently advancing at a rapid pace. It is a multidisciplinary field that combines 

chemistry, engineering, physics, nanotechnology, and biotechnology. Microfluidic systems 

present important tools to study reactions and mechanisms at sub-micron scale (135). 

Because of the small length scale of the system, factors such as surface tension, energy 

dissipation, and fluidic resistance starts to dominate the system and thereby fluid 

behaviour varies substantially at the microscopic scale compared to the macroscopic scale. 

There are many advantages in using microfluidics, it provides precise liquid handling 

capacities, flexibility in chip design, uses low volumes of liquid thereby lowering the cost. 

It can be tailored to suit a wide range of experimental approaches. Common uses of 

microfluidics range from applications in physics to study fluid behaviour to chemical 

applications studying chemical reactions or biological applications include organ on a chip 

models and single cell assays (136).  

 

One of the more common applications of microfluidics are organ-on-chip systems where 

whole organs have been mimicked at a microscale (137). From this, tumor-on-chip models 

have been made which have largely been based on pre-existing on organ-on-chip 

models.  Microfluidic tumor spheroid models stand out for their ability to automatically 

develop hundreds of spheroids in parallel and reduced the sample volume as liquids can 

be precisely controlled. Microfluidics also offers precise control of the physical scale down 

to tens to hundreds of micrometres that matches that of the TME. Furthermore, microscopy 

can be used to monitor events in real time with high spatiotemporal resolution (138). All 

these properties combined makes microfluidic platforms ideal for in vitro spheroid 

cultures.  
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Tumor spheroids have been developed using micro patterning (139), u-shaped microwells 

(140) and digital acoustofluidics (141). Droplet methods are attractive tools since they can 

provide a scalable way of producing single compartments for spheroids to be produced 

while also offering a broad range of manipulation tools. Lee et al. developed a platform 

for spheroid generation using gellinated droplets (142). This platform allowed a high 

throughput of 42,000 spheroids per experiment, but the manipulation and analysis of the 

spheroids were limited. In the group of Charles Baroud, Sart et al. have described a 

microfluidic approach for spheroid culture on chip (143). This method is based on droplet 

microfluidics where cells are encapsulated in droplets that can be trapped on the chip in 

anchored droplet traps (Figure 4.1.a). Using this method hundreds of spheroids could be 

produced in a relatively short time frame. The method used traps which allowed the 

spheroids to be confined on the microchip thereby precise image could be performed in 

real time. This made it possible to monitor the cell distribution within the spheroids over 

time. To expand from this Tomasi et al. altered some of the design features on the 

microchip which allowed for easy trapping of secondary droplets (144). Secondary 

droplets can be used to add new cell culture media to spheroids, allowing for longer cell 

culture on chip (Figure 4.1.b). It is also useful for drug screening, as drugs mixed with 

fluorescent dye can be added to the droplets, thereby allowing different drugs and drug 

concentrations to be analysed on the same chip (Figure 4.1.c). Using this method Tomasi 

et al. could perform high-throughput drug screening where individual spheroids could be 

monitored in real time. These combined results led up to the creation of a company called 

Okumera which specializes in the creation of microfluidic platforms for spheroids culture. 

In this study we aim to use their platform for co-culturing HCT116 and HCT116-R cells as	

MCTSs. 
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Figure 4.1. Microfluidic chip design  
a) The design of the microfluidic chip showing the droplet production, distribution and trapping. b) 

On the image to the left, droplets have been injected on the chip and each trap has been filled 

with a droplet. On the image to the right, small droplets (dark dye) have been trapped on the 

triangle part of each anchor. Scale bar is 100 μm. c) The image to the left show spheroids on chip 

and the image to the right display secondary droplets with varying drug dilutions that has been 

trapped on the triangle part of the anchor. The drugs have been labelled with florescent dye and 

thereby multiple drugs can be loaded on the same chip. Scale bar is 100 μm. The image is 

modified and taken with permission from Tomasi et al. (144). 

 
 

a)

b)

c)
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Droplet formation and manipulation 

Droplet-based microfluidics is a high throughput method that uses an immiscible fluid 

phase combined with an aqueous phase to create independent micro reactors in form of 

nano-liter to pico-liter droplets (Figure 4.2.a) (145). Each droplet acts as an individual 

compartment and can be used to compartmentalize single cells in a high throughput 

manner. Large numbers of droplets can be generated at astonishingly high rates (>107/s) 

(146). One of the major advantages with using droplet-based microfluidics relies on its 

high throughput screening capabilities, making it possible to analyze a large set of cells 

from complex and heterogeneous populations in a relatively short time frame (147). 

 

Traditionally, droplets have been produced using T-junction (Figure 4.2.a), flow-focusing 

(Figure 4.2.e) and coaxial focusing structures. Once droplets have been made there are 

multiple techniques readily available to manipulate the droplets. By for example placing 

an electrical field over the droplet, the surface tension is temporarily broken making it 

possible to perform multiple different manipulations. These include droplet splitting 

(Figure 4.2.c) (148), droplet merging (Figure 4.2.f) (149) and pico-injection (Figure 4.2.g) 

(150). Droplet splitting is a useful technique that can be performed to detect multiple 

analytes from the same droplet. Droplet merging and pico-injection can be performed to 

inject something into the droplet, this can include a cell assay. To keep the droplets on the 

microfluidic chip they can be trapped in different geometric constrains that can be placed 

on the chip. This way multiple reaction chambers can be placed on chip and reactions can 

take place in parallel and be monitored in real time.   
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(151) 

ii. Motive 
 

We began with a proof-of-concept study where DSCCs and DRCCs were co-cultures as 

MCTSs using nonadherent u-shaped well plates. In the co-culture systems, crosstalk was 

observed between the cells upon 5-FU drug treatment. We discovered that the secretome 

of DSCCs increased the proliferation of DRCCs (see chapter 3). To build on this, we have 

aimed to use the microfluidic platforms from the company Okumera to create hundreds of 

uniform spheroids in a relatively short time frame. Their platform enables real time 

monitoring of the cell distribution within the spheroids. This is particularly interesting as 

we can study the cell distribution of DRCCs and DSCCs in the co-culture systems. Thereby 

we could monitor how the cells grow within the spheroids as well as the interactions 

between the DRCCs and the DSCCs. Furthermore, their platform enables fast drug 

screening thereby multiple drug concentrations and mixtures can be administered to the 

cells in an automatic way and the cell viability can be analyses.  

 

 

Figure 4.2. Droplet microfluidic and its manipulation tools  
a) Droplet production using a T-junktion. b) Droplet sorting. c) Droplet splitting d) Droplet 

fusion by electro coalescence e) Droplet formation from jetting in a flow-focusing device f) 

droplet merging and g) Pico-injection. Image modified from Theberge et al. (151). 
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iii. Methods 
 

Microfluidic chip fabrication     

The silicon wafers were placed on a 95 °C hotplate for five minutes to remove any potential 

humidity or water residue from the wafer. Photoresist (SU-8 3010) was spin coated on 

the silicon wafer and cross-linked in the pattern of the microfluidic device using 

photomasks and UV light exposure. The spin-coated wafer was pre-baked by placing it on 

a 65 °C hot plate for one minute. Polydimethylsiloxane (PDMS) replica molds were made 

by mixing 10:1 ratio of PDMS to curing agent (Sylgard 184, Dow Chemical, MI, USA) and 

heated at 80°C for two hours.  

 

For the fabrication of the bottom part of the chip, the molds for the chambers were covered 

with PDMS. Then, above the anchored chamber traps, a glass slide was placed on the 

uncured PDMS. Finally, the mold was heated for 15 minutes on a hot plate at 180 °C. The 

device was then bonded to seal the top and the bottom sides using oxygen plasma 

treatment (Harrick, Ithaca, USA). Thereafter the surface of the microfluidic channels was 

treated by filled the channels three times with Novec Surface Modifier (3 M, Paris, France), 

a fluoropolymer coating agent for placed on a hot plate for 30 minutes at 110 °C. 

 

Cell loading on chip 

All experiments were carried out using FC40 fluorinated oil (3M) combined with a 

biocompatible FluoroSurfactant (Ran Biotechnologies). The solutions were loaded in 

syringes made of either glass (SGE) or plastic (Terumo). PTFE tubing (Adtech) was used 

to connect the syringes to the PDMS chips. The solutions and corresponding flow rate were 

operated by syringe pumps that were computer controlled (neMESYS, Cetoni). The 

experiment started by preparing a cell solution (see Chapter 3 Methods) containing 1 μM 

GFP cell tracker and 3 μM Pi (ThermoFisher Scientific, USA). The cells were loaded on to 

the chip in one inlet while another inlet was loaded with the oil solution. The flow rates 

were kept at 40 μl/min and droplets were produced at the T-junction. After the droplets 

have been created, they are able to attach to the anchored traps. Once the droplets have 
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been trapped the cells were left to settle down and to organize as spheroids for 24-48 

hours in the CO2 incubator.  

 

Droplets with varying cell densities were created to determine the number of HCT116 and 

HCT116-R cells that can be cultured as spheroids on the chip. For the small traps 20 and 

50 cells were used. For the larger trap 75 and 150 cells were used. The experiments were 

carried out for eight days during	which	the spheroids	imaged every day using widefield 

fluorescence microscopy (Zeiss Axio Observer Z1) at 10X magnification. Using the acquired 

images, the spheroid diameter could be measured using Fiji (ImageJ) software. For the co-

culture experiments, the cells were further imaged at day two and four using confocal laser 

scanning microscope (Zeiss LSM710) to determine the relative number of each respective 

cell line.  

 

Drug treatment  

Drug treatment was performed by adding a secondary droplet that can get trapped in the 

triangle part of the anchor and thereafter merged with the existing trapped droplet that is 

located in the trapping chamber. The trapping chamber is constantly kept filled with FC40 

fluorinated oil (3M). Droplet merging is performed by changing the oil and filling the 

trapping chamber with a 20% (v/v) 1H,1H,2H,2H-perfluoro-1-octanol (Sigma Aldrich USA) 

solution dissolved in 3 M Novec™-7500 Engineered Fluid. The surface tension of 

1H,1H,2H,2H-perfluoro-1-octanol is lower compared to the FC40 fluorinated oil thereby 

enabling droplet merging.  

 

The to enable the secondary droplet to attach to the triangle part of the anchor, the 

secondary droplet needs to be 30 times smaller compared to the trapped droplet. 

Therefore, to have a final 5-FU concentration of approximately 2.5 μM, the secondary 

droplet must contain 30 times higher 5-FU concentration. To determine the 5-FU 

concentration within the spheroid traps the 5-FU was mixed with 1 μM Flouro dye 647 

(ThermoFisher Scientific, USA).  
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iv. Results 
Previously we have cultured DRCCs and DSCCRs as MCTSs in u-shaped wells whereby an 

increased drug resistance was observed in the co-culture systems (see Chapter 3). Here 

we have cultured the same cell lines using a microfluidic platform. Using well plates, the 

cells form compact spheroids after one days of cell culture (see Chapter 3). On the 

microfluidic platform, it took approximately two days for the cells to form compact 

spheroids (Figure 4.3). Using the microfluidic platform, the cells have less access medium 

as compared to well plate settings. This might cause the cells to grow slower and thereby 

the time for spheroid formation is longer.  
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Furthermore, to analyze the cell growth on chip the spheroid diameter was measured 

every day using microscopy. It was observed that the diameter increased slightly over time 

(Figure 4.4). As the spheroids grow, it can be expected that the spheroid diameter also 

increases. Here we can only observe a slight increase in the spheroid diameter. When 

looking at Figure 4.4 it is observed that one of the spheroids (BT80 co-culture) increase 

its diameter drastically over time. This is the only spheroid cultured in the big trap, which 

Figure 4.3. Spheroid formation over time 
Cells cultured as spheroids using microfluidic droplet traps. Representative live cell confocal 

fluorescence microscopy images showing HCT116 spheroid formation from day zero to day 

two post seeding. The pictures illustrate how spheroids are formed after approximately two 

days of cell culture. Monoculture of HCT116 and HCT116-R cells, respectively. MCTSs of 

HCT116 + HCT116-R at (50/50%). HCT116-R is stained with CMFDA green cell tracker. PI is 

added to all droplets staining necrotic cells in red. Scale bars=30 μm. 
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could be an indication that the larger traps are better suited for long term cell culture. In	

the	big	traps the droplet size is larger and thereby the	cells	have more cell culture medium. 

However, as the spheroids mature with each day, the compactness also increases. Thereby 

the spheroid diameter might not be the best way to determine cell growth within the 

spheroids. 

 

Thereafter cell viability was determined by adding PI to the droplets on day 0 and counting 

the number of red fluorescent cells. PI has an excitation maximum near 500 nm and an 

emission maximum at 625 nm in the absence of cells. Binding of PI to DNA causes a red 

Figure 4.4. Spheroid diameter measured over time  
The box plot shows the diameter of each individual spheroid at day 2, 4 and 7. The small trap 

(ST) was 400 μm in diameter and the big trap (BT) was 800 μm in diameter. ST was seeded with 

40 cells and BT was seeded with 80 cells. The co-culture of HCT116 and HCT116-R cells was at 

(80/20 %) of each respective cell line. HCT116 and HCT116-R were monoculture as a control.  
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shift of the excitation maximum to 540 nm and the emission maximum to 640 nm, with a 

two- to threefold increase in fluorescence intensity. Once the cell has entered cell death, 

PI can access the chromosomes which thereafter starts to emit a bright red fluorescent 

colour. Because the PI remains stable over time, it is possible to count the number of cells 

that died each day. It	can	be	observed	that	the	cell	viability	is	stabile	over	time. At	day	four	

the	 cell	 viability	 remains	 high,	 however	 at	 day	 seven	 it	 starts	 to	 decrease	 slightly	 from	a	

viability	at	1	to	0.8	(Figure 4.5).		
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Figure 4.5. Cell viability measured over time 
Cell viability was measured by adding PI at day 0 and then detecting the number of cells stained 

that were stained with PI over time. All cells stained with PI are non-viable cells. The small trap 

(ST) was 400 μm in diameter and the large trap (LT) was 800 μm in diameter. Viability ranges 

from 0 (all cells stained with PI, corresponding to a situation with no viable cell) to 1 (no cell stained 

with PI, thus corresponding to a situation with all cells alive). The number of cells are indicated in 

the box (ie. 40 or 80 cells). Cells are either co-culture of HCT116 and HCT116-R cells (80/20%) 

or monocultured HCT116 and HCT116-R. The standard deviation is based on over 100 replicates. 
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The box plot shows the spheroids viability for each individual spheroid over time. Most 

spheroids display high cell viability over time (Figure 4.6), however the spheroids 

displaying low cell viability can be removed from the experiment using computational 

methods. At day two and day four the spheroids have a high cell viability. At day seven 

the cell viability starts to decrease (Figure 4.4). Most of the dead cells that are located on 

the outside of the spheroid (Figure 4.7). This could be because the PI cannot efficiently 

penetrate the spheroid and thereby the cells in the spheroid core are not stained. Or the 

more likely option might be that the spheroid is shedding the necrotic cells leaving them 

on the outside of the spheroid, as observed in a previous study where HCT116 cells were 

cultured as spheroids (152).  
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Previous we have observed that co-culture systems consisting of HCT116 and HCT116-R 

cells cultured as MCTSs in u-shaped well plates displayed an increased cell viability in the 

co-culture systems compared to the monoculture (see Chapter 3). Therefore, we wanted 

to analyze if similar affects could be observed on microfluidic platforms. Here we have co-

cultured HCT116 and HCT116-R cells as MCTSs on a microfluidic platform (Figure 4.7). 

We are currently analyzing the acquired images to see if we can detect similar results on 

the microfluidic platform. Preliminary results suggests that DRCCs sustain the proliferation 

of DSCCs. 

Figure 4.6. Box plot showing cell viability in each spheroid trap   
The box plot shows cell viability in each spheroid trap measured at day 2, 4 and 7. Cell viability 

was analyzed by detecting the number of cells stained with Pi using florescent microscope. The 

small trap (ST) was 400 μm in diameter and the big trap (BT) was 800 μm in diameter. ST was 

seeded with 40 cells and BT was seeded with 80 cells. The co-culture of HCT116 and HCT116-

R cells was at (80/20 %) of each respective cell line. HCT116 and HCT116-R were monoculture 

as a control.  
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v. Discussion 
 

Using microfluidic platforms for culturing spheroids enables high throughout and precise 

manipulation of fluids. Since the liquids inside the microchip can be accurately controlled, 

it is possible to significantly lower the volume of reagents and, as a result, the total number 

of cells needed. This is ideal for clinical samples which are precious where amount of 

tissue taken from the patient can be very low, resulting in only a few viable cells. Another 

advantage is that the loading time is reduced as the sample can be injected directly on to 

the chip and droplets can automatically be produced thereby reducing the shear stress 

that can otherwise be placed on the cells. However, a disadvantage might be that the 

Figure 4.7. Co-culture of HCT116 and HCT116-R 
Representative live cell fluorescence microscopy images showing spheroid at day two and day 

four post seeding. Scale bars=100 μm. Monoculture of HCT116 and co-culture of HCT116 and 

HCT116-R at 20% and 50% of HCT116-R, respectively. The HCT116-R cells were stained with 

cell tracker green. PI was added to all traps staining necrotic cells in red. Scale bars=100 μm. 
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exchange of liquids is more troublesome leading to an accumulation of toxic cell 

metabolites thereby affecting the cell viability. To circumvent this Tomasi et al. developed 

a droplet trap platform where multiple droplets can be trapped after each other, enabling 

better exchange of liquids (144). 

 

Here to generate spheroids on the microchip we used a technique called “anchored 

droplets” (143) (144). The microfluidic device was composed of a droplet generating part, 

followed by a trapping chamber that consists of 247 chambers traps were the droplets 

were trapped (Figure 4.1). Two different designs of the traps were used, small traps (400 

μm in diameter) and big traps (800 μm in diameter). Droplets were created with a similar 

size as the trapping chambers, this allows the droplets to be trapped once it passes a 

chamber trap. Once the droplet is trapped inside the chamber it will form a u-shape with 

the help of gravity. The u-shape enables the cells to be positioned close to each other thus 

facilitating spheroid formation. Here we show generation of homogeneous spheroids of 

DRCCs and DSCCs using this platform. Cell viability and spheroid diameter was measured 

over time where it was observed that the cells maintained a high viability over time. Time-

laps imaging showed that after eight days of cell culture the cell viability remains high 

(Figure 4.4, Figure 4.5). The diameter of the cells cultured in the small traps the did not 

increase as much as could be expected. However, the cells cultured in the big spheroid 

traps did show an increase in diameter.  This is most likely because the cells have access 

to enough nutrients and oxygen to grow continuously without producing high levels of 

waste products which can accumulate in the surrounding liquid. This is because one of the 

limiting factors for maintaining high cell viability within the spheroid is the cell culture 

medium. If the cells start to lack nutrients or oxygen due to the limited cell culture media 

medium that is inside the droplet, the cells start to enter cell death. This is because in the 

cell culture medium there are nutrients needed for cells to proliferate and grow. If there 

are not enough nutrients the cell proliferation will slow down or stop completely. 

Furthermore, as the cells grow they produce toxic waste products. When there is an 

accumulation of waste products, the cells in the spheroids start to enter cell death.  
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Previous microfluidic CRC tumor models have allowed researchers to investigate different 

cellular processes including how angiogenesis occurs in the TME and its impact on tumor 

progression (153), crosstalk between cell in the TME (154) (155) and studying the invasive 

potential of CRC tumor cells by recapitulates aspects of colon cancer biology (156). For 

example, HCT116 cell line was cultured as Vascularized Micro-Tumors (VMT) on a 

microfluidic platform. It was shown that the VMT model captures tumor cell heterogeneity, 

vascular disruption, and tumor-microenvironment interactions. By further analyzing the 

transcript of the VMT and comparing it to standardized xenograft models it was shown 

that the two models closely resembled each other when compared to 2D cell cultures 

(157). All these models are promising systems for studying tumors in vitro at a detailed 

level.     

 

 

vi. Chapter conclusion and perspective 
 

Microfluidic offers many advantages for spheroid culture. It enables generation of 

homogeneous spheroids in an automatic way; precise control of liquids thus minimizing 

sample volume; closely resembling the TME; enabling real time visualization using 

microscopy. All these factors combined makes microfluidics systems attractive in both 

research purposes as well as in clinical settings. In the future these platforms could be 

implemented in drug trials as more reliable methods compared so standardized 2D 

systems. Moreover, using this platform drug screening can be performed in a fast and 

automatic way. Therefore, we plan to perform further drug screening tests on the MCTSs 

on chip to determine if we can observe cell-to-cell crosstalk as previously observed in well 

plate settings (see Chapter 3). In the future, the platform could be integrated with other 

microfluidic chips for spheroid dissociation and eventually analyzis of cells at a single cell 

level. It would also be possible to collect the cell medium and analyze its content on 

separate microfluidic or non-microfluidic platforms. These types of platforms can serve as 

a useful tool to analyze tumor progression and cell-to-cell interactions in real time.  
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Frontiers in single cell analysis: multimodal
technologies and their clinical perspectives
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Single cell multimodal analysis is at the frontier of single cell research: it defines the roles and functions of

distinct cell types through simultaneous analysis to provide unprecedented insight into cellular processes.

Current single cell approaches are rapidly moving toward multimodal characterizations. It replaces one-

dimensional single cell analysis, for example by allowing for simultaneous measurement of transcription

and post-transcriptional regulation, epigenetic modifications and/or surface protein expression. By

providing deeper insights into single cell processes, multimodal single cell analyses paves the way to new

understandings in various cellular processes such as cell fate decisions, physiological heterogeneity or

genotype–phenotype linkages. At the forefront of this, microfluidics is key for high-throughput single cell

analysis. Here, we present an overview of the recent multimodal microfluidic platforms having a potential

in biomedical research, with a specific focus on their potential clinical applications.

1. Introduction
Untangling the complexity of cellular processes is a major
challenge in biomedical research. This quest is fed by the
technological development that have enabled analysis at the
single cell level in fields including genomics,1–3 epigenomics,4

transcriptomics,5 metabolomics6 and proteomics.7,8 Collectively,
these assays are capable of analysing all the major stages in the
central dogma of molecular biology, from DNA and RNA
sequencing to protein detection, thereby providing detailed
insights into cellular processes. Over the past decade, further
technical advances have allowed for the simultaneous
measurement of multiple cellular parameters at the single cell
level. Multimodal single cell analysis (MSCA) paves the way to
gaining deep insights into cell heterogeneity to discover of new
sub-categories of cells.9 Such analysis supports mechanistic
understanding of genotype–phenotype relationships through a
detailed descriptions of cell fitness and intermediate cell
phenotypes.10 Large cellular atlases displaying cell lineage
trajectories and molecular changes could thus be generated.

Microfluidics has recently been shown to be particularly
promising as a technical platform for MSCA. Beyond the
ability to miniaturize conventional assays, microfluidics offers
advantages of precise automated liquid handling and high

throughput capability. It is compatible with a diverse set of
analytical measuring systems including fluorescence
microscopy,11 imaging,12 Raman spectroscopy,13

chromatography and mass spectrometry.14 All these aspects
are highly important for analysis of small sample volumes,
handling scarce samples and achieving the necessary precision
associated with such single cell measurements. Flow cytometry
has long been considered the “gold standard” for cell-based
analysis. Despite its widespread use, flow cytometry has several
limitations, mainly its ability to measure only cellular proteins
and the requirement for a relatively large starting number of
cells.15 Therefore, the development of new microfluidic
technologies is a crucial endeavor with great possibility to
unlock the potential of MSCA.

In this review, we focus on the recent progress of
microfluidics for MSCA, which represents the ability to
simultaneously measure multiple parameters in one
experiment. The examples discussed relate to the analysis of
genotype–phenotype relationships, the development of
chemotherapy resistance in cancer therapies, and cell
heterogeneity in oncology, immunology and neurology. A
specific focus is placed on the potential clinical applications
of the technologies (Fig. 1) and potential technological
developments.

2. Key strategies in multimodal
analysis
Several key aspects should be considered when performing
MSCA. In this section, we provide a short overview of
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experimental methods specifically designed for MSCA
starting from sample preparation to microfluidic single cell
isolation and manipulation techniques. We also provide an
overview of strategies for multimodal analysis and
commercial microfluidic platforms that are suitable for this
analysis.

2.1 Sample preparation

Sample preparation is the first step of MSCA. Depending on
the sample type and analytical method the preparation varies
greatly. Enrichment of certain cell types may be necessary
before the analysis: blood samples may need non-relevant
cell types to be removed through density gradient separation
or enrichment of the cells of interest with magnetic beads
coupled to antibodies.15

For tissue samples, a key step is tissue dissociation.
Primary aspects to consider include ensuring a homogeneous
cell solution while maintaining high cell viability.
Dissociation protocols must generally be optimized for each
tissue type, because the composition of the extracellular
matrix can substantially vary. Some cell types are sensitive to
harsh dissociation protocols, and therefore gentle
dissociation is required to maintain an accurate

representation of the whole cell population. Furthermore,
sample handling should be rapid, to avoid unwanted
transcriptomic changes or overexpression of stress-response-
related genes.16 Performing pertinent quality control at the
bulk level is therefore highly recommended to ensure high
quality of the samples for subsequent single cell analysis.17

Another concern is the presence of non-viable cells in the
cell solution and leaching of cell components into the
solution, which may result in compartmentalization of non-
relevant cellular content together with single cells. To
overcome these challenges, computational methods have
recently been used to account for such biases, with a focus
on transcriptomic analysis.18

2.2 Microfluidic single cell isolation

Several microfluidic approaches for single cell isolation have
been developed in recent years. Because these techniques
have been extensively reviewed elsewhere,19,20 they are
summarized in Table 1, and only a brief overview is
presented here.

First, one approach relies on valve-based systems, as
introduced by S. Quake and colleagues,21,22 who developed
pressure controlled valves in a multilayer microfluidic

Fig. 1 Illustration of multimodal single cell analysis methodology and technical advancements. 1. Illustration of sample types derived from primary
tissue cells or engineered cells or tissues. 2. Different microfluidic single cell isolation techniques using valves, droplets, hydrodynamic trapping or
microwells. 3. Understanding multimodal relationships by measure multiple single cell parameters for example genome, chromatin accessibility,
protein or gene expression and understand genotype-phenotype relationships 4. Technological development by standardizing clinical workflows
and data integration of multiple parameters to understand multimodal relationships.
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channel to control and direct the flow. The valves create a
chamber allowing for single cell isolation and precise control
of reagent flow. Because of the high control over the pressure
system, these units can be parallelized and can enable a fully
integrated workflow. However, these systems tend to be fairly
complex in fabrication and design.

Second, well-based systems rely on microwells for single
cell isolation. Microwells are loaded with cells through cell
sedimentation when a cell suspension is flowed through the
device.23 The actual number of cells seeded in a microwell
array is generally Poisson distributed. The Poisson statistics
holds true as long as the assumption remains valid that the
spatial position of a cell is not affected by other cells, i.e.,
cells are distributed in the initial sample with a uniform
distribution. A low density cell suspension is used to ensure
that one cell is present per well. The wells can be
subsequently sealed for cell compartmentalization. This
method enables high-throughput analysis and is attractive
because of its simplicity,24 but it does not support complex
workflows.

A third approach for single cell isolation relates to the
field of droplet-based microfluidics. Using droplet-based
microfluidics, nL to fL aqueous droplets can be generated in
an inert oil phase25 with high throughput and reproducible
sizes. Through emulsification of a cell suspension, droplets
are loaded with single cells. Similarly to microcompartment
based approaches, such single cell encapsulation/isolation is
achieved by using low cell density suspensions so that most

droplets contain at most one cell following Poisson
distribution.26 Each droplet serves as a compartment for the
analysis of a single cell, because the oil phase serves as a
physical barrier and limits cross-contamination between
droplets. Perfluorinated oils are usually used as continuous
phase to create droplets for biological applications, because
they have two interesting properties: (i) the solubility of
organic molecules in these oils is considered low, thus
restricting leakage of the droplet contents and restricting
cross-talk between droplets,27 and (ii) the high solubility of
respiratory gasses in perfluorinated oils which ensure cell
survival in droplets.28 The use of perfluorinated oils has
resulted in the commercial development of several
fluorinated surfactants that allows for efficient droplet
stabilization. Specific efforts have also be placed on ensuring
biocompatibility of these compounds.29 Furthermore, after
droplets are formed, the droplet content can be manipulated
by injection of another aqueous phase in the droplet through
picoinjection30 or droplet merging,31 or the droplet can be
divided into smaller subunits with droplet splitting.32 Once
the droplet is generated they can be sorted based on
fluorescence.33 Advantages of such approaches thus rely both
on its high throughput but also on the flexibility of
operations that is given, permitting the efficient
implementation of complex and multi-step workflows.

The approaches that have been introduced above
compartmentalize single cells. In contrast, microfluidic cell
trapping does not establish a physical barrier between single

Table 1 Comparison of different microfluidic single cell isolation techniques illustrating valves, microwells, droplets or hydrodynamic trapping
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cells. Trapping-based systems form arrays of trapped cells in
a microfluidic device when a cell suspension is flowed
through the device. Individual cells have been passively
trapped by means of a microfabricated physical geometry.34

However, in recent years, further integration of
microfluidic devices has given rise to non-contact methods
for active trapping of single cells. These methods rely on a
physical contrast (e.g., permittivity, refraction index, density
and compressibility) between the cells and their suspension
medium. Trapping based on dielectrophoresis35 or optical
methods36 has been developed. Both methods rely on the
dielectric properties of the cell to generate a force, which
holds the cell in place. For dielectrophoresis this is usually
done by designing microelectrodes, while optical trapping
relies on a highly focused laser beam with a steep intensity
gradient. Furthermore, Collins et al. have illustrated the
trapping of an array of single cells in acoustic traps.37

Through the use of standing surface acoustic waves, single
cells can be trapped in pressure nodes and individually
visualized.

2.3 Microfluidic single cell manipulation

After single cells are isolated, the cells are then incubated to
enable long-term cell culture. Incubation in traps or wells is
relatively straightforward, because these flow-through
systems enable exchange of the medium and metabolites.
However, cell incubation in droplets may be constrained by
the limited amount of nutrients that the drop contains and
the limited accessibility to oxygen. To circumvent these
issues cells can instead be encapsulated in large droplets
providing sufficient nutrients for long term cell culture38,39

or cultured in hydrogel droplets allowing for easy exchange
of medium.40 Another aspect to consider is that dynamic
droplet incubation may be required to provide homogeneous
oxygen accessibility.41

Another critical step in multiomic cell analysis is cell lysis,
because it is essential for efficient extraction and analysis of
intracellular material. Lysis should not interfere with the rest
of the microfluidic workflow, to ensure the pertinence of
subsequent analysis. Most lysis methods have been
developed for bulk suspensions. Therefore, transitioning
these methods to microfluidic workflows might need
adjustment and new methods dedicated to microfluidic
single cell assays should also probably be developed. Most
microfluidic platforms use chemical lysis, which can easily
be integrated in microfluidic systems. Other options include
electrical lysis42,43 or optical lysis.44 For chemical lysis, lytic
agents can be added by controlling the microfluidic valves, or
by flowing of the lytic agents through well-based systems.
When droplets are used, the lytic agents can be encapsulated
the cell when drops are produced, or afterward through
droplet fusion or picoinjection.30 However, chemical cell lysis
in trapping-based systems is more challenging. In general,
extensive cell analysis, apart from microscopy, is challenging
in trapped cells, because the traps do not provide a physical

barrier against the diffusion of intracellular components.
Marie et al. have, however, recently described the extraction
of genetic information from single cells with hydrodynamic
trapping in a narrow channel. Once the cell is trapped, the
flow through the narrow channel is decreased to avoid inflow
of other cells in the same channel and a chemical lysis agent
is flushed to the cell. Each individual cell lysate is then
extracted, with a parallelisation capability limited to 8 cells.45

2.4 Strategies for multimodal analysis

Most MSCA strategies have focused on either the
combination of two omic methods or combining omic
analysis and microscopy. The difficulty in combining omic
analysis and microscopy relies on the efficient link of both
measurements. By linking omic analysis with phenotypic
analysis, such as cell shape, that can be observed in
microscopy it is possible to highlight new genotype–
phenotype relationships that has yet to be discovered. By
barcoding cells with unique nucleic acid sequences different
omic measurements can be analysed separately and linked
together. Typically, cell imaging is performed first, and then
a barcoded primer or bead is added to the cell, which can be
identified during sequencing. The microfluidic chip can be
prepared with different barcoded primers or oligonucleotides
beforehand, so that sequencing can be associated with
spatial coordinates on the microfluidic chip.46–48

Alternatively, in microwells, oligonucleotide barcodes can be
added after single cell imaging, and the sequence of the
barcodes can then be optically decoded through several
rounds of fluorescent hybridization.49

A critical challenge in single cell omic analysis is
performing high sensitivity analysis, given that single cells
contain small amounts of protein and genomic material.50

Analysis is particularly challenging with MSCA, because
preserving all information within a single cell is essential
when more than one cellular parameter is detected. Common
problems addressed include sample loss,51 incompatibility of
protocols leading to molecular degradation,52 or insufficient
sensitivity of available methods to ensure accurate detection
of the analytes.

To circumvent these issues two main approaches have
been considered to perform multiomic analysis. In the first
approach, a single cells are split in two, and separate
analyses are performed on each aliquot.53 Droplet splitting in
droplet-based microfluidics54 and the operation of valve-
based systems are two microfluidic methods enabling such
analysis. Before splitting the sample, a pre-amplification of
the analytes can be performed when the sample remains
intact, to improve the sensitivity of analyses for genetic
measurements.55

The second approach is based on simultaneous detection
of the analytes to link the cell parameters. This process
generally uses beads that bind the different targeted
analytes.56 A molecular barcode on the bead tags cellular
material, thereby enabling the clustering of data originating
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from the same single cell after analysis in bulk. This method
does not require any washing steps or removal of liquids,
thus limiting the risk of sample loss. Efficient co-
compartmentalization of single cells and beads is essential in
this approach. As described previously, in droplet
microfluidics, the compartmentalization process follows a
Poisson distribution, because the sample is sufficiently
diluted to avoid multiple cells or beads per compartment,
thereby resulting in only a small fraction of the droplets
containing both analytes, because the two loading processes
are independent.25,55 Such issues could dramatically reduce
experimental throughput. However it can be circumvented by
different means such as close packing when deformable
beads are encapsulated,57 loading the sample by inertial
ordering of the particles at high flow velocity38 or
hydrodynamic trapping of particles before droplet
production.39

2.5 Commercial microfluidic platforms for single cell analysis

Commercial microfluidic platforms are an essential part of
medical research and are available in clinical research
settings (Table 2). Platforms available to date include the
Fluidigm C1 (Fluidigm), Rhapsody platform (BD Biosciences),
Chromium single cell platform (10× Genomics) and the
Tapestri system (Mission Bio). The specific performances of
these platforms for single cell isolation, throughput and cell
parameters are compared in the following section.

The fluidigm C1 Single-Cell Auto Prep system entered the
market in 2013 and has since been applied in various single-
cell omic studies. Fluidigm subsequently released another
workflow called C1 REAP-seq, which is specifically designed
for multiomic analysis of scRNA-seq and surface markers.58,59

The platform uses a valve-based system to execute a complex
workflow. It uses a reservoir to capture, image, and perform
cell lysis, reverse transcription and initial PCR reactions. The
throughput of the platform is approximately 100 cells per
run, thereby limiting the application scope of the workflow to
low throughput analysis.60

The BD Rhapsody platform uses microwells. By pairing
one cell with a barcoded bead in the well, scRNA-seq analysis
can be combined with protein expression to achieve a
throughput as high as 20 000 cells per experiment. The
transparent microfluidic chip enables visualization and
imaging during the workflow.

The 10× chromium single cell platform has been widely
used for scRNA-seq experiments. This droplet-based platform
encapsulates a cell and barcoded bead in a droplet and can
achieve a throughput of approximately 10 000 cells per run.
This platform has been used primarily for scRNA-seq analysis
but now also offers a solution for measuring transcriptome
and open chromatin regions with chromium single cell
multiome ATAC.

Similarly, the Tapestri system (Mission Bio) uses droplet-
based microfluidics to co-encapsulate cells and barcoded
beads. The platform works by performing cell lysis, protease
digestion, cell barcoding and targeted amplification with
multiplex PCR within the droplets. scDNA-seq can be
combined with surface protein detection with this platform.61

Information on copy number variations and single nucleotide
variants can also be obtained.

3. Single cell multiomic analysis using
microfluidics
Since the initial single cell transcriptomic study in 2009,
many single cell RNA sequencing (scRNA-Seq) technologies
have been developed.62 The throughput capability has
significantly grown, and analysis of 2 million single cells has
recently been reported.63 Transcriptomic analyses have paved
the way to revealing cell heterogeneity, and unraveling
previously unknown cell types and states in complex
biological samples.64 scRNA-Seq assays have now been
commercialized and are widely available.65 In combination
with other molecular characterizations, scRNA-seq has been
included in most single cell multiomics studies. Such
measurements can provide data whose value exceeds that of
the sum of its parts, particularly in revealing cell functions,
discovering relationships across different omics and

Table 2 Comparison of commercial microfluidic platforms performing single cell multimodal analysis

Name Company Parameter 1 Parameter 2

Cell
isolation
method Advantages Disadvantages

Throughput
(per run)

BD
rhapsody

BD
biosciences

Transcriptomics Surface proteins Nano/micro
wells

Easy data management
and visualization,
customize panels

Requires fresh sample,
high starting number of
cells needed

20 000 cells

C1
REAP-seq

Fluidigm Transcriptomics Surface proteins Valve-based
system

Multiple applications,
flexible use, well
established platform

Limited throughput 96 cells

Chromium
platform

10×
genomics

Transcriptomics Surface
proteins/chromatin
accessibility

Droplets High throughput,
flexible use

Requires fresh sample,
high starting number of
cells needed

>10 000
cells

Tapestri Mission
bio

Genomics Surface proteins Droplets Capable of
DNA-sequencing,
customize panels

High starting number
of cells needed

∼5000 cells
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Table 3 Summary of multiomic single cell analysis technologies using microfluidic platforms

Parameter 1 Parameter 2 Method
Microfluidic
platform Biological model

Throughput
(number of
cells)

Max, number of
analytes (per run) Applications Ref.

Chromatin
accessibility

Transcriptomics ASTAR-Seq Fluidigm C1
microfluidic chip

K562, JK1, BJ,
and Jurkat
human cell lines,
mESCs, primary
cord blood cells

96 K562: 142886
chromatin
accessibility sites
and 4182
transcripts

Identification of
cell states and
upstream
regulatory
networks

58

Chromatin
accessibility

Transcriptomics SNARE-seq 10× chromium
droplet platform

Mixtures of BJ,
H1 hESC, K562
and GM12878
human cell lines,
neonatal and
adult mouse
cerebral cortex

∼10 000 1332 of
transcripts and
2583 chromatin
accessibility sites

Identification of
cell types,
discovery of
lineage-specific
accessible sites,
and connection of
the dynamics of
promoter
accessibility with
transcription level
during
neurogenesis

56

Chromatin
accessibility

CRISPR
perturbations

Perturb-ATAC Fluidigm C1
microfluidic chip

Human B
lymphocytes
GM12878 cells
and primary
human
keratinocytes

96 Analysing the role
of different
chromatin
regultory factors
to get insights in
cell fate decisions

68

Genomics Transcriptomics Valve based
microfluidics

Human
myelogenous
leukemia cell line
K562

3 14 transcripts and
12 DNA target
sequences

Investigate the
gene expression
patterns and
genomic
alterations

53

Genomics Transcriptomics Hydrodynamic
trapping

Mouse
lymphocyte cell
line A20

100 Simulatinious
quantification of
absolute amount
of RNA and
relative
quantification of
DNA

43

Genomics Transcriptomics Hydrodynamic
trapping

Mouse
lymphocyte cell
line A20

12 cells per
hour

On chip single
cell lysing,
extraction,
fractionation, and
recovery of
purified
cytoplasmic RNA
versus gDNA

69

Nuclear RNA Cytoplasmic
RNA

SINC-seq Hydrodynamic
trapping

Human
myelogenous
leukemia cell line
K562

12 cells per
hour

6200 and 5600
genes per cytRNA
and nucRNA

Detection of
nuclear RNA and
cytoplasmic RNA
from single cells
to analyse their
correlation

70

Gene
expression

DNA
methylation

sc-GEM Fluidigm C1
microfluidic chip

Human BJ cells,
iPSCs, ESCs and
lung
adenocarcinoma
NSCLC sample

96 50 methylated
gene sites

Assessment of
primary lung
adenocarcinomas
and human
fibroblasts
reprogramming

59

Enzymatic
activities

Transcriptomics sc-haircut 10× chromium
droplet platform

PBMCs, haploid
human UNGko

and RNASEH2Cko

cells

1000–10
000

Identification of
cell-type-specific
DNA repair
phenotypes in
human
lymphocytes

71

Targeted
genomic
regions

Transcriptomics CORTAD-seq Fluidigm C1
microfluidic chip

Lung cancer cell
line PC9

96 6000 transcripts,
EGFR exons 19,
20, and 21

Study on lung
cancer resistance
to a targeted
therapy

72
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recording dynamic biological events. The multiomic single
cell platforms available to date are introduced in the
following sections and are compared in terms of throughput,
analysis sensitivity and ability to detect multiple analytes
(Table 3).

3.1 Combining transcriptomic and chromatin accessibility
analysis

Many single cell assays are currently available to access open
chromatin regions and subsequently reveal information on

Table 3 (continued)

Parameter 1 Parameter 2 Method
Microfluidic
platform Biological model

Throughput
(number of
cells)

Max, number of
analytes (per run) Applications Ref.

Surface
proteins

Transcriptomics REAP-seq 10× chromium
droplet platform

PBMCs 1000–10
000

82 surface
proteins and >20
000 RNA
transcripts

Assessment of
immune response
modulation,
identification of
unknown cell
types

73

Surface
proteins

Transcriptomics CITE-seq Drop-seq
platform, 10×
genomics
droplet platform

Human HeLa
cells, mouse 4 T1
cells, PMBCs,
and CBMCs

1000–10
000

13 surface
proteins and 400
RNA transcripts

Integrated
measurment of
scRNA-seq along
with surface
proteins

74

TCRs,
surface
proteins,
sample
identity by
hashtags,
and sgRNAs

Transcriptomics ECCITE-seq 10× chromium
droplet platform

A cell mixture of
human PBMCs,
T-cell lymphoma
lines MyLa and
Sez4, and mouse
NIH-3 T3, PBMCs

1000–10
000

49 surface
proteins, ∼5000
ECCITE-seq
genes, ∼4000 10×
standard run, two
TCRs (TCR α/β
and TCR γ/δ), 7
hashing
antibodies,
CRISPR
turbilations and
10 sgRNAs

Multimodal
CRISPR screens,
clonotype-aware
phenotyping of
cancer samples

76

Surface
proteins

Transcriptomics One-SENSE Nanowell-based,
BD rhapsody
platform

PBMCs >20 000
cells

>40 surface
proteins and
>400 transcripts

Identification of T
cell subsets

77

Surface
proteins

Transcriptomics CITE-seq 10× chromium
droplet platform

BMMCs and
PBMCs from
healthy and from
patients with
mixed-phenotype
acute leukemia
(MPAL)

∼10 000 2370 transcripts
and 4 surface
protein markers

Investigation of
molecular
features of MPAL
from normal
development

78

Intracellular
proteins

Transcriptomics Valve-based
microfluidics

HEK and U87MG
human cell lines

9 cells ∼2000 RNA
transcripts and 3
proteins

Identification of
cell type specific
signatures

80

Cytokines Transcriptomics Nanowells-based
splitable
microchip

Mouse
macrophage cells

20 5 cytokines and
∼4900 genes

Study on
inflammatory
immune
responses

81

Protein Transcriptomics FACS and
microfluidic
devices

Patient-derived
glioblastoma cell
line U3035MG

210 cells ∼96 proteins and
transcripts

Study on the
effect of
therapeutic agent
BMP4 in
glioblastoma

83

Intracellular
proteins

Transcriptomics Fluidigm C1
microfluidic chip

MCF7 human
cell line

96 38 intracellular
proteins and 96
transcripts

Study on the
responses of
breast
adenocarcinoma
to a chemical
perturbation

84

Protein Transcriptomics Fluidigm C1
microfluidic chip

A549, SKBR3 and
K562 human cell
lines

96 84 protein assays
and 40 transcripts

A comparison of
mRNA and
protein levels in
single nanoliter
reactions

85

Lab on a Chip Perspective

O
pe

n 
A

cc
es

s A
rti

cl
e.

 P
ub

lis
he

d 
on

 0
9 

Ju
ne

 2
02

2.
 D

ow
nl

oa
de

d 
on

 9
/1

5/
20

22
 1

2:
35

:3
3 

PM
. 

 T
hi

s a
rti

cl
e 

is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
Li

ce
nc

e.
View Article Online



    
 

 
 
 

176 

 

 
2410 | Lab Chip, 2022, 22, 2403–2422 This journal is © The Royal Society of Chemistry 2022

regulatory genes and gene activities. Most assays rely on
enzyme-mediated modulation of chromatin, thus resulting in
different degrees of openness to the chromatin landscape.
Assay for transposase-accessible chromatin using sequencing
(ATAC-seq) was developed to access open chromatin regions
in single cells with the enzyme Tn5 transposase.66 Several
studies have recently expanded on this analysis. Cao et al.
have performed simultaneous profiling of RNA transcripts
and accessible chromatin regions in the adult mouse kidney,

and demonstrated the potential of this method by showing
the transcriptional state of cells which gave new insights into
the upstream regulatory landscape.67 Cell mixing experiments
in combined murine and human cells have revealed that
99% of cells can be distinguished in terms of both scRNA-seq
and sc-ATAC-seq profiles.

Another example of using ATAC-seq in combination with
other cell parameters is a method called assay for single-cell
transcriptome and accessibility regions (ASTAR-Seq) which

Fig. 2 Comparison of different droplet microfluidic methods for MSCA analysis. The illustration comprises an overview of the workflow of Sc-
haircut, SNARE-seq and CITE-seq/REAP-seq. Sc-haircut (left panel) performs parallel analysis of single cell DNA repair mechanisms and gene
expression. 1) Droplet production and compartmentalisation of single cells, DNA repair substrates and barcoded oligo-DTs. 2) In drop cell lysis to
release mRNA and repair factors. 3) dT primers bind to mRNA and polyadenylated hairpins. 4) Repair products and mRNAs are converted to cDNA
with barcoded oligo-dT primers and separated based on size to prepare for library preparation. SNARE-seq (middle panel) 1) isolation of nuclei and
DNA tagmentation using the enzyme Tn5 transposase to access the open chromatin regions 2) co-encapsulation of nuclei and beads 3) the split
bead binds to both mRNA and DNA linking both modalities together. 4) Droplets are collected and merged, the beads can be harvested and
washed 5) library preparation by PCR amplification of mRNA and DNA. CITE-seq /REAP-seq workflow (right panel): 1) preparing antibody-derived
tags (ADTs) by oligonucleotide antibody binding to surface proteins on cells in bulk. 2) Co-compartmentalisation of single cells and barcoded
beads in droplets using drop-seq 10× Genomics. 3) Cell lysis in droplets to release bound ADTs and mRNA. ADTs and mRNA are thereafter
converted to cDNA and amplified using PCR. 4) Droplets are collected and merged 5) PCR for fragment amplification whereby fragments are
separated by size.
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labels open chromatin regions and performs reverse
transcription of mRNA with the valve based fluidigm C1
platform. With this method, human B lymphocyte
differentiation from umbilical cord blood has been analysed.
By harvesting and analysing single cells at different time
points of in vitro cell culturing, the authors have observed a
correlation with time and cell differentiation were cells
transition into a more mature cell state wherein they begin to
express HBA2, a hemoglobin gene.58 Another droplet
microfluidic platform allows for characterization of single-
nucleus chromatin accessibility and mRNA expression
sequencing (SNARE-seq) linking a cell's transcriptome with
its accessible chromatin regions. In this method, ATAC-seq is
used to analyse open chromatin regions, and RNA-seq is used
for mRNA detection. Beads and nuclei are co-
compartmentalized in droplets. The oligonucleotide split
beads enable hybridization of DNA and mRNA to the same
bead, thus linking the two parameters56 (Fig. 2). This method
has provided new insights into the regulatory mechanisms
between open chromatin regions and RNA transcripts.
SNARE-seq has enabled reconstruction of the transcriptomic
and epigenomic landscapes in rare cell types, thereby
uncovering lineage specific accessible sites.

Moreover, Rubin et al. developed Perturb-ATAC, a method
in which sequencing of chromatin accessibility using ATAC-
seq and CRISPR single guide RNA (sgRNA) are combined to
study DNA regulatory factors and regulatory mechanisms
affecting cell fate decisions in human B lymphocytes.68

Collectively, these methods provide novel strategies to study
the epigenetic changes and dynamic gene expression in
single cells.

3.2 Combining transcriptomic and genomic analysis

The use of microfluidics to physically separate aliquots from
an initial droplet that contains a single cell, offers the
possibility of measuring multiple cellular parameters
simultaneously. One early example was presented in 2014 by
Han et al., who used microfluidics to isolate and lyse single
cells, whereby the cell content was aliquoted and analysis
could be performed on the two cell aliquots. The team used a
valve-based microfluidic platform for separating gDNA and
cytosolic mRNA, thus enabling their simultaneous detection
through separate amplification of the genome and
transcriptome.53 However, the throughput was limited to
three cells per microfluidic chip. Similar approaches have
since been developed with automated cell handling capacity
and increased throughput.43,69 Using the same underlying
approach for separate analyses of cell aliquots, Abdelmoez
et al. have developed a method called single-cell integrated
nucRNA and cytRNA-sequencing (SINC-seq).70 The method
relies on an electric field to separate the nucleus from the
cytoplasm, thereby allowing for separate analysis. Through
the use of this method, new insights into the regulatory
relationship between nuclear RNA and cytoplasmic RNA have
been discovered.

To characterize the heterogeneity of DNA repair cellular
activities, Richer et al. have performed simultaneous
measurement of mRNA transcripts and DNA repair
mechanisms.71 They have developed a technique called
single-cell haircut (sc-haircut), to compartmentalize single
cells with barcoded oligo-dTs and enzymatic substrates for
DNA repair using droplet microfluidics (Fig. 2). Enzymatic
DNA repair mechanisms at defined positions are detected
with synthetic damaged DNA hairpins. The repaired DNA
hairpins and mRNAs are subsequently converted to cDNAs
for separate analyses. Then, the amount of enzymatic DNA
repair is quantified and associated with its gene expression.
In this case, DNA lesions repaired by cellular enzymes
produce a product that can be analysed by DNA sequencing.

To analyse cancer heterogeneity and drug resistance, a
method called concurrent sequencing of the transcriptome
and targeted genomic regions (CORTAD-seq) was developed
by Kong et al.72 With the Fluidigm C1 platform, cells are first
lysed, and both gDNA and cDNA are then subjected to PCR
with primers specific to the regions of interest. The gDNA
and cDNA are then physically separated for analyses.
CORTAD-seq has been used to investigate acquired gefitinib
drug resistance in PC9 cells, a lung cancer cell line, and
observed that the transcriptome of the lung cancer cells
undergoing a T790M mutation in the EGFR (epidermal
growth factor receptor) commonly acquired in drug resistant
lung epithelial cells.

3.3 Combining transcriptomic and protein analysis

The use of non-destructive assays before sequencing can link
surface protein levels to cellular transcriptomes. Cellular
Indexing of Transcriptomes and Epitopes by Sequencing
(CITE-seq) and RNA Expression and Protein sequencing
(REAP-seq) are two similar techniques that use droplet
microfluidics for multimodal detection of surface proteins
and mRNA transcripts.73,74 The first step in these techniques
is attaching antibody-derived tags to cell surface proteins.
Single cells are then co-encapsulated with barcoded beads
with the commercial 10× Chromium platform. Thereafter
cells are lysed inside the droplets to release both the
antibody-derived tags and mRNAs, which then hybridize to
the beads. The barcoded beads are composed of a PCR-
handle, an antibody barcode and a poly A-tail, thus enabling
the mRNA bound to beads to be transcribed and also linking
the two parameters (Fig. 2). The difference between CITE-seq
and REAP-seq is based on how the DNA barcode is
conjugated with the antibody.73,74 The antibody used for
CITE-seq is non-covalently conjugated to streptavidin
attached to the DNA barcode, whereas the bonds are covalent
in REAP-seq. In both methods, the number of proteins that
can be simultaneously measured surpasses the number
measurable by cytometry; this number is mainly limited by
the number of barcode labeled antibodies as well as possible
steric hindrance between the antibody and the cells. In
REAP-seq, antibodies are conjugated with DNA barcodes of
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66 bp divided into a unique sequence for each antibody (8
bp) and a primer sequence for amplification and subsequent
sequencing. CITE-seq has been performed with 228
individual antibodies in a study constructing a multimodal
reference atlas of the human PBMC.75

Mimitou et al. have expanded the CITE-seq platform to
develop Expanded CRISPR compatible Cellular Indexing of
Transcriptomes and Epitopes by sequencing (ECCITE-seq) in
combination with the 10× Chromium platform, reaching a
throughput of approximately 10000 cells per run.76 ECCITE-seq
can simultaneously detect at least five parameters in a single
cell, including transcriptomics, surface proteins, sample identity
by hashtags, T cell receptors (TCR α/β and TCR γ/δ) and sgRNA.
Combining these parameters has enabled specific clonotype
features of malignant tumor cells to be deciphered. This
multiplex single-cell system can be combined in various ways
and may be used in broad biomedical and clinical applications.

Mair et al. have presented a platform called one-dimensional
soli expression by nonlinear stochastic embedding (One-SENSE)
wherein the use of antibody-derived tags and mRNA-seq is
similar to that in CITE-seq and REAP-seq.77 The major
differences are that One-SENSE focuses on the selected targets
at minimal read depth to minimize the cost, and it uses BD
Rhapsody nanowells to achieve a higher throughput of more
than 20000 cells per run. The One-SENSE platform has been
used to decipher immune cell heterogeneity in cells that were
previously thought to be identical by simultaneously
interrogating 492 immune-related genes and 41 surface proteins
commonly used for immunophenotyping.

To analyse malignant features in acute leukemia, Granja
et al. have performed integrated analyses combining CITE-
seq for multiplexed protein quantification and transcriptomic
profiling, and ATAC-seq for chromatin accessibility in single
cells.78 Through analysis of blood and spinal fluid samples
from diseased and healthy donors, specific malignant
features have been detected despite widespread epigenetic
heterogeneity in the patient cohort.

Measurements of both transcriptomic and intracellular
proteins are necessary to obtain a complete description of
the cell state. This information can shed light on the complex
relationships among various cell types or states, and different
disease conditions. Technologies for single cell proteomic
analysis remain in their infancy. Commonly used methods
for bulk analysis, such liquid chromatography-mass
spectrometry, require a relatively large amount of input
material, thereby making these analytes difficult to detect at
the single cell level.79 Furthermore, proteins cannot be
amplified similarly to RNA or DNA; therefore, the number of
proteins that can be measured with single cell proteomics is
limited. In the following sections, we present methods that
have been used to circumvent these issues.

Xu et al. have developed a microfluidic system for
investigating cell specific transcripts and proteins. Cells and
sequencing beads are loaded onto a chip with a series of
microchambers.80 Intracellular proteins are then subjected to
a fluorescence sandwich immunoassay inside the

microchambers while the barcoded beads are isolated for
cDNA library generation before sequencing. The fluorescence
sandwich immunoassay requires a series of washing steps;
thus, the use of microfluidic valves plays a key role in adding
and removing liquids. However, the throughput is limited to
the number of available microchambers.

To understand and analyse single cell features of
heterogeneous immune cells, George and Wang have
performed cytokine profiling of murine macrophages.81 Their
system is based on multiplex protein and transcriptomic
analysis from the same cell with a Splittable Microchip. The
Splittable Microchip consists of a polydimethylsiloxane nano-
well array coated with cytokine specific antibodies. Secreted
cytokines then bind the antibody array; this is followed by
incubation with a fluorescent secondary antibody that can be
detected with a fluorescence scanner. RNA sequences have
been simultaneously analysed, thereby linking the secretome
with the transcriptome. Another method for simultaneous
detection of proteins and transcriptomes in single cells is
proximity extension assays (PEA)83 together with RNA
detection.50 PEA is an immunoassay in which proteins are
quantified with oligonucleotides associated with antibodies.
The antibodies bind different epitopes and form a DNA
duplex, which is quantified by real-time qPCR. One such
method has been presented by Genshaft et al., who have
focused on the correlation and expression of proteins and
the transcriptome over time by using the Fluidigm C1
platform.84 The authors have detected as many as 27
different intracellular proteins in MCF7 cells, a breast cancer
cell line. Similarly, Gong et al. have used PEA for
simultaneous detection of 31 intracellular proteins and
transcriptome profiling with the Fluidigm C1 platform.85

Their scatter plot analysis has shown a significant correlation
between protein and mRNA levels for several genes.

3.4 Combining genomic and chromatin accessibility

Satpathy et al. have reported combined targeted genomic
sequencing and chromatin expression. Using ATAC-seq
(ATAC-seq) for chromatin accessibility combined with
sequencing of genes encoding for the T-cell receptor, the
authors have identified T cell heterogeneity in in populations
that may appear identical according to surface markers.82

In another study, Cheow et al. have used the fluidigm C1
platform for single-cell genotype, expression and methylation
(sc-GEM) analysis at different stages of primary lung
adenocarcinomas and human fibroblast reprogramming. The
authors have measured gene expression profiles with single
cell RT-qPCR, and DNA methylation changes with the single
cell restriction analysis of methylation (SCRAM) assay.59

4. Single cell multimodal analysis
using microfluidics
Recently, the wave of multimodal measurements has further
propagated beyond the omics view. The field is moving
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toward combining phenotypic analysis and omic
measurements to obtain a more comprehensive picture of
cell states and cell types (Fig. 3). In this section, we present
currently available multimodal single cell platforms and
compare them in terms of throughput, detection capability
and field of application in Table 4.

4.1 Combining omics and imaging

Fluorescence imaging is a widely used method for phenotypic
analysis of cell morphology and cell specific molecules. One
approach to obtaining single cell multimodal data involves
coupling live-cell imaging to transcriptomic data. Yuan et al.
demonstrated this by using dual-barcoded beads. After
single-cell imaging in microwells, the dual-barcoded beads
are added (Fig. 4). The dual barcode consists of commercially
available drop-seq beads for scRNA-seq, to which additional
oligonucleotides are added to serve as a second “optical”
barcode. The sequence of the additional oligonucleotides can
be optically decoded through several rounds of hybridization

and fluorescence imaging of the beads. This process allows
for spatially locating the beads and cells in the microwell
array; thereby single cell imaging can be associated with
sequencing data.49

In another approach to study genotype–phenotype
relationships, Zhang et al. have performed parallel optical
phenotyping and transcriptomic analysis.46 The platform
combines droplet microfluidics with a nano-well array and
has achieved a throughput of 10 000 cells. Cells and beads
are co-encapsulated in droplets for RNA-seq. However, the
fluorescence intensity of the droplet is interrogated
beforehand. Droplets of interest are then dispensed at
indexed locations on a nanowell array. The array is indexed
by an oligobarcode that allows downstream RNA-seq to be
linked to the fluorescence measurements.

Similarly, Chen et al. have reported microfluidic cell
barcoding and sequencing (μCB-seq) to pair high-resolution
imaging and scRNA-seq. μCB-seq consists of parallel valves
fabricated by combining multilayer soft lithography and DNA
array printing. The valves can be pre-loaded with barcoded

Fig. 3 Schematic overview of multiomic analysis encompassing protein analysis, chromatin accessibility, transcriptomic and genomic analysis.
Multimodal analysis has a broader meaning, encompassing other cell characteristics such as cell phenotypic analysis, imaging and cell mechanical
properties. Specific examples of the techniques using such analysis are described below each section.
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primers for capturing reverse-transcribed cDNA. When the
fluidic valves are closed, the cells are imaged and sorted to
enable the enrichment of cells of interest.47

In another study, parallel measurements of transcriptome
and proteome have been analysed using live cell confocal
imaging to display cell size and shape as well as NF-κB
expression levels after LPS stimulation in RAW 264-7 cells.48

Because of the vast use of scRNA-seq technologies in
recent years, many multimodal approaches have involved this
technique. However, several studies have instead focused on
other analyses to branch out from this context. For example,
Altemose et al. have investigated protein and DNA
interactions by combining image analysis with sequencing.
By using a DNA adenine methyltransferase enzyme, the
authors have spatially localized histone modifications and
obtained insights into the regulatory relationship between
the DNA and specific histone modifications.86 In another
recent approach Gebreyesus et al. have developed a platform
for single cell counting, imaging and proteomic processing.87

This platform is capable of distinguishing different cell types
based on size as well as sensitive protein detection using all-
in-one proteomic sample preparation and data- independent
acquisition (DIA) mass spectrometry (MS) for proteomic
analysis.

4.2 Combining omics and phenotypic analysis

Cells from various tissues within an organism display
phenotypic heterogeneity, owing to both genetic and
epigenetic factors. Mayer et al. have reported cell diversity in
the developing human neocortex with a microfluidic
integrated fluidic circuit consisting of flow and control
channels, valves, multiplexors and logic devices. This method
detects physiological responsiveness by using intracellular
calcium as a stimulus to analyse series of neurotransmitter
receptor agonists that are later correlated with scRNA-seq
data. Physiological reactions to calcium stimuli associate
with the molecular identity, thereby allowing new sub-
populations of cells to be detected that could otherwise not
be identified (Fig. 4).88

Kimmerling et al. have presented a method for analysing
cellular mass and growth in single cells to investigate the link
between cell fitness and responses to a drug treatment.89 By
using small fluidic channels, cells are separated with respect
to buoyancy, and the cell mass is measured with a sensor
array. The cells can be analysed gradually by simply turning
on and off the flow. The phenotypic data are later associated
with scRNA-seq from the same cell.

Microfluidic chips can be integrated with electronic
circuits to allow for easy manipulation of liquids.90 Recently,
Lamanna et al. have performed phenotypic and omic
analyses by using digital microfluidics of single cells for -
omics (DISCO) capture. Cells can be easily manipulated and
lysed by laser capture microdissection inside the digital
microfluidic chip. CD47 CRISPR-modified HAP1 cells have

been analyse for phenotypic changes in CD47 expression,
combined with genomics, transcriptomics or proteomics.44

4.3 Other multimodal analysis

Other studies have analysed cells for multiple parameters
simultaneously without including omic analysis. Gérard et al.
have presented an efficient and flexible system that combines
screening for IgG activity with sequencing of paired antibody
V genes through droplet-based microfluidic techniques.91

The droplets containing antibodies of interest are sorted with
a sandwich immune assay based on fluorescent and
magnetic beads. The sorted droplets are then barcoded with
hydrogel beads bearing primers for IgHV and VL genes
tagged with unique barcodes, and the barcoded V genes are
sequenced and analysed (Fig. 4). The analyses have been
applied in a murine setting but could easily be adapted to
humans. For example, by enriching human circulating B cells
from peripheral blood, the platform can facilitate analysis of
the human immune V gene repertoire in diseased and
healthy humans and thus may have diagnostic potential.

Another recent approach for detecting biophysical
properties of single cells was developed by Rezard et al.92 By
using micro-electro mechanical systems (MEMS) cells could
be trapped and analysed for mechanical and electrical
properties in real time during continuous flow.

5. Technological developments and
clinical transitions
Despite its numerous achievements, MSCA is still in its
infancy, with many challenges to overcome. The
improvement needed for MSCA include both assay
development as well as technological development.
Challenges in assay development include reaching limit of
detection due to the limited sample volume, low genomic
coverage and low sensitivity of analytical methods.

Technological development faces challenges such as
correct data alignment of multiple cellular parameters,
accounting for high degrees of missing data and inherent
assay noise. Recently developed techniques, such as Cobolt,93

MOFA+94 and weighted-nearest neighbour,75 are capable of
analysing multimodal datasets. Another recent method,
bridge integration, offers supervised mapping that utilize
well-known cellular atlases such as the human cell atlas as a
reference.95 By mapping datasets to these reference data
points, potential errors can easily be adjusted for and
datasets across different cell parameters can easily be
compared.

5.1 Technological developments for MSCA

With new technologies being constantly developed,
multimodal analysis is exploding. However, there are
multiple different cellular properties that are yet to be
integrated with multimodal measurements. As a perspective,
we highlight here the analysis of biophysical properties of
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the cells, yet to be better implemented with other techniques
for multimodal analysis.96 Those biophysical properties are
of relevance as they have been associated with the
progression of cell differentiation and diseases.

Mechanical measurements of cell stiffness and physical
resistance to external forcing have been demonstrated using
various actuation modes. Pipette aspiration97 with a low
throughput capacity or parallel arrays of constrictions in
microchannels98,99 with a larger throughput capacity have
been used to explore the mechanics of the cell and even the
response of the nucleus. The use of soft compartments also
proved a powerful tool to relate mechanical stresses on cells
to increased motility, of relevance to study the dynamics of
tumor evolution,100 and new microfluidic devices have been
developed to investigate the effect of compressive stress on
cell growth.101

Optical and magnetic tweezers have been developed for
mechanical phenotyping.102,103 Both approaches require a
dielectric or magnetic bead to be attached to the cell. By
applying a controlled oscillating field, by the use of a tightly
focused laser or a magnetic field, the bead is moved in
response to the field. The oscillatory motion of the bead
causes cell deformation. The resistance against this
deformation is determined by the mechanical properties of
the cell: the viscoelastic moduli of entangled actin networks

were measured,104 and cytoskeletal changes for prostate
cancer cells under hypoxic stress were observed.105 A more
recent development based on the magnetic tweezers is a
method named magnetic twisting cytometry.106 Here the
applied magnetic field move and rotate the bead around
different axes to determine the mechanical properties of the
cell. Another mechanical single cell study was performed by
precise microfabrication of microactuators. A muscle cell was
attached to the micropillar and it was illustrated that the
extension and contraction of this cell, induced by chemical
stimuli, was able to bend the micropillar.107 These methods
are in general limited in throughput and are invasive for the
cell as the binding to a bead might limit its further use in a
multimodal approach.

Non-contact methods offer interesting potential. Acoustic
methods for mechanical phenotyping use standing acoustic
waves to generate an acoustic radiation force on the cell that
moves it to the pressure nodes.108 The velocity at which the
cell moves is used to extract its compressibility. A novel
development in this method utilizes standing acoustic waves
together with an acoustic impedance gradient in a
microchannel.109 Due to the acoustic radiation force, cells
migrate to the equilibrium point in the microchannel, the
point where its acoustic impedance matches the
surroundings. This method works similar as density gradient

Fig. 4 Different microfluidic multimodal single cell techniques 1) Droplet microfluidic platform for screening of IgG-secreting single cells and to
characterize antibody binding to both membrane-bound and secreted antigens. 1.1) Droplet production 1.2) cell sorting 1.3) reverse transcription
1.4) amplification 1.5) sequencing 1.6) bioinformatics. 2) Microfluidic integrated chip for separating single cells and perform calcium imaging 2.1)
single cell capture 2.2) calcium imaging 2.3) scRNA-seq. 3) SCOPE-seq platform developed to analyse phenotype and scRNA-seq using a microwell
approach. 3.1) Loading of the cell suspension placing a single cell in a well 3.2) bead solution is added 3.3) cell imaging 3.4) Adding of probe
stripping reaction mix 3.5) adding of probe hybridization reaction mix 3.6) beads are extracted and cDNA libraries are constructed. Images taken
with permission from Gérard et al., Mayer et al. and Yuan et al.
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centrifugation and is size insensitive. Overall, the
combination of label free and high throughput methods for
mechanical characterizations of the cells have a potential for
implementation in a multimodal approach.

5.2 Perspective techniques for MSCA

Another approach to MSCA is to perform single cell analysis
on one cell parameter and later integrated other cellular
parameters from different experiments. However, the
correspondence between individual cells is absent when data
from multiple experiments derived from different cell
populations are incorporated. The methods presented for
these analyses have great potential to be transformed into
multimodal analysis. For example, Zhong et al. have
investigated various cell types, cell linages, molecular features
and transcriptional regulation of the developing human
hippocampus.110 To understand the molecular features of
developing hippocampal cells, the authors performed scRNA-
seq and chromatin analysis with the 10× chromium platform
and ATAC-seq, respectively. They identified spatially specific
gene expression in both the pre-frontal cortex and the
hippocampus, which could be used as a tool for investigating
other short-term or long-term memory related diseases. In
another study exploring neural cell heterogeneity, Lake et al.
have analysed single-cell transcriptional and epigenetic states
in the human adult brain with droplet microfluidic
methods.111 Through scRNA-seq and epigenetic states on
separate samples, the data sets can be computationally
integrated.

To reveal additional spatial relationships between cells
multimodal measurements have been performed on tissue
samples. Using microfluidic methods for adding barcode
beads to the sample, simultaneous mapping of mRNAs and
proteins has been performed directly on the tissue sample.112

5.3 Clinical perspectives: current and future applications

As described above, single cell multimodal analysis allows for
biological differences between individual cells to be inferred,
and has thus broadened knowledge of cellular heterogeneity
and its implications in cell function. Single cell multimodal
analysis could substantially advance clinical research and
applications, particularly regarding early diagnostics and
disease monitoring, by tracking the precise composition and
distribution of specific cell populations with the cellular
changes. Several projects have integrated MSCA platforms to
analyse patient-derived samples, an overview of the recent
progress is in oncology, immunology and neurology
presented below.

5.3.1 Oncology. Tumors are composed of a large variety of
cell types and cell states. Because of both inter- and
intratumor heterogeneity, therapy resistance and tumor
relapse remain the greatest challenges in cancer
treatments.113 At the single cell level, cells have different drug
treatment responses, and even a small number of resistant
cells in a tumor can affect treatment outcomes. Because

therapy resistant cells may be rare in tumors,114 highly
sensitive methods are urgently needed for detecting these
cells. Single cell multimodal analysis has the unique
potential to reveal the biological variations within the
tumor115 and to relate specific acquired mutations to
molecular outcomes, thereby enabling the detection of
therapy resistant cells at an early stage and subsequent rapid
diagnosis of medical outcomes.116

Multimodal analysis can also be used to create detailed
lineage trees of cancer cell evolution.117 By reconstructing cell
lineage trees according to the extent to which cells share
somatic variations, the understanding of how tumors evolve
over time and the prediction of treatment outcomes can be
improved. As a result, more specific and efficient treatments
will be possible for patients. Projects such as The Human
Tumor Atlas Network118 and CancerSEA119 aim at identifying
cancer cell heterogeneity to create single-cell longitudinal
atlases. The Human Tumor Atlas Network will use omic
analyses and spatial multiplex in situ methods on patient
derived tumors to create accessible three-dimensional atlases
of multiple different sets of cancers. By studying genetic
differences and integrating them with clinical outcomes,
these projects aim to identify new biomarkers or
therapeutically relevant cell types. The CancerSEA database
focuses on decoding functional states of cancer cells at the
single-cell level by using single cell transcriptomic data.
These methods may serve as key stepping-stones for the
ambitious goal of mapping multimodal data in cancer
research.

5.3.2 Immunology. The immune system is highly complex
and consists of many types of cells, which have previously
been defined primarily through cell surface markers and
scRNA-seq.120 Although cell surface markers provide a good
indication of the protein expression of a cell, a complete
picture with multiple cellular parameters is desirable to
understand the immune system in depth.121 For example,
lymphoid cells communicate with their environment in a
variety of ways, including cell–cell interactions and
recruitment of new cells through chemokine secretion. A
variety of cell types are known by their specific functions in
this ecosystem, but only bulk data on the secretome are
available, whereas cell–cell variations and their effects are
underexplored to date. By culturing cells in individual
compartments in multimodal analysis platforms, not only
RNA and intracellular proteins but also individual
secretomes, then transcriptomes or genomes can be
analysed.

Unterman et al. have analysed the peripheral lymphocyte
population in patients with COVID-19. Using CITE-seq
surface proteins on lymphocytes, B cell and T cells receptors
have been analysed together with scRNA-seq. The authors
concluded that both B cells and T cells have an altered
distribution in the primary response to COVID-19.122

5.3.3 Neurology. MSCA have the potential to unravel
complex nervous system interactions and discover new cell-
signaling mechanisms controlling functions within the
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central nervous system. Furthermore, studying cellular
development and differentiation will also be possible by
tracking different cell trajectories, to predict cell lineages and
visualize how these diverse cells are organized within neural
tissues.123 Another possible parameter that may be integrated
in neurology is the analysis of cell electrophysiological
properties to identify new subclasses of cells and establish
cellular heterogeneity.124 As described above, Mayer et al.
have analysed cell diversity in the developing human
neocortex and have found new sub-populations of cells.88

These types of approaches are key stepping-stones in
assessing the full complexity of the nervous system.

5.4 Challenges for transitioning MSCA to clinical research

Several challenges must be addressed before single cell
multimodal analyses can be used in clinical applications.
First, an emerging need exists to develop guidelines and
workflows specifically for clinical settings, and to minimize
variations in sample quality due to sample collection and
preservation procedures, for which standardized protocols
and specific sample clean-up steps are required. Other key
aspects in translating single cell multimodal analysis to
clinical research include achieving high analysis sensitivity
and high throughput while minimizing costs. Crucially,
multimodal data must be properly analysed, and
computational methods specifically tailored for analysing
multiplexed data must be developed.125

6. Conclusion
Single cell analysis have recently benefited from the
technologies developed to simultaneously determine multiple
parameters of individual cells. These developments are
leading to unprecedented insight into cell fate decisions,
genotype–phenotype relationships and cell heterogeneity.
However, simultaneously evaluating multiple aspects of
single cells remains difficult with several limitations still to
be overcome: low genomic coverage, limited sample volume
and low sensitivity of analytical methods. Microfluidic
technologies combine advantages such as precise
manipulation of fluids, automated liquid handling, high
throughput and the potential for coupling to different
analytical measuring systems. The development of
microfluidic devices and their applications currently provides
and will continue to provide new research methodologies
with unprecedented accuracy for single cell analysis. These
technologies are therefore likely to shape the future direction
of multimodal analysis with a potential for translation into
clinical research in years to come.
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Circulating Ubiquitous RNA, A Highly Predictive and 
Prognostic Biomarker in Hospitalized Coronavirus Disease 
2019 (COVID-19) Patients
Thomas Bruneau,1,a Maxime Wack,2,3,a Geoffroy Poulet,4,a Nicolas Robillard,1,a Aurélien Philippe,5,6 Pierre-Laurent Puig,4 Laurent Bélec,1,7 
Jérôme Hadjadj,8,9 Wenjin Xiao,4 Julia-Linnea Kallberg,4 Solen Kernéis,10,11 Jean-Luc Diehl,5,12 Benjamin Terrier,7,8 David M. Smadja,5,6 Valerie Taly,4,b 
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Background. Approximately 15–30% of hospitalized coronavirus disease 2019 (COVID-19) patients develop acute respiratory 
distress syndrome, systemic tissue injury, and/or multi-organ failure leading to death in around 45% of cases. !ere is a clear need 
for biomarkers that quantify tissue injury, predict clinical outcomes, and guide the clinical management of hospitalized COVID-19 
patients.

Methods. We herein report the quantification by droplet-based digital polymerase chain reaction (ddPCR) of the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) RNAemia and the plasmatic release of a ubiquitous human intracellular marker, 
the ribonuclease P (RNase P) in order to evaluate tissue injury and cell lysis in the plasma of 139 COVID-19 hospitalized patients 
at admission.

Results. We confirmed that SARS-CoV-2 RNAemia was associated with clinical severity of COVID-19 patients. In addition, 
we showed that plasmatic RNase P RNAemia at admission was also highly correlated with disease severity (P < .001) and invasive 
mechanical ventilation status (P < .001) but not with pulmonary severity. Altogether, these results indicate a consequent cell lysis 
process in severe and critical patients but not systematically due to lung cell death. Finally, the plasmatic RNase P RNA value was 
also significantly associated with overall survival.

Conclusions. Viral and ubiquitous blood biomarkers monitored by ddPCR could be useful for the clinical monitoring and the 
management of hospitalized COVID-19 patients. Moreover, these results could pave the way for new and more personalized circu-
lating biomarkers in COVID-19, and more generally in infectious diseases, specific from each patient organ injury profile.

Keywords. ddPCR; hospitalized COVID-19 patient; predictive and prognostic biomarkers; SARS-CoV-2 and RNAseP 
RNAemia; tissue/cell lysis biomarker.

Coronavirus disease 2019 (COVID-19) is a global public health 
problem that has already caused more than 3 million deaths 
worldwide. A wide spectrum of disease severity was rapidly 
described ranging from asymptomatic or mild diseases to res-
piratory failure and multiple organ dysfunction syndromes, or 
failure requiring intensive care management of patients and 

leading to a high mortality rate. In severe cases, clinical obser-
vations rapidly described a 2-step disease progression, starting 
with a mild-to-moderate presentation followed by a secondary 
respiratory worsening 9–12 days after the onset of first symp-
toms [1–3]. Clinical deterioration is typically dominated by 
worsening of respiratory symptoms, which are potentially con-
comitant with severe systemic organ failure, including cardio-
vascular, renal, and/or liver injuries [4–8]. Evidence tended to 
demonstrate that the second phase of COVID-19 was associ-
ated with a cytokine storm contributing to the development of 
acute respiratory distress syndrome (ARDS), systemic tissue 
injury, and multi-organ failure observed in severe cases of 
COVID-19 [9]. Approximately 5% of patients infected with se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
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require intensive care and admission for severe lung damage [7, 
10] and 15–30% of patients hospitalized with COVID-19 de-
velop ARDS [11, 12] leading to death in around 45% of cases 
[13]. Therefore, biomarkers that can quantify tissue injury, ana-
lyze disease pathogenesis, predict clinical outcomes, and guide 
the clinical management of hospitalized COVID-19 patients are 
clearly needed.

In recent years, the democratization of ultrasensitive tech-
nologies, such as droplet-based digital polymerase chain re-
action (ddPCR), has fostered the development of circulating 
markers, making them suitable for several clinical applications. 
Recently, we and others provided evidence that highly sensitive 
quantification of SARS-CoV-2 RNAemia by ddPCR in periph-
eral blood could be a reliable marker of disease severity and 
that it could be used as a potential predictive biomarker of clin-
ical worsening in COVID-19 patient follow-up in the second 
phase of COVID-19 pathology [14, 15]. Besides SARS-CoV-2 
RNAemia, plasmatic release of ubiquitous human intracellular 
markers could be an accurate biomarker to evaluate tissue in-
jury and cell lysis induced by COVID-19. In addition, we moni-
tored the plasmatic release of the intracytoplasmic ribonuclease 
P (RNase P), targeting its H1 RNA catalytic part [16] to evaluate 
tissue injury and cell lysis induced by COVID-19 in this global 
study bringing together 2 cohorts of comparable COVID-19 pa-
tients hospitalized for respiratory deterioration during the first 
wave in Paris, France.

We herein report the quantification of SARS-CoV-2 RNAemia 
and circulating RNase P in the plasma of 139 COVID-19 hos-
pitalized patients at admission. We evaluated the interest of 
both markers in specifying the degree of clinical severity of 
COVID-19 at admission and correlated them with clinical out-
come of hospitalized COVID-19 patients during their medical 
follow-up.

METHODS

Study Design and Patients

A first cohort of 60 COVID-19 patients admitted to the Cochin-
Port Royal Hospital, Paris, France, was primarily included; 
to complete and extend our previous observations, we fur-
ther retrospectively included another series of 79 patients ad-
mitted to the European George Pompidou Hospital (HEGP), 
Paris, France, between 19 March 2020 and 26 June 2020 for 
COVID-19 during the first wave of the epidemic in France, 
for the quantification of SARS-CoV-2 plasma RNAemia and 
RNase P RNAemia by ddPCR. Inclusion criteria for COVID-
19 inpatients were age between 18 and 80 years, diagnosis of 
COVID-19 according to World Health Organization (WHO) 
interim guidance (https://www.who.int/emergencies/dis-
eases/novel-coronavirus-2019/technical-guidance/infection-
prevention-and-control), and positive SARS-CoV-2 real-time 
PCR (RT-PCR) testing on a respiratory sample (nasopharyngeal 

swab or invasive respiratory sample). The clinical severity 
of COVID-19 was described according to the adaptation of 
the Sixth Revised Trial Version of the Novel Coronavirus 
Pneumonia Diagnosis and Treatment Guidance published on 
19 February 2020 (http://www.kankyokansen.org/uploads/up-
loads/files/jsipc/protocol_V6.pdf). Mild cases were defined as 
patients with mild clinical symptoms (fever, myalgia, fatigue, 
and diarrhea) and no sign of pneumonia on thoracic computed 
tomography (CT) scan. Moderate cases were defined as patients 
with clinical symptoms associated with dyspnea and radiolog-
ical findings of pneumonia on thoracic CT scan and requiring 
a maximum of 3 L/minute of oxygen. Severe cases were defined 
as respiratory distressed patients requiring over 3 L/minute of 
oxygen with no other organ failure. Critical cases were defined 
as patients requiring mechanical ventilation, into shock, and/or 
with other organ failures that required management in an in-
tensive care unit (ICU). Biological collection and informed con-
sent were approved by the Direction de la Recherche Clinique 
et Innovation (DRCI) and the French Ministry of Research (no. 
2019-3677). The 2 cohorts conformed to the principles out-
lined in the Declaration of Helsinki, and received approval by 
the appropriate Institutional Review Board (Cochin-Port Royal 
Hospital, Paris, France; number AAA-2020-08018; European 
Georges Pompidou Hospital, Paris, France, SARCODO 
study: CPP 2020-04-048/ 2020-A01048-31/ 20.04.21.49318- 
ClinicalTrials.gov Identifier: NCT04624997).

RNA Extraction

Total plasma RNA (140 µL) was extracted using QIAamp® Viral 
RNA Mini Kit (QIAGEN®, Hilden, Germany), according to the 
manufacturer’s instructions. The elution volume was 35 µL, and 
10.5 µL of the elution were added to the RT-PCR mix for am-
plification [15].

Quantification of Plasmatic SARS-CoV2 RNA

Plasmatic SARS-CoV-2 RNAemia in each COVID-19 patient 
from HEGP cohort was quantified at admission by droplet-
based Crystal Digital PCR™ (Stilla Technologies, Villejuif, 
France) on a Naica™ System (Stilla Technologies, Villejuif, 
France) using the following commercial RT-PCR amplification 
kit (Novel Coronavirus [2019-nCoV] Digital PCR Detection 
Kit, Apexbio™, Beijing, China), according to the manufacturer’s 
instructions. The kit includes primers and FAM- and HEX- 
labeled probes specific to 2 distinct regions [ORF1ab and 
Nucleocapside (N) genes] of the SARS-CoV-2 positive strand 
RNA genome [15].

Quantification of Plasmatic RNase P 

Ubiquitous plasmatic RNase P RNAemia from all COVID-19 
patients of both cohorts was quantified using 10.5 µL of eluted 
RNA at each time point by droplet-based Crystal Digital PCR™ 
(Stilla Technologies, Villejuif, France) on the Naica™ System 
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(Stilla Technologies, Villejuif, France) using the following com-
mercial RT-PCR amplification kit (Novel Coronavirus [2019-
nCoV] Digital PCR Detection Kit, Apexbio™, Beijing, China), 
according to the manufacturer’s instructions. The kit includes 
primers and a Cy5-labeled probe for the detection of RNase P 
detected on the third channel of the Naica™ system. RNase P 
positivity was necessary to validate the RT-PCR assay prior to 
any further analysis. The results were automatically analyzed 
using the “Crystal reader” and “Crystal Miner” software (Stilla 
Technologies). RNase P concentrations were finally calculated 
considering the extracted volume of plasma and expressed in 
copies per milliliter of plasma (cp/mL).

Statistical Analysis 

Descriptive statistics were computed for the population at 
hospital admission. Quantitative variables were described as 
mean ± standard deviation (SD), if normally distributed, or 
median and interquartile range (IQR), otherwise. Categorical 
variables were described as group sizes and percentages.

Bivariate comparisons between clinical classes were com-
puted using the Fisher exact test for categorical variables, 1-way 
analysis of variance (ANOVA) for continuous variables when 
all groups were normally distributed, and the Kruskal-Wallis 
ANOVA otherwise. When comparing control and COVID-19 
patients, the Student t test was used for quantitative variables 
when both groups were normally distributed, and the Mann-
Whitney rank-sum test was used otherwise.
!e Cox proportional hazards model was used to evaluate 

the risk of death at inclusion between patients with low and 
high plasmatic RNase P concentration. Patients’ clinical out-
comes are presented using Kaplan-Meier curves.

Computations were performed using the R so"ware, and the 
survival package for the Cox proportional hazards model. P 
values < .05 were considered statistically significant.

RESULTS

Patient Characteristics

Global and per-cohort demographic and clinical character-
istics of the patients are shown in Table 1. Mean age was 58 
years (SD = 14), and 78% were male. Patients in both cohorts 
were comparable, except for patients from Cochin-Port Royal 
Hospital cohort who were slightly younger (mean age 54 ± 13 
vs. 62 ± 14 years) and presented less comorbidities (hyperten-
sion 30% vs 53%, chronic renal failure 3% vs 15%) at inclusion. 
The degree of severity of COVID-19 was categorized as mild-
to-moderate in 37 (27%) patients, severe in 35 (25%) and crit-
ical in 67 (48%).

Correlation Between SARS-CoV-2 RNAemia, Clinical Severity, Invasive 
Mechanical Ventilation (IMV) and Pulmonary Severity at Admission

SARS-CoV-2 RNAemia by ddPCR was significantly correl-
ated with clinical severity (respectively at a median of 25 (101) 

copy/mL; 36 (330) copy/mL in severe patients and 113 (528) 
copy/mL in critical patients) in hospitalized patients at admis-
sion (Figure 1A; P = .021). Plasma SARS-CoV-2 RNAemia was 
also correlated with mechanical ventilation status, with a higher 
concentration in IMV (median of 113 (528) copy/mL) than in 
nonventilated COVID-19 patients (median of 36 (199) copy/
mL) (Figure 1B; P = .012). No correlation was found between 
SARS-CoV-2 RNAemia and pulmonary severity objected by 
CT scan at admission (Figure 1C; Kruskal-Wallis test, P = .47).

Correlation Between Plasmatic RNase P Concentration and Clinical 
Severity, Invasive Mechanical Ventilation, and Pulmonary Severity at 
Admission

Plasmatic RNase P concentration was highly correlated with 
clinical severity classes (Figure 2A; P < .001 on log values) and 
the invasive mechanical ventilation status (Figure 2B; P < .001), 
with median plasma RNase P concentration of 14345 copy/mL 
(IQR = 27 500 copy/mL) in non-IMV patients and 103 482 (192 
500) copy/mL in IMV patients. Median plasma RNase P con-
centration in the control group of no disease patients (n = 18) 
was 3053 (1051) copy/mL. No correlation was found between 
RNase P RNAemia and pulmonary severity objected by CT scan 
at admission (Figure 2C; P = .53).

Clinical Outcome and Correlation With Baseline SARS-CoV-2 RNAemia 
and Plasmatic RNase P RNA Concentration

During hospitalization and clinical monitoring of COVID-19 
patients, 27 of the 139 patients died. Plasma RNase P RNA 
concentration at hospital admission predicted overall survival 
of the hospitalized COVID-19 patients. Plasma RNase P RNA 
concentration >4.63 log copy/mL at admission (median value of 
the log plasma RNase P RNA concentration in the dataset) was 
significantly associated with death during follow-up (Hazard 
Ratio (4.6 95% confidence interval [CI]: 2.18, 9.80), P = .0039) 
(Figure 3), whereas SARS-CoV-2 RNAemia value did not pre-
dict mortality in our study (data not shown). Interestingly, 
the median of delay between elevated plasma RNase P RNA 
concentration (>4.63log copy/mL) and death was of 4 days. 
Intubated patients without deadly outcome despite a concentra-
tion of RNAse P superior to 4.63log cp/mL (n = 31) were finally 
extubated. Among the 16 moderate and severe patients with a 
concentration of RNAse P superior to 4.63log cp/mL, 50% of 
them presented a clinical deterioration, such as intensive care 
unit transfer during their hospitalization but with a final favor-
able clinical outcome.

DISCUSSION

We measured SARS-CoV-2 RNAemia and plasma RNase P 
RNA concentrations at admission in a cohort of 139 COVID-19 
patients referred at the time of disease worsening. SARS-CoV-2 
RNAemia was detectable in most hospitalized patients. These 
results confirmed previous data on the correlation between 

2/ 0c • CID 0. 00853 &/ � Hs jw' • Bruneau et al

D
ow
nloaded from

 https://academ
ic.oup.com

/cid/article/75/1/e410/6459561 by guest on 26 Septem
ber 2022



    
 

 
 
 

192 

 

viral RNAemia and clinical severity, showing higher viral loads 
in severe and even more in critical patients compared to the 
mild-to-moderate patients [14, 15, 17, 18].

We also observed that RNase P RNA concentration, a ubiq-
uitous and aspecific human intracellular RNA marker, was also 
highly correlated with disease severity and invasive mechanical 
ventilation status in hospitalized COVID-19 patients, indicating 
a consequent cell lysis process in severe and critical patients.

Moreover, correlation between plasma RNase P RNA con-
centration > 4.63 log cp/mL at admission and overall survival 
pointed out the use of this quantitative biomarker as an ac-
curate prognosis tool in hospitalized COVID-19 patients, 
in addition to routine collected clinical parameters. "ese 

observations reflect the powerful clinical value of plasma 
RNase P RNA as a surrogate biomarker of COVID-19-induced 
global cell/tissue damage and likely to underline the severity 
of COVID-19 pathology. "e question of the influence of 
comorbidities on RNase P concentrations is important to 
ask. In our study, the proportion of patients with co-morbid-
ities is equivalent the different clinical classes from moderate 
to critical classes (Supplementary Table 1A; test χ2 p = NS). 
Moreover, the percentage of patients with comorbidities in 
the group with elevated RNaseP concentration (>median of 
4.63 log copy/mL) is not statistically different from the per-
centage of patients with comorbidities in the group with 
RNaseP concentration below 4.63 log copy/mL (61% vs 48%, 

Table 1. Demographic and Clinical Findings of 139 Patients Suffering From Coronavirus Disease 2019 (COVID-19) Hospitalized in Paris During the First 
Wave of the Epidemic

 N % Med IQR 

Age 139 58.61 17.30
Sex 139
 Women 31 22
 Men 108 78
Classes 139
 Moderate 37 27
 Severe 35 25
 Critical 67 48
DSO 139 11 5
Tobacco status 138
 Active smoking 4 2.9
 Never smoker 109 79
 Weaned smoker 25 18
Cardiovascular history 135
 No 114 84
 Yes 21 16
Hypertension 139
 No 79 57
 Yes 60 43
Diabetes 139
 No 110 79
 Yes 29 21
Cancer history 139
 No 126 91
 Yes 13 9.4
Chronic renal failure 139
 No 125 90
 Yes 14 10
Mechanical ventilation 67 48
Pulmonary severity (% of lung involvement) 115
 <10% 12 10
 10–25% 22 19
 25–50% 46 40
 50–75% 29 25
 75–100% 6 5.2
Death 139
 No 112 81
 Yes 27 19

Abbreviations: DSO, delay from symptoms onset; IQR, interquartile range; Med, median. 
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respectively; Fisher test P = .12; Supplementary Table 1B). 
!erefore, RNase P RNA alone appears to be an interesting 
biomarker to determine COVID19 severity. Finally, even if 
additional experiments are needed to confirm our data, circu-
lating RNase P appears as a highly predictive and prognostic 
marker in COVID19.

Our data strongly support the use of this cell-free RNA 
(cfRNA) quantification by ddPCR as a prognostic tool for early 
detection and monitoring of cell and tissue injury associated 
with COVID-19. Ordinarily, circulating endogenous RNA is 
considered to be extremely fragile and not sufficiently stable to 
represent a marker for monitoring, as compared to circulating 
DNA. However, in our study, the massive release of this endoge-
nous marker seems to counteract the intrinsic weakness of RNA 
properties making it a marker of choice to quantify and monitor 
the degree of cell lysis in parallel of systemic viral invasion re-
garding the viral RNAemia. Another hypothesis would be that 
this particular RNA, as a subunit of a protein complex, may be 
more protected from degradation and therefore more easily de-
tected and quantitated than classical RNA.

Solely based on CT-scan imaging, a lytic and an inflamma-
tory process cannot be distinguished. However, a high plasma 
level of RNase P RNA may more likely indicate a lytic pro-
cess rather than an inflammatory one. In the case of a more 
frequent lytic pulmonary process in COVID-19, our data 
can also explain and predict the longer mean stay in ICU 
observed in critical COVID-19 patients (15 days) compared 
to critical seasonal influenza infected patients (8 days) [19] 
that could correlate with the highest degree of pulmonary 
cell lysis in COVID-19 patients and thus a longer time to re-
cover functional lung cells. Distinction between pulmonary 
lytic and inflammatory lesions could be of great interest for 
the clinical management of COVID-19 patients, especially in 
a therapeutic perspective, considering that anti-inflammatory 
treatments would be more efficient in the context of inflam-
matory process and maybe not in the context of lytic process. 
Finally, the delay between elevated RNase P (>4.63 log copy/
mL) and death of patients of 4 days (from 0 to 28 days) also 
asks the question of refining timing therapeutics early to pa-
tients with elevated RNase P at admission. Obviously, such 

Figure 1. A, SARS-CoV-2 RNAemia concentrations in 139 patients suffering from COVID-19 according to clinical severity. B, SARS-CoV-2 RNAemia concentrations in 139 
patients suffering from COVID-19 according to IMV status. C, Correlation between SARS-CoV-2 RNAemia concentrations (log copy/mL) and pulmonary severity. Abbreviations: 
COVID-19, coronavirus disease 2019; IMV, invasively mechanically ventilated; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2. 
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considerations could be applied to other pulmonary infectious 
pathologies.
!e lack of correlation between RNase P RNA concentration 

and pulmonary severity estimated by the percentage of lung 
damage on CT-scan illustrates that radiologic lesions may not 
systematically reflect lytic process but both lytic and inflamma-
tory lesions. !is lack of correlation could also be explained by 
the fact that RNase P RNA level is not lung-specific and could 
therefore reflect extra-pulmonary tissue lysis. !erefore, we in-
vestigated the 9 patients (6 critical, 2 severe, and 1 moderate; 
Figure 2C) with plasmatic RNase P concentration above 4.63 log 
copy/mL in the two less severe pulmonary groups (<10% and 
10–25%). Very interestingly, in 6 of these 9 specific patients for 
whom other biological information were available, we found 
signal for other organ injury such as kidney, liver, or heart with, 
respectively, elevated blood creatinine, ASAT/ALAT, or tro-
ponin levels. Finally, a possible hypothesis is that endogenous 

RNA release in plasma comes directly from infected cells lysis 
where SARS-CoV-2 replication occurs. However, we found 12 
critical patients, with plasmatic RNase P levels above 4.63 log 
copy/mL but without any plasmatic SARS-CoV-2 RNA detec-
tion concurrently. In such patients, cfRNA plasmatic release 
could reflect the destruction of noninfected cells probably due 
to immunopathological mechanisms. As COVID-19 has been 
described as a systemic disease with multi-organ involvement, 
with regard to our preliminary results, we need further tissue-
specific molecular markers to understand and specify the origin 
of observed cell lysis. In this way, Cheng et al. recently reported 
a blood test to quantify cell-, tissue-, and organ-specific injury 
due to COVID-19 [20]. !e authors assessed the utility of this 
test to identify subjects with severe disease and report an ev-
idence of injury to the lung and liver and the involvement of 
red blood cell progenitors associated with severe COVID-19. 
In their study, the concentration of cfDNA correlated with the 

Figure 2. A, Plasmatic RNase P concentrations in 139 patients suffering from COVID-19 according to clinical severity. B, Plasmatic RNase P concentrations in 139 patients 
suffering from COVID-19 according to the IMV status. C, Correlation between RNase P RNAemia concentrations (log copy/mL) and pulmonary severity. Abbreviations: COVID-
19, coronavirus disease 2019; IMV, invasively mechanically ventilated; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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WHO ordinal scale for disease progression and was signifi-
cantly increased in patients requiring intubation.

Such a reproducible molecular blood test allowing a more ac-
curate assessment of clinical severity and prognosis in COVID-
19 patients at hospital admission can also be used in clinical 
trials of candidate COVID-19 treatments to monitor their effi-
cacy and select eligible patients.

Overall, monitoring of blood biomarkers could guide the 
management of hospitalized COVID-19 patients. Our results 
could pave the way for new and more personalized therapeutic 
options in infectious diseases, based on each patient-specific 
organ injury profile.
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Notes
Acknowledgments. #e authors thank the patients who participated in 

the study, the clinical staff involved in their management.
Author contributions. 

Experimental strategy design, experiments: T. B., G. P., M. W., N. R., V. 
T., D. V., and H. P.

Vital materials: A. P., J. H., S. K., P. L. P., J. L.D., B. T., and D. S.
Manuscript writing: M. W., L. B., V. T., D. V., and H. P.
Manuscript editing: T. B., M. W., G. P., N. R., A. P., L. B., W. X., J. L. K., J. 

L. D., B. T., V. T. , D. V., and H. P.
Financial support. #is work was supported by IdeX AAP EMERGENCE-

Université de Paris., Mécénat COVID-GHU APHP.CUP. V. T. acknow-
ledges funding from Ligue Nationale Contre le Cancer (LNCC, Program 
“Equipe Labelisée LIGUE”; grant number EL2016.LNCC). #is project has 
received funding from the European Union’s Horizon 2020 research and in-
novation programme under the Marie Skłodowska-Curie grant agreement 
No 813786 (JK salary).

Potential conflicts of interest. G. P., P. L. P., V. T., D. V., and H. P. 
have a pending patent application related to this work (patent num-
bers PCT/EP2021/065863 and PCT/ EP20305571.0). V. T. reports 
Evodrops  Innovative Training Network (ITN) (JK) and Erganeo (patent); 
reports serving on Scientific Board and as founder for Emulseo (no direct 
link to present work); reports serving on Scientific board and as founder for 
Methys Dx (no direct link to present work). S. K. reports research grants 
to their institution and consulting fees (2018–2019) from bioMérieux; re-
ports payment/honoraria for education activities form bioMérieux (2019) 
and Accelerate Diagnostics (2018); reports travel support from bioMérieux 
(2019) and MSD (2019). All other authors report no potential conflicts. 

All authors have submitted the ICMJE Form for Disclosure of Potential 
Conflicts of Interest. Conflicts that the editors consider relevant to the con-
tent of the manuscript have been disclosed.

Figure 3. Overall survival regarding RNase P RNAemia (log copy/mL).

2/ 4c • CID 0. 00853 &/ � Hs jw' • Bruneau et al

D
ow
nloaded from

 https://academ
ic.oup.com

/cid/article/75/1/e410/6459561 by guest on 26 Septem
ber 2022



    
 

 
 
 

196 

 

 
 

 

References
 1. Huang AT, Garcia-Carreras B, Hitchings MDT, et al. A systematic review of anti-

body mediated immunity to coronaviruses: kinetics, correlates of protection, and 
association with severity. Nat Commun 2020; 11:4704.

 2. Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes 
of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy 
Region, Italy. JAMA - J Am Med Assoc 2020; 323:1574–81.

 3. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of Novel 
Coronavirus–infected pneumonia. N Engl J Med 2020; 382:1199–207.

 4. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel 
coronavirus in Wuhan, China. Lancet 2020; 395:497–506.

 5. Yang F, Shi S, Zhu J, Shi J, Dai K, Chen X. Analysis of 92 deceased patients with 
COVID-19. J Med Virol 2020; 92:2511–5.

 6. Ronco C, Reis T, Husain-Syed F. Management of acute kidney injury in patients 
with COVID-19. Lancet Respir. Med 2020; 8:738–42.

 7. Wu Z, McGoogan JM. Characteristics of and important lessons from the 
Coronavirus Disease 2019 (COVID-19) outbreak in China: summary of a report 
of 72314 cases from the Chinese center for disease control and prevention. JAMA 
2020; 323:1239–42.

 8. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 
cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. 
Lancet 2020; 395:507–13.

 9. Leisman DE, Ronner L, Pinotti R, et al. Cytokine elevation in severe and 
critical COVID-19: a rapid systematic review, meta-analysis, and com-
parison with other inflammatory syndromes. Lancet Respir. Med 2020; 8: 
1233–44.

 10. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients 
with coronavirus disease 2019: retrospective study. BMJ 2020; 368: m1091.

 11. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, 
transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): 
a review. JAMA 2020; 324:782–93.

 12. Attaway AH, Scheraga RG, Bhimraj A, Biehl M, Hatipoğ Lu U. Severe covid-19 
pneumonia: Pathogenesis and clinical management. BMJ 2021; 372:n436.

 13. Tzotzos SJ, Fischer B, Fischer H, Zeitlinger M. Incidence of ARDS and outcomes 
in hospitalized patients with COVID-19: a global literature survey. Crit Care 
2020; 24: 516.

 14. Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and in-
flammatory responses in severe COVID-19 patients. Science 2020:eabc6027. 
Doi:10.1126/science.abc6027. Accessed 20 July 2020.

 15. Veyer D, Kernéis S, Poulet G, et al. Highly sensitive quantification of plasma 
SARS-CoV-2 RNA sheds light on its potential clinical value. Clin Infect Dis 2020; 
73:e2890–7.

 16. Jarrous N, Reiner R. Human RNase P: A tRNA-processing enzyme and transcrip-
tion factor. Nucleic Acids Res 2007; 35:3519–24.

 17. Bermejo-Martin JF, González-Rivera M, Almansa R, et al. Viral RNA load in 
plasma is associated with critical illness and a dysregulated host response in 
COVID-19. Crit Care 2020; 24:691.

 18. Ram-Mohan N, Kim D, Zudock EJ, et al. SARS-CoV-2 RNAemia predicts clinical 
deterioration and extrapulmonary complications from COVID-19. Clin Infect 
Dis 2021:ciab394.

 19. Piroth L, Cottenet J, Mariet AS, et al. Comparison of the characteristics, mor-
bidity, and mortality of COVID-19 and seasonal influenza: a nationwide, 
population-based retrospective cohort study. Lancet Respir Med 2021; 9:251–9.

 20. Cheng AP, Cheng MP, Gu W, et al. Cell-free DNA tissues of origin by methyla-
tion profiling reveals significant cell, tissue, and organ-specific injury related to 
COVID-19 severity. Med 2021; 2:411–22.e5.

2/ 5c• CID 0. 00853 &/ � Hs jw' •Circulating RNAseP in Hospitalized COVID-19

D
ow
nloaded from

 https://academ
ic.oup.com

/cid/article/75/1/e410/6459561 by guest on 26 Septem
ber 2022


