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Introduction

Humans develop their behaviour depending on the context in which they are sit-
uated, i.e. their environment and society. They can adapt to the environment in
which they live that may range from hot deserts to cold icy environments. Simi-
larly, in society, the same individuals that develop a tight behaviour in a military
context may also develop a loose behaviour in an entertainment context.

Human behaviour can be guided by knowledge, and knowledge adaptation may
be necessary to change one’s behaviour. For example, the way individuals hunt
in their environment is determined by their knowledge about that environment’s
animals, i.e. what each animal eats, what their reflexes and speed are, etc. When
individuals adapt their knowledge to learn that fishes eat insects, they start using
them as bait.

Individuals adapt their knowledge by learning from interactions with their en-
vironment and society. They can learn about both the environment and society by
interacting with them. Conversely, they can also learn about the environment by
interacting with the society and, vice versa, about the society by interacting with
the environment. For instance, an individual can learn that aconite is poisonous
when another individual informs them and that a society is rich if their cities have
high quality infrastructures.

Since individuals adapt their knowledge when they learn, these adaptations
create variations. The variations are selected under the pressure exerted by the
environment and the society. Knowledge is then transmitted between individuals,
not necessarily faithfully, which in turn creates variations to repeat the process.
This cycle of variation, selection, transmission characterises the evolution process.
It is the process by which humans accumulate knowledge through different gener-
ations [75].

Like humans, artificial agents are also situated in an environment and within a
society of other agents and humans [112]. They are often endowed with knowledge
to perform tasks [98]. When other artificial and/or human agents also perform
tasks in the same environment, interactions with them are necessary. As it is the
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case for humans, this may require knowledge adaptation. The question that is
posed here is:“can knowledge evolve in a society of artificial agents as it is the case
in a society of humans?”

More precisely this thesis investigates how can local knowledge adaptations of
artificial agents affect global, i.e. at the population level, knowledge properties?
In particular, if agents adapt to improve their social interactions, how can this
affect the quality of their knowledge about the environment? How does it affect
their diversity? By showing how agents can globally evolve their knowledge, this
work aims to advance the understanding of knowledge evolution in artificial agent
societies. This can inform the design of adapting agents that can evolve their
knowledge appropriately.

To do this, cultural evolution and knowledge representation techniques are
used. The field of cultural evolution [73] aims at explaining and predicting the
evolution of cultural traits. Since knowledge is a complex set of cultural traits,
it evolves following patterns of cultural evolution. Hence, cultural evolution tech-
niques can be applied to design experiments for knowledge evolution. Additionally,
agents’ knowledge about the environment can be formally represented by ontolo-
gies [104]. Ontologies allow agents to communicate and interact with each other
and the environment. If necessary, agents can adapt their ontologies. This the-
sis studies the evolution of ontologies in a population of agents that adapt their
ontologies to their interactions.

The experimental methodology followed in this work is inspired from exper-
imental cultural language evolution [102]. In addition to being equipped with
ontologies, agents are endowed with operators to adapt them. They interact with
each other at random. The outcomes of these interactions determine whether
agents adapt their ontologies. In parallel, agents achieve tasks in the environment
individually using their ontologies. The properties of knowledge are monitored
throughout the experiment.

This work answers how adapting knowledge for one purpose (success in so-
cial interactions) affects the evolution of indirectly related knowledge properties:
its quality and diversity. Knowledge quality about the environment is measured
through how well agents carry out their individual tasks. As for diversity, an
appropriate distance measure between ontologies is defined to evaluate the agent
population’s diversity.

Human beings transmit their genes to their offspring. In cultural evolution,
knowledge, as any cultural trait, can be transmitted between any two individuals.
Nevertheless, inter-generation transmission, i.e. transmission between individuals
of different generations, is still largely considered in cultural evolution experi-
ments [76]. It is a constrained form of transmission restricted between departing
individuals (old generation) and arriving individuals (new generation). As a re-
sult, it represents a bottleneck through which knowledge may be lost. Conversely,
the arrival of new individuals has the potential of creating more variation for the
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evolution to continue. This calls for an assessment of whether successive artificial
agent generations are able to preserve knowledge and provide necessary variation
to progress its evolution further. Hence, the above-mentioned questions are studied
in the context of a single generation as well as across multiple generations.

Thesis contributions
A first contribution is the design of an experimental framework for ontology evolu-
tion within an interacting artificial agent society. The framework has the advantage
of being simple and modular which facilitates its adjustment and extension to test
several hypotheses.

A second contribution is the use of this framework to show how evolving knowl-
edge through adaptations for social agreement affects positively knowledge quality
and diversity [21]. This is done by testing and validating three main hypotheses:

1. Agents reach a state of agreement on their interactions.

2. They improve the quality of their knowledge about the environment.

3. Finally, they are not constrained to loose all their diversity to agree with
each other.

A third contribution is to show which experimental conditions are favorable to
which knowledge properties. It is done to ground the usage of the framework for
further experiments.

A fourth and final contribution is the extension of the characterisation of knowl-
edge evolution to several generations by showing that, in addition to reaching
successful interactions [22]:

1. Agents cumulatively improve the quality of their knowledge across genera-
tions.

2. They do so without the need to select agent teachers for the next generations
as knowledge is selected during their adaptations.

3. Unlike knowledge quality that increases from one generation to another, di-
versity remains stable from one generation to another.

Material
All the experiments in this work can be reproduced. Results and statistical analysis
of each experiment are recorded and available [13–20]
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Outline
This thesis first reviews in Chapter 2 work related to knowledge acquisition and
evolution in artificial systems.

Part I

In Part I of the thesis, knowledge evolution within one generation is studied. Chap-
ter 3 presents an experimental framework that reflects the motivation of the thesis.
Following this, in Chapter 4, the framework is used to carry out an experiment to
show how knowledge properties, quality and diversity, evolve when agents adapt to
agree with each other. Finally, Chapter 5 reports on four experiments that assess
the robustness of this process.

Part II

In Part II, knowledge evolution within multiple generations is studied. Chapter 6
extends the initial framework by introducing multiple generations of agents. Chap-
ter 7 reports on experiments that study the potential role of knowledge transmis-
sion within and between generations on knowledge quality and knowledge diversity.

Part III

In the last part, Chapter 8 contains a summary of the thesis followed by a presen-
tation of this work’s perspectives.
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Knowledge acquisition and evolution in
artificial systems

This thesis studies the cultural evolution of knowledge in a population of artificial
agents. To do this, multi-agent simulations are performed in which agents adapt
their knowledge to social interactions between them. This chapter presents the
basics and related work to clarify the scope of this thesis. It first presents a
global review of artificial agents, their interactions and how they can agree in their
interactions (Section 2.1). In order to reach agreement, agents may adapt their
internal state. This includes adaptations of knowledge. Thus, secondly, this thesis
presents how agents can build and alter their knowledge based on information
from both their environment and society (Section 2.2). By going through successive
adaptations, knowledge can evolve following specific mechanisms. Finally, a review
on cultural evolution, its mechanisms and its relationship with multi-agent systems
is provided (Section 2.3).

2.1 Multi-agent systems

We review in this section the areas of Multi-agent systems [112] that are necessary
for designing experiments to study knowledge evolution in a society of artificial
agents. Our focus is on agent adaptations to social interactions since they enable
evolution. Hence, this part will first briefly review in Section 2.1.1 what are arti-
ficial agents and architectures that are related to this work. Then, it will present
in Section 2.1.2 how interactions of a collection of agents are studied. Finally,
Section 2.1.3 presents how agents can agree (including knowledge adaptations) to
improve their interactions.
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2.1.1 Artificial agent

As defined by Wooldridge and Jennings [55]: “An agent is a computer system that
is situated in some environment, and that is capable of autonomous action in this
environment in order to meet its design objectives.”

Hence, an agent is situated in an environment whose characteristics are pivotal
for its design. It is capable of perceiving its environment, through its sensors, and
act upon it with its actuators in order to meet its objectives.

In what follows,

1. a presentation of the main environment classification characteristics is given
to distinguish which kind of environments agents can face and which ones
are most suited for this work;

2. abstract agent designs are briefly introduced to explain the general architec-
ture through which an agent can take actions that lead to their objectives.

Agent environment

The characteristics of the environment in which an agent is situated determine
how and what kind of information the agent perceives. They also determine what
kind of actions the agent can perform. They hence determine how complex agent
architecture need to be in order for them to operate in the environment. For exam-
ple, an agent that classifies customers operates in an episodic environment which
consists of unchanging customer representations that it has to classify, whereas an
agent that plays football operates in a sequential environment and must handle the
consequences of its present actions on its future actions. Russell and Norvig [98]
distinguished six main characteristics of agent environments: fully or partially ob-
servable, single or multi agent, deterministic or not, episodic or sequential, static
or dynamic, discrete or continuous and finally known or unknown.

Each of these characteristics can be seen as the presence (or absence) of a
challenge that agents may face in their environment. Artificial agent architectures
can grow quickly in complexity to cope with these challenges. It is however suf-
ficient, and even desirable for agent based simulations [1], to design agents with
simple architectures. Indeed, a simple architecture diminishes interferences with
the studied phenomenon [66]. Hence, it is desirable to ignore these challenges in
designing experiments unless the goal of the work is to investigate the evolution of
knowledge under the presence or absence of a given challenge. This would avoid in-
terferences with the obtained results. For example, if the design of agents does not
allow them to overcome partial observability, they may not be able to succeed in
their interactions. The failure in interactions would be due to agent design instead
of incompatible knowledge. It would, hence, hinder the obtained results. A fully
observable, multi-agent, deterministic, episodic, static and known environment is
the one that interfers the least with the results.
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Sensors Actuators

Architecture

Agent

Environment

Figure 2.1: Abstract agent architecture.

Agent architecture

As seen in Figure 2.1, an agent has (a) sensors that gather information from
the environment, (b) actuators that perform actions on the environment and (c)
internal architecture that takes actions based on the perceptions. Jennings and
Wooldridge [113] suggested three capabilities to expect in an intelligent agent: (a)
Reactivity: Reactive agent architectures are based on determining agent actions
directly from the current information about the environment, e.g. the subsumption
architecture [29]; (b) Proactiveness: Proactive agent architectures enable agents
to take initiative in planning actions towards achieving their objectives, e.g. the
BDI (Belief, Desire and Intention) architecture [27]; (c) Social ability: the agent
should be able to interact with other agents to reach their objectives. This part
will be further discussed in Section 2.1.2.

Agents may rely on knowledge about their environment in order to act cor-
rectly. For this purpose, ontologies are commonly used as a form of knowledge
representation in artificial agents [98]. An ontology represents information about
entities by categorising them into a classifications and relating the classes to each
other. The sets of the ontology classes and its entities constitute its signature.
Elements of these sets are related to each other by statements, for example, a
class C can be subsumed by another class D or an entity o can be a member of a
class C. An ontology is a set of such statements that can be formally expressed
as a knowledge base in Description Logic [5]. Ontologies can be used by agents to
represent their environment, e.g. [47], plan in it, e.g. [62,91] and take actions in it,
e.g. [67]. They also allow agents to communicate with each other by using them
to know how to communicate, e.g. [31] and understand what the other agents are
refering to, e.g. [39].

The architecture of an agent determines how it operates in the environment,
but what drives an agent to adapt its knowledge? An agent is built with design
objectives that it attempts to achieve. A rational agent’s actions are taken with
the aim to satisfy these objectives. What is noteworthy is that a rational agent
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db1 db2
da1 1,-1 -3,3
da2 -2,2 4,-4

db1 db2
da1 1,1 3,3
da2 2,2 4,4

Figure 2.2: Row agent (a) receives left payoff and column agent (b) receives right payoff.
In the left payoff matrix, agents have opposite preferences whereas in the right matrix
agents have the same preferences.

may still not take the action that is most desirable because its knowledge is not
appropriate. Indeed a rational action is an action that maximises the expected
performance by the agent. it does not mean that its outcome will certainly be
desirable for the agent. This can be due to the partial observability, unknown
rules or non-determinism of the environment. For the latter case, the agent cannot
know the outcome of its action beforehand. As for the two former cases, agents
can gather information and learn [98].

Learning requires modifying and/or augmenting the agent’s knowledge. The
modification of knowledge results in changing the agent’s behaviour. It is thus done
in an attempt of adjusting behaviour towards improving the expected performance.
Agent knowledge adaptations are not restricted to environmental information but
also to social information. In this work, we mainly consider the adaptations to
information that agents receive from social interactions.

2.1.2 Agent interactions

Agents are usually not alone in their environment. The actions of different agents
may interfere with each other. This is known as agent interactions. In this thesis,
we are interested in adaptations that result from agent interactions. Hence, it is
important to understand what kinds of interactions can happen between agents
and what they entail.

Agents have their own environment state preferences. Preferences are generally
modelled using utility functions. Given a set of possible outcomes, or environment
states, after n agents perform their actions, each agent has an associated utility
to the possible outcomes. In the case of two agents, this is typically represented
with a payoff matrix as in Figure 2.2. Rows represent actions of the first agent and
columns represent those of the second agent. Each cell of the matrix contains the
payoffs received by the agents (Row agent receives left payoff and column agent
receives right payoff) when they take the actions corresponding to the cell’s row
and column.

Several types of such interactions can be distinguished. For example, it can be
that two agents i and j have complete opposite preferences (strictly competitive
games, Figure 2.2 left). On the contrary, it could be that they have the same
preferences (pure coordination games, Figure 2.2 right). An obvious question that
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is raised is: which action should an agent perform knowing its and the other agent’s
preferences?

Game theory [41] analyses what actions agents will take or converge to given
their outcomes. For example, the prominent concept of Nash equilibrium denotes a
stable outcome from which no agent wants to deviate. The underlying mechanisms
by which an agent takes an action are abstracted. However, in many cases, in
order for agents to change their choices of actions they need to change part of the
underlying mechanism that chooses it. What interest us here is that agents take
actions depending on what they know. In order to change an action, an agent
may need to change what it knows and not only how it uses its knowledge to
take actions. It is possible to analyse what actions rational agents converge to.
However, this does not necessarily tell us what their knowledge becomes, which is
what this thesis is about. Its focus is not on how agents can adapt their actions or
what actions they converge to, but on the effect the adaptations has on knowledge.

2.1.3 Agent agreement

A clear issue in multi-agent interactions between self-interested agents is how can
they cooperate for mutual benefits in non strictly competitive interactions. For
this, agents attempt to reach what is known as agreement [97]. They agree on an
outcome among the possible ones that mutually benefits them. Agreement may
pertain different aspects: choosing among a set of candidates, allocating resources,
agree about the state of the world, etc.

Interaction agreement protocols

In order to reach an agreement, interaction protocols can be defined. Negotia-
tion [9, 54] and argumentation [90] are common techniques used in multi-agent
systems to reach agreement. Although negotiation and argumentation are very
vast with very active ongoing research topics, this thesis focuses on their usage on
knowledge agreement only.

Negotiation is a general term that groups techniques to reach agreement for
mutual interest. It is usually performed in several rounds in which agents make
proposals to each other. The negotiation terminates when an agreement is reached
in which both parties accept a given proposal. Several approaches that rely on ne-
gotiation have been proposed to tackle knowledge heterogeneity [58,86]. Through
this, agents agree on a set of relationships between different agent ontology entities
without modifying them. In a more related work, ontology negotiation [6] attempts
to resolve ontology mismatches that may hinder communication between different
agents. ANEMONE [36] proposes a negotiation protocol that allows agents to seek
minimal solutions to enable communication between their ontologies. Agents in
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ANEMONE adapt their ontologies to proposals received from other agents. Agents
aim to be minimal and effective in their modifications. Thus, for instance, sending
sample instances in order to help others learn a concept is only proposed if no
satisfactory definition of it could be given through shared concepts, i.e. concepts
known by both negotiating agents. This allows agents to enhance their ontologies
and understand the concepts of others.

Argumentation is a process in which one agent attempts to convince another
agent about the truth of some propositions. Agents exchange arguments with
each other for and against these propositions. They are also meant to justify their
arguments in order for them to be accepted. Argumentation has been classically
used mainly in two multi-agent system problems: (a) forming and revising beliefs
and decisions and (b) rational interactions [71]. Argumentation has also been
used to agree on relationships between ontology concepts [107]. Other approaches
tackle knowledge heterogeneity by relying on argumentation as a mean for agents
to reach an agreement on concept meaning [3, 4, 69,99].

As seen above, several protocols have been proposed to reach agreement by
modifying knowledge. In contrast, this work does not focus on how agents should
adapt to reach agreement. We assume that agents know how to adapt their knowl-
edge to correct the causes of disagreements in interactions. This can be done by
simplifying the knowledge structure and interactions such that agreement on a
specific kind of interaction can be reached by applying a simple adaptation oper-
ator. However, what this work focuses on is how adaptations to reach agreement
make different knowledge properties evolve in a society of agents.

Evolution

Another way in which agents can converge to agreement is studied in Evolutionary
game theory [110]. It looks at the evolution of individual strategies, i.e. actions,
in a population. A well known example of this is the replicator dynamic [100]
which models a population of individuals interacting with each other that can
evolve. Each individual follows a single strategy. As a result of their interactions,
individuals receive payoffs. Individuals are endowed with replication capabilities
that are proportional to the payoff they receive. As a result, the evolution of
the population’s strategies leads to the survival of strategies that maximise the
received payoff.

This thesis also considers a population of interacting agents in which the repli-
cation of strategies happens through knowledge transmissions between them. As
explained before, in contrast to focusing on the evolution of strategies, this the-
sis focuses on the evolution of knowledge that produces these strategies. This is
affected, not only by the transmission of actions between individuals, but also by
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db1 db2
da1 1,0 3,2
da2 2,1 4,0

Figure 2.3: Stackelberg game: row agent (a) have to teach column agent (b) to agree on
the outcome S(da1, d

b
2).

what knowledge is transmitted? When is it transmitted? From whom to whom?
etc.

Learning and Teaching

Agents can also agree with each other by learning about each other. Contrary to
single agent scenarios in which learning allows the agent to cope with unknown or
changing environments, in a multi-agent environment, agents need also to learn
about other agents. For example, this is the case of multi-agent reinforcement
learning [115]. This allows them to operate while considering the behaviour of
other agents.

Consequently, this necessarily calls for considering teaching as well. In a con-
text where agents learn about each other’s behaviour, it is important for the agent
to consider how it influences the other agents learning with its behaviour. An
agent is thus able to teach others with its behaviour. To illustrate this, consider
the example presented in [101]. A game between agents a and b has the payoff
matrix shown in Figure 2.3. It is possible to note that player a has a dominant
action da2. The outcome S(da2, d

b
1) is the only Nash equilibrium. In this case, agent

a has the possibility of teaching player b by taking action da1 in order for agent b to
learn to take action db2. The agents would indirectly agree on the outcome S(da1, db2)
which yields, for both agents, a greater payoff than that of the Nash equilibrium.

Adaptations to other agents’ behaviour to reach agreement is a form of learning.
This thesis considers agents that adapt their knowledge to other agents’ behaviour.
Thus, their adaptations can be considered as transmissions of knowledge to a
learner agent.

2.1.4 Conclusion

This section, first, reviewed agent architectures: how they depend on their envi-
ronment and why they are drived to adapt their knowledge (that is when their
knowledge does not allow them to maximise their payoff). Given that the thesis
is focused on adaptations to social interactions, this section also discussed the for-
malisation of agent interactions, specifically how agents can impact each other’s
payoff. Finally, this section reviewed how can agents agree to take actions that
mutually benefits them when they interact with each other. What interests us
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here is that agents may need to adapt their knowledge to reach this agreement.
This can be seen as learning from interactions with others. In the next section,
learning in multi-agent systems is reviewed namely when agents learn from each
other in coordinated and social learning.

2.2 Coordinated and social learning
To study the cultural evolution of knowledge in an agent population, agents need
mechanisms to acquire and adapt knowledge. There exists several techniques of
machine learning used both to learn knowledge from scratch or adapt existing
knowledge.

This part reviews machine learning in a multi-agent setting. Learning in such
setting concerns multiple learners that learn and adapt in the context of oth-
ers. Several multi-agent learning techniques require single agent learning abilities.
Thus, this part first briefly reviews single agent learning. Then, it reviews, in
general, multi-agent learning techniques, in which agents are conscious of the exis-
tence of other learners. Finally, it presents social learning, i.e. learning from other
individuals, which is the most relevant kind of learning to this work.

2.2.1 Single agent learning

Single agent learning can be done to improve any of the agent’s component. Sec-
tion 2.1.1 presented some of the prominent agent components: a map from state
to actions, inference of relevant properties from perceptions, knowledge about the
environment, etc.

This thesis is concerned by agent knowledge about the environment. It can be
used to decide what action to take, including communication with other agents,
given the current state. Typically, this is done with supervised learning in episodic
environments and reinforcement learning in sequential environments.

Supervised learning

In supervised learning, the agent receives a set of training examples composed of
input, target pairs: T = {(x⃗1, y1 = f(x⃗1)) , (x⃗2, y2 = f(x⃗2)), ... , (x⃗n, yn = f(x⃗n))}.
Here, x⃗i is called a feature vector and yi is its label and f : X → Y is the target
function that maps them. The aim of supervised learning is to find a function
h : X → Y that best approximates the target function f .

Symbolic learning One of the main advantages of symbolic learning is that
the approximation function is represented by a white-box model. That is, a model
that, not only provides an approximation of the target function, but can also be
inspected and interpreted. For example rule induction methods [42]. They are
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Figure 2.4: Decision tree example. A sunny day with a temperature of 34 will be classified
in Swimming by the decision tree. First, the root node checks whether it is a sunny
day. Since the day is sunny, it is passed to the node which tests the temperature. Since
the temperature is not less than 30 it will be passed to Swimming

used to find regularities in data expressed in the form of conditions. Although
rule induction methods can discover dependencies between any variables in the
data, in supervised learning, rule induction concern only rules about the variable
of interest [43], i.e. the label with rules on the feature vector variables.

Decision tree learning algorithms are one of the most widely used symbolic
learning techniques [28, 88, 89]. Decision trees are composed of (1) test nodes:
which are internal nodes that constitute tests on the feature vector’s variables,
and (2) decision nodes: which are leaf nodes that specify the decision class, or the
label, of the feature vector (Figure 2.4). To make a prediction for a new feature
vector, the prediction algorithm starts at the root of the tree and follows the path
down to a leaf node. At each internal node, a test is made based on the value of
one feature to select the path to take until a leaf node is reached which specifies
the decision associated to the feature vector.

Symbolic learning is of particular interest for this thesis. Indeed, it allows
agents to infer knowledge that can be inspected. This is primordial to observe
its evolution. In particular, decision trees can be easily transformed into ontolo-
gies [32] that can be used and adapted by agents.

Sub-symbolic learning In contrast to symbolic learning, sub-symbolic learning
results in a black-box model of the approximated function. Prominent techniques
in sub-symbolic learning are Support Vector Machines [33] (SVMs) and Artificial
Neural Networks [96]. Briefly said, SVMs find hyper-planes in the feature vector
space to seperate the vectors based on their label. SVMs find such hyperplanes
that maximise the region between them and the closest feature vectors of each
label.
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Artificial Neural Networks has recently known an immense growth of interest
especially in Deep Learning [45]. It is a technique inspired by the activity of
animal brain’s neurons. Artificial neurons take inputs each of which is weighted
by a learnable parameter and produces an output based on the given input. These
neurons can be connected to each other in some particular architecture to create
different types of neural networks.

Sub-symbolic techniques emphasise on model performance over their inter-
pretability. It is not possible to directly interpret the structural patterns captured
by them unlike in symbolic techniques. From this work’s perspective, if agents use
sub-symbolic techniques, it would be hard to inspect the knowledge they learned.
It thus defies the purpose of this thesis as it focuses on the evolution of knowledge.

Reinforcement learning

Reinforcement learning is appropriate to sequential environments. A rational agent
aims to maximise the sum of payoffs, rewards in reinforcement learning context,
received from the environment. Reinforcement learning finds an action policy, i.e.
a map from agent states to actions, that maximises the expected rewards.

A Markov Decision Process (MDP) [10] models uncertain (non-deterministic)
and sequential environments. An agent in a MDP perceives the state of its envi-
ronment. At each state, it takes an action after which the state of the environment
changes and the agent receives an immediate reward. The changes in environment
states follow a transition probability. Formally, an MDP is a tuple (S,A, T,R, γ)
which are, in this order, the set of environment states, the set possible actions, the
state transition function, the reward function and the discount factor that lowers
future rewards.

The goal of reinforcement learning is to find an action policy π : S×A→ [0, 1]
that maximises the expected cumulative discounted rewards. This is typically
achieved by learning value approximation or policy approximation. In the former,
the agent learns the expected cumulative rewards to gain given the current state or
the action taken at a state. An action policy can be found based on this by greedily
choosing the action that maximises the cumulative rewards. A prominent example
of this is Q-learning in which the agent learns the quality of an action at a state
which was originally done with a tabular method [109] or more recently through
function approximation [79]. In contrast, in policy approximation agent directly
learns an action policy. Prominent examples of this are actor-critic methods [61]
in which the learning of the policy is guided with a critic model that approximates
the value, i.e. the expected rewards, of any state.
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2.2.2 Learning in multi-agent systems

This thesis is concerned by how agents learn in the presence of other agents.
That is, do agents treat each other as part of the environment, do they help each
other? If so, how? Indeed, how agents treat each other in learning affects how
their knowledge evolves. Hence, this section reviews different multi-agent learning
methods based on how agents view each other.

Weiß and Dillenbourg [111] proposed three classes of mechanisms for multi-
agent learning: Multiplied, divided and interactive learning. The classification
shows specifics of multi-agent learning compared to single agent learning. The
classification concerns how the learning task is treated: (1) each agent tackles the
learning task independently of others, (2) The learning task is divided between
agents and (3) agents interact to solve the learning task.

Since we are interested by cultural knowledge evolution in the presence of
multiple learning agents, our focus here is on what do agents learn from society in
each class of learning and how do they affect future learning.

Multiplied learning

In multiplied learning, each agent learns independently of others. Agents may
still influence each other. However, this is considered as a regular input in the
agent’s learning process. Thus, each agent independently pursues its learning
goals without considering what others’ learning goals are.

In this case, individual agent learning methods can be used. When agents do
not interfere with each other’s learning, e.g. supervised learning, then learning
occurs in the same way it does in single agent scenario. Interesting cases are when
agents interfere with each other’s learning. This has been mainly investigated in
Multi-Agent Reinforcement Learning (MARL) settings. In MARL, the problem
is modelled with markov games (MGs) instead of MDPs. The difference is that
(a) each agent has its own action space and reward function (S,An

i=1, T, R
n
i=1, γ)

and (b) the state transition function and reward functions depend on all agents’
actions. Agents can simply treat each other as part of the environment. For exam-
ple, independent Q-learning [105] works well in small size problems [70]. However,
in larger problems, learning becomes hard to stabilise in a non-stationary envi-
ronment. Thus, approaches more suited to multi-agent environments have been
proposed that will be presented below.

In multiplied learning, agents learn how to operate mainly from the environ-
ment. Since they treat their society as part of the environment, they only learn
how to act in their presence. Hence, what they learn from society is only about
society itself. They do not learn from society about their environment and how to
operate in it.
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Divided learning

Divided learning splits the learning task among agents. The division of learning
can be done at different levels. In particular, Weiß and Dillenbourg proposed
functional and data-driven divisions. An example of functional division is dividing
the learning task of a team playing football into different player positions and each
agent learns to play in one position. In contrast, data-driven division divides the
training data among agents. Each agent learns a model based on the data it has.
This approach is particularly advantageous in cooperative settings.

Federated learning [65] enables agents to collaborate in order to distributively
learn a model while keeping the privacy of the information they learned from. It
aims to reach a model with a performance that is very close to a model trained in
a centralised way.

Data-driven division has also been exploited in argumentation based coordi-
nated learning. This typically consists of a first step in which agents learn indi-
vidually on respective datasets before they engage in an argumentation process to
adapt what they learned [114]. In the end, agents agree on a mutually accepted
model. In a similar approach, A-MAIL [85] performs coordinated learning through
argumentation. It considers agents that align learned classifiers. They engage in
an explicit argumentation process on what they learned to reach a common clas-
sification. Agents in the end coordinate what they learned to be consistent with
each other.

In divided learning, agents learn about their environment from both the envi-
ronment itself and their society. However, they do not affect each others’ learning
process. They only affect what was learned at the end by combining what they
learned.

Interactive learning

Interactive learning denotes the techniques in which agents perform learning-
centered interactions. That is, through their interactions, they guide each other
in the learning task. This is different from learning to perform task interactions
in which agents learn to behave in accordance with other agents’ behaviour.

Nevertheless, boundaries between the two are blurry. Leibo et al. [64] discuss
what is called auto-curriculum. The term denotes “a self-generated sequence of
challenges arising from the coupled adaptation dynamics of interacting adaptive
units”. That is, when an individual learns a new behaviour given the current state
of society, it has the potential of creating new challenges for other individuals
to keep up. Other individuals, in their turn, need to adapt to the new behaviour
which, again, may create new challenges and repeats the cycle. Hence, by repeating
this process, individuals guide each other’s learning without interacting specifically
about the learning task. For example, agents in [7] are able to follow an auto-
curricula by interacting in a competitive setting.
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Typically, other techniques in interactive learning rely on more explicit ways of
learning-centered interactions. For example, it can be done through multi-agent
social learning [83] in which one individual teaches another individual. Thus,
individuals directly influence each other’s learning. In a population of interacting
agents, social learning enables cultural evolution [25]: When an agent teaches other
agents, it does not copy its exact knowledge. As a result, this creates variations
that are selected under environmental and societal pressures. Section 2.2.3 discuss
this in more details.

Hence, in interactive learning, agents not only learn from society about both
their environment and society, but they also affect each others’ learning.

2.2.3 Social learning

Learning from the environment and social learning are two distinct forms of learn-
ing that differ in their approach and focus. On the one hand, Learning from the
environment is the process of acquiring knowledge by interacting with the environ-
ment. This type of learning typically involves trial-and-error, where an individual
learns by attempting different behaviours and observing the consequences of their
actions. On the other hand, social learning [49,51] refers to the process of acquir-
ing knowledge by observing and imitating the behaviour of others or by explicit
exchange of pieces of knowledge. An agent in MAS has the opportunity to perform
this latter form of learning given the presence of other agents that are potentially
experts in different fields.

The choice of from whom, and on which basis, an agent learns is known as a
social learning strategy or transmission bias [60,63]. There are two main types of
biases to acquire adaptive social information [48]: content-based transmission bi-
ases rely on the quality (correctness, accuracy) of what is transmitted and context-
based transmission biases rely on extrinsic cues such as the reputation of the trans-
mitter. One goal of context-based biases is to learn from competent individuals
within a domain (success bias). However, it is often not clear how to directly assess
competence. Thus, indirect cues of success may be used to select from whom to
learn (prestige bias) [56].

In multi-agent systems, social learning has been mainly achieved through im-
itation learning [52]. It is much easier to transfer a behaviour by demonstrating
it rather than articulating it for a learner to understand it [92]. Imitation learn-
ing has been explored under two major categories: behavioral cloning and inverse
reinforcement learning. In behavioral cloning [106], a learner agent attempts to
replicate through supervised learning an expert’s behaviour. Inverse reinforcement
learning [81] attempts to learn the reward distribution given a demonstrated be-
haviour. Based on the reward distribution, it is possible to find an action policy
that maximises the expected reward returns which results in an imitation of the
expert’s behaviour.
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In these approaches, agents are pre-designed to closely approximate the be-
haviour of a known expert. However, the choice of when and from whom to learn
is not always clear if not specified by the designer. In order for agents to choose
to learn from another agent, there needs to be an advantage to that compared
to learning directly from the environment with trial and error. This has been
explored in multi-agent experiments for social learning emergence. For example,
by endowing some agents with privileged information, the other agents are forced
to learn from these agents [12]. Although this encourages social learning, it is a
drastic situation which is not necessary to show the advantages of social learn-
ing. It has been shown that living beings rely on social learning when individual
learning is costly: difficult and/or unsafe [63]. Indeed, agents in unsafe and/or
hard environments choose to learn from others when cues of success are exposed
to society [80].

Imitation learning in MAS has also been explored in the context of cultural
transmission. Agents are able to learn to perform cultural transmission with high
fidelity from both artificial and human agents [11]. They are not only able to learn
from an expert but also maintain what they learned when the expert is gone. In
contrast, previous experiments mainly included social learning as an addition for
agents to infer more information about the task and the environment.

2.2.4 Conclusion

This section reviewed how agents can learn and adapt their knowledge in a society
of agents. First, individual agent learning techniques have been presented as agents
can still rely on them even in the presence of other agents. Then, this section
presented three classes of multi-agent learning based on how agents treat each
other in their learning process: (a) each agent independently addresses the learning
task without regard to others, (b) agents divide the learning task between them
and (c) agents solve the learning task by interacting. It is the latter that enables
cultural evolution since agents affect each others’ future learning. Finally, social
learning, an essential skill for cultural evolution, has been reviewed in the context
of multi-agent systems.

2.3 Cultural evolution

The evolution of knowledge in a society of artificial agents can be studied under
the framework of experimental cultural evolution. Culture here is considered to be
any intellectual artefact that can affect the behaviour of individuals, e.g. knowl-
edge, language, technology. The field of cultural evolution applies principles from
the theory of evolution to culture [73, 95]. The evolution of culture has several
similarities with the genetic evolution as it goes through transmission, variation
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and selection. But, it also has clear differences such as not being necessarily trans-
mitted from parents to offspring. This results in the manifestation of complex
different patterns of evolution.

The field of cultural evolution has been introduced in the aim of explaining
the mechanisms by which culture evolves. It helps to understand the change
and development of culture in societies and how they affect their beliefs and be-
haviours. It is even possible to have potential for prediction. For example, Boyd
and Richerson [24] predict that cultural transmission between individuals of the
same generation supports cultural traits that are adaptations to fast changing en-
vironment conditions, whereas cultural transmission across generations supports
adaptations to stable environmental conditions.

Work in cultural evolution originates from diverse disciplines such as anthro-
pology, archaeology, psychology [78], each of which focuses on specific fields of
study. For example, archaeologists employ data-driven approaches to reconstruct
the history of evolution of cultural traits in the aim of explaining its distribution
and diversity [84]. In similar data-driven approaches, anthropologists attempt
to reconstruct how certain cultural traits evolved: how they originate from other
traits, whether their spread is associated to other traits and their relationship with
their environment. Lab-based psychological experiments have also been conducted
to simulate the transmission of cultural information between individuals [53].

As a result of the field’s broadness, different tools and methods are employed
to its study. This thesis focuses on an experimental and computational approach
to study the evolution of knowledge. Hence, hereafter is a presentation of how, in
general, experiments are conducted in cultural evolution, followed by the particular
case of experimental cultural evolution through simulations.

2.3.1 Experimental cultural evolution

Cultural evolution experiments can be laboratory or field studies that aim to un-
derstand how cultural traits change over time and across populations. These ex-
periments often involve manipulating certain variables (such as the availability of
information, presence of social norms) to see how they impact the evolution of
cultural traits. Given the essential role of cultural transmission in enabling the
evolution of culture, there has been a special focus on controlling it.

Early work has identified different cultural transmission modes inspired by
epidemiology [24, 30]: vertical transmission is the transmission from parents to
children, oblique transmission is the transmission from agents of the parent gen-
eration (think about education) to those of the child generation, and horizontal
transmission is the transmission between agents of the same generation. In this
work, we will also use inter-generation transmission for the two former and intra-
generation transmission for the latter. Variations of experiments simulating these
modes of transmissions between individuals have been introduced by Mesoudi [74]:
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Figure 2.5: Dyadic interactions and closed group methods.

One Generation Experiments In this type of experiments, individuals partic-
ipate from the beginning to the end. Two main types of one generation experiments
exist. First, experiments between two individuals can be performed to study con-
tent biases, i.e. which knowledge to learn, and how cultural transmission occurs
from one individual to another. This is named dyadic interactions which can be
one-way, i.e. an individual is asked to learn from another one [94], or two-way
both individuals learn from each other [40] (Figure 2.5 left). The second type
of experiments concerns more than two individuals in a closed group (Figure 2.5
right). They are typically employed to study social learning strategies [26, 72],
notably context biases.

Multiple Generation Experiments These experiments concern multiple gen-
erations simulated by the departure of individuals and the arrival of new ones. The
linear transmission chain and replacement methods are the two main experiment
types to simulate several generations (Figure 2.6 left and right respectively). In
the former a generation is represented by one individual who is replaced in the
next generation. Transmission is straightforward from the individual of the previ-
ous generation to the one of the next generation. Dyadic interactions have been
employed to study content biases since there is one individual to learn from [57,77]
but also to study cumulative cultural evolution of artifacts or skills [59]. In the
latter method, The generation is represented by a group of individuals that are
replaced progressively one individual at a time [8]. Transmission happens in the
same way as in the closed group. The replacement method has been typically
employed to study how new arriving individuals acculturate to the group [34].

2.3.2 Cultural evolution simulations

It is possible to study a particular phenomenon in cultural evolution by simulating
a model of it [1]. This allows to simplify reality by isolating a few elements that are
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Figure 2.6: Comparison of linear transmission chain and replacement methods inspired
by Figures 1 and 2 of [76]. In left, an original material (source) is passed through a chain
of individuals to observe its evolution. In right, All participants interact with each other
to perform a specific task and are replaced one at a time.

suspected to be important to the studied phenomenon and assess their effect. A
model can describe the behaviour of a system at the population level or individual
level model. At the population level the evolution of overall characteristics is spec-
ified without modelling the individuals. However, this approach requires simple
dynamics to be able to model it. In contrast, agent-based (or individual-based)
approaches model the individuals directly which can result in complex dynamics
at the population level [68].

Typically, experiments with artificial agents involve a population having the
capacity to adapt and transmit their cultural traits. The setting of the simulation
and its inputs are controlled to monitor how cultural traits evolve under specific
conditions. Agents interact with each other through a well-defined protocol. Fol-
lowing these interactions, they may adapt if the outcome is undesired. This pushes
them to evolve their culture reaching particular characteristics depending on the
conditions they are subject to. The results of these simulations are exploited to
understand general mechanisms on the evolution of culture.

This thesis is inspired from cultural language evolution [102]. Experiments on
cultural language evolution consider a group of agents communicating with each
other using an, initially, ungrounded vocabulary. For example, in the naming
language game, two agents, a speaker and a hearer, interact about objects in
the environment. First the speaker selects an object and names it to the hearer.
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The hearer attempts to identify the object based on the name and signals it to
the hearer. If the object selected by the hearer matches the one the speaker
originally selected, the interaction is considered a success, otherwise it is a failure.
Depending on the outcome of the communication, agents may or may not adapt
the way they communicate. This pushes the language used by the population to
evolve. The state of the system is monitored until agents reach a stable state. The
characteristics of the evolved language used in communications are then studied.

The most related work, similarly to this thesis, also considers cultural knowl-
edge evolution. The work study the evolution of knowledge that is used to enable
communication between different agents [38,108]. Agents in this setting adapt the
alignments they use to translate terms between their ontologies. Agents are pro-
vided with different ontologies. When they communicate, they use alignments to
translate terms from one ontology to the other. If the communication is unsuccess-
ful, they adapt the alignment. Through successive adaptations, agents evolve these
alignments. At that point, the properties of the evolved alignments are studied.
However, only properties related to agent communication were considered. That
is, agents adapt to improve their communication and the monitored characteristic
of knowledge is its quality on enabling communication between them. In contrast,
this thesis studies the evolution of ontologies (knowledge about the environment)
and focuses on different properties of knowledge (quality of knowledge in social
interactions, quality of knowledge about the environment, diversity of knowledge).

These experiments are done in the span of one agent generation. In contrast,
this thesis experiments also with inter-generation and intra-generation transmis-
sions. Acerbi and Parisi [2] designed an experiment to assess the respective roles
of both inter-generation and intra-generation transmissions. In these experiments,
agents use a neural network to navigate in their environment. At each game, the
agent is presented with a situation and decides how to move. When it comes
close to an edible food source, it receives a reward and when it comes close to a
poisonous food source, it receives a penalty. In addition, a teacher discloses its
decision to the agent, which uses it to adjust its network weights.

At birth, agents start with random weighted networks (W ). The first part
of their lifetime are dedicated to oblique transmission: they are taught their be-
haviour by agents of the previous generation. The next part implements horizontal
transmission: they are taught by agents from their generation (Figure 2.7, left).
One key point is that in both cases they are only taught by a few best agents
in terms of accumulated rewards. Teaching is achieved by constraining the out-
put of the neural network. Teachers may add noise in their behaviour in order
to generate variation. In contrary to this, this thesis experiments with differ-
ent knowledge representation (ontology) without strong assumptions on vertical
transmission (without strong individual selection bias and without added noise).
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Figure 2.7: Experimental frameworks of [2] (W=neural networks weights). The mech-
anisms for transmitting knowledge in both inter-generation and intra-generation trans-
mission are done through supervised learning.

2.4 Conclusion
This chapter, first, introduced multi-agent systems: how agents interact and how
they agree for mutual benefits. In order to agree, agents may need to adapt their
knowledge. Hence, this chapter presented multi-agent learning to show how agents
are able to adapt their knowledge through various kinds of learning including social
learning which enables cultural evolution. Finally, this chapter reviewed cultural
evolution and how it can be studied through controlled multi-agent simulations.

The next part will present how artificial agents can culturally evolve a different
kind of knowledge: ontologies. For that purpose, the next chapter will introduce a
multi-agent system framework to study agent ontology evolution and to monitor
its different properties.
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Ontology evolution in a population
of agents
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A framework involving environmental
learning and social interaction

To conduct experimental work that can effectively address the questions raised in
the introduction, it is essential to have well-defined and systematic experiments. In
this chapter, a detailed experimental framework is presented encompassing agent
design, their environment, how they interact and how they adapt. Firstly, the mo-
tivation behind the experimental framework’s scenario is given in Section 3.1. This
is followed by an informal scenario description in Section 3.2. Then, Section 3.3
details the components of the experimental framework. Finally, a discussion on
the advantages of the framework and its limitations is provided in Section 3.4

3.1 Motivation

Agents may need to distinguish between environment objects that are related to
their tasks. This classification task requires the ability to perceive object proper-
ties, based on which the objects are classified. Objects manipulated by humans
have a very large set of properties. Only those that are known and relevant are con-
sidered to classify objects. These properties differ from one individual to another
for different reasons, among which is (1) quality of perception: e.g. an individual
that do not perceive colors can not classify objects based on color, (2) expertise:
e.g. an expert in insects can differentiate between Plecoptera and Dermaptera
insects based on a specific set of properties than a non-expert that is only able to
classify both as insects, (3) cultural difference: e.g. individuals of a society that
cook spicy food would be able to distinguish different smells of spices better than
a society that does not. The properties that are considered to classify objects
evolve at both the individual and the population levels. At the individual level,
the properties considered to distinguish between objects vary from one individual
to another. At the population level, the distribution of properties used by individ-
uals vary from one population to another. The properties that an individual uses
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to classify objects evolve during its lifetime, for example at some point in its life
it learns to distinguish food based on whether it contains proteins or not. They
also evolve through the generations, for example individuals in past generations
did not distinguish food based on whether it contained proteins or not contrary to
present generations.

Knowledge on how to classify objects evolves by learning from the environment
as well as through social interaction. Individuals may learn from the interactions
with the environment that a property in an object is relevant for one of their
tasks. This learned knowledge can then be spread in the population through
social interactions. Eventually, combinations of considered properties may emerge
from social interactions only, without environment learning. For example, the
combination “tasty healthy food” can emerge from interactions between individuals
that distinguish healthy food and individuals that distinguish tasty food.

Individuals are first supposed to learn about their environment. They build
knowledge that allows them to accomplish their tasks. In their lives, agents may
face undesirable outcomes both when they perform their environment tasks and
when they interact with their society. To avoid these outcomes, they adapt their
knowledge. Adaptation resulting from their tasks in the environment are done in
the aim of improving knowledge with respect to their tasks. Contrary to that, it
is unclear how adaptations to social interactions affect their performances on their
environment tasks. In order to assess this, an experimental framework is proposed
in this chapter to study how can agent knowledge about object properties evolve
through social interactions.

The framework includes an environment containing various objects and a popu-
lation of agents that can manipulate knowledge which enables them to distinguish
between these objects. Agents are able to construct their initial knowledge and
adapt it. They interact with their environment, by performing tasks in it, and
with their society, by interacting with other agents. They receive as a result en-
vironmental and societal rewards which indicate the quality of the interactions’
outcome. This allows to monitor task-based knowledge quality when agents adapt
to social interactions.

The design of the experimental framework is inspired from experimental cul-
tural evolution. Agents undergo several interactions and adaptations which leads
to the evolution of their culture. Culture here denotes any intellectual artefact
affecting agents’ behaviour. The framework is made to reflect scenarios in which
agents adapt their knowledge over a long time:

• Agents perform tasks that involve objects and depend on how these objects
are classified.

• Each agent accomplishes its tasks in the environment according to their
knowledge.
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• Occasionally, agents may interact about a task which can result in either a
success or a failure.

• If the outcome of the interaction is a failure, they adapt.

An example of this scenario can be:

• Agents cook dishes using different ingredients.

• When cooking, individuals are able to classify ingredients based on their
properties to decide whether they can use them or not.

• When two individuals cook together, they need to agree on which ingredients
to use in order to succeed their cooking. For example, if one individual uses
tomato sauce as base for pizza and the other individual uses cream-based
sauce, then the pizza will taste strange and be unappetising as the flavours
clash

• One of the two individuals may adapt the way he cooks the dish if they
disagree.

Agents in this scenario are not actively trying to learn to improve their task
performance. Nevertheless, when they interact with other agents about their tasks,
they adapt to improve their social interactions. As an example from real life, this
kind of scenario can reflect a part of the evolution of some recipes. While cooking,
individuals may not be actively learning new ways to improve how they cook.
However, when they cook with others, they may adapt the way they cook based on
what the others are doing. This can change how individuals classify ingredients for
their usage. For example, an individual may learn from others that it is possible to
cook beef without using oil because its natural fats can be enough. The individual
may start considering this property in ingredients when cooking.

This scenario reflects the topic of the research question posed in the introduc-
tion: "how can local knowledge adaptations of artificial agents affect their global
knowledge properties?" The agents’ knowledge evolves collectively as they adapt
it locally through social interactions. Hence, the rest of this chapter details an
experimental framework that corresponds to this scenario.

3.2 Informal scenario description
The experimental framework is designed to reflect the following scenario. Agents
live in an environment containing various objects described by several boolean
properties. For example, canMove, hasClaws, hasEyes and isSmall may be the
properties describing the objects of the environment.The object cow in that envi-
ronment would have the properties {canMove, ¬hasClaws, hasEyes, ¬isSmall}
meaning that it can move, it does not have claws and it has eyes.
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Agents have to take decisions with respect to how to deal with the objects of the
environment. This work considers agents for which each object has a single correct
decision. For instance, if we consider the decisions Hunt, Leave and Collect, the
decision for the object apple could be Collect, the decision for a rock is Leave and
the decision for rabbit is Hunt.

Agents use ontologies to classify the objects and make their decisions about
them. Ontologies allow them to distinguish objects based on their properties.
Agents do not know the correct decisions. They may start with random ontologies
or learn them. In the latter case, each agent is given a sample of objects associated
to their decisions and learns a decision tree that is transformed into an ontology.

For example, two agents a and b learn from two different samples S1 and S2,
respectively, where S1 = {rock, tiger, rabbit} and S2 = {rabbit, tree}. Agent a
may learn that objects that cannot move or can move but have claws are to be
left and objects that can move and do not have claws are to be hunted. Figure 3.1
illustrates the corresponding decision tree. Agent b may simply learn that objects
that have eyes are hunted and those which do not are left.

After this initial phase, agents perform individual and social tasks based on
making decisions about objects of the environment. Making the right decision
provides agents with a reward correlated to how good its performance was. The
reward may be thought of as the benefits of making the right decision: having
food, not being injured, etc.

Each interaction between agents is focused on one object and represent a task
that they undertake together. The agents disclose the decisions they would make
when they encounter the object. Figure 3.1 illustrates two interactions between
agents a and b. Agent a classifies the object “rock” in the decision class Leave
which is the same class in which agent b classifies it. Since the agents agree on
the decisions they make, the interaction is considered successful. However, if the
object is a “lion”, agent b classifies it in the decision class Hunt while agent a
classifies it in Leave, which causes this interaction to fail. This could be seen as
two agents who are hunting together but do not agree on whether an object is
“huntable” or not. Thus, the hunt will not proceed effectively.

When a failure happens, one of the agents adapts its knowledge to agree with
the other agent on the decision to make. This corresponds to social learning.
Agents determine which one of them will adopt the other’s decision according
to their transmission bias. For instance, the agent having less reward adapts its
knowledge in order to adopt the decision of the one which has more. The intuition
behind this is that the reward is a cue of success and individuals tend to imitate
the successful ones in an attempt to reach a similar situation (prestige bias).
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cm

Agent a

Leave hc

no yes

Hunt Leave

no yes

he

Agent b

Leave Hunt

no yes

rock

success

lion

failure

Figure 3.1: Agents a and b share their decisions for objects “rock” and “lion”. For “rock”,
the decisions are the same so the interaction is successful. For “lion”, the decisions are
different, hence the interaction is considered a failure. cm = canMove, hc = hasClaws,
he = hasEyes, s = isSmall.

3.3 Experimental framework
In the described scenario, agents live in an environment that contains several
objects. They are able to:

• acquire knowledge on how to distinguish the environment’s objects;

• perform tasks involving making decisions about environment objects;

• interact with each other by making decisions about these objects;

• finally, adapt their knowledge when the interaction fails.

In what follows, the experimental framework is introduced by defining the envi-
ronment and agents as well as their actions: knowledge acquisition, environment
tasks, social interactions, and knowledge adaptation. These are detailed in what
follows.

3.3.1 Environment and agents

Let I ≠ ∅ be the set of all possible objects. They are described by properties from
a finite set P ̸= ∅. For simplicity, the properties are considered Boolean, i.e. an
object either has a property p ∈ P or it does not. The environment contains a
non-empty set I ⊆ I of such objects.

There is only one correct decision from a finite non-empty set D to each object.
The correct decisions are given by the function h∗ : I → D. All objects with the
same properties are associated with the same decision.

We consider a finite set A ̸= ∅ of agents situated in the environment. They
perceive all the properties of the objects they encounter in the environment and
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Figure 3.2: Summary of the experimental process: (1) An agent first acquires its ontology
(Section 3.3.2). (2) It interacts with the environment and other agents and receives re-
wards as a result. These rewards defines its reputation within the society (Section 3.3.3).
(3) The agent may adapt its knowledge after interacting with other agents depending on
the result of the interaction and the agents’ reputations (3.3.4).



3.3. Experimental framework 33

they can make decisions about them. Agents know about the possible decisions
(D) that they can make about objects, but not the correct decision (h∗(o)) for a
specific object (o). For making these decisions, they use knowledge expressed as
ontologies.

Figure 3.2 summarises how agents interact with the environment and the soci-
ety.

3.3.2 Agent ontology

Agent knowledge is expressed in ontologies. Each agent a ∈ A builds and maintains
a private ontology Oa describing the objects of the environment.

The description logic ALC [5] is used to express agent ontologies. It is based
on a set C of class names, containing ⊤ and ⊥, and the set P of property names.
⊤ and ⊥ are the top and bottom classes representing the class of all objects and
the empty class, respectively. From the classes C and D, the union (C ⊔ D),
the intersection (C ⊓ D) and the negation (¬C) can be formed. Constraints on
properties may be ∃p.C (objects having at least a value of property p in class
C) or ∀p.C (objects having all values of property p in class C). We restrict the
use of ALC such that agents only use ∃p.⊤ (objects having a value for property
p) and ∀p.⊥ (objects having no value for property p) that we note as p and ¬p,
respectively.

rock

{¬cm,¬hc,¬he, s}

rabbit

{cm,¬hc, he, s}

tiger

{cm, hc, he,¬s}

Leave

Hunt

Leave

S1

cm
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Hunt Leave
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⊤a
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¬cm cm

⊑ ⊑
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⊑ ⊑

Learning

⊤∗O∗

LeaveCollect Hunt

⊑ ⊑⊑
⊕ ⊕

⊕

Transforming

⊑ ⊒⊑

Figure 3.3: Example of how an agent learns a decision tree-like ontology from a sample
of labelled objects.
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We denote that a class C is subsumed by another class D by C ⊑ D, equivalent
to D by C ≡ D or disjoint from D by C ⊕D. With their ontologies, agents can
determine if such statements hold, e.g. O |= C ⊑ D means that, according to
the semantics of ALC, in all models of O, D is interpreted as containing the
interpretation of C

By construction, the ontologies used by the agents are such that each object
in I belongs to a single most specific named class of the ontology whose only
subsumed named class is ⊥. By abuse of language, we call them leaf classes.

The lower right-hand side of Figure 3.3 shows the ontology corresponding to
the decision tree of agent a in Figure 3.1 also represented on the lower left-hand
side of Figure 3.3. This is represented in ALC by:

Ca
1 ≡ ∀cm.⊥

Ca
2 ≡ ∃cm.⊤

Ca
3 ≡ Ca

2 ⊓ ∀hc.⊥

Ca
4 ≡ Ca

2 ⊓ ∃hc.⊤
A public ontology O∗ contains for each decision d ∈ D a named class D. Every

two different decision classes D and E are disjoint. Objects may be classified
under a single decision class in O∗. Agents know about the possible decisions,
but do not know which object belongs to which class. An agent can express that
objects of class C in its own ontology correspond to a decision d by adding the
correspondence ⟨C,⊑, D⟩ as shown in Figure 3.3. So every agent a carries its
ontology Oa and an alignment Aa between Oa and O∗. To follow on the previous
example, the alignment contains:

⟨Ca
1 ,⊑, Leave⟩

⟨Ca
3 ,⊑, Hunt⟩

⟨Ca
4 ,⊑, Leave⟩

Thus, agent a can make a decision do for object o by finding the correspondence
⟨Ca

o ,⊑, Do⟩ attached to the most specific class Ca
o to which o belongs. This defines,

for each agent a, the function ha : I → D which assigns a decision to each object.
Agent ontologies may be either initialised randomly or learned. Hereafter each

modality is detailed.

Initial random ontology

Agent ontologies and their alignment with O∗ can be generated randomly. The
process for generating a random ontology mimics that of producing a decision
tree. The construction algorithm takes a stopping probability ρs as an argument.
It creates the ontology Oa recursively starting from the class ⊤. For each named
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class C, with a probability of 1− ρs, the algorithm creates two named sub-classes
C ′ ≡ C ⊓ p and C ′′ ≡ C ⊓ ¬p where p is a property chosen randomly from the
properties verifying Oa ̸|= C ⊓ p ⊑ ⊥ and Oa ̸|= C ⊓ ¬p ⊑ ⊥. Otherwise, if there
is no such property or the algorithm did not create the sub-classes (because of the
stopping probability ρs), it assigns C to a random decision from D.

Initial learned ontology

Initially, each agent a is provided with a possibly different training set, or sample,
Sa. This training set contains a subset of objects of I, each with a different
property combination, associated with the corresponding correct decision (labelled
sample). The proportion r = |Sa|

|2P | is called the training ratio. From the training
set each agent learns a decision tree classifier.

In a decision tree, each node corresponds to a test on a property. Each sub-
branch of a node corresponds to one outcome of the test. Leaf nodes are associated
to decisions. Each object satisfies the tests leading to only one leaf node from the
root. It is classified in the decision associated to that leaf node.

Nodes can be viewed as classes of objects and each child node corresponds to a
subclass satisfying or not one additional property. Based on this principle [32], the
decision tree is transformed into an ontology Oa in ALC (see Figure 3.3) following
Algorithm 1.

Given that each object in I belongs to the class ⊤, that each object either
has or has not each property and that non-leaf classes subsume classes satisfying
a property or its negation, each object belongs to a single leaf class.

3.3.3 Individual and social tasks

Agents perform one single type of action regarding the environment: making a
decision about an object. Because this is only a decision, it does not modify the
environment. Agents perform such actions in either individual or social tasks.
They receive a reward for these tasks which is used only for establishing their
reputation. It is thus rather symbolic. We describe the protocol and reward
associated to these two types of tasks.

Individual task

The individual task is simply used to evaluate the quality of agent knowledge
through the collection of rewards.

An agent a performs the individual task by going through the following steps:

1. A subset S ⊆ I of objects with different properties is presented to it. The
proportion t = |S|

|2P | is called the task ratio.

2. Agent a labels every object o ∈ S with the decision ha(o).
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Algorithm 1 Procedure that transforms decision tree into an ontology called
with: transform(root,⊤, O)

Input: root: Root node of decision tree.
Output: O,A: Ontology associated to the decision tree and the alignment

for its decisions.
procedure transform(root, RootClass,O)

if hasChild(root) then
att← getConditionAttribute(root)
C1← createClass(O)
C2← createClass(O)
child1← getChild1(root)
child2← getChild2(root)
addSubClassesBasedOnAtt(RootClass, C1, C2, att, O)
Transform(child1, C1, O)
Transform(child2, C2, O)

else
decision← getDecision(root)
addCorrespondance(RootClass, decision,A)

end if
end procedure

3. Agent a receives a reward ra reflecting the correctness of the given decisions.
The reward is the sum of the individual rewards of the objects, i.e. ra =
|{o ∈ S;ha(o) = h∗(o)}| ∈ [0, |S|].

The received reward is an approximation of the quality of the current agent’s
knowledge because the agent does not know which decisions are correct.

Social task

The social task is the one that agents use for adapting their knowledge. In this
task, two agents a and b interact with each other about an object o by going
through the following steps:

1. Agents a and b disclose their decisions ha(o) and hb(o) .

2. If ha(o) = hb(o) then they agree, the interaction is considered a success.

3. Otherwise they do not agree, the interaction is considered a failure.

4. They receive a social reward sa (resp. sb) of 1 if the interaction is successful
and 0 otherwise.

The interaction’s outcomes can be represented by the game matrix in Table 3.1.
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d1 d2 ... d|D|−1 d|D|
d1 1,1 0,0 ... 0,0 0,0
d2 0,0 1,1 ... 0,0 0,0
... ... ... ... ... ...
d|D|−1 0,0 0,0 ... 1,1 0,0
d|D| 0,0 0,0 ... 0,0 1,1

Table 3.1: Payoffs of the matrix game played by agents.

3.3.4 Ontology adaptation

After a failure, agents attempt to modify their knowledge in order to avoid future
failures. Specifically, one of the two agents will adapt its knowledge to partially
conform to that of the other. This is governed by a bias determining which agent
adapts and the adaptation operator which is applied. We talk about transmission
bias because adaptation is the way by which knowledge is transmitted from agents
to agents.

Transmission bias

Agents not knowing each other’s ontologies, they cannot chose based on content.
Hence, all bias is based on contextual cues or indices built on information publicly
accessible to the agents, such as success, conformity, or rarity. Together, these
cues are aggregated into a single index that we call reputation [46,87].

We describe these three components and how they are computed and combined
into a single reputation.

Success index: Bias may be based on the success of the individual in its inter-
actions with the environment. The cue of an agent’s success in the environment
is the individual reward ra it received. The discounted reward pa,n received by an
agent a at iteration n is defined by:

pa,n =
n∑

i=1

γn−i
1 × ria

such that ria is the ith reward 1 the agent a received and γ1 ∈ [0, 1] is a discount
factor that is controlled by the experimenter.

The success index ρ1a,n of agent a at iteration n is the normalisation of this
reward with respect to the maximum reward that could have been obtained:

ρ1a,n =
pa,n∑n

i=1(γ
n−i
1 × |Si|)

1In this section, the index i ranges over the iterations at which the agent effectively interacted.



38 Chapter 3. A framework involving environmental learning and social interaction

Conformity index: Bias may be based on how consensual the agent is, i.e. how
often it agrees with other agents. This is denoted by the conformity index ρ2a,n of
agent a at iteration n based on the received social reward sa:

ρ2a,n =

∑n
i=1 γ

n−i
2 × sia∑n

i=1 γ
n−i
2

such that sia is the societal reward of agent a at its ith interaction.

Rarity index: Finally, in contrast to the previous index, bias may be based on
the independence or originality of agents in their position. Disagreeing with other
individuals can be considered as a cue of that. The rarity index ρ3a,n of agent a at
iteration n is defined as:

ρ3a,n =

∑n
i=1 γ

n−i
3 × (1− sia)∑n
i=1 γ

n−i
3

The two latter indices are based purely on information gained from agents’
interactions and are independent from the environment.

Combining components: In order, to provide a uniform index that can be used
as a bias in social knowledge transmission, the three indices above are weighted
and combined. Each index ρ1a,n, ρ

2
a,n, ρ

3
a,n is given a weight w1, w2, w3 ∈ [0, 1] called

success weight, conformity weight and rarity weight respectively.
The final reputation index ρa,n is computed as a linear combination of these

three components:

ρa,n = w1 × ρ1a,n + w2 × ρ2a,n + w3 × ρ3a,n

In our experiments, since the two latter indices are opposite cues of each other, then
they are not considered simultaneously (one of the weights must be 0): w2×w3 = 0.

Adaptation operators

When two agents fail in an interaction, i.e. they disagree, they adapt their knowl-
edge. Successive adaptations lead to the evolution of the agents’ knowledge. Let
agent w be the agent having the highest reputation and agent l the one with the
lowest one (if they have the same reputation, one of the two is selected randomly
as agent w). Agent l is the one to adapt its ontology. Let Cw (resp. Cl) be the
leaf class to which object o belongs in Ow (resp. Ol). The aim of the adaptation
operator is to split the objects of class Cl into two sub-classes as shown in Fig-
ure 3.4a: one (C1

l ) with the objects that agent l believes have the decision dw and
one (C2

l ) with those which it believes do not and should keep the decision dl.
First, agent l selects the properties it will consider to split class Cl. This is

done by defining an adaptation class Ct with one of the following strategies:
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1. Communicate all attributes (allCom): Agent l asks agent w for the
definition of its class Cw ≡ p1 ⊓ . . .¬q1 . . . . Thus, the definition of the
adaptation class is Ct ≡ p1 ⊓ . . .¬q1 . . . .

2. Communicate one attribute (oneCom): Agent l asks agent w to give
it one of the properties considered in its class Cw, i.e. pw or ¬pw such that
Ow |= Cw ⊑ pw or Ow |= Cw ⊑ ¬pw respectively. In this case, the definition
of the adaptation class is Ct ≡ pw or Ct ≡ ¬pw respectively.

3. Without communication (noCom): Agent l selects a property p. If
the property holds for the interaction object o, then the definition of the
adaptation class is Ct ≡ p. Otherwise, it is Ct ≡ ¬p

Then, the adaptation happens as follows:

1. IfOl ̸|= Cl ⊑ Ct, i.e. some objects classified as Cl are not necessarily classified
as Ct, agent l creates the classes C1

l ≡ Cl⊓Ct and C2
l ≡ Cl⊓¬Ct. Otherwise,

it sets C1
l ≡ Cl.

2. Let Dl be the decision class for Cl and Dw be the decision class for Cw.
Agent l replaces ⟨Cl,⊑, Dl⟩ by ⟨C1

l ,⊑, Dw⟩. If C2
l has been created, it also

adds ⟨C2
l ,⊑, Dl⟩.

It may happen that Ol |= Cl ⊑ Ct, for instance simply because Cl is fully specified
and all properties are set. In such a case, no new class is created but the decision
associated to Cl is modified.

The results of the three strategies are illustrated by Figure 3.4a (allCom), 3.4b
(oneCom) and 3.4c (noCom).

This procedure preserves the property of the ontology that each object be-
longs to a unique leaf class. Indeed, either it does not change the ontology, only
the attached decision, or it adds two subsumed classes with the complementary
properties.

3.4 Discussion
In this chapter, an experimental framework was introduced in the aim of studying
how knowledge can evolve through social interactions. It was designed to reflect
a specific scenario for the evolution of a specific type of knowledge. Thus, several
choices have been made about the agents and their environment. The main motiva-
tion of these choices is to reflect the studied scenario while keeping the framework
as simple as possible. Simplicity allows for a better experimental control to know
what parameters cause which effect [1, 66]. In a framework with complex compo-
nents, it is hard to isolate the causes of the observed effects. In the light of these
choices, this section discusses what the framework is and what it is not.
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(a) Example of agent b adaptation with allCom where Ca ≡ (cm ⊓ hc) by adding two
classes: he ⊓ (cm ⊓ hc) and he ⊓ ¬(cm ⊓ hc). It also removes ⟨he,⊑, Hunt⟩ and adds
⟨he ⊓ ¬(cm ⊓ hc),⊑, Hunt⟩ and ⟨he ⊓ (cm ⊓ hc),⊑, Leave⟩.
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(b) Example of agent b adaptation with oneCom where Ca ≡ cm (chosen from the
properties of Cw) by adding two classes: he ⊓ cm and he ⊓ ¬cm. It also removes ⟨he,⊑
, Hunt⟩ and adds ⟨he ⊓ ¬cm,⊑, Hunt⟩ and ⟨he ⊓ cm,⊑, Leave⟩.
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(c) Example of agent b adaptation with noCom where Ca ≡ ¬s (chosen from the prop-
erties of the interaction object "lion") by adding two classes: he ⊓ ¬s and he ⊓ ¬¬s. It
also removes ⟨he,⊑, Hunt⟩ and adds ⟨he ⊓ ¬¬s,⊑, Hunt⟩ and ⟨he ⊓ ¬s,⊑, Leave⟩.

Figure 3.4: Examples of the three adaptation operators.
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3.4.1 What the framework is and its assumptions

The experimental framework allows to simulate knowledge evolution in a cultural
evolution setting. Agent knowledge is formally defined to allow taking measure-
ments on it throughout the simulations. It also allows to control parameters related
to agents and their environment in order to observe their effects on the evolution
of knowledge. It may as well be possible to extend the framework, for example, by
having agents perform multiple tasks, endow agents with reproduction capabilities
(they die and reproduce) or add disruptions in the environment. This allows to
study other aspects of knowledge evolution under different conditions.

For the sake of simplicity, several assumptions were made about agents and
their environment. It may be possible to make more general versions of the choices
made in this chapter: how agents represent their knowledge, how they learn, how
they interact, how they perform tasks and how they adapt. This can come at the
cost of making the framework more complex which, first, makes it less analysable,
second, raises difficulties for agents to behave correctly which may hinder the
experimental results and, finally, can move it outside the scope of the intended
scenario. Hereafter, these assumptions are made explicit.

The environment is composed of objects with boolean properties Objects
of the environment can be thought of as agent observations. Agents can
observe a binary array which is a representation of a situation in the en-
vironment. Boolean properties can represent any discrete valued property.
However, for the sake of simplicity and understandability, the assumption
that the environment is made of objects described by boolean properties is
made. Its role is to give agents a context to represent knowledge in order to
distinguish between objects.

The Agent task is to take decisions about environment objects Agents tasks
motivate the use of their knowledge about the environment. Agent decisions
could be seen as actions, plans or other behaviour. Although simple, they
are sufficient to allow agents to interact about concepts whose meaning is
grounded with respect to their environment tasks. Thus, it becomes possible
to study the evolution of knowledge used to perform environment tasks when
it is adapted to social interactions.

Object properties and task decisions are shared knowledge Object prop-
erties are assumed to be a shared vocabulary between agents. This assump-
tion is made in order for the first two adaptation operators, allCom and
oneCom, to be possible. It is not needed for the last adaptation operator.
The goal of the experiments is not about whether agents are able to commu-
nicate about their knowledge or not. It is about whether they disagree on
the meaning of a classification with respect to their tasks in the environment.
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For example, agents can observe a tomato and agree on what its properties
are. However, they may disagree on whether it is a vegetable or a fruit when
their interaction is about making a fruit based dish together.

Decisions are also supposed to be a shared knowledge. This is only a way to
model the experimental framework. In reality, what is needed is for agents to
be able to observe whether a social interaction was a success or a failure. The
real assumption here is that agents are able to know whether they reached
their goal in a social interaction. So this is a reasonable assumption in many
scenarios.

Agents rely on simple tree-shaped ontologies On the one hand, tree shaped
ontologies are easy to learn and adapt in addition to being the most widespread
type of ontologies that are used. They allow agents to easily achieve tasks in
the environment and interact with each other. They are a knowledge repre-
sentation that is able to distinguish objects based on their properties. This
makes it possible to study the evolution of agent knowledge about object
properties with this kind of ontologies which is the scope of this work. On
the other hand, a more complex ontology would allow different ways of clas-
sifying objects and a richer description of concepts and relationships between
them. However, although this might be a requirement to perform other kinds
of tasks, it does not apply for this work’s case. Thus, a simple knowledge
representation that covers what agents need to perform their tasks is chosen.

Agents only adapt for agreement Agreement here is only a motivation for
agents to adapt through social interactions. It is common for heterogeneous
agents to adapt their knowledge for agreement. Thus it has been chosen as
the desired outcome for agent interactions. This of course means that the
framework is limited to study the evolution of knowledge when it is adapted
for this kind of agreement. Any interaction outcome can be used as a rea-
son for adaptation. As a consequence, other adaptation operators need to be
introduced in order to correct the cause of the undesired interaction outcome.

Agents do not actively learn from the environment The reason why it is
assumed that agents are not actively learning is two-fold. First, it allows to
isolate the effect of social interaction adaptations. That is, it allows to study
the evolution of knowledge caused by adaptations to social interactions alone
without other interferences. Second, this is not unrealistic and can reflect
scenarios in which individuals first learn how to perform a task, then they
do it and interact about it with other individuals when needed.

Agents do not modify the environment As explained in Chapter 2, the en-
vironment considered in this work is episodic. A sequential environment is
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harder for agents to operate in. Agents would need a more complex architec-
ture and knowledge to operate in it. Nonetheless, in this framework, agents
decision can be seen as opting for higher level strategic choices [44].

All agents behave in the same way In this framework, all agents are sup-
posed to behave in the same way if they have the same knowledge. It can be
envisioned to add other parameters that influence the behaviour, for exam-
ple: agent truthfulness specifies how truthful the agent is when it discloses
information related to it. However, unless these parameters are essential for
the studied phenomenon in knowledge evolution, it should not be included.
This also gives room for adding different extensions to the framework for
different studies.

The above points may seem to be limitations, but in fact they are choices whose
positive impact is two-fold. First, they make the analysis of the framework clear.
In a simple framework, it is possible to explain an observed effect contrary to a
complex framework in which it is hard to trace the causes of the effect. Second,
they make the framework extensible to study knowledge evolution under different
conditions. Indeed, each of the points above represent a potential extension of the
framework to test the assumption’s effect on knowledge evolution. Otherwise, a
complex framework limits the possible extensions as it becomes too specific to the
studied case. This is showcased in Chapter 6 in which the framework is extended
to support multiple agent generations.

3.4.2 What the framework is not

As explained earlier, the framework aims at simulating agents to study the evo-
lution of knowledge. Agents interact with their society and they perform tasks in
an environment. Thus, it has many similarities with approaches tackling problems
in multi-agent interactions between them and their environment. However, this
chapter did not present a programming framework that is aimed at developing
agents capable of solving a particular problem.

The framework is not an attempt to find a solution to reach knowledge
agreement Several approaches tackle knowledge agreement between agents (Sec-
tion 2.1.3). Their main focus is to enable agents to reach mutual intelligibility.
Thus, they become able to understand each other to interact successfully. In our
experiments, agents attempt to reach a simple form of agreement. Agents do not
face a challenge to reach agreement. It is just a motivation for them to adapt their
knowledge, hence, the simple form of agreement considered here. The assumption
here is that agents are already able to adapt their knowledge to correct the cause
of the disagreement.
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Agents do not try to maximise rewards from the environment Although
agents receive rewards from the environment, they do not attempt to maximise
them. As explained earlier, agents are not actively learning from the environment
but they only adapt to social interactions. The rewards exist to represent another
knowledge quality that can be monitored when agents adapt to social interactions.
Thus, agents are actually optimising their social rewards. Multi-Agent Reinforce-
ment Learning (MARL) is classically used for this kind of optimisation problems.

MARL can be used to monitor the evolution of agent behaviour throughout
their learning phase. Several ways are possible to model the framework’s scenario
with a Markov Game (MG) (Chapter 2). In what follows, a discussion of these
ways is given. Action space as well as the state and transitions between them are
focused since the other components of markov games follow from them. Actions
can be either:

• agent decisions: in which case, the action policy to be found by MARL
would directly optimise the social rewards. MARL classically do not rely on
the use of a formal knowledge representation, ontologies in this case. This
goes against the experimental framework’s goal to study the evolution of
knowledge. For example, it is hard to answer whether agents relied on the
same object properties to take their actions.

• adaptation operators: in this case, agent actions is to adapt an ontology
which is then used to determine the decision taken by agents in different
interactions. Although agents would still rely on ontologies, the action policy
that MARL attempts to find here would be the best adaptation policy. The
evolution of learning observed in MARL would be that of the adaptation
operators and not of ontologies. Given the simplicity and effectiveness of
the adaptation operator available in our framework, it would be excessive to
employ MARL in this context.

Agents in this framework attempt to find a set of ontologies that maximise
their social rewards. That is, they are socially learning how to interact with each
other successfully. Our goal, is to observe how their knowledge evolves through
time in such a process. Thus, if represented as a MARL problem, each interaction
between agents should be a full episode. The states and transition between states
represent only one interaction. Otherwise, if several interactions are represented
by one episode, agents would attempt to learn how to learn to interact. That
is, their target is to find the fastest way of learning to reach a set of ontologies
that maximise their social rewards. This is not the kind of knowledge evolution
that we attempt to study here. In this framework, since the interactions are
simplified, they can be represented by one state only which again does not require
the use of MARL. Figures 3.5a and 3.5b show the difference between the evolution
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of knowledge when each episode is multiple interactions compared to when each
episode is one interaction.

3.5 Conclusion
This chapter presented an experimental framework that allows to monitor the
evolution of knowledge when multiple agents adapt to interactions between them.
It is designed to reflect a specific kind of scenarios in which agents initially can
learn how to perform a task and then evolve their knowledge about it when they
interact with their society. Agreement on decisions has been set as a motivation
for agents to adapt socially. The purpose of the framework is to study different
characteristics of knowledge when it is adapted to optimise one criterion, here
successful interactions. It also allows to control different parameters to assess
their impact on the population’s knowledge.

In the next chapter, the framework is used to study how agent knowledge
properties evolve and the effect of the framework’s parameters on the evolution of
knowledge.



46 Chapter 3. A framework involving environmental learning and social interaction

Interactions

States

Rewards

Learning

Episode 1

1 2 ... f1

s1 s2 ... sf1

r1 r2 ... rf1

ad1 ad2 ... adf1

... Episode n

1 2 ... fn

s1 s2 ... sfn

r1 r2 ... rfn

ad1 ad2 ... adfn

Evolution of knowledge when agents
Learn to maximize rewards from several interactions

(a) In this model, several interactions are part of the same episode. MARL attempts
to optimize the cumulative rewards. Notice that the first adaptation depends on all
future rewards received in the episode. Thus agents do not learn to succeed in their
interactions only but they learn how to adapt in order to reach quickly a state with
successful interactions.

Interactions

States

Rewards

Learning

Episode 1

1

s1 s2 ... sf1

r1 r2 ... rf1

ad1 ad2 ... adf1

... Episode n

n

s1 s2 ... sfn

r1 r2 ... rfn

ad1 ad2 ... adfn

Evolution of knowledge when agents
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(b) In this model, each interaction is represented with several states in one episode.
Notice that agent learning concern one interaction only. Thus, agents learn how to
succeed in interactions. The experimental framework is designed in the aim of studying
the evolution of knowledge of this setting.



4

Results: Ontology improvement and
diversity

The previous chapter presented an experimental framework to simulate the evo-
lution of agent ontologies. In this framework, agents are required to agree in
order to interact successfully about their tasks. Hence, they have to adapt their
knowledge about the environment. However, it is unclear how such adaptations
can influence agent knowledge in the long run. In this chapter, an experiment is
described in order to answer the questions raised in the introduction: how do the
adaptations influence agent success in interactions, the quality of their knowledge
and its diversity.

An experiment processed in two stages is carried out. First, agents learn their
ontologies, then they interact with their environment and with each other. In
the interaction phase, the experimentation process simulates agents performing
their tasks in the environment and interacting with each other. This is done by
repeatedly selecting two agents to perform a task in the environment before they
interact with each other. If an interaction fails, the adapting agent, considered
less skilled, is selected according to its immediate past ability to accomplish tasks.

Results show that agents reach a state in which interactions are always suc-
cessful. Most of the time, they improve their knowledge about the environment
but, under specific conditions, knowledge may be forgotten. In addition, agents
reach this state not necessarily having the same knowledge.

The experimental framework has several parameters like, among others, the
number of agents or the number of decision classes. Hence, an in-depth investi-
gation of the effect of different parameters on the obtained results is presented
through multiway analysis of variance. This clarifies the experimental parameters’
effects and the interactions between them.

This chapter presents in Section 4.1 the experimental setting: the general pro-
cess of the experiment, the measures taken, the experimental parameter values and
the hypotheses. General results are reported in Section 4.2. Finally, a discussion
of the parameter effects is presented in Section 4.3.
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4.1 Experimental setting
We describe below the hypotheses made to answer the raised questions4.1.1 before
introducing the experimental process performed to simulate the intended scenario
(Section 4.1.2), the measures used to monitor agent knowledge that would allow
to answer the raised questions (Section 4.1.3), the experiment plan to define the
ranges of experimental parameters’ values (Section 4.1.4) and finally the hypothe-
ses are reformulated using the introduced measures (Section 4.1.5).

4.1.1 Hypotheses

The questions raised are formulated as three hypotheses to test:

• Hypothesis H1
I : Agents converge to a state in which interactions are always

successful.

• Hypothesis H2
I : The quality the population’s knowledge about the envi-

ronment increases.

• Hypothesis H3
I : Agents maintain the diversity of their knowledge and do

not necessarily converge to the same ontologies.

4.1.2 Experimentation process

In one run of the experiment, agents initially learn from the environment how
to make decisions (see Section 3.3.2). Then, they go through n iterations of the
following:

1. A pair of agents is selected randomly.

2. They both perform independently an individual task for which they receive
each an individual reward (Section 3.3.3).

3. They together perform a social task about one object selected randomly from
the environment (Section 3.3.3).

4. Agents adapt their ontologies if the interaction failed (Section 3.3.4).

Since only the immediate reward is used as transmission bias in this process,
only the selected pair of agents perform the individual tasks to speed up the
process. The simulation of other agents performing their tasks has no impact
on the results. As mentioned, the purpose of performing the individual task is
simply to have a proxy of the quality of the agent’s knowledge at that time. It
is established at each iteration for reflecting the agent knowledge at that time. It
could alternatively be performed after adaptation.

During this process, measures are constantly computed and recorded.
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4.1.3 Measures

In order to answer the three provided questions, we define three main measures
for the experiments:

1. the interaction success rate which indicates how often agents have agreed on
their decision,

2. the accuracy of agents’ classifiers as an indication of the quality of their
knowledge, and

3. a distance measure between ontologies which aims at denoting their diversity.

The three measures are normalised (between 0 and 1).
An experiment Ee is identified by its identifier e and characterised by the tuple

of parameters ⟨Ae,Pe,De, re, te, ne⟩ as defined in Table 4.1. The state Ea
e,j of agent

a at iteration j in experiment e is described by its ontology Oa
e,j at that iteration.

For each experiment state Ee,j, we record at each iteration:

• The success rate of experiment e at stage j which is the ratio of successful
interactions until j:

srate(Ee,j) =

∑j
i=0 success(Ee,i)

j

• The accuracy of ontologies at stage j of experiment e which is the average
accuracy for all agents’ ontologies:

accuracy(Ee,j) =

∑
a∈Ae

acc(Ea
e,j)

|Ae|

where acc(Ea
e,j) is the accuracy of agent a’s ontology determined with respect

to the set I. The set I ⊆ I is defined such that it contains no two elements
of I with the same combination of properties and that all combinations of
properties are represented (so it contains one exemplary of each distinguish-
able objects). Accuracy is then the ratio of objects in I that are correctly
classified by agent a’s ontology to all objects of I.

acc(Ea
e,j) =

|{o ∈ I|ha
e,j(o) = h∗(o)}|
|I|

• The distance between ontologies at stage j of experiment e which is the
average distance between each pair of distinct agent ontologies.

distance(Ee,j) =

∑
a∈Ae

∑
b∈Ae,b ̸=a δ(Oa

e,j,Ob
e,j)

|Ae| × (|Ae| − 1)
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where the distance between two ontologies O and O′ is

δ(O,O′) = 1− eq(O,O′)

max(|O|, |O′|)

eq(O,O′) being the number of semantically equivalent classes between on-
tologies O and O′, i.e. the number of classes that always cover the same set
of objects:

eq(O,O′) = |{(C,C ′) ∈ O ×O′ | O,O′ |= C ≡ C ′}|

It is possible to consider alternative diversity measures [23]: by changing
the distance measure that could be non-semantic or the way the distribution
of distances are aggregated (e.g. weighted entropy). Here we use simple
aggregation (average), but semantic distance, one.

4.1.4 Experiment plan

In this experiment, (1) the transmission bias follows the immediate success index,
i.e. the weights given to the two other indices are 0 (w2 = w3 = 0) and the
discount factor is 0 (γ1 = 0); (2) the adaptation operator used is the one that
communicates all attributes; (3) the ontologies are initially learned with the ID3
algorithm. These constraints will be relaxed in Chapter 7.

Since the experiment depends on the different parameters mentioned in Sec-
tion 3.3, we define an experiment plan to vary these parameters as presented in
Table 4.1 and run each combination 10 times. This means that we processed
q = 5 × 3 × 3 × 3 × 4 × 10 = 5400 simulations of 40000 iterations. The number
of properties is varied on low values to keep the environment small (the increase
in the number of objects is exponential with respect to the number of properties)
while it is still possible to observe the effect of varying the number of properties
on the results. Similarly, the number of decision classes is also low. The training
ratio is varied between 0.1 and 0.5 to not give too much information about the
environment for the agents, otherwise they all start with similar knowledge and
there would be no evolution. The number of agents and the task ratio are reason-
ably varied from low to high values. The number of values experimented with for
each parameter is low since the number of runs grows in combinatorial manner.
At each iteration, the measures defined in Section 4.1.3 are recorded.

To determine which parameters (independent variables) significantly affect
which measures (dependent variables), we performed an analysis of variance (ANOVA)
test. The dependent variables are the final measured values of success rate, av-
erage ontology accuracy and average ontology distance of each simulation run
(Section 4.1.3) as they correspond to the three hypotheses. N-way ANOVA on a
given dependent variable returns, for all independent variable combinations, the



4.2. Results 51

Meaning Variable Values
Number of agents |A| {2, 5, 10, 20, 40}
Number of properties |P| {3, 4, 5}
Number of decisions |D| {2, 3, 4}
Training ratio r {0.1, 0.3, 0.5}
Task ratio t {0.2, 0.4, 0.6, 0.8}
Number of iterations n 40000

Table 4.1: Experiment parameters and their values.

probability that the combination has no effect on the dependent variable (p-value).
We run N-way ANOVA on the three same dependent variables. We consider a p-
value that is lower than 0.01 as low enough to reject that the independent variable
has no effect on the dependent variable.

4.1.5 Hypotheses revisited

The hypotheses are reformulated here based on the introduced measures:

• Hypothesis H1
I : The success rate converges to 1. This corresponds to the

fact that, after a while, interactions are always successful.

• Hypothesis H2
I : The mean accuracy of the population’s ontologies improves

at the end of the simulation runs.

• Hypothesis H3
I : The average ontology distance of the experiment runs

is not necessarily 0, i.e. agents do not necessarily converge to the same
ontologies.

4.2 Results

Table 4.2 contains the average of success rate, accuracy and ontology distance,
grouped by parameter values, at the first, intermediate and final iterations for all
the experiment groups. The table includes the measures after the first interaction
because some parameters influence them from the start. For example, a larger
training ratio corresponds to a higher success rate because agents have higher
chances of getting overlapping training sets with larger training ratios and thus
agree more on their decisions. It also includes some of the intermediate results
which show that for some parameters, agents converge much faster to a stable state
in which communication is always successful. For instance, it can be observed that
the success rate converges to 1 faster with fewer agents.
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In what follows, we show how these results answer the three hypotheses. We
also analyse the effects of different parameters on the obtained results and discuss
the main ones.

4.2.1 Agents reach a state with successful interactions

Figure 4.1 shows the average success rate at each iteration.
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Figure 4.1: Average success rate over 40000 iterations. The shaded part boundaries
represent the standard deviation from the average.

The success rate converges to 1, which supports Hypothesis H1
I . The standard

deviation gradually decreases as the number of iterations increases. This indi-
cates that the success rate of different runs are converging similarly even though
they start at different levels due to randomness in initial ontologies or different
simulation parameters.

4.2.2 Agents improve their ontology accuracy on average

Figure 4.2 shows the difference in distributions of average agent accuracies at
the start of the simulations and at their end. The distribution at the end of
the simulations shifts towards 1 which indicates an overall improvement of agent
accuracies. Table 4.2 shows that this happens for all parameter values. This
corroborates a weak version of the Hypothesis H2

I , i.e. on average on all the runs
accuracy improves.

To show that the difference in average accuracy is significant, we conducted
a paired Student t-test between the average accuracy at the beginning of the
simulation (Mean= 0.56, Standard Deviation= 0.14) and at the end (Mean= 0.79,
Standard Deviation= 0.2). There is a significant difference with t = 100.06 and
p < 0.01.
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Figure 4.2: Distribution of accuracies at the start of the simulation (bottom) and at the
end of the simulation (top).

However, the left-hand extremity of Figure 4.2 tells us that there are cases in
which accuracy actually decreases. This rebuts a strong version of Hypothesis H2

I ,
i.e. that accuracy increases at each run. In 3.5% of the runs the final average
accuracy is lower than the initial one. This is explained by agents having a rare
correct decision which is lost because they disagree with others which have received
more rewards. Consider two agents a and b that classify all objects correctly except
that a classifies o incorrectly and b classifies o′ incorrectly. It may happen that
agent a performs better than agent b in the individual task because S contains o′

but not o; a would then receive more rewards than b. If o is the selected object,
then as a result b will change its (correct) decision about o to the (incorrect) one
held by a. If these are the only two agents, they now have ontologies whose average
accuracy is lower.

The task ratio and the number of agents are the main parameters that influence
this drop in accuracy. As can be observed from Table 4.3, a lower task ratio and
fewer agents increase the chances of its occurrence.

t \ |A| 2 5 10 20 40 total
0.2 53 29 2 0 0 84
0.4 43 9 0 0 0 52
0.6 32 6 2 0 0 40
0.8 13 0 0 0 0 13

total 141 44 4 0 0 189

Table 4.3: Number of runs with negative accuracy difference by number of agents and
task ratio (each cell = 360 runs).

The task ratio is the number of test made to assess the accuracy of agent’s
ontologies. Hence, the higher it is, the better this assessment that agent use to
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decide which one will adapt, and so the lower the risk to adopt incorrect knowledge.
However, even with a low task ratio, if the agent population is large, lost decisions
are more easily recovered. This is illustrated by Table 4.3. Obviously, if the
problem occurs with 2 agents, the correct decision is definitively lost.

0 0.2 0.4 0.6 0.8 1
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0.57

0.07 0.980.670.43

ontology distance

Figure 4.3: Distribution of average ontology distances at the start of the simulation
(bottom) and at the end of the simulation (top).

4.2.3 Agents do not necessarily reach the same ontology

The boxplots in Figure 4.3 show the distribution of average ontology distances at
the start of the simulation and at the end of it. We observe that the distribution
slightly shifts towards 0 at the end of the simulation. As expected, agents end
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Figure 4.4: Example of two ontologies Oa and Ob that lead to the same decisions with
only two equivalent classes.
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up with more similar ontologies. However, they do not necessarily share the same
ontologies. Table 4.2 shows that for all parameter values, the average distance
remains far from 0. In fact, 90.78% of the runs do not lead to the same ontologies.
This supports Hypothesis H3

I . The reason behind this is that agents may consider
different properties to make the same decision. Figure 4.4 shows the ontologies
of agents a and b who make the same decisions for all objects. For example,
both agents a and b would make decision D2 for object o that has the properties
{¬p1, p2, p3}. Agent a would make it because o has p2 and agent b because it has
¬p1.

4.3 Discussion on experimental parameter effects

We discuss here more precisely the influence of the various parameters on the
results. The results of N-way ANOVA show that the success rate is affected by all
parameter combinations. Hence we do not discuss it further.

The N-way ANOVA analysis on ontology accuracy and ontology distance is
summarised by the lattices of Figure 4.5 and Figure 4.9. They show which combi-
nations of parameters have an effect on the accuracy and distance respectively.

In the following, we discuss the main effects of the experimental parameters on
ontology accuracy (Section 4.3.1) and diversity (Section 4.3.2).

4.3.1 Parameter effects on ontology accuracy

In this section, the main parameter effects on the accuracy are discussed:

• Accuracy increases with the number of agents.

• However, this depends on how different agents’ initial ontologies are.

Ontology accuracy increases with the number of agents

Figure 4.6 shows that the more agents there are, the higher the final accuracy is.
This is because, with few agents, correct pieces of knowledge could be completely
lost if they are held by agents with bad knowledge. To illustrate this, consider
an object o of decision dj such that it is classified correctly by agents with lower
reputation. If the object is used in the early iterations, the agents may wrongly
replace the decision associated to it with a wrong one, and since there are only
few agents, the information “o has the decision dj” might completely disappear, as
discussed in Section 4.2. However, with more agents, agents which received less
reward get the chance to correct their other errors to increase their rewards and
start spreading the information that o is of decision dj. Hence, the chances that
this information survives for later iterations are higher.
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Figure 4.5: Lattice showing the combinations of parameters that influence accuracy. In
green ellipses the combinations that have a significant joint influence. In red rectangles,
those that do not.
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Figure 4.6: Average accuracy in solid lines and average distance in dotted lines for each
number of agents.
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Figure 4.7: Average accuracy in solid lines and average distance in dotted lines for each
number of properties.

Ontology accuracy improvement depends on how different the initial
agent ontologies are

Figure 4.7 shows that the number of properties does not significantly affect the
final ontology accuracy. However, the lattice in Figure 4.5 tells us that there is
an interaction effect on the accuracy between the number of properties and both
the number of agents and the training ratio. This means that, by changing the
number of properties (resp. the training ratio), the effect of the number of agent
changes and vice versa. As it can be observed in Figure 4.8 (top left), when the
number of agents is high, the higher the number of properties is, the higher the
accuracy gets.

The three other plots of Figure 4.8 show how each training ratio interacts
with the number of properties and the number of agents. This effect can only be
observed when the training ratio is low. This is because the number of properties
determines the number of distinguishable objects which, in turn, determines the
number of objects given in the initial training sample. When agents learn from
smaller samples, they learn far smaller ontologies. This reduces the number of
ontologies that can be learned and makes agent knowledge more similar. Under
these conditions, having more agents does not improve much knowledge accuracy
since a lot of them would have similar initial knowledge.

4.3.2 Parameter effects on ontology diversity

In this section, the main parameter effects on ontology diversity, measured as
ontology distance, are discussed:

• The distance increases with the number of properties.
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Figure 4.8: Average final accuracy for each number of properties by the number of agents.
The top left plot shows the total average; the three other ones correspond to different
training ratio values.

• This effect is less noticeable the more agents there are.

• The distance decreases when the number of decisions increases.

Ontology distance increases with the number of properties

Figure 4.7 shows that the average ontology distances at the beginning of the simu-
lation differ depending on the number of properties, and they all drop by about the
same amount. As the number of properties increases, agents have more flexibility
on which properties to base their decisions on, which results in them having diverse
ontologies and still agree on the decisions. For example, if all objects having the
property p1 are classified as d1 and the rest as d2, agent a might consider directly
the property p1 to make the decision while agent b can first consider the property
p2 then the property p1. If there were only one property, both agents would have
to use it, which would result in them having the same class definitions.
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Figure 4.9: Lattice showing the combinations of parameters that influence distance. In
green ellipses the combinations that have a significant joint influence. In red rectangles,
those that do not.

More agents find and use more the flexibility provided by the number
of properties

Figure 4.6 shows that the final average distance is not significantly affected by the
number of agents. However, Figure 4.9 shows an interaction between the number
of agents and the other parameters. The top left plot of Figure 4.10 shows, for
each number of agents, the final average distance by the number of properties.

It can be observed that the more properties there are, the higher the average
ontology distance is. However, this is negatively affected by the number of agents:
the higher the number of agents, the less this effect is noticeable. When the
number of properties is low, the agents have little freedom in the way ontologies
are organised. Thus, agents tend to end up with similar ontologies after interacting.
However, the more agents there are, the more they can explore this space and the
more they can find diverse ways to express their knowledge. On the other side,
when there is a large number of properties, there is a large number of possible
ontologies that agents can have at convergence. Thus, with a small number of
agents, it is easy for them to be diverse. This can be thought of as an instance
of the pigeonhole principle: when there are more agents than possible ontologies,
some of them elect the same one.
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Figure 4.10: Average final accuracy for each number of properties by the number of
agents. The top left plot shows the total average; the three other ones correspond to
different number of decisions values.

More decisions restricts the flexibility provided by more properties

This joint influence is further influenced by the number of decisions (|D|). The
number of decisions has an opposite effect to that of the number of properties on
the distance as can be observed in Table 4.2 and Figure 4.9.

The more decisions there are, the less agents have flexibility on how they repre-
sent their ontologies. If we consider the extreme case of only one decision, agents
would agree independently of how their ontologies are made. This corresponds
to the maximum flexibility. The three plots in white background of Figure 4.10
display the same ontology distance on number of properties for each number of
decisions. They show that the higher the number of decisions, the more the in-
tersection point of the curves is pushed to the left. This is the effect of putting
more restrictions on agents which makes it difficult to obtain diverse ontologies at
convergence. For instance, with 3 properties, the curve corresponding to 2 agents
is not much affected by the change on the number of decisions. However, for the
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other numbers of agents, the more decisions there are, the closer they get to the
curve corresponding to 2 agents. This is because for 2 agents it is already difficult
to be different from each other since there are not many properties. When the
number of decisions gets higher, the number of possible ontologies that agents can
have at convergence decreases and it becomes harder for them to be different. This
makes higher number of agents in a situation closer to that of 2 agents.

4.4 Conclusion
This chapter presented an instantiation of the experimental framework to answer
several questions about how agent knowledge can evolve under specific condi-
tions. The experimental results support the three hypotheses: (1) agents can adapt
knowledge, improving agreement and communication, (2) doing so they, most of
the time, develop more accurate knowledge, and (3) this does not constrain them
to have the same knowledge.

This was tested under different conditions and experimental parameters. An
in-depth analysis of the results through N-Way ANOVA was performed to inves-
tigate different parameter interactions. It shows that the hypotheses are verified
on different parameter combinations. Moreover, the analysis indicates how the
parameters interact and, thus, the expected effects of parameter changes on the
results.

The hypotheses were tested under specific conditions related to agents and their
environment, e.g. starting with correct object samples and all objects on which
the accuracy of agent knowledge is measured are available in the environment.
The next chapter assesses whether these conditions are necessary to support the
hypotheses made.



5

The influence of information

In the previous experiment, agents built and altered their ontologies by relying on
three kinds of external information. First, they built their ontologies by learning
from a correct sample of objects given to them initially. Second, in the adaptation
phase, agents told each other what properties of the interaction object they relied
on. Lastly, agents used a transmission bias based on success to decide which one
of them adapts its knowledge.

Moreover, the environment included all possible types of objects given a set of
properties. These objects were available for agents to interact about and, thus, to
improve their decision taking about them. This raises the question whether agents
are overfitting on the objects available in the environment.

This chapter looks at other instances of the experimental framework in which
the external information on which agents rely is altered as well as what is available
in the environment. Four experiments are performed. Three of them correspond
to experimenting with different limitations of what can be used as external infor-
mation to build and adapt agent knowledge. The last experiment tests whether
agents are able to generalise or are overfitting because of the availability of all
objects in the environment. This is done by instantiating the environment’s ob-
jects with a part of an existing dataset while keeping the other part for testing the
agents’ accuracy.

Section 5.1 compares different ontology initialisation methods. In Section 5.2,
variations of the amount of information exchanged during adaptation are com-
pared. The comparison of social indexes effect on the results is presented in Sec-
tion 5.3. Finally, results of experimentation with real data in which the environ-
ment does not contain all objects are reported in Section 5.4.

5.1 Ontology initialisation comparison

Ontologies can be initialised from an initial training set. The initial training set is
an additional information. It is given to agents in our experiments to show how it is
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possible to have a continuity from learning to adaptation. To assess the impact of
the labelled samples, we compare different decision tree induction methods, as well
as randomly generated ontologies, to test whether this information is necessary at
all. The goal of this experiment is to assess the importance of the initial non-social
learning with respect to our hypotheses:

• Hypothesis H1
I : The success rate converges to 1.

• Hypothesis H2
I : The average accuracy of the population improves at the

end of the experiment runs.

• Hypothesis H3
I : The average ontology distance at the end of the experiment

runs is not necessarily 0.

5.1.1 Experiment plan

We performed experiments by varying the ontology initialisation method which
can be one of the decision tree learning algorithms (ID3 [88], C4.5 [89], CART [28]
(with categorical features only)) or random initial ontologies (RAND). The full
specification of the three learning algorithms can be found in their respective
papers. With respect to agents’ tasks, the three learning algorithms differ in
two aspects: pruning which is not done in ID3 but done in C4.5 (pre-pruning) and
CART (post-pruning) and the selection of which attribute to split on which is done
through information gain in ID3, gain ratio in C4.5 and Gini index in CART. We
also vary the parameters that are potentially related to the ontology initialisation in
a similar way to the previous experiment: the number of properties, the number of
decisions and the training ratio. Table 5.1 shows how these parameters are varied.
In this experiment, the number of agents and the task ratio are fixed to 20 and
0.2 respectively. For convenience, the number of agents is set to a large value for
which experiment runs run reasonably fast. The task ratio is fixed to the lowest
value as it is the less advantageous for agents.

Meaning Variable Values
Number of properties |P| {3, 4, 5}
Number of decisions |D| {2, 3, 4}
Training ratio r {0.2, 0.4, 0.6, 0.8}
Ontology initialisation i {ID3, C4.5, CART,RAND}
Number of iterations n 100000

Table 5.1: Ontology initialisation experiment parameters and their possible values.
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5.1.2 Result summary

Table 5.2 shows the summary of the measured results for each ontology initialisa-
tion method at the first and last iterations.

ontology initialization
C45 CART ID3 RAND

srate 1 0.50 0.50 0.50 0.32
100000 0.92 0.91 0.92 0.87

accuracy 1 0.56 0.55 0.56 0.36
100000 0.85 0.87 0.86 0.79

distance 1 0.61 0.65 0.61 0.74
100000 0.45 0.44 0.44 0.46

Table 5.2: Average success rate, accuracy and ontology distance at the first (1) and last
(100000) iterations for each ontology initialisation method.

5.1.3 Different learning algorithms yield similar results

As it can be observed from Table 5.2, results of the three learning methods are very
close to each other. So, as expected, the decision tree learning method does not
affect the final results. ANOVA does not yield statistically significant difference.
The 95% intervals of means differences of final results are all within [-0.049, 0.059].

5.1.4 Random ontology initialisation confirms the
hypotheses

We tested the three hypotheses when agents receive no initial information from
the environment. The three hypotheses are supported similarly as in Section 4.2.
Agents are able to:

• converge to a state with successful interactions (H1
I ),

• on average, reach a higher accuracy at the end of the experiment compared to
at the beginning of the experiment (H2

I , paired Student t-test with p≪ 0.01).

• they do not reach the same ontology (H3
I ). In this case, in 100% of simulation

runs they do not reach the same ontology. We believe it is because we only
experiment with a large number of agents |A| = 20. It is unlikely that they
all reach the same ontology.
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Figure 5.1: Average final accuracy for each ontology initialisation method by the number
of properties (top) and number of decisions (bottom).

5.1.5 Accuracy with random ontology initialisation
decreases when the number of properties and
decisions increases

Although agents are able to improve the quality of their ontologies starting from
random ones, the improvement is not as high as when ontologies are learned. This
is the case especially when the knowledge to be represented becomes larger, i.e. the
number of possible distinguishable objects (number of properties) or decisions in-
creases. Figure 5.1 shows the final accuracy for each ontology initialisation method
with respect to the number of properties and the number of decisions. It can be
observed that when the ontology initialisation is random, the final accuracy drops
as the number of properties (resp. the number of decisions) increases. The drop
is less noticeable for the learning methods. This is because when agents start
with random ontologies, they have less correct knowledge about the environment
(Table 5.2). The larger the number of properties or number of decisions, the less
likely it is that agents have correct pieces of knowledge. Thus, when they se-
lect the knowledge to spread among them, some correct pieces may not be there
in the beginning or may be rare and lost in the early iterations as explained in
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Section 4.3.1.

5.2 Adaptation operator comparison

In the previous experiment, agents communicated full reason, i.e. all object prop-
erties they considered, for their decision. Agents were assumed to be willing to
share their knowledge and with unlimited communication channel. They are also
assumed to understand each other when they communicate about object proper-
ties. To assess the impact of the information communicated by agents for knowl-
edge adaptation, we experiment with two additional adaptation operators that
require less information to communicate. The first one, the communication chan-
nel is limited to fit only one property that can be given as reason for decision. In
the second one, no communication is allowed. In this latter case, the assumption
that agents can understand each other is also removed.

5.2.1 Experiment plan

The three compared adaptation operators are:

• allCom: Agents communicate all attributes considered in their leaf class.

• oneCom: Agents communicate one attribute considered in their leaf class.

• noCom: Agents do not communicate any attribute.

Table 5.3 shows the three measured variables for each adaptation operator.
The three tested hypotheses are still supported for all adaptation operators.

adaptation operator
allCom oneCom noCom

srate 1 0.65 0.30 0.55
100000 0.90 0.84 0.80

accuracy 1 0.39 0.42 0.41
1000000 0.82 0.83 0.87

distance 1 0.71 0.69 0.70
1000000 0.46 0.44 0.41

Table 5.3: Average success rate, accuracy and ontology distance at the first (1) and last
(100000) iterations for each adaptation operator.
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5.2.2 Agents converge more slowly when they do not
communicate all attributes

The ANOVA test does not yield a significant difference for accuracy and diversity.
However, the success rate is significantly higher for the operator allCom than for
the two other operators (post-hoc Tukey-HSD (honestly significant difference) test:
p≪ 0.01).

5.3 Transmission bias comparison
When adapting, in the previous experiment, the less successful agent in terms
of reward gained from the environment would adapt its knowledge to comply
with the other agent’s decision. This transmission bias is important as it decides
what pieces of knowledge will be transmitted and which will be adapted. Agent
reputation, which is used as transmission bias, can be based on different kinds
of social indexes. Thus, knowledge would evolve differently when agents consider
other social indexes other than environment success index.

We investigated the effects of the different transmission biases presented in
Section 3.3.4. First, to assess the importance of a transmission bias, we experiment
with agents that choose randomly which one adapts, i.e. no transmission bias.
Secondly, we compare combinations of social indexes (success, conformism, rarity)
for the transmission bias to see what are the effects of different social indexes. To
this end, we experiment with the two biases that are based on social interactions
alone (conformity and rarity) and combine them with the bias introduced by the
environment (success).

Conformity and rarity biases are based on social rewards from success in in-
teractions (agreement). However, since agents adapt their ontologies after each
interaction failure, this reward is more representative of their past agreement than
their current one. In order to make it more representative of the current agree-
ment, we alter the process to make agents adapt their knowledge in only 5% of the
failures. This makes the conformity (resp. rarity) bias reflect whether an agent is
in an agreement (resp. disagreement) with the other agents. The only incidence
on the experiments is that the process is slowed down and needs more iterations.

5.3.1 Experiment plan

In this plan, we focus on the variations on the transmission biases. Thus, similarly
to previous experiments, the other parameters are fixed. We experiment with 20
agents trained with ID3 (as there is no impact of the learning algorithm as seen
in Section 5.1) with 0.2 training ratio (lowest value). The number of decision
classes and properties are fixed to the middle values of the previous experiments:
3 decisions in and 4 properties. The discount parameters of the three indices are
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fixed to 0.9. Table 5.4 summarises these parameters. For each combination of
parameters (but those involving non-zero conformity and rarity weights together),
the experimental simulation is run 5 times.

Meaning Variable Values
Number of agents |A| 20
Number of properties |P| 4
Number of decisions |D| 3
Training ratio r 0.2
Success weight w1 {0, 1}
Conformity weight w2 {0, 0.3, 0.7, 1}
Rarity weight w3 {0, 0.3, 0.7, 1}
Number of iterations n 100000

Table 5.4: Transmission bias experiment parameters and their possible values.

5.3.2 Measures

Because the rarity and conformity indices concern how spread agent decisions are,
we record two additional measures:

• The decision spread indicates if the decision of the agent with the highest
reputation is common (for conformity bias) or not (for rarity bias) in the
population. It is the average number of agents having, for all the interac-
tion failures, the same decision as the interacting agent with the highest
reputation, for the interaction object.

spread(Ee) =

∑ne

i=0(1− success(Ee,i))× spreadD(Ee,j, reputedD(Ee,j))

ne −
∑ne

i=0 success(Ee,i)

where reputedD(Ee,j) returns the decision of the agent that interacted at
stage Ee,j and had the highest reputation. spreadD(Ee,j, d) denotes the
number of agents having the decision d for the object oe,j of the interaction
at stage Ee,j and is defined as:

spreadD(Ee,j, d) = |{a ∈ A|ha
e,j(oe,j) = d}|

• The loss of correct decisions measures how many correct decisions were lost
by the population. It is a more precise information than the loss of accuracy
measured in Section 4.2.2. It is computed as the number of objects for
which an agent had a correct decision at the beginning, but whose decision
was abandoned in the end. It is measured as the size of the intersection
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between the set T (Ee) = {o ∈ I|∃a ∈ A,∃j < ne, h
a
e,j(o) = h∗(o)} of objects

to which agents knew at some iteration the correct decision and the set
F (Ee) = {o ∈ I|∀a ∈ A, ha

e,ne
(o) ̸= h∗(o)} of objects to which no agent

knows the correct decision at the end of the experiment.

loss(E) = |T (E) ∩ F (E)|

5.3.3 Results

The main observations obtained from this experiment are:

• Without transmission bias, i.e. with random choice, agents did not reach
a statewith successful interactions within 15000 iterations (they could po-
tentially converge with more iterations). Hence, we cannot conclude that
Hypothesis H1

I holds in this case. The existence of a transmission bias or
not has an impact on the speed of convergence.

• Without success bias, agents cannot improve the accuracy of their ontologies.
Hypothesis H2

I depends on the environment-based success bias.

In what follows we give details about these results.

5.3.4 Agents do not reach a state of successful interactions
without any transmission bias

It can be observed, in Figure 5.2, that without any transmission bias, the con-
vergence is very slow and that there is a drop in the accuracy. This is because
when agents adapt, they correct the disagreement with only one agent. Thus,
agents may oscillate between decisions if they just adapt randomly, which makes
convergence harder. This is even worse when there is only rarity bias (bias towards
agents with uncommon decisions). In this case, agents deliberately choose to keep
the rare decisions. This pushes agents to not adopt a dominant decision and thus
agents do not reach an agreement. On the other side, when there is conformity
bias, agents converge to successful interactions fast. Agents in this case adapt to
the dominant pieces of knowledge and thus reach an agreement quickly.

5.3.5 Conformity bias accelerates convergence to a state
with successful interactions

Table 5.5 shows for each conformity weight the success rate and the accuracy at
the beginning and at the end when it is combined with success (w1 = 1). On
the one hand, the success rate increases when the conformity bias is added. On
the other hand, the accuracy suffers from this addition. The explanation is that
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Figure 5.2: Average success rate (solid) and ontology accuracy (dashed) when agents
adopt no transmission bias (left), conformity bias only (middle) and rarity bias only
(right).
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Conformity index weight
0.0 0.3 0.7 1.0

srate 1 0.80 0.60 0.40 0.40
100000 0.82 0.90 0.92 0.93

accuracy 1 0.46 0.46 0.50 0.47
100000 0.90 0.73 0.79 0.69

spread 9.68 10.32 10.18 11.38
loss 1.60 4.20 3.40 4.80

Table 5.5: Average success rate, accuracy (at the first (1) and last (100000) iterations),
decision spread and loss of correct decisions for each conformity weight.

agents are biased to adopt the spreading knowledge even if it is wrong. This
makes them converge faster but to potentially wrong decisions. Moreover, the
95% confidence intervals (CI) of mean differences are very skewed. For example,
the 95% CI between w2 = 0 and w2 = 1 on the success rates is [−0.02, 0.24].
However, ANOVA does not yield a statistically significant difference for success
rate (p = 0.09) and accuracy (p = 0.11), Thus, we cannot conclude that the effect
is supported by the experiment.

Rarity index weight
0.0 0.3 0.7 1.0

srate 1 0.20 0.20 0.60 0.60
100000 0.85 0.81 0.73 0.64

accuracy 1 0.50 0.49 0.49 0.44
100000 0.87 0.93 0.92 0.79

spread 9.94 9.30 8.40 8.11
loss 2.00 0.80 0.80 1.40

Table 5.6: Average success rate, accuracy (at the first (1) and last (100000) iterations),
decision spread and loss of correct decisions for each rarity weight.

5.3.6 Rarity bias gives rare pieces of knowledge more
chances before they disappear

Table 5.6 shows, for each rarity weight, the success rate and the accuracy at the
beginning and at the end when it is combined with success (w1 = 1). The success
rate decreases when the rarity weight increases. The difference is statistically
significant. The more the bias is towards rarity, the more rare pieces of knowledge
persist. This creates more interaction failures. Table 5.6 shows that the number
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of agents having the same decision as the agent from which the decision will be
adopted (w) gets lower as the weight of rarity index increases. This means that the
rarity bias gives more chances to less spread decisions. This can also be observed in
the particular case of correct decisions. The loss decreases when the rarity weight
increases (Table 5.6). The loss is higher when w3 = 1 than w3 = 0.3 and w3 = 0.7
because the rarity bias does not only concern the correct decisions but the wrong
ones too. Thus, agents start preserving wrong decisions at the expense of correct
decisions when the rarity bias increases. Although the accuracy appears to benefit
from some rarity bias, we do not consider it statistically significant as ANOVA
yields p = 0.019.

5.4 Experiment on Real Data

Agents can interact about all objects that are present in the environment. In
the previous experiment, the environment contained all types of distinguishable
objects, i.e. all combinations of properties are present in the environment. More-
over, the generated object decisions had no specific structure that can be learned
by agents. Although agents do indeed improve the quality of their knowledge
about their tasks, it is unclear whether they can actually generalise (since there
are no patterns in data). To test whether agents have this ability, an experiment
is conducted in which (1) not all types of distinguishable objects are present in the
environment and (2) a real dataset is used to populate the environment’s objects
in order to have a classification structure that agents can learn.

To determine how agents perform on unseen objects, we repeated the experi-
ment by generating the environment from an existing classification dataset. The
Zoology dataset from the UCI machine learning repository [37] has been used be-
cause (1) its attributes are easily converted to Boolean attributes and (2) results
of a coordinated learning approach on this dataset exist.

5.4.1 Comparison with existing coordinated learning
approach

The obtained results were compared with those of A-MAIL [85], presented in Sec-
tion 2.2.2 in order to position how much agents are able to generalise. Agents in
A-MAIL do not have access to the same information as agents in our experiments.
In A-MAIL, agents keep the datasets they learned from in memory and are able
to use them in argumentation. However, in our setting, agents do not keep their
datasets but receive an evaluation from the environment, i.e. the payoff corre-
sponding to their performances on achieving tasks. This is why the comparison is
merely indicative.



74 Chapter 5. The influence of information

5.4.2 Experiment plan

The only differences with respect to the previous settings: (a) The environment
objects and their decisions are taken from the dataset instead of generated ran-
domly. We performed 10-fold cross-validation, thus using 90% of the dataset as
environment objects represented by the set I and 10% for evaluation at the end
of the experiment represented by the set T . The experiment is repeated for each
test fold. (b) The task ratio is fixed to 0.2, the lowest value from the previous
experiment. The training ratio is also set to 0.2 which corresponds to the ratio
agents in A-MAIL use for training. Thus, each agent receives an initial training
set with 20% of the environment objects (which is 90% of the dataset).

5.4.3 Measures

We measure, in addition to the accuracy, the precision and the recall of experiment
e at iteration j. The precision (resp. recall) of agent a with respect to decision d
is the ratio of objects of decision d that agent a correctly classifies to the objects
that agent a classifies in decision d (resp. to the objects for which decision d is
correct):

precision(Ea
e,j, d) =

|Ia,de,j ∩ Id|
|Ia,de,j |

recall(Ea
e,j, d) =

|Ia,de,j ∩ Id|
|Id|

such that Ia,de,j = {o ∈ I|ha
e,j(o) = d} and Id = {o ∈ I|h∗(o) = d}. I is the set of

objects present in the environment.
The precision (resp. recall) on the test set of an agent a with respect to decision

d is computed similarly:

tprecision(Ea
e , d) =

|T a,d
e ∩ T d|
|T a,d

e |
trecall(Ea

e , d) =
|T a,d

e ∩ T d|
|T d|

such that T a,d
e = {o ∈ T |ha

e(o) = d} and T d = {o ∈ T |h∗(o) = d}. T is the set of
objects left for evaluation.

The precision and recall are averaged per decision class and then per agents.
As usual, the F-measure is the harmonic mean of these precision and recall.

5.4.4 Results

Table 5.7 displays the results obtained on environment objects (training set) and
Table 5.8 on evaluation objects (test set) when objects are generated from the
Zoology dataset.
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Method |A| Precision F-measure Recall Accuracy

Simulation

2 0.85 0.81 0.78 0.962
5 0.90 0.86 0.82 0.978
10 0.93 0.92 0.91 0.990
20 0.98 0.97 0.96 0.997
40 0.99 0.98 0.98 0.998

A-MAIL

2 1 0.87 0.77 0.988
3 1 0.95 0.91 0.997
4 0.99 0.96 0.93 0.992
5 1 0.97 0.95 0.997

Table 5.7: Final precision, F-measure, recall and accuracy of different methods on envi-
ronment objects (the training set).

Method |A| Precision F-measure Recall Accuracy

Simulation

2 0.88 0.87 0.86 0.951
5 0.91 0.89 0.88 0.964
10 0.94 0.92 0.91 0.977
20 0.96 0.94 0.93 0.984
40 0.95 0.94 0.93 0.983

A-MAIL

2 0.97 0.85 0.75 0.950
3 0.98 0.89 0.81 0.968
4 0.97 0.90 0.84 0.966
5 0.98 0.93 0.88 0.980

Table 5.8: Final precision, F-measure, recall and accuracy of different methods on eval-
uation objects (the test set).

5.4.5 Agents are able to generalise

From Tables 5.7 and 5.8, it can be observed that there is a small difference in
recorded measures between training and test sets. Similar to previous results,
agents achieve high accuracy and F-measure on environment objects. Furthermore,
when they are evaluated on objects that they did not learn from nor interact about,
they still achieve high performance in F-measure and accuracy. This suggests
that agents are not overfitting on environment objects but are generalising on the
classification task.

5.4.6 Given enough agents, the generalisation is on par
with A-MAIL

When A-MAIL is used with 2, 3 and 4 agents, they only learn from 40%, 60%
and 80% of the training dataset respectively, which explains the relatively low
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results compared to 5 agents in which 100% of the training set is used. A-MAIL
results do not improve with more agents [85]. In contrast, the performance of
agents presented here depends more on their number. With enough agents (here
20), they can improve their knowledge significantly to reach results on par with
A-MAIL on both training and test sets.

5.4.7 Agents perform better in a realistic dataset

Agents performed better in this experiment than on experiments with randomly
generated objects and decisions. With 2 agents, the accuracy on a realistic dataset
(16 Boolean properties and 7 decision classes) is 0.95 compared to an average of
0.61 in randomly generated datasets (3 to 5 Boolean properties and 2 to 4 decision
classes). A similar improvement can be observed for the other numbers of agents.
This is due to feature patterns existing in the real classes making the generalisation
easier for agents contrary to randomly generated ones.

5.5 Conclusion
This chapter introduced several experiments to assess the robustness of knowledge
characteristics achieved by the agent population obtained in the initial experiment.
In these experiments, agents were deprived from the sources of information that
they used to build and adapt their knowledge.

First, results were not affected by how agents learned their initial decision
trees. Second, agents performed similarly when they communicated less. Third,
the transmission bias is the most important information used by agents. The ab-
sence of a transmission bias, i.e. agents do not rely on any social information to
decide which one adapts, prevents agents from converging to successful interac-
tions. Finally, we tested agent performances on a classification task with realistic
data. Agents have shown an ability to improve their accuracy without overfit-
ting. The achieved correctness and completeness were on par with that of agents
performing coordinated inductive learning.

These findings show that results are robust overall. Agents are able to improve
their knowledge without the need for initial learning or communication between
them. They generalise through this process to unseen objects. However, they need
an appropriate transmission bias to converge, in a reasonable number of iterations,
to successful interactions and a success index to improve their knowledge about
their tasks.

In the following part, we will consider how the knowledge that has evolved
among a population of agents can be transmitted over generations.



Part II

Inter-generation ontology evolution





6

Knowledge transmission across and within
generations

Cultural traits can evolve in a population without the need for parent-offspring
transmission as it has been demonstrated by the experiments performed in previous
chapters. Culture follows Darwinian evolution principles, i.e. variation, selection
and transmission, within a single generation. The differentiating factor here with
genetic evolution is that, unlike genes, culture is not constrained to evolve in
a strictly vertical manner, i.e. transmission that happens only from parents to
offspring (Figure 6.1).

Nonetheless, as it has been mentioned in Section 2.3, cultural evolution phe-
nomena are commonly studied in the span of many generations. The arrival and
departure of individuals have an effect on the evolution of cultural traits. On the
one hand, the departure of individuals imposes constraints on the survival of cul-
tural traits as they may be lost with the individuals holding them. On the other
hand, the arrival of new individuals creates more variation for the evolution to

Generation 1

Generation 2

Transmission in
genetic evolution

Transmission in
cultural evolution

Figure 6.1: Comparison of genetic transmission (left) and cultural transmission (right)
in the presence of two agent generations.
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continue. Thus, the evolution of culture through generations follows necessarily
different mechanisms from that of only one generation.

Experiments presented in this work so far have shown how knowledge char-
acteristics evolve in the span of one agent generation. Agents reached a state in
which they all agreed on the decisions to take. At that point, the evolution of
their knowledge stopped since there was no variation on agents’ decision per ob-
ject. The arrival of a new agent generation would disturb this state. The evolution
of knowledge can continue depending on whether cultural traits can survive to the
next generation while leaving enough room for variation.

This chapter introduces an extension of Chapter 3’s framework. It adds re-
production capabilities to agents. This concerns how agents die and reproduce as
well as how knowledge transmission happens across generations. Section 6.1 high-
lights the modifications that are performed on the previous framework to study
the evolution of knowledge through generations. It is followed by Section 6.2 which
explains in details these modifications.

6.1 Agent generations and inheritance of
knowledge

This chapter focuses on the evolution of knowledge across generations. As a con-
sequence, it does not consider the evolution of agent related parameters. It only
focuses on (a) how agents are born and die, and (b) how knowledge is transmitted
from one generation to the next.

As mentioned in Section 2.3.1, Mesoudi [76] discussed several experimental
methods to study cultural transmission. The closed group method involves a
constant group of individuals that interact with each other which is what has
already been presented in this thesis. The linear transmission chain and replace-
ment methods simulate several generations (Figure 6.2 left). By generalising from
these methods, this chapter presents the extensions added to the experimental
framework (Figure 6.2 right).

First, agent arrival and departure can be done by generalising the replacement
method by adding the possibility of replacing several individuals at a time instead
of just one. It becomes possible to replace both the whole generation, as in the
linear transmission chain, or only one individual, as in the replacement method.
This also has the advantage of keeping the population’s size constant to not in-
fluence measurements that are dependent on the population’s size. In order to
decide which individuals are replaced, a selection policy is necessary to resolve
which individuals survive.

Second, knowledge transmission can be performed in two ways, one for each
experimental method. The already existing knowledge adaptation is a form of
transmission that is similar to the closed group transmission used in the replace-
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Linear
transmission

chain
Replacement

method Generalisation

source

Gen. 1

Gen. 2

Gen. 3

Figure 6.2: Generalisation (right) of combination of linear transmission chain and re-
placement methods (left). In the generalisation, two agents are replaced at a time and
receive initial training from two parents each.

ment method. The second form of transmission, used in linear chain method, is
a simulation of vertical transmission (Chapter 2) that has one direction: from
parents of the previous generation to individuals of the new generation. Thus,
each new agent need to have parents from which it receives knowledge. This also
requires a selection policy of the parent individuals.

6.2 Framework extension: reproduction
capabilities

Below we describe the general process (Section 6.2.1) and detail the extensions
added to the original experimental framework:

• The population life cycle (Section 6.2.2),



82 Chapter 6. Knowledge transmission across and within generations

• How are agents selected to survive (Section 6.2.3),

• How agents are selected to reproduce (Section 6.2.4),

• How agents transmit their knowledge to their children (Section 6.2.5).

6.2.1 Overall process

This experimental framework reuses the exact same:

• environments and ontologies,

• ontology learning procedures,

• social learning procedures,

as described in Chapter 3.
Experiment runs are made of periods split in two parts (Figure 6.3):

interaction That occur as described in the initial framework: agents use their
ontologies to agree on decisions about objects and modify them in case of
disagreement.

reproduction in which new individuals are born and acquire their initial knowl-
edge from older agents. An equal number of individuals from the older agents
die.

6.2.2 Agent life cycles

In each period, agents of the population interact with each other. At the end of
the period, l new agents are born to live in the next period from selected parents.
From the older individuals, l agents die and the rest |A|− l survives along the new
born agents.

At the beginning of their lives, and just before the older individuals die, (child)
agents learn from their parents through inter-generation knowledge transmission.
If their parents survive, they initially interact only with their parents. They gradu-
ally get detached from their parents and start interacting with other individuals of
the society. At the end of the period, after the survival selection process, some of
the agents become parents and transmit their knowledge to their newly born chil-
dren. The population now composed of surviving agents and newly born children
repeats the process (Figure 6.3). The agents of the first population are a special
case. Since they do not have parents, they do not receive the inter-generation
transmission but have their ontologies initialised following Chapter 3 modalities.
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Population i

Interactions

Population i+ 1

Dead
individuals

Survived
individuals

new born
individualsReproduction

Figure 6.3: Each period is composed of two parts: interaction and reproduction. Inter-
actions following Chapter 3 modalities. In reproduction l agents are replaced. The new
agents are taught by their parents.

6.2.3 Survival selection

At the end of each period, |A| − l agents are selected to survive according to a
selection probability distribution. The selection probability distribution is based
on criteria related to agents, for example:

• agent age, i.e. number of periods lived,

• the income it gathered,

• the success rate of its interactions.

The selection probability distribution Pl can be, among others:

• proportional to the gathered reward.

Pl(a) =
ra

sumi∈A(ri)

• proportional to agent age.

Pl(a) =
age(a)

sumi∈A(age(i))

where age : A→ N returns for each agent, the number of periods it lived.
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• lowest age, equiprobable.

Pl(a) =

{
1

|Am| , if age(a) = mink∈A(age(k))

0, otherwise

where Am = {a|a ∈ A, age(a) = mink∈A(age(k))} the set of agents with the
lowest age.

• lowest age, proportional to the gathered income.

Pl(a) =

{
ra

sumi∈Am(ri)
, if age(a) = mink∈A(age(k))

0, otherwise

If all agents have 0 selection probability, agents are selected with equiprobability.
It can be observed that some selection probability distributions do not conserve

a succession of generations (when a new generation arrives, it replaces agents
from the oldest generation). For example, following a selection proportional to
the gathered income, it is not possible to know in advance the age distribution
of agents at a particular period (It could be any mix of agents from different
generations). In order to ensure having successive generations in the population,
using agent age is of a particular importance. For this, it is sufficient to select a
proportion of the oldest agents to die, as in "lowest age, equiprobable". Depending
on the number l of agents that die, it is possible to know the age distribution of
the population at any period. For example (Figure 6.4 for illustration), (1) l = |A|
ensures that all the population is of the same age, (2) l = |A|

2
ensures that there

are two generations starting from the second period, (3) l = |A|
3

ensures that there
are three generations starting from the third period, and so on until l = 1 which
ensures that each agent is of a different generation starting from period |A|.

6.2.4 Agent mating

In order to reproduce, agents behave along the following rule: v parents are selected
randomly following a distribution s to have c child. As a consequence, individuals
may have between 0 and l children, with between 1 and |A| − l − 1 partners.

The probability to mate follows a distribution s that may be:

• Maximal (100%) for the v agents having gathered the most income and
minimal (0%) for the other agents,

• Proportional to the reward gathered from doing their tasks,

• Proportional to their success rate in interactions,

• negatively proportional to the ontology distance with other agents,

• Equiprobable.
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Figure 6.4: Evolution of a society when selection is by lowest age, equiprobable for l = |A|
(top left), l = |A|

2 (top right) and l = |A|
3 (bottom).

6.2.5 Knowledge transmission

The transmission process goes through two steps (Figure 6.5).

Initial vertical transmission In the first stage, each agent of the new popula-
tion acquires knowledge directly from its v parents. Children may have an initial
ontology that is:

1. empty, random or the result of merging their parents’ ontologies,

2. the result of being taught by their parents.

For the latter case, r% of all objects with distinct properties (object types) are
randomly selected. Each parent labels 1

v
of these objects with the decisions it

would make with respect to its own ontology (which may be incorrect). This set
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inter-generation transmission
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Figure 6.5: Initial vertical transmission involves parents generating samples (S) from
their ontologies (Oτ

i ) from which children will learn their initial ontology (O0
i+1). Chil-

dren then proceed to interact mostly with their parents (in green) before they widen
their interaction circle gradually through time. Horizontal transmission of knowledge is
achieved through agents interacting.

of labelled objects is presented to the child as a training sample (S) from which it
learns its ontology.

Interactions Once this initial transmission has been performed, agents interact
with other agents following the protocol of Chapter 3. The interactions are con-
strained such that agents are initially biased towards more interactions with their
parents if they exist: At its ith iteraction, each agent has probability Pi to interact
with one of its parents selected randomly. The probability of restricting the agent
interaction depends on i and the restricted interaction reduction rate ϵ < 1. It is
determined by:

Pi = max(0, (1− i× ϵ))

Thus, the bias is maximal at the first interaction, decreases as interactions in-
crease and has no effect after interaction ⌈1

ϵ
⌉. This mimics agents progressively

broadening their social circles.
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Afterwards, agents can interact with anyone:

• their children (vertical transmission),

• the children of others (oblique transmission),

• other agents of their generation (horizontal transmission).

Given the non-oriented character of transmission, it is possible that an adult learns
knowledge from a child, as this occurs in real life and contrary to genetic transmis-
sion. This learnt piece of knowledge may even be transmitted to future generations
but only if it goes again to the next generation through vertical or oblique trans-
mission as in Figure 6.1.

6.3 Conclusion
Cultural evolution in a multi-generational context is different from what happens
in a mono-generational one. The fact that individuals die and others are born
restricts the inheritance of cultural traits (loss risk) and creates variation (in new
born individuals). To study its impact on knowledge evolution, we extended the
previous experimental framework. It presents modalities by which (a) agents die
and are born and (b) knowledge is transmitted. For the former, it introduces how
agents are selected to survive and how they are selected to reproduce, i.e. parent
selection. For the latter, based on parent selection it extends the transmission of
the previous framework with inter-generation transmission. Finally, a discussion
about the extent of the framework’s modifications was provided.

In the next chapter, this extended framework will be used to assess the evolu-
tion of the defined knowledge properties through multiple generations.
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Roles of transmission on knowledge
evolution

So far, experiments considered agents, of the same generation, adapting to inter-
actions among themselves. Through these adaptations, they transmit knowledge
to each other. This can be considered as intra-generation transmission. The main
framework extension of Chapter 6 is the addition of mechanisms for transmis-
sion between generations. These two modes of transmission are different but both
necessary for the continuous evolution through agent generations.

In experiments of Chapter 4, it has been shown that agents performing intra-
generation transmission with each other are (a) able to improve their ontology
accuracy and (b) although their diversity decreases they do not necessarily adopt
the same ontology. Through this process, agents reach a state in which no variation
on agents’ decision per object exist. This causes the evolution process to cease.

Inter-generation transmission may be seen as the opportunity to shuffle the
cards. It can be the occasion to introduce variation in the new arriving generation.
Conversely it can enforce (select) a dominant culture that is transmitted to the
new generation. This calls for assessing the respective roles of inter-generation and
intra-generation transmission.

As mentioned in Section 2.3.2, Acerbi and Parisi [2] considered exactly this
topic and showed that intra-generation transmission generates variation whereas
inter-generation transmission allows agents to improve knowledge beyond what
intra-generation transmission alone does. In that regard, our previous results
suggest that intra-generation transmission can also select pieces of knowledge to
improve its quality. Hence, this chapter further investigates the potential roles of
inter- and intra-generation transmissions.

Using the extended framework, it is possible to instantiate experiments to assess
the effect of different transmission modes on knowledge accuracy and diversity.
Towards this end, three experiments are designed: (1) an experiment to assess the
effect, on knowledge quality, of inter-generation transmission, (2) an experiment
to assess the effect, on knowledge quality, of intra-generation transmission in the
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presence of inter-generation transmission, (3) and finally, the effect of both inter-
and intra-generation transmission on knowledge diversity.

We show that (1) Agents cumulatively improve the quality of their knowledge
across generations through inter-generation transmission. (2) They do so without
the need to select agent teachers for the next generations as knowledge is selected
through intra-generation transmission. Finally (3) unlike knowledge quality that
increases from one generation to another, diversity does not decrease from one
generation to another.

This chapter first presents in Section 7.1 our hypotheses about knowledge evo-
lution through multiple generations. Then, it introduces in Section 7.2 the experi-
mental setting considered to perform the above-mentioned experiments. It reports
the results of the two experiments’ on knowledge quality in Sections 7.3 and 7.4.
Following this, Section 7.5 reports results of the last experiment on knowledge
diversity. Finally, the obtained results are discussed and contrasted with previous
work in Section 7.6.

7.1 Hypotheses

Three experiments are primarily investigated. First, once agents reach a global
agreement, they do not adapt their knowledge anymore. As shown in Chapter 4,
they may still agree on incorrect decisions and they preserve the diversity of their
knowledge. The inter-generation transmission should introduce further variation
allowing agents to discover new relevant pieces of knowledge. Accordingly, the first
hypothesis (H1

II) is that vertical transmission allows new generations’ knowledge
to be more accurate than that of the previous generation.

As shown in Chapter 4, agents are able to improve the correctness of their deci-
sions when they adapt their knowledge to agree with each other. This suggests that
the intra-generation knowledge transmission is able to select pieces of knowledge
to preserve. Thus, we hypothesise that (H2

II), interaction, used as intra-generation
transmission, can compensate for the absence of parent selection.

In Chapter 4, it has also been shown that agents adapting to agreement through
horizontal knowledge transmission can preserve their diversity. However, the di-
versity decreased until agents reached a stable state where interactions became
successful and no horizontal transmissions were performed. We are interested in
what happens to diversity when new agent generations are introduced and knowl-
edge is transmitted to them from the previous generation.

As mentioned in Section 4.2.3, diversity is reduced as agents agree with each
other but remains. Agents are able to agree on the decisions to make based on
different object properties. New agent generations are only taught by their parents
about the decisions to make for various objects and not forced to make them
for the same reasons as their parents. As a result, they can still make them
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based on different object properties. There is no necessity for agents to reach the
same ontology through generations. Hence, our hypothesis (H3

II) is that Diversity
stabilises through agent generations and remains present.

7.2 Experimental Setting

The presented framework allows to reflect different kinds of settings by varying
the transmission methods, agent survival policy and agent mating. Hereafter,
we fix the the experimental parameters’ values appropriately to study knowledge
transmission roles on the evolution of its quality and diversity. In order to compare
the results with Acerbi and Parisi’s [2], some choices are made to imitate their
experiments.

Knowledge transmission

In previous experiments, only intra-generation transmission was performed with-
out the presence of inter-generation transmission. Here, both inter-generation
transmission methods presented in Chapter 6 are experimented with. Children
agents can: (a) learn their ontologies under the supervision of their parents which
provide the samples from which to learn, and (b) afterwards, they interact with
their parent mostly before widening their interaction circle progressively with
ϵ = 0.01. The initial population’s agents start with random ontologies.

As for the intra-generation transmission, we experiment with both its presence
and without its presence to assess its effect. This is achieved by either enabling
agents with an adaptation operator (op = split) or not (op = none).

Survival selection

The number of agents that are selected to survive is set to l = |A|
2

. The probability
of selection is by lowest age, equiprobable. This ensures that after the second
period, the population would be composed of two generations: adults of the old
generation and children of the new generation (Figure 7.1). This allows to replicate
successive generations as well as ensuring that each new generation have parents
to teach them as in [2].

Agent mating

In order to assess the capacity of intra-generation transmission at knowledge se-
lection, parents can be chosen following equiprobable distribution. It is compared
with the other knowledge quality based selection methods: the maximal (best) and
the income-based (income) . The maximal strategy is introduced as a strong se-
lection baseline, to imitate that of [2]’s selection. It corresponds to 10% selection.
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Figure 7.1: Evolution of a society through 3 agent generations.
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Figure 7.2: Average of probability distributions of mating after each period (logarithmic
scale). At each period, agents are numbered from 1 to 20 in the descending order of their
income. Data collected with τ = 10001, |A|

2 = 20, n = 100000.

Figure 7.2 shows an illustration of these probability distributions. In the case of
the performed experiment, income-based is very different from maximal and closer
to equiprobable.

7.2.1 Discussion

The sample from which agents learn may now be incorrect (because parents do not
have fully correct knowledge and because samples are provided by both parents)
and incomplete (because they do not cover the whole object space). Compared to
the previous experiments, this relaxes the assumption that agents have access to
a starting correct samples.
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This setting ensures a wide opportunity for agents to have children to which to
transmit their knowledge. As a result, the difference in samples provided by parents
are a source of variation during vertical transmission. This creates potential for
evolution to continue in new generations.

7.3 Inter-generation transmission improves
ontology quality

As mentioned in Chapter 4, intra-generation transmission converges towards a
stable state in which agents always agree on the same decision. However, their
decisions may not be the correct ones but, without feedback from the environment,
agents have no reason to know it. Hence the accuracy of their ontology is not
maximal.

Typically, this situation may evolve through changing the conditions (adding
new agents, modifying the environment). The introduction of new agents, which
have to learn their ontologies from imperfect ones (either starting with a random
ontology or learning from an imperfect and incomplete sample provided by their
genitors), introduces variation in the system.

7.3.1 Experiment plan

This experiment aims at assessing the effects on accuracy of introducing agent
generations. Thus, it focuses on the variables affecting vertical knowledge trans-
mission: the proportion of instances covered by the training sample and the length
of population life span, because it constrains the amount of interactions with par-
ents.

As a consequence, we vary the transmission percentage r which corresponds
to how complete and how imperfect the inter-generation transfer is. When the
transmission sample ratio is 0, it abusively denote that agents start with random
ontologies. The length of the period τ , which corresponds to agents’ half-life, is also
varied. When the period length is greater than the number of iterations (τ > n),
the experiment happens within one generation (no variation of agent knowledge).

Table 7.1 summarises the parameter values considered in this experiment.
Hypothesis H1

II can thus be rephrased as Adding inter-generation transmission
leads to higher accuracy than intra-generation transmission alone.

7.3.2 Results and discussion

To test Hypothesis H1
II, we compare the average final accuracy of experiments

with only one generation (τ = 200001) to experiments with multiple generations
(of different period lengths). Figure 7.3 shows this evolution. By performing an
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Meaning Variable Values
Number of Iterations n 200000
Size of the Population X 40
Period τ {5001, 10001, 20001, 200001}
Transmission Percentage r {0, 20, 40, 60, 80, 100}
Parent Selection s random
Number of Parents v 2
Adaptation operator op split
Rest. Inter. Reduction Rate ϵ 0.01

Table 7.1: Independent variable values for Experiment 1

ANOVA (Analysis of Variance) test, the accuracy at the end of the experiment
when inter-generation transmission occurs at periods of length 10001 and 20001 is
different from when it does not occur at all. The Post-hoc, Tuckey-hsd (honestly
significant difference) test shows that the difference is significant (p ≪ 0.01) for
both τ = 10001 and τ = 20001 compared to a single generation (τ = 200001).
Thus, Hypothesis H1

II is accepted with τ ≥ 10001 when the period is long enough.

Inter-generation transmission needs long interaction periods. It can be
observed, in the early iterations of Figure 7.3, that each generation improves its
accuracy over the previous one. In particular, the accuracy obtained at 2τ is
strictly superior to the accuracy at τ . This confirms that agents with vertical
transmission are able to reach a higher accuracy than horizontal transmission
alone. However, when the interaction period is not long enough, agents do not have
time to spread relevant knowledge widely. Hence, vertical transmission suffers from
the low accuracy of the transmitted knowledge and the short period only allows to
recover from this. This explains why, when the period length is 5001, the accuracy
does not improve.
Short interaction periods can be compensated for by larger transmis-
sion percentage. Table 7.2 shows the final accuracy of agents per period length
and transmission percentage. When the period length is 5001, the accuracy gets
higher as the transmission percentage gets larger. This is because the shorter the
period, the smaller the transmission achieved by interaction. If the initial training
sample is small, then agents do not receive enough knowledge from their parents
to perpetuate what has been gained during the previous period.
Complete transmission percentage harms variation in long interaction
periods. In contrast, when the period is long (10001 or 20001), the transmission
percentage only affects accuracy when it is complete (r = 1.0). Then accuracy is
lower. This might be because faithful transmission reduces variation. As long as
there is a small variation, agents improve. When the transmission percentage is
small, agents compensate for it by transmitting through interaction.
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Figure 7.3: Average accuracy (over r) by period lengths.

Transmission percentage (r)
0 (random) 0.2 0.4 0.6 0.8 1.0

period
length
(τ)

5001 0.63 0.63 0.66 0.72 0.73 0.82
10001 0.91 0.91 0.91 0.86 0.90 0.82
20001 0.95 0.91 0.89 0.94 0.91 0.86

200001 0.86 0.86 0.84 0.81 0.83 0.81

Table 7.2: Final average accuracy grouped by experiment parameter values. In bold, the
highest values of the column.

Transmission percentage and period length interact. Figure 7.4 compares
the accuracy of agents with (r ̸= 0) and without (r = 0) initial vertical transmis-
sion, under different period lengths (τ = 5001 and τ = 20001). When the period
is short (τ = 5001), a higher transmission percentage (r = .8) yields better results
than a lower transmission percentage (r = 0 and r = .2 provide very close final
results). On the contrary, with a long period (τ = 20001), the best results are
obtained without initial vertical transmission (r = 0), those with initial vertical
transmission being very close to each other.

This is explained by the capacity of intra-generation transmission to spread
accurate knowledge to the whole population. This knowledge has a chance to be
transmitted even with low r and even in absence of initial vertical transmission (r =
0) because it can be transmitted from parents through interaction. In this case, a
low r provides the variation allowing to further increase accuracy. On the contrary,
if there is not enough intra-generation transmission (short τ), the perpetuation of
knowledge benefits from a more faithful initial vertical transmission. This shows
the delicate balance to be found between r and τ to ensure knowledge improvement.
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Figure 7.4: Average accuracy with (red and brown) or without (blue) initial vertical
transmission (blue).

7.4 Intra-generation transmission selects
knowledge

Selection mechanisms are assumed to provide a reproductive advantage: the most
accurate ontologies will provide higher fitness which itself provides to their bearers
the possibility to reproduce more. Such ontologies may spread more in further
generations. Previous results confirmed this assumption and showed that selection
played an important role in such a spreading [2].
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Meaning Variable Values
Number of Iterations n 200000
Size of the Population X 40
Period τ {5001, 10001, 20001}
Transmission Percentage r 40
Parent Selection s {dist, random, best}
Number of Parents v 2
Adaptation operator op {split, none}
Rest. Inter. Reduction Rate ϵ 0.01

Table 7.3: Independent variable values for Experiment 2

7.4.1 Experiment plan

This experiment tests the less selective policies. More specifically, it investigates
whether intra-generation transmission, a typical cultural evolution mechanism,
may compensate for the reduction or absence of parent selection.

This experiment focuses on (1) how parents are selected for reproduction, and
(2) how long an agent generation lives: because agents need time to agree with
each other on which pieces of knowledge to adopt. Thus, the parent selection
policy s is varied as random, income and best and the period length τ as in the
first experiment. We also introduce the operator op = none by which agents do not
adapt their knowledge after interaction, fully discarding horizontal transmission.
The operator split is that of Chapter 4.

Table 7.3 summarises the parameter values considered in this experiment.
Hypothesis H2

II can thus be tested as with sufficient intra-generation transmis-
sion, the accuracy obtained with or without selection is similar.

7.4.2 Results and discussion

To test Hypothesis H2
II, it is necessary to (a) show that the selection of parents

without the intra-generation transmission does actually improve knowledge accu-
racy, then (b) show that this effect does not exist when there is intra-generation
transmission. Table 7.4 summarises the results obtained in this experiment. Re-
sults reported below are those with τ = 20001, the same results are obtained with
5001 and 10001 (20001 provides the least favourable figures).
Selection is efficient. Figure 7.5 shows in dashed lines the evolution of agent
accuracy with only the inter-generation transmission comparing maximal (best),
income-based (income) and equiprobable (random) selection policies. In the ab-
sence of intra-generation transmission, having random parents does not improve
the accuracy over generations, though parent selection improves it. Maximal se-
lection provides better results than income-based selection. The ANOVA test on
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op \ s random income best
none none medium medium
split high high high

Table 7.4: Accuracy improvement in function of selection (s) and horizontal transmission
(op). In absence of horizontal transmission (op = none), maximal and income-based
selection improves final accuracy; with horizontal transmission (op = split), all strategies
provide a higher improvement.

the final accuracy of the three selection methods results in a significant difference
(p≪ 0.01).
Intra-generation transmission compensates for the lack of selection. As
it can be observed in Figure 7.5, the evolution of agent accuracy when there is
intra-generation transmission (solid lines), is significantly higher than when it is
not present (dashed lines). Furthermore, contrary to having inter-generation trans-
mission only, when the intra-generation transmission is present, the way parents are
selected has little impact on the final accuracy. In the presence of intra-generation
transmission (op = split), ANOVA returns no significant difference between the
three parent selection methods (p = 0.34). In this case, Table 7.5 shows that the
difference between no selection (random) and maximal and income-based selec-
tion policies is close to 0, though it is significantly larger without intra-generation
transmission. Thus, we accept Hypothesis H2

II: intra-generation transmission com-
pensates for the lack of selection.

op \ s income best
none −.115± .035 −.165± .035
split −.01± .04 .005± .035

Table 7.5: 95% confidence intervals of mean difference between random and the other
selection methods with (op = split) and without (op = none) intra-generation transmis-
sion.

7.5 Diversity in ontology evolution across
generations

When agents adapt to each other, performing intra-generation transmission, the
diversity is reduced. Nonetheless, it stabilises when agents agree with each other.
In Section 7.4, agents further improved their knowledge accuracy through inter-
generation transmission over that of one generation. This has been caused by the
introduction of variation which allowed agents to discover new pieces of knowledge.
In contrary, the variation introduced by inter-generation transmission increases the
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Figure 7.5: Average accuracy by parent selection with (plain lines) and without (dashed
lines) horizontal transmission.
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Meaning Variable Value
Number of Iterations n 80000
Size of the Population X 20
Period Length τ {10001, 20001, 80001}
Initial Child Ontology i {learned, random}
Number of features f {3, 4, 5}
Transmission Percentage r {0, 30, 70, 100}
Parent Selection s {random, income}

Table 7.6: Independent variables and experiment values.

diversity but also creates room for its reduction through intra-generation transmis-
sion. This experiment assesses whether these two opposing effects result in more,
less, or stable diversity as knowledge evolves through generations.

7.5.1 Experiment plan

The main factor of interest is how new generation agents acquire their knowledge
(initial child ontology i). This defines the starting state of agents’ ontologies. It
can either be random or learned from a sample given by the parents. If it is
the latter, the size of the sample is also a controllable parameter (transmission
percentage r).

In addition to that, other parameters are varied:

• the period τ : It controls whether agents converge to a stable state or not
before the birth and death event occurs,

• The parent selection s: The new generation agents are restricted to commu-
nicate with their parents only at the beginning. The adaptations following
these interactions is what decide the form of their ontologies and thus the
distance with other ontologies,

• The number of features: In the previous experiment the parameter had an
important effect on knowledge diversity which can also influence the results
in this experiment.

We designed an experimental plan in which the factors which may influence the
population’s diversity are varied. The variations are shown in Table 7.6. Hypoth-
esis H3

II can be reformulated as New agent generations do not necessarily converge
to the same ontologies (the diversity remains)
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7.5.2 Results and discussion

In what follows, the results of the experiment are presented to, first, test the
hypothesis. We show that in general, the diversity remains. In fact, in almost all
runs in which the transmission is not complete, the diversity remains. In contrary,
it falls to 0 when the transmission is complete.

However, the diversity actually increases in the second population. This is due
to the fact that agents of the same generation tend to have closer knowledge to
each other. In the first population, all agents belong to the same generation. Thus,
they get closer to each other than in (other) populations in which agents belong
to two generations.

Diversity remains

The diversity remains on average The boxplots in Figure 7.6 of the first
sub-figure show the distribution of diversity for different runs at the first iteration
and at each birth and death event. It can be observed that the distribution of
diversity decreases from the initial state of agents. However, in 91.39% of the runs
the diversity remains at the end. Thus, the hypothesis H3

II is supported.

The diversity does not remain mainly when transmission is complete
In fact, most of the runs in which agents converge to the same ontology happen
when the vertical transmission is complete (r = 100). The boxplots in Figure 7.6
of the second sub-figure show the distribution of diversity for different runs at the
first iteration and at each birth and death event when the transmission is complete.
By the fifth population, at least 75% of the runs have a null diversity. If only the
runs where the transmission is not complete are considered, the diversity remains
in 99.63% of the runs. This further supports our hypothesis.

Agents of the same generation are less diverse

It can be observed in Figure 7.6 that the diversity actually increases from the final
state of the first population X1 to the final state of the second population X2.
The difference is statistically significant with p ≪ 0.01 for the t-test between the
two states’ distance values. As for the other final states (Xi, Xi+1) for 2 ≤ i ≤ 7,
the t-test yields no statistically significant difference. To explain this, we suppose
that the first population has a lower diversity because all its agents belong to the
same generation. Our hypothesis comes from the belief that agents of the same
generation get closer to each other than what they are with agents from different
generations.

To test this hypothesis we compare the diversity of all agents with that of the
adults only as shown in Figure 7.7. It can be observed that the diversity of the
adults (generationi) is always lower than that of the whole population. Applying
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Figure 7.6: Boxplots showing the distribution of agents’ average distance for each run at
the initial state and at each birth and death event (Xb

1 corresponds to the state of X1 at
the beginning Xe

i denotes the state of population i at the end).
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Figure 7.7: Average distance of the whole population (red line) and of adults
(generationi) (blue line) across generation for different periods.

the t-test shows that there is a significant difference between the distance values
of the whole population and that of the adults only with p≪ 0.01. This validates
our hypothesis.

7.6 Discussion
These results provide a better understanding of transmission parameters which
warrant a proper cumulative cultural evolution. They have shown that the com-
bination of vertical and horizontal transmission of knowledge over generations of
agents improves knowledge accuracy. This confirms previous results [2, 35] under
broader conditions: initial knowledge is not necessarily correct, no drastic selection
of teachers is applied, no artificial noise is introduced to boost variation. it also
show that a very important factor in the cumulative improvement of knowledge is
the population life span.

The wider a culture is shared in a population, the less important the selection.
The obtained results show that spreading quality knowledge requires time. If
agents have a short life span and no selection, then knowledge will not improve
because the fittest one will have little chance to be passed to the next generation.
But if they have enough time to spread accurate knowledge, then it will improve
over generations without parent selection.

It can be questioned whether evolution without selection is still evolution. This
is the specificity of cultural evolution that, to the selection of individuals by the en-
vironment, is added the selection of culture by these individuals, occurring during
horizontal transmission. [2] showed that (1) the intra-generation transmission can
introduce variation in culture and (2) its selection occurs in the inter-generation
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transmission. Contrary to that, this chapter showed how (1) inter-generation
transmission can be the one introducing variations (which allow agents to im-
prove further their accuracy as shown in Section 7.3.2) and (2) intra-generation
transmission can select the knowledge that spreads in the agent population (Sec-
tion 7.4.2). Contrary to genes, even if parents do not provide the best cultural
assets, children are able to acquire them from peers or other sources. These results
show the robustness of cultural evolution in which the two transmission modes can
balance each other.

The social import of such results is that it is not necessary to have a drastic
selection of agents for the society’s culture to improve over generations. Of course,
there should be a minimal transmission of what is improved for the evolution to
be cumulative. But this is also ensured when efficient culture is widely spread, as
culture should be.

7.7 Conclusion
In order to assess the roles of inter-generation and intra-generation knowledge
transmission, this chapter instantiated three experiments based on the extended
framework. Results supported the three hypotheses:

• H1
II: inter-generation transmission improves knowledge through generations.

• H2
II: intra-generation transmission has the role of selecting knowledge.

• H3
II: diversity is maintained across generations.

Results were contrasted with Acerbi and Parisi’s work [2]. On the one hand,
we confirmed that knowledge is improved through generation but under relaxed
assumptions: (a) no drastic parent selection and (b) no artificial noise added during
the transmission. On the other hand, we showed that intra-generation transmission
can also have the role of selecting knowledge.
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Conclusion

8.1 Summary

The aim of this thesis is to investigate the question:“can knowledge evolve in a
society of artificial agents as it is the case in a society of humans?” In particular
if agents adapt to agree on their interactions: How can this affect the quality of
their knowledge about the environment? How is the diversity of their knowledge
affected?

To achieve this, an experimental framework was designed to simulate cultural
knowledge evolution in an artificial agent society. It included formal definitions of
the environment and its agents. The components of the framework were parame-
terised and made controllable to study their influence on knowledge evolution.

Using this experimental framework a full factorial experiment was carried out.
Three hypotheses were tested and validated related to the evolution of agent on-
tologies: (1) agents can reach a state of agreement, (2) they can improve the quality
of their knowledge about the environment, and (3) although the diversity of their
knowledge decreases, agents are able to preserve it. Following this, a factorial sta-
tistical analysis of parameters’ influence on the results and their interactions was
provided to show which conditions are favorable to which knowledge quality.

The robustness of the agents was tested through altering initial agent training,
reducing agent communication, changing transmission biases and modifying object
availability in the environment. Agents were still able to reach agreement whilst
improving knowledge quality and maintaining diversity.

The experimental framework was extended by endowing agents with reproduc-
tion capabilities. This allows to study the evolution of ontologies through multiple
generations.

Using this extended framework, we conducted three experiments to study
the potential roles of knowledge transmission within and between generations on
knowledge quality and its diversity. We showed how the variation provided in the
transmission between generations allows agents to further improve the quality of
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their ontologies. We also showed how agents select the knowledge to keep through
intra-generation transmission which compensates for the lack of teacher selection
in inter-generation transmission. Finally, we showed that diversity remains stable
from one generation to another.

8.2 Contribution
This work contributes to the fields of multi-agent systems and cultural evolution. A
first contribution of this thesis is the design of a two-stage experimental framework
to study the evolution of ontologies when adapted for agreement in an agent society.
In the first stage, agents learn knowledge that, in the second stage, they adapt
through their interactions. Due to its simplicity and modularity, the framework
can be easily extended to experiment with different hypotheses. This has been
showcased in Chapters 6 and 7.

We demonstrated through this framework how artificial agents can evolve their
knowledge by adapting to social interactions. This shows how cultural evolution of
knowledge can affect positively separate knowledge qualities that are not directly
related to the cause of agent adaptations. This is done by testing and validating
three main hypotheses:

1. Agents reach a state of agreement.

2. Agents improve the quality of their knowledge about the environment.

3. Finally, they are not constrained to loose all their diversity to agree with
each other.

Furthermore, the factorial study of different experimental parameters provides a
baseline for the framework’s usage on further experimentation.

Finally, this thesis further characterised the cultural evolution of knowledge to
cover the potential roles of inter- and intra-generation knowledge transmission: On
the one hand, it confirms the role of inter-generation transmission under relaxed
assumptions. On the other hand, it provides a new perspective on intra-generation
transmission’s role, i.e. instead of just providing oriented noise, intra-generation
transmission can take the role of selection for knowledge evolution. This has been
done by showing that:

1. inter-generation transmission introduces variation to enhance knowledge evo-
lution resulting in a cumulative improvement of knowledge quality;

2. this is achieved without the need to select agent teachers for the next gener-
ations as knowledge is selected through intra-generation transmissions;

3. unlike knowledge quality that increases from one generation to another, di-
versity stabilises and does not further decrease through generations.
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8.3 Perspectives

Perspectives of this work are organised in three categories: First, perspectives
that concern experimenting with different hypotheses within one agent generation.
Second, perspectives that concern experimenting with multiple agent generations.
Third, framework modifications that widens its use cases. In what follows, we
detail each of these perspectives

8.3.1 Benefits of diversity

Results of this work showed that accuracy increases and diversity remains in agent
knowledge. Although it is clear why the increase in accuracy is beneficial for
agents, it is less obvious how the increase in diversity affects them. Diversity has
been shown to be an important asset. It has been shown that agents with different
capabilities have better problem solving skills [50, 82, 103]. In an evolutionary
context, (genetic) diversity is considered to have influence on species resilience [93].

It is possible to experiment on how knowledge diversity enables species re-
silience. This can be done by introducing a sudden disruptive event that changes
the environment of two controlled agent populations: (a) a population with high
knowledge diversity and (b) a population with no knowledge diversity. For exam-
ple, consider the environment of Figure 8.1 containing three type of objects. A
disruptive event would be the introduction of objects that they have never seen, in
this example: {¬a,¬b}. Now if all agents have the same ontologies, their decisions
for the newly introduced objects would be the same (Figure 8.1). Hence, nothing
will change. In contrast, if agents have different ontologies, then there is potential
for evolution as agents may still have different decisions for the newly introduced
objects (Figure 8.1). As a result, agents with diverse knowledge can still recover
contrary to not diverse agents.

8.3.2 Impact of reproduction mechanisms

Chapter 7 reported results on the potential roles of inter- and intra-generation
transmissions. The transmission mechanisms were the main addition to the frame-
work introduced in Chapter 6, hence the experimentation on their roles. It is pos-
sible to further characterise the evolution of knowledge through generations under
different conditions. Indeed, the framework included other aspects with which to
experiment, e.g. number of surviving agents, selection of surviving agents, number
of parents. For example, in order to simulate a population composed of parents
and children, the number of surviving agents and their selection has been limited
to half the population and selection by age. However, the number of agents that
survive can be varied from all agents surviving except one to only one surviving
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Figure 8.1: Example of two scenarios: one with similar ontologies (left) and the other one
with diverse ontologies (right). All four ontologies make the same decisions to all objects
in the initial environment. When a new object {¬a, b} is introduced. The non-diverse
ontologies make the same decisions to this object. The diverse ontologies make different
decisions giving potential to knowledge evolution.

agent. Similarly, the selection of surviving agents can be based on other criteria
than accuracy.

8.3.3 Generalisation of agent interactions

The type of interaction considered in this work is pure coordination interactions in
which agents only need to agree on the decision to make. It has for purpose to show
that agents adapting to optimise one criterion (agreement) can affect indirectly
related knowledge qualities (accuracy and diversity). This can also be observed
in how humans adapt for performing collaborative tasks. For example, consider a
group of pupils teaming to colour objects in a colouring book. They need to agree
on which colours to use for various objects in the book (e.g. lemons, peaches,
pears). If they do not agree on how to colour a certain object, one of them needs
to adapt given the properties of that object (e.g. objects with elongated basal
portion and a bulbous end (pears) have the yellow colour). The pupil who adapts
is often the less successful in terms of his studies marks (prestige bias). Doing so,
pupils will agree with each other. They will likely be more accurate in giving the
right colours for objects (because of the prestige bias). They do not necessarily
colour them similarly for the same reasons (e.g. one might look at the shape of
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d1 d2
d1 1,1 -1,-1
d2 -1,-1 1,1

d1 d2
d1 2,2 -1,-1
d2 -1,-1 1,1

d1 d2
d1 1,1 -1,-1
d2 -1,-1 -1,-1

Table 8.1: Payoffs of the matrix game played by agents without taking into account the
correct decision d1 (left) and when they take into account the correct decision d1 (middle
and right).

the fruit and another one might look at the shape of its leaves).
Nevertheless, humans can perform different kinds of interactions not necessarily

requiring making the same decisions to succeed. For example, a hunting interaction
succeeds between two agents if one of them baits and the other hunts. This would
lead to different patterns of knowledge evolution. Modelling different kinds of
interactions would give opportunity to experiment with different hypotheses. This
section explores how agent interactions can be generalised.

Agent interactions

Agent interactions can be represented by a matrix game. Each combination of
agent decisions yields a particular payoff. The interactions considered so far can
be represented by the matrix in Table 8.1 (left).

The nature of interaction games can differ depending on the interaction object.
For instance, the game depicted in Table 8.1 (right) yields maximum payoff when
agents agree on the correct decision. However, the correct decision varies from one
object to another.

Given the nature of the interaction game played by agents so far (Table 8.1 left),
they only adapted when the interaction was unsuccessful (payoff of −1) regardless
of the interaction object. This was enough to optimise the games’ payoff. However,
for instances of a different game, agents may need a more elaborate adaptation
policy.

Agent adaptations

It is possible to design different adaptation operators given the nature of the games
and whether agents are assumed to know about the possible outcomes or not. If
they do know, the adaptation policy has to address, among others, the following:

• What happens when agents have different beliefs on what the possible out-
comes are? This is typically the case when the two agents have different
classification for the interaction object. For example, agents playing the
game in Figure 8.1 (right) may have different beliefs on what the correct
decision is, hence different beliefs on what the possible outcomes are.
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• Who adapts and how? Agents do not necessarily copy each other since the
best outcome maybe when they make different decisions.

• When to adapt? An agent that does not agree with another agent may make
decisions that are in agreement with the rest of the population. Conse-
quently, the agent might decide that changing its decision is not worthwhile
as it may lead to a reduction in its overall payoff from interacting with other
agents.

Of course, the choice of the adaptation policy may be influenced by the tested
hypotheses. For example, it is possible to design different adaptation policies to
compare agents that adapt considering only the current interactions and agents
that adapt considering the history of their adaptations.

If agents do not know about the possible outcome of their interactions, then
the adaptation policy would require exploration. Agents need to try different
adaptations to learn about the possible payoffs. It is possible to learn an adaptation
policy through Reinforcement Learning (RL) that can perform exploration and
decide when and (potentially) how to adapt. The problem of finding suitable
adaptation policy can be modelised with a Partially Observable Markov Game
(POMG) in which:

• Each state is composed of all agents’ knowledge, the two interacting agents,
the object of interaction, the decision taken by the agents regarding that
object, and any other additional information that is used by agents (e.g.
agent reputations).

• At each state each agent observes their knowledge, whether it interacted or
not and if it interacted, its and the other agent’s decisions.

• The reward function is the payoffs the agent receives from its interactions.

• The agent action is to decide when and eventually how to adapt its knowl-
edge.

Once the adaptation policy trained, it can be used by agents to optimise their
interaction payoffs.
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Abstract

Artificial agents, as humans, use their knowledge to behave in an environment
and within a society. Humans evolve their knowledge by adapting it in response
to interactions with their environment and society. The question that is raised
in this thesis is: “can knowledge evolve in a society of artificial agents, as it does
in a human society?” In particular, if agents adapt to improve their social inter-
actions, how can this affect the quality of the population’s knowledge about the
environment? And how does it affect knowledge diversity?

To address these questions, ontology evolution is simulated based on princi-
ples from experimental cultural evolution through an experimental framework in
which: agents initially learn ontologies, from object samples, which they later
adapt by interacting with each other about objects in the environment. Using
this experimental framework, we show that (1) agents reach a state of agreement
in their interactions, (2) they improve the quality of their knowledge about the
environment, and (3) they preserve the diversity of their knowledge.

In order to characterise knowledge evolution through multiple generations, ex-
periments are conducted with agents endowed with reproduction capabilities. Re-
sults show that (1) the variation provided by inter-generation transmission allows
agents to further improve the quality of their ontologies; (2) agents select the
knowledge to be preserved through intra-generation transmission which compen-
sates for the lack of teacher selection in inter-generation transmission; and finally,
(3) diversity remains stable from one generation to another.

This work not only provides a basis for implementing agents capable of cultur-
ally evolving their knowledge, but also suggests that simulating such behaviour can
serve as a valuable tool for testing hypotheses about human cultural knowledge
evolution.

Keywords: Multi-agent simulation; Adaptive multi-agent systems;
Cultural evolution



Résumé

Les agents artificiels, comme les humains, utilisent leurs connaissances pour se com-
porter dans un environnement et au sein d’une société. Les humains font évoluer
leurs connaissances en les adaptant suite à leurs interactions avec leur environne-
ment et leur société. La question soulevée dans cette thèse est la suivante : “La
connaissance peut-elle évoluer dans une société d’agents artificiels, comme elle le
fait dans une société humaine ?” En particulier, si les agents adaptent leurs connais-
sances pour améliorer leurs interactions sociales, comment cela peut-il affecter la
qualité des connaissances de la population sur l’environnement ? Et comment cela
affecte-t-il la diversité des connaissances ?

Pour répondre à ces questions, l’évolution des ontologies est simulée sur la base
des principes de l’évolution culturelle expérimentale à travers un cadre expéri-
mental dans lequel : les agents apprennent initialement des ontologies, à partir
d’échantillons d’objets, qu’ils adaptent ensuite en interagissant les uns avec les
autres sur des objets de l’environnement. En utilisant ce cadre expérimental, nous
montrons que (1) les agents atteignent un état où ils s’accordent dans leurs inter-
actions, (2) ils améliorent la qualité de leurs connaissances sur l’environnement et
(3) ils préservent la diversité de leurs connaissances.

Afin de caractériser l’évolution des connaissances sur plusieurs générations,
nous avons mené des expériences avec des agents dotés de capacités de reproduc-
tion. Les résultats montrent que (1) la variation fournie par la transmission entre
générations permet aux agents d’améliorer la qualité de leurs ontologies ; (2) par le
biais de la transmission intra-générationnelle, les agents sélectionnent les connais-
sances à préserver, ce qui compense l’absence de sélection des enseignants dans
la transmission inter-générationnelle ; et enfin, (3) la diversité reste stable d’une
génération à une autre.

Ce travail fournit non seulement une base pour la mise en œuvre d’agents
capables de faire évoluer culturellement leurs connaissances, mais suggère égale-
ment que la simulation d’un tel comportement peut servir d’outil pour tester des
hypothèses sur l’évolution culturelles des connaissances humaines.

Mots clés: Simulation multi-agents ; Systèmes multi-agents
adaptatifs ; Évolution culturelle
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