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Abstract

Observations of primary anisotropies in the cosmic microwave background (CMB) represent a crucial milestone
in modern cosmology, offering a unique window into the physics of the early Universe. However, tensions in
measurements compared to other probes, such as the Hubble tension, have emerged suggesting potential dis-
crepancies within the cosmological concordance. Although these discrepancies may be attributed to systematic
effects or statistical fluctuations, the consistent disparity between early and late Universe measurements might
hint at new physics. Additionally, the temperature anisotropy measurements have not reached yet the cosmic
variance limit at high multipoles, while the polarized anisotropies hold substantial untapped cosmological infor-
mation. In this context, investigating a complementary range of multipoles and exploring polarization become
vital avenues for potentially uncovering fundamental physics.
The South Pole Telescope third-generation (SPT-3G) experiment is undertaking precisely this endeavor, aim-
ing to provide state-of-the-art observations that enhance our understanding of the Universe. The objective of
this thesis is to present a detailed analysis of the SPT-3G 2019-2020 primary anisotropies data. This dataset
achieves a low noise level of 5µK-arcmin in temperature at 150GHz, making it cosmic variance limited for almost
all the power spectrum multipole range. Forecasted constraints on cosmological parameters are comparable to
the reference Planck experiment but from an independent and complementary dataset. Combining these con-
straints is expected to yield at least twice the statistical power, and further improvements can be achieved by
incorporating information from extended fields, lensing measurements, and other CMB datasets such as those
from the Atacama Cosmology Telescope.
To ensure the accuracy and precision of the analysis, the pipeline requires additional development. This thesis
includes an in-depth study of the map-making pipeline and power spectrum estimation, along with the devel-
opment of the necessary tools for a curved sky analysis. I introduce and develop a novel solution to the source
masking problem, reducing the impact of the mask on power spectrum variance through the use of high preci-
sion Gaussian constrained realizations of CMB anisotropies in temperature and polarization called inpainting.
Extensive testing is conducted to demonstrate the robustness of this method. Additionally, reliable estimation
of parameters necessitates accurate covariance matrices. For this analysis, I propose a new semi-analytical
framework, adapted from an analytical approximation developed for small footprint CMB surveys, tailored to
the specificities of the SPT-3G experiment. While this method is computationally efficient, it is also flexible
and can be adapted to other experiments and cosmological probes. Such improvements are essential for the
analysis of the SPT-3G 2019-2020 data, but also pave the way for future CMB experiments, such as the Simons
Observatory and CMB-S4.
The scientific results I present in this thesis are done in preparation for the analysis of the SPT-3G 2019-2020
data, which is currently being finalized and of which I am one of the leading authors. The analysis pipeline is
being developed in parallel, and the results presented here are preliminary. The final results are expected to be
published in the coming months.
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Résumé

Les observations des anisotropies primaires du fond diffus cosmologique (CMB en anglais) sont primordiales
dans l’établissement de la cosmologie moderne et offrent une fenêtre unique sur la physique de l’Univers primitif.
Cependant, des divergences au sein de la concordance cosmologique, notamment la tension de Hubble, sont mises
en avant en comparant avec d’autres sondes cosmologiques. Bien que ces divergences puissent être attribuées à
des effets systématiques ou à des fluctuations statistiques, la différence entre les mesures de l’Univers primitif
et récent pourrait indiquer de nouveaux principes physiques. De plus, les mesures d’anisotropie de température
n’ont pas encore atteint la limite de la variance cosmique à hauts multipôles, tandis que la polarisation du signal
contient des informations cosmologiques inexploitées. Ainsi, explorer une gamme complémentaire de multipôles
et la polarisation peut mener à des découvertes majeures en physique fondamentale.
L’instrument de troisième génération du télescope du pôle sud (SPT-3G en anglais) entreprend précisément
cette démarche, visant à fournir des observations de pointe. L’objectif de cette thèse est de présenter une
analyse détaillée des données 2019-2020 d’anisotropies primaires de SPT-3G. Le niveau de bruit atteint est de
5µK-arcmin en température à 150GHz. Ainsi, la variance du signal est limité par la variance cosmique sur
presque toute la gamme de multipôles du spectre de puissance. Les contraintes prévues sur les paramètres cos-
mologiques sont comparables à celles de l’expérience Planck, mais proviennent d’un jeu de données indépendant
et complémentaire. La combinaison de ces contraintes fournira au moins deux fois la puissance statistique, et
des améliorations supplémentaires seront obtenues en intégrant des informations provenant de champs étendus,
de mesures de l’effet de lentillage gravitationnelle et d’autres jeu de données CMB, tels que ceux provenant du
télescope de cosmologie d’Atacama.
Pour garantir l’exactitude et la précision de l’analyse, les méthodes d’analyse doivent être améliorées. Cette
thèse comprend une étude approfondie de la création de cartes et de l’estimation du spectre de puissance, ainsi
que le développement des outils nécessaires pour une analyse sphérique du ciel. J’introduis et développe une
nouvelle solution au problème de masquage des sources, réduisant l’impact du masque sur la variance du spec-
tre de puissance grâce à l’utilisation de réalisations gaussiennes contraintes de haute précision. Cette méthode,
appelée « inpainting», est parfaitement adaptées aux anisotropies du CMB en température et en polarisation.
La fiabilité de cette méthode est démontrée par une série des tests approfondis. De plus, une estimation fiable
des paramètres nécessite un matrice de covariance précise. Pour cette analyse, je propose une nouvelle méth-
ode d’estimation semi-analytique. Cette méthode repose sur une approximation analytique développée pour
les relevés CMB sur petite zone de ciel et est adaptée aux spécificités de l’expérience SPT-3G. Bien que cette
méthode soit efficace sur le plan computationnel, elle est également flexible et peut être adaptée à d’autres
expériences et sondes cosmologiques. Ces améliorations sont essentielles pour l’analyse des données SPT-3G
2019-2020, mais ouvrent également la voie aux futures expériences CMB, telles que le Simons Observatory et
CMB-S4.
Les résultats scientifiques que je présente dans cette thèse sont réalisés en préparation de l’analyse des données
SPT-3G 2019-2020, qui est actuellement en cours de finalisation et dont je suis l’un des auteurs principaux.
L’analyse est en développement parallèle, et les résultats présentés ici sont préliminaires. Les résultats finaux
devraient être publiés dans les prochains mois.
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Chapter 1

Introduction

Observational cosmology is a field of study that examines the large-scale structure of the Universe through
observational data. It has played a crucial role in numerous scientific breakthroughs. The era of precision cos-
mology began with the successful launch of the Cosmic Background Explorer (COBE) satellite in 1992, which
provided the first full-sky observations of the Cosmic Microwave Background (CMB) radiation. Advance-
ments in theoretical modeling and observational techniques have significantly improved our understanding of
the Universe using CMB observations. With the Wilkinson Microwave Anisotropy Map (WMAP), the CMB
has emerged as a powerful tool for studying the Universe, culminating in the landmark results from the Planck
satellite in 2018. These results provided the most precise independent measurements of cosmological parame-
ters, ultimately solidifying the standard model of cosmology. However, the availability of high-precision data
sets has also revealed tensions between different cosmological probes. One well-known example is the Hubble
tension, which refers to the discrepancy in the measurement of the Hubble rate, denoted as H0, between early
Universe observations (such as the CMB) and late Universe observations (such as measurements from super-
novae IA using the distance ladder method). In addition to addressing tensions, the CMB still holds a wealth
of untapped knowledge, particularly in the small scales and the weakly polarized signal. It can be used to test
the inflationary theory by studying large-scale B-modes, investigate the large-scale structure of the Universe
through precise lensing and secondary anisotropies measurements, and explore spectral distortions, among other
phenomena. To tackle these challenges and explore new observables, new high-precision data sets are required.
The South Pole Telescope third generation (SPT-3G) experiment is one such endeavor, aiming to provide
cutting-edge observations to improve our understanding of the Universe.

A brief introduction to cosmology

The standard cosmology is built upon two fundamental assumptions (Narlikar and Padmanabhan, 2001; Turner,
2022): first, the large-scale structure of the Universe is governed by the gravitational interaction as described by
Einstein’s theory of general relativity, and second, the distribution of components in the Universe is homogeneous
and isotropic on large scales, known as the cosmological principle. These assumptions provide a powerful
framework for describing the Universe using a simple model known as the Friedmann-Lemaître-Robertson-
Walker metric, which is a solution to Einstein’s field equations. The FLRW metric is given by the equation
(Dodelson and Schmidt, 2020):

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
, (1.1)

where a(t) represents the scale factor, k denotes the curvature of the Universe, c represents the speed of light,
t is the cosmic time, r is the comoving radial distance, and dΩ2 = dθ2 + sin2 θdϕ2 represents the solid angle.
The scale factor is a function of time and describes the expansion of the Universe, with its present value set to
unity. It is also related to the redshift of radiation traveling in the expanding Universe, as

1 + z =
a(t0)

a(t)
, (1.2)

where t0 denotes the present time. The evolution of the scale factor is governed by the Hubble rate, denoted
H(t) ≡ ȧ/a. It is connected to the energy densities in the Universe through the Friedmann equations derived
from Einstein’s field equations. The Friedmann equations are given by:

H2(t) =
8πG

3
ρ(t)− kc2

a2(t)
, Ḣ(t) +H2(t) =

ä

a
= −4πG

3

(
ρ(t) + 3

p(t)

c2

)
, (1.3)
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where ρ represents the total energy density of the Universe, G is the gravitational constant, and p denotes the
total pressure. Given those, it is customary to define the critical density, which is the total energy density in a
flat Universe today, ρcr = 3H(t0)

2/8πG. Particle physics plays a crucial role in cosmology by providing details
of the energy content and interactions between particles, as well as their equation of state ws which depicts the
relation between the pressure and density of that constituent. One can thus relate the energy density of each
component to the scale factor as

ρs = Ωsρcra
−3(1+ws), where ws =

ps
ρc2

and Ωs = ρs(t0)/ρcr. (1.4)

The Universe is composed of various components, including photons, neutrinos, baryonic matter, cold dark
matter, and dark energy represented by a cosmological constant, Λ. By specifying the densities parameters Ωs

and equations of state for each component ws, along with the present value of the Hubble rate H0 ≡ H(t0) and
the total energy density, the evolution of the Universe can be determined, as depicted in Fig. 1.1. This model
explains disparate observations, such as the large-scale structure in the distribution of galaxies, the observed
abundances of light elements, the accelerated expansion of the Universe, and, of particular interest in this thesis,
the existence of the CMB, but it is not without its problems (Baumann et al., 2009):

• The horizon problem: The Universe appears to be isotropic and homogeneous on large scales, but regions
that are far apart from each other were not in causal contact since the Big Bang. This means that
light or information has not had enough time to travel between these distant regions to establish thermal
equilibrium. Yet, the observed isotropy suggests a common origin.

• The flatness problem: The Universe is observed to be extremely close to spatially flat, which is unexpected
because a flat Universe is an unstable solution in the standard model of cosmology. In other words, the
initial conditions required for the Universe to be so flat would require an extreme level of fine-tuning.

• The relic problem: According to high-energy physics theories, the early Universe should have produced
topological defects and magnetic monopoles as relics. However, these relics have not been observed in the
present Universe.

Inflationary cosmology offers a solution to these problems by proposing a period of exponential expansion in
the early Universe, which also accounts for the observed homogeneity and isotropy of the Universe. Accord-
ing to this model, the observable Universe originated from an incredibly tiny patch of space, much smaller
than 10−26 meters. During inflation, the Universe underwent rapid exponential expansion, causing modes to
grow at a faster rate than the horizon size. Consequently, the initially small-scale quantum fluctuations were
stretched to cosmological scales. These fluctuations gave rise to adiabatic perturbations, resulting in nearly
identical fractional density perturbations across all species. Later, these perturbations served as the source of
the temperature variations observed in the CMB and the large-scale structure of the Universe.

In the literature, this model is commonly referred to as the ΛCDM model, where Λ denotes the cosmolog-
ical constant and CDM stands for cold dark matter. ΛCDM is a six-parameter model, with the parameters
representing the baryon density (ωb), the cold dark matter density (ωc), the angular size of the sound horizon
at recombination (θMC), the optical depth to reionization (τ), the amplitude of the primordial scalar power
spectrum (As), and the scalar spectral index (ns). The curvature parameter, Ωk is sometimes considered as a
free parameter, with the constraint Ωk = 0 corresponding to a spatially flat Universe. The radiation density is
very precisely measured by the COBE-FIRAS measurements of the CMB energy spectrum and thus considered
as a fixed parameter. One writes

Ωk = 1− Ωm − ΩΛ, with Ωm = Ωb +Ωc. (1.5)

Extensive observations have shown that the ΛCDM model is in excellent agreement with the data, and the
values of these parameters have been tightly constrained by the Planck satellite (Planck Collaboration et al.,
2020c), as presented in Table 1.1. While the free parameters completely specify the ΛCDM model, numerous
physical quantities can be derived from them, such as the Hubble constant or the age of the Universe. Additional
parameters are also considered in the literature, such as the sum of the neutrino masses, the effective number
of relativistic species, or the running of the scalar spectral index, and can be set free in the analysis for probing
extensions to the ΛCDM model.

The cosmic microwave background

In this thesis, we will focus on the study of cosmic microwave background (CMB) anisotropies, which are
of paramount importance in modern cosmology, and the measurements of cosmological parameters from this
observation. A review of CMB analysis can be found in Hu and Dodelson (2002). The CMB is the relic
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Figure 1.1: History of the Universe in logarithmic comoving time. While the very early Universe is still poorly
understood, the evolution of the Universe is well known from the electroweak era (10−12s) to the present day.
The CMB was emitted at the decoupling of matter and radiation. Image credit: Turner (2022).
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Group Parameter Description Value

Free

ωB ≡ Ωch
2 Baryon density 0.02237± 0.00015

ωb ≡ Ωbh
2 Cold dark matter density 0.1200± 0.0012

θMC Angular size of the sound horizon at recombination 1.04092± 0.00031
τ Reionization optical depth 0.0544± 0.0073
log(1010As) Amplitude of the primordial power spectrum 3.033± 0.014
ns Primordial spectral index 0.9649± 0.0042

Derived

ωm = Ωmh
2 Matter density 0.1430± 0.0011

H0 [kms−1Mpc] Hubble constant 67.36± 0.54
t [Gyr] Age of the Universe 13.797± 0.023
σ8 Amplitude of matter density fluctuations 0.8111± 0.0060
zre Redshift of reionization 7.67± 0.73
rdrag Comoving sound horizon at recombination 147.09± 0.26
S8 ≡ σ(Ωm/0.3)

0.5 Renormalized amplitude of matter density fluctuations 0.832± 0.013

Fixed

Ωk Curvature density 0
AL Lensing amplitude relative to physical value 1∑

ν mν [eV] Sum of neutrino masses 0.06
w Dark energy equation of state parameter -1
Neff Effective number of relativistic degrees of freedom 3.046
Yp Primordial helium fraction 0.24
αs Running of the spectral index 0
At Tensor amplitude 0
nt Tensor spectral index 0
r Tensor-to-scalar ratio 0

Table 1.1: Baseline ΛCDM cosmological parameters from Planck 2018 TT,TE,EE +lowE +lensing (Planck
Collaboration et al., 2020c). The free parameters can be combined into additional derived parameters, while the
fixed parameters are frozen during the standard ΛCDM analysis. They can be set free when probing extensions
to the ΛCDM model.
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radiation of the Big Bang, a uniform thermal sea of photons, with small anisotropies which give an insight into
the primordial conditions of the Universe. The CMB was predicted in pioneering work by Gamow (1948); Alpher
and Herman (1948) and later serendipitously discovered by Penzias and Wilson (1965) and Dicke et al. (1965).
This discovery led to great advances in cosmology, consolidating the Big Band model since the origin of CMB
is very well understood within this framework. The characterization of the CMB anisotropies temperature and
polarization spectrum has been of primary importance since their discovery by Smoot et al. (1992) with COBE
for temperature and Kovac et al. (2002) with DASI for polarization. Independent experiments, such as WMAP
(Bennett et al., 2003, 2013) and Planck (Planck Collaboration et al., 2014, 2015, 2020a), have yielded exquisite
measurements of cosmological parameters and probed the physics of the early Universe.

Recombination and decoupling
The early history of the Universe can be described as a sequence of phase transitions driven by the cooling
resulting from its expansion (Dodelson and Schmidt, 2020). At around 1s after the Big Bang, the Universe
consisted of decoupled relativistic neutrinos and relativistic particles in equilibrium, as well as non-relativistic
baryons that were tightly coupled to the relativistic particles through photons. The temperature gradually
decreased until it reached a point where chemical reactions could no longer remain in kinetic equilibrium,
leading to the breaking of the reaction symmetry. This decoupling process first occurred during Big Bang
nucleosynthesis (BBN), when the thermal bath of relativistic particles in equilibrium and non-relativistic baryons
decoupled. This resulted in the observed abundance of primordial hydrogen and helium. After BBN, the thermal
bath consisted of a "baryon-photon" fluid composed of protons, electrons, photons, and helium nuclei, which
remained coupled through Thomson scattering and electromagnetic interactions. In this fluid, the temperature
was uniform, with slight deviations at the locations of dark matter overdensities arising from inflation, as density
perturbations caused small perturbations in the gravitational field. As long as the temperature remained above
Tdec ∼ 3000K, the photons had sufficient energy to ionize hydrogen atoms, maintaining the coupling of the fluid.
The decoupling occurred when the temperature dropped below this threshold, which happened at a redshift
zdec ∼ 1100. Electrons and protons combined to form neutral hydrogen during this phase transition. As a result,
the Universe became transparent as photons were no longer Thomson scattered. Since then, photons have been
"free streaming" through the expanding Universe from the surface of the last scattering, and we observe them
today as the CMB. As the CMB radiation originates from a thermal bath, it follows a black-body spectrum
characterized by the temperature at the time of decoupling, denoted as Tdec. The black-body spectrum is given
by the Planck law

Iν =
2hν3

c2
1

exp
(

hν
kBT

)
− 1

(1.6)

Photons have traveled through the expanding Universe and have been redshifted and cooled down, while still

Figure 1.2: The CMB black-body spectrum measured
by the FIRAS instrument of the COBE satellite. Un-
certainties are a small fraction of the line thickness.
Figure taken from (Fixsen et al., 1996).

Figure 1.3: Black-body spectrum measured by differ-
ent intruments (FIRAS (Fixsen et al., 1996), DMR
(Kogut et al., 1993), UBC (Gush et al., 1990), LBL
(Bersanelli et al., 1995), Princeton (Johnson et al.),
Cyanogen (Roth and Meyer, 1995)) with associated
uncertainties. Figure taken from Smoot et al. (1992).

retaining their thermal properties. The temperature of the cosmic radiation has been shifted to TCMB =
Tdec/(1+ zdec). The FIRAS instrument on the COBE satellite measured the CMB temperature and obtained
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the most precise observation of a black-body spectrum in nature, providing valuable constraints on energy
injection in the early Universe (White, 1999). The measured temperature of the CMB is TCMB = 2.72548 ±
0.00057 K. The measured black-body spectrum is shown in Fig. 1.2 and Fig. 1.3. Additionally, the CMB
exhibits dipole anisotropy due to the Doppler effect related to the earth motion at the 10−3 level, but also
small-scale anisotropies at the 10−5 level, which are the result of primordial fluctuations, that we describe in
the next section.

Primary anisotropies
The photon-baryon fluid before recombination exhibits a very uniform temperature, but small perturbations
are present due to the gravitational potential wells. These perturbations are sourced by primordial curvature
fluctuations, which are generated by inflation. The observed anisotropies on the sphere are well described using
Gaussian statistics and further characterized by their angular power spectrum, CXY

ℓ ∀XY ∈ [T,E,B], where
T refers to the temperature anisotropies while E and B refer respectively to the curl-free and gradient-free
decomposition of the polarization modes. We introduce briefly the generation of anisotropies in the following
paragraphs but refer to White et al. (1994); Hu and Sugiyama (1995); Hu et al. (1995); Hu and White (1996);
Hu and Sugiyama (1996); Hu and White (1997); Hu et al. (1997); Sugiyama (2014); Dodelson and Schmidt
(2020) for a detailed treatment.

Temperature anisotropies As an overview, we separate the generation of temperature fluctuations into
main physical processes. Let us first introduce the gravitational shifting of photon frequencies, the so-called
Sachs-Wolfe effect. At the time of recombination, photons are located inside gravitational over-densities or
under-densities and are redshifted or blueshifted accordingly as they move out of those. The Sachs-Wolfe effect
is only dominant on large scales. Similarly, the integrated Sachs-Wolfe (ISW) effect arises from the time variation
of those gravitational potential wells along the line of sight. It can be separated into early ISW, which arises
during the transition from the radiation-dominated era to the matter-dominated, and late ISW, happening after
the transition to dark energy domination. Then, the physics of the photon-baryon fluid before recombination
generates distinct features in the anisotropy statistics. The free electrons tightly couples the baryons and the
photons together through Thomson and Coulomb scattering and density perturbations propagate in the form
of acoustic oscillations. The evolution of oscillations is linear, since the primordial perturbations are small, and
carries distinct signatures of the Universe components. An important effect is radiation driving, which arises
from the domination of the radiation energy density over the matter-energy density, implying that the baryon-
photon plasma will not be oscillating in a fixed potential well. The potential decays at scales that entered the
horizon during the radiation era, driving up the amplitudes of the acoustic oscillations. Moreover, in the fluid,
photons diffuse at scales smaller than their mean free path, where the coupling between photons and electrons
is weak. This leads to the exponential damping of acoustic oscillations on small scales. This damping process
is known as Silk damping (Silk, 1968). Finally, the traveling photons are scattered by the free electrons in the
intergalactic medium ionized by the first stars, and subsequently, the temperature fluctuations are damped.
This damping depends on the optical depth at the reionization of the intergalactic medium. All those processes
carry cosmological information and can be parametrized by the model parameters.

The aforementioned physical processes have a distinct impact on the power spectrum, and their main contri-
bution can be pinpointed on the renormalized power spectrum as indicated in Fig. 1.4. It is customary to plot
Dℓ ≡ ℓ(ℓ+1)

2π CTT
ℓ , as Dℓ would be constant with pure Sachs-Wolfe effect and ns = 1 (Sugiyama, 2014), and such

a renormalization highlights relevant features in the power spectrum. The classical and integrated Sachs-Wolfe
effects mainly impact the low multipoles, which are the equivalent of the large scales. The acoustic oscillations
are visible in the intermediate and large multipoles through the peaks and troughs of the power spectrum,
whose position and amplitude are sensitive to the characteristics of the acoustic oscillations. Lastly, the Silk
damping affects the large multipoles. Cosmological parameters impact those processes and therefore determine
the shape of the power spectrum. For example, let us take the case of the baryon density. As the pressure
is primarily carried by photons, baryons provided mass inertia. The inertial mass of baryon drags photons
towards overdense regions, and enhances the compression phase, and thus odd harmonic series of the acoustic
oscillations. This enhancement of compression implies an additional rarefaction at the under-density locations,
therefore the even peaks are decreased. This effect is depicted in panel (c) of Fig. 1.5, where ∆T = Dℓ are the
renormalized temperature power spectra. In this figure, the effects of varying the spatial curvature, the density
of dark energy, and the amount of matter are also displayed for indication. As cosmological parameters have
varying impacts on different scales, probing a large range of multipoles allows for the reduction of degeneracies
when measuring parameters. Including polarization measurements further aids in reducing these degeneracies.
As primary anisotropies are small, their computation can be handled by linear perturbation theory thus allowing
a very accurate computation. The detailed computation of the power spectrum is done using linear line-of-sight
integration of the Boltzmann equation. Codes such as CAMB Lewis et al. (2000) or CLASS (Lesgourgues, 2011)
show exquisite accuracy and now integrate a wide range of models, allowing to study the impact of new physics
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Figure 1.4: The CMB angular power spectrum of ΛCDM in µK2. Physical processes which provide dominant
contributions on different scales are quoted. Figure taken from Sugiyama (2014).

Figure 1.5: Impact of varying cosmological parameters on the CMB temperature power spectrum. Figure taken
from Hu et al. (1997). Top left: varying curvature as quantified by Ωtot. Top right: varying dark energy content
ΩΛ. Bottom left: varying baryon density Ωb. Bottom right: varying matter density Ωm. All parameters are
varied around values Ωtot = 1,ΩΛ = 0.65,Ωb = 0.02,Ωm = 0.147 and ns = 1.
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on CMB observations. We refer to Howlett et al. (2012) for an example of CMB modeling study using CAMB
and for discussions about well-known degeneracies of parameter constraints derived from angular power spectra.

Additional anisotropies In addition to the primary anisotropies generated during recombination and reion-
ization, two additional channels of signal must be considered: secondary anisotropies and foregrounds. Sec-
ondary anisotropies arise from the interaction of photons with cosmic structures. For example, the Sunyaev-
Zel’dovich (SZ) effect, which includes both kinetic (kSZ) and thermal (tSZ) components, occurs due to the
inverse Compton scattering of CMB photons off hot electrons in the intra-cluster medium. This signal depends
on the large-scale structure of the Universe. Another effect, gravitational lensing, occurs as CMB photons are
deflected by gravitational potential wells, providing additional sensitivity to the large-scale structure. While
secondary anisotropies are generally smaller in magnitude compared to primary anisotropies, they contain
significant cosmological information. However, this thesis will primarily focus on the primary anisotropies.
Foreground signals, on the other hand, originate from extragalactic radio or dusty sources, and galactic dust
and synchrotron. Although these signals also offer interesting scientific opportunities, they are considered
contaminants to the primary CMB signal.

Polarization The polarization of the CMB is also a powerful tool to constrain cosmology and is expected to be
the primary source of information for current and future experiments (Galli et al., 2014). For a detailed treatment
of the generation of polarized signals, please refer to Hu and White (1997); White (1998) and the references
therein. From the linear theory of scalar perturbations, polarization is only generated from Thomson scattering
by a quadrupole temperature anisotropy. Only 10% of the CMB signal is expected to be polarized. This explains
the need for additional detectors to measure polarization. The polarization signal can be decomposed into non-
local E and B modes, representing curl-free and divergence-free modes, respectively. Scalar perturbations
generate only E modes, while vector and tensor perturbations produce both E and B modes. Therefore, B
modes serve as a direct probe of the inflationary era, which might generate tensor perturbations. Additionally,
the B mode can be generated through lensing of the E mode, making it a probe of large-scale structure (Seljak
and Hirata, 2004). However, this lensing-induced B mode dominates at small scales, making the detection of
primordial B modes particularly challenging and a major goal of current and future experiments (Baumann
et al., 2009). Since the E-mode polarization signal is mostly generated by density fluctuations, it is correlated
with the temperature signal, and the two are usually analyzed together to extract cosmological information,
serving as consistency checks to one another and breaking degeneracies between parameters. In this thesis, we
will focus on the T and E signal and will not consider the B signal.

The full-sky temperature and polarization SMICA maps produced by the Planck satellite are displayed in
Figs. 1.6 and 1.7.

CMB data analysis Analyzing temperature and polarization primary anisotropies is relatively straight-
forward due to the Gaussian nature of the signal and noise. However, the analysis becomes computationally
expensive due to the immense size of the current data sets required for achieving high sensitivity. Despite this
challenge, the Gaussianity of the signal allows for the construction of nearly-optimal estimators. The standard
pipelines for analyzing the CMB data consist of several key steps, as depicted in Fig. 1.8. Firstly, the raw detec-
tor data is calibrated and binned to form maps of the CMB temperature and polarization anisotropies. These
maps are then compressed into their angular power spectra, which capture the complete statistical properties
of the field. The angular power spectrum is subsequently utilized to constrain cosmological parameters through
the use of a likelihood function. Monte Carlo Markov Chain (MCMC) methods are employed to explore the
parameter space, while Boltzmann codes are employed to compute the theoretical predictions necessary for
the analysis. It is important to note that the large size of the data sets and the computational complexity of
the analysis pose significant challenges in this process. Therefore, the analysis pipelines are constantly being
improved to achieve higher sensitivity and efficiency. In this thesis, we will focus on improvements to the anal-
ysis pipeline for the upcoming SPT-3G cosmological constraints, which are paving the way for stage-4 CMB
experiments CMB-S4 (CMB-S4 Collaboration, 2019).

Prospects and challenges of high-precision cosmology: the SPT-3G
experiment

Ongoing Stage-3 CMB experiments, such as the South Pole Telescope (SPT) (Dutcher et al., 2021; Balkenhol
et al., 2021; Balkenhol et al., 2022), the Atacama Cosmology Telescope (ACT) (Choi et al., 2020; Aiola et al.,
2020), POLARBEAR (POLARBEAR Collaboration et al., 2014), Bicep/Keck (Bicep/Keck Collaboration
et al., 2022) and upcoming Simons Observatory (SO) (Simons Observatory Collaboration et al., 2019), aim to
improve Planck constraints in Table 1.1. Independent constraints are necessary to ensure the robustness of the
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Figure 1.6: Planck SMICA component separated temperature map, displaying CMB anisotropies. Red zones
indicate locations of the sky with higher photon temperatures. The galactic cuts are indicated with grey lines
and the signal inside is generated using a constrained realization, and not used in Planck analysis pipeline. In
this thesis, we will depict a similar technique to fill empty regions in CMB maps with high precision, so that
the constrained signal can be used in the analysis.
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Figure 1.7: Planck SMICA component separated polarization map, displaying CMB polarization anisotropies.
The black lines indicate the polarization direction, while the color indicates the polarization intensity.
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Figure 1.8: Schematics of CMB analysis pipeline. The raw data is compressed into maps, which are then
decomposed into band powers. They are used to constrain cosmological parameters using a likelihood analysis.
Figure taken from Hu et al. (1997).

cosmological models, investigate systematic effects in the data and probe new physics. This thesis will primarily
focus on the endeavors of the SPT.

SPT-3G and its science goals

The SPT is a 10-meter telescope observing the millimeter-wave sky from the geographic South Pole. Atmo-
spheric conditions are ideal for such observations, and the SPT has already produced two surveys, SPT-SZ
(Story et al., 2013) and SPTpol (Austermann et al., 2012), with associated scientific results: discovering new
galaxy clusters with the SZ effect (Staniszewski et al., 2009), the discovery of strongly lensed high-redshift
star-forming galaxies (Vieira et al., 2013), CMB temperature anisotropy measurement (Story et al., 2013) and
the first detection of B modes (Hanson et al., 2013). The next generation SPT-3G camera provides additional
sensitivity with improved optical design and multichroic pixels, which allows a deep observation of a relatively
wide field starting from 2018 (Benson et al., 2014). This high-sensitivity instrument is used among the collab-
oration for a wide range of scientific objectives including the delensing of the Bicep/Keck field (Bicep/Keck
Collaboration et al., 2022); the study of the CMB lensing (van Engelen et al., 2012; Story et al., 2015; Wu
et al., 2019), the study of the CMB secondary anisotropies, the search for the Sunyaev-Zel’dovich (SZ) effect
and high-multipole CMB temperature anisotropies (Keisler et al., 2011; Reichardt et al., 2012; Story et al.,
2013; George et al., 2015); the analysis of low-multipole polarization anisotropies in the search for the primor-
dial B-modes; the study of cosmic birefringence and axion-like particles (Bianchini et al., 2020; Ferguson et al.,
2022); the study of galaxy clusters (Santos et al., 2008; Bleem et al., 2015; Raghunathan et al., 2019; Bleem
et al., 2020); the joint analysis with DES-Y3 (Raghunathan et al., 2019; Abbott et al., 2022b); the search
for asteroids (Chichura et al., 2022). This list gives a general overview of the decisive science inputs that can
be achieved with the instrument. In this work, we will focus on the constraints on cosmological models and
associated parameters from CMB primary anisotropies by the SPT-3G experiment. This work was already
started for SPTpol (Henning et al., 2018), and also for the first four months of the SPT-3G survey, for which
half the focal plane was available (Dutcher et al., 2021; Balkenhol et al., 2021; Balkenhol et al., 2022), labeled
SPT-3G 2018 for the rest of this work. The full SPT-3G survey is expected to be completed in 2023 and
will cover 1700 square degrees of the sky. While the full five-year survey will soon be available for analysis, we
will focus in this thesis on the preparation of the cosmological results with the first two years of this updated
survey, and refer to this data set as SPT-3G 19/20. Additional data is collected on extended fields which
will add 2800 deg2 of observations, improving the parameter constraints.

Tensions and unkowns

In Fig. 1.9, we present the most recent compilation of CMB power spectrum measurements, including the latest
results from the SPT-3G 2018 survey. While the Planck satellite mission focused on precisely measuring the
large and intermediate angular scales of the CMB temperature field, ground-based telescopes such as ACT,
POLARBEAR, and SPT have achieved high sensitivity by increasing the number of detectors on their focal
planes. This enables them to probe the high multipoles of the CMB power spectrum in both temperature and
polarization. Although these ground-based experiments cover a reduced sky fraction, resulting in decreased
constraining power due to cosmic variance, their additional sensitivity compensates for this limitation. Explor-
ing a complementary range of multipoles is crucial for confirming the consistency of the cosmological model,
especially in light of the ΛCDM model’s inability to fully explain the observed data.

Indeed, recent measurements of the CMB power spectrum by the ACT and SPT ground-based experiments,
as reported in Balkenhol et al. (2022); Aiola et al. (2020), have confirmed and amplified the so-called Hubble
tension. This tension arises from the observed discrepancy between the inferred values obtained from early-
Universe data sets and local measurements of the Hubble constant. The former relies on fitting the ΛCDM
model to CMB or baryon acoustic oscillations measurements, while the latter uses observations at low redshifts.
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Figure 1.9: Compilation of CMB power spectrum measurements taken from SPT (Balkenhol et al., 2022).
SPT-3G 2018 data points are displayed with their error bars in black, while the previous SPTpol and SPT-
SZ data sets are shown in green. The Planck 2018, ACT DR4 and POLARBEAR data points are shown
respectively in blue, orange, and pink.

The value derived from the high-redshift data, as determined by the Planck collaboration, is H0 = 67.4 ± 0.5
km/s/Mpc (Planck Collaboration et al., 2020c). On the other hand, the low-redshift value, based on the
SH0ES collaboration’s measurement using a Cepheid-calibrated supernova IA distance ladder, is H0 = 73.29±
0.90 km/s/Mpc (Murakami et al., 2023). The Hubble tension represents a 5σ discrepancy between these two
measurements, and it is a significant problem given that alternative CMB data sets and combined measurements
of Big Bang nucleosynthesis with baryon acoustic oscillation data strongly support the Planck value (Bennett
et al., 2013; Aubourg et al., 2015; Addison et al., 2018; Blomqvist et al., 2019; Macaulay et al., 2019; Aiola et al.,
2020; Balkenhol et al., 2022), while the distance ladder measurement is robust against systematic investigations.
Additionally, alternative calibration methods of the distance ladder, such as the tip of the red giant branch
(Freedman et al., 2019), yield larger values for H0 than the Planck measurement. For a comprehensive review of
the Hubble tension, we refer the reader to Verde et al. (2019) and Schöneberg et al. (2022). Similar discrepancies
have also emerged in the measurement of the structure growth rate, which can be parameterized either by the
amplitude of matter fluctuations within a comoving volume of 8Mpc−1 or by the combined structure growth
parameter S8 ≡ σ8

√
Ωm/0.3, to which joint galaxy clustering and weak lensing analyses are more sensitive.

Current measurements indicate a 2 to 3σ inconsistency between Planck and measurements from the DES-Y3
and KIDS-1000 data sets (Heymans et al., 2020; Abbott et al., 2022a). A review of structure growth is provided
in Huterer et al. (2015); Huterer (2022). In Fig. 1.10, we display the measured values of H0 and S8 from the
SPT-3G 2018 survey, Planck , and ACT DR4. We also include the reference values of H0 from Riess et al.
(2022) and S8 from Abbott et al. (2022a). The SPT-3G 2018 data set is in strong agreement with Planck and
ACT DR4, but the H0 value shows tension with the measurement of the SH0ES team. While the Planck value
of S8 is in tension with the DES Y3 and KIDS-1000 measurements, the SPT-3G 2018 data set agrees with
these measurements, albeit with larger error bars.

11



65 70 75

H0 [km s−1 Mpc−1]

Murakami et al. 2023

ACT DR4

SPT-3G 2018 + Planck

Planck

SPT-3G 2018

R
ie

ss
et

a
l.

20
2
2

0.75 0.80 0.85

S8 ≡ σ8

√
Ωm/0.3

DES Y3 x KiDS-1000

ACT DR4

SPT-3G 2018 + Planck

Planck

SPT-3G 2018

D
E

S
Y

3
3x

2
p

t

Figure 1.10: Constraints on the Hubble constant H0 and the structure growth parameter S8 from Planck 2018
(Planck Collaboration et al., 2020c), ACT DR4 (Aiola et al., 2020) and SPT-3G 2018 (Balkenhol et al., 2022).
The H0 reference value from Riess et al. (2022) is displayed with grey error bars on the left panel with an
updated value with improved systematics treatment from Murakami et al. (2023). The S8 reference value from
the DES Y3 3x2pt (Abbott et al., 2022a) is displayed with grey error bars on the right panel. A combined
constraint of DES Y3 and KiDS-1000 is also given (Survey et al., 2023). Note that ACT values are different
from the reference paper since different τ priors were chosen for the analysis, in a consistent approach with
SPT-3G 2018. Plot adapted from Balkenhol et al. (2022).

While systematic errors in the analysis pipeline could potentially explain the observed discrepancy, the wide
array of probes suggests that these tensions stem from a failure of the ΛCDM model. Currently, there is a
dedicated effort underway to comprehend the origins of these tensions and propose new physics that aligns
with the observations (Schöneberg et al., 2022). Although one possible explanation for the Hubble tension is to
increase the dark energy density at low redshift, such solutions are contradicted by measurements of supernovae
and baryon acoustic oscillations at low redshift. Consequently, the most promising avenues involve modifying
the sound horizon at recombination through new early-Universe physics, such as varying electron mass models
(Hart and Chluba, 2020) or early dark energy models (EDE) (Doran and Robbers, 2006; Poulin et al., 2019;
Niedermann and Sloth, 2020), but such models could eventually aggravate the S8 measurements (Jedamzik
et al., 2021).

The SPT-3G 19/20 data set is projected to have four times lower noise compared to the 2018 data set,
resulting in achieved noise levels of 6/5/16µK-arcmin in temperature at 95/150/220GHz. These noise levels
are approximately 6 times lower than those of Planck . As a consequence, the SPT-3G 19/20 data set will
significantly enhance measurements of H0 and S8 and provide valuable insights into the nature of both tensions.
Fig. 1.11 showcases the current ΛCDM constraints using Planck and SPT-3G data sets, along with projected
constraints obtained using mock band powers, considering the expected noise levels for SPT-3G 19/20 and
the full five-year survey. The SPT-3G 19/20 data set will be able to constrain parameters within 20% of
the full five-year survey and will be in direct competition with Planck 2018. Due to the high resolution of
the SPT-3G experiment, it will introduce degeneracy directions orthogonal to Planck , for example for ωb.
The combined constraints from both experiments will break degeneracies and lead to significant improvements
in the measurements of parameters. In addition, the data set will mostly be independent, as Planck probes
the largest angular scales of temperature, while SPT-3G probes the smallest angular scales of polarization.
Combined constraints are expected to be twice as tight as the Planck 2018 constraints, thus reaching the
tightest constraints on ΛCDM parameters to date.

Ongoing stage-3 experiments (SPT, ACT, POLARBEAR) have produced significant results and will con-
tinue to do so, but they are also paving the way for Stage 4 technology experiments, which will be able to
reach the cosmic variance limit. The Simons Observatory (SO) (Simons Observatory Collaboration, 2019) and
CMB-S4 (CMB-S4 Collaboration, 2019) experiment have as a primary scientific goal to unveil the imprint of
primordial gravitational waves on the CMB polarization as quantified by the tensor-to-scalar ratio, and output
constraints on ΛCDM extensions 3 to 10 times narrower. In this work, we seek to improve the accuracy and
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efficiency of analysis pipelines of the SPT-3G experiment, which will be used as a testbed for the analysis of the
Stage-4 experiments. As the total amount of detectors will be likely to increase by a factor of 50, it is crucial
to develop efficient analysis pipelines to extract the cosmological information from the data.
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Outline of the thesis

The objective of this work is to provide a comprehensive analysis of the SPT-3G 19/20 data set, highlight the
enhancements made to the analysis pipeline, and discuss the implications of the findings. This research will
yield competitive and robust cosmological constraints for an upcoming data release, as indicated in Fig. 1.11. To
accomplish this, the thesis will be structured around the analysis pipeline of the SPT-3G experiment, following
the main compression steps illustrated in Fig. 1.8. In Chapter 2, I will introduce the SPT-3G experiment and
outline the map-making pipeline. A thorough understanding of this pipeline is crucial for accurately analyzing
the statistics of the CMB. Subsequently, in Chapter 3, I will present the power spectrum estimation based on
the maps. Unlike the previous analysis that was conducted on a flat sky, this analysis will be performed on the
entire sky, necessitating certain improvements. Notably, I have developed key features in the power spectrum
estimation pipeline and provided a framework for the generation of Gaussian-constrained realizations of the
data. Moving forward, in Chapter 4, I will delve into the likelihood estimation process. This chapter focuses
on constructing a highly precise semi-analytical covariance framework for the Gaussian likelihood, enhancing
the accuracy of our results. Finally, I will thoroughly examine the implications of these findings and conclude
in Chapter 5.
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Chapter 2

Making maps of the CMB

Contributions In this chapter, I aim to introduce the first compression step of the analysis pipeline, which
is map-making. This work has been done with the SPT-3G collaboration and led by collaborator Wei Quan,
relying on earlier work that is cited throughout this chapter. My contributions to this work are the following:

• Participation in the data quality monitoring and the data selection for the 19/20 season data.

• Section 2.1.4: Study of the impact of point source masking threshold on maps, band powers and covariance
matrix.

• Section 2.3.1: Development of the analysis pipeline of curved sky maps, including an in-depth study of
the filtering impact on the signal and noise levels computations from noise maps.

• Section 2.3.2: Development of code to create the analysis mask from weights and apodize it. Analysis
of the impact of the mask apodization on the power spectra and the covariance matrix of the power
spectrum. Analysis of the impact of source masking on the various data products.

• Section 2.3.3: Investigation on the noise maps and analysis of specific features that led to additional data
cuts.

• Section 2.3.4: Production and analysis of pure Gaussian CMB simulations. Study of the mock observation
pipeline and outputs. Integration of resulting maps in inpainting and covariance validation pipelines.

The main purpose of this section is to provide the reader with the necessary knowledge on map-making to
understand the rest of the analysis.

Introduction The cosmic microwave background radiation light can be observed in every direction of the
sky and is characterized by its temperature and polarization fields. The electromagnetic wave is decomposed
into its Stokes parameters T (n̂), Q(n̂), U(n̂), V (n̂), where n̂ is the direction of the line-of-sight (Perrin, 1942;
Chandrasekhar, 1960). The first parameter is the temperature, or intensity, of the radiation, and the three others
are the linear and circular polarization. A linear horizontal polarized field would have, with arbitrary units,
T = 1, Q = 1, U = 0, V = 0, while a right-hand circularly polarized field would have T = 1, Q = 0, U = 0, V = 1.
T and V parameters are independent of the local basis while the Q and U parameters are dependent on the
definition of the angle on the sky, since they are related to linear horizontal and vertical polarization, respectively.
Under a rotation of the local basis of angle α, the Stokes parameters transform as




T
Q
U
V


→




T
Q cos 2α+ U sin 2α
−Q sin 2α+ U cos 2α

V


 . (2.1)

T and V are hence spin-0 fields, and it is convenient to define a new polarization parameter P ≡ Q + iU ,
and its independent complex conjugate P ∗. They are spin-2 fields (Zaldarriaga and Seljak, 1997; Seljak and
Zaldarriaga, 1997; Chon et al., 2004) and, under a rotation α, transform as

P (n̂) → e−2iαP (n̂), P ∗(n̂) → e2iαP ∗(n̂). (2.2)
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Figure 2.1: Representation of the Stokes parameters T,Q,U in the horizontal-vertical basis. A rotation of the
local basis would mix Q and U while leaving T and V unchanged.

Throughout the rest of this thesis, we will ignore the V parameter. It cannot be generated by Thomson
scattering and hence is not detectable in the CMB in classical models. In addition, the SPT-3G instrument is
not sensitive to circular polarization, see Section 2.1.1.

The main data product of the SPT-3G experiment are maps of the T,Q,U fields of the CMB anisotropies,
that are built from the raw output of detectors. This chapter aims to describe this first compression step and
its implementation in the SPT-3G data analysis pipeline. In Section 2.1, we will introduce the SPT telescope,
its current instrument, and the measured detectors data, then in Section 2.2, we will describe the map-making
algorithm applied to the previous time streams to obtain maps of the sky. We will present the maps and
associated simulations in Section 2.3.

2.1 The SPT experiment

2.1.1 Telescope, optics and focal plane

The South Pole Telescope (SPT) is a 10-meter diameter telescope situated at the Amundsen-Scott South Pole
Station in Antarctica. Its strategic location at an altitude of 2835 m and with low atmospheric humidity
provides optimal conditions for millimeter wavelength observations. Additionally, the absence of a diurnal cycle
ensures exceptionally stable atmospheric conditions with minimal Sun contamination (Radford and Holdaway,
1998; Radford, 2011). The telescope’s optics, as depicted in Fig. 2.2, are specifically designed to maximize
its efficiency in capturing millimeter wavelengths. A complete report on the telescope instrumentation can be
found in Sobrin et al. (2022), hereafter S22.

Deployed in 2017 on the focal plane, the SPT-3G instrument offers an expanded field of view compared
to its predecessors SPT-SZ (Bleem et al., 2015) and SPTpol (Bleem et al., 2012), increasing from 1 deg2 to
around 2.8 deg2. As shown in Fig. 2.2, the instrument is divided into two cryostats for optics, both cooled to
a temperature of 4K using pulse tube coolers. After traveling through the optical path, the light hits the focal
plane that consists of 14266 transition edge sensor (TES) polarization-sensitive bolometers. These bolometers
are further cooled to around 300mK using a 3He/4He dilution refrigerator. Coupled with the large aperture
of the telescope, this extensive array of detectors enables high sensitivity and high-resolution observations of
the cosmic microwave background. The focal plane, divided into 10 hexagonal modules known as wafers, each
contains 269 trichroic pixels, as illustrated in Fig. 2.3.

The pixel architecture, used generally among CMB experiments as in POLARBEAR (Suzuki et al., 2012),
SO (Galitzki et al., 2018), and LiteBIRD (Suzuki et al., 2018), is illustrated in Fig. 2.4. The incoming radiation
is coupled to the sinuous antenna through a silicon lenslet (O’Brient et al., 2010). Antennas have an intrinsic
orientation, that we characterize by the time-dependent sky-respective polarization angle ψt. The log-periodic
antenna design aims at maximizing the polarization efficiency γ, which characterizes the response of the antenna
to an input signal polarized along the detector plane. On each wafer, half of the antennas are mirrored and
another half is rotated by 45 deg to minimize the effect of the instrumental systematics and to evenly sample
the linearly polarized sky. The incoming radiation is then coupled to the TES bolometer through a microstrip
transmission line. The TES bolometer is a superconducting device that is biased at its transition temperature.
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Figure 2.2: Schematic of the SPT-3G optics, from S22.

Figure 2.3: Photo of the SPT-3G focal plane, taken from S22.
The ten hexagonal units are the wafers.

Figure 2.4: Photo of the SPT-3G detec-
tor, from S22. The log-periodic antenna
is optimized to capture the incoming light
polarization.
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The incoming radiation is absorbed by the TES bolometer, which changes its temperature and thus its resistance.
The change in resistance is multiplexed and then measured by a SQUID (Superconducting Quantum Interference
Device) amplifier, a very sensitive magnetometer. These operations are repeated as detectors operate in three
frequency bands centered at 95, 150, and 220GHz. For details on the readout, please refer to S22 and Stiehl
et al. (2011); Doriese et al. (2015); Bender et al. (2014, 2016, 2020).

2.1.2 Footprint and scanning strategy
Footprint One of the primary scientific objectives of the SPT-3G instrument is to the precise removal of
lensing effects from the B-mode signal observed by the large aperture Bicep/Keck experiment. Therefore, the
careful selection of the survey footprint is of paramount importance to maximize the spatial overlap between
the two experiments. The Bicep3 footprint was deliberately chosen to minimize contamination from galactic
emissions (Bicep/Keck Collaboration et al., 2022). The SPT-3G deep survey footprint, or winter field
extends over a range of declination (DEC) from −42 deg to −70 deg, and right ascension (RA) from 20h40′

to 3h20′. Encompassing an area of approximately 1700 deg2, the footprint is illustrated in Fig. 2.5a. The
overlap between the SPT-3G and Bicep/Keck survey footprints is depicted in Figs. 2.5b and 2.6. While
Fig. 2.6 provides a comprehensive view of the full extent of the Bicep 3 field, Fig. 2.5b showcases the scientific
footprint defined at the mean survey weight. Notably, the latter is fully contained within the SPT-3G survey
footprint, enabling accurate delensing procedures. Additionally, during austral summer, when significant signal
contamination arises from the Sun’s side-lobes in the main or winter field, extended survey observations are
conducted in the summer fields, as depicted in Fig. 2.5b, on a sky area of 2800 deg2. These extended fields
participate in yielding even more precise constraints on cosmological parameters thanks to additional data.
Due to the limited duration of the fridge cycles, it is impractical to observe the entirety of the fields in a
single observation. Consequently, the SPT-3G fields are divided into subfields covering the full RA range and
centered around specific DEC values. This division ensures minimal variations in atmospheric height during
observations, thereby mitigating the impact of atmospheric loading and detector responsivity. The individual
subfields are illustrated with varying colors in Fig. 2.7. For the winter field, the subfields are centered at DEC
values of −44.75 deg, −52.25 deg, −59.75 deg, and −67.25 deg. From now on, we will call observation each
ensemble of data acquired during 1 fridge cycle on a single subfield. When no failure, one observation covers
the entire subfield.

Observing seasons and SPT-3G 19/20 data set The current SPT-3G focal plane has been acquiring
data starting from 2019 and is expected to continue until the end of 2023. The winter field is observed 8 months
per year, from March to November, while the summer fields are observed the rest of the year. In this thesis,
we will focus on the winter data acquired between March 2019 and December 2020, which we label SPT-3G
19/20. Although this data has lower constraining power than the complete survey, it will already provide
exquisite constraints on cosmological parameters.

Scanning strategy The SPT-3G telescope is affixed to an azimuth-elevation mount, enabling rapid azimuth
scans for efficient sky coverage. The telescope follows a raster pattern while scanning the sky, as depicted in
Fig. 2.8. This scanning process involves azimuthal movement at a constant elevation, followed by shifting to
the next elevation step and conducting another azimuthal scan. For one observation, this procedure is repeated
until the chosen subfield has been observed. To ensure the production of high-quality maps without undesired
artifacts such as stripes, the elevation steps are carefully chosen to be sufficiently small and executed in a series
of dither steps. Each scan represents the acquisition of data at a constant elevation and in a consistent azimuthal
direction. Consequently, the telescope captures the celestial sphere through a sequence of right-going and left-
going scans, carried out at various elevations, while maintaining a constant angular speed of ωaz = 1deg /s.
Employing higher scanning speeds effectively shifts the CMB signal to a higher temporal frequency, thereby
aiding in its separation from the 1/f instrumental noise characteristic. This scanning strategy yields a typical
individual subfield observation time of approximately 2.5 hours.

2.1.3 Calibration
For subsequent cosmological investigations, it is essential to calibrate the time-ordered data (TOD), or
time stream, generated by the detectors, thereby converting them into temperature units. We employ an
external calibration approach utilizing two well-established galactic star-forming regions referred to as HII
regions, namely RCW38 and MAT5A. These regions possess known flux values at the frequencies of interest,
determined through a combination of measurements conducted by various experiments, including Planck , SPT-
SZ, BOOMERanG (de Bernardis et al., 1997), and ACBAR (Runyan et al., 2003). Rigorous observational
campaigns targeting these regions allow us to establish the calibration for each detector. The calibration
process involves fitting a model to the acquired time-ordered data. In addition to the primary calibration,
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(a) SPT-SZ (de Haan et al., 2016),
SPTpol (George et al., 2012) and
SPT-3G. The figure is taken from
Dutcher et al. (2021). While SPT-
SZ probed temperature on a larger
sky fraction, SPTpol observed po-
larization on a deep patch and SPT-
3G combined high-resolution, deep
and relatively wide patch.

(b) SPT-3G winter field (orange) and extended summer fields (red) The winter
field is the baseline deep field observed during 8 months covering 1700 deg2,
whereas summer extended fields are observed during the remaining 4 months
to avoid Sun contamination. They cover a total area of 2800 deg2. Figure
taken from S22.

Figure 2.5: Survey footprints overplotted on a map of the thermal dust emission as measured by Planck .

Figure 2.6: Bicep2, Bicep 3 and
SPT-3G footprints overplotted on
a map of polarized dust emission
from Planck . Figure taken from
Bicep/Keck Collaboration et al.
(2022)
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Figure 2.7: Fields of the SPT-3G
experiments for winter field (blue),
summer-a field (red), summer-b
field (orange), and summer-c field
(yellow). Subfields are highlighted
using varying colors. Courtesy of
Wei Quan.

Figure 2.8: Portion of the obser-
vation scanning strategy. The full
line indicates the azimuthal posi-
tion while the dashed one indicates
the elevation position. Figure taken
from Carlstrom et al. (2011).
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three supplementary calibration steps are essential to account for atmospheric loading and weather-induced
effects. Firstly, given that changes in elevation result in variations in atmospheric height and subsequent
alterations in atmospheric loading, it becomes crucial to measure the elevation-dependent gain of each detector.
This necessitates the use of a chopped thermal source positioned at the aperture of the telescope, enabling
a comparison of the detector gain between on-source and off-source positions. Secondly, the calibration of
detectors, an expensive procedure conducted once per week, is susceptible to potential drift caused by changing
weather conditions. To counteract this potential drift, a rapid calibration procedure is performed at the onset
of each observation, utilizing either RCW38 for winter subfields at lower declinations or MAT5A for winter
subfields at higher declinations. Finally, the demodulation of the signal at the output of the TES is contingent
upon the airmass observed by the detector. This dependency is corrected by measuring the detector response
at both elevation angles of 90 deg and 30 deg, and subsequently interpolating to determine the response at
the elevation of the targeted source. These three calibration steps hold significance as they contribute to
the generation of reliable CMB maps while effectively mitigating potential systematic errors. The absolute
calibration uncertainty associated with this experiment is estimated to be 10%, and further refinement will be
achieved during the subsequent analysis through the cross-correlation of coadded maps with the maps provided
by the Planck mission.

The uncalibrated TOD of a given detector can be modeled as a ntod series of values indexed by the time t

yt = g [(2− γ)Tt + γ cos (2ψt)Qt + γ sin (2ψt)Ut] + nt, (2.3)

where Tt is the intensity observed by the detector at time t, while Qt and Ut are Stokes linear polarization
parameters. The detectors are not sensitive to the circular V polarization. Here we used the overall detector
gain g, the polarization angle ψt, and the polarization efficiency γ. Ground-based experiments suffer from
large atmospheric fluctuations that dominate the noise at low frequencies and noise caused by a drifting cold
stage temperature, which has a typical 1/f shape. The time stream is dominated by this 1/f noise nt with a
characteristic shape, as illustrated in the first panel of Fig. 2.9. Let us also point out that the scanning strategy
introduced in Section 2.1.2 makes the polarization angles of the detectors time-independent. We will thus drop
the time dependency for the rest of this work. Assuming calibrated data, we set the overall gain to its unity
value, redefine the noise and recast the previous equation as

yt = Tt +
γ

2− γ
[cos (2ψ)Qt + sin (2ψ)Ut] + nt (2.4)

The ultimate goal is to compress the information contained in the sets of calibrated detector time streams
into maps of the CMB anisotropies. The calibrated data consists of subfield observations of associated left-going
and right-going scans for each detector, where data is kept only when the telescope speed is constant, while
the data acquired when changing direction is discarded. Before map-making, we perform operations on the
time stream, see Section 2.1.4. First, we remove misbehaving detectors. Then, we mask sources to prepare
the filtering step. Finally, ground-based experiments TOD are dominated by complex structure noise which we
filter out to simplify the map-making process.

2.1.4 TOD processing

Data cuts To mitigate data contamination arising from pathological detectors, we implement a series of
stringent data cuts. During observations, detectors may exhibit unexpected behavior, such as saturation, poor
calibration, excessive noise, or readout errors, leading to their identification and flagging. Additionally, time
streams containing glitches or excessive line power in the frequency domain are removed. In Table 2.1 is
displayed the number of observations per subfield and the associated average number of active detectors for
SPT-3G 19/20 data set. The number of observations decreases as the center elevation of the subfields increases,
in order to reduce noise for subfields observed through more atmosphere. Approximately 1000 detectors per
frequency band are removed prior to the map-making.

Point source masking During the scanning process, the telescope inevitably traverses regions containing
galactic sources, extragalactic active galactic nuclei (AGNs), and clusters of galaxies. These sources possess
sufficient brightness to be detected by the instrument and must be masked prior to filtering. Failure to do so
would result in the subsequent removal of low-frequency components inducing filtering artifacts originating from
the point sources, thereby contaminating the signal and introducing biases in the generated maps. Point source
masking is accomplished by applying a mask to the time stream. The threshold for masking is determined
such that any point source brighter than 6 mJy at 150 GHz and any cluster with a signal-to-noise ratio (SNR)
across all bands greater than 10 are masked, for a total masked area of ∼ 25 deg2. The masking radius for
point sources, converted from physical distance to the time domain based on the angular speed as described in
Eq. (2.5), is set by the radius at which the beam response (see Section 2.2.4) multiplied by the SNR falls below
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Figure 2.9: Time-ordered data for a single detector. The top panel shows the calibrated unfiltered data, the
bottom panel shows the data after filtering. The filtering step removes most of the 1/f noise, thus allowing to
model the noise as Gaussian.

Subfield Number of observations Average number of active detectors

ra0hdec-44.75 1037 11158
ra0hdec-52.25 903 11164
ra0hdec-59.75 772 11171
ra0hdec-67.25 579 11164

Table 2.1: Number of observations per subfield in the SPT-3G 19/20 data set and the average number of
detectors used for the analysis per subfield. As a reminder, the focal plane is composed of 14266 detectors. An
observation is the data acquired during 1 fridge cycle on a single subfield. When no failure, one observation
covers the entire subfield.

1. For clusters, it is set by the radius at which the beam convolved with the cluster profile falls below 1. The
mask is applied to the time stream by setting the data to zero within the masked region. In Fig. 2.10, I show
a histogram of the number of sources masked per radius bin. The beam size (see Section 2.2.4) is indicated
for comparison, and as expected, all masked sources are resolved. The flux cut is chosen to optimize lensing
reconstruction performance and to decrease the contamination of the signal spectrum. In Fig. 2.11 is displayed
the radio galaxy power amplitude ratio as a function of the number of masked sources and associated masking
threshold in milli-jansky, with an indication of the flux cuts of SPT-3G 2018 and SPT-3G 19/20. As around
10 times more sources are masked the power ratio is reduced by a factor of 10. Additional sources with different
physical origins (clusters, dusty star-forming galaxies, AGNs) are also masked, for a total of 2118 radio sources
and 537 clusters.

Low-pass and high-pass filtering To mitigate contamination from 1/f and atmospheric noise, as well as
prevent aliasing of high-frequency signal and noise, the time stream undergoes a sequence of linear processing
steps. Filters are employed in the time domain, with the choice made to align with specific spatial multipoles
rather than time frequencies. The conversion between the multipole ℓx and frequency f is given by

ℓx =
2π

ωra cos θDEC
f, (2.5)

where ωra represents the angular speed of the telescope in the right ascension direction relative to the sky. It is
computed as the sum of the angular speed of the Earth’s rotation and the angular speed of the telescope, i.e.,
ωra = ωaz + ωer in radian per seconds. Neglecting the latter term would introduce discrepancies in the filtering
process between left-going and right-going scans, thereby biasing the resultant maps. By employing a multipole-
based filtering approach, the resulting maps possess angular properties that are independent of declination. The
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Figure 2.11: Effect of masking radio sources on the power spectrum Poisson radio source contamination. The
associated source flux cut is displayed on the top axis. Masking more sources allows for the reduction of the
contamination from Poisson power.

time stream undergoes a series of filtering operations. Firstly, a low-pass filter is applied, utilizing exponential
damping of the form exp

[
−(ℓx/ℓhigh)

6
]
, with a cutoff multipole ℓhigh set to 13000. The choice of this cutoff

is influenced by the pixelation scheme employed to represent the maps (see later in Section 2.2.1). Next, the
high pass filter removes a combination of Legendre polynomials of order less than 30, and Fourier modes of
frequencies such that ℓx < 300 according to Eq. (2.5). The filtering procedure is visualized in Fig. 2.9, where the
first panel displays the calibrated time stream and the second panel shows the data after filtering. As a result,
the 1/f noise is significantly reduced, and the noise exhibits greater consistency with white noise characteristics.
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2.2 Map-making

After applying the necessary filtering procedures, we obtain calibrated data. The subsequent step involves
binning the time streams into pixels, a critical and computationally intensive process that lays the foundation
for the subsequent analysis. Ground-based experiments often face challenges such as high noise levels, primarily
caused by atmospheric contamination. The map-making process plays a crucial role in mitigating these effects,
as it aims to produce maps that are free from systematic errors while keeping computational costs manageable.

2.2.1 HEALPix pixelation scheme
Prior to delving into the map-making procedure, it is essential to introduce the pixelation scheme utilized for
binning the time stream. In the previous analysis of the SPT-3G 2018 data (Dutcher et al., 2021; Balkenhol
et al., 2021), the maps were represented on a flat-sky azimuthal equal-area projection, employing a base pixel
size of 2′. This choice of pixelation was advantageous in terms of reducing the computational complexity,
thanks to the fast Fourier transform (FFT). However, it also introduced a projection effect on the resulting
data products (Balkenhol et al., 2022). For this analysis, we adopt a curved-sky representation and rely on the
HEALPix (Górski et al., 2005) pixelation scheme1. HEALPix is a hierarchical pixelation scheme that enables the
representation of the curved sky as a collection of pixels with equal area, parametrized by the variable nside.
The total number of pixels is given by Npix = 12× n2side. The HEALPix pixelation scheme offers computational
advantages with an efficient implementation of the spherical harmonic transform. The Nyquist frequency of the
HEALPix pixelation scheme in terms of spatial multipole is given by ℓmax = 2nside. In our analysis, we employ
a high-resolution pixelation scheme with nside = 8192, corresponding to a pixel size of 0.43′ and a Nyquist
frequency of ℓmax = 16384. It is important to note that pixelation introduces a convolution effect on the data,
resulting in a square window function of known size, the so-called pixel window function. This convolution
effect, along with the beam response, needs to be accurately modeled in subsequent analysis steps. It is worth
mentioning that the HEALPix software has also been employed in the analysis of data from the WMAP mission
(Bennett et al., 2013) and the Planck mission (Planck Collaboration et al., 2020d).

2.2.2 Formalism
The map-making process aims to reconstruct the data by combining the calibrated data, pointing information,
and noise modeling using a maximum-likelihood approach. The map-making methodology employed for the
SPT-3G 19/20 analysis is based on the approach used in the SPTpol analysis (Crites et al., 2015; Keisler
et al., 2015; Henning et al., 2018) and is described in detail in Jones et al. (2007). In this analysis, we consider
the calibrated time-ordered data as a vector y of size ntod, representing the total intensity and polarization
measurements. The pixelated map vector, denoted as m, represents the CMB signal at each pixel and has a
size of npix. The pointing matrix, denoted as P , is an ntod × npix matrix that provides information about the
instrument pointing at each time step. Additionally, we model the noise as a random variable vector n of size
ntod. While the other quantities have fixed values at each time step, the noise follows a random distribution,
and it is necessary to develop a noise model to reconstruct the map vector m from the time-ordered data vector
y. In our analysis, we assume that the noise follows a Gaussian distribution with a time covariance matrix Cn.
The modeling of the map-making process can be summarized as follows:

y = Pm+ n ⇔ n ≡ Pm− y ∼ N (0, Cn) . (2.6)

We can describe a general class of unbiased map estimators m̃ and the corresponding pixel-to-pixel noise
correlation matrix N using symmetric positive definite matrices M . These matrices are defined in the time
domain and have dimensions of ntod × ntod. The estimators and noise correlation matrix can be expressed as
follows:

m̃ =W−1m̃W , m̃W = P⊤My, N =W−1P⊤MCnMPW−1 with W ≡
[
P⊤MP

]
(2.7)

In this process, the time stream is first weighted by the matrix M and then transformed into the pixel domain.
Finally, an informed weight matrix W is applied to "unweight" the data in pixels. The minimum variance
solution to this problem, which also corresponds to the maximum-likelihood solution, is obtained by setting
M = C−1

n , and this equation governs the relationship between the matrices

m̃ =
[
P⊤C−1

n P
]−1

P⊤C−1
n y and N =

[
P⊤C−1

n P
]−1

(2.8)

Ideally, the inverse-variance weights should be set to the noise inverse variance prior to the pixel domain
transformation. This approach allows for optimal reconstruction of the map (Janssen et al., 1993; Tegmark and

1https://healpix.sourceforge.io/
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de Oliveira-Costa, 2001). However, in practice, constructing and inverting the full noise covariance matrix in
the time domain can be technically challenging and computationally demanding. For example, SPT-3G scans
typically involve a large number of time samples on the order of O(104), making it impractical to handle the full
noise covariance matrix without simplifications if this one is dense. To address this issue, the SPT-3G analysis
follows the recommendation of Hivon et al. (2002) to apply a filtering step to the time stream. This filtering
helps reduce the 1/f noise and approximate the effective noise as Gaussian white noise, as described in detail
in Section 2.1.4 and illustrated in Fig. 2.9. By mitigating the impact of 1/f noise, the effective noise properties
are improved, enabling more tractable and accurate map reconstruction as the noise covariance matrix becomes
diagonal.

Comparison with ACT and Planck Different experimental setups require different map-making pipelines.
The Planck satellite, with its full-sky circular scanning strategy, encounters noise that is structured along scans
meeting at the poles. To address this, the experiment utilizes a method called destriping, which is further
explained in Planck Collaboration et al. (2020d). It relies on jointly solving the detector gains, the foreground
component, and the stripping template predicted from TOD information. Such an implementation would be
impossible for SPT-3G since the scans are not crossing. On the other hand, the ACT data presents its
challenges, including varying seasons, a large fraction of the sky to cover, and cross-linked scans. Despite these
challenges, the experiment employs an iterative optimal maximum-likelihood map-making pipeline without
prior TOD filtering. The detector-detector noise structure is caught by modeling of the noise correlations (N in
Eq. (2.8)) as described in Dünner et al. (2013); Naess et al. (2014); Louis et al. (2017); Aiola et al. (2020). By
avoiding TOD filtering, the resulting CMB maps are unbiased, and the analysis does not require simulations to
compute the transfer function. However, the map noise properties are not optimal and need to be modeled using
refined techniques, as explained in Atkins et al. (2023). Simulations are used in order to obtain the noise power
spectrum covariance matrix. While the ACT and Planck methods provide more optimal results, they require
significantly more computing time compared to the SPT-3G method. Therefore, the SPT-3G method strikes a
good balance between computational cost and optimality, and the obtained noise properties are easy to model.
The main drawback is the need for simulations to compute the transfer function, as detailed in Section 2.3.4
and Section 3.3.

2.2.3 Application to SPT-3G
In this section, we consider the maps m to be 3× npix, expanding the vectors to include the extra polarization
dimension T → (T,Q,U). The pointing matrix is then given by ntod × ndect × npix, where ndect denotes the
number of detectors. Let’s focus on the contribution of a single detector i. The elements of the pointing matrix
are denoted as P i

tα = 1 when the given detector observes pixel α at time t. To account for the mixing of
temperature and polarization in the detectors, a projection matrix Ai is introduced. This matrix incorporates
the cosine and sine terms defined in Eq. (2.4), which can be expressed using the following notation

Ai = (1 γici γisi) ∀α ∈ [1, npix]. (2.9)

By applying this projection matrix, we can account for the mixing of temperature and polarization signals
within each detector. The raster scanning strategy employed by SPT-3G ensures that the projection matrix
remains time-independent. To account for the mixing of temperature and polarization signals in the detectors,
we rewrite the map-making problem by replacing P with AP . The noise after filtering is approximately Gaussian
white noise, and a reasonable approach is to parametrize the map-making process using a diagonal matrix M ,
where the weights are constructed from the variance of the noise of the associated detector’s time stream in the
multipole range ℓ ∈ [300, 4000] (refer to Eq. (2.5) for the conversion between multipole order and frequency).
This multipole range is chosen as it is most sensitive to the underlying cosmological signal. Let us denote the
averaged noise value as ni for the corresponding indices where P i

tα = 1. As mentioned earlier, although this
choice of M may not yield the optimal reconstruction, it results in unbiased non-optimal maps. Those maps
are expected to be close to optimal due to the filtering applied to the time-ordered data, which makes the noise
properties approach Gaussian characteristics. We can express the map-making solution for these indices as
follows:

M i =
1

n2i
Idntod×ntod

,
[
[AP ]i⊤M i

]
α
=

1

n2i




1
γici
γisi


 Idntod×ntod

(2.10)

and W i
α ≡

[
[AP ]i⊤M i[AP ]i

]
αα

=
1

n2i




1 γici γisi
γici γ2i c

2
i γ2i cisi

γisi γ2i cisi γ2i s
2
i


 . (2.11)

To gain physical intuition, let’s examine the weight matrix in two extreme cases. In both cases, we assume
perfect detectors, meaning they have the same weight, the polarization efficiency is 1, and the angles are perfectly
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known. In the first case (1), we consider polarization angles that are randomized across the focal plane. In this
scenario, we compute the average weight matrix as if the angle ψ is equal to π/4. In the second case (2), we
assume that all detectors are aligned, resulting in ψ = 0. Let’s denote the average weight matrix for these cases
as follows:

(1) : W̄α =
1

n2



1 0 0
0 1

2 0
0 0 1

2


 or (2) W̄α =

1

n2



1 0 0
0 1 0
0 0 0


 . (2.12)

In the second case, we encounter a situation where we are unable to reconstruct one of the polarization param-
eters due to an ill-defined weight matrix. This observation helps explain why the detectors are intentionally not
aligned on the SPT-3G focal plane. Aligning the detectors would result in a loss of information and render
polarization reconstruction impossible.

The final step in the map-making process is to average the signal over all detectors, indexed by i. This yields
the following equations for the weighted maps at pixel α, considering the associated weight matrix:

(
TW , QW , UW

)
α
=
∑

i

[
P⊤
i A

i⊤M iyi
]
α

and W i
α =

∑

i

P i⊤
α Ai⊤M iAiP i

α of size 3× 3. (2.13)

The weight matrix has a physical interpretation as the inverse noise variance of the pixels in the map. They
are the sum of the inverse variance of the detectors pointing at the pixel α, see Eq. (2.13), and are effectively
similar to hit maps with varying weights for each detector. Detectors with weights deviating more than 3σ from
the median are excluded, in order to remove spurious contaminations. The unweighted (T,Q,U) and weighted
maps (TW , QW , UW ) are related by

(T,Q,U)
⊤
α =W−1

α

(
TW , QW , UW

)⊤
α
. (2.14)

In our analysis, we generate a map by co-adding the entire observation set. Additionally, we utilize different
data splits to create a set of nbun = 150 maps, which we refer to as bundles throughout this work, following
the approach used in Dutcher et al. (2021) and Balkenhol et al. (2022). It is essential to ensure that each bundle
has similar weights, achieves uniform coverage, and is constructed using a sufficient number of observations to
ensure noise uniformity. These bundles serve two purposes: computing the data band powers, as described in
Chapter 3 and estimating the noise covariance matrix, as described in Chapter 4.

2.2.4 Beam and time constants
In the previous problem set, the pointing matrix P , which indicates the pointing of detectors at a given time
t, was obtained based on the telescope’s scanning strategy. However, detectors have a finite extent and exhibit
a frequency-dependent angular response to point-like sources, known as the beam. The observed data is a
convolution of the sky signal with the average beam window function that depends on the telescope’s optical
design. This convolution results from the finite extent of the antenna and the non-ideal nature of optics and
detectors. In general, larger primary mirrors yield smaller beams. Angular scales below the beam size are
averaged out and cannot be accurately reconstructed. As a consequence of this convolution, the pointing
matrix is no longer sparse but becomes a dense matrix. In Eq. (2.13), we could directly include the beam in the
pointing matrix P and deconvolve the maps. However, this approach may encounter computational scaling issues
since the weight matrix would no longer be diagonal (Wαα′ ̸=Wαδαα′) and could potentially be ill-conditioned.
Instead, we adopt the standard approach of deconvolving the average beam from the maps after the map-making
process, at the spectrum level. Consequently, the reconstructed maps are biased maps that effectively account
for the convolution with the beam. We replace the sky signal T with T ′(n̂) =

∫
dûB(n̂ − û)T (û), where B

represents the beam response function in real space. A complete description of beam analysis can be found in
Hivon et al. (2017) and references therein.

Detectors not only exhibit a finite spatial response but also a finite temporal response. The time constant
of a bolometer refers to the time it takes to reach 1/e of its final response to a step function and determines the
maximum scanning speed of the telescope. If we were to include time constants in the pointing matrix, similar
considerations as those for the beam would arise. Therefore, we choose to deconvolve the time constants at the
spectrum level, accounting for their effects within the effective beam characterized by the data.

Accurate characterization of the beam is a critical step in the data analysis process since beam mismatch
can introduce systematic errors in the resulting data products. For the SPT-3G, the beam is estimated
using observations of bright point sources and dedicated raster scans of Saturn. Bright point sources are
utilized to estimate the beam near its peak and to integrate the time constants, while the high signal-to-
noise ratio of the Saturn scans enables reliable measurement of the beam response at angular distances of
tens of arcminutes. The resulting beam maps, obtained for each frequency, are displayed in Fig. 2.12. In
our analysis, we employ a deconvolution technique to remove the effects of the beam from the data at the
spectrum level, as outlined in Section 3.1. We assume that the beam exhibits axial symmetry, as suggested
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Figure 2.12: Beam maps of the SPT-3G experiment at 95, 150, and 220GHz. Some visible features in the maps
are due to the stitching of radio point source maps and planet maps together. Courtesy of Neil Goeckner-Wald.
The characterization of the beam is crucial to model the data.

in Wu et al. (2001), and average its response over circular regions with equal angular distances. The effective
beam response is described as a function of the angle θ between the pointing direction and the response angle.
To characterize the beam, we utilize its full width at half maximum (fwhm), denoted as θfwhm. In harmonic
space, an approximation of the beam using a Gaussian profile with the same fwhm yields the well-known
expression Bℓ ∝ exp

[
−ℓ(ℓ+ 1)θ2fwhm/16 ln 2

]
(Challinor et al., 2000). The radial profile of the beam, along

with its harmonic transform, is illustrated in Fig. 2.13, while associated fwhm is given in Table 2.2. SPT-3G
has a narrower beam than the Planck satellite thanks to the large first mirror, thus allowing to probe high-ℓ
modes. The ACT beam is larger than the SPT-3G beam and significantly varies across the season as the
telescope is subjected to day/night and temperature variations affecting the optics. Although SPT-3G has
higher resolution, it must be emphasized that the ACT survey is much wider, covering around 40% the sky,
and thus has more constraining power at intermediate scales.

Frequency SPT-3G fwhm [′] Planck fwhm [′] ACT fwhm [′]

95GHz 1.57 9.7 2.0
150GHz 1.17 7.2 1.3 to 1.46
220GHz 1.04 5.0 NA

Table 2.2: Full width at half maximum (fwhm) of the beam in arcminutes for the SPT-3G, Planck , and ACT
experiments, obtained from S22, Planck Collaboration et al. (2020d) and Lungu et al. (2022). Beams are given
for the frequency closest to the central SPT-3G one. For ACT 150GHz, the fwhm varies across the multiple
arrays and the season.

Uncertainties associated with the beam profile are quantified by comparing the computed beam responses
for different subfields. These uncertainties are subsequently incorporated into the final data products through
corrections applied to the covariance matrix, see Section 4.2.2 for details on the correction process. Given that
detectors possess varying properties, they are subject to different beam shapes, which can result in temperature-
to-polarization leakage. To address this issue, a temperature template is fitted and subtracted from the polarized
maps. Furthermore, detectors may exhibit differential ellipticity, which can introduce additional spurious effects
requiring correction. Further investigation and analysis of these effects are required.

2.2.5 Source of errors in map-making

In this section, we aim to examine potential errors that may arise during the map-making process, to anticipate
systematic errors that could impact the final maps. More detail about beam systematic effects can be found in
Rosset et al. (2007); Hivon et al. (2017).

Pointing errors The pointing matrix P , which is derived from the telescope scanning strategy, is assumed
to be perfect. However, in practical situations, the telescope’s stability is not ideal, resulting in pointing errors.
These errors constitute a significant source of systematic errors. While time-independent absolute pointing errors
can be corrected by observing point-like sources, time-dependent relative pointing errors introduce additional
stochastic smearing, which is incorporated into the beam definition for scientific analysis, see S22.
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Figure 2.13: Beam response of the SPT-3G experiment at 95, 150, and 220GHz in real space (left) and harmonic
domain (right). For comparison, the typical pixel size is 0.43′ and plotted as a grey vertical line on the left plot.
The harmonic equivalent, the pixel window function, is shown on the right plot.

Polarization efficiency In the previous map-making equations, we assumed that the polarization efficiency
γi is known with perfect accuracy. However, let us consider the scenario where the true polarization efficiency
deviates slightly from the assigned value, given by γi → γi(1 − δi) while keeping the polarization angles fixed.
In this case, the effective sky observed by detector i can be approximated as

(T,Q,U)
⊤ → (T, (1 + δi)Q, (1 + δi)U)

⊤
. (2.15)

From this equation, we observe that stochastic errors (δi different for each detector) in the polarization efficiency
result in additional noise in the polarization maps. On the other hand, systematic errors lead to an overall
rescaling of the polarization maps, which can be corrected through the calibration procedure.

Polarization angles Detectors are positioned in the telescope’s focal plane with specific orientations. How-
ever, the assigned polarization angles of the detectors may slightly deviate from their nominal values. In this
section, we model this shift as ψi → ψi − δi/2, while keeping the detector efficiency fixed. Consequently, the
effective sky observed by detector i can be approximated as

(T,Q,U)
⊤ →

(
T,Q+ δiUc

2
i , U − δiQs

2
i

)⊤
. (2.16)

Errors in the polarization angles result in a mixing of the Q and U maps, thus creating E to B modes leakage.
However, these errors are expected to be small since they are averaged out over the focal plane. We can verify
this assumption by calculating polarized cross-spectra, as described in Section 3.1.2.
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2.3 SPT-3G 19/20 data products

2.3.1 CMB maps
Following the map-making procedure outlined in Section 2.2, we have generated the SPT-3G 19/20 coadd of the
CMB temperature and polarization anisotropies. The resulting temperature coadds are presented in Lambert
azimuthal equal-area projection with a uniform color scheme in Figs. 2.14 to 2.16. Similarly, the polarization
coadds are depicted in Figs. 2.17 to 2.22, employing an adapted uniform color scheme. Within the defined patch,
the temperature maps exhibit a dominant signal, while the borders appear noisier due to fewer pixels pointing
in those regions. Subsequently, these border regions are discarded during the map analysis process, as detailed
in Section 2.3.2. The application of TOD filtering along the scan removes the iso-latitude co-scan large-scale
modes and leaves the iso-longitude cross-scan features in the maps. In the subsequent analysis, these features
will be characterized and described using transfer functions which are used to model the loss of power. TOD
values around bright point sources are ignored during the filtering process, but the associated signal is projected
in the maps. It must be removed prior to any further analysis as the pixel values will have different statistical
properties than the rest of the map. This is accomplished through a masking and inpainting procedure, as
detailed in Section 3.6. Notably, a zoom-in of a 2′ × 2′ region centered on the brightest polarized source in
the map is depicted in Fig. 2.23. Around the source location, we see the signal and noise levels of the maps.
The latter exhibits an expected increase from 150 to 95 to 220GHz, in line with the properties of the detectors.
The polarized noise exhibits a similar trend. Notably, the noise at 220GHz completely obscures the underlying
signal.
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Figure 2.14: temperature coadded maps in µK at 95GHz. The map is displayed in Lambert’s azimuthal equal-
area projection. Meridian graticules are plotted every 20 deg while parallel graticules are plotted every 10 deg.

Figure 2.15: temperature coadded maps in µK at 150GHz. The map is displayed in Lambert’s azimuthal equal-
area projection. Meridian graticules are plotted every 20 deg while parallel graticules are plotted every 10 deg.
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Figure 2.16: temperature coadded maps in µK at 220GHz. The map is displayed in Lambert’s azimuthal equal-
area projection. Meridian graticules are plotted every 20 deg while parallel graticules are plotted every 10 deg.

Figure 2.17: Q polarization coadded maps in µK at 95GHz. The map is displayed in Lambert’s azimuthal
equal-area projection. Meridian graticules are plotted every 20 deg while parallel graticules are plotted every
10 deg.
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Figure 2.18: Q polarization coadded maps in µK at 150GHz. The map is displayed in Lambert’s azimuthal
equal-area projection. Meridian graticules are plotted every 20 deg while parallel graticules are plotted every
10 deg.

Figure 2.19: Q polarization coadded maps in µK at 220GHz. The map is displayed in Lambert’s azimuthal
equal-area projection. Meridian graticules are plotted every 20 deg while parallel graticules are plotted every
10 deg.
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Figure 2.20: U polarization coadded maps in µK at 95GHz. The map is displayed in Lambert’s azimuthal
equal-area projection. Meridian graticules are plotted every 20 deg while parallel graticules are plotted every
10 deg.

Figure 2.21: U polarization coadded maps in µK at 150GHz. The map is displayed in Lambert’s azimuthal
equal-area projection. Meridian graticules are plotted every 20 deg while parallel graticules are plotted every
10 deg.
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Figure 2.22: U polarization coadded maps in µK at 220GHz. The map is displayed in Lambert’s azimuthal
equal-area projection. Meridian graticules are plotted every 20 deg while parallel graticules are plotted every
10 deg.
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Figure 2.23: Zoom on the brightest source in the maps, located at RA,DEC = 32deg 39′,−51 deg 0′. The
patch is 2′ × 2′. The source is visible in the temperature maps, and it is also visible in the polarization maps,
but with lower contrast. Other less bright sources can be observed in the temperature patch. The polarized
signal is clear at 95 and 150GHz, but it is almost fully hidden by noise at 220GHz.
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2.3.2 Weights and mask
The weight map defined in Eq. (2.13) is displayed for temperature 150GHz in Fig. 2.24. It demonstrates uniform
noise distribution across the patch, which is a crucial requirement for subsequent assumptions. We utilize this
weight map to define a binary mask that restricts the analysis to a specific patch, ensuring maximal effective
sky area while avoiding regions with non-uniform noise. In Fig. 2.25, we compare the standard deviation of
temperature 95GHz coadd pixels at right-ascension (RA) to the average weight at those RA values. The
former serves as a proxy for noise uniformity. We choose a weight threshold of 10% of the median weight,
Wthr = 0.1Wmed, to delineate the patch for our subsequent analysis, removing 200 deg2 which represents 0.16%
of the full sky area, and 5% of the area probed by the full data set. As depicted in Fig. 2.25, this threshold ensures
uniform pixel variance and associated noise levels within the analysis patch. To optimize lensing reconstruction
and reduce the contribution of map edges, I smooth the mask in a process known as apodization. This helps
mitigate Fourier ringing when transitioning to harmonic space. This is done by first computing the distance
map, which is the distance to the closest masked pixel, and smoothing it with a narrow kernel of size 5′ to
remove small-scale features. We then apply a Gaussian profile apodization with a width of 1 deg to the distance
map. The same procedure is applied for holes due to point sources but with a reduced width of size 10′.
Obtained masks are displayed in Figs. 2.26 and 2.27. We evaluated the impact of the apodization procedure on
the coupling between modes of the power spectrum measured through the mask. The smoothing of the distance
map is crucial to removing small-scale features in the mask and reducing long-range coupling. We compared
the Gaussian apodization profile to a cosine profile and Gauss error function profile, but the former led to a
minimal amount of coupling between the modes.
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Figure 2.24: Weight map for temperature 150GHz in arbitrary units. Weights indicate the inverse variance
of the noise at a given pixel and are similar to a hit count map. The lime boundary indicates the extent
of the analysis patch, chosen to go until weights reach 10% of the median weight across the map. The map
is displayed in Lambert’s azimuthal equal-area projection. Meridian graticules are plotted every 20 deg while
parallel graticules are plotted every 10 deg.
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Figure 2.25: Standard deviation of the map at constant RA (blue line) compared to the average weight at
constant RA (green line) for temperature 95GHz. The vertical line indicates the 10% median weight threshold.
The lines are obtained by averaging over the DEC coordinate in the el1 subfield, i.e. between −49 deg and
−55.5 deg. The peaks in the standard deviation are due to the presence of bright point sources in the map. In
the region delimited by the threshold, the noise is uniform.
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Figure 2.26: Border mask of the SPT-3G 19/20 analysis. Borders are apodized with a 1 deg Gaussian profile.
The mask is displayed in Lambert’s azimuthal equal-area projection. Meridian graticules are plotted every
20 deg while parallel graticules are plotted every 10 deg. Apodizing the mask helps reduce Fourier ringing in
harmonic space.

Figure 2.27: Point source mask of the SPT-3G 19/20 analysis. Borders are apodized with a 1 deg Gaussian
profile. Holes are apodized with a 10′ Gaussian profile. The mask is displayed in Lambert’s azimuthal equal-
area projection. Meridian graticules are plotted every 20 deg while parallel graticules are plotted every 10 deg.
Apodizing the mask helps reduce Fourier ringing in harmonic space. Removing the sources is crucial for
mitigating associated contamination.
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2.3.3 Noise maps
We obtained noise maps by combining the full coadd and maps created from individual observations along with
their associated weights, as for previous SPT analyses (Wu et al., 2019). To derive these noise maps, for each
of the bundles j, each of the subfields k, and each of the observations l, we use the local temperature map T jkl

and weight map W jkl. We draw ϵjkl = ±1 with
∑

jkl ϵ
jk
l = 0 and also use the full signal coadd T coadd. We build

N [ϵ] =
∑

j bundles
k subfields

∑

l observations

ϵjkl (W jklT jkl −W jklT coadd) (2.17)

By employing this procedure, we have the potential to generate
(

nobs

nobs/2

)
noise estimations. However, it is

important to consider that since they are built from the same set of observations, those maps are correlated, and
only a limited amount are independent of each other. The 3290 observations imply estimations correlated below

Frequency SPT-3G 19/20 SPT-3G 2018 Planck ACT DR4
TT EE TT EE TT EE TT deep TT wide (AA)

95GHz 5.4 8.1 20.9 29.6 77.4 118 > 18.4 72.9
150GHz 4.6 6.6 14.9 21.1 33 70 > 12.6 118.5
220GHz 16 23 53 75 46.8 105 NA NA

Table 2.3: Noise levels of the SPT-3G 19/20 analysis, compared with SPT-3G 2018, Planck and ACT DR4.
Noise levels are given in µK-arcmin. SPT-3G 19/20 noise levels are obtained from the noise maps, while SPT-
3G 2018, Planck and ACT DR4 noise levels are taken from Balkenhol et al. (2022), Planck Collaboration et al.
(2020a) and Aiola et al. (2020), respectively.

1% of the noise power. An example of a set of resulting noise maps at 150GHz is displayed in Figs. 2.28 to 2.30.
Temperature noise maps display large-scale cross-scan features, which originate from atmospheric contamination
filtered along the scan. From the noise maps, we can obtain the noise levels displayed in Table 2.3. SPT-3G
19/20 are 3 to 4 times deeper than SPT-3G 2018, and much deeper than Planck and ACT DR4, although
those experiments cover much larger sky fractions. The 150GHz channel is the deepest channel of the SPT-3G
19/20 analysis, with a noise level of 4.6µK-arcmin in temperature and 6.6µK-arcmin in polarization. Noise
levels are expected to be divided by two in the full five-year survey.
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Figure 2.28: Temperature noise maps of the SPT-3G experiment at 150GHz. The map is displayed in Lambert’s
azimuthal equal-area projection. Meridian graticules are plotted every 20 deg while parallel graticules are plotted
every 10 deg.

Figure 2.29: Q polarization noise maps of the SPT-3G experiment at 150GHz. The map is displayed in
Lambert’s azimuthal equal-area projection. Meridian graticules are plotted every 20 deg while parallel graticules
are plotted every 10 deg.
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Figure 2.30: U polarization noise maps of the SPT-3G experiment at 150GHz. The map is displayed in
Lambert’s azimuthal equal-area projection. Meridian graticules are plotted every 20 deg while parallel graticules
are plotted every 10 deg.
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2.3.4 Simulations and mock observations
For downstream analysis, we conduct a comprehensive set of high-complexity simulations known as mock-
observations. These simulations aim to replicate the instrument and pipeline effects on the data. To generate
the input skies, we utilize the AGORA software (Omori, 2022), which is specifically designed for producing
realistic microwave skies with correlated foregrounds. The input CMB is assumed to be Planck best fit, and
CMB lensing, thermal and kinetic Sunyaz-Zeldovich effects, cosmic infrared background, and radio sources
are included. They are first calibrated against the observed data. Such a simulation suite enables us to
investigate correlated foreground studies, such as component separation, or non-Gaussianities of the lensing
potential, as well as cross-correlation with large-scale structure observables. The resulting skies, at a resolution
of nside = 8192, are then interpolated into a noiseless time stream. Subsequently, the same map-making
procedure is applied to these interpolated time streams using the map statistics, pointing information, and
calibration information, just as in the case of the actual data. This entire procedure is repeated for multiple sky
realizations to account for statistical variations in the data products. An example of the mock-observations at
150GHz is displayed exclusively on the analysis patch in Figs. 2.31 to 2.33. These figures demonstrate the same
filtering characteristics as the data. Notably, since no noise was introduced during this procedure, the resulting
maps solely represent the signal component of the data. Consequently, we can observe distinct polarization
features, with the Q map exhibiting similar iso-longitude stripping as the temperature maps, while the U
component exhibits large-scale stripes oriented at 45 deg relative to the parallels, consistent with the definition
of this Stokes parameter. Importantly, these features are also observed in the actual data (see Fig. 2.23). The
difference maps in Figs. 2.34 to 2.36 highlight the signal removed by the filtering, with dominant large-scale
modes. To achieve a more realistic analysis, noise maps can be added from the data products in a subsequent
step. Obtained maps are used to estimate the power spectrum transfer function, see Section 3.3. They are
also the input simulations of the inpainting validation pipeline, see Section 3.6. They are also key elements to
validate the covariance computation pipeline as detailed in Chapter 4.
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Figure 2.31: Mock temperature observations of the SPT-3G experiment at 150GHz. The map is displayed in
Lambert’s azimuthal equal-area projection. Meridian graticules are plotted every 20 deg while parallel graticules
are plotted every 10 deg. This map shows the temperature signal after filtering, for which the iso-latitude large-
scale modes have been removed.

Figure 2.32: Mock Q polarization observations of the SPT-3G experiment at 150GHz. The map is displayed in
Lambert’s azimuthal equal-area projection. Meridian graticules are plotted every 20 deg while parallel graticules
are plotted every 10 deg. This map shows the Q polarization signal after filtering, for which the iso-latitude
large-scale modes have been removed.
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Figure 2.33: Mock U polarization observations of the SPT-3G experiment at 150GHz. The map is displayed in
Lambert’s azimuthal equal-area projection. Meridian graticules are plotted every 20 deg while parallel graticules
are plotted every 10 deg. This map shows the U polarization signal after filtering, for which the iso-latitude
large-scale modes have been removed.

Figure 2.34: Temperature difference map at 150GHz. The map is displayed in Lambert’s azimuthal equal-area
projection. Meridian graticules are plotted every 20 deg while parallel graticules are plotted every 10 deg. This
map shows the removed temperature signal, mostly large-scale modes.

44



Figure 2.35: Q polarization difference map at 150GHz. The map is displayed in Lambert’s azimuthal equal-area
projection. Meridian graticules are plotted every 20 deg while parallel graticules are plotted every 10 deg. This
map shows the removed Q polarization signal, mostly llarge-scalemodes.

Figure 2.36: Q polarization difference map at 150GHz. The map is displayed in Lambert’s azimuthal equal-area
projection. Meridian graticules are plotted every 20 deg while parallel graticules are plotted every 10 deg. This
map shows the removed U polarization signal, mostly large-scale modes.
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Conclusion

In this chapter, we have presented the SPT-3G 19/20 map-making pipeline and obtained data products. We first
reviewed the telescope optics, scanning strategy, and pre-processing, then detailed the map-making algorithm
and finally presented the resulting maps with associated secondary data products. This step allows for data
reduction of the O(100)TB of raw data to a few TB of maps. The resulting maps are then used for band powers
estimation presented in the next chapter.
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Chapter 3

Power spectrum analysis

Contributions In this section, we report the implementation of the power spectrum computation pipeline. I
am leading this work inside the SPT-3G collaboration, and I obtained all of the results presented in this chapter.
Results detailed in Section 3.2 have been released in (Camphuis et al., 2022). Moreover, the publication of 19/20
cosmological constraints will include a description of the power spectrum pipeline Sections 3.3 to 3.5. Finally,
the inpainting procedure depicted in Section 3.6 will lead to a separate publication (Camphuis, Benabed, et al.,
in prep).

Introduction The primary objective of this study is to extract cosmological information from the data, which
involves testing the compatibility of the cosmological model with the data and then estimating the associated
parameters within the Bayesian framework. The temperature and polarization anisotropies of the CMB can
be accurately modeled as statistically isotropic Gaussian random fields with predicted two-point correlation.
To solve the backward problem, we could work in the map pixel domain, where the temperature map can be
written as a pixel value set Ti, and solve the maximum likelihood problem of the map given the model. We would
estimate the covariance of the pixel values for a given model M and its set of parameters ϑ as ξij [M, ϑ] = ⟨TiTj⟩.
Assuming M, ϑ, we can then compute the Gaussian pixel-likelihood of the data as:

L(Ti|M, ϑ) ∝ exp


−1

2

∑

ij

Ti [ξij [M, ϑ]]
−1
Tj


 . (3.1)

The pixel domain is intuitive and facilitates modeling of the noise component in the covariance matrix with a
Gaussian noise covariance, while masks are easy to implement. This approach is used for large-scale analysis of
both WMAP and Planck satellite experiments (Page et al., 2007; Dunkley et al., 2009; Planck Collaboration
et al., 2020c). However, the pixel space likelihood is not computationally feasible for small-scale CMB analysis
due to the high-resolution maps and associated large number of pixels (on the order of 106 for SPT-3G maps).
This makes the inversion of the pixel covariance matrix ξ impractical, as it scales as O(N3

pix). It is customary to
add a compression step before running the likelihood analysis. In this chapter, we will discuss how to transform
the pixel space likelihood into a more computationally tractable form using the spherical harmonic transform
and the power spectrum formalism.

3.1 Theoretical framework

Let us first introduce some crucial analysis tools for data analysis on the sphere and apply it to CMB maps.
Random fields are functions that take random values at each point of their defined space. For their analysis,
physics makes heavy use of Fourier-mode decomposition, as it allows us to infer crucial physical information by
exploiting the symmetries of the problem. Such decompositions have useful properties, as they are linear, unitary,
and invertible while transforming differential equations into algebraic ones. The original Fourier transform is
decomposition in frequency modes of the Euclidean 3D space, but a whole class of Fourier analysis stems from
it, with an equivalent of such decomposition on the 2D sphere is the spherical harmonic transform, which has
profound implications in many physical fields, such as atomic physics, quantum mechanics, electromagnetism,
and cosmology. In our case, the statistical properties of the field are invariant by translation thanks to CMB
statistical isotropy. This implies that the Fourier modes are statistically independent, which is a powerful
property that we will exploit in the following sections.
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3.1.1 Random fields on the sphere

Definitions In the subsequent chapter, we will treat the CMB as a random field on the sphere S2 ={
x ∈ R3 | ||x|| = 1

}
. Specifically, we postulate that the CMB anisotropies can be modeled as isotropic Gaussian

random fields. While we cannot predict the exact values of the CMB anisotropies in a given direction, we can
determine their statistical properties. The field follows a Gaussian distribution, implying that its probability
distribution function is fully characterized by its mean and covariance. The covariance is expressed as

⟨T (û)T (n̂)⟩ = ξ0(û, n̂), (3.2)

where the averaging operator ⟨·⟩ represents the expected value over all possible realizations of the field. It is
worth noting that a less stringent assumption can be made by considering the possibility of departures from
strict Gaussianity in the CMB. Such departures allow for the existence of higher-order correlation functions,
which provide valuable insights into the properties of the early Universe and its inflationary phase. While the
investigation of higher-order correlation functions is a fascinating avenue of research, it falls beyond the scope
of this work. The covariance is also known as the two-point correlation function of the field. Furthermore, the
CMB field exhibits statistical isotropy, which implies that its statistical properties remain unchanged under
any rotation of the sphere. Consequently, the two-point correlation function of the field solely depends on the
angle θ between two points on the sphere, denoted by n̂ · û = cos θ.

⟨T (n̂)T (û)⟩ = ξ0(θ). (3.3)

CMB polarization The spin-2 Q and U fields need to be properly rotated before defining their correlation
functions. Given the line-of-sights, n̂ and û, we use the combined parameter P = Q+ iU and define the rotated
parameters P̄ (n̂), P̄ (û) ≡ e2iαP (n̂), e2iγP (û), where α and γ are the angles required to rotate the local basis
at, respectively, n̂ and û so that they are aligned with the sphere geodesic between n̂ and û. Once this rotation
is done, the correlation functions between the Stokes parameters are given by




⟨P̄ (n̂)P̄ (û)⟩ ≡ ξ−(θ)
⟨P̄ ∗(n̂)P̄ (û)⟩ ≡ ξ+(θ)
⟨T (n̂)P̄ (û)⟩ ≡ ξ×(θ)

⇔





2⟨Q̄(n̂)Q̄(û)⟩ = [ξ+ + ℜ[ξ−]] (θ)
2⟨Ū(n̂)Ū(û)⟩ = [ξ+ −ℜ[ξ−]] (θ)
2⟨Q̄(n̂)Ū(û)⟩ = ℑ[ξ−](θ)
⟨T (n̂)Q̄(û)⟩ = ℜ[ξ×](θ)
⟨T (n̂)Ū(û)⟩ = ℑ[ξ×](θ)

(3.4)

where we have defined the real and imaginary part operators ℜ and ℑ, respectively. Due to the statistical isotropy
of the temperature and polarization field T, P , the correlation function ξ0(θ) and ξ+(θ) are real. However, the
other correlation functions are complex in general, but their imaginary part cancels as we assumed that the
Universe is parity-invariant in mean (Chon et al., 2004). In other words, if we define the parity transformation
as

P (n̂) → P ∗(−n̂), (3.5)

and assume that this transformation should not affect the correlation functions on average, then

⟨Q̄(n̂)Ū(û)⟩ = 0, ⟨T (n̂)Ū(û)⟩ = 0. (3.6)

Estimator In the context of pixelated maps, it is more convenient to work with the two-point correlation
function in the pixel domain. Therefore, we use vectors of size npix that represent maps and we define the
matrix of all possible two-point correlation functions between pixels as

⟨T (n̂i)T (n̂j)⟩ = ⟨TiT⊤
j ⟩ = ξij = ξ(θij), (3.7)

where n̂i and n̂j represent the unit vectors associated with pixels i and j, respectively, and θij is a npix × npix
matrix giving the angle between these two pixels. Since it contains all the statistical information, we aim to
reconstruct the two-point correlation function of the field from a single realization of the field. In practice,
it is not feasible to measure an infinite number of CMB realizations to obtain the exact covariance function,
and thus we can only estimate it based on the available unique realization. We can estimate the temperature
two-point correlation function of an isotropic field from a single realization of the field using the following binned
estimator, defined in Szapudi et al. (2001):

ξ̄(θ) =
1∑
ij f

θ
ij

npix∑

i,j=1

fθijTiTj =⇒ ⟨ξ̄(θij)⟩ = ξ(θij) ∀i, j. (3.8)
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where fij = 1 is a window function that is one when the angles between corresponding pixels are in the bin
θij = θ, enabling the extraction of the relevant pixels. We encapsulate the estimation of a correlation from a
map into the non-invertible operator G as

ξ̄ = G(T, T ), (3.9)

where we allowed the operator to take as input two different maps. The estimator is unbiased, meaning that
its expected value is equal to the true value of the two-point correlation function. Its covariance is given by

cov
(
ξ̄(θ1), ξ̄(θ2)

)
=

1∑
ij f

θ1
ij

∑
kl f

θ2
kl

npix∑

i,j,k,l=1

fθ1ij f
θ2
kl [ξ(θik)ξ(θjl) + ξ(θil)ξ(θjk)] . (3.10)

This approach is not optimal because since the pixels are correlated, the estimator of the two-point correla-
tion function is dense and highly non-diagonal, which makes it unsuitable for parameter estimation as it can
propagate errors. We can solve this problem by considering the two-point correlation function in the harmonic
domain, as we will see in Section 3.1.2.

In summary, by considering the CMB as an isotropic Gaussian random field, we can characterize entirely
its statistical properties through its two-point correlation function. The two point-correlation introduced here
is the most basic statistical property of the field, used in Eq. (3.1). We will now introduce the Legendre
decomposition and the spherical harmonic transform, which allows us to express the two-point correlation
function in the harmonic domain, where its covariance is diagonal and sparse, making it more suitable for
parameter estimation, as we will see in Chapter 4 (Efstathiou, 2004; Percival and Brown, 2006).

3.1.2 Harmonic decomposition
The harmonic analysis of the CMB anisotropies naturally put forward typical scales and patterns in the temper-
ature and polarization fields. It allows us to study spatial angular modes on the sphere, which are intrinsically
related to independent primordial anisotropy modes. The harmonic analysis of the CMB anisotropies is based
on the spherical harmonic transform, which we introduce in this section.

Spin weighted spherical harmonics Complete and orthogonal sets of polynomials on the two-dimensional
sphere can be constructed for Fourier analysis. This is achieved through the spin-weighted spherical harmonic
decomposition, extensively discussed in Penrose (1966); Goldberg et al. (1967). The spin-weighted spherical har-
monics sYℓm(n̂), characterized by their degree or multipole ℓ, and order m, form an infinite set of spin-weighted
orthogonal polynomials on the sphere for any spin s. The standard set of spherical harmonics corresponds to
the spin-0 scenario and finds widespread utilization across various physics domains. For the analysis of CMB
polarization, the spin-2 set of spherical harmonics emerges as particularly advantageous. By employing the
appropriate spherical harmonics, we can express the temperature field T (n̂) and the polarization field P (n̂) as
expansions involving their respective spherical harmonics.
{
T (n̂) =

∑
ℓm aTℓm0Yℓm(n̂)

(Q± iU)(n̂) =
∑

ℓm(aEℓm ∓ iaBℓm)∓2Yℓm(n̂)
⇔

{
aTℓm =

∫
dn̂T (n̂)0Y ∗

ℓm(n̂)
(aEℓm ∓ iaBℓm) =

∫
dn̂(Q± iU)(n̂)∓2Y

∗
ℓm(n̂)

(3.11)

With those definitions, the following relations are verified

aXℓm = (−1)maXℓ−m ∀X ∈ {T,E,B}. (3.12)

The E and B modes are a natural decomposition of the linear spin-2 polarization field in the CMB. In the context
of the CMB, polarization vectors of the E modes are directed radially around cold spots and tangentially around
hot spots. These E modes are curl-free and primarily arise due to density fluctuations in the early universe,
followed by the scattering of CMB photons by these fluctuations. They exhibit a gradient-like pattern and
are responsible for the observed striped patterns in CMB polarization. On the other hand, the B modes
of the CMB polarization field are divergence-free and exhibit a curl or vorticity around any direction of the
sky. They are particularly significant as the detection of primordial B-modes might provide evidence for the
inflationary theory of the early universe. B modes arise due to primordial gravitational waves generated during
the inflationary phase (Baumann et al., 2009). These B modes display a vorticity-like pattern and offer valuable
insights into the physics of the early universe. These physical properties of the E and B modes are related
to parity transformations. Specifically, the spin-2 spherical harmonic coefficients, denoted as aEℓm and aBℓm,
undergo specific transformations under parity. As stated in Eq. (3.5), the E-mode coefficients transform as
aEℓm → (−1)ℓaEℓm, while the B-mode coefficients transform as aBℓm → (−1)ℓ+1aBℓm. This parity behavior of the
spherical harmonic coefficients further highlights the distinct properties of the E and B modes in the CMB
polarization field. As a result, the power spectra CEE

ℓ and CBB
ℓ are even under parity, while CTE

ℓ and CTB
ℓ are

odd. Structure and parity properties of the E and B modes are illustrated in Fig. 3.1. We compact Eq. (3.11)
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Figure 3.1: Pure E-mode and B-mode patterns of polarization. Note that if reflected across a line going through
the center the E-patterns are unchanged, while the positive and negative B-patterns get interchanged. Figure
from Baumann et al. (2009).

into an operator form, which we will use extensively in the following,
{
T = SHT−1

0 · aT
(Q± iU) = SHT−1

∓2 · (aE ∓ iaB)
⇔

{
aT = SHT0 · T
(aE ∓ iaB) = SHT∓2 · (Q± iU)

(3.13)

In the context of our analysis, harmonic coefficients are considered Gaussian random variables, as they are
obtained from the harmonic decomposition of the temperature and polarization fields, which are themselves
Gaussian random variables, with zero mean. As they are isotropic, their statistical properties do not depend
on the order m, and their variance is given by the angular power spectrum.
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 (3.14)

In other words,
⟨aXℓm⟩ = 0, ⟨aXℓmaX

′∗
ℓ′m′⟩ = δℓℓ′δmm′CXX′

ℓ ,∀X,X′ ∈ {T,E,B}. (3.15)

These properties make it straightforward to generate a realization of the harmonic coefficients, given a set of
theoretical power spectra. One can first draw a unity variance noise realization and color it with the square
root of the covariance matrix, here the power spectrum. This is easily obtainable using Cholesky decomposition
of the spectra (Petersen and Pedersen, 2012). Going back to real space, we can then obtain a realization of the
temperature and polarization fields. This is the approach we will use in the following to generate pure Gaussian
simulations of the CMB sky, with the HEALPix software.

From spherical harmonic transform to Legendre decomposition In spherical harmonic analysis,
Wigner D-matrices play a crucial role in propagating the properties of spin fields into the harmonic domain
(Khersonskii et al., 1988; Ng and Liu, 2001). These matrices are representations of the SU(2) group and serve
as rotation operators for spherical harmonics and can be obtained from spin-weighted spherical harmonics using
the relation:

Dℓ
ss′(α, β, γ) =

4π

2ℓ+ 1

∑

m

sY
∗
ℓm(n̂)s′Yℓm(n̂′), (3.16)

where α, β, and γ are the Euler angles defining the rotation from n̂ to n̂′. We can introduce a set of general
1D polynomials, known as reduced Wigner D-matrices:

dℓss′(β) = eisαDℓ
ss′(α, β, γ)e

−is′γ . (3.17)
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The reduced Wigner matrices can be used to decompose the 1D real line into series expansion, as in particular,
the spin-0 case is the well-known Legendre decomposition. Concerning spin-2, the rotation of the polarization
fields in Eq. (3.4) is done in an analogous way we defined Eq. (3.17), showing the intrinsic relations between the
two. From equations (3.16) and (3.17), we obtain the addition theorem, which establishes a connection between
spherical harmonics and the Legendre decomposition.

Pℓ(n̂ · û) ≡ dℓ00(arccos(n̂ · û)) = 4π

2ℓ+ 1

ℓ∑

m=−ℓ

0Yℓm(n̂)0Y
∗
ℓm(û) =⇒ 4π

2ℓ+ 1

∑

ℓm

0Yℓm(n̂)0Y
∗
ℓm(n̂) = 1. (3.18)

The last equality is known as the Unsöld theorem for spin-0 fields. We can rewrite the addition theorem by
first introducing a new operator, H, which sums spherical harmonic coefficients of the same multipole ℓ,

Hℓ (a, b) ≡
1

2ℓ+ 1

ℓ∑

m=−ℓ

aℓmb
∗
ℓm =⇒ Pℓ(n̂ · û) = 4πHℓ (0Y, 0Y ) . (3.19)

In our study of isotropic fields, where statistical properties do not depend on direction, we can leverage the
relationship between spherical harmonics and Legendre polynomials. Indeed, the degree ℓ of spherical harmonics
indicates the mode number while the order m is related to the direction of the associate mode on the sphere.
Assuming isotropy implies that any direction is equivalent, allowing us to consider that all orders m for a
given degree ℓ have the same statistical properties. Using Eqs. (3.15) and (3.18), we can write the two-point
correlation function as

ξ0(arccos n̂ · û) = ⟨T (n̂)T (û)⟩ =
∑

ℓm,ℓ′m′
0Yℓm0Y

∗
ℓ′m′⟨aTℓmaT∗

ℓ′m′⟩ (3.20)

=
∑

ℓ

CTT
ℓ

∑

m

0Yℓm(n̂)0Y
∗
ℓm(û) =

∑

ℓ

2ℓ+ 1

4π
CTT

ℓ Pℓ(n̂ · û). (3.21)

⇔ ξ0 = L−1
0 · CTT (3.22)

This is the Wiener-Khinchin theorem equating the power spectrum of a random field as the Fourier transform of
its two-point correlation function. The same can be done for polarization, using the spin-2 spherical harmonics
and the completeness relations introduced above,

ξ+(θ) =
∑

ℓ

2ℓ+ 1

4π

(
CEE

ℓ + CBB
ℓ

)
dℓ22(θ), (3.23)

ξ−(θ) =
∑

ℓ

2ℓ+ 1

4π

(
CEE

ℓ − CBB
ℓ − 2iCEB

ℓ

)
dℓ2−2(θ), (3.24)

ξ×(θ) =
∑

ℓ

2ℓ+ 1

4π

(
CTE

ℓ − iCTB
ℓ

)
dℓ20(θ). (3.25)

We compact those relations into an operator form, which we will use extensively in the following,

CTT = L0 · ξ0, CEE + CBB = L+ · ξ+, CEE − CBB − 2iCEB = L− · ξ−, CTE − iCTB = L× · ξ×. (3.26)

Note that the Legendre operator L and its inverse L−1 are linear operators.

3.1.3 Relations in harmonic and real space
In the next Section 3.2, we will write relations in real and harmonic space to build unbiased estimators of the
CMB power spectrum, using tools introduced in the following. More details can be found in Hivon et al. (2002).

From scalar multiplication to matrix multiplications A principal property of Fourier analysis is the
convolution theorem, which states that scalar multiplication is transformed into convolution in the dual space.
This property is not valid anymore when working on the curved sphere, however, we can derive an equivalent
class of relations. We define for a map W , the following matrix sIℓmℓ′m′ [W ],

sIℓmℓ′m′ [W ] ≡
∫

dn̂ sYℓm(n̂)W (n̂)sY
∗
ℓ′m′(n̂) ∀s ∈ {0,±2}, ∀ℓ, ℓ′,m,m′. (3.27)

We can then write the following relations, for any spin-s field Fs,

SHTs · (W × Fs) = sI[W ] ∗ (SHTs · Fs) (3.28)
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where ∗ denotes the matrix multiplication operator and × the scalar multiplication. For a function w of the
polar coordinate, we define the mode-coupling operator Ξ acting on w and outputing a symmetric matrix as
follows:

Ξss′
ℓℓ′ [w] ≡

1

2

∫ π

0

w(θ)dℓss′(θ)d
ℓ′
ss′(θ) d cos θ. (3.29)

If the function is set to one, then the orthogonality of the reduced Wigner matrices implies that the operator
gives the identity matrix. Adding a right multiplication by a rescaling factor, we define the non-symmetric
matrices as

0Mℓℓ′ = (2ℓ′ + 1)Ξ00
ℓℓ′ [w], ±Mℓℓ′ ≡ (2ℓ′ + 1)Ξ2±2

ℓℓ′ [w], ×Mℓℓ′ ≡ (2ℓ′ + 1)Ξ20
ℓℓ′ [w]. (3.30)

For any function fs, we have

Ls · (w × fs) = sM ∗ (Ls · fs), ∀s ∈ [0,±,×]. (3.31)

Focus on the mode-coupling matrix In the previous paragraph, we introduced the symmetric matrix
Ξ[w], which plays a crucial role in deriving useful relations in harmonic space. In Eq. (3.29), we defined Ξ[w]
as a function of the polar function w. However, we can extend the definition of the operator Ξ to act on a
spectrum, where:

Ξss′
ℓℓ′ [W] ≡ Ξss′

ℓℓ′ [L
−1
0 W]. (3.32)

For any function w, we have:

W ≡ L0 · w =⇒ Ξss′
ℓℓ′ [w] =

∑

L

2L+ 1

4π
WL

(
ℓ ℓ′ L
s −s 0

)(
ℓ ℓ′ L
s′ −s′ 0

)
, (3.33)

where we used the Wigner 3-j symbols (Khersonskii et al., 1988). We can relate the mode-coupling symmetric
operator of Eq. (3.29) to the coupling coefficients relying on the addition theorem of Eq. (3.18). We have, for
any spin-s, the following orthogonality relations for coupling coefficients, see Hivon et al. (2002) for more details,

∑

ℓm

sIℓ1m1ℓm[W1]sI
∗
ℓ2m2ℓm[W2] = sIℓ1m1ℓ2m2 [W1W2], (3.34)

∑

m1m2

sIℓ1m1ℓ2m2 [W1]s′I
∗
ℓ1m1ℓ2m2

[W2] = (2ℓ1 + 1)(2ℓ2 + 1)Ξss′
ℓ1ℓ2 [G(W1,W2)], (3.35)

where G is the two-point correlation function estimator defined in Eq. (3.9), giving the two-point correlation
function of the input maps. This leads us to extend the mode-coupling operator so that it acts on map W1,W2,
with

Ξss′
ℓℓ′ [W1,W2] ≡ Ξss′

ℓℓ′ [G(W1,W2)]. (3.36)

The symmetric mode-coupling operator will be used throughout this chapter to expand relations between the
power spectrum estimator and the expected theory. It also constitutes a building block of the covariance matrix
as we will later detail in Chapter 4. We have seen through this section that one can write direct relations
between quantities in real space and their equivalent in harmonic space.

L ·G(W1T1,W2T2) = H (SHT ·W1T1, SHT ·W2T2) =M ∗H (SHT · T1,SHT · T2) , (3.37)
where Mℓℓ′ = (2ℓ′ + 1)Ξℓℓ′ [G(W1,W2)].

This last relation is a concise way to write
∫ 1

0

d cos θPℓ(cos θ)

∫∫
dn̂dûT (n̂)T (û)δ(n̂ · û− cos θ) (3.38)

=
1

2ℓ+ 1

∑

m

∫
dn̂[Y ∗

ℓmWT ](n̂)

∫
dû[YℓmWT ](û)

=
∑

ℓ′

(2ℓ′ + 1)Ξℓℓ′ [W]
∑

m′

∫
dn̂[Y ∗

ℓ′m′T ](n̂)

∫
dû[Yℓ′m′T ](û)

where WL =
∑

M

∫
dn̂[Y ∗

LMW ](n̂)

∫
dû[YLMW ](û).

52



3.2 Estimators of the power spectrum

In the previous section, we introduced the estimators of the correlation function between the temperature and
polarization fields of the CMB in real space. These quantities provide a comprehensive description of the field
properties. However, in practical observations, it is easier to work in the harmonic domain, necessitating the
estimation of the power spectra from the unique observation of the sky. Assuming isotropy, we recognize that
the harmonic coefficients at the same multipole ℓ possess equal variances. Leveraging this property, an unbiased
estimator for the power spectrum can be obtained by averaging the square of the coefficients over the multipole
ℓ:

C̄XY
ℓ ≡ 1

2ℓ+ 1

ℓ∑

m=−ℓ

aXℓma
Y∗
ℓm, =⇒ ⟨C̄XY

ℓ ⟩ = CXY
ℓ , ∀X,Y ∈ {T,E,B}. (3.39)

It is important to note that this estimator has a nonzero variance due to its reliance on random variables.
Consequently, it is not expected to perfectly reconstruct the true underlying power spectrum. As highlighted
in Percival and Brown (2006), the variance of this full-sky estimator is given by:

σ2
C̄XY

ℓ
=

1

2ℓ+ 1

(
CXY

ℓ

2
+ CXX

ℓ CYY
ℓ

)
. (3.40)

The limitation of information in estimating cosmological parameters is a well-known challenge faced by every
cosmological experiment, known as cosmic-variance. To address this issue, Bayesian formalism is particularly
suitable. In Chapter 4, we will delve into the details of the Bayesian framework and its application to parameter
estimation. Another noteworthy characteristic of this estimator is its direct relation to the equivalent estimator
in real space, as derived in Eq. (3.8), where C̄ = L · ξ̄. In practice, to perform the estimation, we employ
the HEALPix package introduced in Section 2.2.1 to conduct spherical harmonic decompositions, which scale as
O(ℓ3max), where ℓmax is the maximum multipole of the decomposition.

3.2.1 Mask and pseudo-power spectrum
The sky is masked both due to the instrument scanning strategy and to avoid spurious foreground contamina-
tions. Foregrounds can be galactic dust contamination, radio sources, AGNs, clusters, or dusty galaxies. We
detailed the construction of the mask in Section 2.3.2. As a consequence, the power spectrum is measured on
the partial sky. Efforts have been made to recover the power spectrum with minimal information loss using
maximum-likelihood approaches (Bond et al., 2000; Wandelt et al., 1998) or minimum-variance and quadratic
estimators (Tegmark, 1997; Tegmark and de Oliveira-Costa, 2001; Vanneste et al., 2018). However, the computa-
tional implementation of these methods becomes highly expensive for high-resolution data. The computational
cost scales as O(ℓ6max) for maximum multipole ℓmax or O(ℓ4max) for optimal algorithms like Wandelt and Hansen
(2003). The alternative pseudo-power spectrum approach was first used by Yu and Peebles (1969), and has
gained popularity. Those algorithms preserve the scaling of O(ℓ3max) of spherical harmonic transforms. It can be
optimized for measuring the CMB E/B-mode power spectrum (Lewis et al., 2002; Bunn et al., 2003; Challinor
and Chon, 2004; Chon et al., 2004; Smith, 2006; Grain et al., 2009; Bunn, 2011). Several useful publicly available
codes exist to perform these calculations, including MASTER (Hivon et al., 2002), NaMaster (Alonso et al., 2019),
PolSpice (Szapudi et al., 2001; Chon et al., 2004), and Xspect, Xpure (Tristram et al., 2005; Grain et al., 2009).
In this section and our analysis pipeline, we will focus on the MASTER and PolSpice framework, used in the
Planck pipeline (Planck Collaboration et al., 2020b), which allows fast and reliable computation and debiasing
of the pseudo-power spectrum and associated covariance matrix.

Let us consider that we only observe (TW,QW,UW ), where W is the mask. This operation is also known
as a Gabor transform and its impact in harmonic space has been extensively studied in Hansen et al. (2002). In
the following and for the rest of this work, all pseudo quantities, i.e. masked quantities, will be labeled with
a tilde. The pseudo-harmonic coefficients are defined as

ãT ≡ SHT0 · (W × T ),
(
ãE ∓ iãB

)
≡ SHT∓2 · (W × (Q± iU)). (3.41)

We can relate the pseudo-harmonic coefficients to the harmonic coefficients of the underlying maps with the
aforementioned coupling coefficients of Eq. (3.28),

ãT = 0I[W ] ∗ aT,
(
ãE ± iãB

)
= ±2I[W ] ∗

(
aE ± iaB

)
. (3.42)

In the full-sky case, we obtain sIℓmℓ′m′ [1] = δℓℓ′δmm′ through the orthonormality properties of the spin-weighted
spherical harmonics. In the top-hat window case, Wandelt et al. (1998) has derived an analytical expression of
such kernels, while Challinor et al. (2002) did it for the ring case. In this work, we developed a code relying on
the HEALPix package to compute those coefficients at low ℓ,m writing that

sIℓmℓ′m′ = (SHTs · [W sYℓ′m′ ])ℓm . (3.43)
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This operation scales as O(ℓ3max) and is reasonable for low ℓmax. Eq. (3.42) gives a full system of equations.
Inverting this system is impossible as it would imply we could reconstruct the total CMB from a portion of it.
We will rather use the pseudo-harmonic coefficients to estimate the power spectrum, and we will use the coupling
coefficients to estimate the covariance matrix of the power spectrum, as we will see in Chapter 4. The pseudo-
power spectrum C̃XY

ℓ is obtained by squaring the measured pseudo-harmonic coefficients ãXℓm, X,Y ∈ [T,E,B]
with the same multipole ℓ, with

C̃XY
ℓ =

1

2ℓ+ 1

ℓ∑

m=−ℓ

∣∣ãXℓmãY∗
ℓm

∣∣ . (3.44)

Starting from Eq. (3.41), we relate the ensemble average of the pseudo-power spectrum to the underlying power
spectrum using the MASTER mode-coupling kernel with1

⟨C̃TT⟩ = 0M ∗ CTT, 0Mℓℓ′ ≡ (2ℓ′ + 1)Ξ00
ℓℓ′ [W ], (3.45)

⟨C̃EE + C̃BB⟩ = +2M ∗
(
CEE + CBB) , +2Mℓℓ′ ≡ (2ℓ′ + 1)Ξ22

ℓℓ′ [W ], (3.46)

⟨C̃EE − C̃BB − 2iC̃EB⟩ = −2M ∗
(
CEE − CBB − 2iCEB) , −2Mℓℓ′ ≡ (2ℓ′ + 1)Ξ2−2

ℓℓ′ [W ], (3.47)

⟨C̃TE ± iC̃TB⟩ = ×M ∗
(
CTE ± iCTB) , ×Mℓℓ′ ≡ (2ℓ′ + 1)Ξ20

ℓℓ′ [W ]. (3.48)

In the full-sky case, we recover sM = Id. Looking at only the imaginary part of Eqs. (3.46) and (3.47), we have
the following relation for the EB and TB cross-spectra,

⟨C̃EB⟩ = −2M ∗ CEB and ⟨C̃TB⟩ = ×M ∗ CTB. (3.49)

In other words, if the parity is preserved in the mean for the overall CMB, it will also be for the pseudo-power
spectrum.

Mask and its power spectrum The mask determines the survey footprint but also the cuts to the foreground
components, namely the point sources and clusters for the SPT-3G experiment, as detailed in Section 2.1.4.
The MASTER mode-coupling kernels are defined from the mask, and determine the properties of the estimator, as
it gives the bias on the estimated power spectrum but also will determine the structure of its covariance matrix,
as discussed in Section 4.2. Eq. (3.33) puts forward that the mask power spectrum determines the shape of the
kernel, and is further detailed in Louis et al. (2020). The mode-coupling kernel is close to Toeplitz, which is the
expected matrix structure from the convolution theorem. To reduce the long-range mix between multipoles, we
apodize the mask, as described in Section 2.3.2. The border mask and the border and point source mask are
displayed in Fig. 2.27, and associated spectra are displayed in Fig. 3.2. While the low-ℓ features of the power
spectrum are dictated by the border mask, the high-ℓ features are dominated by the small scale feature in the
mask and thus the point source holes. The two peaks in the power spectrum of the border and point source
mask originate in the typical distance separating point sources and the typical hole size. The power spectrum
measured from the border and point source mask is then expected to be correlated between small and large
scales due to this feature. This is further discussed in Section 4.2.

3.2.2 Debiasing the pseudo-power spectrum

In Eqs. (3.45) to (3.48), we highlight that the pseudo-power spectrum, obtained from the pseudo-harmonic
coefficients defined in Eq. (3.41), is a biased estimator of the underlying power spectrum. This bias arises due
to the lack of independence between the pseudo-harmonic coefficients. Despite this bias, the pseudo-power
spectrum contains crucial information about the underlying power spectrum and can be utilized for parameter
estimation, particularly when employing a likelihood-based approach with window functions. Correcting for the
bias is challenging, especially when the MASTER mode-coupling kernel is not invertible due to a small observed
sky patch. On one hand, the Planck survey, although limited by galactic cuts, managed to reconstruct all
temperature modes up to ℓmax = 2500 as they were all probed on the survey footprint. On the other hand, in
the case of the SPT-3G experiment, the maximum angular separation between observed pixels is approximately
100 deg, leading to the inability to probe all large-scale modes. Consequently, alternative methods are required
to de-bias the pseudo-power spectrum. A common practice is to bin across multipoles, enabling the inversion
of the mode-coupling kernels, as we reconstruct only band-powers and not single multipoles. In this work, we
employ the PolSpice software2 (Szapudi et al., 2001; Chon et al., 2004), which utilizes stable and accurate real
space operations to convert the pseudo-power spectrum into a regularized estimator.

1As a reminder, ∗ denotes the matrix multiplication.
2http://www2.iap.fr/users/hivon/software/PolSpice/
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Figure 3.2: Power spectrum of the masks displayed in Fig. 2.27. They are computed asH(SHT·W, SHT·W ). The
scale is linear up to ℓ = 50 and logarithmic thereafter. While apodization helps reduce the small-scale power,
point source masking has the opposite effect. The large-scale behavior of the power spectrum is determined by
the border mask.

MASTER relations in real space In Section 3.1.3, we have discussed the translation of relations from harmonic
space to real space. The advantage of performing calculations in real space is that multiplications in this domain
are equivalent to matrix multiplications in harmonic space, resulting in more efficient computations. To this
end, we define the real space correlation functions ξ̃s = L−1 · C̃ and express the MASTER relations in real space
as:

⟨ξ̃0⟩ = wξ0, ⟨ξ̃+⟩ = wξ+, ⟨ξ̃−⟩ = wξ−, ⟨ξ̃×⟩ = wξ×. (3.50)

Here, w represents the mask angular correlation function, and the ξs correlation function captures the true
underlying properties of the field. The mask angular correlation function can be directly computed from the
mask or obtained from the mask power spectrum through Legendre decomposition. It is important to note
that this relation is exact and does not rely on any approximation. These relations provide a means to de-
bias the pseudo-power spectrum by computing the real space correlation functions and dividing them by the
mask angular correlation function. However, it should be noted that this approach is only valid for angular
separations where the mask correlation function does not vanish, i.e., w(θ) ̸= 0. It is worth mentioning that the
mask correlation function becomes zero for angular separations larger than the maximum angular separation
between two pixels in the map. The presence of vanishing eigenvalues in sM directly relates to the angular
separations where the mask correlation function also vanishes. To overcome this issue, we employ regularization
techniques to stabilize the vanishing elements in real space

PolSpice regularization In line with the PolSpice regularization method proposed by Szapudi et al. (2001),
we introduce a smoothed real space function, denoted as ξ̂, which is corrected for the mask bias and simultane-
ously was smoothed out from the angular scales that are not probed by the mask. This smoothing is achieved
by reducing the contribution of angular scales beyond the maximum angular separation between two pixels in
the map. To accomplish this, we define the scalar apodizing function fapo, which transitions from 1 to 0 over
the angular scale θmax. The function g is then defined as the ratio between the apodizing function and the mask
angular correlation function. The smoothed correlation function in temperature, denoted as ξ̂0, is given by:

ξ̂ ≡ gξ̃, with g(θ) =

{
fapo(θ)/w(θ), ∀θ ∈ [0, θmax]

0, ∀θ ∈ [θmax, π]
(3.51)

As a result of this operation, we can write the average of the smoothed temperature correlation function as:

⟨ξ̂0⟩ = fapoξ0. (3.52)

This equation can be transformed back to harmonic space using Eq. (3.31) to obtain the average of the PolSpice
estimator

ĈTT ≡ L0 · ξ̂0, =⇒ ⟨ĈTT⟩ = 0K ∗ CTT with 0Kℓℓ′ = (2ℓ′ + 1)Ξ00
ℓℓ′ [f

apo]. (3.53)
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The PolSpice estimator is biased, however as fapo(0) = 1, it is properly normalized, i.e.
∑

ℓ′ 0Kℓℓ′ = 0, so
the direct comparison of the measured estimator with the theory spectra does not need to be corrected for the
normalization. In addition, if the apodizing kernel is large enough, the PolSpice kernel K is localized in ℓ-space
and has a similar effect as a binning kernel on the theory spectra. Concerning polarization, the same procedure
can be applied. However, as indicated in Eqs. (3.46) to (3.48), the polarized pseudo-power spectrum has an
expected value that depends on both EE and BB underlying spectra, with

⟨C̃EE⟩ = 1

2

(
2M ∗ (CEE + CBB) + −2M ∗ (CEE − CBB)

)
. (3.54)

E and B modes get coupled through the mask, as they are non-local quantities in real space, and thus cannot
be separated correctly if we only have access to a partial zone of the sky. To obtain pure EE and BB spectra,
we would need to invert the spin-2 mode-coupling matrices as in Challinor and Chon (2004). However, as we
discussed earlier, the mode-coupling matrices are not invertible due to the presence of vanishing eigenvalues. To
circumvent this issue, PolSpice uses non-local integrations in real space to obtain a decoupled biased version
of the EE and BB spectra, exploiting relations between reduced Wigner-D matrices d22 and d2,−2. Starting
from ξ̃+, we can define the following real space function:

ξ̂+(θ) ≡ fapo(θ)

∫
d cos θ′

ξ̃+(θ
′)

w(θ)

∑

ℓ

2ℓ+ 1

2
dℓ2−2(θ)d

ℓ
22(θ

′), (3.55)

and further show that this integration can be performed only on the range θ ∈ [0, θmax] without introducing any
bias while already correcting for the effect of the mask. Another real space function can be defined as ξ̂− = gξ̃−.
The PolSpice estimator for the EE and BB spectra are then given by ĈEE ± ĈBB = L · ξ̂± and follow

⟨ĈEE⟩ = −2K ∗ CEE, ⟨ĈBB⟩ = −2K ∗ CBB, with ±2Kℓℓ′ = (2ℓ′ + 1)Ξ2,±2
ℓℓ′ [fapo]. (3.56)

While +2K is normalized (
∑

ℓ′ +2Kℓℓ′ = 1), −2K is not (see Fig. 3.4). Indeed, as spin +2 is associated with the
sum of EE and BB spectrum, it relates to the power conservation in polarization, while the spin −2 applies
to the difference of EE and BB, thus indicating our ability to distinguish the two separate modes. When
decoupling, we get rid of the mixing by discarding the ambiguous modes, eventually leading to a loss of power.
Pushing further, the same operation can be run for the TE estimator, which is given by ĈTE = L · ξ̂× and
follows

⟨ĈTE⟩ = ×K ∗ CTE, with ×Kℓℓ′ = (2ℓ′ + 1)Ξ2,0
ℓℓ′ [f

apo]. (3.57)

PolSpice not only provides a way to correct for the mask bias but also allows us to decouple the polarization
estimator correctly while efficiently operating in real space. The shape of the PolSpice kernel depends on the
shape of the apodization function fapo, namely its width θmax, and the choice of the apodization function itself.
In the following, we will use a cosine apodization function with a width of θmax = 30deg, given by

fapo(θ) =

{
1
2

(
1 + cos

(
πθ

θmax

))
, ∀θ ∈ [0, θmax]

0, ∀θ ∈ [θmax, π] .
(3.58)

The apodizing function and associated kernels are illustrated in Fig. 3.3. A shallow apodization function gives
a narrow diagonal-like kernel. The PolSpice kernels will be a building block of later window functions for the
likelihood analysis. In the following, I will demonstrate that one can relate the PolSpice spectrum estimator
to the pseudo-spectrum estimator C̃. Taking only the case of temperature, Eq. (3.51) can be translated in
harmonic space as

0ξ̂ = g0ξ̃ → Ĉ = 0G ∗ C̃, with 0Gℓℓ′ = (2ℓ′ + 1)Ξ00
ℓℓ′ [g] (3.59)

The decoupling kernel 0G is equivalent to a pseudo-inversion of the mask mode-coupling matrix 0M . Were
the mode-coupling matrix invertible, we would have 0G = 0K ∗ 0M

−1. For the polarization case, due to the
decoupling operation, the expression of the decoupling kernels is more complicated. I can however show that
the decoupling kernels are given by

−2Gℓℓ′ = (2ℓ′ + 1)Ξ2−2
ℓℓ′ [g], ×Gℓℓ′ = (2ℓ′ + 1)Ξ20

ℓℓ′ [g], +2Gℓℓ′ =
2ℓ′ + 1

2

∫
d cos θg(θ)dℓ22(θ)d

ℓ′
2−2(θ). (3.60)

While the Ξ operator is efficient to compute on arbitrary correlation function, the non-orthogonality of the
reduced Wigner-dmatrices makes the computation of the decoupling kernel +2Gmore computationally expensive
but can be done efficiently using the PolSpice code as an emulator. This is a direct consequence of the
polarization decoupling procedure of PolSpice. I can then show that

ĈEE ± ĈBB = ±2G ∗
(
C̃EE ± C̃BB

)
, and ĈTE = ×G ∗ C̃TE. (3.61)
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Figure 3.3: Illustration of the apodization function and associated kernels. Top left: apodization function fapo.
Top right: PolSpice kernel 0K. Bottom left: Sum over rows of −2K. Bottom right: PolSpice kernel +2K.
The shape of the apodization function determines the width and normalization of the PolSpice kernel.

The kernels are illustrated in Fig. 3.4, with on the left panel the apodized function g = fapo/w and on the
right panel the decoupling kernels. The decoupling kernels are localized around the diagonal, implying that the
decoupling operation is quasi-local in harmonic space. I will use the decoupling kernels to build the window
functions for the likelihood analysis and to compute the spectrum covariance. In the next section, I will show
how to de-bias the band powers from instrumental effects. From now on, we will drop the notations ∗,× that
differentiate the scalar and matrix multiplication, and assume that only matrix multiplications are performed
when not specified otherwise.

3.3 Transfer function and beam deconvolution

The filtering procedure applied to construct the maps in Chapter 2, specifically discussed in Section 2.1.4, results
in a filtered map that possesses different statistical properties compared to the underlying CMB signal. In
particular, due to the removal of iso-latitude large-scale modes, the power spectrum of the filtered map becomes
biased. We make the reasonable assumption that the filtering procedure modifies the harmonic coefficients with
an effective 2D transfer function denoted as f , such that

aℓm → fℓmaℓm. (3.62)

This assumption holds as most of the filtering is performed in Fourier space, where the full sky modes are not
coupled. The measured modes are coupled due to the masking, see Eq. (3.41). The transfer function can be
determined either using the mock observations introduced in Section 2.3.4 or with a faster-emulated version
of the mock observations. In the latter approach, each ring of a generated HEALPix map is filtered using an
equivalent procedure as described in Section 2.1.4. While this method is efficient and allows for testing different
filtering configurations, it does not encompass all the map-making procedures as comprehensively as the full
suite of mock observations. The harmonic coefficients averaged from 30 mock observations, denoted as fℓm, are
displayed in Fig. 3.5. As expected, the imaginary part cancels out since it is related to the localization of the
associated mode on the sphere. The transfer functions exhibit consistency across frequencies, which is to be
expected as the filtering procedure is independent of frequency. The significant suppression observed for large
m/ℓ values is a consequence of the survey mask. The SPT-3G survey footprint is situated low in the sky, and
as a result, 0Yℓm modes with m/ℓ ∼ 1 are located close to the equator. Therefore, these modes are typically
not probed by the survey footprint, leading to a sharp cutoff in the transfer function. On the other hand,
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Figure 3.4: Left: Function g = fapo/w where w is the two-point correlation function of the mask. At null
angular separations, g(0) indicates the inverse of the sky fraction. Increasing θ is first associated with a rise in g
due to the mask contribution, further damped at larger angular separations thanks to the apodization function
and reaching zero at θmax = 30deg. Right: Row ℓ′ = 300 of associated decoupling kernels. The decoupling
kernels are localized around the diagonal. The behavior of g determines the shape of G, which relates the
pseudo-power spectrum estimator to the PolSpice one.

spherical harmonics with low-order m are suppressed by the filtering strategy since they correspond to modes
with large-scale variations in the scanning direction, which are filtered out by the high-pass filter employed
during scan filtering. A low-m real spherical harmonic is illustrated in the left panel of Fig. 3.6, while a m/ℓ ∼ 1
real spherical harmonic is depicted in the right panel, demonstrating the delineation of the survey footprint
in lime green. For low m, the transfer function exhibits nearly linear growth from 0 to 1 between m = 100
and m = 200. Across the rest of the ℓ,m range, the transfer function remains close to unity, as the filtering
procedure has minimal impact on these modes. It is important to note that the estimation of the transfer
function shows statistical deviations, even when measured on a noiseless sky. This arises because the transfer
function is estimated from a finite number of mock observations, making it susceptible to statistical fluctuations.
To reduce the statistical uncertainty and facilitate error propagation from the transfer function to the power
spectrum, we will characterize the transfer function further using a larger number of mock observations.

Power spectrum transfer function As put forward in Hivon et al. (2002), the transfer function is used
to de-bias the power spectrum measured on the maps. The debiased power spectrum is given by Ĉu

ℓ = Ĉℓ/Fℓ

where Fℓ is the transfer function. I use mock observations to measure the transfer function representing the
effect of the map-making on the measured power spectrum. The AGORA software is used to produce input
skies in all frequency channels, of which I compute the PolSpice power spectrum estimator Ĉν×µ;input

ℓ;i . The
same estimator is applied to the output of the mock observation pipeline, to obtain Ĉν×µ;output

ℓ;i . The transfer
function is estimated through

F ν×µ;est
ℓ ≡

∑
i Ĉ

ν×µ;output
ℓ;i∑

i Ĉ
ν×µ;input
ℓ;i

. (3.63)

The averaged Fℓ estimator shows statistical fluctuations, which are reduced by increasing the number of mock
observations and the error needs to be propagated to the covariance matrix of the power spectrum.

Alternative pipeline From the filtering settings, a quick and efficient analytical pipeline has been developed
by a collaborator to account for the effect of filtering on the signal. This pipeline outputs the transfer function
F ana;µ×ν
ℓ . This work will be published in a scientific journal (Hivon, Doussot, Camphuis, et al., in prep.).

In Fig. 3.7 are displayed the transfer functions measured from the mock observations and obtained with this
emulated pipeline. The two transfer functions are consistent. Their remarkable agreement demonstrates that
we understand precisely the impact of the filtering on the signal.

Beam deconvolution In Section 2.2.4, we described the effect of the beam on the maps by a convolution
with a quasi-axisymmetric Gaussian beam of frequency-dependent width. We deconvolve the effect of the beam
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Figure 3.5: Left: 2D fℓm transfer function for different frequencies. Right: Slices of fℓm for constant m at
95GHz (top), for constant ℓ at 150GHz (middle) and for constant ℓ at 220GHz (bottom). Real parts are plotted
as thick lines while imaginary parts are plotted as thin lines. The transfer functions are plotted only for the
temperature but are similar for the E polarization. The 2D transfer function indicates which ℓm modes are
suppressed due to filtering at low m, as the high m suppression is due to the real space masking.
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Figure 3.6: Real spherical harmonics 0Yℓm for ℓ,m = 120, 15 (left) and ℓ,m = 120, 100 (right). While low-order
m spherical harmonics show large-scale components in the scan direction, high-order m spherical harmonics are
localized on the equator, hence justifying the structure of the 2D transfer function displayed in Fig. 3.5. Maps
are displayed in Lambert’s azimuthal equal-area projection.
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Figure 3.7: Transfer function F 220×220;est
ℓ measured from 30 mock-observations and F 220×220;ana

ℓ from the
analytical pipeline in temperature and polarization. The power is suppressed on all scales due to the filtering,
especially on large scales, which are filtered to remove the atmosphere contribution.

by dividing the harmonic coefficients by the beam window function

Bν
ℓ ≡ L ·Bν(θ), (3.64)

where Bν(θ) is the beam profile at frequency ν and L is the Legendre transform. The beam transfer function
is displayed in Fig. 2.13. We also compute the pixel-window function P, which depends on the field spin.

3.4 Noise spectra

The noise maps are essential data products generated by the SPT-3G map-making pipeline. These maps play
a crucial role in characterizing the noise properties of the resulting maps and modeling the noise in the power
spectrum estimation. To obtain the noise maps, a series of steps described in Section 2.3.3 are followed. Then, I
compute the pseudo-harmonic coefficients ñℓm by applying a spherical harmonic transform after masking with a
mask including point source masking. Next, I use the PolSpice approach to compute the mask-debiased power
spectra Nµ×ν

ℓ . In Fig. 3.8, I present the real and imaginary parts of nℓm measured at 95GHz on a single noise
map estimation. Modes ℓ,m < 300 are all suppressed due to the filtering strategy, while high m/ℓ modes are
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Figure 3.8: On the left, the real and imaginary part of the noise spherical harmonic coefficients nℓm measured on
a single noise map estimation at 95GHz. Blue and green lines correspond to the slice plotted with corresponding
colors on the right plot. The noise is uniform on all ℓm modes, suppressed at low m due to the filtering, and
at high m due to the real space masking.
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suppressed by the masking. The noise coefficients are complex, and the real and imaginary parts have similar
power, as expected for a white noise process. The noise power spectra measured and averaged over 63 noise maps
estimations are displayed in Fig. 3.9, with Planck best fit TT and EE spectrum as indications. At larger scales,
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Figure 3.9: Top: Auto-frequency noise power spectra, in TT (blue) and EE (green). Bottom: Cross-frequency
noise power spectra in temperature only, plotted against auto-frequency noise power spectra. The power spectra
have been measured on 63 noise map estimations, and corrected by the emulated transfer function F ana. The
Planck best fit TT (dot) and EE spectra (dash-dot) are plotted as grey lines. The noise exhibits its expected
behavior of residual 1/f at large scales in temperature, and flat white noise at high multipoles. The polarization
noise is white and larger than the temperature noise. The temperature noise is correlated across frequencies on
the large scales due to the common observed atmosphere, but decorrelates on the small scales. The polarization
noise exhibits no significant correlation.

the dominant source of temperature noise arises from the 1/f contribution caused by atmospheric contamination.
However, at smaller scales, the noise is flat, similar to the noise observed in polarization measurements. It is
important to note that the experiment noise exhibits correlations across different frequencies. This correlation
arises due to the shared use of detectors across frequencies, leading to correlated electronic and line-of-sight
atmospheric noise. To ensure accurate analysis, the noise power spectra undergo correction for the transfer
function. This correction is particularly significant at larger scales where the transfer function values are small.
The excedent large-scale power for ℓ < 300 is due to residual large-scale noise boosted by the transfer function
inversion. It is not significant since those modes are not used in the analysis. The noise power spectra play a
crucial role in both the inpainting procedure and the estimation of covariance. In the inpainting procedure, I
use these spectra to inform the reconstruction of missing data points. Additionally, in covariance estimation, I
use the noise power spectra to accurately model the noise contribution to the covariance matrix.

3.5 Bundles cross-spectrum analysis

3.5.1 Band powers

The map-making procedure outputs a set of nbun maps (T,Q,U)
i for i ∈ [1, nbun], see Section 2.2.3, each of them

being the CMB and foreground filtered signal at each frequency with different noise realizations. I compute
the cross-spectrum between each bundle i and j for every frequency channel as

C̃Xiν,Yjµ = H
[
ãXiν , ãYjµ∗] , ∀i, j ∈ [1, nbun] s.t. i ̸= j,∀ν, µ ∈ [95, 150, 220]GHz,∀X,Y ∈ [T,E] , (3.65)
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and remove the mask bias using the PolSpice procedure. I also correct the power spectrum using the by-
products of the analysis pipeline

ĈXiν,Yjµ
ℓ → 1

AXν,Yµ
ĈXiν,Yjµ

ℓ , (3.66)

where
AXν,Yµ

ℓ = FXν,Yµ
ℓ Bν

ℓB
µ
ℓ PX

ℓ PY
ℓ . (3.67)

In this definition, FXν,Yµ
ℓ is the transfer function obtained from mock observations as in Eq. (3.63), the beam

is obtained as the Legendre decomposition of the measured real-space profile see Eq. (3.64) and P is the pixel
window function obtained with the HEALPix software. This operation is done so that we have the following
equation

〈
ĈXiν,Yjµ

ℓ

〉
= CXν,Yµ

ℓ + δij
NXν,Yµ

ℓ

AXν,Yµ
ℓ

, (3.68)

where CXν,Y µ is the underlying power spectrum of the observed CMB anisotropies. The bundles are chosen
to have a consistent signal-to-noise ratio, and this explains why the second term of the right-hand side of the
previous equation does not depend on the bundle index. For two different bundles, the signal is identical while
the noise is uncorrelated. The cross-spectrum approach is motivated to remove the noise bias by taking only
the combinations i ̸= j, see Polenta et al. (2005), and trades bias correction for more variance than the auto-
spectrum approach. However, the additional variance is scaling as n−1

bun and is thus reduced when the number
of bundles is large. The number of bundles is chosen so that the noise uniformity is ensured across the sky
while nbun is maximal, allowing for small additional variance and an accurate estimation of the noise covariance
matrix of the band powers, see Section 4.2.2. The cross-spectrum between two distinct bundles has no noise
bias, but still has the noise variance as further discussed in Section 4.2. I then obtain the final estimator by
averaging the cross bundles spectra defined in Eq. (3.68), as

ĈXν,Yµ =
1

nbun(nbun − 1)

∑

i,j ̸=i

ĈXiν,Yjµ =⇒
〈
ĈXν,Y µ

〉
= CXν,Y µ. (3.69)

Before further analysis and to reduce the correlation between multipoles as well as errors on the final estimator,
I apply a binning procedure to the power spectrum, by averaging over a width of ∆ℓ = 25. The binning operator
is defined as

Pbℓ ∝
1

2π

ℓ(ℓ+ 1)

∆ℓ
if ℓ ∈ [ℓb−1, ℓb] and 0 otherwise, with

∑

ℓ

Pbℓ = 1 and Ĉb =
∑

ℓ

PbℓĈℓ. (3.70)

The renormalization by ℓ(ℓ + 1) is applied to flatten the power spectrum, and corresponds to having uniform
map variance per multipole. The band powers Ĉ are the main observable of our analysis. They are the result
of the data processing pipeline and are the input of the likelihood function. A preliminary version is displayed
in Fig. 3.22, with conservative multipole cuts ℓmin = 300 and ℓmax = 4000. This version is obtained using the
apodized mask including source masking, and will be updated after running the Gaussian-constrained realization
on the data as described in the next chapter. Both binning scheme and multipole cuts will be improved after
completing null tests and consistency checks, see Section 4.3.

3.6 Gaussian constrained realization

The microwave sky is populated by numerous point sources, which not only pose challenges for accurate power
spectrum estimation but also affect the reconstruction of the CMB temperature map by introducing significant
flux contamination in the time stream. To mitigate the impact of these point sources, they are masked out
during the map-making procedure, see Section 2.2. However, this leaves us with a masked map that is unsuitable
for accurate power spectrum covariance estimation. Although the master debiasing procedure introduced in
Section 3.2.2 can potentially be applied to any mask, it is important to note that the statistical properties of
the estimator are dependent on the specific mask used. As discussed further in Chapter 4, the variance of the
power spectrum estimation is influenced by the mask. We demonstrate in Section 3.6.1 that the variance of the
power spectrum is larger if measured with a mask including point source masking as opposed to pure border
masking. This discrepancy arises from the fact that modes get mixed when analyzed through a mask with holes,
as large-scale modes are effectively seen as small-scale ones. Moreover, it is challenging to compute analytically
this mixing at the covariance level and standard approaches for covariance computation fail to estimate the
covariance. A way to solve this problem is to fill in the masked region with a physically motivated model
of the CMB, and this is the technique I have decided to perform on the SPT-3G data. Let me emphasize
that I obtained all the results mentioned in this chapter and that this work will be submitted for publication
(Camphuis, Benabed, et al., in prep).
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Inpainting techniques for reconstructing missing regions of the CMB sky have been extensively studied in
the literature as presented in this paragraph. Simply masking the sky by assigning zero values to contaminated
pixels results in a loss of information and reduced statistical power. Diffusive inpainting, which fills in missing
pixels with the average values of their neighbors, has been proposed as an alternative method (Zacchei et al.,
2011). However, this approach assumes that the signal is smooth at the scale of the inpainting region, which is
not valid in the presence of numerous sources and may introduce biases at the power spectrum level. Hybrid
approaches that reconstruct a biased and coupled field have also been proposed (Plaszczynski et al., 2012).
Techniques specifically designed to preserve the Gaussian properties of the CMB field have been developed
(De Oliveira-Costa and Tegmark, 2006; Bucher and Louis, 2012), and advanced methods have been proposed
in idealized scenarios (Ramanah et al., 2017). In this study, we focus on the Gaussian constrained realization
method originally proposed for temperature map reconstruction by Lavaux and Wandelt (2010); Benoit-Lévy
et al. (2013) and extend it to polarization. This approach is particularly advantageous for our analysis as we
assume the Gaussianity of the CMB, allowing us to utilize the CMB two-point correlation to constrain the
inpainting procedure. One limitation of this approach is the assumption of perfect knowledge of the underlying
CMB power spectrum. However, we will demonstrate that our procedure remains robust even in the presence
of reasonable deviations from the true power spectrum.

3.6.1 Motivations

To perform power spectrum likelihood analysis, the use of a covariance matrix is necessary to estimate the
variance and coupling between band powers. In Chapter 4, I will provide a detailed explanation of how the
covariance is analytically approximated for the analysis of the 19/20 data. However, major complications arise
when dealing with masked sources in the field.

Firstly, the presence of small-scale features introduces additional variance and coupling between the small
scales of the band power. Holes in the mask result in an increased power at high multipoles of the mask power
spectrum, as indicated in Fig. 3.2. This additional power leads to a mixing of the large and small scales of the
signal when computing the signal pseudo-power spectrum, resulting in additional variance and coupling between
band powers. This can be understood from Eq. (3.45), as the mask power spectrum is the only ingredient of the
MASTER mode-coupling matrix. As a consequence, the small multipoles of the power spectrum impact the shape
of the covariance. I compute simulated covariances using 1000 Monte Carlo simulations generated from the
Planck 2018 best fit, with three separate cases : (1) masking the sources for power spectrum computation, (2)
cutting the power spectrum at ℓ < 200 when generating simulations to reduce the contamination and masking
the sources for power spectrum computation and finally (3) not masking the sources. The masks used are
displayed in Figs. 2.26 and 2.27. In Fig. 3.10, I plot on the left panel the diagonal of the covariances, and on
the right panel the ratio of those over the reference case where the sources are not masked. Masking sources
imply additional variance, but this can be mitigated by cutting the low multipoles of the power spectrum.
Furthermore, the right panel of Fig. 3.11 displays a comparison of rows of the correlation matrices, which are
the covariance matrices rescaled by their diagonals. This plot clearly illustrates the additional coupling between
band powers due to holes in the mask. This coupling depends on the low multipole of the power spectrum, as
it is greatly reduced when cutting the first multipoles of the power spectrum before generating the sky.

Secondly, the analytical covariance framework developed in the next chapter does not accurately predict the
additional variance and coupling. In the left panel of Fig. 3.11, I compare the diagonal of covariances estimated
through simulations to the one computed with an analytical approximation. I plot the ratio of covariance
diagonals as

Σsimulations
ℓℓ /Σanalytical approximation

ℓℓ − 1. (3.71)

In the left panel of Fig. 3.11, the red line compares analytical estimation and simulation in the case of no source
masking, showing perfect agreement. Simulations only match analytical prediction in the unmasked case, both
for the variance and the coupling in this test case. This failure occurs because the approximated covariance
relies on the hypothesis that the power spectrum of the mask does not exhibit long-range power.

The mismatch of simulations to the analytical approximation approach is a well-known problem of covariance
computation. I showed that it depends on the low multipole cut, but it also depends on the point source density
in the mask. As described in Section 3.3, the low multipoles of the power spectrum are suppressed by filtering
in SPT-3G. This suppression mitigates the long-range coupling, as illustrated in Fig. 3.12. I generate 1000
simulations with 1D filtering of the power spectrum using the emulated transfer function F ana, and compare on
the left panel of the figure the diagonal of the covariance with masked sources or unmasked sources. On the right
panel, I compare the coupling levels by displaying a row of the covariances. While the Planck experiment low
point source density resulted in minimal contamination of order 10%, the low noise levels of SPT-3G imply that
approximately 2500 sources are masked on 4% of the sky, leading to 50% more variance at small scales due to the
point sources’ long-range leakage. However, additional couplings are suppressed by the low multipole filtering
due to map-making for SPT-3G. Nevertheless, we expect point source masking density to increase for future
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the correlation matrices, at ℓ′ = 2562. Additional variance and coupling stem from source masking and are not
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surveys, and thus additional coupling might emerge. Planck relied on simulations to correct the additional
variance, but the increase in the case of SPT-3G settings cannot be accurately corrected using simulations.
For the SPT-3G pipeline, we will address the issue of holes in the mask by using constrained realization and
inpainting techniques, which will be described in the following sections. The advantage is twofold: first, it allows
me to use the analytical covariance framework since the holes in the mask are no longer present. Second, the
estimator variance will be reduced, thereby improving the final constraints on parameters.

3.6.2 Temperature case

In this section, I will detail the ideal Gaussian-constrained realization of the temperature map. I assume a
simple Gaussian isotropic signal of known statistical properties, entirely characterized by the power spectrum
Cth

ℓ .
Let us consider a dataset comprising of CMB temperature and noise maps, wherein region (1) contains

missing data. It is possible to predict the signal in the region (1) based on the data available in a constraining
region denoted as (2). The CMB temperature data map can be represented as a vector TD =

(
TD
1 , T

D
2

)
,

where TD
1 corresponds to the unknown part. The primary objective is to obtain a new inpainted map T I that

possesses the same statistical properties as the original data TD while incorporating predicted signal inside
holes, as the data TD

1 is not accessible. For a given CMB temperature map TD =
(
TD
1 , T

D
2

)
, it is known that

65



1000 2000 3000 4000

`

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Σ
m

a
sk

e
d

``
/
Σ

u
n
m

a
sk

e
d

``
−

1
Ratio of covariance diagonals

masked vs unmasked

2200 2400 2600 2800 3000

`

−0.25

0.00

0.25

0.50

0.75

1.00

Σ
``
′

×10−12

Row of covariance
matrices at `′ = 2562

masked

unmasked
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filtered by SPT-3G 1D transfer function F ana. With the realistic SPT-3G simulations, I demonstrate that
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the pixels follow a Gaussian distribution with a known covariance, as depicted in Eq. (3.1)). This covariance
can be obtained from the true underlying power spectrum Cth

ℓ utilizing Eq. (3.22)). Consequently, the joint
probability of (TD

1 , T
D
2 ) can be expressed as:

P(TD
1 , T

D
2 ) ∝ exp

(
−1

2
TD⊤ξ−1TD

)
, ξth =

(
ξth11 ξth12
ξth21 ξth22

)
≡
(
⟨TD

1 T
D⊤
1 ⟩ ⟨TD

1 T
D⊤
2 ⟩

⟨TD
2 T

D⊤
1 ⟩ ⟨TD

2 T
D⊤
2 ⟩

)
. (3.72)

Based on Eq. (3.72)), it can be inferred that the conditional distribution TD
1 |TD

2 follows a Gaussian distribution
with a known mean, commonly referred to as the Wiener filter of the data (Wiener, 1964). The variance of this
distribution is determined using the Schur complement, resulting in:

P(TD
1 |TD

2 ) ∼ N (ξth12ξ
th−1
22 TD

2 , ξ
th
11 − ξth12ξ

th−1
22 ξth21). (3.73)

Remarkably, in this expression, only the mean of the field TD
1 depends on the constraints TD

2 , while the
variance remains unaffected. Exploiting this crucial property, we propose a method for inpainting the missing
data in region (1). First, we draw a random CMB map TR =

(
TR
1 , T

R
2

)⊤ using a given power spectrum
CR

ℓ , as detailed in Section 3.1.2. We then adjust the average values in the constraining zone according to the
constraints provided by TD

2 . Utilizing a fiducial spectrum Cfid, we construct the correlation functions ξfid and
the corresponding Wiener filter. The inpainted map T I

1 is then obtained through the following expression, put
forward in Benoit-Lévy et al. (2013).

T I
1 = TR

1 + ξfid12 ξ
fid−1
22 (TD

2 − TR
2 ). (3.74)

This procedure effectively fills in the missing data in region (1). I show in the next paragraph that it preserves
the statistical properties of the original data TD under the assumption of ξR = ξ|rmfid = ξth. By leveraging
the known covariance structure of the CMB temperature field and utilizing the constraining information from
the region (2), we obtain an inpainted map suitable for subsequent analyses and power spectrum computations.
Let me rewrite the inpainting procedure in the following equation:

T I = (1+X)TD −XTR, (3.75)

where 1 is the identity matrix, andX is an operator representing the masking and the Wiener filtering operation.
We can express this operator in matrix form, acting on the regions (1) and (2) of the sky as:

X ≡
(
−1 X
0 0

)
≡
(
−1 ξth12ξ

th−1
22

0 0

)
. (3.76)

Correlation function of the inpainted map As indicated in Eq. (3.75), the inpainted map is obtained
from the data TD with a two-point correlation ξth, a random realization TR with a two-point correlation ξR,
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and the Wiener operation X[Cfid]. I can write the correlation function of the inpainted map as follows:

⟨T IT I⊤⟩ = (1+X)⟨TDTD⊤⟩(1+X⊤) +X⟨TRTR⊤⟩X⊤, (3.77)

= (1+X)ξth(1+X⊤) +XξRX⊤, (3.78)

= ξth +Xξth + ξthX⊤ +XξthX⊤ +XξRX⊤. (3.79)

I show that if the data spectrum is perfectly known, i.e., ξfid = ξth, then we can set X = ξth12ξ
th−1
22 , and the

Wiener operator cancels out the off-diagonal term of the two-point correlation matrix as Xξth22 = ξth12. We then
have:

Xξth = ξthX⊤ = −XξthX⊤. (3.80)

By assuming perfect knowledge of the data spectrum, we can also generate a random realization of the data
spectrum ξR = ξth, and thus XξRX⊤ = XξthX⊤. The right term of Eq. (3.79) then simplifies to ξth. Hence,
the Gaussian constrained realization Eq. (3.75) is a valid inpainting procedure under the assumption of perfect
data spectrum knowledge:

ξth = ξfid = ξR =⇒ ⟨T IT I⊤⟩ = ξth. (3.81)

Harmonic space Maps are inpainted so that we can reconstruct an unbiased two-point correlation function
and thus an unbiased power spectrum from them. I relate the power spectrum from the maps to the correlation
function using the Legendre decomposition of in Eq. (3.31).

C(1+X)D ≡ L ·
[
(1+X)

(
TDTD⊤) (1+X⊤)

]
, CXR = L ·

[
X
(
TRTR⊤)X⊤] . (3.82)

Eqs. (3.75), (3.77) and (3.81) allow me to write that

CI = C(1+X)D + CXR =⇒ ⟨CI⟩ = ⟨C(1+X)D⟩+ ⟨CXR⟩ = Cth. (3.83)

The final measured power spectrum is the sum of the Wiener-filtered component and the random realization.
Those two power spectra quantities are uncorrelated. We can then compare the two contributions to the final
power spectrum, and this is done in Fig. 3.13 by plotting

1− ρℓ ≡
C

(1+X)D
ℓ

CI
ℓ

. (3.84)

The Wiener-filtered component is measured by taking the power spectrum of the Wiener-filtered map. Most of
the power in the final spectrum is due to the Wiener-filtered component, and the random realization is a few
percent. This is expected as the sky fraction of the sources covers only ∼ 1% of the footprint. Assuming that
the Wiener filter is fixed, i.e. that we have chosen a fiducial power spectrum for its construction, all inpainting
operations are linear in the correlation function. The correlation matrices of the data and the random component
can be decomposed as ξD =

∑
ℓ′ P

ℓ′CD
ℓ′ , ξR =

∑
ℓ′ P

ℓ′CR
ℓ′ , where I relied on Eq. (3.21) and defined the matrix

PL
ij ≡ 2L+1

4π PL(cos θij). θij is the matrix of angular distance between the two pixels i and j. One can write

CXR =
∑

ℓ′

Z
(2)
ℓℓ′ C

R
ℓ′ , where Z

(2)
ℓ′ ≡ L ·

[
XP ℓ′X⊤

]
, (3.85)

C
(1+X)D
ℓ = CD

ℓ +
∑

ℓ′

[
2Z

(1)
ℓℓ′ + Z

(2)
ℓℓ′

]
CD

ℓ′ , where Z
(1)
ℓ′ ≡ L ·

[
XP ℓ′

]
. (3.86)

Then, the inpainted power spectrum is given by

CI = C(1+X)D + CXR = CD + 2Z(1)CD + Z(2)
(
CD + CR

)
, (3.87)

As it stands, the Wiener-filtered data could be used to estimate parameters, but one should characterize precisely
its mean and variance, and that would require characterizing precisely the matrices Z(1), Z(2), either by an
analytical approach or by emulating those matrices from simulations. Our inpainting is done such that CXR

corrects for the bias of the Wiener-filtered data, and we can then use the unbiased power spectrum CI to
estimate cosmological parameters. However, we need to make some assumptions to perform those operations,
thus the inpainting procedure is not perfect, and we need to make sure that the bias on the power spectrum is
small enough to not affect the cosmological parameters. We will discuss this in the next section. The addition
of the random component needs to be taken into account when computing the covariance matrix of the power
spectrum, as we will see in Section 4.2.
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3.6.3 Implementing inpainting

In practice, the underlying power spectrum of the maps is not perfectly known, and we need to make assumptions
for running the inpainting procedure. Additionally, the Wiener operator X can not be constructed for the full
data map due to its large size. I will now discuss how to address these issues.

Wiener filter computation To build the operator X, I use the knowledge of the signal power spectrum
and power spectrum of the noise. The power spectrum of the signal can be computed from a theoretical
mean, for instance, Planck 2018 best fit with foreground contributions, convolved by the transfer function of
the experiment, the beam, and the pixel window function to obtain Cfid

ℓ . We apply this method to run our
tests with pure Gaussian simulations, see Section 3.6.5. Another option is to use the power spectrum directly
estimated from the masked-source maps using the PolSpice estimator. This estimator is minimally biased, see
Eq. (3.53), hence giving an agnostic estimation of the power spectrum of the maps, even though it has intrinsic
scatter due to cosmic variance. We apply this procedure for tests in Section 3.6.6 and show that it produces
unbiased results.

Concerning the noise, we consider pure Gaussian noise, which is a good assumption in the case of SPT-3G.
In practice, it is estimated from the data itself (see Section 3.4). It is separated into a white noise component
and a colored noise component as Nℓ = Nwhite + N col

ℓ , and is integrated into the computation of the Wiener
filter with

ξth = L−1 · Cfid
ℓ → ξth = L−1 ·

[
Cfid

ℓ +N c
ℓ

]
+ σId, where σ2 = Nwhite2/Ωpix. (3.88)

The white noise component is important and must be integrated as is, as it contributes to the variance of the
inpainted map, and regularizes the inversion of the correlation matrix by rescaling the diagonal.

In the following, we assume that the Wiener filtering always takes properly the signal and noise into account.

Random realization The random realizations are generated with the same ingredients as the Wiener filter.
Indeed, we can use prior knowledge of the problem using theoretical estimation of the power spectrum, or use
directly the power spectrum estimated from the data. In the case of our realistic inpainting, I adapted the
code to take as random realizations the mock observations, which are our very realistic simulations designed to
have the same statistical properties as the signal. This procedure ensures that the inpainted map has the same
anisotropic statistical properties as the input sky. The noise contribution comes either from noise realization
drawn for the noise power spectrum or from noise estimation maps presented in Section 2.3.3, which are added to
the mock observations before running the inpainting procedure. Both procedures are reliable are give unbiased
results.
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Multiple holes and partial constraining zone The formalism introduced in Section 3.6.2 works for a
single hole in the map, and can not be extended to multiple holes. While the SPT-3G map contains thousands
of holes, a mitigation strategy is to consider that each hole is independent of the others. This is a good
approximation in our case since the holes cover only around 1% of our effective sky. The constraining zone is
built so that it excludes the other holes in the map. The missing data in the constraining zone is small enough
so that no strong impact can be found on the final constraints. The final inpainted map is then obtained by
combining the results of the different holes.

In addition, for a typical resolution of nside = 8192, a SPT-3G map contains approximately O(30 × 106)
pixels, and the two-point correlation matrix of the constraining region ξ22 consists of trillions of elements.
Inverting such a large matrix is computationally infeasible. However, we can leverage the correlation length of
the CMB, which is typically around 1 degree, to assume that only pixels in a surrounding region can be used to
constrain the unknown pixels. Let us consider the case where we have only one hole in our map that we want
to fill using a Gaussian-constrained realization. We divide the map into three parts: a constraining region
T2, an unknown region T1, and the remaining part of the map T3, where T = (T1, T2, T3)

⊤. Those regions are
illustrated in Fig. 3.14 for 3 different holes with increasing size. As the masked source becomes larger, the width
of the constraining region is adapted. This figure highlights that even restricted to 1 deg, the constraining zone
is incomplete, as other sources need to be masked. The inpainting map is constructed similarly as in Eq. (3.75),

Figure 3.14: Illustration of the three regions of the sky used to build the inpainted map. The CMB-like zone is
the constraining zone T2, with a Gaussian realization of CMB temperature field where large-scale modes have
been filtered accordingly to the SPT-3G filtering with a 1D transfer function. The constraining region is used
to constrain the unknown pixels T1 in dark blue, and its width increases as the masking radius increases. The
rest of the map T3, composed of the exterior region and additional sources, in grey, is not used.

however, the inpainting operator is modified to

X ≡



−1 X 0
0 0 0
0 0 0


 ≡



−1 ξfid12 ξ

fid−1
22 0

0 0 0
0 0 0


 . (3.89)

It has a zero block on the last columns, indicating that we are not using information from the rest of the map
(T3) to constrain the unknown pixels in the region (1). In Fig. 3.15, I show a row of the pixel correlation matrix
ξfid22 for a hole in the map, extending on the constraining region of size 1 deg. It is displayed for every Stokes
combination, anticipating the polarization part. Note that the representation is 2D, to better put forward the
spatial properties of the field. The temperature covariance on the top left panel is peaked around the correlated
pixel and is extremely narrow. The essential part of the correlation matrix is encapsulated in this limited
correlation region.

I compute the final correlation function of the inpainted map under the assumption of separating the map
into three different parts:

⟨T IT I⊤⟩ = (1+X)ξth(1+X⊤) +XξRX⊤, (3.90)

=



ξR11 +X

(
ξth22 + ξR22

)
X⊤ −XξR21 − ξR12X

⊤ Xξth22 Xξth23
ξth22X

⊤ ξth22 ξth23
ξth32X

⊤ ξth23 ξth33


 (3.91)

When setting ξR = ξfid = ξth, the first term of the correlation matrix simplifies to ξth11 as for the full inpainting.
However, the measured covariance block ⟨T I

1 T
I⊤
3 ⟩ is not equal to ξth13, butXξth23 = ξth12ξ

th;−1
22 ξth23. As a consequence,
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Figure 3.15: Row of pixel correlation matrix ξ for a hole in the SPT-3G mask, located at (RA,DEC) =
(−1.43 deg,−41.11 deg), for every combination of Stokes parameter. The hole to be inpainted is located under
the cross. The correlated pixel is located under the black dot. The hard border on the top of the map is due to
the mask. The rest of the pixel cut-off corresponds to the maximal extent of the correlation used to constrain
the CMB inside the hole. The bottom row shows the correlation across Stokes parameters, with the left Stokes
parameter being the one correlated. For example, the leftmost plot shows the correlation between the central
temperature pixel with the Q pixels. The transposed matrix has a similar structure.

even if the underlying spectrum is perfectly known, restricting the constraining zone to a small subset implies
that the correlation function of the inpainted map will be biased. However, when the constraining region is large
enough, the bias is negligible. We assert that this assumption is robust with a Monte Carlo test suite, first by
building a suite of 100 realistic simulations, filtered with the 2D transfer function measured in Section 3.3. We
measure the spectra of the input skies Ĉba

ℓ and then apply the inpainting procedure multiple times, varying the
radius r of the constraining zone (2) in [14′, 31′, 52′, 69′]. The power spectra of the inpainted maps are measured
as Ĉfi

ℓ and we compare them to the input spectra by taking the difference weighted by the standard deviation
of the simulations. The latter is a proxy for cosmic variance and allows us to put forward significant features
in the power spectrum. Results are obtained in Fig. 3.16, and show that the bias is negligible for r ≥ 1 deg′,
while it reaches ∼ 0.1σℓ when the constraining zone is too small. Indeed, the CMB is correlated on a typical
scale of 1 deg, see Fig. 3.15. Since regions (1) and (3) are separated from more than 1 deg, their correlation
contributes negligibly to the power spectrum computation. When the radius of the constraining zone is too
small, the effect is a smoothing of the peaks and troughs of the power spectrum, which contains cosmological
information. Such a bias should be avoided or precisely modeled. I conclude that we can use the assumptions
of independent holes and local constraining zones to build the Wiener filter as long as the latter is large enough
to contain the relevant information.

3.6.4 Inpainting polarization

I showed above that the procedure is reliable for temperature. In order to extend this procedure to polarization,
we first start by writing that CMB is a correlated isotropic Gaussian random field, and that, similarly to
Eq. (3.72), I can write

P(TD, QD, UD) ∝ exp


−1

2
(TD QD UD)ξ−1



TD

QD

UD




 . (3.92)

The two-point correlation matrix ξ is now a 3npix × 3npix matrix and is more complicated to compute than
the pure temperature one. We assumed, consistently with the rest of this thesis, that the Universe is invariant
under parity, and starting from Eq. (3.4) we obtain the polarization correlation function from the spectra
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CTT, CEE, CBB, CTE, (Kamionkowski et al., 1997)

⟨Q̄(n̂)Q̄(û)⟩ =
∑

ℓ

2ℓ+ 1

4π

[
CEE

ℓ F1,ℓ2 (n̂ · û)− CBB
ℓ F2,ℓ2 (n̂ · û)

]
(3.93)

⟨Ū(n̂)Ū(û)⟩ =
∑

ℓ

2ℓ+ 1

4π

[
−CEE

ℓ F2,ℓ2 (n̂ · û) + CBB
ℓ F1,ℓ2 (n̂ · û)

]
(3.94)

⟨T (n̂)Q̄(û)⟩ = −
∑

ℓ

2ℓ+ 1

4π
CTE

ℓ F1,ℓ0 (n̂ · û) (3.95)

⟨T (n̂)Ū(û)⟩ = 0, (3.96)

where

F1,ℓm(θ) = Aℓm

[
−
(
ℓ−m2

sin2 θ
+

1

2
ℓ(ℓ− 1)

)
Pm
ℓ (cos θ) + (ℓ+m)

cos θ

sin2 θ
Pm
ℓ−1(cos θ)

]
, (3.97)

F2,ℓm(θ) = Aℓm
m

sin2 θ

[
−(ℓ− 1) cos θPm

ℓ (cos θ) + (ℓ+m)Pm
ℓ−1(cos θ)

]
, (3.98)

and Aℓm = 2
√

(ℓ−2)!(ℓ−m)!
(ℓ+2)!(ℓ+m)! and Pm

ℓ are the associated Legendre polynomials. The correlation matrix is then
obtained by computing the correlation function on the pixel grid. However, those values are obtained for the
rotated Stokes parameters Q̄, Ū and need to be rotated back to the original frame, which is done by applying,
for each combination of pixels (i, j), e2iα(Q̄i + iŪi) = Qi + iUi and e2iγ(Q̄j + iŪj) = Qj + iUj , here α and γ are
the angles required to rotate the local basis in pixels i and j so that they are aligned with the sphere geodesic
between the two pixels. This operation is expensive and is one of the bottlenecks of the inpainting procedure.
We verify that the correlation matrices are properly computed by comparing them to one obtained from Monte
Carlo simulations. The correlation matrices ξ are illustrated in Fig. 3.15, where a row is displayed for each
Stokes combination on the map. While the temperature and polarization have expected narrow correlations,
the cross-correlation between temperature and polarization is much more spread out, as expected from the CTE

spectrum, and also much weaker, but are all non-zero as induced by the rotation of the polarization frame.
The rest of the inpainting procedure is the same as for temperature, but it should be noted that we are

solving jointly for the temperature and polarization maps, as the polarization maps are not independent of the
temperature ones because of the non-zero CTE spectrum. The inverted matrix size is multiplied by three, which
induces a notable scaling factor as the inversion scales as O(n3pix).

3.6.5 Asserting robustness
The inpainting procedure has a direct effect on the mean value of the power spectrum, as illustrated in Eq. (3.87).
A bias on the power spectrum will propagate on the cosmological parameters, and we need to make sure that our
procedure is robust to this bias. In this section, we perform a series of tests demonstrating that our procedure is
unbiased and highlights results for temperature, but the results are similar for polarization. We perform those
tests on a set of 800 simulations that are filtered with a 2D transfer function fℓm , see Section 3.3, and use as
input for the Wiener filter and the random realization the power spectrum used to generate those realizations,
filtered with a 1D transfer function Fℓ.
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Response function In this paragraph, I evaluate the robustness of the code to an error on the fiducial
input power spectrum used to generate the Wiener filtering and the random realization. I therefore assume
ξR = ξfid ̸= ξth. First, I take advantage of the linear properties of the Gaussian-constrained realization to
evaluate its response function. Let me detail the mathematical formalism. I compute derivatives of the Wiener
operator with respect to the fiducial spectrum. For a given multipole L, I first compute the derivative of X
with respect to Cfid

L . I write

∂X

∂Cfid
L

=
∂ξfid12
∂Cfid

L

ξ−1
22 + ξfid12

∂ξth−1
22

∂Cfid
L

= PL
12ξ

fid−1
22 − ξfid12 ξ

fid−1
22 PL

22ξ
fid−1
22 =

(
PL
12 −XPL

22

)
ξfid−1
22 . (3.99)

With this expression, the derivatives of the inpainted correlation matrix ξI = ⟨T IT I⊤⟩ with respect to the
fiducial power spectrum can be computed. Let’s take the ideal case where the constraining zone covers all the
available data, which is equivalent to ignoring the region (3). From Eq. (3.91), the only non-vanishing elements
of the derivative of the correlation evaluated at the theoretical value are

∂ξI11
∂Cfid

L

∣∣∣∣
ξfid=ξth

= PL
11 −XPL

22X
⊤, (3.100)

∂ξI12
∂Cfid

L

∣∣∣∣
ξfid=ξth

=
(
PL
12 −XPL

22

)
. (3.101)

I can then conclude that the derivative of the inpainted correlation matrix with respect to the fiducial power
spectrum is obtained by applying the Wiener filter operation on the Legendre correlation matrix as

∂ξI

∂Cfid
L

∣∣∣∣
ξfid=ξth

= PL − (1+X)PL(1+X⊤) (3.102)

Assuming an input error on the power spectrum ϵL, I obtain a first-order expansion of the inpainted correlation
matrix

ξI ≈ ξth +
∑

L

ϵL
∂ξI

∂Cfid
L

∣∣∣∣
ξfid=ξth

. (3.103)

Following this computation, in Fig. 3.17, I show the response of inpainting procedure to a deviation of a
hundred σ at multipole L = 1000, i.e. ϵL = 100σ1000δL1000, compared with the residual measured on 800
realistic simulations. This deviation on the input spectrum would induce a residual bias on the power spectrum
of the inpainted maps of around 0.02σ1000. This is expected from Fig. 3.13 since most of the power spectrum
of the inpainted maps is determined by the data, and hence errors made on the Wiener filter or the random
realization are damped. Nevertheless, we need to evaluate the impact of an integrated deviation on the total
range of multipoles.

Error on the fiducial power spectrum To further evaluate the impact of an error on the fiducial power
spectrum, I generate 800 realistic filtered simulations following Planck cosmology and inpaint them following the
above procedure, but choosing as fiducial spectrum a different spectrum. The rescaled difference (Cfid

ℓ −Cth
ℓ )/10

is displayed in Fig. 3.18 with the blue line and is chosen to be of the order of the statistical error on the power
spectrum, reaching ∼ 0.6σℓ at ℓ = 3000. I thus evaluate how the integrated error impacts the resulting power
spectrum. I compute the difference between the inpainted power spectrum and the input power spectrum,
weighted by the standard deviation of the simulations, for the correct inpainting procedure and the wrong
fiducial spectrum. Results are displayed on the same plot. I show that the bias is negligible, of order 1% of the
statistical error on the power spectrum, even when the input spectrum is significantly wrong on a wide range of
multipoles. We then conclude that the inpainting procedure is robust to any mismatch of the power spectrum.

Impact on the covariance matrix The impact of the inpainting procedure on the covariance matrix is
expected to be minimal. Since C(1+X)D and CXR are uncorrelated, their covariances add up to form the
covariance of CI . Then, as the inpainted power spectrum is unbiased thanks to Eq. (3.87), this property also
propagates to the covariance. Nevertheless, as several assumptions were made, we verify this property by taking
a set of 800 realistic simulations and comparing their sample variance before and after inpainting, in Fig. 3.19.

3.6.6 Realistic inpainting
The former framework was introduced to detail the inpainting procedure. In practice, the data set is not
composed of a single realization of the CMB sky, but of a set of observations across multiple frequencies that
have varying noise and instrument properties, and foreground contaminations. Filling the holes should be done
in a way that is consistent with the data set.
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Figure 3.17: Comparison of the residual spectra after inpainting to a response error resulting from applying an
error ϵL = 100σ1000δL1000. A very significant error on the fiducial power spectrum leads to a small error.
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Figure 3.18: The blue line indicates 10% of the error on the fiducial power spectrum used to generate the
simulations, displayed along the residual power for inpainting with the correct input (green) and the wrong
spectrum (red). A significant input error has no strong impact on the inpainted power spectrum.

Influence of map-making While the formalism for Gaussian constrained realization is obtained from the
assumption of isotropic signal, we know from Section 3.3 that SPT-3G 19/20 data set exhibits a statistical
anisotropy stemming from the filtering of the time streams and the scanning strategy. In the tests of the previous
section, we filtered the maps by a 2D transfer function, thus showing that even if the maps display statistical
anisotropies, the inpainting procedure correctly reconstructs the power spectrum. Indeed, Eq. (3.83) implies that
the Gaussian-constrained realization is designed to reconstruct the averaged isotropic two-point function, even
though the field exhibits anisotropic variation. Subsequently, it also implies that the non-Gaussian statistics
are not reconstructed. In order to show that this procedure can be applied to real data, we apply it to one
of our realistic mock observations and display the results in Fig. 3.20. Note that the figure displays results in
polarization, which are as accurate as temperature.
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variance of power spectra computed over 800 hundred realistic simulations, computed before and after applying
the inpainting procedure to the maps. Right: the row at ℓ = 3000 of the obtained correlation matrices. No
significant deviation due to inpainting is found at the level of the covariance matrix.

Multi-frequency inpainting The SPT-3G band powers cover 3 frequency channels. The reconstructed
signal inside the holes should be coherent across frequencies so that the measured cross-frequency spectra are
not biased, as they are a crucial block of the data vector. Let us illustrate that problem with temperature,
writing the data vector as T = (T 95, T 150, T 220)⊤. The Wiener filter should then be computed as a dense matrix
so that correlations among frequencies are taken into account. However, the region (2) two-point correlation
function would then be going from 3npix × 3npix → 9npix × 9npix, thus having its size multiplied by 3. While
we allowed ourselves to scale the matrix in order to include polarization, this is not feasible for frequency.
Indeed, the computational cost scales as the cube of the size of the matrix, and the matrices inversion is the
most expensive part of the algorithm. To solve this problem, I compute the Wiener filter for every single
frequency and inpaint the maps independently. I assume that as long as the random realization carries the
same statistical properties as the data and is correlated between frequencies, the inpainted maps will be nearly
unbiased. Effectively, we replace the Wiener filter X by a block-diagonal matrix

X =



X95,95 X95,150 X95,220

X150,95 X150,150 X150,220

X220,95 X220,150 X220,220


→



X95,95 0 0

0 X150,150 0
0 0 X220,220


 . (3.104)

This approach has the advantage of being computationally cheaper, as the inversion of the Wiener filter is
done on smaller matrices. To ensure consistency across frequencies, we use the same mock observation as a
random realization for all frequencies and correlated noise estimated from the data. A suite of 10 realistic
multi-frequency signal simulations with noise estimations from Section 2.3.3 is performed. Inpainting is applied
in every frequency channel independently. The power spectra are computed on the full patch for the inpainted
skies, but sources are masked on the input skies since the noise data inside holes are not filtered as the rest
of the map. In Fig. 3.21 is displayed the averaged residual of the temperature power spectrum. This average
is performed on 10 simulations. The variance is comparable to the test in Fig. 3.20 despite averaging over 10
simulations since the input skies have masked sources. This test demonstrates that the assumption of neglecting
cross-frequency components of the Wiener filter is a valid approximation.

Inpainting bundles As described in Section 3.5, we use the bundles cross-spectrum approach to get rid of
the noise bias. We thus need to inpaint consistently the nbun maps of the data set. I do so by inpainting the
bundles with consistent Wiener filtering. The random realizations are obtained with a unique signal realization
and different noise realization generated from the noise power spectrum measured in Section 3.4. This approach
allows no bias in the cross-spectra, as the noise is not correlated across bundles.

Conclusion

In this chapter, I detailed the power spectrum estimation of the SPT-3G 2019-2020 data set. I first described
the correspondence between real space and harmonic analysis, in order to introduce the pseudo-power spectrum
framework and the PolSpice de-biasing procedure. I detailed a new formulation in harmonic space of such
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an operation and applied this procedure to the noise maps to estimate the noise power spectra, and to the
data maps to estimate the auto and cross-frequency power spectra using the cross-bundles method. I then
described the inpainting procedure that is used to fill the holes in the data maps. The inpainting procedure is
unbiased as long as certain assumptions are met. I performed a series of tests to show its precision. Inpainting
is implemented in the SPT-3G 2019-2020 analysis pipeline. Preliminary band powers are displayed on the
following page.
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)Ĉ

T
T

b
/
2π

[µ
K

2
]

×103 Auto frequency band powers

95 GHz × 95 GHz

150 GHz × 150 GHz

220 GHz × 220 GHz

Cross frequency band powers

95 GHz × 150 GHz

95 GHz × 220 GHz

150 GHz × 220 GHz

0

1

2

3

4

` b
(`
b

+
1)
ĈE
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Figure 3.22: Uncalibrated binned SPT-3G 19/20 preliminary band powers obtained with cross-spectrum ap-
proach, using an analysis mask with source masking. They are corrected for the beam B and the emulated
transfer function F ana. The binning width is chosen to be ∆ℓ = 25, but is likely to evolve in the analysis. Left
plots: auto frequency spectra. Right plots: cross-frequency spectra. First row: TT, second row: TE, third
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Chapter 4

Likelihood analysis

Contributions This chapter focuses on the final compression step of the analysis pipeline: the likelihood
analysis. I have taken a leadership role in this work within the SPT-3G collaboration, where I have been
actively involved in developing new components of the pipeline. Specifically, my contributions involve the
computation of the covariance matrix and building the likelihood. Here is a breakdown of my contributions:

• In Section 4.1, I am responsible for the computation of the window functions and the band powers.

• In Section 4.2, I have introduced a high-precision analytical approach to compute the signal CMB covari-
ance matrix on small survey areas. This new method, described in the paper by Camphuis et al. (2022),
is an integral part of the analysis presented in this manuscript.

• In Section 4.2.2, I have performed a high-precision analytical estimation of the noise covariance matrix.
Ongoing work is done to compare it with an estimator derived from the data.

• In Sections 4.2.2 and 4.2.3, I have adapted the analytical approach to account for the SPT-3G combination
of frequencies and analysis choices. Specifically, I have implemented a correction for filtering bias at the
covariance level, developed covariance rescaling techniques for marginalizing over the inpainting random
realization, and integrated the lensing contribution into the main covariance matrix.

The implementation of analytical covariance correction to account for filtering loss of modes will be presented
in an upcoming publication (Hivon, Doussot, Camphuis, et al., in prep). Furthermore, ongoing work on the
likelihood analysis will be summarized in a future publication, which will present the cosmological results of the
SPT-3G 19/20 data.

Introduction The measured band powers encompass all the necessary statistical information to constrain
cosmological parameters. As discussed in the preceding chapter, significant effort is required to accurately model
the bias introduced by the instrument and the analysis pipeline. In order to extract cosmological information,
it is imperative to construct a likelihood function that describes the probability of observing the band powers
given a specific set of cosmological and nuisance parameters. In this chapter, we detail the construction of the
likelihood function, which will later be used to test various cosmological models and explore their associated
parameter space using the Markov Chain Monte Carlo (MCMC) method.

The CMB band powers consist of sets of power spectra (TT,TE,ET,EE) for all six frequency combinations,
and they are treated as random variables. If the signal were all-sky and isotropic, we could assume that the
band powers follow a gamma distribution (Percival and Brown, 2006). However, in practice, the signal is not
all-sky, and the posterior distribution is affected by the coupling between modes originating in sky masking. On
small scales, the pseudo-power spectrum follows a gamma distribution, but with a reduced number of degrees
of freedom denoted by νℓ = (2ℓ + 1)fsky

w2
2

w4
, where wi represents the i-th moment of the employed mask, and

fsky is the fraction of the sky covered by the observation (Percival and Brown, 2006). To approximate the
signal, we rely on the central limit theorem, which states that the signal can be approximated by a multivariate
Gaussian distribution. This assumption holds particularly true at sufficiently large multipoles. We are not
probing the low multipoles with fewer degrees of freedom as the filtering strategy employed introduces a cutoff
at ℓ = 300, see Fig. 3.7. Under this assumption, the statistical properties of the band powers ĈXνYµ can be
fully characterized by their mean CXνYµ and their covariance matrix Σ̂XνYµ;ZαVβ , which we will derive in this
section. Consequently, we will be able to formulate the likelihood function for the band powers given a specific
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model and a set of cosmological parameters ϑ as

L
(
Ĉ|Cth(ϑ)

)
=

1√
det (2πΣ)

exp

(
−1

2
∆C Σ̂−1 ∆C

)
, (4.1)

where ∆C = Ĉ − Cth(ϑ) is the difference between the measured band powers and the theoretical prediction
depending on the model and its parameters ϑ.

4.1 Modeling of theory power spectrum

The band powers represent the final output of the analysis pipeline, as explained in detail in Section 3.5. In order
to estimate their mean value, we rely on the parameters described in Eq. (4.1). Currently, theoretical predictions
of cosmological models for the pure CMB can be obtained through different methods. One approach involves
using Boltzmann line-of-sight solvers like CAMB (Lewis et al., 2000) or CLASS (Lesgourgues, 2011). Alternatively,
state-of-the-art neural network emulators like CosmoPower (Spurio Mancini et al., 2022) can also be employed.
These emulators provide a significant speed-up for the MCMC analysis, but they require training on a large
set of predictions first. To account for foreground components in the power spectrum, nuisance parameters are
employed in the likelihood function, similar to the approach used in the SPT-3G 2018 study and earlier works
(De Zotti et al., 2005; Dunkley et al., 2013; George et al., 2015; Reichardt et al., 2020). This is preliminary
work and will be improved shortly.

We will model foreground contamination on the temperature power spectrum by computing contribution
from galactic dust, the Poisson-distributed unresolved point sources, the CIB clustering, the thermal Sunyaev-
Zel’dovich effect (tSZ), the kinetic Sunyaev-Zel’dovich (kSZ) effect and their cross-correlations.




Dcirrus
ℓ,ν×µ = Acirrus
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g(µ)g(ν)

g(νcirrus0 )2

(
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ℓ
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with varying
[
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]
,

DTT,Poisson
ℓ,ν×µ = DTT,Poisson

3000,ν×µ

(
ℓ

3000

)2
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[
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]
,
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[
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]
,

DtSZ
ℓ,ν×µ = AtSZ f(ν)f(µ)

f(νtSZ0 )2
DtSZ,template

ℓ with varying
[
AtSZ

]
,

DtSZ−CIB
ℓ,ν×µ = −ξ

(√
DtSZ

ℓ,ν×νD
CIB−cl.
ℓ,ν×ν +

√
DtSZ

ℓ,µ×µD
CIB−cl.
ℓ,µ×µ

)
with varying [ξ] ,

DkSZ
ℓ = AkSZDkSZ,template

ℓ with varying
[
AkSZ

]
.

(4.2)

The foreground frequency dependence is characterized by the functions g(ν) and f(ν). The former is computed
as g(ν) = Bν(T ) (∂Bν(T )/∂T )

−1 |TCMB , where T is set to the appropriate temperature, Tdust = 19.6K or
TCIB = 25K. The latter is computed as f(hν/kBTCMB) = hν/kBTCMB coth(hν/2kBTCMB)− 4. The templates
for the tSZ and kSZ effects are obtained from Reichardt et al. (2020).

We will adopt the same modeling of polarization foreground contamination in TE and EE by adding
contributions from Poisson-distributed sources and polarized galactic dust, with mathematical formulation
equivalent to temperature, but independent nuisance parameters. We will also ignore higher-order statistics of
the foreground, namely the four-point contribution to the covariance.

The theoretical mean is obtained by combining the CMB and foreground components. Since the data band
powers have already been corrected for instrumental effects, the theoretical prediction involves convolving the
theoretical power spectrum with the window function. The window function is derived by binning the PolSpice
kernel and can be expressed as follows:

Cth(ϑ) =W
(
Ccmb(ϑ) + Cforegrounds(ϑ)

)
, with sWbℓ =

∑

ℓ′

Pbℓ′sKℓ′ℓ. (4.3)

Additional effects such as calibration or aberration need additional work to be included. The SPT-3G 2018
results paved the way for the choices we will make in this analysis.

4.2 Covariance matrix

The covariance matrix plays a crucial role in characterizing the statistical properties of our estimator. It captures
the variance of the band powers as well as the correlations between different modes. A precise estimation of
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the covariance matrix is vital to ensure unbiased parameter estimation and accurate interpretation of the data
(Hartlap et al., 2007; Dodelson and Schneider, 2013; Sellentin and Starck, 2019; Beck et al., 2022). The final
covariance matrix is obtained by combining the signal and noise covariance matrices.

State-of-the-art CMB experiments adapt their covariance estimation depending on their noise structure
and mask. On one hand, the Planck covariance is estimated using an analytical approximation described in
Efstathiou (2004); Challinor and Chon (2004). The signal part of the covariance is obtained from the theoretical
power spectrum and the mask, while the noise part is correctly integrated by evaluating the impact of noise
statistical anisotropies on the covariance. Appendix C of Planck Collaboration et al. (2016) provides more details
on this method. The large sky fraction covered by Planck allows for minimal coupling between modes of the
estimated power spectrum, making the use of the approximation method feasible. However, I will demonstrate
that this assumption is less accurate for small sky footprints. Additionally, as discussed in Section 3.6.1, the
presence of holes in the mask is expected to introduce additional variance. The Planck experiment’s point
source density results in minimal contamination, which is corrected using a rescaling factor computed from
simulations. This approach is reasonable because the maximum deviation is on the order of 15% and can
be effectively captured by simulations. On the other hand, ACT DR4 uses multiple subfields with varying
map depths, and the covariance is computed using realistic simulations to obtain a robust estimate with low
Monte Carlo variance. Analytical estimations are employed for off-diagonal terms, as described in Section 6.4
of Choi et al. (2020). It is important to note that both experiments utilize maximum-likelihood map-making,
eliminating the need to account for filtering at the covariance level.

For SPT-3G 2018, the signal covariance matrix is estimated through simulations that fully account for
instrument effects and the analysis pipeline, as outlined in Henning et al. (2018); Dutcher et al. (2021). However,
conducting a comprehensive simulation suite is computationally demanding due to the complexity of generating
input skies and performing mock map-making. The limited availability of simulations can potentially result in
a biased covariance matrix (Dodelson and Schneider, 2013). While regularization techniques can be employed
to mitigate this issue, their effectiveness relies on assumptions of a common correlation structure between
covariance blocks. In SPT-3G 2018, the correlation structure is dominated by the flat-sky projection coupling.
For SPT-3G 19/20, we use curved sky representations of the maps. The correlation structure is now dominated
by mask effects, and the assumption of common correlation does not hold anymore. In addition, as noise levels
decrease, the precision of the signal covariance estimation has a stronger impact on parameters. For this analysis,
I will derive the signal covariance matrix analytically. This approach allows for precise modeling of the signal
covariance matrix without relying on simulations and models accurately the variance and the coupling between
modes. Moreover, the computation is cheap and the input ingredients can be easily adjusted to accommodate
variations in the model. However, this computation presents challenges as every step of the analysis needs to
be accurately modeled. In Section 4.2.1, I will detail the baseline computation of the covariance matrix given
a power spectrum and a mask, and in Sections 4.2.2 and 4.2.3, I will detail the additional implementations
required to build the full covariance.

4.2.1 High precision computation of the signal covariance matrix

Analytical approximations of the signal covariance matrix have been developed for previous surveys as primary
covariance estimators or for verification purposes (Efstathiou, 2004; Challinor and Chon, 2004; Chon et al.,
2004; Louis et al., 2017; Planck Collaboration et al., 2020b; Nicola et al., 2021; Friedrich et al., 2021). However,
these approaches are based on the assumption that the survey mask is sufficiently large to neglect certain mode
couplings. To account for the small sky coverage of the SPT-3G survey, these approximations need to be
extended. In addition, it is worth noting that a complete and exact computation of the covariance matrix has
never been implemented for a CMB experiment. In our work (Camphuis et al., 2022), we computed, for the
first time, the exact covariance matrix and proposed a new approximation for the covariance computation. In
this section, we will summarize the main results before including this work.

To enhance clarity, we will use the notation aXℓm → Xℓm to represent the spherical harmonic coefficients,
and for this section, we will disregard the instrumental corrections to the signal, and the binning, which will
be addressed in the subsequent section. The covariance matrix of the pseudo-power spectrum estimator, when
considering a pure CMB signal observed through a mask W , can be expressed as follows (Hansen et al., 2002)

Σ̃XνYµ;ZαVβ
ℓℓ′ ≡ cov

(
C̃XνYµ

ℓ , C̃ZαVβ
ℓ′

)
=

1

(2ℓ+ 1)(2ℓ′ + 1)

∑

mm′

[
⟨X̃ν

ℓmZ̃
α∗
ℓ′m′⟩⟨Ỹµ∗

ℓmṼ
β

ℓ′m′⟩+ Ṽ
β ↔ Z̃

α
]
. (4.4)

The second term inside the sum is identical to the first but exchanges the Stokes and frequency indices as
indicated. To streamline the notation, let’s begin by examining the temperature pseudo-power spectrum at a
single frequency, with X = T, temporarily omitting the ν index. Utilizing the decomposition of pseudo-harmonic

81



coefficients outlined in Eq. (3.41), we obtain the following expression:

⟨T̃ℓmT̃
∗
ℓ′m′⟩ =

∑

ℓ1m1ℓ2m2

⟨Tℓ1m1
T∗

ℓ2m2
⟩0Iℓmℓ1m1

[W ]0I
∗
ℓ′m′ℓ2m2

[W ] =
∑

ℓ1m1

CTT
ℓ1 0Iℓmℓ1m1

[W ]0I
∗
ℓ′m′ℓ1m1

[W ]. (4.5)

Subsequently, we can express the covariance matrix of the temperature pseudo-power spectrum as follows:

Σ̃ℓℓ′ =
2

(2ℓ+ 1)(2ℓ′ + 1)

∑

mm′

∑

ℓ1m1

∑

ℓ2m2

CTT
ℓ1 CTT

ℓ2 0Iℓmℓ1m1
[W ]0I

∗
ℓ′m′ℓ1m1

[W ]0I
∗
ℓmℓ2m2

[W ]0Iℓ′m′ℓ2m2
[W ]. (4.6)

The polarization pseudo-power spectra involve a combination of both the EE and BB contributions, requiring
the consideration of additional combinations. However, for our parameter constraints, we will solely utilize the
EE power spectrum. Given that CBB ≪ CEE and assuming the EB and TB power spectra are negligible, we
can simplify the expression by setting CBB = CTB = CEB = 0. We can write the covariance matrix of the
pseudo-power spectrum

Σ̃XνYµ;ZαVβ
ℓℓ′ =

1

(2ℓ+ 1)(2ℓ′ + 1)

∑

mm′

∑

ℓ1m1

∑

ℓ2m2

[
CXνZα

ℓ1 CYµVβ
ℓ2 s(X)Iℓmℓ1m1s(Z)I

∗
ℓ′m′ℓ1m1

(4.7)

s(Y)I
∗
ℓmℓ2m2s(V)Iℓ′m′ℓ2m2

+(Vβ) ↔ (Zα)] ∀XYZV ∈ {T,E}.

Where s(T) = 0 for temperature and s(E) = + for polarization, and +I = 1
2 (2I +−2I). For simplicity, we have

omitted the mask dependence of the coupling coefficients in the notation. The covariance matrix of the pseudo-
power spectrum only depends on the underlying power spectrum and the mask. However, the contribution of
these two factors becomes intertwined through the coupling coefficients. In the case of a full-sky observation,
the coupling coefficients simplify drastically thanks to the relations in Eq. (3.27) with Iℓmℓ′m′ [1] = δℓℓ′δmm′ .
Consequently, in the full-sky scenario, the modes are uncorrelated, and we can express this by including the
Stokes and frequency indices as follows:

ΣXνYµ;ZαVβ
ℓℓ′ =

1

2ℓ+ 1
δℓℓ′(C

Xν,Zα
ℓ CYµVβ

ℓ + CXνVβ
ℓ CYµ,Zα

ℓ ). (4.8)

We recovered the general formula for cosmic variance as in Eq. (3.40). In the case of partial sky coverage, a
widely used approximation for the diagonal elements of the covariance matrix after binning can be obtained by
rescaling the previous equation and writing the following formula (Knox, 1995; Hivon et al., 2002):

ΣXνYµ;ZαVβ
bb′ ≡ cov

(
C̃XνYµ
b , C̃ZαVβ

b′

)
≈ 1

νb
δbb′(CXν,Zα

b CYµVβ
b + CXνVβ

b CYµ,Zα
b ), (4.9)

Here, b and b′ represent the bin indices, and νb denotes the effective number of degrees of freedom in the
sky. Specifically, νb is determined by (2b+ 1)∆ℓbfsky

w2
2

w4
, where ∆ℓb corresponds to the bin width in multipole

space. The binning process is crucial as it enables the reduction of coupling between the band powers. This
approximation applies to a wide range of masks and provides a reasonable first-order estimation of the error
bars if the binning scheme is wide enough. However, in the case of the SPT-3G winter field, the sky coverage
is small, encompassing only 4% of the total sky. Consequently, we anticipate a high level of correlation between
spectral modes, leading to an accuracy of the Knox formula. In this section, we introduce the work of Camphuis
et al. (2022), which proposes a method to accurately compute the covariance matrix of the pseudo-power
spectrum. This work not only assesses the accuracy of existing approximations but also describes the procedure
for transforming the covariance matrix of the pseudo-power spectrum into the covariance matrix of the PolSpice
estimator.

Exact computation To estimate the precision of the covariance matrix, a large number of simulations or
an exact computation is required. The terms of the covariance matrix can be estimated from nsim simulations
with a variance given by (Lueker et al., 2010)

var (Σ̃ℓℓ′) =
Σ̃2

ℓℓ′ + Σ̃ℓℓΣ̃ℓ′ℓ′

nsim
. (4.10)

The diagonal is dominant for pseudo-power spectrum covariance matrices, and the variance of Monte-Carlo
estimated off-diagonal terms is high, necessitating a challenging number of simulations. In our work (Camphuis
et al., 2022), we proposed an exact method to compute the covariance matrix. The standard computation
scales as O(ℓ6max), but we can accelerate it using the speed gain from utilizing the HEALPix fast harmonic
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decomposition. The algorithm is based on the observation that the left-hand side of Eq. (4.5) can be computed
using harmonic decomposition.

Before any further computations, let us remind the reader that we defined the spherical harmonic transform
operator SHT in Eq. (3.13) acting on a map, and its inverse SHT−1 acting on a set of spherical harmonic
coefficients. The dot · refers to the application of the operator to the left of the dot on the object to the
right, and × refers to term-to-term multiplication, which needs to be differentiated from matrix multiplication.
Furthermore, H is an operator defined in Eq. (3.18) and performs the HEALPix routine alm2cl, applied on two
separate sets of harmonic coefficients.

Let’s define δℓ
′m′

as the set of harmonic coefficients such that ζℓ
′m′

ℓm ≡ δℓℓ′δmm′ , and extend the power
spectrum notation Cℓm ≡ Cℓ. We can then write the two-point harmonic function as a series of spherical
harmonic transforms

⟨X̃ℓmỸ
∗
ℓ′m′⟩ =

∫
dn̂Yℓm(n̂)W (n̂)Y∗

LM (n̂)CXY
L

∫
dûY∗

LM (û)W (û)Y∗
ℓ′m′(û) (4.11)

=⇒ ⟨X̃ℓmỸ
∗
ℓ′m′⟩ =

[
SHT ·W × SHT−1 · CXY × SHT ·W × SHT−1 · ζℓ′m′]

ℓm
. (4.12)

In this equation only, we denoted spherical harmonics with Y to avoid mixing with the harmonic coefficients. We
assume that the spherical harmonic transforms are performed with the appropriate spin-weighting. To simplify
this equation, let’s introduce a new operator I defined as I ≡ SHT ·W × SHT−1, hence

⟨X̃ℓmỸ
∗
ℓ′m′⟩ =

[
I · CXY × I · ζℓ′m′]

ℓm
. (4.13)

With the help of a suite of HEALPix routines, we can implement the previous operation and obtain the set of
harmonic coefficients for given indices input ℓ′,m′. The ℓ′ row of the covariance matrix is then obtained by
computing the sum over all m,m′ index

Σ̃XνYµ;ZαVβ
ℓℓ′ =

∑

m′

H
{
I · CXZ × I · ζℓ′m′

, I · CXZ × I · ζℓ′m′}
(4.14)

Applying I with HEALPix has a computational cost scaling as O(ℓ3max), and the sum over the m′ index introduces
an additional factor of ℓmax to obtain a single row ℓ′ of the covariance matrix. Performing this operation for
multiple rows ℓ′ implies that the exact covariance computation scales as O(ℓ5max). This method is exact and does
not rely on any approximation, as only relies on the assumption of a homogeneous isotropic Gaussian field. It can
be expanded to anisotropic fields and the computation of the polarization B spectrum combinations. However,
the computational cost remains high, with around 104CPU-hours for ℓmax ∼ 1000. In the next section, we will
explore approximations that can reduce the computational burden.

Approximations In order to reduce the computational complexity associated with exact computations, ap-
proximations are commonly employed in the literature. These approximations are valid for masks that cover a
significant fraction of the sky but are known to perform less well for smaller masks. In this study, we propose
a new approximation specifically tailored for masks of size comparable to the SPT-3G mask. To begin, let us
focus on temperature. Starting from Eq. (4.6), we define the renormalized covariance coupling kernel as the
sum over the multipole orders (m,m′, . . . ) of the coupling coefficients. This kernel, denoted as Θ̄ℓ1ℓ2

ℓℓ′ [W ], can
be expressed as follows:

Θ̄ℓ1ℓ2
ℓℓ′ [W ] ≡ 1

(2ℓ+ 1)(2ℓ′ + 1)Ξℓℓ′ [W 2]

∑

mm1m′m2

(0Iℓmℓ1m1 0I
∗
ℓ′m′ℓ1m1 0Iℓ′m′ℓ2m2 0I

∗
ℓmℓ2m2

)[W ]. (4.15)

The covariance coupling kernel depends on the mask and quantifies the coupling between modes ℓ1 and ℓ2
for a given pair of modes ℓ and ℓ′. It is symmetric under ℓ1 ↔ ℓ2 or ℓ ↔ ℓ′ and is normalized such that∑

ℓ1ℓ2
Θ̄ℓ1ℓ2

ℓℓ′ [W ] = 1. Finally, the covariance matrix is obtained by summing over the coupling kernel and the
power spectrum, as expressed by the equation:

Σ̃TTTT
ℓℓ′ = 2Ξℓℓ′ [W

2]
∑

ℓ1ℓ2

CTT
ℓ1 Θ̄ℓ1ℓ2

ℓℓ′ [W ]CTT
ℓ2 . (4.16)

The covariance coupling kernel plays a central role in covariance computations. Existing literature leverages
its simple structure to propose approximations. When the mask is sufficiently large, the mask power spectrum
exhibits rapid variations as the multipole order changes, see Fig. 3.2, while the input CMB power spectrum and
the coupling kernel can be approximated as remaining relatively constant. This allows for an approximation of
the coupling kernel as a set of Dirac delta functions (Efstathiou, 2004; Friedrich et al., 2021). A more refined
approximation utilizes the MASTER mode-coupling kernel which captures the convolution effects of the kernel on
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the power spectrum (Hivon et al., 2002; Nicola et al., 2021). In our work, we exploit the symmetries of the
covariance coupling kernel and demonstrate that, given a certain set of ∆i∈[1,2,3], the following approximation
holds

∀ℓ, λ, Θ̄(ℓ+∆2)(ℓ+∆3)
ℓ(ℓ+∆1)

[W ] ≈ Θ̄
(λ+∆2)(λ+∆3)
λ(λ+∆1)

[W ]. (4.17)

The kernel is invariant by simultaneous translation of all four indices. Consequently, it is sufficient to compute
the covariance coupling kernel for a specific set of ℓ and ∆i in order to accurately calculate the covariance
matrix. This approximation proves particularly useful when the mask is small. The covariance matrix can be
obtained by expressing

Θℓ1ℓ2
ℓℓ′ [W ] =

∑

mm′

Hℓ1

{
I · δℓm , I · δℓ′m′}

Hℓ2

{
I · δℓm , I · δℓ′m′}

, (4.18)

and relying on the HEALPix decompositions for the exact computation. This approximation is compared to
others in Fig. 6 of Camphuis et al. (2022) and is shown to be the most accurate for the SPT-3G mask. Details
can be found in the article included below. We will refer to this approximation as the ACC (accurate covariance
coupling) approximation and use it to compute the covariance matrix of the SPT-3G band powers.

From pseudo-covariance to PolSpice covariance A final step is required to derive the covariance matrix
of the PolSpice estimator, which models the mask de-biasing procedure and polarization decoupling. The
covariance matrix of the PolSpice estimator is obtained by relying on the transformation defined in Eq. (3.59),
and we finally obtain

Σ̂XνYµ;ZαVβ ≡ s(XY)GΣ̃
XνYµ;ZαVβ

s(ZV)G
⊤, (4.19)

where we used s(TT) = 0, s(TE) = × and s(EE) = +, and defined +G ≡ 1
2 (+2G+ −2G). This correction

depends on the mask and should be computed in agreement with the PolSpice real space apodization setup
chosen for the analysis.

We include Camphuis et al. (2022) in the thesis as published. The notations are consistent with previously
defined equations, except for the definitions of the PolSpice operator +2G, which is labeled decG in the article.
It is important to note that this framework fails when the analysis mask includes small-scale features, such as
point source masking holes. To mitigate this issue, we introduced the inpainting procedure which is detailed in
Section 3.6.
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ABSTRACT

Context. A reliable estimation of cosmological parameters from pseudo-power spectrum estimators requires accurate covariance
matrices.
Aims. We focus on the analytical calculation of covariance matrices. We consider the case of observations of the cosmic microwave
background (CMB) in temperature and polarization on a small footprint such as in the South Pole Telescope third-generation (SPT-
3G) experiment, which observes 4% of the sky. Power spectra evaluated on small footprints are expected to have strong correlations
between modes, and these need to be accurately modeled.
Methods. We present for the first time an algorithm that allows an efficient (but computationally expensive) exact calculation of ana-
lytic covariance matrices. Using it as our reference, we tested the accuracy of existing fast approximations of the covariance matrix.
Furthermore, we propose a new approximation that is designed to be more precise. Finally, we derived the covariance matrices for
mask-corrected power spectra estimated by the PolSpice code. In particular, in the case of a small sky fraction, we included the effect
of the apodization of the large-scale modes.
Results. We find that when the power spectrum is binned in wide bandpowers, current approximations of the covariance matrix are
correct up to the 5% level on the SPT-3G small sky footprint. Our new approximation improves the previous approximations and
reaches a precision of 1% for the wide bandpowers. It is generally more than four times more accurate than current approaches.
Conclusions. While we considered the specific case of the CMB, our results are applicable to any other cosmological probe that
requires the calculation of pseudo-power spectrum covariance matrices.

Key words. cosmic background radiation – cosmology: observations – cosmological parameters – methods: data analysis

1. Introduction

One of the most powerful probes of cosmology is the observa-
tion of the cosmic microwave background (CMB) anisotropies.
The NASA WMAP and the ESA Planck satellite CMB mea-
surements marked the entry into the era of precision cosmology,
in which many Λ cold dark matter (ΛCDM) matter cosmologi-
cal parameters are measured with uncertainties smaller than 1%
(Hinshaw et al. 2013; Planck Collaboration V 2020). Ongoing
and upcoming ground-based and satellite experiments such as
the Atacama Cosmology Telescope (ACT; Aiola et al. 2020), the
South Pole Telescope (SPT; Dutcher et al. 2021), the Simons
Observatory (SO; Ade et al. 2019), CMB-Stage 4 (CMB-S4;
Gallardo et al. 2022), and Litebird (Hazumi et al. 2012) will
provide yet more information about the nature of our Universe.

Because primary CMB anisotropies in intensity and polar-
ization are distributed as a Gaussian random field, most of the
cosmological information is contained in the angular power
spectrum of the CMB anisotropies. As the evolution of the
primary anisotropies is linear, the multipoles of the angular
power spectrum are uncorrelated when the full sky is observed.
However, any realistic experiment requires masking parts of the
sky, either to avoid regions that are highly contaminated by fore-
grounds (e.g., galactic emission or point sources) or because
the scanning strategy is designed to observe specific regions of
the sky. The estimation of the power spectrum on the masked

sky, the so-called pseudo-power spectrum, is biased, and dif-
ferent multipoles become correlated (Hivon et al. 2002). An
unbiased estimator of the spectra can then be obtained through
the MASTER approach (Hivon et al. 2002), as implemented in the
PolSpice1 software, for instance (Szapudi et al. 2001; Chon
et al. 2004). A robust inference of cosmological parameters
requires accurate covariance matrices that describe the variance
of the spectra along their diagonal, as well as the correlations
between multipoles in the off-diagonal terms. Pseudo-Cℓ covari-
ance matrices are corrected for the effect of the mask using
MASTER to obtain the covariance matrices for the unbiased Cℓ
estimator. Inaccuracies in the covariance matrix estimation can
lead to the misestimation of cosmological parameters and of
their uncertainties (Dodelson & Schneider 2013; Sellentin &
Starck 2019).

Covariance matrices can be calculated through the use of
simulations. The number of simulations determines the accuracy
of the estimator. As the simulations are expensive to produce, the
obtained noisy realization of the covariance has to be regularized
(Balkenhol & Reichardt 2022)2. Alternatively, it is possible to
calculate pseudo-Cℓ covariance matrices analytically. However,

1 http://www2.iap.fr/users/hivon/software/PolSpice/
2 While this work focuses on covariance estimates obtained through
empirical estimators, the conditioning schemes it presents can similarly
be applied to estimates from simulations.
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these depend on integrals whose exact numerical implementa-
tion is computationally expensive. Thus, approximations have
been proposed in previous works to make these calculations effi-
cient; see, for example, Efstathiou (2004), Nicola et al. (2021)
and Friedrich et al. (2021).

We analyze the problem of computing accurate analytical
covariance matrices. We take the specific case of the South
Pole Telescope third-generation (SPT-3G) experiment, which
observes the CMB anisotropies in temperature and polarization
on a small sky patch that corresponds to about 4% of the sky. On
such a small sky region, the calculated power spectra has strong
correlations between multipoles. The existing approximations of
the covariance matrix can be less accurate in these conditions.
Considering this particular case is thus a particularly stringent
test of the validity of analytical algorithms.

We implement for the first time the exact computation-
ally expensive calculation of the covariance matrices, which
we find to be numerically feasible at multipoles smaller than
ℓ ≲ ℓmax,ex ≡ 1000 through a new algorithm that gains one
order of numerical complexity over the brute-force approach,
resulting in a thousandfold speed improvement. Then, we test
the existing approximations, and find that they are accurate
at the 5% level in the case of the SPT-3G footprint when
the power spectrum is averaged in wide bandpowers. We then
propose a new approximation that improves the existing algo-
rithms to attain an accuracy of 1% in the same case. Finally,
we describe how the covariance matrix of the PolSpice Cℓ
estimator can be calculated from the pseudo-Cℓ covariance
matrix.

While in this work, we focused on the specific case of the
SPT-3G CMB experiment, many considerations can be applied
more broadly to any probe relying on the calculation of power
spectra and covariance matrices. We also highlight that in this
work we only consider the signal-signal part of the covariance
matrix. Analytical approaches to modeling the noise contribu-
tion have already been developed and used in CMB experiments,
such as Planck; see Appendix C.1 of Planck Collaboration XI
(2016). They rely on assumptions on the noise properties, such
as isotropy or whiteness. When these assumptions do not hold,
the noise-noise and signal-noise components can be obtained
directly from the data, as was done in the SPT-3G analysis
(Lueker et al. 2010; Dutcher et al. 2021). The integration of
the noise part in our exact formalism and new approximation
is beyond the scope of this paper.

The paper is organized as follows. In Sect. 2 we introduce the
pseudo-power spectrum estimator and its covariance. In Sect. 3
we perform the exact calculation of the covariance matrix. In
Sect. 4 we describe the existing approximations for the calcula-
tion of the covariance matrix, and we test their accuracy against
the exact computation. Section 5 presents our new approxi-
mation, which is more accurate. Section 6 describes how the
covariance matrix of the PolSpice estimator can be calculated.
We conclude in Sect. 7, and some detailed calculations are given
in the appendices.

2. Covariance of the pseudo-power spectrum

2.1. Pseudo-power spectrum

Cosmic microwave background anisotropies in intensity and
polarization can be described as maps of Stokes parame-
ters T (n̂),Q(n̂),U(n̂) for a direction n̂ of the sky. They are
Gaussian random fields, fully characterized by their angular
power spectra (CTT

ℓ ,C
EE
ℓ ,C

BB
ℓ ,C

TE
ℓ ), which are the variances of

the harmonic coefficients aT
ℓm, a

E
ℓm, a

B
ℓm obtained by spherical har-

monic decomposition of the maps. Cosmological models allow
the computation of the expectation of the different power spec-
tra in an ideal full-sky case. However, data only ever cover a
part of the sky. We describe the partial coverage with the weight
map W(n̂). The power spectrum of masked maps, labeled C̃XY

ℓ ,
is usually called throughout pseudo-power spectrum. Its expres-
sion for temperature is given in Eq. (A.6). It can be computed
from the masked harmonic coefficients ãX

ℓm, which are directly
related to the unmasked ones, aX

ℓ′m′ , by the application of the
mode-coupling kernels sIℓmℓ′m′ [W]. In the case of temperature,
we write

ãT
ℓm =

∑

ℓ′m′
aT
ℓ′m′ 0Iℓmℓ′m′ [W], (1)

where we have defined the mode coupling kernels3

sIℓmℓ′m′ [W] ≡
∫

dûsYℓm(û)W(û)sY∗ℓ′m′ (û). (2)

These coupling kernels are an important component in the fol-
lowing discussions4. In the full-sky case, the orthonormality
properties of spin-weighted spherical harmonics ensure that
sIℓmℓ′m′ [1] = δℓℓ′δmm′ . We recall in Appendix A some summa-
tion properties of products of coupling matrices that appear in
the computation of pseudo-power spectra and their covariance.
In particular, they are related to the symmetric coupling kernel
acting on a power spectrumA, labeled Ξ[A], with

Ξss′
ℓℓ′ [A] ≡

∑

L

2L + 1
4π
AL

(
ℓ ℓ′ L
s −s 0

) (
ℓ ℓ′ L
s′ −s′ 0

)
. (3)

This operator, introduced in Efstathiou (2004), can also be seen
as acting on a map A with power spectrumAℓ. In the following,
we use the notation Ξ[A] ≡ Ξ[A]. We recall that the average of
the pseudo-spectrum is related to the underlying power spectrum
by the application of the asymmetric coupling kernel computed
for the mask W, also known as the MASTER mode-coupling
matrix M. In the case of temperature, we have

⟨C̃TT
ℓ ⟩ =

∑

ℓ′
0Mℓℓ′ [W]CTT

ℓ′ (4)

0Mℓℓ′ [W] ≡ (2ℓ′ + 1)Ξ00
ℓℓ′ [W]. (5)

In this work, without loss of generality, we develop the computa-
tions for the intensity case (i.e., s = s′ = 0), the polarization case
being similar. We also assume that a single mask is used for both
temperature and polarization. When required, we highlight the
differences between the temperature and polarization cases and
give insight into the importance of the single-mask assumption.

2.2. Covariance

Estimating the covariance of the measured power-spectrum is
crucial to assess the agreement between data and model pre-
dictions and to constrain cosmological parameters from CMB
maps. As discussed in Hivon et al. (2002) and demonstrated in
Appendix A, masking breaks the statistical isotropy and induces

3 The complex conjugate is denoted with a star.
4 This coupling matrix is often denoted K in the literature, such as in
Hivon et al. (2002). In this work, we modified the notation for it to be
consistent with the notation of Sect. 6.
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correlations between the modes of the pseudo-spectrum. The
details of the derivation of the analytical expression of the
pseudo-spectrum covariance can be found in Appendix B. We
give here the expression in terms of the coupling matrices 0I
and the true underlying intensity power spectrum Cℓ, for the
temperature case,

Σ̃ℓℓ′ ≡ cov(C̃ℓ, C̃ℓ′ ),

=
2

(2ℓ + 1)(2ℓ′ + 1)

∑

mm′

∑

ℓ1m1

∑

ℓ2m2

Cℓ1Cℓ2 (6)

× 0Iℓmℓ1m1 [W] 0I∗ℓ′m′ℓ1m1
[W] 0I∗ℓmℓ2m2

[W] 0Iℓ′m′ℓ2m2 [W].

As shown in Eq. (1), the mode-coupling coefficient 0I ker-
nels relate the underlying harmonic coefficients to the harmonic
coefficients measured on the sky through the mask. In the ana-
lytic expression of the covariance, they represent the coupling
between modes due to partial sky coverage. An expression sim-
ilar to Eq. (6) can be written for polarization, using spin-2
spherical harmonics, that is, s, s′ = ±2. These expressions mix
the EE and BB power spectra.

The expression in Eq. (6) involves several convolutions, and
its evaluation is computationally expensive. The full computa-
tion scales as O(ℓ6max), ℓmaxbeing the largest multipole, making
the exact computation of this covariance a daunting task given
the currently available computation power. We have developed
an algorithm that allows the computation of the covariance
matrix at low multipoles with a gain of an order of magnitude
in computational time. We discuss this result in Sect. 3.

This approach was previously unavailable, therefore exist-
ing work has relied on approximations of Eq. (6). In Sect. 4
we present different approximations that have been proposed
in previous works, and we then validate them against our full
computation. This validation was performed for a small sur-
vey footprint, where spectral modes are highly correlated. These
correlations can challenge the assumptions made in the differ-
ent approximations. Throughout this work, we use a test-case
inspired by SPT-3G. The footprint of the first year of the survey
presented in Dutcher et al. (2021) covers roughly 4% of the sky
and is displayed in Fig. 1 along with the mask power spectrum
Wℓ. We apodized the mask with a Gaussian window function of
30 arcmin full width at half maximum, using an algorithm simi-
lar to the one used in Planck (Planck Collaboration VI 2020). We
also show in Fig. 1 the power spectrum of one of the masks used
in the Planck cosmological analysis, which covers a much larger
patch of the sky, around 70% before apodization. The precision
of the standard approximation of the covariance was validated in
the latter case, but it needs to be assessed for a smaller survey
area.

3. Exact computation

An exact calculation of the pseudo-power spectrum covariance
matrix can be obtained by integrating Eq. (6). We propose an
algorithm that performs the computation in O(ℓ5max), typically
gaining a thousandfold speed-up compared to the direct imple-
mentation in O(ℓ6max). This is achieved with the fast harmonic
transform tools implemented in the HEALPix library5. It enables
the exact computation of the covariance matrix, albeit on a lim-
ited range of multipoles. In this work, we have computed the full
covariance up to ℓmax,ex ≡ 1000, and calculated a few rows of
the matrix at ℓ > ℓmax,ex. This allows the direct comparison of

5 https://healpix.sourceforge.io
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Fig. 1. Survey area and the mask power spectrum. Top panel: CMB
temperature anisotropies on the SPT-3G patch in galactic coordinates.
The dark green line delimits the survey footprint. The vertical and
horizontal bold black lines are the zero-longitude and zero-latitude coor-
dinates, respectively. The SPT-3G patch covers roughly 4% of the sky.
Bottom panel: mask power spectra as defined in Eq. (A.4) for SPT-3G
and for the 143 GHz map used in the Planck cosmological analysis,
which covers around 70% of the sky. The spectra have been renormal-
ized by their first value for comparison purposes. Masks corresponding
to small sky fractions, such as that of SPT-3G, have a shallower power
spectrum than large ones. We emphasize that the mask used here does
not include point-source masking.

the various analytic covariance approximation formulae with the
exact calculation.

In the following, we describe the algorithm we developed
to perform this computation. We validate it with Monte-Carlo
estimates of the covariance for the reference SPT-3G survey.

3.1. Algorithm description

We focus on the computation of a given row of the covariance
matrix Σ̃. This allows us either to compute a full covariance
matrix at low multipoles or to test our approximations on a
selection of rows. We first start by describing the computa-
tion of the covariance of the intensity spectrum. A diagram-
matic implementation of our calculation is presented in Fig. 2.
For the polarization spectra, the calculation follows a similar
pattern, and the difference between the two cases are discussed
in the next section.
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Yℓ′m′n̂ W n̂

0ILMℓ′m′L,M CL L

xℓ
′m′

LML,M

Xℓ
′m′n̂ W n̂

⟨ãℓmã∗ℓ′m′⟩ℓ,m Σ̃ℓℓ′ ℓ

×

HEALPix.map2alm

×

HEALPix.alm2map

×

HEALPix.map2alm

∑
mm′ | · |2

Fig. 2. Algorithm used to compute one row of the covariance Σ̃ℓℓ′ using
the HEALPix tools for a fixed ℓ′ and varying ℓ. Square, diamond, or
circle boxes are arrays representing maps, power spectra, or spheri-
cal harmonic coefficients, respectively. Operations are symbolized by
arrows and described alongside. The indices of the arrays are indicated
on the side of the corresponding boxes. For example, near the top of
the diagram, the HEALPIX.map2alm operation applied on the product
Yl′m′W produces the array 0ILMl′m′ with indices L,M. At the bottom
of the diagram, the operations before the final summation produce the
array ⟨ãℓmã∗ℓ′m′ ⟩ with indices ℓ,m for a fixed ℓ′,m′ pair. This part of
the algorithm scales as O(ℓ′3) because this is the scaling of HEALPix
operations (which we applied three times) when the resolution of the
map is comparable to the maximum multipole index considered. The
last operation, summing over the indices m,m′, requires repeating the
precedent steps for all m′ ∈ [−ℓ′, ℓ′], thus repeating them 2ℓ′ + 1 times.
Therefore, the final complexity for producing a single row with fixed
multipole index ℓ′ is O(ℓ′4). Computing the covariance matrix for all ℓ′
then increases the computational time to O(ℓ′5).

We derive in Appendix B the expression of the covariance
of the pseudo-spectrum that leads to Eq. (6). In particular, we
express the covariance as a sum over m and m′ of the square of
the correlation ⟨ãℓmã∗ℓ′m′⟩,

Σ̃ℓℓ′ =
2

(2ℓ + 1)(2ℓ′ + 1)

∑

mm′
|⟨ãℓmã∗ℓ′m′⟩|2. (7)

The harmonic coefficients correlation can be written as

⟨ãℓmã∗ℓ′m′⟩ =
∑

LM

CL 0IℓmLM 0I∗ℓ′m′LM ,

=

∫
dû 0Yℓm(û)W(û)

∑

LM

{
CL 0I∗ℓ′m′LM

}
0Y∗LM(û), (8)

where we have used Eq. (2) to expand one of the 0I kernels,
reorganized the equation, and used the fact that the power spec-
trum CL and the mask W are real quantities (we also dropped the
explicit W dependences of the kernel to simplify notations). For
fixed ℓ′ and m′, the rightmost part of the equation can be seen

as the complex conjugate of the backward spherical harmonic
transform of a set of spherical harmonic coefficients into a map
Xℓ
′m′ , defined as

Xℓ
′m′ (û) ≡

∑

LM

xℓ
′m′

LM YLM(û), (9)

where we defined the spherical harmonic coefficients with

xℓ
′m′

LM ≡ CL 0Iℓ′m′LM . (10)

Here, we emphasize that the map Xℓ
′m′ is a complex map, thus

it needs special care when it is decomposed into harmonic
coefficients. With these definitions, Eq. (8) reduces to

⟨ãℓmã∗ℓ′m′⟩ =
∫

dû 0Yℓm(û)W(û)Xℓ
′m′∗(û), (11)

where we recognize the forward harmonic transform of the map
Xℓ
′m′ , masked by W. Thus, a spherical harmonic transform of

a masked map can produce the correlation ⟨ãℓmã∗ℓ′m′⟩ for all
ℓ,m and a fixed pair of ℓ′,m′. As we discussed, this Xℓ

′m′ map
is defined by a set of spherical harmonic coefficients whose
expression is given in Eq. (10).

The computation of the xℓ
′m′

LM coefficients requires the eval-
uation of the 0I kernel. When Eq. (2) is used for a fixed ℓ′,m′,
the 0ILMℓ′m′ kernel can be computed as the spherical harmonic
transform of a masked 0Yℓ′m′ map for all the L,M indices. When
everything is added, we see that for a choice of ℓ′,m′, the com-
putation of ⟨ãℓmã∗ℓ′m′⟩ for all ℓ,m reduces to two forward and
one backward spherical harmonic transforms, as summarized in
Fig. 2.

In practice, these decompositions can be performed with
HEALPix, which takes advantage of a specific pixelation scheme
to make the computation more efficient. This is where the gain
announced at the beginning of this section comes from, and it
allows us to implement the exact computation. HEALPix decom-
positions typically scale as O(ℓ′3)6. We repeated the decomposi-
tions resulting in ⟨ãℓmã∗ℓ′m′⟩ for all m′ ∈ [−ℓ′, ℓ′] to perform the
summation in Eq. (7). Thus, the computation of a single row Σ̃ℓℓ′
for all ℓ and fixed ℓ′ scales as O(ℓ′4). Finally, the computation of
a full covariance matrix for all ℓ′ scales as O(ℓ5max,ex).

Additional optimizations can be implemented in the algo-
rithm by degrading maps and running the algorithm at a lower
HEALPix resolution, nside, for small multipoles. HEALPix com-
putations are precise up to ℓ ∼ 2nside, hence choosing a map
resolution on the order of the multipole is sufficient to pre-
cisely compute the close-to-diagonal elements of the covariance.
This operation requires a degraded version of the mask, which
must be computed while avoiding aliasing from small-scale fea-
tures. This can be done by implementing a hard cutoff of the
mask harmonic coefficients before degrading its resolution. This
allowed us to compute the exact covariance up to multipole
ℓmax,ex = 1000. The algorithm requires 300 h of CPU-time to
compute a row of the intensity (TTTT) and polarization (EEEE)
matrices at multipole ℓ = 950 with map resolution nside = 1024.
It is also well suited to a potential GPU implementation, which
could lead to more speed-ups.

6 Details about the computation scaling of HEALPix can be found on
the website https://healpix.sourceforge.io or in Gorski et al.
(2005).
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3.2. Polarization

The polarized case is very similar to the intensity case detailed
in the previous subsection. We only describe the EEEE case,
which gives a general template to the other polarization and
temperature×polarization cases.

The polarized version of Eq. (8) is given by Eq. (6) of
Challinor & Chon (2005), which reads
〈
ãE
ℓmãE∗
ℓ′m′

〉
=

∑

LM

[
CEE

L +IℓmLM+I∗ℓ′m′LM

+CBB
L −IℓmLM−I∗ℓ′m′LM

]
, (12)

where we defined the Hermitian coupling coefficients

±IℓmLM =
1
2

(+2IℓmLM ± −2IℓmLM), (13)

with the spin-weighted coupling coefficients ±2I defined as
for intensity, see Eq. (2). Reordering the terms and repeating
the same operations as in the previous section, the final har-
monic coefficient correlation can be seen as the masked forward
spherical harmonic decomposition of two maps Zℓ

′m′
1 ,Zℓ

′m′
2 ,

〈
ãE
ℓmãE∗
ℓ′m′

〉
=

1
2

[∫
dûW(û)Zℓ

′m′
1 (û)

(
+2Y∗ℓm + −2Y∗ℓm

)
(û) (14)

−i
∫

dûW(û)Zℓ
′m′

2 (û)
(
+2Y∗ℓm − −2Y∗ℓm

)
(û)

]
.

The maps Zℓ
′m′

1 ,Zℓ
′m′

2 are obtained using a backward spherical
harmonic decomposition of the coefficients xℓ

′m′;E,B
LM ,

(
Zℓ
′m′

1 − iZℓ
′m′

2

)
(û) ≡

∑

LM

xℓ
′m′;E

LM + xℓ
′m′;B

LM

2 +2YLM(û), (15)

(
Zℓ
′m′

1 + iZℓ
′m′

2

)
(û) ≡

∑

LM

xℓ
′m′;E

LM − xℓ
′m′;B

LM

2 −2YLM(û). (16)

The set of harmonic coefficients xE,B
LM is defined similarly to

the temperature case (Eq. (10)), and it was obtained by filter-
ing the coefficients computed with a masked forward harmonic
decomposition of the spin-2 spherical harmonics ±2Yℓ′m′ ,


xℓ
′m′;E

LM = CEE
L +Iℓ′m′LM ,

xℓ
′m′;B

LM = CBB
L −Iℓ′m′LM .

(17)

This algorithm can be extended for any combination of spectra
for the other polarization cases, including the cross-correlation
between temperature and polarization that we do not treat here.

3.3. Validation on simulations

We compared the results of our implementation of the exact
computation with a MC estimate of the covariance, obtained
with Nsim simulations. The MC covariance terms are expected
to be Wishart distributed with Nsim degrees of freedom, as
explained in Lueker et al. (2010). We can estimate their variance
to be

〈(
Σ̃sim
ℓℓ′ −

〈
Σ̃sim
ℓℓ′

〉)2
〉
=
Σ̃2
ℓℓ′ + Σ̃ℓℓΣ̃ℓ′ℓ′

Nsim
. (18)

−5.0

−2.5

0.0

2.5

5.0

T
T

T
T

Σ̃
``
/Σ̃

si
m

``
−1

×10−2

250 500 750 1000 1250 1500 1750 2000

`

−5.0

−2.5

0.0

2.5

E
E

E
E

Σ̃
``
/Σ̃

si
m

``
−1

×10−2

Diagonal relative difference between
Nsim = 10 000 simulations and
exact calculation
Expected MC
standard deviation

Fig. 3. Relative difference of diagonals Σ̃ℓℓ/Σ̃sim
ℓℓ − 1 for temperature

TTTT (top) and polarization EEEE (bottom). In red we plot the relative
differences every 25 multipoles until ℓ = 1500 and a few well-chosen
ones (at the locations of peaks and troughs of the spectra) up to
ℓ = 2000. In gray, the same quantity is plotted for all multipoles for
ℓ ∈ [ℓcut = 200, ℓmax,ex = 1000]. We are able to compute the covariance
exactly only for a limited number of rows, and it is computationally
cheaper for lower multipoles, justifying our choice of full calculation at
ℓ < ℓmax,ex and partial calculation for larger multipoles. This plot shows
the agreement between the two approaches and validates our exact cal-
culation.

Nsim = 10 000 allows us to reach a percent-level accuracy on
the diagonal. This is the number of realizations that we use for
the MC covariance. For this validation, we used the mask shown
in Fig. 1. In this idealized setting, we did not include a point
source mask.

We performed an exact computation of the TTTT and EEEE
covariance up to ℓmax,ex = 1000, using our algorithm and degrad-
ing the mask to smaller resolutions. Furthermore, we computed
the rows every 25 multipoles of the matrix up to ℓmax = 1500, as
well as at a few well-chosen multipoles that correspond to peaks
and troughs of the spectra up to ℓmax = 2000.

We first focus on the diagonal of the covariance. Figure 3
presents the comparison between the exact computation of the
diagonal, obtained by selecting the corresponding value in the
rows we computed, and the MC evaluation. The two agree within
the MC noise expected for Nsim.

For the off-diagonal terms, we show in Fig. 4 a few rows of
the exact and MC covariance. The rows agree within the MC
noise. The correlation between the modes falls to the percent
level within a distance |ℓ − ℓ′| ∼ 25 bands around the diagonal.
The correlation matrix is defined as the covariance renormalized
by its diagonal,

σℓℓ′ ≡ Σℓℓ′√
ΣℓℓΣℓ′ℓ′

. (19)

We display the exact and MC correlation matrix in the same
multipole range in Fig. 5. Our tests demonstrate that our imple-
mentation of the exact computation of the pseudo-spectrum
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Fig. 5. EEEE correlation matrix (see Eq. (19)) obtained from the exact
(left) and MC (right) calculations of the covariance matrix. The exact
computation allows us to have the full correlation matrix, but the MC
approach is limited by numerical noise. All terms below 10−4 are plotted
in dark blue. Results for TTTT are comparable.

covariance is correct, at least at the level of accuracy that can
be reached by MC estimation.

While massive MC estimates as we performed here in this
idealized case can produce accurate of-diagonal term estimates,
performing numerous MC estimates can be more challenging
in the case of a realistic experiment. It requires regularization
approaches, where the number of possible simulations is limited
by the computational cost of mock-observations.

We also stress that our covariance matrix cannot be directly
compared to the one used in Dutcher et al. (2021) because the
presence of a point source mask (which we did not include in our
simple example), the complications brought about by introduc-
ing realistic noise and scanning strategy, and projection effects

(the analysis in Dutcher et al. (2021) is performed using a flat-sky
approach) can all yield different levels of correlations between
the modes.

4. Existing approximations and their accuracy on a
small patch of the sky

Our algorithm allows us to obtain the exact covariance only for
ℓ < 1000 or for a few rows at higher ℓ′s due to the expensive
computing resources required. The usual analytical approach
consists of using approximations of Eq. (6) to decrease the com-
putational cost. In this section, we introduce a new framework to
express the approximations of the covariance matrix and use it
to list the different methods proposed in the literature. Then, we
test and discuss their accuracy against our exact computation.

4.1. General framework

Before discussing the approximations of the covariance, we
define a few quantities that help relate the various approxima-
tions to each other. We rewrite Eq. (6) as

Σ̃ℓℓ′ =
2

(2ℓ + 1)(2ℓ′ + 1)

∑

ℓ1ℓ2

Cℓ1Θ
ℓ1ℓ2
ℓℓ′ [W]Cℓ2 , (20)

introducing Θℓ1ℓ2
ℓℓ′ [W]. The covariance coupling kernel, defined

as the sum over the multipole orders (m,m′, . . . ) of the coupling
coefficients, reads

Θ
ℓ1ℓ2
ℓℓ′ [W] ≡

∑

mm1m′m2

(0Iℓmℓ1m1 0I∗ℓ′m′ℓ1m1 0Iℓ′m′ℓ2m2 0I∗ℓmℓ2m2
)[W].

(21)

The covariance coupling kernel Θ represents the coupling
between the modes of the theoretical underlying power spectrum
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Cℓi for i = 1, 2 depending on the index of the pseudo-covariance
(ℓ, ℓ′). We chose to show the two indices related to the covari-
ance (ℓ, ℓ′) as subscripts and the two summing indices (ℓ1, ℓ2)
as superscripts. We considered a single-mask temperature case,
for which the coupling kernel is symmetric with respect to the
exchange of multipole indices ℓ ↔ ℓ′ or ℓ1 ↔ ℓ2. In the follow-
ing, we write our results in this case for the sake of simplicity,
but they are valid regardless of the choice of single or multiple
masks. In the case of spectra obtained from maps with differ-
ent masks, or in the case of cross-spectra, the kernel is not
symmetric. While the results of this work apply to both cases,
considering multiple masks increases computing cost.

Using the completeness relations of spherical harmonics,
given in Eqs. (A.10) and (A.11), we can write
∑

ℓ1ℓ2

Θ
ℓ1ℓ2
ℓℓ′ [W] = (2ℓ + 1)(2ℓ′ + 1)Ξ00

ℓℓ′ [W
2]. (22)

We can now define the reduced covariance coupling kernel as

Θ̄
ℓ1ℓ2
ℓℓ′ [W] ≡ Θ

ℓ1ℓ2
ℓℓ′ [W]

(2ℓ + 1)(2ℓ′ + 1)Ξ00
ℓℓ′ [W

2]
, (23)

for which
∑

ℓ1ℓ2

Θ̄
ℓ1ℓ2
ℓℓ′ [W] = 1. (24)

With these notations, we can rewrite the covariance as

Σ̃ℓℓ′ = 2Ξ00
ℓℓ′ [W

2]
∑

ℓ1ℓ2

Cℓ1Θ̄
ℓ1ℓ2
ℓℓ′ [W]Cℓ2 . (25)

The symmetric mode-coupling kernel Ξ[W2] provides the purely
geometric coupling due to sky masking and is common to all
approximations of the covariance. It only depends on the power
spectrum of the squared mask, and it is easy to be convinced that
up to a normalization, it corresponds to the exact covariance in
the case of a constant power spectrum. Its computation scales
as O(ℓ3max). This could be improved by noting, as was done by
Louis et al. (2020), that at small enough scales, Ξ[W2] is close
to a Toeplitz matrix, allowing us to further reduce the scaling
to O(ℓ2max) for a wide range of modes. The sum on the right-
hand side of Eq. (25) describes the contribution of the signal
power spectrum modulated by the kernel Θ̄, which depends on
the mask. This is the sum that all approximations try to simplify,
replacing the kernel Θ̄ with a simpler ansatz. In the following,
we describe all approximations in terms of this redefinition of the
covariance matrix. Since the reduced covariance coupling kernel
is normalized, every approximation formulated in this formal-
ism yields the exact covariance for a constant underlying power
spectrum Cℓ = N.

4.2. Approximations

4.2.1. Narrow-kernel approximation

Based on the observation that the coupling coefficients 0I in
Eq. (1) are narrow and peak at their first multipole indices ℓ or
ℓ′, Efstathiou (2004) introduced the following approximation of
Eq. (25), taking the convolving spectra Cℓi , i = 1, 2 out of the
sum, and replacing them by the power spectrum evaluated at the
first multipole index of the coupling coefficients (i.e., the covari-
ance indices of Θ̄), Cℓ or Cℓ′ . Following the notation introduced

in García-García et al. (2019), we refer to this approximation of
the covariance as the narrow-kernel approximation (NKA),

Σ̃ℓℓ′ ≈ 2CℓCℓ′Ξ00
ℓℓ′ [W

2]
∑

ℓ1ℓ2

Θ̄
ℓ1ℓ2
ℓℓ′ [W]

= 2CℓCℓ′Ξ00
ℓℓ′ [W

2] ≡ Σ̃NKA
ℓℓ′ . (26)

In terms of the reduced covariance coupling kernel, the NKA
uses

Θ̄
ℓ1ℓ2
ℓℓ′ [W] ≈ Θ̄ℓ1ℓ2;NKA

ℓℓ′ [W] ≡ δℓℓ1δℓ′ℓ2 + δℓ′ℓ1δℓℓ2
2

. (27)

The approximation is exact for the full sky. It provides an accu-
rate estimator whenever the underlying power spectrum Cℓ varies
slowly as a function of ℓ compared to the typical size of the
operators 0I. This condition is fulfilled when the amplitude of
the mask power spectrum drops quickly with multipole ℓ, which
is the case for large sky fractions observed with a mask that
contains no small-scale features. This is shown in Fig. 1, for
example, where we plot the power spectrum of one of the masks
used in the Planck analysis. In this case, the above approxima-
tion holds for multipoles much larger than those for which the
mask spectrum contains power.

The NKA was first introduced in intensity by Efstathiou
(2004) and extended to polarization in Challinor & Chon (2005).
As in the temperature case, the approximated covariances in
polarization are expressed as a function of the polarization spec-
tra EE and BB and the symmetric coupling kernels Ξ±2,±2

ℓ,ℓ′ . The
expressions of the approximated polarization covariances mix
EE and BB due to leakage that appears because the sky is
masked; see Eqs. (25)–(27) of Challinor & Chon (2005).

The NKA has been widely used, for instance, in the Planck
cosmological analysis, which masked only small portions of the
full sky; see Planck Collaboration XI (2016). However, it has
never been thoroughly tested on small sky fractions. As shown
in Fig. 1, the mask power spectrum in the case of the small
survey footprint of SPT-3G drops much more slowly than the
large Planck one. From this observation, we expect the mode-
coupling kernels sI to be wider, as can be deduced from Eq. (2).
As a result, the theoretical underlying spectrum Cℓ might not be
treated as constant compared to the covariance coupling kernels
in the sums of Eq. (25), and SPT-3G may be outside the regime
of validity of the NKA assumption. This is tested at the end of
this section. We now list some proposed improvements to the
NKA.

4.2.2. Friedrich approximation

A straightforward extension of the NKA has been proposed in
Friedrich et al. (2021). It is based on the observation that the
reduced covariance-coupling kernel Θ̄ has four maxima at [ℓ =
ℓ1, ℓ

′ = ℓ1], [ℓ = ℓ1, ℓ′ = ℓ2], [ℓ = ℓ2, ℓ′ = ℓ1], and [ℓ = ℓ2, ℓ′ =
ℓ2]. This suggests the following form of the reduced covariance
coupling matrix:

Θ̄
ℓ1ℓ2
ℓℓ′ [W] ≈ Θ̄ℓ1ℓ2;FRI

ℓℓ′ [W] ≡ δℓℓ1 + δℓ′ℓ1
2

δℓℓ2 + δℓ′ℓ2
2

. (28)

Thus, the approximated covariance is

Σ̃FRI
ℓℓ′ ≡ 2Ξ00

ℓℓ′ [W
2]

(Cℓ +Cℓ′
2

)2

. (29)

We refer to this approximation as FRI in the rest of the article.
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Fig. 6. Relative differences of binned approximations with respect to the exact binned covariance: Σ̃APP
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with binning ∆ℓ = 50 . In the first row, we plot the relative differences for the diagonal, i.e., b = b′, while in the second row, we plot those of the
first off-diagonal, i.e., b′ = b+ 1. The NKA (light blue dashed), FRI (purple dashed-double-dot) and INKA (dark blue dashed-dot) approximations
are accurate at the 5% level, whereas the ACC approximation (solid red) reaches the 1% level, both in intensity and polarization for multipoles
larger than ℓcut = 200. The relative differences are plotted for bins that include multipoles up to ℓmax,ex = 1000 because it is the maximum multipole
for which we computed all the rows of the exact covariance. The third row displays the corresponding binned underlying renormalized spectrum
TT or EE to show that the difference of the covariances lies in the peaks and troughs of the spectra.

4.2.3. Improved narrow-kernel approximation

Nicola et al. (2021) proposed an improved version of the NKA,
the improved narrow-kernel approximation (INKA). In this
approximation, the Dirac functions in Eq. (27) are replaced by
0M̄, the renormalized MASTER mode-coupling kernel, as defined
in Appendix A.3. It reads

Θ̄
ℓ1ℓ2
ℓℓ′ [W] ≈ Θ̄ℓ1ℓ2;INKA

ℓℓ′ [W] ≡ 0M̄ℓℓ1 0M̄ℓ′ℓ2 + 0M̄ℓ′ℓ1 0M̄ℓℓ2
2

. (30)

The convolution in Eq. (6) indeed averages the power spectra
Cℓi , i = 1, 2 over multipoles close to ℓ and ℓ′. We can take advan-
tage of this by replacing the convolution by a multiplication
with a smoothed power spectrum. When C̄ ≡ M̄C, the resulting
covariance can be written as

Σ̃INKA
ℓℓ′ ≡ 2C̄ℓC̄ℓ′Ξ00

ℓℓ′ [W
2]. (31)

All the NKA, FRI, and INKA scale as O(ℓ3max), which are the
computing resources needed to obtain the coupling kernels Ξ and
M̄. This is a significant improvement over the O(ℓ5max) scaling of
our full computation. We now validate the approximations in the
case of small surveys using the expensive exact computation of
the covariance matrix.

4.3. Accuracy

We tested the accuracy of the NKA, FRI and INKA using the
exact computation in the case of the SPT-3G small survey foot-
print shown in Fig. 1. For this mask, the correlations between
modes are significant, as we showed in Fig. 4. In this case, it is
customary to bin the individual multipoles into wider bandpow-
ers. For this reason, we performed all of our tests on a binned
version of the covariance. Given the shape of the power spec-
trum of the mask and the correlations that we expect from it, we
adopted a ∆ℓ = 50 binning with ℓ(ℓ + 1)/(2π) weights to flat-
ten the dynamics of the spectra in each bin. With this bin size,
we expect that most of the correlations between bandpowers are
concentrated in the first off-diagonal bin. We also conservatively
excluded the first ℓcut = 200 multipoles from our analysis. They
are more challenging to measure on a small survey footprint
as they can suffer from leakage from the super-survey scales.
We restrict our comparison to the multipoles between ℓcut and
ℓmax,ex = 1000, where we have carried out the exact computation
of all the matrix rows.

We present in Fig. 6 a comparison between the exact com-
putation and the NKA, FRI, and INKA for the diagonal and
first off-diagonal of the TTTT and EEEE binned covariances.
We discuss the performance of our new accurate covariance
coupling (ACC) approximation, also shown in the figure, in
the next section. The existing approximations provide good
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regions) or ℓ ∈ [ℓmax,ex, 2000] (lines).

estimates of these elements of the covariance as they fall within
5% of the accuracy. The amplitude of the errors varies at differ-
ent multipoles. Even though the FRI and INKA schemes were
implemented to improve upon the simple NKA, their errors are
of similar amplitude for this choice of binning. However, all
approximations fail to recover the binned covariance at the per-
cent level. On the third row, we show that the difference of the
covariances lies in the peaks and troughs of the spectra. As the
covariance coupling kernel acts as a symmetric convolution on
the spectrum (see Eq. (25)), it is sensitive to the second-order
derivative of the spectrum rather than the first. An error on the
covariance coupling kernels leads to a larger relative difference
in the covariance at multipoles where the curvature of the spec-
trum is maximum. In Sect. 5 we use the knowledge gained from
the exact computation to propose an improved approximation
scheme.

Because we cannot easily compute the full matrix to present
binned results, we only compare some unbinned rows in Fig. 7 at
higher multipoles. The shaded regions in this figure give the low-
est values of the relative difference for the approximation within
multipoles ℓ ∈ [ℓcut = 200, ℓmax,ex = 1000] and ℓ′ ∈ [ℓ − 2∆ℓ, ℓ +
2∆ℓ]. These are the covariance terms for which we can calcu-
late the full binned covariance; their accuracy is shown in Fig. 6.

Yℓmn̂ W n̂

Iℓ1m1ℓmℓ1,m1

Yℓ′m′ W n̂

Iℓ2m2ℓ′m′ ℓ2,m2

(·) × (·) (·) × (·)

HEALPix.map2alm (·)

(·)(·)∗ × (·)(·)∗

Θℓℓ
′
ℓ1ℓ2

ℓ1, ℓ2

∑
mm′m1m2

Fig. 8. Algorithm for computing the reduced covariance -coupling ker-
nels using HEALPix tools. We use the same notation as in the diagram
of Fig. 2. The HEALPix functions require O(n3

side), with nside the chosen
resolution of maps W and Yℓm. As we choose the resolution nside to be
on the order of the multipoles indices ℓ, ℓ′, it is equivalent to say that
they require O((ℓ + ℓ′)3). As operations are done O(ℓ + ℓ′) times, the
whole operation of computing Θ̄ℓℓ′ is O((ℓ + ℓ′)4) . Finally, it is clear in
this diagram that the computing time of this kernel is at least doubled
when multiple masks are used. Different masks would be used as inputs
in the first line. As a result, the coupling coefficients would need to be
computed for each of the masks, as shown in Eq. (D.3).

Furthermore, the lines in Fig. 7 show the same quantity as the
shaded regions, that is, the maximum relative difference, but for
multipoles ℓ ∈ [ℓmax,ex, 2000], estimated over the sparse number
of rows for which we computed the matrix exactly. The differ-
ence with the exact covariance for all approximations at large
multipoles is always within the same error range as for lower
multipoles. This shows that the approximations still work with
the same precision at higher multipoles, both for temperature and
polarization, and that the accuracy of the approximations in the
unbinned case quickly falls below 20% when ∆ = 50.

4.4. Structure of the reduced covariance-coupling kernel

Our expression of the covariance matrix approximations in terms
of the normalized coupling kernel Θ̄ in Eq. (27) gives us a very
efficient tool for examining the validity of each approximation
and for better understanding their differences. We designed an
algorithm to calculate this kernel exactly, similar to the one
described in Sect. 3 for the exact calculation of the matrix. We
show a diagram of the algorithm in Fig. 8.

The reduced covariance-coupling kernel is then displayed in
Fig. 9 for the INKA, NKA, and FRI approximations compared
to the exact computation for a fiducial multipole ℓ = 200. The
kernels are represented as matrices as a function of ℓ1, ℓ2 for dif-
ferent fixed choices of the indices ℓ, ℓ′. Columns show the results
for different choices of ℓ′ = ℓ − ∆, with ∆ = 0 (i.e., the kernels
for the diagonal terms of the covariance matrix, e.g., Σ̃200,200),
or ∆ = 10, 50 (i.e., the kernels for the off-diagonal terms sepa-
rated by 10 or 50 multipoles, e.g., Σ̃200,190). We recall that the
reduced kernel is multiplied to Cℓ1 ,Cℓ2 and summed over the
indices ℓ1, ℓ2 in Eq. (25). Hence, Fig. 9 directly shows the weight
of the ℓ1, ℓ2 power spectra that contribute to the Σ̃ℓℓ′ element of
the covariance matrix.

We first focus on the kernels for the diagonal of the covari-
ance matrix, ∆ = 0, shown in the first column of Fig. 9. All
kernels peak at ℓ1 = ℓ2 = ℓ, as expected. However, it is clear
from the exact calculation that the kernel has a significant width
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Fig. 9. Reduced covariance coupling kernels Θ̄ℓ1ℓ2
ℓℓ′ for ℓ = 200 and ℓ′ = ℓ+∆, with ∆ = [0, 10, 50] shown in the three different columns. All kernels

in one column share the same color map. All of the matrices are shown as a function of ℓ1 and ℓ2 and are centered on ℓ1, ℓ2 = (ℓ + ℓ′)/2. Each
of the displayed kernels is properly normalized according to Eq. (22). The plots are restricted to the elements that have a significant value. Top
row: approximated INKA kernels and the positions at which the delta distributions of the NKA (circles) and FRI (crosses) approximation peak.
Bottom row: exact kernels. The comparison between the two highlights how much of the structure of the exact kernel is missed by the different
approximations.

compared to the CMB power spectrum. This is more clearly
shown in Fig. 10, where we plot a slice of the coupling kernels
for ℓ1 = 200. The width of the kernel cannot be neglected com-
pared to the slope of the CMB power spectrum. This justifies the
INKA, which replaces the Dirac δ functions of NKA and FRI
by renormalized mode coupling kernels, see Eq. (31). However,
as shown in this figure, the INKA kernel is slightly broader than
the exact calculation and its amplitude is smaller. This explains
why INKA underestimates the covariance diagonal in the peaks
of the power spectrum and overestimates it on the troughs, as
shown in Fig. 6: it averages the underlying power spectrum in
a wider range of multipoles. Conversely, the NKA/FRI kernels
are much thinner than in the exact computation, and so they over-
estimate the diagonal in the peaks and underestimate it in the
troughs of the power spectrum.

Second, we focus on the off-diagonal terms, ∆ = 10, 50,
shown in the second and third column of Fig. 9. The difference
between the exact computation and all the existing approxi-
mations is striking, and it is clear that the kernel has more
structure than the simple approximated forms. For close off-
diagonal terms such as ∆ = 10, the true kernel peaks at its central
index ℓ1 = ℓ2 = ℓ̄ ≡ (ℓ+ ℓ′)/2. For far off-diagonal terms such as
∆ = 50, there are four maxima, as predicted by the FRI approx-
imation, which are partially missed by the INKA. Moreover,
the true coupling has more dynamics and also covers negative
values. Therefore the different approximations, even the INKA
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Fig. 10. Slices of the exact covariance coupling kernel (solid red) vs.
the approximated NKA and FRI (dashed light blue) and INKA (dot-
dashed dark blue) ones (right scale). We show for comparison the CMB
intensity power spectrum (left scale, solid gray line).

approximation, fail to correctly represent the off-diagonal terms
of the covariance, as observed in Fig. 7.
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Fig. 11. Diagonal (top) and row (bottom) of the reduced covariance cou-
pling kernels Θ̄ℓ1 ,ℓ2

ℓ,ℓ′ for ℓ ∈ [150, 206, 300, 650, 750] and ∆ = ℓ′ − ℓ = 50
as a function of ∆2 = ℓ2 − ℓ. The row (bottom) is plotted for ℓ1 = ℓ, i.e.
∆1 = ℓ1 − ℓ = 0. The plots show that for different ℓ but the same ∆, the
kernels are very similar, differing only at the 5% level. A similar result
can be shown for other values of ∆. This leads us to formulate our new
approximation, where we assume Θ̄ to depend only on the multipole
separations ∆,∆1,∆2.

5. New approximation for the covariance

5.1. Improved approach: Approximated covariance coupling

Our ability to calculate the exact reduced covariance coupling
matrix Θ̄, described in Sect. 4, allows us to introduce a new
approximation for the computation of the pseudo-power spec-
trum covariance matrix. We note that for a fixed ∆ = ℓ′ − ℓ, the
structure of Θ̄ℓℓ′ appears to be invariant. In other words, the cou-
pling matrices contributing to the Σ̃ℓℓ′ term of the covariance
matrix only depend on the distance ∆ from the diagonal. This is
demonstrated in Fig. 11, where we plot diagonal and rows of the
exact calculation of Θ̄ℓ,ℓ+∆ for ∆ = 50 and different ℓ, for ℓ1 = ℓ.
The plot reveals that the kernels are nearly identical when they
are plotted as a function of ∆2 = ℓ2 − ℓ. We thus infer that in gen-
eral, when the Θ̄matrices are written as a function of ∆1 = ℓ1 − ℓ
and ∆2 = ℓ2 − ℓ, they only depend on ∆ = ℓ′ − ℓ for any ℓ and
ℓ′. The difference between kernels computed at different ℓs for
same ∆ is small, at the 5% percent level. We can thus assume
that for any choice of multipole ℓ, λ,

∀(ℓ, λ), Θ̄(ℓ+∆1)(ℓ+∆2)
ℓ(ℓ+∆) ≈ Θ̄(λ+∆1)(λ+∆2)

λ(λ+∆) . (32)

An analytical justification of this approximation is provided in
Appendix E using the asymptotic expansion of the Wigner-3j
symbols when ℓ is large.

This suggests a new approximation where the coupling ker-
nel just has to be computed at a given fiducial ℓ for all relevant
values of ∆,∆1, and ∆2. We call this the new approximated
covariance coupling method, ACC. More precisely, the ACC

kernel is given by

Θ̄
ℓ1ℓ2
ℓℓ′ ≈ Θ̄(ℓ+∆1)(ℓ+∆2)

ℓ(ℓ+∆);ACC ≡ Θ̄(ℓ∗+∆1)(ℓ∗+∆2)
ℓ∗(ℓ∗+∆) , (33)

where we perform the exact and costly computation only for the
Θ̄

(ℓ∗+∆1)(ℓ∗+∆2)
ℓ∗(ℓ∗+∆) . We are free to choose the reference ℓ∗ multipole.

Because there are no significant long-range correlations in our
case, we can pick a low7 ℓ∗ and use a low nside map resolution.
We have to ensure, however, that ℓ∗ is larger than ℓcut, the low-ℓ
cutoff that was introduced to avoid issues with large-scale leak-
ages. Close to ℓcut, the exact computation can be used. With a
small mask, large-scale modes are difficult to measure and are
usually excluded from the cosmological analysis. We can also
restrict the range of ∆ to the number of off-diagonal terms of
interest in the covariance matrix. The correlation falls quickly
(see Figs. 4 and 5), and in practice, we can restrict it to |∆| < dmax,
with dmax being on the order of a few times the correlation length.
Similarly, the kernels fall quickly in ∆1,∆2, so that we can also
restrict ourselves to a small region of a similar order, and in
the case of the single-mask analysis, use the symmetry around
∆↔ −∆ to reduce the computational cost.

While we only presented temperature coupling kernels in
Fig. 9, the situation is identical in polarization, and a simi-
lar approximation can be built; see Appendix E. We used this
approximation with ℓ∗ = 300, nside = 512, and dmax = 100 to
compute the ACC results in Fig. 6.

5.2. Accuracy and scaling

We validate the accuracy of our ACC approximation and com-
pare it to the other approximations in Fig. 6. Our new approxi-
mation succeeds at estimating the covariance within an error of
1% for all multipoles larger than ℓcut in intensity and polariza-
tion, which is an improvement of a factor of ∼4 over previous
approximations. This is also shown in Figs. 7 and 12, which is
just the same as Fig. 7, but focused on the EEEE ACC residuals
with respect to INKA. This figure shows that the ACC approxi-
mation estimates both the diagonal and off-diagonal terms of the
covariance matrix far better.

Figure 8 shows the computations needed to obtain the
covariance-coupling kernels. Following the same argumentation
as for the exact computation of the Sect. 3, we can show that
the computation of a single kernel Θ̄ scales as O((ℓ + ℓ′)4).
As a result, because we need to compute one for each diago-
nal index ∆ ∈ [0, dmax], the final ACC approximation scales as
O(n4

sidedmax), where nside is the map resolution chosen to compute
the kernels. The computing resources needed to obtain Θ̄ for all
approximations are summarized in Table 1. They add up to the
resources needed to compute the symmetric coupling kernel Ξ in
Eq. (25). In practice, the kernel M̄ needed to build INKA is often
already known for the sky analysis because it has the same struc-
ture as Ξ, so that the effective complexity for this approximation
is O(1).

5.3. Point-source mask

We did not include a point-source mask in the survey footprint.
Point-source masks significantly complicate the problem as the
power spectrum of the mask will have power at large multipoles,
hence it will extend the correlation length. This has been an
issue for all analysis thus far. Apodizing the point-source masks

7 In the limit where the asymptotic justification of Appendix E remains
valid.
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Table 1. Summary of computation methods to obtain the pseudo-power spectrum covariance matrix.

Method Equation numbers Θ̄
ℓ1ℓ2
ℓℓ′ Precision Complexity

Exact (this work) Eq. (25) Θ̄
ℓ1ℓ2
ℓℓ′ computed ∀ℓ, ℓ′, ℓ1, ℓ2 N/A O(ℓ5max) (Using HEALPix pixelation)

NKA Eq. (26) (δℓℓ1δℓ′ℓ2 + δℓ′ℓ1δℓℓ2 )/2 4% O(1)
FRI Eq. (29) (δℓℓ1 + δℓ′ℓ1 )(δℓℓ2 + δℓ′ℓ2 )/4 4% O(1)

INKA Eq. (31) (0M̄ℓℓ1 0M̄ℓ′ℓ2 + 0M̄ℓ′ℓ1 0M̄ℓℓ2 )/2 4% O(ℓ3max) or O(ℓ2max) with Louis et al. (2020)
ACC (this work) Eq. (33) Θ̄ℓℓ′ invariant for ∆ ≡ |ℓ − ℓ′| =cst 1% O(dmaxn4

side)

Notes. First column: name of approximation. Second column: equation to which they are referred. Third column: expression of Θ̄ in this approx-
imation. Fourth column: precision determined by the maximum values of the relative difference of the EEEE binned covariance on diagonal for
multipoles ℓcut ≤ ℓ ≤ ℓmax,ex in Fig. 6. For larger multipoles, the approximation are expected to be in this range of precision as shown in Fig. 12.
Fifth column: summary of computing resources needed to obtain Θ̄ in each approximation. Let us here specify that for INKA, the kernel M̄ is
often already known, thus the practical complexity is O(1). ℓmax is the multipole range of the covariance, dmax is the number of diagonal computed
in the ACC approximation, nsideis the resolution chosen to compute the covariance coupling kernels in the ACC approximation (closest to ℓcut is
sufficient).
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Fig. 12. Zoom of Fig. 7. We focus on the relative differences of the
ACC and INKA covariance matrices with respect to the exact covari-
ance for EEEE. The deviations found at ℓ < 1000 (shaded regions) are
similar to those found at the higher multipoles (lines), showing that the
approximations work at the same level of accuracy in the two cases.

helps to alleviate the problem, but at the price of discarding a
significant area of the usable sky. Even in the case of a large
survey footprint, such as Planck, the point-source masks have
been shown to break the NKA. In this case, the issue was miti-
gated using a simulation-based correction. For FRI, INKA, and
ACC, preliminary work that we have performed also suggests
that they fail when sources are included. We expect these approx-
imations to perform poorly because the improvements over NKA
are focused on the central shape of the reduced covariance
coupling matrix Θ̄, while the sources tend to affect the far
off-diagonal terms, which increases the correlation between dis-
tant multipoles. Particularly for the ACC approximation, the
stronger correlations at distant multipoles will break the asymp-
totic behavior of the Wigner-3j symbols shown in Appendix E.
We can expect that this reduces the validity of the approximated
invariance by translation along the covariance diagonal, which
is at the core of the ACC approximation. More work is required
to assess the accuracy of ACC and other approximations in
this case. However, different approaches can be adopted to miti-
gate the effect of a point-source mask. For example, analytical

solutions might be found (Gratton et al., in prep.), the maps
might be inpainted (Benoit-Lévy et al. 2013), or a MC correc-
tion such as the one used in Planck might be employed (Planck
Collaboration XI 2016).

6. Covariance of the PolSpice estimator

The pseudo-power spectrum is a biased estimator of the true
underlying spectrum of the masked CMB maps. To recover an
unbiased estimator, we can apply the MASTER (Hivon et al. 2002)
formalism, which inverts the mode-coupling matrix and applies
it to the biased estimator. Similarly, we can use the PolSpice
(Szapudi et al. 2001; Chon et al. 2004) algorithm, which cor-
rects the two-point correlation function for the effect of the
mask in real space and then converts the result back into har-
monic space. However, when the sky footprint is small and no
large angular scales are observed, the unbinned mode-coupling
matrix becomes singular. Analogously, the PolSpice conver-
sion of the two-point correlation function into a power spectrum
cannot be performed. In the first case, the mode-coupling matrix
must be binned to allow the inversion. In the second case, we
must apodize (i.e., cut gradually) the large angular scales of the
two-point correlation function before calculating the correspond-
ing power spectrum. This introduces a small bias in the final
estimator that cannot be corrected for.

In this section, we explain in detail how the covariance
matrix is calculated for the PolSpice estimator starting from
a pseudo-power spectrum covariance matrix, which we produce
through our ACC approximation. We show how the effect of the
correction of the mask is included, as well as the small bias intro-
duced by the PolSpice apodization of the two-point correlation
function. In particular, we show that this apodization can be
expressed in harmonic space, allowing us to relate the PolSpice
spectrum covariance matrix to that of the pseudo-spectrum with
a convolution.

6.1. MASTER equation

The pseudo-power spectrum is related to the true spectrum
through the well-known MASTER equation introduced in Hivon
et al. (2002),
〈
C̃TT
ℓ

〉
=

∑

ℓ′
0Mℓℓ′CTT

ℓ′ , (34)

with similar equations for polarization; see Appendix A.2. This
bias comes from the information that is missing due to the
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masked sky. Given the weighted mask W(n̂), we can compute
0M using Eq. (A.15). Provided that 0M is invertible, an unbiased
estimator can be constructed. These relations can be expressed
in real space using the two-point correlation functions ξ, which
for a statistically isotropic sky depend only on the relative angle
between two directions,

⟨T (n̂1)T (n̂2)⟩ = ξ(arccos(n̂1 · n̂2)). (35)

They can be related to the power spectrum Cℓ using a Legendre
series, with

ξ(θ) =
∑

ℓ

2ℓ + 1
4π

CℓPℓ(cos θ), (36)

Cℓ = 2π
∫ 1

−1
d cos θξ(θ)Pℓ(cos θ). (37)

When we define the correlation function ξ̃ of the masked sky
in the same manner, associated with the pseudo-spectrum C̃ℓ,
we obtain from Eq. (34) by applying the decomposition in a
Legendre series the following relation:

⟨ξ̃(θ)⟩ = w(θ)ξ(θ), ∀θ ∈ [0, π], (38)

where w(θ) is the mask angular correlation function (more details
can be found in Appendix C). From this relation, we can estab-
lish that the MASTERmode-coupling matrix 0M is invertible only
when the correlation function of the mask w(θ) is nonzero for all
θ ∈ [0, π], which implies that the survey area explores all angular
separations on the sky. While this is valid for an almost full-sky
analysis such as Planck, it does not hold for experiments observ-
ing small patches, such as SPT-3G, where angular scales larger
than θ ∼ 30 deg are unexplored. As a result, 0M is not invert-
ible. Binning allows the regularization of the MASTERmatrix and
thus to build a nearly unbiased estimator of the bandpowers. This
approach is described in Hivon et al. (2002) and is adopted in
NaMaster8 (Alonso et al. 2019). Similarly, we show in the next
section how the unobserved large angular scales are handled in
the PolSpice estimator.

6.2. Regularizing with PolSpice

6.2.1. Temperature

The pseudo-power spectrum estimator can be regularized in real
space following the PolSpice approach in Szapudi et al. (2001).
The pseudo-correlation function ξ̃ is smoothed with a scalar
apodizing function f apo(θ), which cuts out large θ and then cor-
rects for the bias coming from the weighted mask described
in Eq. (38). The scalar apodizing function goes smoothly from
f apo(0) = 1 to f apo(θmax) = 0 to avoid Fourier ringing. θmax
should be chosen as the maximum angular size of the weighted
mask. A new correlation function estimator ξ̂(θ) is defined as

ξ̂(θ) ≡ g(θ)ξ̃(θ), (39)

with

g(θ) =
{

f apo(θ)/w(θ) ∀θ ∈ [0, θmax) ,
0 ∀θ ∈ [θmax, π] .

(40)

The function g is well defined and smooth for all angles through
the apodization f apo. As a consequence of Eqs. (38) and (39), the

8 https://github.com/LSSTDESC/NaMaster

PolSpice estimator of the correlation function can be related on
average to the true underlying correlation function with

⟨ξ̂(θ)⟩ = f apo(θ)ξ(θ) ∀θ ∈ [0, π] . (41)

Returning to harmonic space using a Legendre transform, this
operation can be expressed as

⟨Ĉℓ⟩ =
∑

ℓ′
0Kℓℓ′Cℓ′ . (42)

0Kℓℓ′ = (2ℓ′ + 1)Ξ00
ℓℓ′ [ f apo]. (43)

The PolSpice kernel 0K is obtained from the scalar apodizing
function f apo with an extended definition of the operators Ξ (see
Appendix C and Eq. (C.7) for more details). The operator acts
on the Legendre transform of f apo.

The advantage of PolSpice, which performs the regular-
ization in real space rather than in harmonic space, is that it
replaces an ℓ-space convolution by an integration and a mul-
tiplication, which are faster and numerically more stable. This
produces an estimator for all multipoles ℓ. We denote this esti-
mator with a hat, for instance, ĈXY

ℓ . This regularization (which
is only required for small sky patches) introduces a bias in the
PolSpice estimator that cannot be corrected for because the
coupling is not invertible generally as the apodizing function
f apo reaches zero. The bias is small because 0K is properly
normalized, that is,

∑
ℓ 0Kℓℓ′ = 1. Furthermore, the regulariza-

tion increases the correlations between unbinned modes. The
PolSpice kernels behave as window functions, mixing multi-
poles of the pseudo-power spectrum. The lack of information at
large scales induces the inability to distinguish multipoles that
are close to each other. For this reason, the spectrum estimator
is binned in ranges larger than the typical correlation between
multipoles for a cosmological analysis.

6.2.2. Polarization

PolSpice allows correcting for the bias introduced by the cut
sky in the same manner as for the polarized spectra. It also
allows decoupling the EE and BB estimator; see Challinor &
Chon (2005) or Appendix C. Similarly to the intensity case, we
can express the effect of the PolSpice real-space regulariza-
tion in spherical harmonics by defining the polarized PolSpice
kernels, ±2Kℓℓ′ = (2ℓ′ + 1)Ξ2±2

ℓℓ′ [ f apo]. The PolSpice estimator
follows for X ∈ [E,B]
〈
ĈXX
ℓ

〉
=

∑

ℓ′
−2Kℓℓ′CXX

ℓ′ . (44)

For the temperature×polarization case, we can show that

⟨ĈTE
ℓ ⟩ =

∑

ℓ′
×Kℓℓ′CTE

ℓ′ , (45)

with ×Kℓℓ′ = (2ℓ′ + 1)Ξ20
ℓℓ′ [ f apo]. (46)

6.3. Relating POLSPICE and MASTER in harmonic space

We can translate the relations Eq. (39) into harmonic space in
temperature and polarization to obtain the PolSpice estima-
tor as a harmonic convolution of the pseudo-power spectrum
estimator,

ĈTT
ℓ =

∑

ℓ′
0Gℓℓ′C̃TT

ℓ′ , (47)
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ĈEE
ℓ − ĈBB

ℓ =
∑

ℓ′
−2Gℓℓ′

(
C̃EE
ℓ′ − C̃BB

ℓ′
)
. (48)

ĈEE
ℓ + ĈBB

ℓ =
∑

ℓ′
decGℓℓ′

(
C̃EE
ℓ′ + C̃BB

ℓ′
)
, (49)

ĈTE
ℓ =

∑

ℓ′
×Gℓℓ′C̃TE

ℓ′ . (50)

The G kernels are constructed in the same manner as the
PolSpice kernels, with the operator Ξ acting on the function
g = f apo/w according to Eq. (C.7) (or equivalently, on the asso-
ciated power spectrum of g via Legendre transform). They are
given by

0Gℓℓ′ = (2ℓ′ + 1)Ξ00
ℓℓ′ [g], (51)

−2Gℓℓ′ = (2ℓ′ + 1)Ξ2−2
ℓℓ′ [g], (52)

×Gℓℓ′ = (2ℓ′ + 1)Ξ20
ℓℓ′ [g], (53)

decGℓℓ′ =
2ℓ′ + 1

2

∫ 1

−1
g(θ)dℓ22(θ)dℓ

′
2−2(θ)d cos(θ). (54)

The first three equations above reduce to the inverse of the
master kernels when the PolSpice apodization function is set
to 1, that is, no apodization. The last kernel, referred to as dec, is
the kernel that allows the decoupling of the EE and BB spectra.
Appendix C gives more details on this point. decG is associated
with integral relations in real space, thus its harmonic expression
is not straightforward. This expression requires more numerical
resources to be computed because no closed relations exist for
the Wigner d-matrix with different multipole indices. It can be
obtained with PolSpice for all ℓ by setting C̃EE

ℓ′ = C̃BB
ℓ′ = δℓℓ′ as

input.

6.4. Covariance of the POLSPICE estimator

Given the previous relations in Eqs. (47)–(50), the covariance of
the PolSpice estimator can be written as a convolution of the
covariance of the pseudo-power spectrum, with

Σ̂TTTT
ℓℓ′ ≡ cov(ĈTT

ℓ , Ĉ
TT
ℓ′ )

=
∑

LL′
0GlL Σ̃

TTTT
LL′ 0Gl′L′ . (55)

For polarization, there is mixing between the EE and BB compo-
nents in the covariance. We write the polarized EEEE PolSpice
covariance after defining ±G ≡ 1

2 (decG ± −2G) as

Σ̂EEEE =+GΣ̃EEEE
+G⊤ + −GΣ̃BBEE

+G⊤

+ +GΣ̃EEBB−G⊤ + −GΣ̃BBBB−G⊤.
(56)

The polarized PolSpice covariance is built on the polarized
pseudo-covariance, mixing the components EE and BB, thanks
to the kernel ±G; see Fig. 13. This figure displays a row of the
kernels that were computed on the mask SPT-3G used in our
analysis. It shows the window functions that are applied to the
pseudo-power spectra to produce the PolSpice spectra.They
correct for the bias due to the mask, but introduce a small bias
due to the lack of information at large scales. The temperature
kernel 0G and the polarization +G kernel are almost identi-
cal. The leakage kernel −G (all negative), which accounts for
the mixing of the E and B polarization pseudo-spectra in the
PolSpice spectrum, is orders of magnitudes smaller than the
other two. Hence, the BB covariance terms do not affect the
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Fig. 13. Amplitude of the PolSpice convolution kernels G for the SPT-
3G footprint. The negative terms are plotted with thinner lines.

EEEE covariance. On the other hand, the EE terms affect the
BBBB covariance because the EE spectrum is a few orders of
magnitude larger than BB. The PolSpice apodizing function of
the correlation function we used is

f apo(θ) =



1
2

(
1 + cos

πθ

θmax

)
∀θ < θmax,

0 otherwise.
(57)

Here we have, θmax = π/6. Without apodization, but with partial
sky, as for Planck, the decoupling kernel decG is not null, still
resulting in a nonzero −G kernel. However, it is orders of mag-
nitude smaller than +G, hence we can compute EEEE ignoring
the leakage from covariance terms that include BB.

6.5. Accuracy of the covariance approximations for the
POLSPICE estimator

We can build estimates of the PolSpice spectrum covariance
by convolving the pseudo-spectrum covariance with the appro-
priate kernels following Eqs. (55) and (56). To calculate the
pseudo-spectrum covariance, we can use the NKA, INKA, FRI,
and ACC approximations or the exact computation. Figure 14
shows the accuracy of the binned PolSpice covariance calcu-
lated with the approximations compared to the exact calculation.
The results are similar to those we found for the accuracy of
the pseudo-spectrum covariances shown in Fig. 6. The NKA,
INKA, and FRI approaches provide a good estimate of the
PolSpice covariance. However, the ACC approach improves
the existing approximations dramatically. This shows that our
results for the accuracy of the pseudo-covariance also hold for
the PolSpice.

7. Summary and conclusions

One of the key ingredients of cosmological analysis based on
power spectra are covariance matrices. Accurate covariance
matrices ensure precise error bars and an unbiased estimation
of cosmological parameters. The analytical estimation of these
matrices can be difficult when small sky fractions are observed
because existing approximations might fail. We have considered
the specific example of estimating accurate analytical signal-
signal covariance matrices for the SPT-3G CMB experiment,

A62, page 14 of 21



E. Camphuis et al.: Accurate CMB covariance matrices

−4

−2

0

2

4

D
ia

go
na

l
Σ̂

A
PP

bb
/Σ̂

bb
−1

×10−2 TTTT EEEE

−4

−2

0

2

4

Fi
rs

to
ff

-d
ia

go
na

l
Σ̂

A
PP

b,
b+

1/
Σ̂

b,
b+

1
−1

×10−2

ACC (this work) NKA INKA FRI

225 375 525 675 825 975

b

0.0

0.5

1.0

∝
C

b
b(

b+
1)

2π

225 375 525 675 825 975

b

Fig. 14. Relative differences of binned PolSpice covariance matrices calculated using approximations of the pseudo-spectrum covariance with
respect to the exact computation: Σ̂APP

bb′ /Σ̂bb′ − 1, for TTTT (left-hand side) and EEEE (right-hand side), with binning ∆ℓ = 50 . On the first row we
plot the relative differences for the diagonal, i.e. b = b′, while on the second row we plot the differences for the first off-diagonal, i.e. b′ = b + 1.
Similarly to the case of pseudo-covariances in Fig. 6, we find acceptable accuracy for the NKA (dash light blue), INKA (dash-dot dark blue) and
FRI (dash-double-dot purple) approximations, while our ACC approximation (solid red) improves overall the others. The PolSpice covariance
matrices have been calculated using Eqs. (55) and (56). The last row displays the corresponding binned underlying renormalized spectrum TT or
EE, to highlight the fact that the differences in the covariances are on the peaks and in the troughs of the spectra, i.e. where the curvature of the
spectrum is maximal.

whose survey covers about 4%, without masking the contribu-
tion of point sources. We considered the cases of estimating the
matrix for pseudo-power spectrum and for the PolSpice power
spectrum estimator.

First, we implemented in Sect. 3 an expensive exact calcula-
tion of the covariance of the pseudo-power spectrum in intensity
and polarization for the first time. We used a map-based algo-
rithm that is accelerated thanks to the HEALPix pixelation tools.
We were thus able to compute the entire covariance matrix up to
ℓmax,ex = 1000 exactly. We also obtained a selection of rows of
the covariance of particular interest up to ℓ = 2000.

Based on this result, we were able to estimate the accuracy
of the existing approximations in Sect. 4 precisely by comparing
them to the binned exact covariances of the pseudo-power spec-
tra measured on the SPT-3G patch. The approximations were
found to be precise to the 5% level.

Then, using the code we developed for an exact computation
of the covariance matrix, we estimated the covariance-coupling
kernel Θ̄, which determines how the CMB power spectrum cou-
ples into the covariance matrix. We were able to understand why
the existing approximations in the literature fail to achieve a pre-
cision better than 5%. We then proposed a new approximation in
Sect. 5, the ACC, which is more computationally expensive than

the existing approximations, but allows a more precise estimation
of the covariance matrix at the 1% level.

Finally, we showed in Sect. 6 that we are able to build
the covariance of the PolSpice power spectrum in both tem-
perature and polarization using a harmonic correction. This
computation is exact and based on the PolSpice algorithm
real-space corrections that we translated into harmonic space.
Through this correction, we produced estimates of the PolSpice
covariance matrix based on the previous approximations of the
pseudo-power spectrum covariance. The accuracy of the result-
ing PolSpice covariance approximations is the same as for the
pseudo-power spectrum.

While this paper considered the particular example of the
SPT-3G experiment, the results can be extended to a non-CMB
power spectrum analysis such as that of weak-lensing shear
or photometric catalogs. We would also like to stress that the
accuracy of any of the approximations presented in this paper
(existing or new) is reduced when a point-source mask is
included in the sky footprint. Nevertheless, the exact compu-
tation of the covariance matrices still holds in this particular
case. While previous experiments have included the effect of
point-source masks through the use of simulations (see, e.g.,
Planck Collaboration XI 2016) or by inpainting the holes with
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constrained realizations (see, e.g., Benoit-Lévy et al. 2013),
additional work is required to find an analytical calculation of
this contribution.
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Appendix A: Analysis of the curved sky

This appendix describes the mathematical tools that are used on
curved sky for a CMB analysis. We make use of the spherical
harmonic decomposition of Gaussian fields. We introduce var-
ious operators that allow us to express the couplings and the
covariance of the power spectra. We make use of some geometri-
cal relations of spherical harmonics to obtain our results. In this
appendix, we introduce formulae that can either be used in the
temperature or in the polarization case.

A.1. Temperature

We first consider the case of a map of the CMB intensity
anisotropies T (n̂) observed in direction n̂. The anisotropies are
distributed as a Gaussian random field with a corresponding
power spectrum CTT

ℓ , observed through a mask W(n̂).

Harmonic coefficients and underlying power spectrum

The intensity map can be decomposed with spin-0 spherical
harmonics to obtain the harmonic coefficients and their vari-
ance, the intensity power spectrum, which fully characterizes the
physical properties of the field,

aT
ℓm =

∫
dûT (û) 0Y∗ℓm(û), (A.1)

⟨aT
ℓmaT∗
ℓ′m′⟩ = CTT

ℓ δℓℓ′δmm′ . (A.2)

Here the brackets ⟨⟩ indicate an average over many realizations
of the maps.

Weighted mask W(n̂)

The weighted mask is a real map with weights from 0 to 1 that
is used to taper the data on the border of the survey area in
order to reduce Fourier ringing when harmonic decomposition
is used. We define the mask harmonic coefficients and its power
spectrum as

wℓm ≡
∫

dûW(û) 0Y∗ℓm(û), (A.3)

Wℓ ≡ 1
2ℓ + 1

∑

m

wℓmw
∗
ℓm. (A.4)

Pseudo-power spectrum estimator

One way to obtain a biased estimator of the power spectrum in
CMB experiments is to define the pseudo-harmonic coefficients
and the pseudo-power spectrum,

ãT
ℓm ≡

∫
dûW(û)T (û) 0Y∗ℓm(û), (A.5)

C̃TT
ℓ ≡

1
2ℓ + 1

ℓ∑

m=−ℓ
|ãT
ℓm|2. (A.6)

Relation between harmonic coefficients

We relate the masked pseudo-harmonic coefficients to the
unmasked coefficient with

ãT
ℓm =

∑

ℓ′m′
aT
ℓ′m′ 0Iℓmℓ′m′ [W]. (A.7)

The I[W] couplings are defined below and can be expressed in
terms of sums over Wigner-3j symbols and the wℓm, with

sIℓmℓ′m′ [W] ≡
∫

dûsYℓm(û)W(û)sY∗ℓ′m′ (û), (A.8)

=
∑

LM

wLM(−1)m′
[
(2ℓ + 1)(2ℓ′ + 1)(2L + 1)

4π

]1/2

(
ℓ ℓ′ L
−s s 0

)
×

(
ℓ ℓ′ L
m −m′ M

)
. (A.9)

Here, we anticipated the extension of this notation to the polar-
ized case, which deals with spin-2 fields. The mask-dependent
sIℓmℓ′m′ [W] coupling coefficients relate the underlying harmonic
coefficients to the measured pseudo-harmonic coefficients. In
the full-sky case, we obtain sIℓmℓ′m′ [1] = δℓℓ′δmm′ through the
orthonormality properties of the spin-weighted spherical har-
monics.

We introduce some useful relations that are demonstrated in
Hivon et al. (2002),

∑

ℓm
sIℓ1m1ℓm[W]sI∗ℓ2m2ℓm[W] = sIℓ1m1ℓ2m2 [W2], (A.10)

∑

m1m2

sIℓ1m1ℓ2m2 [W]s′ I∗ℓ1m1ℓ2m2
[W]

(2ℓ1 + 1)(2ℓ2 + 1)
= Ξss′

ℓ1ℓ2
[W]. (A.11)

Here we introduced the symmetric operator Ξss′ acting on a
power spectrumAℓ,

Ξss′
ℓℓ′ [A] ≡

∑

L

2L + 1
4π
AL

(
ℓ ℓ′ L
s −s 0

) (
ℓ ℓ′ L
s′ −s′ 0

)
. (A.12)

We extend this definition to an operator acting on a map A(n̂),
with

Ξss′
ℓℓ′ [A] ≡ Ξss′

ℓℓ′ [A], (A.13)

where we defined the power spectrum Aℓ of the map A as in
Eqs. (A.3) and (A.4).

MASTER relation between estimated and true spectra

By inserting Eq. (A.5) into Eq. (A.6), using the relations of
Eq. (A.11) and the definition of Eq. (A.12)-(A.13), we relate the
ensemble average of the pseudo-power spectrum to the under-
lying power spectrum using the MASTER mode-coupling kernel
with

⟨C̃TT
ℓ ⟩ =

∑

ℓ′
0Mℓℓ′ [W]CTT

ℓ′ . (A.14)

The MASTER mode-coupling matrix is given by

0Mℓℓ′ [W] ≡ (2ℓ′ + 1)Ξ00
ℓℓ′ [W]. (A.15)

A.2. Polarization

We consider the case of the CMB intensity and polarization
anisotropies, represented by maps T (n̂),Q(n̂),U(n̂) in direction
n̂ of the sky. These are Gaussian random fields, fully charac-
terized by their power spectra (CTT

ℓ ,C
EE
ℓ ,C

BB
ℓ ,C

TE
ℓ ) observed
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through a mask W(n̂). The definitions and relations of the pre-
vious section can be extended to polarization spectra. First we
compute the pseudo-harmonic coefficients on the masked sky
with spin-weighted spherical harmonics, given in the following
inverse relation from Chon et al. (2004):

(Q ± iU)(n̂) =
∑

ℓm

(ãE
ℓm ∓ iãB

ℓm)∓2Yℓm. (A.16)

The pseudo-power spectrum C̃XY
ℓ is obtained by summing

over the measured pseudo-harmonic coefficients ãX
ℓm, X,Y ∈

[T, E,B] with the same multipole ℓ, with

C̃XY
ℓ =

1
2ℓ + 1

ℓ∑

m=−ℓ
ãX
ℓmãY∗
ℓm . (A.17)

More details can be found in Challinor & Chon (2005). Follow-
ing the same approach as in the previous section, we can write
the MASTER relation in polarization,

⟨C̃EE
ℓ + C̃BB

ℓ ⟩ =
∑

ℓ′
+2Mℓℓ′

(
CEE
ℓ′ +CBB

ℓ′
)
, (A.18)

+2Mℓℓ′ = (2ℓ′ + 1)Ξ22
ℓℓ′ [W], (A.19)

⟨C̃EE
ℓ − C̃BB

ℓ ⟩ =
∑

ℓ′
−2Mℓℓ′

(
CEE
ℓ′ −CBB

ℓ′
)
, (A.20)

−2Mℓℓ′ = (2ℓ′ + 1)Ξ2−2
ℓℓ′ [W], (A.21)

⟨C̃TE
ℓ ⟩ =

∑

ℓ′
×Mℓℓ′CTE

ℓ′ , (A.22)

×Mℓℓ′ = (2ℓ′ + 1)Ξ20
ℓℓ′ [W]. (A.23)

A.3. Renormalized kernels

We define the renormalized MASTER kernels, which are used in
the INKA. They are written as

kM̄ℓℓ′ ≡ 1∑
ℓ′ kMℓℓ′

kMℓℓ′ , ∀k ∈ [0,−2,+2,×]. (A.24)

Summing over ℓ′ yields
∑

ℓ′
kM̄ℓℓ′ = 1, (A.25)

which ensures that the approximated covariance-coupling kernel
defined in Eq. (30) is properly normalized.

Appendix B: Covariance of the pseudo-power
spectrum

In this appendix, we outline how the formula of the covariance
matrix of the pseudo-power spectrum is obtained in the temper-
ature case. Our goal is to introduce Eq. (B.9). The covariance
matrix of the pseudo-power spectrum reads

Σ̃ℓℓ′ = ⟨C̃ℓC̃ℓ′⟩ − ⟨C̃ℓ⟩⟨C̃ℓ′⟩,

=
∑

mm′

⟨|ãℓm|2|ãℓ′m′ |2⟩ − ⟨|ãℓm|2⟩⟨|ãℓ′m′ |2⟩
(2ℓ + 1)(2ℓ′ + 1)

. (B.1)

As the intensity map T (n̂) is real and the spherical harmonics
follow

0Y∗ℓm = (−1)m
0Yℓ(−m), (B.2)

the spherical harmonic coefficients of T (n̂) follow

a∗ℓm = (−1)maℓ(−m). (B.3)

When the four-point function is computed and thanks to
Wick’s theorem,

∑

mm′
⟨|ãℓm|2|ãℓ′m′ |2⟩ − ⟨|ãℓm|2⟩⟨|ãℓ′m′ |2⟩

=
∑

mm′
⟨ãℓmãℓ′m′⟩⟨ã∗ℓmã∗ℓ′m′⟩ + ⟨ãℓmã∗ℓ′m′⟩⟨ã∗ℓmãℓ′m′⟩. (B.4)

Based on the first term of this sum and using the change of
variable m′′ = −m′, it is straightforward to show that

∑

mm′
⟨ãℓmãℓ′m′⟩⟨ã∗ℓmã∗ℓ′m′⟩

=
∑

mm′
(−1)(2m′)⟨ãℓmã∗ℓ′(−m′)⟩⟨ã∗ℓmãℓ′(−m′)⟩,

=
∑

mm′′
⟨ãℓmã∗ℓ′m′′⟩⟨ã∗ℓmãℓ′m′′⟩. (B.5)

Finally, we have

∑

mm′
⟨|ãℓm|2|ãℓ′m′ |2⟩ − ⟨|ãℓm|2⟩⟨|ãℓ′m′ |2⟩,

= 2
∑

mm′
⟨ãℓmã∗ℓ′m′⟩⟨ã∗ℓmãℓ′m′⟩

= 2
∑

mm′
|⟨ãℓmã∗ℓ′m′⟩|2. (B.6)

Then, we have for the covariance matrix,

Σ̃ℓℓ′ =
2

(2ℓ + 1)(2ℓ′ + 1)

∑

mm′
|⟨ãℓmã∗ℓ′m′⟩|2. (B.7)

When we use the decomposition of pseudo-harmonic coeffi-
cients, we obtain

⟨ãℓmã∗ℓ′m′⟩ =
∑

ℓ1m1ℓ2m2

⟨aℓ1m1 a∗ℓ2m2
⟩Iℓmℓ1m1 [W]I∗ℓ′m′ℓ2m2

[W],

=
∑

ℓ1m1

Cℓ1 Iℓmℓ1m1 [W]I∗ℓ′m′ℓ1m1
[W]. (B.8)

Inserting Eq. (B.8) into Eq. (B.7) gives

Σ̃ℓℓ′ =
2

(2ℓ + 1)(2ℓ′ + 1)

∑

mm′

∑

ℓ1m1

∑

ℓ2m2

Cℓ1Cℓ2 (B.9)

Iℓmℓ1m1 [W]I∗ℓ′m′ℓ1m1
[W]I∗ℓmℓ2m2

[W]Iℓ′m′ℓ2m2 [W].

Appendix C: Expansion in Legendre series

In this section, we introduce the Legendre transforms of the
harmonic quantities used in this work. Each relation in har-
monic space has a corresponding expression in real space. The
PolSpice software relies on the relations in real space.
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C.1. From spin-0 spectra to two-point correlation functions

Given a spectrumAℓ, we can associate a real two-point correla-
tion function a with it,

a(θ) =
∑

ℓ

2ℓ + 1
4π
AℓPℓ(cos θ) ∀θ ∈ [0, π]. (C.1)

The inverse relation is

Aℓ = 2π
∫ π

0
dθ sin θa(θ)Pℓ(cos θ) ∀ℓ ≥ 0. (C.2)

The two-point function gives the correlations between two direc-
tions of the sky, for instance, in the CMB anisotropy full-sky
case, we can write

⟨T (n̂1)T (n̂2)⟩ =
∑

ℓ

2ℓ + 1
4π

CTT
ℓ Pℓ(n̂1 · n̂2). (C.3)

C.2. From convolution to multiplication

A convolution with a square matrix A in harmonic space, such as
in Eq. (A.14), is equivalent to a multiplication in real space with
the correlation function a(θ) given by

a(θ)
2ℓ′ + 1

4π
Pℓ′ (cos θ) =

∑

ℓ

2ℓ + 1
4π

Aℓℓ′Pℓ(cos θ) ∀θ ∈ [0, π].

(C.4)

The inverse relation is

Aℓℓ′ ≡ 2ℓ′ + 1
2

∫ π

0
a(θ)Pℓ(cos θ)Pℓ′ (cos θ) sin(θ)dθ. (C.5)

The last relation is equivalent to

Aℓℓ′ = (2ℓ′ + 1)Ξ00
ℓℓ′ [A], (C.6)

with A the power spectrum associated with the two-point func-
tion a through a Legendre transform. We can thus extend the
definition of the operator Ξ to an operator acting on a correlation
function a, with
Ξss′
ℓℓ′ [a] ≡ Ξss′

ℓℓ′ [A]. (C.7)

Here we have already extended the definition to be used in the
spin-2 case, which we discuss in the next subsection.

C.3. Spin-2

Similar rules to those introduced above can be written for spin-
2 quantities by replacing the Legendre polynomials by the more
generally reduced Wigner d-matrix dℓ2±2. Details can be found in
Challinor & Chon (2005). The spin-2 relations for theA±ℓ power
spectra are associated with a spin-2 field,

a±(θ) =
∑

ℓ

2ℓ + 1
4π
A±ℓ dℓ2±2(cos θ), (C.8)

A±ℓ = 2π
∫ π

0
dθ sin θa±(θ)dℓ2±2(cos θ). (C.9)

We can associate a spin-0 correlation function with its spin-2
convolution matrix,

±2Aℓℓ′ =
2ℓ′ + 1

2

∫ π

0
a(θ)dℓ2±2(cos θ)dℓ

′
2±2(cos θ) sin(θ)dθ,

= (2ℓ′ + 1)Ξ2±2
ℓℓ′ [a]. (C.10)

We can also compute the matrix associated with the spin-0 cross
spin-2 case,

×Aℓℓ′ = (2ℓ′ + 1)Ξ20
ℓℓ′ [a]. (C.11)

C.4. Applying this formalism to the MASTER matrix

In our case, we can write for s ∈ [0, 2],

±sMℓℓ′ = (2ℓ′ + 1)Ξs±s
ℓℓ′ [w], (C.12)

with w(θ) the correlation function of the mask.
We apply the previous formalism and particularly the

Eq. (C.12) to the MASTER relation. We use Legendre series
expansion of the true power spectrum Cℓ and the pseudo-power
spectrum estimator C̃ℓ to define the correlation functions ξ and
ξ̃, respectively. It gives

ξ̃(θ) ≡
∑

ℓ

2ℓ + 1
4π

Pℓ(cos θ)C̃ℓ, (C.13)

ξ(θ) ≡
∑

ℓ

2ℓ + 1
4π

Pℓ(cos θ)Cℓ. (C.14)

Starting from the right-hand side of Eq. (34) and going to real
space using a Legendre transform at an angle θ ∈ [0, π], we have

∑

ℓℓ′

2ℓ + 1
4π

Pℓ(cos θ)0Mℓℓ′Cℓ′

=
∑

ℓ′
w(θ)

2ℓ′ + 1
4π

Pℓ′ (cos θ)Cℓ′ ,

= w(θ)ξ(θ),

which implies ⟨ξ̃(θ)⟩ = w(θ)ξ(θ), (C.15)

with w(θ) the correlation function of the mask.

C.5. PolSpice in polarization

This section describes the regularization technique that is used
for polarization by PolSpice. One of the main advantages of
PolSpice is that it allows the possibility of eliminating EE to
BB (and BB to EE) mixing, using nonlocal relations between
Wigner d-matrices; see Sec. 5 of Chon et al. (2004). The
obtained estimator ĈEE

ℓ ( ĈBB
ℓ ) depends only on the average of

CEE
ℓ ( CBB

ℓ ) and the scalar apodizing function f .
Using the Legendre transforms of spin-2 quantities

(Eq. (C.9)), we associate the correlation functions ξ± with the
spectra CEE

ℓ ± CBB
ℓ and ξ̃± to C̃EE

ℓ ± C̃BB
ℓ . PolSpice builds two

correlation functions ξ̂dec and ξ̂− to produce an estimator of
the true underlying polarized power spectrum. This spectrum is
defined similarly to ξ̂ in Eq. (39),

ξ̂−(θ) = g(θ)ξ̃−(θ). (C.16)

The first is built on integral relations. PolSpice eliminates the
mixing inherent in ξ̃+ with the following relation in real space:

ξ̂dec(θ) = f apo(θ)
∫ 1

−1
d cos θ′

ξ̃+(θ′)
w(θ′)

∑

ℓ

dℓ2−2(θ)dℓ22(θ′). (C.17)

This integration can be shown to depend only on ξ+ in the range
θ ∈ [0, θmax]; see Chon et al. (2004). This allows decoupling
the correlation functions from an incomplete range of angular
separations that are missing due to the mask. This correlation
function is noted with the subscript dec to emphasize that it is
the crucial step allowing the decoupling of the polarized estima-
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tor. When averaging out Eq. (C.16) and Eq. (C.17) on multiple
realizations,

⟨ξ̂dec(θ)⟩ = f (θ)
∫ 1

−1
d cos θ′ξ+(θ′)

∑

ℓ

dℓ2−2(θ)dℓ22(θ′), (C.18)

⟨ξ̂−(θ)⟩ = f (θ)ξ−(θ). (C.19)

In harmonic space, transforming Eq. (C.18) and Eq. (C.19) using
dℓ2−2, this gives with −2Kℓℓ′ = (2ℓ′ + 1)Ξ2−2

ℓℓ′ [ f apo],

ĈEE
ℓ + ĈBB

ℓ ≡ 2π
∫ π

0
d cos θ ξ̂dec(θ)dℓ2−2(θ), (C.20)

ĈEE
ℓ − ĈBB

ℓ ≡ 2π
∫ π

0
d cos θ ξ̂−(θ)dℓ2−2(θ), (C.21)

which implies

⟨ĈEE
ℓ ± ĈBB

ℓ ⟩ =
∑

ℓ′
−2Kℓℓ′ (CEE

ℓ′ ±CBB
ℓ′ ). (C.22)

Summing or subtracting the last equation for + or − allows us
to build unmixed estimators of the polarization power spectra.
If we had chosen not to decouple the correlation functions and
had built Ĉ′EE

ℓ + Ĉ′BB
ℓ as the Legendre transform of ξ̂+ = gξ̃+, the

output PolSpice spectra would follow

⟨Ĉ′EE
ℓ ± Ĉ′BB

ℓ ⟩ =
∑

ℓ′
±2Kℓℓ′ (CEE

ℓ′ ±CBB
ℓ′ ), (C.23)

which would leave some mixing in the polarization spectra
because +2K , −2K.

Appendix D: Multimask analysis

In this section, we generalize our analysis to multiple masks.
This situation occurs when a cross-power spectrum analysis with
maps with different masks is performed. We restrict ourselves
to the study of the intensity case. Writing the expression of the
covariance explicitly as in García-García et al. (2019), we obtain
the following expression:

cov(C̃i, j
ℓ
, C̃p,q
ℓ′ )

=
1

(2ℓ + 1)(2ℓ′ + 1)

∑

mm′

[
⟨ãi
ℓmãp∗
ℓ′m′⟩⟨ã j∗

ℓmãq
ℓ′m′⟩ + (p↔ q)

]
,

=
1

(2ℓ + 1)(2ℓ′ + 1)

∑

ℓ1ℓ2

∑

m1m2mm′

[
Ci,p
ℓ1

Ikk1 [W i]Ik1k′ [W p]

C j,q
ℓ2

Ik2k[W j]Ik′k2 [Wq] + (p↔ q)
]
,

= Ξ00
ℓℓ′ [W

i,W p,W j,Wq]
∑

ℓ1ℓ2

[
Ci,p
ℓ1
Θ̄
ℓ1ℓ2
ℓℓ′ [W i,W p,W j,Wq]C j,q

ℓ2
+

(p↔ q)
]
.

We noted ki = (ℓi,mi). We also extended the definition of the
kernels to the case multiple masks as

Ξ00
ℓℓ′ [W

i,W p)(W j,Wq] ≡ Ξ00
ℓℓ′ [V(ip)×( jq)], (D.1)

whereV(ip)×( jq)
ℓ

≡ 1
2ℓ + 1

∑

m

[
W iW p

]
ℓm

[
W jWq

]∗
ℓm
, (D.2)

Θ
ℓ1ℓ2
ℓℓ′ [W i,W p,W j,Wq] =

∑

mm′m1m2

Iℓmℓ1m1 [W i] (D.3)

Iℓ1m1ℓ′m′ [W
p] Iℓ′m′ℓ2m2 [W j] Iℓ2m2ℓm[Wq].

As long as the considered masks have similar properties, for
instance, that none of them includes point sources, the com-
putations developed in this work will hold. In Eq. (E.2), the
assumptions hold as long as the mask harmonic coefficients fall
quickly enough, which is the case even when the survey area
varies a little from one map to the next.

Appendix E: Details of the ACC approximation

E.1. Mathematical validation

We explore the mathematical justification of the ACC approx-
imation. From Fig. 9, the Θ̄ℓ1ℓ2

ℓℓ′ kernel appears only to depend
on ∆ ≡ ℓ′ − ℓ, ∆1 ≡ ℓ1 − ℓ, and ∆2 ≡ ℓ2 − ℓ. We recall that the
normalization of the reduced coupling kernel (Eq. (22)) already
approximately only depends on ∆ because Ξ00

ℓℓ′ is close to a
Toeplitz matrix (Louis et al. 2020). The kernel itself is given by
a summation of products of four coupling coefficients 0Iℓmℓ1m1 .
They are expressed as the sum of the mask window function with
a product of two Wigner-3j symbols, as shown in Eq. (A.9). We
remark that because the mask power spectrum falls relatively fast
(Fig. 1), the terms with low L in the sum in Eq. (A.9) contribute
mostly. However, we are interested in the cases in which all the
other multipoles ℓ, ℓ′, ℓ1, and ℓ2 are significantly larger than the
width of the mask spectrum. For this reason, all the Wigner-
3j symbols in Eq. (A.9) can be replaced by their asymptotic
behavior, where in the limit ℓi, ℓ j ≫ Li, we have
(
ℓi ℓ j Li
mi m j Mi

)
≈ (−1)ℓ j+m j

√
2ℓ j + 1

dLi
Mi,(ℓ j−ℓi)(θ) (E.1)

(Khersonskii et al. 1988). Here, θ = arccos(−m j/(ℓ j(ℓ j + 1))1/2)
and d j

k,m are reduced Wigner rotation matrices.
When this approximation is introduced in Eq. (A.9), Eq. (21)

reads

Θ
ℓ1ℓ2
ℓ3ℓ4
≈ 1

(4π)2

∑

Li Mi

ΠiwLi Mi

√
2Li + 1dLi

0,(ℓi+1−ℓi)(π/2) (E.2)


∑

mi

dLi
Mi,(ℓi+1−ℓi)

(
arccos

−mi+1

(ℓi+1(ℓi+1 + 1))1/2

) .

Here we have defined ℓ5 ≡ ℓ1 for notational purposes. We note
that when ℓi is large enough, which is the case because ℓi, ℓ j ≫
Li, arccos −mi+1

(ℓi+1(ℓi+1+1))1/2 explore the [0, π] range, and the expres-
sion in brackets in the last equation can be seen as a Riemann
sum over θ ∈ [0, π]. This expression can be approximated by
the integral

∫
dLi

Mi,(ℓi+1−ℓi)(θ)dθ, which only depends on Li,Mi,
and ℓi+1 − ℓi. Because Li,Mi are summed over in Eq. (E.2),
we directly see that as soon as ℓ, ℓ′, ℓ1, and ℓ2 are significantly
larger than the width of the mask spectrum, the coupling kernel
behaves as a function of their difference, and we expect that this
approximation improves in accuracy with ℓ.

E.2. EE expression

For now, when we ignore BB to EE leakage, we can write

Σ̃EEEE
ℓℓ′ ≈ 2Ξ22

ℓℓ′ [W
2]

[
CEE · Θ̄++++ℓℓ′ [W] ·CEE

]
, (E.3)

where we defined the polarized covariance coupling

Θ
ℓ1ℓ2;++++
ℓℓ′ =

∑

mm1m′m2

+Iℓmℓ1m1 +Iℓ1m1ℓ′m′ +Iℓ′m′ℓ2m2 +Iℓ2m2ℓm. (E.4)
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Based on the relations in Challinor & Chon (2005), this kernel
Θ++++ can be approximately normalized to
∑

ℓ1ℓ2

Θ
ℓ1ℓ2;++++
ℓℓ′ [W] ≈ Ξ22

ℓℓ′ [W
2], (E.5)

hence the relation (E.3).

A62, page 21 of 21



4.2.2 Covariance of the SPT-3G band powers

The high-precision analytical framework developed in Camphuis et al. (2022) allows us to compute the covariance
matrix on the SPT-3G mask. In this section, we describe the adaptation of the framework to the SPT-3G
band powers analysis.

Applying ACC Let me first define the following notation for the analytical estimation of the covariance.
To obtain the covariance cov

(
Ĉi,j , Ĉk,l

)
, we need to provide theoretical estimations of the power spectrum

Ci,k, Ci,l, Cj,k and Cj,l. I combine those using the ACC approximation to obtain

Σ̂(Ĉi,j , Ĉk,l) ≡ Gij
(
Ξik,jl[W 2]×

[
Ci,k ∗ Θ̄ACC

ik,jl [W ] ∗ Cj,l
]

(4.20)

+ Ξil,jk[W 2]×
[
Ci,l ∗ Θ̄ACC

il,jk [W ] ∗ Cj,k
])
Gkl⊤.

In this equation only, I used × to denote the scalar term-to-term multiplication, and ∗ to denote the matrix
product. Θ̄ is a four-dimension matrix, thus the two scalar contractions output a 2 dimension matrix, that is
multiplied term-to-term to Ξ. Let me emphasize that the Ξ and Θ̄ contributions must be computed accord-
ingly with the spin of the associated power spectrum, hence their dependence on i, j, k, l. I have defined the
operator Σ̂(·, ·), which uses the ACC approximation to compute the covariance of a pair of power spectra. The
approximation used can be summarized as

cov
(
Ĉi,j , Ĉk,l

)
≈ Σ̂(Ĉi,j , Ĉk,l) (4.21)

Covariance matrix of cross-bundles spectra In Section 3.5, we introduced the final estimator of the
power spectrum, obtained by averaging over the cross-bundles spectra. The bundles are chosen to have uniform
noise, and the cross-bundles approach is chosen to remove noise bias from the band powers. In Polenta et al.
(2005); Lueker et al. (2010) is presented the expression of the cross-bundles spectra covariance matrix in the
uniform noise case across bundles, which is summarized in the following. The cross-bundles spectra covariance
matrix prior to any instrumental beam or transfer function correction is given by

Σ̂mean = Σ̂C,C + Σ̂C,N + Σ̂N,C +
nbun

nbun − 1
Σ̂N,N, (4.22)

where nbun = 150 is the number of cross-bundles spectra, and Σ̂C,C , Σ̂C,N and Σ̂N,N are the signal-signal,
signal-noise and noise-noise covariance matrices, respectively. The noise-noise covariance matrix is rescaled by a
factor nbun

nbun−1 to account for the additional variance coming from ignoring the auto spectra contributions. Under
the assumption of uniform Gaussian noise, all those components are obtained using the ACC approximation,
by applying

Σ̂mean ≈ Σ̂(C,C) + Σ̂(C,N) + Σ̂(N,C) +
nbun

nbun − 1
Σ̂(N,N), (4.23)

Let me put forward that this framework correctly catches the noise correlations across frequencies. Indeed,
applying Eq. (4.20) works for computing the noise correlation as long as the noise power spectrum is known. I
measured the noise correlations across frequencies in Section 3.4. Nevertheless, an additional validation can be
run to demonstrate that the noise-noise covariance matrix can be obtained using the analytical framework by
comparing it to an estimator obtained from the data (Balkenhol and Reichardt, 2022). This comparison will
validate the Gaussian assumption describing the noise. I will build

Σ̂N,N;data
bb′ ≡ n+ 1

n− 1

∑

i,j ̸=i


δĈij

b δĈ
ij
b′ + 2


∑

k ̸=j,i

δĈij
b δĈik

b′




 , (4.24)

where δĈ are the mean-subtracted cross-bundles spectra, and the sum is over the different cross-bundles spectra.
Given that definition, I can show that

⟨Σ̂N,N;data
bb′ ⟩ = Σ̂C,N + Σ̂N,C +

n(n+ 1)

(n− 1)2
Σ̂N,N. (4.25)

As the number of bundles is limited, nbun = 150, this estimator will eventually be regularized using assumptions
on the covariance structure, to avoid any Monte Carlo bias of around

√
2/nbun ∼ 12%, as in (Balkenhol and

Reichardt, 2022). Further work is still needed to complete that comparison and is not reported in this thesis.
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Instrumental beam and transfer function correction We construct the covariance matrix by block,
relying on the ACC approximation and the PolSpice correction, and adding a correction step to account for
the beam and transfer function. We build the covariance matrix as

Σ̂XνYµ;ZαVβ
ℓℓ′ =

1

AXνYµ
ℓ AZαVβ

ℓ′
Σ̂ℓℓ′(A

XνYµCXνYµ +NXνYµ, AZαVβCZαVβ +NZαVβ), (4.26)

where A models the instrumental and pixelation effect on the power spectrum, see Eq. (3.67) for the definition.
The input power spectrum is obtained from a high accuracy CAMB run starting from the Planck parameters
(Planck Collaboration et al., 2020c), the foreground components are obtained from the SPT-3G 2018 best-
fit nuisance parameters (Balkenhol et al., 2022), the beam, pixel window function, and transfer function are
obtained as described in Chapter 3 and the noise spectra are measured directly from the data as described in
Section 3.4. The covariance matrix is corrected to match the band power definition. As the computation of the
covariance implies inside convolution, this method yields different results compared to the naive approach for
which the unbiased power spectrum is directly fed into the covariance algorithm.

In Fig. 3.5, we showed that the filtering strategy leads to a significant loss of ℓm modes. The covariance
needs to be further corrected to account for the lost power spectrum modes and the subsequent impact on its
variance. Similarly, as for the power spectrum correction, we build a correction factor for the four points using
an analytical computation obtained from an emulated filtering pipeline. This work is done by a collaborator
and is not detailed in this thesis. The computation is exact in the case of white noise but is an approximation in
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Figure 4.1: Impact of the correction on the power spectrum variance. The empirical correction is obtained with
a set of 1000 simulations filtered with a set of fℓm . The analytical prediction is computed from the emulated
mock observation pipeline. Analytical and empirical correction match within 10% level.

the case of the true CMB. We validate this technique in the case of CMB over simulations as shown in Fig. 4.1,
for which we drew 1000 simulations of CMB skies on which we applied anisotropic filtering using a 2D transfer
function. In this specific set-up, I do not need more simulations to assert the precision of the correction since
the compared realizations are correlated, hence the cosmic variance contribution to the statistical fluctuations
is negligible. The latter was analytically estimated from the filtering setup, with emulated mock observations.
We then computed the variance of the spectra computed on the filtered maps and compared it to the same
quantity computed on the unfiltered maps. We found that the correction factor is precise at the 5% level and
always overestimates the variance, which is a conservative approach that does not bias the parameters but
only overestimates the final error bars (Sellentin and Starck, 2019). This work will be further detailed in an
upcoming work (Hivon, Doussot, Camphuis, et al., in prep.). We correct the covariance matrix by multiplying
it by the factor,

Σ̂XνYµ;ZαVβ
ℓℓ′ → Σ̂XνYµ;ZαVβ

ℓℓ′ HℓHℓ′ . (4.27)

This correction is done by rescaling the diagonal, thus assuming a fixed correlation structure. This technique
is particularly adapted in this case since the harmonic space filtering does not introduce additional coupling
between modes. Nevertheless, I assert that no spurious couplings appear due to filtering with simulations and
validate that approach. The binning operator from Eq. (3.70) is finally applied and the covariance matrix is
displayed in Fig. 4.2.

The conservative multipole cuts and binning scheme (ℓmin, ℓmax,∆ℓ) = (300, 4000, 25) lead to 148 band
powers per spectrum combination. The low multipole cut is chosen from the transfer function cut-off, while
the high multipole one is chosen to maximize cosmological information. The binning scheme is chosen to
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Figure 4.2: Pure Gaussian covariance matrix for the SPT-3G band powers.
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minimize the correlation between band powers, while keeping a sufficient number of band powers to constrain
the cosmological parameters, and will be updated when running likelihood tests. Auto-frequency block has
3 frequency combinations, while cross-frequency has 4 since ET differs from TE, which gives a total of 21
spectral combinations. The covariance size is then 21 × 148 = 3108. The covariance is positive definitive and
its eigenvalues are displayed in Fig. 4.3, for the whole covariance, but also the TTTT, TETE, EEEE blocks
(including all frequency combinations) and the frequency blocks (including all available Stokes combinations).
Diagonals of the covariance per Stokes index are displayed in Fig. 4.4 for TTTT (top), EEEE (middle), and
TETE (bottom). The covariance of the 220GHz × 220GHz is larger at high multipoles due to the high noise
levels of this frequency channel, see Table 2.3.

Forecasted constraints The obtained covariance is used by the collaboration to produce forecasted con-
straints on the cosmological parameters by running a MCMC analysis on a set of simulated band powers. The
forecasts are displayed in Fig. 4.5, showing the predicted constraining power of the SPT-3G 19/20 data and
comparing it to Planck and SPT-3G 2018 results. The excellent noise levels of the data set will allow us to put
constraints three times smaller than SPT-3G 2018 and comparable to the Planck experiment. In this figure,
we also display the forecasts for the full five-year survey, which is obtained by rescaling the 19/20 spectra. The
constraints obtained with the first two years are only 20% wider than the total survey. Let me emphasize that
I did not produce those constraints and show them to demonstrate the full capacity of this data set.

4.2.3 Additional covariance contribution

Inpainting contribution to the covariance matrix

In Section 3.6, we described the Gaussian constrain realization procedure that is used to fill the masked sources
of the map. This is a crucial step to the pipeline as it allows the use of the ACC framework from Camphuis et al.
(2022) for the covariance matrix estimation since the latter is accurate in the absence of small-scale features
in the mask. For a detailed motivation of inpainting, please refer to Section 3.6.1. However, the inpainting
procedure makes use of a simulated CMB sky to fill the masked sources and to correct for the bias induced by
Wiener filtering. This implies that the final sky contains a mixture of true data and fake CMB that we need
to account for in the covariance matrix estimation, as we want to marginalize the fake data. The final band
powers are obtained as in Eq. (3.87), where we defined two matrices, Z(1) and Z(2), that represent the effect of
inpainting on the power spectrum, and we have

ĈI = (Id + 2Z(1) + Z(2))ĈD + Z(2)ĈR. (4.28)

We marginalize over the random realization of the CMB sky, relying on the fact that the latter is a Gaussian
random field, and thus obtain that the additional variance induced by this marginalization is given by

Σ̂I = Z(2)Σ̂Z(2)⊤. (4.29)

The final covariance matrix is then obtained by adding the two contributions, and further assuming that binning
allows to write Z(2) as a diagonal matrix, and

(
PZ(2)ĈR

)
b
= ρb(Ĉ

R)b. We finally obtain, using the binned
rescaling factor defined in Eq. (3.84),

Σ̂bb′ → (1 + ρb)(1 + ρb′)Σ̂bb′ . (4.30)

We measure the inpainting rescaling with 100 simulations as in Fig. 3.13. This procedure will increase by
∼ 10% the error bars on the band powers at high multipoles, but do not impact the large scales. Indeed,
Gaussian-constrained realization affects only signals on scales of the size of the holes in the map. I display the
ratio of covariance diagonal after the inpainting correction in Fig. 4.6, and show that it is minimal compared
to the additional variance expected from masked sources, see Section 3.6.1 for details. This further justifies the
inpainting procedure, as it allows for a 40% reduction of the variance at small scales.

Lensing contribution

In this section, the lensing covariance has been computed by a collaborator. The lensing of large-scale structure
on CMB photons mixes the modes leading to non-zero four-point functions and thus induces a contribution
to the non-diagonal covariance matrix. The full-sky lensing contribution to the covariance matrix can be
analytically modeled as in Benoit-Lévy et al. (2012); Hotinli et al. (2022), using the unlensed power spectra
CXY,u and the lensing potential power spectrum Cϕϕ. The lensing contribution to the covariance matrix is
given by

Σlens
ℓ1ℓ2 =

{∑

ℓ

(
∂CXY

ℓ1

∂CXY,u
ℓ

ΣXuYu,ZuVu
ℓℓ

∂CZV
ℓ2

∂CZV,u
ℓ

)
(1− δℓ1ℓ2) +

∑

ℓ

(
∂CXY

ℓ1

∂Cϕϕ
ℓ

Σϕϕ,ϕϕ
ℓℓ

∂CZV
ℓ2

∂Cϕϕ
ℓ

)}
. (4.31)
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Inpainting allows us to reduce the variance of the power spectrum estimator by 40% at small scales.

The non-Gaussian covariance effectively reduces the number of independent modes and thus increases the error
bars on the band powers. We compute the non-Gaussian contribution using the FisherLens code 1, relying on
the CLASS Boltzmann solver, using as input Planck cosmological parameters, consistently with the computation
of the pure Gaussian contribution of the covariance. The lensing contribution is then rescaled by the fraction of
the sky to capture the loss of spectral modes due to masking. We ignore the mode correlation induced by the
mask as the lensing signal is subdominant. We finally correct the covariance to match the PolSpice estimator
and write

Σ̂bb′ → Σ̂bb′ + Σ̂lens
bb′ , where Σ̂lens

bb′ =
1

fsky

(
PGΣlensG⊤P⊤) . (4.32)

The resulting contribution to the covariance matrix is presented in Fig. 4.7. Although this contribution is more
densely populated, it remains subdominant compared to the Gaussian component. To evaluate this contribution,
we compute the lensing correlation matrix by normalizing the lensing covariance with the square root of the
Gaussian covariance diagonal. The resulting correlation is shown in Fig. 4.8. It is worth noting that lensing
introduces correlations at the percent level. Finally, I will include the super-sample lensing by following the
procedure laid out by Crites et al. (2015); Henning et al. (2018); Dutcher et al. (2021) and modify the theoretical
estimation of the power spectrum at the likelihood level with a nuisance parameter, see (Manzotti et al., 2014)
or Eq. 16 of Dutcher et al. (2021).

Beam covariance

The beam covariance accounts for uncertainty arising from a statistical error in the beam measurements as
well as systematic effects. The beam covariance has not been computed yet, but we will follow the method in
Henning et al. (2018); Dutcher et al. (2021); Balkenhol et al. (2022) and build a correlation matrix a sum of
correlation matrices measured by varying input parameters of the beam model for each of the potential sources
of error. The final beam correlation matrix will be built as

ρbeambb′ =

[
1−

(
1 +

δBb

Bb

)−2
][

1−
(
1 +

δB′
b

B′
b

)−2
]
. (4.33)

The beam covariance matrix will be constructed from the correlation matrix by multiplying the diagonal elements
by the band power variance and adding the output to the covariance matrix, as

Σbeam
bb′ = ρbeambb′

√
Σ̂bbΣ̂b′b′ and Σ̂bb′ → Σ̂bb′ +Σbeam

bb′ . (4.34)

This work is in progress.
1https://github.com/ctrendafilova/FisherLens

112

https://github.com/ctrendafilova/FisherLens


Figure 4.7: Non-Gaussian lensing contribution to the covariance matrix for the SPT-3G band powers.
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Figure 4.8: Non-Gaussian lensing correlation matrix for the SPT-3G band powers. The matrix is obtained
by dividing the lensing covariance matrix by the square root of the Gaussian covariance (Fig. 4.2) diagonal
elements.
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4.3 Consistency tests

4.3.1 Null tests
In this subsection, I briefly report the work conducted by a collaborator on null tests. I do not present the
results, as the work is not finalized yet.

The band powers of the inpainted maps, obtained by averaging the cross-bundle spectra as described in
Section 3.5 and displayed in Fig. 3.22 (prior to the inpainting procedure), serve as the final output of the
analysis pipeline. To validate the analysis pipeline, we conduct a set of consistency tests referred to as null
tests on the band powers. These tests aim to demonstrate that the data is not significantly affected by
systematic biases. Data splits are created based on potential sources of systematic errors, including azimuth
cuts to test for ground pick-up, chronological cuts to examine time-dependent effects, moon up/moon down
cuts to evaluate beam sidelobe pickup, sun up/sun down cuts to assess sun contamination, scan-direction cuts
to test for left-right direction-dependent effects, and wafer cuts to isolate the impact of detector groups. Null
maps are generated by taking the difference between map bundles created from the data split criteria. The null
spectra are computed from those maps, and the error bars are determined from the noise levels. We verify the
consistency of the spectra distribution with zero expectation using a χ2 test.

4.3.2 Likelihood consistency tests
To validate the likelihood and the analysis pipeline, we will conduct a series of consistency tests at the band
power, likelihood, and parameter constraint levels. These tests are designed to evaluate the precision and the
consistency of the results while keeping them blinded, to avoid cognitive bias. In this section, I report the plan
for likelihood consistency tests, which are entirely inspired by the methodology developed in Balkenhol et al.
(2022). This work has not been performed yet.

Power spectrum tests We will verify that the analysis pipeline produces consistent band powers across
different frequency combinations by performing power spectrum consistency checks similar to those in Planck
Collaboration et al. (2016); Mocanu et al. (2019); Balkenhol et al. (2022). Firstly, a minimum variance combi-
nation of the power spectrum is computed using the formula:

ĈMV =
(
XT Σ̂X

)−1

XΣ̂−1Ĉ, (4.35)

where X is the frequency combination matrix and Ĉ represents the vector of band powers. The minimum
variance combination is then compared to the band powers of each frequency combination using a χ2 test after
removing the best-fit foreground model.

Additionally, we will conduct a conditional spectrum test, in which the band powers of a specific frequency
combination are compared to the band powers of other frequency combinations, conditioned on the band powers
of the best-fit combination. The conditional band powers are calculated as follows:

Ĉν×µ,cond = Cν×µ,BF + Σ̂ν×µ;others
(
Σ̂others×others

)−1 (
Ĉothers − Cothers;BF

)
, (4.36)

where a covariance matrix for the conditional band powers is constructed as the Schur complement of the
covariance matrix at the specific frequency combination. The resulting conditional band powers are compared
to the band powers of the best-fit combination using a χ2 test. This test will be repeated to ensure consistency
between TT, TE, and EE band powers.

Parameter-level tests The internal consistency of the dataset needs to be assessed at the parameter level
through tests. Cosmological parameters will be estimated for selected subsets of the data, and consistency
will be evaluated using the approach developed in Gratton and Challinor (2019). This involves transforming
the difference of parameters ∆ϑ between two data subsets into a χ2 test statistic by utilizing the difference of
parameter covariance matrices of the full dataset and the subset, as

χ2 = ∆ϑT
(
Σfull

ϑ − Σsubset
ϑ

)−1
∆ϑ. (4.37)

This test is model-dependent and can be run for multiple models

Robustness of cosmological constraints To further assess the accuracy of the likelihood, cosmological
constraints will be performed with variations to the pipeline. As mentioned in Balkenhol et al. (2022), this can
involve varying the priors of foreground nuisance parameters, rescaling the beam covariance to model possible
systematic errors, or adjusting the prior for the optical depth τ .
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In addition, since significant improvements were made to the pipeline, additional tests are required. Firstly,
the updated analysis pipeline should be compared to the former version, in which the covariance matrix was
obtained from simulations and the noise covariance from the data. The robustness of the cosmological parameter
constraints after the inpainting procedure will be assessed by producing a new set of inpainted maps with a
modified fiducial power spectrum and running the full analysis pipeline on the new band powers. Furthermore,
we will also evaluate the effect of not considering the inpainting rescaling of the covariance matrix. This approach
is expected to reduce the constraints on cosmological parameters but may introduce bias to the results if the
inpainting procedure is not accurate.

Conclusion

In this chapter, we reviewed the detailed computation of the SPT-3G covariance matrix, which relies on
the framework developed in Camphuis et al. (2022). Further implementations were necessary to adapt the
framework to the SPT-3G analysis. We also presented the consistency tests to be performed on the data to
validate the likelihood and the analysis pipeline. The results of these tests and the obtained constraints on
ΛCDM parameters will be presented in a future publication.
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Chapter 5

Perspectives and conclusion

The new upcoming SPT-3G 19/20 data set studied in this thesis will provide maps with noise levels three
times lower than in 2018. The measured band powers will put an independent and more competitive measure-
ment of the cosmological parameters and will be a valuable addition to the current CMB data sets such as
Planck , ACT, Bicep. ΛCDM constraints will be as tight as Planck , and the complementary range of angular
scales will help to break degeneracies between parameters and probe new physics beyond the standard model.
We summarize the forecasted constraints in Table 5.1, to be compared with Table 1.1. Obtaining tight con-
straints from high-resolution and low noise levels experiments requires the development of new analysis methods
to extract cosmological information from the data with high precision. Indeed, as noise levels decrease, the like-
lihood gets more sensitive to systematic effects and errors are more likely to propagate through the analysis
pipeline. Constraints must be robust to instrumental systematics, analysis choices, and cognitive biases. In
this thesis, we developed new tools for CMB analysis and implemented them in the pipeline of the SPT-3G
19/20 data set. Such tools will be crucial to obtaining robust constraints from the data, and pave the way for
the complete SPT-3G 2019-2023 analysis, which will be signal-dominated on all the multipole range, but also
Stage-4 CMB experiments that will be also limited by systematics (SO, CMB-S4). Additional work is still
required to perform the complete SPT-3G 19/20 analysis.

ΛCDM
Ωbh

2 Ωch
2 H0 ns ln(1010As)

0.00018 0.0024 0.91 0.0099 0.016

0.00015 0.0012 0.54 0.0042 0.014

Table 5.1: Forecasted error bars on the ΛCDM model parameters from the SPT-3G 19/20 data set on the first
row, with Planck error bars on the second row for comparison. The constraints are obtained from the primary
anisotropies TT,EE, and EE spectrum with a τ prior.

Power spectrum In Section 3.2, we examined the pseudo-power spectrum method, which is a nearly optimal
estimator that efficiently and accurately characterizes the mean. However, this estimator is biased, and its
polarization component is coupled due to the masking of the sky. To address this, I introduced the de-biasing
procedure in PolSpice, which is necessary to correct the bias caused by the mask and decouple the polarization.
I proposed an enhancement to the PolSpice operation that writes the equivalent operation in harmonic space,
to simplify the correction of the pseudo-power spectrum covariance matrix. An additional improvement would
be to perform the full computation of the decoupling kernel +2G without relying on emulation from the software.
This development would help reduce computational requirements. The decoupling kernel is crucial for modeling
the coupling of polarization, particularly when using the PolSpice method to measure B modes of a masked
sky, as significant contamination arises from the coupling with E modes, and could be of interest for analyses
relying on real space de-biasing for measuring B modes. However, obtaining a complete computation of the
kernel necessitates the analytical development of non-orthogonal masked spin-2 spherical harmonics, which
is a challenging task. Furthermore, it’s important to note that the MASTER approach assumes a fixed and
uncorrelated mask with the underlying signal. As noted in recent work Fabbian et al. (2021); Surrao et al.
(2023), power spectrum analyses are expected to be biased when the masked regions are correlated with the
signal of interest. While this does not impact the analysis of the SPT-3G 19/20 data set, given that the masked
source signal is uncorrelated with CMB, it is important to address this issue for CMB lensing or foreground
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analysis. Developing a method to unbias the power spectrum in the presence of correlated masked regions using
real space de-biasing would be of interest for future analyses.

Understanding the impact of filtering on the power spectrum is crucial for obtaining unbiased constraints.
In order to achieve this, we conducted a comprehensive analysis of the transfer function at both the harmonic
coefficients and power spectrum levels, as described in Section 3.3. We compared the impact of the estimated
values of the transfer functions obtained from the mock-observations pipeline with those from an emulated
pipeline. The emulated pipeline provided a cost-effective way to test the effects of different filtering choices on
the time streams and assess their impact on the final signal. Our analysis revealed that the transfer function
was well estimated by the pipeline, and we gained a good understanding of how filtering affects the power
spectrum. Prior to the final analysis, we will evaluate the impact of changing the fiducial cosmology on the
transfer function to ensure the robustness of the estimation. Further work could be undertaken to explore
filtering choices using the emulated pipeline and propagate them to the cosmological constraints, to optimize
the analysis. This approach would be particularly useful in preparation for CMB-S4, where systematic effects
are expected to dominate the errors and can be mitigated by adapting filtering choices.

In Section 3.4 and Section 3.5, I evaluated the signal and noise power spectra derived from the data products
of the map-making pipeline. The temperature noise power spectrum exhibited the expected behavior, showing
frequency-correlated atmospheric contamination at large scales across the three frequency channels, and flat-
ness due to white noise at small scales. The polarized noise spectrum demonstrated the anticipated flatness,
consistent with the properties of white noise. These two key data products were properly debiased using the
transfer function, as well as the deconvolution of the beam and pixel window function.

Finally, in Section 3.6, I presented a new inpainting pipeline for temperature and polarization maps, which
plays a crucial role in mitigating the impact of source masking on the coupling of the power spectrum. As the
noise levels decrease, more sources are detected with higher signal-to-noise ratios and subsequently masked to
avoid artifacts introduced by filtering. Although the power spectrum remains unbiased with source masking, the
presence of additional small-scale features in the mask leads to undesired coupling between modes of the power
spectrum and increased variance. To address this issue, I developed and implemented a pipeline that replaces
the masked regions with Gaussian-constrained realizations of the CMB anisotropies. This approach utilizes a
fiducial power spectrum and a realistic CMB simulation at the location of the masked regions as prior knowledge.
The method is unbiased under some assumptions, as shown by applying it to realistic mock observations.
Additionally, the inpainting method is robust to variations in the fiducial power spectrum. Although the current
version of the pipeline is already efficient, implementing GPU acceleration for the inpainting process would be
beneficial in reducing computational costs and enabling the inpainting of larger regions or utilizing more complex
constraints. Further improvements, such as reducing the map resolution in the constraining region, could also be
explored. Additionally, a more physically motivated development of this work would involve incorporating the
lensing contribution into the constrained realizations by utilizing a lensing CMB potential as prior knowledge.
Indeed, previous referred research Fabbian et al. (2021) has shown that point-source masking introduces a small
bias in the measurement of the lensing power spectrum due to the correlation between masked sources and the
lensing signal, which might become significant as noise levels are reduced. Reconstructing the full-sky map with
prior lensing knowledge could help mitigate this bias.

Covariance matrix In previous SPT analyses, the estimation of the covariance matrix relied on mock
observations, which involved regularization techniques and significant computational costs. To address this,
we developed a new semi-analytical framework in Chapter 4 to compute the covariance matrix for the SPT-
3G 19/20 likelihood. This is particularly important because power spectrum modes are expected to exhibit
increasing coupling with decreasing sky coverage, and the SPT-3G 19/20 survey only covers 4% of the sky.

To tackle this challenge, I implemented the first exact computation of the harmonic four-point function of a
masked Gaussian isotropic signal on the sphere. To reduce computational costs, we used this exact computation
to evaluate the accuracy of existing approximations and implemented the most precise approximation of the
covariance matrix to date, ACC, which can be obtained at a low computational cost. This comprehensive
study provided a profound understanding of the coupling effects in the pseudo-power spectrum estimation.
Furthermore, we extended the framework to incorporate the use of the PolSpice spectrum estimator, leveraging
the decoupling kernels introduced in the previous chapter. This new framework, used to compute the covariance
matrix for the SPT-3G 19/20 likelihood, is discussed in detail in Camphuis et al. (2022). There are potential
improvements that can be proposed for this framework. Firstly, while our focus was on CMB anisotropies, the
framework itself is general and can be applied to any isotropic signal on the sphere, such as weak lensing or
galaxy clustering, which also rely on the pseudo-power spectrum. Secondly, the exact computation can be further
adapted to study homogeneous but anisotropic signals by modifying Eq. (4.5) to account for a m-dependence
of the power spectrum as

⟨T̃ℓmT̃
∗
ℓ′m′⟩ =

∑

ℓ1m1

CTT
ℓ1m10Iℓmℓ1m1

[W ]0I
∗
ℓ′m′ℓ1m1

[W ].
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Additionally, GPU implementations are highly suitable for this problem and would enable fast and exact com-
putation of the covariance matrix, building upon existing implementations such as Schaeffer (2013) and Tian
et al. (2022). Finally, the exact computation could be utilized for large-scale analyses as it is computationally
cheaper for small multipoles. It could be used to analytically model the additional variance of B modes from E
modes in the presence of a mask, and potentially incorporate the anisotropy of the signal.

The analytical covariance ACC approximation forms the core of the SPT-3G covariance matrix. We
extended the pipeline to account for multi-frequency analysis and signal correction, involving beam and pixel
window functions. The signal anisotropies due to filtering are modeled and included, accounting for excess
variance resulting from the loss of modes. The resulting covariance matrix exhibits the expected structure.
We also consider additional contributions, such as the impact of beam uncertainty and the marginalizing of
inpainting random realization. While each step of the analysis is validated against simulations, further work
is required to compare the complete covariance estimator pipeline with a comprehensive suite of simulations.
This procedure also needs to be conducted for the noise covariance matrix.

We finally detailed the additional work to be conducted on the likelihood prior to obtaining cosmological
parameters. This includes extended consistency checks and validation procedures, which are crucial validations
of the robustness of the results and need to be validated prior to unblinding to avoid cognitive biases.

Additional perspectives for covariance computation Analytical approximations of the covariance matrix
are known to be inaccurate when the analysis mask displays small-scale features, such as holes that mask point
sources. I am participating in a collaborative project to propose an analytical estimation of the covariance in
such a case. This computation relies on the assumption that holes in the mask are Poisson distributed on the
sphere, with a known density, and relies on a flat-sky computation of the coupling.

Additionally, Chartier et al. (2021); Chartier and Wandelt (2022) shows that optimal covariance estimator
can be obtained from pairs of correlated simulations. As highlighted by Eq. (4.10), a high number of Monte Carlo
simulations are necessary to estimate the coupling between modes accurately. The aforementioned technique
can help us to improve the precision of the covariance matrix estimations by exploiting the correlations between
sets of simulations. I am collaborating with the author of the previously cited work to demonstrate the efficiency
of such a method in the case of CMB analysis.

In this thesis, I have outlined the efforts undertaken to establish the likelihood of the SPT-3G 19/20 dataset
and outlined plans for analysis. The findings of this study will impose tight constraints on cosmological param-
eters but also delve into exciting new physics. The cosmological analysis of the ΛCDM model and extensions
will be performed, alongside exotic models. Furthermore, this research serves as a stepping stone toward an-
alyzing the full SPT-3G five-year survey and introduces innovative techniques for forthcoming experiments,
which promise to illuminate previously uncharted aspects of cosmology.
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Appendix

I acknowledge the use of Grammarly1 and ChatGPT2 for language and grammar corrections of this manuscript.
The analysis and visualization of data in this manuscript was made with ipython (Pérez and Granger, 2007),
matplotlib (Hunter, 2007), numpy (van der Walt et al., 2011) and scipy (Virtanen et al., 2020).

Thoughts on the carbon footprint of the Ph.D.

This section aims to provide a preliminary assessment of the environmental impact of a Ph.D. program in terms
of carbon footprint, employing simple assumptions and rough estimates. It is not intended to be a comprehensive
or rigorous study, but rather an initial attempt to quantify the environmental impact associated with research
activities. The objectives of this assessment are twofold. Firstly, on a personal level, it is meant to familiarize
oneself with the tools and considerations related to the environmental impact of research. Secondly, on a broader
scale, it aims to raise awareness about sustainable research practices and encourage the research community
to adapt their projects, tools, and mindset accordingly. It is understood that choices made in this approach
are open to discussion and critique. Feedback and discussions on this topic are welcomed and appreciated. I
would like to thank Benoît Sauty and Jean-François Cardoso for inspiring this approach and providing the tools
necessary to carry out this assessment.

Emissions (kg CO2-eq) ∼ % of emissions

Plane
2 x Paris-Chicago 4204± 2872 26

Paris-Venise 486± 340 3
Paris-Ferrara 486± 340 3

Train and bus

Paris-Trento 28± 17 <0.2
Paris-Cambridge 16± 9 <0.1
Paris-Grenoble 4± 1 <0.1
Venise-Sesto 13± 8 <0.1

Trento-Tonale 4± 3 <0.1

Computing ressources CPU Argonne (104h) 1200± 300 8
CPU Paris (7× 105h) 4000+2000

−1000 25

Office
Electricity 1500± 300 8

Heating/AC 2250± 300 14
IT hardware 1400± 1400 9

Total 16+8
−7 × 103 100

Table A.1: Estimation of the carbon footprint associated with my Ph.D. The total emissions are estimated to
be approximately 16 tons of CO2-eq, i.e. around 5 tons per year. Further work would be needed to refine the
estimations.

The latest report from the Intergovernmental Panel on Climate Change (IPCC) reinforces the scientific
consensus on anthropogenic causes of global warming, the severe consequences for biodiversity, human life,
and the environment, and the urgent need to limit the temperature rise to 1.5 degrees Celsius. The synthesis
report published in March 2023 states, "Without urgent, effective, and equitable mitigation and adaptation
actions, climate change increasingly threatens ecosystems, biodiversity, and the livelihoods, health, and well-
being of current and future generations." The estimation of the carbon footprint associated with my research
activities is divided into three main categories: travel, computing resources, and office work. Emissions related

1https://app.grammarly.com
2https://chat.openai.com/
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to transportation are calculated using data from the French database ADEME3 and checked againt computation
from labos1point54, taking into account the distance traveled for each mode of transportation (long-haul flights,
short-haul flights, and high-speed trains). Errors associated result mostly from uncertainties on carbon impact
of airplane contrails and energy efficiency of transportation. Workplace-home commuting is not taken into
account as almost carbon-free thanks to bicycle usage. Estimations resulting from computing resources were
conducted using the MachineLearning Impact calculator5 presented in Lacoste et al. (2019), which takes into
account CPU-time, the energy consumption of the hardware used (in kW), and the carbon intensity of electricity
(measured in CO2-eq/kWh). Errors on this measure come mostly from unkowns of overall offset of building
emission and variation in the carbon intensity of electricity, as well as intrinsic uncertainties to the emission
of CPU-time due to lack of data. Estimates for office-related emissions are based on annual data provided by
an internal commission at IAP, removing emissions already included in computing resources. Emissions of IT
hardware are computed using labos1point5 tools, using a total of 4000e of buyings. The results are summarized
in Table A.1.

The need for plane travel arises directly from the international nature of my Ph.D., which necessitated
trips to Chicago for collaboration meetings. It represents 1/3 of the overall footprint. It is important to note
that long-haul flights contribute significantly to carbon emissions and should be minimized whenever feasible.
Short-haul flights contribution is negligible, however it is worth emphasizing that choosing to travel from Paris
to Tonale using train and bus, as opposed to plane, led to ∼ 400kg CO2-eq less release. Remote conferences or a
combination of in-person and remote attendance (where only a few individuals are present on-site while others
participate remotely) serve as viable alternatives to traditional in-person meetings. While it is customary in
the field to attend international conferences a few times a year, it is crucial to acknowledge that this practice
is unsustainable given the current global warming scenario. While face-to-face interactions are invaluable for
fostering exchanges and achieving scientific breakthroughs, it is imperative to explore alternative approaches
to reduce the carbon footprint associated with frequent travel. The second emission source is linked to the
computational nature of my research, which necessitates access to high-performance computing facilities and
represents 1/3 of the overall footprint. It is worth emphasizing that even though CPU computations conducted
in Paris may take 100 times longer than those in Chicago, the significantly lower carbon intensity of French
electricity helps to minimize the carbon impact of computing activities. Reducing the computational infrastruc-
ture would have a profound impact on research endeavors and may not be a readily implementable solution.
Nevertheless, it is crucial to consider these factors when proposing new projects and actively seek alternatives
to computationally intensive simulations whenever possible. Finally, office-related emissions represent the last
1/3 of the overall footprint. The laboratory is undergoing major renovations, including the replacement of all
windows. These changes will significantly reduce the carbon footprint associated with office work. In addition,
the laboratory is committed to reducing its carbon footprint by 7% per year, in line with the Paris Agreement’s
objectives.

3https://bilans-ges.ademe.fr/
4https://apps.labos1point5.org
5https://mlco2.github.io/impact#compute
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