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Thèse de Doctorat de Physique

presentée par

Timothée Devergne

Pour l’obtention du grade de:

Docteur de Sorbonne Université
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Merci à mes soeurs Cécile et Soizic de m’avoir montré l’exemple en faisant de longues
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Résumé

La chimie prébiotique consiste en l’étude des réactions chimiques aux origines de la vie
sur Terre. C’est un très vaste sujet qui mobilise plusieurs domaines scientifiques dont
la physique numérique. En effet, des simulations de dynamique moléculaire de haute
précision peuvent être menées pour tester l’influence de différents environnements plau-
sibles sur la synthèse de molécules : ce composant a-t-il pu apparâıtre dans le milieu
interstellaire ? Sa formation est-elle favorisée par la présence de surfaces minérales ?
Elles peuvent aussi être utilisées pour identifier des intermédiaires réactionnels trop peu
stables pour être observés expérimentalement et mieux comprendre les mécanismes de
formation. Pour cela, des méthodes d’échantillonnage avancé (EA) comme la metady-
namique ou l’umbrella sampling sont utilisées pour explorer et échantillonner l’espace
chimique. Ces méthodes peuvent être utilisées par exemple pour étudier la synthèse des
acides aminés, qui constituent les briques de base des protéines, des molécules clés pour le
vivant. Cela a été fait par Magrino et al., avec l’étude de la synthèse par voie de Strecker
de la glycine, l’acide aminé le plus simple, en milieu aqueux. Cela a permis d’identifier
tous les intermédiaires réactionnels présents dans cette voie de synthèse et de caractériser
leur stabilité relative. Cependant, ces simulations dites ab initio qui prennent en compte
les degrés de liberté électroniques ont un coût de calcul élevé et seuls de petits systèmes
de l’ordre de la centaine d’atomes peuvent être étudiés. Pour remédier à ce problème,
des méthodes d’apprentissage automatique (AA) qui permettent de réduire ce temps de
calcul ont été mises en places pour des systèmes à l’équilibre. Peu d’études ont proposé
des méthodes d’AA s’appliquant à des événements réactifs qui nécessitent un modèle
précis sur l’entièreté de l’espace chimique en conjonction avec l’usage de méthodes d’EA.
Dans un premier temps, nous nous appuyons sur les données existantes de la première
étape de la synthèse prébiotique de Strecker de la glycine pour développer une méthode
d’entrâınement de modèles d’AA pour l’étude de réactions chimiques en solution. Nous
commençons par entrâıner un ensemble de modèles, appelé comité, avec le même ensem-
ble d’entrâınement, mais des conditions initiales différentes. Au cours d’une simulation,
nous pouvons suivre l’évolution temporelle de la différence de prédictions des forces au
sein du modèle et lorsque le système se trouve en dehors de la zone d’entrâınement du
modèle, nous constatons que cette différence augmente, ce qui nous permet de quantifier
la qualité de la prédiction et définir un temps de simulation pendant lequel le modèle se
comporte comme une simulation ab initio. Grâce à cela, nous pouvons cibler dans l’espace
chimique quelles nouvelles données utiliser pour entrâıner un modèle plus performant. En
utilisant cette méthode, nous parvenons à obtenir des données proches des données ab ini-
tio. Nous appliquons ensuite cette nouvelle méthode à un chemin de synthèse prébiotique
de la glycine en milieu aqueux différent de celui de Strecker. Ce chemin n’avait jamais été
exploré auparavant. Cependant, la méthode développée précédemment nécessite une con-
naissance préalable du mécanisme de transition. Dans la deuxième partie de cette thèse,
nous utilisons des trajectoires ab initio d’échantillonnage de chemin de transition qui sont
des trajectoires démarrant de l’état de transition vers les bassins d’équilibre qui couvrent
l’entièreté de l’espace chimique et qui ne demandent pas une caractérisation préalable du
mécanisme. Ces trajectoires sont utilisées pour entrâıner un modèle qui peut être utilisé
pour récupérer les données thermodynamiques, mais aussi cinétiques d’une réaction avec
une qualité ab initio pour un moindre coût.
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Abstract

Prebiotic chemistry is the study of chemical reactions at the origins of life on Earth. It
is a very wide subject that requires the contribution of many scientific fields, including
numerical physics. Indeed, highly accurate molecular dynamics simulations are performed
to test the influence of different environments on the synthesis of molecules: could this
component appear in the interstellar medium? Is its formation impacted by the presence
of mineral surfaces? They can also be used to identify intermediates that are too unstable
to be observed experimentally and better understand the mechanism of formation.

To do so, enhanced sampling (ES) methods such as metadynamics or umbrella sam-
pling are used to explore and sample the chemical landscape. These methods can be
used to study the synthesis of amino acids that are the building blocks of proteins. This
was done by Magrino et al., with the study of the Strecker synthesis of glycine, the sim-
plest amino acid, in water. This allowed the identification of all the intermediates and
characterization of their stability.

However, these simulations called ab initio, which take into account the electronic de-
grees of freedom, are computationally expensive, and only small systems of a few hundred
atoms can be studied. To solve this problem, machine learning (ML) methods have been
put into place that allow the reduction of computational time for equilibrium systems.
Only a few ML methods have been suggested to study reactive events because this requires
an accurate model across the entire chemical space.

In a first step, we use the existing data from the study of the prebiotic synthesis of
glycine to devise a training method for ML models for chemical reactions in solution.
We start by training a set of models, called a committee, with the same training set but
different initial conditions. During a simulation, we track the evolution of deviation of
the prediction of forces, and we see that when the model is out of its training zone, this
deviation drastically increases. This allows us to define a time during which the model
behaves like an ab initio simulation. Thanks to this, we can target in the chemical space
what new data to put in the training set to have a more accurate model. By using this
method, we obtained results close to ab initio accuracy.

We then apply this method to a new prebiotic pathway to glycine in water that has
never been studied before. However, the method previously developed requires a prior
knowledge of the transition mechanism. In the second part of this thesis, we use ab initio
transition path sampling trajectories, which are trajectories starting from the transition
state and relaxing into the equilibrium basins. They cover all the chemical space and are
therefore suitable to train an ML model. By using such a model, we managed not only
to recover the thermodynamics of the reaction but also the kinetics. We obtained results
close to ab initio accuracy.
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Résumé 5
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Résumé en français

La chimie prébiotique consiste en l’étude de réactions ayant eu lieu aux premières heures de
la Terre. À cette époque, de petites molécules ont réagi entre elles pour en former de plus
grosses, et ce, jusqu’à l’apparition des premières briques du vivant. Il existe beaucoup de
scenarii différents pour expliquer ces réactions. En effet, certaines molécules peuvent être
arrivées grâce à des impacts de météorites et donc, auraient des origines extra-terrestres.
D’autres pourraient être synthétisées dans une ”soupe primordiale” pensée par Darwin.
Enfin, des éclairs, courants électriques au sein d’une atmosphère composée de gaz simples,
auraient pu former les premières biomolécules. Cette dernière possibilité a été testée pour
la première fois par S. Miller en laboratoire [1] en faisant passer un courant électrique
dans un gaz similaire à ce qui aurait pu être présent sur Terre à cette époque (eau (H2O),
méthane (CH4), ammoniaque (NH3), dihydrogène (H2)). Miller a obtenu un mélange
contenant des molécules plus complexes comme la glycine, l’acide aminé le plus simple,
montrant ainsi que des composants du vivant auraient pu être formés de cette façon.

En effet, il existe 22 acides aminés différents qui constituent les composants principaux
des protéines, qui sont elles-mêmes des molécules nécessaires au vivant : elles participent
au métabolisme ainsi qu’à la structuration et à la cohésion des cellules. L’étude de leur
structure complexe constitue un pan entier de la physique : la complexité de leur compo-
sition fait qu’elles peuvent se replier sur elles-mêmes ou au contraire se déplier. Durant
cette thèse, nous nous sommes intéressés à la synthèse prébiotique de la glycine.

Comme exposé précédemment, de nombreuses hypothèses sur la formation des premières
biomolécules sur Terre ont été émises. Il est donc difficile pour les chercheuses et les
chercheurs de recréer toutes les conditions possibles en laboratoire. Ceci correspond à un
premier niveau d’abstraction et pour explorer de nouvelles conditions, nous pouvons passer
encore un de ces niveaux en créant une bôıte de simulation avec les atomes et molécules
voulus. Les déplacements des composants de la bôıte sont accessibles en résolvant les
équations du mouvement. Cette technique est appelée dynamique moléculaire. Cepen-
dant, pour étudier des réactions chimiques, les électrons ont un rôle prépondérant (une
réaction chimique peut être vue comme un déplacement d’électrons) et l’équation de
Schrödinger qui est l’équation fondamentale de la mécanique quantique, doit être résolue.

Il est possible de la résoudre de façon exacte seulement pour des systèmes comme
l’atome d’hydrogène avec un seul électron. Pour obtenir une solution approchée, il existe
différentes méthodes dites ab initio, car ne nécessitant aucun paramètre extérieur. Parmi
toutes ces approximations possibles, nous avons choisi dans ce travail d’utiliser la théorie
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de la fonctionnelle de la densité qui permet un bon compromis entre précision et temps
de calcul.

Même avec des ressources de calcul infinies, il serait impossible de faire des simulations
qui contiennent assez d’information pour avoir une analyse quantitative d’une réaction
particulière. En effet, si une bôıte de simulation est préparée dans un état et qu’une
simulation est lancée depuis celui-ci, le système atteindra un état d’équilibre (soit les
réactifs, soit les produits), et ne le quittera plus, car il est trop stable et il est impossible
de le quitter. Pour donner une comparaison visuelle, une réaction chimique peut être vue
comme le passage d’un col pour aller d’une vallée à une autre (les réactifs et les produits).
Notre problème se rapprocherait alors d’une bille à laquelle on aurait donné une petite
impulsion en bas du Mont Ventoux : elle parcourrait quelques mètres en direction du
sommet, puis redescendrait. Mais il existe des techniques comme la métadynamique [2, 3]
pour contourner ce problème. Dans cette méthode, un biais gaussien est régulièrement
ajouté dans l’expression de l’énergie potentielle à l’emplacement où se trouve le système,
ce qui permet de remplir petit à petit le bassin d’énergie libre et de passer des réactifs
vers les produits. Si l’on reprend l’image de la bille au pied du mont Ventoux, cela revient
à ajouter régulièrement un petit tas de sable sur la position de la bille jusqu’à ce qu’elle
ait atteint le sommet.

La métadynamique nous permet donc d’obtenir une première transition entre les deux
vallées. Mais, pour avoir des informations quantitatives sur la réaction, il faut plus de tran-
sitions. Pour cela, nous utilisons des simulations d’Umbrella Sampling [4] qui consistent
à séparer l’espace chimique en fenêtres. Dans chacune d’elles, une simulation est lancée
avec un potentiel quadratique pour restreindre le système autour du centre de la fenêtre.
Ceci permet d’avoir des données sur le mécanisme réactionnel tout le long de l’espace
chimique. Une fois que toutes les simulations ont été faites dans toutes les fenêtres, les
données sont mises ensemble pour obtenir le profil d’énergie libre de la réaction. Grâce à
ce profil, il est possible d’étudier la stabilité relative des réactifs et des produits, mais aussi
de comparer le mécanisme étudié avec d’autres mécanismes grâce à la barrière d’activation
qui donne une information sur la faisabilité de la réaction : un mécanisme dont la barrière
d’activation est plus basse arrivera plus rapidement qu’un autre qui a le même point de
départ, mais une barrière plus élevée.

Le profil d’énergie libre peut être comparé aux résultats expérimentaux quantitative-
ment à travers la différence d’énergie libre entre les réactifs et les produits. En effet,
celle-ci est reliée à la constante d’équilibre de la réaction par une relation logarithmique.
Le taux cinétique de la réaction, en d’autres termes la vitesse à laquelle les réactifs se
consument, est lui lié à l’exponentielle de l’opposé de la barrière d’énergie libre.

Ces techniques de simulations ont été mises en place par l’équipe dans un protocole
méticuleux pendant la thèse de Théo Magrino. Tout d’abord, les réactifs et les pro-
duits sont définis. Ensuite, une simulation de métadynamique est lancée pour obtenir
une première idée du mécanisme de transition. Après cela, des trajectoires non biaisées
sont lancées de points proches du haut de la barrière pour trouver les états de transition.
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Il s’agit des configurations pour lesquelles la probabilité de tomber dans le bassin des
réactifs est la même que celle de tomber dans le bassin des produits lorsque l’on lance
une simulation de ces points. Cela nous permet de mieux comprendre le mécanisme de
transition et d’établir une ”variable collective”, c’est-à-dire la projection des positions
des atomes dans une variable qui doit contenir toutes les informations nécessaires à la
compréhension du mécanisme. C’est cette quantité qui est ensuite utilisée pour placer
les biais quadratiques lors des simulations d’Umbrella Sampling. Dans le protocole établi
par Theo Magrino la variable collective est une variable de chemin [5], qui, à partir de
configurations de référence sur le chemin réactionnel que nous voulons étudier, permet
de situer une configuration le long de ce chemin. Dans notre cas, ces états de référence
sont choisis le long des trajectoires non biaisées. Après avoir construit notre variable
collective, des simulations d’Umbrella Sampling sont lancées le long de celle-ci (entre 50
et 60 fenêtres). Enfin, le paysage d’énergie libre est obtenu grâce à la méthode d’analyse
des histogrammes pondérés (weighted histogram analysis method en anglais).

Ce protocole a permis l’étude de plusieurs réactions [6]. La plus importante et complète
d’entre elles est celle du mécanisme de Strecker de formation de la glycine [7]. Cela a
permis d’identifier et de caractériser des états intermédiaires qui ne peuvent être vus
expérimentalement. Ce travail a mis en évidence la meta-stabilité de l’amino-nitrile as-
socié à la glycine qui est détecté dans le milieu interstellaire contrairement à la glycine.

Cependant, les simulations ab initio sont très coûteuses en temps de calcul. Cela limite
la taille des systèmes pouvant être étudiés (autour du millier d’atomes et du nanomètre)
ainsi que les échelles de temps accessibles (au maximum autour de la nanoseconde).
Pour remédier à ce problème, des solutions de machine learning ont été mises en place
[8, 9, 10]. Bien qu’elles diffèrent dans leurs applications, le principe de ces méthodes
est souvent le même : on dispose des configurations atomiques, souvent générées par dy-
namique moléculaire ab initio, ainsi que les énergies et les forces associées. Le but est alors
d’entrâıner un modèle capable de prédire ces grandeurs sans avoir à résoudre l’équation
de Schrödinger et donc de limiter le temps de calcul. Le modèle obtenu est appelé ”po-
tentiel machine learning”. Une fois le potentiel entrâıné, des simulations de dynamique
moléculaire peuvent être lancées avec celui-ci au moyen d’une bôıte de simulation plus
grande ou pour un temps plus long.

Ces méthodes ont obtenu beaucoup de succès pour des systèmes à l’équilibre ou
cristallins [11, 12, 13]. Mais il est beaucoup plus compliqué d’obtenir un potentiel machine
learning pour des réactions chimiques. En effet, il faut que celui-ci soit performant sur
tout l’espace chimique pour pouvoir échantillonner proprement le mécanisme de transition
[14, 15]. C’est ce que nous avons proposé de faire durant cette thèse.

La question qui se pose est donc : Quelles données doit-on utiliser en entrâınement
d’un modèle machine learning pour pouvoir retrouver le paysage d’énergie libre ? Com-
ment savoir si le modèle de machine learning est fidèle sans avoir à refaire les trajectoires
ab initio. Nous essayons d’apporter une réponse à ces questions dans l’article publié en
août 2022 dans ”Journal of chemical theory and computations” [16].
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Grâce aux données de l’étude de la synthèse de Strecker de la glycine, nous avons
pu établir comment construire efficacement un ensemble d’entrâınement. Pour cela, nous
avons utilisé la méthode dite des ”comités de réseaux de neurones”. Pour une étape
donnée, nous entrâınons quatre réseaux de neurones et nous faisons une simulation avec
l’un d’eux. Les autres réseaux sont utilisés pour contrôler la qualité de la simulation :
pour chaque pas de temps, on calcule le désaccord entre les membres du comité et s’il est
supérieur à un seuil prédéfini, la simulation est arrêtée et le temps de simulation constitue
le critère sur lequel nous ajoutons des données dans l’ensemble d’entrâınement. En effet,
nous effectuons des simulations sur l’ensemble des fenêtres d’Umbrella Sampling, donc
sur l’ensemble du chemin réactionnel, ce qui nous permet de voir les zones dans lesquelles
le temps de simulation est trop faible et où il faut rajouter des données d’entrâınement.
Grâce à cette méthode, nous avons pu retrouver les données thermodynamiques de deux
étapes de la synthèse de Strecker de la glycine (voir figure 1).

Figure 1: a) Énergies libres obtenues ab initio (noir), et avec potentiel machine learning
(vert) pour la première étape de la synthèse de Strecker de la glycine. b) Énergies libres
obtenues ab initio (noir), et avec potentiel machine learning (vert) pour la quatrième
étape de la synthèse de Strecker de la glycine. En rouge, l’énergie libre obtenue avec les
seules données présentes dans l’ensemble d’entrâınement.

Grâce à cette première étude, nous avons montré qu’il était possible d’établir un profil
d’énergie libre à l’aide d’un potentiel machine learning. Nous avons ensuite utilisé cette
méthode pour étudier un nouveau mécanisme de formation de la glycine différent de
celui de Strecker. En effet, ce dernier considère d’abord l’attaque de l’ammoniaque sur
le formaldéhyde. Ici, nous proposons la formation de glycolonitrile par addition de l’ion
cyanure sur le formaldéhyde. Le mécanisme fait intervenir un intermédiaire quelque peu
exotique, le 2-oxiramine qui est très instable dans l’eau et laisse place à l’acide glycolique.
Il a été observé dans des météorites, de même que le glycolonitrile, ce qui vient conforter
la plausibilité de notre mécanisme. De plus, les énergies libres que nous avons calculées
sont proches de celles relevées expérimentalement comme indiqué dans la figure 2.
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Figure 2: Bilan des énergies libres des différents intermédiaires du mécanisme de formation
de la glycine. Les énergies calculées par machine learning sont indiquées en vert, celles
calculées ab initio en rouge et les données issues de la littérature en bleu.

Contrairement à ce qui avait été fait précédemment pour l’étude du chemin de Strecker,
ici, nous ne disposions pas des données de référence avant d’entrâıner un potentiel machine
learning. Nous avons généré les données d’entrâınements au fur et à mesure en suivant
la méthode développée dans notre publication [16]. L’accord entre les valeurs ab initio
et celles machine learning montre une nouvelle fois que cette méthode peut être utilisée
pour l’étude de réactions chimiques en solution.

Cependant, l’entrâınement de ce potentiel intervient tard dans le protocole d’étude et
nécessite la définition préalable d’une variable collective. Des techniques d’exploration de
chemin de transition ont récemment été mises en place dans l’équipe, comme le transition
path sampling (TPS) [23], pour définir de nouvelles coordonnées de réaction [24]. Le TPS
consiste à effectuer un grand nombre de trajectoires démarrant dans la zone de l’état
de transition et tombant vers les produits et les réactifs. Cela permet d’échantillonner
efficacement tous les chemins permettant de lier les réactifs aux produits. Pour reprendre
l’analogie de la bille et de la montagne, faire du TPS reviendrait à vider un sac de billes du
haut de la montagne et à regarder le chemin que prend chacune d’elles. Ces trajectoires
sont donc composées de configurations le long de toute la transition et donc, peuvent être
utilisées pour entrâıner un potentiel machine learning. C’est ce que nous avons fait avec
les données de TPS obtenues par Théo Magrino et Léon Huet.

Nous avons étudié une réaction très simple, utilisée de nombreuses fois en chimie
théorique pour valider des méthodes. Il s’agit de la réaction de substitution du chlorure
de méthyle par un ion chlorure dans l’eau. En d’autres termes, la molécule de chlorure
de méthyle est remplacée par elle-même, et donc expérimentalement rien n’est observé.
Par contre, lors d’une simulation, ce n’est pas le même atome de chlore qui est lié au
carbone, et donc, il faut casser une liaison carbone/chlore et en créer une, ce qui implique
le passage d’une barrière d’énergie libre. C’est pour cela que des simulations de TPS ont
été lancées du haut de la barrière et ont servi à entrâıner un potentiel machine learning.
Nous l’avons ensuite utilisé pour obtenir le profil d’énergie libre le long d’une variable
bien connue : la différence des distances entre le premier atome de chlore et l’atome de
carbone et le deuxième atome de chlore et l’atome de carbone. Les résultats obtenus sont
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Figure 3: Énergie libre le long d’une variable collective heuristique calculée à partir de
distances interatomiques. Les données ab initio sont représentées en noir, celles machine
learning en vert. Les zones grisées correspondent à l’erreur statistique estimée.

présentés sur la figure 3. Cela montre que le potentiel entrâıné est capable de reproduire
un profil ab initio, et donc, nous avons fait plus de simulations TPS avec ce potentiel. Cela
nous a permis de choisir des références pour construire une variable de chemin sur laquelle
nous avons aussi fait de l’Umbrella Sampling. Ceci aurait été impossible avec la méthode
précédente, car le potentiel est entrâıné avec des simulations d’Umbrella Sampling le long
d’une variable précise. Nous avons aussi utilisé ces simulations de TPS pour obtenir une
estimation précise du taux cinétique grâce au formalisme de Bennett et Chandler [25],
ce qui aurait été impossible ab initio. En résumé, cette nouvelle méthode nous permet
d’obtenir les quantités thermodynamiques et cinétiques permettant de caractériser une
transformation physique ou chimique.

Cette nouvelle méthode pourrait être utilisée en chimie prébiotique pour étudier des
systèmes plus grands, avec notamment des surfaces minérales agissant comme cataly-
seurs. Elle pourrait aussi être utilisée dans le cadre de simulations prenant en compte
les effets quantiques nucléaires. En effet, ici, nous ne traitons les noyaux que de manière
classique et leur comportement est découplé de celui des électrons. Cependant, il existe
des systèmes dans lesquels il n’est pas possible de faire cette approximation, notamment
les systèmes contenant des atomes légers comme l’atome d’hydrogène. Pour remédier à
cela, des simulations coûteuses fonctionnant sur la base de réplicas sont lancées. Cette
méthode permettrait de garder une précision ab initio en économisant du temps de calcul.
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Introduction

In 1972, P.W. Anderson introduced in his now very famous paper “More is different” [26]
the fact that even though the fundamental laws of nature are known for the behavior of
one or a few bodies, it is not enough to understand the behavior of a large scale system
of millions of bodies interacting. This is due to the symmetry breaking and the growing
complexity of the system. Many examples of growing complexity can be found in nature,
from physics to social sciences: the spiral structure of galaxies from billions of stars [27],
the patterns and organization emerging from a flight of birds [28] and the study of the
behavior of crowds [29]. All of this cannot be observed by studying only a small number
of interacting subjects. However, the most striking emergent phenomenon is probably the
emergence of life.

J. H. Conway introduced in 1970 the game of life [30]. On a NxN grid, cells are
placed, and their time evolution is defined through four simple rules to decide whether at
time t the cell i will die, give birth or do nothing. Although this is a very simple game,
many complex emergent behaviors have been observed from it. It has been shown to be
Turing complete [31], meaning that it can be used to simulate any other system with
any set of rules, including itself. In other words, it is capable of self replication. This
is an example of emergent behavior from simple rules, and another example of the sen-
tence “More is different”. But this also raises the question: what is life? How to define it?

In the rest of this introduction, we will have the following approach: the game of life
displays emergent behavior with simple rules. Since life itself appears as an emergent
phenomenon, the aim of a chemist or physicist is to find out the underlying rules and how
they appear. This is the approach we will have in this thesis.

The question of the definition of life is of the utmost importance because, before
speaking about origins of life, we must define it, as said in ref [32], “Without a definition
for life, the problem of how life began is not well posed”. The common definition for a
living organism implies three functions [33]:

• Replication: the ability to transmit information to offsprings.

• Metabolism: the ability to capture energy and transform it to stay away from
thermodynamic equilibrium

• Compartmentalization: the ability to be a closed shell distinguishable from the
environment
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To widen this definition and go beyond life on earth, physicists introduced an extended
definition of life called Lyfe [34] based on four physical considerations.

Although life is an emergent behavior due to increasing complexity, one of the ap-
proaches to understand its origins is to start from simple molecules and hypothesis and
try to follow up until the basic chemical mechanisms of life are found in order to answer
the question: how did these functions appear on earth? The first one to go in this way was
Charles Darwin when he suggested that the evolutionary process started in a “warm little
pond” [35]. This was then followed by A. I. Oparin and J. B. S. Haldane [36, 37], who
independently proposed a scenario for the chemical evolution from small constituent of
the atmosphere to biomolecules. Among these biomolecules are proteins and DNA/RNA
molecules. The first ones have many functions in a cell, such as catalyst of reactions
necessary for the metabolism of cells, or a structural role to hold the cell together [38].
Therefore, they fulfill the last two functions of the definition of life. The Replication
part is carried out by the DNA/RNA molecules that hold the genetic code and hence the
information to replicate a cell.

In the following of this thesis, we will be more interested in the proteins and more
particularly to the building blocks of proteins. We will go once again down the scale
ladder to simpler molecules: proteins are chains of small molecules called “amino-acids”.
There are 22 of them, and in this thesis we will be interested in the simplest of them:
glycine.

The research around prebiotic formation of glycine is very active. One of the key works
in this field is the well known Miller-Urey experiment [1], in which S. Miller gathered what
was thought to be the atmosphere at the time of prebiotic earth (water (H2O), methane
(CH4), ammonia (NH3) and hydrogen (H2)) and put a spark in it. He observed among
other products the formation of glycine. The proposed mechanism for its formation is
the Strecker one that was thought a century before [39]. Since this experiment, others
have been performed using sparks and obtained the formation of more complex molecules
[40, 41, 42, 43].

However, the Miller atmosphere is not the only way to obtain prebiotic molecules;
there are many ways in which bio-molecules could have appeared on earth, and it is likely
that it is a mix of all the scenarios that really happened. One of the scenarios is that
life building blocks were brought to earth from the interstellar medium: they were either
formed in comets [45, 46] or in interstellar ice via UV radiation [47, 48]. Other works
show that elementary biomolecules were formed on earth in a primordial soup, hydrother-
mal submarine vents [49] or mineral surfaces [50, 51, 52]. A summary of all the possible
environments is represented in figure 4 and taken from [44].

Nonetheless, due to the high number of possibilities, it is impossible to test all the
possible conditions of formation of different molecules in the lab, as Miller did for a small
set of molecules. To help experimentalists in their work, we can go down the scale ladder
and go to the quantum scale. Using quantum mechanics, we can study chemical bond
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Figure 4: Artist representation of primordial earth and the different possible scenarios,
adapted from [44]

formation and destruction under different conditions.

In his program, P. Dirac stated in 1929 [53] that the major laws of quantum me-
chanics were known but were too complex to be soluble for many atoms and that it was
therefore “desirable that approximate methods of applying quantum mechanics should be
developed”. A solution to this question came with the computer and the approximate res-
olution of the Schrödinger equation. Ab initio calculations are a solution to that question
because they are an approximation of the solution of the Schrödinger equation for many
electrons that came in the 1960s. They are called ab initio because they only depend on
the Schrödinger equation and do not need any external empirical parameter. With such
computations, it is possible to simulate the dynamics of a system and take into account
the electronic degrees of freedom, and thus study the thermodynamics and kinetics of a
chemical reaction.

Indeed, the aim of such studies is to first understand the transition mechanism of
the reaction and identify all the intermediates: some of them are too short-lived to be
observed in experiments and are only hypothesized. Simulations allow confirming these
hypotheses. The other goal of ab initio studies is to get thermodynamical and kinetics
information. Often, the free energy difference and the activation barrier are obtained.
The free energy difference tells which of the reactants or the products is the most stable,
while the activation barrier gives information on the feasibility of the reaction, since it is
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Figure 5: Illustration of different scales and the simulation techniques used, adapted from
[62]

linked to the kinetic rate. They can be compared to the available experimental data via
the equilibrium constant and the measured kinetic rate.

For example, one of the key studies in this field is the simulation of the Miller experi-
ment in a simulation box [54], where the products observed by Miller were also observed
in the simulation, and the transition mechanisms were accessible contrary to the experi-
ment. Some very accurate simulations are also performed in gas phase to see the behavior
in the interstellar medium and the possible formation of biomolecule from ices and dust
[55, 56, 57]. Some other studies perform calculations in solution to see the formation of
molecules in the “warm little pond” of Charles Darwin [6, 58, 59, 60] and understand the
mechanisms of formation as well as the kinetic and thermodynamics.

In the team, a protocol has been set in place to overcome the intrinsic bottleneck of
the transition time scales that are not reachable by any means of simulation. To do so,
enhanced sampling techniques such as metadynamics [2] and Umbrella Sampling [4] are
used along with state of the art collective variables [61]. This led to thorough studies of
prebiotic scenarios on early earth, and to the whole step by step study of the Strecker
synthesis of glycine [7].

However, ab initio molecular dynamics simulations have limitations: they are slow
and scale with the cube of the number of electrons which is a limit for the time-scales and
length-scales which can be studied with ab initio studies, as shown in figure 5. This makes
the quantitative sampling phase of the protocol of the team very expensive in terms of
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computational time, and therefore, all the possible conditions of the prebiotic earth can-
not be studied, for example, it is difficult to include mineral surfaces, water and reactive
molecules in a simulation box. It is also hard to study large reactive systems such as for
example polymerized glycine in water using ab initio simulations

To go further in Dirac’s program and to remove the bottleneck of computational time,
one solution can be to use: artificial intelligence or machine learning, as it has allowed
great progress in other fields such as protein folding [63]. In molecular dynamics simu-
lations, several methods have been introduced [9, 8, 64, 65] to reduce the computational
time. As the expensive part is to compute the energies and forces, a model is trained with
an initial dataset containing the positions of the atoms of the system and the associated
energies and forces.

These methods have been used to study equilibrium systems [11, 12, 13], to expand
the number of atoms in a simulation box while keeping the ab initio accuracy. But the
question of using machine learning methods for reactive systems was an open question at
the beginning of my thesis, although some progress has been made by other teams [14, 15].

The main problem of machine learning models for molecular dynamics simulations is
the extrapolation problem: how can one trust the prediction of the model, and how can
one keep it away from configurations it does not know. This question is partly related
to the question of choosing training points: for a model of a reactive system, we need a
model that has a correct behavior all along the chemical space, and therefore, training
point must be carefully chosen. Indeed, it is useless to train a model if all the data needed
from the model is already in the training set. The right balance should thus be chosen
between a sparse training set with not enough energies and a huge training set with re-
dundancy in information and expensive to generate.

The aim of this thesis is to provide methods to build a training set and applying it to
different chemical reactions in solution.

In this manuscript, we will start by presenting the methods used to study chemical
reactions in solutions in the team, with an application to the Strecker synthesis of glycine.
We will then explain in the second chapter the basic principles of machine learning and
how it can be applied to molecular dynamics simulations. In a second part, we show the
first method devised in this thesis to build a training set for a model for chemical reactions
in solution. We first build this method by using the data of the first step of the Strecker
synthesis of glycine and obtain results with an accuracy comparable to the ab initio one.
We apply this method to the third step of the same mechanism, which is more complex
and still obtain satisfactory results. We thus apply this method to a new pathway towards
glycine from the same precursors as in the Strecker one. This pathway has never been
studied, and we manage to explain some experimental results obtained. Finally, in the last
part of this thesis, we point out that the previous method depends on the prior knowledge
of the transition mechanism. We thus present a last methodological part introducing tools
to explore transitions without any prior knowledge of the mechanism and apply it for the
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training of machine learning potential for chemical reactions in solution. In this chapter,
we use a very simple benchmark reaction that is the SN2 substitution of methyl-chlorine
with a chlorine ion [66].
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Chapter 1

Ab initio study of chemical reactions
in solution

1.1 Quantum mechanics

In order to study chemical reactions in solution, electronic degrees of freedom need to
be treated to account for the creation or the destruction of chemical bonds. To do so a
variety of methods have been devised, they are called ab initio because they are derived
from first principle and don’t need external empirical parameters. Among these methods,
density functional theory (DFT) allows a good tradeoff between accuracy and affordable
computational time for the systems we are interested in. In the following section, we
will first present the historical Hartree-Fock (HF) approach [67, 68] that will allow us to
introduce many concepts that will be used throughout this thesis, such as self-consistent
resolution of equations and variational principles. The latter has also a big importance
in machine learning, this is why, even though the HF method was not used in this thesis
we chose to present the basic principles of this method.

1.1.1 The quantum many body problem

In the study of the quantum behavior of a system with N atoms of atomic number
(Zi)i=1..N withNe electrons with positions r1, ..., rNe andNp nuclei with positionsR1, ...,RNp ,
one wants to find the global wavefunction, Ψ(r1, ..., rNe ,R1, ...,RNp) associated to the
ground state of a system with its corresponding energy. Because all the relevant informa-
tion can be extracted from the wavefunction, energies and forces. This is performed by
solving the time dependent Schrödinger equation:

iℏ
∂Ψ(r1, ..., rNe ,R1, ...,RNp)

∂t
= HΨ(r1, ..., rNe ,R1, ...,RNp) (1.1)

Where H is the Hamiltonian of the system that can be separated in the following form:

H = TN + VN,N + VN,e + Te + Ve,e (1.2)
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with TN the total kinetic energy associated to the nuclei given by, with Mi, the mass of
nucleus i

TN = −ℏ2

2

Np∑
i=1

∇2
Ri

Mi

(1.3)

VN,N the potential energy associated to the coulombic interaction between nuclei:

VN,N =

Np∑
i=1

Np∑
j=1

j>i

ZiZje
2

|Ri −Rj|
(1.4)

VN,e the term corresponding to the coulombic interaction between nuclei and electrons:

VN,e = −
Np∑
i=1

Ne∑
j=1

Zie
2

|Ri − rj|
(1.5)

Te is the total kinetic energy of the electrons:

Te = −
ℏ2

2me

Ne∑
i=1

∇2
ri

(1.6)

and finally Ve,e is the coulombic interactions between electrons given by:

Ve,e =
Ne∑
i=1

Ne∑
j=1

j>i

e2

|ri − rj|
(1.7)

The time dependent Schrödinger equation can be simplified into an eigenvalue problem
by assuming stationary states:

HΨ(r1, ..., rNe ,R1, ...,RNp) = EΨ(r1, ..., rNe ,R1, ...,RNp) (1.8)

This eigenvalue problem is nonetheless impossible to solve for realistic system and many
approximations based on the physics of the system have been introduced throughout the
history of quantum mechanics. The first approximation that we will use here is the Born-
Oppenheimer approximation [69]. It was first used to solve the hydrogen atom problem.
The idea behind this approximation is that the electrons are much lighter than the nuclei,
in other words, from the point of view of the electrons, nuclei are not moving and can
therefore be considered as classical particles allowing a decoupling between the two parts.
All the terms in the Hamiltonian regarding purely nuclear interactions can thus be put
into a constant that we will write from now on EN,N . The Hamiltonian of the system
then becomes:

H = EN,N + Te + Ve,e + Ve,N (1.9)

Where the term EN,N can be discarded as it is a constant classical term. This problem
is still a many-body problem where electrons interact with each other. It can only be
solved analytically for the hydrogen atom and hydrogen-like atoms called hydrogenoids
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because the number of dimensions of the problem grows exponentially with the number
of electrons. This is also what Dirac intended in his program cited in the introduction
of this thesis [53]. Nonetheless, in a simulation box involving hundreds of electrons, the
solution of this equation cannot be found, and one has to introduce physically inspired
approximations to obtain accurate solutions of the Schrödinger equation.

In the following sections, we will first introduce the historical mean-field Hartree-
Fock approximation, which is a common way of solving many-body problems that helps
circumvent the problem of the growing number of dimensions in the many body problems.
In these approximations, the electrons behave as non-interacting particles that evolve in
a potential created by the other neighboring electrons.

1.1.2 Hartree-Fock formalism

In the HF approximation, we look for a separable wavefunction, i.e., a wavefunction that
can be written as the product of single-particle wavefunctions, therefore we introduce a
trial wavefunction

Φ(r1, r2, ..., rNe) = ϕ1(r1)ϕ2(r2)...ϕNe(rNe) (1.10)

Which leads for particle i to the following eigenvalue problem:

h(ri)ϕi(ri) = ϵiϕi(ri) (1.11)

With h(ri) given after some algebraic manipulations by:

h(ri) = −
ℏ2

2me

∇2 −
Np∑
j=1

Zje
2

|ri −Rj|
+ e2

Ne∑
k ̸=i

∫
|ϕk(r

′)|2dr′

|ri − rk|
(1.12)

Even though equation 1.15 is a single body equation, the other particles play a role in
the “bath” term of h in equation 1.12. This means that to know ϕ(ri), the whole set of
single-particle wavefunctions needs to be known. This is why this set of equation needs
to be solved self-consistently: first we start by a guess of the solutions, we solve the set
of equations 1.15 and update the set of single-particle wavefunctions. This is done until
convergence on the energy is achieved, i.e., the difference of ground state energy is below
a defined threshold.

This scheme was introduced by Hartree [67], but, later on, Slater [70] and Fock pointed
out that the solutions of 1.15 were not antisymmetric with respect to the exchange of two
particles, which means that the solutions did not lead to a fermionic behavior. This is why
they introduced a new ansatz for the trial wavefunction called a “Slater determinant”:

Φ(r1, ...rNe) =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1(r1) ϕ2(r1) ϕ3(r1) . . . ϕNe(r1)
ϕ1(r2) ϕ2(r2) ϕ3(r2) . . . ϕNe(r2)

. . . . . . . . . . . . . . . . . . . .
ϕ1(rNe) ϕ2(rNe) ϕ3(rNe) . . . ϕNe(rNe)

∣∣∣∣∣∣∣∣∣ (1.13)

where, the functions ϕi are no longer just functions of the spatial coordinates, but also
the spin coordinate of electron i (namely a product of a spatial part and a spin part, and
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since the Hamiltonian does not depend on the spin, the spin degrees of freedom can be
integrated out).

In physics, problems are often solved by looking for a variational ansatz, this is also
the case with this problem by introducing the following variational principle:

Variational principle: The energy of the ground state of a quantum system is de-
termined by minimizing the energy with respect to the wave function, more formally, E0,
the energy of the ground-state of a system is given by:

E0 = MinΨ
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

(1.14)

In our case, we need to determine the Slater determinant that minimizes the ground
state energy. To do so, Lagrange multipliers can be introduced, and the following eigen-
value equations are obtained:

hHF (ri)ϕi(ri) = ϵiϕi(ri) (1.15)

the ϵi being the Lagrange multipliers, and hHF is given by:

hHF (ri) = −
ℏ2

2me

∇2 −
Np∑
j=1

Zje
2

rji
+ VHF (ri) (1.16)

VHF is the Hartree-Fock potential energy due to the interaction of electron i with the
mean-field created by all the other electrons, it is given by the following equation:

VHF (ri) =
Ne∑
k=1

(Jk(ri)−Kk(ri)) (1.17)

The term Jk(ri) is the Coulomb operator which corresponds to the Coulomb repulsion
felt by atom i and caused by all the other electrons and is given by:

Jk(ri) = e2
∫
|ϕk(r

′)|2dr′

|ri − rk|
(1.18)

The other term is a purely quantum mechanical term created by the Pauli exclusion
principle. It is called the exchange term and is given by:

Kk(ri)ϕi(ri) = e2
∫

ϕ∗
k(r

′)
1

|ri − r′|
ϕ∗
i (r

′)ϕ∗
k(ri)dr

′ (1.19)

The eigenvalue equations are then solved self-consistently by decomposing each single-
particle function on a chosen basis of functions, which then gives a system of equations
for the coefficients of the basis functions.

We now have introduced a first method to characterize the ground state of a system
using a variational principle and self-consistent resolution of non-linear equations. The
variational principle showed that the ground state energy is a functional of the full Slater-
determinant. In the next section, using the electron density function, we will show that it
is possible to characterize the ground state of a system by seeing the ground state energy
as a functional of the density function.
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1.1.3 Density functional theory

In the previous section, we showed using a variational principle that the ground state
energy of a system can be determined by minimizing the energy with respect to the
wavefunction. This makes the ground state energy a functional of 4Ne variables if we
take into account the spin, which makes it hard to manipulate. The complexity increases
with the number of electrons. In the 1960s, Paul Hohenberg, Walter Kohn and Lu Sham
introduced a way to express the ground state energy as a functional of the electronic
density, which is a function of only 3 spatial coordinates. This method is called density
functional theory, and Walter Kohn was awarded the chemistry Nobel Prize in 1998 for
this method. In the following sections, we will introduce the basic principles of density
functional theory. Since this thesis, involves many methodological tools, and DFT is a
standard well known tool, we will not enter the details of the derivations of the equations
but adopt a more practical view on the tools used during this thesis.

The density function

Instead of considering the probability distribution of each electron individually, DFT is
based on the total electronic density. Since electrons are indistinguishable particles, we
can evaluate the density probability of presence of an electron in a finite volume element
dr. We will refer to this quantity as the electronic density in the future:

n(r) = Ne

∫
|Ψ(r, r2, r3, . . . rNe)|2dr2dr3 . . . drNe (1.20)

The key to density functional theory are the two Hohenberg-Kohn theorems [71]:

The Hohenberg-Kohn theorems

First Hohenberg Kohn theorem: For an interacting system of electrons, the exter-
nal potential Vext is fully and uniquely determined up to an additive constant by the
electronic ground state density n(r), the total ground state energy of the system is thus
a functional of the electronic density.

According to this theorem, the ground state total energy of the system can thus be
expressed as a functional of the electronic density:

E[n(r)] = Te[n(r)] + Ve,e[n(r)] + Vext[n(r)] (1.21)

where Vext is the interaction between the electrons and the nuclei, as nuclei are considered
as classical external particles it can be written:

Vext[n(r)] = −e2
∫ Np∑

j=1

Zj

|r−Rj|
n(r)dr (1.22)

The same kind of expression can be obtained for the other terms, although this does not
give us any indication on how to obtain the electronic density of the ground state. To do
so, the second Hohenberg-Kohn theorem is used:
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Second Hohenberg-Kohn theorem: For a given external potential Vext the energy
of the ground state is given by the global minimum of the energy functional E[n(r)].
Therefore, the knowledge of the functional E[n(r)] is enough to determine the ground
state and the electronic density of the system.

This is a second variational principle, that allows determining the properties of the
system by minimizing the energy functional with respect to the electronic density.

The Kohn-Sham equations

Minimizing the energy functional is still a non-trivial task due to the multi-body terms
in Ve,e[n(r)]. To overcome this problem, Walter Kohn and Lu Sham came up with an
elegant solution [72] that was summed up by Richard M. Martin [73]: “If you don’t
like the answer, change the question”. Since the Hohenberg-Kohn theorem states that a
system is determined by its electronic density, the many-body problem can be mapped
to a single-particle problem with the same electronic density, and therefore the ground
state energy of this fictitious single-particle system will be the same as the one of the
real system. The ground state energy functional of this fictitious system (denoted with
subscript S) is:

ES[n(r)] = TS[n(r)] + EH [n(r)] + EXC [n(r)] + Vext[n(r)] (1.23)

With TS the kinetic energy of S, EH the Hartree functional accounting for coulombic
interaction in a “mean-field” manner as seen in the previous section, it is the equivalent
of the Jk term in equation 1.17. On the other hand, these two terms only account for
single body potentials, this is where the term EXC [n(r)] comes into play and represents
the deviation of the system from the single-body mean-field behavior.

EXC [n(r)] = T [n(r)] + Ve,e[n(r)]− (Ts[n(r)] + EH [n(r)]) (1.24)

EXC [n(r)] must contain an exchange term, as the Kk term in equation 1.17 which comes
from the Pauli exclusion principle as shown in the previous section, but also a correlation
part that accounts for the interaction of particles of the same sign. It can then be shown
that minimizing E[n(r)] is equivalent to solving the following single particle Schrödinger
equation: [

− ℏ2

2me

∇2
r + Vext(r) + VH(r) + VXC(r)

]
ϕi(r) = ϵiϕi(r) (1.25)

With ϕi the single-particle wavefunctions that are called orbitals. Vext is the external po-
tential and does not depend on the density, VH is the monoelectronic coulombic interaction
potential given by:

VH(r) = e2
∫

n(r′)

|r− r′|
dr′ (1.26)

And VXC is the exchange correlation potential that we don’t know exactly and that we
have to approximate which is given by:

VXC(r) =
δEXC [n(r)]

δn(r)
(1.27)
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The final density function is given by:

n(r) =
N∑
i=1

|ϕi(r)|2 (1.28)

Therefore, if we put together equations 1.25 and 1.28 we have two equations that we
need to solve self-consistently: first start by a guess of the electronic density, then solve
equation 1.25, then compute the new density, and iterate until convergence is achieved
on the energy, i.e., when the difference in the ground state energy between two steps of
the procedure is below a pre-defined threshold.

The exchange-correlation functional:

The exchange-correlation functional, Exc

[
n(r)

]
is the key approximation of DFT. We

have no way of knowing it analytically. This is why there are several ways to approximate
it, and the level of approximation will impact the accuracy of the predictions. However, it
also increases the computational time, therefore a tradeoff between accuracy and feasibility
needs to be found as a function of the system we want to study.

The local density approximation (LDA): The most simple approximation to make
is to hypothesize that the exchange correlation functional can be approximated as an inte-
gral over the whole space of the exchange correlation energy per electron of a homogeneous
electron gas ϵhomxc :

EXC [n(r)] =

∫
n(r)ϵhomxc (n(r))dr (1.29)

This ϵhomxc is computed using very accurate quantum Monte-Carlo simulations [74]. This
approximation is one of the first ones introduced, it works well to compute properties
of solids with electronic densities similar to the one of a homogeneous electron gas, i.e.,
systems where the density varies slowly in space, crystals especially if they are metallic for
example [75, 76]. It has however trouble reproducing properties of isolated molecules or
systems with strongly correlated electrons. It is also known to overestimate the hydrogen
bonding [77], which for us is crucial since we want to study chemical reactions in water
where hydrogen bonding play an important role to stabilize transition states for example.

Generalized gradient approximation (GGA): A more refined way of approximat-
ing this function is by assuming it is not only a function of the local density, but also of
the gradient, this way, the fluctuations of the electronic density are taken into account.
In this case the exchange correlation functional is written:

EGGA
XC [n(r)] =

∫
n(r)ϵGGA

xc (n(r),∇rn(rr))dr (1.30)

There exists many GGA functionals, in this work we only used the Perdew-Burke-Ernzerhof
(PBE) [78] functional that has the advantage of being completely ab initio, i.e., it does
not depend on any external parameter. It is worth mentionning that some GGA function-
nals integrate the full HF exchange expression (Kk in equation 1.17) to increase accuracy,
at the cost of increased computational cost. This family of functional are called hybrid
functionals, such as B3LYP [79, 77].
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The plane wave expansion

Now that we have a way to approximate the exchange correlation functional, we can
insert the functional we want in equation 1.25 and solve it by expanding the single-
particle wavefunction on a given basis, as it is done in the Hartree-Fock method. In the
Hartree-Fock method, Gaussian basis functions are often preferred while in DFT, the
chosen basis set is the plane wave basis. The reason for this is that DFT is mainly used to
study periodic solids [80, 81] or liquids with periodic boundary conditions [82]. Therefore,
the Bloch theorem can be applied: the single-particle wavefunctions can be written:

ϕi(r) = ui,k(r)e
ik.r (1.31)

and ui,k has the same periodicity as the crystal lattice or the simulation box for a liquid
for every k point in the first Brillouin zone. Since these functions are periodic, we can
make a Fourier transform and the single-particle wavefunctions can be written:

ϕi(r) =
∑
G

ci,k,Ge
i(k+G).r (1.32)

With G a wave-vector of the Fourier transform. Finding all the ci,k,G is however impos-
sible. To a vector G one can associate a kinetic energy: E = |G|2ℏ2/2me, and we can
therefore compute the expansion for energies up to a certain energy cutoff that should be
carefully chosen.

Pseudopotentials

Chemically speaking, the core electrons do not play a big role in the reactivity and are
pretty static, taking them into account would make the computational cost grow. More-
over, close to the core, the valence electrons wavefunctions have big oscillations due to the
Pauli exclusion principle, thus, a large amount of plane waves need to be used to describe
these oscillations. To tackle this problem, pseudopotentials have been introduced. Plane
waves are only used to model valence electrons, core electrons and the ionic potential are
replaced by a pseudo potential that acts on the valence wavefunctions and reproduces
the all-electrons wavefunctions after a certain cutoff. In this work, we only used the
Martins-Troullier pseudopotentials [83].

Practical considerations when doing DFT calculations

Now that we have explained all the concepts of DFT, one has to take into account practical
considerations, indeed, when performing atomistic simulations there is always a tradeoff
to find between accuracy and computational time. Indeed, LDA calculations are cheap to
run but not accurate for every system, on the opposite side, hybrid calculations between
GGA and Hartree-Fock are very accurate but very expensive. Therefore, the exchange
and correlation functional should be chosen as a function of the needs and the means,
this tradeoff was compared with the Jacob ladder by John Perdew [84]. Moreover, even
with the cheapest exchange correlation functional, big systems with more than a thousand
atoms cannot be studied. This is why machine learning methods have been introduced
to overcome this, and it is the subject of the third chapter.
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1.2 Molecular dynamics

1.2.1 The ergodic hypothesis and probability distributions

First, statistical mechanics relies on a strong historical hypothesis: the ergodic hypothesis.
Let us say we want to know the average of observable O. If we observe the evolution of
the system for “a long enough time”, making a time average is the same as performing
an ensemble averaging. More formally, this can be written:

lim
τ→∞

∫ τ

0

O(t)dt =

∫
p(x,p)O(x,p)dxdp (1.33)

This hypothesis lead to the rise of statistical mechanics, because from this hypothesis,
a statistical approach can be used to explain experimental results. In the rest of this
manuscript, unless stated otherwise, we will be working in the canonical ensemble (N,V,T)
with the canonical distribution for microstate x at inverse temperature β = 1/kBT :

p(x) =
1

Z
e−βE(x)) (1.34)

With Z the partition function:

Z =

∫
e−βE(x)dx (1.35)

When studying a transformation between state A and B, one often wants to know which
of the state is the most stable, this is done by comparing the probabilities of being in one
of the states:

pA/B =

∫
ΩA/B

p(x)dx (1.36)

With ΩA,B the region where states A and B are defined. When having a time evolution of
the system, thanks to the ergodic hypothesis, p(x)dx is computed by performing a time
average:

p(x) =
1

τ

∫ t

0

auδ(x− x(t))dt (1.37)

To obtain this time evolution, molecular dynamics (MD) has been widely used to study
phenomena at various scales from the quantum scale with material properties (Å/nm) to
macro proteins (µm)). In this section we explain the basic principles of MD and how to
sample a system with a constant number of particles, volume and temperature: the NVT
ensemble. This is the ensemble mainly used in this work. In this part, we will consider a
system with N particles of mass (mi)i=1...N and positions (ri)i=1...N our goal is to obtain
the time behavior of the system given the sum of forces (Fi)i=1...N acting on each particle
of the system.

1.2.2 The Verlet algorithm

The most straight forward way to obtain the time evolution is by solving the Newton’s
equations of motions:

mir̈i = Fi (1.38)
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Where the double dot over ri indicates the double time derivative of ri. This equation is
however a continuous equation of time that cannot be solved analytically, moreover we
only can propagate discrete equations.

Our goal is to obtain the time evolution of the system. From now on, we will call it
the “trajectory” from t = 0 to t = τ . To do so, we split this time interval into a discrete
set of time lags: (t0, t1, t2 . . . , tM−1, tM), with t0 = 0 and tM = τ and ti+1− ti = δt with δt
called the time step. Now, since we have the time evolution of r̈i, and we want the time
evolution of ri, we can write a Taylor expansion of ri(t+ δt) and ri(t− δt) at the second
order in δt that makes r̈i appear:

ri(t+ δt) = ri(t) + δtṙi(t) +
δt2

2
r̈i(t) +

δt3

6

...
ri (t) +O(δt4) (1.39)

ri(t− δt) = ri(t)− δtṙi(t) +
δt2

2
r̈i(t)−

δt3

6

...
ri (t) +O(δt4) (1.40)

Thes two equations can then be summed to obtain:

ri(t+ δt) = 2ri(t)− ri(t− δt) +
δt2

2
r̈i(t) +O(δt4) (1.41)

This equation does not depend on the velocities, and they can be obtained by subtracting
equations 1.40 and 1.39. A more advanced scheme like velocity Verlet can be used to
obtain the velocities. This method was introduced by Loup Verlet to study a Lennard-
Jones system [85]. It does only depend on one parameter that is the time-step δt, and
the error made is of the order of δt4. Therefore, this parameter should be chosen with
the system, it should not be too large to avoid missing the fast degrees of freedom of
the system, but, if it is too small, the computational time needed to study a physical
phenomenon will be too high. Hence, when performing molecular dynamics simulations,
a tradeoff between a small and a bigger time-step must be found.

We thus have a way to obtain the positions of the particles of the system as a function
of time, to then compute averages of thermodynamical quantities.

1.2.3 The Nosé-Hoover thermostat

To compute averages of thermodynamical quantities, one must choose the statistical en-
semble in which this average is computed. As the Verlet algorithm conserves the total
energy of the system, the natural ensemble of molecular dynamics is the (N, V, E) en-
semble, where the number of particles, the volume of the system and the total energy of
the system are conserved. But, due to for example high forces the temperature might
have big variations, and one might prefer to work in the (N, V, T) ensemble by using a
thermostat.

First, the temperature in statistical physics is defined at time t by:

3

2
NkBT =

N∑
i=1

1

2
mi

˙ri(t)
2

(1.42)
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Therefore, temperature is intrinsically related to the velocities of the system, hence if one
wants to control the temperature, one has to control the velocities of the particles in the
system. To do so, a thermostat is used. There exists many thermostats, in this thesis, we
only used the Nosé-Hoover thermostat [86, 87] that we will present now.

In this thermostating method, an additional degree of freedom χ is introduced that
accounts for the exchange of energy between the thermostat and the particles of the
system, the equations of motion become:

mir̈i(t) = Fi −miχṙi(t) (1.43)

With the time evolution of χ given by:

χ̇ =
1

Q

 N∑
i=1

miṙi
2 − 3NkBT0

 (1.44)

This additional degree of freedom can be thought of as a friction term in the system:
if T > T0, then, the friction term increases and takes energy from the system, while
if T < T0, then, the friction term gives back energy to the system in order for the
instantaneous temperature to oscillate around the target temperature T0.

1.2.4 Periodic boundary conditions

In order to avoid boundary effects in the simulation box, periodic boundary conditions
are used. This means the system is periodically repeated in the three directions of the
system. More specifically, when an atom leaves the simulation box, it enters back the box
by the other side. In the case of a cubic simulation box of size a, the coordinate α of atom
i becomes when it leaves the box:

rαi (t) = rαi − floor(rαi /a) (1.45)

By using periodic boundary conditions, first we exactly control the volume of the simu-
lation box, and second, we can use the plane wave expansion of DFT explained in the
previous section.

1.2.5 Obtaining the forces

Now that we have equations to get the motion of the atoms, we need to get a way to have
the forces acting on each atom. This, is the last piece to have a working MD simulation.

Classical molecular dynamics

The easiest way to perform MD simulations is with so-called classical MD simulations,
where the forces are derived from parameterized force fields. These parameters are either
fit from experimental data, or fit from more accurate ab initio calculations. They are less
accurate than ab initio simulations but allow studying bigger time and length scales, since
they often linearly scale with the number of atoms. For example, for aqueous systems,
the most used force fields are TIP3P/TIP4P. [88, 89] The historical first force field that
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will be used in the next section to illustrate the concept of free energy barrier is the
Lennard-Jones potential:

Epot =
N∑
i=1

N∑
j=i+1

ϵij

(σij

rij

)12

−

(
σij

rij

)6
 (1.46)

Where ϵij models the strength of the interaction between atom i and atom j and σij the
equilibrium distance between atom i and atom j. It is often used to model the behavior
of noble gas.

ab initio molecular dynamics

With classical MD, however, all the information about the electronic behavior of the
system is lost. Therefore, no chemical reaction can happen during a classical molecular
simulation. This is why ab initio molecular dynamics (AIMD) simulations are performed
for chemical reactions. We will present here how it is done in the case of the Born-
Oppenheimer approximation: nuclei are treated as classical point particles on which elec-
tronic forces act. The force acting on the nucleus at the position Ri is given by the
Hellman Feynman theorem:

Fi = ⟨Ψ| ∇Ri
He |Ψ⟩ − ∇Ri

EN,N (1.47)

This is with this last equation that it can be seen that performing an AIMD simulation
is very expensive in computational time, because the DFT equations need to be solved
at every time step. We now have introduced every tool to perform simulations to gather
thermodynamical information about a system we want to study. In the next section, we
will see how to sample the phase space in order to get the relevant information about the
system.

1.3 Computing free energies

In this section, we will make the link between statistical physics, ensemble averages,
molecular dynamics and experimental measurements. To do so, we will use a toy model
that is a Lennard-Jones dimer immersed into a Lennard-Jones solvent. The interaction
energy is bigger for the particles of the dimer than for the solvent particle but also for
the interaction between the solvent particles and the dimer particles. We wish to study
the association/dissociation process of the dimer particles. With this toy model, we will
illustrate all the relevant concepts of sampling events.

1.3.1 Free energy and collective variables

The average in equation 1.37 can be performed for very small systems, because the volume
of the phase space hypersphere of dimension 3N grows exponentially with N. This means
that it is impossible to compute for realistic systems. To compute this probability, we
need to reduce the dimensionality of the system by projecting the dynamics of the system
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onto the relevant degrees of freedom. This is done by using collective variables (CV).

A CV, or a reaction coordinate (RC) is a projection of the 3N dimensional atomic
positions space onto a space of dimension n where n is smaller than 3N (often n is 1 or
2). For chemical reactions, a good CV should be a quantity that allows us to identify
the start and end states, but also that captures the transition mechanisms. It is this last
point that is the hardest to achieve, and that makes the difference between a CV and an
order parameter. Let us name the collective variable s(x), we define ΩA as s ∈ [s0A, s

1
A]

and ΩB as s ∈ [s0B, s
1
B], the reactants and products spaces. In this framework, we can

introduce the marginalized probability density:

p(s) =

∫
P (x)δ(s− s(x))dx (1.48)

and equation 1.36 becomes:

pA,B =

∫ s1
A/B

s0
A/B

p(s)ds (1.49)

We also define the marginalized free energy, also called free energy profile or surface:

F (s) = − 1

β
log p(s) (1.50)

1.3.2 Thermodynamics from free energy profiles:

The last step is to make the link between our microscopic calculations and the macroscopic
quantities experimentally measured. Using the free energy profiles, important thermody-
namic quantities may be defined to compare with experiments. First, in experiments, the
equilibrium constant of a reaction, K, is often measured. For a liquid phase reactions
such as:

aA + bB −−⇀↽−− cC + dD (1.51)

The equilibrium constant is defined as:

K =
[C]c[D]d

[A]a[B]b
(1.52)

where the square brackets indicate the concentration of the species. From this definition,
it is natural that if K < 1, the reaction is not thermodynamically favored, while if K > 1
it is. These macroscopic thermodynamics considerations can be linked to our microscopic
free energy calculations via the following relation:

∆F 0 = −kBT lnK (1.53)

This allows to make the link between simulations and experiments and compute the
relative stability of the reactants and the products. It is however more difficult to compute
the kinetic rates using molecular dynamics simulations, and it will be discussed in detail in
chapter 5. One simple qualitative way to compare the kinetics of competitive mechanisms
is to compute the activation free energy. Indeed, according to transition state theory
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(TST) [90], the kinetic rate is proportional to the exponential of the opposite of the
activation energy. In other words, the higher the activation free energy, the less kinetically
favorable the transition. As every mechanism is a competition between kinetics and
thermodynamics, it is important to discuss both aspects.

1.3.3 Application to a Lennard-Jones system

Now that all the theoretical framework has been put into place, we can illustrate all the
concepts for a very simple system, before going into more complex phenomena such as
AIMD study of chemical reactions. To do so, we take a Lennard-Jones dimer solvated in
a Lennard-Jones solvent as mentioned in the introduction of this section.

We want to know the free energy difference between the associated state and the disso-
ciated state. To do so, we used the molecular dynamics package LAMMPS that was also
used in this thesis. For this simulation, the kBT was set to the strength of the interaction
between the two atoms of the dimer. The system is represented in figure 1.1, with the
associated state where the atoms of the dimer are linked and the dissociated state where
the atoms of the dimer are separated by at least one solvent atom.

Figure 1.1: Toy model used in this section, the box contains 100 solvent atoms (pink) and
two interacting atoms from the dimer represented in blue. We are looking at the time
evolution of rdimer, the distance between the two atoms of the dimer to characterize the
associated and dissociated forms.

One can be interested in the mean pressure of the system or other physical observable,
but since our final goal is to be able to study chemical reactions and the stability of a
state, we will here be interested in the free energy. As indicated in figure 1.1 we will use
as CV the distance between the two atoms of the dimer, get the probability histograms
and build the free energy. To assess the accuracy of the free energy profile (FEP), the
second half of the simulation is taken, cut into two parts and the probability histograms
are computed on these two parts. If the free energies computed within these two parts
are within kBT we can safely say that convergence is achieved and keep the free energy.
The mean of the two FEP will be the observable, while the difference between the two is

Timothée Devergne 41 PhD thesis



Sorbonne Université IMPMC

Figure 1.2: Free energy obtained for the dissociation process of a simple Lennard-Jones
system, the two last quarters of the simulation are taken to compute to assess the uncer-
tainty (in this case, around 0.5kBT )

the uncertainty.

The results can be seen in figure 1.2. We can draw several conclusions from this
plot: first, three states can be identified: the bounded associated state, in the vicinity
of rdimer = 0.5, but this state is a very short-lived metastable state, since the barrier to
leave this state is of the same order as the thermally induced fluctuations. Then, there
is a plateau around rdimer = 1.5 which corresponds to states where the dimer atoms are
separated by one solvent atom, and finally, there is the completely free state after.

However, this is in the case where the interactions between the dimer atoms is compa-
rable to the thermal energy, therefore the thermal agitation gives enough energy to cross
the activation barrier. Let us see what happens when we increase the interaction energy
but keep the temperature and the simulation time unchanged.

1.3.4 The case of rare events

In figure 1.3 we changed the strength of the interaction between the atoms of the dimer
(ϵdimer) while keeping all the other parameters of the system unchanged (mainly the
temperature and the simulation time). Qualitatively, we observe that the stronger the in-
teraction is, the more stable the associated state is. Furthermore, as expected, the barrier
between the associated state and the dissociated state also increases. From the conver-
gence analysis that we can lead by looking at the last two quarters of the simulations, we
conclude that the free energy of this dissociation process is well sampled until ϵdimer = 10,
then, the fluctuations in the simulation where ϵdimer = 20 (10kBT ) between the two last
quarters of the simulation are too high to conclude on the barrier height. This gets even
worse when increasing ϵdimer to 40 Lennard-Jones units (20kBT ).

These results can be put in the framework of chemical reactions. Indeed, the simula-
tion time is limited, and no ergodic simulation can be run for barriers higher than a few
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Figure 1.3: Evolution of the free energy profile of a simple Lennard-Jones (LJ) dimer
in a solvent. The interaction strength of the dimer is changed from 2LJ units to 40 LJ
units, while KBT the thermal energy was set to 2LJ units. The simulation time was kept
unchanged

kBT (see figure 5 in the introduction). For example, proton exchanges have a barrier of
around 20kBT at room temperature, and covalent bond breakings have even higher bar-
riers. Therefore, in this framework only the equilibrium basins can be studied, depending
on the initial configuration, but there is almost no chance that the system crosses the
barrier, and even so, we need many transitions to have correct probability histograms, as
shown with the case of figure 1.3 where ϵdimer = 20, where some transitions are observed
but not enough to get correct convergence.

A good sampling of the transition state (TS) region, which is the region near the top
of the barrier is needed to understand the whole complexity of the mechanism and its
kinetics. This is however the most difficult task due to the short-lived nature of the TS:
if a simulation is started around the TS it will either end up, in the reactants basin or
in the products basin. We will get back to this definition in chapter 5. To overcome
this simulation time bottleneck, enhanced sampling techniques were devised to force the
system to cross the barrier or to stay in the vicinity of a defined state by using biasing
potentials [61]. We will detail the main ones used in this thesis in the next subsections.
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1.3.5 Metadynamics

To overcome this limitation, several methods have been devised. One of them is metady-
namics [2]. It was initially proposed by Alessandro Laio and Michele Parrinello and has
been improved by several other additional tricks [5, 91] during the past 20 years.

To illustrate the working principle of this method, I like the example taken by Alessan-
dro Laio and Francesco Gervasio in ref [3]. Classical unbiased MD can be seen as a walker
falling into an empty pool during the night and exploring the bottom of it. The probabil-
ity for the walker to go out of the pool is almost zero because the walls are too steep, so
he will only explore the deepest point of the pool and its vicinity without exploring parts
that are above. Now, if one gives the walker an infinite amount of sand, he will be able
to deposit a small heap of sand at his current position. Then, little by little, the pool will
start to fill in and at some point the walker will be able to escape the pool. This is the
basic principle of metadynamics: a MD simulation is performed, and every td MD steps,
a biasing hill is added to the potential energy surface of the form:

VB(t, s) = ω
n∑

k=1

exp

(
−(s− s(ktd))

2

2σ2
s

)
(1.54)

The free parameters of metadynamics are td, ω the height of the biasing potentials
and σs the width of the hills. They are often chosen by looking at the variations of the
CV in the basins.

If the metadynamics simulation is run for a long enough time, the biasing potential
should compensate the form of the underlying free energy surface (FES) and hence, by
keeping a history of the added Gaussians, at the end of the simulation one could compute
the FES. It is also a great mean to obtain a first guess of the transition mechanism be-
tween the reactants and products. This is mostly how metadynamics is used in this thesis.

Nevertheless, we will present a small result on the Lennard-Jones dimer to conclude
this example of the toy model. We performed a metadynamics simulation on the rdimer

coordinate, and collected the final free energy profile. Once the simulation is finished,
the free energy profile is obtained by summing all the biases and taking the opposite.
The results are presented in figure 1.4. At the end of the simulation, the system should
evolve in a flat free energy landscape, which should result in transitions occurring instan-
taneously. This is very different from the start of the simulation, where no transition can
happen. This can be seen on figure 1.4 (left) where at the start of the simulation the
system cannot cross the barrier and stays in the equilibrium well, then by progressively
adding the bias potential, the system can escape and recross the barrier several times to
obtain a converged free energy profile figure 1.4 (right).

Another way of forcing the transition is by increasing the temperature, but this would
also impact the mechanism of transition and also maybe destroy the useful information and
the molecules. Because metadynamics is strongly dependent on the CV, the simulation
might not evolve in the right direction. This is why, in this thesis, it was only used
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Figure 1.4: Metadynamics simulation of a Lennard-Jones dimer with interaction force of
40 LJ units, between the two particles of the dimer. Left, time behavior of the collective
variable rdimer during the simulation. Right: the resulting free energy along the rdimer

collective variable.

to obtain a first transition between the reactants and the products. To sample the free
energy of the transition mechanism, we use Umbrella Sampling (US) [4]

1.3.6 Umbrella sampling

Once a first transition between the reactants and products is obtained and that we have
first idea of the transition mechanism, we can extensively sample the CV-space to obtain
the free energy surface using US.

When performing metadynamics simulations, the bias potential is progressively added
during the simulation. Therefore, the potential energy surface on which the system evolves
constantly changes. In umbrella sampling, the CV-space is cut into bins that we will call
“windows”. To sample different parts of the CV-space, quadratic potentials are intro-
duced in each window and a single simulation is run. The resulting simulations are then
unbiased using the so-called weighted histogram analysis method (WHAM) that we will
present in the next paragraph.

The quadratic potential on CV s in window j centered on sj is given by:

Vbias,j(s) =
k

2
(s− sj)

2 (1.55)

The key is to choose well the spring constant so that there is enough overlap between
adjacent windows. The summary of the two enhanced sampling simulations presented in
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this chapter is reported in figure 1.5. The figures are adapted from the thesis of Sara
Laporte [58].

Figure 1.5: Summary of the two enhanced sampling methods presented in this chapter.
Left: metadynamics, where a bias potential is progressively added in the potential energy
surface making it a time dependent biasing method. Right: Umbrella sampling where
several simulations are performed all along the chemical space under a quadratic bias
potential. Figures are adapted from ref [58]

Unbiasing simulations with the weighted histogram analysis method

Once all the US simulations are performed, we get in each window the histograms of
the collective variable under the biased potential, which is different for every window.
Therefore, we need to put all the histograms on the same level, i.e., we need to unbias
the biased simulations. To do so, we use WHAM that is based on the WHAM equations
that can be solved self-consistently just as the Hartree Fock equations or the Kohn-Sham
equations. There exist many ways of deriving the WHAM equations [92, 93]: for example,
one can derive these equations by minimizing the variance between all the windows of the
same bin of the histogram [92]. But, since this thesis is oriented towards machine learn-
ing, we will adopt here a maximum-likelihood based approach that is akin to machine
learning methods. We will sketch the basic principles of this proof based on likelihood
and Bayesian approaches [94, 93, 95].

Let us suppose that N simulations are performed under the biasing potential given in
equation 1.55. From each simulation j, we get a time series (ri,j)i∈[1,Nj ] of positions of the
system that can then be projected onto the collective variable space: (si,j)i∈[1,Nj ], where
Nj is the number of samples in simulation j. Each simulation can then be binned into
M histograms: nj,l centered in sl representing the number of counts in bin l. Finally, the
normalizing condition is:

M∑
l=1

nj,l = Nj (1.56)

From this data, we want to establish the true underlying probability pl of having the CV
in bin l. Given pl, we can express in each biased simulation j, the probability of the
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collective variable to be in bin l, pj,l:

pj,l = fjcj,lpl (1.57)

Where cj,l is given by the biasing potential at the center of the bin:

cj,l = exp
(
−βk(sl − sj)

2
)

(1.58)

and fj is a prefactor ensuring normalization for simulation j such that:

fj =
1∑M

l=1 cj,lpl
(1.59)

Given the probabilities (pj,l) the likelihood of observing (nj,l) in the respective bins is
given by the multinomial law [95]:

Lj(nj,1, . . . , nj,M |pj,1 . . . pj,M) =
Nj!∏M

l=1(nj,l)!

M∏
l=1

(pi,l)
ni,l (1.60)

And the total likelihood for the N US simulations to have collective variable in bin l is
given by:

L((nj,l)j∈[1,N ]|p1 . . . pM) =
N∏
j=1

Lj(nj,1, . . . , nj,M |pj,1 . . . pj,M) (1.61)

Now that we have the likelihood of observing our data given the probabilities pl, we want
to find the (pl) that are most likely given the observations that we make, we will have
a maximum likelihood approach in a Bayesian context. To do so, we use Bayes theorem
that allows to reverse probabilities:

L(p1 . . . pM |(nj,l)(j∈[1,N ])) =
L((nj,l)j∈[1,N ]|p1 . . . pM)P (p1 . . . pl)

P ((nj,l)(j∈[1,N ])
(1.62)

We will make the assumption that the prior distribution P (p1 . . . pl) is uniform, and
therefore, when differentiating with respect to pl this term will disappear, the term
P ((nj,l)(j∈[1,N ]) does not depend on pl and therefore we can also discard it. Now, since
differentiating a logarithm is easier than differentiating a product, we take the logarithm
of equation 1.62 and combine it with equations 1.61, 1.60 and 1.57 to get the quantity to
minimize:

B(p1, . . . , pM) =
N∑
j=1

Nj log fj +
N∑
j=1

M∑
l=1

nj,lpl + C (1.63)

where C is a constant that contains all the terms that don’t explicitly depend on pl, we
can differentiate this equation and get the final WHAM equation:

pl =

∑N
j=1 nj,l∑N

j=1Njcj,lfj
(1.64)

Together with equation 1.59, equation 1.64 forms the WHAM equations, they are cou-
pled equations that need to be solved self-consistently as implemented in the Grossfield
code [96] that we used in this thesis. One can use the Bayesian approach to assess the
uncertainty of the WHAM procedure.
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1.4 The sampling protocol: CV definition and appli-

cations to origins of life research

1.4.1 Introduction

Figure 1.6: Strecker mechanism for the synthesis of glycine

Proteins are a key to all living organisms, they are constituted of a chain of amino-
acids. There exists 22 different amino acids, the simplest of them is glycine. In prebiotic
chemistry, the pathway often invoked for the synthesis of glycine is the Strecker [39]
pathway. It is a mechanism from hydrogen cyanide, formaldehyde, and ammonia in
water. Even though it is well known and cited, some steps of this pathway were not well-
characterized, experimentally. This is why it was studied by a previous PhD student of the
group: Theo Magrino [7]. Thanks to ab initio calculations, even short-lived intermediates
can be identified, and the transition mechanisms can be observed. During his thesis,
Theo Magrino set into place a whole protocol to sample chemical reactions in solution.
In this section, we will present this protocol that was partly used in this thesis. The final
mechanism is presented in figure 1.6.
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1.4.2 The protocol

We will present the protocol devised in the team in order to have an agnostic exploration
of the transition mechanism. With this protocol, only the reactants and the products
need to be defined before performing the exploratory phase and then the sampling phase.

Path collective variables

First, as explained before, the exploration of a reaction mechanism and its sampling anal-
ysis relies on a CV. For the Lennard-Jones dimer, we used rdimer as a CV because we
knew we were studying a dissociation process. Nonetheless, here we are looking for a CV
which does not rely on the prior knowledge of the transition mechanism and which can
grasp the whole complexity of the transition mechanism.

We decided to use path collective variables (PCV) [5], they allow locating the de-
sired configuration along a given chemical path given by the reference configurations
(Xα)α∈[1,Nconf ]. This is done by computing the distance between the current configuration
and the reference configurations in a metric space of dimension much lower than 3N .
They are formally defined in equation 1.65,

s(t) =

(∑N
α=1 α exp(−λD[x(t), Xα])∑N
α=1 exp(−λD[x(t), Xα])

)
z(t) =

−1
λ

log
∑N

α=1 exp(−λD[x(t), Xα])

. (1.65)

The variable s measures the progress along the path given by the reference configura-
tions, Xα while z characterizes the deviation at time t from these reference configurations.
The key idea of these PCV is the first dimensionality reduction performed to go from the
3N dimensional space of atomic positions, to a lower dimensional space to compute the
PCV.

We used a metric that allows to grasp the solvation effects of the reactive atoms [97],
which is based on the computation of coordination numbers:

Ciσ =
∑
j∈σ

1−
[
rij
rασ0

]m
1−

[
rij
rασ0

]n (1.66)

This function computes how many atoms of atom type σ are within a radius rασ0 of
atom i with atom type α. This function is computed for every reactive atom with respect
to every atom type, resulting in a Nreac × Ntypes coordination table, where Nreac is the
number of reactive atoms and Ntypes the number of different species in the system. If the
parameters are well-chosen, this can account for covalent bonding, hydrogen bonding and
long range interactions. The distance D is then computed using the following equation:

D(X1, X2) =
∑
i

∑
σ

(Ciσ(X1)− Ciσ(X2))
2 (1.67)
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Figure 1.7: Representation of the PCV with the coordination table as a metric, adapted
from [97]

The summary of the use of coordination table as a metric space is found on figure 1.7 and
adapted from reference [97]. The key is now to find the given reference configurations.

Reference configurations

First, when we want to study a chemical transformation, the reactants and products are
defined, simulation boxes are prepared in each state. Then, the mean of the coordination
of the reactive molecules are computed and put as reference states.

Therefore, now PCV s and z can be built with these two reference configurations,
they will be denoted s2 and z2. A metadynamics simulation is then run on (s2, z2) to
obtain a first transition trajectory between the reactants and products. From this first
trajectory, we want to characterize the TS and hence find the top of the barrier. To
do so, we select configurations that seem to us close to the TS and launch a dozen
of Hamiltonian trajectories from these configurations with initial velocities chosen from
Boltzmann distribution. If between 30% and 70% of the trajectories reach the reactants
basins and the other part the products basins, the configuration is categorized as a TS.
This procedure is called “committor analysis” because the committor is a quantity defined
as the probability of a configuration to fall in the products basin.

After performing committor analysis, the trajectories of this analysis are taken and 10
configurations are chosen among the frames of these trajectories to build a more accurate
set of PCV. The reference configurations are chosen according to a Nudged elastic band
Monte-Carlo procedure so that in the end, the chosen reference frames are equidistant
in the latent space of the coordination table. The summary of the protocol to sample a
reaction mechanism is given in figure 1.8.
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Definition of reactants
A and products B

I
Prepare initial

solvated structures.

II
Equilibration
of A and B.

III
Define low resolution draw
CVs s2, z2 with two refer-

ence structures X1=A, X2=B.

IV

Validate transition state by
committor analysis, and obtain
unbiased reactive trajectories.

VI
Observe transition via unsu-
pervised explorative meta-

dynamics between A and B.

V

Define high resolution path
CVs sN , zN with N frames,
Rα (α ∈ [1, N ]), X2 for re-
actants XN−1 for products

VII

Perform Umbrella Sampling.
VIII Compute free energy pro-

file from Umbrella Sam-
pling data with WHAM.

IX

Figure 1.8: Schematic algorithm depicting the simulation protocol. Grey blocks (I, II, IV,
VII) indicate pre- / post-processing steps where no simulations are needed. Red blocks
(III, V, VI, VIII, IX) indicate agnostic explorative steps and expansive sampling steps
performed using ab initio molecular dynamics. Adapted from [7]

Figure 1.9: Free energy diagram of the whole Strecker synthesis of glycine

1.4.3 Results

The results of the simulations performed by Théo Magrino can be found in figure 1.9.
From a box with water, hydrogen cyanide, ammonia and formaldehyde he characterized
all the intermediates to go to glycine with their relative free energies using the protocol
presented in the previous section. The fact that the amino-nitrile is very stable explains
the observations of meteorites, but also the fact that this intermediate is observed, and no
glycine is observed in the interstellar medium. This dataset generated by Theo Magrino
was used in this thesis as a base dataset for machine learning purposes.

1.5 Partial conclusion

Throughout this chapter, we thoroughly explained all the methods used to study chemical
reactions in solution using ab initio electronic structure methods to get the energies and
forces. We then presented how we can simulate the dynamics of these reactions using
molecular dynamics techniques and the energies and forces computed using electronic
structure methods. One of the bottleneck however is that the covalent bonds are too strong
to be broken during one MD simulation, therefore, one has to use enhanced sampling
methods such as metadynamics or umbrella sampling to force the system to leave the
equilibrium basins. We showed that these methods can be used to sample complex reaction
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networks, such as the 7-step prebiotic Strecker-cyanohydrin synthesis of glycine. On
the other hand, one bottleneck of such studies is the computational time. Indeed, the
complexity of a DFT calculation grows with the cube of the number of valence electrons,
thus, only small systems containing at most a thousand of atoms can be studied for at
most 1ns. To overcome this problem, machine learning methods have been devised where
the energies and the forces are learned so that the electronic structure calculations are
replaced by a machine learning model. In the next chapter, we will present the basic
principles of machine learning and how they can be used in atomistic simulations.
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Chapter 2

Machine learning and its application
to ab initio molecular dynamics

In this chapter, we will present the basic principles of machine learning. Then we will
show how machine learning techniques can be applied to atomistic simulations.

2.1 Supervised machine learning

Machine learning (ML) and artificial intelligence are part of our everyday life. Even
though, machine learning is included in artificial intelligence, we will here only talk about
machine learning. There exists two types of machine learning:

• Supervised learning: we have a data set of features X = (x1, . . .xN), xi ∈ A with
their associated features Y = (y1, . . .yN), yi ∈ B and we want to learn the relation
between xi and yi, i.e., we want to find a function f such that f(xi) ≈ yi. The
difficulty of this task relies on finding the appropriate functional form for f in order
for it to approximate the best the data.

• Unsupervised learning: we have a data set of features X = (x1, . . .xN), xi ∈ B and
we try to find underlying properties of the dataset, for example, can we find clusters
in these data?

In this thesis we will only be interested in the first kind of approach, the supervised
learning one. To summarize this approach I like the point of view of a member of the group,
Arthur France-Lanord: in physics we have underlying models, for example Maxwell’s
equations in electromagnetism, we have an input that is the environment and the initial
conditions, and we put them in Maxwell’s equations to have the electromagnetic behavior
of the system. When doing machine learning, we have the input (environment and initial
conditions), the output (the electromagnetic field), and we try to find the underlying rules
that link the output to the input.

2.1.1 Basic principles of machine learning

In this section, we will present the basic ideas behind supervised ML through a simple
example of a noisy function that we want to fit. Let us assume that our features are
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Figure 2.1: Example of a fitting situation where a function is sampled with a stochastic
noise

deterministic and that only the labels are stochastic, i.e., the labels can be separated as
a sum of a deterministic function of x: g and a stochastic part ξ:

yi = g(xi) + ξ (2.1)

with ξ some random variable on which we don’t have to make any assumption for now.
The typical situation is illustrated in figure 2.1. As explained before, our goal is to find
the best function to approximate Y , the theoretical limit for this is naturally g, however,
in practice, g is not known. We will use a maximum likelihood approach to know how we
can infer these data. As done in the derivation of the WHAM equations, the aim is to
derive a likelihood of the data given a model, and then, using Bayes theorem, to compute
the probability that the model is likely given the data. The model we want to optimize
is parametrized by a set of weights w, the probability of having xi given the model is:

p(xi,yi|w) =

∫
p(xi,yi, ξ|w)dξ =

∫
p(xi,yi|ξ,w)p(ξ)dξ (2.2)

Now, given ξ and w, it follows:

p(xi,yi|ξ,w) = δ(ξ − (yi − fw(xi))) (2.3)

Which yields to:
p(xi,yi|w) = Eξ

[
δ(ξ − (yi − fw(xi)))

]
(2.4)

To process further we need to make assumptions on the distribution of ξ, as there are
many yi it seems natural to make the following Gaussian ansatz:

p(ξ) =
1√
2πσ2

exp

(
− ξ2

2σ2

)
(2.5)
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Hence:

p(xi,yi|w) =
1√
2πσ2

exp

(
−(yi − fw(xi))

2

2σ2

)
(2.6)

Which allows us to write the likelihood of the dataset:

L(X,Y|w) =
N∏
i=1

1√
2πσ2

exp

(
−(yi − fw(xi))

2

2σ2

)
(2.7)

Using Bayes theorem, the posterior distribution of the parameters can be obtained:

p(w|X,Y) ∝ L(X,Y|w)p(w) (2.8)

with p(w) the prior distribution of the parameters. Now we will start with a prior distri-
bution that is uniform. We want to find ŵ such that the previous probability is minimized
with respect to w. As we did for the WHAM derivation, we take the logarithm to simplify
the derivations. Therefore, the problem that needs to be solved is:

ŵ = argmin
w

 N∑
i=1

(
yi − fw(xi)

)2 = argmin
w
L(w|X,Y) (2.9)

We find here a key result, that links the Bayesian analysis to a standard minimization
problem. Indeed, we could have introduced ad-hoc the empirical risk that we wanted to
minimize, because here it is the same as minimizing the square distance between the data
and the model. The function that needs to be minimized, L(w|X,Y), is called the loss
function. In the next section, we will see the prototypical examples of machine learning
applied to linear models.

2.1.2 Properly training a model: example with polynomials

Up until now, we have been very general, our aim for this section is to show the basic
principles of machine learning for a concrete case of regression on a polynomial function
that has been sampled with some noise, see figure 2.1.

The situation is the following: we made a series of measurements for values of x
between -1 and 1 (x1, . . . , xN) of a noisy signal y(x) (y1, . . . , yN), and we want to find a
law for the behavior of y as a function of x. The first thing we have to do is to specify
the functional form of fw. For now, we will consider a polynomial ansatz:

fw(xi) =
M∑
k=0

wkx
k
i = wxi (2.10)

with:
xi = (1, xi, x

2
i , x

3
i , . . . , x

M
i ) (2.11)

The minimization problem of equation 2.9 can then be written:

ŵ = argmin
w

(Y −Xw)2 (2.12)
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Figure 2.2: Examples of the fitted polynomial (blue lines) with respect to the measured
signal (black dots)

with: Y =


y1
y2
...
yN

 and X =


1 x1 x2

1 . . . xM
1

1 x2 x2
2 . . . xM

2
...

...
...

...
...

1 xN x2
N . . . xM

N

 X is called the design matrix.

Equation 2.12 can be solved very easily by differentiating it, the solution is:

ŵ = (XTX)−1XTY (2.13)

In ML, parameters that impact the efficiency of the model that are not parameters
of the model itself such as the weights and that can be tuned are called “hyperparame-
ters”. They are nonetheless directly impacting the accuracy but also the complexity of
the model. For example, in this very simple case, there is only one hyperparameter that
is the degree of the polynomial function that we want to use, the higher the degree, the
more complex our model will be. Let us see what happens when we increase it.

The results are shown in figure 2.2, we start by applying equation 2.13 with a poly-
nomial of degree 1, still, the number of weights of the model is too low to grasp the
complexity of the function that we want to fit. By increasing the degree of the polyno-
mial, and thus the complexity of the model, we manage to reproduce the behavior of the
measured data (degrees 3 and 5). On the other hand, if the degree of the polynomial is
too high compared to the complexity of the measured data, the model is complex enough
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Figure 2.3: Testing and training set error as a function of the degree of the polynomial
fitted on the training set

to adjust to every measured point and will therefore lead to what is called overfitting:
the model is very good when predicting points that are included in the design matrix and
that were used to perform the regression, but it will perform very poorly when predicting
points outside the design matrix.

To have a more quantitative analysis of this problem in ML, the set of measured data
can be split into two subsets: the training set which will be used to build the model, here
in the case of the polynomial regression, only the points in the training set will be used to
solve equation 2.12. The second set will be used as a test-set to assess the generalization
error of the model: can the model we have trained be good at predicting data it has not
seen.

This is illustrated in figure 2.3 where the training error only decreases when the com-
plexity of the model increases, while the testing error increases when the model becomes
too complex for the data. In a practical case, one has to find the point where the testing
set error stops decreasing and starts increasing, this is the optimal value for the training
of the model. This is done for example, by using cross validation.

By introducing a penalty term on the weights of the model in the loss function dur-
ing the training, one can avoid overfitting. This is done in ridge regression, where the
optimization problem is written:

L(w|X,Y) =
N∑
i=1

(
yi − fw(xi)

)2
+ λ

M∑
k=1

w2
k (2.14)

This minimization process can actually be linked to the Bayesian approach we had
previously. Indeed, following on equation 2.8, we chose a uniform prior distribution of
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weights, but if instead, a Gaussian distribution is chosen, one gets the loss function of
equation 2.14. Now, if we choose a Laplace distribution for the prior distribution of the
weights (p(w) ∝ e−|w|), we get the following loss function:

L(w|X,Y) =
N∑
i=1

(
yi − fw(xi)

)2
+ λ

M∑
k=1

|wk| (2.15)

This last optimization problem is called the LASSO problem. When taking this problem
from the prior probability point of view, the Laplace distribution is narrower than the
Gaussian distribution. This is translated by the fact that he LASSO loss helps to identify
useful degrees of freedom, for example by setting the useless weights to zero. All these
processes are called regularization processes.

2.1.3 Gradient descent algorithms:

In the previous section, we had a closed form solution for our predictors. Moreover, the
computational cost of inverting a matrix could be quite high if the dataset is high di-
mensional in features and in the number of data. To solve the optimization problem,
gradient-based techniques have been put into place, where the solution is found by iter-
atively changing the weights towards the low gradient region. In this subsection, we will
draw the basic principles of gradient descent methods.

We want to find a predictor fw that minimizes a loss function given a dataset (X,Y)
L(w|X,Y). To do so, we introduce the following sequence: starting with random initial
weights w(0), the following equation is iterated:

w(n+1) = w(n) − ηn∇wL(w(n)|X,Y) (2.16)

Where ηn is called the learning rate. With this algorithm the weights are oriented towards
the negative gradient and therefore should reach at some point a local minimum of the
loss function. This nonetheless depends on the choice of the learning rate: if it is chosen
too small, convergence will be slow. On the other hand, if it is too high, the algorithm
will not be stable, and will only oscillate.

Often, the learning rate is varying during the gradient descent (hence the dependence
in n), and decreases according to a power law or an exponential law. The reason for this
is that often when performing optimization tasks, we start far from the global minimum
of the function and therefore, we don’t risk missing the minimum by going down very
fast on the loss landscape. But as the algorithm progresses, we are getting closer to the
minimum, this is why the learning rate decreases with n.

However, often in ML we are dealing with very complex landscapes, with many local
minima, therefore, the gradient descent algorithm might lead to some local minimum and
stay stuck in it. To escape a local minimum in physics, one often introduces stochastic
thermal fluctuations. Moreover, the loss function is a sum over the whole dataset, which
makes the evaluation of its gradient computationally expensive. To tackle these problems,
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stochastic gradient descent algorithms have been put into place [98].

First, the dataset is randomly split into subsets that are called minibatches, the size
of minibatches is called the batch size. At each iteration of the algorithm, the gradient
will be computed only on one of the minibatches which is chosen randomly. This method
adds stochasticity in the optimization process, which lowers the chances of getting stuck
in a local minimum. It is also thought to bring natural regularization and hence prevents
from overfitting [99, 100].

Nowadays, algorithms have been devised to keep track of the landscape on which they
evolve by using momentum: if the landscape is flat and smooth, one will want to make
big steps, while if it is steep and irregular, one will want to go slowly on the descent. For
example, the ADAM algorithm [101], which is the one we will be using and is reported
in algorithm 1. It uses first and second momenta to choose the orientation of the descent
and to have an adaptive learning rate. In algorithm 1, βn

i denotes βi to the power n.

Algorithm 1 Adam optimizer for stochastic optimization of the loss function L
Require: α: Step size
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: L(w) stochastic loss function to optimize with respect to w
Require: w0: Initial weight vector
m0 ← 0 Initialize first moment
v0 ← 0 Initialize second moment
n← 0
while w(n) not converged do

n← n+ 1
gn ← ∇wL(w(n−1))
mn ← β1mn−1 + (1− β1)gn

vn ← β2vn−1 + (1− β2)g
2
n

m̂n ←mn/(1− βn
1 )

v̂n ← vn/(1− βn
2 )

w(n) ← w(n−1) − αm̂n/(
√
v̂n + ϵ)

end while
return w(n)

The first moment mn and the second moment (vn) are computed in this algorithm. The
second moment is used to set an effective step size in the stochastic gradient descent
algorithm. We can see this in terms of variance, let us write σn

2 = vn − (mn)
2. The

difference between the weight j at time n− 1 and at time n, ∆wj can be written:

∆wj = −α
mj

n√
σj
n +mj

n + ϵ
(2.17)

Therefore, in case of small variance, ∆wj ≈ −α while in the case of large variances :
∆wj ≈ −αmn/σn. The learning rate is thus adaptive to the signal/noise ratio. This is
what makes ADAM so powerful and so widely used.
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Figure 2.4: Panel a) the schematic representation of a neuron, and in panel b) its math-
ematical description by McCullogh and Pitts

2.1.4 Going non-linear with neural networks

Up until now, we presented the basic principles of ML using a very general formulation
for the predictor (fw), or a very precise one in the case of the polynomial regression of
the previous section. In this subsection, we will introduce a class of function that is often
used in ML called neural networks.(NN) They allow having a very flexible predictor and
are therefore suited for a wide range of problems.

Neural networks are the peak of the connectionism approach: from a set of inputs
and outputs, we try to guess the underlying rules between them. With a neural network,
this is done using a highly non-linear function. This gives a huge flexibility to the model.
The first neural networks were devised by McCulloch and Pitts in 1943 [102] and were
initially made to model a human neural network. The representation of a neuron and
its mathematical modelling is shown in figure 2.4. The idea is that a biological neuron
receives different inputs as an electrical signal, and depending on the values of the inputs
gives 0 or 1 (signal or no signal) as an output. The model proposed is shown in figure
2.4, panel b), inputs are now numbers, multiplied by weights; these products are summed
and taken into what is called an activation function. Here the activation function is a
step function, but in ML many functions can be used, such as the sigmoid, the hyperbolic
tangent. These functions are a lot like the step function, but they have the advantage of
being differentiable at every point. A single model neuron is called a perceptron and was
first constructed by Rosenblatt in 1958 as a tool to identify images [103]. On his machine,
inputs were the electric signals of photocells connected to potentiometers that act as the
weights. The weights were tuned using electric motors.

The mathematical form of a perceptron is summarized by:

fw(x) = σ

 M∑
i=1

wixi + w0

 (2.18)

Where σ is the activation function. Rosenblatt’s perceptron made a lot of noise in the
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Figure 2.5: Schematic representation of the working principle of deep neural network,
figure taken from a talk of Jean-Luc Parouty in [106]

community when it was created, because it was said to lead to “talking machines”, but
it was later shown that such a machine could only discriminate classes of pictures that
were linearly separated [104]. This led to what is called the “first winter of artificial
intelligence”, but later on in 1986, a more complex form was proposed by a group of re-
searchers in order to have more complexity in the model [105]. This is done by connecting
perceptrons in layers, as presented in figure 2.5.

We can therefore have the following relation between layer l and layer l − 1, if layer
l − 1 has n neurons and layer l has m neurons::

x
(l)
i = σ

 n∑
j=1

w
(l)
ij x

(l−1)
j + w

(l)
i0

 = σ
(
z
(l)
i

)
(2.19)

the weights wij can be put into them×n weight matrix of layer lW(l). The weights of this
matrix need to be optimized. Such neural network is called a feed-forward neural network
because the information is passed from a layer to another directly through neurons. We
now want to optimize the matrix of weights according to a loss function L. To do so, we
want to use a stochastic gradient descent algorithm, as presented in the previous section.
The gradient of the loss function is therefore needed, to compute it the backpropagation
[105] method is used, since a neural network is just a composition of many functions. We
want to evaluate :

∂L
w

(l)
ij

(2.20)

To do so, we will use the Leibniz chain rule of partial derivatives. After some algebra one
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arrives to the following relation for the previous derivative:

∂L
w

(l)
ij

=
∂L
∂z

(l)
i

x
(l−1)
j = ∆l

ix
(l−1)
j (2.21)

We now need to assess ∆l
i, this once again can be done using the chain rule:

∆l
i =

∂L
∂z

(l)
i

=
m∑
k=1

∂L
∂z

(l+1)
i

dz
(l+1)
k

dz
(l)
i

=
n∑

k=1

∆l+1
k wkiσ

′(z
(l)
i ) (2.22)

We thus have equations for the gradient of each weight of layer l as a function of the
gradient of layer l+1. These equations can thus be “backpropagated” to the first layer to
get the gradients of the loss with respect to each weight. A stochastic gradient descent
algorithm can then be used at the condition that we have an initial condition for the
backpropagation. This is easily done by setting the last ∆L

j as :

∆L
j =

∂L
∂z

(L)
i

(2.23)

Which is easily computed given that the loss function is analytical.

2.1.5 The universal approximation theorem:

Neural networks are so widely used for a reason: they are thought to be universal approx-
imators [107, 108]. Any “reasonable” function f can be approximated with an arbitrary
accuracy by a neural network with some number of hidden layers, some number of neurons
and some activation function σ. These theorems do not tell us the structure of the neural
network as a function of the problem, nor how to optimize the weights. This theorem has
a very simple proof. Let us assume the function f we want to approximate can be written
as a primitive:

f(x) =

∫ x

−∞
f ′(y)dy (2.24)

This can be written using the Heaviside function, and using approximate integration:

f(x) =

∫
R
θ(x− y)f ′(y)dy ≈

J∑
i=−J

θ(x− i∆x)f ′(i∆x) (2.25)

The Heaviside function can be approximated using a very steep sigmoid function σ:

f(x) ≈
J∑

i=−J

σ(
x

ϵ
− i∆x

ϵ
)f ′(i∆x) (2.26)

Which can then be written:

f(x) ≈
J∑

i=−J

wiσ(aix+ bi) (2.27)
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This is the structure of a single layer neural network. This means that any function can
in theory be approximated to an arbitrary accuracy with a neural network. However, this
theorem must be taken carefully, since it does not give any detail about the structure of
the neural network, the weights, and the extrapolation accuracy.

2.2 Machine learning potentials

Now that we have seen the basic principles of machine learning and how to solve a machine
learning problem, we will show how these methods can be applied to atomistic simulations
and in particular AIMD simulations. Due to the fact that the Schrödinger equation has
to be solved at each time step using DFT and that the force for each atom is needed,
AIMD simulations are thus limited to the study of small systems (up to a thousand atoms
and to the nanosecond).

Empirical force fields are a solution to this problem, but often they rely on a simple
physically motivated functional form. This can lead to wrong results if the force-field is
used for systems where the functional form is not appropriate.

This is why machine learning methods are brought in. The aim is to be able to
predict the energies and the forces of a system, given the atomic positions, without solving
the DFT equations. To do so, a sufficiently large dataset of configurations with their
associated DFT energies and forces must be generated to train a machine learning model.
In the next subsections, we will explain the architectures of such model and the physical
motivations behind them.

2.2.1 Behler and Parrinello neural networks

The first neural networks potential for atomistic simulations were introduced in the 1990s
with a very simple structure, yet they allowed to study realistic systems [109, 110, 111,
112]. But with the simplicity of the structure came also some drawbacks: first the struc-
ture of the neural network is fixed, the number of atoms cannot be changed. Moreover,
the symmetries of the system were not embedded in the structure of the neural networks.
Moreover, if two atoms of the same species are exchanged, the prediction of the NN will
be different while it should stay invariant under permutations of atoms. To overcome
these two problems, Behler and Parrinello in 2007 [9] came up with the simple idea to
divide the total energy of the system as a sum of individual energies. Each individual
energy being computed by a single neural network, i.e., for a system with N atoms:

Etot =
N∑
i=1

ϵi (2.28)

But, this still does not respect permutation invariance. To do so, the individual energies
of the atoms of the same species are computed with neural networks having the same
weights. This also has the effect of reducing the number of weights to optimize. The final
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total energy of the system can thus be written:

Etot =

Nelem∑
i=1

Ni∑
j=1

ϵji (2.29)

Where Nelem is the number of different elements in the system and Ni is the number
of atoms of element i. With this decomposition, a first training on a small system can
be performed, and then more atoms can be added to perform MD simulations with the
neural network potential (NNP). Nonetheless, if the input of the different NN are the
Cartesian coordinates of the atoms the basic symmetries of the system are not respected:
indeed, if a global translation is performed, all the coordinates change and the prediction of
the NN too, but the system is the same. The same goes for global rotations of the system.

It is worth mentioning that although the total energy is divided as a sum of individual
energies, each atomic energy taken separately does not have a physical meaning.

2.2.2 Respecting symmetries with atomic descriptors

Figure 2.6: Schematic representation of a high dimensional neural network potential for a
system of water molecules. The Cartesian coordinates of the system are transformed into
sets of symmetry functions that are then given as input of atomic neural networks. The
outputs of the atomic neural networks are then summed to give the final total energy.

To tackle this problem of symmetries, Behler and Parrinello came up with the general
idea of descriptors. Instead of having the atomic coordinates as input of the NN, symmetry
respecting functions of the system are computed for each atom and then given as input of
the NN. They are therefore descriptors of the atomic environment of each atom. Thus, in
many machine learning frameworks, the descriptors are computed within a cut-off sphere
for every atom. In their seminal work, Behler and Parrinello introduced the “Atom
centered symmetry functions” (ACSF) which are a set of functions based on radial and
angular information to describe the environment of each atom. First, a cut-off function
fc is defined, it is a function of the interatomic distance which decreases smoothly from
one to zero until the cutoff radius value. Then two sets of function are defined: the radial
functions:

Grad
i,µ =

Natom∈Rc∑
j=1

e−η(Rij−Rs)2fc(Rij) (2.30)
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The summation is performed over all the neighboring atoms of the central atom. It
is needed in order to keep the number of symmetry functions constant as an input of the
NN. The η and Rs are a set of hyperparameters that needs to be chosen, there exists
standard techniques to choose them as a function of the atomic species. This set of radial
symmetry functions provide a good description of the radial information. The values of
the sets of (η) and (Rs) can be automatically chosen according to automation procedures
[113]. The second set of symmetry functions is used to encode the angular information
between two atoms in the cutoff radius and the central atom in the following form:

Gang
i,µ = 21−ζ

∑
i,j,k

(1 + λ cos θijk)
ζeR

2
ij+R2

ik+R2
jkfc(Rij)fc(Rik)fc(Rjk) (2.31)

Where θijk is the angle between the connections of the central atom i with neighbors j
and k. As with the radial symmetry functions, the λ and ζ are sets of hyperparameters
that can be chosen automatically. The final schematic representation of a neural network
potential is shown in figure 2.6. Here we presented the historical approach to descrip-
tors, but there exists a whole variety of descriptors that can be used in many situations
[114, 115, 116].

From the definition of descriptors we gave, an analogy can be made with the concept
of collective variables. Indeed, descriptors are just the projection of the environment of
each atom onto a functional space. Moreover, descriptors can be used as a base of a
data-driven CV built on a machine learning model [117].

2.2.3 The training process

As explained, the goal of a NNP is to be able to predict the energies of a system given
the atomic configurations, but as shown in the previous chapter, to perform molecular
dynamics simulations, one needs the forces, which are not directly given by the output of
the NNP. But, since the neural network is a smooth differentiable function as well as the
symmetry functions, the forces can be easily obtained with the chain rule. The force on
the atomic coordinate α:

Fα,s = −
∂Etot

∂α
= −

Natom∑
i=1

∂ϵi
∂α

= −
Natom∑
i=1

Nsym,j∑
µ=1

∂ϵi
∂Giµ

∂Giµ

∂α
(2.32)

As the end goal is to be able to perform molecular dynamics simulations, forces can be
computed on the fly and taken as an objective in the loss function. The loss function to
optimize is defined as follows:

L(w) =
1

Nstruct

Nstruct∑
i=1

(Ei
NN − Ei)

2 +
β

3Natom

3Natom∑
j=1

(F i
jNN − F i

j )
2

 (2.33)

Where Nstruct is the number of structures in the training set, ENN the energy com-
puted by the NN, Ei the reference energy of structure i, Natom the number of atoms n in
the system, FjNN the j-th atomic coordinate of the forces computed by the NN, and F i

j
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Figure 2.7: Example of training a neural network potential with only the energies in the
loss function (left) and by including the forces in the loss function (right). Taken from
Eliane Farhi’s internship.

the reference one. β is a parameter to balance between the energy training and the forces
training.

Using the forces not only allows adding them as an objective in the training, but also
prevents from overfitting. This is shown in figure 2.7 that was obtained during the M1
internship of Elian Farhi that I supervised. The aim was to train a machine learning
potential (MLP) for the study of CO2 under high pressures based on the data of M.
Moog’s thesis [118, 119]. It is clearly shown that in the case where the NNP is trained
with only the energies, there is overfitting, while, when adding the forces in the training
with the same dataset and the same structure, there is no trace of overfitting.

2.3 The example of the deepmd kit

The deepmd-kit [120] is a ready-to-use package for molecular dynamics simulations with
machine learning potentials. The pre-processing of the data, generation of descriptors,
training of the model is embedded in the kit. Then the trained model can be used to
perform molecular dynamics simulations with popular codes such as LAMMPS, Gromacs,
I-PI and so forth. The aim of the deepmd-kit, especially with the smooth edition, is to
provide a tool close to ab initio methods where almost only the atomic coordinates and
the atomic species need to be entered. In this section, we will explain how it works.

2.3.1 Descriptor computation:

First, the environment of each atom i is embedded in a matrix written Ri containing the
vectors rj − ri with rj all the position vectors of the atoms of index j within a cutoff
sphere of radius rc centered on ri. The components of Ri are then transformed into
reduced coordinates R̃i, with the j-th row being: (s(rji), x̂ji, ŷji, êji), where:

x̂ji =
s(rji)xji

rji
(2.34)
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Figure 2.8: Summary of the working principle of the deepmd package, smooth edition.
Adapted from [121]

And the same is done for ŷji and ẑji. s(rji) is a smoothing function defined as follows:

s(rji) =



1

rji
rji < rcs

1

rji

[
1

2
cos

(
π
rji − rcs
rc − rcs

)
+

1

2

]
rcs < rji < rc

0 rji > rc

(2.35)

It allows having components to go smoothly to zero in the same fashion as the cutoff
function of the symmetry functions seen in the previous section. This decrease is controlled
by the “smooth-cutoff” parameter rcs. It can be shown that the product:

Ωi = R̃i(R̃i)T (2.36)

is invariant under rotations and translations, it is however not invariant under permuta-
tions. To make it so, a new matrix is introduced:

Di = (Gi1)T R̃i(R̃i)TGi2 (2.37)

The matrices G are called embedding matrices and are defined as follows:

(Gi)jk = (G(s(rji))k (2.38)

Where G is the local embedding network mapping a single input to M1 outputs (resp
M2). Di is thus a M1 ×M2 matrix that is flattened into a vector to be given as input of
the atomic energy network.
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2.3.2 Training a model with deepmd

The energy and the forces are computed using a neural network with a Behler-Parrinello
structure. The loss function commonly used is the following:

L(w) =
1

|B
∑
l∈B

pϵ|El − Ew
l |2 + pf |Fl − Fw

l |2 (2.39)

It is optimized using the ADAM optimizer presented in the previous section. B is the
batch, El and Fl are the reference energies and forces, while Ew

l and Fw
l are the ones

computed by the neural network. pf and pϵ are prefactors chosen arbitrarily.

Deepmd has shown great results on public dataset and on extending the size of the
studied system to millions of atoms [122]. But new models built on graph neural networks
are starting to outperform it [123, 124]. Deepmd-kit is more and more used to study
realistic systems. We used it throughout this thesis on different typical reactions in
solution. In the next chapters, we will show how we used deepmd to create a suitable
training set to perform umbrella sampling simulations.
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Chapter 3

Development of machine leaning
potentials for chemical reactions in
solution

3.1 Introduction

In this chapter, we present the results published during my PhD on a methodology to
build a training set [16]. In the past few years, a number of machine learning methods and
frameworks have been developed to tackle the problem of obtaining ab initio-level poten-
tial energy surface (PES) at a reasonable computational cost [8, 125, 9, 126, 120, 10, 127].
Although these methods have significant differences, the basic principle is common: using
AIMD trajectories, a model is trained and then used to infer ab initio quality PES, and
thus perform ab initio quality molecular dynamics simulations for a much lesser compu-
tational cost.

This approach can be used to access larger system sizes [122, 13], and/or to perform
simulations longer than the time reachable using traditional AIMD simulations, in order
to observe interesting physical transformations and/or improve statistical sampling [128].

However, two important questions still need to be fully addressed in ML-based molec-
ular dynamics: how to build optimal training sets, and how to critically assess the quality
of machine-learning potentials in chemical reactions, a difficult setting where the system
is led to explore very energetic configurations far from the geometries of the metastable
minima.

An interesting tool in this respect is the ”neural-network committee” method[129]. It
consists in training several NNPs on the same training set but with different random seeds.
In this way, for the same configuration, the NNPs will give different results. The standard
deviation of the predictions of the different members of the committee on some observ-
able is used to assess the reliability of the average prediction. Indeed a good agreement
between the different NNP means the configuration is close-enough to the training set for
the NNP to be accurate, while a higher value means that the prediction cannot be trusted.
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This technique can be used to build a training set using an iterative training [113, 121]
procedure. First, a small set of NNPs is trained with existing AIMD data; then, a MD
simulation is run using one of the NNP of this set. After this step, configurations that
display a standard deviation over the set of NNP on the prediction of some observable
above a certain threshold, are recomputed using single point ab initio calculations and
added to the training set. This is repeated until no more configurations are evaluated as
mis-predicted.

The iterative learning framework has led to thorough studies of systems with ab initio
quality at reduced computational cost[130, 131]. More recently, the committee method
has been also used to quantify the error on an observable computed using NNP-based
molecular dynamics simulations [132], as well as a way to iteratively select configurations
from an AIMD trajectory to build optimal training sets [133]. A recent in-depth study
of committee methods[134] has shown that in iterative schemes randomly selecting addi-
tional configurations to be evaluated at DFT level to improve the training set (random
sampling) is equivalent to a selection based on committee disagreement beyond a thresh-
old, but that the latter has to be carefully calibrated.

In this thesis we adopt NNP-driven enhanced-sampling molecular dynamics simula-
tions to study chemical reactions in solution. This is a challenging goal as it requires the
NNP to explore high-energy configurations far from equilibrium, with highly distorted
chemical bond geometries. In particular, for a given A → B reaction, we aim at exten-
sively sampling along the RC connecting the two basins, with the aim of reconstructing
the accurate free energy landscape through US simulations. To this end, it is crucial
to train NNPs capable to yield locally-accurate and well-behaved PES throughout the
relevant reaction space.

Although enhanced sampling has been combined with machine-learning potentials in
a few recent studies [135, 14, 132], including a combination of US with NNP[136], the
critical assessment and systematic use of NNP for chemical reactions in solution are still
lacking.

In this chapter we present benchmarks and construction principles for training sets.
We carefully assess the total computational cost of the training and data production
trajectories, with the goal of limiting the total amount of ab initio calculations without
losing accuracy. We also introduce a simple approach to ensure long stable trajectories
with high NNP-committee agreement: at variance with a previous method where the error
is evaluated from deviations between DFT and NNP predictions,[15] our simple scheme
avoids the burden of additional ab initio calculations.

We apply the new scheme to two reaction steps of the Strecker-cyanohydrin synthesis
of glycine in water, previously studied at the DFT level[7]. Our results indicate that a
surprisingly reduced amount of suitably-chosen ab initio samples is sufficient to train a
NNP potential able to sample the full reaction coordinate space between minima, leading
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to accurate free-energy profiles and barriers at a significantly reduced cost compared to
purely DFT simulations.

3.2 The simulation setup:

3.2.1 Benchmark reaction

We first consider the initial step of the Strecker-cyanohydrin synthesis of glycine, partic-
ularly emblematic in prebiotic chemistry studies [1, 54]:

HCN + COH2 +NH3 → CH2OH(NH3)
+ + CN−

as illustrated in Fig. 3.1. The CVs regarding this reaction will be noted with a subscript
(1) → (2′)[7]. The aim is to assess the behavior of a NNP-system, trained on a minimal
amount of AIMD US trajectories, carefully selected along an optimized reaction pathway.

Figure 3.1: Free energy diagram of the first step of the Strecker-cyanohydrin synthesis
of glycine obtained in our previous work [7]. The error is of the order of the kcal/mol
and was estimated using block averages. The reactants, products, and transition state
configurations are also reported on the graph.

3.2.2 Neural networks details

Since our target system is quite heterogeneous, including 251 atoms in a 13.4 Å-side cubic
box under periodic boundary conditions, with the following composition: 2 C, 2 N, 6
H and 1 O atom in the reactive molecules, solvated with 81 explicit water molecules,
whose H and O atoms are indistinct from the ones in the reactive part of the system, and
treated exactly on the same footing by the NN. As a consequence, the water molecules
would comparatively acquire an overwhelming weight, with respect to the important
reactive subsystem, during training. To overcome this potential difficulty, we defined
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a loss function (equation 3.1) capable to take into account this heterogeneity:

L(w) =
1

|B|
∑
l∈B

pE|El − Ew
l |2 + pf

1

Nelem

Nelem∑
i=1

Natoms

ni

|Fl − Fw
l |2
 (3.1)

,
where ni is the number of atoms of type i in the system, Nelem is the number of differ-

ent elements in the system, Natoms is the total number of atoms in the system, Ei and Fi

denote the DFT energies and forces of the training set, while Ew
l and Fw

l are the forces
computed by the NNP, and B is the batch size.

This choice of the loss function allows weighting equally each element type via the
error on forces. The weight pf progressively increase from 1 to 10 while the opposite hap-
pens for pe during the training, according to the protocol implemented in the deepmd-kit
package [120].

The neural network used to compute the descriptors was made with 3 layers of 25,
50 and 100 nodes while the energies networks were made with three layers of 240 nodes
each. All the AIMD configurations come from a previous study of the group[7]. We
used LAMMPS [137] for all the NNP-based molecular dynamics simulations, employing
hydrogen atoms instead of deuterium in the original study to have a quicker, more realistic
dynamics. All the enhanced sampling simulations performed with neural networks were
carried out using the open-source, community-developed PLUMED library [138], version
2.5.0 [139] .

3.2.3 Umbrella sampling set-up

We adopt a set of one-dimensional, quadratic umbrella sampling potentials applied on the
s variable and centred at positions sj expressed as:

Vbias,j(s) =
k

2
(s− sj)

2 (3.2)

Windows are equally spaced by sj+1 − sj = ∆s based on k = kBT/(∆s/2.5)2 in order
to have sufficient overlap between two windows (see Ref. [7]). The s path-CV measures
the progress along a given reaction pathway, the sampling is therefore performed on that
coordinate. The z path-CV measures the deviation from the pathway and helps to de-
tect possible anomalies in the sampling. Once a specific reaction pathway is determined
and targeted, US is performed on it, in order to determine the corresponding free-energy
profile. Due to the intrinsically high-energy, unstable character of configurations explored
close to the barrier top, in US simulations of chemical reactions it is occasionally observed
that the system can deviate from the targeted pathway to explore a different one.

To focus the sampling on the reaction mechanism under study, a restraining poten-
tial is sometimes applied along z, as in the case of the step (1) → (2′) of reference [7].
The free energy profile is computed using the WHAM method presented previously [140]
implemented in Grossfield’s code [96]. We use a convergence criterion of 10−7 kcal/mol
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and 150 bins in s space. We estimate the statistical uncertainty as the deviation between
the free energy profiles computed using the third and fourth quarters of each trajectory.
The obtained free energy profile is then used to compute the activation barrier by taking
the free energy difference between the highest point in the profile and the reactants free
energy; the free energy difference between reactants and products can also be computed.
The value of the activation barriers can then be compared to experimental results.

A correction term can also be added to this free energy difference as it was done in
reference [141]. However, since the scope of the present work is to compare NNP results
to the AIMD ones of the original study [7], this additional term was not in this work.

From a ML point of view, the splitting of the RC space into independent US windows
simplifies the selection of different data sets to form the training set, and the evaluation
of the performance of the NNP.

3.3 Building the training set

3.3.1 Detecting the frontiers of accurate predictions in a neural
network potential

The performance of a NNP is customarily measured via the error with respect to DFT on
a training set and a testing set. However, this is not sufficient with respect to our goal,
i.e., accurately computing the full free energy landscape. In this respect, it is important
to assess the capacity to generate long, stable and accurate MD trajectories. We base our
assessment on the committee approach [129], including a time-dependent metric similarly
to a recent study [15].

As shown in figure 3.2, when, during a simulation, the NNP-generated trajectory exits
the “safe” region of configuration space, where forces are accurately predicted, the value
of the z pathCV significantly increases, indicating a large deviation from the reference
transition pathway and suggesting the likelihood of unphysical configurations. This is
confirmed by the analysis of the corresponding structural properties of the system. An
inspection of the C-O pair correlation functions g(r) (figure 3.2 c)), before and after this
jump, reveals that an unphysical short-distance peak has appeared, not present in the ab
initio data. This confirms that the NNP sampled an unphysical region and is trapped in
it, as the predicted energy decreases (figure 3.2 b), a spurious stable configuration. On
the other hand, this transition corresponds to a sudden jump in the standard deviation
in energy predictions among committee members as well as in the maximum standard
deviation on the predicted atomic forces, defined in the following way:

σmax = max
j∈[1,Natoms]

√√√√√
 4∑

i=1

∥Fj
i − Fj

avg∥2

 (3.3)

where Fj
i is the force on atom j computed by NNP i, and Fj

avg is the average over all
the neural networks. [14, 130, 131]. We remark that σmax is a more general and accurate
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Figure 3.2: Assessing the quality of predictions of neural network potentials using a
committee method. Panel a): left (red line): time evolution of z path CV; right: time
evolution of the maximum standard deviation on the prediction of forces(σmax, blue line)
and standard deviation on the prediction of energies(σenergy, green line). Panel b): time
evolution of the potential energy predicted by the four neural networks. Panel c): Carbon-
Oxygen radial distribution function for the AIMD simulation (black line) and for the NNP
simulation, before (green line) and after (red line) the unphysical jump in the predictions
of energy and forces.

indicator of the loss of predictive power than the g(r) or the pathCV z.

This approach allows detecting the frontiers of the configuration space region where
the NNP gives accurate prediction. We can thus define a simulation lifetime τ as the time
at which σmax surpasses a reliability threshold, simply corresponding to the full simulation
time if no pathological behaviors occur. All the trajectory before τ is physically sound,
and can be employed to collect statistics. The next logical step is to devise a procedure
to maximise τ all along the RC space as a function of the training set composition and
extension, in order to carry out reliable US simulations.

3.3.2 Generating training sets suited for free energy calculations

In this section, we critically assess the effect of the composition and size of the training
set on the error of the free energy profile recontructed with the NNP potential. The aim is
to retain ab initio accuracy while minimizing the amount of DFT calculations necessary
to train the potential.

Following the approach employed in our previous full-ab initio work[7] on the reaction
considered here, we identify the following algorithm:

• Perform a preliminary DFT-based metadynamics simulation [2] employing pathCVs
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Figure 3.3: Building the training set of a neural network potential for a chemical reaction
in solution. Panel a): maximum lifetime τmax (red dots) in each US window throughout
the path CV for a NNP trained only on the AIMD equilibrations of the reactants and
the products; the AIMD training points are represented in blue in the (s,z) plane. Panel
b): corresponding instantaneous location of the NNP configurations in the (s,z) path
CV coordinate plane; panel c) maximum lifetime τmax (red dots) in each US window
throughout the path CV for a NNP trained only on the AIMD equilibrations of the
reactants, the products, and a transition state US window; the AIMD training points are
represented in blue in the (s,z) plane. Panel d): corresponding instantaneous location of
the NNP configurations in the (s,z) path CV coordinate plane

built upon the reactants and products as the only references[97]: this allows a
prejudice-free exploration of a reactive pathway (quick, without the need to converge
a free-energy estimate), to be refined through committor analysis and leading to the
definition of improved pathCVs based on multiple reference structures (see Ref. [7]
for details).

• Generate one AIMD US trajectory (of about 15 ps) in the transition state window
along the optimized pathCV (defined at the previous step), and include it in the
training set along with AIMD equilibration trajectories (of about 15 ps) of the
reactants and the products. These three trajectories represent ab initio “milestones”
of the RC to train and test the NNPs.

• Train four models on the same training set, with different random seeds. Define
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a range of US windows densely spanning the full RC range, and for each window
perform 50 short (about 5 ps) NNP-based US simulations, with the same starting
point but different random initial velocities taken from the Boltzmann distribution.

• Plot the maximum lifetime τmax over each US window (see figure 3.3): if in some
RC region τmax is smaller than the autocorrelation time of the pathCV, i.e., if it is
impossible to generate uncorrelated samples, it is necessary to generate an additional
AIMD US trajectory in that region (since the NNP is locally unreliable) to be added
to the training set.

• Repeat the two last steps until a satisfactory NNP is obtained, i.e. with an ac-
ceptable lifetime τ across the full RC space, hence capable of producing a dense
sampling and a converged US free energy landscape.

The procedure is illustrated in figure 3.3, showing the training configurations for each
iteration (about 600 structures saved every 20 fs) and the resulting NNP samples in the
(s, z) plane and lifetime for every US window.

Clearly, adding training points according to our scheme allows to progressively increase
the simulation lifetime and the overlap between NNP US simulations. In the next two
sections, we discuss the error of the NNP on a testing set, and the accuracy of the NNP
free energy landscape with respect to the ab initio one.

3.3.3 Error estimate on the benchmark reaction

Figure 3.4: Root mean squared error on the energies and on the forces of a neural network
potential along the chemical space. Panel a): Root mean squared error (RMSE) of the
NNP-estimated energy along the chemical path for a NNP trained only on the AIMD
equilibrations of the reactants and the products (blue line) and for a NNP trained on
those configurations and on the US transition state window (orange line). The test set is
built only with configurations that are not present in any training set. Panel b): same as
panel a) but the RMSE was computed on forces instead of energies

Before proceeding on the actual calculation of the free energies, it is important to
verify that the NNP displays a rather uniform error over the s-coordinate. To this aim,
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we compute the root mean square error (RMSE) of the NNP-predicted energies and forces
on a test set built with configurations from ab initio simulations. Those configurations
were never included in any of the training sets. The results for the case of a training
set including only reactants and products (2-AIMD points) are compared with the case
including also one transition-state-like US window in the trainng set (3-AIMD points) in
figure 3.4. Clearly, adding the third trajectory to the training set improves the error in
the central region of RC space and leads to a uniform RMSE.

Although this error-evaluation step gives us an idea on the quality of the NNP pro-
duced using our new procedure, it cannot be applied on a system that has not been
extensively studied with AIMD.

3.3.4 Calculation of the NNP free energy surface for the bench-
mark reaction

We now assess the accuracy of the free energy landscape reconstructed from the NNP.
Figure 3.5 shows that it is possible to obtain a first-principle quality free energy surface
using, in the training set, only one US AIMD simulations and the two end-point AIMD
equilibration simulations of the reactants and the products, and to recover the full FES
mostly via NNP-US windows. This is a major gain of computational time, which could
allow to study, at the same level of ab initio accuracy, larger and more complex systems.

The full original ab initio FES in Ref. [7] was obtained using 55 US AIMD windows;
our procedure significantly reduces, by more than an order of magnitude, the number of
ab initio MD simulations to be carried out. From the computational point of view, the
training of 1 neural network takes approximately 24 GPUh; while one 5-ps simulation
takes about 0.05 GPUh. Hence, for the full study of this test reaction, we needed a total
of 161 GPUh, to which one needs to add the 40k CPUh used to build the ab initio training
set. The fact that all the calculations were run on GPU makes non-trivial the comparison
with respect to the CPU simulations. However, the whole ab initio study of this reaction
in Ref. [7] took around 700k CPUh.

In figure 5, the free energy was computed using short simulations of 5 ps per win-
dow. In the next section, we propose a method to generate longer, but still stable, NNP
trajectories.

3.3.5 Generating stable NNP trajectories

After properly training our NNP, our aim is to be able to generate long and stable MD
simulations. However, it is known that, at some point, the NNP-system will eventually
explore untrained regions of the configuration space, where energies and forces will neces-
sarily be extrapolated, likely failing to describe the correct system anymore. To overcome
this common drawback, one possibility to restrain the sampling to low σmax regions is to
add a quadratic potential on σmax, as it was proposed in reference [129]. In this work,
instead, we find it more effective to completely avoid high-σmax values, which would cor-
respond to an infinite spring constant with respect to the above-mentioned reference.
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Figure 3.5: Free energies obtained using a neural network potential with an increasing
training set size compared with the ab initio reference. Panel a): US-obtained free energy
profiles using full AIMD (black line), and using a NNP trained on AIMD equilibration
of reactants and products (green line). The shaded zones correspond to the estimated
statistical errors. Panel b): US-obtained free energy profiles using full AIMD (black line),
and using a NNP trained on AIMD equilibration of reactants, products, and the transition
state US windows (green line).The red line represents the free energy which would be
obtained using the three AIMD US windows (reactants, products, transition state). The
reactants and products endpoint-configurations are also reported on the graphs.

Therefore, we can define such a “mirror reflection operation” as follows:

We identify two regions in the configuration space sampled by each US window: the
region where the NNP behaves properly, i.e., where the maximum standard deviation on
the prediction of forces σmax is low, and the region where significant deviations, hence

Figure 3.6: Panel a): Time evolution of the maximum standard deviation on the predic-
tion of forces (σmax) during a NNP umbrella sampling simulation. We report with black
crosses its instantaneous values before the non-physical behavior sets in, and with red
crosses its behavior after that. Panel b): NNP-autocorrelation function of the s reaction
coordinate computed in the same NNP-umbrella sampling window.
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nonphysical behavior, are observed.
Whenever σmax exceeds a given threshold, we define for each atom α the following

vector Gα, the value of this vector in the k direction is:

Gαk =
1

ncomm

ncomm∑
i=1

(F i
αk − F avg

αk )2 (3.4)

With ncom the number of neural networks in the committee (ncomm = 4 in this study).
This quantity provides the normal vector of a frontier between the reliable, “interpola-
tion region” of the NNP, and a NNP-unknown “extrapolation region”. We can therefore
mirror-reflect the trajectory of the atoms on this hypersurface when σmax displays a patho-
logical jump to high values.

In order to do so, and force the NNP-system to remain in the interpolation region, the
simulation is stopped a tstep number of time steps before the instability, and is restarted
after imposing the following transformation on the velocities:

vnew
α = vold

α −
2vold

α .Gα

∥Gα∥2
Gα (3.5)

where vold
α is the velocity of atom α at the moment in which we mirror-reflect the tra-

jectory, while G is evaluated at the moment in which where σmax passes the instability
threshold.

Figure 3.7: Panel a): US-obtained free energy profiles using full AIMD (black line),
and using NNP trained on AIMD equilibration of reactants, products and transition
state US windows when the velocity transformation is applied (green line). The red
line represents the free energy which would be obtained using only the three AIMD US
windows (reactants, products, transition state). The reactants and products endpoint-
configurations are also reported on the graph. Panel b): corresponding instantaneous
location of the NNP configurations in the (s,z) path CV coordinate plane. As in the
original study[7] z path CV was confined to within 0.12 via a semiparabolic wall.

This operation preserves the kinetic energy of the system, without pathological effects
on the US procedure. We consider that it is a useful and legitimate complement to our
NNP-based free-energy calculation protocol whenever the typical lifetime τ is significantly
longer than the auto-correlation time of the CV, so that uncorrelated samples can be
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Ab initio study machine learning study

∆F †
(1)→(2′) (kcal/mol) 10 8± 0.7

∆F(1)→(2′) (kcal/mol) −14 −14.5± 1

Table 3.1: Activation barrier (∆F †) and free energy difference between reactants and
products(∆F(1)→(2′)) obtained in the ab initio study along with the ones obtained in this
work

collected between successive reflections. In the opposite case, it is advisable to improve
the NNP via a larger training set before employing it to perform statistical sampling.

To illustrate the choice of the parameters of the protocol, the time evolution of σmax

during a US simulation is reported in figure 3.6 along with the NNP-autocorrelation func-
tion of the CV.

The threshold of σmax is chosen as 0.6eV/A, while choosing the number of time steps
at which the reflection is performed before the instability between 200-500 gives similar
results. Clearly, the typical time-lapse between two reflections (ranging here from 0.3 to 5
ps) is much larger than the autocorrelation time (∼ 0.1 ps). Reflections therefore appear
not harmful from a statistical viewpoint, and allow carrying out long, stable US simula-
tions localized in the region of configuration space where the NNP is reliable, leading to
free-energy estimations retaining ab initio accuracy (Figure 3.7 and table 3.3).

The profile obtained in figure 3.7 lies within the typical 2 kcal/mol uncertainty of the
PBE functional for this kind of studies, as well as the predicted free energies, shown in
table 3.3.

3.4 Application of the protocol to a more complex

reaction

The aim of this part of our work is to challenge the method previously devised to repro-
duce a complex FES. To this end, we chose another intermediate step of the Strecker-
cyanohydrin synthesis, presenting a more complex free energy landscape, consisting of a
two-step process, as shown in figure 3.8: a hydrogen bond breaking between the imine
nitrogen, a hydrogen atom and the cyanide, followed by the addition of the cyanide to
the imine.

This process displays a small barrier of 5 kcal/mol, a small drop of 3 kcal/mol towards
a metastable state, another small barrier of 3 kcal/mol with respect to the latter step,
followed by a large 23 kcal/mol drop to the products, as obtained from our original AIMD
FES in Ref. [7] by using 44 US windows. Such small free-energy barriers are likely more
difficult to be quantitatively and qualitatively described by a NNP, than in the previous
reaction. We underline that, although the stoichiometry of the chemical species is the
same as in the previous case, the reactants and the products are different, and thus the
NNPs are generated from scratch, independently from the previous case.
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Figure 3.8: Free energy diagram of the reaction (3) → (4) of the Strecker-cyanohydrin
mechanism[7]. The error is of the order of the kcal/mol and was estimated using block
average [7]. The relevant configurations are also reported on the graph.

Results of US simulations employing a series of three NNPs with different training
sets are presented in figure 3.9. We progressively enlarged the training set as previously
described, by using at first 1, then 3 and finally 6 AIMD US windows, besides the reactants
and products ones (respectively 3, 5 and 8 training points).

The NNP FES obtained starting from the different training sets are shown in figure
3.10. Judging from the accuracy of the FES, NNP training is optimal when 6 AIMD
US windows are used, which is reasonable considering the fact that this reaction consists
of two successive steps. Instead, unsurprisingly, the FES obtained with only 3 training
points compares very poorly with the ab initio one.

Adding AIMD US windows to the training set leads to a progressive increase of the
accuracy of the NNP FES, until a satisfactory agreement with the benchmark AIMD one
is achieved. As in the case of the previous reaction, the cumulative duration of the AIMD
trajectories necessary for training the NNP is one order of magnitude shorter than the
total duration required for computing an accurate AIMD FES, despite the fact that the
present reaction is clearly more challenging to be reproduced in its fine details. The free
energy profile obtained using the velocity transformation technique is shown in figure 3.11.
We report in Table 3.2 the CPU time comparison between a full ab initio FES calculation
and a NNP-based one. As we have no guarantee that our NNPs are transferable to an-
other reaction, we chose to add the CPU time needed to perform the training simulations
in the comparison with the ab initio study.

3.5 Conclusions

In this work, we perform a critical assessment of different procedures to build a NNP train-
ing set starting from AIMD US trajectories of chemical reactions in solution, exploiting
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Figure 3.9: Illustration of the iterative procedure followed to build a converged NNP for
reaction (3) → (4). Panel a): maximum lifetime τmax (red dots) in each US window
throughout the path CV for a NNP trained only on the AIMD equilibrations of the
reactants, the products, and the transition state; the AIMD training points are represented
with blue crosses in the (s,z) plane. Panel b): same as a) but adding two additional AIMD
US windows in the NNP training set. Panel c): same as b) but adding three additional
AIMD US windows in the NNP training set.

two reactions along the Strecker pathway [7] as test cases. The systematic comparison of
AIMD training sets increasingly more dense along the reaction coordinate clearly indicates
a threshold for achieving NNP free energy profiles of ab initio accuracy.

We also provide an approach to exploit the disagreement between predictions of
equally-trained NNPs not only as diagnostics but also to render robust and stable the
long-time dynamics, hence to achieve satisfactory statistical sampling, a crucial advan-
tage for free-energy reconstruction.

Our investigation suggests a new protocol for the accurate, ab initio quality, NNP
calculation of FES of chemical reactions in solution: the computational load of pure and
costly AIMD simulations would be limited to preliminary metadynamics exploration with
mechanism-agnostic general-purpose CVs [97], followed by committor analysis to define
mechanism-specific CVs [7], and finishing with a limited number of AIMD US trajectories
along the reaction path, used for training a NNP.
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Figure 3.10: Free energies obtained for the reaction (3)→(4) of the Strecker synthesis with
an increasing size of the training set. Panel a): US-obtained free energy profiles using
full AIMD (black line), and NNP trained on AIMD equilibration of reactants, products
and transition state windows (green line). The red line represents the free energy which
would be obtained using only the three AIMD US windows (reactants, products, transition
state). The shaded zones correspond to the estimated statistical errors. Panel b): same
as a) but using the five training points in panel b) of figure 3.9. Panel c): same as b)
but using the eight training points in panel c) of figure 3.9. The reactants and products
endpoint-configurations are also reported on the graphs.

Ab initio study machine learning study
training time 0 24h(GPU)× 4× 3 iterations

US ab initio time 15× 44 = 660ps 15× 6 = 90ps
CPU/GPU simulation time 540k CPU.h 100k CPU.h + 200 GPU.h

Total CPU/GPU time 540kCPU.h 488 GPU.h + 100k CPU.h

Table 3.2: Summary and comparison of the computational times for the (3)→ (4) reaction
between the pure AIMD protocol and the combined AIMD-ML one.
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Figure 3.11: Free energy obtained with a neural network potential for the step (3) → (4)
of the Strecker synthesis of glycine. Panel a) free energy profile obtained as in panel c) of
figure 10 but applying our velocity transformation (equation (3.5)). Panel b) correspond-
ing instantaneous location of the NNP configurations in the (s,z) path CV coordinate
plane.

Ab initio study machine learning study

∆F †
(3)→(4) (kcal/mol) 3 3.5

∆F(3)→(4) (kcal/mol) −20 −20

Table 3.3: Activation barrier (∆F †
(3)→(4)) and free energy difference between reactants and

products(∆F(3)→(4)) obtained in the ab initio study along with the ones obtained in this
work

As tested on two important chemical steps (with very different FES) of the classic
Strecker-cyanohydrin reaction for the synthesis of amino-acids in solution, the proposed
protocol for optimal training set construction and NNP trajectory stabilization allows
reproducing with excellent agreement the benchmark ab initio FES for a fraction of the
computational effort.

We expect our approach to be easily generalizable to a range of chemical reactions
in solution, allowing a limited and incremental use of costly AIMD calculations only if
and when needed. In perspective, this controlled and efficient scheme will help to exploit
NNPs to overcome a significant computational bottleneck in the accurate calculation of
free-energy profiles in solution chemistry. In the next chapter, we will apply the methods
presented in this chapter to another pathway of formation of glycine from formaldehyde,
hydrogen cyanide and ammonia.
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Chapter 4

Application to a NON-Strecker
mechanism

4.1 Introduction

As explained before, glycine, the simplest amino-acid has a key role in prebiotic chemistry
to understand the chemical evolution of life. Up until now, it has been observed in me-
teorites [142, 143, 144, 145, 146], but has never been observed in the interstellar medium
(ISM) despite numerous attempts [147, 148, 149, 150]. This is why, the preferred pro-
posed mechanism for its formation is the Strecker pathway presented in section 1.4. It is
suggested in water ices in ISM, in water on primordial earth or at the heart of meteorites.
Its main intermediate is aminoacetonitrile obtained by first the addition of ammonia on
formaldehyde and then the addition of hydrogen cyanide. But there exists competitive
mechanisms to the Strecker pathway.

First, the chemistry of the three components in water is very complex and has been
extensively studied experimentally [151, 152, 18] and theoretically [153, 154, 155, 156]. In
reference [153], the authors build the whole reaction network with 39 intermediates with
the constraint that the intermediates must only have 2 carbon atoms. Their results are
shown in figure 4.1, they used ab initio hybrid B3LYP simulations with implicit solvent.
One striking fact in this figure, but also in experimental studies is that the formation of
glycolonitrile (labelled 1B in figure 4.1) is considered as a mechanism opposed to the for-
mation of aminoacetonitrile (labelled 38 on figure 4.1) and never as a precursor for glycine.

In this chapter, we propose a mechanism for the synthesis of glycine in water under
prebiotic conditions passing by glycolonitrile instead of aminoacetonitrile. We use the
method described in the previous chapter to sample the free energies along collective
variables defined according to the protocol presented in section 1.4. Our results compare
very well with the sparse literature available on the intermediates we found. Our findings
explain the kinetic and thermodynamic behaviors observed experimentally.
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Figure 4.1: Reaction network of hydrogen cyanide, formaldehyde, and ammonia in water

4.2 Computational setup

To study this complex mechanism, we apply all the methods explained in the previous
chapters. The metadynamics exploration steps and the building of the collective variables
were carried out by Leon Huet (2nd year PhD student in the team), while I performed
all the machine learning potential umbrella sampling simulations as well as the training
of the potentials. The ab initio free energies were generated independently by Leon Huet
to compare with the machine learning ones.

As collective variables, we used the (s, z) PCV with 12 reference frames obtained by
shooting trajectories from putative transition states points as explained in subsection 1.4.2
for the most energetic steps of the mechanisms. For the steps only involving a proton
transfer between an oxygen atom and a proton from the solvent, we chose to use only
the hydrogen coordination number of the reactive atom. Indeed, in this case, only the
coordination number of the oxygen atom of the reactive part would be important, and the
coordination table would only have one line which would introduce more complexity for
nothing. Moreover, using the coordination number instead of, for example, the distance
between the reactive atom and a targeted atom of the solvent allows more flexibility for
the reaction mechanism. These reactions were fully computed ab initio with no machine
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learning, as only around 15 windows were needed to have a fully converged free energy
profile.

In this chapter, to train machine learning potentials, we used the methods presented
in chapter 3. As the starting reactants and the final product are the same, the simulation
boxes are exactly the same, thus the free energy of the end state reported in this chapter
should be the same as the one reported in ref [7].
Thus, the situation for this chapter is similar to the one of chapter 3, hence, the same

Figure 4.2: Performances of the MLP trained for step (2’) → (3) of the mechanism. The
points of the training set are represented

loss and the same protocol can be used to build a training set for each step of the mech-
anism. The main difference with chapter 3 is the fact that we did not have the results
before performing the study, making it a study fully relying on the results of the MLPs
for some steps of the mechanism. This also implies that the ab initio data can be subject
to hysteresis effects that we chose to keep in the training set in order to have greater
generalization performances. This is reported in figure 4.2, where the last training tra-
jectory has a hysteresis effect on the z collective variable. This means that the system
is exploring configurations that are far away from the pathway that we want to sample.
This is a common problem in umbrella sampling simulations. In our case, it is most often
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caused by protons interacting with water, or by the reaction occurring “too early” or “too
late”. Including these hysteresis effects in the training set will allow a bigger variety of
configurations in the training set.

4.3 Results

4.3.1 The mechanism

Our proposed mechanism is shown in figure 4.3. Instead of the nucleophilic attack of the
ammonia in the usual Strecker synthesis, here we study the nucleophilic attack of the hy-
drogen cyanide via the cyanide ion on the formaldehyde molecule to form, after a proton
exchange with the solvent, the glycolonitrile. To bridge the gap between glycolonitrile and
glycine, we found a very unstable compound in water (2-oxiranimine, intermediate (3))
that allows the nucleophilic addition of a water molecule (hydroxyacetamid intermediate
(4)).

Following this, a nucleophilic substitution happens with a water molecule and the
elimination of an ammonia molecule (glycolic acid intermediate 4’) which will lead to
the addition of an ammonia molecule towards the basic form of glycine (P). Due to the
different intermediates, this mechanism is more favorable in basic medium. Indeed, the
attack of the water molecule (HO- in basic medium) is on the less substituted carbon,
while in acidic medium the attack would be on the more substituted carbon.

Figure 4.3: Our proposed mechanism of prebiotic synthesis of glycine
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4.3.2 Free energies of the mechanism

Figure 4.4: Free Energy profiles. In red the ones that were determined using only DFT,
in green the ones that were determined using both DFT and neural network potential.

The free energy profiles of all the steps of the mechanisms are presented in figure 4.4.
We chose as a convention to plot all the information related to ab initio calculations in
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Figure 4.5: Balance of all the steps and all the reference free Energy encountered during
the mechanism

red, while all the machine learning calculations are represented in green. As explained
previously, since steps (R) → (1), (2) → (2’) and (4’) → (5) are just proton exchange
between the reactive system and the solute, we chose to study those transformations only
using AIMD and the hydrogen coordination number of the reactive atom as the collective
variable.

The final balance of all the free energies is shown in figure 4.5. The values obtained
with our protocol are compared with the experimental literature (in blue on the figure).
The values of the proton transfers are obtained thanks to the pKa of the acid/base pairs.
In the same fashion, we estimate the free energy difference between glycolic acid (4’) and
glycolate (5) that is 5.2kcal/mol [17]. This value is higher than the one found in the
literature due to the electronic structure calculations. But, in most of the cases where
data is available, our results compare very well with the experimental ones. Finally, some
other theoretical studies have investigated the formation of glycine from formaldehyde
and hydrogen cyanide. Most of the literature only considers α aminoacetonitrile as a
precursor of glycine and the formation of glycolonitrile as a competing product.

Our results are also close to the ones presented in reference [153] and reported in
figure 4.1, the difference in free energy between our method and theirs could be explained
by the difference of methodology, indeed, they use implicit solvent and perform static
computations, while we have explicit solvent, detailed mechanism and dynamic behavior.

4.3.3 Prebiotic relevance of the mechanism

It is very hard to find glycolonitrile in the ISM [157], but products from its photodecom-
position have been observed [158], indicating that this reaction may occur in the ISM.
Carbonaceous chondrites formed in the protosolar clouds from silicates and iron are in
close interaction with the ISM, ices, and dusts in the forming solar system. The accretion
allows the formation of chondrites with water, leading to water to rocks ratio from 0.2
to 0.7 [159, 160, 161] with organic matter. Thus, glycolonitrile may be formed in the
ISM and then incorporated in the formation of chondrites and the rest of the mechanism
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may occur within the chondrite as a big amount of solution chemistry happens in parent
bodies of chondrites [162, 163, 164].

From this work and the work of Théo Magrino on the Strecker synthesis [7] we may
conclude that glycolonitrile is less stable in water than aminoacetonitrile, but forms more
rapidly. This is also the conclusion from an experimental study of the competing mech-
anism: the more ammonia in the solution, the more stable aminoacetonitrile will form
[151]. This might explain why glycolonitrile cannot be found in meteorites as it is the
kinetic product and at the timescale of the formation of the solar system, the thermo-
dynamic product (aminoacetonitrile) will form, while glycolonitrile might react further on.

The intermediate oxiranimine is very unstable and there is no chance of observing it
in meteorites or in water solution, but it leads to glycolic acid that is more stable than
glycolonitrile and that has been observed in meteorites [165, 166, 167]. Therefore, this
mechanism would explain the extraterrestrial delivery of organic materials such as glycolic
acid or glycine on earth. Another lead for the appearance, development, and evolution of
organic matter on earth is the idea of Charles Darwin followed by Oparin and Haldane
of a primordial soup with reactions happening in a “one pot” fashion. Although we do
not have the information regarding the concentration of ammonia necessary for this new
mechanism, this mechanism may be a good alternative to the Strecker pathway where
a higher concentration of ammonia is needed. Finally, glycine could also originate from
electric discharge in an atmosphere composed of simple molecules, here again, the Strecker
pathway is a hypothesis, but some work show alternative pathway [54], our mechanism
could also be an alternative.

4.4 Conclusion

In this part, we have set up a method to train an accurate machine learning potential
to study chemical reactions in solution. This method is based on a committee method:
by training several neural networks, the deviation on the prediction of the forces can
be tracked, and a simulation lifetime can be defined by determining the time at which
the deviation on the forces exceeds a certain threshold. This simulation lifetime allows
tracking the zones of the RC-space in which the machine learning potential is not well-
trained and to target new training points. We use this method to sample the free energies
of an alternative mechanism to Strecker synthesis of glycine. Our findings are in close
agreement with the experimental data, but also allow explaining several observations of
the meteorites.
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Towards an agnostic description of
chemical mechanisms
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Chapter 5

Theoretical interlude: towards a
better understanding of chemical
mechanisms

In the previous chapters, we introduced a way to train machine learning potentials to
perform umbrella sampling simulations. The training set was built using ab initio con-
strained molecular dynamics around a predefined point of the RC-space. This process
thus requires the prior knowledge of the transition mechanism and the definition of a RC.
Therefore, if the RC is bad and does not describe the transition mechanism well, the ma-
chine learning potential will be bad, but also the sampling of the free energy. Thus, a new
RC needs to be built, and with it a new machine learning potential which increases the
computational cost. These considerations raise several questions: what is a good collective
variable? How do we assess its quality? How can we explore the transition mechanism
in an unbiased way? In the following chapter, we introduce different theoretical tools to
answer these questions. Then, in the second section, we introduce a theoretical way to
compute kinetic rates.

5.1 Collective variables: understanding the transi-

tion mechanism

As explained before in this manuscript, a collective variable is the projection of the 3N
atomic coordinate onto a variable. This projection should be done in order to grasp the
whole complexity of the transition mechanism. Let us see what happens for a very simple
system.

The following analysis is from [168]. In this work, the authors study the free energy
profile of a double well potential along different coordinates. Here, the analytic free energy
profile is known, and it is a perfect toy model to illustrate the dramatic effect of a wrong
projection on the estimation of the kinetic rate and the free energy barrier. The results
obtained in ref [168] are reported in figure 5.1. First, they project the dynamics on the
“best” collective variable where the analytical barrier is, and they manage to recover
the right free energy barrier of the reaction. Then, they project the dynamics on a linear
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Figure 5.1: a) Analytic double-well free-energy landscape, with arrows indicating one-
dimensional projections along the x-axis, the diagonal, and the y-axis, respectively. (b)
100 Langevin bi-dimensional trajectories, projected on a single CV, relax from the barrier-
top into A (blue) or B (orange), and are used to optimize effective one-dimensional
Langevin models via likelihood maximization. (c) For each projection, the free-energy
and diffusion profiles inferred from the latter models are shown (continuous lines with
standard error over 10 reconstructions) alongside the exact F (q) profiles and an alterna-
tive estimate of D(q) (dashed lines). Results adapted from [168]

combination of the two coordinates (panel b of figure 5.1), a barrier and the two metastable
states can be identified, but the barrier is underestimated compared to the previous case,
meaning that some information is lost in the projection process. Finally, the authors
project the dynamics on the y coordinate, where no transition happens. On figure 5.1,
panel c), there is only one state and no identified barrier. Therefore, all the information
about the transition is lost and y can be qualified as a “bad collective variable”.

In terms of chemical reactions in solution, there exists reactions where the solvent
plays an important role compared to the gas phase behavior. For example, the solvent
might create some steric interactions that can hinder the formation of the transition state,
leading to a higher free energy barrier. But, these solvent degrees of freedom need to be
taken into account in the collective variable, therefore, a general, automatic way of gen-
erating collective variables can be used.

For simple reactions implying only a proton exchange between the reactive system and
the solvent, only the hydrogen coordination number of the reactive atom can be used, as it
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was done in the step (0)→ (1) of the previous chapter. But, for more complex reactions,
where several atoms are involved, or reactions where a solvent atom is not directly used,
the coordination is not enough to include the solvent degrees of freedom. A first solution,
is the one taken in this thesis, where, the coordination of the reactive atoms with respect
to all the species in the system are taken to build a path collective variable. Another
new way of building high quality collective variable including exterior effects is by using
machine learning methods. [169, 170, 171].

Now that we have seen what are good collective variables in terms of projection, we
will introduce the definition of the committor probability, how it is useful and how it
allows assessing the quality of a collective variable and to devise collective variables.

5.1.1 The committor probability

In a system with N atoms, two metastable states A and B separated by a free energy
barrier, we can compute the probability ϕB(x) of a given atomic configuration x to end
up in state B before state A given it started in x. This probability is called the committor
probability, and was first introduced by Onsager in 1938 [172]. Numerically, it can be
approximated by starting m configurations at x with random velocities drawn from the
Boltzmann distribution and determine in what state the simulation ends. Let nB be the
number of simulations ending in B, then, the committor probability is approximated as:

ϕB(x) ≈
nB

m
(5.1)

Because high free energy barriers mean low probability of being out of the metastable
states, assessing ϕB for rare events needs extra precaution, indeed many configurations
will have a committor value close to zero or one, thus to assess it accurately, many tra-
jectories are needed. But, this quantity gives perfect information and exactly what is
expected from a collective variable: the commitment probability can be seen as a mea-
sure of the progress of the reaction. Moreover, this allows to precisely define what a
transition state is: a configuration is said to be a transition state if a trajectory started
from this configuration has the same probability to end up in both metastable states.

In other words, a transition state is a configuration that has a committor value of 0.5
[173, 174]. Even though, the committor is said to be the best collective variable, it has no
physical interpretation and does not give insight about the transition mechanism [175],
therefore, it can be used as a tool to analyze data. Moreover, it is impossible to use it to
bias simulations.

5.1.2 Committor analysis

From the definition of the committor, it follows that for an optimal collective variable, a
single value of the committor should be mapped to a single value of the collective variable
[176]. This is in practice never the case, but it can come close to this.
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Figure 5.2: Illustration of the committor analysis procedure to assess the collective vari-
able quality along different free energy landscapes. Figure adapted from [175]

To assess the quality of a collective variable, one can perform a so called “committor
analysis”. To do so, configurations are gathered around a value of the CV, q∗ that is the
putative value of the CV for the transition state. The value of the committor is estimated
for these configurations and the histogram P (ϕB(q

∗)) is computed. The summary of the
situation can be found in figure 5.2 that is adapted from ref [175], where three different
double well free energy surfaces are explored along the q coordinate, for the first one,
all the information is on the q coordinate, and therefore, the sampling of the transition
mechanism is perfect, and the committor analysis yields to a distribution sharply peaked
around 0.5. In the second case, the free energy has a component along q′, therefore, the
sampling is not optimal and yields to a committor distribution peaked around 0 and 1,
because, the line q∗ crosses the basins and almost does not pass by the transition region.
Finally, in the last case, the barrier is flat in the q′ direction which leads to a flat distri-
bution of the committor.

In this thesis, committor analysis was used to generate the CV, in a very pedestrian
way. As explained in subsection 1.4.2, unbiased trajectories are shot from the putative
pathways and reference frames are chosen on these trajectories. However, only a few runs
are performed due to the computational burden of ab initio calculations, and this makes
it a heavy procedure to identify only a few transition states. A better way to identify
transition states and transition paths are transition path sampling (TPS) algorithms.

We also used committor analysis to assess the quality of a collective variable in chapter
6 with the help of a machine learning potential

5.1.3 Transition path sampling

Transition path sampling algorithms [23, 177, 178, 179, 180] are a set of unbiased meth-
ods used to explore transition path. They are stochastic Metropolis algorithms for which
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the sampling is made in trajectory space instead of the atomic position space for other
enhanced sampling techniques presented in this thesis. Moreover, they are unbiased tech-
niques, meaning that the dynamics and the mechanism of the transition can easily be
accessed. Here, we will present the shooting from top algorithm [179] that was used in
this thesis that is a variation of transition path sampling. First, start from a first raw
transition trajectory obtained by any means. Oftentimes, it is obtained with metadynam-
ics

• Define the “shooting range” S = [sA, sB] from which shooting points are selected

• Randomly choose a shooting point in S with uniform probability in the last accepted
trajectory

• Draw velocities from the Maxwell Boltzmann distribution (at 300 K) and propagate
two trajectories, one forward in time and one backward, until they reach reactants
or products.

• Accept the shooting if one trajectory reached the reactants and the other the prod-

ucts with probability Min(
n

n′ ) where n and n′ are respectively the number of points

of the previous (resp current) trajectory.

• iterate

A schematic summary of this algorithm is presented in figure 5.3, adapted from the the-
sis of Alexandre Jedrecy [181] in which he used transition path sampling algorithms to
investigate the liquid-liquid transition in water’s no man’s land. In this thesis, we use a
variation of the original TPS algorithm by using the “shooting from top” [179] scheme,
where the configurations are exclusively selected in the S = [sA, sB] range. For this
method, we are only interested in Hamiltonian trajectories.

This method allows having an unbiased exploration of the transition mechanism and to
gather transition pathways. Moreover, this method allows an exploration of the chemical
space without relying on a collective variable and hence does not need a prior knowledge
of the reaction mechanism. Indeed, even though a coarse variable is needed to locate the
top of the barrier, the range of values was shown not to be important. This shooting
from top scheme is used to be more efficient than traditional transition path sampling
techniques like aimless shooting, where the new configuration was chosen in the whole
previous trajectory. Although it is a new technique and has not extensively been used,
from the experience in the group, it seems to be a good method to save computational
time compared to traditional TPS.

5.2 Kinetics

Until now, we have mainly presented tools to recover thermodynamic properties of chem-
ical mechanisms. But, in such events, there are always two competing concepts: thermo-
dynamics that will tend to push the system towards the most stable state and kinetics
that will favor the pathway that forms the products the more rapidly. In other words, in
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Figure 5.3: Schematic illustration of the transition path sampling algorithm, adapted
from [181]

theory, from a macroscopic point of view, if one waits a small amount of time, the kinetic
product (the one with the smallest activation barrier) will form, while if one waits for
an infinite amount of time, the thermodynamic product (the most stable one) will form.
In this section, we will present the macroscopic description of the kinetic behavior of a
reaction, then, we will show the microscopic behavior and make a link between the two.

5.2.1 Macroscopic point of view

Consider a unimolecular reaction with two states A, and B separated by a barrier. We
want to know the speed at which A transforms in B and B transforms in A, in other
words, we want to know the kinetics of the reaction. The density in A/B is noted CA/B,
the phenomenological equations describing the combined evolution in time of CA and CB

are: 
dCA(t)

dt
= −kA→BCA(t) + kB→ACB(t)

dCB(t)

dt
= −kB→ACB(t) + kA→BCA(t)

(5.2)

Where, here, we make the assumption that the rate of transformation is proportional to
the concentration of the state. kA→B and kB→A are the two rate constants.

From this set of equations, it follows that the total density is conserved, i.e., by
summing the two equations:

d(CA(t) + CB(t))

dt
= 0 (5.3)
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This comes with the assumption that the overall quantity in the system is conserved and
there is no external intervention. At equilibrium, when the variation of the concentration
is zero, we find using the equations:

K =
⟨CA⟩
⟨CB⟩

=
kB→A

kA→B

(5.4)

K is the equilibrium constant, characterizing the relative stability of the states. the
angular brackets indicate the equilibrium densities of each species. In general, in the lab,
the system is prepared in one initial state, containing only one species for example:{

CA(0) = CA

CB(0) = 0
(5.5)

This system of equation can easily be solved:CA(t) = ⟨CA⟩+
[
CA(0)− ⟨CA⟩

]
e−(kA→B+kB→A)t

CB(t) = CB

(
1− e(kA→B+kB→A)t

) (5.6)

These equations allow us to define a relaxation time:

τrxn = (kA→B + kB→A)
−1 (5.7)

which, can be written in terms of density using equation 5.4:

τ
−1
rxn = kA→B

⟨CA⟩+ ⟨CB⟩
⟨CB⟩

(5.8)

In an ideal case, one can obtain kA→B by counting the number, nAB of transitions between
A and B during a “long enough simulations”, then, kA→B can be assessed:

kA→B =
nAB

tA
(5.9)

Where tA is the total time spent in state A during the simulation. But as explained in
section 1.3.4, in the case of chemical reactions, the free energy barrier is too high and not
enough transitions are observed to accurately compute the transition rate.

To overcome this problem, and to make a link between the macroscopic phenomeno-
logical behavior described above, and the microscopic description offered by molecular
dynamics simulations, some statistical tools have been put into place.

5.2.2 Transition state theory

TST [25, 90, 182, 183] is a mean of getting an approximate kinetic information easily
from thermodynamics. At the center of the theory is the concept of transition states.
To go further into transition state theory, we must first define a reaction coordinate q
that will track the evolution of the reaction. We define as transition states the points
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on the orthogonal dividing surface crossing the top of the barrier. The transition rate
can be computed by taking the ratio of the population at the transition state Z∗ and
the population at the initial state ZA multiplied by the velocity at which the trajectories
cross the separating surface. But, this method does not take into account the trajectories
that cross the dividing surface, but then come back to the initial state. To overcome this
problem, the “recrossing factor” κ is introduced. It is set to one in the frame of TST, in
the end, the transition rate is given by:

kA→B = κ⟨v∗⟩Z
∗

ZA

(5.10)

Where ⟨v∗⟩ is the mean velocity of the collective variable at the dividing surface. Every
quantity, except for, κ can be computed using umbrella sampling simulations, This is
why TST is most often used to compute kinetic information, since the leading term is Z∗

that depends on the exponential of the activation barrier. Since TST does not take into
account the recrossing events, κ is always less than one and TST always overestimates
the transition rate.

5.2.3 Reactive flux formalism

To accurately compute the transmission coefficient κ, Bennett and Chandler [25] have
come up with statistical tools based on trajectories started near the top of the barrier.
Using this, we have access to the dynamical behavior of the system. We first define a
collective variable q that will track the evolution of the reaction. It will discriminate
whether the system is on the reactants side of the barrier or on the products side. To do
so, we define a transition state q∗ and the two following functions:{

hA(t) = θ(q∗ − q(t))

hB(t) = θ(q(t)− q∗)
(5.11)

These two functions are the indicator functions, they describe the state of the system.
Using them, we define the time correlation function which is the proportion of trajectories
in state B at time t given it started in state A:

C(t) = ⟨hA(q(0))hB(q(t))⟩
⟨hA⟩

(5.12)

⟨hA⟩ can be linked to the equilibrium densities of the previous section:

⟨hA⟩ =
⟨CA⟩

⟨CA⟩+ ⟨CB⟩
(5.13)

From all of the above, is the system is initially prepared in state A, the time evolution of
the products density is:

CB(t) = (⟨CA⟩+ ⟨CB⟩)C(t) (5.14)

If the time is larger than the typical molecular timescale (τmol) equations 5.6 and 5.14
can be combined to find:

C(t) = ⟨hB⟩(1− e−(kA→B+kB→A)t) (5.15)
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Now, we are interested in events from time before τrxn therefore, we can write

C(t) ≈ ⟨hB⟩(kA→B + kB→A)t (5.16)

Which, can be written using equations 5.8 and 5.13:

C(t) = kA→Bt (5.17)

Hence the rate constant for τmol < t < τrxn:

kA→B =
dC(t)
dt

(5.18)

We now have a way to link macroscopic behavior of densities and phenomenological rate
constants with microscopic quantities that can be computed using molecular dynamics
simulations. This result can also be found by using the fluctuation dissipation theorem
in the framework of linear response theory [184]. Now, we will show how to compute this
quantity using molecular dynamics simulations in the Bennett-Chandler formalism. By
using time translation invariance and the definition of C(t) one gets:

kA→B = ⟨q̇(0)hB(t)⟩q(0)=q∗
⟨δ(q(0)− q∗)⟩
⟨hA⟩

(5.19)

The second term of this equation can be easily computed using Umbrella Sampling sim-
ulations, while the second term is the one that characterizes the deviation from TST,
indeed, it is clear that here the first term takes into account the whole behavior of the
system and not just the first crossing of the separatrix by the system. However, this term
needs a large amount of trajectories to reach statistical convergence, this is why TST is
often preferred, especially in ab initio studies where most of the computational effort is
put on the sampling of the free energy.
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Chapter 6

Agnostic machine learning
description of chemical reaction in
solution

In the previous chapters, we introduced theoretical tools to study chemical reactions in
solution from a thermodynamics point of view, but also from a kinetic point of view. We
also devised and applied a method to study chemical reactions in solution with the help
of machine learning, but this method needed the prior definition of a collective variable.
This means that the transition mechanism has to be well understood, which is sometimes
a tough task with ab initio simulations. In this chapter, we introduce a way based on
transition path sampling to train a machine learning potential with which it is not only
possible to recover the free energy profile that gives the thermodynamical information but
also the kinetic rates of a reaction. We apply this method to the prototypical benchmark
system of the nucleophile substitution of methyl chloride with a chlorine ion.

6.1 Introduction

In this chapter, we once again rely on the data generated during Theo Magrino’s thesis
[24] to build a machine learning potential and compare its results with the ab initio stan-
dards. We go a bit further by computing the kinetic rates and performing some committor
analysis. To do so, during his thesis, Theo Magrino used transition path sampling and
enhanced sampling techniques to study a prototypical reaction. This reaction is the SN2
substitution of the methyl-chloride molecule with a chlorine ion, in other words, nothing
changes because the chlorine atom of the molecule is replaced by another chlorine. But,
this reaction has widely been used to study the impact of the solvent [66], the impact
of the DFT functional [185], and the effect of the collective variable taking or not into
account the solvent degrees of freedom [186].

Indeed, in gas phase, the reaction has two wells that disappear in the solvent case be-
cause the ion/molecule complex is stabilized in gas phase due to long distance interactions,
but this disappears due to the cost of desolvatation of the components [66, 187, 188, 189].
Furthermore, in gas phase, the transition state is stabilized due to the negative charge
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Figure 6.1: Illustration of the methyl chloride substitution reaction along with the typical
collective variable used: d1 − d2.

that is split between the two chlorine atoms, which is the contrary in the reactants or
products well since the charge is carried by only one ion. Adding a solvent will destabilize
the transition state and increase the activation barrier [190, 191].

The reaction is presented in figure 6.1, along with the two most important quantities of
the reaction, d1 and d2 that are the distances between the chlorine atoms and the carbon
atom. The most simple collective variable one can think of is d1 − d2, in the reactants
part, it will be less than zero (the carbon atom is linked to one chlorine atom), around the
transition state its value will be close to zero, and on the products side, it will be greater
than zero (the carbon atom is linked to the other chlorine atom). Although it was shown
that for some system like the ion pair dissociation the solvent degrees of freedom needed
to be taken into account, for this particular reaction, every study indicates that d1 − d2
is one of the best CV possible.

In this chapter, we will first present the training set and how it was generated, then,
we will present how our model behaves when sampling the free energy profile along two
different collective variables. We then present our kinetic assessment of the transition
mechanism along the two same collective variables. Finally, we will judge the quality of
the training set by performing committor analysis.

6.2 The training set

In ref [24], Theo Magrino and Léon Huet performed transition path sampling simula-
tions on the reaction described above. First, the reactants and products are defined, by
performing long ab initio equilibrations runs in the two basins. From these runs, the co-
ordination numbers of the reactive atoms: the carbon and the two chlorine are averaged
over the two runs to build two coordination tables The chosen coordination tables are
shown in figure 6.2.

After this, these two tables are used to define a coarse path collective variable s2.
s2 is built to approximately locate the top of the barrier in order to apply the shooting
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Figure 6.2: Reference coordination matrices of two-state s2 and z2 path CVs employed on
metadynamics simulations. Values are averages over reactants equilibration, and chlorine
lines are switched to represent products. Coordination numbers are given for a given
atom i with respect to a set σ, corresponding to all atoms of the same element.

from top scheme presented in subsection 5.1.3. It was however showed that the efficiency
of the algorithm did not depend on the chosen range for the transition state region. In
this study, we chose to shoot trajectories in the interval [1.35, 1.65]. In this way, a large
amount of unbiased trajectories bridging the reactants and the products basins can be
obtained easily. This gives us a variety of transition paths and transition states that de-
scribe well the transition path ensemble. In figure 6.3 the TPS trajectories are projected
on two different CV: d1 − d2, and s2 that is used to define the shooting range.
These trajectories contain different unbiased reactive paths that should grasp the whole

Figure 6.3: TPS training trajectories. Panel a) TPS training trajectories as a function of
time and the heuristic collective variable: the difference between the two clorine-carbon
distances, d1 − d2 along with panel b) the same trajectories as a function of the simple
path collective variable s2

diversity of the atomic environment of the reactive atoms and the solvent during the
reaction. This is the key to training a MLP which relies on the representation of local
atomic environments. Therefore, we used these TPS trajectories as training data along
with the method presented in chapter 3. To do so, we use the deepmd smooth-edition
package [10, 120] which is based on a Behler-Parrinello [9] structure.
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To deal with the heterogeneity of the system that is intrinsic to reactions in solution
and to avoid water molecules to have an overwhelming weight in the training of the
potential, we use a custom loss function to optimize the neural networks weights given by
equation 3.1.

6.3 Assessment of the training set

Figure 6.4: Free energy obtained along the d1− d2 collective variable with increasing size
of the training set (red) compared with the ab initio reference

Finally, we assess the quality of the training process by training neural network po-
tentials with an increasing quantity of transition pathways. The results are shown on
figure 6.4, it is now clear that if the number of training trajectories in the training set
is too low, the sampling will be insufficient leading to an underestimation of the barrier
height as can be seen with the plots with 18 and 24 training pathways. Then, the free
energy profile reproduces quite well the ab initio, but we decided to keep increasing the
number of training points for two reasons: first, as seen in 6.4, the obtained free energy
profile matches quite well the ab initio one except for one asymmetry between the level of
the reactants and the one of the products which is problematic for a symmetric reaction.
Moreover, we noticed that the training could be improved by looking at the stability of
the NNP: for some windows, too many “mirror reflections” were observed, meaning that
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the system was stuck in some kind of “uncertainty bubble” in which it could not get out.
In the end, we chose the neural network potential with 60 training pathways, and it is
the one we use in the following sections of this chapter.

6.4 Umbrella sampling

6.4.1 Free energy along d1 − d2

Figure 6.5: Free energy along a heuristic collective variable based on distances computed
using ab initio umbrella sampling simulations (black) and computed using machine learn-
ing potential based umbrella sampling simulations (green). The shaded zones correspond
to the estimated statistical errors.

As it is the most commonly used collective variable in this reaction, we started our
study by performing umbrella sampling simulations along d1 − d2 to compare it with the
ab initio data we already had, but also with the literature. We equally split d1 − d2 in
60 equally spaced windows with a spring constant of 1.14288 eV between d1 − d2 = −2
Åand d1 − d2 = 2 Å.

In order for the neural network potential to be stable, a semi-parabolic constraint was
added on the chlorine-chlorine coordination number because it was observed that during
the simulation, the two atoms were getting too close. This behavior is completely non-
physical, as the two atoms are negatively charged. This is most likely due to the fact
that configurations such that the two chlorine atoms are too close to each other are not in
the training set, and including these high energetic frames in the training set would risk
biasing the training towards these chemically uninteresting configurations. This is why
we chose to proceed this way. It was implemented similarly in a MLP with a repulsive
term to avoid the atoms to collide [192].
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Figure 6.6: Umbrella sampling simulations trajectories projected on the C/Cl1 and C/Cl2
coordination numbers

The results are presented on figure 6.5, in the ab initio case and in the machine learning
case simulations were run for 20ps. The simulations were cut in four, the two first fourth
were discarded, and the two last were kept. The mean of the two lasts was taken as the free
energy, while the difference was considered as the statistical uncertainty. The agreement
between the ab initio simulations and the machine learning is satisfactory, given that the
training was performed with only transition path sampling simulations and no umbrella
sampling data. The simulation points are represented in figure 6.6, no holes are observed
in the sampling, and no hysteresis effect either, meaning that the sampling is satisfying.
This shows that this method is more generic than the previous one and more powerful.

6.4.2 Path collective variable

Since our training method does not depend on a collective variable, we can try to sample
the free energy of the reaction along a different CV. In ref [24] the authors use transition
path sampling to find reference frames for building PCV. But, with ab initio molecular
dynamics, the computational burden can be very heavy, since after performing transition
path sampling simulations, one also has to perform the expensive umbrella sampling sim-
ulations.

This is why, we performed many TPS simulations with our MLP, and chose reference
frames among around 5000 TPS simulations. These frames were chosen according to
a minimizing metropolis Monte-Carlo method based on a nudged elastic band (NEB)
technique presented in ref [24]. The aim is to have reference frames that are equally spaced
in the PCV metric space. First, N=10 frames are chosen among the TPS configurations,
then a fictitious NEB energy is defined in equation 6.1 and minimized using a Monte-Carlo
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procedure by choosing a new reference frame between k and k+1 at each iteration.

E =
N−1∑
k=1

Dk,k+1 −
1

N− 1

N−1∑
l=1

Dl,l+1

2

+ β

N−1∑
k=2

[max(θk − θtresh, 0)]
2 (6.1)

Where, Dk,k+1 is the distance between frame k and k+1 in the metric space defined in

Figure 6.7: Machine learning free energy compared with an ab intio free energy along a
path collective variable. Panel a) free energy from machine learning umbrella sampling
simulations along a path collective variable devised with machine learning transition path
sampling reference frames (sMLP ), panel b) the free energy obtained using ab initio um-
brella sampling simulations along a path collective variable devised with ab initio transi-
tion path sampling reference frames (sabinitio)

equation 1.67, and θk is the matrix angle between consecutive path segment. The first
term favors equidistant frames, while the second term tends to reduce the length of the
chain by favoring a low curvature. After the algorithm is converged, two more references
are added at the start and at the end of the path by linearly extrapolating the coordi-
nation numbers of the last and first segments to keep metastable states from appearing
as spikes in the free-energy landscape: the results are PCV (s, z) based on 12 reference
structures.

The results of the machine learning umbrella sampling simulations and the ab initio
ones are presented in figure 6.7. In the same fashion as for the previous section, a parabolic
restraint was set on the chlorine-chlorine coordination number to ensure stability but also
on the z collective variable. As the reference frames differ in the s12,ML and s12,abinitio,
we have decided to display the results in two distinct panels. It is noteworthy that the
ML free energy successfully reproduces a precise activation barrier. Furthermore, the
profile is more symmetric, and the difference in free energy between the reactants and the
products is almost negligible. Initial 60 trajectories were performed however, we notice
an insufficient sampling in the vicinity of s12,ML = 8, as shown in figure 6.8, this is why
we chose to add more sampling windows in that region with a stronger spring constant.
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Figure 6.8: Umbrella sampling points from simulations on s12,ML represented on the
(s12,ML, z12,ML). Panel a), initial sampling on the 60 windows, Panel b) sampling with
the added windows

6.5 Computation of kinetic rates

We have shown with our MLP that thermodynamic information can be gathered with ab
initio accuracy for a lesser computational cost. The second big challenge in the study of
chemical reactions is the computation of the rate constant. However, it is rarely computed
in ab initio studies because of the computational burden of the exact transition rate taking
into account recrossing events as explained in section 5.2

6.5.1 The transmission coefficient

In section 5.2 we presented the analytical way of obtaining the kinetic rate in equation
5.19, this can be re-written in terms of quantities that are computed using molecular
dynamics simulations. Indeed, It can be computationally computed by having N trajec-
tories starting around the top of the barrier and knowing the activation barrier using the
following equation:

kRF (t) =

∑N
i=1 q̇i(0)hB(qi(t))

N

e−βF (q∗)∫
ΩA

e−βF (q)dq
(6.2)

Where ΩA is the reactants domain and F is the free energy profile along the chosen CV.
The first term is expensive to compute as it needs many trajectories to reach statistical
convergence, this is why it is often discarded and transition state theory (TST) is preferred
to compute transition rates. The computation of the rate constant includes two terms:
the exponential barrier term, and the average over many trajectories, this creates two
sources of error for the MLP. Hence, to validate the dynamical behavior of the MLP, we
will first compute the transmission coefficient, κ which also characterizes the deviation of
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Machine learning ab initio
κ for d1 − d2 0.498± 0.009 0.54± 0.05
κ for s12,ML 0.25± 0.02 0.25± 0.08

Table 6.1: Transmission coefficients (κ) obtained ab initio TPS and with machine learning
TPS. As the reaction is symmetric, the average on both way was taken and the uncertainty
was assessed by computing κ in both halves of the trajectories dataset and taking the
deviation as the uncertainty. Around 500 TPS simulations were performed ab initio while
5000 were performed with the machine learning potential

the system from transition state theory.

κ(t) =
kRF (t)

kTST
=

∑N
i=1 q̇i(0)hB(qi(t))∑N
i=1 θ(q − q∗)q̇i(0)

(6.3)

κ can also be used to assess the quality of a CV: a very accurate CV will have a TC
close to one, while a bad CV will have TC indistinguishable from zero. To compute the
rate constant, and the transmission coefficient, we performed around 5000 TPS simula-
tions with our MLP.

The values of κ are reported in table 6.1, the values of the MLP computed κ and the
ab initio one are within error bars. Which means that the dynamical behavior of our
MLP is consistent with the ab initio behavior. Moreover, the values obtained here are
close to the one given in ref [186] of 0.39 ± 0.07 for d1 − d2 which confirms the strength
of our method. The small discrepancy between our results and the one of reference [186]
could be explained by the difference in the electronic structure method. The values of κ
also allow us to compare the quality of the CV.

Here, κ is almost twice as high for d1 − d2 than for s12,ML which means that d1 − d2
should be a better collective variable than the PCV. This is also the conclusion we reached
in reference [24] by using a criterion based on the likelihood of the committor.

We report the most important experimentally measurable quantities in table 6.2. The
1-2kcal/mol (2 kBT ) difference between the two barriers is enough to explain the discrep-
ancy between the rate values, because of its exponential relation with the barrier height.
Moreover, the ab initio data and the MLP data are in close agreement and the difference
between the values reported in this work and the ones from other numerical studies can be
explained by the difference in electronic structure calculation methods (The difference in
the exchange-correlation functional used or the QM/MM method). The ab initio values
related to the s12,ML CV were not computed because this would require the free energy
profile along this CV which is expensive to compute. This once again illustrates that with
this MLP, it is possible to explore free energy profiles along different collective variables,
which is impossible with ab initio calculations.

Overall, performing a set of US simulations using a MLP has a computational cost of
around 50k CPU.h while performing it ab initio has a cost of about an order of magnitude
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Machine learning ab initio
Keq for d1 − d2 1.0± 0.8 0.01± 0.03
Keq for s12 0.4± 0.4

∆F ‡ for d1 − d2 20.3± 1 kcal/mol 21.9± 1 kcal/mol
∆F ‡ for s12 24 kcal/mol
k for d1 − d2 (6± 5)× 10−3s−1 (3± 1)× 10−4s−1

k for s12,ML (1.0± 0.9)× 10−5s−1

Table 6.2: Relevant thermodynamic and kinetic quantities: the equilibrium constant (Keq)
related to the relative stability of reactants and products which here is theoretically 1,
the barrier height (∆F ‡) corresponding to the stability of the transition state and kinetic
rates(k). For the calculation of the barrier height and the kinetic rate, the free energy
profile was symmetrized, since the reactants and products are the same. the uncertainties
were computed using the propagation of uncertainties formula

more. The computational burden can thus be put in the generation of short ab initio
unbiased transition pathway to train a MLP and have a first guess of the transition
mechanism.

6.6 Committor analysis

The quality of a collective variable can be assessed by committor analysis. As we have
harvested a big amount of ab initio transition path sampling data for the training of the
machine learning potential, we used them as a benchmark and computed the committor
probability on the points near the transition of each trajectory. To do so, we shot N = 200
trajectories with random initial velocities chosen from the Boltzmann distribution from
each point. The committor probability is estimated by doing:

ϕB ≈
nB

N
(6.4)

The bigger N, the less statistical uncertainty is found in the committor (see ref [193]).
We then binned the CV values, of the TPS trajectories with the corresponding computed
committor values, we present the results in figure 6.9. The error bars represent the vari-
ation of the committor value in one bin, thus high error bars means a big dispersion in
the committor prediction.

An ideal collective variable should follow the committor and one value of the collective
variable should be mapped to one value of the committor, the plot of the committor vs.
the collective variable should therefore be smooth and, in an ideal case the error bars
should only be proportional to the variation of the committor function between the two
ends of the bin.

This is almost the case for the variable d1 − d2 in figure 6.9 which confirms our find-
ings with the transmission coefficients and the likelihood approach of ref [24]. On the
other hand, it seems that the collective variable taking into account the solvent degrees of
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Figure 6.9: Committor function computed along two collective variables. Panel a), d1−d2
a heuristic collective variable characterizing the distance of the chlorine ions with respect
to the carbon atom. Panel b) sML a path collective variable based on machine learning
transition path sampling. The error-bars are computed by binning the data along the
collective variable and computing the deviation of the committor value within the bin.

freedom has a worse behavior with respect to the committor. But, this variable has the
advantage of being agnostically devised, i.e., this method can be used with any kind of re-
action. Furthermore, it was shown that for this particular reaction, the solvent degrees of
freedom did not need to be taken into account in the description of the mechanism. They
are nonetheless of the utmost importance for the description of the dynamics, indeed, by
explicitly describing the solvent, we find a barrier close to the experimental one, while
ref [186] report an activation barrier underestimated by 10 kcal/mol by using QM/MM
simulations, i.e., only the reactive part and a small shell around are treated using DFT.
This encourages the use of a machine learning for future purpose where solvent or envi-
ronment degrees of freedom are known to take part in the reaction but are too expensive
to treat with DFT, an example of these systems is the prebiotic systems.

6.7 Conclusions

In this chapter, we showed that a MLP can be trained using short out of equilibrium
trajectories starting from the top of the barrier associated to a rare event. We assess the
quality of the training set by performing US simulations with an increasing number of
transition path sampling trajectories in the training set. Then, Using US simulations and
transition path sampling, we show that this MLP can be used to compute experimentally
relevant quantities such as the equilibrium constants and kinetic rates. We applied it
to the study of the prototypical SN2 substitution of methyl-chloride. Finally, we show
that short trajectories can be shot from TPS configurations using this MLP to perform
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committor analysis to assess the quality of collective variables, which cannot be done
using fully ab initio calculations due to the computational burden. The final protocol is
represented in figure 6.10, it allows more flexibility in the exploration of the mechanism
while reducing the computational cost with respect to the one presented in section 1.4.

Moreover, TPS has been used in a variety of applications going from biomolecular sys-
tems to nucleation processes, therefore this method paves the way towards the description
of complex reactive or rare events phenomena with ab initio accuracy with a wide range
of applications. For example, the importance of the environment in prebiotic chemistry
has already been mentioned in this thesis. The catalytic activity of minerals could be
analyzed using this method for bigger simulation boxes.

Creation of reactants
A and products B
simulation boxes

I

Preparation of initial
solvated structures.

II
Equilibration
of A and B.

III
Define low resolution draw
CVs s2, z2 with two refer-

ence structures X1=A, X2=B.

IV

Train machine learn-
ing potential with TPS

VII
Optimize transition state by
TPS and gather additional

unbiased reactive trajectories.

VI
Observe transition via unsu-
pervised explorative meta-

dynamics between A and B.

V

Extensively sample transition
path ensemble with machine
learning potential driven TPS

VIII
Define high resolution path
CVs sN , zN with N frames,

Xα (α ∈ [1, N ]), X1=A, XN=B.

IX
Perform machine learn-
ing potential driven Um-

brella Sampling simulations

X

Compute free energy profile
from ML Umbrella Sam-
pling data with WHAM.

XI
Compute kinetic rates us-
ing reactive flux formal-

ism and TPS trajectories.

XII

Figure 6.10: Schematic algorithm depicting the simulation protocol. Grey blocks (I, II,
IV, IX) indicate pre/post post-proceesing steps where no simulations are needed. Red
blocks (III, V, VI) indicate agnostic explorative steps performed using ab initio molecular
dynamics. Green blocks (VIII, X) indicate quantitative sampling steps performed using
machine learning potential. Blue block (VII) indicates the training part of the protocol.
The two yellow blocks correspond to the post-processing parts to obtain the relevant
thermodynamic and kinetic information from the machine learning simulations
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Perspectives and conclusion

During this thesis, we presented two methodologies to study chemical reactions in solu-
tion applied to research in origins of life. The first method uses a technique based on a
committee to select the parts of the chemical space, where the model does not behave as
expected along the reaction coordinate. This allows to target specific parts of the chemical
space to put in the training set by performing ab initio Umbrella Sampling simulations
at the center of these parts. The obtained machine learning potential is used to sample
the whole chemical space along the defined reaction coordinate.

This first method comes as an add-on of the already existing protocol of the team, with
the addition of the machine learning potential which allows decreasing the computational
cost of a study, and therefore to study bigger systems. We applied this new technique to
a mechanism of formation of glycine under prebiotic conditions, which contains 8 steps.
To the best of our knowledge, this is the first study of a complex reaction network us-
ing a machine learning potential. The results obtained are in agreement with the ones
obtained in the previous study of the Strecker mechanism. This goes in the favor of our
machine learning protocol. Finally, our results are in good agreement with experimental
ones. Moreover, they can help interpret the presence of some species in meteorites, such
as glycolonitrile or glycolic acid.

The method presented in chapter 3 is however a bit difficult to set into place and
requires the prior knowledge of the reaction mechanism and the definition of a collective
variable. If the collective variable is bad, and has to be changed, a new machine learning
potential will have to be trained.

To overcome this problem, we introduced a method based on transition path sampling
to train a machine learning potential. The training process does not depend on the prior
knowledge of the transition mechanism, as only a first trajectory bridging the reactants
and the products is necessary to generate the training data. This data is generated by
shooting trajectories from the top of the barrier and relaxing into the reactants and prod-
ucts basins. With these trajectories, a large amount of configurations between the two
wells and the transition state are harvested and are enough to have a machine learning
potential accurate on the whole chemical space.

With this trained machine learning potential, it is possible to obtain the free energy
profile of the studied mechanism along different collective variables. Furthermore, the
kinetic rates can be computed with the reactive flux formalism and compared to experi-
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mental results. Finally, the quality of the collective variable can be assessed by performing
shooting from transition path sampling configurations via committor analysis. Although
this method allows a great speed-up in terms of computational time, there are some lim-
itations to it. Indeed, the training data and thus the TPS simulations still need to be
performed which cannot be done if the system is too large.

This approach is novel among the little literature on reactive machine learning force
fields in solution. With these two methods, we believe new mechanisms can be studied
on top of the one studied in this thesis. For example, in prebiotic chemistry, it is thought
that mineral surfaces [194, 195, 196, 197, 198] play a catalytic role in hydrothermal vents
and in the interstellar medium, but they are often too expensive to include in simulations
with already a solvent and a reactive system. With our methods, we believe it can be
studied and this would have a major role in prebiotic chemistry.

On the other hand, in this manuscript, we focused on the case of glycine, which is
an amino-acid part of protein that play in two of the three pillars of life defined in the
introduction. The replication part is done by storing the information in DNA and RNA
molecules, and the question of how they formed on earth is as important as the one of
protein formation. Therefore, we also believe that this work might help in studying the
mechanisms of formation of building blocks of RNA molecules such as nucleobases and
ribose [199, 200].

From a physical point of view, training a potential with transition path sampling data
allows harvesting a large amount of different configurations. Another field of dynamics
where many configurations appear is the study of nuclear quantum effects. For example,
for path integral molecular dynamics, several replicas of the system are created, and a
simulation is run for each replica. Since this multiplies the computational time, the elec-
tronic degrees of freedom are often treated using less accurate than DFT methods such
as density functional based tight binding (DFTB) [201]. Some work has been done to
perform path integral molecular dynamics with machine learning potentials [65, 202], but
it is rare to see such work for reactive system [203, 204]. We believe this method could
help in the study of nuclear quantum effects.

Finally, from a technical point of view, we believe that the equivariant neural network
potentials such as nequip and allegro [123, 124] offer a very promising path for the training
of even more accurate machine learning potential. They are very new packages and should
offer a very attractive alternative to deepmd for reactive force fields.
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Appendix A

Dissemination of research results
and teaching activities

A.1 Publications

A.1.1 Published papers

T. Devergne, T. Magrino, F. Pietrucci, and A. M. Saitta, “Combining Machine Learning
Approaches and Accurate Ab Initio Enhanced Sampling Methods for Prebiotic Chemical
Reactions in Solution,” J. Chem. Theory Comput., vol. 18, pp. 5410–5421, Sept. 2022.
Publisher: American Chemical Society.

A.1.2 Papers in preparation

• T. Devergne, L. Huet, F. Pietrucci and A. M. Saitta, “Efficient Machine Learning-
based Approach for Accurate Free-Energy Profiles and Kinetic Transition Rates in
Chemical Reactions”, In preparation for Phys. Rev. Let.

• L. Huet, T. Devergne, F. Pietrucci and A. M. Saitta “Machine learning in quantum
dynamics for glycine synthesis in origin of life”, In preparation for Proc. Natl. Ac.
Soc.

A.2 Participation to conferences

A.2.1 Organization of conferences/workshop

• Member of the organizing team of “Quantum2 on machine learning enhanced sam-
pling”, 29/10/2023-01/12/2023,CECAM Lausanne, Switzerland,

• Help organization of the “premières journées plénières du GDR IAMAT” (registra-
tion), 30/05/2022-01/06/2022, Paris, France
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A.2.2 Contributed talk

• Agnostic machine learning description of chemical reactions in solution, Congrès
général des 150 ans de la société française de physique, Mini colloque intelligence
artificielle en physique, 03/07/2023-07/07/2023, Paris, France

• Complete machine learning description of chemical reactions in solution; American
physical society march meeting, 05/03/2023-10/03/2023, Las Vegas, USA

• Combining machine learning and ab initio enhanced sampling methods for pre-
biotic chemical reactions, Conférence exobiologie jeunes chercheurs, 17/10/2022-
19/10/2022, Paris, France

• Combining machine learning and ab initio enhanced sampling methods for prebi-
otic chemical reactions, Premières journées plenières GDR IAMAT, 30/05/2022-
01/06/2022, Paris, France

A.2.3 Posters

• Agnostic machine learning description of chemical reactions in solution, Première
école thématique du GDR IAMAT, 17/04/2023-21/04/2023, Roscoff, France

• Combining machine learning and ab initio enhanced sampling methods for prebi-
otic chemical reactions, Machine Learning Meets Statistical Mechanics: Success and
Future Challenges in Biosimulations, 12/10/2022-14/10/2022 CECAM-IT-SIMUL,
Grand Hotel Vesuvio, Sorrento, Italy

• Combining machine learning and ab initio enhanced sampling methods for prebi-
otic chemical reactions, Chasing CVs using Machine Learning: from methods devel-
opment to biophysical applications, 28/06/2022-30/06/2022, CECAM-FR-MOSER
Paris, France

• Machine learning and Umbrella sampling to investigate chemical reactions in so-
lution, Atelier ”Méthodes machine-learning pour la modélisation des matériaux”,
GDR ModMat,22/09/2021-24/09/2021, Toulouse, France

• Machine learning and Umbrella sampling to investigate chemical reactions in so-
lution, Paris International school for computational material science, 30/08/2021-
03/09/2021, Paris, France

A.3 Teaching activities

A.3.1 Teaching at the UFR de physique

• Intelligence artificielle pour la physique, Creation, and supervision of practical ex-
ercises and supervision on student projects, M1 level (2020 and 2021) (60h)

• Electromagnétisme et ondes, supervision of practicals (optics), L3 level (2021) (10h)
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• Structure de la matière, supervision of practicals and problem sets sessions, L3 level
(2021) (80h)

A.3.2 Supervision of interns

• Étude du CO2 géologique à partir des méthodes de Machine Learning, Eliane Farhi,
05/2022-06/2022 (M1 internship)

• Étude des méthodes de machine learning en simulations atomistiques en matière
condensée, Mohamed Menshawy, 05/2022-06/2022 (M1 internship)
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F. Marinelli, L. Martin-Samos, M. Masetti, R. Meyer, A. Michaelides, C. Molteni, T. Mor-
ishita, M. Nava, C. Paissoni, E. Papaleo, M. Parrinello, J. Pfaendtner, P. Piaggi, G. Pic-
cini, A. Pietropaolo, F. Pietrucci, S. Pipolo, D. Provasi, D. Quigley, P. Raiteri, S. Raniolo,
J. Rydzewski, M. Salvalaglio, G. C. Sosso, V. Spiwok, J. Šponer, D. W. H. Swenson, P. Ti-
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